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ABSTRACT 

Cadherins are a superfamily of intercellular adhesion molecules essential for structural maintenance 

of tissue cohesion, precise primary tissue segregation and regulation of regeneration processes in 

adult. Cadherins are widely expressed in the vasculature. Adherens junctions and desmosomes, 

where cadherins are the intercellular adhesion transmembrane linkers, have been demonstrated in 

large and small arteries in vivo and their participation in correct organization of vascular smooth 

muscle architecture is doubtless. However, knowledge on precise functional roles for cadherin in 

healthy or diseased vascular smooth muscle is limited.  

T-cadherin is an atypical cadherin highly expressed on endothelial and smooth muscle layers of the 
vasculature. Dynamic T-cadherin expression on vascular smooth muscle in vivo has been reported in 
number of vascular pathologies including two major vasoproliferative disorders – atherosclerosis and 
restenosis. Functions and molecular mechanisms regulated by this molecule in the smooth muscle 
cell component of the vasculature are unknown. The primary functions of vascular smooth muscle 
cells (VSMC) are contraction and regulation of blood vessel tone. However, VSMC possess inherent 
plasticity: they can switch from mature contractile phenotype to a de-differentiated proliferative and 
synthetic phenotype in response to vascular injury, or local environmental cues signalling. Studies in 
this dissertation are aimed at establishing cellular functions for T-cadherin in VSMC contraction and 
phenotype plasticity and identifying mediating molecular mechanisms. 

First, we found that T-cadherin modulates non-metabolic insulin signalling via Akt/mTOR, which in 

turn leads to alterations in VSMC contractile competence and increased matrix remodelling. T-

cadherin overexpressing cells exhibited elevated constitutive levels of phosphorylated Aktser473, 

GSK3βser9, S6RPser235/236 and IRS-1ser636/639. Contractile machinery was constitutively altered in a 

manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of 

MYPT1thr696 or MYPT1thr853 and MLC20
thr18/ser19, reduced RhoA activity and increased iNOS expression. 

T-cadherin overexpressing VSMC-populated collagen lattices exhibited greater compaction which 

was due to increased collagen fibril packing/reorganization. These cells also exhibited a state of 

insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis 

signalling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen 

fibril reorganization in unreleased lattices. 

Second, T-cadherin upregulation on VSMC, a phenomenon observed in VSMC-driven vascular 

pathologies (atherosclerosis and restenosis) promotes VSMC phenotype transition. T-cadherin 

upregulation in VSMC caused loss of spindle morphology, reduced/disorganized stress fibre 

formation, decay of SMC-differentiation marker proteins, increased levels of β-catenin and cyclin D1, 

and migro-proliferative behaviour. Genetic T-cadherin ablation, on the other hand, enforced 

differentiated phenotype. T-cadherin hyperactivates Akt axis signalling and inactivates classical 

downstream effector GSK3β. Ectopic adenoviral-mediated co-expression of constitutively active 

GSK3β restored morphological, molecular, and functional characteristics of differentiated VSMC in T-

cadherin overexpressing cells, suggesting that GSK3β inactivation is essential for T-cadherin induced 

VSMC de-differentiation. 

The studies have revealed novel cadherin-based modalities to regulate VSMC sensitivity to insulin 

and phenotype plasticity, which is achieved via Akt/mTOR axis hyperactivation and altered 

downstream effector signalling. 
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INTRODUCTION 

1. Smooth muscle and its function 

1.1. Smooth muscle  

Smooth muscle is distributed in many parts of the body and has varied but highly specialized 

functions based on coordinated cycles of contraction and relaxation. Smooth muscle is mostly found 

in the hollow and tubular organs where it ensures directional movement of body fluids, or regulates 

organ size and shape. Organized in sheets or arrays of bundles, smooth muscle consists of uninuclear 

elongated, spindle shaped cells embedded and enwrapped in large amounts of extracellular matrix 

(ECM). In large elastic arteries ECM can constitute more than 50% of the media volume. Most of this 

ECM is produced and maintained by smooth muscle cells (SMC) [1].  

1.2. Smooth muscle cells  

The characteristic elongated spindle shape of SMC in mature smooth muscle is dictated by its 

principal function, which is to contract and generate mechanical output needed for the function of a 

particular organ. However, within the adult organism SMC expressing common set of classical marker 

genes may be very heterogeneous in morphology. This depends on cell location (e.g. veins vs. 

arteries), its embryological origin, or the organ context [2]. Smooth muscle is non-striated. 

Contractile apparatus of the SMC, primarily actin and myosin filaments, is attached to the cell 

membrane and criss-cross the entire cell body. The cell membrane is rich in ion channels, cell-to-cell 

and cell-to-matrix junctions, all dedicated to ensure effective communication with the environment 

and robust action coordination with neighbouring cells [1]. Smooth muscle function is based on 

cooperation between mature myocytes, as well as between myocytes and surrounding extracellular 

matrix. Smooth muscle function is controlled by a broad variety of stimuli – neural, mechano, 

hormonal, light, changes in temperature, or self SMC-induced myogenic signal propagation [1].  

Vascular smooth muscle cells (VSMC) are stromal cells of the blood vessels. VSMC maintain normal 

blood pressure and provide structural stability and resistance to the mechanical stress in the vessels 

[1]. In early development VSMC in arteries and veins and pericytes in capillaries muscularize primary 

vessels formed by endothelial cells (EC), providing structural stability and functionality [3]. Well-

coordinated cycles of smooth muscle contraction and relaxation adjust vessel diameter and regulate 

hemodynamics. In addition, VSMC synthesize ECM, which helps to resist the high pressure load of 

circulating blood and prevent physical permeability in large vessels [4].  

1.3. Smooth muscle contraction 

Multiple pathways exist for activation of SMC contraction. Cytosolic Ca2+ plays a central role in 

initiating and regulating contraction. The key effector in SMC contraction/relaxation signalling and 

mechanics is the 20 kDa myosin light chain protein (MLC20) [1]. In its active state MLC20 activates Mg2+ 

ATPase function of myosin and enables it to bind and slide along the actin filament, eventually 

resulting in cell and muscle contraction [5]. 

Ca2+-dependent MLC20 activation is mediated by myosin light chain kinase (MLCK), which in turn 

depends on the Ca2+-calmodulin system. The system is activated by an increase in free cytoplasmic 

Ca2+; this happens when extracellular stimuli open Ca2+ channels and extracellular or sarcoplasmic 
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free Ca2+ influx in to intracellular space. Intercellular Ca2+ complexes with calmodulin, activates MLCK 

and thereby initiates SMC contraction. Ca2+-dependent SMC contraction is controlled by signals 

which regulate activity of numerous receptor operated Ca2+ channels (ROCC), located on the cell 

membrane or on sarcoplasmic reticulum [5]. Well known ligands such as prostaglandins, endothelin-

1, norepinephrine, angiotensin II and vasopressin activate ROCC and allow Ca2+ influx [6]. Additional 

control is provided by voltage-dependent channels.  

A second contraction signalling mechanism in SMC is independent of Ca2+and is called Ca2+ 

sensitisation. Ca2+-sensitisation is mediated by small Rho GTPase RhoA and Rho associated kinase 

(Rho-kinase) [7]. In addition to Ca2+ channel control, vasoconstrictors can activate the RhoA/Rho-

kinase signalling pathway. This pathway regulates myosin light chain phosphatase (MLCP) and MLC20 

activities (active MLCP directly binds to and dephosphorylates/inactivates MLC20) RhoA recruits and 

activates Rho-kinase, which negatively regulates MLCP activity by phosphorylation and heightens 

SMC contraction [8]. In addition, Rho-kinase directly phosphorylates and activates MLC20, further 

promoting SMC contractility [9].  

SMC relaxation is achieved by removal of contractile stimuli and reduction of intracellular Ca2+ or by 

inhibition of RhoA/Rho-kinase signalling [5]. Vasodilators act by closing Ca2+ channels, activating 

outward Ca2+ pumps, and inhibiting RhoA/Rho-kinase pathway signalling. Reduction of free cytosolic 

Ca2+ activates MLCP, which dephosphorylates/ inactivates MLC20, enabling the cell to switch into 

relaxation phase. SMC relaxation can be induced by natriuretic peptides and vasodilators adenosine, 

adrenomedulin, nitric oxide (NO), or insulin.  

Insulin is a versatile signalling molecule and regulates multiple processes in VSMC. In addition to its 

“canonical” metabolic function, insulin plays an important role in maintenance of differentiated 

VSMC phenotype (see section 4.2.1.3.), and reducing vascular tone [10]. As a vasodilator insulin 

affects both Ca2+-dependent, and Ca2+-independent SMC contraction. Insulin regulates Ca2+-

dependent contractile signalling via inhibition of Ca2+ influx and induction of Ca2+ efflux [11-13]. 

Insulin affects Ca2+-independent contractile signalling by targeting RhoA activity. Insulin signalling 

induces NO synthesis by activation of inducible nitric oxide synthase (iNOS) and endothelial nitric 

oxide synthase (eNOS), both of which are found in SMCs [14]. NO activates guanylate cyclase, and 

induces production of cGMP. cGMP activates cGMP-dependent protein kinase α (PKG I α), which 

binds and inactivates RhoA (by phosphorylation on Ser188) [15]. In addition, insulin reduces RhoA 

translocation to the membrane by inhibition of geranyl-geranyl transferase [16]. Insulin inhibitory 

pathway on SMC contraction is phosphatidylinositol-3-kinase (PI3K) and Akt signalling dependent 

[17,18]. 

1.4. Vascular smooth muscle repair and renewal (turnover) 

VSMC have functional plasticity. In addition to regulation of hemodynamics and provision of 

structural support, VSMC fulfil vascular repair functions. Pre-existing mature VSMC are the major 

contributors of smooth muscle repair and vessel renewal [19]. Mature VSMC retain high degree of 

cellular plasticity and can switch their phenotype from quiescent-contractile to migro-proliferative 

and synthetic. On demand or guided by environmental cues fully differentiated VSMC can adjust 

their phenotype by de-differentiation in order to adopt reparative functions. VSMC undergoing de-

differentiation lose contractile machinery and competence, increase ECM production and intensify 

matrix remodelling, become migratory, and re-enter cell cycle. Once vessel homeostasis and 

structural integrity is restored, de-differentiated phenotype then re-differentiates back to the 
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mature, contractile state [20]. In a healthy vascular wall individual VSMC de-differentiation occurs at 

a low event rate and ensures constant vascular wall renewal, or in case of injury, repair to damaged 

tissue. However, when phenotype transition controlling mechanisms fail, VSMC plasticity is 

detrimental. Persistent pathological VSMC-driven reparation significantly contributes to life 

threatening conditions like atherosclerosis, restenosis, or graft failure [19]. Despite high demand for 

improved cardiovascular therapeutics and intense research, mechanistic pathways controlling VSMC 

phenotype remain incompletely understood.  

2. Cardiovascular diseases 

Cardiovascular diseases (CVD) are the major cause of death worldwide [21] (Fig.1.). CVDs are heart or 

vasculature dysfunctions which include coronary heart diseases causing heart attacks, 

cerebrovascular disease causing stroke, hypertension, peripheral artery disease, rheumatic heart 

disease, congenital heart disease and heart failure.  

 
The latest (2014) global status report of noncommunicable diseases published by WHO estimated 

17.5 million CVD caused deaths in 2012, which represents 31% of all deaths worldwide and more 

than half of all deaths across the European Region. 7.4 million of all global CVD deaths were due to 

coronary heart disease, and 6.7 million due to the stroke together taking 80% of all CVDs [21]. 

Considering some global demographic and socioeconomic trends – population aging, economic 

growth in Asia, and endemic spread of obesity in developed countries – high cardiovascular death 

rates will remain an unsolved problem. It is predicted that the proportion of CVD death will only rise 

[22]. The introduction of statin therapy and drug-eluting stents a few decades ago offered major 

breakthroughs in the clinical management of CVD, however, novel, more targeted and, importantly, 

low cost therapeutic and early diagnostic methods are needed. About 75% of CVD deaths occur in 

low- and middle- income countries [21], bringing additional economic burden to the weak 

economies.  

The highest risk factors for CVDs are behavioural: tobacco, alcohol use and bad body biochemistry 

(unbalanced diet, low physical activity and obesity). Higher CVD mortality rates in women suggest 

that important, but not yet well understood non-environmental factors play a role in cardiovascular 

health. Ultimately, deeper understanding of basic cardiovascular physiology and CVD mechanisms is 

needed. Better awareness of the major risk factors and lifestyle adjustments would certainly help to 

reduce the premature deaths from CVDs, however a range of diverse strategies is needed to reach 

 

Fig.1. Global deaths rates by the cause of deaths under age of 70 years. Cardiovascular diseases are 

leading causes of deaths worldwide - 31% of all deaths. Ischemic heart diseases and cerebrovascular 

diseases have the highest mortality rates among the cardiovascular diseases. 2012 estimates by WHO [21]. 
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substantial result [23], and fundamental research should be one of them. – Past results show that 

cardiovascular research is a highly cost effective research – the returns from past cardiovascular 

research have been substantial, yielding 9% of internal rate of return in the UK [24], and 20.6% in 

Canada [25]. 

2.1. Vascular smooth muscle dysfunction driven cardiovascular diseases 

Smooth muscle and SMC have been studied or used as model systems for decades, yet we still do not 

understand their biology well enough to be able to prevent or treat the smooth muscle-related 

pathophysiological conditions effectively. Smooth muscle disorders are numerous, and mostly non-

treatable. Highest mortality rate bearing CVDs are caused by pathological vessel narrowing, which on 

cellular and molecular levels is largely the outcome of not yet therapeutically controllable processes 

and inadequate VSMC response to changes in body biochemistry. 

2.1.1. Atherosclerosis and restenosis 

Coronary artery diseases (CAD) leading to ischemic heart disease and stroke are the most common 

among cardiovascular diseases and the major causes of death worldwide (Fig.1.). CAD arises from 

progressing atherosclerosis, a multiplex disease caused by disbalanced lipid metabolism and 

maladaptive immune reaction followed by inadequate vascular cell response [26-28]. Atherosclerosis 

is characterised by chronic vascular wall inflammation, progressive narrowing of the vessel lumen 

and eventual plaque formation. 

An initial step in atherosclerosis is driven by EC. Activated EC mediate immune cell adhesion to the 

vascular wall and monocyte infiltration to the intima where they initiate inflammation. Appearance 

of neointima is observed before formation of atheroma. Growth factor- and inflammatory cytokine-

activated intimal VSMC proliferate rapidly and produce large amounts of ECM. In addition, intimal 

growth is further exacerbated by infiltration of medial VSMC which migrate to the intima in response 

to platelet-derived growth factor (PDGF) and other cytokine stimuli. This eventually culminates in 

vascular wall thickening and narrowing of the lumen [19].  

Monocytes which infiltrate to the expanding intima mature to macrophages, uptake high amounts of 

lipids and transform into foam cells [27]. In response to inflammatory factor stimulation and 

cholesterol loading, VSMC also acquire macrophage-like phenotype; they start to express 

macrophage and mesenchymal stem cell (MSC) markers, uptake lipids by endocytosis/phagocytosis 

eventually turning into foam cells [29-31]. Foam cells undergo apoptosis or necrosis and form 

cholesterol deposits, which accumulate and form a necrotic core. Further infiltration of VSMC and 

immune cells and chronic inflammation leads to necrotic core growth [32]. Ultimately, progression of 

such plaques can lead to rupture of the vessel wall and vessel thrombosis which hinders blood supply 

to the heart muscle or brain, causing myocardial infraction or stroke, respectively. Atherosclerotic 

plaques, covered by thick VSMC and VSMC-derived ECM cap are considered stable and rarely rupture 

[33]. However, if the inflammatory process progresses further, fibrous cap-forming VSMC undergo 

apoptosis which leads then to thinning of the fibrous cap and plaque rupture [34].  

Altered lipid metabolism and low density lipoprotein (LDL) pathway plays central role in 

atherosclerosis initiation and progression [32]. Statins, the inhibitors of hydroxymethyl glutaryl 

coenzyme A reductase, are the most efficient drug currently used as a mainstream therapy in 

atherosclerosis patients. However, statins do not cure the disease completely, and in about 20% of 

all patients statins are ineffective in prevention of vascular events [34,35]. Surgical interventions (e.g. 
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angioplasty) have similar failure rates (16-20%) [36,37] since endovascular procedures frequently 

lead to restenosis, which is a re-narrowing of the vessel caused primarily by excessive smooth muscle 

proliferation (hyperplasia) and ECM deposition [38].  

Until very recently, it was widely accepted that atherosclerosis is an immune cell-driven disease, and 

VSMC play only a marginal role [32]. This was mostly due to unreliable lineage tracing methods and 

an overlooked fact of extensive phenotype plasticity in both cell lineages (hematopoietic and SMC) 

within the microenvironment of atherosclerotic plaque [28]. VSMC within the lesion lose most of the 

SMC markers and can express macrophage and mesenchymal stem cell (MSC) markers, while 

macrophages may begin to express Acta2 and other SMC markers. Use of traditional immunolabeling 

in advanced atheromas may thus lead to misidentification of cell type. The need for revision of cell 

identification methods was urged by an accumulating number of studies showing that identification 

of cell origin in the atheroma by conventional methods might be very inaccurate. One study reported 

that 50% of foam cells in the advanced atheroma expressed smooth muscle (SM)-α-actin (classical 

SMC marker), as well as macrophage marker CD68 [31]. A study which used material derived from 

cross-gender bone marrow transplantation subjects found that >10% of SM-α-actin positive cells 

within atheroma is of hematopoietic origin [39]. A very recent study which used mouse genetic 

manipulations to track cell lineage showed that about 30% of all cellular mass within atherosclerotic 

lesions are phenotypically modulated SMCs, variously expressing SMC, macrophage or MSC markers, 

and that more than 80% of all of these cells would have been misidentified with conventional 

labelling methods [28].  

The study by Shankman, Gomez et al. demonstrated the existence of transcription factor-specific 

guidance of SMC phenotype in vivo, suggesting that VSMC phenotype transition in atheroma can be 

manipulated in order to increase plaque stability. Krüppel-like factor 4 (KLF4) is one of the most 

powerful SMC phenotype transition regulating factors (see section 4.1.2.), which guides SMC to 

acquire a pro-inflammatory macrophage-like phenotype. KLF4 knockout results in both formation of 

smaller and more stable atheromas due to the enrichment of SMC-like cells which form the fibrous 

cap, and loss of the pro-inflammatory, macrophage-like SMC population [28]. 

These findings confirm the importance of VSMC phenotype transition in atherosclerosis. Previously 

assumed protective role of VSMC in atheroma stabilization is only one of many functions that VSMC 

can assume via phenotypic switching. As a large body of in vitro data suggests, VSMC plasticity is 

remarkable and can lead to acquisition of many functionally distinct phenotypes (synthetic SMC, 

macrophage-, MSC- chondrogenic- or osteogenic-like cells), with very different outcomes in disease 

progression. Moreover, VSMC phenotype transition is an environmental cue-guided, rather than 

spontaneous process and can be manipulated in order to reduce the degree of disease pathogenesis. 

To explore this option, a deeper understanding of basic molecular pathways controlling VSMC 

phenotype transitions, the identification of environmental cues which regulate it, and the 

development of therapeutic tools to manipulate VSMC phenotype transition are of crucial 

importance.  

2.1.2. Cerebral microangiopathy 

Cerebral microangiopathy or small vessel disease (SVD) is another cause of vascular dementia and 

strokes [40]. Cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL) is caused by defective Notch signalling in VSMC, which occurs due to 

the dominant Notch3 mutation [41]. It was long thought that CADASIL occurs due to the loss of 
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Notch signalling, but accumulating evidence now supports that mutant Notch3 switches canonical 

Notch signalling to some other mode and modulates VSMC phenotype [42]. Progressing CADASIL 

leads to VSMC loss in small arteries, vessel stenosis, resting cerebral blood flow reduction, 

accumulation of ECM components (collagens and laminin) and osmiophilic material, and early death. 

No specific therapies are available to stop the progression of CADASIL or treat it [42].  

2.1.3. Marfan syndrome 

Marfan syndrome is an intrinsic monogenic disorder which targets VSMC and shifts vascular VSMC 

phenotype towards a more differentiated state. VSMC “over-differentiation”-caused vascular 

instability in Marfan syndrome illustrates well the importance of balanced VSMC phenotype plasticity 

for normal vascular function. 

Marfan syndrome is caused by mutations in fibrilin-1, an ECM protein encoding gene. Fibrilin-1 is a 

structural component of connective tissue, but also a negative regulator of transforming growth 

factor-β (TGF-β) activity (fibrilin-1 bound TGF-β is inactive). TGF-β is a pro-differentiation cytokine in 

VSMC (see section 4.2.1.2.). Reduction in fibrilin-1 abundance results in excessive TGF-β signalling, 

which locks VSMC in a differentiated state and suppresses their reparatory and synthetic function. 

VSMC “over-differentiation” adds to structural and functional fragility of the vessels with increased 

risk of aortic aneurism formation and aortic dissections, which are the major causes of early death in 

Marfan syndrome [43,44]. 

2.1.4. Hypertension 

Systemic hypertension is another circulation dysfunction, where VSMC are the targets of “upstream” 

pathophysiological changes. Endocrine or kidney dysfunction, aging, metabolic syndrome, or other 

not yet well understood processes increase vasoconstrictor signalling which manifests as a vascular 

smooth muscle mediated disorder [45].  

Hypertension is a systemic and chronic disease characterized by high arterial pressure and increased 

vascular resistance. Mechanistically, hypertension is the outcome of alterations in renin-angiotensin-

aldosterone or/and calcium-calmodulin systems [46]. Abnormalities in vasoconstrictor signalling 

enhance protein kinase C (PKC) and Rho-kinase signalling, which lead to VSMC hypertrophy (elevated 

contractile protein synthesis), increased VSMC contractility, vascular remodelling and extensive ECM 

synthesis resulting in increased vascular wall rigidity [47,48]. Constant exposure to enhanced and 

sustained mechanical stretch activates mitogen-activated protein kinase (MAPK) pathway and 

promotes VSMC proliferation [49]. In addition to dysregulation in upstream signalling, VSMC 

hypersensitivity to calcium or vasoconstrictor signalling is also often observed in hypertension [50], 

suggesting that in some cases intrinsic VSMC defects can be responsible for disease development as 

well.  

Medial hypertrophy and arterial resistance cause permanent changes in arterial architecture and 

worsen high blood pressure. Untreated hypertension can progress to hypertensive heart disease, 

stroke, aortic aneurisms or kidney failure. It highly promotes the development and progression of 

other conditions such as diabetes, endothelial dysfunction or atherosclerosis [45]. 

2.1.5. Pulmonary arterial hypertension 

Similarly to systemic hypertension, medial VSMC layer enlargement, intimal thickening and increased 

pulmonary artery resistance are observed in pulmonary arterial hypertension (PAH). These 
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anatomical changes restrict blood circulation between the lungs and the heart, which ultimately can 

result in right-sided heart failure. The causes of PAH can be very varied and multiplex with not yet 

identified molecular mechanisms or no direct relations to VSMC dysfunction. Familial PAH however is 

caused by intrinsic genetic VSMC defects, namely the loss-of-function mutation in bone 

morphogenetic protein (BMP) receptor-2. Reduced pro-differentiation BMP signalling in pulmonary 

artery VSMC and EC of familial PAH patients translates into weaker SMAD1-mediated p38/MAPK 

signalling repression, VSMC de-differentiation and hyperproliferation [51,52]. Extensive VSMC 

proliferation and matrix secretion causes enlargement of the intima and narrowing of the pulmonary 

artery.  

2.1.6. Role in non-cardiovascular diseases. Cancer metastasis 

Cancer does not belong to the group of CVDs. However, VSMC function might play an important role 

in the progression of this disease. Highly metastatic tumours often have poorly developed leaky 

blood vessels. This is caused by pericyte failure to differentiate and muscularize newly formed vessel 

[53]. It is not known whether leaky cancer vessels are the result of cancer microenvironment 

signalling, or the pre-existing and cancer spreading-permissive tissue dysfunction. It has been shown 

that the molecular signature comprising 17 genes in highly invasive tumours contained 4 pericyte 

differentiation marker genes (all downregulated) [54]. Leaky vessels favour physical cancer cell 

spreading and facilitate haemorrhage and inflammatory processes within the tumour, which further 

promotes tumour growth [55]. The role of VSMC phenotype switching in cancer pathogenesis is 

understudied, and the possible mechanistic basis of impaired tumour blood vessel maturation from 

the perspective of VSMC biology is not yet understood [56]. 

3. Vascular smooth muscle cell plasticity 

3.1. Phenotype modulation, phenotype switching and phenotype transition 

The term “phenotypic modulation” was introduced 

by Julie Chamley-Campbell et al. more than 30 

years ago [57] to describe the sum of 

morphological changes that VSMC undergo when 

cultivated in vitro. Now, together with synonymous 

“phenotype switching” or “phenotype transition” it 

envelops all functional-, structural- and molecular-

level alterations that smooth muscle cells undergo 

in response to changing environmental cues, and it 

is no longer limited to in vitro cultures [19]. 

VSMC-specific marker expression is a classical and 

one of the most important phenotype 

characteristics used to describe VSMC phenotype. 

Decreased expression of VSMC differentiation 

markers (mostly vital components of VSMC 

contraction machinery and cell anchorage (e.g. 

smooth muscle SM-α-actin, SM myosin heavy 

chain, calponin, h-caldesmon)) is universally 

accepted as an indicator of VSMC de-

differentiation. As levels of VSMC-specific marker 

          

Fig.2. VSMC phenotype plasticity. In vascular 

injury, or guided by environmental cues, fully 

differentiated SMC de-differentiate by losing 

contractile apparatus (blue gradient illustrating 

expression intensity on the left) and re-enter cell 

cycle. Once tissue repair is complete or de-

differentiation stimuli removed, SMC re-

differentiate fully regaining contractile function. 
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expression decline, expression of other proteins often involved in cell cycle progression or ECM 

components (e.g. collagen I, matrix-metalloproteinases (MMPs), calmodulin, cyclins) increases 

(Fig.2.). 

SMC marker decay and morphology changes together with altered functional characteristics, 

increased migration and hyper-proliferation, are the indications of a full VSMC phenotype switch. It is 

important to note that the mentioned characteristics describe the “averaged”, or “ideal” de-

differentiation status. In the injured or diseased vessel, populations of de-differentiated SMC can be 

very diverse in the grade of de-differentiation, but also because of phenotype divergence due to 

either exposure to different environmental cues and/or due to their different embryologic origins 

(even in a healthy adult vessel smooth muscle is very heterogeneous and resembles mosaic 

architecture [19]). Upon exposure to different environmental cues VSMC can acquire a spectrum of 

phenotypes: contractile-quiescent, migro-proliferative synthetic, osteogenic-, macrophage-, or MSC-

like [28].  

Although VSMC phenotype switching is a major mechanism for vessel renewal and repair, alternative 

mechanisms within the vessel might also exist. - Multipotent vascular stem cells which can 

differentiate to VSMC have been found in vascular wall [58]. However, the importance and 

contribution of these cells for vessel renewal and repair is not yet clear [59].  

3.2. Experimental models to study VSMC plasticity 

Experimental restenosis of the rat carotid artery after balloon injury is the most commonly used in 

vivo model to study VSMC plasticity. Rat carotid balloon injury is made by repeatedly inflating and 

withdrawing balloon catheter in the carotid artery in order to mechanically remove the endothelial 

lining [60]. Such injury induces vessel remodelling responses – intimal SMC proliferation, matrix 

production and medial SMC invasion to the intimal space (all via phenotype transition), – which 

result in neointima formation and growth. This model offers robust reproducibility and has been 

used to study cellular, biochemical and molecular aspects of vessel repair, and also serves as a “proof 

of concept” tool for verification of in vitro findings [61].  

The ApoE-deficient mouse (ApoE-/-) is the most popular in vivo model to study atherosclerosis. ApoE 

is a major apoprotein of the chylomicron and is essential for the normal catabolism of triglyceride-

rich lipoprotein constituents. Due to the impaired clearing of plasma lipoproteins ApoE-/- mice 

spontaneously develop hypercholesterolemia and atherosclerosis in a very short time – 3 months if 

fed a normal chow. The process can be accelerated by Western-type diet chow containing high levels 

of fat and cholesterol. The close resemblance of atherosclerotic lesions developed by this mice to 

those in human atheroma together with short disease development time makes this model the most 

attractive in vivo model to study atherosclerosis [62].  

Human- or animal-derived primary SMC tissue cultures have been used for decades to study SMC 

phenotype plasticity and contraction mechanisms. Contractile VSMC collected from human or animal 

vessel and cultured in vitro start to de-differentiate immediately due to the exposure to the high 

concentration of growth factors present in medium [63]. Growth factor withdrawal from the culture 

(serum starvation) reverts the phenotype to the differentiated state [64]. This phenomenon is very 

useful to study factors and conditions regulating SMC phenotype plasticity. However, primary SMC 

cultures have a number of inherent limitations which can lead to irreproducibility or generation of 

artefacts. Vascular smooth muscle is a highly heterogenic tissue, composed of different SMC 

subtypes derived from at least eight independent origins, each of which can respond differently to 

the applied stimuli and acquire diverse phenotypes [65]. High heterogeneity exists not only between 

different segments of the vessel, but also within the same vessel segment: therefore small 

inaccuracies in tissue isolation can lead to high variability in resulting primary cultures. This can be 
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Fig.3. Living three-dimensional 

microvascular network – a blood vessel 

on a chip. The in vitro 3D perfusable 

model system used to study angiogenesis 

and thrombosis [68]. Additional system 

components (e.g. lymphocytes, signalling 

molecules, antibodies, inhibitors) can be 

introduced temporarily or constantly with 

the culture medium that constantly flows 

through the channels. Adapted from [69]. 

further complicated by the variations in VSMC isolation and cultivation methods which can lead to 

conflicting result between different laboratories [56]. Isolation of SMC by tissue explant method 

preselects primarily for cells which have higher migration capacity. Isolation by enzymatic digestion is 

prone to fibroblast contamination and also high variability between isolates prepared on different 

occasions due to tissue “under-digestion” or “over-digestion” [66]. Thus, the method of isolation will 

markedly affect the dominance of different sub-populations in resulting cell cultures. Moreover, 

human VSMC isolates are susceptible to quick senescence and are often “preconditioned” by donors’ 

age, gender or received treatments.  

SMC phenotypic transition in the mature vessel involves 

the reactivation of embryonic stem cell pluripotency 

genes, which closely resemble SMC behaviour during 

vessel development [29]. Similarly like during de-

differentiation, in early vasculogenesis SMC are highly 

migro-proliferative and exhibit intensive ECM production 

and remodelling [56]. Due to phenotypic similarities 

between SMC phenotypes observed in de-differentiation 

and vasculogenesis, stem cell-derived tissue culture lines 

primarily designed to study developmental 

differentiation are often used to investigate SMC 

phenotype transition. Unlike primary SMC cultures, stem 

cell-derived cell lines offer high origin purity and can be 

used to study SMC origin-specific phenotype plasticity 

aspects.  

Several neural crest stem cell-derived and immortalized 

cell lines (e.g. Monc-I, JoMaI) are used as in vitro SMC 

differentiation models. TGF-β1 stimulation induces quick 

and robust differentiation toward SMC lineage in these 

cell lines. However, as models to study full SMC 

differentiation these lines are limited by the constant or 

temporal oncogene expression that is used as the 

immortalization instrument in parental stem cells. C-myc, 

or v-myc can interfere with response to the stimuli, or 

with the SMC phenotype transition program [67].  

Most popular mesoderm stem cell-derived models include 10T1/2 cells and human embryonic stem 

cell-derived mesenchymal cells (hES-MCs). Similarly to neural crest stem cell-derived lines, 

mesoderm-derived models differentiate to SMC upon stimulation with TGF-β1. SMC derivatives from 

10T1/2 and hES-MCs can reach higher differentiation status than Monc-I and JoMaI cells. TGF-β1-

stimulated 10T1/2 and hES-MCs can acquire a functional SMC phenotype as evidenced by expression 

of SM myosin heavy chain (the most stringent de-differentiated SMC marker), and responsiveness to 

contractile stimuli [68].  

Standard in vitro culturing eliminates many important environmental cues (e.g. three-dimensionality 

and (blood) flow stimulation), but is still the most commonly used method to manipulate molecular 

networks and study cellular aspects of SMC plasticity in the controlled environment. On the other 

hand, in vivo methods suffer from variability, limited possibilities for real-time condition control or 

read-out, and differences between animal and human physiology. Fast advancements in 

microfluidics, tissue printing and organ-on-a-chip technology are opening new ways to integrate the 

best parts of in vitro and in vivo models and develop easily modifiable, living tissue-like systems that 
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allow dynamic control and real-time analysis. Living three-dimensional microvascular networks 

composed of endothelial cells and mural cells (pericytes) have been used successfully to study 

angiogenesis and thrombosis [69,70] (Fig. 3.). Atherosclerosis on a chip is anticipated in the near 

future.  

4. Plasticity pathways 

As in every biological process, so in VSMC phenotype transition, environmental guidance is 

transmitted and regulated on many levels: signal generation, signal transduction, gene transcription 

and epigenetic (chromatin modification). Crucial regulators of VSMC phenotype transitions are 

emerging in all regulatory levels.  

4.1. Transcriptional regulators 

4.1.1. SRF and Myocardin – two major VSMC transcriptional regulators 

At the transcriptional level the key element for VSMC phenotype modulation is serum response 

factor (SRF). SRF is an evolutionary conserved and ubiquitously expressed transcription factor, which 

binds to a 10 base pair CArG-box sequence (CC[A/T]6CC) that is predominantly found in muscle and 

cytoskeletal genes [71]. SRF functions by responding to two often opposing signals – growth vs. 

cytoskeleton architecture – which in the context of VSMC plasticity translates into proliferation and 

de-differentiation vs. quiescence and contractile competence. In a simplified view, SRF integrates 

signals reaching it via two pathways, namely the MAPK cascade, or pro-differentiation stimuli 

transmitted via small Rho GTPases and actin. (Parts of Rho GTPases and actin branch signalling can 

be used by growth factor signalling to induce VSMC de-differenciation as well, but in different 

molecular contexts). SRF was first discovered as a growth inducer [72]. It later become clear that in 

this function SRF can be replaced by other factors [73], [74], but for organization of functional 

cytoskeleton and effective contractile machinery, SRF is absolutely indispensable. Srf knockout 

mouse embryos die in early development due to the inability of mesodermally fated cells to migrate 

properly [75] and in later developmental stages it plays an essential role in differentiation of all three 

muscle types [76-79]. SRF is also required for neural, craniofacial, and hematopoietic development 

[80-82].  

SRF is widely expressed, and is not exclusive to VSMC. Therefore as a regulator per se it has little 

control on VSMC phenotype shaping. The ability of SRF to adapt to particular context and respond 

adequately depends on its numerous cofactors. These belong to two protein subfamilies – ternary 

complex factors (TCFs), and myocardin protein family (myocardin (MYOCD) and myocardin-related 

transcription factors (MRTFs)). By classical view, the TCFs are effectors of MAPK signalling while 

MRTFs and MYOCD respond to Rho GTPases-actin and pro-differentiation signalling. Depending on 

cofactor availability, SRF initiates the respective gene expression program, and shifts VSMC 

phenotype accordingly. 

Among SRF cofactors, MYOCD is the most potent VSMC differentiation-driving SRF coactivator known 

to date [83]. MYOCD expression is cardiac and smooth muscle specific [84], it is irreplaceable in early 

VSMC development, and is sufficient for full VSMC differentiation – MYOCD selectively induces 

expression of all tested VSMC-specific genes containing CArG box, including MYH11, Tagln, Acta2, 

Cnn1, ion channel encoding genes Kcnmb1 and Lmod1 [56], [83]. MYOCD competes for SRF with 

growth signal activated cofactors and maintains VSMC quiescence [85]. It antagonizes KLF4 [86] and 

cyclin D1 expression [87]. MYOCD mRNA expression is downregulated in VSMC during vascular 

disorders [88], [89]. 
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In contrast to MYOCD, which is cardiac- and smooth muscle- lineage specific and unambiguously a 

pro-differentiation factor, two other myocardin family members MRTF-A and MRTF-B (also known as 

MKL1 (megakaryoblastic leukemia) and MKL2, respectively) are widely expressed and controlled by 

actin dynamics. In spite of early hypotheses suggesting myocardin substituting roles for MRTFs, it has 

now emerged that MRTFs might have context-dependent roles in VSMC phenotype regulation. Data 

on MRTF-B is quite consistent, and strongly suggests pro-differentiation role for this factor: MRTF-B is 

necessary for differentiation of cardiac neural crest cells into smooth muscle [90], remodelling of 

branchial arch arteries, smooth muscle differentiation [91], and normal VSMC-specific gene 

expression [92]. However, the role of MRTF-A is still under discussion: in one study MRTF-A 

expression in vitro induced SMC differentiation from undifferentiated embryonic stem cells [93], 

whereas and opposingly, another study found increased MRTF-A expression in the wire-injured 

femoral arteries of wild-type mice and in the atherosclerotic aortic tissues of ApoE-/- mice [94]. 

Combinatorial MYOCD, MRTF-A and MRTF-B, as well as other co-factor availability or stoichiometry 

might be of major importance for VSMC phenotype regulation too. Widely expressed protein SCAI 

(suppressor of cancer cell invasion) inhibits MRTF-A and MRTF-B activity in the cell nucleus [95]. This 

level of MRTF regulation has been discovered and investigated in the context of cancers and to date 

(2015) has not been reported to function in VSMC. SCAI involvement in VSMC phenotype modulation 

is unknown.  

4.1.2. Krüppel-like factor 4  

KLF4 plays a key role in VSMC phenotype transition during development [86], after vascular injury 

[96] , and in PDGF- or oxidized phospholipids-treated cells in vitro [97,98]. KLF4 negatively regulates 

expression of many VSMC differentiation genes, including MYH11, Acta2, Tagln and Cnn2, either by 

binding to the G/C repressor element, which is present in most of SMC-specific gene promoters, or 

by competing with SRF for CArG element binding [99,100]. KLF4 also activates pro-inflammatory 

genes; recent ChIP-seq analyses identified >800 putative KLF4 target genes in VSMC, many of which 

encode atherosclerosis relevant pro-inflammatory factors [28]. KLF4 knock-out in the atherosclerosis 

mouse model (Apo E-/-) favours acquisition of the synthetic VSMC phenotype, and suppressed the 

pro-inflammatory macrophage-like phenotype transition [28].  

4.2. Signalling pathways 

4.2.1. Pro-differentiation signalling pathways 

4.2.1.1. Rho-actin pathway 

For a long time cytoskeletal actin dynamics was seen as a passive purely structural element of the 

cell. It is now becoming clear that the cytoskeleton is also a powerful modality of signal transduction 

and gene regulation.  

Posttranslational activity of MRTFs is regulated by actin dynamics [101]. MRTFs have a globular actin 

(G-actin) binding domain (RPEL motifs), which traps these proteins in the cytoplasm, if G-actin is 

available for binding. Via regulation of effector protein activity, Rho GTPases modulate G/F (fibrillar)-

actin equilibrium. Control of G-actin availability by Rho GTPases regulates abundance of two MRTF 

states: the G-actin-bound state which is cytoplasm entrapped and inactive, and the actin-free state 

that is ready for nuclear translocation and action [102]. Actin polymerization triggered by RhoA 

liberates MRTFs from G-actin and permits their translocation to the nucleus. This type of regulation 

allows for rapid modulation of transcriptional co-activator availability, as it does not involve covalent 

protein modification and can be easily reversed. 
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It is important to note that MYOCD has no RPEL motif, and is thus independent of regulation by G-/F-

actin [103]. 

In VSMC RhoA-actin-MRTF signalling can be induced by a plethora of extracellular stimuli. Activity of 

small GTPases is regulated by guanine exchange factors (GEFs). Thrombin, sphingosine 1 phosphate 

(S1P), angiotensin II, TGF-β, BMP-2, calcium, integrins, cell tension (via integrins), matrix components 

collagen IV and laminin have been reported to induce RhoA-actin-MRTF signalling in smooth muscle 

cells [104]. 

4.2.1.2. TGF-β-Smad 

TGF-β is a multifunctional cytokine, important for blood vessel morphogenesis and stability. TGF-β 

signalling in VSMC induces differentiation and regulates cell interaction with extracellular matrix. 

TGF-β stimulates mesenchymal precursor differentiation into VSMC and the establishment of a 

functional vasculature in early development [105]. TGF-β is crucial for vessel muscularization in 

angiogenesis and regulates VSMC plasticity in mature, established vessel [106]. The importance of 

TGF-β signalling for vascular biology is illustrated by its involvement in many vascular pathologies 

including atherosclerosis, aortic aneurysms, and hypertension [107].  

Three isoforms of TGF-β are known in mammalians – TGF-β1, TGF-β2, and TGF-β3. All three are 

secreted as latent precursors. Activation via proteolytic cleavage by endoproteases is needed for 

biological function [108]. To maintain the signalling of this powerful cytokine under tight control, 

availability of active TGF-β is additionally regulated by interaction with ECM components [109] (see 

section 2.1.3.). 

When active, TGF-β binds to TGF-β type II receptor. This allows type II receptor heterodimerization 

with type I receptor. In the formed heterodimer type II receptor phosphorylates and activates type I 

receptor, a serine/threonine kinase. Active type I receptor recruits and phosphorylates Smad2 and 

Smad3. Phospho–Smad2/3 form a complex with Smad4 and translocate to the nucleus where they 

bind multiple Smad-binding elements (SBEs) and GC-rich sequences and function as transcription 

factors [110-113]. 

TGF-β signalling also regulates activity of TGF-β control elements (TCE) and CArG boxes [114]. CArG 

and TCE are often found together in many VSMC-specific marker gene promoters, including MYH11, 

Acta2, Tagln, Cnn1 [115].  

TCE in VSMC is controlled by KLF4 and Krüpel-like factor 5 (KLF5), which repress or activate VSMC 

marker expression, respectively. KLF4 acts negatively and KLF5 positively on VSMC-specific gene 

expression [116]. TGF-β stimulation inhibits KLF4 expression through miR-143/miR-145, and removes 

KLF4-mediated repression from TCE genes. In addition, KLF5 competes with KLF4, and acts 

synergistically with TGF-β in gene transcription initiation [116].  

TGF-β can also induce SRF expression and enhance its binding activity to the CArG box [117]; Smad3, 

the major mediator of TGF-β induced marker gene expression in VSMC [107], can interact with SRF 

and MYOCD and activate CArG dependent VSMC gene promoters [113,118]. 

TGF-β initiates, transactivates, or cross-talks with many other pathways to regulate VSMC plasticity in 

a context dependent manner. The best studied crosstalk examples are Smad-dependent RhoA and 

Notch signalling pathways. Dominant negative RhoA blocks Smad2 and Smad3 phosphorylation and 

impairs their nuclear translocation, while constitutively active RhoA enhances Smad-dependent 

promoter activity [119]. CBF1 (Notch-regulated transcription factor) interacts with Smad2/3 and 

enhances their transcriptional activity [120].  
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4.2.1.3. PI3K/Akt/mTOR pathway 

Insulin-like growth factor (IGF) and insulin signalling via classical PI3K-Akt pathway suppresses the de-

differentiation program in VSMC and maintains contractile phenotype [121]. Ligand activated IGF or 

insulin receptor recruits insulin receptor substrate (IRS-1) and activates it by phosphorylation on 

tyrosine residues, which provides a docking site for PI3K. Docking in close proximity to the inner 

leaflet of the plasma membrane gives PI3K physical access to its substrates, inositol phospholipids. 

PI3K converts (3,4)-bis-phosphate to phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) and 

enrichment of PIP3 on the inner membrane side allows Akt binding to the membrane. At the 

membrane Akt gets activated by phosphoinositide-dependent kinase-1 (PDK1) and mTORC2. 

Phosphorylated by PDK1 only (on Tyr308) Akt is partly activated and can transmit the signal to 

mammalian target of rapamycin complex 1 (mTORC1) [122,123] [124]. Additional Akt 

phosphorylation on Ser473 by mTORC2 [125] or DNA-dependent protein kinase (DNA-PK) [126] 

stimulates full Akt activity and enables it to phosphorylate additional substrates. Fully active Akt 

regulates its downstream targets in the cytoplasm and nucleus, and represses the de-differentiation 

program in VSMC. For instance, Foxo4 phosphorylation by Akt-promotes its nuclear export and 

relieves its inhibitory influence on MYOCD activity [127].  

Direct PI3K/Akt pathway signalling is auto-regulated by the classical negative feedback loop, which is 

activated by mTORC1 through Akt. mTORC1 activates S6K, which then phosphorylates IRS-1 on serine 

residues and marks IRS-1 for proteosomal degradation. Reduced availability of IRS-1 weakens direct 

insulin and IGF signalling pathway activity [128], reducing their suppressive actions on VSMC de-

differentiation [129]. mTORC1 pathway is activated in response to vascular injury [130] and can be 

inhibited by rapamycin [131,132] or adiponectin [133]. The latter inhibits mTORC1 through AMP-

activated protein kinase (AMPK). In addition, mTORC1 inhibition stabilizes GATA-6 and favours its 

nuclear translocation; nuclear GATA-6 activates contractile protein promoters, suppresses cell 

proliferation and induces VSMC differentiation [134].  

PI3K-Akt pathway can also be activated by insulin to regulate vascular tone (see section 1.3.). 

4.2.1.4. Dual role of Notch 

Notch signalling is a conserved intercellular signalling pathway. Notch receptors and ligands are 

transmembrane proteins. Signal initiation starts when the ligand expressed on one cell binds its 

receptor located on the neighbouring cell. Ligand binding changes receptor conformation, and makes 

it accessible to proteases ADAM and γ-secretase which cleave the receptor on both sides of the 

membrane. Cleavage by γ-secretase releases Notch intracellular domain (NICD) from the membrane, 

and allows its translocation to the nucleus where it forms complex with other transcription factors 

and initiates transcription of its target genes, of which Hes and Hey, the basic helix-loop-helix (bHLH) 

proteins, are best known [135]. In VSMC Notch signalling also targets Acta2, Pdgfb and microRNA 

cluster miR143/miR-145 [136-138].  

In the vasculature Notch signalling can occur between EC and VSMC (mostly during angiogenesis), or 

through homotypic interactions between neighbouring VSMC. During development Notch 

coordinates many aspects of EC and VSMC interaction and positively regulates VSMC specification, 

differentiation and maturation [42].  

In the mature vessel VSMC express Notch1, Notch2, and Notch3 receptors and a ligand Jagged-1 

[139-142], but the role of Notch signalling for VSMC phenotype modulation is unclear. Some studies 

report Notch as a pro-differentiation pathway, the others show it as a phenotype-switch inducer: 

inactivation of Notch signalling by Notch1 or Hey2 deletion, or cell transfection with soluble Jagged-1 

reduces neointima formation and downregulates chemotaxis of isolated cells [143], [144,145], 
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deletion of Jagged-1 in EC promotes intimal and medial thickening after injury [146], and 

upregulation of both Notch and Jagged transcripts after vascular injury was reported [147].  

The fact that Notch crosstalks with both TGF-β [120] and PDGF [137], two major VSMC phenotype 

modulating signalling pathways standing on the opposite sides of the fence, suggests that both 

scenarios might be valid and the final outcome depends on particular context.  

4.2.2. De-differentiation driving signalling pathways 

Signalling by Ras-Raf-MEK-ERK pathway in VSMC is triggered by ubiquitous growth factors such as 

PDGF, epidermal growth factor (EGF) and fibroblast growth factor (FGF). 

4.2.2.1. Ras-Raf-MEK-ERK pathway 

Among growth factors and cytokines driving VSMC de-differentiation by MAPKs cascade, PDGF is 

considered to be the master [104] and an indispensable regulator of early vascular development 

[148,149]. Released from platelets at the site of tissue damage [150], PDGF stimulates growth and 

directional migration of VSMC and fibroblasts [151-153]. Further investigations in vivo showed that 

PDGF acts in VSMC mostly as a pro-migration- rather than proliferation-inducer [154,155]. PDGF is a 

disulphide-linked dimer. Its binding to the receptor causes receptor dimerization and activation. 

PDGF receptors (PDGFRs) are classical receptor tyrosine kinases (RTKs) and two known types of PDGF 

receptors, PDGFRα and PDGFRβ, homo- or hetero-dimerized, transmit the signal by classical growth 

factor regulated Ras-Raf-MEK-ERK pathway, which eventually leads to downstream phosphorylation 

and activation of TCF family proteins such as Elk1. This induces SRF-dependent transcription of early 

response growth and de-differentiation genes, and repression of smooth muscle selective markers, 

[104,156]. In addition, active extracellular signal regulated kinases (ERK) can phosphorylate MRTFs in 

the cytoplasm and prevent their translocation to the nucleus [157]. Most importantly, PDGF-BB 

induces pluripotency transcription factor KLF4, which modulates transcriptional programs of smooth 

muscle-specific genes by preventing SRF/myocardin complex to bind pro-differentiation gene 

promoters and activates promoters driving acquisition of the pro-inflammatory phenotype [88,158] 

(see section 4.1.2.). 

4.2.2.2. Other signalling pathways 

β-catenin signalling 

Elevated β-catenin and inactive GSK3β levels have been reported after vascular injury [159,160], 

[161]. Rapid cadherin junction dismantling was also reported to occur in vascular smooth muscle 

after injury [162]: this is most likely a Wnt-independent process since Frizzled receptor expression is 

downregulated in response to injury in rats [163].  

In vitro Wnt1 and Wnt3a induce β-catenin pathway and cyclin D1 expression in arterial VSMC [164], 

but the evidences for Wnt1 and 3a expression in proliferating cells or injured vasculature in vivo are 

lacking [165]. 

4.3.  Epigenetic regulators 

4.3.1. Ten-eleven-translocation 2 (TET2) 

Ten-Eleven-Translocation (TET) proteins are a family of methylcytosine dioxygenases which catalyse 

the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and perform the first 

step in DNA demethylation [166]. TET2 is highly expressed in smooth muscle and out-dominates 

other two family members (TET1 and TET3) in coronary artery SMC [167]. TET2 has been shown to be 

both necessary and sufficient for SMC differentiation in genetic loss- and gain-of-function 
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experiments. TET2 knockdown increases KLF4 expression (see section 4.1.2.), while overexpression of 

TET2 protein promotes MYOCD expression and cell differentiation [168]. In an in vivo model of 

intimal hyperplasia TET2 expression was reduced in the medial layer of injured vessels compared to 

the uninjured. Genetic loss of TET2 in the same model resulted in stronger response to injury and 

decreased H3K4me3/H3K27me3 ratio at the MYOCD, SRF, and MYH11 promoters [168]. TET2 

responds to pro-differentiation signals (e.g. rapamycin treatment) with strong binding to the 

promoters of VSMC contractile proteins [167].  

The attempts to block VSMC de-differentiation in order to prevent progression of proliferative VSMC 

disorders by targeting major signalling pathways has delivered mixed results. Anti-PDGF and 

antiplatelet therapies have been suggested and tried in restenosis patients, unfortunately with no 

substantial clinical value. Intravenous administration of humanized monoclonal antibody against 

PDGFR-β had no beneficial effects on neointimal hyperplasia after stenting [169]. Drug-eluting stents 

(DES) coated with rapamycin or other VSMC proliferation-blocking drugs have proved superior to 

bare-metal stents and revolutionised angioplasty. However, in some cases drug-eluting stenting led 

to early stent thrombosis [36]. High risk of thrombosis is at large due to DES cytotoxicity on 

endothelial cells, which impairs re-endothelialization, delays arterial healing and causes endothelial 

dysfunction in arterial areas distant from the stent. Endothelial dysfunction and prolonged wound 

healing are directly linked to increased risks of ischemia and coronary occlusion thrombosis [36]. 

Targeting major signalling pathways shared by many types of cells might deliver similar results as an 

example of rapamycin-coated stents. New, SMC-specific therapeutic strategies targeting VSMC 

unique factors and phenotype switching regulating signalling pathways are needed to achieve better 

results in treatment and prevention of SMC-linked vascular pathologies.  

N-cadherin has been proposed as a target by some research studies [170,171]. N-cadherin promotes 

VSMC migration, survival, and regulates cell polarity establishment, which is crucial step in initiation 

of migration. Blocking of N-cadherin reduces neointima growth, and shows no adverse effects on 

endothelium [170,171].  

T-cadherin could be another potential target, since its expression is upregulated during vascular 

pathologies and promotes vascular cell survival and proliferation [172,173], but is not necessary for 

basic cell functions, or vascular development (T-cadherin knock-out mice are viable and exhibit no 

obvious anatomical defects in the vasculature (unpublished observations)). Moreover, we have 

found that T-cadherin is a VSMC phenotype regulator, promoting VSMC de-differentiation 

(manuscript in preparation).  

5. Cadherins 

Cadherins are best known as Ca2+-dependent intercellular adhesion receptors which mediate 

homotypic cell-cell cohesion to organize functional tissues [174]. Alongside with this function 

cadherins have “non-canonical”, adhesion-independent functions, which can be observed in a single 

cell.  

Most of the knowledge on cadherins comes from studies on classical cadherins. However, this type of 

cadherins constitute only a small fraction of a large and structurally diverse cadherin superfamily 

(110 members at least [175,176]), strongly suggesting that the functions fulfilled by cadherins might 

be numerous and varied.  
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5.1. Classification and structure 

The cadherin superfamily consists of proteins containing cadherin-like domain. All known cadherins 

are classified into 6 subfamilies: type I (classical, adherens junctions forming cadherins), type II, 

desmosomal (found in desmosomal junctions), protocadherins, 7D cadherins and atypical cadherins 

[177]. Classical cadherins are the best studied cadherins of the superfamily, mostly in the contexts of 

development and cancer. Classical cadherins are composed of three major structural domains – 

extracellular, single-pass transmembrane and intracellular. The extracellular (EC) domain of classical 

cadherins consists of five EC Ca2+ binding repeats. Ca2+ is indispensable for cadherin function: Ca2+ 

binding shapes cadherin into active conformations and enables homophilic cadherin dimerization in 

trans (between identical cadherins on adjacent cell), as well as lateral cadherin clustering in cis to 

assemble zipper-like structure. The intracellular domain contains armadillo domains – conservative 

sites which binds β-, or p120-catenin. β- and 120-catenins bind α-catenin and integrate adherens 

junctions into the cell’s actin cytoskeleton [177]. Cytoskeleton-bound cadherin clusters between the 

adjacent cells are called adherens junctions (AJs). AJs serve structural function as physical bonds, as 

well as cell-cell communication/signalling hubs. 

5.2. Cadherin functions 

5.2.1. Adherens junctions 

As a structural component of intercellular adhesion, AJs have inherent selectivity. Cadherin binding in 

AJs is strictly homophilic, and therefore occurs only between the cells expressing the same type of 

cadherins. Since different cell types express different sets of cadherins, homophilic binding ensures 

the selectivity and proper positioning of connected cells that is crucial for establishment of proper 

 

Fig.4. Schematic structural overview of representative members of the cadherin superfamily. The following 

protein domains are annotated: CBD (conserved β-catenin/plakoglobin-binding domain); UCD (unique 

cytoplasmic domain); CE (cysteine-rich EGF-repeat-like domain); CM1, CM2 and CM3 conserved motifs in the 

CDs of δ-PCDHs; EC1 to EC34 (extracellular cadherin repeats); GPI (glycosylphosphatidylinositol anchor); JMD 

(conserved juxtamembrane domain required for p120‑catenin binding); LAG (laminin-A globular domain-like 

domain); MLD (mucin-like domain); Pro-d (prodomain); RUD (intracellular repeated unit domain of 

desmosomal cadherins).Adapted from [177]. 
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tissue architecture [178]. Classical cadherins therefore are indispensable in early development, when 

primary tissues start to develop and segregate [174,179]. In the central nervous system adhesion 

complexes formed by cadherins play key roles in synapse formation and plasticity [180]. Here 

cadherins have dual roles. Some cadherins function as positive synapse guiding cues, while the 

others do negative guidance. For example, OB-cadherin signals as a positive guide [181], while T-

cadherin is a negative axon guidance providing molecule [182]. 

5.2.2. Cell communication – polarity 

Physical cell binding strength and polarity are key factors controlling differentiated cell behaviour 

such as polarization and migration [183,184], or stem cell fate decisions [185]. As the organizers of 

cell-cell contact formations cadherins play key roles in cell polarity establishment and cell guidance.  

AJs are anchored to the cytoskeleton and therefore form local barriers in the cell membrane which 

limit free lateral floating of membrane proteins and contribute largely to establishment of membrane 

heterogeneity and cell polarity [186]. Cadherin binding to catenins via the intracellular cadherin 

domain immobilizes catenins to the membrane. This not only restricts the nuclear function of 

catenin, but also polarizes the cell biochemically since at the membrane catenins function as 

scaffolding proteins and recruit important elements of spatiotemporal signalling to the cell 

membrane [187]. In addition, classical AJs initiate tight junction formation [188], the key factor for 

cell polarity establishment.  

Cell polarization in response to migration cues (seen as displacement of the nucleus toward the cell-

cell contact and of cell migratory machinery away from it, and prepares the cell for coordinated 

movement) is a cadherin guided process [189]. Asymmetries in cell-cell adhesion, which can occur 

due to injury or the cadherin switch during the classical epithelial-to-mesenchymal transition (EMT), 

result in cell (re)polarization and migration. Cell division control protein 42 (Cdc42)-dependent 

cadherin signalling at the cell-cell border plays a primary role for cell polarization in disrupted cell 

monolayers [189,190]. In classical EMT, E-cadherin replacement by N-cadherin (the cadherin switch) 

blocks contact inhibition of locomotion (CIL) and initiates cell (re)polarisation [183]. Interestingly, 

although both cadherins are classical cadherins and are known to form AJs, E-cadherin re-expression 

in migratory cells restores CIL, while E-cadherin depletion or switch to the N-cadherin expression 

promotes cell polarization and induces directional migration [183]. Similar cadherin competition is 

observed between N-cadherin and VE-cadherin in EC [177]. VE-cadherin inhibits EC growth, migration 

and apoptosis by suppression of vascular endothelial growth factor receptor 2 (VEGFR2)/ERK 

signalling and induction of TGF-β/SMAD signalling [191], while N-cadherin functions as a pro-

migratory protein [192]. VE-cadherin seems to have higher hierarchy in this context, since N-cadherin 

expression can be suppressed by VE-cadherin [192].  

To date true mechanistic explanations for cadherin switch are lacking. Pure chemoaffinity differences 

between E- and N- cadherins do not explain the switch since homophilic N-cadherin ligation is 

stronger than that of homophilic E-cadherin ligation [193]. It has been suggested that E-cadherin 

replacement by N-cadherin enables epithelial cells to adhere to mesenchymal cells and invade the 

stroma expressing different types of cadherins [177]. Preferential OB-cadherin (osteoblast cadherin)-

positive prostate cancer metastasis to the bone supports this theory [194]. Other authors suggest 

that the intercellular cadherin domain rather than extracellular domain is most important for CIL 

inactivation during the cadherin switch [183]. Earlier cadherin studies demonstrated that AJs formed 

by cadherins lacking β-catenin binding sites display weaker adhesions than native cadherins [195]. 

Since β-catenin functions as a scaffolding protein in AJs, differences in the C-terminal cadherin 

domains of E- and N-cadherin might result in formation of distinct multiprotein complexes and 

modulate intercellular adhesion properties, which might further affect cell behaviour. In addition, 
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homophilic adhesion-independent individual cadherin functions might be equally important in the 

cadherin switch. N-cadherin, for example, can activate fibroblast growth factor receptor 1 (FGFR1) 

signalling and induce EMT in a cell autonomous manner [196,197]. Finally, the biological context in 

which the cadherin switch takes place is no less important. In contrast to epithelial cells undergoing 

EMT, migrating VSMC display strong CIL when encountering N-cadherin expressing cells [170], which 

suggests complex tissue and biological context specific hierarchy between classical cadherins. 

The cadherin switch phenomenon perfectly illustrates the multi-modality of cadherins and 

complexity of cadherin-mediated intercellular communication, suggesting the existence of a 

“cadherin code” which enables the cell to adopt multiple behavioural modes in order to adapt to 

various biological contexts. 

5.2.3. Mechanotransduction 

Due to the binding strength and direct connections to the cytoskeleton AJs are well suited to function 

as mechanotransducers (mechanosensors and mechanoresponders) [198-200]. In smooth muscle 

this type of communication is especially important, since well-coordinated collective cell contraction 

is essential for proper smooth muscle function. Upon mechanical stimulation N-cadherin strengthens 

connections between load-affected SMC and facilitates intracellular transition of contractile force 

[198,201]. Desmosomal cadherins, which mediate intercellular adhesion in desmosomes, recruit 

desmoplakin and intermediate filaments through plakophilins and plakoglobins, thereby rendering 

desmosomes tension-resistant [1]. In addition, VE-cadherin participates as an adaptor in 

mechanosensor complex formation between platelet endothelial cell adhesion molecule (PECAM) 

and VEGFR2, and facilitates activation of nuclear factor-κB [199].  

5.2.4. Cell autonomous functions. Vesicle closure and cell transport 

Adhesion dependent functions of N- and E-cadherin can be observed in a single cell. In a cell 

autonomous mode of function, classical cadherin-mediated adhesion helps to close back folding 

membrane ruffles and form macropinosomes [202].  

5.2.5. Signal transduction 

5.2.5.1.  PI3K signalling 

Intercellular communication and cell-matrix adhesion are vital for pro-survival stimulus and cell 

escape from apoptosis. In VSMC intercellular adhesion is as important as cell anchorage to the matrix 

for cell survival[203]. Mechanistically this is achieved via PI3K-Akt signalling: cadherin-catenin 

complex formation activates PI3K-Akt cascade and blocks “default” cell apoptosis by inactivation of 

pro-apoptotic protein Bad (Bcl-2 antagonist of cell death) and stabilization of anti-apoptotic factor 

Bcl-2 (B-cell lymphoma 2) [171,204-207].  

5.2.5.2. β-catenin and canonical Wnt signalling 

The key element in the canonical Wnt pathway is β-catenin, a multifunctional protein which can act 

either as a structural and scaffolding protein that stabilizes cell-cell junctions, or as a transcription 

coactivator in the nucleus. Cadherin-bound, cell membrane localized β-catenin functions as a 

structural component of the intercellular adhesome, while in the nucleus it participates actively in 

gene expression control [208]. Classical cadherins are therefore considered direct negative regulators 

of β-catenin signalling [208]. Dismantling of AJs and accumulation of free β-catenin can occur due to 

the initiation of developmental programs, cancerous cell transformation or tissue injury. Nuclear β-

catenin translocation during developmental processes and cancer is usually initiated by Wnt 

signalling, while injury-induced β-catenin signalling is part of repair mechanisms.  
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Wnt family members are secreted proteins that coordinate cell-cell interaction during embryonic 

development and adult tissue homeostasis [209]. Wnt proteins bind Frizzled family receptors and 

activate canonical Wnt signalling pathway. Canonical Wnt pathway signalling via T-cell 

factor/lymphoid enhancer factor (TCF/LEF) transcription factors controls morphogenesis and cell fate 

regulating gene expression programs [210]. In quiescent cells, β-catenin is locked in cellular junctions 

and free β-catenin is kept under strict control by the degradation complex consisting of scaffolding 

protein axin, GSK3β, casein kinase 1 (CK1), and the adenomatous polyposis coli (APC). However, in 

response to Wnt signalling through its receptor Frizzled, the degradation complex undergoes 

rearrangement and switches to the inactivate state. GSK3β becomes inactivated and can no longer 

phosphorylate β-catenin and direct it for degradation. Accumulating β-catenin translocates to the 

nucleus and initiates its target gene transcription. Most of the β-catenin/TCF/LEF target genes are 

cell type specific [209]. Importantly, β-catenin nuclear function can be initiated by mechanisms 

independent of Wnt. Free β-catenin can be stabilized by changes in cadherin abundance or cellular 

distribution. This can result in Wnt-independent β-catenin signalling, or heighten Wnt responses. 

Mutations disabling β-catenin binding to cadherins are often accompanied by higher β-catenin 

nuclear activity, which can lead to cancerous transformation of the cell. Recurrent cadherin-related 

protein Fat1 mutations together with increased β-catenin nuclear function have been reported in 

glioblastoma, colorectal cancer, and head and neck cancer [211]. 

In the vasculature β-catenin signalling is most relevant to injury repair. Elevated β-catenin and 

inactive GSK3β levels have been reported after vascular injury to the endothelium [159], [160], [161]. 

T-cadherin upregulation in endothelial cells leads to integrin-linked kinase mediated GSK3β 

inactivation, β-catenin stabilization, and TCF/LEF-dependent cyclin D1 induction [212]. Rapid AJs 

dismantling and accumulation of β-catenin has been shown to take place in vascular smooth muscle 

after injury [162]. MMP-9 and -12 dependent shedding of the extracellular N-cadherin domain 

elevates VSMC proliferation via β-catenin signalling [213]. 

 

5.2.5.4. Growth factor signalling modulation 

Cadherins can interact with other types of adhesion molecules and form heterophilic interactions 

outside of the cadherin family [214], or even with non-adhesion molecules (e.g. growth factor 

receptors), and modulate their signalling. As already mentioned, N-cadherin binds FGFR1 in cis and 

prevents ligand-induced receptor internalization, which leads to sustained receptor signalling 

[197,215,216]. Similarly P-cadherin binding to IGF receptor 1 (IGFR1) induces ligand-independent 

receptor signalling and activates cytoplasmic p120-catenin. Active p120-catenin promotes cell 

migration [217]. Non-classical cadherin-17 interacts with α2β1 integrin heterodimer and activates β1 

integrin. This leads to FAK, Ras and Jun N-terminal kinase activation, and stronger adhesion to 

collagen IV [218]. In squamous cell carcinoma cells T-cadherin can supress EGFR signalling, cell cycle 

progression and cell migration [219]. In EC, T-cadherin directly interacts with IR (insulin receptor), 

effectively highjack IR signalling effectors and thereby cause insulin resistance by amplifying the 

negative feedback look of mTORCs/S6K1-mediated serine phosphorylation and degradation of IRS-1 

[220]. 

5.2.5.5. Cleaved cadherin signalling 

Proteolytically cleaved intracellular or extracellular cadherin domains can have independent 

functions and act as separate signalling elements. For example, N-cadherin cleavage by ADAM10 

generates a cytoplasmic fragment which strengthens β-catenin nuclear signalling [221], and MMPs 

cleave P-cadherin to release extracellular cadherin domain which functions as pro-migratory factor 

[222].  
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Cadherin flexibility in adhesion partner selection, combined with multi-domain organization equips 

these molecules with flexible specificities, and makes them adaptable for many biological contexts 

[188].  

5.2.5.6. YES/YAP and Hippo pathway 

Hippo pathway regulates organ growth, stem cell function, and regeneration via activity control of 

transcription tandem YES associated protein (YAP) and TAZ [223]. YAP/TAZ are transcription co-

activators which promote cell proliferation and inhibit cell death. Hippo pathway represses YAP/TAZ 

activity. 

E-cadherin, α-catenin and other structural AJ proteins can sequester YAP/TAZ to the junctions and 

repress their nuclear function directly [224], or via activation of Hippo pathway [223].  

5.2.5.7. Receptor function 

T-cadherin is a third adiponectin receptor which specifically binds hexameric and high molecular 

weight adiponectin [225]. T-cadherin binding localizes adiponectin to the endothelium and promotes 

revascularization [226]. T-cadherin also binds low density lipoproteins (LDL) [227] with proposed 

functionality as a signalling receptor for LDL that facilitates LDL-dependent mitogenic signalling in the 

vasculature [228,229]. 

5.3. Cadherins in vascular smooth muscle 

VSMC express a number of cadherins. N-cadherin, T-cadherin, OB-cadherin, 6B-cadherin [230], R-

cadherin, E-cadherin and Fat1-cadherin expression have thus far been reported. Although most of 

these cadherins have been very poorly studied in vascular smooth muscle, existing data suggests that 

different subsets of cadherins may be expressed by different SMC subpopulations within the vessel 

wall, and that mechanisms similar to cadherin switching in EMT might play important roles in SMC 

phenotype modulation. SMC in vivo are surrounded by high contents of ECM [1], and cadherins with 

Table 1. Cadherin functions 

Function Cadherin Reference 

Adherens junction formation Classical cadherins 174, 177, 178-182  

Tight junction formation Classical  181, 188 

Synapse formation Classical, OB, T 177, 188, 250 

Cell polarity regulation N, E, P  183, 189, 192 

Vesicle closure N, E 202 

Mechanotransduction N, VE 198-201 

Signal transduction   

Classical PI3K pathway N 171, 204-207 

β-catenin/ canonical Wnt E, N, (other classical), T 174, 177, 188, 211-213, 221 

Growth factor signalling 
modulation 

N-FGFR1 197, 214-216 

 P-IGFR1 217 

 Cdh17-α2β1 218 

 T-EGFR 219 

 T-IR 220 

Hippo pathway (activation) E (possibly other 
classical AJ forming) 

223, 224 

Receptor T-Adiponectin 225 

 T-LDL 227 
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extracellular domains of different lengths might be needed to reach between the cells. AJs and 

desmosomes have been demonstrated in large and small arteries in vivo [231]. Cadherin involvement 

in organizing correct arterial tissue architecture is therefore doubtless.  

5.3.1. N-cadherin 

N-cadherin is a major classical cadherin in VSMC. Despite its abundance relatively little is known 

about N-cadherin functions in the vasculature [232]. So far two major modes of adhesion-dependent 

functions have been reported, namely formation of AJs and assistance in micropinosome closure. 

The later function is cell autonomous, but still relies on classical homophilic cadherin ligation. AJ-

independent N-cadherin functions in VSMC includes pro-survival signalling, and migration initiation. 

Correct intercellular adhesion is crucial for early development of the cardiovascular system. Full and 

endothelium-specific N-cadherin knock-out is lethal. Cardiomyocytes of N-cadherin knock-out mouse 

fail to form proper gap junctions, which leads to cardiac arrhythmias and embryo death at E10.5 

[233,234] – the developmental stage when cardiac activity and vessel perfusion starts. Vascular EC-

specific N-cadherin knock-out embryos die of severe oedema (unstable and leaky vessels) also at 

E10.5 [235]. In this case EC lacking N-cadherin are still able to form ordinary tubules, but fail to 

muscularize properly (by connecting to VSMC or pericytes) and stabilize the vessel [236,237]. This 

suggests that proper adhesion between EC can be formed in the absence of N-cadherin, but for the 

establishment of stable contacts between EC and VSMC N-cadherin is indispensable. 

In adult vessel AJs formed by N-cadherin are needed for collective VSMC contraction [238] and 

proper regulation of arteriolar myogenic tone [232]. Upon contractile activation β-catenin is 

recruited to N-cadherin. This strengthens existing, or forms new AJs between adjacent cells and 

facilitates intracellular transition of contractile force, orchestrating collective cell contraction 

[198,201]; N-cadherin blockade in the rat arteriole reduces myogenic response to intravascular 

pressure [239].  

N-cadherin also plays a part in vascular regeneration and repair. Vascular injury promotes rapid 

disassembly of cellular adhesions and downregulation of N-cadherin expression. In the absence of N-

cadherin, β-catenin can translocate to the nucleus and induce cell proliferation [162,213]. At later 

stages of vessel healing (1 week after injury) N-cadherin expression is restored and upregulated. Here 

N-cadherin seems to function in a cell adhesion-independent mode and induces directional cell 

migration to the intima: in the migrating cell N-cadherin is localized to the leading cell edges 

(lamellipodia) or to growth factor induced dorsal membrane ruffles [202,240-242]. In the leading 

edge N-cadherin forms strong connective ligations between closely located membranes promoting 

macropinosome closure and liquid phase uptake [202], both of which are needed for cell motility and 

quick (migrational) cell polarity establishment [170]. N-cadherin also activates PI3K-Akt signalling to 

block pro-apoptotic protein Bad and inhibit cell apoptosis [171,205,206].  

Pro-survival signalling can be regulated by N-cadherin in a positive manner through initiation of 

ligand-free FGFR signalling [197,243] in a negative manner via TCF/LEF-dependent β-catenin 

signalling [159].  

5.3.2. E-cadherin, R-cadherin, FAT1, OB-cadherin 

Expression of E-cadherin within human atherosclerotic lesions was described, although not on SMC 

[244]. Expression of E-cadherin on SMC in vitro and its downregulation in response to oxidized LDL 

has also been reported [245]. Studies on R-, FAT1- and E-cadherin in the context of SMC are very 

rare. Downregulation of R-cadherin occurs during early experimental restenosis and in association 
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with increased SMC proliferation [246], while FAT1 expression increases [247]. In vitro FAT1 

stimulates SMC migration, but inhibits proliferation [247]. In SMC FAT1 localizes to both cell-cell 

junctions and cell free edges; cell-cell localization might limit SMC proliferation, while presence at 

cell free edges may signal directional migration cues during vascular remodelling [247]. In vitro cell 

collectivization experiments showed that OB-cadherin cooperates with N-cadherin and forms hybrid 

AJs [248]. Blocking either of OB- or N-cadherins inhibited AJ formation and cell collectivization. This 

type of cell collectivization was mediated via TGF-β-OB-cadherin dependent adhesive switching 

[248].  

Contributions of E- R-, FAT1-, and OB- cadherins to SMC phenotype control have not been studied.  

5.3.3. T-cadherin 

T-cadherin is an atypical cadherin. In contrast to classical cadherins, T-cadherin lacks transmembrane 

and intracellular domains as well as the HAV motif in the extracellular cadherin repeat, all of which 

are crucial for stable homophilic adhesion and 

signal transduction by classical cadherins (Fig.5.). 

Nevertheless, T-cadherin is phylogenetically closest 

cadherin to the classical cadherins, sharing high 

sequence similarity [249]. Instead of intracellular 

domain T-cadherin is bound to the membrane via 

GPI-anchor, and therefore has no direct 

connection with the cytoskeleton and is unlikely to 

function as a AJs forming protein. Although GPI-

anchoring does not provide connection to the cell 

cytoskeleton, it serves as a ligand binding site. – T-

cadherin is a receptor for LDL [227] and a third 

receptor for adiponectin [225] (see section 

5.2.5.7.). Adiponectin binding region in T-cadherin 

molecule is however still unknown. T-cadherin 

localizes adiponectin to the vasculature and 

activates proangiogenic revascularisation [226]. 

Studies to date reported functional T-cadherin 

involvement in nervous system, vasculature and 

cancer. In nervous system T-cadherin participates 

in neurodevelopment and synapse plasticity by 

guiding axon outgrowth [182] and regulating 

negatively inhibitory synapses [250]. In cancer T-

cadherin can have tumour promoting or 

suppressing role, where the final outcome seems 

to be context dependent [251].  

In the vasculature T-cadherin is expressed on EC, VSMC and pericytes, but not on fibroblasts or 

periaortic adipose tissue [172,252]. It is also strongly expressed on cardiomyocytes [172,253], and 

therefore is sometimes called H-cadherin (heart cadherin), its functions in the cardiomyocte have not 

been studied. In EC T-cadherin is upregulated during atherosclerosis and restenosis and functions as 

a cell resistance factor to oxidative stress, endoplasmic reticulum stress, hyperglycemia and 

hyperinsulinemia [172,254-256]. It regulates cell motility, proliferation, promotes survival, 

angiogenesis and revascularization [173,226,251,257], and can also attenuate insulin-dependent 

signalling [220]. To regulate these processes in EC, T-cadherin signals via the PI3K-Akt signalling axis, 

 

Fig.5. Atypical structure of T-cadherin. In 

contrast to classical cadherins (left), T-cadherin 

(truncated) lacks transmembrane and 

intracellular domains as well as the HAV motif in 

the first extracellular cadherin repeat, all of 

which are crucial for stable homophilic adhesion 

and signal transduction by classical cadherins. 
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β-catenin and small RhoGTPases [212,220,258], and utilizes a variety of molecular adaptors (insulin 

receptor, Grp78, integrin linked kinase and integrinβ3) [220,255,259] that can be recruited to lipid 

raft domains of the plasma membrane where T-cad locates [260]. 

T-cadherin functions in vascular smooth muscle are largely unknown. As in the endothelium, on 

VSMC T-cadherin expression is increased at all stages of atherosclerosis and during the early 

(proliferative) phase of experimental restenosis. Moreover in the muscle layer its expression pattern 

correlates negatively with SM-α-actin expression [172,252,261,262]. In vitro T-cadherin expression 

follows cell cycle progression [263] and ectopic overexpression of T-cadherin promotes proliferation 

[173,264]. In response to migration stimuli T-cadherin redistributes from its resting, global cell body 

location to the leading edges of the cell, and plating VSMC on recombinant T-cadherin-coated 

substratum reduces cell spreading and cell adhesion [173].  

Taken together, these data suggest that in VSMC, as in neurons, T-cadherin might have functions in 

homophilic interaction-dependent cellular guidance and regulation of the cellular adhesome.  

Studies in this dissertation are aimed at establishing cellular functions for T-cadherin in VSMC 

contraction and phenotype plasticity and identifying mediating molecular mechanisms. 
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DISSERTATION OBJECTIVES 

My dissertation comprises two studies. A very brief background together with the major objective 

and research plan for each of the studies are outlined below, followed thereafter by presentation of 

the resultant manuscripts. 

1. T-cadherin modulates VSMC sensitivity to insulin 

In vasculature insulins functions reach beyond the metabolic control. Insulin signalling via PI3K 

maintains SMC quiescence, neutralizes the de-differentiation-driving PDGF signalling, and regulates 

SMC contraction dynamics. Recent studies demonstrated that T-cadherin upregulation on EC 

promotes a state of cellular insulin resistance. T-cadherin blunts EC sensitivity to insulin by hijacking 

receptor and downstream effectors of the PI3K pathway of insulin. Immunohistochemical studies 

showed that T-cadherin expression on SMC is upregulated in pathological conditions (e.g. 

atherosclerosis) related to insulin resistance. Our preliminary experiments in vitro confirmed these 

observations and showed that the phenomenon can be simulated in vitro: SMC culturing under 

conditions mimicking hyperinsulinemia or hyperglycemia leads to upregulation of T-cadherin 

expression. What consequences T-cadherin upregulation has on insulin signalling and smooth muscle 

contractile function is unknown. 

OBJECTIVE 

To establish whether T-cadherin affects constitutive and insulin-induced Akt/mTOR axis signalling 

and contractile competence of SMC. 

RESEARCH PLAN 

1. To investigate how alterations of T-cadherin expression impact constitutive and insulin-

induced Akt/mTOR axis signalling  

1.1. Examine constitutive Akt/mTOR signalling in SMC with elevated T-cadherin expression;  

1.2. Examine insulin induced Akt/mTOR signalling in SMC with elevated T-cadherin 

expression; 

1.3. Define and compare IRS-1: pIRS-1Ser636/639 ratio.  

2. To investigate how elevated T-cadherin expression impacts SMC contractile competence 

2.1. Examine constitutive and insulin conditioned phosphorylation status of myosin light 

chain phosphatase regulatory targeting subunit MYPT1, myosin light chain MLC, and 

iNOS expression; 

2.2. Examine constitutive and insulin-induced activity of small Rho GTPase RhoA; 

2.3. Examine SMC behaviour in 3D-collagen gel; contractile competence and/or matrix 

reorganization. 

The findings of this project have been published (see pages 35-46). 

Frismantiene, A., Pfaff, D., Frachet, A., Coen, M., Joshi, M.B., Maslova, K., Bochaton-Piallat, M.L., 
Erne, P., Resink, T.J., and Philippova, M. 2014. Regulation of contractile signaling and matrix 
remodeling by T-cadherin in vascular smooth muscle cells: Constitutive and insulin-dependent 
effects. Cell Signal 126:1897-1908 
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2. T-cadherin induces VSMC phenotype switch 

SMC exhibit high degree of cellular plasticity. On demand guided by environmental cues fully 

differentiated SMC de-differentiate and re-enter cell cycle. De-differentiating SMC lose contractile 

properties, start to produce ECM proteins, proliferate rapidly and gain the ability to migrate. In a 

healthy vascular wall individual SMC de-differentiation occurs at a low event rate and ensures 

constant vascular wall renewal, or in case of injury, damaged tissue repair. However, when 

phenotype transition controlling mechanisms fail, SMC plasticity contributes to life threatening 

conditions like atherosclerosis, restenosis or graft failure. Despite high demand for improved 

cardiovascular therapeutics and intense research, mechanistic pathways controlling SMC phenotype 

switch remain poorly understood.  

Previous work in our laboratory showed that T-cadherin is expressed on SMC and undergoes 

upregulation in vivo during atherosclerosis and restenosis. In atherosclerotic lesions T-cadherin 

expression negatively correlates with SM-α-actin expression. In vitro proliferating SMC express higher 

T-cadherin levels than quiescent cells, and ectopic upregulation of T-cadherin in vitro causes insulin 

resistance and induces matrix remodelling (outcome of project 1 above). All these findings indirectly 

suggest that T-cadherin might play an important role in SMC phenotype plasticity. Whether and how 

T-cadherin regulates SMC plasticity and signalling mechanisms underlying such regulation have never 

been formally investigated. 

OBJECTIVE 

To define functional and molecular SMC characteristics regulated by T-cadherin and establish a role 

for this molecule in control of SMC phenotypic modulation. 

RESEARCH PLAN 

1. To define T-cadherin’s role in SMC phenotype transition in vitro. 

1.1. Characterize SMC morphology;  

1.2. Investigate whether ectopic dosage of T-cadherin also results in alteration of SMC-

specific marker expression; 

1.3. Investigate whether changes in T-cadherin expression affect SMC migration and 

proliferation. 

2. To identify signalling pathway(s) utilized by T-cadherin to promote SMC phenotype transition 

2.1. Examine classical SMC phenotype transition regulating signalling pathways Ras/Raf-

MEK/Erk, and p38 signalling; 

2.2. Examine GSK3β-β-catenin signalling pathway; 

2.3. Examine MRTF signalling pathway; 

2.4. Verify identified target pathway with functional assays. 

The findings of this project have been published (see pages 47-61). 

Frismantiene, A., Dasen, B., Pfaff, D., Erne, P., Resink, T.J., Philippova, M. 2016. T-cadherin promotes 

vascular smooth muscle cell dedifferentiation via a GSK3β-inactivation dependent mechanism. Cell 

Signal 28(2016):516-530.  
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CONCLUSIONS and FUTURE PERSPECTIVES 

Conclusions 

Collectively, the studies undertaken in this thesis contribute to a better understanding of cadherin 

involvement in regulation of fundamental SMC functions – contractility and ability to switch 

phenotype. We found that T-cadherin, an atypical member of cadherin family, regulates intrinsic 

VSMC contractile competence, responsiveness to insulin and promotes matrix remodelling. 

Moreover, our studies demonstrate that this molecule also regulates VSMC phenotype switch and 

promotes transition to the de-differentiated phenotype.  

While VSMC de-differentiation is crucial for tissue regeneration and reparation, faulty control of 

transition with failure to either maintain or regain the differentiated contractile phenotype underlies 

development of vascular pathologies. The knowledge gained in the course of this dissertation reveals 

a completely novel aspect of cadherin-based cellular and molecular mechanisms that can participate 

in VSMC phenotype transition processes and is relevant for the search of new therapeutic tools and 

strategies to treat VSMC-driven vascular pathologies. Importantly, our findings position T-cadherin as 

a potential target molecule in prevention of adverse vessel remodelling and SMC de-differentiation. 

Although not presented here, our preliminary investigations on vascular tissues from T-cadherin 

knock-out mice failed to identify any anatomical vascular defects in these mice. This might suggest 

that T-cadherin functions primarily as a regeneration factor and is dispensable in vasculogenesis, and 

would reinforce our in vitro findings with T-cadherin-deficient VSMC as reported in this dissertation.  

We established here that the shift in functions which T-cadherin induces in VSMC is achieved via 

modulation of Akt/mTOR and Akt/GSK3β signalling: hyperactivation of the classical PI3K/Akt 

signalling core heightens negative mTORC1/S6K feedback, and inactivates GSK3β. On one hand this 

leads to elevated IRS-1 degradation and blunted insulin response, and on the other hand it stabilizes 

cyclin D1 via GSK3β inactivation which promotes cell cycle progression and cell proliferation. 

Although we did not specifically address the interaction between the separate branches of PI3K/Akt 

signalling (mTORC1/S6K and GSK3β/cyclin D1), cooperation between them in our model is very likely, 

as has been shown by many other studies investigating classical PI3K/Akt signalling. Our findings 

suggest the existence of tight mechanistic links between cellular insulin resistance, matrix 

remodelling and phenotype transition.  

Perspectives 

The following briefly outlines some of many issues regarding the regulation of VSMC function and 

phenotype by T-cadherin that could be addressed in future investigations. Key topics are indicated in 

italicized and underlined font. 

GSK3β-inactivation stabilized both cyclin D1 and β-catenin. Although β-catenin can transcriptionally 

regulate cyclin D1 levels, here we found that β-catenin accumulation does not link to TCF/LEF binding 

and activation of de novo cyclin D1 transcription. Furthermore, upregulated β-catenin did not show 

TCF/LEF binding, and the functional role of β-catenin in T-cadherin-induced VSMC de-differentiation 

remains unknown. Further studies are needed to address this question in VSMC.  

PI3K/Akt pathway is central for T-cadherin signalling in VSMC, however, upstream partners of T-

cadherin signalling remain unknown. How T-cadherin regulates the PI3K/Akt signalling axis and 

whether its activation is a primary or subsequent event in the phenotype transition-initiating cascade 

have not yet been investigated.  
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A further set of data obtained during the course of this dissertation shows that T-cadherin also 

regulates cellular adhesion: T-cadherin overexpressing VSMC display defective cell spreading and 

reduced cell-to-matrix adhesion together with a distinct actin cytoskeleton organization. This is 

consistent with our previous findings in EC and prostate cancer cells, both of which also exhibit T-

cadherin-dependent alterations in morphological characteristics. T-cadherin overexpression also 

reduced general activity of small RhoGTPases – RhoA, Rac1, and Cdc42 in resting cells. RhoGTPases 

are powerful regulators of adhesion and cytoskeleton dynamics. Reduced activity of all three 

proteins suggests involvement of some important upstream regulator(s) in T-cadherin signalling, 

possibly components of the integrin adhesome. Indeed, in EC we have demonstrated physical 

interactions of T-cadherin with β3 integrin and integrin linked kinase. Through an ability to modulate 

cell-matrix adhesion T-cadherin might regulate different aspects of cell behaviour, including cell 

motility, polarity, growth, and survival. This suggest clear directions for further studies aimed to 

identify immediate molecular partners in T-cadherin signalling, as well as possible cadherin role in 

regulation of cell-matrix adhesion.  

The research presented in this dissertation established cellular functions for T-cadherin in VSMC 

contraction and phenotype plasticity and identified molecular mechanisms mediating T-cadherin 

signalling. Most of the study, however, has been undertaken using in vitro models. The T-cadherin 

knock-out mice (Cdh13−/−) is viable and appear anatomically normal. Validation of our findings 

through use of (Cdh13−/−) mice would add further value to the existing data; experimentation 

designed to microscopically/immunohistologically study the vasculature could be performed, or in 

vitro experimentation using VSMC isolates (and eventually “rescue” experiment using vectors 

carrying human or murine T-cadherin). In addition, Cdh13−/−mice challenge experiments (e.g. carotid 

artery balloon injury) or generation of double knock-out for T-cadherin and Apo E (apoE−/− /Cdh13−/−) 

would be instrumental in scrutinizing the most relevant biological contexts (e.g. atherosclerosis, 

restenosis) for T-cadherin functions in vascular smooth muscle.  

Another interesting question directly related to T-cadherin signalling in VSMC, but not addressed in 

this study is the involvement of adiponectin. T-cadherin is a third adiponectin receptor, which locates 

adiponectin to the vasculature. How presence of adiponectin might alter T-cadherin signalling and 

what consequences for VSMC functions this can have, remains to be determined. 
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5mC, 5 methylcytosine  
5hmC, 5 hydroxymethylcytosine 
AJs, adherens junctions 
AMPK, AMP-activated protein kinase 
APC, adenomatous polyposis coli 
ApoE-/-, ApoE-deficient mouse model 
bHLH, basic helix-loop-helix  
Bad, Bcl-2 associated death promoter  
Bcl-2, B-cell lymphoma 2 
BMP, bone morphogenetic protein 
CAD, coronary artery diseases  
CADASIL, Ccerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy 
CArG-box, CC[A/T]6GG motif 
Cdc42, cell division control protein 42 
CIL, contact inhibition of locomotion 
CK1, casein kinase 1 
CVD, cardiovascular disease  
DES, drug-eluting stent 
EC, endothelial cell 
EC, extracellular 
ECM, extracellular matrix 
EGF, epidermal growth factor 
EMT, epithelial-to-mesenchymal transition 
eNOS, endothelial nitric oxide synthase  
ERK, extracellular signal regulated kinases 
F-actin, fibrillary actin 
FGF, fibroblast growth factor 
FGFR1, FGF receptor 1 
G-actin, globular actin 
GEF, guanine exchange factors 
hES-MCs, human embryonic stem cell-derived mesenchymal cells 
IGF, insulin-like growth factor 
IGFR1, Insulin-like growth factor receptor 1 
iNOS, inducible nitric oxide synthase  
IR, insulin receptor 
IGF, insulin-like growth factor 
IGFR1, IGF receptor 1 
IRS-1, insulin receptor substrate 
KLF4, Krüppel-like factor 4 
KLF5, Krüppel-like factor 5 
LDL, low density lipoprotein 
MAPK, mitogen activated protein kinase(s) 
MKL1/2, megakaryoblastic leukemia 1 and 2 
MLC20, 20 kDa myosin light chain  
MLCK, myosin light chain kinase 
MLCP, myosin light chain phosphatase 
MMP, matrix metalloproteinase 
MRTF, myocardin-related transcription factor  
MSC, mesenchymal stem cell 
mTOR, mammalian target of rapamycin 
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mTORC1/2, mTOR complex 1 or 2 
MYOCD, myocardin 
NCID, Notch intracellular domain 
NO, nitric oxide (NO) 
OB, osteoblast 
PAH, pulmonary arterial hypertension 
PDGF, platelet-derived growth factor 
PDGFR, platelet-derived growth factor receptor 
PECAM, platelet endothelial cell adhesion molecule 
PI3K, phosphatidylinositol-3-kinase 
PIP3, phosphatidylinositol (3,4,5)-tris-phosphate 
PKC, protein kinase C 
PKG I α, cGMP-dependent protein kinase alpha 
ROCC, receptor operated Ca2+ channels 
S1P, sphingosine 1 phosphate 
SBE, Smad-binding element 
SCAI, suppressor of cancer cell invasion 
SM, smooth muscle 
SMC, Smooth muscle cell 
SRF, serum response factor 
SVD, small vessel disease 
Rho-kinase, Rho-associated kinase 
TAZ, transcriptional coactivator with a PDZ-binding domain 
TCE, TGF-β control elements 
TCF, ternary complex factors  
TCF/LEF, T-cell factor/lymphoid enhancer factor 
TET, Ten-Eleven-Translocation  
TGF-β, transforming growth factor-β 
VSMC, vascular smooth muscle cell 
VEGFR2, vascular endothelial growth factor receptor 2 
YAP, YES associated protein 
  

  



79 

Curriculum Vitae 

Agne Frismantiene 

 

 0000-0002-2018-2986 

 

 

Date of birth: 14th Jan 1984, Lithuania 

Nationality: Lithuanian 

Civil Status: married 

agne.frismantiene@unibas.ch

 EDUCATION 

 2011-2016 

Supervisor 

Focus 

Ph. D. in Cell Biology, Universität Basel, Switzerland 

Prof. Therese Resink 

Vascular biology, cell plasticity, regeneration 

 2006-2008 

 

M. Sc. in Biochemistry, Vilnius University, Lithuania 

Biotechnology, genetic engineering 

 2002-2006 

 

B. Sc. in Biochemistry, Vilnius University, Lithuania and Bielefeld University, Germany 

Microbiology, biotechnology 

 SCHOLARSHIPS 

 2016 Universität Basel: Förderung exzellenter Nachwuchsforschender 

 2007 Lithuanian Research Council: Research practice scholarship 

 2006-2007 Vilnius University: Erasmus scholarship 

 WORK EXPERIENCE 

 2008-2011 Junior Scientist, Thermo Fisher Scientific, Lithuania 

Cell biology, biotechnology, molecular biology, quality control, project management 

 2006-2008 Research Assistant, Institute of Biotechnology, Lithuania  

Biotechnology, genetic engineering, microbiology 

 SUMMER SCHOOLS AND PRACTICES 

 2007  Construction, expression and purification of virus-like particles. Scientific summer 

practice, Institute of Biotechnology, Lithuania 

 2006 Methods in clinical biochemistry. Scientific summer practice, Institute for Laboratory and 

Transfusion Medicine, Heart and Diabetes center NRW, Germany 

 2005 Optimization of PCR-based techniques for rapid diagnostics of tick-borne encephalitis and 

Lyme disease. Scientific summer practice, Laboratory of Lithuanian AIDS Centre, Lithuania  

TECHNICAL SKILLS 
  Tissue culture: standard culture maintenance and manipulation, lenti-viral particle 

production; Immuno-techniques: ELISA, WB, IP, IF, FACS; Microscopy: light and confocal, 
image processing; In vivo (mouse) model: basic skills (administration of substances, tissue 
collection); Molecular biology: cloning, (q)PCR; Protein analysis: basic protein purification, 
zymography; Computer skills: GraphPad Prism, Vector NTI, RasMol, Java Script (basics), R. 

mailto:agne.frismantiene@unibas.ch


80 

  TEACHING (TUTORING) 

  Tutor, Introduction to Biology (Einführung in die Biologie) autumn semester 2013, 
Universität Basel, Faculty of Natural Sciences 

  INTERESTS AND LANGUAGES 

  Interests: regeneration biology, cell plasticity, vascular biology, tissue engineering, cell-
cell, and cell-matrix communication 
Foreign language competence: English – fluent; German – good; Russian – good 
Other interests: Modern art, skiing, tennis 

 

 

Publications 

 Frismantiene, A., Pfaff, D., Dasen, B., Erne, P., Resink, T.J., and Philippova, M. 2016. 
T-cadherin promotes vascular smooth muscle cell dedifferentiation via a 
GSK3β-inactivation dependent mechanism. Cell Signal 28(2016):516-530. 

 Frismantiene, A., Pfaff, D., Frachet, A., Coen, M., Joshi, M.B., Maslova, K., Bochaton-
Piallat, M.L., Erne, P., Resink, T.J., and Philippova, M. 2014. Regulation of contractile 
signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: 
Constitutive and insulin-dependent effects. Cell Signal 126:1897-1908 

 Schoenenberger, A.W., Pfaff, D., Dasen, B., Frismantiene, A., Erne, P., Resink, T.J., 
and Philippova, M. 2015. Gender-Specific Associations between Circulating T-
Cadherin and High Molecular Weight-Adiponectin in Patients with Stable Coronary 
Artery Disease. PLoS One 10:e0131140. 

 Maslova, K., Kyriakakis, E., Pfaff, D., Frachet, A., Frismantiene, A., Bubendorf, L., 
Ruiz, C., Vlajnic, T., Erne, P., Resink, T.J., et al. 2015. EGFR and IGF-1R in 
regulation of prostate cancer cell phenotype and polarity: opposing functions and 
modulation by T-cadherin. FASEB J 29:494-507. 

 Zaliauskiene L, Bernadisiute U, Vareikis A, Makuska R, Volungeviciene I, Petuskaite 
A, Riauba L, Lagunavicius A, Zigmantas S.Efficient gene transfection using novel 
cationic polymers poly(hydroxyalkylene imines). Bioconjug Chem. 2010 Sep 15; 
21(9):1602-11 
 

Abstracts 

 A. Petuskaite, D. Pfaff, A. Frachet, M. B. Joshi, M. Philippova, K. Maslova, E. 
Kyriakakis, P. Erne, T. Resink. Upregulation of T-cad in smooth muscle cells; 
consequences for vascular function? Proceedings, AGLA and Cardiovascular 
Biology, P15, page 32, 2013 

 A. Petuskaite, D. Pfaff, A. Frachet, M. B. Joshi, M. Philippova, K. Maslova, E. 
Kyriakakis, P. Erne, T. Resink. T-cadherin upregulation in smooth muscle cells 
modulates vascular function. Proceedings of the 20th International Local Drug 
Delivery Meeting, 2013 

 A. Petuskaite, D. Pfaff, A. Frachet, M. Coen, M.B. Joshi, K. Maslova, M-L. Bochaton-
Piallat, P. Erne, T.J. Resink, M. Philippova. T-cadherin upregulation in vascular 
smooth muscle cells promotes insulin resistance and extracellular matrix remodeling. 
Proceedings, AGLA and Cardiovascular Biology, P19, page 52, 2014 

 A. Frismantiene, B. Dasen, D. Pfaff, P. Erne, Th. Resink, M. Filippova. T-cadherin 
promotes vascular smooth muscle cell phenotype switch by a novel cadherin-β-
catenin-dependent mechanism Cardiovascular Medicine 2015;17(online publication): 
Suppl 25, Abstract 153, page 61 



81 

 

Conference presentations 

AGLA and Cardiovascular Biology, Bern Jan 10-11, 2013 

 Petuskaite A, et al. Upregulation of T-cad in smooth muscle cells; consequences for 

vascular function?  

20th International Local Drug Delivery Meeting, Geneva February 07-09, 2013  

 Petuskaite A, et al. Upregulation of T-cad in smooth muscle cells; consequences for 
vascular function. 

AGLA and Cardiovascular Biology Meeting, Fribourg Jan 16-17, 2014 

 Petuskaite A, et al. T-cadherin upregulation in smooth muscle cells modulates 
vascular function. 

Annual Meeting of the Swiss Society for Cardiology, Interlaken Jun 11-12, 2014 

 Petuskaite A, et al. T-cadherin upregulation in vascular smooth muscle cells promotes 
insulin resistance and extracellular matrix remodelling. 

Annual Meeting of the Swiss Society for Cardiology, Zurich Jun 12-13, 2015 

 Frismantiene A, et al. T-cadherin promotes vascular smooth muscle cell phenotype 
switch by a novel cadherin-β-catenin-dependent mechanism. 

AGLA and Cardiovascular Biology Meeting, Fribourg Jan 14-15, 2016 

 Frismantiene A, et al. T-cadherin upregulation on vascular smooth muscle cells 
promotes acquisition of a dedifferentiated phenotype 


