
Simulating Batch and Application Level Scheduling
Using GridSim and SimGrid

Ahmed Eleliemy, Ali Mohammed, and Florina M. Ciorba
Department of Mathematics and Computer Science

University of Basel, Switzerland
{ahmed.eleliemy, ali.mohammed, florina.ciorba}@unibas.ch

Abstract—Modern high performance computing (HPC) sys-
tems are increasing in the complexity of their design and in
the levels of parallelism they offer. Studying and enhancing
scheduling in HPC became very interesting for two main as-
pects. First, scheduling decisions are taken by different types
of schedulers such as batch, application, process, and thread
schedulers. Second, simulation has become an important tool to
examine the design of HPC systems. Therefore, in this work, we
study the simulation of different scheduling levels. We used two
well-known simulation toolkits, SimGrid and GridSim, in order
to support two different scheduling levels, batch and application
level scheduling. Each toolkit is extended to support both levels.
Moreover, three different scheduling algorithms for each level
are implemented and their performance is examined through a
real workload dataset. Finally, a comparison for the extension
challenges of the two simulators is conducted.

I. INTRODUCTION

Modern HPC systems offer parallelism at different levels
starting from multiple cores at the CPU level to multiple
computing nodes at the cluster level. Thus, there is a differ-
ent type of scheduling associated with each of these levels.
For instance, the batch level scheduling is associated with
the cluster level whereas the application level scheduling
is associated with the core level. It is important to study
how different scheduling algorithms at different levels can
cooperate and integrate to achieve higher utilization results.
Given the complexity of HPC systems, simulation is an estab-
lished method to examine and assess the design of different
algorithms in HPC [1]. There is a wide set of parallel and
distributed systems simulators [2], [3], [4], [5] which can be
used to simulate various scheduling algorithms of different
levels. However, to the best of our knowledge, there is no
simulator that can support more than one level of scheduling
at the same time. Hence, Simulators such as SimGrid [4]
and GridSim [2] are used for application level scheduling
and batch level scheduling, respectively. The main idea is
to study the extension challenges to use single simulation
toolkit to simulate different scheduling levels. This work is
considered as preliminary step to how to extend the available
simulation toolkits in such a way that they can be used to
simulate different scheduling levels simultaneously. Our main
contribution is to provide the necessary simulation toolkit to
examine the effect of different combinations of scheduling
algorithms at different levels on HPC systems utilization.
In this work, two well-known simulation toolkits have been

selected: Alea (GridSim based simulator) [3] and SimGrid
[4]. They are intended to simulate batch and application level
scheduling, respectively.

II. EXTENDED GRIDSIM

GridSim [2] is a Java based simulation toolkit that enables
users to simulate and model large scale distributed and parallel
systems with different configurations. The ease of use and the
reliable results of GridSim encourages many researchers to
use it, hence there are many simulators that use the GridSim
toolkit as its basis. Alea [3] is an instance of these simulators,
Alea allows the study of advanced scheduling techniques for
planning various types of jobs. it has been selected in this
work due to two reasons. First, it implements a wide range
of batch level scheduling algorithms such as first come first
serve (FCFS), earliest deadline first (EDF), and shortest job
first (SJF). Second, Alea has been successfully extended to
support application level scheduling [6]. Compared to [6],
this extension has three main advantages. First, it supports
application level scheduling while the same binaries can still
support batch level scheduling. Second, it is based on the latest
version of Alea and GridSim. Third, all changes do not affect
the Alea batch scheduling functionality.

III. EXTENDED SIMGRID

SimGrid [4] is a library that provides functionality to
simulate large-scale distributed systems. It is fast, scalable,
with small memory footprint, and simulation models are
theoretically and experimentally assessed. Application level
scheduling is simulated using SimGrid’s SimDag interface
assuming a master worker execution model. Our current
implementation supports three dynamic loop scheduling algo-
rithms: fixed size chunk(FSC), guided self-scheduling(GSS),
and factoring(FAC).To simulate batch jobs, Simbatch [5] is an
existing extension of SimGrid that extends MSG interface to
support batch scheduling. However, we chose to build our ex-
tension upon SimDag to be comparable to the application level
scheduling performance implemented in SimDag and also to
provide support for jobs with dependencies in the future. Our
extension of SimDag is built upon SimGrid v.3.13 library
and it is designed to be simple and extensible. Currently our
extension supports three BLS scheduling algorithms: FCFS,
SJF, and EDF.



16
2

16
7 30
2

79
7

16
2

17
0 29
4

1,
06
8

16
3

21
9 29
2

79
8

0

400

800

1,200

1,600

1,115 4,144 16,715 65,703

M
ak
es
pa
n
(s)

Number	of	tasks

b)	Application	Level	Scheduling	Using	SG

FAC GSS FSC

16
8

21
1 40
1

1,
05
0

16
2

17
9 41

0

1,
29
4

16
3

22
0 44

5

1,
00
0

0

400

800

1,200

1,600

1,115 4,144 16,715 65,703

M
ak
es
pa
n
(s)

Number	of	tasks

a)	Application	Level	Scheduling	Using	GS

FAC GSS FSC

5,
37
9

8,
65
3

5,
38
0

8,
63
9

5,
31
0

8,
51
0

0

2,000

4,000

6,000

8,000

10,000

3,100 17,800

M
ak
es
pa
n
(s)

Number	of	jobs

d)	Batch	Level	Scheduling	Using	SG

EDF SJF FCFS
5,
33
2

8,
65
3

5,
33
2

8,
88
7

5,
31
0

8,
51
0

0

2,000

4,000

6,000

8,000

10,000

3,100 17,800

M
ak
es
pa
n
(s)

Number	of	jobs

c)	Batch	Level	Scheduling	Using	GS

EDF SJF FCFS

Fig. 1. Application and batch level scheduling makespan simulated by
Alea/GridSim

IV. EXPERIMENTS AND RESULTS

Two experiments have been designed to test our extension
of GridSim and SimGrid. For the application level schedul-
ing experiment, we used Lublin [7] to obtain tasks of four
applications, each application contains 1115, 4144, 16715,
65703 tasks, respectively. All tasks are independent, with
different execution length according to Lublin configuration.
For batch level scheduling experiment, we used the same two
job datasets provided by Alea in [3]. First dataset is obtained
from High Performance Computing Center North (HPC2N) in
Sweden, and it contains 3100 jobs. Second dataset is obtained
from the Czech national Grid infrastructure MetaCentrum and
it contains 17800 jobs. Figures 1 and 2 shows the makespan
obtained by running the experiments on both simulators Alea
and SimGrid, respectively.

Moreover to evaluate the efficiency of the used simulators,
we have also measured the wall clock times of the simulators
while running the experiments. Figure 3 shows the wall clock
times of both simulators in simulating application and batch
level scheduling for different problem sizes.

V. CONCLUSION AND FUTURE WORK

Both SimGrid and Alea were able to simulate both ap-
plication and batch level scheduling algorithms and obtain
comparable results. However, when it comes to scheduling
large workloads on large scale computing systems SimGrid
outperforms Alea with regards to simulator wall clock time
on application level scheduling, whereas Alea outperforms
SimGrid on batch level scheduling. The next step is to study
how to enable simulation of these two scheduling levels using
one of these successful simulator extensions.

REFERENCES

[1] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling parallel
simulation of large-scale hpc network systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2016.

16
2

16
7 30
2

79
7

16
2

17
0 29
4

1,
06
8

16
3

21
9 29
2

79
8

0

400

800

1,200

1,600

1,115 4,144 16,715 65,703

M
ak
es
pa
n
(s)

Number	of	tasks

b)	Application	Level	Scheduling	Using	SG

FAC GSS FSC

16
8

21
1 40
1

1,
05
0

16
2

17
9 41

0

1,
29
4

16
3

22
0 44

5

1,
00
0

0

400

800

1,200

1,600

1,115 4,144 16,715 65,703

M
ak
es
pa
n
(s)

Number	of	tasks

a)	Application	Level	Scheduling	Using	GS

FAC GSS FSC

5,
37
9

8,
65
3

5,
38
0

8,
63
9

5,
31
0

8,
51
0

0

2,000

4,000

6,000

8,000

10,000

3,100 17,800

M
ak
es
pa
n
(s)

Number	of	jobs

d)	Batch	Level	Scheduling	Using	SG

EDF SJF FCFS

5,
33
2

8,
65
3

5,
33
2

8,
88
7

5,
31
0

8,
51
0

0

2,000

4,000

6,000

8,000

10,000

3,100 17,800

M
ak
es
pa
n
(s)

Number	of	jobs

c)	Batch	Level	Scheduling	Using	GS

EDF SJF FCFS

Fig. 2. Application and batch level scheduling makespan simulated by
SimDag/SimGrid

68
0

19
3 86

7

7,
98
7

1,
45
4

2,
82
6 15
,3
62 15

1,
07
5

67
0

16
6 90

4

7,
76
7

1,
46
8

2,
79
0 14
,2
51 14

7,
27
1

66
0

17
7 94

0

8,
72
3

1,
50
9

2,
79
3 15
,1
82 14

1,
92
2

1

50

2,500

125,000

1,115 4,144 16,715 65,703

W
al
lcl
co
k
tim

e	
(lo
g 5

0
m
s)	
	

Number	of	tasks

Wallclock Time	in	Simulating	Application	Level	Scheduling
SG_FAC GS_FAC SG_GSS
GS_GSS SG_FSC GS_FSC

50
5

28
,1
01

1,
86
3 6,
62
9

52
0

22
,9
31

2,
08
4

6,
37
2

50
6

22
,7
60

1,
92
5 6,
77
1

1

50

2,500

125,000

3,100 17,800

W
al
lcl
co
k
tim

e	
(lo
g 5

0
m
s)	
	

Number	of	jobs

Wallclock Time	in	Simulating	Batch	Level	Scheduling
SG_FCFS GS_FCFS SG_EDF
GS_EDF SG_SJF GS_SJF

Fig. 3. Wall clock times of both simulators as problem size increase

[2] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience
CCPE, vol. 14, no. 13, pp. 1175–1220, 2002.

[3] D. Klusáček and H. Rudová, “Alea 2 – job scheduling simulator,” in
Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques (SIMUTools 2010). ICST, 2010.

[4] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899 – 2917, 2014.

[5] Y. Caniou and J. S. Gay, Simbatch: An API for Simulating and Predicting
the Performance of Parallel Resources Managed by Batch Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 223–234.

[6] S. Srivastava, I. Banicescu, F. M. Ciorba, and W. E. Nagel, “Enhancing
the functionality of a gridsim-based scheduler for effective use with large-
scale scientific applications,” in 2011 10th International Symposium on
Parallel and Distributed Computing, July 2011, pp. 86–93.

[7] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs,” J. Parallel Distrib. Comput.,
vol. 63, no. 11, pp. 1105–1122, Nov. 2003.


