
Collision-induced rotational excitation in N : Comparison of
computations and experiment

Oliver T. Unke, Juan Carlos Castro-Palacio, , Raymond J. Bemish, and Markus Meuwly,

Citation: J. Chem. Phys. 144, 224307 (2016); doi: 10.1063/1.4951697
View online: http://dx.doi.org/10.1063/1.4951697
View Table of Contents: http://aip.scitation.org/toc/jcp/144/22
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Unke%2C+Oliver+T
http://aip.scitation.org/author/Castro-Palacio%2C+Juan+Carlos
http://aip.scitation.org/author/Bemish%2C+Raymond+J
http://aip.scitation.org/author/Meuwly%2C+Markus
/loi/jcp
http://dx.doi.org/10.1063/1.4951697
http://aip.scitation.org/toc/jcp/144/22
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 144, 224307 (2016)

Collision-induced rotational excitation in N+2(2Σ+g, v = 0)–Ar:
Comparison of computations and experiment
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The collisional dynamics of N+2(2Σ+g ) cations with Ar atoms is studied using quasi-classical simu-
lations. N+2–Ar is a proxy to study cooling of molecular ions and interesting in its own right for
molecule-to-atom charge transfer reactions. An accurate potential energy surface (PES) is constructed
from a reproducing kernel Hilbert space (RKHS) interpolation based on high-level ab initio data.
The global PES including the asymptotics is fully treated within the realm of RKHS. From several
ten thousand trajectories, the final state distribution of the rotational quantum number of N+2 after
collision with Ar is determined. Contrary to the interpretation of previous experiments which indicate
that up to 98% of collisions are elastic and conserve the quantum state, the present simulations find a
considerably larger number of inelastic collisions which supports more recent findings. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4951697]

I. INTRODUCTION

Cooling neutral and charged atoms and molecules
is essential for controlled investigations of fundamental
processes in chemistry and physics. These methods rely in one
way or another on the energy transfer between the species to
be cooled and their environment. Many techniques to achieve
cooling to the millikelvin regime exist. They include, among
others, sympathetic cooling of neutral atoms through collisions
with laser-cooled species1 or cooling through collisions with
Ar atoms in crossed molecular beams.2

An ionic system which is of considerable interest in
this context is N+2–Ar. It is a prototypical system to study
molecular ions3,4 and charge transfer reactions for different
internal states of the diatomic.5 Previous experiments showed
that charge transfer from the molecule to the atom occurs
only if N+2 is vibrationally excited and no charge transfer is
possible for N+2(v ′′ = 0).3 Figure 1 shows relevant stages for
the N+2(v ′′, j ′′) + Ar → N2(v ′, j ′) + Ar+ reaction.

Another process which takes place on the electronic
ground state potential energy surface (PES) is scattering
of the Ar atom from the cation through formation of the
collision complex [N2Ar]+ (right hand side in Figure 1).
Recent experiments of sympathetically cooled N+2(v = 0,
N = 0, J = 0.5) and collisions with room temperature Ar
atoms have shown that the measured rate for quadrupole
vibrational excitation of N+2 in Coulomb crystals is two orders
of magnitude lower than expected.9 It was speculated that
this is due to depopulation of the initially prepared molecular
state through rotationally inelastic collisions between the N+2
ion and the Ar buffer gas. This process has been previously
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investigated using laser excited N+2 in a 22-pole ion trap in
the presence of a low density Ar buffer at 90 K. Specifically,
the rotational state J = 6.5 of a small number of N+2 ions was
depopulated via laser induced charge transfer with subsequent
observation of refilling the hole via inelastic collisions.
Analysis of the experimental data using an advanced kinetic
model yields a very low inelastic collision rate (≤2%).3 In
order to address these conflicting experimental results and to
provide a more atomistically resolved picture, it is desirable to
investigate this system using accurate computations. Such an
approach has provided further insight into related elementary
processes including, e.g., the rotational excitation of N+2
through collisions with N2

10 and the reactive collisions of
NO + O11,12 and OH + H.13

The present work focusses on the final state distribution of
the rotational quantum number j ′ of the N+2 ion after collision
with Ar starting from a given initial rotational state j ′′ (right
hand side in Figure 1). Such simulations provide information
about the conservation of the internal state of N+2 during and
after collisions. Because of the appreciable binding energy of
1.14 eV stabilizing the [N2Ar]+ complex (see Figure 1), it is
expected that the dynamics in the bound state [N2Ar]+ lead
to inelastic collisions and give rise to rotational excitation.
Earlier experimental results suggest the contrary, namely, that
rotational transitions in N+2 + Ar collisions occur rarely and up
to 98% are elastic (“...implies that only one out of 50 collisions
results in a change of the rotational state”).3 A possible
explanation for the surprising conservation of the initial
rotational state could be the consequence of some hidden
constants of motion leading to approximate selection rules.3

The collision of N+2 molecules with Ar atoms is
studied through quasi-classical molecular dynamics (MD)
simulations. Hence, quantum effects due to zero-point
vibrations and tunneling, which may influence the collisional
dynamics and the resulting rotational excitation of N+2 , are not
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FIG. 1. Schematic representation of the relevant stages in the N2(v′, j′)
+Ar+→ N+2 (v′′, j′′)+Ar reaction. Experimentally determined values are in-
dicated by “exp” where the superscript (a) refers to Ref. 6 and (b) to Refs. 7
and 8. For the vibrational and rotational ground state, the N+2 (v′′, j′′)+Ar
channel is 0.179 eV below the N2(v′, j′)+Ar+ asymptote.7,8 The reported
experimental dissociation energy of the [N2Ar]+ complex ranges from 1.04 to
1.23 eV.6 In this work, the process studied is N+2 (0, j′′)+Ar→ N+2 (0, j′)+Ar.

included in the simulations. Moreover, rotational fine structure
originating from coupling of the spin of N+2 and the angular
momentum of the diatomic is not included in the present
approach. Accurate full close-coupling quantum scattering
calculations even for triatomic systems with a deep well (here
in excess of 1 eV), a highly anisotropic interaction potential,
and a small rotational constant for the diatomic are currently
not feasible.14 On the other hand, quasi-classical trajectory
(QCT) simulations have provided valuable insight into
rotational excitation in the charge exchange reaction N+2 + N2
→ N2 + N+2 .10 Similar classical studies have been performed
for the O + CHD3 system15 and rates of the hydrogen
exchange reaction OH− + HBr → Br− + H2O (down to 5 K
with experimental data available for 20 K and up) without
accounting for spin-orbit coupling (as in the present case)
and still, good agreement with experiment was obtained.16

State-to-state dynamics of the Br + H2 reaction based on
QCT calculations was found to reproduce the quantum
mechanical results in general terms (e.g., for state-to-state
excitation functions) although sometimes the agreement was
only qualitative.17 However, in the light of the computational
demands of a fully quantum mechanical treatment (see above)
and the aforementioned insights obtained for similar systems,
a classical treatment appears to be a meaningful approach. To
further assess the role of quantum effects, the classical results
are complemented with calculations accounting for quantum
zero point energy (ZPE) using two different methods.

The ZPE motion of N+2 may have non-negligible effects
on the results. In particular, since all simulations are carried
out within the framework of classical mechanics, ZPE might
be consumed and lead to excitation of internal degrees of
freedom, which is unphysical. Since there is no unique way
to correct for ZPE,18 two different strategies to probe this are
explored: (a) trajectories are run on the bare, ab initio PES
and a binning criterion is applied at the analysis stage, and
(b) the trajectories are run on a ZPE-corrected PES in order
to prevent the unphysical consumption of ZPE during the
simulations. Both a binning criterion19 and a way to constrain
vibrational motion20,21 have been previously employed in the

literature. The PES is constructed from ab initio points using
interpolation by the reproducing kernel Hilbert space (RKHS)
formalism.22,23 Since the present work focuses on the study of
rotational transitions in N+2(v ′′ = 0, j ′′) + Ar collisions, only
the electronic ground state of N+2 is considered.

II. METHODS

A. Ab initio calculations

The N+2–Ar system is described in Jacobi coordinates,
where r is the N–N distance, R is the distance between Ar and
the center of mass of the nitrogen atoms, and α is the angle
between the direction of R and the N–N axis (see Figure 2).

A total of 3025 points on a regular grid were used to sam-
ple the PES at the unrestricted coupled cluster single double
(triple) (UCCSD(T)) level of theory with an aug-cc-pVTZ ba-
sis set24,25 using the Gaussian 09 suite of codes.26 The angular
grid corresponds to an 11-point Gauss-Legendre quadrature
(α = 11.815◦, 27.452◦, 43.089◦, 58.726◦, 74.363◦, 90.000◦,
105.637◦, 121.274◦, 136.911◦, 152 548◦, 168.185◦).27 For r ,
the grid consists of 11 points according to the equilibrium
position req of the N+2 bond and the turning points28 from
v = 0 to v = 4 (r = 0.998, 1.010, 1.024, 1.043, 1.071, 1.122,
1.167, 1.207, 1.237, 1.263, 1.287 Å). The grid of van der
Waals distances R was chosen to capture the well-region with
more densely spaced points and the asymptotic regions with
fewer points, for a total of 25 radial grid points (R = 1.7, 1.8,
1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2,
3.3, 3.4, 3.5, 3.6, 3.8, 4.1, 4.5, 6.0, 9.0 Å).

The geometry of the [N2Ar]+ complex was optimized
and the most stable configuration was found to be linear with
Jacobi coordinates of the optimized structure of req = 1.105 Å,
Req = 2.749 Å, and αeq = 0◦. The dissociation energy De of
the complex in the linear configuration is 1.266 eV with a zero
point energy of 0.129 eV (calculated at the UCCSD(T)/aug-
cc-pVTZ level of theory). Thus the dissociation energy D0

FIG. 2. N+2 +Ar system described in Jacobi coordinates. The dark blue
spheres A and B correspond to the nitrogen atoms and the light blue sphere C
to the argon atom.
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of 1.137 eV is in good agreement with the experimentally
measured value of 1.109 eV.29

B. RKHS interpolation

In the following, only a description of the RKHS
formalism is provided for completeness. For more details,
the reader is referred to the literature.30

1. General procedure

For constructing a multi-dimensional representation of a
PES V (x) for a molecular system based on N ab initio data
points at an arbitrary configuration x, V (x) is considered to
be a bounded function. The quality of the representation of
V (x) in terms of a kernel is determined by two aspects: one
is the number of grid points which equals the number of
kernel coefficients that are used, and the other is the type of
kernel function itself. As such, V (x) can be represented in the
following fashion:

V (x) =
N
i=1

wiQ(xi,x), (1)

where xi are the coordinates of the system at the ith grid point,
wi are the kernel coefficients, and Q(xi,x) is a reproducing
kernel.

The multidimensional reproducing kernel Q(x,x′) can be
represented as a product over 1-dimensional kernels.30 For
example, if x corresponds to the Jacobi coordinates (r , R, α),
the 3-dimensional kernel can be expressed as

Q(x,x′) = q1(r,r ′) · q2(R,R′) · q3(α,α′), (2)

where the kernels qi can be chosen freely depending on the
nature of the respective variable (angular or distance-like). The
kernel coefficients wi in Eq. (1) are determined by solving the
following system of linear equations:



Q(x1,x1) Q(x1,x2) · · · Q(x1,xN)
Q(x2,x1) Q(x2,x2) · · · Q(x2,xN)

...
...

. . .
...

Q(xN ,x1) Q(xN ,x2) · · · Q(xN ,xN)





w1

w2
...

wN



=



V ab initio(x1)
V ab initio(x2)

...

V ab initio(xN)



. (3)

Since the reproducing kernel matrix is symmetric and positive
definite by definition, the computationally efficient Cholesky
decomposition can be used to solve Eq. (3).31 Once the kernel
coefficients wi are known, the energy at an off-grid point x
can be evaluated from Eq. (1).

2. 1-dimensional kernels

Distance-like coordinates. In this work, the 1-dimensional
kernel for distance-like coordinates was that from Ref. 30,

qn,m(x, x ′) = n2x−(m+1)
> B(m + 1,n)

× 2F1(−n + 1,m + 1; n + m + 1;
x<

x>
), (4)

where B(m + 1,n) is the beta function, 2F1(−n + 1,m + 1;
n + m + 1; x</x>) is the Gauss hypergeometric function, and
x< and x> denote the smaller and the larger of x and x ′,
respectively. The chosen value for n controls up to which
derivative the kernel is smooth, while the value of m controls
its long-range behaviour.30 In particular, if no points are
available in the asymptotic region, m can be chosen to mimic
the physical long-range behaviour of the interpolated variable.
Here we use n = 2 and m = 6 for both distance-like kernels,
although different values are possible.32 In the present work,
the choice of m is largely inconsequential because enough data
are available in asymptotic regions and the ab initio points are
necessarily reproduced exactly.

Angle-like coordinates. For angle-like internal coordi-
nates, the general expression for the kernel is30

qn(x, x ′) =
n−1
i=0

xi
>xi

< + nxn
<xn−1

> 2F1(1,−n+ 1; n+ 1;
x<

x>
). (5)

Eq. (5) is valid only if the angle-like coordinate is rescaled so
that both x and x ′ belong to the interval [0,1]. For example, to
rescale the Jacobi coordinate α, a new coordinate y is defined
as y = (1 − cos α)/2. Again, choosing n = 2 is sufficient for
an accurate representation of the angular dependence.

3. Treatment of the asymptotics

The 1-dimensional distance-like kernel given by Eq. (4)
has the advantage that it correctly decays to zero at long range.
While this is still true in the present case for one particular
value of the N–N separation r , this is not the case for the total
energy of the complex for arbitrary values of r . The correction
of the asymptotics was considered in previous work on HO2
by using a manybody expansion of the PES.33 For the present
work, a different method, which is fully within the RKHS
formalism, was used and is presented in Section III A.

Correction of ZPE in the N+2–Ar PES. One way to account
for ZPE in the simulations is to carry out a point-wise
correction of the PES whereby the ZPE contribution is taken
into account at each configuration.34 This contribution is
calculated from the harmonic oscillator energy evaluated for
n = 0,

V ZPE =

N
i=1

(
1
2
+ n

)
~ωi, (6)

where N = 3 is the number of degrees of freedom of the
system and ωi are the positive eigenvalues obtained from
ab initio calculations at the MP2/aug-cc-pVTZ level of
theory.

In the present simulations, two different PESs were
employed, one where the ZPE correction given by Eq. (6)
is included (ZPE-corrected PES) and one where no such
correction was made (bare PES). The RKHS PES and its
quality compared to off-grid points are shown in Figure 3.
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FIG. 3. Contour plot of the RKHS interpolated N+2–Ar PES (white lines) with
N+2 at its equilibrium position (req= 1.122 Å). The binding energy is around
1.3 eV and isocontours are labelled with energies in eV. The color map is
the error surface with relative errors in %. Relative errors were obtained by
comparing the interpolated energies to off-grid ab initio data. Even the largest
relative errors are below 0.1%.

C. Molecular dynamics simulations

MD simulations of the collision between N+2 and Ar
have been carried out with CHARMM.35 The equations of
motion were integrated using a time step of ∆t = 0.1 fs
and energies were calculated from the RKHS representation
of the PES described in Section II B using the bare and
ZPE-corrected PESs, respectively. Forces were obtained by
numerical differentiation using a five-point stencil.36

Initial conditions were generated from a WKB-quantized
periodic orbit of the corresponding rotating Morse oscillator
for given vibrational v and rotational j quantum numbers.37,38

Parameters for the Morse potential were fitted to ab initio data
for N+2 (De = 8.5003 eV, re = 1.1307 Å, β = 2.5928 Å −1).
The fitted dissociation energy is consistent with the
experimental value of 8.724 eV.39 The initial vibrational
quantum number was v ′′ = 0 and the rotational quantum
numbers were either j ′′ = 0 or j ′′ = 6. Relative collision
energies between N+2 and Ar were sampled from a Maxwell-
Boltzmann distribution at either 90 K or 300 K. These initial
conditions are representative of the previous experiments
which investigate [N+2(v ′′ = 0, j ′′ = 6); T = 90 K]3 and the
collision of ultracold molecular ions with Ar at room
temperature [N+2(v ′′ = 0, j ′′ = 0); T = 300 K].9 The impact
parameter b was selected from a uniform distribution between
0 and 25 a0 (prior test runs had shown that larger impact
parameters do not lead to collision or even mutual influence of
the impact partners). Such a procedure was already employed
in previous studies of the collisions between O(3P) and
NO(2Π).11

Simulations on the ZPE-corrected PES used a suitably
modified procedure for generating initial conditions for
the positions and velocities. For v ′′ = 0 and any j ′′, the
position is always set to the minimum of the effective Morse
potential Veff(r) = V (r) − j′′( j′′+1)

r2 and all vibrational energies
are removed from the N–N stretch as the ZPE is already
accounted for in the corrected PES. The vibrational energy
corresponding to the ZPE is added back prior to the analysis

in order to be able to use the same filtering criteria for the
ZPE-corrected and bare PES.

All trajectories were run until the collision partners
were fully separated for which a value corresponding to
more than 1.3-times their initial separation was assumed.
The maximum simulation time considered was 1 ns. For
statistically significant results, a total of 25 000 trajectories
were run for each temperature and PES and approximately
4000 of them were excluded from the analysis due to lifetimes
longer than 1 ns.

III. RESULTS

A. Correction of the asymptote

Depending on the N+2 bond length r , individual manifolds
V (R,α; r) dissociate to different asymptotic values for R → ∞.
This assumes that the PES becomes isotropic (α–independent)
with increasing R which is in general true. In order to employ
RKHS interpolation in a meaningful fashion for the R− and α−
degrees of freedom, the asymptotic value for each manifold
characterized by a specific value for the N–N separation must
be shifted to zero energy. This is necessary because kernels
decay to zero asymptotically (Fig. 4).

In order to set the energy to zero for every cut
(r = constant), the energy of the isolated diatomic E(r,R →
∞) is subtracted from the energy of all points that share
the same value of r and yields V new(r,R,α) = E(r,R,α) −
E(r,R → ∞) and V∞(r) = E(r,R → ∞). The two data sets
V new(r,R,α) and V∞(r) are then interpolated within the RKHS
framework. Because the PES is isotropic for sufficiently large
R, the interpolation of V∞(r) requires only a 1-dimensional
kernel. Hence, all quantities required are represented by

FIG. 4. Part of the global PES for a triatomic system N+2–Ar. The relevant
coordinates (r,R,α) are indicated in the inset with the dark blue spheres
corresponding to the N+2 molecule and the light blue sphere to the Ar atom.
The three curves refer to different intermolecular distances of the diatomic N+2
(rNN), rNN= 1.00 Å (red), rNN= 1.11 Å (blue), and rNN= 1.21 Å (black).
In the quantum chemistry calculations, the asymptotes of each manifold
characterized by the particular rNN separation dissociate to its own asymptote
as indicated by the non-overlapping curves at long range. If the asymptote is
not corrected in the RKHS interpolation, all curves converge to a value of
E = 0 for large R.
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kernels and the global PES can be evaluated at an off-grid
point (r0,R0,α0) according to Eq. (7),

V (r0,R0,α0) = V new(r0,R0,α0) + V∞(r0). (7)

B. Simulation and analysis of collisional excitation

Simulations on the bare and ZPE-corrected PES were
carried out with a range of initial conditions. The physical
conditions included two temperatures: T = 90 K and
T = 300 K. The first corresponds to previous experiments3

and the latter was chosen to examine the role of temperature
on the results. The time step in all simulations was ∆t = 0.1 fs.
Overall, 25 000 trajectories were run for each temperature.
However, a considerable number of trajectories are not
further analyzed because they violate in one way or another
restrictions imposed by quantum mechanics. Such filtering
at the post-processing stage is a usual procedure to limit
the number of classical trajectories to be analyzed to those
which correspond to valid simulations within a semiclassical
framework.

Filtering at the post-processing stage was carried out
as follows. The WKB procedure can be used to determine
the vibrational quantum number v ′ on the effective potential.
In general, a real, non-integer number is obtained for v ′.
By applying a binning criterion, only trajectories with v ′

within certain thresholds are retained for further analysis.
This ensures that only trajectories are analyzed in which
ZPE was not transformed to other forms of energy during
the simulation. Three different thresholds were used here:
frac(v ′) = ±0.1, ± 0.01, and ±0.001, where frac(x) is the
difference of x to the closest integer value. These values
correspond to a conservation of the ZPE within 220.70 cm−1,
22.07 cm−1, and 2.21 cm−1, respectively.

Rotational j ′ states are rounded to the next closest integer
value divisible by 2 in order to fulfill restrictions imposed by
the symmetry of N+2 , which can exist in either the ortho or
para nuclear spin state. If a binning criterion similar to the
vibrational quantum number is applied to j ′ states, the number
of trajectories that fulfill both criteria decreases dramatically.
Hence, no such binning was applied for j ′. For the final state
analysis of trajectories run on the corrected PES, the ZPE is
added back into the classical rovibrational energy, since it was
removed before generating the initial conditions.

The final distribution of j ′ states, P( j ′), is determined
from the WKB procedure after the complex has dissociated.
An event is classified as “inelastic” if the final j ′ differs
from the initial j ′′, i.e., j ′ , j ′′. As the simulations involve
numerical imprecisions of about 3.5 cm−1 (see Figure 5,
upper panel), corresponding to roughly the energy difference
between j ′′ = 0 and j ′ = 1 for N+2 (based on a rotational
constant of B = 1.932 cm−1),40 an additional criterion on the
necessary amount of change in j ′ was introduced to classify
inelastic transitions. For this, the quantity j∗ is used. Only
trajectories for which the final j ′ differs by more than j∗ from
the initial j ′′ state are considered to correspond to an inelastic
collision.

Rotational excitation. Figure 6 reports the final state
distribution P( j ′) for N+2 from simulations on the bare and

FIG. 5. A representative molecular dynamics simulation for the collision
between N+2 and Ar. The upper panel reports the variation of the total energy
as a function of time for time steps ∆t = 0.5 and 0.1 fs, respectively. In the
bottom panel, the distance between the ion and the incoming Ar atom is
shown for ∆t = 0.1 fs. After ≈0.5 ps, the complex is formed and lives for
about 12.5 ps after which it breaks up again.

ZPE-corrected PES starting from j ′′ = 0. Results are presented
for simulations at T = 90 K and T = 300 K. The distributions
differ slightly between the two PESs while temperature has
only a minor effect on P( j ′). On the bare PES, higher j ′–states
are populated compared to simulations on the ZPE-corrected
PES. Possibly, this is due to the more isotropic shape of the
ZPE-corrected PES due to angular averaging. Also, as the well
is more shallow on the ZPE-corrected PES due to inclusion
of ZPE, the anisotropy near the inner wall is less accessible.
The maximum of the distribution is at j ′ = 2, whereas it is at
j ′ = 0 for the bare PES. This already suggests that more than
a fraction (i.e., 2% in the experiments3) of the collisions are
inelastic.

The distribution changes only slightly between different
filtering criteria, as is shown in the inset in Figure 6. The
percentage of inelastic and elastic collisions for the bare PES
and a filtering criterion of frac(v ′) = ±0.01 are summarized
in Table I. A collision is inelastic if the rotational quantum
number of the diatomic differs from the initial j ′′ by more than
j∗, i.e., j ′ < [ j ′′ − j∗, j ′′ + j∗]. Even with an unrealistically
large margin of j∗ = 4, the fraction of inelastic collisions
are well above the experimentally reported value of 2%.3

Depending on the figure of merit j∗ used, 20%–40% of
collisions are inelastic, see Table I.

Figure 7 shows the correlation between impact parameter
b and j ′ states. It is typically found that smaller impact
parameters lead to higher rotational excitation whereas
collisions with large b are preferentially elastic.
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FIG. 6. Green diamonds (ZPE-corrected, 300 K), blue triangles (ZPE-
corrected, 90 K), black circles (bare, 300 K), red squares (bare, 90 K).
Distribution of j′ states after dissociation for ZPE conservation criterion
frac(v′)=±0.01 and different temperatures. Trajectories were started with an
initial j′′= 0 and evolved on the bare and ZPE-corrected PES. The total count
of trajectories that meet the conservation criterion are 4207 (T = 300 K) and
3309 (T = 90 K) on the corrected and 599 (T = 300 K) and 422 (T = 90 K)
on the bare PES, respectively. Note that trajectories on the corrected PES
are much more likely to meet the criterion, because ZPE is removed during
the dynamics and added back in the analysis. As such, the conservation
criterion on the corrected PES can only be violated by an uptake of energy,
whereas it can be violated by an uptake or loss of energy on the bare PES.
Inset: distribution of j′ states after dissociation for different ZPE conserva-
tion criteria (frac(v′)=±0.1, black circles, frac(v′)=±0.01, red diamonds,
frac(v′)=±0.001, green squares) at T = 300 K on the ZPE-corrected PES.
The number of trajectories that meet the criterion are 19 821, 4207, and 745,
respectively. The distribution changes slightly but shows the same overall
behaviour for the different filtering criteria.

A remarkable result is that excitation to the highest
rotational states is only found for trajectories with shorter
lifetimes (see Figure 8). Closer examination of some
individual trajectories with short lifetime shows that no tight
[N2Ar]+ complex has to be formed for rotational excitation of
N+2 to occur. A “tight complex” refers to a situation in which
the collision partners come close enough to at least once
entering the short-range repulsive region of the interaction
potential. For rotational excitation, it is sufficient for the two
collision partners to fly past each other such as to influence
their respective flight paths. The interaction between N+2 and

TABLE I. Percentage of elastic and inelastic collisions for a filtering criterion
of frac(v′′)= 0.01 with initial j = 0. A collision is considered as inelastic
when j′′ changes from 0 to j′> j∗.

Elastic (%) Inelastic (%)

Bare PES
T = 90 K (j∗= 2) 63 37
T = 300 K (j∗= 2) 67 33
T = 90 K (j∗= 4) 70 30
T = 300 K (j∗= 4) 79 21

ZPE-corrected PES
T = 90 K (j∗= 2) 64 36
T = 300 K (j∗= 2) 60 40
T = 90 K (j∗= 4) 86 14
T = 300 K (j∗= 4) 78 22

FIG. 7. Impact parameter b vs. j′ ( j′′= 0, T = 300 K) on the corrected PES.
Large rotational excitation is observed only for small impact parameters. Plots
for other temperatures on the corrected and bare PES show similar behaviour.
Impact parameter b vs. lifetime. The lifetime is not correlated to the impact
parameter (inset).

Ar leads to a torque which results in pronounced rotational
excitation of N+2 . Such “fly-by” trajectories (lifetime of the
complex shorter than 5 ps) lead to excitation to higher
rotational states than trajectories with a longer lifetime and
make up 21.5% of all trajectories.

Counter-intuitively, the impact parameter b is not
correlated to the lifetime of the complex (see inset of Figure 7).
In fact, the complex can be formed and live for a very long time
even for large impact parameters, provided that the collision
energy is sufficiently low. Conversely, small impact parameters
still sometimes lead to fly-by trajectories, provided that the
collision energy is sufficiently large. It is the combination of
a small impact parameter and a high collision energy (leading
to fly-by trajectories) that leads to the highest rotational
excitations.

FIG. 8. Lifetime vs. j′ ( j′′= 0, T = 300 K) on the corrected PES for different
ZPE conservation criteria, numbers in parentheses indicate how many trajec-
tories meet the criterion. The largest rotational excitation is observed only for
short lifetimes. Plots for other temperatures on the corrected and bare PES
show similar behaviour.
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The earlier experiments3 were thermal and started from
a distribution of rotational states, but the initial rotational
state studied was j ′′ = 6. Hence, additional simulations were
carried out for this case. 25 000 independent trajectories
were started on the ZPE-corrected PES. Figure 9 shows
the distribution of j ′ states after the complex dissociates.
The percentage of inelastic collisions for the strictest filtering
criterion frac(v ′) = ±0.001 and j∗ = 0 are 41% and decrease
to 17% for j∗ = 2, respectively. The rate constant for rotational
excitation/relaxation was calculated according to11

k(T) =


8
πµβ

2πbmax

g(T)Ntot

Nreac
i=1

bi, (8)

where µ is the reduced mass of the N+2–Ar complex, g(T)
is the electronic degeneracy factor, bmax is the maximum
impact parameter, bi is the impact parameter of trajectory
i, Ntot is the total number of trajectories that meet the
filtering criterion, Nreac is the number of inelastic trajectories
(| j ′ − j ′′| > j∗) and β = 1/(kBT). The calculated value
of k j′′=6→ j′,6 = 1.17 · 10−9 cm3 s−1 is two orders of
magnitude larger than the reported value of k = (1.4
± 0.4) · 10−11 cm3 s−1.3 However, it should be noted that the
experimental value was not directly measured, but inferred
from a kinetic model based on the rate coefficient for charge
transfer and the rate of laser excitation.

Since the Langevin rate is often considered to be an
upper bound for reaction rates, it is surprising that the
computationally determined rate k j′′=6→ j′,6 is about 60%
larger than the Langevin rate kL = 7.4 · 10−10 cm3 s−1.3

However, rates larger than kL have been reported previously
in the literature.41 It should be noted that Langevin theory
assumes an idealized form for the centrifugally corrected
interaction potential between the ion, which is modelled as a
point charge, and the neutral atom given by42

VL(R) = 1
2

L2

µR2 −
α′e2

8πϵoR4 , (9)

FIG. 9. Distribution of j′ states after dissociation for different ZPE conserva-
tion criteria atT = 90 K. The numbers in brackets show how many trajectories
meet the criterion. For every value of j , the corresponding rotational energy is
given (the rotational constant is B = 1.932 cm−1).40 Trajectories were started
with an initial j′′= 6 and evolved on the ZPE-corrected PES.

where L = µvb, v is the relative collision velocity, α′ the
polarizability volume of the neutral species, µ the reduced
mass, b the impact parameter, and R the distance between
centre of mass of the molecular ion and neutral species.
A comparison between the 1/R4 term in Eq. (9) and the
actual interaction potential shows that Langevin theory is
insufficient to describe the collisional rate. In particular, the
true PES decays more slowly to zero and the anisotropy of
the PES (see Figure 3), which is crucial for the dynamics,
is completely neglected in the Langevin model. Nonetheless,
if Langevin theory is applied naively to the same set of
trajectories that was used to calculate the k j′′=6→ j′,6 rate
and Eq. (8) is used to calculate a rate (counting those
trajectories as “reactive” that satisfy EC ≥ VL(Rmax), where
EC is the collision energy and VL(Rmax) is the Langevin
interaction potential at the position of the maximum of the
centrifugal barrier according to Langevin theory), a rate
constant of kL = 6.2 · 10−10 cm3 s−1 is obtained. This is in
good agreement with the value of kL = 7.4 · 10−10 cm3 s−1

from Langevin theory. Note however that this analysis can be
performed from the initial conditions without running actual
dynamics and merely shows that the initial conditions for our
simulations are consistent with the Langevin model. However,
the model itself is insufficient to describe the actual dynamics.
It should also be considered that kL measures merely a sort
of “collision rate,” but as was pointed out earlier, the complex
does not need to be formed in order for rotational relaxation
or excitation to occur. In fact, for 92.4% of the trajectories,
the Langevin model correctly predicts whether the complex
is formed or not from just the initial conditions. Since the
observed rate is 60% larger than the Langevin rate, this
further indicates that rotational excitation can occur without
complex formation. A final test was to run simulations with
an explicitly isotropic PES beyond 8 Å. At this distance, the
PES is still appreciably anisotropic (≈50 cm−1 between linear
and T-shape geometries). Hence, the PES was multiplied by
an empirical factor of exp(−(R/7.3 Å)20), which ensures a
smooth cutoff at long-range, yet leaving the short-range part
of the PES largely unaffected. Although this PES fulfills the
requirement of Langevin theory, namely, that the long range
part of the PES should be isotropic, the computed rate is
unaffected and still exceeds the Langevin rate. It is suspected
that the anisotropy in the range below 8 Å is the main cause
for rotational excitation.

IV. CONCLUSION

Quasi-classical molecular dynamics simulations of the
nonreactive collision between the N+2 cation and Ar
atoms at two different temperatures show that inelastic
rotational excitation of the ion in the product channel
is important and occurs more frequently than previously
assumed. The simulations use an RKHS PES based on
UCCSD(T)/aug-cc-pVTZ electronic structure calculations
and correct handling of the asymptotics within the RKHS
framework. Analysis of the results for j ′′ = 6 using a strict
filtering criterion of frac(v ′) = ±0.001 and a figure-of-merit
j∗ = 2 suggests that inelastic collisions occur in at least 17%
of the cases which is one order of magnitude larger than
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reported in earlier experiments (2%).3 However, it cannot
be ruled out that subtle quantum mechanical effects affect
the quantitative conclusions of the present work. Converged
close-coupling calculations using the present PES will be
a desirable complement to the present considerations, but
challenging due to the deep well and the large anisotropy of
the PES.

Interestingly, the [N2Ar]+ complex does not need to be
formed (and stabilized) for rotational excitation to occur.
A sufficiently close encounter of the two collision partners
is sufficient to mutually influence their flight paths and
lead to rotational excitation. It should be pointed out that
the PES used in this work was calculated using a single-
reference method. Electronic effects, which are not adequately
captured using single-reference methods, might play a non-
negligible role in the dissociative region of the PES. Further
investigations should employ multi-reference methods such as
multireference configuration interaction to capture electronic
effects which are, however, outside the scope of the present
work. For a complete understanding of the rate of rotational
excitation in the N+2–Ar system, new experiments which
allow precise control of the exact quantum state of the
collision partners and additional computational investigations
are necessary.
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