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Introduction

Assuming a classical statistical system of particles, the fundamental equations of continuum
thermomechanics (continuity equation, equation of motion, and energy equation) are derived
exactly. The macroscopic state functions (density, velocity, stress, energy density, and heat
flux) are interpreted as expected values.

The system can represent any continuum (gas, liquid, or solid). It is not assumed that the
particles are identical. Also, the nature of the interaction forces can be different for different
pairs of particles. Therefore it is not necessary that the particles be molecules in the sense of
chemistry. The theory is also valid when the continuum is viewed as the system of its atoms
(or even elementary particles). It appears to us physically justified to assume that atoms (or
at least the elementary particles) are formed of points and rotational and internal degrees of
freedom can be neglected. Hence, for the general theory there is no difference between a
mixture and a chemical compound. The difference is solely due to the nature of the mutual
potentials. The failure of classical mechanics in the atomistic realm and the influence of
quantum mechanical effects, however, are not taken into account.

In Sect. 2 we will formulate the problem precisely and summarize the results. By intro-
ducing appropriate abbreviations in Sect. 1, cumbersome notation is avoided. In Sect. 3, we
provide conditions sufficient to ensure that our subsequent investigations are valid. Deriva-
tions of the expected values of the state functions are provided in Sects. 4–5. In Sect. 6 and
Sect. 7 we establish the validity of the fundamental equations, first in the absence of ex-
ternal forces. In Sect. 8, we discuss the influence of external forces. Our investigations are
crucially based on two mathematical lemmas formulated and proved in Sect. 9.

The problem being treated here was tackled by Irving and Kirkwood [1]. This work
differs from that work in the following points:

1) The proofs satisfy all requirements of mathematical rigor and, additionally, should be
easier to follow than those in [1].

2) For the stress tensor and the heat flux, we give closed-form integral expressions. In [1],
these quantities are presented as infinite series that only make sense if the probability
density as a function of the spatial variable is analytic.

3) The interpretations of stress tensor and heat flux as expected values are provided in detail.
This is only attempted in [1].

4) The assumption that all particles are identical is not made.
5) The external forces need not arise from a potential and may—apart from space and

time—depend on the velocities of the particles.
6) The use of the δ function is avoided. In [1], the delta function serves only technical

purposes.

1 Definitions and Assignments

a. Vectors and tensors Vectors and points are described by lower case letters in bold type-
face, tensors of higher order are described by capital letters in bold font. The product of
two tensors (dyad) is represented by the symbol ⊗, the inner product of two vectors or of a
vector and a tensor is represented by a dot “·”, ∇xF(x) represents the gradient of the tensor
F(x), and ∇x · F(x) represents the divergence of F(x).
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b. Probability density We consider a system of particles. The j th particle is (j ) and has
mass mj . A state of the system is characterized by the particle locations x1, . . . ,xN and
velocities ξ 1, . . . , ξN , i.e., indicated by a “point” (x1, . . . ,xN ; ξ 1, . . . , ξN ) = (xi; ξ i ) of 6N -
dimensional phase space �. This phase space is the product of 2N three-dimensional Euclid-
ean vector spaces1. The probability density of the states in � at time t is denoted by

W = W(x1, . . . ,xN ; ξ 1, . . . , ξN ; t) = W(xi; ξ i; t).

c. Potential energy We assume that the force exerted by (j ) on (k), kjk , depends only on
the locations xj and xk . By invariance, it follows that kjk must be a central force whose
contribution depends only upon the distance rjk = |xj − xk|. Newton’s third law states that
kjk = −kkj . The particle pair (j, k) therefore corresponds to a function,

Vjk(r) = Vkj (r), (1.1)

such that Vjk(rjk) yields the potential energy of the pair. Furthermore,

kjk = −∇xj
Vjk(rjk) = −V ′

jk(rjk)
xj − xk

rjk

= −kkj = −∇xk
Vjk(rjk) = V ′

jk(rjk)
xk − xj

rjk

. (1.2)

For the total internal potential energy U of the system, this results in

U = U(x1, . . . ,xN) =
∑

j<k

Vjk(rjk) = 1

2

∑

j �=k

Vjk(rjk), (1.3)

where one has to sum over all those pairs (j, k) for which j < k or j �= k. It follows that the
force exerted upon particle (j ) by the system is

∇xj
U =

N∑

k=1
k �=j

∇xj
Vjk(rjk) =

N∑

k=1
k �=j

V ′
jk(rjk)

xj − xk

rjk

. (1.4)

d. External forces Apart from those forces acting on particle (j ) due to other particles, we
assume that yet another external force kj is exerted that depends only on location xj and the
velocity ξ j of the particle at time t ,

kj = kj (xj , ξ j , t).

Restrictively, we require, however, that the functions kj satisfy the equation

N∑

j=1

1

mj

∇ξj
· kj (xj , ξ j , t) = 0 (1.5)

identically. In particular, this condition is met if the kj (xj , ξ j , t) do not depend on ξ j .

1The xi and ξ i vary in the entire, infinite three-dimensional space and not only in a subregion of it.
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e. Integrals The (6N − 3)-dimensional subspace of � that arises upon discarding the spa-
tial variable xj belonging to (j ) is denoted by �j . Analogously, we denote by �jk the
subspace that arises from discarding both xj and xk . Let F be a scalar, vector, or tensor
function defined over �. Then, the abbreviations,

〈F |xj = x〉, 〈F |xj = x,xk = y〉,

denote that F is the integral over �j (�jk , respectively), where, after performing the inte-
gration, the free variable xj (or the variables xj and xk , respectively) are to be replaced by x
(or by x and y), respectively. Generally, we call

∫

y
f (y) dy

the volume integral of f (y) over the infinite three-dimensional space of locations y. Then,
apparently, the relation

∫

y
〈F |xj = x,xk = y〉 dy = 〈F |xj = x〉 (1.6)

is valid.

2 Posing the Problem

We assume that the probability density, W(xi; ξ i; t), is defined for all (xi , ξ i ) ∈ � and is
continuously differentiable with respect to all variables. Under the restriction that the exter-
nal forces fulfill condition (1.5),2 the principle of the conservation of probability in phase
space yields the classical differential equation

∂W

∂t
=

N∑

i=1

{
−ξ i · ∇xi

W + 1

mi

(∇xi
U − ki ) · ∇ξ i

W

}
, (2.1)

which determines the rate of change of W .
It is the task of this study to derive the fundamental equations of thermomechanics from

(2.1) under the regularity requirements to be formulated in Sect. 3. First, in Sects. 6–7, we
assume that external forces are absent so that (2.1) simplifies to

∂W

∂t
=

N∑

i=1

{
−ξ i · ∇xi

W + 1

mi

∇xi
U · ∇ξ i

W

}
. (2.1a)

The case of ki �= 0 is treated in Sect. 8. For ki = 0 the fundamental equations are as follows:
A) Continuity equation

∂ρ

∂t
+ ∇x · (ρu) = 0. (2.2)

2This requirement ensures that phase space is locally volume preserving.
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B) Equation of motion

ρ

(
∂u
∂t

+ u · ∇xu
)

= ∇x · S. (2.3)

C) Equation of energy

∂ε

∂t
+ ∇x · (q − S · u + εu) = 0. (2.4)

These fundamental equations connect the following macroscopic state functions:

ρ = ρ(x, t) = Mass density,

u = u(x, t) = Velocity,

S = S(x, t) = Stress tensor,

ε = ε(x, t) = Energy density,

q = q(x, t) = Heat flux density.

We prove that these fundamental equations are valid if the aforementioned state functions
are interpreted as expected values. In Sects. 4–5, we show that these expected values are
given by the following expressions:

ρ =
∑

j

mj 〈W | xj = x〉, (2.5)

ρu =
∑

j

mj 〈ξ jW | xj = x〉. (2.6)

The stress tensor is symmetric and consists of a kinetic contribution, SK, and an interaction
contribution, SV:

S = SK + SV, (2.7)

SK = −
∑

j

mj 〈(ξ j − u) ⊗ (ξ j − u)W | xj = x〉, (2.8)

SV = 1

2

∑

j �=k

∫

z

{
z ⊗ z
|z| V ′

jk(|z|)
∫ 1

α=0
〈W | xj = x + αz,xk = x − (1 − α)z〉dα

}
dz. (2.9)

The energy density splits into the kinetic energy density, εK, and the interaction energy
density, εV:

ε = εK + εV, (2.10)

εK = 1

2

∑

j

mj 〈ξ 2
jW | xj = x〉, (2.11)

εV = 1

2

∑

j �=k

〈Vjk(|xj − xk|)W | xj = x〉. (2.12)
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The heat flux has three terms, the kinetic contribution, qK, the transport contribution, qT,
and the interaction contribution, qV:

q = qK + qT + qV, (2.13)

qK = 1

2

∑

j

mj 〈|ξ j − u|2(ξ j − u)W | xj = x〉, (2.14)

qT = 1

2

∑

j �=k

〈(ξ j − u)Vjk(|xj − xk|)W | xj = x〉, (2.15)

qV = −1

2

∑

j �=k

∫

z

{
z
|z|V

′
jk(|z|)

× z ·
∫ 1

α=0

〈(
ξ j + ξ k

2
− u

)
W | xj = x + αz,xk = x − (1 − α)z

〉
dα

}
dz. (2.16)

3 Regularity Conditions

The expectation expressions occurring in (2.5)–(2.16) are improper integrals containing W

and Vjk . It is therefore clear that certain regularity conditions must be met for W and Vjk if
the state functions in (2.5)–(2.16) are to be well-defined and the functions of x and t are to be
continuously differentiable. Already the condition

∫
�

Wd� = 1 requires that W approaches
zero sufficiently fast as |xj | → ∞ and |ξ j | → ∞.

The following three conditions are sufficient for the validity of the results in this work:

A) There is a number δ > 0 such that the function

G(xi; ξ i; t) = W(xi;xi; t)
N∏

j=1

|xj |3+δ

N∏

k=1

|ξ k|3+δ,

as well as its derivatives, are restricted by a constant solely dependent on t .
B) The functions Vjk(r) are defined for all r , are continuously differentiable, and together

with their derivatives, are finite.
C) The functions kj (x, ξ , t) are defined for all values of x, ξ , t , are continuously differen-

tiable, and granted scalars A(t) and B(t), solely dependent on time, and satisfy

|kj | < A(t)|ξ | + B(t), |∇ξ kj | < A(t)|ξ | + B(t).

These conditions are sufficient for the convergence of all improper integrals, interchang-
ing the order of integration, and for differentiation and integration, etc.

Furthermore, condition A ensures the validity of the following lemma, which is proved
by partial integration:

Suppose that F(x; ξ i ) is a continuously differentiable function defined in � which, with
the constants A and B , satisfies the inequalities

|F | < A

N∏

k=1

|ξ k|3 + B, |∇xj
F | < A

N∏

k=1

|ξ k|3 + B, |∇ξj
F | < A

N∏

k=1

|ξ k|3 + B.
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Then, the following formulas are valid:
∫

F∇xj
W = −

∫
W∇xj

F,

∫
F∇ξj

W = −
∫

W∇ξj
F, (3.1)

where one integrates over a subspace of � that contains the space of xj or ξ j , respectively,
as another subspace (omitting the volume elements). In particular, if F is independent of xj

or ξ j , one has

∫
F∇xj

W = 0 or
∫

F∇ξj
W = 0, respectively. (3.2)

Note I. The linear partial differential equation (2.1) is of first order in W . According to
generally known rules, W(xi; ξ i; t) is therefore uniquely determined for all t if the initial
density, W(xi; ξ i;0) = W0(xi; ξ i ) is prescribed. It would therefore be desirable to apply reg-
ularity conditions only to W0(xi; ξ i ) and not to W(xi; ξ i; t), and then prove A as a property
of W . The author, however, has not yet succeeded in doing so.

Note II. If W is not differentiable for all (xi; ξ i ) ∈ � and t , (2.1) generally loses its meaning.
The statistical description, however, is meaningful if W is only integrable over �. It is
possible to generalize our investigations to this case. Condition A can then be replaced by
the requirement that W

∏N

k=1 |ξ k|3 be integrable for all t over �. Then, the expressions
(2.5)–(2.16) remain meaningful. The state functions, however, being functions of x and t ,
are no longer continuously differentiable for all values of x and t such that the fundamental
equations in the form (2.2)–(2.4) in general, have no meaning. They must be replaced by the
laws of conservation of mass, momenta, and energy in finite form.

To carry out this sort of generalization demands considerable formal work. But this can
be avoided by understanding all the present differentiations in the sense of Schwartz’s [2]
theory of distributions. Then, (2.1) is completely equivalent with the principle of conserva-
tion of probability. The fundamental equations (2.2)–(2.4) are generally valid in the sense
of the theory of distributions and also when the probability density W does not even exist.
In this latter case, W and the state functions are to be viewed as measures. The fundamental
equations are valid in the conventional sense only for those values of x and t for which the
state functions represent continuously differentiable functions. One can readily derive the
transition conditions at discontinuity surfaces (shock and acceleration waves) once (2.2)–
(2.4) are understood in the sense of distributions.

4 Expected Values of the State Functions

The value of a physical quantity, F , for the particle (j ) is given by a function, fj (xi; ξ i ),
defined on �. According to the rules of probability calculus, and according to Sect. 1e, one
has

Ej (F ) dx = 〈fj W | xj = x〉dx (4.1)

as the expected value of F for (j ) under the condition that (j ) is in the volume element dx
at x. Hence, the density E (F ) of the expected value of F for all particles at the position x is

E (F ) =
∑

j

Ej (F ) =
∑

j

〈fj W | xj = x〉. (4.2)
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Fig. 13

The expected value of F for (j ) under the condition that (j ) is in the volume element dx at
x and (k) in the volume element dy at y is given by

Ejk(F ) dx dy = 〈fj W | xj = x,xk = y〉 dx dy. (4.3)

a. Density and velocity It follows immediately from (4.2) that (2.5) and (2.6) represent the
expected values for mass and momentum densities.

b. Stress tensor Let J be a region of three-dimensional space with a continuously differ-
entiable boundary, F . We call A the exterior of J with nx being the normal unit vector at
x ∈ F pointing outwards, and with dFx the associated surface element (see Fig. 1).

As generally known, the stress tensor is characterized by the fact that for any part J of
the considered body, the force, k, exerted by A on J can be represented in the form

k =
∫

F
S(x) · nx dFx. (4.4)

One readily sees that according to (2.8),

kK =
∫

F
SK · nx dFx (4.5)

gives the expected value of the “kinetic” force that corresponds to the momentum per unit
time transported from A to J . Therefore, J should be thought of moving with the average
velocity u. The kinetic contribution (2.8) corresponds to what is normally called “viscous
tension” in the kinetic theory of monoatomic gases.

Now, let us assume that the particle (j ) is at the position xj = v ∈ J and that the particle
(k) is at the position xk = w ∈ A. Then, according to (1.2), (k) exerts the following force on
(j ):

kjk(v,w) = −∇vVjk(|v − w|) = −V ′
jk(|v − w|) v − w

|v − w| . (4.6)

According to (4.3), the expected value of the force exerted by (k) in A on (j ) in J , is
therefore given by

∫

v∈J

∫

w∈A

∑

j �=k

kjk(v,w)〈W | xj = v,xk = w〉 dv dw.

3Translator’s footnote: The image was cropped from a pdf of the original paper. Note the differences in font
styles in the figure and in the text.
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After summation over j and k, we obtain from the expected value kV of the total force that
is exerted by the particles in A on those in J . With (4.6), this yields

kV = −
∫

v∈J

∫

w∈A

∑

j �=k

{
v − w
|v − w|V

′
jk(|v − w|)〈W | xj = v,xk = w〉

}
dw dv.

As one can readily see, the integrand fulfills conditions A,B, and C of Sect. 9. According
to Lemma 2, (9.4), and with (2.9), it follows that

kV =
∫

F
SV · nx dFx. (4.7)

The force k exerted by A on J is composed from the kinetic force kK (4.5) and the interac-
tion force kV (4.7). Because of (2.7), we therefore have

k = kK + kV =
∫

F
(SK + SV) · nx dFx =

∫

F
S · nx dFx.

This equation satisfies (4.4) and so the expected value of the stress tensor is indeed given by
(2.7)–(2.9).

c. Energy density Let us think of the kinetic energy, 1
2mj ξ

2
j , of particle (j ) as being local-

ized at the position xj of this particle. Then, according to (4.2) the expected value, εK(x), of
the kinetic energy density at position x is given by (2.11).

The localization of the potential energy demands a certain arbitrariness as it is assigned
to particle pairs, and not—as for the kinetic energy—to individual particles. We assume that
the potential energy corresponding to the pair (j, k), Vjk(|xj − xk|), is distributed equally at
the positions xj and xk . Then, at position xj , the total potential energy is

Vj = Vj (x1, . . . ,xN) = Vj (xi ) = 1

2

N∑

k=1
k �=j

Vjk(rjk), rjk = |xj − xk|. (4.8)

Then, according to (4.2), (2.12) yields the expected value, εV(x), of the density localized
according to (4.8).

d. Heat flux (density). The heat flux, q = q(x), is characterized by the fact that for any
part J of the body, the energy transferred per unit time from J to A can be represented in
the form

Q =
∫

F
q(x) · nx dFx, (4.9)

(see Fig. 1), where J travels at the velocity u.
One is readily convinced that, with (2.14), the expected value of the kinetic energy flow-

ing per unit time from J to A is represented by the expression

QK =
∫

F
qK · nx dFx. (4.10)

Therefore, qK, given by (2.14), is indeed the kinetic contribution of the heat flux. This is
well known from the kinetic theory of monoatomic gases.
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Let us consider the expression

q∗
T = qT + εVu = 1

2

∑

j �=k

〈ξ j Vjk(|xj − xk|)W | xj = x〉 (4.11)

and compare to (2.12) and (2.15). According to (4.8), we have

q∗
T =

∑

j

〈ξ jVjW | xj = x〉. (4.12)

The expression ξ jVj (xj ) indicates the flow of potential energy, localized according to (4.8)
at xj . Therefore, with (4.12) and because of (4.2), we have

Q∗
T =

∫

F
q∗

T · nx dFx

as the potential energy that must be transferred per time unit through F . However, J has to
be seen as fixed in time. To obtain the potential energy QT that is transported per time unit
via the moving surface F one has to subtract the macroscopic convection contribution

Q0
T =

∫

F
εV u · nx dFx.

So, because of (4.11), one finds

QT = Q∗
T − Q0

T =
∫

F
qT · nxdFx. (4.13)

Therefore, the qT given in (2.15) is indeed the contribution of the heat flux that stems from
the transport of the potential energy.

Finally, let us consider

q∗
V = qV − SV · u

= −1

2

∑

j �=k

∫

z

{
z
|z|V

′
jk(|z|)

× z ·
∫ 1

α=0

〈
ξ j + ξ k

2
W | xj = x + αz,xk = x − (1 − α)z

〉
dα

}
dz (4.14)

(compare to (2.9) and (2.16)). In Sect. 5, we show that

Q∗
V =

∫

F
q∗

V · nx dFx (4.15)

represents the expected value of the potential energy, transferred per unit time from J to A,
which stems from particles in A performing work on particles in J . Here, J can be viewed
as fixed in time. To obtain the interaction energy, QV, transferred from A to the moving J ,
one has to subtract from Q∗

V the macroscopic interaction work performed by J on A per
unit time

Q0
V = −

∫

F
(SV · u) · nx dFx.
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So, according to (4.14) one finds that

QV = Q∗
V − Q0

V =
∫

F
(q∗

V + SV · u) · nx dFx =
∫

F
qV · nx dFx. (4.16)

Consequently, (2.16) indeed gives the interaction contribution to the heat flux. Therefore
Q = QK + QT + QV is the total energy per unit time transferred from the moving J to
A, and (4.9) is satisfied because of (4.10), (4.13), (4.16), and (2.13). It has therefore been
shown that the expected value of the heat flux is indeed given by (2.13)–(2.16).

5 Interaction Contribution to the Heat Flux

We wish to prove the validity of (4.15), replacing expression (4.14) by q∗
V. To this end, we

investigate the mechanical system S composed solely from particles in J . For this system,
the forces exerted by the particles in A on the particles in J are considered to be external
forces. These forces have the time dependent variable potential

ψ(xi ∈ J ; t) =
∑

xj ∈J

∑

xk∈A

Vjk(|xj − xk(t)|). (5.1)

Here, xj ∈ J is to be viewed as the independent variable while xk(t) are those functions that
describe the trajectories of the particles xk ∈ A. The internal energy of the system S is EI .
Then, the total energy E with respect to the external potential (5.1) is given by

E = EI + ψ(xi ∈ J ; t). (5.2)

According to the energy law in particle mechanics,

Ė = ∂

∂t
ψ(xi ∈ J , t),

which, along with (5.1), yields

Ė =
∑

xj ∈J

∑

xk∈A

V ′
jk(|xj − xk(t)|) xj − xk(t)

|xj − xk(t)| · (−ẋk(t))

and, because ẋk = ξ k ,

Ė = −
∑

xj ∈J

∑

xk∈A

V ′
jk(rjk)

xj − xk

rjk

· ξ k, rjk = |xj − xk|. (5.3)

The energy, E, however, does not equal the energy that is localized in J according to
(4.8). The energy E∗ localized in J according to that expression is composed from the
internal energy EI and half of the potential energy that corresponds to all those particle
pairs (j, k) for which xj ∈ J and xk ∈ A. Therefore, we have:

E∗ = EI + 1

2

∑

xj ∈J

∑

xk∈A

Vjk(rjk). (5.4)
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From this, (5.1), and (5.2) results

E∗ = E − 1

2

∑

xj ∈J

∑

xk∈A

Vjk(rjk).

Differentiation with respect to t yields

Ė∗ = Ė − 1

2

∑

xj ∈J

∑

xk∈A

V ′
jk(rjk)

xj − xk

rjk

· (ξ j − ξ k), (5.5)

where ẋj and ẋk have been replaced by ξ j and ξ k , respectively. Insertion of (5.3) into (5.5)
results in

Ė∗ = −
∑

xj ∈J

∑

xk∈A

V ′
jk(rjk)

xj − xk

rjk

· ξ j + ξ k

2
.

This expression indicates how much the energy, localized by expression (4.8) in J , varies
per unit time and due to the interaction between the particles. The energy flux contribution
directed from J to A is therefore given by −Ė∗. According to (4.3), the expected value of
this contribution has the form,

Q∗
V =

∫

v∈J

∫

w∈A

∑

j �=k

V ′
jk(|v − w|) v − w

|v − w| ·
〈
ξ j + ξ k

2
W | xj = v,xk = w

〉
dvdw.

The integrand fulfills the conditions A,B,C in Sect. 9. With (4.14), this results, according
to Lemma 2, (9.4), in

Q∗
V =

∫

F
q∗

V · nx dFx.

6 Continuity Equation and Equation of Motion

The proof of the continuity equation (2.2) is extremely easy. Multiply (2.1a) by mj , integrate
over �j , replace xj by x and sum over j . Because of (3.2), various terms cancel. Eventually,
one obtains equation (2.2) with (2.5) and (2.6).

We multiply (2.1a) by mj ξ j , integrate over �j , replace the free variable xj by x and
finally sum over j . Then, taking (3.2) and (2.6) into account, we obtain the equation

∂

∂t
(ρu) = v1 + v2, (6.1)

where

v1 = −
∑

j

mj 〈ξ j (ξ j · ∇xj
W) | xj = x〉, (6.2)

v2 =
∑

j

〈(∇xj
U · ∇ξj

W)ξ j | xj = x〉. (6.3)

Exchanging integration and differentiation with respect to xj in (6.2) yields

v1 = ∇x ·
{
−

∑

j

mj 〈(ξ j ⊗ ξ j )W | xj = x〉
}
.
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Since

ξ j ⊗ ξ j = (ξ j − u) ⊗ (ξ j − u) + u ⊗ ξ j + ξ j ⊗ u − u ⊗ u,

and taking (2.5), (2.6), and (2.8) into account, it follows that

v1 = ∇x · {SK − u ⊗ ρu
} = ∇x · SK − u∇x · (ρu) − ρu · ∇xu. (6.4)

Inserting (3.1) in (6.3) yields

v2 = −
∑

j

〈∇xj
U W | xj = x〉.

If we replace ∇xj
U by expression (1.4) we find

v2 = −
∑

j �=k

〈
V ′

jk(rjk)
xj − xk

rjk

W | xj = x
〉
, rjk = |xj − xk|.

Thus, with (1.6),

v2 = −
∫

y

{
x − y

r

∑

j �=k

V ′
jk(r)〈W | xj = x,xk = y〉

}
dy, r = |x − y|. (6.5)

One can easily see that the integrand fulfills the conditions A, B, and C in Sect. 9. In
particular, the validity of (9.1) follows if the summation indices j and k are exchanged in
(6.5). According to Lemma 1, (9.2), it follows from (2.9) that

v2 = ∇x · SV.

We insert this and (6.4) into (6.1) and obtain

∂

∂t
(ρu) = u

∂ρ

∂t
+ ρ

∂u
∂t

= −u∇x · (ρu) − ρu · ∇xu + ∇x · (SK + SV).

Bearing in mind the continuity equation (2.2), the equation of motion (2.3) indeed follows.

7 Energy Equation

We multiply (2.1a) with (mj ξ
2
j /2 + Vj ) (see (4.8)), integrate over �j , subsequently replace

xj by x and sum over j . Because of (3.2) various terms cancel. Eventually, with (2.10)–
(2.12) we obtain

∂ε

∂t
= q1 + q2 + q3, (7.1)

where

q1 = −1

2

∑

j

mj 〈ξ 2
j ξ j · ∇xj

W | xj = x〉, (7.2)

q2 = −
∑

j

∑

l

〈Vj ξ l · ∇xj
W | xj = x〉, (7.3)

q3 = 1

2

∑

j

〈ξ 2
j∇xj

U · ∇ξj
W | xj = x〉 +

∑

j

∑

l

〈Vj∇xi
U · ∇ξj

W | xj = x〉. (7.4)
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Exchanging integration and differentiation with respect to xj in (7.2) yields

q1 = −∇x ·
{

1

2

∑

j

mj 〈ξ 2
j ξ jW | xj = x〉

}
.

Because

ξ 2
j ξ j = |ξ j − u|2(ξ j − u) + 2

[
(ξ j − u) ⊗ (ξ j − u)

] · u + |ξ |2u + |u|2(ξ j − u),

and taking (2.5), (2.6), (2.8), (2.11) and (2.14) into account, it follows that

q1 = −∇x · (qK − u · SK + uεK). (7.5)

Inserting (4.8) into (7.3) and using (3.2), we obtain

q2 = −1

2

∑

j �=k

{〈Vjk(rjk)ξ j · ∇xj
W | xj = x〉 + 〈Vjk(rjk)ξ k · ∇xk

W | xj = x〉}. (7.6)

According to the product rule,

Vjk(rjk)∇xj
W = ∇xj

(Vjk(rjk)W) − ∇xj
Vjk(rjk)W.

If one inserts this into the first term on the right-hand side of (7.6) and rearranges the second
term according to (3.1), this yields

q2 = 1

2

∑

j �=k

{−∇x〈ξ jVjk(rjk)W | xj = x〉

+ 〈ξ j · ∇xj
Vjk(rjk)W | xj = x〉 + 〈ξ k · ∇xk

Vjk(rjk)W | xj = x〉}. (7.7)

Equation (3.1), applied to (7.4), yields

q3 = −
∑

j

〈ξ j · ∇xj
U W | xj = x〉 = −

∑

j �=k

〈ξ j · ∇xj
Vjk(rjk)W | xj = x〉, (7.8)

where (1.4) has been employed. Adding (7.7) and (7.8), and use of (1.2) results in

q2 + q3 = −∇x · q∗
T − q0, (7.9)

where q∗
T is given by (4.11), and so

q0 = 1

2

∑

j �=k

〈
V ′

jk(rjk)
xj − xk

rjk

· (ξ j + ξ k)W | xj = x
〉
.

Because of (1.6), we can write q0 in the form

q0 =
∫

y

{
x − y

r
·
∑

j �=k

V ′
jk(r) ·

〈
ξ j + ξ k

2
W | xj = x,xk = y

〉}
dy, r = |x − y|.

In the same way as for (6.5) one easily sees also here that the conditions A, B, and C in
Sect. 9 are fulfilled for this integrand. Therefore it follows from Lemma 1, (9.2), that

q0 = −∇x · q∗
V
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is valid when q∗
V is given by (4.14). Inserting this into (7.9), it follows with (7.5), (7.1),

(4.11), and (4.14) that

∂ε

∂t
= −∇x · {qK − u · SK + uεK + q∗

T + q∗
V}

= −∇x · {qK + qT + qV − u · (SK + SV) + u(εK + εV)},
i.e., the energy equation (2.4).

8 External Forces

When the external forces kj are different from zero and provided that (1.5) is fulfilled, the
following situation emerges:

a. The Continuity Equation (2.2) remains valid.
b. According to

f = f(x, t) =
∑

j

〈kj W | xj = x〉, (8.1)

the Equation of Motion (2.3) transforms into

ρ

(
∂u
∂t

+ u · ∇xu
)

= ∇x · S + f. (8.2)

According to (4.2), f(x, t) represents the expected value of the external force density.
c. With

A = A(x, t) =
∑

j

〈ξ j · kj W |xj = x〉, (8.3)

the Energy Equation (2.4) becomes

∂ε

∂t
+ ∇x · (q − S · u + εu) = A. (8.4)

According to (4.2), A(x, t) corresponds to the expected value of the work performed by
the external forces per unit volume, per unit time.

To prove a, we bear in mind that (2.1) is obtained by adding the term

−
N∑

l=1

1

ml

kl · ∇ξ l
W

to the right-hand side of (2.1a). According to the explanations in Sect. 6, one must add to
the right-hand side of (2.2) the term

−
∑

j

∑

l

mj

ml

〈kl · ∇ξ l
W | xj = x〉.

Rearranging with the help of (3.1), we obtain

∑

j

mj

〈(
∑

l

1

ml

∇ξ l
· kl

)
W | xj = x

〉
= 0.
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This, however, entirely disappears according to (1.5), whereby we have established claim a.
Completely analogous calculations establish claims b and c.

From (8.1) and (8.3), one can see that the functional forms of f(x, t) and A(x, t) do not
only depend on the external forces kj but also on W , i.e., the respective microscopic state of
the system. In certain cases, knowledge of certain macroscopic averages over W is sufficient
to determine f and A. We will treat two such cases:

A) Electrical and gravitational fields. If the external forces stem from an electric field of
strength e(x, t), we have

kj (x, ξ, t) = ej e(x, t), (8.5)

where ej is the charge of particle (j ). For the expected value of the charge density λ and
the electric current density i, we obtain, according to (4.2),

λ = λ(x, t) =
∑

j

ej 〈W | xj = x〉, (8.6)

i = i(x, t) =
∑

j

ej 〈ξ j W | xj = x〉. (8.7)

With (8.5)–(8.7), (8.1) and (8.3) yield:

f = λe, A = i · e. (8.8)

For the case of a gravitational field, g(x, t), we set ej = mj and obtain, because of (2.5)
and (2.6),

f = ρe, A = ρu · g. (8.9)

B) Magnetic field. In this case

kj (x, ξ , t) = ej ξ × b(x, t), (8.10)

where b is the magnetic field strength. Because of

∇ξ · kj (x, ξ , t) = ej (rotξ ξ) · b = 0,

condition (1.5) is fulfilled. For a restricted/limited b(x, t), the kj satisfies the regularity
condition C in Sect. 3. Inserting (8.10) in (8.1) and (8.3), and with (8.7) borne in mind,
we obtain

f = b × i, A = 0. (8.11)

9 Two Lemmas

Let f (v,w) be a scalar, vector, or tensor function of the two vector variables v and w that
satisfies the following conditions:

A) f (v,w) is defined and continuously differentiable for all v and w.
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B) There exists a δ > 0 such that the function

g(v,w) = f (v,w)|v|3+δ|w|3+δ,

as well as its derivatives are bounded.
C) The functional relation

f (v,w) = −f (w,v) (9.1)

holds.

Under these circumstances, the following two lemmas are valid.

Lemma 1

∫

y
f (x,y)dy = −1

2
∇x ·

∫

z

{
z ⊗

∫ 1

α=0
f (x + αz,x − (1 − α)z) dα

}
dz. (9.2)

Proof The conditions A and B ensure the absolute convergence of the improper integrals,
occurring in the following, as well as the validity of the anticipated exchanges of integration
etc. According to (9.1), we have

∫

y
f (x,y) dy = −

∫

y
f (y,x) dy.

If we introduce the new integration variable z = x − y into the left-hand integral, and z =
y − x into the right-hand integral, we find

∫

y
f (x,y) dy =

∫

z
f (x,x − z) dz = −

∫

z
f (x + z,x) dz

= 1

2

∫

z
[f (x,x − z) − f (x + z,x)]dz. (9.3)

According to the chain rule, this gives

∇xf (x + αz,x − (1 − α)z) = ∇vf + ∇wf

and

d

dα
f (x + αz,x − (1 − α)z) = z · (∇vf + ∇wf ),

where we must insert on the right-hand sides v = x +αz and w = x − (1 −α)z as arguments
of ∇vf and ∇wf . Therefore, we have

z · ∇xf (x + αz,x − (1 − α)z) = d

dα
f (x + αz,x − (1 − α)z).

Integration of this equation with respect to α from α = 0 to α = 1 yields

z · ∇x

∫ 1

α=0
f (x + αz,x − (1 − α)z) dα = f (x + z,x) − f (x,x − z).

Insertion into (9.3) yields (9.2). �
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Lemma 2 Let J be any region in space with piece-wise smooth bounding surface F . Let
A be the exterior of J and nx the outward normal unit vector at point x on F (see Fig. 1).
Then,

∫

v∈J

∫

w∈A
f (v,w) dwdv = −1

2

∫

F

∫

z

∫ 1

α=0
f (x+αz,x− (1−α)z)(z ·nx) dα dzdFx. (9.4)

Proof First, one sees immediately that, because of the antisymmetry of f (v,w) in (9.1),
∫

v∈J

∫

w∈J
f (v,w) dvdw = 0.

Therefore, we see that
∫

v∈J

∫

w∈A
f (v,w) dvdw =

∫

v∈J

∫

w
f (v,w) dwdv. (9.5)

Now, according to Lemma 1,
∫

w
f (v,w) dw = ∇v · g(v), (9.6)

where

g(v) = −1

2

∫

z

{
z ⊗

∫ 1

α=0
f (v + αz,v − (1 − α)zdα

}
dz. (9.7)

According to Gauss’ theorem,
∫

v∈J
∇v · g(v) dv =

∫

F
g(x) · nx dFx.

From this and from (9.5)–(9.7), we find the relation (9.4) as claimed. �
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Appendix

The following changes were made to equations in the original manuscript.

1. Equation (1.4): replaced ∇xj with ∇xj
.
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2. Equation (2.14): replaced (ξ j − u)((ξ j − u)2 with |ξ j − u|2(ξ j − u).
3. Equation (2.16): replaced

z
|z|z · V ′

jk(|z|) with
z
|z|V

′
jk(|z|) z·

to improve clarity.
4. Section 3: replaced

G(xi; ξ i; t) = W(xi;xi; t)
N∏

j=1

|xj |3+δ

N∏

k=1

|ξ k|6+δ

with

G(xi; ξ i; t) = W(xi;xi; t)
N∏

j=1

|xj |3+δ

N∏

k=1

|ξ k|3+δ.

5. Equation (3.2)1: replaced F∇xj
W = 0 with

∫
F∇xj

W = 0.
6. Equation (7.3): replaced ∇x2 with ∇xj

.
7. Equation (7.4): replaced

−1

2

∑

j

〈ξ 2
j∇xj

U · ∇ξj
W | xj = x〉

with

1

2

∑

j

〈ξ 2
j∇xj

U · ∇ξj
W | xj = x〉 +

∑

j

∑

l

〈Vj∇xi
U · ∇ξj

W | xj = x〉.

8. Equation (7.5); replaced qK with qK.
9. Section 8: replaced

∑

j

mj

〈(
∑

l

1

ml

∇ξ l
· kl

)
W | xj = x

〉

with

∑

j

mj

〈(
∑

l

1

ml

∇ξ l
· kl

)
W | xj = x

〉
= 0.

10. Proof of Lemma 2: replaced

∫

v∈J

∫

w∈A
f (v,w) dv dw = 0

with
∫

v∈J

∫

w∈J
f (v,w) dv dw = 0.
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11. Equation (9.5)2: replaced
∫

v∈J

∫

w∈A
f (v,w) dw dv

with
∫

v∈J

∫

w
f (v,w) dw dv.
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