Canci, Jung Kyu and Paladino, Laura. (2016) On preperiodic points for rational functions defined over mathbbFp(t). Rivista di Matematica della Università di Parma, 7 (1). p. 12.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/53282/
Downloads: Statistics Overview
Abstract
Let Pinmathbb(P)1(mathbbQ) be a periodic point for a monic polynomial with coefficients in mathbbZ. With elementary techniques one sees that the minimal periodicity of P is at most 2. Recently we proved a generalization of this fact to the set of all rational functions defined over mathbbQ with good reduction everywhere (i.e. at any finite place of mathbbQ). The set of monic polynomials with coefficients in mathbbZ can be characterized, up to conjugation by elements in PGL2(mathbbZ),asthesetofallrationalfunctionsdefinedovermathbb{Q}withatotallyramifiedfixedpointinmathbb{Q}andwithgoodreductioneverywhere.Letpbeaprimenumberandletmathbb{F}_pbethefieldwithpelements.Inthepresentpaperweconsiderrationalfunctionsdefinedovertherationalglobalfunctionfieldmathbb{F}_p(t)withgoodreductionateveryfiniteplace.Weprovesomeboundsforthecardinalityoforbitsinmathbb{F}_pcup{infty}$ for periodic and preperiodic points.
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Mathematik > Zahlentheorie (Habegger) |
---|---|
UniBasel Contributors: | Canci, Jung Kyu |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Università di Parma |
ISSN: | 0035-6298 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 31 Oct 2017 10:25 |
Deposited On: | 31 Oct 2017 10:25 |
Repository Staff Only: item control page