edoc-vmtest

Universal quantum computation with hybrid spin-Majorana qubits

Hoffman, S. and Schrade, C. and Klinovaja, J. and Loss, D.. (2016) Universal quantum computation with hybrid spin-Majorana qubits. Physical Review B, 94 (4). p. 5316.

[img]
Preview
PDF - Published Version
371Kb

Official URL: http://edoc.unibas.ch/53462/

Downloads: Statistics Overview

Abstract

We theoretically propose a set of universal quantum gates acting on a hybrid qubit formed by coupling a quantum-dot spin qubit and Majorana fermion qubit. First, we consider a quantum dot that is tunnel coupled to two topological superconductors. The effective spin-Majorana exchange facilitates a hybrid CNOT gate for which either qubit can be the control or target. The second setup is a modular scalable network of topological superconductors and quantum dots. As a result of the exchange interaction between adjacent spin qubits, a CNOT gate is implemented that acts on neighboring Majorana qubits and eliminates the necessity of interqubit braiding. In both setups, the spin-Majorana exchange interaction allows for a phase gate, acting on either the spin or the Majorana qubit, and for a SWAP or hybrid SWAP gate which is sufficient for universal quantum computation without projective measurements.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretical Nano/Quantum Physics (Klinovaja)
05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel and Klinovaja, Jelena
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
ISSN:2469-9950
e-ISSN:2469-9969
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:10 May 2017 10:58
Deposited On:15 Feb 2017 14:12

Repository Staff Only: item control page