Malkoc, O. and Stano, P. and Loss, D.. (2016) Optimal geometry of lateral GaAs and Si/SiGe quantum dots for electrical control of spin qubits. Physical Review B, 93 (23). p. 5413.
|
PDF
- Published Version
1397Kb |
Official URL: http://edoc.unibas.ch/53465/
Downloads: Statistics Overview
Abstract
We investigate the effects of the orientation of the magnetic field and the orientation of a quantum dot, with respect to crystallographic coordinates, on the quality of an electrically controlled qubit realized in a gated semiconductor quantum dot. We find that, due to the anisotropy of the spin-orbit interactions, by varying the two orientations it is possible to tune the qubit in the sense of optimizing the ratio of its couplings to phonons and to a control electric field. We find conditions under which such optimal setup can be reached by solely reorienting the magnetic field, and when a specific positioning of the dot is required. We also find that the knowledge of the relative sign of the spin-orbit interaction strengths allows to choose a robust optimal dot geometry, with the dot main axis along [110], or [110], where the qubit can be always optimized by reorienting the magnetic field.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss) |
---|---|
UniBasel Contributors: | Loss, Daniel |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | American Physical Society |
ISSN: | 2469-9950 |
e-ISSN: | 2469-9969 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: | |
edoc DOI: | |
Last Modified: | 10 May 2017 10:49 |
Deposited On: | 15 Feb 2017 14:59 |
Repository Staff Only: item control page