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We study the system of double Rashba wires brought into proximity to an s-wave supercon-
ductor. Time-reversal invariant topological superconductivity is realized if the interwire pairing,
corresponding to a crossedAndreev reflection, dominates over the standard intrawire pairing. We
classify the symmetry of the Cooper pairs focusing on four degrees of freedom, i.e., frequency,
spin, spatial parity inside wires, and spatial parity between wires. The presence of the spatial par-
ity between wires is a unique feature of this model. The magnitude of the odd-frequency pairing
is strongly enhanced in the topological state irrespective of spatial parities. We also explore the
properties of junctions occurring in such double-wire systems. If one section of the junction is in
a topological state and the other is in a trivial state, the energy dispersion of the Andreev bound
states is proportional to ∼ ± sin ϕ, where ϕ denotes the macroscopic phase difference between
the two sections. This behavior can be intuitively explained by the couplings of a Kramers pair
of Majorana fermions and a spin-singlet s-wave Cooper pair and can also be understood by
analyzing an effective continuum model of the s + p/s-wave superconductor hybrid system.
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1. Introduction

The concept of topology [1,2] and topological effects has attracted a lot of attention over recent
decades. For example, the appearance of the zero-energy surface Andreev bound state (SABS)
in unconventional superconductors like p-wave [3,4] or d-wave superconductors [5–7] has been
understood in terms of the topological invariants defined for the bulk Hamiltonian [8–11]. Also,
the possibility of generating an effective topological p-wave superconductivity in systems coupled
to conventional s-wave superconductors due to internal spin structure [12–24] opened the field for
experiments [25–30]. In 1D systems, zero-energy SABSs are Majorana fermions (MFs), which are
of great importance for topological quantum computing [31,32].

In this context, it is useful to shed light on MF physics from different angles. One aspect not covered
in the literature on MFs is the symmetry of Cooper pairs in the topological regime. Generally, if
we consider such a degree of freedom as time as well as space and spin, there are four possible
symmetries of Cooper pairs: even-frequency spin-singlet even-parity (ESE), even-frequency spin-
triplet odd-parity (ETO), odd-frequency spin-triplet even-parity (OTE) [33], and odd-frequency
spin-singlet odd-parity (OSO) [34–36]. It is known that the odd-frequency pairing exists ubiquitously
in inhomogeneous superconductors [9,37], and it is hugely enhanced at the boundaries if zero-energy
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SABSs are present [9,37–40]. The connection between MFs and the odd-frequency pairing has also
been clarified before now in several systems [24,41–43]. It was shown that MFs inevitably accompany
odd-frequency spin-triplet pairing in D-class topological superconductors with broken time-reversal
symmetry [41].

Alternatively, there are also time-reversal invariant topological superconductors belonging to the
topological DIII class [1,2] and occurring in various condensed-matter systems [44–47]. If the time-
reversal symmetry is not broken, two MFs come in Kramers pairs and are protected from splitting
[48–62]. In this work, we focus on a system consisting of two quantum wires with Rashba-type spin–
orbit interaction (SOI) brought into proximity to an s-wave superconductor, as introduced in Ref.
[62]. We work in the framework of the tight-binding model, taking into account the antisymmetry of
the spin–orbit coupling and chemical potential in nanowires, and obtain a more generalized condition
of topological superconductivity.

Although several papers have focused on how to realize class-DIII topological superconductors
in the double-quantum-wire (DQW) system [52,53,62], the relation between Kramers MFs and the
odd-frequency pairing still remains largely unexplored for systems in the topological DIII class. For
example, it is natural to expect that the spin structure of odd-frequency pairings in the presence of
Kramers pairs is very different from that for the topological D class with a single MF. In addition,
working with two quantum wires, we have to include one additional spatial degree of freedom such
as the wire index. We will call the superconducting pairing wire-odd (wire-even) if the pair amplitude
picks up a minus (plus) sign if one exchanges two wires. As a result, one can expect a much richer
structure for the pairing amplitudes depending on the four degrees of freedom, i.e., frequency, spin,
and the spatial parity inside the wire, as well as that between the two wires. Besides symmetries
of Cooper pairs, the energy of Andreev bound states (ABSs) in Josephson junctions has not been
addressed in this system so far.

Based on the background described in the previous paragraph, we investigate two important aspects:
(i) pairing symmetry of DQWs, which hosts time-reversal symmetry: we find various types of
pair amplitudes due to the translational and inversion symmetry breaking, some being unique in
the DQW system. We show that, in the topological regime, the odd-frequency pairing is strongly
enhanced at the ends of the system. (ii) ABSs of the Josephson junction system, which consists
of DQWs: we obtain an anomalous energy dispersion of ABSs proportional to ∼ sin ϕ with ϕ
being the superconducting phase difference between the two sections. Our findings contribute to the
advancement of the understanding of topological superconductivity in the DIII class and also the
physics of pairing symmetry.

The remainder of the paper is organized as follows. In Sect. 2, we briefly introduce the DQW model
and present its topological condition. In Sect. 3, we focus on the classification of the symmetries of
Cooper pairs in DQWs and demonstrate the signatures of the emergent odd-frequency pairing states.
In Sect. 4, we utilize the tunneling Hamiltonian approach to study the ABSs in the DQW/normal
metal/DQW model. The Josephson effect in DQW/normal metal/spin-singlet s-wave superconductor
junctions will be investigated as well. In Sect. 5, we summarize our results.

2. Model construction

We consider a setup consisting of two quantum wires with Rashba SOI proximity-coupled to an
s-wave superconductor (Fig. 1). The superconductivity in the DQW system could be induced in
two different ways, as described in Ref. [62]. The Cooper pair could tunnel as a whole into one
of the two wires, resulting in an intrawire superconducting pairing. Alternatively, the Cooper pair
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Fig. 1. A schematic picture of two Rashba QWs proximity-coupled with a superconductor (SC).

could split such that electrons tunnel into different wires, resulting in an interwire superconducting
pairing, also called a crossed Andreev superconducting pairing. We will work in the framework of
the tight-binding model with the Hamiltonian given by

H = −t
∑

〈i,j〉ση
c†

iσηcjση −
∑
iση

μηc†
iσηciση

+ i
∑
〈i,j〉η

αη

(
c†

i↑ηcj↓η − c†
i↓ηcj↑η

)

+
∑

iη

�η

(
c†

i↑ηc†
i↓η + H.c.

)

+
∑

i

�c

(
c†

i↑1c†
i↓1̄

+ c†
i↑1̄

c†
i↓1 + H.c.

)
. (1)

Here, we introduce index i (η = 1, 1̄) to label lattice sites (QWs). We define c†
iση(ciση) as the

creation (annihilation) operator acting on the electron at site i of the η QW with the spin σ

(σ =↑ (≡ 1), ↓ (≡ 1̄)). The first term represents hopping with amplitude t between two adja-
cent sites 〈i, j〉. The second term describes the chemical potential μη at each site. The third term
corresponds to the Rashba SOI of the amplitude αη. The last two terms represent the intrawire
and interwire pair potentials with amplitudes �η and �c, respectively. The interwire supercon-
ducting pairing induced by crossed Andreev processes is larger than the intrawire pairing due to
strong electron–electron interactions. The crossed Andreev reflection, when two electrons initially
forming the Cooper pair get separated into different channels, has attracted special attention due
to its potential use for creating entanglement [63,64] and has been implemented in superconduc-
tor/normal metal/superconductor junctions [65–67] and double-quantum-dot superconductor hybrid
systems [63,64,68–71]. To simplify the analytical calculations, we focus on the case of �1 = �1̄
throughout this paper. Using translational invariance along the x-direction, we introduce the num-
ber of unit cells Nx and momentum in the x-direction kx, and Fourier transform the operators as
ciση = 1√

Nx

∑
kx

eikxaxickxση. The Hamiltonian can be rewritten in the momentum representation in

the basis composed of ckx = (ckx↑1, ckx↓1, ckx↑1̄, ckx↓1̄, c†
−kx↑1, c†

−kx↓1, c†
−kx↑1̄

, c†
−kx↓1̄

)T as

H(kx) =
[ξkx1

2
τz + α1 sin(kxax)τzsy

]
(1 + ηz)

+
[ξkx 1̄

2
τz + α1̄ sin(kxax)τzsy

]
(1 − ηz)

− �1τysy −�cτysyηx. (2)

Here, sx,y,z, τx,y,z, and ηx,y,z are Pauli matrices acting on the degree of freedom of spin, particle–hole,
and chain, respectively. We define ξkxη as ξkxη = −2t cos(kxax)− μη.
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By linearizing the energy spectrum [72], the authors of Ref. [62] found that, when �c > �1, a
time-reversal invariant topological superconductor is realized. Here, we study this setup by tight-
binding analysis to find whether the time-reversal invariant topological superconductor is obtained
beyond the linearized approximation of the energy dispersion. As opposed to the previous study
[62], we will find that the antisymmetric parameters defined in Eq. (5) play a crucial role for the
realization of class-DIII superconductivity. Based on the “weak pairing limit", we can define the
topological condition as follows:

(−1)ν =
∏

kx=kF ,1,kF ,2

sgn[�2
c −�2

1 − (μa + 2αa sin kxax)
2], (3)

where for ν = 1(0) the system is in a nontrivial (trivial) topological state, and kF ,1 and kF ,2 are
defined such that

2�1(2t cos kxax + 2αs sin kxax + μs) = 0 (4)

at kx = kF ,1, kF ,2 with

αs/a = (α1 ± α1̄)/2,

μs/a = (μ1 ± μ1̄)/2. (5)

For a more detailed derivation of the topological condition, see Appendix A.
First, we note from Eq. (3) that the condition�c > �1 has to be satisfied to realize a topologically

nontrivial state, otherwise the product in Eq. (3) is always positive and the system is in the trivial
state. Also, αa should not be nonzero because only the term αa sin kxax can produce the sign change
of [�2

c − �2
1 − (μa + 2αa sin kxax)

2], which leads to the minus sign of the product. Thus, the
antisymmetric SOI is crucial for inducing the topologically nontrivial state. Otherwise, the SOI
could be gauged away, as was noted in Refs. [62,74].

To get the explicit phase diagram for the system, we consider a simplified case by setting αs = 0.
In this case, the Fermi points kF ,1 and kF ,2 are defined via

ε(kx) = −2t cos kxax − μs = 0, (6)

and are given by

kF ,1ax = − arcsin[μ0], kF ,2ax = arcsin[μ0] (7)

with μ0 ≡ √
1 − (μs/2t)2 for |μs| < 2t. According to Eq. (3),

(−1)ν = sgn
[
�2

c −�2
1 − (μa + 2αaμ0)

2]

×sgn
[
�2

c −�2
1 − (μa − 2αaμ0)

2
]

(8)

has to result in ν = −1 to realize the topological phase. For αaμa > 0, Eq. (8) is equivalent to

|μa + 2αaμ0| >
√
�2

c −�2
1 > |μa − 2αaμ0|, (9)

which has to be satisfied in order to get the nontrivial state. The result of Eq. (9) is consistent with
Refs. [53,62]. In Fig. 2(a) (2(b)), we show the phase diagram of the DQW system as a function of
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Fig. 2. (a) ((b)) Topological phase diagram of the DQW model as a function of αa and μa (μs and μa) with
�c/t = 0.4, �1/t = 0.1, and μs/t = −1 (�c/t = 0.4, �1/t = 0.1, and αa/t = 0.5). The light gray
area represents the topologically nontrivial phase. The red, green, blue, and magenta lines correspond to μa =
2αaμ0 +√

�2
c −�2

1,μa = −2αaμ0 +√
�2

c −�2
1,μa = 2αaμ0 −√

�2
c −�2

1, andμa = −2αaμ0 −√
�2

c −�2
1,

respectively. (c) ((d)) The intensity plot of LDOS of zero energy on the edge of the DQW model found by the
recursive Green’s function technique as a function of αa and μa (μs and μa) with �c/t = 0.4, �1/t = 0.1,
and μs/t = −1 (�c/t = 0.4, �1/t = 0.1, and αa/t = 0.5). We define LDOS as ρ ≡ − 1

π
ImTr[G], where G

is determined recursively utilizing H in Eq. (1). For the more detailed derivation, see Ref. [24]. We set the
length of the system long enough (4000 sites) so that overlapping between zero-energy states on both edges is
negligible [73]. Note that the nontrivial area in (a) and (b) corresponds well to that of the large amplitude of
LDOS in (c) and (d).

αa and μa (μs and μa) with fixed�c,�1, and μs (�c,�1, and αa). The obtained results are in good
agreement with the results obtained in the tight-binding framework, as the nonzero LDOS at zero
energy on the edge of the DQW system indicates; see Figs. 2(c) and 2(d).

To summarize this section, two conditions, �c > �1 and αa 
= 0, are necessary but not sufficient
to generate time-reversal invariant topological superconductivity. As we show in the next section,
the presence of the zero-energy state also changes the dominant symmetries of Cooper pairs at the
end of the system.

3. Cooper-pair symmetry

In this section, we study symmetries of Cooper pairs in the model of the double Rashba QW system
coupled to an s-wave superconductor. In addition to the standard symmetries of Cooper pairs, where
frequency, spin, and parity are taken into account, we should include one more spatial degree of
freedom connecting to two QWs. We call the pair amplitude wire-odd (wire-even) if it picks up a
negative sign (remains the same) by the exchange of the wire index. Due to this additional degree of
freedom, there are now eight classes of Cooper pair with different symmetries that are consistent with
Fermi–Dirac statistics, as summarized in Table 1. These classes are i) even-frequency spin-singlet
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Table 1. All possible symmetries of Cooper pairs occurring in the double-QW system.

Frequency Spin Parity Wire Total

ESEE +(Even) −(Singlet) +(Even) +(Even) −(Odd)
ESOO +(Even) −(Singlet) −(Odd) −(Odd) −(Odd)
ETOE +(Even) +(Triplet) −(Odd) +(Even) −(Odd)
ETEO +(Even) +(Triplet) +(Even) −(Odd) −(Odd)
OSOE −(Odd) −(Singlet) −(Odd) +(Even) −(Odd)
OSEO −(Odd) −(Singlet) +(Even) −(Odd) −(Odd)
OTEE −(Odd) +(Triplet) +(Even) +(Even) −(Odd)
OTOO −(Odd) +(Triplet) −(Odd) −(Odd) −(Odd)

even-parity even-wire (ESEE), ii) even-frequency spin-singlet odd-parity odd-wire (ESOO), iii)
even-frequency spin-triplet odd-parity even-wire (ETOE), iv) even-frequency spin-triplet even-parity
odd-wire (ETEO), v) odd-frequency spin-singlet odd-parity even-wire (OSOE), vi) odd-frequency
spin-singlet even-parity odd-wire (OSEO), vii) odd-frequency spin-triplet even-parity even-wire
(OTEE), and viii) odd-frequency spin-triplet odd-parity odd-wire (OTOO). The generation of Cooper
pairs with odd-wire symmetry, i.e., ESOO, ETEO, OTOO, and OSEO symmetry, is a remarkable
feature of this model.

In the following, we discuss how to evaluate pair amplitudes of various symmetries. Using
Eq. (1), we define the Matsubara Green’s function as follows:

GM (ωn, j, j′, σ , σ ′, η, η′) =
( 1

iωn − H

)
j,j′,σ ,σ ′,η,η′ (10)

with the Matsubara frequency, which is set to be ωn/t = 0.01 throughout the paper without loss
of generality. Introducing matrices G(ωn, j, j′, σ , σ ′, η, η′) and F(ωn, j, j′, σ , σ ′, η, η′), we rewrite
Eq. (10) as

GM =
(

G F
F̃ G̃

)
, (11)

where GM is divided into four sectors in the particle–hole space. We focus on F(ωn, j, j′, σ , σ ′, η, η′)
to analyze the symmetries of Cooper pairs. First, we focus on the frequency dependence. Introducing
J ≡ (j, j′, σ , σ ′, η, η′), we define FO(J ) and FE(J ) as follows:

FA(J ) = F(ωn; J )+ sgn[A]F(−ωn; J )

2
. (12)

Here, we define A = E, O with the convention that sgn[E/O] = ±1. Then, using Eq. (12) and
defining K as K ≡ (σ , σ ′, η, η′), we introduce FOO(j; K), FOE(j; K), FEO(j; K), and FEE(j; K), also
classified by the spatial symmetry inside the QW as

FAB(j; K) = 1

2

{
FA(j + 1 − sgn[B]

2
, j)

+ sgn[B]FA(j, j + 1 − sgn[B]
2

)
}

, (13)
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with B = E, O. Further, by denoting L as L ≡ (σ , σ ′), we can address the spatial symmetry between
QWs defined by FABO(j; L), FABE(j; L) as

FABC(j; L) = FAB(j; L; 1, 1̄)+ sgn[C]FAB(j; L; 1̄, 1)

2
, (14)

with C = E, O. Finally, by also addressing the spin degree of freedom, we get eight classes of pair
amplitude, which are given by

F↑↓
ATBC(j) = FABC(j; ↑, ↓)+ FABC(j; ↓, ↑)

2
(15)

FASBC(j) = FABC(j; ↑, ↓)− FABC(j; ↓, ↑)
2

, (16)

where the indices A, B, and C take values of either E or O. The combination of A, B, and C has to
satisfy

sgn[A]sgn[B]sgn[C] = −1(+1) (17)

for the spin-triplet (spin-singlet) pairing. As for the ↑↑ and ↓↓ spin-triplet components, the
corresponding pair amplitudes are

F↑↑
ATBC( j) = FATBC(j, ↑, ↑) (18)

F↓↓
ATBC( j) = FATBC(j, ↓, ↓). (19)

We emphasize that, due to the time-reversal symmetry present in the system, the ↑↓ components of
the spin-triplet are absent. Indeed, using the definition of the anomalous Green’s function,

F†(ωn, j, j′, σ , σ ′, η, η′)

≡
∫ β

0
dτeiωnτ

〈
c†(τ )j,σ ,ηc†(0)j′,σ ′,η′

〉
, (20)

F(ωn, j, j′, σ , σ ′, η, η′)

≡
∫ β

0
dτeiωnτ

〈
c(τ )j,σ ,ηc(0)j′,σ ′,η′

〉
, (21)

with imaginary time τ and inverse temperature β = 1/kBT , as well as the fact that

c(τ )j,↑,η
T→ −c(τ )j,↓,η (22)

c(τ )j,↓,η
T→ c(τ )j,↑,η (23)

under time-reversal operation T, we obtain

T[F(M ; ↑, ↓; N )+ F(M ; ↓, ↑; N )]T−1

= −[F(M ′ ↓, ↑; N )+ F(M ′ ↑, ↓; N )] (24)

for the time-reversal invariant system. Using the fact that the Green’s function in Eq. (11) is invariant
under the time-reversal operation, we conclude that the ↑↓ components of the spin-triplet are absent.
Above, we have used the notations M ≡ (ωn, j, j′), M ′ ≡ (−ωn, j, j′), and N ≡ (η, η′). By a similar
argument, we show that the ↑↑ and ↓↓ components are equal.
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Equations (15)–(19) describe all possible types of pair amplitudes; these are also represented in
Table 1.

The odd-frequency pairings combined with even-wire symmetry cases, v) and vii), have been stud-
ied in previous work dedicated to ferromagnet junctions, unconventional superconductor junctions,
and nonuniform superconducting systems [9,37–40,75–78]. The odd-frequency pairings combined
with odd-wire symmetry, vi) and viii), are similar to pairings with odd-wire symmetry in bulk multi-
band (orbital) systems [79–82] and those with odd-channel symmetry in the two-channel Kondo
lattice model [83]. In contrast to the previous relevant cases, the magnitude of odd-wire pairings can
be enhanced at the edge in the topological regime in the present model.

Before we begin the numerical calculations, we clarify the general properties of the Hamiltonian
and resulting symmetries of pairing amplitudes. First, we consider the infinite DQW model. We start
from the case with μa = 0, αs = 0, and αa = 0. In this case, only the ESEE pairing is present.
This is the standard pairing for �1 and �c originating from an s-wave superconductor without
any symmetry breaking in double-wire and spin-rotational spaces as well as without breaking of
the translational invariance. As shown in Table 2, by breaking these symmetries, seven additional
types of superconducting pairing are induced. In case (1), we break only the double-wire symmetry
by adding nonzero μa. Now, the double-wire-even and double-wire-odd pairings can mix without
changing symmetries in the spin space and without breaking the translational invariance. To be
consistent with Fermi–Dirac statistics, the parity in the frequency space should be switched; thus,
the OSEO pairing is induced. In case (2), only αs is chosen to be nonzero; thus, the spin rotational
symmetry and spatial parity inside the wire are broken at the same time. Then, the ETOE pairing is
induced without generating the odd-frequency pairing, as was shown before in noncentrosymmetric
superconductors with Rashba SOI [84]. Next, in case (3), the induced symmetries can be understood
by combining the results of cases (1) and (2). In addition to the ESEE pairing, the OTOO, OSEO,
ETOE pairings are induced by the coexistence ofμa and αs. We note that the presence of asymmetric
Rashba coupling αa also corresponds to case (3), as it breaks the double-wire symmetry and plays
a role similar to αs in the spin space.

Table 2. The eight classes of possible symmetries of Cooper pairs in the DQW system. The classes are
characterized by broken symmetries. The symmetry between two QWs comprising the DQW system could
be broken by detuning of the chemical potential. The spin space symmetry could be broken by the SOI. The
translational invariance is broken, e.g., by boundary conditions. The label © (–) indicates that the symmetry
is broken (preserved).

Broken symmetry

DQW spin translation
μa αs boundary Pairing symmetry

(0) – – – ESEE
(1) © – – ESEE, OSEO
(2) – © – ESEE, ETOE
(3) © © – ESEE, OSEO, ETOE, OTOO
(4) – – © ESEE, OSOE
(5) © – © ESEE, OSEO, OSOE, ESOO
(6) – © © ESEE, ETOE, OSOE, OTEE
(7) © © © ESEE, OSEO, ETOE, OTOO

OSOE, ESOO, OTEE, ETEO

8/23



PTEP 2016, 083I01 H. Ebisu et al.

Fig. 3. The spatial profiles of four singlet pairing amplitudes (denoted above each figure) for a DQW system
of a finite size of 200 sites. The parameters are set as follows: α1/t = −α1̄/t = 0.5, μ1/t = −2, μ1̄/t = −1,
�1/t = 0.1, and �c/t = 0.4. We confirm that the odd-frequency pairing amplitudes are strongly enhanced at
both edges, as panels (c) and (d) show.

Next, we consider systems in which the translation invariance is also broken, e.g., if some param-
eters are nonuniform or the system is finite. Thus, parity mixing can occur by reversing the parity
corresponding to the frequency [9,37,39] to be consistent with Fermi–Dirac statistics. We first con-
sider the case of μs = 0 and αs = 0. In case (4), the breakdown of the parity inside a wire induces
the OSOE pairing. This result is consistent with preexisting results in nonuniform superconducting
systems [9,37,39,85]. The induced pairings obtained in case (5) can be understood by combining
the results of cases (1) and (4). The ESOO pairing is induced by the breakdown of the translational
invariance and the double-wire symmetry. Also, the results in case (6) can be understood by com-
bining the results in cases (2) and (4). The OTEE pairing is induced from the ETOE pairing by
breaking of the translation invariance. The most interesting situation is case (7). The OSEO, ETOE,
and OTOO pairings stem from the results in case (3). Similar to case (4), the OSOE, ESOO, OTEE,
and ETEO pairings are generated by the spatial parity mixing due to the fact that the translation
invariance is broken.

We calculate the spatial profiles of pairing amplitudes numerically for parameters chosen such
that the system is in the topological regime; see Figs. 3 and 4. First, the odd-frequency components,
i.e., the magnitudes of the pairing amplitudes of OSEO, OTOO, OSOE, and OTEE, are hugely
enhanced (more explicitly, the ratios of OSEO, OTOO, OSOE, and OTEE to ESEE are of the order
of ∼ 102) at the system edge, consistent with the existence of the zero-energy state, i.e., Kramers
Majorana fermions, similar to the previous results obtained in unconventional superconductors
[37–39]. Second, in addition to the ESEE pairing, which is the primary symmetry of the parent
system (see Fig. 3(a)), the ETOE pairing spreads over the system (see Fig. 4(a)). Although the
OTOO and OSEO pairings are possible in the bulk from the discussion of the pairing symmetries
(see above in Table 2), their magnitudes are small. The ESOO and ETEO pairing strengths are small
(the ratios of ESOO and ETEO to ESEE are of the order of ∼ 100) and nonzero only at the system
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Fig. 4. The spatial profiles of four triplet pairing amplitudes. The parameters are the same as in Fig. 3. Again,
the odd-frequency pairing amplitudes peak at the edges, where Kramers pairs of MFs are located; see panels
(c) and (d).

edge due to the breakdown of translational symmetry. To understand the spatial profiles of these
pairing amplitudes, it is convenient to focus on the inversion parity of the pairing amplitudes around
the center of the quantum wire. As seen from Figs. 3 and 4, the inversion parity is even for the ESEE,
OSEO, ETOE, OTOO pairings. These pairings can also exist in the bulk. In contrast to this, the
inversion parities of the OSOE, ESOO, OTEE, ETEO pairings are odd. They are generated due to
the breakdown of the translational invariance and are localized at the edges.

To emphasize the correspondence between zero-energy states and odd-frequency pairings explic-
itly, we calculated numerically the LDOS at the edge of the DQW system and the pairing amplitudes
of OSEO and OTEE (see Fig. 5) for three different cases. The pairing amplitudes (see Figs. 5(b)–(e))
change as a function of energy similar to the LDOS (see Fig. 5(a)). Specifically, when the parame-
ters are set to satisfy the topological criterion (blue line in Fig. 5), the real parts of the OSEO and
OTEE pairing amplitudes change abruptly around zero energy. Importantly, the imaginary parts of
the OSEO and OTEE pairing amplitudes peak strongly at zero energy, confirming the connection
between the presence of the MFs and the odd-frequency pairing.

4. Josephson junction of DQWs

In this section, we address Andreev bound states (ABSs) in DQW/DQW junctions. The ABSs
localized between two superconductors have been extensively studied in the literature. The energy
of the ABS Eb localized between two topologically trivial s-wave superconductors is given by

Eb = ±
√

1 − σN sin2(ϕ/2)�0, where�0, ϕ, and σN are the magnitude of the superconducting pair-
ing potential, the phase difference between superconductors, and the transparency of the junctions,
respectively [86]. On the other hand, the energy of ABS Eb between two 1D topological px-wave
superconductors is given by Eb = ±√

σN�0 cosϕ/2 [87,88]. A similar result is also known from the
study of d-wave superconductor junctions [7,89]. The present anomalous ϕ dependence of the ABS
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Fig. 5. (a) The LDOS on the edge of a DQW system of a length of 4000 sites. (b), (c) The real and imaginary
parts of the OSEO pairing. (d), (e) The real and imaginary parts of the OTEE pairing. Plots are based on the
recursive Green’s function technique. The parameters are set as follows: α1/t = −α1̄/t = 0.5, μ1/t = −2,
and μ1̄/t = −1.

can be explained by the coupling of MFs on both sides in the Kitaev chain/Kitaev chain Josephson
junction system [88]. It also generates 4π periodicity of the AC Josephson current in the Josephson
junctions based on topological superconductors. In this section, we calculate the energy of the ABSs
and find anomalous ∼ ± sin ϕ dependence. We provide a qualitative explanation of this sinusoidal
curve by considering the coupling of the Kramers pair of MFs to an s-wave superconductor. We also
construct an effective model, which address the s + p/s-wave superconductor junctions, to explain
this phase dependence of the ABS energy.

Making use of the recursive Green’s function technique, we can calculate the spectrum and the
energy of the ABSs. First, we focus on the case when both sides of the DQWs are in the nontrivial
topological regime. The result is shown in Fig. 6(a). This behavior is similar to the case of the Kitaev
chain/Kitaev chain or p-wave/p-wave junction system, which demonstrates [88] ∼ ± cosϕ/2. By
introducing γ↑ and γ↓ to describe two different MFs making up the Kramers pair, we can understand
the curve in Fig. 6(a) by the coupling of γ↑ and γ↓ on both sides, analogously to the above-mentioned
Kitaev chain/Kitaev chain junction. If the sign of the Rashba SOI is reversed on the right-hand side,
the spectrum of the ABSs is trivially shifted by π , as shown in Fig. 6(b). This is an example of the
so-called 0-π transition: by reversing the sign of the Rashba term, the phase of the effective p-wave
superconductor is flipped by π . This transition has already been discussed in the system of a Rashba
quantum wire on a superconductor with applied Zeeman fields, where topological superconductivity
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Fig. 6. (a) The spectrum of the ABSs in the DQW/normal metal/DQW junction as a function of the phase
difference ϕ. The parameters are set to be the same on both sides and correspond to the topologically nontrivial
regime: α1/t = −α1̄/t = 0.5, μ1/t = −2, μ1̄/t = −1, �1/t = 0.1, and �c/t = 0.4. The ABSs behave like
∼ ± cosϕ/2. (b) Next, we reverse the signs of the Rashba SOI on the right-hand side, i.e., α1/t = −α1̄/t =
−0.5; the other parameters are set to be the same as in panel (a). The ABSs exhibit a π -shift and their energy
behaves like ∼ ± sin ϕ/2. (c) The right-hand side of the system is brought into the trivial regime with the
parameters chosen as α1/t = α1̄/t = 0, μ1/t = −1, μ1̄/t = −1, and �1/t = 0.1. The ABSs near the Fermi
energy level behave like ∼ ± sin ϕ. For all panels, the calculation is based on the recursive Green’s function
technique, and we set the length of the right and left superconducting sections (normal metal section) to 4000
(2) lattice sites. The chemical potential in the normal section is set to μN/t = −1.

of class D is realized [90–92]. Indeed, the observed behavior (see Fig. 6(b)) can also be explained
by the above-mentioned transition using the effective model of DQWs discussed below.

Next, we check the most interesting regime in which we set one side of the junction to be in the
topological regime and the other to be in the trivial regime (see Fig. 6(c)). The energy spectrum of
the ABSs follows ∼ ± sin ϕ. This feature can be explained by the coupling of Kramers pair of MFs
and to the s-wave superconductor, as we demonstrate below.

The tunneling Hamiltonian can be written as

HT =
∑
kσ

(
Tkγσbkσ + h.c.

)
, (25)

where Tk is the tunneling amplitude, bkσ is the annihilation operator acting on the electron on the
right-hand side of the junction with spin σ and momentum k . The Majorana operator γσ acts on
the left-hand side of the junction with the index σ used to distinguish between two MFs building a
Kramers pair. We introduce the Bogoliubov transformation as follows:

bk↑ = ukαk↑ + v∗
kα

†
−k↓

bk↓ = u−kαk↓ − v∗
−kα

†
−k↑, (26)

where uk and vk are given by

uk = 1

2

√
1 + ξk

Ek
, vk = 1

2

√
1 − ξk

Ek
exp(iϕ),
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and ϕ is the macroscopic phase difference between the right and left superconductors. Here, ξk is

the energy spectrum of the right superconductor in the normal state and Ek =
√
ξ2

k + |�k |2 is the
quasiparticle energy spectrum, where�k is the pair potential in the right-hand side superconductor.
Without loss of generality, uk can be set to be a real number and vk a complex number. As a result,
the tunneling Hamiltonian is rewritten as

HT =
∑

k

{
Tkγ↑(ukαk↑ + v∗

kα
†
−k↓)+ T ∗

k (ukα
†
k↑ + vkα−k↓)γ↑

+ Tkγ↓(u−kαk↓ − v∗
−kα

†
−k↑)+ T ∗

k (u−kα
†
k↓ − v−kα−k↑)γ↓

}
. (27)

At the next step, we construct the effective Hamiltonian describing the coupling between two MFs
in the second order perturbation theory,

HMF = 〈0| HT
1

E − H0
HT |0〉 , (28)

where H0 represents the Bogoliubov–de Gennes (BdG) Hamiltonian without tunneling (25), H0 ≡∑
kσ Ekα

†
kσαkσ , and |0〉 is set to be the ground state of the quasiparticles. From Eq. (28), one finds

HT |0〉 =
∑

k

(Tkvkγ↑α†
−k↓ − T ∗

k ukγ↑α†
k↑ − Tkv−kγ↓α†

−k↑ − T ∗
k u−kγ↓α†

k↓) |0〉 , (29)

〈0| HT = 〈0|
∑

k ′
(T ∗

k ′v∗
k ′α−k ′↓γ↑ − Tk ′uk ′αk ′↑γ↑ − T ∗

k ′v∗
−k ′↑α−k ′γ↓ − Tk ′u−k ′α†

k ′↓γ↓), (30)

HMF = −
∑

k

|Tk |2
Ek

{
2u2

k + 2|vk |2 +
( �k

2Ek
− �∗

k

2Ek

)
γ↑γ↓ −

( �k

2Ek
− �∗

k

2Ek

)
γ↓γ↑

}
. (31)

Here, we have used the fact that uk = u−k , vk = v∗
−k , and Tk = T ∗

−k , and also set E = 0. First,
we ignore the first two terms in Eq. (31) because they are constant by noting u2

k + |vk |2 = 1. If we
impose a phase difference between the left and right superconductors of �k → �̄0eiϕ , HMF can be
written in the basis of (γ↑, γ↓)T as

HMF =
∑

k

�̄0
|Tk |2
E2

k

sin ϕ

(
0 −i
i 0

)
(32)

with the energies given by ±|Tk |2
E2

k
�̄0 sin ϕ, which coincides with the dispersion relation obtained

for the ABSs in Fig. 6(c). This relation was also provided in Ref. [93]. Further, the ABS with sin ϕ
dependence was previously predicted in a junction between a noncentrosymmetric superconductor
and a conventional s-wave superconductor [94].

The characteristic features of the energy dispersion of the ABSs shown in Fig. 6(c) are also
reproduced by the quasiclassical theory based on the effective model discussed in Ref. [53]. Following
Ref. [53], we treat the terms breaking the symmetry between QWs as perturbations. Converting the
lattice model back to a continuous one, the effective Hamiltonian is written as

Hqk = (
�

2k2
x

2m
− 2t − μs)τz − (�s + kxsy�p)syτy, (33)

�s = �1 −�c + μ2
a + k2

xα
2
a

�1 +�c
, (34)

�p = 2
αaμa

�1 +�c
, (35)
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where m is the effective mass given by m = �
2/2ta2

x . As seen from Eq. (35), if the signs of Rashba
SOI are reversed, the phase of the effective p-wave pair potential is shifted by π , which explains the
0–π transition in Fig. 6(b). For simplicity, we set the s-wave pair potential to be determined at the
Fermi momentum:

�s = �1 −�c + μ2
a + k2

Fα
2
a

�1 +�c

= �1 −�c + μ2
a + 2m(2t + μs)α

2
a

�1 +�c
. (36)

If we set �p > �s/
√

2m(2t + μs), time-reversal topological superconductivity is realized [53].
The effective Hamiltonian describes a 1D s+p-wave superconductor. Generally, it is known that,
if the p-wave component of the pair potential is larger than the s-wave component, a topological
superconductor hosting edge states is realized [95].

Next, we show that the behavior of ABSs obtained in Fig. 6(c) can be explained using the effective
model of a semi-infinite s/s+p-wave junction. We consider the pair potential on the s+p-wave side to
be given by Eqs. (34) and (35), while, on the s-wave side, it has the form �ssyτy with �s = �0eiϕ .
We assume thatμ and t are the same on both sections of the junction. However, two sets of values are
chosen such that one corresponds to the topological phase and the other to the trivial phase. We also
take into account the strength of the interface barrier denoted by Z , but its value does not influence
the key feature of our results. In order to calculate ABSs, we seek the solution of Mŷ = 0, where
ŷ is the envelope function composed of all the coefficients of the outgoing modes (see Appendix
B). Then, the ABSs can be obtained from the condition det M = 0. To make our plots clearer, we
show |det M | 1

4 as a function of energy E and phase difference ϕ. The dark blue curve indicates
the ABSs in Figs. 7(a) and 7(c). In the topological phase, where the p-wave pairing is dominant,
we can see that the energy of ABSs is described by ± sin ϕ around the Fermi energy level, which
is similar to the behavior observed above in the lattice model (see Fig. 6(c)). Thus, the Josephson
current–phase relation is also approximated by nontrivial dependence ∼ sin 2ϕ, as shown in Fig.
7(b), apart from the standard 2π periodicity. Importantly, the observed double crossing points of
ABSs around the Fermi energy, despite the fact that the nonzero interface barrier Z is explicitly
introduced in the continuum model, confirm the topological origin of the obtained ABSs (MFs). As
for the topologically trivial case in Fig. 7(c), where the s-wave component is dominant, the ABSs

behave as ∼
√

1 − σN sin2 ϕ/2. The corresponding current–phase relation has the standard ∼ sin ϕ
feature (see Fig. 7(d)). It is also seen that theABSs are gapped around zero energy due to the presence
of the interface barrier, which reveals its trivial nontopological nature.

We again emphasize here the importance of our result in this section: the ABS of the Josephson
junction system that consists of DQWs has not been studied before. We investigate the ABS in this
system and find the following. The ABS in the DQWs and conventional s-wave junction system
shows ∼ ± sin ϕ, which has not been observed in p-wave/p-wave or s-wave/s-wave Josephson
junction systems. This curve is related to the presence of Kramers MFs by considering the coupling
of Kramers MFs by second order. Further, this sinusoidal line is connected to the p-wave/s-wave
junction system, which is justified by quasiclassical analysis.

5. Conclusion

In conclusion, we have systematically studied the pairing symmetry of the recently discovered topo-
logical double-quantum-wire (DQW) system. By taking into account the detuning of the chemical
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Fig. 7. The spectrum of ABSs (panels (a) and (c)) and Josephson current (panels (b) and (d)) in the s+p-

wave/s-wave junction calculated in the continuum model. Panels (a) and (c) show |det M | 1
4 , where the dark

blue curves indicate the positions of ABSs. Panels (b) and (d) show the current–phase relation normalized to
the interface resistance RN in the normal state. (a) and (b):�0/μ̃ = 0.001,�s/μ̃ = 0.0004, kF�p/μ̃ = 0.001,
and μ̃ = 2t + μs. (c) and (d): �0/μ̃ = 0.001, �s/μ̃ = 0.001, and kF�p/μ̃ = 0.0004. We use Z = 0.5 for
all cases and set the temperature kBT = 0.01�0 for panels (b) and (d). Notice that, when p-wave is dominant,
the ABSs near the Fermi energy have the ∼ sin ϕ feature, which corresponds to the nontrivial/trivial junction
case shown in Fig. 6(c).

potential, we derive the generalized topological criterion for a DQW to host a Kramers pair of
MFs as an ABS. We have also classified the symmetry of the superconducting order parameter by
focusing on four degrees of freedom, i.e., frequency, spin, spatial parity inside the QWs, and spa-
tial parity between the QWs. It is found that the magnitude of the odd-frequency pairing is hugely
enhanced if topological superconductivity is achieved. It can be expected that the obtained odd-
frequency pairings in the topological regime can be detected by tunneling spectroscopy [6,96–100] in
experiments.

We have also investigated ABSs and the Josephson effect in DQW/DQW junctions. For topologi-
cal/nontopological junctions, the energy dispersion of the ABSs is proportional to ∼ ± sin ϕ, where
ϕ denotes the phase difference between two sections of the DQW system. We have explained this
behavior in terms of the couplings of Kramers pairs of MFs and spin-singlet s-wave Cooper pairs.
We have confirmed that this ϕ dependence can be reproduced using the effective continuum model
corresponding to the s + p/s-wave superconductor junction system. Our results can be explored for
further experimental identification of the topological DQW system.
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Appendix A. Winding number

In this appendix, we introduce the winding number to help us to determine whether the zero-energy
state described in the main text and shown in Fig. 2 is topologically protected. The procedure is as
follows. First, we decompose the Hamiltonian into two sectors that are not coupled to each other.
We note that the time-reversal partners always belong to different sectors. Second, we bring the
chosen sector to the off-diagonal form and calculate its determinant. The winding number is given
by considering how many times the vector composed of real and imaginary parts of the determinant
wraps around the origin in the complex plane as a function of the momentum.

The model Hamiltonian given by Eq. (2) can be rewritten in the basis composed of c′
kx

=
(ckx1↑, c†

−kx1↑, ckx 1̄↑, c†
−kx 1̄↑, ckx1↓, c†

−kx1↓, ckx 1̄↓, c†
−kx 1̄↓)

T as

H(kx) =
(

A(kx) B(kx)

−B(kx) A(kx)

)
. (A.1)

Here, A(kx) and B(kx) are 4 × 4 matrices given by

A(kx) =

⎛
⎜⎜⎜⎝
ξkx1 0 0 0

0 −ξkx1 0 0
0 0 ξkx 1̄ 0
0 0 0 −ξkx 1̄

⎞
⎟⎟⎟⎠, (A.2)

B(kx) =

⎛
⎜⎜⎜⎝

i2α1 sin kxax �1 0 �c

−�1 −2iα1 sin kxax −�c 0
0 �c 2iα1̄ sin kxax �1̄

−�c 0 −�1̄ −2iα1̄ sin kxax

⎞
⎟⎟⎟⎠. (A.3)

In this basis, the time-reversal operator is represented as

� =
(

0 I4×4

−I4×4 0

)
. (A.4)

We can easily confirm that�†H(kx)� = H∗(−kx) = H(kx). Next, we transform the basis by unitary
matrix V to satisfy

V †�V =
(

I4×4 0
0 −I4×4

)
, (A.5)

where V can be written as

V = 1√
2

(
I4×4 iI4×4

iI4×4 I4×4

)
. (A.6)

As a result, the Hamiltonian is given in the new basis by

V †H(kx)V =
(

A(kx)+ iB(kx) 0
0 A(kx)− iB(kx)

)
≡

(
H1(kx) 0

0 H2(kx)

)
(A.7)
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and is decomposed into two independent sectors. In what follows, we focus on only one of the two
sectors, H1(kx), given by

H1(kx) =

⎛
⎜⎜⎜⎝
ξ1 − 2α1 sin kxax i�1 0 i�c

−i�1 −ξ1 + 2α1 sin kxax −i�c 0
0 i�c ξ1̄ − 2α1̄ sin kxax i�1

−i�c 0 −i�1 −ξ1̄ + 2α1̄ sin kxax

⎞
⎟⎟⎟⎠.

(A.8)
H1(kx) possesses chiral symmetry, CH1(kx)C = −H1(kx), where

C =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠. (A.9)

We also define W as

W =

⎛
⎜⎜⎜⎝

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎞
⎟⎟⎟⎠ (A.10)

such that

W †CW =
(

I2×2 0
0 −I2×2

)
. (A.11)

Using the matrix W , H1(kx) is transformed into

H′
1(kx) = W †H1(kx)W =

(
0 h1(kx)

h†
1(kx) 0

)
, (A.12)

where

h1(kx) =
(
ξkx1 − 2α1 sin kxax − i�1 −i�c

−i�c ξkx 1̄ − 2α1̄ sin kxax − i�1

)
. (A.13)

This allows us to easily calculate the determinant D as

D1 = det[h1(kx)] = (ξkx1 − 2α1 sin kxax − i�1)× (ξkx 1̄ − 2α1̄ sin kxax − i�1)+�2
c . (A.14)

The winding number is given by [101]

ν1 = 1

2π i

∮
(D−1

1 dD1). (A.15)

The integer ν1 corresponds to the number of times that the vector composed of the real and imaginary
parts of D wraps around the origin in the complex plane when we change the momentum from kxax =
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−π to kxax = π . To simplify calculations, it is useful to introduce symmetric and antisymmetric
parameters:

αs/a = (α1 ± α1̄)/2,

μs/a = (μ1 ± μ1̄)/2. (A.16)

The real and imaginary parts of det[h1(kx)] are rewritten as

λ(kx) ≡ Re
[
det[h1(kx)]

] = −(μa + 2αa sin kxax)
2 +�2

c

−�2
1 + (2t cos kxax + μs + 2αs sin kxax)

2, (A.17)

ε(kx) ≡ Im
[
det[h1(kx)]

]
= 2�1(2t cos kxax + 2αs sin kxax + μs). (A.18)

Here, we assume
√

4t2 + 4α2
s < |μs| such that ε(kx) becomes zero at certain values of kx. Based on

the spirit of the “weak pairing limit" [61,102], we discuss the winding number [101]. The winding
number is equivalent to the wrapping number of the normalized vector

(d1, d2) ≡
(

λ(kx)√
ε2(kx)+ λ2(kx)

,
ε(kx)√

ε2(kx)+ λ2(kx)

)
(A.19)

around the origin in complex space as kx changes from kxax = −π to kxax = π . We scale λ(kx) to
λ(kx) → aλ(kx) by introducing a parameter a, and continuously change a from a = 1 to a small
nonzero value. Importantly, upon this change, the winding number remains the same. In the case
of ε(kx) 
= 0, (d1, d2) is approximated as (0, sgn ε(kx)) ≡ (0, ±1) for a sufficiently small a and
stays constant. However, in the vicinity of Fermi momenta kF ,j, which we define as two solutions of
ε(kF ,j) = 0 such that kF ,1 < kF ,2, the (d1, d2) vector could wind around the origin. Close to these
momenta, ε(kx) can be expanded as

ε(kx) = [∂kxε](kx − kF ,j)+ · · · . (A.20)

Around the momentum kF ,j, the vector (d1, d2) reads

d1 = aλ(kx)√
(∂kxε)

2(kx − kF ,j)2 + a2λ2(kx)

,

d2 = [∂kxε][(kx − kF ,j)]√
(∂kxε)

2(kx − kF ,j)2 + a2λ2(kx)

. (A.21)

Now we consider the trajectory spanned the the vector (d1, d2) as the momentum changes from
kxax = −π to kxax = π ; see also Fig. A1(a). As we have explained above, only parts of the
trajectory close to kx = kF ,1 and kx = kF ,2 contribute to the winding number. Thus, we only focus
on the trajectory around these momenta. If we consider kx changing as

(kx < kF ,1) → (kx = kF ,1) → (kF ,1 < kx < kF ,2)

→ (kx = kF ,2) → (kx > kF ,2),

the vector (d1, d2) changes accordingly as

(0, sgn[ε(kx < kF ,1)]) → (sgn[λ(kF ,1)], 0) → (0, sgn[ε])
→ (sgn[λ(kF ,2)], 0) → (0, sgn[ε(kx > kF ,2)]).
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Fig. A1. (a) The trajectory, spanned by the vector (d1, d2) in the case of sgn[λ(kF ,1)] = −sgn[λ(kF ,2)], wraps
around the origin leading to the topologically nontrivial state. (b) The trajectory, spanned by the vector (d1, d2)

in the case of sgn[λ(kF ,1)] = sgn[λ(kF ,2)], does not go around the origin, demonstrating that the system is
topologically trivial.

If sgn[λ(kF ,1)] = −sgn[λ(kF ,2)], the trajectory of the vector (d1, d2) wraps around the origin
(see Fig. A1(b)), indicating a topologically nontrivial state. On the other hand, if sgn[λ(kF ,1)] =
sgn[λ(kF ,2)], the trajectory does not wind around the origin (see Fig. A1(b)) and the system is in the
trivial state. Therefore, we can define the topological condition as follows:

(−1)ν =
∏

kx=kF ,1,kF ,2

sgn[�2
c −�2

1 − (μa + 2αa sin kxax)
2], (A.22)

where for ν = 1(0) the system is in a nontrivial (trivial) topological state.

Appendix B. Quasiclassical analysis of the effective model

In this appendix we use the effective Hamiltonian given by Eq. (33) to calculate the ABS spectrum
and Josephson current in DQW/DQW junctions. Also, we focus on the most interesting scenario
where the left DQW is in the topologically nontrivial phase while the right DQW is in the triv-
ial phase. The system can be viewed as an s+p/s-wave junction. Since time-reversal symmetry is
respected, the Josephson current has the property I (ϕ) = −I (−ϕ). The s+p/s-wave junction with
�s+p = ∣∣�s+p

∣∣ eiϕ and �s = |�s| is equivalent to the s/s+p-wave junction with �s = |�s| eiϕ and
�s+p = ∣∣�s+p

∣∣. In the following calculation, we adopt the latter convention, such that Furusaki–
Tsukada’s formula [103] can be applied directly. We consider a semi-infinite junction wherein an
insulating barrier at x = 0 separates an s-wave superconductor and an s+p-wave superconductor.
The Hamiltonian of this system is given by

H = Hs + HI + Hs+p, (B.1)

Hs = (
k2

x /2m − μ0
)
τz −�0eiϕsyτy, (B.2)

HI = Hδδ (x) τz, (B.3)

Hs+p = (
k2

x /2m − μ̃
)
τz − (

�s + kxsy�p
)

syτy, (B.4)

where ϕ describes a macroscopic phase difference between the two sections and μ̃ = μs + 2t.
For simplicity, we assume that the chemical potential is the same in all regions, μ0 = μ̃, and the
interface barrier is modeled by a δ function with a strength Hδ . Taking into account the Andreev
approximation, we can write down the eigenmodes of the Hamiltonians Hs and Hs+p. In the s-wave-
superconductor-dominated section (x < 0), we find

ψ
s,e
↑,± (x) = [

eiϕ/2, 0, 0, γ0e−iϕ/2]T
e±ikF x, (B.5a)
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ψ
s,e
↓,± (x) = [

0, eiϕ/2, −γ0e−iϕ/2, 0
]T

e±ikF x, (B.5b)

ψ
s,h
↑,± (x) = [

γ0eiϕ/2, 0, 0, e−iϕ/2]T
e∓ikF x, (B.5c)

ψ
s,h
↓,± (x) = [

0, γ0eiϕ/2, −e−iϕ/2, 0
]T

e∓ikF x, (B.5d)

where we have defined kF = √
2mμ̃ and γ0 = �0(E +

√
E2 −�2

0)
−1. The quasiparticle energy E is

measured from the chemical potential and the subscript “+" (“−") stands for the right-going (left-
going) solutions. For the s+p-wave-superconductor-dominated section (x > 0), we only consider the
right-going solutions of Hs+p given by

ψ
s+p,e
1 (x) = [1, −i, iγ1, γ1]T eikF x, (B.6a)

ψ
s+p,e
2 (x) = [1, i, −iγ2, γ2]T eikF x, (B.6b)

ψ
s+p,h
1 (x) = [γ1, iγ1, −i, 1]T e−ikF x, (B.6c)

ψ
s+p,h
2 (x) = [γ2, −iγ2, i, 1]T e−ikF x, (B.6d)

with γ1(2) = (
�s ∓ kF�p

) [E +
√

E2 − (
�s ∓ kF�p

)2]−1 reflecting the existence of two supercon-
ducting gaps�1 = ∣∣�s − kF�p

∣∣ and�2 = ∣∣�s + kF�p
∣∣. In order to obtain the ABSs, we consider

the following wave function:

�s (x) =
∑
σ=↑,↓

rs,e
σ ψ

s,e
σ ,− (x)+ rs,h

σ ψ
s,h
σ ,− (x) , x < 0 (B.7)

�s+p (x) =
∑
ν=1,2

rs+p,e
ν ψ s+p,e

ν (x)+ rs+p,h
ν ψ s+p,h

ν (x) , x > 0. (B.8)

The scattering coefficients rs,e
σ , rs,h

σ , rs+p,e
ν , and rs+p,h

ν are chosen such that the boundary conditions
at x = 0 are satisfied:

�s (0) = �s+p (0), (B.9)

∂x�s+p (0)− ∂x�s (0) = 2mHδ�s (0). (B.10)

The discrete ABSs can be determined by the condition det M = 0, where the matrix M is defined as

M =
[

M1 M2

M3 M4

]
, (B.11)

M1 =

⎡
⎢⎢⎢⎣

0 γ0eiϕ/2 0 eiϕ/2

γ0eiϕ/2 0 eiϕ/2 0
−e−iϕ/2 0 −γ0e−iϕ/2 0

0 e−iϕ/2 0 γ0e−iϕ/2

⎤
⎥⎥⎥⎦, (B.12)

M2 =

⎡
⎢⎢⎢⎣

−1 −γ1 −1 −γ2

i −iγ1 −i iγ2

−iγ1 i iγ2 −i
−γ1 −1 −γ2 −1

⎤
⎥⎥⎥⎦, (B.13)
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M3 =

⎡
⎢⎢⎢⎣

0 (1 − iZ)γ0eiϕ/2 0 (−1 − iZ)eiϕ/2

(1 − iZ)γ0eiϕ/2 0 (−1 − iZ)eiϕ/2 0
−(1 − iZ)e−iϕ/2 0 (1 + iZ)γ0e−iϕ/2 0

0 (1 − iZ)e−iϕ/2 0 (−1 − iZ)γ0e−iϕ/2

⎤
⎥⎥⎥⎦, (B.14)

M4 =

⎡
⎢⎢⎢⎣

−1 γ1 −1 γ2

i iγ1 −i −iγ2

−iγ1 −i iγ2 i
−γ1 1 −γ2 1

⎤
⎥⎥⎥⎦, (B.15)

where we have used the notation Z = 2mHδ/kF .
At the next step, we calculate the Josephson current using Furusaki–Tsukada’s formula [103] by

considering the incoming electrons from the left side:

�
s,e
↑ (x) = ψ

s,e
↑,+ (x)+

∑
σ

[
ree↑σψ

s,e
σ ,− (x)+ reh↑σψ

s,h
σ ,− (x)

]
, (B.16a)

�
s,e
↓ (x) = ψ

s,e
↓,+ (x)+

∑
σ

[
ree↓σψ

s,e
σ ,− (x)+ reh↓σψ

s,h
σ ,− (x)

]
, (B.16b)

�
s,h
↑ (x) = ψ

s,h
↑,+ (x)+

∑
σ

[
rhe↑σψ

s,e
σ ,− (x)+ rhh↑σψ

s,h
σ ,− (x)

]
, (B.16c)

�
s,h
↓ (x) = ψ

s,h
↓,+ (x)+

∑
σ

[
rhe↓σψ

s,e
σ ,− (x)+ rhh↓σψ

s,h
σ ,− (x)

]
. (B.16d)

All the coefficients can be found from the same boundary conditions given by Eq. (B.10). The
Josephson current is given by [103]

I = e�0

2
kBT

∑
ωn,σ

sgn(ωn)

�n

[
reh
σσ (iωn)− rhe

σσ (iωn)
]

, (B.17)

where reh
σσ (iωn) and rhe

σσ (iωn) are obtained by the analytical continuation E → iωn of reh
σσ (E) and

rhe
σσ (E). The Matsubara frequency ωn is defined as ωn = πkBT (2n + 1) for n = 0, ±1, ±2, . . .,

and �n =
√
ω2

n +�2
0. Here, we work in the low-temperature limit and neglect the temperature

dependence of the superconducting gap.
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