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1.4.  Summary 

mTOR (mammalian target of rapamycin) regulates cell growth and 

metabolism.  mTOR forms two independent complexes, termed mTORC1 

(mTOR complex 1) and mTORC2, both are frequently activated in tumors.  

TSC1 and PTEN are two tumor suppressors and upstream regulators of the 

mTOR pathway. 

To investigate the role of mTOR in liver tumor development, we used 

mice in which Tsc1 and Pten are deleted in the liver (hereafter referred to as, 

L-dKO mice).  L-dKO mice exhibited sustained mTORC1 and mTORC2 

activation, and invariably developed liver tumors.  To identify mechanisms 

governing tumor development, we performed longitudinal unbiased 

quantitative proteomic and phosphoproteomic analyses on livers from L-dKO 

mice and littermate controls.  Most prominently, fatty acid (FA) and lipid 

synthesis pathways were up-regulated in L-dKO mice.  Indeed, L-dKO mice 

displayed enhanced hepatic de novo FA synthesis, hepatosteatosis followed 

by the appearance of tumors.  Longitudinal lipidomic analyses of livers from 

L-dKO mice revealed increased accumulation of sphingolipid (SL) and 

glycerophospholipid  (PL), particularly of cardiolipin (CL).  CL accumulation 

correlated with hyper-tubular mitochondria in hepatocytes and improved 

oxidative phosphorylation (OxPhos).  Inhibition of de novo FA or SL synthesis 

reduced tumor burden.  Furthermore, L-dKO mice preferentially synthesized 

and accumulated the SL glucosylceramide (GlcCer).  To examine whether 

GlcCer are necessary for tumor development, we knocked down GCS 

(Glucosylceramide Synthase), the rate-limiting enzyme of GlcCer synthesis.  

GCS inhibition in hepatocytes reduced tumor burden.  Together these data 

indicates that FA and lipids are required for tumor development. 

Lastly, we investigated whether mTORC1 and/or mTORC2 promoted FA 

and lipid synthesis.  Pharmacological inhibition studies indicated that 

mTORC2 promoted FA synthesis, via SREBP1c.  Indeed, genetic deletion of 

Rictor, an essential component of mTORC2, in L-dKO mice (L-TriKO) 

reduced hepatic FA, CL and SL (GlcCer) accumulation.  Importantly, L-TriKO 

mice also exhibited reduced liver tumor number and size, compared to L-dKO 
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mice.  Thus, mTORC2 promotes FA and lipid accumulation and ultimately 

tumor development. 

Collectively, this thesis provides mechanistic insights for the role of 

mTORC2 in promoting tumor development, via FA and lipid synthesis.  Lipids 

are required for tumor growth, as macromolecules, but also to support 

mitochondrial function to match increased energy demand.  Inhibition of FA or 

lipid synthesis pathways kills cancer cells, thus exposing a cancer-specific 

vulnerability that can be exploited for the rational design of targeted cancer 

drugs. 
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1.5.  Novel findings 

1.  Oncogenic mTORC2 promotes fatty acid and lipid synthesis. 

2.  Cancer cells require fatty acids for growth and proliferation. 

3.  Cancer cells require sphingolipid, particularly glucosylceramide for    

    growth. 

4.  mTORC2, via fatty acid and lipids, increases cancer cell biomass  

    and improves mitochondrial function. 

 

Graphical Abstract 
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2.0.  Introduction 

2.1.  Fatty acids 

2.1.1.  Fatty acid synthesis 

Fatty acid (FA) synthesis is induced by growth factors, through the 

transcription factor SREBP-1c (Sterol Regulatory Element-Binding Protein-1).  

SREBP-1c is produced as inactive precursor, upon cleavage (SREBP-1c 

mature) it translocates to the nucleus (Wang, Sato et al. 1994).  Mature 

SREBP-1c stimulates the expression of genes involved in FA biosynthesis, 

including Acac, Fasn, Scd1 and Elovl6 (Jeon and Osborne 2012) (Diagram 1).  

FA synthesis requires acetyl groups that are derived from the tricarboxylic 

(TCA) cycle, in the form of citrate.  Citrate exits the mitochondrion to the 

cytoplasm via a ‘citrate shuttle’.  ACLY (ATP-Citrate Lyase) converts 

cytoplasmic citrate into acetyl-CoA and oxaloacetate.  Oxaloacetate can be 

converted into pyruvate, generating NADPH that replenishes reducing power 

for lipid synthesis.  ACC (Acetyl-CoA Carboxylase) converts acetyl-CoA to 

malonyl-CoA.  Acetyl and malonyl groups are then coupled to the acyl-carrier 

protein domain of FASN (Fatty Acid Synthase).  FASN by repeated 

condensation steps generates palmitate (basic 16 carbon unit).  Palmitate is 

introduced with a double bond in the Δ9 position by SCD1 (Stearoyl-CoA 

Desaturase 1), thereby generating mono-unsaturated FAs (MUFA).  Other FA 

desaturases (FADS) generate highly polyunsaturated fatty acids (PUFA) 

mainly from dietary essential PUFA (Lee, Lee et al. 2016).  FAs can be 

further elongated by ELOVL (Elongation Of Very Long Chain Fatty Acids), a 

family of seven enzymes (ELOVL1-7) with different chain length and 

saturation affinities (Guillou, Zadravec et al. 2010).  The ER localized 

ELOVL1-7 synthesize long chain fatty acids (VLCFAs), by adding two 

carbons in each cycle.  Once generated, the various FAs have many fates, 

including being stored for energy, incorporated into membrane or signaling. 
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Diagram 1.  De novo fatty acid and lipid synthesis.  For simplification 
selected enzymes are depicted. 
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2.2.  Lipids 
 
2.2.1.  Lipid synthesis: Sphingolipids 

Sphingolipid (SL) is a group of lipids in which FAs are linked via amide bonds 

to a long-chain base (LCB), also called sphingoid (Christie 2013).  SL 

requires the amino acid serine as the backbone to which acyl chains are 

attached  (Diagram 2).  The synthesis of SL begins at the ER, where two 

important precursors: LCB and VLCFA are produced (the latter described 

above).  Generation of LCB is the rate-limiting reaction for de novo SL 

biosynthesis, catalyzed by SPT (Serine Palmitoyltransferase) (Breslow 2013).  

SPT condense serine and palmitoyl-CoA to generate 3-keto-

dihydrosphingosine (also known as 3-keto-sphinganine, 3kSN), which is then 

reduced to yield the LCB dihydrosphingosine (also known as sphinganine, 

SN).  LCB is N-acylated, with fatty acids of different lengths, by CerS 

(Ceramide Synthase, isoforms 1 to 6) to produce dihydroceramide (dhCER).  

CerS1-6 exhibits different FA specificities, hence the structural heterogeneity 

among SL species.  Fatty acids used for sphingolipid synthesis are produced 

by ELOVL (see above).  Ceramides undergo headgroup modifications in the 

Golgi apparatus to yield Sphingomyelin (SM) or glucosylceramide (GlcCer).  

GCS (glucosylceramide synthase) catalyzes the rate-limiting step of GlcCer 

synthesis, adding glucose (obtained from UDP-glucose) to ceramide. 

The reverse reactions of most steps described above delineates the SL 

catabolism (Diagram 1).  SM hydrolysis by membrane bound nSMase 

(neutral-Sphingomyelinase, a.k.a SMPD2 or 3) or lysosomal aSMAse (acid-

SMase, a.k.a SMPD1) yields in ceramide and phosphocholine.  Similarly, 

glycohydrolases such as GBA (glucosylceramidase beta) and GBA2 remove 

head group from GlcCer, thereby counteracting the action of GCS.  

Sphingolipid production is tuned in response to metabolic needs.  For 

example, alterations in cellular serine concentration affect SPT activity, while 

sphingolipid level may reduce that of serine (Cowart and Hannun 2007).  

Another mode of regulation is via the ORMDL (mammalian homologues of 

the yeast ORM) that inhibit SPT activity (Siow, Sunkara et al. 2015, Siow, 

Sunkara et al. 2015). 
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Diagram 2.  Sphingolipid Structure.  Sphingoid Base, N-Acyl group, Headgroup. 
Adapted from LIPID MAPS, www.lipidmaps.org. 

 

 

2.2.2.  Lipid synthesis: Glycerophospholipids 

Glycerophospholipid (PL) contain fatty acids esterified (sn-1 - 2) to a glycerol 

backbone and a head group connected by a phosphate (sn-3) (Diagram 3) 

(Aguilera-Romero, Gehin et al. 2014).  GPAT (glycerol 3-phosphate 

acyltransferase, isoforms GPAT1 to 3) generates lysophosphatidic acid (LPA), 

adding a fatty acid to glycerol 3-phosphate on the sn-1 position (Diagram 1).  

LPA is then converted by AGPAT (Acylglycerol-3-Acyltransferase) to a 

phosphatidic acid (PA).  PA can be used for the synthesis of PL in two 

mechanisms that require nucleotides (described below).  PAP (Phosphatidic 

Acid Phosphatase), also known as lipin (isoforms 1 to 3), converts PA to 

diacylglycerol (DAG).  DAG is covalently connected to a long chain fatty acid 

by DAGT (Diglyceride Acyltransferase 1 or 2), generating triacylglyceride 

(TG) that can be stored in lipid droplets.  Alternatively, DAG is connected 

choline or ethanolamine (from a nucleotide cytidine pyrophosphate carrier, 

CDP-choline or -ethanolamine), thereby generating phosphatidylcholine (PC) 

or phosphatidylethanolamine (PE), respectively (Gibellini and Smith 2010).   

Instead, DAG is connected to CDP yielding the liponucleotide, CDP-DAG 

(Diagram 1).  CDP-DAG generated by CDS (CDP-DAG synthase 1 or 2), is 

required for the synthesis of the glycerophospholipids phosphatidylinositol 

(PI), phosphatidylserine (PS) and cardiolipin (CL, a.k.a. 

diphosphatidylglycerol). 
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Diagram 3.  Glycerophospholipid structure.  PL can be divided into 
different subgroups (defined by the head-group). The head group can consist 
of choline, ethanolamine, inositol, serine or glycerol. Modified from (Burri, 
Hoem et al. 2012). 

 

2.2.3.  Cardiolipin 

CLs are exclusively synthesized in the mitochondria (Schlame and Haldar 

1993, Schlame, Rua et al. 2000).  The rate-liming step in CL biosynthesis is 

catalyzed by PGS1 (Phosphatidylglycerol-phosphate Synthase 1).  PGS1 

condenses the liponucleotide CDP-DAG and glycerol-3-phosphate (releasing 

a CMP), producing a short-lived phosphatidylglycerol-phosphate (PGP).  

PGP is dephosphorylated by the PTEN-like mitochondrial phosphatase 

PTPMT1, generating a phosphatidylglycerol (PG) (Zhang, Guan et al. 2011).  

Cardiolipin synthase (CRLS1) links PG to a CDP-DAG (yet another 

liponucleotide molecule), synthesizing an immature CL.  CL is then 

remodeled into a mature tetralinoleoyl-CL (4 linoleolic acid chains (C18:2)), 

by several enzymes.  The catalytic center of the mitochondrial protein CRLS1 

is exposed to the matrix side of the inner mitochondrial membrane (IMM) 

(Schlame and Haldar 1993, Schlame, Rua et al. 2000).  CL lodged in the IMM, 
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providing stability for the enzyme complexes involved in energy production 

(Houtkooper and Vaz 2008, Duncan, Robinson et al. 2016). Furthermore, 

CLs appears to be important for mitochondrial fusion (Joshi, Thompson et al. 

2012), which is associated with improved mitochondrial function (van der 

Bliek, Shen et al. 2013, Yu-Wai-Man, Carelli et al. 2014).  Thus, FAs are used 

also for CL synthesis, which is required for mitochondria function. 

 

2.3.  The TOR signaling pathway 

2.3.1.  mTORC1 and mTORC2 components 

The evolutionarily conserved serine/threonine kinase Target of Rapamycin 

(TOR) integrates various stimuli to control the metabolic pathways that drive 

cell growth.  TOR forms two structurally and functionally separate protein 

complexes termed TOR Complex 1 (TORC1) and TORC2 (Wullschleger, 

Loewith et al. 2006, Laplante and Sabatini 2012).  Mammalian TORC1 

(mTORC1) contains mTOR, mLST8 (mammalian lethal with sec-13 protein 8), 

and RAPTOR (regulatory associated protein of mammalian target of 

rapamycin).  mTORC2 contains mTOR, mLST8, mSIN1 (mammalian stress-

activated map kinase-interacting protein 1), and RICTOR (rapamycin-

insensitive companion of mTOR) (Diagram 4). 
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Diagram 4.  The mTOR-signaling pathway.  mTOR promotes anabolic and inhibits catabolic 
processes and ultimately leads to cell growth (Yakir Guri 2016).   
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2.3.2.  Upstream of mTORC1 and mTORC2 

mTORC1 is activated by amino acids, cellular energy and growth factors 

(Dibble and Manning 2013, Shimobayashi and Hall 2014).  Growth factors 

and cellular energy stimulate mTORC1 via inhibition of a heterotrimeric 

protein complex consisting of tuberous sclerosis complex 1 (TSC1), TSC2 

and TBC1D7 (TRE2-BUB2-CDC16 domain family member 7) (Inoki, Li et al. 

2002, Kenerson, Aicher et al. 2002, Manning, Tee et al. 2002, Tee, Manning 

et al. 2003, Sancak, Peterson et al. 2008), referred to as the TSC complex.  

mTORC1 is activated by amino acids through the RAG (RAS-related GTP-

binding protein) family of small GTPases (Long, Lin et al. 2005, Kim, 

Goraksha-Hicks et al. 2008).  RAGA or RAGB forms heterodimer with either 

RAGC or RAGD.  Amino acids stimulate the conversion of the RAG 

heterodimers to the active conformation, in which RAGA or RAGB is loaded 

with GTP and RAGC or RAGD is loaded with GDP.  Once activated, RAG 

heterodimer recruits mTORC1 to the surface of the lysosome to bind GTP-

loaded RHEB (RAS homologue enriched in brain), thereby activating 

mTORC1 (Dibble and Cantley 2015). 

Growth factors bind RTK (Receptor Tyrosine Kinases) to activate 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K).  PI3K generates 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) by phosphorylating the 

membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) 

(Pearce, Komander et al. 2010).  PIP3 recruits PDK1 (Phosphoinositide-

Dependent Kinase 1) and AKT to the plasma membrane, where PDK1 

phosphorylates AKT at Thr308 (Alessi, James et al. 1997).  PTEN 

(Phosphatase and Tensin Homolog Deleted on Chromosome 10) negatively 

regulated the mTOR signaling, by converting PIP3 to PIP2, thereby 

counteracting the activity of PI3K.  AKT inhibits the TSC complex by 

phosphorylating TSC2, of the TSC complex (Menon, Dibble et al. 2014).  The 

TSC complex is a GAP (GTPase-Activating Protein) for RHEB (RAS 

Homologue Enriched in Brain).  High AMP/ATP ratio (low cellular energy 

level) activates AMPK (AMP-Activated Protein Kinase).  AMPK 

phosphorylates TSC2, thereby stimulating the GAP activity of the TSC 

complex towards RHEB, to inhibit mTORC1 (Corradetti, Inoki et al. 2004, 
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Inoki, Ouyang et al. 2006).  AMPK also inhibits mTORC1 via phosphorylation 

of RAPTOR.  When intracellular ATP level are high, AMPK is inactive, 

relieving the mTORC1 inhibition. 

Mechanisms of mTORC2 activation are less defined (Sparks and Guertin 

2010, Shimobayashi and Hall 2014).  Growth factors activate mTORC2 by 

promoting its association with ribosomes, in a PI3K dependent manner (Frias, 

Thoreen et al. 2006, Yang, Inoki et al. 2006, Zinzalla, Stracka et al. 2011).  

Recently, PI3K was suggested to trigger mTORC2 activation via PIP3 

interaction with the PH domain of mSIN1 (Liu, Gan et al. 2015). 

 

2.3.3.  Downstream of mTORC1 and mTORC2 

mTOR signaling promotes anabolic and inhibits catabolic processes.  

mTORC1 controls protein synthesis via S6K (ribosomal protein S6 kinase)  

and 4E-BPs (4E binding proteins).  mTORC1 phosphorylates 4E-BPs,  which 

is then dissociated from eIF4E (eukaryotic translation initiator factor 4E).  

eIF4E in its free form bind eIF4G at the 5’ end of mRNAs, thereby promoting 

cap-dependent translation initiation.  mTORC1 phosphorylates S6K at the 

Thr389 leading to its activation.  Active pS6K phosphorylates and activates 

S6 ribosomal protein on several residues (Ser235, Ser236, Ser240 and 

Ser244) (Ben-Sahra, Howell et al. 2013, Robitaille, Christen et al. 2013).  S6, 

in turn, stimulates the expression of several genes involved in ribosome 

biosynthesis (Chauvin, Koka et al. 2014).  S6K also regulates protein 

biosynthesis via direct phosphorylation of other proteins involved in 

translation or mRNA processing, including eIF4B, eIF2K and PDCD4 

(reviewed in (Shimobayashi and Hall 2014)).  mTORC1-S6K phosphorylates 

and inhibits the autophagy activating Unc-51-like kinase 1 (ULK1) [Reviewed 

in (Mamane, Petroulakis et al. 2006, Ma and Blenis 2009, Kim, Kundu et al. 

2011)].  Thus, mTORC1 regulates protein synthesis on multiple levels and 

inhibits autophagy. 

mTORC2 regulates several cellular processes via the AGC kinase family 

members AKT, protein kinase C α (PKCα), and serum/glucocorticoid-

regulated kinase (SGK) [reviewed in (Cybulski and Hall 2009, Sparks and 

Guertin 2010)].  mTORC2 controls the actin cytoskeleton organization 



	
   21 

through PKCα, paxilin and the small GTPases RHO and RAC (Jacinto, 

Loewith et al. 2004, Sarbassov, Ali et al. 2004). 

In a positive feedback loop, AKT phosphorylates mSIN1-Thr86 in 

mTORC2 (Yang, Murashige et al. 2015).  In a negative feedback loop, 

mTORC1 via S6K phosphorylates and inhibits the IRS-1 (Insulin Receptor 

Substrate 1), thereby dampening PI3K-AKT signaling (Takano, Usui et al. 

2001, Um, Frigerio et al. 2004).  The macrolide rapamycin acutely inhibits 

mTORC1.  The ATP-site competitive inhibitor, INK128 inhibits both mTORC1 

and mTORC2 (Benjamin, Colombi et al. 2011).  mTOR, often in the context of 

positive and negative feedback loops, is a node for convergence and 

crosstalk of several oncogenic pathways (Diagram 4) (Efeyan and Sabatini 

2010, Chandarlapaty, Sawai et al. 2011, Shimobayashi and Hall 2014, 

Eltschinger and Loewith 2016). 

 

2.3.4.  mTOR promotes fatty acid and nucleotide synthesis 

mTOR promotes FA synthesis (Ricoult and Manning 2013, Albert and Hall 

2015, Caron, Richard et al. 2015).  However, conflicting evidences exist 

regarding the specific contribution of mTORC1 and mTORC2.  As mentioned 

above, FA synthesis is activated by the transcription factor SREBP-1c.  AKT 

transcriptionally regulates SREBP-1c (Porstmann, Griffiths et al. 2005).  In 

retinal pigment cells and mouse derived embryonic fibroblasts, mTORC1 

induced SREBP-1c processing via S6K (S6 kinase) (Porstmann, Santos et al. 

2008, Duvel, Yecies et al. 2010) (Diagram 5).  In rat liver, SREBP-1c 

expression was blocked by rapamycin, but this appeared to be independent 

of S6K (Li, Brown et al. 2010).  In another mechanism, mTORC1 

phosphorylates the phosphatidic-acid phosphatase, lipin-1.  Lipin-1 is an 

inhibitor of SREBP-1, once phosphorylated lipin-1 is excluded from the 

nucleus, thereby allowing SREBP-1 to induce FA synthesis (Peterson, 

Sengupta et al. 2011).  Together, these studies suggest that mTORC1 

promotes de novo lipogenesis via SREBP-1c. 

Several lines of evidences question the role of mTORC1 in promoting 

hepatic de novo lipogenesis.  First, liver-specific Tsc1 knockout mice 

(exhibiting constitutive active mTORC1) do not exhibit increased SREBP-1c 
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expression or de novo lipogenesis.  Moreover, these mice are protected from 

age and diet induced hepatosteatosis (Yecies, Zhang et al. 2011, Cornu, 

Oppliger et al. 2014).  This was suggested being due to mTORC1-S6K 

mediated negative feedback loop, and reduced PI3K-AKT-mTORC2 signaling.  

However, as recently demonstrated, Tsc1 and S6K double knockout mice fed 

high-fat diet displayed increased hepatic TG content, but exhibited 

unchanged mTORC2 signaling (Kenerson, Subramanian et al. 2015).  

Although more experiments are required, the latter study suggests that the 

effect of mTORC1 on hepatic TG content is independent of the negative 

feedback loop.  Furthermore, rapamycin treatment failed to prevent hepatic 

steatosis in liver-specific Pten knockout mice, in which both mTORC1 and 

mTORC2 are ectopically activated (Kenerson, Yeh et al. 2011), also 

suggesting the hepatosteatosis in these mice is independent of mTORC1.  

Lastly, adenovirus-mediated hepatic Raptor knockdown did not alter hepatic 

triglyceride (TG) content in mice; reduction of hepatic TG was observed only 

when mice were fed high fat diet (Peterson, Sengupta et al. 2011).  More 

recently, liver-specific Raptor knockout mice were generated (driven by an 

albumin promoter), and exhibited no change in hepatic TG content even 

when are fed with high-fat diet (Umemura, Park et al. 2014).  In contrast, 

liver-specific Rictor knockout mice (abrogated mTORC2 activity) exhibited 

reduced SREBP-1c expression and hepatic TG content (Hagiwara, Cornu et 

al. 2012, Liu, Gan et al. 2013), indicating that mTORC2 promotes hepatic de 

novo synthesis, and probably not mTORC1. 
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Diagram 5.  mTOR promotes lipid synthesis via SREBP.  (Shimobayashi and Hall 
2014). 

 

FA provides essential building block for lipid synthesis.  Except, lipid 

synthesis requires other constituents, such as nucleotides, and reducing 

power in the form of NADPH.  Such constituents can be obtained from the 

pentose phosphate pathway (PPP) and nucleotide synthesis pathways.  In 

that regard, mTOR provides another mode of regulation for lipid synthesis. 

mTORC1 activates PPP, thereby stimulating synthesis of precursors for 

nucleotide biosynthesis and generates NADPH (Duvel, Yecies et al. 2010).  

Furthermore, mTORC1 phosphorylates (Ser1859) and activates CAD 

(Carbamoyl Phosphate Synthetase 2, Aspartate Transcarbamylase, and 

Dihydroorotase) (Ben-Sahra, Howell et al. 2013, Robitaille, Christen et al. 

2013).  CAD is a tri-functional enzyme that catalyzes the first three steps in 
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the de novo pyrimidine biosynthesis.  Pyrimidines (uracil, thymine and 

cytosine) are high-energy molecules that drive molecular reactions.  As 

described above, the rate-limiting steps of the lipids GlcCer and CL requires 

uridine and cytidine, respectively.  mTORC1 promotes transcriptionally the 

expression of enzymes contributing to purine synthesis, also in cancer cell 

lines (Ben-Sahra, Hoxhaj et al. 2016).  mTORC2 does not drive nucleotide 

biosynthesis, but might do so by stimulating the expression of the PPP via 

activation of SREBP-1c.  Thus, mTOR signaling, FA, lipid and nucleotide 

synthesis are functionally related. 

 

2.3.5.  mTORC2 is functionally at MAM 

mTORC2 is at the contact sites between mitochondria and endoplasmic 

reticulum (ER), also known as the mitochondria-associated membrane 

(MAM) (Vance 1990, Betz, Stracka et al. 2013).  Tethering of mitochondria to 

the ER is mediated mainly by IP3R-Grp75-VDAC1 complex or the dimer 

MFN1 (Mitofusin 1) and MFN2 (Raturi and Simmen 2013).  MAM is enriched 

in enzymes involved in calcium signaling and lipid metabolism (Dennis and 

Kennedy 1972).  mTORC2 is necessary for efficient calcium transmission 

from the ER to the mitochondria (Bononi, Missiroli et al. 2012, Betz, Stracka 

et al. 2013).  From lipid synthesis standpoint, several enzymes of the PL 

biosynthesis are at MAM, including DGAT 2, PEMT2 

(Phosphatidylethanolamine N-Methyltransferase), ACSL4 (Acyl-CoA 

Synthetase Long-Chain Family Member 4) and PSS1 (Phosphatidylserine 

Synthase 1).  Noteworthy, liver-specific Rictor knockout mice displayed 

reduced MAM formation (Betz, Stracka et al. 2013) and reduced TG 

synthesis (Hagiwara, Cornu et al. 2012).  Thus, mTORC2 is functionally at 

MAM, an important site for lipid synthesis (Betz and Hall 2013, Betz, Stracka 

et al. 2013), and may account for its role in promoting lipid synthesis. 
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2.4.  mTOR signaling in cancer 

mTORC1 and mTORC2 are frequently activated in cancer (Dazert and Hall 

2011, Yecies and Manning 2011, Zoncu, Efeyan et al. 2011, Laplante and 

Sabatini 2012, Bhat, Sonenberg et al. 2013, Cornu, Albert et al. 2013, Albert 

and Hall 2015, Mischel 2015).  mTORC1 is aberrantly activated in human 

tumor syndromes, such as neurofibromatosis (NF1/2 mutations), Cowden’s 

(PTEN mutation), Peutz-Jeghers and tuberous sclerosis complex (TSC1/2 

mutations) and Lymphangioleiomyomatosis (LAM) (TSC2 mutations) (Inoki 

and Guan 2009, Mester and Charis 2015, Ngeow and Eng 2016).  Mice with 

liver-specific deletion of Tsc1 (Menon, Yecies et al. 2012) or Pten (Horie, 

Suzuki et al. 2004, Stiles, Wang et al. 2004) develop liver cancer at about 

one year of age.  mTORC1 promotes tumor development by increasing 

protein synthesis via phosphorylation of 4E-BP1 and S6K1 (Dowling, 

Topisirovic et al. 2010).  Possibly by stimulating selective translation of 

oncogenes (Hsieh, Liu et al. 2012) or by promoting translational elongation 

(Faller, Jackson et al. 2015) and c-Myc expression (Csibi, Lee et al. 2014) 

(Reviewed in (Hsieh and Ruggero 2010, Pelletier, Graff et al. 2015)) 

mTORC2 is also required for tumor development (Guertin, Stevens et al. 

2009), but much less is known about the mechanism(s).  In glioblastoma 

multiforme with EGFRvIII (Epidermal Growth Factor Receptor, variant III) 

amplification, RICTOR acetylation and enhanced mTORC2 activity was 

observed (Masui, Tanaka et al. 2013, Masui, Cavenee et al. 2014, Masui, 

Tanaka et al. 2015, Mischel 2015).  mTORC2 appeared to promote cancer 

drugs resistance, via the nuclear factor NF-kappa-B (NF-κB) (Tanaka, Babic 

et al. 2011), or via transcriptional regulation of the oncoprotein c-MYC (Masui, 

Tanaka et al. 2013). 

 
2.4.1.  mTOR in metabolic reprogramming of cancer cells 

Cancer cells sustain growth and proliferation by activating distinct metabolic 

features (Schulze and Harris 2012).  As such, cancer cells adapt to changes 

in their microenvironment (oxygen, pH, glucose or nutrient concentrations), a 

process referred to as metabolic ‘rewiring’ or ‘reprogramming’ (DeBerardinis, 

Lum et al. 2008, Pavlova and Thompson 2016).  mTOR is both central 
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controller of cellular metabolism and a convergence node for several 

oncogenic pathways (Mendoza, Er et al. 2011, Eltschinger and Loewith 2016).  

Therefore, metabolic flexibility in tumors might be a direct or indirect effect of 

cells displaying oncogenic mutation that activate mTOR. 

In the presence of oxygen, non-cancerous cells transport cytosolic 

pyruvate into the mitochondria.  Mitochondrial pyruvate is then 

decarboxylated to form acetyl-CoA (coenzyme A) by the pyruvate 

dehydrogenase (PDH) complex (PDHC).  Acetyl-CoA is required for oxidative 

phosphorylation and lipid biosynthesis (Pietrocola, Galluzzi et al. 2015).  In 

contrast, rapidly proliferating cells convert excess of pyruvate to lactate 

(aerobic glycolysis a.k.a ‘Warburg effect’) (Warburg 1956).  As a result, 

rapidly proliferating cells exhibit compensatory increase in glucose uptake 

and lactate production.  PDH kinase 1 (PDHK1) phosphorylates and 

inactivates mitochondrial PDH and consequently the PDHC, allowing 

glycolytic metabolites (carbon sources) be diverted to fuel anabolic processes 

including, de novo serine, pentose and lipid synthesis (Kim, Tchernyshyov et 

al. 2006, Papandreou, Cairns et al. 2006, Hitosugi, Fan et al. 2011, Olson, 

Schell et al. 2016). 

Recent studies suggest a central role for mTOR signaling in controlling 

cancer cell metabolic reprogramming (Pavlova and Thompson 2016).  For 

example, cancer cells exposed to the glycolysis inhibitor (2-DG) exhibited 

sustained mTORC1 activity and enhanced mitochondrial and growth 

(Pusapati, Daemen et al. 2016).  mTORC1 activation appeared to be via 

glutaminolysis (Duran and Hall 2012, Duran, Oppliger et al. 2012), these data 

suggests that mTORC1 can be activated by the tumor-metabolic environment.  

Indeed, glutamine-activated mTORC1 was recently shown to underlie 

resistance to angiogenesis inhibitors (Allen, Mieville et al. 2016, Jimenez-

Valerio, Martinez-Lozano et al. 2016, Pisarsky, Bill et al. 2016).  mTORC2 

addicted cancer cell lines also exhibited increased mitochondrial activity, 

probably in addition to aerobic glycolysis (Colombi, Molle et al. 2011).  

Collectively, the above indicates that mTOR promotes cancer, via activation 

of distinct metabolic pathways to increase cell mass and proliferation.  
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2.4.2.  Lipids and cancer 

Cancer cells display elevated FA synthesis, while non-cancer cells rely on 

exogenous sources (bloodstream) (Medes, Thomas et al. 1953, Spirtes, 

Medes et al. 1953).  Enzymes involved in FA synthesis ACC, FASN, SCD1 

and ELOVL6 are frequently upregulate, across cancer types (Medes, Thomas 

et al. 1953, Spirtes, Medes et al. 1953, Kuhajda, Jenner et al. 1994, Li, Ding 

et al. 1994, Menendez and Lupu 2007, Flavin, Peluso et al. 2010, Park, Lee 

et al. 2010, Santos and Schulze 2012, Baenke, Peck et al. 2013, Bae, Oh et 

al. 2016, Feng, Chen et al. 2016, Peck and Schulze 2016).  However, to date, 

the regulation and function of lipid accumulation remains elusive. 

As described above, under physiological conditions mTOR promotes FA 

synthesis.  Whether mTOR can promote cancer via an increase of FAs is 

poorly defined.  High-grade Pten mutated prostate tumors displayed 

cholesteryl-ester accumulation in lipid droplets, suggesting a role for PI3K-

AKT in altering lipid droplet composition in tumors (Yue, Li et al. 2014).  

Breast cancer cell lines expressing oncogenic PI3K or K-RAS exhibit 

enhanced de novo FA synthesis, which appeared to be mediated by 

mTORC1 (Ricoult, Yecies et al. 2015).  While others suggested that 

mTORC2 may promote tumor progression via the expression of FASN (Li, 

Pilo et al. 2016).  Thus, further studies are required to elucidate the 

oncogenic role of mTORC1 and/or mTORC2 and FA synthesis.  

FAs are the building blocks of lipids (described above).  However, to our 

knowledge, no study examined the role of mTOR signaling in mediating lipid 

synthesis in tumors.  Owing to technological advances, tumor lipid phenotype 

can be determined, in particular abundance, composition and spatial 

distribution (Beloribi-Djefaflia, Vasseur et al. 2016).  Indeed, breast tumors, 

compared to adjacent non-tumor tissue, displayed a unique ‘phosphilipid 

signature’ (Hilvo, Denkert et al. 2011, Guenther, Muirhead et al. 2015).  

Similarly, invasive breast cancer cells displayed poly-unsaturated fatty acids 

incorporated to PI, as compared to in situ carcinoma (non-invasive).  Thus, 

changes in lipid composition/accumulation are associated with cancer 

aggressiveness (Kawashima, Iwamoto et al. 2013).  Unlike breast cancers, 

renal cell and hepatocellular carcinoma exhibited increased 
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phosphatidylglycerol (PG), a CL precursor.  Altered CL composition was 

reported in mitochondria from different brain tumors (astrocytoma, 

ependymoblastoma and microglioma) (Kiebish, Han et al. 2008).  Suggesting 

a cancer-specific alteration in CL composition.  This data suggests that 

various oncogenic pathway induce changes in lipid abundance and 

composition. 

In pancreatic tumors, enhanced cholesterol uptake appeared to activate 

ERK1/2 pathway (Guillaumond, Bidaut et al. 2015).  Thus, not only oncogenic 

signaling alters lipid composition, but also lipids can activate oncogenic 

pathways, thereby amplifying oncogenic signaling. 

Sphingolipids may promote or inhibit tumors.  Ceramide is a potent ‘tumor 

suppressor lipid’, by inducing apoptosis or autophagy.  Autophagy, however, 

can also yield cancer cell survival.  Overall, cancer cell preferentially 

upregulate ceramide degrading enzymes, thereby escaping apoptosis.  One 

such pathway, to promptly eliminate ceramide, is by ceramide glycosylation.  

Ceramide glycosylation is chiefly catalyzed by glucosylceramide synthase 

(GCS), thereby providing an escape route from ceramide-induced apoptosis 

(Liu, Han et al. 2000, Ogretmen and Hannun 2004, Gupta, Patwardhan et al. 

2010, Gupta, Bhinge et al. 2012, Kartal Yandim, Apohan et al. 2013, Liu, Hill 

et al. 2013, Tyler, Johansson et al. 2015). 

 

2.4.3.  NAFLD and liver cancer 

Liver cancer is the fifth most common cancer worldwide and has poor 

prognosis accounting for about 600.000 deaths annually (Llovet, Zucman-

Rossi et al. 2016).  One risk factor for liver cancer is Non-Alcoholic Fatty Liver 

Disease (NAFLD).  NAFLD is the most prevalent liver disease western 

countries (Bellentani, Scaglioni et al. 2010, Baffy 2013, Fazel, Koenig et al. 

2016, Lonardo, Byrne et al. 2016).  NAFLD is characterized by excessive 

accumulation of FAs in hepatocytes, in about ~30% of patients it is due to 

enhanced de novo fatty acid (FA) synthesis.  Tissue damage in NAFLD can 

be further amplified by inflammation (Wolf, Adili et al. 2014, Ma, Kesarwala et 

al. 2016), a condition referred to as non-alcoholic steatohepatitis (NASH) 

(Park, Lee et al. 2010, Scherer and Dufour 2016).  NAFLD or NASH patients 
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may progress to HCC (even without developing liver cirrhosis) (Mittal, Sada 

et al. 2015). 

Studies using high fat diet (HFD) or modified diet regimens (methionine-

choline deficient) with or without parallel DEN (diethylnitrosamine) 

administration are frequently used as a model for NAFLD and NASH (Park, 

Lee et al. 2010, Wolf, Adili et al. 2014, Ma, Kesarwala et al. 2016).  Although 

useful, in majority of cases mice are fed HFD, therefore examining the effect 

of hyper-nutrition, and not that of de novo FA and lipid synthesis.  In this 

thesis we separate the contribution of hyper-nutrition from that of de novo 

fatty acid and lipid synthesis. 
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3.0.  Aims of thesis 

1.  Full biochemical and histological characterization of L-dKO mice 

(liver cancer mouse model). 

2.  Examination of the effects of hepatic mTOR-activation on the 

whole-body. 

3.  Global analysis (proteome and phosphoproteome) of mTOR-driven 

tumors – to elucidate early oncogenic mechanisms downstream of 

mTOR signaling. 

 

The above led to the discovery that L-dKO mice exhibit increased fatty acid 

and lipid synthesis and develop hepatosteatosis, prior to the appearance of 

liver tumors.  I therefore set out to examine the following, 

 

1.  What lipid species are deregulated in L-dKO mice and are possibly 

controlled by mTOR signaling (lipidomics was performed in 

collaboration with the lab of Howard Riezman). 

2.  Is there a causal relationship between fatty acids and/or lipid 

accumulation and tumor development? 

3.  What is/are the function(s) of fatty acids and lipids in tumors. 

4.  To elucidate whether the above is mTORC1 or mTORC2 

dependent. 
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Inspiration 
Various oncogenic mutations lead to sustained mTOR activation (see 

appendix).  The question that inspired me was (and still is), what are the 

mechanisms downstream of mTOR required for tumor development. 

Importantly, the basic (and key) trait of this thesis is the use of longitudinal 

studies.  This approach allowed us to identify that fatty acid and lipid 

synthesis occur prior to tumor development and persist within tumors.  In this 

thesis we provide evidence that mTOR-driven tumors require fatty acids and 

lipids for development.  Moreover, we demonstrate that the above is primarily 

controlled by mTORC2.  We hope that these studies provide a better 

understanding for the oncogenic role of mTOR and lipids, and will stimulate 

the usage of FA or lipid pathways inhibitors as (co-) therapy for cancer. 
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4.  Results (manuscript) 
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Summary 

 

Dysregulated mammalian TOR (mTOR) promotes cancer, but underlying 

mechanisms are poorly understood.  We describe an mTOR-driven mouse 

model that displays hepatosteatosis progressing to hepatocellular carcinoma 

(HCC).  Longitudinal proteomic, lipidomic and metabolomic analyses 

revealed that hepatic mTORC2 promotes de novo fatty acid and lipid 

synthesis, and thereby tumorigenesis.  In particular, mTORC2 stimulated 

sphingolipid (glucoceramide) and glycerophospholipid (cardiolipin) synthesis.  

Inhibition of fatty acid or sphingolipid synthesis prevented tumor development.  

Increased levels of cardiolipin were associated with tubular mitochondria and 

enhanced oxidative phosphorylation.  Thus, mTORC2 promotes cancer via 

formation of lipids essential for growth and energy production.  Collectively, 

these findings illustrate a role for mTORC2 in lipid-mediated oncogenesis that 

could be exploited for targeted cancer therapies. 
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Introduction 

 

Cancer is a disorder characterized by increased metabolic activity leading to 

enhanced cell growth and proliferation.  Thus, cancer cells exhibit metabolic 

features that are distinct from non-cancerous cells (DeBerardinis, Lum et al. 

2008, Schulze and Harris 2012, Pavlova and Thompson 2016).  One such 

feature is elevated fatty acid (FA) synthesis, while non-cancerous cells rely 

on exogenous sources (Medes, Thomas et al. 1953, Spirtes, Medes et al. 

1953).  Various enzymes that mediate fatty acid and lipid synthesis are 

transcriptionally up-regulated in tumors (Kuhajda, Jenner et al. 1994, Li, Ding 

et al. 1994, Menendez and Lupu 2007, Flavin, Peluso et al. 2010, Park, Lee 

et al. 2010, Schulze and Downward 2011, Santos and Schulze 2012, Baenke, 

Peck et al. 2013, Bae, Oh et al. 2016, Feng, Chen et al. 2016, Peck and 

Schulze 2016).  Although clinical trials for lipogenesis inhibitors are ongoing 

(Beloribi-Djefaflia, Vasseur et al. 2016), the regulation and function of lipids in 

tumors remain elusive. 

Liver cancer is the fifth most common cancer worldwide and has poor 

prognosis, accounting for about 600,000 deaths annually (Llovet, Zucman-

Rossi et al. 2016).  One risk factor for liver cancer is Non-Alcoholic Fatty Liver 

Disease (NAFLD).  NAFLD is characterized by excessive accumulation of 

triglycerides (TG) in hepatocytes (also known as hepatosteatosis), due in part 

to enhanced hepatic de novo FA synthesis (Lambert, Ramos-Roman et al. 

2014, Sanders and Griffin 2016).  NAFLD may progresses to Non-Alcoholic 

Steatohepatitis (NASH) and ultimately HCC (Postic and Girard 2008). 
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FA synthesis is induced by growth factors, through the transcription factor 

SREBP1c (Sterol Regulatory Element-Binding Protein-1c).  Upon growth 

factor stimulation, precursor SREBP1c is proteolytically processed to yield 

mature SREBP1c, which is translocated into the nucleus to activate 

expression of the FA biosynthesis genes Acc, Fasn, Scd1 and Elovl6 (Horton, 

Goldstein et al. 2002).  

FAs are assembled from acetyl groups derived mainly from citrate.  

Citrate produced by the TCA cycle in mitochondria is shuttled to the 

cytoplasm and converted, by ACLY (ATP-Citrate Lyase), to acetyl-CoA and 

oxaloacetate.  Oxaloacetate is converted to pyruvate, generating NADPH that 

provides reducing power for lipid synthesis.  Acetyl-CoA is converted to 

malonyl-CoA by ACC (Acetyl-CoA Carboxylase).  FASN (Fatty Acid 

Synthase) then condenses malonyl-CoA and several molecules of acetyl-CoA 

to produce palmitate (16 carbon unit).  SCD1 (Stearoyl-CoA Desaturase 1) 

desaturates palmitate thereby generating mono-unsaturated FA.  Other FA 

desaturases (FADS) generate highly polyunsaturated fatty acids (PUFA) (Lee, 

Lee et al. 2016).  FAs can be stored in the form of triacylglycerol (TG).  

Alternatively, FAs are utilized for the synthesis of sphingolipids (SLs) and 

glycerophospholipids (PLs) that are ultimately used as signaling molecules or 

membrane building blocks.  PLs, including mitochondria-specific cardiolipin, 

are the major lipid constituent of cellular membranes. 

The evolutionarily conserved Ser/Thr kinase Target of Rapamycin (TOR) 

controls metabolic pathways that mediate cell growth.  TOR forms two 

structurally and functionally distinct protein complexes termed TOR Complex 

1 (TORC1) and TORC2 (Loewith, Jacinto et al. 2002, Wullschleger, Loewith 
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et al. 2006).  Mammalian TORC1 (mTORC1) is activated by nutrients, growth 

factors and cellular energy (Laplante and Sabatini 2012, Dibble and Manning 

2013, Shimobayashi and Hall 2016).  Growth factors stimulate mTORC1 via 

PI3K-PDK1-AKT mediated inhibition of the negative regulator and tumor 

suppressor TSC, consisting of TSC1 and TSC2 (Inoki, Li et al. 2002, 

Kenerson, Aicher et al. 2002, Kwiatkowski, Zhang et al. 2002, Manning, Tee 

et al. 2002, Tee, Fingar et al. 2002, Dibble, Elis et al. 2012).  The tumor 

suppressor PTEN (Phosphatase and tensin homolog deleted on chromosome 

10) negatively regulates both mTORC1 and mTORC2 signaling.  mTORC1 

directly or indirectly phosphorylates S6K (Ribosomal Protein S6 Kinase), 

ribosomal protein S6, CAD (Carbamoyl Phosphate Synthetase 2, Aspartate 

Transcarbamylase, and Dihydroorotase), and ULK (Unc-51 Like Autophagy 

Activating Kinase 1) among others.  Growth factors activate mTORC2 via 

PI3K dependent association of mTORC2 with the ribosome (Zinzalla, Stracka 

et al. 2011).  mTORC2 phosphorylates several members of the AGC kinase 

family, including AKT, to control various cellular process (Dibble and Manning 

2013, Shimobayashi and Hall 2016).  mTORC2 physiologically controls 

hepatic fatty acid synthesis via AKT and SREBP1c (Hagiwara, Cornu et al. 

2012). mTORC2 is also tumorigenic (Guertin, Stevens et al. 2009, Masui, 

Tanaka et al. 2013, Masui, Tanaka et al. 2015), but little is known about the 

underling mechanism(s).  Tumors frequently exhibit activated SREBP1c 

(Ricoult, Yecies et al. 2015, Li, Pilo et al. 2016).  Rapamycin acutely inhibits 

only mTORC1 whereas INK128 inhibits both mTORC1 and mTORC2 

(Benjamin, Colombi et al. 2011, Hsieh, Liu et al. 2012). 
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Here we demonstrate that, in liver-specific Tsc1 Pten double knockout (L-

dKO) mice, mTORC2 promotes elevated hepatic fatty acid and lipid 

(sphingolipid, cardiolipin) synthesis, and thereby hepatosteatosis and 

hepatocellular carcinoma (HCC).  Enhanced cardiolipin synthesis leads to 

increased mitochondrial activity and energy production.  Thus, mTORC2 is 

oncogenic via lipogenesis. 

 

Results 

 

Liver specific activation of mTOR signaling promotes FA synthesis, 

hepatosteatosis, and HCC. 

To study the role of mTOR signaling in cancer, we generated mice lacking 

both Tsc1 and Pten specifically in the liver (termed L-dKO mice).  The L-dKO 

(Tsc1loxP/loxP; PtenloxP/loxP; Alb-CRE) mice exhibited reduced expression of 

TSC1 and PTEN in the liver, and concomitant activation of mTORC1 and 

mTORC2 signaling, as compared to age-matched littermate control mice 

(Tsc1loxP/loxP; PtenloxP/loxP) (Figure 1A).  The L-dKO mice displayed 

disproportionately increased liver weight (hepatomegaly), beginning at 4 

weeks of age, which was independent of feeding behavior (Figure S1A-C).  L-

dKO mice also exhibited increased serum levels of the liver damage markers 

ALT, AST and LDH (Figure S1D), and elevated hepatic expression of the 

cancer-associated genes Afp and Aldh (Figure S1E).  L-dKO mice invariably 

presented liver cancer, detected microscopically, at about 12 weeks of age 

and died at 20 weeks of age, at which time the liver was replete with tumors 

(Figure S1A).  Histological analysis confirmed liver cancer, hepatocellular 
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carcinoma (HCC) and rarely (~10%) cholangiocarcinoma (CC) (Figure 1B 

H&E panel and Figure S1F).  A fibrotic rim, indicative of NASH, demarcated 

the tumors (Figure S1G SR and PAS panel).  To confirm that tumors 

correlate with increased proliferation, BrdU incorporation was assessed.  L-

dKO and control mice at 16 weeks of age (at which time tumor and non-tumor 

regions can be readily discriminated) were injected IP with BrdU (n=3).  As 

expected, hepatocyte proliferation was higher in tumors (Figure S1H), 

compared to non-tumor regions and control liver.  Collectively, and consistent 

with previous studies (Kenerson, Aicher et al. 2002, Kenerson, Yeh et al. 

2013), the above indicates that dysregulated hepatic mTOR causes liver 

cancer. 

To identify early, mTOR-dependent molecular events that promote liver 

cancer development, we performed longitudinal, unbiased quantitative 

proteomics and phosphoproteomics on liver samples from 4, 8 and 12 week-

old L-dKO mice and age-matched littermates.  Pathway enrichment analysis 

of proteins and phosphorylation events that were consistently and 

significantly (>2 fold) up- or down-regulated at all three ages (Figure S2A, B) 

revealed enrichment of FA and lipid synthesis pathways (Figures 1C and S2C, 

D).  Importantly, FA and lipid synthesis pathways were up-regulated 

specifically in livers developing HCC, i.e., livers from L-dKO mice.  

Immunoblot analysis confirmed increased expression of FA synthesis 

enzymes ACC, FASN and SCD1 in liver lysates from L-dKO mice, compared 

to control mice (Figure 1A).  Immunoblotting also showed increased levels of 

mature SREBP1c (Figure 1A) while quantitative PCR analysis revealed 

increased expression of the Acc1, Fasn, and Scd1 genes (Figure S2E), 
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indicating that the increase in expression of FA synthesis enzymes was at the 

transcriptional level.  Additionally, phosphoproteomics revealed increased 

ACLY-Ser455 phosphorylation (pACLY-Ser455) in livers of L-dKO mice, 

possibly leading to ACLY activation (Das, Morvan et al. 2015).  pACLY-

Ser455 was also validated by immunoblotting (Figure 1A).  Expression of 

CD36, a long-chain fatty acid transporter that contributes to hepatosteatosis 

(Zhou, Febbraio et al. 2008, Steneberg, Sykaras et al. 2015), was also 

increased in liver of L-dKO mice (Figures 1A, S2F), suggesting enhanced FA 

uptake in addition to synthesis.  Up-regulation of lipid biosynthesis pathways 

was also confirmed, as described further below.  Isolated liver tumors from 20 

week-old L-dKO mice (12 tumors, from 4 mice) also displayed increased 

expression of FA and lipid synthesis pathways, as determined by proteomic 

and RNA sequencing (RNAseq) analyses and confirmed by immunoblotting 

(Figure 1C and Table S1).  We note that in biochemical experiments in which 

we use liver samples from 20 week-old mice, the samples are excised tumors, 

whereas samples from younger mice (4, 8 and 12 weeks) are whole liver.  

We next investigated FA accumulation (hepatosteatosis) and its 

correlation with tumor development.  Macroscopically, livers from L-dKO mice 

appeared fatty starting at 8 weeks of age (Figure S1A).  Lipid droplet specific 

Oil-red-O (ORO) staining confirmed hepatosteatosis (Figure 1D and Figure 

S1F).  H&E staining revealed enlarged hepatocytes, likely due to a 

combination of lipid droplet accumulation and mTOR driven cell growth 

(Figures S1F and S2G, H).  Consistent with enhanced lipid droplet 

accumulation, hepatic TG levels were increased in 4, 8, 12 and 20 week-old 

L-dKO mice, compared to control mice (Figure 1D).  Hepatic TG 
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accumulation was more pronounced in ad-libitum fed mice compared to mice 

starved overnight (Figure S2I).  We note that all subsequent experiments 

were performed with ad-libitum fed mice.  The above indicates that FA 

accumulation precedes HCC in L-dKO mice, as observed clinically. 

To investigate the effect of activated hepatic mTOR signaling on whole-

body metabolism, we performed indirect calorimetry on L-dKO and control 

mice at 12 and 20 weeks of age.  The respiratory exchange ratio (RER) was 

lower in L-dKO, compared to control mice, despite little-to-no difference in 

feeding behavior or physical activity, suggesting that L-dKO mice are more 

reliant on FA oxidation for energy production (Figure S3A-C).  L-dKO mice 

were unaltered in total fat or lean mass compared to controls, as determined 

by longitudinal whole-body fat composition analyses (EchoMRI) (Figure S3D).  

Since L-dKO mice displayed hepatosteatosis and hepatomegaly but did not 

exhibit an overall increase in fat or lean mass, we investigated whether L-

dKO mice exhibit cancer cachexia (wasting syndrome) that may offset the 

increased liver mass.  Cachexia is characterized by substantial tissue loss, in 

particular skeletal muscle and adipose tissue (Argiles, Busquets et al. 2014).  

Indeed, L-dKO mice exhibited reduced skeletal muscle and adipose tissue 

mass compared to control mice (Figure S3E, F).  Hepatic expression of 

genes involved in lipid secretion (Apob, Mttp) or degradation (Atgl, Acox1, 

Mcad, Cpt1), as well as LDL and HDL levels were not changed (Figure S3G, 

H).  Thus, L-dKO mice exhibit whole body cachexia-like effects. 

 

 

 



	
   42 

FA synthesis is required for tumor development. 

To determine whether FA synthesis is required for tumor development, 6 to 8 

week-old L-dKO (n=4) and littermate control (n=5) mice were treated with the 

FASN inhibitor orlistat (120 mg/kg/bw) or drug vehicle alone (Kridel, Axelrod 

et al. 2004, Seguin, Carvalho et al. 2012, Sounni, Cimino et al. 2014) daily for 

12 weeks.  Orlistat treated L-dKO mice displayed significantly fewer hepatic 

lipid droplets and liver tumors, compared to L-dKO mice treated with drug 

vehicle alone (Figures 2A and S4A, B).  Orlistat treatment did not reduce total 

liver or body weight (Figure S4C).  Furthermore, Orlistat treatment had no 

effect on the phosphorylation status of AKT-Ser473 and S6-Ser235/6 (Figure 

S4D), indicating that drug action was not via inhibition of mTOR.  Thus, FA 

synthesis required for tumor development. 

To determine if FA synthesis in the liver is required for tumor 

development, we used adenovirus associated virus (AAV) to knockdown 

FASN specifically in hepatocytes.  Importantly, to achieve hepatocyte specific 

knockdown, we used an AAV with high liver tropism and expressing shFASN 

from the albumin promoter (AAV-DJ-Albumin-shFASN-RFP, hereafter 

referred to as AAV-shFASN) (Figure S4E).  AAV-shFASN or the control virus 

AAV-shScrmbl (AAV-DJ-Albumin-shScrmbl-RFP) was injected into the tail 

vein of 6 to 8 week-old L-dKO (n=4) and control (n=3) mice.  FASN 

knockdown was confirmed by immunoblotting, qPCR and 

immunofluorescence (Figure S4F-I).  Tumor burden was assessed in mice 

sacrificed at 20 weeks of age.  L-dKO mice infected with AAV-shFASN 

exhibited significantly reduced hepatocyte proliferation and tumor burden, 

compared to L-dKO mice treated with AAV-shScrmbl (Figure 2B).  
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Importantly, AAV-shFASN did not have a detrimental effect in wild-type mice, 

indicating that in contrast to transformed hepatocytes, normal hepatocytes 

are not dependent on FASN expression.  Control mice lacking tumors 

presumably obtain sufficient FAs from the diet.  Collectively, these data 

indicate that hepatic FA synthesis is required for tumor development in 

mTOR driven HCC. 

 

mTOR promotes do novo sphingolipid synthesis: Glucosylceramide. 

The transcriptomic and proteomic analyses described above suggested that 

mTOR promotes lipid synthesis in addition to FA synthesis.  In particular, 

enzymes mediating sphingolipid (SL) and glycerophospholipid (PL) synthesis 

were up-regulated in the liver of young L-dKO mice (4, 8, or 12 weeks) and in 

tumors of 20 week-old L-dKO mice (Figure 1C). 

The rate-limiting reaction in de novo SL biosynthesis is the condensation 

of serine and palmitate catalyzed by SPT (Serine Palmitoyltransferase) to 

generate 3-keto-sphinganine (3kSN) (Aguilera-Romero, Gehin et al. 2014, 

Garcia-Barros, Coant et al. 2014) (Figure 1C).  3kSN is then reduced to yield 

the long chain base (LCB) sphinganine (SN).  LCB is N-acylated, with fatty 

acid chains of different lengths, by CerS (Ceramide Synthase, isoforms 1 to 

6) to produce dihydroceramide (dhCer).  The fatty acids used for sphingolipid 

synthesis are produced by ELOVL (Elongation of Very Long Chain Fatty 

Acids), comprising a family of seven isoforms.  DES (Dihydroceramide 

Desaturase, isoforms 1 and 2) adds a double bond to complete the synthesis 

of ceramide.  Ceramide undergoes head group modifications in the golgi to 

yield sphingomyelin (SM) or glucosylceramide (GlcCer).  GlcCer synthesis is 
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catalyzed by GCS (Glucosylceramide Synthase) that transfers glucose from 

uridine diphosphate (UDP) glucose to ceramide.  Ceramide can also be 

converted to sphingosine (SP) by ceramidases.  SL biosynthetic enzymes, 

including SPT and CerS, are implicated in NAFLD (Pagadala, Kasumov et al. 

2012) and cancer (Ogretmen and Hannun 2004, Levy and Futerman 2010).  

L-dKO mice exhibited increased expression (mRNA and protein) of 

sphingolipid anabolic enzymes, in particular SPT, ELOVL (isoforms 1, 4, 6 

and 7), CerS (isoforms 2, 3, 5 and 6), DES (isoforms 1 and 2), and GCS 

(Figures 1C).  Expression of enzymes that mediate reverse, catabolic steps 

was not altered, with the exception of SMPD (isoforms 1 to 4) and GBA 

(isoforms 1 to 2) that were increased and decreased, respectively (Figure 1C).  

Importantly, increased SMPD and decreased GBA expression suggests that 

GlcCer synthesis is favored in L-dKO mice.  SPK1 (Sphingosine Kinase 1) 

and SPL1 (Sphingosine Lyase 1) that mediate sphingosine 1 phosphate 

(S1P) metabolism downstream of ceramide were also up-regulated (see 

Discussion).  Altered expression of SPT, GCS, SMPD (isoforms 1 and 3), and 

SPK1 was confirmed by immunoblotting or qPCR (Figures 1A, 3A and S5A).  

Immunofluorescence on perfused livers from 8 week-old L-dKO and control 

mice indicated that increased SPT expression was specific to hepatocytes 

(Figure S5B).  These findings suggest that de novo SL synthesis is increased 

in hepatocytes from L-dKO mice, likely leading to GlcCer accumulation. 

To determine whether the above changes in expression lead to changes 

in lipid accumulation, we performed longitudinal unbiased semi-quantitative 

lipidomic analysis on liver samples from 4, 8, 12 and 20 (tumors) week-old L-

dKO mice and age-matched littermates (n=6, per time point).  Lipid 
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enrichment analysis revealed that L-dKO mice exhibit enhanced 

accumulation of dhCer, ceramide, and GlcCer (Figure 4A; Table S2).  As 

suggested by the above transcriptomic and proteomic analyses (Figure 1C), 

the most pronounced accumulation was of GlcCer.  The observed GluCer 

accumulation in livers of L-dKO mice was validated by immunofluorescence 

analysis on frozen liver sections (Figure S5C).  Thus, liver of L-dKO mice 

accumulates sphingolipids, preferentially GlcCer. 

To confirm that de novo SL synthesis, as opposed to SL salvage 

pathways that can also produce elevated levels of GlcCer, was high in L-dKO 

mice we performed metabolomic analysis on liver samples from 4, 8, 12 and 

20 week-old L-dKO mice and control littermates.  Indeed, sphinganine (SN), 

an intermediate of de novo synthesis, was increased in liver samples from L-

dKO mice (Figure 3B).  Moreover, metabolomic analysis indicated that the 

level of the amino acid serine, which is required for the rate-limiting step in de 

novo SL synthesis, was consistently reduced in liver samples from L-dKO 

mice (Figure 3C).  Alanine and glutamine levels were not similarly depleted 

(Figure S5D), suggesting that the reduction in serine is due to consumption 

by de novo SL synthesis.  Thus, consistent with the observed increase in fatty 

acid synthesis, L-dKO mice display increased hepatic de novo SL synthesis. 

 

Sphingolipid (GlcCer) is required for liver tumor development. 

To determine whether the observed increase in de novo SL synthesis is 

required for tumor development, 8 week-old L-dKO (n=5) and littermate 

control (n=5) mice were treated with the SPT inhibitor myriocin.  Myriocin 

(0.03 mg/kg/bw) or drug vehicle alone was IP administered every second day.  
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At 20 weeks of age, mice were euthanized, livers were dissected and liver 

tumors were counted.  Myriocin treatment significantly reduced the number of 

liver tumors in L-dKO mice (Figure 3E).  This effect was further illustrated by 

principle component analysis (Figure S5E).  Myriocin had no effect on the 

phosphorylation status of AKT-Ser473 and S6-Ser235/6, suggesting that the 

drug acted independently of mTOR signaling (Figure S5F).  Liver and body 

weights of L-dKO and control mice treated with myriocin were unchanged 

(Figure S5G).  Lipidomic analysis confirmed the in vivo action of myriocin 

(Figure 3D).  Thus, de novo SL synthesis is required for tumor growth.  

The above proteomic and lipidomic analyses indicated that L-dKO mice 

preferentially accumulate GlcCer.  Furthermore, expression of the GlcCer 

synthesis enzyme GCS correlates with tumorigenicity (Liu, Han et al. 2000, 

Gupta, Bhinge et al. 2012, Kartal Yandim, Apohan et al. 2013, Liu, Hill et al. 

2013, Tyler, Johansson et al. 2015), and a GCS inhibitor blocks proliferation 

of leukemic (Huang, Tsai et al. 2011), lung cancer (Suzuki, Cao et al. 2016) 

pancreatic tumor (Wang, Wei et al. 2015) and HCC cells (Stefanovic, 

Tutusaus et al. 2016).  To determine whether accumulation specifically of 

GlcCer is important for tumor development in vivo, we knocked down GCS in 

hepatocytes in L-dKO mice.  AAV-shGCS or the control virus AAV-shScrmbl 

was injected into tail vein of 6 to 8 week-old L-dKO (n=6) and control mice 

(n=4).  Hepatic viral infection was confirmed by immunofluorescence (Figure 

S5H).  At 20 weeks of age, mice were euthanized, livers were dissected and 

tumors were counted.  Strikingly, chronic GCS inhibition reduced the number 

of liver tumors (Figure 2B).  Thus, GlcCer accumulation is required for tumor 

development. 
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mTOR promotes glycerophospholipid synthesis: Cardiolipin. 

The transcriptomic and proteomic analyses described above also suggested 

that mTOR promotes glycerophospholipid (PL) synthesis.  PL synthesis 

begins with the acylation of glycerol 3-phosphate by GPAT (Glycerol 3-

Phosphate Acyltransferase) to generate lysophosphatidic acid (LPA).  LPA is 

then converted to phosphatidic acid (PA) by AGPAT (Acylglycerol-3-

Acyltransferase).  PA is converted to diacylglyceride (DAG), by the PAP 

(Phosphatidic Acid Phosphatase, also known as LIPIN) family of enzymes.  In 

the so-called ‘Kennedy pathway’, DAG and choline or ethanolamine are 

condensed to yield phosphatidylcholine (PC) or phosphatidylethanolamine 

(PE), respectively (Gibellini and Smith 2010).  Alternatively, DAG is 

conjugated to CDP by CDS (CDP-DAG synthase) to produce the 

liponucleotide CDP-DAG.  CDP-DAG is used for the synthesis of 

phosphatidylinositol (PI), phosphatidylserine (PS), and cardiolipin (CL).  CLs 

are synthesized exclusively in the mitochondria (Schlame and Haldar 1993, 

Schlame, Rua et al. 2000) by PGS1 (Phosphatidylglycerophosphate 

Synthase 1).  PGS1 catalyzes the rate-limiting step in CL synthesis, 

condensing DAG and glycerol-3-phosphate to produce phosphatidylglycerol-

phosphate (PGP).  PGP is dephosphorylated by the PTEN-like mitochondrial 

phosphatase PTPMT1, generating a phosphatidylglycerol (PG) (Zhang, Guan 

et al. 2011).  Cardiolipin synthase (CRLS1) attaches PG to DAG, producing 

immature CL that is then remodeled in a series of reactions.  In the inner 

mitochondrial membrane (IMM) CLs stabilize the complexes of the electron 
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transport chain, thereby supporting oxidative phosphorylation (OxPhos) 

(Houtkooper and Vaz 2008, Duncan, Robinson et al. 2016). 

The transcriptomic and proteomic analyses described above and 

immunoblotting revealed increased hepatic expression of the PL synthesis 

enzymes GPAT, AGPAT, LIPIN, CDS, PGS1, CRLS1 and PTPMT1 in L-dKO 

mice (Figures 1C and 5A), suggesting increased synthesis of PLs, cardiolipin 

in particular.  Indeed, lipidomic analysis revealed elevated levels of the PLs 

phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC) and cardiolipin 

(CL), with accumulation of CL being the most pronounced (Figure 4A).  

Importantly, the levels of PC and PE, both products of the Kennedy pathway, 

were reduced (Figure S6A, B).  The above suggests that cardiolipin is 

preferentially synthesized in L-dKO mice.  Thus, again consistent with the 

observed increase in fatty acid synthesis, L-dKO mice display increased 

hepatic synthesis of PLs, in particular via the biosynthetic pathway leading to 

cardiolipin (i.e., not the Kennedy pathway). 

 

Increased cardiolipin accumulation is associated with enhanced 

respiration. 

CLs stabilize complexes of the electron transport chain (ETC) thereby 

supporting oxidative phosphorylation (OxPhos) (Houtkooper and Vaz 2008, 

Duncan, Robinson et al. 2016).  Expression of ETC complexes was 

unchanged in L-dKO mice, compared to control littermates, as determined by 

immunoblot analysis and electron microscopy (EM) (Figure S6C-E).  However, 

hepatocytes from L-dKO mice exhibited hyper-tubular mitochondria and 

pronounced cristae, as determined EM analysis (Figures S6C and F).  The 
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hyper-tubular mitochondrial morphology was confirmed by staining L-dKO 

primary hepatocytes with the mitochondria specific dye MitoTracker-Red 

(Figures 5B, S5B).  To investigate mitochondrial function, OxPhos in 

particular, we measured the oxygen consumption rate (OCR) and 

mitochondrial reserve capacity of primary hepatocytes.  Primary hepatocytes 

from L-dKO mice displayed enhanced OxPhos and increased mitochondrial 

reserve capacity, compared to wild-type hepatocytes (Figure 5C).  Thus, 

increased cardiolipin accumulation correlates with enhanced mitochondrial 

function.  The increase in cardiolipin may increase mitochondrial function to 

sustain the enhanced metabolic needs of tumor cells.  

 

mTORC2 promotes FA, sphingolipid and cardiolipin accumulation. 

The above suggests that hyperactive mTOR signaling promotes lipid 

synthesis and cancer.  To confirm that tumor development is indeed mTOR 

dependent, 8 week-old L-dKO and control mice were chronically treated with 

the ATP competitive mTOR inhibitor INK128 (1 mg/kg/bw), or drug vehicle 

alone, for 12 weeks.  Chronic INK128 administration reduced mTOR 

signaling (mTORC1 and mTORC2) (Figure S6G), and prevented both liver 

damage  (Figure S6H) and tumor growth (Figure 6A), confirming that tumor 

development was mTOR dependent.  We note that chronic INK128 

administration also reduced hepatic TG content (Figure 6B) and hepatocyte 

size (Figure 6C). 

Hepatic mTORC1 and mTORC2 are activated in L-dKO mice.  To 

determine whether mTORC1 and/or mTORC2 signaling controls FA and lipid 

synthesis in L-dKO mice, we performed acute pharmacological inhibition 
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studies.  8 week-old L-dKO and control mice (n=4 per group) were treated 

acutely (24hrs) with rapamycin, INK128 or drug vehicle alone.  Acute 

rapamycin treatment inhibited mTORC1, as assessed by reduced S6-

Ser235/6, CAD-Ser1859 and ULK-Ser757 phosphorylation, and increased 

AKT-Ser473 phosphorylation, the latter due to inhibition of negative feedback 

from S6K (Figure S6I, mTORC2 panel).  Acute INK128 administration 

inhibited both mTORC1 (assessed as above) and mTORC2, as assessed by 

reduced AKT-Ser473, GSK-Ser21/9, and NDRG1-Thr346 phosphorylation 

(Figure S6I).  Acute INK128 treatment reduced both expression of ACC, 

FASN, and SCD1 (Figure 6D) and hepatic TG content in L-dKO mice, 

compared to INK128 treated control mice (Figure S7A).  We note that acute 

INK128 administration increased overall hepatic TG content in L-dKO and 

control mice compared to mice treated with drug vehicle alone (Figure S7A), 

likely due to enhanced lipolysis in adipose tissue as suggested by increased 

serum FA levels (Figure S7B) (Cybulski, Polak et al. 2009, Kumar, Lawrence 

et al. 2010).  Inhibition of mTORC1 alone (rapamycin) did not alter expression 

of hepatic FA synthesis enzymes or hepatic TG content (Figures S6I and 

S7A).  Thus, hepatic FA synthesis is activated by mTORC2. 

To confirm that mTORC2 promotes de novo FA and lipid synthesis, TG 

accumulation and liver cancer development, we deleted Rictor, an essential 

core component of mTORC2, in L-dKO mice.  Tsc1loxP/loxP; PtenloxP/loxP mice 

were crossed with RictorloxP/loxP mice expressing Alb-CRE, to generate triple 

knockout (L-TriKO) mice lacking Tsc1 Pten and Rictor (Figure S7C, D).  L-

TriKO mice were born according to Mendelian ratios and gained weight 

normally (not shown).  Immunoblot analysis of liver lysates revealed markedly 
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reduced mTORC2 activity in L-TriKO mice (Tsc1loxP/loxP; PtenloxP/loxP; 

RictorloxP/loxP; Alb-CRE) compared to littermate control mice (Tsc1loxP/loxP; 

PtenloxP/loxP; RictorloxP/loxP), as assessed by AKT-Ser473, GSK-Ser21/9, 

NDRG1-Thr346, and PKC-Thr638/641 phosphorylation; mTORC1 activity 

was not change in L-TriKO mice, as assessed by S6-Ser235/6, CAD-Ser1859 

and ULK-Ser757 phosphorylation (Figure S7E), thereby confirming the L-

TriKO mouse model.  Importantly, L-TriKO mice displayed reduced 

expression of ACC, FASN, SCD1 and their transcriptional activator SREBP1c 

(mature form), and reduced hepatic TG content (Figure 7A, B), compared to 

L-dKO mice.  Expression of the SL synthesis genes Spt and SMPD was also 

reduced in L-TriKO mice, compared to L-dKO mice (Figure 7C).  Similarly, 

immunoblotting of primary hepatocytes from knockout and control mice 

showed reduced CRLS1 expression in L-TriKO mice (Figure S7F).  Lipidomic 

analysis was also performed on liver lysates from L-TriKO, L-dKO and control 

mice (n=4/group), revealing reduced sphingolipid and glycerophospholipid 

levels, including GlcCer and CL(18:≤1), respectively, specifically in L-TriKO 

mice (Figures 4 and S5C).  Collectively, the above indicates that mTORC2 

activates de novo SL and PL synthesis. 

Importantly, in addition to reduced FA and lipid synthesis, L-TriKO mice 

also displayed reduced tumorigenicity (Figures 7D, E and S7G, H).  We note 

that the few tumors that arose in L-TriKO mice exhibited increased mTORC2 

activity, as assessed by immunohistochemical analysis of phosphorylated 

AKT473 (Figure S7I), suggesting that such tumors were due to 'escapers' in 

which Rictor was not deleted.  Thus, it is mTORC2 that is lipogenic and 

oncogenic in L-dKO mice.  
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Discussion 

 

Diverse mutations activate mTOR signaling to promote tumor development, 

but tumorigenic mechanisms downstream of mTOR signaling remain poorly 

defined, in particular for mTORC2.  We examined tumor development in an 

mTOR-dependent HCC mouse model (L-dKO).  We report that mTORC2 

promotes hepatosteatosis and ultimately tumor development via fatty acid 

(FA) and lipid synthesis. 

Similar to patients who develop NFALD that progresses to HCC (Postic 

and Girard 2008, Lambert, Ramos-Roman et al. 2014), L-dKO mice exhibit 

enhanced FA synthesis and thereby develop hepatosteatosis, liver damage 

and HCC (Figures 1A-E, S1A-G and S2A-H).  Knockdown of fatty acid 

synthase (FASN) specifically in hepatocytes blocked tumor development 

(Figures 2A-D and S4A, H).  Notably, FASN inhibition did not have a 

detrimental effect in wild-type hepatocytes, exposing a vulnerability specific to 

cancer cells.  Non-cancerous cells, which have reduced metabolic 

requirements, obtain sufficient amounts of FAs from the diet.  How do fatty 

acids promote tumor development?  First, FAs are necessary for the 

synthesis of lipids, which may in turn be necessary for tumorigenicity.  Indeed, 

we observed that lipid synthesis pathways, in particular de novo sphingolipid 

and glycerophospholipid synthesis, are also up-regulated in L-dKO mice 

(Figures 1C, 3A,B and 4A).  We note that the expression of lipid biosynthetic 

enzymes (SPT in particular) is up-regulated in various human cancer types 

(not shown).  Importantly, inhibition of the rate-limiting reactions in de novo 

SL synthesis or glucosylceramide synthesis prevented tumor development in 
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L-dKO mice, indicating that up-regulation of lipid synthesis is essential for 

tumorigenesis (Figures 2B, 3E, F and S5E).  Second, enhanced FA synthesis 

causes hepatosteatosis, a pathological accumulation of fatty acids, which 

may in turn promote inflammation (NASH) and HCC (Park, Lee et al. 2010, 

Wolf, Adili et al. 2014, Ma, Kesarwala et al. 2016).  Alternatively, FA could be 

used to produce the bioactive sphingolipid S1P leading to inflammation 

(Liang, Nagahashi et al. 2013, Taniguchi and Karin 2014).  Consistent with 

the notion that FAs are promoting tumor development via inflammation, L-

dKO mice exhibited up-regulated SPK1 (Sphingosine Kinase 1) and 

increased S1P levels which correlated with increased STAT3 phosphorylation 

(data not shown).  The role of inflammation in mTOR driven tumor 

development, and in particular its promotion by FAs, will require further study. 

How does up-regulation of sphingolipid (SL) and glycerophospholipid 

(PL) synthesis (in particularly of GlcCer and cardiolipin, respectively) promote 

cancer?  First, SL and PL are structural components of membranes and may 

thereby support tumor growth simply as building blocks.  Ceramide 

glycosylation by glucosylceramide synthease (GCS) yields the membrane 

component GlcCer, but also eliminates excess ceramide and its anti-

proliferative effect (Ogretmen and Hannun 2004).  Importantly, L-dKO mice 

preferentially accumulate GlcCer.  Thus, the essential role of GlcCer 

synthesis in tumorgenicity may be two-fold, one is the production of a building 

block, the other is to eliminate ceramide. Second, CL in the inner 

mitochondrial membrane (IMM) stabilizes complexes of the ETC thereby 

enhancing energy production and satisfying the increased metabolic needs of 

tumor cells (Schlame and Haldar 1993, Schlame, Rua et al. 2000, 
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Houtkooper and Vaz 2008, van der Bliek, Shen et al. 2013, Yu-Wai-Man, 

Carelli et al. 2014, Duncan, Robinson et al. 2016, Peck, Schug et al. 2016).  

Importantly, we observed increased CL synthesis and mitochondrial energy 

production in liver of L-dKO mice (Figure 4A, 5A-C and S6D, F).  Third, lipids 

provide second messengers in oncogenic signaling pathways (Hannun and 

Obeid 2008, Wymann and Schneiter 2008, Baenke, Peck et al. 2013).  For 

example, the glycerophospholipid PI is phosphorylated to generate 

phosphatidylinositol-3,4,5-triphosphate that mediates growth factor signaling.  

It remains to be determined whether the increased lipid synthesis observed in 

L-dKO mice is affecting second messenger levels in oncogenic signaling 

pathways. 

How does mTORC2 regulate FA synthesis?  L-dKO mice display 

increased levels of mature SREBP1c and increased expression of SREBP1c 

target genes Acc, Fasn, Scd1 and Elovl6 (Figures 1A, C and S2E).  

Pharmacological or genetic ablation of mTORC2 signaling in L-dKO mice (L-

TriKO) prevented SREBP1c processing, decreased Acc, Fasn, and Scd1 

expression, and thereby reduced de novo FA synthesis (Figures 6D and 7A, 

B).  Thus, mTORC2 promotes de novo FA synthesis via SREBP1c, as shown 

previously (Hagiwara, Cornu et al. 2012, Kenerson, Subramanian et al. 2015).  

Alternatively, mTORC2 or its effectors may phosphorylate FA synthesis 

enzymes directly, as recently proposed for ACLY (Chen, Qian et al. 2016) 

(Figures 1A and 6D).  Finally, mTORC2 increases expression of the fatty acid 

transporter CD36 (Figure 1A), an effect that was blocked in L-TriKO mice 

(Figure 7A), allowing up-take of FA from the bloodstream. 
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We note that mTORC1 has also been proposed to stimulates FA 

synthesis (reviewed in (Ricoult and Manning 2013)).  For example, mTORC1 

contributes to de novo FA synthesis in breast cancer cell lines (Ricoult, 

Yecies et al. 2015).  However, mTORC1 alone is insufficient to promote de 

novo FA synthesis in vivo.  First, liver specific Tsc1 knockout mice 

(constitutively active mTORC1) are protected from age and diet induced 

hepatosteatosis (Kenerson, Yeh et al. 2011, Yecies, Zhang et al. 2011, Cornu, 

Oppliger et al. 2014, Kenerson, Subramanian et al. 2015).  Second, liver 

specific Raptor knockout mice (abrogated mTORC1 activity) exhibit unaltered 

hepatic FA levels, even when fed a high fed diet (Umemura, Park et al. 2014).  

Third, activation of mTORC1 in the absence of mTORC2 signaling is 

insufficient to activate expression of FA synthesis genes (Titchenell, Quinn et 

al. 2016).  Thus, mTORC2 may play a more important role than mTORC1 in 

hepatic FA synthesis. 

How does mTORC2 activate lipid synthesis?  We observed that mTORC2 

controls expression of some lipid synthesis genes, suggesting that the 

mechanism is at the level of transcription (Figure 7A, C).  However, mTORC2 

is functionally at ER-mitochondria contact sites known as MAM (Mitochondria 

Associated Membrane) (Betz and Hall 2013, Betz, Stracka et al. 2013), 

where PL synthesis occurs.  Thus, mTORC2 or its kinase effectors could also 

directly phosphosphorylate and activate PL synthesis enzymes.  For example, 

pACLY-Ser455 activation in skeletal muscle was mediated by AKT and 

promoted CL synthesis (Das, Morvan et al. 2015).  The mechanism by which 

mTORC2 activates lipid synthesis remains to be determined.  
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Does mTORC1 play a role in in lipid synthesis in L-dKO mice?  mTORC1 

stimulates pyrimidine biosynthesis via phosphorylation of CAD and 

transcriptional activation of the pentosphosphate pathway (Ben-Sahra, 

Howell et al. 2013, Robitaille, Christen et al. 2013).  The pyrimidines uridine 

diphosphate (UDP) and cytidine diphosphate (CDP) are required for the rate-

limiting reactions in GlcCer and PL synthesis, respectively.  L-dKO mice 

display increased CAD phosphorylation (Figure S6I and S7E).  Thus, our 

data favor a model in which mTORC1 and mTORC2 converge on lipid 

synthesis to drive tumor development. 

Collectively, we provide mechanistic insights for oncogenic mTORC2 in 

promoting FA and lipid synthesis.  Lipids are required for tumor growth, as 

macromolecules, but also to support mitochondrial function to match 

increased energy demand.  Inhibition of FA or lipid synthesis pathways kills 

cancer cells, thus exposing a cancer-specific vulnerability that can be 

exploited for the rational design of targeted cancer drugs. 
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Experimental Procedures 

 

Data analysis.  Statistical analysis and data plotting was performed using 

Prism Graph Pad 6.0.  Statistical significance was defined as <0.05.  An 

unpaired Student’s t-test was used to determine differences among two 

groups.  Significance was judged when p-value is less than 0.05.  Error bars 

in figures represent standard error of the mean (SEM).  Kaplan-Meier method 

was used for survival analysis. 

 

Animals.  Liver-specific tuberous sclerosis complex 1 (Tsc1) and 

phosphatase and tensin homolog (Pten) double knockout mice were obtained 

by crossing Tsc1lox/lox mice (Kwiatkowski, Zhang et al. 2002) with Ptenlox/lox 

mice (Horie, Suzuki et al. 2004, Stiles, Wang et al. 2004) to transgenic mice 

expressing Cre recombinase under the control of the hepatocyte-specific 

albumin promoter (Alb-Cre) (Postic and Magnuson 2000), to generate liver 

specific double knockout (L-dKO) mice.  Tsc1loxP/loxP; PtenloxP/loxP mice were 

crossed to Rictor loxP/loxP; Alb-Cre (Cybulski, Polak et al. 2009) to obtain 

(Tsc1loxP/loxP; PtenloxP/loxP; Rictor loxP/loxP; Alb-Cre) liver specific triple knockout 

(L-TriKO mice) mice.  As controls, male littermate Tsc1loxP/loxP; PtenloxP/loxP 

mice or Tsc1loxP/loxP; PtenloxP/loxP; Rictor loxP/loxP mice (which do not express  the 

Cre-recombinase) were used.  Mice were on mixed genetic background 

(C57BL/6J, 129/SvJae, BALB/cJ).  Both L-dKO mice (Tsc1loxP/loxP; 

PtenloxP/loxP; Alb-Cre) and L-TriKO (Tsc1loxP/loxP; PtenloxP/loxP; Rictor loxP/loxP; Alb-

Cre) mice were born viable at the expected Mendelian ratio and displayed 

normal fertility.  PCR genotyping for Tsc1 (Kwiatkowski, Zhang et al. 2002) 
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Pten (Horie, Suzuki et al. 2004, Stiles, Wang et al. 2004) and Rictor (Cybulski, 

Polak et al. 2009) and Cre was performed as described.  Mice were 

maintained under temperature and humidity-controlled conditions, lights on at 

6:00 AM and off at 6:00 PM.  In all experiments, mice were sacrificed at 

6:00am and were ad-libitum fed, unless mentioned otherwise.  All of the 

experiments were conducted on male mice.  All experiments were performed 

in accordance with federal guidelines and were approved by the Kantonales 

Veterinaeramt of Kanton Basel-Stadt. 

 

Whole-Body Metabolic Analysis.  RER (Respiratory Exchange Rate), 

locomotor activity and food consumption were measured in 30 minute-

intervals, for the indicated time using a comprehensive laboratory animal 

monitoring system (CLAMS, Linton Instrumentation and Columbus 

Instruments).  Measurement was performed after 24 hrs of acclimatization.  

Mice had free access to food and water. 

 

Virus Administration.  To determine virus liver tropism, 5*10^11 viral genome 

of AAV8-U6-CMV-RFP, AAV-DJ-U6-CMV-eGFP and AAV-DJ-Albumin-eGFP 

was injected into tail veins of wild-type (control).  For viral knockdown studies, 

AAV-DJ-albumin-shFASN-RFP, AAV-albumin-shGCS-RFP and AAV-

albumin-shScrmble-RFP (purchased from Vector BioLabs) were used.  Virus 

was administrated to mice by tail-vein injection (5*10^11 vg, unless mentioned 

otherwise).  To validate virus action mice were sacrificed one-month post 

injection (short-tem) livers were further used for biochemical analysis.  To 
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assess the effect on liver tumors development mice were sacrificed about 

three months post infection. 

 

OCR and ECAR measurements.  Measurements were performed with an 

XF96 Extracellular Flux Analyzer (Seahorse Bioscience of Agilent) following 

manufacturer instructions.  2×105 hepatocytes were seeded into 96 culture 

plate (Seahorse Bioscience of Agilent) overnight or measured 1hr post-

seeding.  Media was exchanged prior to the measurement. 
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Figure 1.  L-dKO mice develop HCC and exhibit enhanced de novo fatty acid 

and lipid synthesis  (A)  Immunoblot analysis of liver extracts from ad-libitum 

fed 4, 8, 12, and 20 week-old L-dKO mice and littermate controls, for the 

indicated proteins.  Each lane consists of a mixture of liver extracts obtained 

from six mice.  (B)  Representative staining of hepatic tumors from L-dKO 

mice and tumor-free control mice. Hematoxylin and Eosin (H&E), Sirius Red 

(SR), Periodic Acid Schiff (PAS), and FASN (Immunohistochemistry).  

Asterisks and arrows indicate HCCs and HCC margins, respectively.  Scale 

bar 50µm (C)  Relevant lipid biosynthetic enzymes are depicted.  Up-or 

down-regulated enzymes in the proteome analyses of livers from young mice 

(4, 8 and 12 weeks of age, n=6 per time point) or proteome and transcriptome 

analyses of tumors (20 weeks of age, 12 dissected tumors from 3 mice) or 

immunoblotting are color coded:  white, not quantified (n.q.) in transcriptome 

or proteome;  blue, down-regulated in transcriptome or proteome;  red, up-

regulated in transcriptome or proteome.  Phosphorylation site in a red box 

was up-regulated in phosphoproteomics  (D)  Representative images of 

frozen liver sections from 20 week-old L-dKO mice (tumors) and a tumor-free 

control, stained with Oil-Red-O (ORO) (n=3).  Number and size (area) of 

hepatic lipid droplets were quantified using FIJI (a.u. arbitrary unit).  (E)  
Hepatic triglyceride (TG) content from ad-libitum fed L-dKO and control mice 

(at least n=4 per group).  pH/E, ethanolamine-1-phosphate and C16-fatty 

aldehyde.  To determine statistically significant differences unpaired 

Student’s t-test was used.  Error bars represent SEM. 
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Figure 2.  FASN or GCS inhibition prevents tumor development in L-dKO 

mice.  (A)  Number of liver tumors in L-dKO mice treated with orlistat or the 

drug vehicle alone.  (B)  Number of liver tumors in L-dKO mice treated with 

AAV-shScrmbl, AAV-shFASN or AAV-shGCS.  (C)  Representative 

immunofluorescence images from livers of L-dKO mice treated with AAV-

shFASN or AAV-shScrmbl control.  White circles designate hepatocytes 

successfully infected with the indicated virus. Nuclei, blue (DAPI);  Ki67, red;  

AAV (virus), green.  (D)  Quantification of the number of Ki67 positive cells in 

livers from L-dKO mice infected with AAV-shFASN or AAV-shScrmbl control, 

per 10X magnification field (n=3).  To determine statistically significant 

differences unpaired Student’s t-test was used.  Data represent mean ± SEM. 
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Figure 3.  mTOR promotes de novo sphingolipid synthesis and thereby tumor 

development.  (A)  Relative hepatic mRNA level (normalized to cyclophilinD) 

in 4, 8 and 20 week-old L-dKO and control mice (n=6 per group), for the 

indicated genes.  (B)  Hepatic sphinganine levels in livers of 4, 8, 12 and 20 

week-old mice (n=6 per group).  Data represented as the ratio of L-dKO over 

age-matched control.  (C)  Hepatic serine levels in livers of 4, 8, 12 and 20 

week-old mice (n=6 per group).  Normalized (norm.) to total amino acids (AA).  

(E)  Number of liver tumors in L-dKO mice after chronic myriocin treatment.  

(F)  Scatter plot of the major lipid species significantly regulated in livers from 

myriocin treated mice (L-dKO vs. control), as compared to the drug vehicle.  

Glucosylceramide lipid species are indicated in red.  Black line indicates the 

significant from the non-significant alterations, for threshold of 0.75 Log-Fold 

change.  To determine statistically significant differences unpaired Student’s 

t-test was used.  Data represent mean ± SEM. 

  



	
   67 

 
 

Figure 4.  L-dKO mice accumulate sphingolipids and glycerophospholipids in 

the liver.  (A)  Enrichment of the indicated lipid subclasses (Z-Score, Binomial 

Proportions Test), for the indicated genotypes.  Data expressed as the ratio 

of L-dKO over age-matched control (n=6 per time point);  L-TriKO mice over 

L-dKO mice (20 week old) (n=4).  Abbreviations: GlcCer, Glucosylceramide;  

GlcCer-OH, hydroxyglucosylceramide;  SM, Sphingomyelin;  CL(18:≤1) or 
CL(18:>1),  Cardiolipin with the indicate desaturation;  DHCer, 
Dehydroceramide;  Cer, Ceramide;  GlcDHCer, glucosyldehydroceramide;  

PS, Glycerophosphoserine;  DHCer-OH, hydro-deoxy-ceramide,  GlcDHCer-
OH, Gluc-hydro-deoxy-ceramide,  PI, Glycerophosphoinositol,  SM-OH, 

Hydro-sphingomyelin,  CerP, Phospho-ceramide,  Cer-OH, hydro-ceramide;  

LysoPC, Lysophosphatidylcholine. 
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Figure 5.  mTOR promotes cardiolipin synthesis and oxidative 

phosphorylation in hepatocytes.  (A)  Immunoblot analysis of liver extracts 

from 4, 8, 12, and 20 week-old L-dKO mice and control littermates, for the 

indicated proteins.  Each lane consists of a mixture of liver extracts obtained 

from six mice.  (B)  Representative images of primary hepatocytes perfused 

from 8 week-old L-dKO and control mice.  MitoTracker (red) indicates 

mitochondria.;  white arrows indicate tubular mitochondrial networks.  Nuclei, 

blue (DAPI);  Scale bar 10µm.  Acquired using LSM800 AriScan confocal 

microscope.  (C)  Oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) analyses of primary hepatocytes perfused from 8 

week-old L-dKO and control mice.  Dashed lines indicate the time a given 

compound was added;  Backg, background contains no cells;  Pcyt1a, 

phosphate cytidylyltransferase 1, choline, alpha; data represent mean ± SEM. 
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Figure 6.  mTOR promotes tumor development in L-dKO mice.  (A)  Number 

of liver tumors in L-dKO mice treated with INK128 (INK) or the drug vehicle 

(Veh.).  (B)  Hepatic triglyceride (TG) content of L-dKO and control mice 

treated with INK128 or the drug vehicle (n=7 per group).  (C)  Cell-size 

expressed as area (a.u. arbitrary unit) calculated using FIJI from scanned 

histological samples stained for H&E.  (D)  Immunoblot analysis of liver 

extracts from 8 week-old L-dKO and control mice (n=4 per group) acutely 

(24hrs) treated with rapamycin (Rapa), INK128 or drug vehicle alone (Veh> 

and Veh#  treated with rapamycin or INK128 vehicle control, respectively), for 

the indicated proteins.  Values are expressed as mean ± SEM. 
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Figure 7.  mTORC2 promotes fatty acid and lipid accumulation and 

carcinogenesis.  (A) Immunoblot analysis of liver extracts from 20 week-old 

L-dKO, L-TriKO and control mice (n=4 per group;  Cntl> and Cntl #  are 

Tsc1loxP/loxP; PtenloxP/loxP; and Tsc1loxP/loxP; PtenloxP/loxP; RictorloxP/loxP, 

respectively), for the indicated proteins.  (B)  Hepatic triglyceride (TG) content 

of L-dKO, L-TriKO and pulled controls (n ≥ 4 per group).  (C)  Relative mRNA 

level (normalized to cyclophilinD) of the indicated genes in 20 week-old L-

dKO (n=6), L-TriKO (n=4) and control (n=8) mice.  (D) Number of 

macroscopic liver tumors detected in L-dKO and L-TriKO mice  (E)  Kaplan 

Meier survival curve of L-dKO and L-TriKO mice.  (**** p<0.0001 for both 

Mantel-Cox and Gehan-Breslow-Wilcoxon tests, ## p<0.0008 Mantel-Cox 

and p= 0.0021 Gehan-Breslow-Wilcoxon tests).  Error bars represent SEM. 
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Supplemental Figures 
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Figure S1, related to Figure 1.  Hepatic mTOR activation induces tumor 

development.  (A)  Representative images of livers from 4, 8, 12 and 20 

week-old L-dKO mice;  white arrows indicates liver tumors.  (B)  Liver weight 

(LW) to body weight (BW) ratio (percentage) of L-dKO mice and age-matched 

control mice for the indicated time-points.  (C)  Total body weight of 4, 8, 12 

and 20 week-old L-dKO and control mice (n ≥ 10 per time point)  (D)  ALT 

(alanine aminotransferase), AST (aspartate aminotransferase) and LDH 

(lactate dehydrogenase) (n ≥ 4) serum levels, in unit per liter (U/L)  (E)  
Relative mRNA level (normalized to cyclophilinD) of afp and aldh in liver 

lysates from 8 week-old L-dKO and control mice (n ≥ 4).  (F)  Representative 

hematoxylin and eosin (H&E) images from 8 week-old L-dKO and control 

mice;  white arrows, hepatocytic-ballooning reminiscent of lipid accumulation 

(macrosteatosis);  white circle, choleangiocytic proliferation  (G)  
Representative immunofluorescence images of BrdU incorporation assessed 

in tumors from 16 week-old L-dKO and non-tumor control.  To determine 

statistically significant differences unpaired Student’s t-test was used.  Data 

represent mean ± SEM. 
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Figure S2, related to Figure 1.  (Phospho)proteomic analysis indicates 

enhanced fatty acid and lipid metabolism in L-dKO mice.  (A)  Heat-maps of 

the unsupervised hierarchical clustering using Euclidian distance of proteome 

and  (B)  phosphoproteome performed on snap-frozen liver samples from 4, 8 

and 12 week-old L-dKO and control mice.  The corresponding pathway 

enrichment analysis was performed for proteins  (C)  and phosphosites  (D)  
down- or up- regulated in all three time points (dark lines).  Lipid metabolic 

pathways are marked in yellow.  (E), (F)  Relative hepatic mRNA level 

(normalized to cyclophilinD) of the indicated genes from 8 week-old L-dKO 

and control mice (n ≥ 4).  (G)  Representative H&E images from 8 week-old 

L-dKO and control mice.  Red circle marks a hepatocyte with the diameter 

indicated.  (H)  Area calculated from H&E stained liver samples from 4, 6, 8, 

10 and 12 L-dKO and control mice.  Area is relative to the image 

magnification (a.u. arbitrary unit).  (I)  Hepatic triglyceride (TG) content from 

overnight fasted L-dKO and control mice (n ≥ 6 per group).  To determine 

statistically significant differences unpaired Student’s t-test was used.  Data 

represent mean ± SEM. 
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Figure S3, related to figure 1.  L-dKO mice exhibit whole body cachexia-like 

effects.  (A)  RER (Respiratory Exchange Ratio, unit-less ratio of the rate of 

CO2 production to the rate of O2 consumption)  (B)  food consumption and  

(C)  movement (ambulatory) of 12 and 20 week-old L-dKO and control mice 

measured over 72hrs (n=8 control, n=7 L-dKO).  The last 48 hours of 

measurement were used for quantification.  Sums of light or dark phases are 

also calculated.  (D)  Longitudinal whole-body fat composition analyses 

(EchoMRI) of live L-dKO and control mice (n=8 control, n=7 L-dKO).  (E)  
Percent of epididymal white adipose tissue (eWAT) and subcutaneous WAT 

mass (normalized to the body weight (BW)) of 8 and 20 week-old L-dKO and 

control mice (n ≥ 6 per group).  (F)  Percent of skeletal muscle mass 

(normalized to the body weight) of 8 and 20 week-old L-dKO and control mice.  

Sol, Soleus muscle;  Quad. f., Quadriceps Femoris muscle;  Gastroc., 

Gastrocnemius muscle (n ≥ 6 per group); BW, body weight.  (F)  Relative 

mRNA level (normalized to cyclophilinD) from livers of 8 week-old L-dKO and 

control mice (n=6 per group), for the indicated genes.  (H)  LDL and HDL 

level in serum of 8 week-old L-dKO and control mice (n=4 per group).  To 

determine statistically significant differences unpaired Student’s t-test was 

used.  Data represent mean ± SEM. 
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Figure S4, related to figure 2.  FA synthesis is required for tumor 

development.  (A)  Representative images of livers from L-dKO mice treated 

with orlistat or the drug vehicle alone (B)  and number of lipid droplets 

quantified from histological sections (not shown).  White arrows indicated 

HCCs.  (C)  Body weights (BW) and liver weights (LW)  (D)  and immunoblot 

from liver lysates from L-dKO and control mice treated with orlistat (Orli.) or 

the drug vehicle (Veh.) alone.  (E)  The indicated adeno-associate viruses 

(AAV) were injected into tail veins of wild-type mice; control mice were 

injected with PBS.  The expression of GFP or RFP was from a U6 or albumin 

promoter (as indicated).  mRNA expression of GFP or RFP was assessed by 

quantitative PCR.  The absolute (not normalized) Ct values are depicted, for 

the indicated tissue.  n.d., not detected.  (F)  mRNA fasn expression relative 

to RFP expression of livers of mice infected with AAV-shFASN or AAV-

shScrmbl.  (G)  Immunoblot analysis of liver extracts from mice (one per lane) 

infected with different viral genomes of AAV-shFASN and AAV-shScrmbl 

control, for the indicated proteins.  Pon. S, Ponceau S.  (H)  Representative 

immunofluorescence images of livers from L-dKO mice infected (tail vein) 

with AAV-DJ-Albumin-shFASN-RFP (AAV-shFASN) or AAV-shScrmbl.  

shFASN or AAV-shScrmbl were expressed from the albumin promoter.  

White circles marks AAV-shScrmbl infected Ki67 positive hepatocytes.  

Dashed circle marks a non-infected hepatocyte that is Ki67 positive.  Nuclei, 

blue (DAPI);  Scale bar 100µm.  (I)  Representative immunofluorescence 

images of livers from L-dKO mice infected (tail vein) with AAV-shFASN.  Neg. 

cntl, negative control was injected with PBS.  Scale bar 10µm.  Images 

obtained using ‘DeltaVision Core’ widefield microscope.  Images were 

deconvoluted.  Data represent mean ± SEM. 
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Figure S5, related to figure 3.  De novo sphingolipid synthesis is required 

for tumor development.  (A)  mRNA expression levels in livers from 4, 8 and 

20 week-old L-dKO and control mice (n=6 per genotype), for the indicated 

genes.  SPK1, sphingosine kinase;  SMPD3,  neutral sphingomyelinase;  

SMPD1, acid sphingomyelinase.  (B)  Representative immunofluorescence 

images of primary hepatocytes from L-dKO or control mice.  Nuclei, blue 

(DAPI);  SPT, serine palmitoyltransferase;  GCS, glucosylceramide synthase;  

MitoTrack, MitoTracker Red mitochondria.  Scale bar 10µm.  LSM800 

AriScan confocal microscope.  (C)  Representative immunofluorescence 

images of livers from 8 week-old and 20 week-old (tumor) L-dKO, L-TriKO 

and control mice.  GlcCer, glucosylceramide; nuclei, blue (DAPI);  scale bar 

10µm.  (D)  Hepatic glutamine and alanine levels from 4, 8, 12, and 20 week-

old L-dKO and control mice normalized to total amino acids (AA).  (E)  
Principal-component analysis (PCA) of lipidomics from L-dKO and control 

mice treated with myriocin or the drug vehicle alone.  PCA analysis showed a 

clear discrimination between L-dKO and control mice, driven by principal 

component 1 (dashed circles).  Principle component 2 drove the separation 

between myriocin and vehicle treated groups (closed circle).  (F)  Immunoblot 

analysis of liver extracts from L-dKO and control mice treated with myriocin or 

the drug vehicle only, for the indicated proteins.  (G)  Body weights (BW) and 

liver weights (LW) of L-dKO and control mice treated with myriocin (Myr.) or 

the drug vehicle (Veh.) alone.  (H)  Representative immunofluorescence 

images of livers from L-dKO mice infected (tail vein) with AAV-shGCS.  Scale 

bar 10µm.  ‘DeltaVision Core’ widefield microscope.  Images were 

deconvoluted.  Values are expressed as mean ± SEM. 
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Figure S6, related to figures 4 to 6.  Enhanced cardiolipin accumulation and 

mitochondria function in mTOR-activated tumors  (A)  Lipid subclasses 

depleted in livers of L-dKO mice or L-TriKO mice.  Data expressed as the 

ratio of L-dKO over age-matched control (n=6 per time point);  L-TriKO mice 

over L-dKO mice (20 week old) (n=4).  (B)  Binomial Proportion Test formula 

used for enrichment calculation.  (C)  Immunoblot analysis of liver extracts 

from 4, 8, 12 and 20 week-old L-dKO and control mice (6 mice per lane), for 

the electron transport chain components (c. complex;  sub. subunit;  ATP sy. 

α, ATP synthase α).  Each lane consists of a mixture of liver extracts obtained 

from six mice.  (D)  Representative electronmicrographs of hepatocytes from 

8 week-old L-dKO and control mice (n=3).  Asterisks and arrows indicate lipid 

droplets and mitochondria, respectively. Scale bar 1000nm  (E)  Number of 

mitochondria in hepatocytes from L-dKO and control mice.  Quantified from 

electron electronmicrographs (n=3).  (F)  Dark arrows indicates the prominent 

mitochondrial cristae observed in hepatocytes from L-dKO, compared to age-

matched control. Scale bar 500nm.  (G)  Immunoblot analysis of liver lysates 

from L-dKO and control mice chronically treated with INK128 (INK) or the 

drug vehicle alone (veh.), for the indicated proteins.  (n ≥ 2 per lane).  (H)  
ALT, AST and LDH levels (U/L) in serum from L-dKO mice treated chronically 

with INK or the drug vehicle alone.  (I)  Immunoblot analysis of liver extracts 

from 8 week-old L-dKO and control mice (n=4 per group) acutely (24hrs) 

treated with rapamycin (Rapa), INK128 or drug vehicle alone (Veh> and Veh#  

treated with rapamycin or INK128 vehicle control, respectively), for the 

indicated proteins.  Error bars represent SEM. Abbreviations:  EtherPC, 

Ether-phosphatidylcholine;  EtherPE, Ether-phosphatidylethanolamine;  PC, 

phosphatidylcholine;  PE, phosphatidylethanolamine;  DHSM, 
dihydrosphingomyelin;  SM-OH, sphingomyelin-OH;  EtherPS, Ether-

phosphatidylserine;  LysoPE, Lyso phosphatidylethanolamine;  SM, 

sphingomyelin;  PS,  phosphatidylserine;  CL(18:>1),  Highly desaturated 

Cardiolipin;  Cer, Ceramide;  Cer-OH, Ceramide-OH;  CerP,  ceramide 

phosphate.  
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Figure S7, related to figure 7.  mTORC2 controls hepatic FA and lipid 

synthesis.  (A)  Hepatic triglyceride (TG) content and  (B)  serum fatty acids 

(FA) from 8 week-old L-dKO and control mice (n=4 per group) acutely (24hrs) 

treated with rapamycin (Rapa), INK128 or drug vehicle alone (pulled n=8).  
(C)  Generation of triple mutant mice (floxed genes annotated; Alb, albumin 

promoter )  (D)  Representative DNA gels from L-TriKO mice for the indicated 

genes and Cre (Asterisk marks a Cre negative sample).  (E)  Immunoblot 

analysis from liver extracts from 20 week-old L-dKO, L-TriKO and the 

respective control mice (n=4, 2 mice per lane) (cntl> is Tsc1loxP/loxP;PtenloxP/loxP;  

cntl#  is Tsc1loxP/loxP;PtenloxP/loxP; RictorloxP/loxP).  (F)  Immunoblot analysis of 

extracts from hepatocytes (H) and non-hepatocyte (NH) cell fractions from 

perfused livers from 8 week-old L-dKO, L-TriKO and control mice (WT), for 

the indicated proteins.  Coronin 1 and albumin are immune cell marker and 

hepatocyte marker, respectively.  (G)  Representative Hematoxylin and Eosin 

(H&E) and Periodic Acid-Schiff histological analyses from L-dKO, L-TriKO 

and control mice. (H)  Representative images of livers from L-TriKO, L-

dKO(Rictor-/+) and control mice.  (I)  Immunohistochemistry analysis of livers 

from 30 week-old L-TriKO with tumors and an age-matched non-tumor 

control.  Arrows indicates pAKT-Ser473 positive regions (tumors).  Values are 

expressed as mean ± SEM. 
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Extended Experimental Procedures 

 

Pharmacological treatments.  INK128 (Intellikine, Inc) or the drug vehicle 

alone was given by orally route (1 mg/kg/bw).  INK128 was dissolved in 5% 

1-methyl-2-pyrrolidionone, 15% polyvinylpyrrolidone K30, and 80% water, as 

described (Hsieh, Liu et al. 2012).  8-week-old L-dKO mice and littermate 

controls (n=7 per group) were treated with INK128 or with the drug vehicle, 

every second day for 12 weeks.  Rapamycin (LC Laboratories) was dissolved 

as published (Cornu, Oppliger et al. 2014) in 5% (vol/vol) PEG-400, 4% 

(vol/vol) ethanol, and 5% (vol/vol) Tween 80, and was injected intra-

peritoneally (i.p.).  For acute mTOR inhibition studies, rapamycin or INK128 

or the drugs vehicles were administered to 8-10 weeks-old L-dKO and 

littermate controls (n=4 per group), twice (6 am and 6pm) over 24 hours at 

doses described above.  Orlistat (Xenical) was orally given (120mg/kg) to 6-8 

week-old L-dKO mice and littermates controls (n=4 per group) daily for 10 

weeks, as described (Sounni, Cimino et al. 2014).  Myriocin was formulated 

as described (He, Johnson et al. 2004).  Myriocin or the drug vehicle was i.p. 

administered (0.03 mg/kg/bw) to 6-8 week-old L-dKO mice and littermate 

controls (n=5 myriocin, n=4 vehicle), every second day.  For tumor burden 

assessment, mice were sacrificed (~ 20 weeks of age) and their livers 

removed.  Subsequently, externally visible tumors (>0.2 mm) were counted 

by stereomicroscopy.  To evaluate cell proliferation in tumors, 16 week-old L-

dKO and littermate control mice were i.p. injected with 100 mg/kg BrdU 

(Roche) once a day, at 18:00pm for three days.  At 6:00am of the forth day, 

mice were sacrificed and livers were removed.  Liver lobes, containing both 
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tumor and non-tumor regions, were fixed in 4% paraffin and were then used 

for immunofluorescence imaging using the BrdU in situ detection kit (Roche). 

 

Serum parameters.  Prior to liver dissection, blood was collected from the 

inferior vena cava using a 23-gauge needle.  Blood was placed immediately 

into a heparin-coated tube (BD microtainer) to obtain plasma.  Subsequently, 

50ul of plasma was diluted three times and loaded to a COBAS (Roche) 

analyzer.  Serum parameters, including circulating transaminases (ALT, AST), 

LDH, albumin, as well as serum lipids levels (LDL, HDL) were measured. 

 

Isolation of primary cells and cell culture.  For isolation of primary mouse 

hepatocytes 8-12 week-old L-dKO and littermate controls were used.  

Primary hepatocytes were obtained by liver perfusion.  Shortly, peritoneal 

cavity was opened and the inferior vena cava was cannulated using a 23-

gauge needle catheter.  Cannula was clamped using a surgical clip.  The liver 

was then perfused with pre-warmed (37c) Ca2+ and Mg2+ free-HBSS 

containing EGTA (1 mM), at a rate ranging from <5 to 10ml/min prior to chest 

dissection.  The aorta was ligated followed and the portal vein was transected.  

Liver was then perfused with pre-warmed (37c) HBSS with Ca2+ and Mg2+ 

containing collagenase digestion solution (collagenase type II (C6885 

SIGMA) and DNase I (10 µg/mL)), at a rate of 7.5ml/min.  Subsequently, the 

perfused and digested liver was carefully dissected and placed in a petri dish 

containing ice-cold HBSS.  Glisson capsule was gently teased with forceps to 

get the cell suspension.  Cell suspension was filtered through gauze to 

remove undigested tissue and connective tissue, followed by 5 min 
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centrifugation 650 × g.  Thereafter, re-suspended with HBSS and followed by 

3 min at 35 × g centrifugation to obtain parenchymal cells (hepatocytes, 

pellet) and non-parenchymal cells (non-hepatocytes, supernatant).  

Parenchymal cell suspensions, containing vital hepatocytes, were used for 

culture.  Briefly, hepatocytes were resuspended in pre-warmed culture media 

(DMEM high glucose with 10% fetal bovine serum (FBS). 

 

Quantitative PCR.  Total RNA was isolated from ∼50 mg of mouse livers. 

Liver samples were homogenized for 30 sec bead beating in lysing matrix D 

tubes (Q-Biogene) containing 1 mL of TRIzol reagent (Sigma).  After the 

chloroform extraction and centrifugation, samples were mixed with 600 µL of 

70% ethanol, and the extraction was continued with the RNeasy kit (Qiagen).  

DNase digestion was performed using RNase-Free DNase Set (Qiagen).  

cDNA synthesis was performed using SuperScript III reverse transcriptase 

(Invitrogen).  Semi-quantitative real-time PCR was done using the fast SYBR 

green mix (Applied Biosystems) and quantitated using Applied Biosystems 

StepOnePlus Real-Time PCR Systems (Applied Biosystems).  Duplicate (or 

triplicate) runs of each sample were normalized to cyclophilin D to determine 

relative expression levels.  Values plotted represent averages from at least 

four different animals.  The sequences for the primer pairs used in this study 

are listed in Table S7.  

 

Immunoblot.  Mouse livers were rapidly isolated, flash-frozen into liquid 

nitrogen, and stored at -80 °C.  For protein extraction liver tissues were 

homogenized using a polytron, in ice-cold lysis buffer (100 mM Tris (pH 7.5), 
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2 mM EDTA, 2 mM EGTA, 0.5 M mannitol) supplemented with 1% Triton X-

100, protease and phosphatase inhibitor mixture tablets (Roche).  Lysates 

were centrifuged at 10,000 × g for 10 min at 4 °C, afterwards pelleted cell 

debris was removed.  This was repeated three times.  Total protein 

concentration was assessed (BCA Protein Assay; Thermo Scientific). 

Subsequently, 20 µg of proteins were loaded on SDS/PAGE and transferred 

to a nitrocellulose membrane.  The following antibodies were used for 

immunoblotting: TSC1 (A300-316A), PTEN (CS #9188), p70 S6 Kinase (CS 

#2708), Phospho-p70 S6 Kinase (Thr389) (CS #9234), ULK1 (CS #6439), 

Phospho-ULK1 (Ser757) (CS #14202), CAD-pSer1859, GSK3α-pSer9/21 

(CS #5676), SREBP1c (SC-8984), SCD1 (CS #2794), ACC (CS #3662), 

FASN (CS #3180), phospho-ACLY (Ser455), ACLY (CS #13390), Phospho-

ACLY (Ser455) (CS #4331), CD36 (NB400-144), GCS (Bioss,	
  bs-0701R or 

Abcam, ab197369), CAD (Bethyl, BP301-374), NDRG1 (CS#5196), phospho-

NDRG1 (Thr346) (CS#3217). AKT (CS#9272), phospho-AKT (Thr308) 

(CS#4056), phospho-AKT (Ser473) (CS#9271), S6 ribosomal Protein 

(CS#2217), phospho-S6 ribosomal Protein (Ser235/236) (CS#4856), and α-

actin (MAB1501) from Millipore.  For detection, Supersignal west pico 

chemiluminescent substrate or Supersignal west femto maximum sensitivity 

substrate (Pierce) was used. 

 

Histology and Immunostainings.  Mice were euthanized, livers quickly 

dissected and fixed in 4% paraformaldehyde.  After overnight dehydration 

through several steps of ethanol, tissues were then embedded into paraffin 

wax blocks.  Afterwards, embedded-tissues were cut into 4-µm-thick sections 
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placed on SuperFrost slides (Thermo Scientific).  Slides were then stained 

with: H&E (Merck), Periodic Acid Schiff (PAS) Stain Kit (Mucin Stain) (Abcam, 

ab150690) and Picro Sirius Red Stain Kit (Connective Tissue Stain) (Abcam, 

ab150681), according to the protocols provided by manufacturer. 

 

Immunofluorescence (IF) and immunohistochemistry (IHC).  4mm 

paraffin sections were obtained as described above.  Subsequently,   

For immunostainings the following antibody was used: RFP (ab62341, 

Abcam). For nuclei staining DAPI (Cell signaling) was used.  FASN (CS 

#3180), GCS  (bs-0701R) and CRLS1 (ab105782).  Mitochondrial staining 

primary hepatocytes (perfused as described above), from the different mouse 

genotypes were placed on glass coverslips (thickness number 1,5 from VWR) 

in 12-well culture plate.  After cells were attached and equally confluent, 

coverslips were used for immunocytostaining.  Coverslips were placed in a 

homemade box-holder to keep humidity.  After a quick washing step using 

pre-warmed PBS, cells were incubated for 45 min with MitoTracker red 

CMXRos (CS #9082) diluted in pre-warmed media and placed in 37°C.  

Subsequently, cells were washed, fixed, permeabilized and were immediately 

used for staining with Mitofusin-2 (CS #9482S).  Coverslips were mounted on 

a glass slide and sealed using a nail polish.  Slides were then visualized 

using a scanning confocal “LSM800 Inverted“ with AirScan.  

 

Frozen Sections.  Mouse livers were dissected into the different lobes and 

immediately immersed in OCT compound (Tissue Tek; Fisher Scientific; 

Hanover Park, IL) and frozen in 2-methyl butane precooled in liquid nitrogen.  
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Afterwards, tissues were cut into 10-µm-thick sections using a cryostat 

microtome, placed on glass slides on SuperFrost slides (Thermo Scientific), 

air dried, and stored at -80C.  Subsequently, slides were warmed at RT and 

stained with ORO (Sigma) according to standard protocol, and quantified as 

described (Mehlem, Hagberg et al. 2013).  Detection of glycosylceramide was 

performed as described (Sakai, Akiyama et al. 2007).  Briefly, liver frozen 

sections from 20 week-old L-dKO, L-TriKO and control mice were warmed at 

RT and washed twice with PBS, subsequently incubated for 1 hr with 5% 

goat serum for blocking.  Anti-GlcCer antibody (GlycoBiotechTM) was diluted 

with PBS/1% BSA and left for overnight at 4°C.  The same buffer was used to 

dilute an Alexa Fluor® 488 conjugate secondary antibody, followed by 2 

hours incubation at RT.  Stained sections were mounted with Vectashield H- 

1000 (Vector Laboratories, Burlingame, CA).  Images were taken using a 

wide-filed DeltaVision microscope (Olympus IX71) and were de-convoluted. 

 

Blood Analysis.  Plasma free fatty acids was determined using a 

commercial kit (HR Series NEFA-HR(2) and Cayman).  Plasma triglycerides 

(TG), LDL, HDL, and liver damage enzymes ALT, AST, LDH were measured 

using a biochemical analyzer (Cobas c 111 analyzer, Roche). 

 

Hepatic TG Measurement.  Hepatic triglycerides extraction was performed 

as described (Hagiwara, Cornu et al. 2012).  Briefly, ~ 50 mg of mouse liver 

tissue was homogenized in a cold room, for 30 sec (x4, with a 3 min break on 

ice in between, to prevent heating) bead beating in lysing matrix D tubes (Q-

Biogene) containing 1 mL chloroform:methanol (2:1).  Tissue lysate was 
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transferred into a glass tube and 1 mL of distilled water was added.  

Subsequently, tubes were vigorously vortexed for 2 min and centrifuged at 

800 × g for 10 min at 4 °C.  Then, the upper aqueous phase was discarded 

and the lower solvent phase was dried under nitrogen gas at 50 °C, followed 

by re-suspension with 1 mL of chloroform.  Triglycerides were then separated 

by Solid Phase Extraction (SPE) column (Interchim) and dissolved in 

chloroform/Triton X-100 (1%).  Triglyceride levels determined using a 

commercial kit according to manufacturer instructions (TG PAP 150; 

Biomérieux). 

 

Proteome and Phosphoproteome.  For time-course proteome analysis 4, 8 

and 12 week-old L-dKO and control mice were euthanized and livers 

dissected (n=6/group).  For analysis of liver tumors, livers from 20 week-old 

L-dKO mice (n=4) were dissected and separated into individual lobes and 

tumors (3 tumors per mouse) were micro-dissected, and 20 week-old control 

mice were used (n=6).  Tissues were immediately snap-frozen in liquid 

nitrogen.  We performed a ‘cryogenic grinding’, in which a frozen liver biopsy 

was crushed into a fine powder, using an in-house-constructed metal mortar, 

pre-cooled on dry ice.  Subsequently, crushed liver tissues were 

homogenized using a Heidolph homogenizer (RZR 2052 Control) at 300 rpm 

for 2 min.  The lysates were transferred into a cooled 1.5-mL tube containing 

150-400 µL lysis buffer (composed of: 50 mM Tris·HCl (pH 8.0), 8 M urea, 

150 mM NaCl, 1 mM PMSF, Complete Mini Protease Inhibitors (Roche), 100 

mM sodium pyrophosphate/β-glycerophosphate/NaF/NaN3/ para-

Nitrophenylphosphate).  The lysates were vortexed vigorously for 5 min, then 
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sonication in a VWR Ultrasonic cleaner bath (USC300T) for 1 min.  This was 

repeated three times with 2 min rest in between.  Samples were then 

centrifuged at 2500 × g for 10 min at 15°C to remove cell debris.  The protein 

concentration in the supernatants was determined by the Bradford assay.  

Proteins of the supernatants were reduced with 2.5 mM DTT for 1 h at 37°C, 

and alkylated with 50 mM iodoacetamide for 30 min at room temperature in 

the dark.  The urea concentration was reduced to 4 M with 25 mM Tris_HCl, 

pH 8.0.  Protein digestion was performed with two rounds of endoproteinase 

LysC (1:100w/w, Wako) at 37 °C for 2 h.  The urea concentration of the LysC 

digest was reduced to approximately 1.2 M with 100 mM Tris-HCl, pH 8.0.  

Subsequently, trypsin digestion (1:100 w/w) was done for 2 hr at 37°C, 

followed by a second round of trypsin digestion (1:100 w/w) overnight at 37°C.  

Digestion was stopped by adding TFA to 0.4% (vol/vol) final concentration 

that lowered the pH of the solution to below pH 2.0.  Afterwards, the digest 

was centrifuged at 12,000 rpm for 10 min at RT and the pellet was discarded.  

For strong cation exchange chromatography (SCX), the peptides were 

desalted on a C18 reverse-phase SepPak cartridge (Waters).  The peptide 

load was kept to about 5% (w/w) of the weight of the column packing.  The 

cartridges were primed with 5 ml 100% acetonitrile, followed by 5 ml 50% 

AcCN containing 0.5% AcOH and equilibrated with 10 ml 0.1% TFA.  Sample 

was then loaded in 0.4% TFA and the cartridge was washed with 20 ml of 

0.1% TFA.  Finally, TFA was removed with 1 ml of 0.5% AcOH and the 

peptides were eluted with 4 ml of 80% AcCN/0.5% AcOH. The peptide 

peptide concentration was estimated as described (Wisniewski, Zougman et 

al. 2009) and dried in a SpeedVac. 
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SCX (Strong Cation Exchange) Chromatography.  SCX fractionation was 

modified from (Dephoure and Gygi 2011).  Storage buffer was removed from 

a HiTrap SP cartridge (GE Healthcare) and washed twice with 1 mL of SCX 

buffer A {5 mM KH2PO4 (pH 2.65), 30% AcCN}.  Then, the cartridge was 

equilibrated twice with 1 mL of SCX buffer B {5 mM KH2PO4 (pH 2.65), 30% 

AcCN containing 500 mM KCl}, followed by re-eqilibration with 2 mL of SCX 

buffer A.  The dried peptides were resuspended in 2 mL of SCX buffer A, 

centrifuged at 12,000 rpm for 2 min.  The pellet was discarded and peptides 

were loaded with a syringe onto the HiTrap SP cartridge.  The flow-through 

was collected.  The bound peptides were then desorbed in a stepwise 

manner: with 1 mL of SCX buffer A containing 50 mM, 100 mM, 150 mM, 250 

mM, 350 mM, and 500 mM KCl.  Each fraction was collected individually and 

the peptide concentration was estimated at 280 nm.  The fractions were dried 

in a SpeedVac and peptides were then desalted on SepPak cartridges (the 

size of the cartridge was adjusted to the peptide load) as described above.  

The peptide concentration was measured at 280 nm.  20% of each fraction 

was removed for subsequent proteome analysis by LC/MS/MS (see below). 

 

Phosphopeptide Enrichment.  Desalted peptides were dissolved in TiO2-

binding buffer to obtain a peptide concentration of ~ 1ug/uL (Kettenbach and 

Gerber 2011).  TiO2 beads (GL Sciences Inc.) equilibrated in binding buffer 

were then added to the peptide solution.  Adsorption of the peptides to the 

TiO2 beads was done at RT for 1 hr with vigorous shaking.  The beads were 

pelleted at 3000 rpm for 2 min and washed three times with 50%AcCN/0.1% 
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TFA.  Bound peptides (enriched for phosphopeptides) were eluted with 50 

mM K2HPO4, pH 10.  The eluted peptides were immediately acidified with 

50%AcCN/ 5% formic acid.  The enriched phosphopeptide pool was desalted 

on Stage Tips (Thermo Scientific, Reinach, Switzerland), and dried in a 

SpeedVac. 

 

LC/MS/MS Analysis.  The dried phosphopeptides were dissolved in 20 µL of 

0.1% AcOH, 0.005% TFA.  Peptides from the proteomes and 

phosphoproteomes were analyzed by capillary LC/MS/MS using a 

homemade separating column (0.075 mm × 18 cm) packed with Reprosil C18 

reverse-phase material (2.4 µm particle size, Dr. Maisch, Ammerbuch-

Entringen, Germany).  The column was connected on line to an Orbitrap FT 

hybrid instrument (Thermo Scientific, Reinach, Switzerland).  The solvents 

used for peptide separation were 0.1% acetic acid in water/0.005% TFA 

(solvent A) and 0.1% acetic acid/0.005% TFA and 80% acetonitrile in water 

(solvent B).  2 µl of peptide digest were injected with a Proxeon Easy-LC 

capillary pump (Thermo Scientific) set to 0.3 µl/min.  A linear gradient from 0 

to 40% solvent B in solvent A in 190 min was delivered with the nano pump at 

a flow rate of 300 nl/min for the proteome, while a shorter linear gradient of 

95 min under identical conditions for the phosphoproteome was used.  At the 

end of the linear gradient, the percentage of solvent B was increased to 75% 

in ten minutes.  The eluting peptides were ionized at 2.5 kV.  The mass 

spectrometer was operated in data-dependent mode.  The precursor scan 

was done in the Orbitrap set to a 60,000 resolution, while the fragment ions 

were mass analyzed in the LTQ instrument.  A top ten method for the 
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phosphoproteome, and a top twenty method for the proteome were run so 

that the ten or twenty most intense precursors were selected for 

fragmentation. The MS/MS spectra were then searched against a mouse 

databank extracted from the SwissProt databank. 

 

Protein Identification and Data Processing.  The LC/MS/MS data were 

searched with Proteome Discoverer 1.4 (Thermo Scientific) using Mascot and 

Sequest HT search engines set to 10 ppm precursor ion tolerance, while the 

fragment ions were set to 0.6 Da tolerance.  The following modifications were 

used during the search: carbamidomethyl-cysteine was set as a fixed 

modification, protein N-terminal acetylation, oxidized methionine, and 

phosphorylation for serine, threonine, and tyrosine were set to variable 

modifications.  The peptide search matches were set to ‘medium confidence’, 

which corresponds to 5% false discovery rate.  For the searches, the Swiss-

Prot KB database set to M. musculus was used for Mascot, while for Sequest 

HT, a local databank was constructed by extracting all M. musculus entries 

from UniProtKB.  Two missed cleavages were allowed during the searches.  

The peptide false-discovery rate was set to 2%. 

 

Label-free quantification.  The RAW files from the LC/MS/MS were 

imported into the Progenesis software (Non-linear Dynamics, Waters) and the 

matched SCX fractions were aligned.  Alignment was only accepted when the 

histogram of the corresponding feature areas was above 80%.  After 

alignment, the search results of Proteome Discoverer were imported into 

Progenesis for matching the identified peptides with the aligned features.  
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The intensities of all identified features were exported via Excel into a 

FileMaker database.  Class I (≥75% localization probability) was kept for 

further analysis.  

 

Statistical Analysis 

Proteome: The data was analyzed with the Perseus software, version 1.4.0.2.  

For the volcano plots, an ANOVA two-sample t test was performed, adjusting 

S0 to 0.5, number of randomizations to 250, and FDR to 5%.  For the heat 

maps, only proteins that showed at least at one time point a significant 

deregulation were included.  Z-scoring was performed with grouping within 

same time points.   Finally, for unsupervised hierarchical clustering, the 

distance was set to Euclidian, the linkage to average, and the maximal 

numbers of clusters to 300 (Tyanova, Temu et al. 2016). 

Lipidome: The data was analyzed with the Perseus software, version 1.4.0.2.  

For the volcano plots, an ANOVA two-sample t test was performed, adjusting 

S0 to 0.1, number of randomizations to 250, and FDR to 5%.  For the heat 

maps, only proteins that showed at least at one time point a significant 

deregulation were included.  Z-scoring was performed with grouping within 

same time points.   Finally, for unsupervised hierarchical clustering, the 

distance was set to Euclidian, the linkage to average, and the maximal 

numbers of clusters to 300 (Tyanova, Temu et al. 2016). 

 

Lipid Extraction Protocols.  Lipid extraction was performed using a 

modified MTBE protocol (Matyash, Liebisch et al. 2008).  Briefly, for time-

course lipidome analysis fresh liver samples from 4, 8 12 and 20 (cancer 
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tumors were obtained) week-old L-dKO and control mice (n=6/time point) 

were used.  For assessment of mTORC2-regulated lipids, 20 week-old L-

TriKO, L-dKO and control mice were used (n=4/group).  For assessment of 

myriocin lipidome ~20 week-old L-dKO (n=5 myriocin, n=6 vehicle) and 

control (n=5 myriocin, n=4 vehicle) mice were used. As described above, in 

all cases, tissues were immediately snap-frozen in liquid nitrogen.  

Subsequently, tissues were pulverized into a fine powder in an in-house-

constructed metal mortar, pre-cooled on dry ice (‘cryogenic grinding’).  Of that, 

30-35 mg ground liver tissue was resuspended in 100 ml H2O and transferred 

into a 2 ml Eppendorf tube.  Then, 360 ul methanol was added and vortexed.  

A mixture of lipid standards (Table S4) plus 50 ml 1.4 mm Zirconium glass 

beads (Bertin Technologies, France) were added and the pulverized tissue 

was homogenized using a Cryolysis System (Bertin Technologies, France) 

(program: 6200-3x45-045) cooled to 4°C.  MTBE (1.2 ml) was then added 

and the sample was incubated for one hour at room temperature with a 

shaking (750 rpm).  Phase separation was induced by adding 200 ml H2O. 

After 10 minutes incubation at RT, sample was centrifuged at 1000xg for 10 

minutes (RT).  The upper (organic) phase was transferred in a 13 mm screw 

cap glass tube and the lower phase was extracted with 400 ml artificial upper 

phase (MTBE/methanol/water (10:3:1.5, v/v)).  The two upper phases were 

combined and the total lipid extract was divided in 3 equal aliquots (one for 

phospholipids (TL), one for sterols (S) in 2 ml amber vials and one for 

sphingolipid (SL) detection in a 13 mm glass tube) and dried in a Centrivap at 

50°C or under a nitrogen flow.  The TL and S aliquots were ready to be 

analyzed by mass spectrometry and were kept at –80°C.  The SL aliquot was 
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deacylated to eliminate phospholipids by treatment (Clarke method, as 

described (Clarke and Dawson 1981) and (Cheng, Park et al. 2001)) with 0.5 

ml monomethylamine reagent, which was added to the dried lipid, followed by 

sonication (5 min), mixing, incubation for one hour at 53°C and drying, as 

above.  The monomethylamine treated lipids were desalted by n-butanol 

extraction. 300 ml H2O saturated n-butanol was added to the dried lipids. The 

sample was vortexed, sonicated for 5 minutes and 150 ml MS grade water 

was added. The mixture was vortexed thoroughly and centrifuged at 3200xg 

for 10 minutes. The upper phase was transferred in a 2 ml amber vial. The 

lower phase was extracted twice more with 300 ml H2O saturated n-butanol 

and the upper phases were combined and dried (as above). 

 

Phospholipid and Sphingolipid Detection on a Triple Quadrupole LC-MS, 

TSQ Vantage (ThermoFischer Scientific).  LC-MS grade solvents were 

used and the samples were pipetted in a 96 well plate (final volume = 100 ml).  

Positive mode solvent: Chloroform/Methanol/Water (2:7:1, v/v) + 5mM 

Ammonium Acetate.  Negative mode solvent: Chloroform/Methanol (1:2, v/v) 

+ 5mM Ammonium Acetate.  The TL and SL aliquots were resuspended in 

250 ml Chloroform/methanol (1:1 v/v, LC-MS) and sonicated for 5 minutes.  

The TL were diluted 1:10 in negative and positive mode solvents and the SL 

were diluted 1:20 in positive mode solvent and infused onto the mass 

spectrometer using a Nanomate (Advion).  The detection conditions for each 

lipid class are listed in Table S5.  Ceramide species were also quantified with 

a loss of water in the first quadrupole.  Each biological replicate was read in 2 

technical replicates (TR).  Each TR measured 3 times the series of transitions. 
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The phosphate content was also quantified and normalized for each sample. 

Tandem mass spectrometry for the identification and quantification of 

phospho- and sphingolipid molecular species was performed using multiple 

reaction monitoring (MRM) with a TSQ Vantage Triple Stage Quadrupole 

Mass Spectrometer (Thermo Fisher Scientific) equipped with a robotic 

nanoflow ion source, Nanomate HD (Advion Biosciences, Ithaca, NY). Each 

individual ion dissociation pathway was optimized with regard to collision 

energy.  Lipid concentrations were calculated relative to the relevant internal 

standards and then normalized to the total phosphate content of each total 

lipid extract (Ding, Loizides-Mangold et al. 2013). 

 

Determination of Total Phosphorus. The dried total lipid extract was 

resuspended in 250 ml chloroform/methanol (1:1) and 50 ml were placed into 

a 13 mm disposable pyrex tube. The solvent was completely evaporated and 

0, 2, 5, 10, 20 ml of a 3 mM KH2PO4 standard solution were placed into 

separate pyrex tubes. To each tube 20 ml of water and 140 ml of 70% 

perchloric acid were added. Samples were heated at 180C for 1 hour in a 

hood. Tubes were then removed from the block and kept at RT for 5 min. 

Then 800 ml of freshly prepared H2O / 1.25% NH4- Molybdate (100 mg / 8 ml 

H2O) / 10% ascorbic acid (100 mg / 6 ml H2O) in the ratio of 5:2:1 were 

added. Tubes were heated at 100C for 5 min with a marble on each tube to 

prevent evaporation. Tubes were cooled at RT for 5 min. 100 ml of each 

sample was then transferred into a 96-well microplate and the absorbance at 

820 nm was measured. 
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Chemicals for Lipidome Analysis.  Methylmalonic acid (MMA), hydrogen 

chloride (3 M in 1-butanol) and LC MS grade ammonium formate were 

purchased from Sigma-Aldrich. Phosphoric acid (85 wt % solution in water) 

was from Acros Organics (Thermo Scientific).  MTBE was from Fluka (Buchs, 

Switzerland). Methylamine (33% in absolute ethanol) was from Sigma-Aldrich. 

HPLC grade chloroform was purchased from Acros Organics. LC-MS grade 

methanol and LC-MS grade ammonium acetate were from Fluka. LC- MS 

grade water was purchased from Biosolve (Valkenswaard, Netherlands). 

 

Metabolite Extraction Protocol.  Pulverized liver tissue were obtained as 

described above (30-35mg) and re-suspended in 200	
  µl extraction solvent 

(ethanol/water/diethylether/pyridine/ammonium hydroxide 4.2N 

(15:15:5:1:0.018)).  To that, a mixture of lipid standards (Table S6) and 50 ml 

1.4 mm Zirconium glass beads (Bertin Technologies, France) were added.  

The pulverized tissue was broken in a Cryolysis System (Bertin Technologies, 

France) (program: 6200-3x45-045) cooled at 4°C.  The sample was 

incubated for 20 minutes on ice, centrifuged at 21000xg for 2 min and the 

supernatant was transferred to an Eppendorf tube.  The pellet was extracted 

a second time with 200	
  µl of extraction solvent, and the combined 

supernatants were centrifuged at 21000xg for 5 min to remove remaining cell 

debris and split into two equal aliquots in 300 µl glass inserts. The metabolite 

extract was dried in a Centrivap at 50°C for 30 min and then 60°C for 2 hrs. 

 

Derivatization of Amino Groups.  Was performed as described (Boughton, 

Callahan et al. 2011) with modifications.  Dried lipid extract was re-
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suspended in 10 µl 0.1% formic acid, 70 µl borate buffer (200mM boric acid 

pH 8.8 (with NaOH), 10mM TCEP, 1mM ascorbic acid, 35.7 µM 13C15N –

Valine (internal standard)). The mixture was sonicated for 5 minutes and 20 

µl of 10mM AQC (2.85mg/ml in acetonitrile) was added. The sample was 

incubated for 15 min at 55°C with shaking (750 rpm) followed by overnight 

incubation at 24°C. 

 

LC-MS.  After incubation the sample was centrifuged as above and loaded 

onto a NUCLEOSHELL RP 18 (Particle size: 2.7 µm , length: 100 mm, 

Diameter: 2 mm) and the following gradient was applied:  solvent A : milliQ 

water + 0.1% formic acid, solvent B: isopropanol + 0.1 % formic acid, at a 

flow of 300 ml/min.   
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Supplemental Tables 
 
Table S1 - Supplementary table of RNA sequencing data of lipid related 
genes that are up-or down-regulated in L-dKO/ control mice. Available 
as a separate file. 
 
Table S2 - Supplementary table for enrichment heat map L-dKO/ control 
ad-libitum fed mice (increased). Available as a separate file. 
 
Table S3 - Supplementary table for enrichment heat map L-dKO/control 
ad-libitum fed mice (decreased). Available as a separate file. 
 
Table S4 (related to lipidome analysis): Mammalian standard mix for one 
sample 
 

Standard  nmole Provider Product 
Nr 

DLPC Phosphatidylcholine (PC)12:0-
12:0 

0.4 Avanti 850335 

PE31:1 Phosphatidylethanolamine 
(PE)17:0-14:1 

1 Avanti LM-1104 

PI31:1 Phosphatidylinositol (PI)17:0-
14:1 

1 Avanti LM-1504 

PS31:1 Phosphatidylserine (PS)17:0-
14:1 

3.3 Avanti LM-1304 

CL56:0 Cardiolipin (CL)14:0-14:0-14:0-
14:0 

0.7 Avanti 710332 

C17Cer Ceramide (Cer)d18:1-17:0 2.5 Avanti 860517 
C8GC Glucosylceramide 
(GlcCer)d18:1-8:0 

0.5 Avanti 860540 

C12SM Sphingomyelin (SM) d18:1-
12:0 

0.1 Avanti 860583 

Ergosterol 8 Fluka 45480 
 
Table S5 (related to lipidome analysis): Detection of Lipids by MS/MS 
 

Lipid class standard Pola
rity Mode m/z ion CE 

Phosphatidylcholine 
[M+H]+ PC31:1 + Product 

ion 184.07 30 

Phosphatidylethanol
amine [M+H]+ PE31:1 + Neutral 

ion loss 141.02 
20 

Phosphatidylinositol 
[M-H]- PI31:1 - Product 

ion 241.01 44 

Phosphatidylserine 
[M-H]- PS31:1 - Neutral 

ion loss 87.03 23 

Cardiolipin [M-2H]2- CL56:0 - Product 
ion 

acyl 
chain 

32 
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Ceramide [M+H]+ C17Cer + Product 
ion 264.30 25 

Dihydroceramide 
[M+H]+ C17Cer + Product 

ion 266.40 25 

Hexacylceramide 
[M+H]+ C8GC + Product 

ion 264.30 30 

Hexacyldihydrocera
mide [M+H]+ C8GC + Product 

ion 266.40 30 

Sphingomyelin 
[M+H]+ C12SM + Product 

ion 184.07 26 

 

Table S6 (related to metabolome analysis): Standard mice for one 
sample 
 

Standard nmole Provider Product 
Nr 

C17So D-erythro-
sphingosine (C17 base) 

0.04 Avanti 860640 

C17Sa D-erythro-
sphinganine (C17 base) 

0.04 Avanti 
860654 

C17So-1P D-erythro-
sphingosine-1-phosphate 
(C17 base) 

1 Avanti 

860641 
C17Sa-1P D-erythro-
sphinganine-1-phosphate 
(C17 base) 

1 Avanti 

860655 
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Table S7. Primer sequences used for qRT-PCR  

Gene name  Forward (5’- 3’)  Reverse (5’ - 3’)  
acc1 AAGGCTATGTGAAGGATG  CTGTCTGAAGAGGTTAGG  
fasn GCTGCGGAAACTTCAGGAAAT  AGAGACGTGTCACTCCTGGACTT  
scd1 GTCAGGAGGGCAGGTTTC  GAGCGTGGACTTCGGTTC  
acox CTTCAGGCCCAAGTGAGTCA  GCGAACAAGGTCGACAGAAGT  
mcad GATGCCATCACCCTCGTGTAAC  AAGCCCTTTTCCCCTGAAG  
cd36 TGGCCTTACTTGGGATTGG CCAGTGTATATGTAGGCTCATCCA  
mttp TGGTGAAAGGGCTTATTCTGTT  TTGCAGCTGAATATCCTGAGAA  
cyclophilin  TGGAAGAGCACCAAGACAGACA  TGCCGGAGTCGACAATGAT  
apob AAACATGCAGAGCTACTTTGGAG  TTTAGGATCACTTCCTGGTCAAA  
RFP  GCGGCCACTACACCTGCGAC  TCGGCGTGCTCGTACTGCTC  
spk1 GATGCATGAGGTGGTGAATG GCTACACAGGGGTTTCTGGA 
gcs AGCTGGAGAACTGGTCGCTA CACACTGTGCGCCATCAG 
spt(sptlc1) TCGAGTTAAGGCCACAGCTT CATAGAACCCTCGAGGACCA 
smpd acid GGCGAGTACAGCAAGTGTGA CTCCCGTCCAGTACACCATT 
smpd neutral AGTACGAGGACCGGGTTTCT GAGACAACATTGGCAGCAGA 
gpat CAACACCATCCCCGACATC  GTGACCTTCGATTATGCGATCA  
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Supplementary findings 

Relevant findings that could not be included in the manuscript are discussed 

below. 
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Inflammation in L-dKO mice. 

As mentioned above, inflammation may further amplify liver damage induced 

by lipids (so called NASH).  L-dKO mice exhibited increased inflammatory 

cytokines, such as tnfa, il6 and probably expansion of resident macrophages 

(kupffer cells), as assessed by the surrogate marker cd68 (Figure 1, below).  

This was confirmed by isolation of inflammatory cells using FACS analysis (8 

week-old L-dKO and littermates control mice).  Specifically, we observed 

elevated levels of Gr1+ inflammatory cells in livers of L-dKO mice.  Gr1+ are 

myeloid infiltrating suppressor cells that promote cancer (Di Mitri, Toso et al. 

2014, Atala 2015).  Immunofluorescence analysis on frozen liver sections 

confirmed the presence of Gr1+ cells.  Gr1+ cells also localized to regions in 

which the sphingolipid GlcCer was present, suggesting a relationship 

between GlcCer accumulation, Gr1+ cells and perhaps cancer.  Furthermore, 

L-dKO exhibited increased spleen mass from 8 weeks of age, suggesting that 

L-dKO mice suffer from systemic inflammatory response (Figure 1, below).  

Indeed, we also identified that elevated Gr1 levels in peripheral blood and 

spleen (not shown).  Together, these data indicates that L-dKO mice display 

hepatic and systemic inflammatory response, whether that is functionally 

related to lipids and/or to tumor development remains to be investigated.  
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Figure 1.  L-dKO mice exhibit hepatic and systemic inflammation.  (A)  Relative 

mRNA in livers from 8 week-old L-dKO and control mice, for the indicated genes.  (B)  
Representative plot of FACS analysis performed on livers from 8 week-old L-dKO 

and control mice.  (C)  Spleen mass from 4, 8, 12 and 200 week-old L-dKO and 

control mice (n=6).  (D)  Representative immunofluorescence images of frozen liver 

sections from tumors of L-dKO mice (control here is non-stained L-dKO). 
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L-dKO mice display enhanced de-novo serine synthesis. 

Serine is required for de novo SL and protein synthesis, as well as a one-

carbon unit source essential for de novo purine synthesis.  In proliferating 

cells, the glycolytic intermediate 3-phosphoglycerate is converted to serine, 

via the de novo serine biosynthesis pathway (SSP) (Locasale 2013, Amelio, 

Cutruzzola et al. 2014).  PHGDH (phosphoglycerate dehydrogenase) 

generates 3-phosphohydroxypurvate, which is subsequently transaminated 

(PSAT1) and dephosphorylated (PSPH) to generate serine.  Cancer cells that 

exhibit genomic amplifications (copy number gain) of PHGDH are dependent 

on serine synthesis (Possemato, Marks et al. 2011, Labuschagne, van den 

Broek et al. 2014, Pacold, Brimacombe et al. 2016).  As depicted in the figure 

below (Figure 2), L-dKO mice exhibit increase de novo serine biosynthetic 

enzymes.  These data suggests that mTOR-driven tumors require serine 

synthesis, probably also for lipid synthesis.  

 

Figure 2.  Increased expression of enzymes in the de novo serine pathway in L-dKO mice.  

Proteins that are up-regulated in livers of L-dKO mice (from 4 to 20 weeks) are depicted in 

red.  Down-regulated enzymes are in blue.  Abbreviation: 6PG, 6-phosphogluconate 

RL5P, Ribulose 5-phosphate; R5P, Ribose 5-phosphate; 6PGD, 6-phosphogluconate 

dehydrogenase; 6PG, 6-phosphogluconolactonase   



	
   111 

  



	
   112 

6.0.  Acknowledgements 

First of foremost, my deepest gratitude to my family for endless love and joy, I 

am truly sorry for every missed moment beside you.  To my parents, brothers 

and sister for their support and wisdom over the years. 

I would like to express my gratefulness to Mike.  Thank you for opening 

the door to the fascinating life of TOR, and for being an excellent mentor and 

a great inspiration for me. 

Many thanks to my colleagues for pushing me to the best and better.  In 

particular, to Marco Colombi for his great help in handling the high-throughput 

studies.  To Dr. Asier S. G. for teaching me the art of figure making.  To Dr. 

Mitsugu S., Dr. Verena A., Dr. Sravanth H.K., Dr. Eva D. K. for scientific 

discussions.  To Wolfgang O. for his prudence. 

I would like to acknowledge my co-mentor Prof. Howard Riezman for his 

absolutely essential guidance into the (complex) life of lipids.  To Isabelle 

Riezman for performing the lipidomic analysis and for scientific instructions. 

  



	
   113 

7.0.  Bibliography 

Aguilera-Romero, A., C. Gehin and H. Riezman (2014). "Sphingolipid 
homeostasis in the web of metabolic routes." Biochim Biophys Acta 1841(5): 
647-656. 
Albert, V. and M. N. Hall (2015). "mTOR signaling in cellular and organismal 
energetics." Curr Opin Cell Biol 33: 55-66. 
Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. 
Reese and P. Cohen (1997). "Characterization of a 3-phosphoinositide-
dependent protein kinase which phosphorylates and activates protein kinase 
Balpha." Curr Biol 7(4): 261-269. 
Allen, E., P. Mieville, C. M. Warren, S. Saghafinia, L. Li, M. W. Peng and D. 
Hanahan (2016). "Metabolic Symbiosis Enables Adaptive Resistance to Anti-
angiogenic Therapy that Is Dependent on mTOR Signaling." Cell Rep 15(6): 
1144-1160. 
Amelio, I., F. Cutruzzola, A. Antonov, M. Agostini and G. Melino (2014). 
"Serine and glycine metabolism in cancer." Trends Biochem Sci 39(4): 191-
198. 
Argiles, J. M., S. Busquets, B. Stemmler and F. J. Lopez-Soriano (2014). 
"Cancer cachexia: understanding the molecular basis." Nat Rev Cancer 
14(11): 754-762. 
Atala, A. (2015). "Re: Tumour-infiltrating Gr-1+ myeloid cells antagonize 
senescence in cancer." J Urol 193(6): 2146. 
Bae, J. S., A. R. Oh, H. J. Lee, Y. H. Ahn and J. Y. Cha (2016). "Hepatic 
Elovl6 gene expression is regulated by the synergistic action of ChREBP and 
SREBP-1c." Biochem Biophys Res Commun. 
Baenke, F., B. Peck, H. Miess and A. Schulze (2013). "Hooked on fat: the 
role of lipid synthesis in cancer metabolism and tumour development." Dis 
Model Mech 6(6): 1353-1363. 
Baffy, G. (2013). "Hepatocellular Carcinoma in Non-alcoholic Fatty Liver 
Disease: Epidemiology, Pathogenesis, and Prevention." J Clin Transl Hepatol 
1(2): 131-137. 
Bellentani, S., F. Scaglioni, M. Marino and G. Bedogni (2010). "Epidemiology 
of non-alcoholic fatty liver disease." Dig Dis 28(1): 155-161. 
Beloribi-Djefaflia, S., S. Vasseur and F. Guillaumond (2016). "Lipid metabolic 
reprogramming in cancer cells." Oncogenesis 5: e189. 
Ben-Sahra, I., J. J. Howell, J. M. Asara and B. D. Manning (2013). 
"Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through 
mTOR and S6K1." Science 339(6125): 1323-1328. 
Ben-Sahra, I., G. Hoxhaj, S. J. Ricoult, J. M. Asara and B. D. Manning (2016). 
"mTORC1 induces purine synthesis through control of the mitochondrial 
tetrahydrofolate cycle." Science 351(6274): 728-733. 
Benjamin, D., M. Colombi, C. Moroni and M. N. Hall (2011). "Rapamycin 
passes the torch: a new generation of mTOR inhibitors." Nat Rev Drug 
Discov 10(11): 868-880. 
Betz, C. and M. N. Hall (2013). "Where is mTOR and what is it doing there?" 
J Cell Biol 203(4): 563-574. 
Betz, C., D. Stracka, C. Prescianotto-Baschong, M. Frieden, N. Demaurex 
and M. N. Hall (2013). "Feature Article: mTOR complex 2-Akt signaling at 



	
   114 

mitochondria-associated endoplasmic reticulum membranes (MAM) regulates 
mitochondrial physiology." Proc Natl Acad Sci U S A 110(31): 12526-12534. 
Bhat, M., N. Sonenberg and G. J. Gores (2013). "The mTOR pathway in 
hepatic malignancies." Hepatology 58(2): 810-818. 
Bononi, A., S. Missiroli, F. Poletti, J. M. Suski, C. Agnoletto, M. Bonora, E. De 
Marchi, C. Giorgi, S. Marchi, S. Patergnani, A. Rimessi, M. R. Wieckowski 
and P. Pinton (2012). "Mitochondria-associated membranes (MAMs) as 
hotspot Ca(2+) signaling units." Adv Exp Med Biol 740: 411-437. 
Boughton, B. A., D. L. Callahan, C. Silva, J. Bowne, A. Nahid, T. Rupasinghe, 
D. L. Tull, M. J. McConville, A. Bacic and U. Roessner (2011). 
"Comprehensive profiling and quantitation of amine group containing 
metabolites." Anal Chem 83(19): 7523-7530. 
Breslow, D. K. (2013). "Sphingolipid homeostasis in the endoplasmic 
reticulum and beyond." Cold Spring Harb Perspect Biol 5(4): a013326. 
Burri, L., N. Hoem, S. Banni and K. Berge (2012). "Marine omega-3 
phospholipids: metabolism and biological activities." Int J Mol Sci 13(11): 
15401-15419. 
Caron, A., D. Richard and M. Laplante (2015). "The Roles of mTOR 
Complexes in Lipid Metabolism." Annu Rev Nutr 35: 321-348. 
Chandarlapaty, S., A. Sawai, M. Scaltriti, V. Rodrik-Outmezguine, O. Grbovic-
Huezo, V. Serra, P. K. Majumder, J. Baselga and N. Rosen (2011). "AKT 
Inhibition Relieves Feedback Suppression of Receptor Tyrosine Kinase 
Expression and Activity." Cancer Cell 19(1): 58-71. 
Chauvin, C., V. Koka, A. Nouschi, V. Mieulet, C. Hoareau-Aveilla, A. Dreazen, 
N. Cagnard, W. Carpentier, T. Kiss, O. Meyuhas and M. Pende (2014). 
"Ribosomal protein S6 kinase activity controls the ribosome biogenesis 
transcriptional program." Oncogene 33(4): 474-483. 
Chen, Y., J. Qian, Q. He, H. Zhao, L. Toral-Barza, C. Shi, X. Zhang, J. Wu 
and K. Yu (2016). "mTOR complex-2 stimulates acetyl-CoA and de novo 
lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast 
cancer." Oncotarget 7(18): 25224-25240. 
Cheng, J., T. S. Park, A. S. Fischl and X. S. Ye (2001). "Cell cycle 
progression and cell polarity require sphingolipid biosynthesis in Aspergillus 
nidulans." Mol Cell Biol 21(18): 6198-6209. 
Christie, W. (2013). AOCS Lipid Library. 
Clarke, N. G. and R. M. Dawson (1981). "Alkaline O leads to N-transacylation. 
A new method for the quantitative deacylation of phospholipids." Biochem J 
195(1): 301-306. 
Colombi, M., K. D. Molle, D. Benjamin, K. Rattenbacher-Kiser, C. Schaefer, C. 
Betz, A. Thiemeyer, U. Regenass, M. N. Hall and C. Moroni (2011). 
"Genome-wide shRNA screen reveals increased mitochondrial dependence 
upon mTORC2 addiction." Oncogene 30(13): 1551-1565. 
Cornu, M., V. Albert and M. N. Hall (2013). "mTOR in aging, metabolism, and 
cancer." Curr Opin Genet Dev 23(1): 53-62. 
Cornu, M., W. Oppliger, V. Albert, A. M. Robitaille, F. Trapani, L. Quagliata, T. 
Fuhrer, U. Sauer, L. Terracciano and M. N. Hall (2014). "Hepatic mTORC1 
controls locomotor activity, body temperature, and lipid metabolism through 
FGF21." Proceedings of the National Academy of Sciences of the United 
States of America 111(32): 11592-11599. 



	
   115 

Corradetti, M. N., K. Inoki, N. Bardeesy, R. A. DePinho and K. L. Guan (2004). 
"Regulation of the TSC pathway by LKB1: evidence of a molecular link 
between tuberous sclerosis complex and Peutz-Jeghers syndrome." Genes 
Dev 18(13): 1533-1538. 
Cowart, L. A. and Y. A. Hannun (2007). "Selective substrate supply in the 
regulation of yeast de novo sphingolipid synthesis." J Biol Chem 282(16): 
12330-12340. 
Csibi, A., G. Lee, S. O. Yoon, H. Tong, D. Ilter, I. Elia, S. M. Fendt, T. M. 
Roberts and J. Blenis (2014). "The mTORC1/S6K1 pathway regulates 
glutamine metabolism through the eIF4B-dependent control of c-Myc 
translation." Curr Biol 24(19): 2274-2280. 
Cybulski, N. and M. N. Hall (2009). "TOR complex 2: a signaling pathway of 
its own." Trends Biochem Sci 34(12): 620-627. 
Cybulski, N., P. Polak, J. Auwerx, M. A. Ruegg and M. N. Hall (2009). "mTOR 
complex 2 in adipose tissue negatively controls whole-body growth." Proc 
Natl Acad Sci U S A 106(24): 9902-9907. 
Das, S., F. Morvan, B. Jourde, V. Meier, P. Kahle, P. Brebbia, G. Toussaint, 
D. J. Glass and M. Fornaro (2015). "ATP citrate lyase improves mitochondrial 
function in skeletal muscle." Cell Metab 21(6): 868-876. 
Dazert, E. and M. N. Hall (2011). "mTOR signaling in disease." Curr Opin Cell 
Biol 23(6): 744-755. 
DeBerardinis, R. J., J. J. Lum, G. Hatzivassiliou and C. B. Thompson (2008). 
"The biology of cancer: metabolic reprogramming fuels cell growth and 
proliferation." Cell Metab 7(1): 11-20. 
Dennis, E. A. and E. P. Kennedy (1972). "Intracellular sites of lipid synthesis 
and the biogenesis of mitochondria." J Lipid Res 13(2): 263-267. 
Dephoure, N. and S. P. Gygi (2011). "A solid phase extraction-based platform 
for rapid phosphoproteomic analysis." Methods 54(4): 379-386. 
Di Mitri, D., A. Toso, J. J. Chen, M. Sarti, S. Pinton, T. R. Jost, R. D'Antuono, 
E. Montani, R. Garcia-Escudero, I. Guccini, S. Da Silva-Alvarez, M. Collado, 
M. Eisenberger, Z. Zhang, C. Catapano, F. Grassi and A. Alimonti (2014). 
"Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer." 
Nature 515(7525): 134-137. 
Dibble, C. C. and L. C. Cantley (2015). "Regulation of mTORC1 by PI3K 
signaling." Trends Cell Biol 25(9): 545-555. 
Dibble, C. C., W. Elis, S. Menon, W. Qin, J. Klekota, J. M. Asara, P. M. Finan, 
D. J. Kwiatkowski, L. O. Murphy and B. D. Manning (2012). "TBC1D7 Is a 
Third Subunit of the TSC1-TSC2 Complex Upstream of mTORC1." Molecular 
Cell 47(4): 535-546. 
Dibble, C. C. and B. D. Manning (2013). "Signal integration by mTORC1 
coordinates nutrient input with biosynthetic output." Nature Cell Biology 15(6): 
555-564. 
Dibble, C. C. and B. D. Manning (2013). "Signal integration by mTORC1 
coordinates nutrient input with biosynthetic output." Nat Cell Biol 15(6): 555-
564. 
Ding, J., U. Loizides-Mangold, G. Rando, V. Zoete, O. Michielin, J. K. Reddy, 
W. Wahli, H. Riezman and B. Thorens (2013). "The peroxisomal enzyme L-
PBE is required to prevent the dietary toxicity of medium-chain fatty acids." 
Cell Rep 5(1): 248-258. 



	
   116 

Dowling, R. J., I. Topisirovic, T. Alain, M. Bidinosti, B. D. Fonseca, E. 
Petroulakis, X. Wang, O. Larsson, A. Selvaraj, Y. Liu, S. C. Kozma, G. 
Thomas and N. Sonenberg (2010). "mTORC1-mediated cell proliferation, but 
not cell growth, controlled by the 4E-BPs." Science 328(5982): 1172-1176. 
Duncan, A. L., A. J. Robinson and J. E. Walker (2016). "Cardiolipin binds 
selectively but transiently to conserved lysine residues in the rotor of 
metazoan ATP synthases." Proc Natl Acad Sci U S A 113(31): 8687-8692. 
Duran, R. V. and M. N. Hall (2012). "Glutaminolysis feeds mTORC1." Cell 
Cycle 11(22): 4107-4108. 
Duran, R. V., W. Oppliger, A. M. Robitaille, L. Heiserich, R. Skendaj, E. 
Gottlieb and M. N. Hall (2012). "Glutaminolysis activates Rag-mTORC1 
signaling." Mol Cell 47(3): 349-358. 
Duvel, K., J. L. Yecies, S. Menon, P. Raman, A. I. Lipovsky, A. L. Souza, E. 
Triantafellow, Q. Ma, R. Gorski, S. Cleaver, M. G. Vander Heiden, J. P. 
MacKeigan, P. M. Finan, C. B. Clish, L. O. Murphy and B. D. Manning (2010). 
"Activation of a metabolic gene regulatory network downstream of mTOR 
complex 1." Mol Cell 39(2): 171-183. 
Efeyan, A. and D. M. Sabatini (2010). "mTOR and cancer: many loops in one 
pathway." Current Opinion in Cell Biology 22(2): 169-176. 
Eltschinger, S. and R. Loewith (2016). "TOR Complexes and the 
Maintenance of Cellular Homeostasis." Trends Cell Biol 26(2): 148-159. 
Eltschinger, S. and R. Loewith (2016). "TOR Complexes and the 
Maintenance of Cellular Homeostasis." Trends in Cell Biology 26(2): 148-159. 
Faller, W. J., T. J. Jackson, J. R. Knight, R. A. Ridgway, T. Jamieson, S. A. 
Karim, C. Jones, S. Radulescu, D. J. Huels, K. B. Myant, K. M. Dudek, H. A. 
Casey, A. Scopelliti, J. B. Cordero, M. Vidal, M. Pende, A. G. Ryazanov, N. 
Sonenberg, O. Meyuhas, M. N. Hall, M. Bushell, A. E. Willis and O. J. 
Sansom (2015). "mTORC1-mediated translational elongation limits intestinal 
tumour initiation and growth." Nature 517(7535): 497-500. 
Fazel, Y., A. B. Koenig, M. Sayiner, Z. D. Goodman and Z. M. Younossi 
(2016). "Epidemiology and natural history of non-alcoholic fatty liver disease." 
Metabolism 65(8): 1017-1025. 
Feng, Y. H., W. Y. Chen, Y. H. Kuo, C. L. Tung, C. J. Tsao, A. L. Shiau and C. 
L. Wu (2016). "Elovl6 is a poor prognostic predictor in breast cancer." Oncol 
Lett 12(1): 207-212. 
Flavin, R., S. Peluso, P. L. Nguyen and M. Loda (2010). "Fatty acid synthase 
as a potential therapeutic target in cancer." Future Oncol 6(4): 551-562. 
Frias, M. A., C. C. Thoreen, J. D. Jaffe, W. Schroder, T. Sculley, S. A. Carr 
and D. M. Sabatini (2006). "mSin1 is necessary for Akt/PKB phosphorylation, 
and its isoforms define three distinct mTORC2s." Curr Biol 16(18): 1865-1870. 
Garcia-Barros, M., N. Coant, J. P. Truman, A. J. Snider and Y. A. Hannun 
(2014). "Sphingolipids in colon cancer." Biochim Biophys Acta 1841(5): 773-
782. 
Gibellini, F. and T. K. Smith (2010). "The Kennedy pathway--De novo 
synthesis of phosphatidylethanolamine and phosphatidylcholine." IUBMB Life 
62(6): 414-428. 
Guenther, S., L. J. Muirhead, A. V. Speller, O. Golf, N. Strittmatter, R. 
Ramakrishnan, R. D. Goldin, E. Jones, K. Veselkov, J. Nicholson, A. Darzi 
and Z. Takats (2015). "Spatially resolved metabolic phenotyping of breast 



	
   117 

cancer by desorption electrospray ionization mass spectrometry." Cancer 
Res 75(9): 1828-1837. 
Guertin, D. A., D. M. Stevens, M. Saitoh, S. Kinkel, K. Crosby, J. H. Sheen, D. 
J. Mullholland, M. A. Magnuson, H. Wu and D. M. Sabatini (2009). "mTOR 
complex 2 is required for the development of prostate cancer induced by Pten 
loss in mice." Cancer Cell 15(2): 148-159. 
Guillaumond, F., G. Bidaut, M. Ouaissi, S. Servais, V. Gouirand, O. Olivares, 
S. Lac, L. Borge, J. Roques, O. Gayet, M. Pinault, C. Guimaraes, J. Nigri, C. 
Loncle, M. N. Lavaut, S. Garcia, A. Tailleux, B. Staels, E. Calvo, R. Tomasini, 
J. L. Iovanna and S. Vasseur (2015). "Cholesterol uptake disruption, in 
association with chemotherapy, is a promising combined metabolic therapy 
for pancreatic adenocarcinoma." Proc Natl Acad Sci U S A 112(8): 2473-2478. 
Guillou, H., D. Zadravec, P. G. Martin and A. Jacobsson (2010). "The key 
roles of elongases and desaturases in mammalian fatty acid metabolism: 
Insights from transgenic mice." Prog Lipid Res 49(2): 186-199. 
Gupta, V., K. N. Bhinge, S. B. Hosain, K. Xiong, X. Gu, R. Shi, M. Y. Ho, K. H. 
Khoo, S. C. Li, Y. T. Li, S. V. Ambudkar, S. M. Jazwinski and Y. Y. Liu (2012). 
"Ceramide glycosylation by glucosylceramide synthase selectively maintains 
the properties of breast cancer stem cells." J Biol Chem 287(44): 37195-
37205. 
Gupta, V., G. A. Patwardhan, Q. J. Zhang, M. C. Cabot, S. M. Jazwinski and 
Y. Y. Liu (2010). "Direct quantitative determination of ceramide glycosylation 
in vivo: a new approach to evaluate cellular enzyme activity of 
glucosylceramide synthase." J Lipid Res 51(4): 866-874. 
Hagiwara, A., M. Cornu, N. Cybulski, P. Polak, C. Betz, F. Trapani, L. 
Terracciano, M. H. Heim, M. A. Ruegg and M. N. Hall (2012). "Hepatic 
mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and 
SREBP1c." Cell Metab 15(5): 725-738. 
Hannun, Y. A. and L. M. Obeid (2008). "Principles of bioactive lipid signalling: 
lessons from sphingolipids." Nat Rev Mol Cell Biol 9(2): 139-150. 
He, Q., V. J. Johnson, M. F. Osuchowski and R. P. Sharma (2004). "Inhibition 
of serine palmitoyltransferase by myriocin, a natural mycotoxin, causes 
induction of c-myc in mouse liver." Mycopathologia 157(3): 339-347. 
Hilvo, M., C. Denkert, L. Lehtinen, B. Muller, S. Brockmoller, T. Seppanen-
Laakso, J. Budczies, E. Bucher, L. Yetukuri, S. Castillo, E. Berg, H. Nygren, 
M. Sysi-Aho, J. L. Griffin, O. Fiehn, S. Loibl, C. Richter-Ehrenstein, C. Radke, 
T. Hyotylainen, O. Kallioniemi, K. Iljin and M. Oresic (2011). "Novel 
theranostic opportunities offered by characterization of altered membrane 
lipid metabolism in breast cancer progression." Cancer Res 71(9): 3236-3245. 
Hitosugi, T., J. Fan, T. W. Chung, K. Lythgoe, X. Wang, J. Xie, Q. Ge, T. L. 
Gu, R. D. Polakiewicz, J. L. Roesel, G. Z. Chen, T. J. Boggon, S. Lonial, H. 
Fu, F. R. Khuri, S. Kang and J. Chen (2011). "Tyrosine phosphorylation of 
mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer 
metabolism." Mol Cell 44(6): 864-877. 
Horie, Y., A. Suzuki, E. Kataoka, T. Sasaki, K. Hamada, J. Sasaki, K. Mizuno, 
G. Hasegawa, H. Kishimoto, M. Iizuka, M. Naito, K. Enomoto, S. Watanabe, 
T. W. Mak and T. Nakano (2004). "Hepatocyte-specific Pten deficiency 
results in steatohepatitis and hepatocellular carcinomas." J Clin Invest 
113(12): 1774-1783. 



	
   118 

Horie, Y., A. Suzuki, E. Kataoka, T. Sasaki, K. Hamada, J. Sasaki, K. Mizuno, 
G. Hasegawa, H. Kishimoto, M. Iizuka, M. Naito, K. Enomoto, S. Watanabe, 
T. W. Mak and T. Nakano (2004). "Hepatocyte-specific Pten deficiency 
results in steatohepatitis and hepatocellular carcinomas." Journal of Clinical 
Investigation 113(12): 1774-1783. 
Horton, J. D., J. L. Goldstein and M. S. Brown (2002). "SREBPs: activators of 
the complete program of cholesterol and fatty acid synthesis in the liver." J 
Clin Invest 109(9): 1125-1131. 
Houtkooper, R. H. and F. M. Vaz (2008). "Cardiolipin, the heart of 
mitochondrial metabolism." Cell Mol Life Sci 65(16): 2493-2506. 
Hsieh, A. C., Y. Liu, M. P. Edlind, N. T. Ingolia, M. R. Janes, A. Sher, E. Y. 
Shi, C. R. Stumpf, C. Christensen, M. J. Bonham, S. Wang, P. Ren, M. Martin, 
K. Jessen, M. E. Feldman, J. S. Weissman, K. M. Shokat, C. Rommel and D. 
Ruggero (2012). "The translational landscape of mTOR signalling steers 
cancer initiation and metastasis." Nature 485(7396): 55-61. 
Hsieh, A. C. and D. Ruggero (2010). "Targeting eukaryotic translation 
initiation factor 4E (eIF4E) in cancer." Clin Cancer Res 16(20): 4914-4920. 
Huang, W. C., C. C. Tsai, C. L. Chen, T. Y. Chen, Y. P. Chen, Y. S. Lin, P. J. 
Lu, C. M. Lin, S. H. Wang, C. W. Tsao, C. Y. Wang, Y. L. Cheng, C. Y. Hsieh, 
P. C. Tseng and C. F. Lin (2011). "Glucosylceramide synthase inhibitor 
PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor 
and cooperatively induces glycogen synthase kinase-3-regulated apoptosis." 
FASEB J 25(10): 3661-3673. 
Inoki, K. and K. L. Guan (2009). "Tuberous sclerosis complex, implication 
from a rare genetic disease to common cancer treatment." Hum Mol Genet 
18(R1): R94-100. 
Inoki, K., Y. Li, T. Zhu, J. Wu and K. L. Guan (2002). "TSC2 is 
phosphorylated and inhibited by Akt and suppresses mTOR signalling." Nat 
Cell Biol 4(9): 648-657. 
Inoki, K., Y. Li, T. Q. Zhu, J. Wu and K. L. Guan (2002). "TSC2 is 
phosphorylated and inhibited by Akt and suppresses mTOR signalling." 
Nature Cell Biology 4(9): 648-657. 
Inoki, K., H. Ouyang, T. Zhu, C. Lindvall, Y. Wang, X. Zhang, Q. Yang, C. 
Bennett, Y. Harada, K. Stankunas, C. Y. Wang, X. He, O. A. MacDougald, M. 
You, B. O. Williams and K. L. Guan (2006). "TSC2 integrates Wnt and energy 
signals via a coordinated phosphorylation by AMPK and GSK3 to regulate 
cell growth." Cell 126(5): 955-968. 
Jacinto, E., R. Loewith, A. Schmidt, S. Lin, M. A. Ruegg, A. Hall and M. N. 
Hall (2004). "Mammalian TOR complex 2 controls the actin cytoskeleton and 
is rapamycin insensitive." Nature Cell Biology 6(11): 1122-U1130. 
Jeon, T. I. and T. F. Osborne (2012). "SREBPs: metabolic integrators in 
physiology and metabolism." Trends Endocrinol Metab 23(2): 65-72. 
Jimenez-Valerio, G., M. Martinez-Lozano, N. Bassani, A. Vidal, M. Ochoa-de-
Olza, C. Suarez, X. Garcia-Del-Muro, J. Carles, F. Vinals, M. Graupera, S. 
Indraccolo and O. Casanovas (2016). "Resistance to Antiangiogenic 
Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and 
Patients." Cell Rep 15(6): 1134-1143. 
Joshi, A. S., M. N. Thompson, N. Fei, M. Huttemann and M. L. Greenberg 
(2012). "Cardiolipin and mitochondrial phosphatidylethanolamine have 



	
   119 

overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae." J 
Biol Chem 287(21): 17589-17597. 
Kartal Yandim, M., E. Apohan and Y. Baran (2013). "Therapeutic potential of 
targeting ceramide/glucosylceramide pathway in cancer." Cancer Chemother 
Pharmacol 71(1): 13-20. 
Kawashima, M., N. Iwamoto, N. Kawaguchi-Sakita, M. Sugimoto, T. Ueno, Y. 
Mikami, K. Terasawa, T. A. Sato, K. Tanaka, K. Shimizu and M. Toi (2013). 
"High-resolution imaging mass spectrometry reveals detailed spatial 
distribution of phosphatidylinositols in human breast cancer." Cancer Sci 
104(10): 1372-1379. 
Kenerson, H. L., L. D. Aicher, L. D. True and R. S. Yeung (2002). "Activated 
mammalian target of rapamycin pathway in the pathogenesis of tuberous 
sclerosis complex renal tumors." Cancer Research 62(20): 5645-5650. 
Kenerson, H. L., S. Subramanian, R. McIntyre, M. Kazami and R. S. Yeung 
(2015). "Livers with constitutive mTORC1 activity resist steatosis independent 
of feedback suppression of Akt." PLoS One 10(2): e0117000. 
Kenerson, H. L., M. M. Yeh, M. Kazami, X. Y. Jiang, K. J. Riehle, R. L. 
Mcintyre, J. O. Park, S. Kwon, J. S. Campbell and R. S. Yeung (2013). "Akt 
and mTORC1 Have Different Roles During Liver Tumorigenesis in Mice." 
Gastroenterology 144(5): 1055-1065. 
Kenerson, H. L., M. M. Yeh and R. S. Yeung (2011). "Tuberous Sclerosis 
Complex-1 Deficiency Attenuates Diet-Induced Hepatic Lipid Accumulation." 
Plos One 6(3). 
Kettenbach, A. N. and S. A. Gerber (2011). "Rapid and Reproducible Single-
Stage Phosphopeptide Enrichment of Complex Peptide Mixtures: Application 
to General and Phosphotyrosine-Specific Phosphoproteomics Experiments." 
Analytical Chemistry 83(20): 7635-7644. 
Kiebish, M. A., X. Han, H. Cheng, J. H. Chuang and T. N. Seyfried (2008). 
"Cardiolipin and electron transport chain abnormalities in mouse brain tumor 
mitochondria: lipidomic evidence supporting the Warburg theory of cancer." J 
Lipid Res 49(12): 2545-2556. 
Kim, E., P. Goraksha-Hicks, L. Li, T. P. Neufeld and K. L. Guan (2008). 
"Regulation of TORC1 by Rag GTPases in nutrient response." Nat Cell Biol 
10(8): 935-945. 
Kim, J., M. Kundu, B. Viollet and K. L. Guan (2011). "AMPK and mTOR 
regulate autophagy through direct phosphorylation of Ulk1." Nature Cell 
Biology 13(2): 132-U171. 
Kim, J. W., I. Tchernyshyov, G. L. Semenza and C. V. Dang (2006). "HIF-1-
mediated expression of pyruvate dehydrogenase kinase: a metabolic switch 
required for cellular adaptation to hypoxia." Cell Metab 3(3): 177-185. 
Kridel, S. J., F. Axelrod, N. Rozenkrantz and J. W. Smith (2004). "Orlistat is a 
novel inhibitor of fatty acid synthase with antitumor activity." Cancer Research 
64(6): 2070-2075. 
Kuhajda, F. P., K. Jenner, F. D. Wood, R. A. Hennigar, L. B. Jacobs, J. D. 
Dick and G. R. Pasternack (1994). "Fatty-Acid Synthesis - a Potential 
Selective Target for Antineoplastic Therapy." Proceedings of the National 
Academy of Sciences of the United States of America 91(14): 6379-6383. 
Kumar, A., J. C. Lawrence, Jr., D. Y. Jung, H. J. Ko, S. R. Keller, J. K. Kim, M. 
A. Magnuson and T. E. Harris (2010). "Fat cell-specific ablation of rictor in 



	
   120 

mice impairs insulin-regulated fat cell and whole-body glucose and lipid 
metabolism." Diabetes 59(6): 1397-1406. 
Kwiatkowski, D. J., H. Zhang, J. L. Bandura, K. M. Heiberger, M. Glogauer, N. 
el-Hashemite and H. Onda (2002). "A mouse model of TSC1 reveals sex-
dependent lethality from liver hemangiomas, and up-regulation of p70S6 
kinase activity in Tsc1 null cells." Hum Mol Genet 11(5): 525-534. 
Kwiatkowski, D. J., H. B. Zhang, J. L. Bandura, K. M. Heiberger, M. Glogauer, 
N. el-Hashemite and H. Onda (2002). "A mouse model of TSC1 reveals sex-
dependent lethality from liver hemangiomas, and up-regulation of p70S6 
kinase activity in Tsc1 null cells." Human Molecular Genetics 11(5): 525-534. 
Labuschagne, C. F., N. J. van den Broek, G. M. Mackay, K. H. Vousden and 
O. D. Maddocks (2014). "Serine, but not glycine, supports one-carbon 
metabolism and proliferation of cancer cells." Cell Rep 7(4): 1248-1258. 
Lambert, J. E., M. A. Ramos-Roman, J. D. Browning and E. J. Parks (2014). 
"Increased de novo lipogenesis is a distinct characteristic of individuals with 
nonalcoholic fatty liver disease." Gastroenterology 146(3): 726-735. 
Laplante, M. and D. M. Sabatini (2012). "mTOR signaling in growth control 
and disease." Cell 149(2): 274-293. 
Lee, J. M., H. Lee, S. Kang and W. J. Park (2016). "Fatty Acid Desaturases, 
Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances." 
Nutrients 8(1). 
Levy, M. and A. H. Futerman (2010). "Mammalian ceramide synthases." 
IUBMB Life 62(5): 347-356. 
Li, J., S. F. Ding, N. A. Habib, B. F. Fermor, C. B. Wood and R. S. Gilmour 
(1994). "Partial characterization of a cDNA for human stearoyl-CoA 
desaturase and changes in its mRNA expression in some normal and 
malignant tissues." Int J Cancer 57(3): 348-352. 
Li, L., G. M. Pilo, X. Li, A. Cigliano, G. Latte, L. Che, C. Joseph, M. Mela, C. 
Wang, L. Jiang, S. Ribback, M. M. Simile, R. M. Pascale, F. Dombrowski, M. 
Evert, C. F. Semenkovich, X. Chen and D. F. Calvisi (2016). "Inactivation of 
fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and 
humans." J Hepatol 64(2): 333-341. 
Li, S., M. S. Brown and J. L. Goldstein (2010). "Bifurcation of insulin signaling 
pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not 
inhibition of gluconeogenesis." Proc Natl Acad Sci U S A 107(8): 3441-3446. 
Liang, J., M. Nagahashi, E. Y. Kim, K. B. Harikumar, A. Yamada, W. C. 
Huang, N. C. Hait, J. C. Allegood, M. M. Price, D. Avni, K. Takabe, T. Kordula, 
S. Milstien and S. Spiegel (2013). "Sphingosine-1-phosphate links persistent 
STAT3 activation, chronic intestinal inflammation, and development of colitis-
associated cancer." Cancer Cell 23(1): 107-120. 
Liu, P., W. Gan, Y. R. Chin, K. Ogura, J. Guo, J. Zhang, B. Wang, J. Blenis, L. 
C. Cantley, A. Toker, B. Su and W. Wei (2015). "PtdIns(3,4,5)P3-Dependent 
Activation of the mTORC2 Kinase Complex." Cancer Discov 5(11): 1194-
1209. 
Liu, P., W. Gan, H. Inuzuka, A. S. Lazorchak, D. Gao, O. Arojo, D. Liu, L. 
Wan, B. Zhai, Y. Yu, M. Yuan, B. M. Kim, S. Shaik, S. Menon, S. P. Gygi, T. 
H. Lee, J. M. Asara, B. D. Manning, J. Blenis, B. Su and W. Wei (2013). "Sin1 
phosphorylation impairs mTORC2 complex integrity and inhibits downstream 
Akt signalling to suppress tumorigenesis." Nat Cell Biol 15(11): 1340-1350. 



	
   121 

Liu, Y. Y., T. Y. Han, A. E. Giuliano, N. Hansen and M. C. Cabot (2000). 
"Uncoupling ceramide glycosylation by transfection of glucosylceramide 
synthase antisense reverses adriamycin resistance." J Biol Chem 275(10): 
7138-7143. 
Liu, Y. Y., R. A. Hill and Y. T. Li (2013). "Ceramide glycosylation catalyzed by 
glucosylceramide synthase and cancer drug resistance." Adv Cancer Res 
117: 59-89. 
Llovet, J. M., J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. 
Sherman and G. Gores (2016). "Hepatocellular carcinoma." Nat Rev Dis 
Primers 2: 16018. 
Locasale, J. W. (2013). "Serine, glycine and one-carbon units: cancer 
metabolism in full circle." Nat Rev Cancer 13(8): 572-583. 
Loewith, R., E. Jacinto, S. Wullschleger, A. Lorberg, J. L. Crespo, D. 
Bonenfant, W. Oppliger, P. Jenoe and M. N. Hall (2002). "Two TOR 
complexes, only one of which is rapamycin sensitive, have distinct roles in 
cell growth control." Mol Cell 10(3): 457-468. 
Lonardo, A., C. D. Byrne, S. H. Caldwell, H. Cortez-Pinto and G. Targher 
(2016). "Global epidemiology of non-alcoholic fatty liver disease. Meta-
analytic assessment of prevalence, incidence and outcomes." Hepatology. 
Long, X., Y. Lin, S. Ortiz-Vega, K. Yonezawa and J. Avruch (2005). "Rheb 
binds and regulates the mTOR kinase." Curr Biol 15(8): 702-713. 
Ma, C., A. H. Kesarwala, T. Eggert, J. Medina-Echeverz, D. E. Kleiner, P. Jin, 
D. F. Stroncek, M. Terabe, V. Kapoor, M. ElGindi, M. Han, A. M. Thornton, H. 
Zhang, M. Egger, J. Luo, D. W. Felsher, D. W. McVicar, A. Weber, M. 
Heikenwalder and T. F. Greten (2016). "NAFLD causes selective CD4(+) T 
lymphocyte loss and promotes hepatocarcinogenesis." Nature 531(7593): 
253-257. 
Ma, X. M. and J. Blenis (2009). "Molecular mechanisms of mTOR-mediated 
translational control." Nat Rev Mol Cell Biol 10(5): 307-318. 
Mamane, Y., E. Petroulakis, O. LeBacquer and N. Sonenberg (2006). "mTOR, 
translation initiation and cancer." Oncogene 25(48): 6416-6422. 
Manning, B. D., A. R. Tee, M. N. Logsdon, J. Blenis and L. C. Cantley (2002). 
"Identification of the tuberous sclerosis complex-2 tumor suppressor gene 
product tuberin as a target of the phosphoinositide 3-kinase/akt pathway." 
Mol Cell 10(1): 151-162. 
Manning, B. D., A. R. Tee, M. N. Logsdon, J. Blenis and L. C. Cantley (2002). 
"Identification of the tuberous sclerosis complex-2 tumor suppressor gene 
product tuberin as a target of the phosphoinositide 3-Kinase/Akt pathway." 
Molecular Cell 10(1): 151-162. 
Masui, K., W. K. Cavenee and P. S. Mischel (2014). "mTORC2 in the center 
of cancer metabolic reprogramming." Trends in Endocrinology and 
Metabolism 25(7): 364-373. 
Masui, K., K. Tanaka, D. Akhavan, I. Babic, B. Gini, T. Matsutani, A. Iwanami, 
F. Liu, G. R. Villa, Y. C. Gu, C. Campos, S. J. Zhu, H. J. Yang, W. H. Yong, T. 
F. Cloughesy, I. K. Mellinghoff, W. K. Cavenee, R. J. Shaw and P. S. Mischel 
(2013). "mTOR Complex 2 Controls Glycolytic Metabolism in Glioblastoma 
through FoxO Acetylation and Upregulation of c-Myc." Cell Metabolism 18(5): 
726-739. 
Masui, K., K. Tanaka, S. Ikegami, G. R. Villa, H. Yang, W. H. Yong, T. F. 
Cloughesy, K. Yamagata, N. Arai, W. K. Cavenee and P. S. Mischel (2015). 



	
   122 

"Glucose-dependent acetylation of Rictor promotes targeted cancer therapy 
resistance." Proc Natl Acad Sci U S A 112(30): 9406-9411. 
Matyash, V., G. Liebisch, T. V. Kurzchalia, A. Shevchenko and D. Schwudke 
(2008). "Lipid extraction by methyl-tert-butyl ether for high-throughput 
lipidomics." J Lipid Res 49(5): 1137-1146. 
Medes, G., A. Thomas and S. Weinhouse (1953). "Metabolism of neoplastic 
tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro." 
Cancer Res 13(1): 27-29. 
Mehlem, A., C. E. Hagberg, L. Muhl, U. Eriksson and A. Falkevall (2013). 
"Imaging of neutral lipids by oil red O for analyzing the metabolic status in 
health and disease." Nat Protoc 8(6): 1149-1154. 
Mendoza, M. C., E. E. Er and J. Blenis (2011). "The Ras-ERK and PI3K-
mTOR pathways: cross-talk and compensation." Trends Biochem Sci 36(6): 
320-328. 
Menendez, J. A. and R. Lupu (2007). "Fatty acid synthase and the lipogenic 
phenotype in cancer pathogenesis." Nat Rev Cancer 7(10): 763-777. 
Menon, S., C. C. Dibble, G. Talbott, G. Hoxhaj, A. J. Valvezan, H. Takahashi, 
L. C. Cantley and B. D. Manning (2014). "Spatial control of the TSC complex 
integrates insulin and nutrient regulation of mTORC1 at the lysosome." Cell 
156(4): 771-785. 
Menon, S., J. L. Yecies, H. H. Zhang, J. J. Howell, J. Nicholatos, E. 
Harputlugil, R. T. Bronson, D. J. Kwiatkowski and B. D. Manning (2012). 
"Chronic Activation of mTOR Complex 1 Is Sufficient to Cause Hepatocellular 
Carcinoma in Mice." Science Signaling 5(217). 
Mester, J. and E. Charis (2015). "PTEN hamartoma tumor syndrome." Handb 
Clin Neurol 132: 129-137. 
Mischel, P. (2015). "Targeting PI3K-mTOR signaling in glioblastoma: A 
central role for mTORC2 in drug resistance and metabolic reprogramming." 
Molecular Cancer Therapeutics 14(7). 
Mittal, S., Y. H. Sada, H. B. El-Serag, F. Kanwal, Z. Duan, S. Temple, S. B. 
May, J. R. Kramer, P. A. Richardson and J. A. Davila (2015). "Temporal 
trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in 
the veteran affairs population." Clin Gastroenterol Hepatol 13(3): 594-601 
e591. 
Ngeow, J. and C. Eng (2016). "Germline PTEN Mutation Analysis for PTEN 
Hamartoma Tumor Syndrome." Methods Mol Biol 1388: 63-73. 
Ogretmen, B. and Y. A. Hannun (2004). "Biologically active sphingolipids in 
cancer pathogenesis and treatment." Nat Rev Cancer 4(8): 604-616. 
Olson, K. A., J. C. Schell and J. Rutter (2016). "Pyruvate and Metabolic 
Flexibility: Illuminating a Path Toward Selective Cancer Therapies." Trends 
Biochem Sci 41(3): 219-230. 
Pacold, M. E., K. R. Brimacombe, S. H. Chan, J. M. Rohde, C. A. Lewis, L. J. 
Swier, R. Possemato, W. W. Chen, L. B. Sullivan, B. P. Fiske, S. Cho, E. 
Freinkman, K. Birsoy, M. Abu-Remaileh, Y. D. Shaul, C. M. Liu, M. Zhou, M. J. 
Koh, H. Chung, S. M. Davidson, A. Luengo, A. Q. Wang, X. Xu, A. Yasgar, L. 
Liu, G. Rai, K. D. Westover, M. G. Vander Heiden, M. Shen, N. S. Gray, M. B. 
Boxer and D. M. Sabatini (2016). "A PHGDH inhibitor reveals coordination of 
serine synthesis and one-carbon unit fate." Nat Chem Biol 12(6): 452-458. 



	
   123 

Pagadala, M., T. Kasumov, A. J. McCullough, N. N. Zein and J. P. Kirwan 
(2012). "Role of ceramides in nonalcoholic fatty liver disease." Trends 
Endocrinol Metab 23(8): 365-371. 
Papandreou, I., R. A. Cairns, L. Fontana, A. L. Lim and N. C. Denko (2006). 
"HIF-1 mediates adaptation to hypoxia by actively downregulating 
mitochondrial oxygen consumption." Cell Metab 3(3): 187-197. 
Park, E. J., J. H. Lee, G. Y. Yu, G. He, S. R. Ali, R. G. Holzer, C. H. 
Osterreicher, H. Takahashi and M. Karin (2010). "Dietary and genetic obesity 
promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF 
expression." Cell 140(2): 197-208. 
Pavlova, N. N. and C. B. Thompson (2016). "The Emerging Hallmarks of 
Cancer Metabolism." Cell Metab 23(1): 27-47. 
Pearce, L. R., D. Komander and D. R. Alessi (2010). "The nuts and bolts of 
AGC protein kinases." Nat Rev Mol Cell Biol 11(1): 9-22. 
Peck, B., Z. T. Schug, Q. Zhang, B. Dankworth, D. T. Jones, E. Smethurst, R. 
Patel, S. Mason, M. Jiang, R. Saunders, M. Howell, R. Mitter, B. Spencer-
Dene, G. Stamp, L. McGarry, D. James, E. Shanks, E. O. Aboagye, S. E. 
Critchlow, H. Y. Leung, A. L. Harris, M. J. Wakelam, E. Gottlieb and A. 
Schulze (2016). "Inhibition of fatty acid desaturation is detrimental to cancer 
cell survival in metabolically compromised environments." Cancer Metab 4: 6. 
Peck, B. and A. Schulze (2016). "Lipid desaturation - the next step in 
targeting lipogenesis in cancer?" FEBS J 283(15): 2767-2778. 
Pelletier, J., J. Graff, D. Ruggero and N. Sonenberg (2015). "Targeting the 
eIF4F translation initiation complex: a critical nexus for cancer development." 
Cancer Res 75(2): 250-263. 
Peterson, T. R., S. S. Sengupta, T. E. Harris, A. E. Carmack, S. A. Kang, E. 
Balderas, D. A. Guertin, K. L. Madden, A. E. Carpenter, B. N. Finck and D. M. 
Sabatini (2011). "mTOR Complex 1 Regulates Lipin 1 Localization to Control 
the SREBP Pathway." Cell 146(3): 408-420. 
Pietrocola, F., L. Galluzzi, J. M. Bravo-San Pedro, F. Madeo and G. Kroemer 
(2015). "Acetyl coenzyme A: a central metabolite and second messenger." 
Cell Metab 21(6): 805-821. 
Pisarsky, L., R. Bill, E. Fagiani, S. Dimeloe, R. W. Goosen, J. Hagmann, C. 
Hess and G. Christofori (2016). "Targeting Metabolic Symbiosis to Overcome 
Resistance to Anti-angiogenic Therapy." Cell Rep 15(6): 1161-1174. 
Porstmann, T., B. Griffiths, Y. L. Chung, O. Delpuech, J. R. Griffiths, J. 
Downward and A. Schulze (2005). "PKB/Akt induces transcription of enzymes 
involved in cholesterol and fatty acid biosynthesis via activation of SREBP." 
Oncogene 24(43): 6465-6481. 
Porstmann, T., C. R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J. R. 
Griffiths, Y. L. Chung and A. Schulze (2008). "SREBP activity is regulated by 
mTORC1 and contributes to Akt-dependent cell growth." Cell Metab 8(3): 
224-236. 
Possemato, R., K. M. Marks, Y. D. Shaul, M. E. Pacold, D. Kim, K. Birsoy, S. 
Sethumadhavan, H. K. Woo, H. G. Jang, A. K. Jha, W. W. Chen, F. G. Barrett, 
N. Stransky, Z. Y. Tsun, G. S. Cowley, J. Barretina, N. Y. Kalaany, P. P. Hsu, 
K. Ottina, A. M. Chan, B. Yuan, L. A. Garraway, D. E. Root, M. Mino-
Kenudson, E. F. Brachtel, E. M. Driggers and D. M. Sabatini (2011). 
"Functional genomics reveal that the serine synthesis pathway is essential in 
breast cancer." Nature 476(7360): 346-350. 



	
   124 

Postic, C. and J. Girard (2008). "Contribution of de novo fatty acid synthesis 
to hepatic steatosis and insulin resistance: lessons from genetically 
engineered mice." J Clin Invest 118(3): 829-838. 
Postic, C. and J. Girard (2008). "The role of the lipogenic pathway in the 
development of hepatic steatosis." Diabetes & Metabolism 34(6): 643-648. 
Postic, C. and M. A. Magnuson (2000). "DNA excision in liver by an albumin-
Cre transgene occurs progressively with age." Genesis 26(2): 149-150. 
Pusapati, R. V., A. Daemen, C. Wilson, W. Sandoval, M. Gao, B. Haley, A. R. 
Baudy, G. Hatzivassiliou, M. Evangelista and J. Settleman (2016). "mTORC1-
Dependent Metabolic Reprogramming Underlies Escape from Glycolysis 
Addiction in Cancer Cells." Cancer Cell 29(4): 548-562. 
Raturi, A. and T. Simmen (2013). "Where the endoplasmic reticulum and the 
mitochondrion tie the knot: the mitochondria-associated membrane (MAM)." 
Biochim Biophys Acta 1833(1): 213-224. 
Ricoult, S. J. and B. D. Manning (2013). "The multifaceted role of mTORC1 in 
the control of lipid metabolism." EMBO Rep 14(3): 242-251. 
Ricoult, S. J., J. L. Yecies, I. Ben-Sahra and B. D. Manning (2015). 
"Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through 
mTORC1 and SREBP." Oncogene. 
Robitaille, A. M., S. Christen, M. Shimobayashi, M. Cornu, L. L. Fava, S. 
Moes, C. Prescianotto-Baschong, U. Sauer, P. Jenoe and M. N. Hall (2013). 
"Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo 
Pyrimidine Synthesis." Science 339(6125): 1320-1323. 
Sakai, K., M. Akiyama, Y. Sugiyama-Nakagiri, J. R. McMillan, D. Sawamura 
and H. Shimizu (2007). "Localization of ABCA12 from Golgi apparatus to 
lamellar granules in human upper epidermal keratinocytes." Exp Dermatol 
16(11): 920-926. 
Sancak, Y., T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen, L. 
Bar-Peled and D. M. Sabatini (2008). "The Rag GTPases bind raptor and 
mediate amino acid signaling to mTORC1." Science 320(5882): 1496-1501. 
Sanders, F. W. and J. L. Griffin (2016). "De novo lipogenesis in the liver in 
health and disease: more than just a shunting yard for glucose." Biol Rev 
Camb Philos Soc 91(2): 452-468. 
Santos, C. R. and A. Schulze (2012). "Lipid metabolism in cancer." FEBS J 
279(15): 2610-2623. 
Sarbassov, D. D., S. M. Ali, D. H. Kim, D. A. Guertin, R. R. Latek, H. 
Erdjument-Bromage, P. Tempst and D. M. Sabatini (2004). "Rictor, a novel 
binding partner of mTOR, defines a rapamycin-insensitive and raptor-
independent pathway that regulates the cytoskeleton." Curr Biol 14(14): 
1296-1302. 
Scherer, A. and J. F. Dufour (2016). "Treatment of Non-Alcoholic Fatty Liver 
Disease." Dig Dis 34 Suppl 1: 27-31. 
Schlame, M. and D. Haldar (1993). "Cardiolipin is synthesized on the matrix 
side of the inner membrane in rat liver mitochondria." J Biol Chem 268(1): 74-
79. 
Schlame, M., D. Rua and M. L. Greenberg (2000). "The biosynthesis and 
functional role of cardiolipin." Prog Lipid Res 39(3): 257-288. 
Schulze, A. and J. Downward (2011). "Flicking the Warburg switch-tyrosine 
phosphorylation of pyruvate dehydrogenase kinase regulates mitochondrial 
activity in cancer cells." Mol Cell 44(6): 846-848. 



	
   125 

Schulze, A. and A. L. Harris (2012). "How cancer metabolism is tuned for 
proliferation and vulnerable to disruption." Nature 491(7424): 364-373. 
Seguin, F., M. A. Carvalho, D. C. Bastos, M. Agostini, K. G. Zecchin, M. P. 
Alvarez-Flores, A. M. Chudzinski-Tavassi, R. D. Coletta and E. Graner (2012). 
"The fatty acid synthase inhibitor orlistat reduces experimental metastases 
and angiogenesis in B16-F10 melanomas." Br J Cancer 107(6): 977-987. 
Shimobayashi, M. and M. N. Hall (2014). "Making new contacts: the mTOR 
network in metabolism and signalling crosstalk." Nat Rev Mol Cell Biol 15(3): 
155-162. 
Shimobayashi, M. and M. N. Hall (2016). "Multiple amino acid sensing inputs 
to mTORC1." Cell Research 26(1): 7-20. 
Siow, D., M. Sunkara, T. M. Dunn, A. J. Morris and B. Wattenberg (2015). 
"ORMDL/serine palmitoyltransferase stoichiometry determines effects of 
ORMDL3 expression on sphingolipid biosynthesis." J Lipid Res 56(4): 898-
908. 
Siow, D., M. Sunkara, A. Morris and B. Wattenberg (2015). "Regulation of de 
novo sphingolipid biosynthesis by the ORMDL proteins and sphingosine 
kinase-1." Adv Biol Regul 57: 42-54. 
Sounni, N. E., J. Cimino, S. Blacher, I. Primac, A. Truong, G. Mazzucchelli, A. 
Paye, D. Calligaris, D. Debois, P. De Tullio, B. Mari, E. De Pauw and A. Noel 
(2014). "Blocking lipid synthesis overcomes tumor regrowth and metastasis 
after antiangiogenic therapy withdrawal." Cell Metab 20(2): 280-294. 
Sparks, C. A. and D. A. Guertin (2010). "Targeting mTOR: prospects for 
mTOR complex 2 inhibitors in cancer therapy." Oncogene 29(26): 3733-3744. 
Sparks, C. A. and D. A. Guertin (2010). "Targeting mTOR: prospects for 
mTOR complex 2 inhibitors in cancer therapy." Oncogene 29(26): 3733-3744. 
Spirtes, M. A., G. Medes and S. Weinhouse (1953). "A study of acetate 
metabolism and fatty acid synthesis in liver slices of hyperthyroid rats." J Biol 
Chem 204(2): 705-713. 
Stefanovic, M., A. Tutusaus, G. A. Martinez-Nieto, C. Barcena, E. de 
Gregorio, C. Moutinho, E. Barbero-Camps, A. Villanueva, A. Colell, M. Mari, 
C. Garcia-Ruiz, J. C. Fernandez-Checa and A. Morales (2016). "Targeting 
glucosylceramide synthase upregulation reverts sorafenib resistance in 
experimental hepatocellular carcinoma." Oncotarget 7(7): 8253-8267. 
Steneberg, P., A. G. Sykaras, F. Backlund, J. Straseviciene, I. Soderstrom 
and H. Edlund (2015). "Hyperinsulinemia Enhances Hepatic Expression of 
the Fatty Acid Transporter Cd36 and Provokes Hepatosteatosis and Hepatic 
Insulin Resistance." J Biol Chem 290(31): 19034-19043. 
Stiles, B., Y. Wang, A. Stahl, S. Bassilian, W. P. Lee, Y. J. Kim, R. Sherwin, S. 
Devaskar, R. Lesche, M. A. Magnuson and H. Wu (2004). "Live-specific 
deletion of negative regulator Pten results in fatty liver and insulin 
hypersensitivity." Proceedings of the National Academy of Sciences of the 
United States of America 101(7): 2082-2087. 
Stiles, B., Y. Wang, A. Stahl, S. Bassilian, W. P. Lee, Y. J. Kim, R. Sherwin, S. 
Devaskar, R. Lesche, M. A. Magnuson and H. Wu (2004). "Liver-specific 
deletion of negative regulator Pten results in fatty liver and insulin 
hypersensitivity [corrected]." Proc Natl Acad Sci U S A 101(7): 2082-2087. 
Suzuki, M., K. Cao, S. Kato, Y. Komizu, N. Mizutani, K. Tanaka, C. Arima, M. 
C. Tai, K. Yanagisawa, N. Togawa, T. Shiraishi, N. Usami, T. Taniguchi, T. 
Fukui, K. Yokoi, K. Wakahara, Y. Hasegawa, Y. Mizutani, Y. Igarashi, J. 



	
   126 

Inokuchi, S. Iwaki, S. Fujii, A. Satou, Y. Matsumoto, R. Ueoka, K. Tamiya-
Koizumi, T. Murate, M. Nakamura, M. Kyogashima and T. Takahashi (2016). 
"Targeting ceramide synthase 6-dependent metastasis-prone phenotype in 
lung cancer cells." J Clin Invest 126(1): 254-265. 
Takano, T., I. Usui, T. Haruta, J. Kawahara, T. Uno, M. Iwata and M. 
Kobayashi (2001). "Mammalian target of rapamycin pathway regulates insulin 
signaling via subcellular redistribution of insulin receptor substrate 1 and 
integrates nutritional signals and metabolic signals of insulin." Molecular and 
Cellular Biology 21(15): 5050-5062. 
Tanaka, K., I. Babic, D. Nathanson, D. Akhavan, D. Guo, B. Gini, J. Dang, S. 
Zhu, H. Yang, J. De Jesus, A. N. Amzajerdi, Y. Zhang, C. C. Dibble, H. Dan, 
A. Rinkenbaugh, W. H. Yong, H. V. Vinters, J. F. Gera, W. K. Cavenee, T. F. 
Cloughesy, B. D. Manning, A. S. Baldwin and P. S. Mischel (2011). 
"Oncogenic EGFR signaling activates an mTORC2-NF-kappaB pathway that 
promotes chemotherapy resistance." Cancer Discov 1(6): 524-538. 
Taniguchi, K. and M. Karin (2014). "IL-6 and related cytokines as the critical 
lynchpins between inflammation and cancer." Semin Immunol 26(1): 54-74. 
Tee, A. R., D. C. Fingar, B. D. Manning, D. J. Kwiatkowski, L. C. Cantley and 
J. Blenis (2002). "Tuberous sclerosis complex-1 and -2 gene products 
function together to inhibit mammalian target of rapamycin (mTOR)-mediated 
downstream signaling." Proceedings of the National Academy of Sciences of 
the United States of America 99(21): 13571-13576. 
Tee, A. R., B. D. Manning, P. P. Roux, L. C. Cantley and J. Blenis (2003). 
"Tuberous sclerosis complex gene products, Tuberin and Hamartin, control 
mTOR signaling by acting as a GTPase-activating protein complex toward 
Rheb." Curr Biol 13(15): 1259-1268. 
Titchenell, P. M., W. J. Quinn, M. Lu, Q. Chu, W. Lu, C. Li, H. Chen, B. R. 
Monks, J. Chen, J. D. Rabinowitz and M. J. Birnbaum (2016). "Direct 
Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable 
for the Suppression of Glucose Production." Cell Metab 23(6): 1154-1166. 
Tyanova, S., T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. 
Mann and J. Cox (2016). "The Perseus computational platform for 
comprehensive analysis of (prote)omics data." Nat Methods 13(9): 731-740. 
Tyler, A., A. Johansson, T. Karlsson, S. K. Gudey, T. Brannstrom, K. 
Grankvist and P. Behnam-Motlagh (2015). "Targeting glucosylceramide 
synthase induction of cell surface globotriaosylceramide (Gb3) in acquired 
cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells." 
Exp Cell Res 336(1): 23-32. 
Um, S. H., F. Frigerio, M. Watanabe, F. Picard, M. Joaquin, M. Sticker, S. 
Fumagalli, P. R. Allegrini, S. C. Kozma, J. Auwerx and G. Thomas (2004). 
"Absence of S6K1 protects against age- and diet-induced obesity while 
enhancing insulin sensitivity." Nature 431(7005): 200-205. 
Umemura, A., E. J. Park, K. Taniguchi, J. H. Lee, S. Shalapour, M. A. 
Valasek, M. Aghajan, H. Nakagawa, E. Seki, M. N. Hall and M. Karin (2014). 
"Liver damage, inflammation, and enhanced tumorigenesis after persistent 
mTORC1 inhibition." Cell Metab 20(1): 133-144. 
van der Bliek, A. M., Q. Shen and S. Kawajiri (2013). "Mechanisms of 
mitochondrial fission and fusion." Cold Spring Harb Perspect Biol 5(6). 
Vance, J. E. (1990). "Phospholipid synthesis in a membrane fraction 
associated with mitochondria." J Biol Chem 265(13): 7248-7256. 



	
   127 

Wang, T., J. Wei, N. Wang, J. L. Ma and P. P. Hui (2015). "The 
glucosylceramide synthase inhibitor PDMP sensitizes pancreatic cancer cells 
to MEK/ERK inhibitor AZD-6244." Biochem Biophys Res Commun 456(3): 
821-826. 
Wang, X., R. Sato, M. S. Brown, X. Hua and J. L. Goldstein (1994). "SREBP-
1, a membrane-bound transcription factor released by sterol-regulated 
proteolysis." Cell 77(1): 53-62. 
Warburg, O. (1956). "On the origin of cancer cells." Science 123(3191): 309-
314. 
Wisniewski, J. R., A. Zougman, N. Nagaraj and M. Mann (2009). "Universal 
sample preparation method for proteome analysis." Nat Methods 6(5): 359-
362. 
Wolf, M. J., A. Adili, K. Piotrowitz, Z. Abdullah, Y. Boege, K. Stemmer, M. 
Ringelhan, N. Simonavicius, M. Egger, D. Wohlleber, A. Lorentzen, C. Einer, 
S. Schulz, T. Clavel, U. Protzer, C. Thiele, H. Zischka, H. Moch, M. Tschop, A. 
V. Tumanov, D. Haller, K. Unger, M. Karin, M. Kopf, P. Knolle, A. Weber and 
M. Heikenwalder (2014). "Metabolic activation of intrahepatic CD8+ T cells 
and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-
talk with hepatocytes." Cancer Cell 26(4): 549-564. 
Wullschleger, S., R. Loewith and M. N. Hall (2006). "TOR signaling in growth 
and metabolism." Cell 124(3): 471-484. 
Wymann, M. P. and R. Schneiter (2008). "Lipid signalling in disease." Nat 
Rev Mol Cell Biol 9(2): 162-176. 
Yakir Guri, M. N. H. (2016). "mTOR Signaling Confers Resistance to 
Targeted Cancer Drugs." Trends in Cancer. 
Yang, G., D. S. Murashige, S. J. Humphrey and D. E. James (2015). "A 
Positive Feedback Loop between Akt and mTORC2 via SIN1 
Phosphorylation." Cell Rep 12(6): 937-943. 
Yang, Q., K. Inoki, T. Ikenoue and K. L. Guan (2006). "Identification of Sin1 
as an essential TORC2 component required for complex formation and 
kinase activity." Genes Dev 20(20): 2820-2832. 
Yecies, J. L. and B. D. Manning (2011). "mTOR links oncogenic signaling to 
tumor cell metabolism." Journal of Molecular Medicine-Jmm 89(3): 221-228. 
Yecies, J. L., H. H. Zhang, S. Menon, S. H. Liu, D. Yecies, A. I. Lipovsky, C. 
Gorgun, D. J. Kwiatkowski, G. S. Hotamisligil, C. H. Lee and B. D. Manning 
(2011). "Akt Stimulates Hepatic SREBP1c and Lipogenesis through Parallel 
mTORC1-Dependent and Independent Pathways (vol 14, pg 21, 2011)." Cell 
Metabolism 14(2): 280-280. 
Yu-Wai-Man, P., V. Carelli and P. F. Chinnery (2014). "197th ENMC 
international workshop: Neuromuscular disorders of mitochondrial fusion and 
fission - OPA1 and MFN2 molecular mechanisms and therapeutic strategies: 
26-28 April 2013, Naarden, The Netherlands." Neuromuscul Disord 24(8): 
736-742. 
Yue, S., J. Li, S. Y. Lee, H. J. Lee, T. Shao, B. Song, L. Cheng, T. A. 
Masterson, X. Liu, T. L. Ratliff and J. X. Cheng (2014). "Cholesteryl ester 
accumulation induced by PTEN loss and PI3K/AKT activation underlies 
human prostate cancer aggressiveness." Cell Metab 19(3): 393-406. 
Zhang, J., Z. Guan, A. N. Murphy, S. E. Wiley, G. A. Perkins, C. A. Worby, J. 
L. Engel, P. Heacock, O. K. Nguyen, J. H. Wang, C. R. Raetz, W. Dowhan 



	
   128 

and J. E. Dixon (2011). "Mitochondrial phosphatase PTPMT1 is essential for 
cardiolipin biosynthesis." Cell Metab 13(6): 690-700. 
Zhou, J., M. Febbraio, T. Wada, Y. Zhai, R. Kuruba, J. He, J. H. Lee, S. 
Khadem, S. Ren, S. Li, R. L. Silverstein and W. Xie (2008). "Hepatic fatty acid 
transporter Cd36 is a common target of LXR, PXR, and PPARgamma in 
promoting steatosis." Gastroenterology 134(2): 556-567. 
Zinzalla, V., D. Stracka, W. Oppliger and M. N. Hall (2011). "Activation of 
mTORC2 by association with the ribosome." Cell 144(5): 757-768. 
Zoncu, R., A. Efeyan and D. M. Sabatini (2011). "mTOR: from growth signal 
integration to cancer, diabetes and ageing." Nat Rev Mol Cell Biol 12(1): 21-
35. 

	
  

	
   	
  



	
   129 

8.0.  Appendix 
  



	
   130 

8.1.  mTOR signaling confers resistance to targeted cancer 
drugs 
 
	
  



Trends
The clinical benefit of targeted cancer
drugs is limited owing to intrinsic or
adaptive resistance. Mechanisms of
resistance can be cancer cell-autono-
mous or non cell-autonomous.

Drugs can alter the tumor microenvir-
onment, resulting in dynamic rewiring
of signaling circuits and resistance in
neighboring cancer cells.
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tory pathway allowing cancer cells to
escape the effects of targeted drugs.
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to other targeted cancer drugs.
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of resistance to targeted therapies.
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Cancer is a complex disease and a leading cause of death worldwide. Extensive
research over decades has led to the development of therapies that target
cancer-specific signaling pathways. However, the clinical benefits of such
drugs are at best transient due to tumors displaying intrinsic or adaptive resis-
tance. The underlying compensatory pathways that allow cancer cells to cir-
cumvent a drug blockade are poorly understood. We review here recent studies
suggesting that mammalian TOR (mTOR) signaling is a major compensatory
pathway conferring resistance to many cancer drugs. mTOR-mediated resis-
tance can be cell-autonomous or non-cell-autonomous. These findings suggest
that mTOR signaling should be monitored routinely in tumors and that an mTOR
inhibitor should be considered as a co-therapy.

Resistance Mechanisms Limit the Success of Cancer Therapeutics
Over recent decades many small molecules have been developed to specifically target onco-
genic pathways. However, with few exceptions, these drugs as a single agent have not led to a
cure. The limited success of targeted drugs is due to tumors displaying resistance. Two modes
of cancer drug resistance exist, intrinsic and adaptive (also referred to as evasive or acquired).
Intrinsic resistance is non-responsiveness to a therapy, whereas adaptive resistance is defined
as responsiveness followed by relapse. Intrinsic resistance is generally the result of a tumor
widely containing a pre-existing mutation that confers resistance in a cell-autonomous manner.
Adaptive resistance can be similarly inherent to the cancer cell, but with the genetic or epigenetic
change arising upon treatment rather than pre-existing. Importantly, adaptive resistance can
also be non-inherent (i.e., non-cell-autonomous) in which resistance relies on the tumor micro-
environment. This latter mechanism involving the microenvironment can be viewed as a
‘physiological’ stress response in which cancer cells are supported by neighboring cells.
Understanding the factors that confer intrinsic or adaptive resistance is important for patient
stratification and the rational design of combination therapies. Recent studies suggest that
sustained mTOR signaling, in cancer cells or cells of the microenvironment, confers resistance to
various primary targeted cancer therapies. Thus, mTOR signaling appears to be a major
compensatory pathway conferring resistance to targeted therapies.

The mTOR Signaling Pathway
Growth and proliferation are highly regulated. The evolutionarily conserved serine/threonine
kinase target of rapamycin (TOR) integrates various stimuli to control the metabolic pathways
that drive cell growth and proliferation (Figure 1). TOR forms two structurally and functionally
distinct multiprotein complexes termed TOR complex 1 (TORC1) and TORC2 (reviewed in [1,2]).
In mammals, mTORC1 contains mTOR, mammalian lethal with sec-13 protein 8 (mLST8), and
regulatory associated protein of mammalian target of rapamycin (RAPTOR). mTORC1 is
activated by growth factors, nutrients, and cellular energy (reviewed in [3,4]), and is acutely
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Figure 1. mTOR Signaling Network. mTOR signaling promotes cancer cell growth, survival, and proliferation. (A)
Growth factors such as insulin (Ins) stimulate PI3K to convert phosphatidylinositol-4,5-bisphosphate (PIP2) to phospha-
tidylinositol-3,4,5-trisphosphate (PIP3). PIP3 stimulates PDK1 to phosphorylate (P) AKT at T308. AKT phosphorylates TSC2
on multiple sites, thereby inhibiting its GAP activity toward RHEB. GTP-loaded RHEB binds to and activates mammalian
TOR complex 1 (mTORC1). Growth factors also activate mTORC2 in a PI3K- and ribosome-dependent manner. mTORC2
phosphorylates and activates the AGC kinase family members SGK1 and AKT. mTORC2 phosphorylates AKT at Ser473.
mTORC2 is not upstream of mTORC1 because AKT Ser473 phosphorylation is not required for mTORC1 activation. (B)
Amino acids stimulate mTORC1 by promoting the conversion of RAS-related GTP-binding protein (RAG) heterodimers to
the active conformation, in which RAGA or RAGB is loaded with GTP, and RAGC or RAGD is loaded with GDP. Active RAG
heterodimer recruits mTORC1 to the surface of the lysosome where mTORC1 encounters its direct activator RHEB. (C) c-
MYC, whose expression is repressed by FOXO, mediates cancer cell metabolic reprogramming. In an AKT-independent
manner, mTORC2 inhibits class II HDACs, thereby increasing FOXO acetylation (Ac). Ac-FOXO is retained in the cytoplasm,
unable to inhibit c-MYC expression. mTORC2 also inhibits FOXO via AKT. (D) In response to low energy (high AMP/ATP
ratio), AMP-activated protein kinase (AMPK) inhibits mTORC1 activity by phosphorylating RAPTOR at S792 and S722, and
by phosphorylating TSC2. The tumor-suppressor liver kinase B1 (LKB1) activates AMPK/ by phosphorylating T172 in the
activation loop. Blue-colored proteins are tumor-suppressors that inhibit mTOR activity. Phosphorylation depicted in green
is an activation signal and phosphorylation depicted in red is an inhibitory signal. Abbreviations: Ac, acetylation; GH, growth
hormone; NDRG1, N-MYC downstream-regulated gene 1.
inhibited by the macrolide rapamycin. Rapamycin (and its analogs known as rapalogs) binds to
the cytoplasmic protein FKBP12 (FK506-binding protein 12), and the FKBP12–rapamycin
complex then binds to the FRB (FK506-binding protein/rapamycin-binding) domain in mTOR
of mTORC1 [5]. Several mTOR inhibitors are approved or in clinical trials for cancer therapy
(reviewed in [5–7]). mTORC2 is not acutely inhibited by rapamycin, presumably because the FRB
domain in mTOR in mTORC2 is masked [8]. Growth factors and cellular energy stimulate
mTORC1 via inhibition of the heterotrimeric protein complex consisting of tuberous sclerosis
Trends in Cancer, November 2016, Vol. 2, No. 11 689



complex 1 (TSC1), TSC2, and TRE2–BUB2–CDC16 domain family member 7 (TBC1D7) [9–14],
hereafter referred to as the TSC complex. Insulin (or other growth factors) bind to receptor
tyrosine kinases (RTKs) to activate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). PI3K
phosphorylates the inositol ring of the membrane phospholipid phosphatidylinositol-4,5-
bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-trisphosphate (PIP3) [15]. PIP3

recruits phosphoinositide-dependent kinase 1 (PDK1) and AKT to the plasma membrane
[16]. PDK1 phosphorylates Thr308 in the activation loop of AKT and thereby activates AKT
[17]. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) converts PIP3 to
PIP2, counteracting the activity of PI3K. AKT phosphorylates TSC2, thereby inducing lysosomal
release and inhibition of the TSC complex [10,11,18]. The TSC complex is a GTPase-activating
protein (GAP) for the lysosomal GTP-binding protein RAS homolog enriched in brain (RHEB).
GTP-loaded RHEB interacts with the mTOR catalytic domain and activates mTORC1 [19].
mTORC1 promotes anabolic processes such as protein, lipid, and nucleotide biosynthesis, and
inhibits catabolic processes such as autophagy. Notable downstream targets of mTORC1 are
ribosomal protein S6 kinase (S6K), eukaryotic translation initiation factor 4E binding proteins (4E-
BPs), and the autophagy activating Unc-51-like kinase 1 (ULK1) (reviewed in [20–22]) (Figure 1).
mTORC2 contains mTOR, mLST8, mammalian stress-activated mitogen-activated protein
kinase (MAPK)-interacting protein 1 (mSIN1), and rapamycin-insensitive companion of mTOR
(RICTOR). Growth factors activate mTORC2 by promoting association of mTORC2 with
ribosomes in a PI3K-dependent manner [23]. PIP3 interacts with the PH domain of mSIN1
to trigger mTORC2 activation [24]. mTORC2 regulates several cellular processes via activation of
the AGC kinase family members AKT, protein kinase C (PKC), and serum/glucocorticoid-
regulated kinase (SGK) (reviewed in [25,26]). mTORC2 phosphorylates Ser473 in AKT. In a
positive feedback loop, AKT phosphorylates mSIN1-Thr86 in mTORC2 [27]. In a negative
feedback loop, mTORC1 via S6K phosphorylates and inhibits the insulin receptor substrate
1 (IRS-1), thereby dampening PI3K signaling [28–30] (Figure 1). mTORC1 and mTORC2 are
frequently activated in human cancers. Genetically engineered mouse models with ectopic
activation of mTORC1 or mTORC2 develop cancer [31–34]. mTOR, often in the context of
positive and negative feedback loops, is a node for convergence and crosstalk of several
oncogenic pathways (Figures 1,2) [30,35–37].

mTOR Signaling in Cell-Autonomous Resistance
Extracellular signal-regulated kinase (ERK) is a MAPK and the major effector of the GTPase
Kirsten rat sarcoma viral oncogene homolog (KRAS) (Figure 2). Ligand-mediated activation of
RTKs triggers GTP loading of KRAS, which then recruits the kinase BRAF to the plasma
membrane for activation [38]. BRAF phosphorylates and activates the MAPK kinase MEK.
MEK activates ERK that in turn phosphorylates cytoplasmic signaling proteins, including p90
ribosomal S6 kinase (RSK). ERK and RSK phosphorylate and inhibit TSC2, leading to activation
of mTORC1. Furthermore, it has been suggested that RSK phosphorylates several sites in
RAPTOR to enhance mTORC1 activity [39]. Finally, ERK and mTORC1 provide distinct activat-
ing inputs to eukaryotic translation initiation factor 4E (eIF4E), thereby promoting cap-dependent
mRNA translation [40]. Thus, mTOR and ERK signaling are functionally related.

The ERK kinase network is constitutively active in about 40% of human melanomas [41] (Figure 2).
Loss of the tumor-suppressor PTEN, which leads to activation of mTOR signaling, confers poor
response to BRAF inhibitors in melanoma patients [42–44]. Indeed, these patients define a
distinct subset of melanoma that is resistant to BRAF inhibitors. Melanoma cell lines and human
patient samples that exhibit resistance to BRAF, MEK, or ERK inhibitors display enhanced S6-
S235/236 and S240/244 [45,46] or AKT-Ser473 phosphorylation [47–49], readouts of mTORC1
and mTORC2, respectively. Thus, PI3K–mTOR signaling appears to compensate for loss of ERK
signaling and thereby confers resistance to BRAF-MEK-ERK inhibitors. mTOR may compensate
by substituting for ERK signaling in phosphorylating particular substrates [50].
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Figure 2. mTOR Signaling and Resistance to Targeted Drugs. (A) AXL is a RTK that is activated through ligand
(GAS6)-dependent or -independent dimerization. In head and neck, and esophageal squamous cell carcinomas dimeriza-
tion of AXL and EGFR contributes to drug resistance via activation of mTORC1. AXL phosphorylates EGFR at Y1173 that in
turn serves as a docking site for phospholipase Cg (PLCg). PLCg at the plasma membrane cleaves PIP2 to produce the
second messengers diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates members of the serine/
threonine protein kinase C (PKC) family. By an unknown mechanism, PKC activates mTORC1, thereby promoting
resistance to several drugs. (B) The mTOR and ERK pathways respond to extracellular and intracellular cues to control
cell survival, proliferation, and metabolism. SOS1 is a guanine nucleotide exchange factor for the GTPase KRAS. GTP-
loaded KRAS recruits BRAF kinase to the plasma membrane for activation. BRAF phosphorylates and activates MEK. MEK
activates ERK that phosphorylates cytoplasmic signaling proteins, including RSK and MNK. ERK and RSK phosphorylate
and inhibit TSC2, thereby activating mTORC1. RSK phosphorylates RAPTOR on several sites to enhance mTORC1 activity.
RSK also phosphorylates ribosomal protein S6 at the Ser235 and Ser236. ERK and mTORC1 provide distinct and
complementary inputs to eIF4E, thereby promoting mRNA translation (not shown). The ERK pathway is activated in
melanoma and pancreatic tumors. In these tumors, targeted inhibition of the ERK pathway promotes both mTORC1 and
mTORC2 activation, and thereby resistance to the ERK pathway inhibitors. (C) The cyclin D–cyclin-dependent kinase (CDK)
4/6–retinoblastoma (RB) pathway regulates cell-cycle progression. Unphosphorylated RB binds to and inhibits E2F
transcription factors. CDK4/6–cyclin D phosphorylates the tumor-suppressor RB that dissociates from E2F, allowing
cell-cycle progression. Resistance to CDK4/6 inhibitors is associated with increased mTORC1 activity in breast and
pancreatic cancers. Although the connection between CDK4/6–cyclin D and mTORC1 signaling is poorly understood,
mTORC1 activation limits the killing effect of cell-cycle inhibitors. (D) Brain tumor cells containing an EGFRvIII amplification
exhibit enhanced mTORC2 activity. mTORC2 mediates metabolic reprogramming and resistance to targeted drugs by
increasing expression of c-MYC. Abbreviations: GRB2, growth factor receptor-bound protein 2; RTK, receptor tyrosine
kinase; SOS, son of sevenless homolog 1.
PI3K activating mutations are common in various human cancers [51]. In breast cancer cells
containing a PIK3CA mutation, resistance to the PI3K inhibitor BLY719 correlates with S6
hyperphosphorylation, and mTOR inhibition restores sensitivity to BLY719 [52]. Similarly, mTOR
signaling confers resistance to PI3K inhibitors in thyroid tumor cells [53]. Thus, mTOR activation
confers resistance to PI3K inhibitors.
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The transcription factor c-MYC promotes tumor progression and metabolic adaptation [54]
(Figure 2). mTORC2-dependent c-MYC overexpression, and thereby enhanced aerobic glycol-
ysis, confers resistance to a PI3K inhibitor in glioblastoma multiforme (GBM) [47,55]. Thus,
mTOR appears to confer resistance to PI3K inhibitors also via upregulation of c-MYC.

The cyclin-dependent kinase (CDK) 4/6–retinoblastoma (RB) pathway regulates cell-cycle
progression [56] and is implicated in various cancers [56–58] (Figure 2). Unphosphorylated
RB binds and represses E2 family (E2F) transcription factors. CDK4/6 in association with cyclin
D1 phosphorylates the tumor-suppressor RB that in turn dissociates from E2F, allowing cell-
cycle progression. Resistance to CDK4/6 inhibitors is associated with increased mTORC1
activity in cell lines [59] as well as in mouse models of breast [60] and pancreatic [61] cancers.
Although the connection between CDK4/6–cyclin D and mTORC1 signaling is poorly under-
stood, these studies indicate that mTORC1 activation limits the killing effect of cell-cycle
inhibitors. Interestingly, phosphorylated RB appears to interact directly with mSIN1 to inhibit
mTORC2 [62], suggesting that mTORC2 activation may occur in response to a CDK4/6 inhibitor
and confer resistance to the drug. Thus, an ATP competitive pan-mTOR inhibitor that targets
both mTORC1 and mTORC2 could be considered as a co-therapy with a CDK4/6 inhibitor.

AXL is a member of the TAM (TYRO, AXL, and MER) family of receptor tyrosine kinases (reviewed
in [63,64]) (Figure 2). AXL is activated in many ways including homodimerization or heterodime-
rization with a non-TAM receptor [65]. AXL activation is associated with acquired resistance to
PI3K, RTK, BRAF, and MEK inhibitors [66]. In head and neck, and esophageal squamous cell
carcinoma cells treated with a PI3K inhibitor, AXL dimerizes with and phosphorylates EGFR.
Phosphorylated EGFR-Y1173 is a docking site for phospholipase Cg (PLCg). PLCg, via the
second messenger diacylglycerol (DAG), activates the serine/threonine protein kinase C (PKC). Via
an unknown mechanism, PKC activates mTORC1 [67], thereby conferring resistance to the PI3K
inhibitor [68] (Figure 2). In cell lines and human lung tumor samples, AXL activation is associated
with resistance to the EGFR inhibitors erlotinib [69] and gefitinib [70], respectively. Given the above
study demonstrating that AXL can activate EGFR and ultimately mTORC1 to confer resistance to a
PI3K inhibitor, AXL-mediated resistance to EGFR inhibitors is possibly also via mTORC1.

The above studies indicate that activation of the mTOR pathway can confer resistance to various
targeted therapies. This underscores the complex interplay between mTOR and other major
oncogenic pathways, and how such interplay can be exploited for resistance. These studies also
suggest that patients should be routinely monitored for mTOR activity, and a co-therapy with an
mTOR inhibitor should be considered. Clearly, the clinical application of combination therapies
should be evaluated against the risk of side effects, in particular the combination of mTOR and
MAPK inhibitors [71,72].

What are the genetic alterations leading to activation of mTOR signaling and cell-autonomous
resistance? Cancer cell lines exposed to increasing doses of gefitinib exhibit MET (receptor
tyrosine kinase) gene amplification, which in turn leads to PI3K–mTOR pathway activation and
gefinitib resistance [73]. Although not equivalent to activating a compensatory pathway, muta-
tion of the FRB domain in mTOR in a human thyroid carcinoma conferred resistance to the
allosteric mTOR inhibitor everolimus (rapamycin), possibly accounting for the patients’ relapse
[74]. Although little is known about the mTOR activating mutations that confer cell-autonomous
resistance, these studies suggest that such alterations occur within MTOR or in a gene encoding
an mTOR regulator.

mTOR Signaling in Non-Cell-Autonomous Resistance
mTOR signaling can also confer resistance to targeted drugs in a non-cell-autonomous manner
(Figure 3). In this case, activation of mTOR in cells of the tumor microenvironment confers
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A tumor is a mixture of transformed and non-transformed cells supported by an extracellular matrix, which together form the
so-called tumor microenvironment. (C,D) Cells of the tumor microenvironment, in addition to cancer cells, include immune,
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TIS can act in a paracrine manner to promote resistance. (E) Immune cells play an important role in tumor eradication. mTOR
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resistance on nearby cancer cells. The cells of the microenvironment that confer resistance in a
paracrine manner can be stromal cells or cancer cells. Non-autonomous resistance is a drug-
induced stress response that is context-dependent and may disappear once the drug (stress) is
removed.

Tumors are a heterogeneous population of cells, composed of cancer cells and supporting
stromal cells. The therapy-induced secretome (TIS) is a collection of ill-defined factors that are
secreted in response to therapy. Stromal TIS can induce extensive changes in the tumor niche to
confer drug resistance on nearby cancer cells [75–77]. In this case, the TIS from cancer-
associated fibroblasts (CAFs) promotes RTK phosphorylation and thereby mTOR activation in
neighboring colorectal or pancreatic cancer cells. In melanoma, the cancer cells respond to the
targeted therapy and secrete the TIS component mitogen FOS-related antigen 1 (FRA1). FRA1
activates PI3K–mTOR signaling and promotes resistance in neighboring cancer cells [78].
Finally, mTORC1–4EBP1 signaling controls the TIS in CAFs derived from human pancreatic
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Outstanding Questions
What are the cell-autonomous genetic
alterations that lead to the activation of
mTOR in response to a targeted drug,
thereby conferring resistance?

What are the mTOR-dependent non-
cell-autonomous changes that could
be clinically exploited to limit resistance
in cancer cells?

Resistance to a targeted drug is also
determined by the spatial and cellular
complexity of the tumor. What
approaches should be taken to deci-
pher tumor complexity, especially in
human tumors?

How can one monitor mTOR activity
longitudinally in human patients under-
going targeted therapy?

What regimen should be used for an
mTOR inhibitor as a co-therapy?
tumors [79]. Thus, mTOR plays a dual role in controlling the tumor microenvironment, in other
words in sending and receiving the TIS signal to promote cancer resistance to targeted drugs.

Therapy also induces a so-called senescence-associated secretory phenotype (SASP) that can
modulate the tumor microenvironment. Therapy may induce cancer cells to secrete SASP
factors that are tumorigenic by blunting the effect of the drug on other (non-senescent) cancer
cells [80,81]. Two recent studies showed that mTORC1 in senescent cancer cells mediates
SASP. Rapamycin selectively abrogates SASP, and thereby improves therapy response in
prostate [82] and liver [83] tumor xenografts. This suggests that mTOR can modulate the cancer
microenvironment by promoting SASP, and thereby confer therapy resistance in a non-cell-
autonomous manner.

Cancer cells present programmed death ligand 1 (PD-L1) to the T cell-borne receptor PD-1. This
results in suppression of the T cell, thereby allowing tumor cells to evade killing by the immune
system. PD-1 or PD-L1 inhibition, so-called immunotherapy, prevents cancer cells from evading
the immune system and is thus an anticancer therapy, particularly effective in the treatment of
melanoma. However, PTEN deficient melanomas in which PI3K–mTOR signaling is hyperactive
are resistant to immunotherapy. In this context, co-treatment with a PI3K inhibitor improves the
efficacy of at least PD-1 inhibition [84]. Furthermore, mTORC1 signaling drives PD-L1 expression
in a rapamycin-sensitive manner in mouse models of non-small cell lung carcinoma [85]. Thus,
PI3K–mTOR signaling in cancer cells mediates immune evasion and thereby tumor resistance to
immunotherapy.

Tumors display complex spatial organization. Cancer cells operate in different metabolic
compartments within a tumor and communicate through released metabolites or nutrients.
Sonveaux et al. [86] showed that cancer cells in hypoxic regions of a tumor perform aerobic
glycolysis and consequently excrete lactate. Neighboring cancer cells in normoxic regions of the
tumor take up the lactate, via monocarboxylate transporter 1 (MCT1), and utilize it for oxidative
respiration. This phenomenon in which tumor cells feed other tumor cells is referred to as
metabolic symbiosis. Anti-angiogenic cancer therapy partly disrupts blood vessels, thereby
creating hypoxic and normoxic compartments in tumors. Recently, three groups demonstrated
that angiogenesis inhibitors induce metabolic symbiosis [87–89]. Importantly, the drug-induced
metabolic symbiosis is mTOR-dependent and confers drug resistance [87,88]. Glutamine-
activated mTORC1 promotes MCT1 expression and, in turn, lactate uptake in normoxic cells
[87,90]. Thus, the normoxic cells utilize lactate as a carbon source, sparing the available glucose
for the hypoxic, glycolytic cells that symbiotically feed the normoxic, oxidative cells. The net effect
is that cancer cells both near and far from blood vessels survive anti-angiogenic therapy.
Rapamycin administration disrupts therapy-induced metabolic symbiosis, leading to tumor
regression [87,88]. Furthermore, mTORC1 confers resistance to the glycolysis inhibitor
2-deoxyglucose (2-DG), in a glutaminolysis-dependent manner [91]. In summary, mTORC1
promotes metabolic symbiosis to confer adaptive resistance to angiogenesis inhibitors in a
non-cell-autonomous manner.

Concluding Remarks
mTOR signaling is emerging as a major compensatory pathway allowing tumors to escape
targeted cancer therapies. mTOR may be a common escape route because it is a central
signaling hub functionally related to other oncogenic pathways. Resistance mechanisms can be
cell-autonomous or non-cell-autonomous. Non-cell-autonomous resistance is generally adap-
tive, reversible, and dependent on the tumor microenvironment. Drugs modify the tumor
microenvironment, not only the targeted cancer cells. In particular, they stimulate stromal cells
and cancer cells to secrete factors that can confer drug resistance to neighboring tumor cells.
Importantly, mTOR can mediate both the secretion of such factors and the response to the
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Box 1. The Use of Phosphoproteomics To Study Mechanisms of Resistance to Targeted Cancer
Drugs

Genomic analysis of various human cancers has identified key driver and resistance-conferring mutations, often affecting
kinases in signaling pathways [92]. Whereas genomic analysis has been very effective, it only indirectly examines
oncogenic signaling pathways. To elucidate signaling changes in response to targeted drugs, phosphorylation cascades
can be monitored directly. Mass spectrometry (MS)-based proteomics, in particular phosphoproteomics, is a powerful
tool to monitor directly the effect of targeted drugs on oncogenic signaling pathways [93]. However, caution should be
taken when performing phosphoproteomics to avoid complications due to rapid dephosphorylation [94]. Phospho-
proteins belonging to the MAPK and mTOR signaling pathways are particularly sensitive to ischemia [95] or hypogly-
cemia. Dynamic signaling cascades are best monitored by analyzing immediately snap-frozen needle biopsies in which
tumor conditions are preserved [96].

The usefulness of phosphoproteomics in elucidating resistance mechanisms is underscored by a recent study by Wei
et al. [97]. Mice transplanted with patient-derived GBM cells were treated with mTOR inhibitors. Cancer cells that
developed resistance were then subjected to genomic and phosphoproteomic analyses. Phosphoproteomics revealed
marked deregulation of mTOR-related signaling pathways in resistant tumors, suggesting a rewiring of protein signaling
networks. However, in-depth genomic analysis did not identify significant genetic changes in resistant tumors versus
non-resistant tumors. In another recent study, Dazert et al. [50] performed phosphoproteomics on serial biopsies from a
sorafenib-treated hepatocellular carcinoma (HCC) patient, taken before and during treatment, to identify mechanisms of
resistance to sorafenib. Sorafenib acts by inhibiting RAF (B and C), vascular endothelial growth factor receptor (VEGFR),
and platelet-derived growth factor receptor (PDGFR) [98]. Sorafenib is the only approved targeted drug for HCC, with
median enhanced survival of <3 months [99]. Dazert and colleagues demonstrated that sorafenib was effective in
inhibiting its target in the tumor, based on reduced RSK phosphorylation downstream of BRAF–MEK–ERK signaling.
However, phosphorylation of the putative MAPK target Filamin A S2152 and the mTORC1 target S6-S240 was increased
in the sorafenib-treated tumor, indicating that a compensatory pathway(s) may have been active in the sorafenib-resistant
tumor. Phosphoproteomic analysis of a cohort of patients will provide a more complete picture of the mechanisms of
sorafenib resistance.
factors in a recipient cancer cell. The seemingly central role of mTOR in conferring therapy
resistance suggests that effective therapy may require combination of an inhibitor of the primary
tumor driver and an mTOR inhibitor as co-therapy. To prevent resistance to the co-therapy,
intermittent administration should be considered.

Mechanisms of adaptive or intrinsic resistance to targeted drugs are poorly characterized (see
Outstanding Questions). The identities of the compensatory signaling pathways and the func-
tional interconnections that underlie resistance are largely unknown. Whereas genomic analysis
has been very effective in identifying oncogenic pathways, elucidating the dynamic pathways
that confer resistance may require a combination of genomic and phosphoproteomic analyses
(Box 1). In particular, tumor biopsies obtained before and during treatment in a longitudinal study
should be assessed by mass spectrometry to determine drug-related changes in dynamic
phosphorylation cascades. Tumor heterogeneity is a major limitation, especially when human
biopsy specimens are limited. Efforts from computational biologists will be important in resolving
this complexity.
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