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2 SUMMARY 
 

A complex network of transcription factors controls self-renewal and differentiation of 

hematopoietic stem cells (HSC). Mutations or translocations of these epigenetic 

regulators may result in malignant transformation leading to acute leukemia. A 

significant fraction of childhood acute myeloid leukemia (AML) patients carry a 

translocation involving the nuclear receptor-binding SET domain protein 1 (NSD1) 

histone methyltransferase. To understand its function we ablated the gene in the 

hematopoietic system of the mouse. Surprisingly, all “Nsd1-null” (Vav1-iCre;Nsd1fl/fl) 

mice developed a lethal, malignant accumulation of CD71dim/+ TER119- erythroid 

progenitor cells with aberrant clonogenic activity and impaired terminal maturation of 

self-renewing erythroblasts in vitro, a phenotype that resembles human acute 

erythroleukemia. The lack of Nsd1 also reduced the number of HSC starting during 

fetal liver hematopoiesis. Although gene expression signatures revealed reduced 

mRNA expression of the erythroid master transcription factor Gata1, erythroblasts of 

Vav1-iCre;Nsd1fl/fl mice expressed constitutively high levels of GATA1 protein. 

Interestingly, the cells were significantly impaired in activation but still able to repress 

several known GATA1 targets. Strikingly, retroviral overexpression of Gata1 induced 

terminal maturation of Vav1-iCre;Nsd1fl/fl proerythroblasts which was associated with 

activation of GATA1 target genes.  

Knockdown of NSD1 in human adult or cord-blood derived CD34+ HSC cells also 

impaired erythroid differentiation associated with increased protein levels of GATA1. 

In addition, we found high GATA1 protein levels in several human erythroleukemia 

cell lines suggesting a key role in aberrant erythroid differentiation. Currently ongoing 

experiments aim to mechanistically understand Nsd1-mediated GATA1 regulation 

and erythroid differentiation. Preliminary observations with peptide array-based in 

vitro methylation assays suggest the possibility for direct methylation of GATA1 by 

NSD1. We also found aberrant expression of erythroid- associated transcription 

factor complex members with increased levels of GATA1 and ETO2 but reduced 

levels of TAL1, E2A and LBD1. Moreover, significant changes in global histone 

H3K36 methylation were seen in proerythroblasts lacking Nsd1. Taken together, our 

data so far revealed Nsd1 as a novel regulator of normal and malignant 

erythropoiesis. Ongoing studies may not only provide mechanistic insights of 

aberrant transcriptional regulation leading to erythroleukemia but could also set the 
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base to develop novel therapies against this rare but very aggressive disease that is 

currently incurable in most patients.  

Next to histone methyltransferases like NSD1, histone acetyltransferases like 

CBP/p300 are recurrently involved in AML-associated chromosomal translocations 

and also serve as co-activators of other fusion oncogenes, suggesting therapeutic 

potential of specific targeting of CBP/p300. We characterized the anti-leukemic 

potential of I-CBP112, a novel small molecule chemical probe that selectively binds 

the CBP/p300 bromodomain (BRD). BRDs belong to a diverse family of evolutionary 

conserved protein-interaction modules recognizing acetylated lysine residues and 

thereby mediating recruitment of proteins to macromolecular complexes. We found 

that I-CBP112 significantly impaired the clonogenic activity of a series of murine cell 

lines immortalized by the MLL-CBP fusion and other leukemic fusion oncogenes 

(MLL-AF9, MLL-ENL, NUP98-HOXA9) in a dose-dependent manner. Similar to the 

murine cells, we found that I-CBP112 did not cause immediate cytotoxic effects but 

impaired colony formation and induced cellular differentiation of a series of 18 human 

leukemic cell lines. Likewise, I-CBP112 also reduced colony formation of human 

primary AML blasts but not of normal CD34+ HSC. Importantly, combination of I-

CBP112 with another BRD inhibitor targeting BET proteins (JQ1) or with a 

chemotherapeutic agent (Doxorubicin) revealed clear synergistic effects on cell 

survival of the AML cell lines. Extreme limited dilution assays in methylcellulose, as 

well as bone marrow transplantation experiments revealed that I-CBP112 

significantly impaired self-renewal of leukemic stem cells in vitro and reduced the 

leukemia-initiating potential in vivo. Taken together, we found that selective 

interference with the CBP/p300 BRD by I-CBP112 has the potential to selectively 

target leukemic stem cells and opens the way for novel combinatory “BRD inhibitor” 

therapies for AML. In addition to I-CBP112, we tested a pan- bromodomain inhibitor 

(“bromosporine”, BSP) broadly targeting BRDs including BET. Evaluation of BSP in 

BET- inhibitor sensitive and non-sensitive leukemic cell-lines revealed strong anti-

proliferative activity in semi-solid medium. Similar to treatment with JQ1 (a selective 

BET inhibitor) BSP arrested in S- cell cycle phase suggesting BET-mediated effects. 

Finally, non-selective targeting of BRDs by BSP identified BETs as master regulators 

of primary transcription response in leukemia. 

Collectively the experiments of this thesis investigated the role of epigenetic 

regulators in normal and malignant hematopoiesis and explored strategies for 

selective interference as novel anti-leukemic therapies. 
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3 INTRODUCTION 
 

3.1 Murine blood development  
 

First signs for blood formation, or hematopoiesis, during murine embryogenesis are 

found right after implantation of the blastocyst into the wall of the uterus. The 

blastocyst is composed of the inner cell mass that gives rise amongst others to the 

epiblast consisting of epithelial cells. During development, the epiblast undergoes 

epithelial- mesenchymal- transition (EMT), which in turn results in formation of the 

three germ layers endoderm, ectoderm and mesoderm at embryonic day (E) 6.5, a 

process called gastrulation (Figure 1A). Subsequently the mesoderm produces 

hemangioblasts that migrate to the yolk sac in order to commit towards endothelial or 

hematopoietic progenitors 1. At E7.5 the hematopoietic cells arise in so- called „blood 

islands“ producing large, nucleated, megaloblastic, primitive cells of the erythroid 

lineage (EryP) 2. Production of red blood cells is of particular importance to ensure 

growth and survival of the embryo and later fetus. Moreover, macrophages and 

megakaryocytes can be detected at this developmental stage 3,4. At E10.5, the aorta–

gonad–mesonephros (AGM) region generates the first hematopoietic stem cells 

(HSC) 5. Around E12.5, hematopoiesis is shifted to the developing fetal liver organ 

where enucleated definitive erythroid (EryD) cells are generated (Figure 1B) 6. In so- 

called “erythroblastic islands” erythroblasts undergo complete maturation with the 

help of a macrophage to which the cells attach 7. Whereas EryP cells predominantly 

express fetal hemoglobin chains, EryD cells express already adult globin 8. The fetal 

liver also provides an environment favoring hematopoietic stem cell (HSC) 

development and expansion before cells finally migrate to the BM and become 

quiescent (own observations; see Figure 1C) 9,10. Around the time of birth at E19.5, 

HSCs can be also detected in spleen tissue and the BM contains hematopoietic cells 

of different lineages (own observations, see Figure 1B-C) 5,9. In young and adult 

mice, the BM contributes to steady- state hematopoiesis whereas the spleen is later 

primarily used for extramedullary stress hematopoiesis 5.  

Hematopoiesis functions as a dynamic system continuously trying to build up 

equilibrium of supply and demand. Shortage or imbalance is sensed by extracellular 
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signals such as cytokines or by communication with neighboring cells residing with 

the hematopoietic cells in a niche in the BM.  

 

 
FIGURE 1. Embryonic development of hematopoiesis.  

(A) Timeline of embryonic development of murine hematopoiesis starting after implantation of 

blastocyst. The epiblasts gives rise to mesoderm from which the hemangioblast develops. First 

hematopoietic maturated cells arise at embryonic (E) day 7.5 from the yolk sac. At E10.5, HSC arise 

from aorta–gonad–mesonephros (AGM) region before hematopoiesis shifts to fetal liver at E13.5. At 

E19.5, mice are born and hematopoiesis is shifted to BM and partially to the spleen. (B) Hematoxylin- 

Eosin staining of fetal liver sections of murine embryos from E13.5 to 19.5 and BM at E19.5 reflecting 

developmental stages and appearance of hematopoietic cells. (C) Bar graph reflecting percentages of 

Lineage-, Sca-1+, c-Kit+ (LSK) population by flow cytometry staining hematopoietic stem cells in fetal 

liver as well as BM and spleen of young (4 weeks after birth) and adult (10- 15 weeks after birth) mice.  

 

 

For example after bleeding, especially red blood cells (erythrocytes) need to be 

manufactured immediately to compensate the loss. Erythrocytes contain hemoglobin, 

an iron- containing molecule able to bind oxygen and transport it through the blood 

flow to all tissues. If a large amount of erythrocytes is lost, a state of low oxygen, 

called hypoxia, is sensed in the kidney and liver by stabilization of the hypoxia 
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inducible factor 1 alpha (HIF1α). HIF1α then forms a heterodimer with HIF1β and 

together they bind to DNA and induce expression of the erythropoietin (EPO) gene. 

EPO binds to the EPO receptor (EPOR) and induces a signaling cascade via Janus 

Kinase 2 (JAK2)- Signal Transducers and Activators of Transcription (STAT) finally 

resulting in upregulation of a large number of genes regulating erythroid 

differentiation 11.  

Extracellular signals are essential to maintain differentiation and proliferation of 

hematopoietic cells. Stromal cell-derived factor 1 (SDF-1, also known as CXLX12), 

stem cell factor (SCF) and thrombopoietin (TPO) have been shown to be necessary 

for maintenance of HSCs in vivo 12. Moreover regulatory factors such as TGF-beta or 

other signaling pathways such as Wnt or Notch are involved in regulation of the HSC 

niche 13,14.  
 

Flow cytometry with antibodies recognizing specific surface marker expression 

allows to immunophenotype HSCs and their differentiated progeny. In the 

hematopoietic hierarchy, HSC give rise to progenitor cells that ultimately differentiate 

into different lineages. Lymphocytes are separated into B-, T-, natural killer and 

dendritic cells and myelocytes into macrophages, granulocytes, platelets and 

erythrocytes. A summary of surface markers for each lineage is depicted in Figure 2.  

Restriction to the B-cell lineage can be primarily recognized by staining for B220, to T 

lymphocytes by staining for cluster of differentiation (CD) 3, 4 and 8, to macrophages 

for Mac-1, to granulocytes for Gr-1, to platelets for CD41 and to erythrocytes for Ter-

119. In order to distinguish stem and progenitor cells from more differentiated cells, 

lineage markerlow cells are additionally stained with antibodies recognizing stem cell 

antigen 1 (Sca-1) (=LS) and tyrosine kinase kit (c-Kit, also known as CD117) (=LSK). 

Moreover, CD34 and signaling lymphocytic activation molecule (SLAM) family 

markers CD150 and CD48 are used to distinguish multi-potent progenitors (MPP) 

from long- term (LT-HSC) and short- tem repopulating stem cells (ST- HSC) 15–17. 

Myeloid progenitors are separated by CD34 and Fc-gamma-receptor (FcγR) into 

common myeloid, granulocyte- macrophage and megakaryocyte-erythroid 

progenitors 18,19. Importantly, the “hematopoietic hierarchy tree” is only a theoretic 

model. There are constant changes and discussion about origin of cells, e. g. the 

“myeloid bypass model” involving a direct link of LT-HSC to megakaryocytic, 

erythroid and myeloid progenitor circumventing the “general” path 20–24.  
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Taken together, hematopoiesis is a process starting early in development to 

ensure generation of mature blood cells. It functions in a highly organized, 

hierarchical manner and needs regulation of signaling pathways within lineages that 

is reflected in expression of surface markers.  

 

 

 
 
FIGURE 2. Schematic depiction and gating strategy of hematopoietic lineage hierarchy based on 

flow cytometry staining.  

Stem cells are classified as Lin-, Sca-1+, c-Kit+ (LSK) and include long term repopulating stem cells (LT-

HSC), short term repopulating stem cells (ST-HSC) and multipotent progenitor cells (MPP) that are 

distinguished using CD34, CD150 and CD48 surface markers. Myeloid progenitors are within Lin-, c-Kit+ 

(LK) poulation distinguished with CD34 and FcγR. Differentiated cells include lymphocytes, myelo- 

granulocytes, erythrocytes and platelets.  
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3.2 Transcriptional regulation of hematopoiesis 
 

The high cellular demand urges HSCs to balance their output to produce sufficient 

mature blood cells as well as to maintain their own pool at any time. In order to 

execute the gene expression programs needed for lineage choice and differentiation, 

extracellular signaling activates pathways that are regulating transcriptional 

regulation of hematopoiesis 9. Interestingly, HSCs constitutively express low levels of 

multiple cytokine receptors and transcription factors (TF) that get sequentially 

restricted during lineage fate decision 19. There is great controversy regarding lineage 

fate decisions. It has been published that the relative amount of the transcription 

factors GATA1 and PU.1, which are explained in detail later, account for the earliest 

lineage decisions at the CMP level, deciding whether cells go into the direction of 

myeloid (GMP) or megakaryocyte/erythroid (MEP) differentiation 25,26. Graf & Enver 

concluded in a “bi-colored marble model” that progenitor cells co-expressing the 

factors fluctuate between the decisions and finally decide for one direction, which 

would be a binary decision 27. To date it is not clear whether lineage choice is 

controlled by stochastic events, or whether external factors regulate the fate. Most 

likely, this decision is a combination of both 28. 

 

In general, transcription often works through binding of the basal machinery 

including RNA polymerase to the TATA (TATAAA consensus sequence) box in the 

promoter element of the DNA. In order to fine-tune the output, this machinery is also 

in contact with proteins bound to distal control elements, such as enhancers or 

repressors 29. The key feature of transcription factors is to facilitate or to block the 

access of the RNA polymerase to DNA in order to enhance or suppress mRNA 

transcription. There are two minimal necessary domains for this action needed. One 

one hand the DNA- binding domain (DBD) ensures binding to cognate motifs within 

the promoter or distal enhancer elements. On the other hand, a transactivating 

domain (TAD), also called activation function (AF), is needed to bind co-regulators. 

There are different ways how to regulate TFs. First a TF needs to be expressed and 

each gene has regulatory domains to control the output. Interestingly in this context, 

TFs can bind the promoter sequence of their own gene. Second, in order to be active 

the TF needs to be localized in the nucleus. Third, some transcription factors might 

need to harbor post- translational modifications determining their activation status. 

Fourth, cofactors can regulate their function or TFs need to form dimers. Fifth, TFs 
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might compete for the same locus and antagonize each other 30. Figure 3 depicts an 

arbitrary selection of TFs in hematopoietic lineage choices that have been 

extensively studied using mostly murine knockout models. Our current knowledge 

about TFs mostly results from studies using genetically engineered embryonic stem 

(ES) cells and murine models 31–33. Whether a TF actually binds to chromatin, is 

studied using electrophoretic mobility shift assay (EMSA) or chromatin 

immunoprecipitation (ChIP). This technique can identify specific loci that are bound 

by one or more TF, such as the case for GATA1 and GATA2 31,34,35 . 

Interestingly, single- cell ChIP-Sequencing (ChIP-Seq) has been recently 

developed in order to study histone marks in embryonic stem cells 36. Regarding 

transcription factor binding, small population (500 cells) ChIP-Seq revealed 

heterogeneity in sorted populations during hematopoietic differentiation 37. In the 

following section, TFs are highlighted that are involved in more than one lineage 

choice. 

 

 

 
FIGURE 3. Schematic depiction of TFs in hematopoiesis involved in lineage decision execution. 

(adapted from 33) 
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3.2.1 GATA1: a master TF regulating erythro- megakaryocytic lineage  
 

Probably one of the best- studied TF in hematopoiesis is GATA1. GATA1 was 

discovered as the founding member of the GATA family including six other factors of 

which three (GATA1-3) are implicated in hematopoietic development. The human 

GATA1 and murine Gata1 genes are both located on the X chromosome and are 

expressed primarily in more mature cell types such as erythroid cells, 

megakaryocytes, eosinophils, mast cells and in the Sertoli cells of the testis 38–45. 

Recently, it has been shown that GATA1 is also expressed at low levels in stem cells 
25,46. 

The GATA1 gene locus is composed of different enhancer and promoter 

elements regulating its expression. It contains two alternative first exons and five 

more exons contributing to the translation of the protein. The alternative first exons 

called “IT” and “IE” regulate the expression of the gene in the testis or in erythroid 

cells respectively 47. Moreover, a hematopoietic enhancer element (“G1HE”) 

containing a GATA motif serves as a docking site for the TF itself (Figure 4) 48.  

The GATA1 gene translates into a 413aa protein bearing the TAD near the N- 

terminus and two DNA- binding domains in form of zinc finger motifs, called N- and 

C- finger due to their location to the adjacent terminus 49,50. GATA1 binds with its C- 

finger to (A/T) GATA (A/G) consensus DNA sequences and thereby regulates genes 

participating in erythroid differentiation and development 49,51–53. As mentioned, it can 

bind its own gene locus and is known to negatively regulate its own expression. The 

N- finger is involved in co- factor binding occurring also in collaboration with the C- 

finger 32,54. Interestingly, there is a report demonstrating self- association capability of 

GATA1 resulting in dimer formation. Critical domains for association have been found 

to be downstream of the N- and C- finger, in particular aa224-254 and aa278-318. If 

mutated, transcription activation is impaired 54. 

 

GATA1 has been discovered through its binding to the globin enhancer locus and 

was shown to be essential for erythropoietic development 32,55. Interestingly, its 

cellular localization seems to depend on the activation status of the cell. In 

undifferentiated erythroid cells, the protein is predominantly located in the cytoplasm 

and during activation reshuffles to the nucleus where it remains excluded from 

nucleoli 56,57. It has been shown that the protein also undergoes multiple post- 

translational modifications such as phosphorylation, acetylation or SUMOylation. 
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However, the functional consequences of these modifications are not fully 

understood 58–62. This might be partially due to the bi-potential role of GATA1 being a 

transcriptional activator and repressor depending on the cell type or context in 

development 63. It has been shown that GATA1 involves many different co- factors to 

regulate its target genes and can also dimerize 54,64–66. Finally GATA1 regulates its 

target genes e.g. by competition for GATA2 bound gene loci, a process called “GATA 

switch” or by direct protein interaction with PU.1 (also called SPI1) 67–70.  

Regarding blood development, GATA1 has been shown to be a major 

regulator in primitive and definitive erythroid differentiation in the embryo. Deficient 

embryonic stem (ES) cells were unable to produce mature erythrocytes and arrested 

at the pro-erythroblastic stage. The severe anemic phenotype present resulted in 

embryonic lethality around E10.5 despite attempts to rescue developmental block 

through overexpression of GATA2 39,71,72. In another murine model, GATA1 is 

knocked down by introduction of a neo cassette into the IE promoter locus. As a 

functional consequence, male mice (GATA-/Y), like GATAnull embryos, die at E12.5 of 

severe defects in primitive erythropoiesis starting at E9.5. Female mice bearing a 

heterozygous mutation were able to survive and dependent on inactivation of the X 

chromosome, expressed either wildtype or 5% of wildtype GATA1 (GATA1.05/X). The 

mice developed anemia and thrombocytopenia and were prone to develop an acute 

erythroleukemia (AEL)- and acute lymphoblastic leukemia (ALL) phenotype in 

adulthood 73,74. Another murine model involved introduction of a neomycin antibiotic 

selection cassette in front of the IE promoter and removal of regulatory sites (called 

“neoΔHS“ & „ΔneoΔHS“). The resulting knockdown of GATA1 expression was milder 

and impaired erythroid maturation. Part of the mice died in utero at E12.5-14.5 and 

the remaining mice were anemic at birth but recovered during adulthood 75. These 

experiments suggested that erythroid differentiation highly depends on the GATA1 

expression dosage.  

Several GATA1 mutations have been found in human diseases. Mutations of the 

N- terminal region of GATA1 have been reported in transient myeloproliferative 

disorder (TMD) and Down’s syndrome-related acute megakaryocytic leukemia (DS-

AMKL). These mutations lead to translation of a shorter GATA1 isoform, called 

GATA1-s lacking the TAD (Figure 4). Therefore GATA1-s can still bind to DNA, but 

changes proliferation of megakaryocytic progenitors in fetal liver. The reason for the 

increased incidence of these mutations in patients with trisomy 21 is unclear 76–81. 

Moreover, there are cases of X- linked thrombocytopenia and anemia that were 
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reported to harbor a GATA mutation reflecting the involvement of this protein in the 

control of megakaryocytic- erythroid differentiation programs 32.  

 

 

 
 
FIGURE 4. Schematic depiction of GATA1 gene locus and resulting GATA1 protein.  

GATA1 gene locus includes two alternative first exons called IT (for testis) and IE (for erythroid). A 

hematopoietic enhancer (G1HE) element contains a GATA motif and serves as a docking site for 

autoregulation of the locus. Moreover, the locus contains an intronic enhancer and five more exons 

(white). GATA1 protein is 413aa long and contains a transactivation domain (TAD) and two zinc fingers 

(N & C). Above the protein depiction, the exons are marked which contain the respective mRNA later 

translated into the regions. GATA1-short (s) starts at methionin 84 and translates into a 330aa big 

protein missing the TAD.  

 

 

3.2.2 PU.1: key regulator of myeloid fate decisions 
 

The Spleen Focus Forming Virus (SFFV) Proviral Integration Oncogene 1 (=SPI-1, 

also called PU.1) belongs to the family of E-Twenty-Six (ETS) TF and recognizes the 

AGAGGAAGTG consensus sequence. It is highly expressed in GMP and also in 

HSC, CMP and CLP cells at various degrees 25,46.  

Inactivation of the SPI-1 gene in mice results in embryonic/ newborn lethality due 

to blocked maturation of neutrophils, monocytes, B-, T- and NK cell formation 

whereas megakaryocytic and erythroid development was reported to remain intact. 

Initially it was assumed that PU.1 is not essential for erythroid development. 

However, it was shown that also erythroid progenitors express SPI-1 at very low 

levels required for proper erythroid homeostasis and that during erythroid 



 24 

differentiation, levels decrease 82–86. Furthermore, PU.1 was proposed to play a role 

in HSC maintenance 26.  

Several lines of evidence indicate that PU.1 is also a key regulator of 

leukemogenesis. Erythroid differentiation requires downregulation of PU.1. If 

disturbed, such as happening in murine erythroleukemia (MEL) cells immortalized by 

Friend virus or in SPI-1 overexpressing transgenic mice, erythroid differentiation 

associated targets remain blocked and cause accumulation of immature cells 68,69,87–

89. Furthermore overexpression of SPI-1 in murine erythroblasts inhibits the transition 

from immature progenitors to pro- erythroblasts due to S- phase blockage and 

induces an erythroleukemia phenotype in mice 90. 20% Knockdown of PU.1 in mice 

due to insertion of a neo cassette in the distal enhancer element resulted in 

development of myeloblastic AML and lymphoma 91. Loss of function mutations 

affecting its DBD have been found in some patients with monocytic AML 92.  

As mentioned earlier, there are controversial reports about cross-regulation of 

PU.1 and GATA1 by mutual inhibition to intrinsically determine the lineage choices or 

whether they just execute the primary decision initially made by other factors 25–

27,46,93. In order to enable erythroid maturation happen, it is essential to block PU.1 

function 89. GATA1 directly binds to PU.1 with its C- finger and displaces the 

transcription factor c-jun. Moreover, it uses the N- finger to indirectly regulate the SPI-

1 gene locus. Therefore removal of the N- and/or C- finger of GATA1 can both 

reduce this inhibitory function 68. On the other hand, PU.1 can displace the activating 

complex members from GATA1 and replace it with repressing complexes including 

pRB, SUV39H and HP1 27. The interplay between the two TFs is complex and on top, 

they can also autoregulate themselves and interact with other complexes 32. 
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3.2.3 GATA2: another GATA TF regulating stem cells 
 

GATA2 is another GATA TF family member that has been identified as an important 

player in regulation of hematopoiesis. Although its expression is not restricted to 

hematopoietic cells, it plays a major role in HSC maintenance, mast cell and 

megakaryocytic-erythroid development 94,95. GATA2 knockout mice die during 

embryonic development due to severe anemia and impaired self-renewal capacity of 

HSC 95. Interestingly, GATA2 seems to autoregulate its expression by binding to its 

own promoter. Since GATA1 also bears this consensus sequence in its promoter 

elements, both factors can replace each other, in a process called “GATA factor 

switching”. This GATA switch allows reciprocal expression changes and leads to 

downregulation of the factors if needed 96. Of note, GATA2 can also interact with 

other transcription factors such as PU.1 68. Recently, mutations in GATA2 were 

reported in AML patients harboring also C/EBPα mutations 97. Moreover, GATA2 

mutations could de detected in patients suffering from CML 98,99.  

 

There are numerous additional transcriptional regulators involved in hematopoietic 

development include the CCAAT/enhancer binding protein (C/EBPα), Krüppel- like- 

factor 1 (KLF1), Runt- related transcription factor 1 (RUNX1, also known as AML1), 

T-Cell Acute Lymphocytic Leukemia 1 (TAL1, also known as SCL), nuclear factor 1 A 

(NFIA), Friend of GATA1 (FOG1, also known as ZFPM1), nuclear factor erythroid 2 

(NF-E2), CBFA2/RUNX1 Translocation Partner 3 (CBFA2T3, also known as ETO2), 

Growth Factor Independent 1B Transcription Repressor (1B) and many more 8,31,100. 

Interestingly, most genes encoding for these TFs have been found altered in 

hematological malignancies, as partners in translocations or occur as somatic point 

mutations 9.  

On the basis of the above-mentioned factors, we conclude that fine changes in the 

stoichiometry result in a deregulation of the dense transcriptional network that affects 

self-renewal of HSC as well as maturation and proliferation of more committed 

progenitor cells.  
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3.3 Epigenetic regulation of hematopoiesis 
 

As mentioned before, it has been recognized that HSCs express cytokine receptors 

and transcription factors at low level. In order to ensure proper differentiation into 

lineages, the expression “programs” have to be silenced 19. Hereby, the genetic code 

resides in a highly organized and compacted structure and is wrapped around 

nucleosomes, together called chromatin 101. The nucleosomes are composed of total 

eight histone proteins, two of each core histone H2A, H2B, H3 and H4 forming an 

octamer. Moreover, there are linker histones H1 that bind DNA and provide stability 
102. During the differentiation process, the nucleus gets reorganized and chromatin 

needs to be made accessible for TFs and the transcriptional machinery at different 

loci and times. In general, differentiation is associated with condensation of 

chromatin. This status is called heterochromatin (greek hetero=different, 

chroma=color), in contrast to euchromatin (greek eu=real), since the DNA appears 

more stained when a DNA intercalating fluorescence marker is used 103. The closure 

of the chromatin is associated with a decrease in active global transcription 104. 

Chromatin needs to be modified in order to control that process. There is a variety of 

different player involved in this organization, some of which are explained in the 

following section. Interestingly, all chromatin- modifying enzymes have a role in HSC 

self- renewal or maintenance. Therefore it is very important to tightly control the 

organization in a dynamic way to ensure cellular processes such as proliferation, cell 

death, DNA repair, replication and various others 105. An overview of some 

modifications that are discussed in more detail, are depicted in Figure 5.  
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FIGURE 5. Epigenetic regulation of hematopoiesis.  

Nucleosomes are composed of total eight histone proteins, two of each core histones H2A, H2B, H3 and 

H4 are forming an octamer. In addition, there is a linker histone H1 per nucleosome. Histone 

modifications alter the accessibility of transcription factor and associated machinery to the DNA. The 

reversible changes are made by so- called “writers”, “readers” and “erasers” of the so-called “histone 

code”. The figure depicts examples described in the introduction, such as the histone acetyltransferase 

CBP/EP300 and methyltransferases MLL1 and NSD1. CBP/EP300 can also recognize acetylated 

histones with their bromodomain. Another epigenetic modification discussed here is DNA methylation. In 

this process, methyl groups are attached to the nucleotide cytosine (=5mCpG) residing in so-called CpG 

islands, e.g. by DNMT3A. There are many connections between different epigenetic mechanisms, e.g. 

by binding of DNMT3A to methylated histones through the PWWP “reader” domain.  
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3.3.1 Histone modifications 
 

During gene transcription, certain loci are opened or closed more than others 

depending on a specific code “written” on the histones. The so- called “histone code” 

refers to an old hypothesis stating that the genetic code is partly regulated through 

defined combinations of posttranslational modifications that occur at the tail amino 

acids of histones. Histone modifications alter the accessibility of transcription factors 

and associated machinery to the DNA. Reversible changes are made by so- called 

“writer, reader and erasers” 106. “Writers” can acetylate, methylate, phosphorylate, 

ubiquitinate, sumoylate, ribosylate or biotinylate histone tails. In general, writers have 

a specific target residue that they modify 107. In the following section, two main 

modifications that are involved in many hematopoietic processes are explained in 

great detail.   

 

Histone acetylation occurs at lysine residues of H3 and H4. During acetylation 

the positive charge of the histone tail is neutralized and loosens the affinity of the 

negatively charged DNA to histones and therefore opens the locus to enhance 

transcription. Acetylation marks are set e.g. by histone acetyltransferases (HAT). 

There are three classes, first the Gcn5 N-acetyltransferases (GNAT) comprising its 

members Gcn5, p300/CBP-associated factor (PCAF), Elp3, Hat1, Hpa2. Second, 

there are Nut1, MOZ, MORF, Ybf2/Sas3, Sas2, HBO1 and Tip60 making the MYST 

family. And third the p300/CBP family including the cAMP-responsive element 

(CREB)- binding protein (CBP) or its homologue adenovirus E1A-associated 300-kD 

protein (p300) 108. CBP/p300 function as transcriptional regulators by acetylating 

histone tails and other nuclear proteins. Moreover, it acts as a scaffold by recruiting 

transcription factors to active loci through a large diversity of protein interaction 

domains 109,110. “Readers” bearing special reading motifs such as bromo- or 

chromodomain concomitantly recognize acetylated histones. CBP/p300 contain a 

bromodomain recognizing acetylated lysines finally resulting in a positive feedback 

loop and maintenance of CBP/p300 enzymatic activity. For this reason, CBP/p300 

have two functions: writing and reading 111,112. In mice, homozygous loss of either 

Cbp or p300 leads to embryonic lethality in utero due to developmental defects 

including impaired hematopoiesis 113,114. Studies in heterozygous mice have 

characterized Cbp as an essential regulator of HSC self-renewal. Likewise, 

conditional ablation of Cbp in adult mice altered differentiation, quiescence, 
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apoptosis, and self- renewal of adult HSCs 115. CBP/p300 has been functionally 

linked to the development of multiple human cancers, including solid tumors and 

hematological malignancies 116. CBP/p300 has been detected in several oncogenic 

fusions in leukemia involving either the MOZ acetyltransferase or the mixed linage 

leukemia (MLL) gene product promoting cell proliferation 117,118. The most prevalent is 

the chromosomal translocation t(11;16)(q23;p13) associated with mostly therapy-

related acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) resulting 

in a fusion protein containing the bromodomain of CBP and parts of MLL 118,119. 

CBP/p300 was also proposed to act as transcriptional co-activator of other 

leukemogenic proteins such as the NUP98-HOXA9 fusion 120. Recently, it has been 

shown that p300 interacts with the AML1- ETO fusion protein, present in over 20% of 

human AML regulating transcription of multiple AML1–ETO target genes that are 

drivers of self- renewal of hematopoietic stem/progenitor cells 121. Furthermore, 

inhibition of p300 abrogates acetylation of AML1-ETO and impaired clonogenic 

growth in vitro and leukemic transformation in vivo 122. 

Finally, these chromatin marks are reversible and can be removed by erasers 

such as histone deacetylases (HDAC), which are associated with decreased 

transcription. Interestingly, (de)acetylation takes not only place on histone protein, 

but also a large variety of non- histone proteins have been discovered to be modified 
123.  

 

Histone methylation occurs at the N-terminal tails of histones. To date, many 

different histone methyltransferases (HMT) have been identified creating different 

marks involved in opening and closing of the gene loci (Table 1). In general it has 

been recognized that the methylation mark is bivalent and can stand either for active 

or repressed transcription, depending where it is deposited.  The best described HMT 

in hematopoiesis is mixed lineage leukemia 1 (MLL1, also known as KMT2A). It 

belongs to the trithorax group proteins with conserved functionality and more 

specifically to the subgroup containing a Su(var)3-9, Enhancer-of-zeste, Trithorax 

(SET) domain. This enzymatic unit is involved in Histone 3 Lysine 4 (H3K4) mono-/di-

/tri- methylation at transcriptional start sites (TSS) of genes including HOX genes 124. 

HOX genes are essential for embryonic development and encode transcription 

factors involved in cellular differentiation. MLL1 has been reported to act as an 

upstream regulator of HOXA9 and the cofactor MEIS1, which are normally expressed 

in early hematopoietic hierarchy but later downregulated 125.  
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MLL functions in a large multi-protein complex including WDR5, RBBP5, ASH2L 

associating at the C- terminus and multiple endocrine neoplasia type 1 (Menin), 

Lens-epithelial growth factor (LEDGF) and Myb at the N terminus 123,126,127.  

Mll1 inactivation in mice results in embryonic lethality due to altered 

homeobox (HOX) gene expression. Moreover, MLL1 has been shown to be involved 

in stem cell renewal and differentiation programming. In human leukemia, MLL 

located on chromosome 11q23 has been found in more than 70 different 

translocations leading to expression of fusion proteins. Many of these fusions have 

strong oncogenic activity as shown in cell cultures and in mouse models 128–130. The 

majority (>75%) of the N- terminal MLL is fused to transcriptional activators such as 

ENL, AF9 and AF4. The main task of these transcriptional activators is to recruit 

other chromatin modifying enzymes. Importantly, all MLL- fusions miss the C 

terminus and the protein- protein interactions of the N- terminus have been shown to 

be crucial for normal as well as leukemogenic activity of MLL 131–134.  

 

To conclude, oncogenic fusion proteins often combine a DNA binding part 

recruiting the complex to the vicinity of transcriptional starts sites and continuous 

recruitment of the basal transcriptional machinery finally resulting in aberrant 

transcription 126. Loss or gain of conserved catalytic subunits of an enzyme, leads to 

an altered protein function. Concomitantly, protein- protein interactions are destroyed 

and proteins might be attracted to the “wrong” loci. The chromatin structure cannot be 

maintained anymore and results in aberrant transcription. If genes are not controlled 

in a spatial and temporal manner, malignant hematopoietic disorders are the result of 

faulty target gene expression 105.  

On the basis of these two well- studied examples, it can be concluded that 

active transcription in hematopoietic cells is marked by acetylation and methylation of 

histones nearby transcription-regulatory elements such as enhancers, promoter or as 

well gene bodies in a specific “code” combination. Another epigenetic mechanism 

contributing to the regulation of transcription is DNA methylation.  
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TABLE 1. Histone lysine methylations, respective enzymes that carry out the reaction and proposed 

function (+ activates transcription, - diminishes transcription) adapted from 135. *  no independent 

reproduction of result yet 

 

Histone (lysine) Modification (methylation) Enzyme Function 
H1K26 me1 EZH2  
H1K168 me1 NSD1*  
H3K4 me1 MLL1/2/3/4,  

SETD1A/B, SETD7,  
ASH1L* 

+ 

 me2 MLL1/2/3/4,  
SETD1A/B, SMYD3* 

+ 

 me3 MLL1/2/3/4,  
SETD1A/B, SETD7,  
ASH1L, PRMD9,  
SMYD3* 

+ 

H3K9 me1 G9A, SETDB1,  
EHMT1, PRDM2* 

+ 

 me2 SUV39H1,  
SUV39H2, G9A,  
SETDB1, PRDM2*,  
EHMT1 

- 

 me3 SUV39H1,  
SUV39H2, SETDB1,  
PRDM2* 

- 

H3K27 me2 EZH1/2 - 
 me3 EZH1/2 - 
H3K36 me1 SETD2, NSD1/2/3  
 me2 SETD2, NSD1/2/3,  

SMYD2* 
 

 me3 SETD2 + 
H3K79 me1 DOT1L + 
 me2 DOT1L + 
 me3 DOT1L + 
H4K20 me1 SETD8  
 me2 SUV420H1/2  
 me3 NSD1, SUV420H1/2  
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During DNA methylation, methyl groups are attached to the nucleotide cytosine. It 

almost exclusively occurs in so-called CpG islands, which often are in close proximity 

of TSSs. In germ line and during pre- implantation of the blastocyst, there is active 

demethylation of both parental genomes taking place 136. Upon differentiation, 

pluripotency- as well as germline- associated genes need to be silenced achieved by 

hypermethylation of their TSSs. This methylation is carried out by de novo 

methylating enzymes, the DNA methyl transferases (DNMT) 3A and 3B. Moreover, 

there is another DNA methyltransferase, DNMT1, dedicated to maintain the 

methylation. In total 60-80% of CpG islands are methylated in the mammalian 

genome. Methylation of a TSS is associated with repression of gene transcription, 

preferentially of housekeeping and developmentally important genes 137. Deletion of 

DNMT1 and DNMT3B in mice resulted in embryonic lethality, whereas deletion of 

DNMT3A resulted in production of viable pups 138. However, these mice did only 

survive up to four weeks after birth. DNMT3A was identified as a regulator of 

embryonic development, imprinting and X chromosome inactivation 139. In 

hematopoiesis, conditional deletion of DNMT3A leads to expansion of LT-HSCs and 

changes myeloid differentiation 123,140,141. In human hematopoiesis, aberrant promoter 

CpG island methylation of DNA is one of the major causes identified in leukemia. The 

third most common mutation in AML occurs in the gene of DNMT3A and is 

associated with poor prognosis 142–146. The mutations result in a decrease of the 

catalytic activity and DNA binding properties. The mutated protein inhibits the wild 

type protein since they normally cooperate in an oligomer to exert their function. 

Therefore, a haploinsufficiency seems already sufficient to cause a phenotype. 

However, the consequences are not fully understood 142,147. Global methylation levels 

have been reported unchanged, with exception of specific loci, When DNA 

methylation was decreased, it did not translate into changes in gene expression 144. 

Interestingly, HOX-A and HOX-B clusters showed increased expression upon 

DNMT3A mutations 146.  Moreover, DNMT3A has been reported to be present in 

MDS patients before acquisition of the driver mutation as well as in healthy subjects 
148,149.  

There also other proteins involved in regulating DNA methylation being 

mutated in AML such as DNMT3B, DNMT1, IDH1, IDH2, TET1 and TET2 142. Both, 

histone modifications as well as DNA methylation play an important role in the spatial 

and temporal control of gene expression during development. Moreover, other 

proteins such as chromatin remodelers, histone readers, co-activators and kinases 
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are involved in the orchestration of opening and closing of chromatin at the right time, 

that are not discussed in detail here. Of note, these pathways do not interact 

independently e.g. DNMT3A bears a Pro-Trp-Trp-Pro (PWWP) motif binding to 

H3K36me3 in gene bodies and in turn methylates CpG dinucleotides. The 

combination of histone and DNA methylation was proposed to influence the splicing 

of introns 150,151. It has also been suggested that CpG islands attract MLL fusion 

proteins and the attached complex containing DOT1L catalyzing methylation of 

H3K79, a mark associated with active transcription 152–154. Moreover there has been a 

direct link between mutated DNMT3A and aberrant HOX gene expression reported 
155 .  

In summary, transcriptional as well as chromatin regulation are essential to 

maintain the stem cell pool and produce sufficient differentiated cells for functional 

hematopoiesis (Figure 6). 

 

 
FIGURE 6. Normal hematopoiesis.  

Schematic depiction of normal hematopoiesis. Stem cells need to self- renew their pool and at the same 

time produce progenitors giving rise to differentiated effector cells.   
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3.4 Acute myeloid leukemia 
 

An aberrant transcriptional regulation caused by mutations or translocations in 

hematopoietic cells may result in malignant transformation and induction of leukemia. 

Acute leukemia is classified as either acute lymphoblastic leukemia (ALL) or acute 

myeloid leukemia (AML). Within the AML classification, there are eight subgroups 

(M0-7) according to the French- American- British (FAB) system that distinguishes 

cytomorphological features. Interestingly, acute leukemia is the product of only a 

limited number of functionally cooperating genetic alterations. A recent analysis of 

AML genomes using whole- genome as well as whole exome sequencing data 

suggested an average of thirteen gene mutations per AML genome of which only five 

were recurrently mutated 142,156. The prevalence of somatic mutations compared to 

other cancers was lower than the average 157. The current concept of leukemia 

development involves a differentiation block of a lineage through mutations of 

transcriptional or chromatin regulators combined with mutations affecting cellular 

signaling pathways conferring 

growth advantage finally 

resulting in aberrant 

differentiation and increased self-

renewal capacity of 

hematopoietic stem and 

progenitor cells (Figure 7) 
142,158,159. 

 

 

 

 
FIGURE 7. Malignant hematopoiesis. 

The current concept of leukemia 

involves so-called class I mutations 

causing a block in differentiation in 

combination with class II mutations 

increasing self- renewal, proliferation 

and/or survival. 
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3.4.1 NUP98-NSD1: a molecular hallmark of pediatric AML 
 

Approximately 20% of pediatric AML cases are cytogenetically normal (CN-AML) 

(Figure 8). However, such cases can also harbor chromosomal translocations that 

often contain telomeric breakpoints not detected by traditional karyotyping. One 

example is t(5;11)(p35;p15) leading to expression of the NUP98-NSD1 fusion 160,161. 

Initially, NUP98-NSD1 was identified by cloning of a chromosomal translocation 

t(5;11)(q35;p15) from a pediatric AML patient and revealed expression of a fusion 

between the genes coding for the nucleoporin 98 (NUP98) and the nuclear receptor 

binding Su(var)3-9, enhancer of Zeste and Trithorax domain protein 1 (NSD1) 162. 

NUP98-NSD1 is mostly found in AML of children and only rarely found in adult 

patients and generally associated with a poor prognosis 163–165. Hollink et al. reported 

that NUP98-NSD1 positive AML are characterized by aberrant expression of the 

HOX A-B-C gene clusters distinguishing them from AML with MLL- rearrangements 
163.  

 

 
 
FIGURE 8. NUP98-NSD1 is involved in pediatric AML.  

Karyotypic alterations in childhood acute myeloid leukemia (AML). A significant fraction of the patients 

harbours MLL translocations (21%) or appears as cytogenetically normal (CN) AML including 

Nucleoporin 98 (NUP98)- Nuclear Receptor-Binding SET Domain-Containing Protein 1 (NSD1) 

translocations (adapted from 160) that are not detected by traditional karyotyping. 
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The NUP98 gene is located on chromosome 11p15. The NUP98 protein 

results from cleavage of an 1800aa precursor that is cleaved into 96kDa (NUP96) 

and 98kDa sized proteins, which form parts of the nuclear pore complex involved in 

shuffling macromolecules between the cytoplasm and nucleus. In order to exert their 

function, one subfamily of nucleoporins contain phenylalanine- glycine (FG) repeat 

domains binding to nuclear receptors and forming a nuclear barrier to decide which 

macromolecules may pass the pore 166,167. NUP98 has been also found in other 

translocations and in all of these fusions, the translocation product still harbors the 

Phenylalanine-Glycine (FG) repeat of NUP98 168. These repeats are a hallmark of 

nucleoporin proteins and have been shown to interact with CBP/p300 (Figure 9) 120.  

 

 
 
FIGURE 9. Protein structure of NUP98 and NSD1 and NUP98-NSD1 fusion.  

Schematic depiction of NUP98 located in chromosome 11p15 and NSD1 located on chromosome 5q35. 

NUP98 harbors FG repeats and RNA binding domain. NSD1 harbors nuclear receptor interacting (NID), 

PWWP, PHD, SET and C5HCH domain. Upon chromosomal translocation t(5;11)(q35;p15), NUP98 

looses its RNA binding domain and NSD1 the NID and first PWWP domain. 

 

 

Nuclear receptor binding domain protein 1 (NSD1) consists of 2696aa and its 

gene is located on the long arm of chromosome 5. The murine Nsd1 (2691aa, Chr. 

13 B1) was initially identified in a two- hybrid screen investigating potential binding 
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partners of retinoic acid receptor alpha (RAR). The authors identified Nsd1 as a novel 

protein interacting with several nuclear receptors such as the retinoid X receptor 

gamma (RXR), the retinoid acid receptor alpha (RAR), the thyroid hormone receptor 

(TR) and the androgen receptor (AR). For its binding activity, two distinct nuclear 

receptor- interacting binding domains (NID) were described. NID-L binds unliganded 

RAR and TR, whereas NID+L binds ligand-bound TR, RAR, RXR and ER 169. 

Moreover, NSD1 is also known as AR-associated (ARA) protein 267, based on 

observations that it interacts and stimulates AR transactivation 170. In addition to the 

N-terminal located NIDs, NSD1 contains two Pro-Trp-Trp-Pro (PWWP) motifs, five 

plant homeodomain (PHD) fingers and a C-terminal Su(var)3-9, Enhancer-of-zeste, 

Trithorax (SET) domain with methyltransferase activity (Figure 9) 169,171. Huang et al. 

reported NSD1 to be present in the nucleus tightly associating with chromatin, 

excluded from nucleoli and condensed heterochromatin. Deletion of the FG domain 

of NUP98 as well as mutations in NSD1 inactivating the methyltransferase activity or 

preventing binding of NUP98–NSD1 to the HOX-A locus decreased HOX-A gene 

transcription and concomitant immortalization of myeloid progenitor cells (Figure 10) 
171.  

 

 

 
 
FIGURE 10. NUP98-NSD1 in AML.  

NUP98-NSD1 causes blocked differentiation. In combination with FMS-like tyrosine kinase-3 internal 

tandem duplication (FLT3-ITD), which confers increased proliferation, acute myeloid leukemia develops 

and so called „blasts“ arise in the peripheral blood. Wright- Giemsa stained blood smear of leukemic 

mouse (courtesy of A. Thanasopoulou, 172).  
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3.4.2 Nuclear receptor binding domain protein 1 (NSD1) 
 

Losson et al. generated an Nsd1 knockout model by replacing the largest exon 5 by 

a floxed pgk-neomycin antibiotic selection cassette. Nsd1 knockout mice were 

embryonically lethal at E10.5. At earlier developmental stages, the authors observed 

degenerated extra-embryonic tissue lacking any growth structure. At E6.5, knockout 

embryos were smaller in size and pyknotic nuclei in the ectoderm were detected. 

Moreover, presence of TUNEL positive cells confirmed occurrence of apoptosis and 

positional markers of the anterior-posterior axis were not expressed. Besides this, 

mesodermal markers as well as homeobox (HOX) genes were not expressed. The 

group concluded, that the Nsd1 gene is required for post- implantation development 

in mice and mutant embryos did not develop the mesodermal layer. Heterozygous 

Nsd1 knockout mice were viable and fertile. Furthermore they also suggested that 

Nsd1 may play a role at later developmental stages as differential expression was 

observed in multiple regions during embryonic development 173.  

Alignment using the protein BLAST program of murine Nsd1 with the human NSD1 

revealed 84% identity with domain conservation. A direct comparison of domains 

revealed 99% homology of the SET domain and 87% of the NID domain between 

human (NP_071900) and mouse (NP_032765) protein sequences  (Figure 11) 174. 

 

 
FIGURE 11. Homology of human and murine NSD1.  

Protein blast homology comparison of human and mouse NSD1. NID and SET domain are highlighted. 

Red stripes indicate difference in protein sequences.  

 

Upon fusion to NUP98, the NID of NSD1 is lost, while the PHD fingers and SET 

domains are maintained. Expression of the NUP98-NSD1 fusion has been previously 

proposed to have oncogenic activity dependent on the integrity of SET-domain-

mediated methyltransferase activity resulting in increased H3K36 methylation and 

expression of the Hox-A gene cluster 171,175. Co-expression of NUP98-NSD1 and 

FLT3-ITD in BM (BM) cells revealed potent cooperation for the induction of AML in 

mice 172. In addition to chromosomal translocations, NSD1 is the target of genomic 
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amplifications as well as recurrent point mutations in various solid cancers 162,171,176–

182 (Table 2).  

It has been reported that the major cellular substrates of NSD1 are mono and di- 

methylation of H3K36 as well as mono methylation of lysine 168 of linker histone 1.5 

(H1.5K168) 183,184. Moreover there are mixed reports regarding methylation of H4K20 

as well as non- histone proteins such as nuclear factor kappa B (NF-κB) 173,179,180,184–

186. Interestingly, NSD1 controls methylation of histones at the bone morphogenic 

protein 4 (BMP4) gene locus in human HCT116 colorectal cancer cells and 

knockdown of NSD1 in these cells reduced mono-, di- and tri- methylation of H3K36 

within the gene body as well as gene expression levels 187. Whether this regulation 

holds true in hematopoiesis has not been reported so far. Nevertheless, this data 

suggests a potential role of Nsd1-mediated mono- and dimethylation marks as a 

substrate for SET Domain Containing 2 (SETD2, also known as HYPB) that 

trimethylates H3K36 183.  

 

In addition, heterozygous NSD1 point mutations have been proposed to be the 

molecular correlate for SOTOS, a multiple anomaly syndrome characterized by 

overgrowth, distinctive craniofacial appearance, and learning disabilities with an 

increased risk to develop cancer 188,189. The NSD1 gene locus was also found to be a 

target of aberrant CpG island promoter hypermethylation in blood samples of SOTOS 

patients 179. A complete list of percentages of pathogenic point mutations of 

sequenced cancer samples by Sanger Cosmic database can be found in Table 2. In 

hematopoietic and lymphoid tissue, approximately 25% of the mutated cases bore a 

point mutation that occurred either in the NID, PHD finger or SET domain (Table 3). 

Mutations of PHD domains are believed to reduce recognition of methylated histones 

whereas mutations of SET domain might interfere with the methyltransferase activity 
190,191. To date, there is no proposal of functional consequences of NID mutations. 

Collectively, these observations suggested that in addition to its role being involved in 

the NUP98-NSD1 fusion oncogene, NSD1 might also act as a tumor suppressor. As 

already proposed by Huang et al. it contains activation or repression domains and 

might therefore act in a context- dependent manner 169.  
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TABLE 2. NSD1 mutation and copy number variant (CNV) distribution in cancer samples 

according to COSMIC database. 
 

Tissue Point Mutations 
(% mutated) 

Copy Number Variation 
(% variant) 

Adrenal gland - 2.78 (gain) 
Breast 0.58 0.1 (loss), 0.3 (gain) 
Central nervous system 0.14 0.47 (gain) 
Cervix 0.31 - 
Endometrium 3.75 - 
Haematopoietic and lymphoid 0.24 - 
Kidney 0.95 0.24 (loss), 0.96 (gain) 
Large intestine 2.29 0.14 (loss) 
Liver 0.25 0.16 (gain) 
Lung 1.34 0.45 (loss), 0.45 (gain) 
Oesophagus 0.37 - 
Ovary 0.24 0.28 (gain) 
Pancreas 0.07 - 
Prostate 0.39 - 
Skin 1.09 0.41 (gain) 
Soft tissue - 1.41 (gain) 
Stomach 2.53 0.28 (loss) 
Thyroid 0.18 - 
Upper aerodigestive tract 1 0.64 (loss) 
Urinary tract 1.05 - 
 
 

TABLE 3. Pathogenic NSD1 mutations in hematopoietic and lymphoid cancer samples according 

to COSMIC database.  

 

Mutation 
(CDS) 

Mutation 
(aa) 

Count Mutation type Exon Domain 

c.1457C>G p.S486C 1 Substitution - Missense 5 NID 
c.2170G>A p.E724K 1 Substitution - Missense 5 NID 
c.4552G>T p.G1518C 1 Substitution - Missense 11 PHD  
c.5912A>G p.Y1971C 2 Substitution - Missense 19 SET 
c.6085A>G p.T2029A 2 Substitution - Missense 20 SET 
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3.4.3 The NSD protein family  
 

The NSD family contains two more members, Nsd2 and 3. Interestingly, both proteins 

differ from NSD1 by not containing the nuclear receptor interacting domain. NSD2 

(also called Wolf-Hirschhorn Syndrome Candidate 1= WHSC1) encodes a protein 

with a PWWP domain, a high mobility group (HMG) box, a SET domain, and PHD 

zinc fingers 192. It is expressed ubiquitously in early development and murine 

knockout is embryonically lethal. This data proposed a non- redundant function of 

NSD1 and NSD2. Its second name derives from its involvement in the Wolf-

Hirschhorn syndrome (WHS), which is a malformation syndrome, associated with a 

hemizygous deletion of the distal short arm of chromosome 4. Moreover NSD2 is 

also involved in multiple myeloma formation through chromosomal translocation 

t(4;14)(p16.3;q32.3) resulting in increased expression of NSD2 under the control of 

the immunoglobuline (Ig) enhancer. Continuous expression of NSD2 results in 

increased H3K36 methylation and proposed oncogene function 192–197. NSD3 (also 

known as multiple myelomas =WHSCL1) encodes a protein with a PWWP domain, a 

SET domain, and PHD zinc fingers. It has been also found to be fused to NUP98 in 

rare AML cases and found amplified in cases breast cancer 198,199. There is to date no 

knockout mouse model that would determine its role in development. Taken together, 

NSD family members play an important role in human cancer.   
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4 INVESTIGATING THE ROLE OF THE 

EPIGENETIC REGULATOR NSD1 IN 

NORMAL HEMATOPOIESIS 
 

4.1 WORKING HYPOTHESIS 
 

Previous work has suggested a bi-potent role of Nsd1 in human cancer. Our lab and 

others have shown that when fused to NUP98, NSD1 has leukemogenic activity in 

vitro and in vivo 163,171,172. Important to note is that a chromosomal translocation 

inherently leads to the loss of one functional allele, suggesting that reduced levels of 

NSD1 may contribute to the leukemic phenotype. In addition, recurrent presence of 

putatively loss- of- function mutations of NSD1 in human cancers including AML 

suggests that NSD1 could also act as tumor suppressor. This idea is also supported 

by the observation of aberrant DNA methylation of the NSD1 locus in some brain 

cancers 179. These observations led us to propose that NSD1 may play an important 

role in hematopoiesis and reduction of NSD1 could increase the risk to develop a 

malignant disease.  

To experimentally address this hypothesis we established mice in which we 

constitutively and conditionally inactivated the Nsd1 gene in the hematopoietic 

system. The aim of this thesis is to describe the phenotype in Nsd1 knockout mice 

and to address the underlying molecular mechanisms.    
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4.2 MATERIAL AND METHODS 
 

4.2.1 Transgenic mice 
 

Mice with a Nsd1+/L3 allele were obtained from Regine Losson (IGBMC, Strassbourg) 
173. The floxed pgk-neomycin selection cassette was removed, leaving two loxP sites 

flanking the largest coding exon 5, here referred as Nsd1fl/fl. Nsd1fl/fl mice were 

intercrossed with a Vav1-iCretg/+ transgenic strain leading to inactivation of the gene 

in fetal and adult hematopoiesis. We also crossed Nsd1fl/fl mice with Mx1-iCre and 

Scl-Cre-ERT2 (called also Scl-iCre in this report) mice for conditional ablation. Both 

strains were obtained from Radek Skoda (DBM, Basel). For Mx1-iCre-mediated 

deletion, polyinosinic:polycytidylic acid (poly(I:C)) (Cat. P1530, Sigma Aldrich, Buchs, 

Switzerland) was administered on ten consecutive days with 2 days of break via 

intraperitoneal (i.p.) injections at 300µg/ml starting 6-8 weeks after birth. For Scl-Cre-

ERT2 mediated deletion, mice were fed with tamoxifen (Tx) impregnated food 

supplemented with 10% sucrose (1 mg/g; Harlan Laboratories, Venray, The 

Netherlands) for 8-14 weeks. All mice in this study were kept under specific 

pathogen-free conditions at the animal facility of the DBM (ZLF, Hebelstrasse 20) 

with free access to food and water in accordance to Swiss Federal Regulations. All 

transgenic mice established on a mixed background were backcrossed to C57BL/6J 

(Ly5.2) for more than 10 generations.  

 

 

4.2.2 Genotyping 
 

Mice were genotyped using the KAPA Mouse Genotyping Kit HotStart (Cat. KK7352, 

KapaBiosystems, Wilmington, US) for extraction of genomic DNA and PCR reaction. 

Briefly, tissue was digested in 100µl extraction master mix (88µl H2O, 10µl buffer, 2µl 

enzyme), mixed and heated for 10min at 75°C, followed by inactivation of enzymatic 

reaction at 95°C for 5min. Mix was vortexed and spun at 14.000rpm for 1min in a 

Hereaus table top centrifuge. 1µl of reaction was taken for PCR reaction with 12.5µl 

Kapa Mix, 0.25µl MgCl2 (of 50mM stock), 2.5µl primers (according to Table 4 at final 

concentration 10µM) and H2O. PCR reaction program was: 5min 95°C, 40x cycles 
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95°C 15sec, 60°C 15sec, 72°C 30sec followed by 5min 72°C and 1min 4°C. PCR-

amplicons were visualized on 2% agarose gels containing ethidiumbromide.  

 

 
TABLE 4. Primer sequences for genoytping PCR 

 
Target Sequence forward (5'-3') Sequence reverse (5'-3') 

Vav1-iCre CTCTGACAGATGCCAGGACA TGATTTCAGGGATGGACACA 

Nsd1 GTCTGCATTAAGTAATTGTGCCCTGAAG ACTGACTCCTCTTCTGGAGATCTGAGTTC 

Mx1-iCre AGGTGTAGAGAAGGCACTTAGC CTAATCGCCATCTTCCAGCAGG 

Scl-Cre-ERT2 TAGTGGGTTCTTTGGGGAAC GTGAAACAGCATTGCTGTCACTT 

 

 

4.2.3 In vivo experiments 
 

Asymptomatic Vav1-iCre+/tg;Nsd1fl/fl mice were sacrificed at 4- 6 weeks after birth. 

Vav1-iCre+/tg;Nsd1fl/fl mice became symptomatic 7- 17 weeks after birth: once they 

reached an “animal welfare score” ≥ 3, based from appearance, natural and 

provoked behaviour and body weight the mice were sacrificed by CO2 asphyxia and 

cervical dislocation. Organs were fixed in 4% formalin solution to preserve for 

histopathological analysis (Pathology, University Hospital Basel). 

 

 

4.2.4 Histology & Mircoscopy  
 

Formalin-fixed paraffin-embedded tissue sections were stained with hematoxylin and 

eosin (H&E). Differential blood counts were analyzed on smears stained using 

Wright- Giemsa staining (Hematology, University Hospital Basel). Tissue sections 

and blood smears were evaluated by Prof. J. Schwaller (trained in pathology) with 

advice of Prof. Dr. A. Tzankov, Institute for Pathology, Basel). Sections were 

analyzed on an Olympus BX61 microscope (Tokyo, Japan) or Nikon TI (Tokyo, 

Japan). 
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4.2.5 Peripheral blood analysis 
 

Blood was collected from the tail vein or by vena cava inferior puncture (terminal) and 

counts were determined using an Advia120 Hematology Analyzer using Multispecies 

Version 5.9.0-MS software (Bayer, Leverkusen, Germany).  

 

 

4.2.6 Timed mating & fetal liver extraction 
 

Nsd1fl/fl and Vav1-iCre+/tg;Nsd1fl/+ mice were mated for one night to obtain 1 out of 8 

born pups “positive” (=Vav1-iCre+/tg;Nsd1fl/fl) for analysis. Plugs were controlled and 

positive mice marked with E0.5. Pregnant mice were sacrificed at E13.5, 16.5 and 

19.5 (day of birth) by CO2 asphyxia and cervical dislocation. Pups were dissected 

and kept in PBS  (pH 7.2, Cat. 20012068, Gibco, Thermo Fisher Scientific, Reinach, 

Switzerland). Decaptured whole bodies were fixed in 4% formalin solution to preserve 

for pathological analysis (Pathology, University Hospital Basel). Fetal livers were 

dissected with a bended forceps and scissors and kept in PBS. Single cells 

suspensions were obtained by pressing the liver gently with a pre-moistured plunger 

through a 40μm cell strainer (Cat. 352340, BD, New Jersey, USA) in RPMI (Cat. 

61870, Gibco, Thermo Fisher Scientific, Reinach, Switzerland) containing 10%FCS 

(Cat. 2-01F10-I, Amimed, Bioconcept, Allschwil, Switzerland) and 

1%Penicillin/Streptomycin (P/S) (Cat. 15140, Gibco, Thermo Fisher Scientific, 

Reinach, Switzerland).  

 

 

4.2.7 Cell isolation 
 

Total BM was harvested by crushing long bones and spine in RPMI (Cat. 61870, 

Gibco, Thermo Fisher Scientific, Reinach, Switzerland) containing 10% FCS (Cat. 2-

01F10-I, Amimed, Bioconcept, Allschwil, Switzerland ) and 1% P/S (Cat. 15140, 

Gibco, Thermo Fisher Scientific, Reinach, Switzerland) and then filtered through 

40μm cell strainer (Cat. 352340, BD, New Jersey, USA).  Spleens were dissected 
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and single cell suspensions obtained by pressing the spleen gently with a pre-

moistured plunger through a 70μm cell strainer (Cat. 352350, BD, New Jersey, USA).  

When needed, red blood cells were lysed with ammonium- chloride potassium (ACK) 

lysis buffer (150 mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA, pH 8.0) for 10min 

on ice. After 5min at 1500rpm centrifugation, cells were resuspended in PBS plus 

10%FCS and counted. Lineage depletion was achieved according to manufacturers 

protocol of mouse hematopoietic lineage depletion kit (Cat. 130-090-858, Miltenyi 

Biotech, Bergisch Gladbach, Germany). Briefly, lineage positive cells were stained 

with biotin and streptavidin- conjugated beads used for magnetic cell separation 

using LS columns (Cat. 130-042-401, Miltenyi Biotech, Bergisch Gladbach, 

Germany). Solutions and antibody concentrations were adjusted to total number of 

red blood cell depleted cells. 

 

 

4.2.8 BM transplantation 
 

Transplantations were performed using whole BM or sorted cells of Nsd1fl/fl;Vav-

iCretg/+ mice at indicated ages. For competitive transplantation, 1x106 total BM cells of 

symptomatic or asymptomatic Nsd1fl/fl;Vav-iCretg/+ mice (CD45.2) was mixed in a 0:1, 

1:0, 1:1 or 1:10 ratio with supporting BM of B6.SJL (CD45.1) donor mice and 

transplanted into lethally irradiated (2x 600cGy) B6.SJL (CD45.1) recipients via tail 

vein. For competitive transplantation of distinct cell populations, cells were 

fluorescence activated cell sorted (FACS) from BM of asymptomatic or diseased 

Vav1-iCre;Nsd1fl/fl mice into pre-cooled 2ml Eppendorf tubes filled with RPMI. Cells 

were spun down for 8min at 2500rpm in a Hereaus table-top centrifuge, counted and 

dilutions were made in PBS. CD45.1+ wildtype cells were mixed with CD45.2+ sorted 

cells, 106 cells were used as support in LSK/MEP transplantation and 0.5x106 cells in 

Lin-/c-Kit+/CD71low/mid/high transplantation. Cellular chimerism was determined by flow 

cytometry as described below in peripheral blood at indicated weeks after transplant. 

Additionally, for each bleeding, whole blood cell counts were measured on a blood 

analyzer.  
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4.2.9 Cytospots  
 

Cytospots of approximately 105 cells were made by centrifugation for three minutes 

at 300rpm using a Shandon Cytospin 3 centrifuge using cytofunnel disposable 

sample chambers (Cat. 5991040, Thermo Fisher Scientific, Reinach, Switzerland) 

and one-circle, non-coated cytoslides (Cat. 5991051, Thermo Fisher Scientific, 

Reinach, Switzerland). Cytospots of the BM were stained with Wright-Giemsa in the 

Hematology Laboratory of the University Hospital Basel. 

 

 

4.2.10 Flow cytometry 
 

Cells in suspension were washed with FACS buffer (0.5% BSA, 1mM EDTA in PBS) 

and incubated with indicated antibodies for 45min on ice, washed and stained with 

1ug/ml DAPI (Cat. D1306, Life Technologies, Paisley, UK) in PBS. Stained cells were 

analyzed on CyAn ADP analyzer (Beckman- Coulter) or LSR Fortessa (BD, New 

Jersey, USA). Data was analyzed with FlowJo software (Tree Star). For 

CD71/TER119 staining, the preparation still contained red blood cells, for CD71/c-

Kit/Sca-1/ FcγRII/III stem and progenitor staining the red blood cells were depleted. 

For stem and myeloid progenitor staining, lineage positive cells were depleted as 

described before. All antibodies were used as indicated in Table 5.  

For calculating number of stem and progenitor cells in BM, lineage-marker 

depleted cells were counted and absolute numbers of cells adjusted to this number. 

For example: on average 9.336x106 Lin- cells were obtained of control Nsd1fl/fl mouse 

BM and 178 LT-HSCs (Singlets/DAPI-/Lin-/Sca-1+/c-Kit+/CD34-/CD150+/CD48-) were 

counted by flow cytometry where 1’001’239 FSC/SSC preselected events were 

acquired = =((1000000/1001239)*9.336)*178= 1660 LT-HSC. For flow cytometric 

analysis of apoptosis, ratios of early and late apoptotic cells were determined with the 

Annexin V-APC apoptosis detection kit (Cat. 559763, BD, New Jersey, USA). Briefly, 

cells were collected and washed twice with cold PBS buffer, resuspended in 100µL of 

1x binding buffer, incubated with 5µL of Annexin V conjugated to APC and 5µL 7-

AAD for 15 min at room temperature, and analyzed by flow cytometry. For 

differentiation analysis of mouse or human cells in vitro, cells were filtered, washed 
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twice with PBS and stained in 100µL FACS buffer. For cells sorting, the same 

antibodies were used than for flow cytometry analysis as indicated in the table.  

 

 
TABLE 5. Staining protocols including antibodies used. Antibodies were obtained from the following 

companies: eBioscience (Affymetrix, Thermo Fisher Scientific, Reinach, Switzerland), BD Pharmingen 

(Allschwill, Switzerland), BioLegend (LucernaChem, Luzern. Switzerland) 

 
Staining Material Name Fluorochrome Concentration Company Cat.Nr. 

CD71/Ter119 no lysis CD71 FITC 1:100 eBioscience 11-0711-81 

  Ter119 PE 1:100 BD Pharmingen 553673 
CD71/c-Kit/Sca-

1/FcγRII/III RBC lysed CD71 FITC 1:100 eBioscience 11-0711-81 

  c-Kit APC 1:25 eBioscience 17-1171-83 

  Sca-1 Pe-Cy7 1:25 BioLegend 122513 

  FcγRII/III PE 1:50 eBioscience 12-0161-83 

Stem cells RBC lysed, lineage 
depleted Streptavidin Pacific Blue 1:200 Invitrogen S11222 

  c-Kit APC 1:25 eBioscience 17-1171-83 

  Sca-1 Pe-Cy7 1:25 BioLegend 122513 

  CD34 FITC 1:50 eBioscience 13-0341-82 

  CD150 PE 1:50 eBioscience 12-1502-80 

  CD48 A700 1:50 BioLegend 103426 

Myeloid progenitor I RBC lysed, lineage 
depleted Streptavidin Pacific Blue 1:200 Invitrogen S11222 

  Il-7R biotin 1:10 eBioscience 13-1271-85 

  c-Kit APC 1:25 eBioscience 17-1171-83 

  Sca-1 Pe-Cy7 1:25 BioLegend 122513 

  CD34 FITC 1:50 eBioscience 13-0341-82 

  FcγRII/III PE 1:50 eBioscience 12-0161-83 

Myeloid progenitor II RBC lysed, lineage 
depleted Streptavidin Pacific Blue 1:200 Invitrogen S11222 

  Sca-1 biotin 1:10 eBioscience 13-5981-82 

  FcγRII/III biotin 1:10 BioLegend 101303 

  c-Kit PE 1:50 eBioscience 12-117-82 

  CD41 FITC 1:25 BD Pharmingen 553848 

  CD105 Pe-Cy7 1:25 BioLegend 120409 

  CD150 APC 1:25 eBioscience 17-1502-80 

Chimerism RBC lysed CD45.1 APC 1:100 eBioscience 17-0453-81 

  CD45.2 PercP-Cy5 1:100 BD Pharmingen 552950 

Human CD71/GPA no lysis CD71 FITC 1:100 BioLegend 334103 

  Glycophorin A PE 1:100 BioLegend 349105 

 

 

 

4.2.11 RNA sequencing of in vivo mouse samples  
 

We isolated RNA from sorted LSK (n=3/group), MEP (n=3/group) and GMP (n=2/ 

Nsd1fl/fl and n=3/Vav1;iCre;Nsd1fl/fl from diseased Vav1;iCre;Nsd1fl/fl mice and age- 

and sex- matched control Nsd1fl/fl mice. In addition, LSK of asymptomatic, young 

Vav1;iCre;Nsd1fl/fl mice and age- and sex- matched control Nsd1fl/fl mice were sorted 
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(n=3/group). Cells were sorted into pre- cooled 2ml Eppendorf tubes containing 

RPMI. Cells were spin down for 8min at 2500rpm and resuspended in RNA extraction 

buffer of PicoPure RNA Isolation Kit (Cat. Kit0204, Applied Biosystems, Foster City, 

USA). The RNA sequencing library was prepared using the NuGen v2 RNA-Seq kit 

and sequenced using an Illumina HiSeq 2000 machine (D-BSSE, ETH Zurich, Basel). 

Obtained single-end RNA-seq reads (50-mers) were mapped to the mouse genome 

assembly, version mm9, with SpliceMap 200,201 and included in the R/Bioconductor 

package QuasR (202, version 1.8.4) using the command ‘qAlign("samples.txt", 

"BSgenome.Mmusculus.UCSC.mm9", splicedAlignment= TRUE)’. Using RefSeq 

mRNA coordinates from UCSC (genome.ucsc.edu, downloaded in December 2013) 

and the qCount function, we quantified gene expression as the number of reads that 

started within any annotated exon of a gene (exon-union model). The differentially 

expressed genes were identified using the edgeR package (Robinson et al., version 

3.10.5). Genes with FDR smaller than 0.05 and minimum log2 fold change of +/- 1 

were used for further analysis. 

 

 

4.2.12 RNA & RT-PCR 
 

Quantitative RT-PCR: Total RNA was extracted using the RNA Plus extraction kit 

(Macherey-Nagel, Cat. 740955.50, Düren, Germany) according to the manufacturer’s 

protocol. cDNA synthesis was carried out using the high capacity cDNA reverse 

transcription kit (Cat. 4368814, Applied Biosystems, Foster City, USA). Quantitative 

PCR was performed using SYBR Green reagent (Cat. 4368706, Applied Biosystems, 

Foster City, USA) and an ABI prism 7500 sequence detection system. Ct values were 

normalized to Gapdh expression and relative expression was quantified using 1/dCt 

or the 2(-ddCt) method. Primers are indicated in Table 6.  

 

 

 

 

 

 

 



 52 

TABLE 6. Primer sequences used for RT-PCR.  

 
Target Sequence forward (5'-3') Sequence reverse (5'-3') 

mGapdh ATGACATCAAGAAGGTGGTG CATACCAGGAAATGAGCTTG 

mNsd1 exon 2 CAACAGCACTTGCTATGAAACAG GCATCGTCCACACCAGTAAAA 

mNsd1 exon 5/6 CAAAGAGCTCCTCCTACAAGTAAACC CCGAATAGCTGGCTCAGGGA 

mNsd1 exon 13/14 TGCTTCTAAAGGTCGTCTGATGCGC CTAGGGGTGAAGTGATTAGGGCAGA 

mGata1 GTGTCCTCACCATCAGATTCCAC TCCCTCCATACTGTTGAGCAGTG 

mGata2 CACCCCTATCCCGTGAATCC GGCGGCCACTCGCAG 

mSpi1 (Pu.1) CGATTCAGAGCTATACCAACGTCC ACTCGTTTGTTGTGGACATGGTG 

mKit (CD117) ACGATGTGGGCAAGAGTTCC GCCTGGATTTGCTCTTTGTTGT 

mHbbA TGATGTAAGCCACGGCTCTG CAGTGGCTCAGGAGCTTGAA 

mHbbB GTCTCTTGCCTGTGGGGAAA CAACCAGCAGCCTGCCC 

mGpa CTCCTGTGGTGGCTTCAACT ACGGCATTCCTCCAATGTGT 

mBc2l1 GCCTTTTTCTCCTTTGGCGG TCCACAAAAGTGTCCCAGCC 

mCdkn1a (p21) CCTGGTGATGTCCGACCTG CCATGAGCGCATCGCAATC 

mCbfa2t3 (Eto2) GCTGAAGTGAAGACGCAGC GCCGTTCATCAGTGTGTGAG 

Ha-Tag/mGata ATGACGTGCCTGACTATGCC TGCATTTGGGGAAGTGGAAGA 

   
hGapdh GTGGTCTCCCTGACTTTCAACAGC ATGAGGTCCACCTGCTTGCTG 

hNsd1 AGG TAC AGG AGC AGG TGC ACA AGC ACT AGA TCG ACC TCG GGC 

hGata1 AAA CGG GCA GGT ACT CAG TG CGG TTC ACC TGG TGT AGC TT 

 

 

4.2.13 Colony forming assay 
 

For whole BM analysis, approximately 4x104 cells were plated in methylcellulose 

M3434 (Methocult, StemCell Technologies, Vancouver, Canada). Colonies were 

scored after 8-10 days. Pictures were taken on Olympus IX50 microscope with 2x, 4x 

and 10x magnification. Cells were washed, resuspended, counted with trypan blue 

and if applicable replated into new methylcellulose. LSK and MEP cells were flow- 

sorted according to fluorescence- activated cell sorting section and plated at 

densities of 1000 respectively 5000 cells into methylcellulose M3434. EPO- 

dependence was analyzed by replating BM cells from diseased Vav-iCre+/tg;Nsd1fl/fl 

mice into M3234 (Methocult, StemCell Technologies, Vancouver, Canada) with 2U/ml 

EPO (Eprex 4000, Cat.9096976, Pharmacy of University Hospital Basel) or M3534 

(Methocult, StemCell Technologies, Vancouver, Canada). For colony formation 

analysis of human CD34+ cells, 5x103 cells were plated into H4434 (Methocult, 

StemCell Technologies, Vancouver, Canada).  
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4.2.14 Benzidine Staining 
 

After scoring of M3434 plates, dishes were incubated with a mix of 2 volumes of 

0.3% hydrogen peroxide and 5 volumes of 0.2% di-hydrochloride benzidine (Cat. 

B3383, Sigma Aldrich, Buchs, Switzerland) in 0.5M acetic acid/1x PBS for 5min at 

37°C.  

 

 

4.2.15 Western Blotting 
 

For protein detection, nuclear lysates were prepared by resuspending cells in 

hypotonic lysis buffer (10mM HEPES pH7.9, 10mM KCl, 0.1mM EDTA, 0.1mM 

EGTA, 1mM DTT) for 15min on ice, followed by treatment with 0.1% NP-40 and 

15sec vortexing. Nuclei were spun down at 14.000rpm for 2min at 4°C and 

supernatant containing cytoplasmic fraction kept for analysis. Pellets were 

resuspended in nuclear lysis buffer (20mM HEPES pH7.9, 0.4M NaCl, 1mM EDTA, 

1mM EGTA, 1mM DTT). In addition, pellets were sonicated for 3 cycles (30sec 

sonication, 30sec pause) on a Bioruptor pico sonicator (Cat. B01060001, Diagenode, 

Seraing, Belgium) and left for 20min on ice before spinning down at 14.000rpm for 

min at 4°C. Lysates were kept for analysis of nuclear proteins and remaining pellets 

used for histone extraction in 0.2N HCl and β-mercaptoethanol. Lysis buffers were 

supplemented with Complete Mini protease inhibitors (Cat. 11836153001, Roche). 

Proteins were quantified by Bradford assay (Cat. 500-0006, Biorad, München, 

Germany) and loading adjusted. Samples were prepared in 4x Laemmli buffer (Cat. 

161-0747, Biorad, München, Germany) and boiled for 10min at 95°C before loading 

on pre-cast (BioRad) or handcasted gels of different percentages. For Nsd1 blot, 

50ug of nuclear extract was loaded on a 5%running gel. Wet transfer was done 

overnight at 4°C in 5%Methanol/0.1%SDS/Tris-Base-Bicine buffer on 0.45µM 

nitrocellulose membranes. Membranes were blocked in 5% non-fatty milk 

(NFM)/4%BSA in PBS-1% Tween for 2 hours at room temperature. For blotting 

GATA1, 10ug nuclear extract was loaded on 10% gels and semi- dry transfer was 

done for 30min on nitrocellulose 0.2µM (Cat. 170-4158, Biorad, München, Germany). 

Membranes were blocked for 2hours at room temperature in 5%NFM/PBS-

1%Tween. For histone separation, 15% gels were used and general transfer was 
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used. Blots were probed overnight with antibody in 2.5%NFM/PBS-1%Tween, 

washed three times for 15minutes in PBS-1% Tween and probed with a secondary 

antibody in 2.5%NFM/PBS-1%Tween. Again, blots were washed three times in for 

15minutes in PBS-1%Tween and then probed with Supersignal West Femto Max 

substrate (Cat. 11859290, Thermo Scientific, Reinach, Switzerland). Carestream 

Biomax Kodak films were used for development (Cat. Z-373508-50EA, Sigma, New 

York, USA). Information regarding antibodies can be found in Table 7. 

 

 
TABLE 7. Antibodies used for western blot and histone flow cytometry 

 
Antibody Concentration Clone Manufacturer Cat.Nr. Host species 

GATA1 1:400 (IF), 1:500 
(WB) 

D52H6	XP	 Cell Signaling CST3535	 rabbit 

GATA1 1:1000 N6 Santa Cruz 265	 rat 

LAMIN-A/C 1:2000 N18 
 

kind gift of Antoine Peters, FMI 
Basel 

Santa Cruz 6215 goat 

NSD1 1:1000   rabbit 

PU.1 1:500 T-21	 Santa Cruz 352 rabbit 

ACTIN 1:6000 C11	 Santa Cruz 1615 goat 

H3K36ME1 1:1000 (WB & Flow)  Cell Signaling 5928 rabbit 

H3K36ME2 1:1000 (WB & Flow) C57H12 Cell Signaling 2901 rabbit 

H3K36ME3 1:1000  Abcam 9050 rabbit 
H3K4ME3 1:1000  Millipore 07-473 rabbit 
H3K9ME3 1:1000  Active motif 39161 rabbit 

H4K20ME3 1:1000 
 

kind gift of Antoine Peters, FMI 
Basel (IMP0083)   rabbit 

H3 1:1000 D1H2 Cell Signaling 4499 rabbit 
ETO-2 1:200-400 (WB) C-20 Santa Cruz 9739 goat 

488 GOAT ANTI- RABBIT 1:1000 (IF), 1:5000 
(Flow)  Invitrogen A31628  

 

 

4.2.16 Extensive self- renewing erythroblast cell culture 
 

Fetal liver derived extensive self-renewing erythroblasts (ESRE) cells were obtained 

as previously described 203. Briefly, hematopoietic fetal liver cells were cultured for 

more than one week in “maintenance medium”: StemSpan SFEM (Cat. 9650, 

StemCell Technologies, Vancouver, Canada), supplemented with 1%Pen/Strep, 

0.4%cholesterol (Cat. 12531-018 Gibco, Thermo Fisher Scientific, Reinach, 

Switzerland), 2U/ml hEpo (Eprex 4000, 9096976, Pharmacy of University Hospital 
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Basel), 100ng/ml mScf (Cat. 250-03, Peprotech, London, UK), 10-6M 

dexamethasone (Cat. 265005, Calbiochem, Sigma Aldrich, Buchs, Switzerland) and 

40ng/ml hIGF-1 (Cat. 100-11, Peprotech, London, UK). Cells were split every second 

day and presence of pro- erythroblasts was verified by flow cytometry (DAPI-

/FSC+/CD71+/Ter119-) and cytospots. Pro- erythroblasts were subjected to 

differentiation in IMDM (Cat. 31980022, Gibco, Thermo Fisher Scientific, Reinach, 

Switzerland), 1%P/S, 10%FCS, 10%PFHMII (Cat. 12040077, Gibco, Thermo Fisher 

Scientific, Reinach, Switzerland), 5%hPDS (0.45µM filtered, Blood donation centre, 

University Hospital Basel), monothioglycerol (Cat. M6145, Sigma Aldrich, Buchs, 

Switzerland), 100ng/ml mSCF and 2U/ml hEpo.  Erythroblasts cultures from adult 

mice were established after lineage depletion of BM cells. Cells were kept in 

maintenance culture for more than six days before flow cytometry analysis. For 

colony formation assays, cells were used within five days after isolation. 

 

 

4.2.17 Retroviral Gene Transfer 
 

Retroviral stocks were produced by transient co-transfection of packaging vectors 

(pIPAK6) and respective plasmids using turbofect transfection reagent (Cat. R0531, 

Life Technologies, Paisley, UK) in HEK293T-LX cells kept in DMEM (Cat. 61965059, 

Gibco  Lubio, Thermo Fisher Scientific, Reinach, Switzerland) with 10%FSC and 

1%P/S. Viral supernatant was harvested 48 and 72 hours after transfection, 10x 

Vivaspin 20 (Cat. 12.8303.10, Sartorius, Göttingen, Germany) concentrated at 

4000rpm for 40min at 4°C and snap frozen in liquid nitrogen and stored in -80 until 

usage. Cells were spin- infected either in StemSpan SFEM, supplemented with 

50ng/ml hTPO (Cat. 300-18, Peprotech, London, UK) and 50ng/ml mSCF (=”Stem”) 

or in maintenance medium used for erythroblast culture as described above, in 

presence of 5µg/ml polybrene (Cat. 10.7689, Sigma Aldrich, Buchs, Switzerland) with 

virus for 90min, 2500rpm at 30°C. Four hours after spin infection the, cells were 

washed with PBS and plated in maintenance medium. Two days after spin infection 

the cells were selected with 2µg/ml puromycin (Cat. A11138-03, Gibco, Thermo 

Fisher Scientific, Reinach, Switzerland) or EGFP+ cells were FACS enriched as 

previously described. See Table 8 for more information about the viral constructs 

used.  
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TABLE 8. PLASMIDS 

 
Short name Full name 
Mock pMSCV-pgk-puro 
mGata1(-WT) pMSCV-mGata1-pgk-puro 
Mock pMSCV-pgk-puro-IRES-GFP 
hETO-2(-WT) pMSCV-hETO-2-pgk-puro-IRES-GFP 
mNsd1 pMSCV-mNsd1-pgk-puro-IRES-GFP 
mNsd1-ΔNID pMSCV-mNsd1-ΔNID-pgk-puro-IRES-GFP 
mNsd1-ΔNID/Setmut pMSCV-mNsd1- ΔNID /Setmut-pgk-puro-IRES-GFP 
mNsd1-Setmut pMSCV-mNsd1-Setmut-pgk-puro-IRES-GFP 
shRNA Ctrl pLKO.1 mock shRNA (Addgene plasmid 8453) 
shRNA NSD1 353 pLKO.1 shRNA targeting NSD1 number 353 (TRCN0000061353) 
shRNA NSD1 369 pLKO.1 shRNA targeting NSD1 number 369 (TRCN0000238369) 
shRNA NSD1 372 pLKO.1 shRNA targeting NSD1 number 372 (TRCN0000238372) 
pIPAK6 pIPAK6 enevlope plasmid 
pMD2G pMD2G envelope plasmid 
pMLDg/PRE pMLDg/PRE Packaging plasmid 
pRSV/Rev pRSV/Rev expression plasmid 
 

 

4.2.18 shRNA-mediated knockdown 
 

CD34+ cells obtained from indirect CD34 MicroBead Kit, human (Cat. 130-046-701, 

Miltenyi Biotec, Bergisch Gladbach, Germany) of peripheral blood or cord blood of 

healthy donors were kept in StemLine II medium (Cat. S0192, Sigma Aldrich, Buchs, 

Switzerland), supplemented with human cytokines such as 50ng/ml hTPO (Cat. 300-

18, Peprotech, London, UK), 50ng/ml hFLT3 ligand (Cat. 300-19, Peprotech, London, 

UK), 50ng/ml hSCF (Cat. 300-07 Peprotech, London, UK) and 1U/ml hEPO (Eprex 

4000, Cat.9096976, Pharmacy of University Hospital Basel). shRNAs were expressd 

from lentiviral vectors. For transduction lentiviral stock was produced by transient co- 

transfection of packaging vectors (pMD2G, pMLDg/PRE, pRSV/Rev) and respective 

lentiviral shRNA plasmid (pLKO) (shRNA Ctrl and shRNA NSD1 353, 369 and 372) 

using lipofectamine 2000 (Cat. 11668027075, Invitrogen, Thermo Fisher Scientific, 

Reinach, Switzerland) in HEK293T-LX cells kept in DMEM (Cat. 61965059, Gibco  

Lubio, Thermo Fisher Scientific, Reinach, Switzerland) with 10% FSC and 1% P/S.. 

Viral supernatant was harvested 48 and 72 hours after transfection, snap frozen in 

liquid nitrogen and stored in -80 until usage. Cells were spin- infected in presence of 

5ug/ml polybrene (Cat. 10.7689, Sigma Aldrich, Buchs, Switzerland) with virus for 

90min, 2500rpm at 30°C. Six hours after spin infection, cells were washed with PBS 
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and plated in Stem Line II cytokine enriched medium. Two days after spin infection 

cells were selected with 2µg/ml puromycin (Cat. A11138-03, Gibco, Thermo Fisher 

Scientific, Reinach, Switzerland). See Table 8 for more information regarding the 

constructs used.  

 

 

4.2.19 Analysis of megakaryocytes 
 

Megakaryocytes were manually counted at 40x magnification on Olympus BX61 

microscope on HE- stained BM sections of young and diseased Nsd1fl/fl and Vav1-

iCre+/tg;Nsd1fl/fl mice. Per mouse, 20 fields were counted and the average per mouse 

calculated. DNA ploidy of MK was performed on fresh flushed BM cells resuspended 

in 2mL of 1/1 CATCH (0.1% EDTA/0.1% Albumin/25mM Hepes) and 5%FCS/PBS 

media. Cells are pre-incubated for 10min with anti-CD16/CD32 Fc(III/II) antibody 

(Cat. 14-0161-86 eBioscience, clone 93, dilution 1:50, Affymetrix, Thermo Fisher 

Scientific, Reinach, Switzerland) at 4°C and stained 30min with APC–anti-CD41 (Cat. 

17-0411-82, eBioscience, dilution 1:200, Affymetrix, Thermo Fisher Scientific, 

Reinach, Switzerland) mAb. Then cells were washed and incubated in a 0.1% 

hypotonic citrate solution containing 50 μg/mL propidium iodide (PI) and 50µg/ml 

RNAseA for at least 4h at 4°C. Ploidy was measured on a LSR II (BD, Mountain 

View, CA) cytometer, gating on CD41+ cells. Ploidy of MK in cell culture followed the 

same protocol except 2%FCS/PBS was used instead of CATCH/PBS medium, and 

cells were incubated 30min at RT in hypotonic citrate solution. 

 

 

4.2.20 Immunofluorescent staining 
 

Cytopsots of erythroblasts kept in “maintenance” or “differentiation” medium were 

obtained by washing cells in 1x PBS. Cytospots of approximately 1.5x105 cells were 

made by centrifugation for three minutes at 300rpm using a Shandon Cytospin 3 

centrifuge using Cytofunnel disposable sample chambers (Cat. 5991040, Thermo 

Fisher Scientific, Reinach, Switzerland) and one-circle, coated cytoslides (Cat. 

5991056, Thermo Fisher Scientific, Reinach, Switzerland). Cells were fixed with cold 

4% paraformaldehyde/PBS (Cat. 15710, EMS; Hatfield, US) for 5min at room 
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temperature and then washed with PBS before blocking with 10% goat serum 

(G9023, Sigma Aldrich, Buchs, Switzerland) in 0.2%triton-X/PBS for 45min. Then 

cells were incubated with anti-Gata1 antibody (Table 7) diluted in blocking buffer 

overnight at 4°C. The other day, slides were washed three times for 5min with 

0.2%triton X-100/ PBS and incubated with secondary goat- anti rabbit antibody 

conjugated to AF488 (Table 7) for 1hr. Again, slides were washed three times for 

5min with 0.2%triton X-100/ PBS, incubated with 1:10000 DAPI (Cat. D1306, Life 

Technologies, Paisley, UK) in blocking buffer for 5min and washed again three times 

before mounted with Fluorsave (Cat. 345789, Merck, Darmstadt, Germany). All steps 

were carried out in a wet chamber. Pictures were taken on a Nikon TI (Tokyo, Japan) 

at 100x magnification.  

 

 

4.2.21 Detecting chromatin marks by flow cytometry 
 

For intracellular flow analysis of histone marks, lineage depleted BM cells of young 

Nsd1fl/fl and Vav1-iCre+/tg;Nsd1fl/fl mice were washed in PBS at 3000rpm for 5min in a 

table- top centrifuge and then slowly fixed in 70% cold ethanol. Samples were stored 

at -20°C up to one week before washing in PBS for 5min at 3000rpm. Cells were 

permeabilized in 0.5%triton-X/PBS for 30min at room temperature and vortexed 

mildly every 5min before washing with PBS again. Cells were incubated with primary 

antibody in 1%BSA/0.5%Tween/ PBS (Table 7) for 1hr at room temperature and then 

washed with PBS. Secondary goat- anti rabbit antibody conjugated to AF488 in 

1%BSA/0.5%Tween/ PBS was applied for 30min at room temperature in the dark. 

Unstained cells, secondary antibody incubated and histone 3 primary antibody cells 

were used as controls.   

 

 

4.2.22 Analysis of NSD1- Set domain on GATA1 methylation  
 

Protein expression and purification 

For protein expression, E.coli BL21 cells (Novagen) were transformed with the 

corresponding plasmids and grown in Luria-Bertani media at 37°C, until they reached 

an optical density of 0.6 to 0.8 at 600 nm. The cells containing GST fused NSD1 
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were transferred to 30°C and then induced with 1 mM isopropoyl-beta-D-

thiogalactopyranoside and grown for 4 h. Whereas the cells containing GST fused 

GATA full length protein were transferred to 20°C and then induced with 1 mM 

isopropoyl-beta-D-thiogalactopyranoside and grown for 10-12 h. The cells were 

harvested by centrifuging at 4500 RCF for 15 minutes at 4°C. 

The cell pellet was resuspended in sonication buffer (50 mM Tris/HCl pH 7.5, 150 

mM NaCl, 1 mM DTT and 5 % glycerol) and disrupted by sonication. Then the 

sonicated sample was centrifuged at 18,000 g for 90 minutes and the supernatant 

was collected. In the meantime glutathione sepharose 4B beads (600 ml) (GE 

Healthcare) were equilibrated with 60 ml of sonication buffer. The collected 

supernatant was then loaded on the pre-equilibrated beads and the beads were later 

washed with wash buffer (120 ml) to remove the weakly bound proteins (50 mM 

Tris/HCl pH 8.0, 500 mM NaCl, 1 mM DTT and 5 % glycerol). Finally, the bound 

proteins were eluted with wash buffer containing 40 mM glutathione. Fractions 

containing the proteins were pooled and dialyzed against low glycerol dialysis 1 

buffer (20 mM Tris/HCl pH 7.4, 100 mM KCl, 0.5 mM DTT and 10 % glycerol) for 3 h 

and then overnight against high glycerol dialysis 2 buffer (20 mM Tris/HCl pH 7.4, 

100 mM KCl, 0.5 mM DTT and 60 % glycerol). The quality of the protein purification 

was analyzed by loading proteins on the SDS-PAGE.  

 

Methylation of peptide arrays 

Peptide arrays were washed for 5 min in the methylation buffer containing 50 mM 

Tris/HCl (pH 9.0), 5 mM MgCl2, and 4 mM DTT and afterwards incubated at room 

temperature for 60 min in methylation buffer supplemented with 50 nM NSD1 and 

0.76 µM labeled [methyl-3H]-AdoMet (Perkin Elmer). Then, the membranes were 

washed 5 times for 5 minutes with wash buffer (100 mM NH4HCO3 and 0.1% SDS). 

Finally, the peptide arrays were incubated with Amplify NAMP100V solution (GE 

Healthcare, Munich, Germany) for 5 minutes. The peptide arrays were exposed to 

Hyperfilm TM high performance autoradiography film (GE Healthcare, Munich, 

Germany) in the dark at -80°C for 3-7 days. The autoradiography films were 

developed in Optimus TR developing machine as described in 204 

 

In vitro protein methylation assays 

Protein methylation reactions were performed by incubating substrate proteins (2 µM) 

in methylation buffer (50 mM Tris/HCl (pH 9.0), 5 mM MgCl2, and 4 mM DTT ) 
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supplemented with 0.76 µM tritium-labeled AdoMet and 100 nM NSD1 for 4 hours at 

25° C. Reaction mixtures were halted by boiling with 2 X SDS loading buffer at 95°C 

for 5 minutes. Afterwards, the samples were separated on 16% SDS PAGE and the 

methylation signal was detected by autoradiography.  

 

Peptide arrays were synthesized on cellulose membrane by the SPOT synthesis 

method using a Multipep system (Intavis AG). Each spot contained approximately 9 

nmol peptide (Autospot Reference Handbook, Intavis AG). Successful synthesis of 

peptides on the membrane was confirmed by bromo- phenol blue staining. The 

membranes containing the peptides were washed for 20min in methylation buffer 

containing 50mM Tris-HCl (pH 9.0), 5mM MgCl2 and 4mM dithiothreitol (DTT) and 

incubated at room temperature for 60min in methylation buffer containing 50 nM 

NSD1 SET domain (constructs were kind gift of kind gifts from Professor Pierre 

Chambon, Strassbourg, France) and 0.76mM labeled [methyl-3H]-AdoMet (Perkin 

Elmer). 

 

 

4.2.23 Human leukemia cell lines 
 

Human cell lines (MOLM-13, OCl-M2, K-562, HEL, MEL, and F-36P) were obtained 

from the Leibnitz Institute DSMZ-German Collection of Microorganisms and cell 

cultures (www.dsmz.de). MOLM13, K-562 and HEL cells were cultured in in RPMI 

(Cat. 61870, Gibco, Thermo Fisher Scientific, Reinach, Switzerland) containing 

10%FCS (Cat. 2-01F10-I, Amimed, Bioconcept, Allschwil, Switzerland ) and 1%P/S 

(Cat. 15140, Gibco, Thermo Fisher Scientific, Reinach, Switzerland). MEL cells were 

cultured in DMEM (Cat. 61965059, Gibco, Thermo Fisher Scientific, Reinach, 

Switzerland) containing 10%FCS and 1%P/S. OcI-M2 cells were kept in IMDM (Cat. 

31980022, Gibco, Thermo Fisher Scientific, Reinach, Switzerland), containing 20% 

FCS and 1%P/S. F-36P cells were kept in RPMI medium containing 20% FCS and 

1%P/S and supplemented with 10ng/ml hGM-CSF (Cat. 300-03, Peprotech, London, 

UK). See Table 9 for information regarding ATCC number and origin of the cell lines 

used.  
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TABLE 9. Cell lines 

 
Cell line ATCC Nr. 

 
Origin 

MOLM-13 554 
 

AML FAB M5a 

OCI-M2 619 
 

AML M6 

K-562 10 
 

CML 

HEL 11 
 

AML M6 

MEL 

(clone 745-PC–4) 

from I. Vizirianakis, 

Thessaloniki  

Murine 

erythroleukemia 

F-36P 543 
 

AML M6 

 

 

4.2.24 Statistical analysis 
 

Data has been analyzed in excel using F- Test to test the two- sided probability of 

unchanged variances between datasets. P- values were taken into account for further 

analysis using two- sided T- Test to analyze differences in the mean between two 

groups. In case, two or more groups were compared, variances were analyzed by 

ANOVA followed by Turkey or Sidak multiple comparison tests using Prism 6 

software (Graph Pad). P- values <0.05 were considered as statistically significant. 

Data presented as mean, error bars represent ±SD.	 	
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4.3 RESULTS 
 

4.3.1 Generation of Nsd1 knockout mice 
 

To inactivate the Nsd1 gene in the hematopoietic system we used a strain with a 

previously established floxed Nsd1+/L3 allele 173. We eliminated the floxed pgk-

neomycin selection cassette leaving two loxP sites flanking the largest coding exon 

5, here referred as Nsd1fl/fl (Figure 12A). We intercrossed Nsd1fl/fl mice with a Vav1-

iCretg/+ transgenic strain leading to constitutive cleavage in fetal and adult 

hematopoiesis (Figure 12B) 205. Vav1-iCre;Nsd1fl/fl mice were born according to 

Mendelian rules without any abnormalities. In the BM of Vav-iCre;Nsd1fl/fl mice we 

only detected the excised allele resulting in almost undetectable levels of Nsd1 exon 

5 mRNA and loss of the NSD1 protein. Heterozygous Vav-iCre;Nsd1+/fl mice 

expressed normal Nsd1 levels and like the Nsd1fl/fl mice never developed any signs 

of disease during a normal lifespan (Figure 12C-E).   
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FIGURE 12. Generation of Nsd1 knockout mice.  

(A) Schematic depiction of the targeted Nsd1 gene allele. The pgk- neomycin resistance expression 

cassette was removed from the targeted L3 allele to obtain the floxed L2 allele where exon 5 is flanked 

by LoxP sites. (B) Schematic depiction of the model used. Nsd1fl/fl mice were intercrossed with the 

Vav1-iCre transgenic strain leading to constitutive ablation of Nsd1 in hematopoietic and endothelial 

cells. PCR primer pairs F1 and R1/R2 were used to genotype mice and determine the presence of 

wildtype and the floxed Nsd1 alleles in genomic DNA. (C) Expression of different exons of Nsd1 mRNA 

in BM from Vav1-iCre;Nsd1fl/fl mice by quantitative RT-PCR analysis. In contrast to exon 2 (n=12) and 

the exon 13/14 (n=10) junction, low to undetectable levels of products of the exon5/6 (n=19) junction 

were detected indicating almost complete excision. Bars represent average relative expression 

normalized to Gapdh and Nsd1fl/fl mice (One-way ANOVA with Turkeys multiple comparisons test. **** 

p>0.0001). (D) Expression of Nsd1 exon 5 mRNA in BM from Vav1-iCre;Nsd1fl/fl (red bar, n=4) , Vav1-

iCre;Nsd1fl/+ (green bar, n=4) and Nsd1fl/fl  (black bar, n=3) mice by quantitative RT-PCR. Bars represent 

the average relative expression normalized to Gapdh and control mice (One-way ANOVA with Turkeys 

multiple comparisons test. *** p>0.001, **** p>0.0001). (E) Expression of Nsd1 protein in nuclear 

extracts of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl spleen tissue. Blots were probed with an anti- NSD1 and anti- 

ACTIN antibody detecting bands of the appropriate sizes. Data presented as mean, error bars represent 

±SD. 
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4.3.2 Loss of Nsd1 leads to a lethal disease with accumulation of 

erythroid progenitor cells 
 

At the age of 7-17 weeks (median 85 days) Vav1-iCre;Nsd1fl/fl mice developed severe 

signs of distress (Figure 13A). All mice had significantly enlarged spleens and livers 

with abnormal focal infiltrations, also present in the lungs or kidneys suggesting an 

aggressive malignant disorder (Figure 13B-E). Analysis of peripheral blood revealed 

highly variable white blood counts, with a significant reduction in erythrocytes, severe 

thrombocytopenia and reticulocytosis (Figure 13F-I). Although the white blood 

counts and myeloid cells were in the normal range and not significantly changed, the 

counter reported the presence of “unclassified” leukocytes (LUCs) (Figure 13F,K-L) 

and abnormal blast-like cells with a dark-blue cytoplasm were seen on the blood 

smears (Figure 14A).  

Flow cytometric analysis of hematopoietic cells in peripheral blood of diseased 

Vav1-iCre;Nsd1fl/fl mice revealed a significantly increased number of cells expressing 

CD71+, CD4+ and TER119- and a reduction of cells that expressed CD41+ cells. In 

contrast, cells expressing Mac-1, Gr-1, CD8 or B220 were not significantly changed 

in peripheral blood (Figure 14B&C). The presence of CD71+ and TER119- 

expressing cells led us to further analyze the erythroid lineage: hereby we separated 

early from late progenitors progressing from R0 fraction (CD71-/dim, TER119-), 

CD71dim (CD71dim, TER119-), R1 (CD71+, TER119-), R2 (CD71+, TER119+), R3 

(CD71+/dim, TER119+) and R4 (CD71-, TER119+)  (Figure 14D) 16. We found a 

significant increase of R1, R2, R3 and CD71dim populations and a significant 

decrease of the R4 fraction in spleens of diseased mice (Figure 14E&F). In BM of 

diseased mice, we found a significant increase of CD71dim expressing cells (Figure 

14E-G).  

We next asked the question whether accumulated CD71dim cells may co- express 

other surface markers by investigating BM and spleen cells from diseased Vav1-

iCre;Nsd1fl/fl mice using c-Kit, Sca-1 and FcγRII/III after lysis of the red cells. Spleen 

cells of diseased Vav1-iCre;Nsd1fl/fl mice expressed significantly higher levels of 

CD71+/c-Kit- and BM cells were significantly enriched for  CD71+/c-Kit- and CD71+/c-

Kit+ cells (Figure 14H-I). CD71+/c-Kit+ cells expressed variable amounts of FcγRII/III 

but were mostly negative for CD34 and Sca-1 surface markers (Figure 14J & data 

not shown).  
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FIGURE 13. Vav1-iCre;Nsd1fl/fl mice develop a lethal hematopoietic disease with full penetrance. 

(A) Kaplan Meier survival plot of Nsd1fl/fl  (black line) and Vav1-iCre;Nsd1fl/fl (red line) mice. Survival is 

shown as percentage at days after birth. Median survival of Vav1-iCre;Nsd1fl/fl  mice is 84 days (n=12 

per group). (B) Spleen weight of Nsd1fl/fl  (black bar) and symptomatic Vav1-iCre;Nsd1fl/fl (red bar) mice 

in gram (n=12 per group. Students t-test with unequal variances. **** p>0.0001). (C) Liver weight in 

grams (n=12 per group. Students t-test with unequal variances. *** p>0.001). (D) Representative image 

of spleens of Nsd1fl/fl (left) and diseased Vav1-iCre;Nsd1fl/fl (right) mice. (E) Representative images of 

HE-stained biopsies of the i) spleen, ii) liver, iii) lung and iv) kidney of diseased Vav1-iCre;Nsd1fl/fl mice. 

(F) Peripheral white cell blood counts (WBC), (G) red blood cells (RBC), (H) platelets (PLT), (I) 

hemoglobin (HGB), (J) reticulocytes (RTC), (K) “large unstained cells” (LUC), (L) neutrophils (NEU), 

monocytes (MONO) and eosinophils (EOS) (n=12 per group, Students t-test with unequal variances. ** 

p>0.01, **** p>0.0001). Data presented as mean, error bars represent ±SD.   
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FIGURE 14. Phenotype of hematopoietic organs in diseased Vav1-iCre;Nsd1fl/fl mice.  

(A) Representative image of a Wright-Giemsa stained peripheral blood smear obtained from a 

symptomatic Vav1-iCre;Nsd1fl/fl mouse. (B) Flow cytometric characterization of cell populations in the 

peripheral blood of control mice Nsd1fl/fl mice (black bar) and symptomatic Vav1-iCre;Nsd1fl/fl (red bar) 

mice (n as indicated in figure. Students t-test with unequal variances. * p>0.05, ** p>0.01). (C) Ter119-

negative red blood cells are found in the peripheral blood of symptomatic Vav1-iCre;Nsd1fl/fl as shown 

by a representative flow cytometric analysis of three analyzed mice. (D) Flow cytometric gating strategy 

after CD71 and Ter119 staining to distinguish different maturation steps of erythropoiesis: “R0” fraction 

(CD71-/dim, Ter119-), “R1” fraction (CD71+, Ter119-), “R2” fraction (CD71+, Ter119+), “R3” fraction 

(CD71+/dim, Ter119+), “R4” fraction (CD71-, Ter119+) and “CD71dim” (CD71+/dim, Ter119-). (E) 

Representative image of flow cytometric analysis of CD71 and Ter119 stained single cell suspensions of 

the spleens (left column) and bone marrow (right column) of Nsd1fl/fl control mice (upper row) and 

symptomatic Vav1-iCre;Nsd1fl/fl mice (lower row). (F) Comparative flow cytometric analysis of erythroid 

maturation of single cell suspensions (without red cell lysis) of spleens (n=8 per group. left panel) or (G) 

bone marrow (n=9 per group. right panel) of Nsd1fl/fl  control mice (black bar) and symptomatic Vav1-

iCre;Nsd1fl/fl (red bar) mice (Students t-test with unequal variances. * p>0.05, ** p<0.01, *** p<0.001, **** 

p>0.0001). (H) Representative image of flow cytometry panel of red blood cell lysed single cell 

suspensions of spleen (left column) and bone marrow (right column) in Nsd1fl/fl  (upper row) and Vav1-

iCre;Nsd1fl/fl (lower row) mice highlighting CD71 and c-Kit double positive or CD71 single positive 

staining. (I) Percentage flow cytometry marker CD71+ and c-Kit+ stained cell population in red blood cell 

lysed single cell suspensions of spleen and bone marrow of Nsd1fl/fl (n=8/spleen, n=9/BM, black bar) 

and Vav1-iCre;Nsd1fl/fl mice (n=8/spleen, n=8/BM, black bar) (Two- way ANOVA with Sidak‘s multiple 

comparisons. * p<0.05, *** p>0.001, **** p>0.0001). (J) Representative flow cytometry histogram 

demonstrating Sca-1 and FcγRII/III profile of CD71+/c-Kit+ in bone marrow of Nsd1fl/fl  (black line) and 

Vav1-iCre;Nsd1fl/fl (red line) mice. Data presented as mean, error bars represent ±SD.   
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4.3.3 Loss of Nsd1 leads to decreased BM cellularity and aberrant 

colony formation of hematopoietic cells  
 

Despite increased frequencies of CD71-positive cells, the overall BM cellularity was 

significantly decreased whereas the total number of cells in the spleen was 

significantly increased (Figure 15A). We next investigated whether the loss of cells in 

the BM correlated with an increase in apoptosis. Flow cytometric analysis revealed 

no significant changes in early (Annexin-V+/7-AAD-) and late apoptotic cells (Annexin-

V+/7-AAD+) in the BM of diseased Vav1-iCre;Nsd1fl/fl mice. In contrast, an increase in 

early apoptotic cells was found in the spleens of diseased mice (Figure 15B).  

We next explored the functional capacity of the BM and performed colony assays 

in methylcellulose favoring growth of cells of the myeloid and erythroid lineage. The 

total number of colonies formed by Vav1-iCre;Nsd1fl/fl BM cells was slightly reduced 

(Figure 15C). Further classification of the colonies revealed significant reductions in 

CFU-G/M and BFU-E colonies accompanied by the appearance of sometimes large 

and abnormally dense, reddish and benzidine-staining positive “BFU-E-like” colonies. 

These abnormal colonies were composed of myeloid and erythroid progenitors and 

could be serially plated over three to four rounds in methylcellulose (Figure 15D-F). 

We next investigated cytokine-dependence of these abnormal colonies. Interestingly 

colony formation (of cells taken from the 4th plating) was significantly reduced in 

methylcellulose containing only EPO and no colonies were formed in absence of 

EPO (with SCF, IL-3 and IL-6) (Figure 15G-I).  

Collectively, our data shows that inactivation of Nsd1 in the hematopoietic system of 

the mouse leads to malignant accumulation of erythroid progenitor cells, impaired 

clonogenic activity and expansion of erythroid progenitors with aberrant self-renewal 

in vitro. 
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FIGURE 15. Functional analysis of bone marrow cells of Vav1-iCre;Nsd1fl/fl mice.  

(A) Total number of bone marrow and spleen cells after red blood cell lysis (x106) in Nsd1fl/fl  (n=7/BM, 

n=5/spleen, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=10/BM, n=9/spleen, red bar) (Students t-test with 

unequal variances. *** p>0.001). (B) Percentage of early and late apoptosis using Annexin V and 7-AAD 

flow cytometry staining in bone marrow and spleen of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice 

(red bar) (n=3/group. Two- way ANOVA with Sidak‘s multiple comparisons; * p>0.05). (C) Total number 

of colonies formed by 40.000 bone marrow cells of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red 

bar) in M3434 methylcellulose (n=9/group. Students t-test with equal variances). (D) Classification of 

different types of colonies formed by 40.000 bone marrow cells of Nsd1fl/fl  (black bar) and Vav1-

iCre;Nsd1fl/fl mice (red bar) in M3434 methylcellulose (n=9/group. Two-way ANOVA with Sidak‘s multiple 

comparisons. ** p>0.05, *** p>0.0001). (E) Representative images of colony morphology and content of 

Vav1-iCre;Nsd1fl/fl bone marrow cells in M3434 methylcellulose demonstrating appearance of dishes 

including abnormal red colonies (I), benzidine- staining of dish (II), magnified abnormal colony (III) and 

cytospot of abnormal colony (IV). (F) Total number of colonies formed by 40.000 bone marrow cells of 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) in M3434 methylcellulose after replating up to 

4th round (n as indicated in figure). (G) Schematic depiction of replating experiment to test cells for 

dependence on erythropoietin (EPO). Vav1-iCre;Nsd1fl/fl bone marrow cells were plated for four rounds 

in M3434 methylcellulose containing SCF, IL-3, IL-6 and EPO and then switched for the 5th plating to 

M3434, M3234 (+ 2ul/ml EPO) or M3534 (SCF, IL-3, IL-6). (H) Morphology and (I) quantification of total 

number of colonies formed in M3434, M3234, M3534 methylcellulose in 5th plating of Vav1-iCre;Nsd1fl/fl 

bone marrow cells (n=1). Data presented as mean, error bars represent ±SD.  
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4.3.4 Loss of Nsd1 significantly reduces the HSC pool 
 

To better characterize the hematopoietic system of diseased Vav1-iCre;Nsd1fl/fl mice 

we analyzed the cellular hierarchy of the BM and spleen by flow cytometry using 

standard gating strategies (Figure 16A-D) 17. We observed a striking reduction of 

lineage marker-negative, Lin-/c-Kit+/Sca-1+ cells (LSKs) with almost a complete lack 

of long-term (LT-HSC) and short-term repopulating hematopoietic stem cell 

percentages (ST-HSC) in the BM of diseased Vav1-iCre;Nsd1fl/fl (Figure 16B, E-G). 

Whereas the percentages of multi-potent progenitors (MPP) were slightly increased, 

granulocytic-macrophage progenitors (GMP) were reduced, and common myeloid 

(CMP) and megakaryocyte-erythroid progenitors (MEP) did not significantly differ 

from littermate controls. However, we found an increase of Lin-/c-Kit+/Sca-1-/CD34-

/FcγRII/III+ cells (Figure 16B, F-G). To elucidate the myelo-erythroid hierarchy in 

more detail, we included endoglin (CD105) into our staining (Figure 16C&D) 18. Lin- 

BM cells of diseased Vav1-iCre;Nsd1fl/fl mice did not differ in CFU-E, pre-Meg-E and 

MkP cell fractions, whereas pre CFU- E were decreased and pre-GMs were 

increased (Figure 16 H). After the depletion of lineage-marker positive cells, we 

always obtained decreased Lin- cell numbers in BM of Vav1-iCre;Nsd1fl/fl mice (data 

not shown). Based on this observation and flow cytometry data, we calculated the 

hypothetic number of stem and progenitor cells present in BM and spleen tissue. An 

example for the calculation is indicated in the methods section (Flow cytometry 

chapter). The total number of LSK was significantly decreased in BM and increased 

in the spleen of diseased Vav1-iCre;Nsd1fl/fl mice. LT-HSC, ST-HSC, MPP and GMP 

numbers were significantly decreased whereas MEP, CMP and myelo- erythroid cell 

numbers remained unchanged (Figure 16I-L).  

Collectively, these data revealed that aberrant accumulation of erythroid 

progenitors in diseased Vav1-iCre;Nsd1fl/fl mice is associated with a striking reduction 

of the HSC pool and alterations of hematopoietic progenitor cells.  
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FIGURE 16. immunephenotype of stem and progenitor cells in Vav1-iCre;Nsd1fl/fl mice.  

(A) Schematic depiction of flow cytometry gating strategy to quantify Lin-/Sca-1+/c-Kit+ (LSK), Lin-/Sca-

1+/c-Kit+/CD34-/CD150+/CD48- (LT-HSC, long- term hematopoietic stem cells), Lin-/Sca-1+/c-

Kit+/CD34+/CD150+/CD48- (ST-HSC, short- term hematopoietic stem cells), Lin-/Sca-1+/c-

Kit+/CD34+/CD150-/CD48+ (MPP, multipotent progenitor cells), Lin-/Sca-1-/c-Kit+ (LK), Lin-/Sca-1-/c-

Kit+/CD34+/FcγRII/III+ (GMP, granulocyte macrophage progenitor), Lin-/Sca-1-/c-Kit+/CD34-/FcγRII/III- 

(MEP, megakaryocyte erythrocyte progenitor), Lin-/Sca-1-/c-Kit+/CD34+/FcγRII/III-  (CMP, common 

myeloid progenitor) and Lin-/Sca-1-/c-Kit+/CD34-/FcγRII/III+ (“FcγRII/III+”) populations. (B) 

Representative image of flow cytometry panel demonstrating stem and progenitor staining in red blood 

cell lysed and lineage depleted single cell suspensions of bone marrow in Nsd1fl/fl  (upper row) and 

Vav1-iCre;Nsd1fl/fl (lower row). (C) Schematic depiction of flow cytometry gating strategy to quantify 

myeloid progenitors C-Kit+/CD41-/FcγRII/III-/CD150-/CD105+ (CFU-E), C-Kit+/CD41-/FcγRII/III-

/CD150+/CD105+ (pre CFU-E), C-Kit+/CD41-/FcγRII/III-/CD150-/CD105- (pre GM), C-Kit+/CD41-/FcγRII/III-

/CD150+/CD105- (pre MegE) and C-Kit+/CD41+/CD150+ (MkP) in bone marrow and spleen of Nsd1fl/fl 

(black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar). (D) Representative image of flow cytometry panel 

demonstrating stem and progenitor staining in red blood cell lysed and lineage depleted single cell 

suspensions of bone marrow in Nsd1fl/fl  (upper row) and Vav1-iCre;Nsd1fl/fl (lower row).  (E) Percentage 

of LSK cell population in bone marrow and spleen of Nsd1fl/fl  (n=7/BM, n=3/spleen, black bar) and Vav1-

iCre;Nsd1fl/fl mice (n=7/BM, n=4/spleen, red bar) (Students t-test with equal variances. *** p>0.001). (F) 

Percentages of stem cells in bone marrow of Nsd1fl/fl  (n=3, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=4, 

red bar) (Students t-test with equal (LT-HSC) or unequal (ST-HSC, MPP) variances, * p>0.05, **** 

p>0.0001). (G) Percentages of progenitor cells in bone marrow of Nsd1fl/fl  (black bar) and Vav1-

iCre;Nsd1fl/fl mice (red bar) (n=4/group. Students t-test with equal (Myeloid, GMP, CMP, MEP) or 

unequal variances (FcγRII/III+), * p>0.05). (H) Percentages of myeloid progenitors in bone marrow of 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=2/group. Students t-test with unequal 

variances. * p>0.05). (I) Number of LSK cells (x105) in red blood cell lysed and lineage depleted single 

cell suspensions of bone marrow and spleen of Nsd1fl/fl  (n=7/BM, n=3/spleen, black bar) and Vav1-

iCre;Nsd1fl/fl mice (n=7/BM, n=4/spleen, red bar) relative to total number of lineage depleted cells 

obtained during each procedure (Students t-test with equal variances, **** p>0.0001). (J) Number of 

stem cells (x104) in red blood cell lysed and lineage depleted single cell suspensions of bone marrow in 

Nsd1fl/fl  (n=3, black bar) and Vav1-iCre;Nsd1fl/fl (n=4, red bar) relative to total number of lineage 

depleted cells obtained during each procedure (Students t-test with unequal variances, ** p>0.01). (K) 

Number of progenitor cells (x105) in bone marrow of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red 

bar) (n=4/group. Students t-test with equal variances, ** p<0.01). (L) Number of myeloid progenitor cells 

(x104) in bone marrow of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=2/group. Students 

t-test with unequal variances). Data presented as mean, error bars represent ±SD.  
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4.3.5 The disease of Vav1-iCre;Nsd1fl/fl mice is transplantable  
 

To explore the malignant potential of the observed phenotype, we transplanted total 

BM cells from diseased Vav1-iCre;Nsd1fl/fl mice (carrying the isogenic CD45.2+ 

marker) either alone or in competition with normal CD45.1+ cells into lethally 

irradiated syngeneic recipients (CD45.1+) (Figure 17A). All transplanted recipients 

rapidly developed symptoms of disease within 40 days post transplantation and 

showed hepato-splenomegaly, increased white blood counts, anemia, 

thrombocytopenia, mild lymphocytosis, and accumulation of LUC and reticulocytosis 

(Figure 17B-I). In addition, flow cytometry analysis of peripheral blood and BM 

revealed the accumulation of early erythroid progenitors found in R0 fraction (Figure 

17J-K). Chimerism analysis of peripheral blood confirmed presence of injected 

CD45.2+ cells in peripheral blood (Figure 17L).  

We next assessed whether the disease remains transplantable in presence of 

increasing number of normal competitor cells, and whether it might be possible to 

further narrow down the disease-initiating cells based on c-Kit and CD71 expression 

(Figure 18A). First, we checked the colony forming capacity within the Lin-/c-Kit+ 

compartment and found that only CD71low and CD71intermediate expressing cells of 

Vav1-iCre;Nsd1fl/fl mice had colony forming potential (Figure 18B). We next 

transplanted sorted Lin-/c-Kit+ and CD71 low/intermediate/high expressing cells or 

whole BM alone or in 1:10 competition (CD45.2+) together with equal amounts of 

competitor whole BM (CD45.1+) into lethally irradiated recipients (CD45.1+) (Figure 

18C&D). Kaplan- Meier survival curves confirmed development of disease upon 

transplanting whole knockout BM. Interestingly, all recipients transplanted with BM of 

diseased mice in 1:10 competition (WT:KO = 10:1) as well as mice receiving CD71low 

cells (WT:KO CD71low 10:1) developed disease. Moreover, 75% of CD71intermediate 

transplanted mice (WT:KO CD71mid 10:1) and only 50% of mice that receiving 

CD71high cells (WT:KO CD71high 10:1) developed disease symptoms with increasing 

time post- transplantation (Figure 18E). All diseased mice showed splenomegaly, 

increased white blood cell counts, decreased red blood cell counts, 

thrombocytopenia, variable amounts of reticulocytosis, some lymphocytosis as well 

as appearance of LUCs (Figure 18F-K, data not shown).  

Taken together, these data show that disease in Vav1-iCre;Nsd1fl/fl mice is 

transplantable into secondary recipients in competition and the disease initiating cell 

may be within the in the Lin-/c-Kit+ and most probably CD71-/dim compartment.   
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FIGURE 17. Competitive BMT of whole BM cells of diseased Vav1-iCre;Nsd1fl/fl mice.  

(A) Schematic depiction of competitive transplantation experimental setup. 106 CD45.2+ whole bone 

marrow cells of Nsd1fl/fl  (n=4/”WT 1:0”) or diseased Vav1-iCre;Nsd1fl/fl mice (n=4/”KO 0:1”) were 

transplanted without competition or 106 CD45.1+ wildtype cells (n=6/”WT:KO 1:1”) into lethally irradiated 

CD45.1+ recipients. (B) Kaplan Meier survival curve of whole bone marrow transplanted mice. Black line 

represents WT 1:0 group that received bone marrow of Nsd1fl/fl. Red line represents KO 0:1 group that 

received bone marrow of diseased Vav1-iCre;Nsd1fl/fl mice. Orange Line represents competitive 

transplantation group that received bone marrow from control and diseased Vav1-iCre;Nsd1fl/fl mice in a 

1:1 ratio (WT:KO 1:1). Survival is shown as percentage at days after transplantation. Median survival of 

KO 0:1 transplanted mice was 33 days and 42 days of WT:KO 1:1 mice. WT 1:0 group was analyzed at 

42 days. (C) Spleen and liver weight of transplanted mice in gram: WT 1:0 (n=2, black bar), KO 0:1 

(n=4, red bar), WT:KO 1:1 (n=6, orange bar) (Students t-test with unequal variances. *** p>0.001, **** 

p>0.0001). (D) Peripheral blood counts of white blood cells, (E) red blood cells, (F) platelets, (G) 

lymphocytes, (H) monocytes (MONO), eosinophils (EOS), basophils (BASO), neutrophils (NEO), “large 

unstained cells” (LUC) and (I) reticulocytes in WT 1:0 (n=3, black bar), KO 0:1 (n=2, red bar), WT:KO 

1:1 (n=5, orange bar) groups (Students t-test with unequal variances. * p>0.05, ** p>0.01, *** p>0.001, 

**** p>0.0001). (J) Percentage flow cytometry marker stained cell population in unlysed peripheral blood 

and (K) bone marrow at day of sacrifice in WT 1:0 (n=2, black bar), KO 0:1 (n=4, red bar), WT:KO 1:1 

(n=6, orange bar) to distinguish maturation steps in erythropoiesis: R0 fraction (CD71-/dim, Ter119-), R1 

(CD71+, Ter119-), R2 (CD71+, Ter119+), R3 (CD71+/dim, Ter119+) and R4 (CD71-, Ter119+) (Two-way 

ANOVA with Turkeys multiple comparisons. *** p>0.001, **** p>0.0001). (L) Percentage flow cytometry 

marker stained cell population in lysed single cell suspensions of peripheral blood of WT 1:0 (n=2, black 

bar), KO 0:1 (n=4, red bar), WT:KO 1:1 (n=6, orange bar) transplanted mice to distinguish donor 

contribution using CD45.2 surface marker (Two-way ANOVA with Turkeys multiple comparisons. * 

p>0.05, *** p>0.001, **** p>0.0001). Data presented as mean, error bars represent ±SD.  
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FIGURE 18. Competitive BMT of sorted Lin-/c-Kit+/CD71low/mid/high and whole BM cells of diseased 

Vav1-iCre;Nsd1fl/fl mice.  

(A) Gating strategy for fluorescence activated cell sorting (FACS). Lineage depleted Lin-/c-Kit+ cells 

were subfractionated using CD71 surface marker into low, mid and high expressing cells. (B) 

Representative images of sorted Lin-/c-Kit+/CD71low/mid/high cells plated into M3434 methylcellulose. Cell 

numbers plated are indicated in brackets. (C) Schematic depiction of experimental setup. CD45.1+ 

wildtype cells were mixed with CD45.2+ sorted or whole bone marrow cells of diseased Vav1-

iCre;Nsd1fl/fl mice and transplanted into lethally irradiated CD45.1+ recipients. (D) Table containing 

information about numbers of transplanted cells of control and Vav1-iCre;Nsd1fl/fl mice and calculated 

constitution of transplanted material. (E) Kaplan Meier survival curve of transplanted mice: KO 0:1 (n=3, 

red line), WT:KO 10:1 (n=3, yellow line), WT:KO CD71low 10:1 (n=4, light blue line), WT:KO CD71mid 

10:1 (n=4, middle blue line) and WT:KO CD71high 10:1 (n=2, dark blue line). Survival is shown as 

percentage at days after transplantation. Median survival of KO 0:1 and WT:KO 10:1 transplanted mice 

was 29 days, WT:KO CD71low 10:1 41 days, WT:KO CD71mid 48 days and WT:KO CD71high 180 days. 

(F) Spleen weight of transplanted mice in gram: KO 0:1 (n=3, red bar), WT:KO 10:1 (n=3, yellow bar), 

WT:KO CD71low 10:1 (n=3, light blue bar), WT:KO CD71mid 10:1 (n=3, middle blue bar) and WT:KO 

CD71high 10:1 (n=1, dark blue bar) groups. Dashed line indicates average spleen weight in control whole 

bone marrow transplanted mice from previous experiment. (G) Peripheral blood counts of white blood 

cells, (H) red blood cells, (I) platelets, (J) reticulocytes (K) lymphocytes in KO 0:1 (red bar), WT:KO 10:1 

(yellow bar), WT:KO CD71low 10:1 (light blue bar), WT:KO CD71mid 10:1 (middle blue bar) and WT:KO 

CD71high 10:1 (dark blue bar) groups (n=3/group). Dashed lines indicate average values in control whole 

bone marrow transplanted mice from previous experiment. Data presented as mean, error bars 

represent ±SD.   
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4.3.6 Loss of Nsd1 leads to early accumulation of erythroid progenitors  
 

We next wondered whether loss of Nsd1 might affect the hematopoietic system of 

younger (4-6 weeks old) asymptomatic Vav1-iCre;Nsd1fl/fl mice, as from now referred 

as “young” and diseased mice as “old”. Surprisingly, most young animals had already 

significantly enlarged spleens with abnormal focal cellular infiltrations in the liver and 

occasionally also in the lungs (Figure 19A-D). We also observed reduced white and 

red blood cell counts, thrombocytopenia, lower levels of lymphocytes and occasional 

appearance of LUCs in young Vav1-iCre;Nsd1fl/fl mice (Figure 19E-K). Dissecting 

erythroid maturation revealed no significant changes in the BM, but increases of R1, 

R2, R3 fractions and CD71dim populations with a significant decrease of the R4 

fraction in the spleens of young mice (Figure 19L&M). BM cellularity was unchanged 

and no signs of apoptosis were identified (Figure 20A&B). Analysis of whole BM 

cells (after red cell lysis) revealed a significant expansion of CD71+/c-Kit- erythroid 

progenitor cells in spleen tissue (Figure 20C&D). Whereas the number of colonies 

formed by whole BM cells in methylcellulose was not altered, the number of CFU-

G/M was significantly reduced, and abnormal “BFU-E-like” colonies appeared that 

could be occasionally replated over 2-3 rounds (Figure 20E & data not shown). Flow 

cytometry analysis of first round platings revealed that abnormal colonies consisted 

of CD71+ cells (Figure 20F&G).   
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FIGURE 19. Phenotype in 4-6 week old Vav1-iCre;Nsd1fl/fl mice.  

(A) Representative picture of spleen of Nsd1fl/fl  (left) and young Vav1-iCre;Nsd1fl/fl (right) mice. (B) 

Spleen weight and (C) liver weight of Nsd1fl/fl  (n=13, black bar) and young Vav1-iCre;Nsd1fl/fl (n=17, red 

bar) mice in gram (Students t-test with unequal variances. ** p>0.01). (D) Representative images of i) 

spleen and ii) lung HE- stained tissue of young Vav1-iCre;Nsd1fl/fl mice. (E) Peripheral blood counts of 

white blood cells, (F) red blood cells, (G) platelets, (H) hemoglobin, (I) reticulocytes, (J) lymphocytes and 

(K) “large unstained cells of Nsd1fl/fl  (n=13, black bar) and young Vav1-iCre;Nsd1fl/fl (n=17, red bar) mice 

(Students t-test with (un)equal variances. ** p>0.01, **** p>0.0001). (L) Percentage flow cytometry 

marker stained cell population in unlysed single cell suspensions of bone marrow (n=9/group) and (M) 

spleen (n=8/group) of young Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice (Two-way ANOVA 

with Sidak‘s multiple comparisons. * p>0.05, **** p>0.0001). Data presented as mean, error bars 

represent ±SD.    
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FIGURE 20. Immunophenotype of hematopoietic organs in 4-6 week old Vav1-iCre;Nsd1fl/fl mice. 

(A) Total number of bone marrow cells (x106) after red blood cell lysis in young Nsd1fl/fl  (n=9, black bar) 

and Vav1-iCre;Nsd1fl/fl mice (n=10, red bar) (Students t-test with equal variances). (B) Percentage of 

early and late apoptosis using Annexin V and 7-AAD flow cytometry staining in bone marrow and spleen 

of young Nsd1fl/fl  (n=5, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=6, red bar) (n=5-6/group. Two-way 

ANOVA with Sidak‘s multiple comparisons). (C) Percentage flow cytometry CD71 and c-Kit marker 

stained cell population in red blood cell lysed single cell suspensions of bone marrow and spleen of 

young Nsd1fl/fl (n=5, black bar) and Vav1-iCre;Nsd1fl/fl (n=6, red bar) mice (Two-way ANOVA with Sidak‘s 

multiple comparisons. **** p>0.0001). (D) Total number of colonies formed by bone marrow cells of 

young Nsd1fl/fl  (n=8, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=9, red bar) in M3434 methylcellulose 

(Students t-test with unequal variances). (E) Classification of different types of colonies formed by bone 

marrow cells of Nsd1fl/fl  (n=8, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=9, red bar) in M3434 

methylcellulose (Two-way ANOVA with Sidak‘s multiple comparisons. * p<0.05, *** p>0.001). (F) 

Percentage flow cytometry marker CD71 and c-Kit stained population of single cell suspensions 

obtained after plating 40.000 whole bone marrow in methylcellulose M3434 of young Nsd1fl/fl  (black bar) 

and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=3/group. Two-way ANOVA with Sidak‘s multiple comparisons. 

** p>0.01). (G) Representative flow cytometry panel of CD71 and c-Kit stained population of single cell 

suspensions obtained after plating 40.000 whole bone marrow in methylcellulose M3434 of young 

Nsd1fl/fl  (upper row) and Vav1-iCre;Nsd1fl/fl mice (lower row). Data presented as mean, error bars 

represent ±SD.  
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4.3.7 Loss of Nsd1 leads to altered megakaryopoiesis 
 

Significant thrombocytopenia seen in old and young Vav1-iCre;Nsd1fl/fl mice led us to 

characterize the megakaryocytic lineage in more detail. We manually counted 

megakaryocytes on histological sections of HE stained BM biopsies that did not 

reveal changes in numbers in young mice, but a significant reduction in diseased 

mice (Figure 21A). Interestingly, we found a significant increase in CD41+ 

expressing cells of the megakaryocytic lineage with a reduced diploid (2N) DNA 

content in the BM of young Vav1-iCre;Nsd1fl/fl mice (Figure 21B-C). In order to study 

formation of CD41 expressing cells in vitro, we grew BM cells for seven days in liquid 

medium containing megakaryocyte-favoring cytokines and then quantified the cellular 

output by flow cytometry. We found a significant increase of CD41+ and CD41++ cells 

after culturing young Vav1-iCre;Nsd1fl/fl BM cells (Figure 21D). However CD41+ did 

not show any differences in nuclear ploidy, whereas CD41++ cells contained less 2N 

cells but increased fractions of cells with 4N and 8N (Figure 21E&F). To elucidate 

the colony forming potential, CFU-Mk colonies formed in MegacultTM methylcellulose 

were quantified. Total BM cells and sorted MEP cells of young Vav1-iCre;Nsd1fl/fl 

mice formed significantly more CFU-Mk colonies, whereas LSK cells formed equal 

numbers (Figure 21G). In conclusion, BM of young Vav1-iCre;Nsd1fl/fl mice shows 

aberrant megakaryopoiesis that may result in the significant reduction of 

megakaryocytes in older diseased Vav1-iCre;Nsd1fl/fl mice.  
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FIGURE 21. Megakaryocyte phenotype in Vav1-iCre;Nsd1fl/fl mice.  

(A) Number of manually counted megakaryocytes per field in HE- stained sections of bone marrow 

tissue of young (n=2) and diseased (n=4) Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice. 

(n=20 fields per mouse. Two-way ANOVA with Sidak‘s multiple comparisons. *** p>0.001). (B) 

Percentage of flow cytometry marker stained CD41+ population in bone marrow cells of young Nsd1fl/fl  

(black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice. (n=3/group. Students t- test with equal variances. *** 

p>0.001). (C) Ploidy analysis on CD41+ population in bone marrow cells of young Nsd1fl/fl  (black bar) 

and Vav1-iCre;Nsd1fl/fl (red bar) mice by propidium iodide (PI) staining. (n=3/group. Two-way ANOVA 

with Sidak‘s multiple comparisons. * p>0.05, ** p<0.01). (D) Percentage of flow cytometry marker 

stained CD41+ and CD41++ cells in bone marrow cells of young Nsd1fl/fl  (black bar) and Vav1-

iCre;Nsd1fl/fl (red bar) mice after seven days of megakaryocyte differentiation. (n=3/group. Two-way 

ANOVA with Sidak‘s multiple comparisons. *** p>0.001). (E) Ploidy analysis on CD41+ population in 

bone marrow cells of young Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice by propidium 

iodide (PI) staining after seven days of megakaryocyte differentiation. (n=3/group. Two-way ANOVA with 

Sidak‘s multiple comparisons). (F) Ploidy analysis on CD41++ population in bone marrow cells of young 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice by propidium iodide (PI) staining after seven 

days of megakaryocyte differentiation (n=3/group. Two-way ANOVA with Sidak‘s multiple comparisons. 

** p>0.01; **** p>0.0001). (G) Total numbers of CFU-Mk colonies formed by total bone marrow cells, 

sorted LSK and MEP population of young Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) mice. 

Colonies were counted after seven days in megacult assays. (n=3/group. Students t- test with equal 

variances. ** p>0.01). Data presented as mean, error bars represent ±SD.  
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4.3.8 Loss of Nsd1 leads to an early reduction and functional defect of 

hematopoietic stem cells 
 

To functionally address the impact of the early changes on the BM function, we 

performed competitive reconstitution experiments. Hereby we transplanted whole BM 

cells of young Vav1-iCre;Nsd1fl/fl mice (CD45.2+) alone or in competition with CD45.1+ 

BM of donor mice into lethally irradiated recipients (CD45.1+) (Figure 22A). The 

Kaplan Meier curve shows that 4 out of 6 mice had disadvantageous survival after 

more than 100 days post transplantation whereas all mice receiving competitor BM 

cells did not develop symptoms of disease up to one year post transplantation 

(Figure 22B). When the mice receiving only BM of young Vav1-iCre;Nsd1fl/fl mice 

showed signs of distress were sacrificed, only 1 out 4 mice had an enlarged spleen 

(Mouse #2, Figure 22C). Interestingly, both transplanted groups showed significantly 

increased percentages of CD71-/TER119- and decreased percentages of CD71-

/TER119+ in peripheral blood 12 weeks post- transplantation compared to control BM 

transplanted mice (Figure 22D). Analysis of peripheral blood obtained by regular tail 

vein bleeding of transplanted mice revealed almost 100% CD45.1- contribution in “KO 

(0:1)” mice until the end of the experiment. “WT:KO (1:1)” transplanted mice 

presented approximately 60% CD45.1- contribution 4 weeks post transplantation, that 

decreased over time and reached non significant levels 24 weeks post 

transplantation (Figure 22E). White blood cell and platelet counts were significantly 

decreased in both groups 4 weeks post transplantation, remaining low in the KO (0:1) 

group and increased in WT:KO (1:1) group (Figure 22F) whereas red blood cell 

counts significantly decreased in both groups 4 weeks post transplantation and 

normalized to the end of the experiment (Figure 22F-H). Further information 

regarding values obtained from individual mice of KO (0:1) group can be found in 

Figure 22I. 

Based on the observation of previous experiments in diseased mice revealing 

reduction in stem cells (Figure 16) as well as above mentioned “outcompetition” of 

1:1 transplanted BM cells (Figure 22E), we aimed to dissect the hematopoietic 

hierarchy in BM of young Vav1-iCre;Nsd1fl/fl  mice. Interestingly, we observed a 60% 

reduction of LSK cell percentages mainly affecting ST-HSC and LT-HSC being more 

than 60- 90% reduced respectively (Figure 23A&B). MPP as well as myeloid 

progenitor cell percentages were less affected in young Vav1-iCre;Nsd1fl/fl mice, 

however, FcγRII/III+ cell percentages were significantly increased (Figure 23B-D). 
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Total numbers of lineage depleted cells were not influenced at this time, which is 

reflected in the calculation- based quantification of stem and progenitor cells (data 

not shown). Total LSK cell number in BM was significantly reduced, in detail LT-HSC, 

ST-HSC and MPP cell numbers in BM were significantly reduced up to 90% (Figure 

23E&F). Except FcγRII/III+ cells, myeloid progenitors were not reduced in numbers 

(Figure 23G-H).   

 

 

 

 

 

 

 

 
FIGURE 22. Competitive BMT of whole BM cells of 4- 6 weeks aged Vav1-iCre;Nsd1fl/fl mice.  

(A) Schematic depiction of competitive transplantation experimental setup. 106 CD45.2+ whole bone 

marrow cells of young Nsd1fl/fl  (WT 1:0) or Vav1-iCre;Nsd1fl/fl mice (KO 0:1) were transplanted without 

competition or 106 CD45.1+ wildtype cells (WT:KO 1:1) into lethally irradiated CD45.1+ recipients. (B) 

Kaplan Meier survival curve of whole bone marrow transplanted mice. Black line represents WT 1:0 

group that received bone marrow of Nsd1fl/fl (n=3). Red line represents KO 0:1 group that received bone 

marrow of diseased Vav1-iCre;Nsd1fl/fl mice (n=6). Orange Line represents competitive transplantation 

group that received bone marrow from control and diseased Vav1-iCre;Nsd1fl/fl mice in a 1:1 ratio (n=6, 

WT:KO 1:1). Survival is shown as percentage at days after transplantation. Median survival of KO 0:1 

transplanted mice was 218 days. WT 1:0 group was analyzed at 42 days. Individual mice are marked 

with numbers for later identification. (C) Spleen weight of KO 0:1 transplanted mice in gram (n=4). 

Individual mice are marked with numbers and normal spleen weight is indicated by dashed line. (D) 

Percentage flow cytometry marker CD71 and Ter119 stained cell population in unlysed single cell 

suspensions of peripheral blood 12 weeks after transplantation in WT 1:0 (n=3, black bar), KO 0:1 (n=6, 

red bar), WT:KO 1:1 (n=6, orange bar) (Two- way ANOVA with Turkey‘s multiple comparison test. ** 

p>0.01; **** p>0.0001). (E) Percentage flow cytometry marker CD45.1- stained cell population in red 

blood cell lysed peripheral blood at indicated weeks after transplantation to distinguish donor 

contribution using CD45.2 surface marker in WT 1:0 (black bar), KO 0:1 (red bar), WT:KO 1:1 (orange 

bar) (Two- way ANOVA with Turkeys multiple comparison test. * p>0.05; ** p>0.01; **** p>0.0001). (F) 

Peripheral blood counts of white blood cells, (G) red blood cells and (H) platelets in WT 1:0 (black bar), 

KO 0:1 (red bar), WT:KO 1:1 (orange bar) groups (n=4-6/group. Two- way ANOVA with Turkey‘s 

multiple comparison test. * p>0.05; ** p>0.01; *** p>0.001; **** p>0.0001). (I) Table containing 

information about transplanted mice of KO 0:1 group including survival time, spleen and liver weight, 

blood values and ability of bone marrow to form abnormal colonies in M3434. Data presented as mean, 

error bars represent ±SD.  
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FIGURE 23. Immunephenotype of stem and progenitor cells of 4- 6 weeks aged Vav1-

iCre;Nsd1fl/fl mice.  

(A) Percentage of Lin-/Sca-1+/c-Kit+ (LSK) cell population in bone marrow of young Nsd1fl/fl  (n=7, black 

bar) and Vav1-iCre;Nsd1fl/fl mice (n=8, red bar) (Students t-test with (un)equal variances. **** p>0.0001). 

(B) Percentages of Lin-/Sca-1+/c-Kit+/CD34-/CD150+/CD48- (LT-HSC, long- term hematopoietic stem 

cells), Lin-/Sca-1+/c-Kit+/CD34+/CD150+/CD48- (ST-HSC, short- term hematopoietic stem cells), Lin-/Sca-

1+/c-Kit+/CD34+/CD150-/CD48+ (MPP, multipotent progenitor cells) in bone marrow of young Nsd1fl/fl  

(n=3, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=4, red bar) (Unpaired T-test. ** p>0.01, *** p<0.001). (C) 

Percentages of progenitor cells Lin-/Sca-1-/c-Kit+ (LK), Lin-/Sca-1+/c-Kit+/CD34+/FcγRII/III+ (GMP, 

granulocyte macrophage progenitor), Lin-/Sca-1+/c-Kit+/CD34-/FcγRII/III- (MEP, megakaryocyte 

erythrocyte progenitor), Lin-/Sca-1+/c-Kit+/CD34+/FcγRII/III-  (CMP, common myeloid progenitor) and Lin-

/Sca-1+/c-Kit+/CD34-/FcγRII/III+ (FcγRII/III+) in bone marrow of young Nsd1fl/fl  (black bar) and Vav1-

iCre;Nsd1fl/fl mice (red bar) (n=4/group. Two-way ANOVA with Sidak‘s multiple comparisons. ** p>0.01). 

(D) Percentages of myeloid progenitors c-Kit+/CD41-/FcγRII/III-/CD150-/CD105+ (CFU-E), c-Kit+/CD41-

/FcγRII/III-/CD150+/CD105+ (pre CFU-E), c-Kit+/CD41-/FcγRII/III-/CD150-/CD105- (pre GM), c-Kit+/CD41-

/FcγRII/III-/CD150+/CD105- (pre MegE) and c-Kit+/CD41+/CD150+ (MkP) in bone marrow of young 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=2/group. Two-way ANOVA with Sidak‘s 

multiple comparisons). (E) Number of LSK cells (x105) in red blood cell lysed and lineage depleted 

single cell suspensions of bone marrow in young Nsd1fl/fl  (n=7, black bar) and Vav1-iCre;Nsd1fl/fl (n=8, 

red bar) relative to total number of lineage depleted cells obtained during each procedure (Students t-

test with equal variances. **** p>0.0001). (F) Number of stem cells (x104) in red blood cell lysed and 

lineage depleted single cell suspensions of bone marrow in young Nsd1fl/fl  (n=3, black bar) and Vav1-

iCre;Nsd1fl/fl (n=4, red bar) relative to total number of lineage depleted cells obtained during each 

procedure (Unpaired T-test. ** p>0.01, **** p>0.0001). (G) Number of progenitor cells (x105) in bone 

marrow of young Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=4/group. Two-way ANOVA 

with Sidak‘s multiple comparisons). (H) Number of myeloid progenitor cells (x104) in bone marrow of 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=2/group. Two-way ANOVA with Sidak‘s 

multiple comparisons). Data presented as mean, error bars represent ±SD.  
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We next aimed to study the functional colony forming capacity of flow- sorted 

LSK and MEP cells in methylcellulose. Total number of colonies did not differ 

between Vav1-iCre;Nsd1fl/fl and Nsd1fl/fl stem and progenitor cells (Figure 24A). 

However benzidine staining of plates revealed difference in colony morphology 

(Figure 24B). LSK and MEP cells formed denser, benzidine- positive colonies 

compared to control. Flow cytometry analysis of resuspended cells demonstrated 

shift from CD71-/c-Kit- to CD71+/c-Kit+ expression (Figure 24C&D). Taking the in vitro 

data into account, we aimed to identify in vivo whether either LSK or MEP cells can 

reconstitute (partially) the BM of recipients and/or their presence influences 

development of differentiated cells in peripheral blood. We therefore injected 1000 

(“WT or KO LSK 1000”) or 6000 sorted LSK (“WT or KO LSK 6000”) or 5000 sorted 

MEP cells (“WT or KO MEP 5000”) of Vav1-iCre;Nsd1fl/fl and Nsd1fl/fl mice (CD45.2+) 

with supporting BM (CD45.1+) into lethally irradiated recipients marrow (CD45.1+) and 

performed tail vein bleeding to follow their reconstitution ability (Figure 24E). 

Chimerism analysis in peripheral blood four weeks post transplantation revealed 

around 60- 80% reconstitution ability of Vav1-iCre;Nsd1fl/fl LSK compared to 20% 

reconstitution ability of Nsd1fl/fl LSK cells whereas MEP reconstitution ability did not 

differ between the groups. CD45.2+ chimerism of Vav1-iCre;Nsd1fl/fl LSK cells (1000 

and 6000) dropped 12 weeks post- transplantation to levels of around 20-40% same 

as the control and remained stably decreased (Figure 24F). Interestingly, levels of 

TER119- population in peripheral blood were significantly higher in LSK transplanted 

recipients four weeks post transplantation and dropped after 12 weeks in KO LSK 

(1000) group and after 26 weeks in KO LSK (6000) group. KO MEP (6000) group did 

not show significant changes in formation of TER119- cells (Figure 24G). We next 

focused on the group receiving 1000 LSK cells and compared their CD45.2+ 

chimerism in more detail. As mentioned before, Vav1-iCre;Nsd1fl/fl LSK cells 

contributed to a significantly higher chimerism and TER119- cells during the first 12 

weeks post transplantation (Figure 24H-I). In coincidence with the observed 

changes, white blood cells, platelets and red blood cells counts were significantly 

changed during this period (Figure 24J-L).  

Taken together, our data demonstrate that absence of Nsd1 affects early 

hematopoiesis by inducing a partially transplantable disease phenotype and 

reduction in number and functional capacity of stem cells. 
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FIGURE 24 Colony formation and leukemic potential of LSK and MEP of 4- 6 week old Vav1-

iCre;Nsd1fl/fl mice.  

(A) Total number of colonies formed by flow cytometry activated sorting of LSK and MEP obtained from 

red blood cell lysed and lineage depleted bone marrow cells of young Nsd1fl/fl  (black bar) and Vav1-

iCre;Nsd1fl/fl mice (red bar) in M3434 methylcellulose. 1000 LSKs and 5000 MEPs were plated 

(n=5/LSK, n=3/MEP. Students t-test with equal variances). (B) Representative images of colony 

morphology in M3434 methylcellulose after benzidine staining. 1000 LSKs (upper row) and 5000 MEPs 

(lower row) of young Nsd1fl/fl  (left column) and Vav1-iCre;Nsd1fl/fl mice (right column) were plated. (C) 

Flow cytometry panel of CD71 and c-Kit stained population of single cell suspensions obtained after 

plating sorted LSK (left) or MEP (right) cells of young Nsd1fl/fl  (upper row) and Vav1-iCre;Nsd1fl/fl mice 

(lower row) into M3434 methylcellulose. (D) Percentage flow cytometry marker CD71 and c-Kit stained 

population of single cell suspensions obtained after resuspension of cells out of methylcellulose M3434 

of young Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) (n=1). (E) Schematic depiction of 

experimental setup of competitive stem and progenitor transplantation. 1000 LSK, 6000 LSK or 5000 

MEP of young CD45.2+ Nsd1fl/fl or Vav1-iCre;Nsd1fl/fl mice were fluorescence activated cell sorted 

according to previously used markers and were transplanted with competition of 106 CD45.1+ wildtype 

cells into lethally irradiated CD45.1+ recipients. (F) Percentage flow cytometry marker stained cell 

population in lysed single cell suspensions of peripheral blood of WT LSK 1000 (black bar), KO LSK 

1000 (orange bar), WT LSK 6000 (grey bar), KO LSK 6000 (light orange bar), WT MEP 5000 (white bar) 

and KO MEP 5000 (pink bar) transplanted mice at indicated weeks after transplantation to distinguish 

donor contribution using CD45.2 surface marker (n=3-6/group. Two- way ANOVA with Turkey‘s multiple 

comparison test. **** p>0.0001). (G) Percentage flow cytometry marker Ter119 stained cell population in 

unlysed single cell suspensions of peripheral blood of WT LSK 1000 (black bar), KO LSK 1000 (orange 

bar), WT LSK 6000 (grey bar), KO LSK 6000 (light orange bar), WT MEP 5000 (white bar) and KO MEP 

5000 (pink bar) transplanted mice at indicated weeks after transplantation (n=3-6/group. Two- way 

ANOVA with Turkeys multiple comparison test. ** p>0.01; **** p>0.0001). (H) Percentage flow cytometry 

marker CD45 stained cell population in lysed single cell suspensions of peripheral blood of WT LSK 

1000 (black bar), KO LSK 1000 (orange bar) transplanted mice at indicated weeks after transplantation 

to distinguish donor contribution using CD45.2 surface marker (n=2 independent experiments with n>4 

per group. Two- way ANOVA with Turkey‘s multiple comparisons test. **** p>0.0001). (I) Percentage 

flow cytometry marker Ter119 stained cell population in unlysed single cell suspensions of peripheral 

blood of WT LSK 1000 (black bar), KO LSK 1000 (orange bar) transplanted mice at indicated weeks 

after transplantation (n=2 independent experiments with n>4 per group. Two- way ANOVA with Turkey‘s 

multiple comparisons test. **** p>0.0001). (J) Peripheral blood counts of white blood cells, (K) platelets 

and (L) red blood cells in WT LSK 1000 (black bar), KO LSK 1000 (orange bar) transplanted mice (n=2 

independent experiments with n>4 per group. Two- way ANOVA with Turkey‘s multiple comparisons 

test. ** p<0.01, *** p<0.001 **** p>0.0001). Data presented as mean, error bars represent ±SD.   
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4.3.9 Conditional ablation of Nsd1 in adult mice results in mild 

aberrations of the erythro-megakaryocytic lineage 
To address the effects of Nsd1 in adult hematopoiesis, we used two well-established 

transgenic Cre mouse lines that allow conditional gene ablation in the hematopoietic 

system. First we crossed Nsd1fl/fl mice to Mx1-iCre in which Cre expression is 

induced by poly(I:C) triggering an interferon response resulting in ablation of the gene 

in the liver, intestine and hematopoietic tissue. Adult (6-10 week old) mice obtained 

10 poly(I:C) injections on 10 consecutive days with two days of break in between 

(Figure 25A). Nine weeks after induction we bled the mice and determined cre-

mediated cleavage of the floxed allele by PCR in the peripheral blood. Interestingly, 

we only observed very limited cleavage, which seemed not to remain stable over time 

(Figure 25B & data not shown). We analyzed the mice 16- 20 weeks after first 

induction, a time point where Vav1-iCre-induced animals developed an extensive 

disease. In order to test whether the floxed Nsd1 exon 5 was still present, we 

performed quantitative real time PCR and found reduced expression in the BM 

(Figure 25C). Flow cytometry analysis with CD71 and TER119 revealed 

accumulation of erythroid progenitor cells in peripheral blood (Figure 25D). Spleen 

and liver weights did not significantly differ between induced Mx1-iCre;Nsd1fl/fl and 

Nsd1fl/fl mice (Figure 25E&F). Slightly decreased white and red blood counts but a 

significantly reduced number of platelets were seen (Figure 25G-I). In addition we 

observed reduced neutrophils, other parameters like hemoglobin levels, lymphocytes, 

reticulocytes, LUCs, monocytes and eosinophils remained unchanged (Figure 25J-

N). Histopathology did not revealed gross changes in the hematopoietic organs of 

induced mice, however in some mice we found small infiltrations of blast-like cells in 

liver (data not shown). To conclude, conditional cleavage of Nsd1 by Mx1-iCre in 

adult mice could be induced but caused only mild changes in the erythroid lineage 

and platelets. However, it was not sufficient to induce the severe disease observed in 

Vav-iCre;Nsd1fl/fl mice.  
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FIGURE 25. Phenotype in Mx1-iCre;Nsd1fl/fl mice.  

(A) Schematic depiction of the experimental setup using sex and age- matched Nsd1fl/fl and Mx1-

iCre;Nsd1fl/fl mice that were injected at six to eight weeks after birth with ten times polyI:C (300ug/ml) 

intraperitoneal. Nine weeks after first injection, mice were tail vein bleeded and sixteen to twenty weeks 

later sacrificed and the bone marrow was analyzed. (B) Calculation of percentage of Nsd1 cleavage in 

red blood cell lysed peripheral blood of polyI:C induced Mx1-iCre;Nsd1fl/fl compared to their matched 

controls based on PCR. (C) Quantitative RT-PCR of bone marrow sixteen to twenty weeks after first 

injection of Nsd1fl/fl  (n=6, black bar) and Mx1-iCre;Nsd1fl/fl mice (n=7, purple bar) indicating mRNA 

expression of Nsd1 Exon 5. Ct values were normalized to Gapdh expression and shown as relative 

expression using 1/dCt method (Students t-test with equal variances. **** p>0.0001). (D) Percentage 

flow cytometry marker CD71 and Ter119 stained cell population in unlysed single cell suspensions of 

peripheral blood (PB) nine to ten weeks after first injection (n=5 per group, black bar) and Mx1-

iCre;Nsd1fl/fl mice (n=6 per group, purple bar) (Two-way ANOVA with Sidak‘s multiple comparisons test. 

*** p>0.001, **** p<0.0001). (E) Spleen and (F) liver weight in gram of induced Nsd1fl/fl  (n=6, black bar) 

and Mx1-iCre;Nsd1fl/fl mice (n=5, purple bar) sixteen to twenty weeks after first injection (Students t-test 

with equal variances). (G) Peripheral blood counts of white blood cells (WBC), (H) red blood cells (RBC), 

(I) platelets (PLT), (J) hemoglobin (HGB), (K) lymphocytes (LYMPH), (L) reticulocytes (RTC), (M) “large 

unstained cells” (LUC), (N) monocytes (MONO), eosinophils (EOS) and neutrophils (NEU) of induced 

Nsd1fl/fl  (n=6, black bar) and Mx1-iCre;Nsd1fl/fl mice (n=5, purple bar) sixteen to twenty weeks after first 

injection (Students t-test with (un)equal variances. * p>0.05). Data presented as mean, error bars 

represent ±SD.  
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We also crossed the Nsd1fl/fl mice to Scl-iCreER ablators in which Cre is expressed in 

the hematopoietic tissue and endothelial cells and is activated by administration of 

tamoxifen. First, we tried to induce female mice that gave birth to Scl-iCreER;Nsd1fl/fl 

mice. Unfortunately, mice did not tolerate milking by tamoxifen- fed mother animals 

and did not survive (data not shown). We next induced adult mice by feeding them 

tamoxifen-impregnated chow pellets for 8-14 weeks (Figure 26A & data not shown). 

Nine weeks after induction we bled the mice and determined Nsd1 cleavage by PCR 

in peripheral blood cells. We observed very variable cleavage between mice (Figure 

26B). Like for Mx1-iCre, we analyzed the mice 16- 20 weeks after first induction, a 

time point where Vav1-iCre-induced animals developed an extensive disease. We 

found a striking reduction of Nsd1 exon5 mRNA expression in BM cells (Figure 26C). 

Flow cytometry analysis of CD71 and TER119 revealed accumulation of erythroid 

progenitor cells in peripheral blood (Figure 26D). Spleen and liver weights did not 

significantly differ between induced Scl-iCreER;Nsd1fl/fl and Nsd1fl/fl controls (Figure 

26E&F). We found slight decreases in white but not red blood counts and a 

significant reduction of platelets in induced mice (Figure 26G-I). Hemoglobin levels 

and lymphocytes were decreased whereas reticulocytes, LUCs, monocytes, 

eosinophils and neutrophil remained unchanged (Figure 26J-N). Histopathology did 

not reveal any significant alterations of the hematopoietic organs (data not shown).   

To conclude, similar to ablation by Mx1-iCre, cleavage of Nsd1 by Scl-iCreER 

in adult mice was efficient resulting in a very mild erythroid and platelet phenotype 

but no overt disease.  
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FIGURE 26. Phenotype in Scl-iCreER;Nsd1fl/fl mice.  

(A) Schematic depiction of the experimental setup using sex and age- matched Nsd1fl/fl and Scl-

iCreER;Nsd1fl/fl mice that were exposed to tamoxifen containing food for eight to forteen weeks at six to 

eight weeks after birth. Nine weeks after start of the experiment, mice were tail vein bleeded and thirteen 

to thirty weeks later sacrificed and the bone marrow was analyzed. (B) Calculation of percentage of 

Nsd1 cleavage in red blood cell lysed peripheral blood of tamoxifen induced Scl-iCreER;Nsd1fl/fl 

compared to their matched controls based on PCR. (C) Quantitative RT-PCR of bone marrow fifteen to 

thirty weeks after first administration of tamoxifen containing food to Nsd1fl/fl  (n=2, black bar) and Scl-

iCreER;Nsd1fl/fl mice (n=4, purple bar) indicating mRNA expression of Nsd1 Exon 5. Ct values were 

normalized to Gapdh expression and shown as relative expression using 1/dCt method (Students t-test 

with equal variances. ** p>0.01). (D) Percentage flow cytometry marker CD71 and Ter119 stained cell 

population in unlysed single cell suspensions of peripheral blood (PB) nine to eleven weeks after first 

administration of tamoxifen containing food to Nsd1fl/fl  (n=4, black bar) and Scl-iCreER;Nsd1fl/fl (n=5, 

purple bar) (Two-way ANOVA with Sidak‘s multiple comparisons test. * p>0.05, ** p<0.01). (E) Spleen 

and (F) liver weight in gram of induced Nsd1fl/fl  (n=5, black bar) and Scl-iCreER;Nsd1fl/fl mice (n=7, purple 

bar) thirteen to thirty weeks after first injection (Students t-test with equal variances). (G) Peripheral 

blood counts of white blood cells (WBC), (H) red blood cells (RBC), (I) platelets (PLT), (J) hemoglobin 

(HGB), (K) lymphocytes (LYMPH), (L) reticulocytes (RTC), (M) “large unstained cells” (LUC), (N) 

monocytes (MONO), eosinophils (EOS) and neutrophils (NEU) of induced Nsd1fl/fl  (n=5, black bar) and 

Scl-iCreER;Nsd1fl/fl mice (n=7, purple bar) thirteen to thirty weeks after first injection (Students t-test with 

(un)equal variances. * p>0.05, **** p>0.0001). Data presented as mean, error bars represent ±SD.   
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4.3.10 Loss of Nsd1 in the fetal liver leads to reduction of hematopoietic 

stem cells and accumulation of erythroid progenitors  
As Vav1-promoter driven transgenes are expressed as early as E12.5 of fetal 

development we next characterized the fetal liver hematopoiesis of Vav1-iCre;Nsd1fl/fl 

mice at different days of development (Figure 27A) 206,207. At E13.5, we found 

already significant cleavage of the floxed Nsd1 alleles with a 95% reduced Nsd1 

mRNA expression (Figure 27B&C). However, the number of LSKs was only 

marginally reduced in fetal livers from Vav1-iCre;Nsd1fl/fl and Nsd1fl/fl littermate 

controls (Figure 27D). Nevertheless, at later time points (E16.5 and E19.5), the LSK 

compartment was clearly reduced in Vav1-iCre;Nsd1fl/fl animals (Figure 27D). 

Interestingly at E16.5 we could observe a significant increase of LK progenitor cells 

in fetal liver (Figure 27E). We also addressed erythroid maturation by determination 

of CD71 and TER119 expressing cells. We found no significant changes at E13.5 

and E16.5, though at E19.5, a significant increase in early erythroid (“R0”) 

progenitors was observed (Figure 27F-H). The total number of fetal liver cells 

remained unchanged whereas a significant increase was seen at E19.5 (Figure 27I). 

The colony forming ability of fetal liver cells generally decreased with later embryonic 

stages and did not display significant differences between Vav1-iCre;Nsd1fl/fl and 

Nsd1fl/fl fetal liver cells (Figure 27J). However, we observed some morphological 

differences with formation of benzidine-positive and compact colonies formed by cells 

from E19.5 Vav1-iCre;Nsd1fl/fl compared to littermate controls (Figure 27K). 

Histopathology revealed the appearance of clusters of large cells with a dark blue 

cytoplasm on sections from the fetal liver of Vav1-iCre;Nsd1fl/fl mice (Figure 27L).  

These findings demonstrate that Vav-iCre-directed loss of Nsd1 leads to 

reduction of LSKs and aberrant accumulation of erythroid progenitors during late fetal 

hematopoiesis. 
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FIGURE 27. CHARACTERIZATION OF PHENOTYPE IN FETAL LIVERS OF VAV1-ICRE;NSD1FL/FL 

MICE. (A) Schematic depiction of experimental setup using fetal liver tissue. Timematings between 

Nsd1fl/fl and Vav1-iCre;Nsd1fl/+ mice were setup and plugs controlled in the morning. Plug- positive mice 

were marked with E0.5 and followed for the next weeks. Pregnant mice were sacrificed at E13.5, 16.5 

and 19.5 (day of birth) and fetal livers from pups dissected. (B) Cleavage PCR of fetal liver tissue at 

E13.5 in Vav1-iCre;Nsd1fl/fl, Vav1-iCre;Nsd1fl/+  and Nsd1fl/fl mice. (C) Verification of Nsd1 knockout in 

fetal liver samples from E13.5 in Vav1-iCre;Nsd1fl/fl (n=2, red bar) and Nsd1fl/fl  (n=1, black bar) mice. 

Quantitative RT-PCR of Nsd1 exon5/6 junction. Bars represent average relative expression normalized 

to Gapdh and control mice (Students t- test with equal variances. **** p>0.0001). (D) Percentage of Lin-

/Sca-1+/c-Kit+ (LSK) and (E) Lin-/Sca-1-/c-Kit+ (LK) cell population in fetal liver samples of E13.5, 16.5 

and 19.5 in Nsd1fl/fl (n=3/E13.5, n=3/E16.5, n=2/E19.5, black bar) Vav1-iCre;Nsd1fl/fl (n=5/E13.5, 

n=3/E16.5, n=4/E19.5, red bar) (Two-way ANOVA with Sidak‘s multiple comparisons test. * p>0.05). (F) 

Percentage flow cytometry marker stained cell population in unlysed fetal liver samples of E13.5, (G) 

E16.5 and (H) E19.5 in Nsd1fl/fl (black bar) Vav1-iCre;Nsd1fl/fl (red bar) to distinguish maturation steps in 

erythropoiesis: R0 fraction (CD71-/dim, Ter119-), R1 (CD71+, Ter119-), R2 (CD71+, Ter119+), R3 

(CD71+/dim, Ter119+) and R4 (CD71-, Ter119+) (n=2/group. Two-way ANOVA with Sidak‘s multiple 

comparisons test. * p<0.05). (I) Total number of fetal liver cells in Vav1-iCre;Nsd1fl/fl (red bar) and 

Nsd1fl/fl  (black bar) mice at E13.5 (n=2), E16.5 (n=5), E19.6 (n=4) (Two-way ANOVA with Sidak‘s 

multiple comparisons test. * p<0.05). (J) Total number of colonies formed in M3434 methylcellulose by 

10.000 fetal liver cells derived from Nsd1fl/fl  (n=4/E13.5, n=2/E16.5, n=2/E19.5) and Vav1-iCre;Nsd1fl/fl 

(n=6/E13.5, n=2/E16.5, n=4/E19.5) (Two-way ANOVA with Sidak‘s multiple comparisons test). (K) 

Representative images of colonies of Nsd1fl/fl (left panels) and Vav1-iCre;Nsd1fl/fl (right panels) fetal liver 

E19.5 cells in M3434 methylcellulose demonstrating morphology (right), appearance of dishes (middle) 

and benzidine- staining of dish (left). (L) Representative images of HE- stained fetal livers in Nsd1fl/fl  

(upper row) Vav1-iCre;Nsd1fl/fl (lower row) at different developmental stages ranging from E13.5, 16.5 to 

19.5 at 20x magnification. Last column shows fetal livers at 60x magnification. Data presented as mean, 

error bars represent ±SD.  
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4.3.11 Loss of Nsd1 alters the gene expression signatures of 

hematopoietic stem and progenitor cells 
As Nsd1 has been previously shown to have strong transcriptional activity, we next 

addressed the impact of Nsd1 loss on the gene expression program of hematopoietic 

stem and progenitor cells 183. We sequenced total RNA from flow sorted LSK, MEP 

and GMP cells from three diseased Vav-iCre;Nsd1fl/fl mice as well as LSK from 

young, asymptomatic mice (Figure 28A). Principal component analysis (PCA) 

revealed that LSKs from individual asymptomatic young (LSK “young”) and diseased 

older (LSK “old”) Vav-iCre;Nsd1fl/fl mice shared a very similar gene expression profile. 

Moreover, PCA for the first two dimensions revealed that the expression differences 

were more based on the different cell types rather than by separation of the two 

genotypes (Figure 28B). In total we found 1918 genes differentially expressed in 

LSK, 2046 in MEP and 820 in GMP of Vav-iCre;Nsd1fl/fl compared to littermate 

controls (Figure 28C). Differential gene expression analysis revealed no significant 

changes in LSK of “young” compared to “old” Vav-iCre;Nsd1fl/fl mice. Therefore, LSK 

signatures were pooled together for further analysis (Figure 28D). Volcano plots 

reflect that 906 genes were UP- and 1012 DOWN-regulated in Vav-iCre;Nsd1fl/fl LSK, 

1426 genes UP- and 620 DOWN-regulated in Vav-iCre;Nsd1fl/fl MEP and 421 genes 

UP- and 399 DOWN-regulated in Vav-iCre;Nsd1fl/fl GMP (p-value<0.05) compared to 

littermate controls (Figure 28E-G). Interestingly, LSK cells lacking Nsd1 expressed 

lower levels of multiple genes that are known to be associated with myelo-erythroid 

differentiation of hematopoietic cells including Gata1, a key erythroid transcription 

factor, as well as Erythropoietin receptor (Epor), and Friend of GATA protein (Fog1= 

Zfpm1). Furthermore, MEPs lacking Nsd1 displayed an increase in Spi1, encoding 

for the hematopoietic transcription factor Pu.1 (Figure 28H).  

Collectively, this data indicates that absence of Nsd1 significantly alters the 

gene expression profiles programs of LSK and MEP cells including activation of 

known oncogenes and reduced expression of known regulators of erythroid 

differentiation. 
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FIGURE 28. RNA- Sequencing of sorted stem and progenitor cells of young and diseased Vav1-

iCre;Nsd1fl/fl mice.  

(A) Calculated fold changes of LSK (n=7, green bar), MEP (n=4, red bar) and GMP (n=4, blue bar) cell 

populations in bone marrow of asymptomatic (“young”) or diseased (“old”) Vav1-iCre;Nsd1fl/fl mice. 

Percentages were acquired using flow cytometry analysis described before and fold changes to their 

controls calculated manually (Students t-test with equal variances. * p>0.05, *** p<0.001, **** p>0.0001). 

(B) PCA plot of the first two components (PC1 versus PC2) indicating the variation between the three 

cells types, LSK (green), MEP (red) and GMP (blue), for Nsd1fl/fl (round) and Vav1-iCre;Nsd1fl/fl 

(triangle). Together, PC1 and PC2, explain 57.02% of the variance among cell types and conditions.  

(C) Venn Diagram showing the amount of differentially regulated genes (p-Value < 0.05) between for 

Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl  in the 3 cell types (colors as in A&B). The number of shared differentially 

expressed (determined from edgeR) among the cell types are shown in the intersections of the circles. 

(D) Volcano plot of the p values (-log10 scale) versus the fold change (FC, log2 scale) of differentially up 

or down regulated genes in „young“ versus „old“ LSKs  and comparisons between Vav1-iCre;Nsd1fl/fl - 

Nsd1fl/fl  in (E) „old“ LSKs (F) „old“ MEPs and (G) „old“ GMPs. Differentially expressed genes (p < 0.05) 

are marked in yellow. (H) Bar plot of selected transcription factors for Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl in 

LSK (resp. black and green) and MEP cells (resp. grey and red). Data presented as mean, error bars 

represent ±SD.  
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4.3.12 Loss of Nsd1 impairs differentiation of extensively self-renewing 

erythroblasts constitutively expressing high levels of GATA1 

protein levels 
Extensively self-renewing erythroblasts (ESREs) provide a non-transformed cellular 

model of erythroid maturation derived from murine fetal liver or yolk sac, and 

morphologically, immunophenotypically, and functionally resemble proerythroblasts 

that maintain both cytokine dependence and the potential to generate enucleated 

erythrocytes after 3-4 cell divisions 203. To address the role of Nsd1 in erythroid 

maturation we extracted ESREs from Vav1-iCre;Nsd1fl/fl and littermate control E17.5 

fetal livers and expanded the cells in so called “maintenance medium” (MM) 

containing dexamethasone, Insulin-like growth factor 1 (IGF1), cholesterol, SCF and 

EPO for more than six days to obtain stable cell lines. We then transferred the cells 

into “differentiation medium” (DM) containing SCF and EPO and measured erythroid 

differentiation-associated surface markers and the cell size by flow cytometry, and 

visualized the cellular morphology on cytospots (Figure 29A). After 3 days in DM, 

cells were significantly reduced in size (FSC-) and already fully mature erythrocytes 

were seen (Figure 29B). Control cells at this timepoint displayed signs of 

differentiation, whereas the cells lacking Nsd1 appeared mostly as proerythroblasts 

(Figure 29C). After 6 days in DM, control cells completely matured towards 

erythrocytes. In contrast, although exhibiting an early proliferation burst, Vav1-

iCre;Nsd1fl/fl ESREs were significantly impaired to differentiate and exhibited 

disturbed differentiation still present at day 13 in liquid differentiation culture (Figure 

29C&D). However, important to note, very few cells lacking Nsd1 seemed to be able 

to fully mature towards mature erythrocytes. Impaired maturation was confirmed by 

significantly decreased percentages of CD71-/ FSC- cells (Figure 29E & data not 

shown). Vav1-iCre;Nsd1fl/fl and littermate control “ESREs” did not significantly differ in 

proliferation capacity, expression of erythroid surface markers and morphology in MM 

before induction of differentiation (data not shown). However, in DM, Vav1-

iCre;Nsd1fl/fl “ESREs” showed significantly increased proliferation rates (Figure 29F). 

Terminal erythroid maturation is controlled by dynamic regulation of the erythroid 

transcription factor Gata1 96. In contrast to littermate controls, we observed reduced 

Gata1 mRNA expression during differentiation of Vav1-iCre;Nsd1fl/fl  ESREs (Figure 

29G). However, rather surprisingly we observed significantly increased GATA1 

protein levels in Vav1-iCre;Nsd1fl/fl fetal liver-derived ESREs in maintenance medium 

(Figure 29H).   
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FIGURE 29. Establishment of extensive self- renewing erythroblast cells of Vav1-iCre;Nsd1fl/fl 

fetal livers to study erythroid differentiation in vitro. 

 (A) Schematic depiction of experimental setup using fetal liver cells of E17.5 that were grown in 

maintenance medium (containing dexamethyasone, SCF, EPO, IGF-1, cholesterol) to establish 

extensive self- renewing fetal liver derived erythryoblasts (“ESRE”). Cells were used for in vitro 

differentiation (containing serum, EPO, SCF) assays in liquid medium and subject to flow cytometry and 

morphologic analysis. (B) Representative images of wildtype HE- stained cells (left column) in 

maintenance (upper row) and differentiation medium (lower row) and forward scatter (FSC) profile of 

cells using flow cytometry. (C) Representative images of HE- stained cells in maintenance (left column) 

and at day three (middle column) and six (right column) in differentiation medium. Cells were obtained 

from fetal livers of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice at E17.5. (D) Representative selection of HE- 

stained Vav1-iCre;Nsd1fl/fl derived “ESRE” cells at day 13 in differentiation medium. (E) Percentage 

forward scatter (FSC) negative living cells before (day 0) and after induction of differentiation (day 3) in 

Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl ESRE cells (n=3/group. Two-way ANOVA with Sidak‘s multiple 

comparisons. **** p>0.0001). (F) Growth curve of fetal liver derived “ESRE” cells obtained from Nsd1fl/fl 

(n=6, black bar) and Vav1-iCre;Nsd1fl/fl mice (n=4, red bar) in differentiation medium. Living cells at 

indicated days were counted using trypan blue exclusion (Two-way ANOVA with Sidak‘s multiple 

comparisons.  * p>0.05). (G) Quantitative RT- PCR of fetal liver cells before (day 0) and during 

differentiation (day 2) of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl mice (red bar) indicating mRNA 

expression of Gata1. Ct values were normalized to Gapdh expression and control ESRE in maintenance 

medium. Value are shown as relative expression using 2-ddcT method (n=2/group. Two way ANOVA with 

Sidak‘s multiple comparisons test. * p>0.05). (H) Western Blot analysis of protein levels of GATA1 and 

nuclear loading control histone 3 (H3) in “ESRE” cells in maintenance medium of Nsd1fl/fl and Vav1-

iCre;Nsd1fl/fl mice. Data presented as mean, error bars represent ±SD.  
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Next we setup the “ESRE-like” proerythroblast culture system from diseased 

Vav1-iCre;Nsd1fl/fl mice to perform functional analysis (Figure 30A). After six days, 

the majority of lineage-depleted cells was as expected TER119-, CD71dim/+, c-Kit+ and 

FSC+ (data not shown). Wildtype cells could be maintained in culture for more than 1 

month and still formed colonies when plated into methylcellulose (data not shown). 

We were able to culture BM-derived proerythroblasts of diseased Vav1-iCre;Nsd1fl/fl 

mice, which like fetal liver-derived “ESREs”, did not show any significant changes in 

cell growth when kept in MM for six days (Figure 30B). Growth of Vav1-iCre;Nsd1fl/fl 

proerythroblasts was still dependent on SCF and EPO (Figure 30C). Like fetal liver-

derived “ESRE-like” cells, adult derived Vav1-iCre;Nsd1fl/fl proerythroblasts were also 

significantly impaired in terminal erythroid maturation in DM (Figure 30D-E). 

Interestingly, induced differentiation was also associated with lower Gata1 mRNA 

expression (Figure 30F). However, like the fetal liver-derived “ESRE-like” cells, 

Vav1-iCre;Nsd1fl/fl proerythroblasts expressed constitutively high GATA1 protein 

levels (Figure 30G).  

The unexpected high GATA1 protein levels led us the explore the cellular 

localization of GATA1 during differentiation of Vav1-iCre;Nsd1fl/fl  and control 

littermate proerythroblasts. We prepared cytospots from cells growing in MM or 

differentiating in DM for 48h, and stained for GATA1 by performing 

immunofluorescence (IF). We used murine erythroleukemia (MEL) cells known to 

express significant GATA1 protein levels as positive controls for IF and subsequent 

immunoblot experiments 56,208. GATA1 presented as speckled pattern with fine dots 

throughout the nucleus of MEL cells (Figure 31A). Using the same conditions, we 

observed very low signal intensity in control erythroblasts in MM, whereas Vav1-

iCre;Nsd1fl/fl  cells exhibited a very strong, clearly nuclear signal (Figure 31B). When 

cells were grown for 48 hours in DM, increased GATA1 expression was observed in 

control cells to comparable levels seen in Vav1-iCre;Nsd1fl/fl  cells. Interestingly, cells 

formed a single dot like structure that did not correlate with DAPI intensity, which has 

been previously observed by others (Figure 31C & data not shown) 56.   

Taken together, we found that absence of Nsd1 impairs in vitro terminal erythroid 

maturation of self-renewing of fetal liver as well as adult BM-derived erythroblasts. 

Moreover we discovered that Vav1-iCre;Nsd1fl/fl  proerythroblasts express high levels 

of GATA1 protein without Gata1 mRNA upregulation that is associated with erythroid 

maturation. 
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FIGURE 30. Establishment of pro- erythroblast cells of diseased Vav1-iCre;Nsd1fl/fl  mice to study 

erythroid differentiation for functional analysis.  

(A) Schematic depiction of experimental setup using lineage depleted bone marrow cells of Vav1-

iCre;Nsd1fl/fl grown in maintenance medium for short- time (< 6 days of culture) or long- time (>6 days of 

liquid culture) to establish extensive self- renewing erythryoblasts (“ESRE”). Cells were used for in vitro 

differentiation assays in liquid medium and subject to flow cytometry and morphologic analysis, 

analyzed by qPCR or treated with inhibitors. (B) Short- time cell growth of bone- marrow derived “ESRE” 

Nsd1fl/fl and diseased Vav1-iCre;Nsd1fl/fl in enance medium (n=3/group. Students t-test with equal 

variances). (C) Cell growth of established (in liquid culture for more than 6 days) Vav1-iCre;Nsd1fl/fl 

“ESRE” in different kinds of maintenance medium, either complete (plus SCF and EPO), or lacking EPO 

or SCF (n=1). (D) Percentage of forward scatter (FSC) positive living cells before (day 0) and after 

induction of differentiation (day 2 and 4) in Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl ESRE cells that were kept in 

liquid culture more than 6 days before induction of differentiation (n=3/group. Two-way ANOVA with 

Sidak‘s multiple comparisons test. ** p>0.01, **** p<0.0001). (E) Representative image of ESRE cells 5 

days in differentiation medium of Nsd1fl/fl (upper row) Vav1-iCre;Nsd1fl/fl (lower row). (F) Quantitative RT- 

PCR of bone marrow derived “ESRE” cells before (day 0) and during differentiation (5, 24 and 48 hours) 

of Nsd1fl/fl  (black line) and Vav1-iCre;Nsd1fl/fl mice (red line) indicating mRNA expression of Gata1. Ct 

values were normalized to Gapdh expression and control ESRE in maintenance medium. Value are 

shown as relative expression using 2-ddcT method (n=3/group. Two way ANOVA with Sidak‘s multiple 

comparisons test. * p>0.05, ** p<0.01). (G) Western blot analysis of protein levels of GATA1 and nuclear 

loading control histone 3 (H3) in bone marrow derived “ESRE” cells in maintenance medium of Nsd1fl/fl 

and Vav1-iCre;Nsd1fl/fl mice of two different experiments and murine erythroleukemia cell line (MEL) as 

positive control. (H) Percentage of forward scatter (FSC) negative living cells before (day 0) and after 

induction of differentiation (day 3) in Nsd1fl/fl (black line) and Vav1-iCre;Nsd1fl/fl (red line) ESRE cells 

treated with I-CBP112 at increasing concentrations (DMSO, 1, 3 and 5uM). Cells were kept in liquid 

culture more than 6 days before induction of differentiation. Black and red stars indicate significance to 

untreated control, grey stars indicate significance between two groups (n=3/group. Two way ANOVA 

with Sidak‘s multiple comparisons test. * p>0.05). Data presented as mean, error bars represent ±SD.  
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FIGURE 31. Localization of GATA1 in erythroblasts cells of diseased Vav1-iCre;Nsd1fl/fl  mice.  

(A) Representative images of immunofluorescence staining of GATA1 and DAPI as nuclear marker in 

MEL cells as positive control. (B) Nsd1fl/fl (left column) and Vav1-iCre;Nsd1fl/fl (right column) “ESRE” 

cells in maintenance medium, (C) differentiation medium (48 hours). Cells are shown with 100x 

magnification.   
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4.3.13 Overexpression of GATA1 induces erythroid maturation of Vav1-

iCre;Nsd1fl/fl proerythroblasts 
 

Similar to Friend-virus integration driven MEL cells, Vav1-iCre;Nsd1fl/fl 

proerythroblasts express very high levels of GATA1 protein and are significantly 

impaired in erythroid maturation. As overexpression of Gata1 is able to induce 

terminal maturation of MEL cells and restore erythroid differentiation in other mouse 

models 73,208–210. We wondered whether exogenous alterations of Gata1 expression 

may also have an impact on maturation of Vav1-iCre;Nsd1fl/fl proerythroblasts and/or 

aberrant colony formation in methylcellulose 211,212. To address the effect on stem 

and progenitor dependent colony formation, we depleted BM cells of diseased Vav1-

iCre;Nsd1fl/fl mice from cells expressing lineage-associated markers and transduced 

them in a stem cell favoring medium, containing SCF and TPO, with pMSCV-

mouseGata1-pgk-puro (mGATA1) or with the vector pMSCV-pgk-puro (mock) 

(Figure 32A). Mock-transduced Vav1-iCre;Nsd1fl/fl derived, “stem” cells formed 

significantly more colonies than the Nsd1fl/fl controls. Interestingly retroviral 

overexpression of Gata1 significantly reduced the number of colonies in both Nsd1fl/fl 

and Vav1-iCre;Nsd1fl/fl transduced “stem” cells (Figure 32B-C). Cytospin 

preparations reflected a slight shift to erythroid differentiation in mGATA1 transduced 

Vav1-iCre;Nsd1fl/fl cells (Figure 32D).  

To study the impact of Gata1 overexpression on colony formation and 

maturation of erythroid progenitors we transduced the cells one day after lineage 

depletion in maintenance medium supporting growth of proerythroblasts (Figure 

33A). Upon plating in methylcellulose, mock transduced Vav1-iCre;Nsd1fl/fl cells 

formed more colonies than the Nsd1fl/fl control. We also observed abnormally dense 

appearing red colonies. Overexpression of Gata1 resulted in a decrease of colonies 

formed by Nsd1fl/fl cells. However, with and without Gata1 overexpression, Nsd1fl/fl  

colonies had a myeloid morphology resembling CFU-G/Ms. In contrast, 

overexpression of Gata1 not only significantly reduced the number of colonies formed 

by Vav1-iCre;Nsd1fl/fl cells but also induced erythroid maturation with colonies 

resembling most mature erythroid colonies called CFU-Es (Figure 33B-C).  
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Cytospin preparations displayed myeloid cells in Nsd1fl/fl and mostly erythroid 

differentiated cells in Vav1-iCre;Nsd1fl/fl derived colonies overexpressing Gata1 

(Figure 33D). To exclude the influence of different starting populations (myeloid 

progenitors in controls and proerythroblasts in Vav1-iCre;Nsd1fl/fl cells) we first 

synchronized the cells for six days in maintenance medium resulting in a R0-R1 

erythroid maturation phase of the majority of the cells (data not shown). Lineage 

depleted BM cells of diseased Vav1-iCre;Nsd1fl/fl mice and the “synchronized” Nsd1fl/fl 

proerythroblasts were transduced, puromycin selected and plated into differentiation 

medium for different time points (Figure 33A). As previously observed in fetal livers, 

Vav1-iCre;Nsd1fl/fl mock transduced cells grew two times faster than Nsd1fl/fl cells 

during liquid differentiation assay, whereas Gata1 transduced cells had a tendency to 

grow slower in differentiation medium (Figure 33E). When cells were spun down for 

further analysis, the pellets of Gata1 overexpressing Vav1-iCre;Nsd1fl/fl cells 

appeared red whereas mock-transduced Vav1-iCre;Nsd1fl/fl cells appeared white 

reflecting missing formation of erythrocytes (Figure 33F). We then substantiated 

Gata1 induced erythroid differentiation by immunophenotyping of the cells. 

Transduced cells were plated into differentiation medium and the expression of 

TER119 and size (FSC) analyzed by flow cytometry. All conditions started the 

differentiation assay with a FSC+ population mostly negative for TER119. Upon 

completion of differentiation assay (96 hours), mock or Gata1 transduced Nsd1fl/fl 

controls and Gata1-transduced Vav1-iCre;Nsd1fl/fl cells contained around 60% FSC- 

and 15-30% TER119+ cells whereas mock transduced Vav1-iCre;Nsd1fl/ cells only 

contained 35% FSC- and 10% TER119+ cells, also depicted in flow cytometry panels 

(Figure 33G-I). Protein analysis of nuclear GATA1 levels by Western blot confirmed 

overexpression of HA-tagged GATA1 in differentiating Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl 

cells. As previously observed in fetal liver and lineage depleted ESRE-like 

proerythroblasts (0H), Vav1-iCre;Nsd1fl/fl constitutively expressed significant GATA1 

levels before induction of differentiation. Surprisingly, GATA1 levels in mock and 

transduced Vav1-iCre;Nsd1fl/fl cells remained almost stable, whereas they clearly 

increased upon differentiation of Nsd1fl/fl  control cells (Figure 33J).  

Collectively this data suggests that overexpression can overcome the erythroid 

maturation block of proerythroblasts lacking Nsd1.  
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FIGURE 32. Retroviral overexpression of Gata1 in Lin- depleted BM cells of diseased Vav1-

iCre;Nsd1fl/fl. (A) Schematic depiction of experimental setup using lineage depleted bone marrow cells 

of Vav1-iCre;Nsd1fl/fl grown in “stem” medium containing TPO and SCF, transduced with pMSCV-pgk-

puro or pMSCV-mGata1-pgk-puro, puromycin selected and plated into methylcellulose M3434 

containing SCF, IL3, IL6 and EPO. (B) Total number of colonies formed by 1.000 lineage depleted cells 

in M3434 methylcellulose of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) transduced in “Stem” 

medium with pMSCV-pgk-puro or pMSCV-mGata1-pgk-puro (n=2/group. Two way ANOVA with Sidak‘s 

multiple comparisons test. * p<0.05, ** p<0.01, *** p<0.001). (C) Representative images of colonies 

formed by 1.000 lineage depleted cells in M3434 methylcellulose of Nsd1fl/fl  (upper row) and Vav1-

iCre;Nsd1fl/fl (lower row) transduced in “Stem” medium with pMSCV-pgk-puro (left column) or pMSCV-

mGata1-pgk-puro (right column). (D) Representative images of HE- stained cytospots obtained from 

resuspended cells after first round of methylcellulose plating of Nsd1fl/fl  (upper row) and Vav1-

iCre;Nsd1fl/fl (lower row) transduced in “Stem” medium with pMSCV-pgk-puro (left column) or pMSCV-

mGata1-pgk-puro (right column). 
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FIGURE 33. Retroviral Gata1 overexpression in pro-erythroblasts of diseased Vav1-iCre;Nsd1fl/fl 

mice. (A) Schematic depiction of experimental setup using lineage depleted bone marrow cells of Vav1-

iCre;Nsd1fl/fl grown “maintenance” medium, transduced with pMSCV-pgk-puro or pMSCV-mGata1-pgk-

puro, puromycin selected and plated into methylcellulose M3434 containing SCF, IL3, IL6 and EPO. For 

erythroid differentiation analysis, cells were first kept for more than six days in liquid maintenance culture 

and then analyzed by flow cytometry. (B) Total number of colonies formed by 5.000 lineage depleted 

cells in M3434 methylcellulose of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) transduced in 

“maintenance” medium with pMSCV-pgk-puro or pMSCV-mGata1-pgk-puro (n=6/group. Two way 

ANOVA with Sidak‘s multiple comparisons test. *** p<0.001). (C) Representative images of colonies 

formed by 5.000 lineage depleted cells in M3434 methylcellulose of Nsd1fl/fl  (upper row) and Vav1-

iCre;Nsd1fl/fl (lower row) transduced in “maintenance” medium with pMSCV-pgk-puro (left column) or 

pMSCV-mGata1-pgk-puro (right column). (D) Representative images of HE- stained cytospots obtained 

from resuspended cells after first round of methylcellulose plating of Nsd1fl/fl  (upper row) and Vav1-

iCre;Nsd1fl/fl (lower row) transduced in “maintenance” medium with pMSCV-pgk-puro (left column) or 

pMSCV-mGata1-pgk-puro (right column). (E) Number of cells after 48 hours of liquid differentiation of 

Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) ESRE cells transduced in “maintenance” medium 

with pMSCV-pgk-puro or pMSCV-mGata1-pgk-puro (n=6. Two way ANOVA with Sidak‘s multiple 

comparisons test. * p<0.05). (F) Representative image of cell pellets after 48 hours of liquid 

differentiation of Nsd1fl/fl  and Vav1-iCre;Nsd1fl/fl ESRE cells transduced in “maintenance” medium with 

pMSCV-pgk-puro or pMSCV-mGata1-pgk-puro. (G) Representative flow cytometry panel of Nsd1fl/fl  

(upper row) and Vav1-iCre;Nsd1fl/fl (lower row) ESRE cells transduced in “maintenance” medium with 

pMSCV-pgk-puro (left column) or pMSCV-mGata1-pgk-puro (right column) after 96 hours of liquid 

differentiation. (H) Percentage of flow cytometry Ter119 expression marker positive stained and (I) 

forward scatter negative cell population before (0 hours) and after induction of differentiation (48 and 96 

hours) of Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) ESRE cells transduced in “maintenance” 

medium with pMSCV-pgk-puro (resp. black or red bar) or pMSCV-mGata1-pgk-puro (resp. red or rose 

bar) (n=3. Two-way ANOVA with Turkey‘s multiple comparisons. * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001). (J) Western blot analysis of GATA1 and LAMIN-A/C protein levels as nuclear loading control 

in Nsd1fl/fl  (left panel) and Vav1-iCre;Nsd1fl/fl (right panel) ESRE cells transduced in “maintenance” 

medium with pMSCV-pgk-puro (resp. black or red arrow) or pMSCV-mGata1-pgk-puro (resp. red or rose 

arrow) before and after liquid differentiation at different time points. Arrows at the right site indicate 

endogenous GATA1 as well as GATA1+HA- Tag sizes. Data presented as mean, error bars represent 

±SD. 
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FIGURE 34. Expression of Gata1 regulated targets during erythroid differentiation of pro- 

erythroblasts of diseased Vav1-iCre;Nsd1fl/fl. 

(A) Quantification of Gata1, (B) Gata2, (C) Spi1 (Pu.1), (D) c-Kit, (E) HbbA, (F) Hbb-B, (G) Gpa, (H) 

Bcl2l1, (I) p21, (J) Cbfa2t3 mRNA expression of bone marrow derived cells of Nsd1fl/fl  and Vav1-

iCre;Nsd1fl/fl ESRE cells transduced in “maintenance” medium with pMSCV-pgk-puro (resp. black or red 

line) or pMSCV-mGata1-pgk-puro (resp. red or rose line). Values are shown as relative expression 

using 2-ddcT method by normalization to Gapdh and Nsd1fl/fl transduced with pMSCV-pgk-puro mice (n=3/ 

0,24,48 hours and n=1/ 72 hours group). Data presented as mean, error bars represent ±SD.  
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We next wondered whether overexpression of Gata1 was associated with 

activation of known GATA1 target genes 32. As GATA1 is subject to autoregulation 

we first compared Gata1 mRNA levels Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl cells in 

differentiation medium with and without Gata1 overexpression. We observed 

differentiation-associated upregulation of Gata1 mRNA in Nsd1fl/fl control cells. Vav1-

iCre;Nsd1fl/fl cells expressed significantly lower Gata1 mRNA levels. Overexpression 

of Gata1 resulted in high mRNA levels in both types of cells. Interestingly, lower 

Gata1 mRNA levels were obtained in Vav1-iCre;Nsd1fl/fl cells (Figure 34A). We then 

followed the expression of genes that are downregulated by Gata1. Hereby we found 

that with and without overexpression of Gata1, mRNA levels of Gata2, Spi1 (Pu.1) 

and c-kit, decreased upon differentiation of both Vav1-iCre;Nsd1fl/fl and Nsd1fl/fl 

controls (Figure 34B-D). In sharp contrast, differentiation-associated upregulation of 

Gata1 induced targets such as hemoglobin alpha and beta chains (HbbA/B) or 

glycophorin A (GPA, also known as TER119) was significantly impaired in mock 

transducedVav1-iCre;Nsd1fl/fl cells and its increase upon Gata1 overexpression was 

much lower than in Nsd1fl/fl control cells (Figure 34E-G). Similar regulation was 

observed for the negative apoptosis regulator BCL2 like 1 (Bcl2l1) and the cyclin-

dependent kinase inhibitor 1 (CDK1, also known was p21) (Figure 34H-I). 

Interestingly, we observed a very poor upregulation of Cbfa2t3 (also known as Eto2) 

upon erythroid differentiation of Vav1-iCre;Nsd1fl/fl with or without Gata1 

overexpression (Figure 34J). Collectively we found a minor impact of the Nsd1 

status for erythroid differentiation-associated Gata1 negatively regulated targets, but 

impaired expression of activating target that was at least partially restored by 

overexpression of Gata1. 
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FIGURE 35. Retroviral overexpression of Eto2 in pro- erythroblasts of diseased Vav1-

iCre;Nsd1fl/fl mice. 

(A) Western blot analysis of protein levels of ETO-2 and nuclear loading control histone 3 (H3) in bone 

marrow derived “ESRE” cells in maintenance medium of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice of two 

different experiments and murine erythroleukemia cell line (MEL) as positive control. (B) Gene set 

enrichment analysis for MEP derived signatures comparing to curated gene sets of “Chyla Genes 

up/down-regulated in immature bone marrow progenitor cells upon knock out of CBFA2T3”. (C) 

Quantification of Cbfa2t3 mRNA expression of bone marrow derived cells of Nsd1fl/fl  (black bar) and 

Vav1-iCre;Nsd1fl/fl  (red bar) ESRE cells (n=3 per group. Students t-test with equal variances). (D) Total 

number of colonies formed by 20.000 lineage depleted cells in M3434 methylcellulose of Nsd1fl/fl  (black 

bar, n=3) and Vav1-iCre;Nsd1fl/fl (red bar, n=4) transduced in “Maintenance” medium with pMSCV-pgk-

puro or pMSCV-hETO-2-pgk-puro-IRES-GFP (n=3/group. Two way ANOVA with Sidak‘s multiple 

comparisons). (E) Representative images of colonies formed by lineage depleted cells in M3434 

methylcellulose of Nsd1fl/fl  (upper row) and Vav1-iCre;Nsd1fl/fl (lower row) transduced in “Maintenance” 

medium with pMSCV-pgk-puro (left column) or pMSCV-hETO-2-pgk-puro-IRES-GFP (right column). (F) 

Representative images of colonies formed in methylcellulose M3434 after benzidine staining of dishes. 

(G) Percentage of forward scatter (FSC) positive living cells after induction of differentiation (day 4) in 

Nsd1fl/fl (black bar, n=3) and Vav1-iCre;Nsd1fl/fl (red bar, n=4) ESRE cells transduced in “Maintenance” 

medium with pMSCV-pgk-puro or pMSCV-hETO-2-pgk-puro-IRES-GFP that were kept in liquid culture 

more than 6 days before induction of differentiation (n=3/group. Two-way ANOVA with Sidak‘s multiple 

comparisons test. * p>0.05, ** p>0.01, **** p<0.0001). Data presented as mean, error bars represent 

±SD.  
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4.3.14 Absence of Nsd1 results in higher ETO2 protein levels  
 

In addition to GATA1, we also observed increased ETO2 protein levels in 

erythroblasts of Vav1-iCre;Nsd1fl/fl mice (Figure 35A). Moreover we previously found 

poor mRNA regulation of ETO2 in Vav1-iCre;Nsd1fl/fl cells during in vitro 

differentiation (Figure 34J). Gene set enrichment analysis (GSEA) of the expression 

profiles obtained from sorted MEPs of Vav1-iCre;Nsd1fl/fl mice revealed some 

interesting links to previous signatures derived from Eto2 (Cbfa2t3, or Mtg16) 

knockout mice. In fact MEP lacking Nsd1 seemed to correlate with previously 

proposed Eto2 targets (Figure 35B) 213. However we found no difference in Eto2 

mRNA expression in proerythroblasts of Vav1-iCre;Nsd1fl/fl mice (Figure 35C). Since 

mRNA levels were not increased we investigated whether retroviral Eto-2 

overexpression may affect colony formation and in vitro erythroid differentiation. We 

did not observe any significant differences in colony formation between mock and 

Eto2 transduced cell. Vav1-iCre;Nsd1fl/fl colonies were more abundant with and 

without Eto2 overexpression (Figure 35D). Interestingly, colonies appeared mostly 

white and non- hemoglobinized (as shown by benzidine staining) and the size seems 

larger in Vav1-iCre;Nsd1fl/fl than control derived colonies (Figure 35E&F). Importantly, 

overexpression of Eto2 clearly blocked erythroid differentiation of control and Vav1-

iCre;Nsd1fl/fl derived erythroblasts reflected by increasing percentages of FSC+ cells 

(Figure 35G). However, cells showed decreased CD71 expression after four days in 

differentiation medium. Our observation so far suggests that the absence of Nsd1 

results in aberrant Eto2 regulation. In currently ongoing experiments we are 

addressing the impact of Eto2 knockdown on erythroid differentiation in presence or 

absence of Nsd1.  
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4.3.15 Absence of Nsd1 alters expression of known GATA1- complex 

forming proteins  
 

As shown before, the lack of Nsd1 influenced regulation of known GATA1 target 

genes: repressed GATA1 target genes were downregulated in Vav1-iCre;Nsd1fl/fl  

whereas activated targets did not increase to the same extent as seen in Nsd1fl/fl 

control cells (Figure 34). Interestingly retroviral overexpression of Gata1 induced the 

expression of erythroid differentiation markers resulted in erythroid maturation. 

Previous studies have shown that GATA1 is part of a protein-protein interaction 

network controlling transcription of erythroid differentiation regulating genes. 

Depending on the partner, it can form repressing or activating transcription factor 

complexes 63,65. One of these protein interaction networks is the activating pentamer 

containing T-Cell Acute Lymphocytic Leukemia 1 (TAL1, also known as SCL), 

Transcription Factor 3 (E2A), LIM Domain Binding 1 (LDB1) and LIM Domain Only 2 

(LMO2) (see Figure 36A for schematic overview) 214. The LIM (Lin11, Isl-1, Mec-3) 

domain is protein- protein interaction motif presenting as tandem zinc finger 215,216. 

Together the complex binds to erythroid- differentiation associated regulatory 

sequences such as the globin locus 217. 

We hypothesized that the lack of Nsd1 may result in aberrant GATA1 protein 

containing complexes being “repaired” upon overexpression. To obtain a first insight 

into formation of this GATA1 complex, we used an immunoprecipitation (IP) strategy. 

First we tested the efficiency of different protocols for preparation of cytoplasmic and 

nuclear extracts using five to ten times sonication and increasing amounts of 

benzonase (5-10U/µl) on murine erythroleukemia cells (MEL), which we previously 

used as a positive control for GATA1 IF and western blots. Increased amounts of 

benzonase (10U/µl) and 5 sonication steps allowed us to immunoprecipitate 

increased amounts of chromatin bound nuclear GATA1  (data not shown). Next, I 

tested the optimal antibody concentration for immunoprecipitation of GATA1 in MEL 

cells. Using a protocol to mildly separate cytoplasmic from nuclear fraction, we could 

achieve enrichment of nuclear signal (Figure 36B) 218. However, standard mild 

nuclear lysis, including sonication and benzonase treatment, was not able to fully free 

GATA1 off the chromatin. We then prepared nuclear extracts from control and Vav1-

iCre;Nsd1fl/fl differentiating proerythroblasts and first checked the expression of some 

of the best studied GATA1 complex members. As expected, GATA1 protein levels 

were significantly increased in Vav1-iCre;Nsd1fl/fl cells compared to Nsd1fl/fl controls.  
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FIGURE 36. Immunoprecipitation of GATA1.  

(A) Schematic depiction of elected complex members of GATA1. GATA1 forms a pentamer with FOG1, 

LMO2, LDB1, SCL and E2A, generally associated with activation of transcription. Moreover it can also 

form repressive complex, e.g. with ETO2. (B) Immunoprecipitation of GATA1 using N6 antibody in MEL 

cells. GATA1 was detected in western blot with D52H6 antibody. (C) Western Blot of nuclear extractions 

(10ug) of Nsd1fl/fl  and Vav1-iCre;Nsd1fl/fl erythroblasts for abundance of factors. (D) Immunoprecipitation 

of GATA1 using N6 antibody in Nsd1fl/fl  differentiating erythroblasts. GATA1 was detected in western 

blot with D52H6 antibody. (E) Immunoprecipitation of GATA1 using N6 antibody in Vav1-iCre;Nsd1fl/fl 

differentiating erythroblasts. GATA1 was detected in western blot with D52H6 antibody.   
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Interestingly, protein levels of the activating complex such as SCL, LDB1 and 

E2A were decreased and repressing complex member ETO2 was increased in Vav1-

iCre;Nsd1fl/fl nuclear extracts (Figure 36C). Using the optimized conditions, we aimed 

to precipitate GATA1 in differentiating control erythroblasts. However, we were not 

able to pull down enough protein to perform qualitative analysis of the complexes. 

Most of the protein was lost in cytoplasmic extracts or appeared to be tightly bound to 

chromatin (Figure 36D & data not shown). Unfortunately, control cells are not as 

stable in liquid culture as Vav1-iCre;Nsd1fl/fl erythroblasts therefore yielding first lower 

cell numbers and second smaller cells during differentiation and therefore less 

protein for further analysis. Next we decided to use only Vav1-iCre;Nsd1fl/fl cells, that 

express higher GATA1 protein levels. We could successfully pull- down GATA1 in 

these cells (Figure 36E). As we miss the appropriate controls for this experiment we 

are currently exploring MEL cells with Nsd1 knockdown to dissect the influence of the 

GATA1-complex (ongoing). Taken together, our observations suggest that the 

absence of Nsd1 results in formation of an aberrant GATA1 containing complex: 

establishing efficient immunoprecipitation protocols will help to dissect these 

complexes in MEL cells (ongoing).   
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FIGURE 37. Retroviral overexpression of full-length and NSD1 mutants in pro- erythroblasts of 

diseased Vav1-iCre;Nsd1fl/fl mice. 

(A) Schematic depiction of experimental setup using lineage depleted bone marrow cells of Vav1-

iCre;Nsd1fl/fl that were kept in maintenance medium for more than six days to create stable ESRE cells. 

Cells were transduced in maintenance medium with pMSCV-pgk-puro-IRES-GFP, pMSCV-mNsd1-pgk-

puro-IRES-GFP, pMSCV-mNsd1-ΔNID-pgk-puro-IRES-GFP, pMSCV-mNsd1- ΔNID /Setmut-pgk-puro-

IRES-GFP and pMSCV-mNsd1-Setmut-pgk-puro-IRES-GFP constructs, EGFP+ cells sorted and kept 

under puromycin selection in methylcellulose M3434. (B) Percentage of EGFP+ cell population two days 

after pMSCV-pgk-puro-IRES-GFP or pMSCV-mNsd1-pgk-puro-IRES-GFP transduction of Vav1-

iCre;Nsd1fl/fl ESRE cells. (C) Relative number of colonies formed in methylcellulose M3434 of Vav1-

iCre;Nsd1fl/fl ESRE cells transduced with mNsd1 wildtype and mutants compared to mock transfected 

cells. (D) Quantitative real time PCR of Nsd1 exon 5 after transduction of ESRE cells with mNsd1 

wildtype and mutants. Ct values were normalized to Gapdh expression and shown as relative 

expression using 1/dCt method (n=2). Data presented as mean, error bars represent ±SD. 
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4.3.16 Attempts to rescue erythroid differentiation of Vav1-ICre;Nsd1fl/fl  

erythroblasts by overexression of Nsd1  
 

To demonstrate that blocked erythroid differentiation in Vav1-iCre;Nsd1fl/fl  cells is 

indeed the direct consequence of the lack of Nsd1 we tried to restore its activity by 

expression of wildtype or different Nsd1 mutants. We have generated retroviral 

constructs (pMSCV) expressing full-length Nsd1 and mutants lacking either the 

nuclear receptor interacting domain (NID), the SET domain or both. Proerythroblasts 

kept in maintenance culture for more than six days were transduced with either the 

empty vector (pMSCV-pgk-puro-IRES-EGFP = mock) or full-length Nsd1 or the 

different mutants: mNsd1-ΔNID, mNsd1-ΔNID/ΔSETmut or mNsd1-ΔSET. We 

selected transduced cells with puromycin selected and plated sorted EGFP+ cells into 

methylcellulose (Figure 37A). Although we observed a decent transduction efficiency 

of about 20% with to control vector, transduction with any of the Nsd1 constructs was 

very poor reaching less than 1% (=1500 living EGFP+ cells per 106 starting cells) 

(Figure 37B). The size of the Nsd1 cDNA of about 8000bp seemed to significantly 

impair generation of viral particles. Nevertheless plating the small number of selected 

cells revealed significantly reduced colony formation upon transduction of wildtype or 

mutant Nsd1 compared to mock transduced cells (Figure 37C). Albeit the limitation 

of the small number of cells, it seemed that cells formed more colonies when 

transduced with the mutant than the wild type Nsd1 expressing virus. Quantitative 

RT-PCR revealed higher Nsd1 expression in transduced cells compared to controls 

(Figure 37D). Although limited by poor viral gene transfer these observation indicate 

that overexpression of Nsd1 significantly impairs colony formation of Vav1-

iCre;Nsd1fl/fl  proerythroblasts. Further work by expressing smaller truncation mutants 

might be necessary to dissect the critical domains that are responsible for the effects.  
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4.3.17 Absence of Nsd1 alters global histone marks  
 

Nsd1 has been previously characterized as a lysine methyltransferase of histone 3 

(H3K36me1/2) and linker histone H1, particularly on H1.5-K168. Whether Nsd1 also 

methylates H4K20 remains controversial (Figure 38A) 183,184. Comparison of global 

histone alterations by western blotting of hematopoietic cells from diseased Vav-

iCre;Nsd1fl/fl mice to normal littermates revealed significant reduction of H3K36me1-3. 

Whereas the global H3K9me3 mark was reduced, the H3K4me2/3 activation marks 

were slightly increased (Figure 38B). To exclude that the observed differences are 

the consequence of different cellular composition due to severe tumor infiltration we 

also determined histone marks in CD71+ cells (enriched by magnetic beads) and 

found marked reduction of H3K36me2 and H3K9me2 (data not shown). To confirm 

altered histone methylation, we applied flow cytometry analysis and found 30% 

decrease of H3K36me1 and 60% decrease of H3K36me2 marks in lineage depleted 

bone marrow cells (Figure 38C&D). Moreover using H3K36me1 antibody on histone 

1 we could also show a reduction of H1.5K168 methylation in Vav-iCre;Nsd1fl/fl cells 

(Figure 38E&F).  

In an attempt to dissect differential lysine methylation in Vav1-iCre;Nsd1fl/fl  cells 

we performed SDS-PAGE of cytoplasmic, nuclear and histone extracts of 

proerythroblasts grown in maintenance medium and probed the membranes with 

antibodies recognizing mono- or di/tri-methylated proteins (kind gift of A. Peters, FMI; 
219). Histone extracts did not show overall changes in mono- or di/tri- methylation 

(Figure 38G). However we observed increased signals for mono-methylated proteins 

55-72 kDa and decreased bands between 43 and 55 kDa in Vav1-iCre;Nsd1fl/fl 

proerythroblasts compared to Nsd1fl/fl controls (Figure 38H). The blot for di/tri- 

methylation showed additional signals between 72- 130kDa and below 55kDa in 

cytoplasmic extracts and increase of signal around 55kDa in nuclear extracts (Figure 

38I). Taken together, our data shows that absence of Nsd1 significantly alters 

posttranslational modification of its proposed histone substrates. In addition, the 

absence of Nsd1 may also influence protein methylation in cytoplasm and nucleus 

beyond histones. The nature of these substrates and whether Nsd1 directly regulates 

some of them remains to be investigated.  
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FIGURE 38. Global histone methylation in spleen and erythroblasts of Vav1-iCre;Nsd1fl/fl mice.  

(A) Schematic depiction of NSD1 histone methylation. (B) Western blot analysis of histone extracts 

obtained from spleen tissue of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice. Blots were probed with antibodies 

recognizing lysine mono- (me1) di- (me2) and tri- (me3) methylation on histone 3 and 4 (H3K36, H3K4, 

H3K9, H4K20). Histone 3 was used as loading control. (C) Relative signal intensity of lysine 36 mono 

and di- methylation on histone 3 (H3K36me1, H3K36me2) in lineage depleted bone marrow cells of 

Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice. Unstained cells and secondary antibody only were used as 

negative controls, histone 3 as normalization control to calculate (D) relative signal intensity as 

percentage of histone 3 loading to quantify signal strength (n=1). (E) Relative signal of histone 1.5 lysine 

168 mono- methylation (H1.5K168me1) using antibody against histone 3 lysine 36 mono- methylation in 

spleen tissue of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice. Signal was normalized to Ponceau stained 

membrane as loading control and Nsd1fl/fl. H3K36me1 was used as technical control (n=2). (F) 

Representative image of histone 1.5 lysine 168 mono- methylation (H1.5K168me1) using antibody 

against histone 3 lysine 36 mono- methylation in spleen tissue of Nsd1fl/fl and Vav1-iCre;Nsd1fl/fl mice. 

Signal was normalized to Ponceau stained membrane as loading control. (G) Western Blot analysis of 

mono- and di/tri- lysine- methylation of Nsd1fl/fl  and Vav1-iCre;Nsd1fl/fl ESRE cells in maintenance 

medium in histone acid extracts, as well as in (H-I) cytoplasmic and nuclear extracts.  
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4.3.18 The NSD1 SET domain methylates GATA1 lysine residues 245, 

246 and 308 on a peptide array 
 

There is increasing evidence that NSD1 is able to methylate not only lysine residues 

of histones, but also of non- histone proteins 184,185. We therefore asked whether the 

increased GATA1 protein levels observed in proerythroblasts lacking Nsd1 might be 

linked to aberrant methylation of its lysine residues (blue marks, Figure 39A). To 

address this question, we first performed in vitro methylation analysis of GATA1 

peptides (spotted on a membrane) covering 9 pre- chosen lysine residues and found 

that the NSD1-SET domain was able to methylate a sequence located between the 

N- and C- finger domain (Figure 39B). We next aimed to dissect the whole GATA1 

structure by designing 15-amino acid alternating peptides throughout the whole 

protein sequence and could not only confirm methylation of that N/C- interspacing 

region (K245, K246 and K252) but also identify another region behind the C finger 

(K308, K312, K314, K315 and K316) (Figure 39C). We next aimed to repeat rescue 

experiments in the Vav1-iCre;Nsd1fl/fl proerythroblasts and cloned GATA1 K246A and 

K252A (lysine to alanine mutations) into pMSCV. Both mutants were able to rescue 

aberrant colony formation as well as liquid differentiation of Vav1-iCre;Nsd1fl/fl 

proerythroblasts to the same extent than GATA1 WT transduced cells (Figure 39D-

F). We also cloned GST-GATA1 fusions: however the NSD1-SET domain seemed 

unable to methylate recombinant GATA1 (whereas significant methylation of H1.5 (= 

control) was observed (not shown, performed by S. Kudithiphudi, Stuttgart). So far 

we could not confirm or exclude methylation of GATA1 or one of its complex partners 

regulating erythroid differentiation (ETO2, LBD1, LMO2, E2A).  
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FIGURE 39. Analysis of GATA1 lysine methylation by NSD1.  

(A) FASTA protein structure and accession details of murine GATA1. N- finger is highlighted in pink, C- 

finger in green and lysines in blue. (B) In vitro peptide methylation assay using NSD1 Set domain on 

membrane with peptide spots of selected lysine- containing structures of GATA1. (C) Summary of in 

vitro peptide methylation and alanine scan assay using NSD1 Set domain on membrane with peptide 

spots of entire GATA1 protein sequence. (D) Relative number of colonies formed in M3434 

methylcellulose by Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red bar) ESRE cells, kept for more than 

six days in maintenance medium, transduced in “maintenance medium with pMSCV-pgk-puro, pMSCV-

mGata1-pgk-puro, pMSCV-mGata1-K246A-pgk-puro, or pMSCV-mGata1-K252A-pgk-puro. (n=4/group. 

ANOVA with Turkeys multiple comparison test. ** p>0.01). (E) Representative images of colony 

formation in M3434 methylcellulose by 5.000 plated Nsd1fl/fl  (upper row) and Vav1-iCre;Nsd1fl/fl (lower 

row) ESRE cells, kept for more than six days in maintenance medium, transduced in “maintenance 

medium with pMSCV-pgk-puro, pMSCV-mGata1-pgk-puro, pMSCV-mGata1-K246A-pgk-puro or 

pMSCV-mGata1-K252A-pgk-puro (from left to right column). (F) Percentage forward scatter (FSC) 

negative cell population measured by flow cytometry in Nsd1fl/fl  (black bar) and Vav1-iCre;Nsd1fl/fl (red 

bar) ESRE cells, kept for more than six days in maintenance medium, transduced in “maintenance 

medium with pMSCV-pgk-puro, pMSCV-mGata1-pgk-puro, pMSCV-mGata1-K246A-pgk-puro or 

pMSCV-mGata1-K252A-pgk-puro (n=3/group. ANOVA with Turkeys multiple comparison test. * p>0.05). 

Data presented as mean, error bars represent ±SD. 
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4.3.19 Reduced NSD1 expression impairs in vitro differentiation of 

human HSCs 
 

Among the different hematopoietic lineages, erythropoiesis seems to be the one with 

the lowest degree of genetic homology between mouse and man 220. To exclude the 

possibility that the Nsd1 may only regulate murine hematopoiesis, we explored the 

effect of altered NSD1 expression for differentiation of human HSCs. CD34+/CD38- 

selected peripheral HSCs from three healthy donors were transduced with five 

lentiviral NSD1-miR-shRNA expression vectors and plated in methylcellulose favoring 

myeloid and erythroid differentiation. Transduction with three (353, 369, 372) out of 5 

NSD1 knockdown vectors resulted in reduced number of colonies compared to GFP 

or mock miR-shRNA transduced cells in the first plate. Interestingly, upon replating of 

the cells we observed the formation of multiple abnormally dense and rather large red 

colonies formed by erythroid progenitors only in the cells expressing the NSD1 miR-

shRNA 353 and 372 but not in the control or miR-shRNA 369 (Figure 40A&B). 

Despite several attempts, we were unable to grow these cells beyond the 2nd plate 

(data not shown). Abnormal colony growth was associated with a significant 

reduction of NSD1 mRNA expression in shRNA 353 and 372 (Figure 40C). We 

decided to continue with miR-shRNA 372 giving us the most efficient knockdown, 

increased colony formation in second plating and therefore sufficient cells to analyze 

(Figure 40D-F). Cytospin preparations of colonies showed in contrast to the control 

composed of mostly monocytic cells, mainly erythroid progenitors (Figure 40G). Flow 

cytometry analysis of colonies confirmed erythroid differentiation by presence of 

CD71+ and glycophorin A+ (GPA) cells increased particularly in the second plating 

(Figure 40H). Quantitative real time PCR confirmed knockdown of NSD1mRNA 

below 50% in the second plating (Figure 40I). Very similar results were obtained 

upon NSD1 knockdown in cord blood-derived CD34+ HSCs (data not shown). This 

data suggests that reduction of NSD1 not only impairs erythroid differentiation of 

mouse but also of human HSCs.  
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FIGURE 40. Effects of NSD1 knockdown in human peripheral CD34+ HSCs. 

(A) Total number of colonies formed in methylcellulose H4434 by CD34+ cells obtained from peripheral 

blood of healthy donors transduced in Stemline medium with pCMV-EGFP-pgk, pLKO.1 mock shRNA 

(shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 353, 369 or 372 after first (n=5) and second plating (n=2 

except for 369 n=1). (B) Representative images of first and second plating in methylcellulose H4434 

CD34+ cells obtained from peripheral blood of healthy donors transduced in Stemline medium with 

pCMV-EGFP-pgk, pLKO.1 mock shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 353, 369 or 

372. (C) Quantitative real time PCR of NSD1 in CD34+ cells obtained from peripheral blood of healthy 

donors transduced in Stemline medium with pCMV-EGFP-pgk, pLKO.1 mock shRNA (shRNA Ctrl) or 

pLKO.1 shRNA targeting NSD1 353, 369 or 372 after first plating. Bars represent average relative 

expression normalized to GAPDH and shRNA Ctrl transduced cells (n=1). (D) Total number of colonies 

formed in methylcellulose H4434 by CD34+ cells obtained from peripheral blood of healthy donors 

transduced in Stemline medium with pLKO.1 mock shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting 

NSD1 372 after first and second plating (n=5). (E) Total number of cells formed by colonies in 

methylcellulose H4434 by CD34+ cells obtained from peripheral blood of healthy donors transduced in 

Stemline medium with pLKO.1 mock shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 372 after 

first and second plating (n=5). (F) Representative images of first and second plating in methylcellulose 

H4434 CD34+ cells obtained from peripheral blood of healthy donors transduced in Stemline medium 

with pCMV-EGFP-pgk, pLKO.1 mock shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 353, 369 

or 372. (G) Representative images of colonies HE- stained resuspended cells formed in methylcellulose 

H4434 by CD34+ cells obtained from peripheral blood of healthy donors transduced in Stemline medium 

with pLKO.1 mock shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 372 after first plating. (H) 

Flow cytometry histograms depicting CD71 and glycophorin A (GPA) marker expression in CD34+ cells 

obtained from peripheral blood of healthy donors transduced in Stemline medium with pLKO.1 mock 

shRNA (shRNA Ctrl) or pLKO.1 shRNA targeting NSD1 372 after first and second plating. (I) 

Quantitative real time PCR of NSD1 in CD34+ cells obtained from peripheral blood of healthy donors 

transduced in Stemline medium with pLKO.1 mock shRNA or pLKO.1 shRNA targeting NSD1 372 after 

first and second plating. Bars represent average relative expression normalized to GAPDH and shRNA 

Ctrl transduced cells (n=5). Data presented as mean, error bars represent ±SD.  
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FIGURE 41. GATA1 mRNA AND PROTEIN EXPRESSION IN HUMAN LEUKEMIC CELL LINES. (A) 

Western blot analysis of GATA1 protein nuclear expression levels in CD34+ cells obtained from 

peripheral blood of healthy donors transduced in Stemline medium with pLKO.1 mock shRNA (shRNA 

Ctrl) or pLKO.1 shRNA targeting NSD1 372 after first and second plating. LAMIN-A/C was used as 

nuclear loading control. (B) Quantitative real time PCR of GATA1 in CD34+ cells obtained from 

peripheral blood of healthy donors and human leukemic cell lines. Ct values were normalized to GAPDH 

expression and shown as relative expression using 1/dCt method. MOLM13 cell line was used as 

biological negative control for GATA1 (n=1-2). (C) Western blot analysis of GATA1 protein nuclear 

expression levels in CD34+ cells obtained from peripheral blood of healthy donors and human leukemic 

cell lines. MOLM13 cell line was used as biological negative control and LAMIN-A/C was used as 

nuclear loading control.  

  



 161 

4.3.20 GATA1 in human leukemic cell lines 
 

Finally, we aimed to test whether like in erythroblasts from Vav1-iCre;Nsd1fl/fl  mice, 

NSD1 knockdown in human HSCs would also result in changes of GATA1 

expression. Western blot analysis of methylcellulose-derived cells revealed 

significantly increased of GATA1 protein expression in Nsd1 knockdown cells 

(Figure 41A). Since AEL is a rare disease with very limited access to primary cells 

we also determined GATA1 protein expression in 4 erythroleukemia cell lines with an 

erythroid phenotype 221. Interestingly, all AEL cell lines did show increased levels of 

Gata1 mRNA and protein compared to another AML cell line (MOLM13) and control 

cells (CD34+) (Figure 41B-C). We are currently aiming to amplify patient AEL cells in 

immunocompromised mice to address NSD1 and GATA1 protein expression. So far, 

we were able to show that similar to the phenotype in leukemic erythroblasts derived 

of Vav1-iCre;Nsd1fl/fl mice, human AEL cell lines also express significantly increased 

levels of GATA1, whether GATA1 is responsible for the differentiation block remains 

to be studied.  
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FIGURE 42. mRNA expression of NSD family members in Nsd1fl/fl mouse models and human 

leukemia samples.  

(A) Quantitative real time PCR of Nsd1 exon 5, Nsd2 and Nsd3 in Nsd1fl/fl respectively Vav1-iCre;Nsd1fl/fl 

bone marrow samples of asymptomatic (n=6 resp. n=9), (B) diseased (n=13 resp. n=10) and (C) spleen 

(n=7 resp. n=4) samples of diseased mice. (D) Quantitative real time PCR of Nsd1 exon 5, Nsd2 and 

Nsd3 in bone marrow samples of Nsd1fl/fl  (black bars), Scl-iCre;Nsd1fl/l (light purple bar) and 

Mx1;iCre;Nsd1fl/fl (dark purple bar). Murine samples were normalized to Gapdh and control mouse 

tissue. (E) Quantitative real time PCR of NSD1, (F) NSD2 and (G) NSD3 in human AEL patient derived 

samples (n=1). Human samples were normalized to GAPDH and four healthy donor derived CD34+ 

cells. Values are shown as relative expression using 2-ddcT method. (H) Table containing information 

regarding AEL patient diagnosis and blast content. Data presented as mean, error bars represent ±SD.  
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4.3.21 Does the lack of Nsd1 results in compensatory regulation of other 

Nsd family members?  
 

As the other Nsd family members Nsd2 and Nsd3 seem to have at least partially 

overlapping histone substrates to Nsd1 we wondered whether the lack of Nsd1 would 

result in compensatory upregulation of the other family members. We first compared 

Nsd2 and Nsd3 mRNA levels in BM and spleen tissue of asymptomatic and diseased 

Vav1-iCre;Nsd1fl/fl  with Nsd1fl/fl  control mice by RT-PCR. Interestingly, we found that 

expression of Nsd2 and Nsd3 was on average higher in all tissues, but not 

statistically significant due to the high inter-individual differences between samples 

(Figure 42A-C). We tried to correlate disease severity (spleen weight) with gene 

expression but did also not obtain any significant correlation (data not shown). We 

also tested bone marrow of Mx1-iCre and Scl-iCre;Nsd1fl/fl mice and did not observe 

significant changes in gene expression of Nsd2 and Nsd3 (Figure 42D).  

We wondered whether we might also be able to detect aberrant NSD1-3 

expression in cells from AEL patients. Hereby we obtained BM cell pellets and/or 

cDNA of 8 cases of MDS/AEL. The degree of infiltration varied significantly between 

different patients (Figure 42H). We compared NSD1-3 mRNA levels to the average 

of RNA pooled from CD34+ cells four healthy donor CD34+ cells. We found 

decreased NSD1 mRNA levels in 4/8 patients (Figure 42E). One AEL patient had 

NSD1 levels below 50% (AEL patient 6). There was no strict correlation between 

lower levels of NSD1 and higher levels of NSD2 and NSD3. Interestingly, 2/8 patients 

seemed to express even higher levels of NSD1. Nevertheless some AEL patients 

had increased levels of NSD2 (4/8) and NSD3 (4/8) (Figure 42F&G). Although very 

limited by the heterogeneity of the samples, this analysis suggests aberrant 

expression of NSD1-3 in human leukemic disorders. However, we found no clear 

correlation between low NSD1 expression and AEL.   
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4.4 DISCUSSION  
 

4.4.1 Ablation of Nsd1 impaired erythroid maturation during late fetal 
hematopoiesis  

 

To study the role of Nsd1 in normal hematopoiesis, we constitutively inactivated the 

gene in the blood forming system of the mouse using the Vav1-iCre transgenic 

ablator strain (Figure 12). Activation of Vav1-iCre starts in fetal liver starting at 

around E12.5-13.5 205,222. In addition we intercrossed the targeted Nsd1fl/fl mice to 

transgenic strains (Mx1-iCre and Scl-iCreER) to conditionally inactivate the gene 

during adult hematopoiesis. In Vav1-iCre;Nsd1fl/fl mice, the floxed Nsd1 exon 5 was 

almost completely excised (as measured by RT-PCR) in fetal and adult tissue 

(Figures 12 & 27). In contrast, activation of Mx1-iCre and Scl-iCreER;Nsd1fl/fl by 

repetitive injection of poly-(pIC) and Tamoxifen respectively did not significantly 

reduce the floxed allele sequence in peripheral blood cells (Figures 25 & 26). 

However, the relative expression levels of Nsd1 exon 5 mRNA were reduced to 1-

10% in the BM of all models (Figure 42). It is tempting to speculate that the PCR of 

peripheral blood cells does not fully reflect the ablation status of the BM stem- and 

progenitor cells. Peripheral blood after red blood cell lysis contains mostly platelets 

and differentiated white blood cells of the myeloid (15% of WBC) and lymphoid (80% 

of WBC) lineage while erythrocytes and reticulocytes are destroyed during the lysis 

process, and platelets do not contain DNA. Therefore the signal of the cleavage PCR 

largely results from lymphoid cells. Red blood cell lysed BM contains in physiological 

situations approximately 55% Mac-1/Gr-1+ myeloid progenitor cells, 20% B220+ B 

cells, 10% CD71+ erythroblasts, 5% CD3+ T cells and 0.5% CD41+ Megakaryocytes. 

Only 1.5% are myeloid progenitors and 0.1% are stem cells (= total 92%). Moreover, 

memory immune cells can survive a long time in the periphery without being affected 

by bone marrow constitution 223,224. Therefore, it remains to be investigated whether 

Nsd1 was fully ablated in all hematopoietic cells in Mx1- and Scl-iCre;Nsd1fl/fl mice.  

In contrast, in Vav1-iCre;Nsd1fl/fl mice with complete excision of the floxed Nsd1 

alleles we already observed a significant accumulation of erythroid progenitor cells 

during fetal liver hematopoiesis (Figure 27), progressing into a malignant AEL- like 

phenotype in adult mice at around 12 weeks after birth (Figure 13). Defective 

hematopoiesis was reflected by aberrant surface marker expression and blood 



 166 

counts in the peripheral blood of diseased mice whereas the counts in conditional 

ablators remained largely stable (Figures 13, 14, 25 & 26). Nevertheless, some 

signs of defective erythropoietic maturation were observed in the periphery in all 

models, but not found in the BM of induced Mx1- and Scl-iCreER mice (Figures 13, 

25 & 26). Mx1- and Scl-iCreER mice also did not develop any disease symptoms 

within a year of observation. For this reason, one could speculate that Nsd1 plays a 

critical role during fetal liver hematopoiesis and ablation in a certain window of 

opportunity might be necessary to induce observed phenotype. As outlined earlier, 

HSC maintenance and erythroblast island formation are major processes of fetal liver 

hematopoiesis (Figure 1). Interestingly, the phenotype in Vav1-iCre;Nsd1fl/fl mice 

starts to develop during fetal liver hematopoiesis, but needs about 12 weeks (=adult 

hematopoiesis in mouse) to propagate into a symptomatic and ultimately lethal 

disease. Future experiments will compare the effect of conditional Nsd1 ablation on 

the number of HSC in vivo and erythroblast maturation in vitro.  

Investigating mRNA expression, we could not find sufficient indices for a 

potential upregulation of other NSD family members, NSD2 and NSD3, in 

hematopoietic cells (Figure 42). Whole bone marrow extracts revealed increased 

mRNA expression of Nsd2 and Nsd3 in some Vav1-iCre;Nsd1fl/fl mice with a high 

deviation. Remarkably, higher expression was mostly seen in spleen cells of 

diseased animals. Importantly, gene expression signatures of LSK, MEP and GMP 

that were derived of bone marrow of diseased mice did not reveal expression 

changes. Moreover, we found global decrease in histone methylation suggesting that 

NSD2 and NSD3 do not have redundant roles in hematopoiesis (Figure 38). 

 

 

4.4.2 Ablation of Nsd1 resulted in an AEL-like phenotype 
 

All Vav1-iCre;Nsd1fl/fl mice with constitutive inactivation of Nsd1 starting during fetal 

liver hematopoiesis developed a lethal disease characterized by hepato-

splenomegaly, multi-organ infiltration as well as thrombocytopenia (Figures 13 & 

14). The mice also had a significantly reduced number of HSCs and accumulation of 

CD71dim/+/TER119- erythroid progenitor cells (Figures 14 & 16). Expansion and 

aberrant in vitro clonogenic activity of Nsd1 null erythroid progenitors was EPO- and 
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SCF- dependent (Figure 15). In addition, the disease phenotype could be transferred 

to irradiated recipients by transplanting BM of Vav1-iCre;Nsd1fl/fl (Figure 17). 

Vav1-iCre;Nsd1fl/fl proerythroblasts accumulating in diseased mice showed 

many similarities to cells derived from one of the earliest AEL model that was 

published in 1957 by Charlotte Friend. She described a murine retroviral model 

involving the “Friend” virus, which is a complex of the Friend Spleen focus virus 

(SFFV) and a replication- competent Friend murine leukemia virus (F-MuLV) 87,225. In 

this model, accumulation of erythroblasts, called “erythroblastosis”, developed as 

early as 10 days after injection of the virus. The SFFV produces a p55 glycoprotein  

(gp55) that binds to the Epo receptor (EpoR) and to the short form of the stem cell 

kinase receptor (sf-STK) 226. This results in EPO-independent proliferation 

orchestrated through activation of JAK/STAT signaling. The second step of the 

disease is marked by a block in differentiation due to integration of long terminal 

repeat (LTR) transcriptional enhancers of the SFFV into the promoter region of Spi1 

(spleen focus forming virus proviral integration site 1) encoding for the PU.1 

transcription factor 225,227. In addition, the F-MuLV has been shown to integrate into 

the Fli-1 gene causing AEL with a latency of six weeks 228,229.  

Several stable “Friend” mouse erythroleukemia cell lines (MEL) have been derived of 

which the MEL cell clone 745-PC–4 is the most commonly used one (often simply 

referred as MEL cells) 230. These cells expresses aberrantly high PU.1 protein levels 

but also very high levels GATA1 protein (Figure 30 & 31) 208. Multiple studies have 

suggested that PU.1 most likely physically binds to and functionally interferes with 

GATA1 resulting in impaired activation of GATA1 targets that are necessary for 

terminal erythroid maturation 25,27,67–69,89,231,232. However, the reason for the aberrant 

high level of GATA1 protein remains unknown. 

Due to the discovery of retroviral integration of SFFV into the Spi-1 locus, a Spi-1 

transgenic mouse model was developed. About 50% of mice overexpressing SFFV-

LTR driven Spi-1 developed erythroleukemia between 1.5 and 6 month after birth. 

The disease was characterized by anemia, proerythroblast accumulation and 

splenomegaly. Later, proerythroblasts seemed to autonomously expand due to 

activating mutations in stem cell factor receptor c-kit 88. Important to note is the fact 

that neither viral integrations nor c-kit mutations are molecular hallmarks of human 

AEL 233,234. 

Interestingly, the group of Dan Tenen could identify a –14-kb upstream regulatory 

region (URE) in the Spi-1 locus that regulates its expression. If ablated, PU.1 protein 
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expression decreased to 20% of its normal levels and resulted AML, but not AEL in a 

transgenic mouse model. Interestingly, retroviral overexpression of Spi-1 could 

rescue the myeloid differentiation block of the cells 91,235. Another group 

demonstrated that a fraction of mice lacking the gene for the lymphoid specific 

helicase (Lsh, also known as HELLS) developed erythroleukemia. Lsh is a member 

of the SNF2 chromatin remodeling family and involved in de novo DNA methylation. 

Interestingly, the lack of Lsh was associated with hypomethylation at repetitive 

sequences and retroviral elements within gene locus. Moreover, the authors found in 

Lsh deficient mice decreased levels of Dnmt3b binding at the Pu.1 gene locus finally 

resulting in moderately elevated PU.1 protein levels 236. In addition, Li et al. could 

demonstrate that PU.1 protein overexpression through retroviral overexpression of 

miR-92a is involved in development of murine erythroleukemia 237.  

Next to the above-mentioned mouse models, avian leukemia viruses have 

been described to cause erythroid leukemia-like and sarcoma phenotypes in chicken. 

Hereby, the viral oncogenic counterparts for v- Myb and -Ets (in the E26 virus strain) 

or ErbA and ErbB proto-oncogenes (in the avian erythroblastosis virus strain) could 

be identified as the driver of leukemogenic transformation. When E26 was used to 

infect chicken, it caused mixed erythro- myeloid leukemia and resulting EPO-

dependent cell lines resembled erythroid precursors 238. Interestingly, infection of IL3-

dependent murine cell lines with murine E26 (ME26) induced Gata1 mRNA 

expression suggesting involvement in the blocked maturation phenotype 228. 

In another transgenic mouse model, expression of the human c-myc proto-

oncogene under the control of Gata1 promoter elements caused rapid onset 

erythroleukemia, The EMY cell line obtained from diseased mice also expresses high 

GATA1 protein levels 239. In addition, another group reported occurrence of GATA1- 

expressing erythroleukemic cells derived of Zeta-Globin-V-Harvey-Ras transgenic 

mice 240.  

Male Gata1 knockout embryos die during gestation due to defective 

erythropoiesis and accumulation of cells at the proerythoblast stage 39. However, 

genetic modification of the murine Gata1 locus in female mice, leading to 5% of 

normal expression, resulted in an AEL- like phenotype with 50% penetrance after a 

rather long latency of median 143 days. Similar to Nsd1 null mice, these so-called 

“Gata11.05/X” transgenic mice accumulated CD71+/TER119-/c-Kit+ erythroid blast in 

multiple organs. In addition, the erythroid differentiation arrest could also be restored 

upon retroviral overexpression of Gata1 73. In addition to the above-mentioned 
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models, other genetically modified mouse lines have been reported to develop an 

erythroleukemia-like phenotype. Interestingly, in most of the models aberrant 

expression of GATA1 and/or PU.1 was observed (Table 10).  

 

There are several particular features of the Vav1-iCre;Nsd1fl/fl AEL mouse model to 

be discussed. First of all, 100% of the mice lacking Nsd1 develop the AEL- like 

phenotype. To date, all mice developed symptoms/signs of disease after a median 

latency of 85 days with anemia, reticulocytosis, hepato-splenomegaly with multi-

organ infiltration of CD71dim/+/ TER119-/ c-Kit+ expressing cells (Figure 13 & 14). Our 

experiments suggest that the disease in Vav1-iCre;Nsd1fl/fl mice originates from cells 

of the Lin-/c-Kit+ and most probably CD71-/dim compartment going along with previous 

reports suggesting that the target cell for leukemic transformation is a very early c-kit-

positive erythroid precursor that does not express fully CD71 or TER119 at all (Table 

10, Figure 18). Notably, at this developmental stage of erythroid maturation, GATA1 

signaling is essential to induce erythroid maturation of progenitors 70. Hereby, GATA1 

increases the expression levels of the EPO receptor (EPO-R) starting at late CFU- E 

stage serving as enhancer signal once EPO is produced due to hypoxia signals in 

the body 241,242. Binding of the EPO-R transmits signals via the JAK2/STAT pathway 

resulting in upregulation of multiple target genes including the transferrin receptor 

CD71, the survival protein BCL2L1, hemoglobin and other drivers of erythroid 

maturation. Since proliferation and in vitro colony formation of Nsd1 null 

proerythroblasts was fully depended on EPO, we concluded that these cells were 

arrested in a maturation stadium between BFU-E and CFU-E (Figures 15 & 30).  

As previously described, acute leukemia is the product of a differentiation 

block combined with a proliferative advantage of hematopoietic stem and progenitor 

cells (Figure 7). Based on the published models we conclude that the AEL 

phenotype in mice is characterized by a blocked erythroid differentiation resulting in 

accumulation of erythroblasts, that were often EPO- dependent. The differentiation 

block is caused by aberrant expression or action of transcription factors involved in 

myelo- erythroid differentiation pathways. Moreover, some groups reported 

secondary events such as loss of tumor suppressor p53 or activating c- Kit mutations 

providing a growth advantage to the cells 243.  In conclusion, our observations 

collectively suggest that Vav1-iCre;Nsd1fl/fl mice developed a phenotype resembling 

human acute erythroleukemia (AEL) in many aspects. 
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Table 10 Acute Erythroleukemia Mouse Models. 

 
Category Model Phenotype REF 

Avian Leukemia 

Viruses 
E26 (Myb-Ets Encoding) AEL & Sarcoma In Chicken 238 

 
AEV (Mutated Erb-A/B) AEL & Sarcoma In Chicken 244 

Murine 

Retroviruses 
Friend Virus (SFFV, F-Mulv) Erythroblastosis & AEL 87 

 
Graffi (Gv1.4) Murine Retrovirus AEL & AMKL 245 

Transgenic Mice Gata1-Cmyc Tg AEL 239 

 
Pu.1/Spi Tg AEL 225 

 
Gata1 KO Proerythroblast arrest 246 

 
Zeta-Globin-V-Ha-Ras Tg AEL 240 

 

Spi1 Knockdown Tg 

(Ablation Of Distal Enhancer) 

AML (Myeloblast) & T-Cell 

Lymphoma 
91 

 
GATA1-1.05/X Tg AEL & ALL 73 

 
Lsh KO AEL 247 

 
VavCre+;Asxl1fl/fl MPN/MDS 248 

Non- transgenic 

mice 
ERG (Mscv-LTR, BMT) 

Lymphoid Leukemia/ 

Erythro-Megakaryocyte 

Leukemia 

249 

miRNA Mir-19a; Mir-92a (LTR, BMT) B- Cell Hyperplasia, AEL 237 

Exogenous 

Factors 
X- Rays (300rad) C3H Mice Transplantable AEL 250 
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4.4.3 The lack of Nsd1 altered protein levels of several key erythoid 

transcription factors  
 

To obtain mechanistic insights into the AEL-like phenotype in Vav1-iCre;Nsd1fl/fl  mice 

we compared genetic signatures of flow-sorted hematopoietic stem and progenitor 

cells (LSK, MEP, GMP). Hereby we found reduced Gata1 mRNA expression levels in 

Vav1-iCre;Nsd1fl/fl LSK compared to littermate controls (Figure 28). We also found 

that Vav1-iCre;Nsd1fl/fl  proerythroblasts expressed lower Gata1 mRNA levels and 

were significantly impaired in regulation of GATA1 target genes linked to erythroid 

maturation (Figures 30 & 34). Strikingly, GATA1 protein was constitutively 

expressed at high levels in these cells (Figures 29 & 30). Even more surprisingly, we 

found that retroviral overexpression of a full-length mGata1 cDNA was able to 

complete erythroid maturation in Vav1-iCre;Nsd1fl/fl proerthroblasts (Figures 32-36). 

Several previous studies have shown that GATA1 forms activating and repressing 

multi-protein complexes that act as master regulators of transcription of genes for 

erythroid maturation 63,65,66. GATA1 has different functions depending on the 

interaction partners and the cell context. Interaction with SCL, E2A, LDB1 and LMO2 

results in formation of a pentameric activating complex occupying regulatory 

elements of erythroid differentiation-associated genes 32,63,65,66. Interestingly, we 

found decreased amounts of SCL, E2A and LDB1 protein in nuclear extracts of Vav1-

iCre;Nsd1fl/fl proerythroblasts (Figure 36). GATA1 has also been described to form 

repressive complexes in which the ETO2 protein seems to be a central interaction 

partner 65,251. ETO2, also called CBFA2T3 or MTG16, is a transcriptional co-

repressor protein that does not bind to DNA, but recruits HDACs to chromatin 252–254. 

Interestingly, we found significantly increased ETO2 protein levels in pro- 

erythroblasts and differentiating erythroblasts 255. As we found several GATA1 target 

genes to be properly down regulated during induced erythroid maturation suggests 

preferred formation of such a repressive complex in absence of NSD1 (Figure 34). In 

addition, gene set enrichment analysis (GSEA) of the expression signatures from 

Nsd1 null stem and progenitor cells (LSKs) revealed some correlation with up- and 

downregulated genes in stem and progenitor cells reported in Eto2 knockout mice 

again suggesting activity of such a repressive complex containing ETO2 and GATA1 

(Figure 35). To provide formal proof of concept we are currently performing 

immunoprecipitation experiments to demonstrate interaction of GATA1 and ETO2 in 

presence and absence of Nsd1. In addition, we will determine the impact of 
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overexpression and down regulation of GATA1/ETO2 on complex formation and 

target gene expression. Although we were not able to experimentally close the ring 

yet, our data so far suggests that the absence of Nsd1 leads to aberrant formation of 

GATA1 containing complexes favoring repressive over active conformations.     

The links of blocked erythroid differentiation and AEL in Nsd1-null mice to 

ETO2 is particularly interesting as ETO2 has been identified being involved in a 

chromosomal translocation t(1;16)(p31;q24) present as sole cytogenetic abnormality 

in rare cases of pediatric AEL 256. This translocation leads to expression of a fusion 

between nuclear factor IA (NFIA) and ETO2. NFIA has been previously characterized 

as a transcriptional regulator of erythro-megakaryoblastic fate of BM-derived cells. It 

is upregulated during erythroid differentiation whereas it remains low in granulocytes 
257. In addition, ETO2 was also found in a translocation t(11;21)(q24;q22) leading to 

expression of a RUNX1/ETO2 fusion which seems to support leukemogenesis by 

blocking differentiation through transcriptional repression of RUNX1 target genes in 

rare cases of AML 258. ETO2 is also rearranged by an Inv(16)(p13.3q24.3) leading to 

expression of an ETO2-GLIS2 fusion in pediatric patients with acute 

megakaryoblastic leukemia (AMKL) 259. These data suggest that aberrant formation 

of ETO2 and/or GATA1 complexes are key regulators of normal and malignant 

erythro-megakaryocytic differentiation.  

We found aberrantly high constitutive GATA1 protein levels in human CD34+ 

HSC blocked at the proerythroblastic stage after shRNA-mediated knockdown of 

NSD1 but also in human AEL cell lines suggesting a common mechanism. Whether 

the cells also express high ETO2 levels and form aberrant GATA1 complexes is 

currently under investigation. Ultimately we will perform chromatin 

immunoprecipitation (ChIP) experiments to quantify differences in genome DNA 

binding properties of GATA1 and ETO2. However, this still leaves us with the 

question, how the lack of Nsd1 results in aberrant GATA1 and ETO2 protein 

accumulation and complex formation. 
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4.4.4 Is non-histone protein methylation by NSD1 involved in blocked 

erythroid differentiation and AEL?  
 

An increasing number of methyltransferases that were initially found as histone 

modifiers seem to also recognize non-histone proteins as substrates 184,185. Very 

recently, another H3-K36 histone methyltransferase SETD2 (also known as HYPB or 

KMT3A) was proposed to play a dual role in chromatin as well as cytoskeletal 

remodeling through methylation of alpha-tubulin at lysine 40. Interestingly, the same 

lysine mark can also be acetylated in the context of microtubule organization. The 

authors could demonstrate that methylation of alpha-tubulin mainly takes place 

during mitosis and cytokinesis and ablation of the enzyme caused severe 

cytoskeletal problems 260.  

Aberrant constitutive high level GATA1 protein expression led us to think 

about non- histone methylation in the Vav1-iCre;Nsd1fl/f mouse model. We used 

peptide arrays and alanine-scans to identify three potential methylation sites (K245, 

K246 and K308) of GATA1 (Figure 39). Whether the SET domain of NSD1 

methylates the full-length protein in vivo remains to be investigated. First attempts 

using GST-GATA1 fusions did not confirm methylation by the NSD1 SET domain in 

vitro (not shown). However, the GST-Tag might interfere with the conformation of the 

protein and/or the bacterially produced protein might lack critical glycosylation. We 

therefore plan to use reticulocyte lysates expressing GATA1 to be used as a 

substrate for recombinant NSD1. Alternatively, we could co-express both proteins in 

cells of the erythroid lineage, however, some preliminary experiments revealed very 

poor overexpression of the Nsd1 cDNA of >8kB by retroviral vectors. Nevertheless 

we will try to transiently co-express Nsd1 and Gata1 by CMV-driven expression 

vectors in HEK-293 or COS cells to address protein interaction and potential 

methylation.  

Methylation of GATA1 and its potential functional impact have not been 

reported so far. Based on other examples, one could speculate about a complex 

interplay between methylation and several signaling pathways. It has been previously 

described e.g. for the tumor suppressor p53 protein that lysine methylation might 

serve as a signal for other post- translational modifications, influence protein- protein 

interaction, change the stability of the protein, change its cellular localization or 

change binding to certain promoters 180. The identified potentially NSD1-methylated 

lysine residues in GATA1 are highly conserved among species and were previously 
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shown to serve as binding sites for transcriptional co-activators like CBP and p300. 

Therefore one could speculate that methylation interferes with acetylation and 

activation of GATA1 58,261,262. Interestingly, in this regard was the previous 

observation that the transcriptional co-regulator bromodomain containing protein 3 

(BRD3) recognizes acetylated GATA1 to be recruited to chromatin and to facilitate 

erythroid target gene expression 263. In a first trial experiment, we observed increased 

BRD3 levels in nuclear extracts derived of Vav1-iCre;Nsd1fl/fl erythroblast (not 

shown). Whether the increased levels result from unbound BRD3 to chromatin 

remains to be investigated.   

We also observed overall significantly altered protein methylation profile in the 

nucleus as well as in the cytoplasm of Vav1-iCre;Nsd1fl/f proerythroblasts compared 

to normal controls (Figure 38). For future studies, it would be interesting to identify 

the nature of these mono or di/tri-methylated proteins and characterize those that are 

directly methylated by NSD1. Our collaborators Kudithipudhi et al. found that the zinc 

finger and BTB domain-containing protein 16 (ZBTB16, also known as PLZF) is a 

direct target of NSD1 methylation in HEK-293 cells 184. Interestingly, this protein was 

previously shown to interact with GATA1 and also linked to platelet regulation by 

induction of Tpo receptor (TpoR) 264. We found PLZF mRNA significantly 

downregulated in Vav1-iCre;Nsd1fl/fl LSK cells (data not shown). Whether PLZF is 

differentially regulated at the protein level in Vav1-iCre;Nsd1fl/f  differentially regulated 

remains to be investigated. It also remains to be studied whether PLZF is methylated 

in murine erythroblasts or other hematopoietic cells. A major obstacle hereby is to 

isolate nuclear proteins in a way to preserve extraction of histone proteins since 

antibodies preferentially bind methylated histones or to optimize the protocol to 

subtract histone methylation signals (Figure 38). 
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4.4.5 Altered histone methylation upon ablation of Nsd1 
 

We found a global reduction of histone H3K36 methylation in Vav1-iCre;Nsd1fl/f 

proerythroblasts. In addition we saw a reduction of H3K9me3 and an increase of 

H3K4me2/3 histone marks suggesting a globally increased transcriptional activity 

(Figure 38). Previous reports suggested that NSD1 mainly methylates H3K36me1/2 

and H1.5K168 histones residues 183,184,186,187. However, the observed significant 

reduction of the H3K36me3 marks suggests that the lack of the mono- and di-

methylation marks set by NSD1 will clearly impair adding the tri-methylation marks by 

SETD2/HYPB. In fact, it has been experimentally demonstrated that H3K36me1 and 

me2 are needed as substrates in order to set the me3 mark 183. The biological 

significance of H3K36 methylation is not fully understood. Decreased di- methylation 

was found on transcriptionally silent chromatin and increased levels at open reading 

frames. In general, this mark has been associated with transcriptional elongation and 

therefore marks actively transcribed genes 265. Moreover, H3K36me3 levels have 

been shown to play an important role in cell cycle transition, DNA repair and to 

maintain genomic stability 266–269. Recurrent SETD2 mutations have been reported in 

various hematological malignancies (including AML) but also in solid cancer resulting 

in a loss-of-function and therefore decreased H3K36me3 levels 270. Interestingly, the 

H3K36me3 is recognized by the PWWP domain of DNA methyltransferases like 

DNMT3 (Figure 43) 271. In fact, ES cells lacking SETD2 show decreased H3K36me3 

levels and impaired recruitment of DNMT3B1 to active genes 272. In addition, 

DNMT3A was also shown to have high affinity for H3K36me3 in vitro 151. Both 

DNMT3A and -B have been shown to interact with PU.1 by forming a complex 

involved in de novo methylation of DNA and regulation of transcription 273. Therefore, 

one could speculate that decreased H3K36me3 methylation initiated by ablation of 

Nsd1 also influences DNMT3 binding and thereby prevents DNA methylation. This 

hypothesis would imply that certain loci remain unmethylated and therefore "open". 

Supporting this hypothesis is the observation that in blood samples of SOTOS 

patients (that bear heterozygous most likely dominant-negative acting mutations of 

NSD1), decreased genome-wide DNA methylation at promoter regions was observed 
274. These data implies to further study DNA methylation in Vav1-iCre;Nsd1fl/fl in an 

unbiased way taking advantage of whole genome bisulfite sequencing approaches. 

Depending on the research question to be answered, it would be advisable to aim for 

a stable model generating large amount of material to optimize and reproduce data. 
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A potential model could be embryonic stem (ES) cells obtained from our conditional 

Nsd1 knockout mice that can be induced into different hematopoietic and also non- 

hematopoietic lineages using published protocols 275–277. 

Moreover, it remains to be elucidated whether NSD1 binds to particular gene loci to 

regulate transcription. Interestingly, NSD1 was found within the nucleus, but excluded 

from nucleoli and condensed heterochromatin suggesting a role in chromatin 

remodeling 169. Therefore ChIP would be beneficial to investigate direct 

consequences. However, as there are actually no commercially available reliable 

ChIP-grade antibodies, we have taken advantage of a “homemade” anti-NSD1 

antibody (kind gift of A. Peters, FMI Basel) that nicely recognizes the C terminus of 

NSD1 in Western blots. We are currently exploring the utility of this antibody for 

optimizing ChIP. Another direction would be to tag endogenous Nsd1 by genome 

editing using Crispr/Cas9. In fact, preliminary experiments by a colleague have 

provided proof of feasibility to add a triple FLAG tag at the C-terminus of the Nsd1 

ORF in MEL cells. Ultimately it would be important to study the consequence of Nsd1 

inactivation directly in fetal liver hematopoietic cells at different time points from 

E13.5 to E19.5 by comparing transcriptomes and Nsd1 binding to chromatin and 

related histone marks (ChIP). Furthermore it would be of interest to investigate and 

compare the DNA methylome, chromatin marks and transcriptomes of patient and 

mouse-derived AEL cells as it was done for SOTOS patients. 
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FIGURE 43. Hypothetical interplay between histone methylation and DNA methylation. Nsd1 

methylates H3K36, a mark being recognized by the PWWP domain of the DNA methyltransferase 3. 

DNMT3 in turn methylates DNA often occuring at CpG islands (=5mCpG). In absence of NSD1, missing 

mono- and di- methylation of H3K36 might result in missing H3k36me3 mark. DNMT3 is not recruited to 

the locus and does not methylate DNA.   
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4.4.6 Translation into human AEL 
 

4.4.6.1 Attempts to compare the Nsd1 KO model with human AEL 
 

AEL is classified in humans as AML- M6 accounting for less than 5% of all acute 

leukemia cases. The disease was first described by Guglielmo in 1917 and often 

referred as “di Guglielmo disease” 278. To date, the world health organization (WHO) 

classification recognizes three different forms of M6 based on the content of myelo- 

and proerythroblasts (Table 11) 279. Myeloblasts are immature blood cells, bearing 

the potential to differentiate into granulocytic lineage whereas proerythroblasts are 

progenitor cells of the erythroid lineage.  

 
TABLE 11. ACUTE ERYTHROLEUKEMIA SUBTYPE CLASSIFICATION 

 

FAB M6 Acute erythroleukemia > 50% of all nucleated cells 

     Myeloblasts/NEC Proerythroblasts/EC 
MDS < 30% < 30% 
M6A > 30% < 30% 
M6B < 30% > 30% 
M6C > 30% > 30% 

   
 

AEL can occur after MDS or chronic myeloproliferations, as therapy-related neoplasia 

but also de novo. Despite this very heterogeneous ontogenicity the diseases the 

patients display common features such as anemia, thrombocytopenia, 

hepatosplenomegaly and most importantly erythroblast infiltrations 233,280,281. In 

contrast to other AML subtypes, the underlying molecular cause of AEL is unknown 

and specific genetic aberrations phenocopying the disease have not been reported. 

Targeted sequencing studies revealed mutations in genes recurrently mutated in 

MDS or other AML subtypes, such as p53 or NPM1. Interestingly, mutations giving 

proliferative advantages, e.g. FLT3-ITD, are rarely detected 233,280. Very recently, two 

fusion genes have been reported to occur in childhood AEL, NFIA-CBFA2T3 

t(1;16)(p31;q24) and ZMYND8-RELA t(11;20)(p11;q11) 256.  

Important to note that in contrast to myelopoiesis, erythropoiesis significantly 

differs between mice and man 220,282. Nevertheless, our experiments in human CD34+ 

HSC clearly show that NSD1 is important for erythroid maturation in both species. 
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shRNA-mediated knockdown of NSD1 expression in CD34+ cells derived from 

peripheral or cord blood, or whole cord blood cells altered colony formation in 

methylcellulose resulting in accumulation of proerythroblastic colonies upon replating 

(Figure 40 & data not shown). So far, NSD1 mutations in AEL have not been 

reported. Comparison of NSD1 mRNA expression in 8 AEL patient samples revealed 

lower expression in some patients (Figure 42). This data might not be really 

representative, as information about the blast content of these samples was 

incomplete and ranged from 20 to 80%. Additionally, we sequenced the NSD1 cDNA 

in 10 AEL samples and did not find mutations (data not shown). NSD1 is located 

telomeric of the classical 5q- region being the most frequently found cytogenetic 

aberration MDS and AEL patients 283. Hence, the F-36P cell line derived from an AEL 

patient developed from previous MDS bearing a 5q deletion expressed very low 

levels of NSD1 (data not shown). Collectively, our data suggests that loss of NSD1 

might activate key epigenetic pathways of malignant erythroid transformation in 

absence of genetic mutations. It is also likely that the promoter region of NSD1 might 

be hypermethylated resulting in reduced expression in some AEL cases. Previous 

studies suggested that NSD1 might be target of aberrant hypermethylation in cancer 

leading to and reduced expression and increased clonogenic activity of 

neuroblastoma cells 179.  

In order to compare the AEL phenotype of Nsd1 null mice with the human 

disease we sequenced mRNA of whole BM samples of five diseased Vav1-

iCre;Nsd1fl/fl and three control mice. Gene expression signatures displayed clustering 

according to their genotype but were rather heterogeneous between samples (data 

not shown). We also compared these profiles with signatures derived from AEL 

patients which we obtained from Catherine Carmichael (Melbourne, Australia, 

unpublished) and Stefan Bohlander (Auckland, New Zealand) 284. However, we 

realized that the patient derived expression signatures were also very heterogeneous 

among each other, or did not contain appropriate controls, or they contained 

processed reads that could not be directly compared to our signatures. In order to 

overcome these limitations we started to collect samples worldwide (in collaboration 

with T. Mercher, Paris), to systematically determine the epigenomic landscape of a 

significant number of AEL patients. Taken together our data reveals a common 

underlying disease mechanism in mouse and human AEL that needs to be further 

investigated to elucidate the origin of very high GATA1 protein levels in these cells.  
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4.4.7 New hypotheses and experimental outlook 
 

4.4.7.1 GATA1 levels as regulator of erythroid fate decision 
 

Whether the increased protein levels of GATA1 in Vav1-iCre;Nsd1fl/fl mice are cause 

or consequence of accumulation of erythroid progenitor cells remains to be 

experimentally investigated. Interestingly, chromatin states seem to be set when cells 

undergo lineage decision for erythroid differentiation 285. Histone modifications hereby 

serve as fine- tuning signals rather than an on/off switch at specific gene loci. In this 

context, binding of transcription factors such as GATA1 (or GATA1-containing 

complexes) may by altered due to differential accessibility provided by aberrant 

histone marks and therefore do not properly act as decision makers for differentiation 
286. Hoppe et al. recently suggested that “other” upstream players, activated by 

extracellular signals primarily decide lineage fate (Figure 44) 46. We therefore plan to 

intercross the Vav1-iCre;Nsd1fl/fl  mice with the GATA1-mCherry reporter mouse line 

to be able to directly track expression changes of the protein during fetal 

development and in different lineages.  

 
FIGURE 44 GATA1 AS THE DOWNSTREAM EXECUTER? 
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4.4.7.2 Indications for cell-non autonomous components of the AEL 

phenotype in Vav1-iCre;Nsd1fl/fl  mice?  
 

In physiological situations, the spleen displays regions of white and red pulp, filled 

with lymphocytes and erythrocytes respectively. In case of "stress", erythropoiesis is 

activated in the spleen, a process called extra-medullary erythropoiesis 287. It has 

been recognized that special macrophages primarily residing in the spleen form 

"islands" to support erythroblast maturation (Figure 45). These erythroid islands 

have been also found during fetal liver hematopoiesis 7. Surprisingly, heavily 

symptomatic Vav1-iCre;Nsd1fl/fl mice presented with a hypocellular BM, but their 

spleens were up to 16 times larger than found in littermate controls. Hereby the 

spleen morphology was completely disrupted by massive infiltration of CD71dim 

erythroblasts. Although erythrocyte maturation was impaired as reflected by reduced 

red blood cell counts and hemoglobin values, the mice were still able to produce 

small and hypochromic erythrocytes (Figure 13).  

 

 
FIGURE 45 ERYTHROID ISLAND. Immature erythroblasts form an island with macrophages to enforce 

maturation into erythrocytes.  
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In addition to the blocked erythroblast differentiation, we observed an early 

reduction of HSC starting in fetal liver that resulted in loss of about 80% of HSC in the 

BM of young asymptomatic mice. Concomitantly lower numbers of GMP were 

present in the BM of these mice. At the same time, we found an unknown c-Kit+/Sca-

1+/CD34-/FcγRII/III+ expressing population suggesting a blockage at GMP/MEP 

bifurcation (Figures 16, 23). Moreover, transcription factors involved in lineage 

decision execution such as GATA1 and PU.1 were abnormally regulated (Figure 28).  

Previous studies have suggested that interference with the interaction 

between macrophages and erythroblasts can affect erythroid differentiation. Mice 

deficient of retinoblastoma (Rb) tumor suppressor protein, develop anemia and die in 

utero. It has been suggested that both the intrinsic defects in erythroblasts as well as 

macrophage insufficiency may contribute to this phenotype 288. In macrophages, Rb 

seems to counteract inhibition of PU.1 to ensure macrophage differentiation 67. In 

erythroblasts, Rb binds to GATA1 directly and is responsible for erythroid maturation. 

Therefore a dual mechanism contributes to disease development 289. It remains to be 

investigated whether and how macrophages may contribute to the phenotype we 

observed in Vav1-iCre;Nsd1fl/fl mice. We plan to compare the macrophage content in 

BM and spleen, to isolate erythroid islands and to isolate island-forming 

macrophages and erythroblast to dissect cell (non)-autonomous contribution. A 

potential involvement of macrophages is of special interest in regard of potential 

novel therapies for AEL 290.   
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4.4.7.3 Mechanistic insights from the Vav1-iCre;Nsd1fl/fl  mouse model for 

future AEL-selective therapies?  
 

Erythroblasts from Vav1-iCre;Nsd1fl/fl  mice expressed constitutively high GATA1 

protein levels, and strikingly, overexpression of Gata1 induced terminal maturation of 

the cells. This picture resembles the Friend virus-induced AEL phenotypes including 

the MEL cell line derived from these mice. Importantly, knockdown of NSD1 in human 

CD34+ HSC also resulted in increased GATA1 protein levels. In addition, we found 

that all human AEL cell lines that we were able to investigate expressed higher 

GATA1 protein levels than other AML cell lines suggesting that aberrant GATA1 

protein levels may play a critical role for development and maintenance of the 

disease (Figure 46). Current treatment of AEL is rarely curative and consists of DNA 

demethylating agents (such as 5-azacytitidine) with or without chemotherapy 291. 

Interestingly, DNA demethylating agents were also proposed for the treatment of 

SOTOS syndrome since the degree of NSD1 associated silencing through DNA 

methylation was associated with poorer prognosis for patients 179. 

Interestingly, a recent study reported aberrant CpG hypermethylation of the GATA1 

gene promoter in BM samples from MDS patients. Whereas in control cells Gata1 

was downregulated during erythroid differentiation correlating with gene expression 

on mRNA level, MDS samples expressed low GATA1 mRNA expression. The reason 

for the aberrant promoter methylation remained unknown 292. 

These observation let me to explore the activity of hypomethylating agents 

such as 5- azacytidine on colony forming and replating potential as well as in vitro 

differentiation of Vav1-iCre;Nsd1fl/fl erythroblasts. If cells would react to such a 

treatment, it would be interesting to dissect the specific DNA methylation changes 

that contribute to decreased leukemogenesis.   
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FIGURE 46. Constitutive high GATA1 protein levels: hallmark of nsd1-null erythroblasts but also 

human ael cell lines.  
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6.1 CHAPTER II. TARGETING EPIGENETIC 

REGULATORS OF LEUKEMIC CELLS BY 

SMALL MOLECULES  
 

6.1.1 Research project and working hypothesis 
 

Bromodomains (BRDs) are conserved protein interaction domains that recognize 

acetylated lysines, playing a pivotal role in chromatin remodeling and control of gene 

expression. Recently, our group and others have shown that bromodomains of the 

BET (bromo and extracellular domain) family have emerged as compelling targets for 

cancer therapy 293–296. The development of selective and potent BET inhibitors and 

their significant activity in diverse tumor models has rapidly translated into clinical 

studies (e.g. NCT01713582, access through clinicaltrials.gov) and has motivated 

drug development efforts targeting non-BET BRDs.  

We could report our work in 2015 in Cancer Research (see 297) on a selective 

and highly potent chemical probe compound targeting the bromodomains of the 

histone acetyl transferases CBP/p300. Our collaborators from the SGC in Oxford 

have developed the acetyl-lysine mimetic oxazepine inhibitor I-CBP112 binding to 

CBP/p300 with nanomolar affinity and good selectivity. Exposure of human and 

mouse leukemic cell lines to I-CBP112 resulted in substantially impaired colony 

formation and induced cellular differentiation without significant cytotoxicity. The 

compound significantly reduced the leukemia-initiating potential of MLL-AF9 bearing 

AML cells in a dose-dependent manner in vitro and in vivo. Interestingly, I-CBP112 

increased the cytotoxic activity of BET bromodomain inhibitor JQ1 as well as 

doxorubicin. Collectively, we could report the development and preclinical evaluation 

of a novel, potent inhibitor targeting CBP/p300 bromodomains that impairs aberrant 

self-renewal of leukemic cells.  
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6.1.2 Overall aim  
 

The complex multidomain/subunit architecture of bromodomain protein complexes 

complicates predictions of consequences of their pharmacological targeting. To 

address this issue, our collaborator has developed a promiscuous bromodomain 

inhibitor (bromosporine) that broadly targets BRDs including BET with nanomolar 

affinity. Evaluation of bromosporine in BET- inhibitor sensitive and non-sensitive 

leukemic cell-lines revealed strong anti-proliferative activity in semi- solid medium in 

all of the tested lines. Moreover, sensitive leukemic cell lines such as MV4;11 

displayed a distinct anti- proliferative response. Cells treated with BSP and JQ1 (BET 

inhibitor) arrested in S- cell cycle phase suggesting a BET- mediated effect. 

Comparison of the modulation of transcriptional profiles by bromosporine at short 

inhibitor exposure resulted in a BET inhibitor signature but no significant additional 

changes in transcription that could account for inhibition of other BRDs.  Thus, non-

selective targeting of BRDs identified BETs, but not other BRDs, as master regulators 

of a context dependent primary transcription response (see 298). 

 

 

 

 

Both projects regarding the targeting of epigenetic regulators of leukemic cells by 

small molecules have been published in peer- reviewed journals: 

 

Picaud S*, Fedorov O*, Thanasopoulou A*, Leonards K*, et al.  (*equal contribution). 

Generation of a selective small molceule inhibitor of the CBP/p300 bromodomain for 

leukemia therapy. Cancer Res. 75, 5106-5120 (2015). 

 

Picaud S, Leonards K, et al.  Promiscuous targeting of bromodomains by 

Bromosporine identifies BET proteins as master regulators of primary transcription 

response in leukemia. Sci. Adv. 2, e1600760 (2016). 
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8 ABBREVIATIONS 
5mCpG 5- methyl cytosine- phosphatidyl- guanosine island 
ACK Ammonium Chloride Potassium 
AEL acute erythroleukemia 
AF activation function 
AGM aorta–gonad–mesonephros 
ALL acute lymphoblastic leukemia 
AML acute myeloid leukemia 
AR androgen receptor 
ASH2L Ash2 (Absent, Small, Or Homeotic)-Like (Drosophila) 
ATRA all- trans retinoic acid  
Bcl2l1 BCL2 like 1 
BET Bromodomain and Extra-Terminal motif 
BFU-E Burst forming unit- erythroid 
BM Bone marrow 
BMP4 bone morphogenic protein 4 
BRD Bromodomain 
BSP Bromosporine 
C/EBPα CCAAT/enhancer binding protein 
CBFA2T3 CBFA2/RUNX1 Translocation Partner 3 
CBP cAMP- responsive element - binding protein 
CD cluster of differentiation 
CDK-1 cyclin dependent kinase inhibitor 1 
CFU-E Colony forming unit- erythroid 
CFU-G/M Colony forming unit- granulocyte/macrophage 
ChIP chromatin immuneprecipitation 
ChIP-Seq chromatin immuneprecipitation Sequencing 
CLP common lymphoid progenitors 
CMP common myeloid progenitors 
CN cytogenetically normal  
DAPI 4′,6-Diamidin-2-phenylindol 
DBD DNA binding domain 
DNA Desoxyribonucleic acid 
DNMT DNA (Cytosine-5-)-Methyltransferase  

DS-AMKL Down’s syndrome-related acute megakaryocytic leukemia 

DTT 1,4-Dithiothreitol 
E embryonic day 
E2A Transcription Factor 3  
EDTA diaminoethanetetraaceticacid 
EGFP Enhanced green fluorescent protein 

EGTA Ethylenglycol-bis(aminoethylether)-N,N,N′,N′-tetra acetic acid 

EMSA electrophoretic mobility shift assay 
EMT epithelial- mesenchymal- transition 
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EPO Erythropoietin 
EPOR Erythropoietin receptor 
EryD definitive erythroid precursor 
EryP primitive erythroid precursor 
ES embryonic stem cells 
ESRE Extensive self renewing erythroblast 
ETS E-Twenty-Six 
F-MuLV Friend murine leukemia virus 
FAB French- American- British 
FcγR Fc gamma receptor 
FG phenylalanine- glycine 
FLT3-ITD FMS-like tyrosine kinase-3 internal tandem duplication 
FOG1 Friend of GATA1 
G1HE hematopoietic enhancer element in GATA1 
GATA1-s shorter GATA1 isoform 
GFI1B Growth Factor Independent 1B Transcription Repressor 
GM-CSF granulocyte- macrophage colony stimulating factor 
GMP granulocyte- macrophage progenitors 
GNAT Gcn5 N-acetyltransferases 
H&E hematoxylin and eosin 
H3 Histone 3 
HAT histone acetyltransferases 
HCl Hydrochloric acid 
HDAC histone deacetylases 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HGB hemoglobin 
HIF1α hypoxia inducible factor 1 alpha 
HIF1β hypoxia inducible factor 1 beta 
HMG high mobility group 
HMT histone methyltransferases 
HOX homeobox 
HP1 Heterochromatin Protein 1 
HSC hematopoietic stem cell 
i.p. intraperitoneal 
IE Erythroid alternative first exon of GATA1 
IG immunoglobuline 
IGF-1 Insulin like growth factor 1 
IT Testis alternative first exon of GATA1 
JAK2 Janus Kinase 2 
KCl Kalium chloride 
KLF1 Krüppel- like- factor 1 
LDB1 LIM Domain Binding 1 
LEDGF Lens-epithelial growth factor 
LIM Lin11, Isl-1, Mec-3 
LMO2 LIM Domain Only 2 
LS lineage marker-negative, C-KIT+/SCA-1- 
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LSH lymphoid specific helicase 
LSK lineage marker-negative, C-KIT+/SCA-1+ 
LT-HSC long- term repopulating stem cells 
LTR Long tandem repeat 
LUC Large unstained cells 
MDS myelodysplastic syndromes 
ME26 murine E26  
MEL murine erythroleukemia cell line 
Menin multiple endocrine neoplasia type 1 
MEP megakaryocyte- erythroid progenitors 
MK Megakaryocytes 
MLL1 mixed linage leukemia 1 
MPP multi-potent progenitors 
Mx1 MX Dynamin Like GTPase 1 
N-/C-finger N-C-terminal located zinc finger of GATA1 
NaCl Natrium chloride 
NF-E2 nuclear factor erythroid 2 
NFIA nuclear factor 1 A 
NID nuclear receptor- interacting binding domains 
NK Natural killer cell 
Npm1 Nucleophosmin 1 
NSD1 Nuclear Receptor Binding SET Domain Protein 1 
NUP98 nucleoporin 98 
PBS Phosphate buffered saline 
PCA Principal component analysis 
PCAF p300/CBP-associated factor 
PDS Plasma derived serum 
PFHMII Protein Free Hybridoma Medium II 
pgk phosphoglycerate kinase 
PHD plant homeodomain 
PLT platelet 
PML promyelocytic leukemia protein  
pMSCV Plasmid murine stem cell virus 
poly(I:C) polyinosinic:polycytidylic acid  
pRB Phosphorlytaed Retinoblastoma 1 
PWWP Pro-Trp-Trp-Pro 
RAR retinoid acid receptor alpha 
RARα retinoic acid receptor alpha  
RBBP5 Retinoblastoma Binding Protein 5 
RBC Red blood cells 
RNA ribonucleic acid 
RTC reticulocyte 
RUNX1 Runt- related transcription factor 1 
RXR retinoid X receptor gamma 
SCF stem cell factor 
SDF-1 Stromal cell-derived factor 1 
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SET Su(var)3-9, Enhancer-of-zeste, Trithorax 
SETD2 SET Domain Containing 2 

sf-STK stem cell kinase receptor 
SFFV Spleen Focus Forming Virus 
SPI-1 Spleen Focus Forming Virus Proviral Integration Oncogene 1 
ST-HSC short- tem repopulating stem cells 
STAT Signal Transducers and Activators of Transcription 
SUV39H Suppressor Of Variegation 3-9 Homolog 1 
TAD transactivating domain 
TAL1 T-Cell Acute Lymphocytic Leukemia 1 
TAL1=SCL T-Cell Acute Lymphocytic Leukemia 1 
TATA  TATAAA  
TF transcription factors 
TMD transient myeloproliferative disorder 
TPO Thrombopoietin 
TpoR Tpo receptor  
TR thyroid hormone receptor 
TSS transcriptional start sites 
TUNEL TdT-mediated dUTP-biotin nick end labeling 
Tx Tamoxifen 
WBC White blood cells 
WDR5 WD Repeat Domain 5 
WHSC1 Wolf-Hirschhorn Syndrome Candidate 1 
WHSCL1 Wolf-Hirschhorn Syndrome Candidate 1-Like 1 

xMELP expedited microsphere HpaII small fragment Enrichment by Ligation-
mediated PCR 

ZBTB16=PLZF Zinc finger and BTB domain-containing protein 16 
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02/2014 Oral presentation at Scientific Retreat of hematology groups, 

Engelberg, CH (1 CP) 
01/2014 Oral Presentation at Swiss Pediatric Oncology Group (SPOG) 

Meeting, Lugano, CH (1 CP) 
03/2013 Poster Presentation at Scientific Retreat of DBM PhD Students  

(1 CP) 
09/2013 First Poster Prize at Research Day of University Children`s 

Hospital Basel (UKBB), CH 
 
 
Attended lectures at University of Basel 
 

2015                Chromatin and Epigenetics. Pass. (2CP) 
2014 Turning ideas into innovations - The role of intellectual property 

rights in life sciences. Pass. (2CP) 
2014 Experimental Cancer Research: Clinical and Molecular Biology. 

Pass. (2CP) 
 
 
Scholarships and awards 
 
2016  Research Travel Grant, Brian Fowler Fond, UKBB Basel (CH) 
2015  Travel fund for young academic talent of University Basel 
2011/2012  Travel scholarship of the „Faculty of Health, Medicine and Life 

 Sciences“, Maastricht University 
2010/2011   Top 3% Students Award, Maastricht University 
2010/2011    Travel scholarship of the Dutch cancer society (KWF) 
2010/2011   Erasmus scholarship 
 
 
Language skills 
 
German    native 
English  fluent, B2 level, language of instruction (M. Sc.), working    
   language 
Dutch    fluent, NT2 State examination, Language of instruction (B.Sc.) 
French  basic knowledge 
 
 
Publications 
 
Picaud S*, Fedorov O*, Thanasopoulou A*, Leonards K* et al. Generation of a Selective Small 
Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res. 2015 Dec 
1;75(23). (* equal contribution)  

 
Picaud S, Leonards K et al. Promiscuous targeting of bromodomains by Bromosporine identifies 
BET proteins as master regulators of primary response in leukemia. Science Advances (accepted 
September 2016) 
 
 
Existing manuscript 
 
Leonards K et al. Loss of the nuclear receptor SET domain protein 1 (Nsd1) histone 

methyltransferase reduces the hematopoietic stem cell pool, blocks erythroid differentiation and 

induces erythroleukemia. 
 


