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Abstract

Over several decades interest has been devoted to the astronomical enigma of the
diffuse interstellar bands (DIBs). These are hundreds of absorption features of
interstellar origin seen in the spectra of stars with different strengths and widths
spread over the visible and near infrared (NIR). They are typically broader than
atomic lines and concluded to be of molecular nature. Polycyclic aromatic hydro-
carbons, long carbon-chain molecules, and fullerenes have been suspected as their

carriers.

Two of the DIBs showed coincident spectral features recorded in a neon matrix ex-
periment for the fullerene Cy. Embedding molecules in a solid matrix are known to
induce perturbations of the measured spectrum and consequently, the assignment
was classified as tentative. An unambiguous identification of a specific molecule
as a carrier can only be made upon measurements of its laboratory gas-phase
spectrum under similar conditions as they are present in the interstellar medium.
Nevertheless, the recent identification of the infrared signature of Cgy, Cdy and Crg
in the spectra of a protoplanetary and reflection nebula fueled their relevance as

possible candidates.

Optical and NIR spectroscopy of large molecules has strong demands on the em-
ployed method. Therefore, an existing apparatus was improved and a special
spectroscopic technique was thought. The heart of the experiment was a radio-
frequency ion trap in which a cryogenic bath of a neutral gas was created to con-
fine and prepare the ionic species for further investigations. Electronic gas-phase
spectra have been finally obtained by photofragmentation of weakly bound cation-
helium complexes, which enabled a confident confrontation with astronomical ob-
servations. In the case of Cfy, an unequivocal assignment of five DIBs has been
achieved, and thus, the first identification of a carrier almost 100 years after their

first detection.
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Space is big. You just won’t believe how vastly,
hugely, mind-bogglingly big it is. I mean, you
may think it’s a long way down the road to the

chemist’s, but that’s just peanuts to space.

Douglas Adams

Introduction

The space between stars or galaxies is not completely empty. The interstellar
medium (ISM) contains mainly gas but also dust, which coexist under different
physical conditions. Hydrogen and helium have been identified as the most abun-
dant elements, heavier atoms represent less than 2% as illustrated in a periodic
table of elements for astronomers shown in Figure [I.1} Interstellar gas and dust
aggregate to form interstellar clouds which absorb and scatter blue light more than
red, making the stars in the line-of-sight appear redder than they are. To reflect the
different local conditions mainly based on temperature and atomic hydrogen den-
sities, a classification in diffuse atomic, diffuse molecular, translucent, and dense
molecular has been made [1]. The formation of stars occurs in dense clouds, where
molecular hydrogen becomes more abundant. Heavier elements such as carbon,
nitrogen or oxygen are produced in their hot cores and are ejected into the sur-
roundings from the collapsing star at the end of its main life cycle. Depending on
the local environment, this allows a rich chemistry and the production of organic
materials in the ISM.

Since the first identification of molecules in the ISM, approximately ~ 200 have
been detected to be present in the ISM or circumstellar shells [2]. The detec-
tion mechanism utilizes spectroscopic methods as direct sampling is only possible
by probing meteoroids. An exception was the recent investigation of a comet’s
(67P /Churyumov—Gerasimenko) composition, when a special equipped module of
a space probe was dropped on the object [3]. However, most of the species in the
ISM are detected by radio, mirco- and millimeter-waves as they exhibit a perma-

nent dipole moment allowing a detection via their rotational spectrum.



Figure 1.1: Astronomers view on the periodic table of elements . Shown is
the relative abundance in parts per 10000. These values give e.g. indications for
requirements of interstellar chemical reactions.

1.1 The Diffuse Interstellar Bands

One of the biggest mysteries in astronomical spectroscopy are the diffuse interstel-
lar bands (DIBs). These are absorption features in the optical (VIS) and infrared
(IR) spectra of stars seen through interstellar clouds. They were first observed in
1921 by Mary Lea Heger [5], when she was studying the spectra of different stars
and later confirmed by Paul Merrill @ It was found that DIBs have to be of
interstellar origin, because their frequencies are not affected by Doppler broaden-
ing when the two stars in a binary system went through their orbits. Meanwhile
several hundred lines have been reported with a large spread in spectral charac-
teristics. Their full-widths-at-half-maximum (FWHM) range from less than 1 A to
30 A with different strengths. Some narrow DIBs show asymmetric profiles and/or

unresolved rotational contours, while others indicate natural linewidths m

Survey studies of the complete DIB spectrum in different regions of the ISM have
been examined in order to find correlations between the DIBs but led to little
success . Significant differences in density and UV flux determine the existence,
abundance and ionization stage of the corresponding carrier molecules and provide
several starting points for identification strategies [9H11]. Early hypotheses con-
sidered dust grains as carriers, but they have been discarded . Much attention



was also raised to the group of polycyclic aromatic hydrocarbons (PAHs) when
some of them were detected in diffuse and dark clouds in the IR [13|14]. These are
assumed to be the most abundant organic molecules in the ISM holding more than
15% of all cosmic carbon. In ionic form their electronic transitions are expected
in the visible spectrum with narrow lines [15H18]. A low ionization potential of
typically less than < 10eV and their photo-stability would even more favor them
as possible candidates. Protonated species of larger PAHs have been also added
to the list as they have similar properties [19, 20]. The most promising candidates
of carbon bearing molecules have been the cationic naphthalene, diacetylene, and
neutral HoCCC. An extensive discussion concluded that an unequivocal assignment

of these molecules is not feasible [21-27].

1.2 Fullerenes as Carriers of the DIBs

Fullerenes were suggested to be widely distributed in the ISM as outflows of car-
bon rich stars with low Hs abundance. They are a class of spherical, elliptical or
cylindrical molecules typically composed of linked six and five membered carbon
rings. Terrestrial abundances are limited to low concentrations and occurrences
are correlated with localized energetic events [28]. The name has been a homage
to Richard Buckminster Fuller because of the similarity to his geodesic domes as
shown in Figure [I.2] The most prominent one Cgp, also known as buckminster-
fullerene or buckyball, was discovered by Harold Kroto and coworkers in 1985 and

very shortly after he already proposed [29, 30]:

"The present observations indicate that Cgy might survive in the general
interstellar medium (probably as the ion Cg,) protected by its unique
ability to survive processes so drastic that, most if not all, other known

molecules are destroyed.”,

First laboratory spectra of Cgy became possible with the synthesis in macroscopic
quantities [32]. Comparisons of UV/VIS transitions to known DIBs have led to
negative results [33, [34]. Recently, the vibrational IR signature of Cgy has been
detected in protoplanetary and reflection nebula confirming its abundance in the
ISM [35-37].

In 1994, Bernhard Foing and Pascale Ehrenfreund assigned a pair of DIBs to Cg
based on their proximity to laboratory absorptions bands measured in a neon ma-

trix isolation experiment [38, [39]. In the following years, these two bands have
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(a) (b)

Figure 1.2: (a) One of the geodesic domes proposed and patented by R. Buckmin-
ster Fuller [31]. In comparison (b) the (truncated) icosahedral molecular structure
of Cgo with indicated () penta- and () hexagon ring.

been under permanent discussion because of several discrepancies in their spec-
trum, which is shown in Figure [1.3] The ground-based astronomical observations
have several constraints. For example, due to the earth’s atmosphere, strong and
variable absorption features in the near infrared (NIR) mainly caused by water
vapor require extensive corrections. On the laboratory side, embedding a molecule
in a solid environment leads to unpredictable significant perturbations to the spec-
trum of the probed species . Broadened lineshapes, shifted frequencies, and
the intensity ratios allowed only tentative conclusions. While the two DIBs have
been confirmed toward several lines-of-sight, a laboratory gas-phase spectrum of
C{o is still not available. Measurements of electronic transitions of possible carri-
ers have to be done under conditions comparable to the local environment in the
ISM. This desires cryogenic temperatures and a spectroscopic method allowing an

investigation of the candidate without influencing its absorption spectrum.
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Figure 1.3: Comparison of the electronic spectra Cg, measured in neon matrix
(upper trace) and the 9577/9632 DIBs recorded toward HD 183143 (lower trace).
The data was reproduced from Ref. |39, |42]

1.3 Motivation and Thesis Structure

A low temperature ion trap combined with mass spectrometry has been used for
preparing and spectroscopic probing fullerenes. Trapping methods have become an
important tool in the field of spectroscopy of cold molecular ions [41]. Long inter-
action times with photons provided by lasers can circumvent insufficient densities
of the investigated molecule. The cryogenic environment allows the attachment
of a weakly bound helium atom to the species of interest and was used to record
photofragmentation spectra of fullerene-helium complexes. Furthermore, the mes-
senger technique enabled the development of a novel method called laser induced

inhibition complex growth.

This thesis is structured in the following way: Chapter 2 provides insights in the
used techniques of ion motion in radio-frequency fields and a brief history about
spectroscopy together with relevant methods to probe ions. In Chapter 3 the appa-
ratus employed is described in detail with several aspects of operating conditions.
Two spectroscopic methods including a novel approach to measure electronics spec-

tra are studied in Chapter 4. The photofragmentation spectra of weakly bound



fullerene complexes are presented in Chapter 5 and discussed in the context of

astronomical observations of the DIBs, which is followed by an outlook.
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The aim of science is to make difficult things
understandable in a simpler way; the aim of
poetry is to state simple things in an

incomprehensible way.

Paul M. A. Dirac

Methodology

Spectroscopic studies of ions are intrinsically problematic. Apart from the suf-
ficient production of the species, a sensitive detection technique to record their
spectra is necessary. Ion trapping methods have evolved as a standard tool to
prepare molecular ions in a well-defined state [1, 2]. Parameters like storage time,
buffer gas density and trap temperature can be adjusted to the needs of the exper-
iment. Probing of even large molecules like proteins at low concentrations revealed

the capabilities of ion confinement combined with spectroscopy [3].

2.1 Ion Motion in Multipole RF-Fields

The force acting on a particle with charge ¢ in the presence of an electromagnetic
field and in the absence of any further perturbations (gravitation, collisions etc.)
is described by the Lorentz force

— — ’]%’ —
F =qE(7,t)+ — x B(7,t). (2.1)
c
The fields depend on the spatial and temporal coordinates of the particle. A
contribution of the magnetic term can be neglected as the velocities of atomic or
molecular ions are expected to be much slower than the speed of light. The electric

field E is described by Maxwell’s equations

v.E="L (2.2)
€0
and
V x E=0. (2.3)

The density p of charged particles is usually low and therefore, equation (2.2]) can

be simplified. The second equation states that E is the gradient of a scalar function
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Figure 2.1: (a) Part of the Mathieu stability diagram in (a,,q,) space for the
linear quadrupole (« = —f3,7 = 0). The region of simultaneous overlap allow z-
and y-stable conditions. The region at the cusp (()) of the mass selective mode is
enlarged in (b). Three different particles with m/z = 27 (A), 28 (e), and 29 (m)
are indicated with their positions in the diagram, all other parameters that define
(ay, qy) are kept the same. Only m/z = 28 exhibits x,y - confinement, while the
other two particles possess unstable trajectories.

P,
E=-Vo, (2.4)

and is derived from the generalized Coulomb law (see e.g. Ref.[4]). Equations ({2.4)
and ([2.2)) can be combined into one partial differential equation, Laplace’s equation

Vi = 0. (2.5)

Once the potential ® is known, the motion of a charged particle is expressed by

Newton’s equation of motion

F =mi=qVo. (2.6)

2.1.1 Mass Filtering in a Quadrupole

A quadrupole mass filter uses an oscillating radio-frequency field to selectively
transport ions of a specific mass-to-charge ratio. It is ideally constructed from four
electrically parallel hyperbolic cylindrical surfaces. An electric potential for this
case is given by

)
O(z,y,2) = 0

— (az® + By* +~27). (2.7)
To
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Parameters «, 8, and v are weighting constants for the three coordinates and r
defines the distance from the center of the trap to an electrode. The applied electric

potential ®; is a combination of a static and a time varying potential
Oy = Uy + Vj cos(Qt). (2.8)

The potential ® has to fulfill the Laplace’s equation (2.5 at every instant in time.
An important consequence is that no local three dimensional minimum in free space

can be generated. Furthermore, it is found that
a+p+v=0, (2.9)

from which various situations can be constructed. For a mass filter the choice will
be a = —f =1 and v = 0. These values lead to confinement in the x-y plane and

free motion in z direction. The equations of motion ({2.6|) are then decoupled

e
i+ — — Qt = 2.1
&+ i [Up — Vo cos(Qt)] 0 (2.10)
e
j — —= [Ug — W Qt =0 2.11
= 5 U~ Vacos(@0)] o 2.11)
z = 0. (2.12)
By substituting
Ot 8el, 4eVj
= = = 2.1

they can be transformed into the Mathieu differential equation

d*u

TCQ + [a’u - 2(]u COS(QC)] = O? (214)

where labels u represent one of the corresponding Cartesian coordinates. The
Mathieu equation belongs to the class of differential equations with periodic coeffi-
cients and their solutions are of two types: Periodic but unstable, and periodic and
stable. Parameters a and ¢ characterize stable trajectories of ion confinement and
the conditions for optimal mass selection. The operation of a quadrupole can be
visualized in a stability diagram as shown in (a) of Figure 2.1} In case of Uy = 0,
all ions irrespective of their mass to charge ratio are guided along the z-axis. By
adding a static potential, the region closer to the cusp of the triangle has to be
considered is shown in (b) of Figure 2.1l This is the region of the mass filtering

mode, where only specific m/z ratios provide simultaneous z, y- stable confinement.
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Figure 2.2: Trajectories of particles m/z = 27, 28, and 29 in the regions exhibit-
ing (a) y instability, (b) no instability, and (c) = instability. For all simulations
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Simulations of trajectories for particles using an ideal, infinitely long quadrupole
are shown in Figure . These are calculated for the three masses m/z = 27, 28,
and 29 as indicated in Figure (b).

2.1.2 TIon Trapping

Two different ion traps have been used for the experiments presented in this thesis,
a quadrupole and a 22-pole trap. For the former, the parameters in equation (2.7)

can be changed such that the potential is written as

P
qD('r?yv Z) = 70(1.2 - y2 - 222)7 (215)

T'o
which allows confinement in the z,y and z-direction. However, for higher order
multipoles the equations of motion in the time-dependent field are no longer de-
coupled and analytical solutions do not exist. The position of a particle 7(¢) can

be expressed by a composition of two motions [5]:

7(t) = Ro(t) + Ri(1). (2.16)



Ty
T
T

Ty

(a) (b)

Figure 2.3: Typical radial trajectory of an ion in a quadrupole (a) and a 22-pole (b)
simulated by integrating the equation of motion using a velocity verlet algorithm.

The second term defines a rapidly oscillating motion with amplitude A(t)

—

Ry(t) = A(t) cos(Qt). (2.17)

The first term is the contribution of a slow varying drift in the location of the
particle. A second order Taylor expansion for the electric field Ey(7(t)) yields for

the time averaged case the differential equation of a non-oscillating motion R}(t)

s ¢

mRy = 4mQ2VE§. (2.18)

Equation (2.18)) describes a charged particle that experiences a force which pushes
it toward weaker fields. By adding a static potential an equation is obtained which
is known as the effective or pseudo potential:

g3

‘/eff - A2 + q(I)static (219)

In a last step expressions for the components Ey and ®gatic have to be found. As
the problem obeys no z-dependence, the solutions can be described in plane polar

coordinates (7, ) and for the ideal multipole in two dimensions it has been shown
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that the effective potential is given by [5]

V= (@) (T)ZH. (2.20)

4mO2r2 \rg

From this formula it becomes obvious, that with increasing n large radial field-free

regions with steep walls can be achieved.

The total kinetic energy was assumed to be an adiabatic constant of the parti-
cle motion. Therefore, multipole stable and unstable conditions exist. Similar to
the (a,q) stability parameters for the quadrupole trap, an adiabaticity parameter

is introduced. This empirical quantity is derived to

n—2
n=2n(n — 1)qu‘§r% (;) . (2.21)
Stable confinement is obtained for n < 0.3 at a critical radius of ry.x/m0 < 0.8.
Two stable radial ion trajectories are shown in Figure for m/z = 28. Close to
the turning points, where the inhomogeneous field repels the ion, a micromotion
becomes visible. A region which is avoided by the ion trajectories is found in the
center. This is a consequence of the rotational symmetry of the potential, which

leads to conservation of angular momentum.

2.2 Buffer Gas Cooling of Ions

A major advantage of confined ions in traps is the possibility of relaxing the trans-
lational and internal degrees of freedom by collisions with a neutral buffer gas.

The velocity distribution of a gas is well represented by a Maxwell-Boltzmann

m \%/2 m
f(v) =4n (27rszT> v exp (— QkBTUQ) ) (2.22)

In ion traps, translational temperatures of buffer gas and ions usually deviate and

distribution

the distribution of the ensemble is approximated by two Maxwellians with temper-
atures 77 and T5. From this, a mass weighted collision temperature reflecting the

internal temperature of the ion can be estimated with [6]:
Tine = (ma - Ty +my - T2) /(M1 + ma). (2.23)

In order to achieve efficient cooling, the mass and temperature of the buffer gas
have to be low. For the presented experiments helium has been the first choice as it

fulfills these requirements. Additionally, it is chemically inert, has a high ionization
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threshold, and posses a high enough vapor pressure at cryogenic temperatures (Tom
< 10K) [7]. Depending on buffer gas densities achieved in the trap, sufficient
collisions are provided to equilibrate the internal temperature of the ion to that
of the buffer gas. This is a major advantage compared to cooling in supersonic
expansion. Especially in the case of large molecules it has been shown to be
inefficient of relaxing their internal energy [8]. With spectroscopic methods it is

possible to determine T}, if rotational resolution can be achieved.

2.3 Electronic Spectroscopy

The term spectrum goes back to the 17" century when Sir Isaac Newton described
the appearance of colors produced by narrow beam of sunlight passing a prism. In
1814 Joseph von Frauenhofer found that the dispersed solar spectrum observed by
Newton is congested with fine dark lines (Figure . The lines have not be seen
by Newton, as he used a pinhole instead of a slit before passing the prism offering
higher resolution. These were the first spectral lines observed and marked the be-
ginning of modern spectroscopy. Frauenhofer extended his experiments by using in
addition a telescope for investigating other interstellar objects establish astronom-
ical spectroscopy. Despite his many developments in optics such as the diffraction
grating, he did not understand the origin of the lines. Several scientists have in-
vestigated the spectra of sources like flames or arcs, and found that these sources
emit bright spectral lines, which were characteristic for the chemical elements in
the flame. A first theoretical description was provided by Gustav Kirchhoff, who
stated that the emitted and absorbed power of light at a given wavelength are the
same for all bodies at the same temperature. With this knowledge, Kirchhoff and
Robert W. Bunsen could explain the observed Frauenhofer lines by absorption of

a continuous spectrum emitted from the sun by the elements in the atmosphere.

A qualitative theoretical interpretation by classical considerations failed to explain
the observed absorption features and measured spectral densities of hot light emit-
ting objects. In 1900 Max Planck introduced the idea that light is absorbed and
emitted in discrete energy quanta. A single photon keeps an energy that is pro-

portional to its frequency multiplied with a constant
E = hv. (2.24)

This finding marked a new era in science as it was then possible to develop a new

theory named "Quantum Mechanics”. The time-dependent evolution of a quantum
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Figure 2.4: Stamp dedicated to the 200th birthday of Joseph von Frauenhofer.
Indicated is the solar spectrum with the Frauenhofer lines.

system is explained by a differential equation suggested by Erwin Schrodinger in
1926: .

HY = zha. (2.25)
The central concept of this equation is that of a wave function W. It describes a
system composed of NV particles in a certain state, where the classical deterministic
approach is replaced by expectation values. The probability of finding a particle

at a position 7 at a time ¢ is given by
p(7,t) = [W(7 1)), (2.26)

whose integral over the full space has to be 1 in order to fulfill the normalization

condition. For a particle of mass m in a potential V (7, t) equation ([2.25)) is written

— (h—28—2 + V(7 t)) (7 t) = z‘haw(ﬁ ) (2.27)

as
ot

and a general solution can be constructed by a linear combination of plane waves
U(r,t) = ciexp (—iEit/h) i (F). (2.28)
The result is obtained by the fact, that the probability (2.26)), as well as the ex-

pectation value of any time-independent operator A are time-independent. Only

certain values of F lead to normalizable solutions which are called eigenvalues of W.
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Thus, the state described by W is stationary although the particle it describes is not.

To find an analytical solution of equation for more than a single particle,
e.g. a diatomic molecule, is challenging as the nuclear and electronic motions are
coupled. However, in many situations it can be assumed that the wave function
depends only on a fixed position of the nuclei as the electron velocity is much faster.
This is called the Born-Oppenheimer approximation and allows an individual eval-
uation of their contributions using a product Ansatz for the wave function. If all
interactions between electrons and nuclei are neglected the total wave function is
given by

Wior = Tar(7) X Upe( R), (2.29)
with 7 and R as the position vector of the electron and nuclei, respectively. The
total energy of the system is determined by the sum of kinetic energy of nuclei and

the electronic energy and can be expressed by
E, = E(R) + Eyp(R) + Ewt(R), (2.30)

where n is the electronic state. Each electronic level has a set of vibrational lev-
els and each of these states have multiple rotational levels reflecting the internal
degrees of freedom of a molecule. This can be illustrated by the concept of the
potential energy surface along a certain nuclear axis as shown in Figure 2.5 for a
diatomic molecule. The energy spacing between vibrational levels in the quantum
harmonic oscillator is constant at hwg, whereas in a molecule the energy between
adjacent levels decreases with increasing v due to nonlinear oscillation. Rota-
tional absorption or emission lies in the microwave region of the electromagnetic
spectrum. The largest energies are between the rovibrational transitions of two
electronic states between NIR and the deep UV.

A molecular term symbol
AR, (2.31)

denotes the electronic state, similar to atomic ones, providing the information of
the total spin X, reflection symmetry (4), electronic parity (g/u) and projection
of the total angular momentum A. Moreover, the electronic states are labeled with
X for the ground state and A, B, C, ... for the excited states in ascending order of
energy. Molecules posses a variety of angular momenta which can couple to one
another and strongly influence the molecular energy level structure. A set of rules,

known as Hund’s cases, are used to determine the involved couplings |9]. For a fixed

19



rotational
levels

Figure 2.5: Schematic of a potential energy curve (=) for two electronic states X
and A of a diatomic molecule with indicated vibrational (—) and rotational levels
(=). The binding energy D, is larger than the dissociation energy Dy due to the
zero point energy of the lowest vibrational level (v” = 0).

distance between two atoms, R, the Hund’s cases are classified according to the
relative strengths of three basic interactions present in the molecular Hamiltonian.
These are the electrostatic coupling of the orbital angular momentum L to the
molecular axis, the coupling between L and the electron spin S, and the coupling
of L and S to the total angular momentum J. Five different cases (a-e) can be
derived from three different strengths (strong, intermediate, weak) of the couplings

defining a good set of quantum numbers.

2.3.1 The Franck-Condon Principle

The strength of an electronic transition is estimated in first order by the dipole

moment operator p and is proportional to

M= / AW dr = (" |, (2.32)

e

where the integration is over the electronic and nuclear coordinates. The total

dipole moment operator [i is the sum of nuclear and electronic dipole moment
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operators, and within the Born-Oppenheimer approximation

”U"|ﬂe1 + ﬂnu|elvl> (2.33)
~ (V") (" |l e} + (e”|e") (V"] funa] V) (2.34)

<€”U”|ﬂ‘€/’ul> _ <6

is valid. For simplification, the spin wave function has been neglected. The sec-
ond term vanishes as the electronic wave functions are orthonormal. The product
(v"|v") is defined as the overlap integral or Franck-Condon factor. A remaining
integral is the transition dipole moment and exhibits the orbital selection rule.
Therefore, the relative intensity of a transition between two vibrational states is

given by the square of the overlap integral.

For electronic transitions in absorption, the oscillator strength f,s. is used. It
is determined by the integral of the frequency dependent absorption cross-section

of an electronic transition

fose = 495 [ (). (2.35)

o2
For an absorption band with a Gaussian profile, f can be estimated by

€0MC 2
oAV — 2.
20 Av (1)’ (2.36)

fosc =2

where Av is the FWHM in Hz and o the absorption cross-section in m?. The di-
mensionless oscillator strength has a value between 0 and 1 and can be interpreted
as the ratio of the strength of the absorption/emission to the strength of a single

electron using a harmonic oscillator |10].

The previous discussions were only valid for diatomic molecules. In the case of
polyatomics, the treatment is more complicated. For totally symmetric vibrations
the principles are similar, except that one has to account for each normal mode. As
the electronic transition is assumed to be fast compared to the vibrational motion,

progressions appear in the spectrum upon geometrical changes.

2.3.2 Selection Rules

The transition between two states is constrained by selection rules. In general, the
integral in equation (2.32]) defines an ”allowed” electronic transition. In practice it

is sufficient to show that the direct product W 4V, spans the totally symmetric
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irreducible representation of the point group to which the molecule belongs
D(WA) % T(fr) x T(WL) = Aqry. (2.37)

Further selection rules are derived from the Hund’s coupling cases which include
total angular momentum and spin. If the spin-orbit coupling is not large (cases
a,b), the electronic spin wave function can be separated from the electronic wave
functions. As a result, the spin multiplicity should not change during the electronic

dipole transition and
AS = 0. (2.38)

2.4 Spectroscopic Methods

The techniques used to investigate the rotational, vibrational or electronic structure
of a molecule can be categorized in two classes. One is based on the attenuation
in light intensity following the principle of the well-known Beer-Lambert law and
is thus called direct methods. Indirect methods make use of all other phenomena
which can be observed as a consequence of photon absorption processes. These can
be, e.g., the emission of light as an internal relaxation process or the fragmentation
of a molecule. As light sources especially lasers have evolved as a standard tool.
They offer high spectral intensities and narrow linewidths. The availability of
ultrashort pulses including pulse shaping have enabled a vast number of special

spectroscopic techniques.

2.4.1 Absorption Spectroscopy

If a flux of photons F' travels through a system of molecules, photons can be
absorbed or induce stimulated emission. This can be expressed in a steady state

approximation of a two level system with populations NV; by the rate equation

dN
ditl = —Blole + B()1pN0 (239)
with Einstein coefficients
2r?
BlO = BOl = mﬂlog(V - VlO)- (240)

Factors p denote the radiation density and g(v — v40) the line shape function de-

scribing an absorption profile. Equation (2.39)) can be simplified by introducing a
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quantity which represents an effective area that the molecule opposes to the stream

of photons called absorption cross-section

271'2 2
oM = ?)eo'zlcol/g(y —110), (2.41)
leading to
dN
dTl = onF(Ny — Ny). (2.42)

The change in flux along a small element of thickness dx is then given by

Integration over the full length L of an absorber and by replacing the flux with

intensity results in the Beer-Lambert law
I = ]0 exp{—aM(No — Nl)L} (244)

This is the basic principle of techniques such as Matrix Isolation or Cavity Ring-

Down spectroscopy.

2.4.2 Photodissociation Spectroscopy of Weakly

Bound Complexes

A method employed in this thesis belongs to the group of indirect methods. The

principle is based on fragmentation upon photon absorption
XYZ +hv — XY + Z. (2.45)

In the case of single photon absorption, usually in the UV /VIS or NIR, a molecule
is promoted from the ground electronic to an excited electronic state. Depending
on the shape of the excited state potential along the dissociation bond, a molecule
will fall apart immediately on a time-scale smaller than a typical internal vibra-
tional period, or after a particular lifetime. Indirect or delayed dissociation requires
that a molecule is trapped for some time, either by a potential barrier or a dynam-
ical effect, before sufficient energy is accumulated in the dissociation coordinate,
enabling the bond to break [11]. Immediate dissociation occurs if the excited po-
tential energy curve is purely repulsive. A molecule starts its motion in the upper
electronic state from the Franck-Condon point until the fragments are irreversibly

formed. In multiphoton dissociation, several photons, mostly in the IR region,
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Figure 2.6: Averaged potential energy curve of C{y—He (=) obtained from ion mo-
bility measurements, with calculated bound states (—). Potential reproduced from
[18].

excite the molecule until the energy exceeds the dissociation energy. Generally it
is a background free technique as fragments are only detected when an absorption

event occurs.

Polyatomic cations are considered to be very stable due to fast internal non-
radiative transitions. For example, Cg, can store up to ~ 45¢V of internal energy
and would require multiple photons to fragment [12]. Consequently, a high laser
fluence is necessary to provide enough photons leading to saturation or nonlinear
absorption effects. This constraint can be circumvented by attaching a weakly
bound rare gas atom (or molecule) to the species of interest. The ejection of the
messenger results from intermolecular energy transfer within the complex. The for-
mation of such complexes are well established in IR and electronic spectroscopy and
only small deviations to the spectrum of the unperturbed molecule are expected
[13-17]. Helium appears to be the best candidate for fullerenes as the potential
energy curve of Cgy—He is extremely shallow with ~ 10 meV (Figure . Only

three vibrational modes are obtained before reaching the continuum.

In ion traps the complexes are usually formed by a three-body collision process

XT 42V & [XT V] +Y (2.46)

kcip

where k3 denotes the ternary rate coefficient. Typical values range from 10726 to
1073%cmbs~1, at suitable temperatures below 10K, depending on the binding en-

ergy of the ion-neutral compound. The stationary equilibrium is determined by
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the reverse bimolecular process, which is called collision induced dissociation.

Resonant absorption of radiation by the complex leads to vibrational predisso-
ciation and an ultimate change in the ion concentration. Thus, the spectroscopy
of the cation can be studied by mass selective monitoring of the attenuation in the
X*-He ion yield as a function of a laser frequency. A connection between equation
to the observed ion signal can be derived assuming that a single photon

leads to dissociation. In that case, the loss of complexes is given by
N = Nyexp(—oNph), (2.47)

where NNy is the number of complexes, Ny, the number of absorbed photons per
area, and o the total absorption cross-section. Typical values involved in electronic
transitions are 107! to 107" cm?. In practice neither absorption cross-section nor
the number of photons are measured directly [16]. However it is possible to replace

these by accessible quantities
(2.48)

where P is laser power, At irradiation time, A irradiated area, and E;, the photon

energy. By further substituting

PAt E
= and B = TPh (2.49)
equation ([2.47)) changes to
)
N(®) = Nyexp (—) , (2.50)
i

which describes the number of remaining complexes N after irradiation by a laser
fluence . An absorption cross section can be estimated from the characteristic

fluence @4 obtained from the attenuation at a fixed wavelength.

2.4.3 Line-Shape Functions

The transition between two states is not observed as an infinitely sharp line in
the spectrum, but exhibits a finite band structure. Several effects others than
instrumental can contribute to the characteristic profile of the observed absorption.

In the following, relevant factors causing specific shapes are discussed.
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Natural Lifetime Broadening

The release of a molecule’s excitation energy by spontaneous emission can be
described by a damped harmonic oscillation with a damping constant . The
equations of motions are well-known and its solution yields for the approximation
v << W
vt
z(t) = xoexp <—2) cos(wot), (2.51)

where wy = 27, corresponds to the central frequency of the transition. A Fourier
transformation shows that the decrease in amplitude causes a frequency distribu-

tion whose shape is represented by a Lorentz function

gl

) = . 2.52
9L =) = G e () (252)

The linewidth is .
Avy = % ==, (2.53)

where 7 is related to the lifetime of the excited state and can be derived from

Heisenberg’s uncertainty relation.

Doppler Broadening

A moving atom or molecule that interacts with an electromagnetic wave sees a
Doppler-shifted frequency v = v(1 & v/c). In a laboratory experiment the ions
have a distribution of different velocities at a certain temperature. This is expressed

by the Maxwell-Boltzmann distribution and leads to an inhomogeneous lineshape

1 [ mc? mc(v — v,)?
= coxp [ EW V)Y 2.54
ooV =ve) =\ ST eXp( 2k Tv? (2.54)

By substituting the full-width-at-half-maximum

function

QkBT 111(2)

Avp = 2v, 5

(2.55)

mc

in equation (2.54)), the typical Gaussian function is obtained. If a transition is
Doppler broadened, equation (2.55)) allows the calculation of the average temper-

ature of the probed ensemble.

Power Broadening

The use of very intense radiation in spectroscopic measurements leads to a line
broadening, or even splitting. This effect is observed when the optical pumping

exceeds the relaxation rates. The transition of the molecule undergoes Rabi oscilla-
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tion at high fluences with a frequency Qr = p10E/h. In a semiclassical picture the
factor uq9 describes an oscillating dipole. Assuming spontaneous decay processes,

a (normalized) Lorentz line shape is obtained [19]:

gr(v) = 0= Vc)Ql/AV%;B 1 (2.56)

The FWHM is now broadened by the lifetime given by the Rabi frequency (g.
With the Heisenberg relation
AFEAt > h (2.57)

and a period of At ~ pygE /h for the system oscillating in the excited state yields

h

AFE ~ h. 2.58
piok (2.58)
Furthermore is hAv = AE and thus
piol
AIJPB orh . (259)

For photofragmentation experiments an observed power broadened line shape for
an absorption band can be expressed with equation (2.50)) by

N]\(/_OV) = exp <_gL<V)§0> : (2.60)

This equation allows a correction of a broadened FWHM if the characteristic flu-

ence ®q is known.
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I suppose it is tempting, if the only tool you
have is a hammer, to treat everything as if it

were a nail.

Abraham H. Maslow

Experimental

The approach used in this thesis is based on trapped ions at cryogenic temper-
atures combined with mass spectrometry. The basic setup is shown in Figure |3.1}
Charged molecules are typically produced by evaporation in the source and sub-
sequently guided into a quadrupole mass filter by electrostatic elements. A quad-
rupole bender turns the ions into a trap, where they are held for a well defined
time and probed by laser radiation. The experiment is developed such, that an
investigation of the confined species produce fragments which can be analyzed by
a mass spectrometer coupled to a Daly detector. For proper operation of all de-
vices, a decent vacuum is required in order to prevent arcing due to high DC and
AC voltages applied and to avoid uncontrolled chemical reactions with residual gas.
Each chamber has a turbomolecular pump, providing low pressures of ~ 107 mbar.

Furthermore, differential walls between chambers minimize gas flow.

Throughout the thesis the experimental setup has been under development. A
modular arrangement made it possible to change individual parts in short times.
The first experiments have been carried out in a linear configuration. An improve-
ment has been achieved by implementing a quadrupole bender. This ensured less
contamination of a neutral effusive beam and easier alignment of the laser through

the trap.

31



»
. i
Qo>

Cryostat
(1st Stage)

Photomultiplier

Quadrupole
Mass Filter

Source

2nd Quadrupole

Figure 3.1: Overview of the basic elements of the ion trapping apparatus.
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3.1 Electron Impact Source

Cationic molecules or atoms are produced in the electron impact source shown in
Figure Neutral vapor gas is either leaked in to the chamber directly or created
by heating a solid sample in an oven. The tubular oven is made of oxygen-free
high thermal conductivity copper (OHFC) and mounted between plates via four
small sticks (@ = 0.5 mm) on each side to avoid heat losses. An attached cartridge
heater (Watlow, Firerod 50 W) provides temperatures of ~ 700°C, which can be

monitored with a thermocouple.

The central element is a rhenium filament (¢ = 0.3mm) which is spot-welded
on electrically insulated holders. This transition metal has been established as
the best choice for the samples that were used, especially because of its long term
stability. Lifetimes of more than 6 months could be achieved, depending on the
degradation due to the investigated species. The emission current of the filament
is set to ~ 300 A at an applied power of P = 30-40 W. A cylindrical metal grid is
placed inside the filament and held at a positive voltage with respect to reference,

which defines the kinetic energy of the electrons.

Three electrodes creating an einzel lens are utilized to extract the cations from
the ionization region and inject them into the first quadrupole. The whole source
is fully enclosed to maintain a high pressure of neutral sample and thus efficient
ionization. Evacuation is only possible through the electrodes and a small gate
with a diameter of 8mm. The source already predefines the kinetic energy distri-
bution of the ions. Therefore, the settings have to be carefully chosen to obtain

optimal conditions for ion guiding, mass selection, and trapping.
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Figure 3.2: Electron impact source. Basic elements are: gas inlet, oven, filament,
grid and extraction electrodes.
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3.2 Quadrupole Mass Filter

The apparatus uses two quadrupoles for mass selection, the principles have been
discussed in detail in section The first one is a home-build mass filter to guide
ions from the source to the quadrupole bender and is typically operated in RF-mode
only. A pole bias and DC voltage for preselection of ions can be applied in a range
of £15V. A DC splitting of the two phases larger than this caused instabilities in
the ion beam. The rods (& = 10mm) of the quadrupole have a special shape on
the outside ("half moon”) and provide a compact design for differential pumping.
On both ends, a set of electrodes is mounted. The applied potentials of typically
+5V on the electrodes are crucial as they determine the spatial distribution of the
ion beam, which influences the transmission properties. To drive the mass filter, a

push-pull RF oscillator based on the design by Dieter Gerlich was used [1].

The second quadrupole is necessary for mass selection. It is a commercial sys-
tem (Extrel GP-203D) with a rod diameter of @ = 9.5mm. The RF generator
is also a commercial device (Extranuclear) operated with an external crystal at
1.2MHz. This setup allows a mass range m/z < 2000 at transmission ratios of
max 25 % for a 10% valley. For better focusing properties of the ion beam, the
quadrupole has a pre- and post-filter system. The applied voltages on the extrac-
tion electrodes of the quadrupole are usually higher with 4200 V. From this point,

the mass selected ions are accelerated to the detector.
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Figure 3.3: Quadrupole mass filter.
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3.3 Multipole Radio Frequency Ion Traps

For confining positively charged particles, two traps have been used: a 4-pole and a
22-pole trap. The trap is placed in the L-shaped configuration between the bender
and the mass spectrometer. A polished aluminum-shield (Figure is mounted
onto the first stage of a closed cycle He-refrigerator (Sumitomo RDK-250D 4K)
operated by a CKW-21A Compressor. This ensures a maximum of 40-50 K of
black body radiation emitted to the trap which is mounted to the second stage.
A minimal wall temperature of 3.4 K can be reached without any gas load. This
is measured by a silicon diode (Lakeshore DT-670) on top of the cover, where
the warmest spot is assumed. To control the trap temperature a cartridge heater
(Lakeshore HTR-50) can be attached. The inner electrodes are pulsed for ion in-
jection and extraction. Both are in the vicinity of RF elements and to reduce the
induced noise, RC-filters close to the feed through connectors were implemented.

This improved trapping efficiency drastically.

The traps have individual characteristics as can be seen from their potential fields
in Figure [3.4f Steep walls of the harmonic potential for the quadrupole and large
field free regions in the 22-pole trap offer different trapping volumes for specific
applications. The amount of stored ions in both traps is limited by space charge
effects. Even below the threshold of strong Coulomb repulsion, it has been shown
that the average translational temperature of molecules decreases in higher order

multipoles [2].

3.3.1 22-Pole Trap

In Figure (a) the 22-pole trap is shown. It consists of 2 x 11 stainless steel rods
arranged equally spaced onto two copper plates with an inscribed radius of 1 mm.
The trap is shielded by a II-shaped block in order to cover it from the 40-50 K
black body radiation emitted from an Al-shield. Electrical insulation from the RF
side plates is maintained by ceramic rods. The trap together with the II-cover are

mounted via a base plate onto the cryostat.

For the two end-cap electrodes (Zimer = 6.6 mm) on either side, several designs
have been used over the years. Initially, large ring shaped stainless steel electrodes
as shown in Figure (a) were utilized. To minimize the surface area for absorp-
tion of black body radiation they have been replaced by small metal tubes encased

inside a ceramic cylinder. The drawback of the latter system is to ensure a parallel
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(a) (b)

Figure 3.4: Contour plot with isolines for 4-pole (a) and 22-pole trap (b). The
quadrupole potential is obtained from calculations using finite elements, the higher
order multipole was calculated from the analytical solution. The isolines in both
figures represent the same V' (r)/Vy value indicating the large field-free region for
the 22-pole.

alignment to the trap axis, as they are only pushed into ceramic spacers which are
mounted to the RF side plates. The side plates themselves are electrically insu-
lated to the base plate by sapphire plates to allow proper thermal conductivity. A
RF-generator similar to the design used for the mass filter has been utilized and
operated at frequency of f = 5MHz. For certain experiments it was necessary to
avoid accumulation of ions over several trapping cycles. Therefore, it was possible

to switch off the RF using a TTL-pulse to empty the trap after extraction.

3.3.2 4-Pole Trap

The quadrupole trap shown in Figure (b) has a housing entirely manufactured
in one piece (OHFC) for maximum thermal conductance. Hyperbolic shaped rods

have been approximated by a step function

2
w=(ror e s ) e 1)

with an inscribed radius of 7o = 5 mm and a step size Ax = 0.5 mm. Although the
latter has been chosen rather large, the calculated potential shown in Figure [3.4]
resembles the harmonic one. Only very close to the rods it becomes anharmonic.

However, these are regions where even in case of an ideal quadrupole potential

38



Viton O-Ring l' Gas Outlet
Counter-Plate
Electrical Base Plate
Connection

I

Quartz Plate
with Rubber Sealing
Ceramic _ Holder (Stainless)
Insulators
Teflon & Copper
Plates

Figure 3.5: Schematic drawing of the piezo valve.

unstable trajectories are expected due to RF-heating. The end-cap electrodes are
made from copper tubes press fit into ceramic holders which themselves are press
fit into copper holders. One pair of electrodes is mounted directly onto the trap
housing, while the second one is mounted to the Al-shield. Special care has to be
taken for the high purity copper used to avoid fast degeneration of the material
due to oxidation. The trap was driven by a RF-generator with f = 780 kHz as the

geometry requires lower frequencies.

3.3.3 Piezo Valve

Directly attached to the trap is a piezo valve (Figure based on the construction
of Dieter Gerlich . It offers a compact design and can be operated in a pulsed
(TTL) or resonant mode. The basic element is a bimorph piezoelectric plate which
can be actuated using pulse amplitudes of 100-300 V. It produces < 20 us short
and intense pulsed atomic beams allowing flexible application possibilities. For
complex formation and buffer gas cooling, the piezo valve was usually gated for a

well-defined time at a typical resonance frequency of 3.4 kHz.

39



RF Rods Cover

(7t-Block)

Ceramic
Insulators

Insulators
RF Side
Plate
Sapphire Electrodes
Insulation
Base Plate
(a)
Single Block
Holder Housing
for Heater
Sapphire Electrodes

Insulator

(b)

Figure 3.6: Detailed schematic of the 22-pole (a) and 4-pole (b) indicating the
basic elements.
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3.4 Ion Detection

A Daly type detector (Figure is used to count ions [4]. It is composed of a
highly polished conversion dynode with —30kV applied. The mass selected ions
are therefore accelerated toward the dynode and upon impact secondary electrons
are emitted. The same high voltage accelerates the electrons onto a scintillator
(BC400, Saint-Gobain Crystals) where they are converted into photons. This is a
consequence of internal excitation of the polymer, resulting in radiative relaxation
with decay times below 4 ns. The photons are detected by a photomultiplier (PMT,
Hamamatsu R647p) with a gain factor of 1 x 10°. The PMT is mounted outside
the vacuum chamber if fast replacement is necessary and an easier implementation
of (non vacuum suitable) electronics for signal processing. Dynode and scintillator
are housed inside of a grounded cylinder to prevent interaction between the RF of
the quadrupole and the high voltages applied. The cylinder has a hole to let laser

radiation pass to the view port at the end of the chamber.

The signal provided from a PMT can be measured directly with an ammeter (Keith-
ley 6485) which is sensitive down to picoampere. Another possibility is to convert
the signal into short pulses. A 300 MHz discriminator (Phillips Scientific Model
6904) ensures a constant pulse signal which is read by frequency counter (Picotest
U6220A) allowing an estimation for the number of ions reaching the detector. Both
methods work simultaneously. The counter receives a gate from a pulse genera-
tor (Berkeley Nucleonics 565) which has been used as the reference clock. In later
experiments this device has been synchronized to the cycle of the cryostat. Further-
more, the pulse generator provided the trigger signal for the extraction electrodes
of the trap, the piezo valve, pulsed lasers or in case of continuous-wave (cw) laser,
the shutter.
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Figure 3.7: Schematic of the chamber with the Daly type detector and illustra-
tion of the Ion detection scheme. Ions are extracted from the quadrupole mass
spectrometer, accelerated to the dynode and converted into electrons. These are
moving toward a scintillator which emits photons which are detected by a PMT.
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3.5 Laser Systems

Several different laser systems for the experiments were employed and are briefly
described in the following. An estimation of the laser frequency was obtained from
a wavemeter (High Finesse WS6-200) allowing an absolute accuracy of 200 MHz in
the typical ranges used. As a calibration source the HeNe emission at 633 nm was
utilized. For vacuum to air wavelength conversion the formula from Ref. [5] for

the refractive index was used.

External Cavity Diode Laser: This type of laser has been employed for NIR
scans in the range of 930 - 980 nm. A narrow linewidth (<10 MHz) was achieved by
a Littrow configuration [6]. The setup includes an one-side anti-reflection coated
laser diode (Sacher) together with a collimating lens followed by a diffraction grat-
ing. The first order diffracted beam acts as an optical feedback and is sent back
to the laser diode. For scanning ranges below 0.1 cm~! the diode current has
been changed. Tuning ranges of 1 ecmtand up to ~ 20 cm™! could be achieved by
rotating the diffraction grating either via a piezo element or a stepper motor, re-
spectively. A moving of the grating causes a horizontal offset in the beam path. For
compensation a rotating mirror controlled by another stepper motor was used. A
beam splitter guides a fraction of the laser beam onto a camera for optical feedback

of the beam position.

Coherent 899 Ti:Sapphire Ring Dye Laser: This second cw system uses a
Ti:Sapphire solid state crystal as the gain medium. The setup allowed a narrow
linewidth of 500 kHz with scanning ranges of 30 GHz. Removing of the internal
etalon allowed also long range scans at a higher bandwidths of 3-5 GHz. Depending
on the optical setup, a wavelength range between 750-930 nm could be covered at

output powers between 50-750 mW.

EKSPLA OPO: The EKSPLA optical parametric oscillator has been mainly
used for survey scans in the region between 240-1100 nm. It provides pulse energies
between 10-20mJ with a bandwidth of about 5cm™ at a typical pulse length of

5 ns.

Sirah Dye Laser: The Nd:YAG pumped dye laser was employed, whenever
measurement below 750 nm have been necessary. It offered pulses with bandwidths

1

of < 0.1 ecm™. The scanning range and output power was dependent on the

conversion efficiency of the dye.
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3.6 Operating procedures

Several experimental aspects that were essential for optimal ion trapping and com-
plex formation are presented with examples in the following sections. Furthermore,
constraints of the apparatus, which have to be considered for spectroscopic studies

are discussed.

3.6.1 Estimation of Number Densities

A direct estimation of absolutes pressures from the ion gauge mounted to the
chamber is not possible, because pressures inside and outside the trap can differ
by two orders of magnitude. Therefore, a capacitance manometer (CMR-365) is
used for absolute values inside the trap. Before the number density can be derived,
the effect of thermal transpiration has to be considered. Manometer and trap are
connected through a tube of length ~ 20 cm exhibiting different temperatures. This
introduces a gas flow, leading to false pressure indication. The critical parameter of
the effect is the Knudsen number. In the given situation molecular flow conditions

can be assumed leading to a relation for the pressure at the manometer

1Ty
R 3.2
P1 = D2 B ) ( )

where p; and p, are the pressure at 77 and T5, respectively. The relation is only
an approximation for small tubes derived from kinetic gas theory. A variety of
empirical studies provide more precise estimates and the one used here is based on

the Takaishi-Sensui equation with unified parameters for helium [7]:

Toan/ Tt — 1
Py ep/ T (3.3)

Dtrap 611(X/X0)2+426X/X0+052 X/X0+1

and
2dpw

- Ty + T‘t’,rap' (3.4)
The factor Xy = 1 mm Pa/K accounts for the correction of the units, d = 3mm is
the diameter of the connecting pipe and Y)y; conditions of the manometer. Knowing
the correction of the pressure, a number density can be determined from the ratio
of the ideal gas laws at normal conditions and in the trap. At Ti., = 4K and

pv = 5% 1073 mbar a pressure inside the trap of pyap = 1 x 1072 mbar is given and
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thus a number density of

Vm DPtrap - TO
= — AP0 3.5
erap NA Do - ,I;:rap ( )
1 x 1073 mbar - 273K
=2. 10 em™ . :
05> 107 em 4K - 1000 mbar (36)
=1.8x10”cm™® (3.7)

is calculated. The factors V, and N, are the standard molar volume and Avo-
gadro’s number. The resulting number density is a typical value obtained in the

experiments.

3.6.2 Ion Trapping and Complex Formation

The scheme for ion trapping, including a typical timing sequence, is illustrated in
Figure 3.8 Depending on the formation efficiency in the source, charged molecules
are accumulated for 10 to 300 ms by keeping the entrance electrode below their
kinetic energy. During the same time the exit electrode is held above this energy,
while simultaneously buffer gas is introduced. The latter creates a cold bath for the
ions to dissipate their translational and also internal energy. After one axial round
trip in the trap, the ion’s kinetic energy has to be lower than the potential applied
to the entrance electrode. If a sufficient amount of ions is captured, the entrance
electrode potential is raised to avoid space charge effects and collisions with hot
ions. Several collisions with buffer gas produces cold ions which are subsequently
probed by laser radiation. Finally, they are released by lowering the exit electrode

potential and guided into the mass spectrometer.

Efficient trapping and cooling of ions are crucial for the formation of weakly bound
complexes. The potentials applied on the end-cap electrodes have a large impact
on the trapped particles. The radial component of the potential pushes the ions
toward the RF electrodes. Heating effects due to strong coupling between the fast
oscillating field and the ion motion have been shown in experimental and theoreti-
cal studies [2,[8]. For example, crystal properties observed for laser cooled Ca™ in a
linear octupole trap vanishes due to excessive increase of the end-cap electrodes [9].
The magnitude of the electrostatic potentials is determined by the initial kinetic
energy of the ions. An estimate of the ion’s energy distribution can be obtained by
a retarding field analysis. Figure [3.9] shows an example of such a measurement for
an Ar™ beam. The dependency N(Ar™) versus the retarding field voltage V' allows

the determination of the mean energy and a corresponding spread of the charged
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Figure 3.8: Typical trapping sequence at a repetition rate of 1 Hz: The trap is
filled for 100 ms (m) with some thousands of ions by lowering the entrance electrode
potential. During the first 500 ms they interact with helium buffer gas (m) in order
to reduce their kinetic and internal energy. For photodissociation spectroscopy,
the ions are irradiated (m) after evacuating the trap from the buffer gas. Ions are
released to the mass spectrometer by lowering the exit electrode (m). The timings
can be varied according to the needs of the experiment, indicated by the dimmed
colors.

particles. The values can be extracted from a Gaussian fit of the first derivative
of the recorded retarding curve. In the presented example Eyean(Art) = 240 meV
and AE(Art) = 540 meV were obtained.

The formation of complexes in a three body collision is represented by the ternary
association rate coefficient k3 and its competing process collisional induced dis-
sociation (equation [2.4€]). Different types of neutral collision partners have been
used in the past. As already discussed, the ion-to-neutral mass ratio is an impor-
tant factor for the internal energy of the ion, consequently helium offers the best
properties [2]. In Figure the time dependent evolution of complex growth of
NCCN*-He is shown. With a helium density of 8 x 104 cm ™2 a ternary rate coeffi-

651 at 4 K was obtained. A stationary equilibrium between

cient k3 = 5x 1073 cm
complex formation and dissociation is reached after ~100 ms. The uncertainty for

the rate coefficient is rather large as the pressure and temperature reading varied
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Figure 3.9: Retarding field analysis of an Art beam by changing the field axis of
the 22-pole trap. The number of ions (e) is shown as a function of the applied
voltage. The first derivative (0) for the experimental data is fit with a Gaussian
function (=) providing information of the energy distribution.
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Figure 3.10: NCCN*—He (o) growth as a function of the storage time. Only ~ 1%
of NCCN™ (e) can be converted into complexes. A stationary equilibrium between
formation and dissociation is reached after ~100ms. The solid lines indicate the
numerical simulation of the process.
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significantly with the cold-head cycle. At temperatures below 4.5 K helium con-
denses on the walls leading to the observed effect. The reversed reaction rate is
3.1

estimated from simulations to kcp = 4 x 107 em?s~1.

3.6.3 Absorption Cross-Sections

The cross-section can be experimentally estimated by measuring the attenuation
of the complexes as a function of the laser fluence at a fixed wavelength (equation
(2.50))). However, one has to account for the different properties of the traps. In
the case of the 22-pole trap, the ion cloud is larger than the laser beam due to
geometrical constraints of the electrodes. The ions are then exposed to a fluence
o AL (3.8)

e

where P is the measured power of the cw laser beam, At the irradiation time and
r. the radius of the ion cloud. Using r. is valid under the assumption that all ions

interact with the radiation field.

For the 4-pole trap the ion cloud is expected to be smaller than the spatial width

of the laser beam. The radial intensity distribution of a Gaussian beam profile is

1) = 22 L exp <—f:22> | (3.9)

Tw?

given by [10]

with a beam waist w. The fraction that overlaps with the ion cloud is obtained by

the integral

P(re) 20 e 272
P = ﬁ/o 271 exp (—w2> dr (3.10)
2r2
=1—exp <— wQ) ) (3.11)
which leads to PA )
t 2r

An estimation of the characteristic fluence with a Gaussian beam profile requires
a parallel overlap in axial direction of ion cloud and laser beam. This can be
challenging and small deviations will lead to large errors. Therefore, the profile
was modified to a Flat-Top (FT) shape providing a nearly constant power density
(Figure . This was achieved by expanding the beam over a distance L = 7m

and using the bender rods/electrodes as an aperture. In the near field a Fressnel-like
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Figure 3.11: (a) Illustration of a parallel overlap of a Gaussian and a Flat-Top
beam profile with an ion cloud in a 4-pole trap. The power density for a Flat-Top
is nearly constant over the whole cross-section. In contrast the Gaussian profile will
lead to different results for small deviations from a coaxial alignment. Dimensions
are chosen, as used in the experiment. (b) Radial view on the 4-pole trap with the
overlapped Flat-Top profile with the ion cloud.

diffraction pattern can be observed which stays almost constant over the length of
the trap and collapses back to a Gaussian profile in the far-field. In Figure[3.12)two
such profiles are presented. The right Figure (b) represents the profile measured
directly at the location of the trap. The D-shaped profile is a result of the bender
rods. To the left (a) the pattern created with an iris at the assumed position
of the trap outside the machine is shown. In order to estimate the total power
of the laser beam irradiating the ion cloud, this iris has been used to mimic the
bender electrode. Inspection of the cuts through the profile reveals an interference
patter instead of a flat curve. However the integrated power density for an ion-
cloud with radii of r. = 0.18 mm and r. = 0.21 mm yields deviations of less than
10 %, assuming the overlap of laser beam and ion-cloud within an offset of at most
r = 0.5mm (Figure . The radii r. correspond to translational temperatures
of T=100K and T'= 75K and a RF-amplitude of V = 150V.
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Figure 3.12: Two-dimensional map of the Flat-Top intensity distribution with ver-
tical and horizontal cuts through the center of the profile at 7 = 10438 cm™!. (a)

Profile created with an iris used to estimate the beam profile at the center of the
trap. (b) Beam profile recorded behind the bender at the location of the trap.
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Figure 3.13: Ratio of the power-density covering the ion cloud and the total power
density as a function of the displacement between laser and ion cloud. (a): r. = 0.21
mm, (b): r. = 0.18 mm. The D-shaped profile is caused by the bender rods.
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I am slowly coming to the conclusion that
it’s more important to learn to work with
what you’ve got, under the circumstances

you’ve been given, than wishing for

different ones.

Charlotte Eriksson

Laser Induced Inhibition of Com-
plex Growth

A variety of spectroscopic methods have been used to probe trapped ions. Most
of these schemes have specific requirements and are not universally applicable. For
example, a reasonable quantum yield is necessary for laser induced fluorescence or
a suitable reaction pathway needs to be known in case of laser induced reactions
[1]. The stability of large molecules such as Cg, or PAHs require several photons
for photofragmentation spectroscopy and bearing further difficulties [2]. Usually,
tagging experiments have been used to overcome the constraints in cases where
spectra of the bare species are difficult to obtain with the drawback of possible
shifts of the observed absorptions. On the other hand, it is possible to excite the
parent ion such, that the attachment of the weakly bound atom is suppressed. This

effect has been observed when the association reaction
COT +2C0O — (CO)J +CO (4.1)

was impeded by resonant rotational excitation of the primary lons [3]. In case of
vibrational or electronic transitions, this method has not been applied. A basic
scheme of a laser induced inhibition of complex growth (LIICG) is illustrated in
Figure [£.1] In the following sections it will be discussed in further detail for the
example Nj. The advantage of using N as a benchmark system is that this
molecule is one of the most investigated diatomic molecule. This is beneficial for

analyzing and understanding the involved processes of LIICG.
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N

kcid

Figure 4.1: Diagram illustrating the involved processes for laser induced inhibition
of complex growth on the example of N : Vibrationally hot Nj* ions (¢) enter the
trap and relax via collisions with the buffer gas to the X 22; vibrational ground
state (¢). N3—He complexes (o) are formed via ternary association with a rate
constant ks and are recycled by collision induced dissociation, kcp. The inhibition
takes place by permanent resonant excitation into the A?Il, excited state () from
where it radiates back with k.,q into an excited vibrational level of the ground
state.
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4.1 Proof of Principle on NJ

The LIICG scheme has been studied for the A%Il, «— X 22; electronic transition
of NJ. This system was first identified in 1951 in the aurora glow by Meinel and
observed experimentally by Dalby & Douglas [4, [5]. The X 22; ground state is
a Hund’s case (b), where the rotational angular momentum N couples with the
electronic spin-angular momentum S to form the total angular momentum J. The
AT, excited state can be described with Hund’s case (a), exhibiting a strong spin-
orbit splitting [6]. The resulting energy level diagram based on these considerations
is illustrated in Figure[4.2]together with the involved transitions that will be studied
in the LIICG experiment.

4.1.1 Experimental Conditions

The experiment has been performed in the linear configuration of the apparatus
using a 22-pole trap. NJ ions were created by electron bombardment of the neutral
gas. The trap has been filled for 10 ms with N3, while a piezo valve was gated for
500ms. During that time ions were irradiated continuously with 10 mW using the
cw Ti:Sapphire ring laser having bandwidth of 500 kHz. After another 480 ms,
when the helium pressure had decreased by orders of magnitude, the ions were
extracted. The trap temperature has been kept at Ty, = 5K, which is also the

temperature of the helium buffer gas.

4.1.2 Spectroscopy

In Figure the resulting spectrum of N3 measured by LIICG is shown. The
number of complexes per filling is plotted against the wavenumber, where each
data point represents an average of 10 samples. The observed absorption lines were
evaluated with Gaussian functions and the obtained parameters are summarized in
Table together with literature values for comparison. All lines are well-resolved,
except the Q11(J = 1.5) and Ri2(J = 0.5). Deviations of the rotational lines to
the literature values can be explained by an uncalibrated wavemeter. Assuming

an offset of A = 0.015cm™!, the observed lines agree within A7 = 0.005 cm™!.
The Franck-Condon factor of the vibronic transition reveals that 56 % of elec-

tronically excited N3 ions relax directly back in to X*¥¥ (v = 0) ground state and

thus only 44 % of the complexes contribute to the spectrum [7]. Furthermore, the
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Figure 4.2: Schematic energy level diagram of Nj depicting some of the involved
transitions together with the charge transfer reaction pathway to Ar*™. The 2II; /2
level has been neglected.
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Figure 4.3: Part of the (2,0) band of the A%II, +- X*X} system of N3 spectrum
measured with LIICG. The number of N3 —He complexes per filling (o) is plotted
against the wavenumber. Gaussian functions (=) have been used for fitting.
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Vexp / e ™ atten. /%  assignment Dy / cm ™! A /em™!

12694.952 37 Q11(J = 1.5) para  12694.967 -0.015
12694.963 Rio(J =0.5) para  12694.967 -0.004
12695.206 19 QH(J 4.5) ortho  12695.226 -0.020
12695.257 Rip(J = 3.5) ortho  12695.269 -0.012
12695.557 26 Q11(J = 2.5) ortho  12695.574 -0.017
12695.582 Ri5(J =1.5) ortho  12695.599 -0.017
12695.648 32 Qu1(J =3.5) para  12695.654 -0.016
12695.678 Rio(J = 2.5) para  12698.689 -0.011
12698.805 Ry (J =0.5) 12698.800 +0.005

Table 4.1: Observed lines for the (2,0) band of the A%IT, < X*%} system of N3
using LIICG. For comparison literature values are also given, taken from Ref. [8].

ortho:para ratio of 2:1 has to be considered and leads to the observed attenuations
listed in Table Surprisingly, they do not represent the population of the rota-
tional levels. For example the N = 4 rotational state has a theoretical population
of 1.6 %, while the obtained depletion is 19%. This reflects a very efficient inhi-

bition of complex formation and could be explained by fast rotational relaxation.

4.1.3 Laser Induced Charge Transfer Reaction to Ar

The spectrum shown in Figure is not observed if the laser is irradiated after
switching off the piezo valve. This indicates that the photons interact with the
bare ion and the spectrum is not obtained by fragmentation of the complex. To
unequivocally conclude that the spectrum is not shifted, another approach was
employed called laser induced charge transfer (LICT). This is based on the electron
transfer reaction

N3 + Ar — Ny + Art. (4.2)

The charge transfer is very efficient if NJ is vibrationally excited because the reac-
tion is exothermic, whereas the reaction from the ground vibrational and rotational
state is 0.18 eV endothermic [9]. A LICT spectrum obtained for the Ry;(J = 0.5)
transition of Nj is shown in Figure together with the one recorded with LI-
ICG. Analysis of the measured profiles gives FWHMs of Avyicqg = 345 MHz and
Avpicr = 325 MHz which yields translational temperatures of Tijcq = 45K and
Tiicr = 40 K, respectively. These are much higher than the expected Doppler
width of Av =121 MHz at a nominal temperature of 5 K. Parasitic heating ef-

fects in the trap due the end-cap electrodes or patch potentials may be possible
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Figure 4.4: Ry1(J = 0.5) line measured with (e) LIICG and (O) LICT using a
laser power of P = 5mW. The extracted linewidths from Gaussian fits (=) are
Avinicg = 345 MHz for the inhibition and Avpicr = 325 MHz for the charge
transfer method.

reasons. A rotational temperature can be calculated from the mass weighted av-
erage of the translational temperatures of the collision partners using equation
to Tt = 10.6 K. Furthermore, both methods agree in frequency within
AP =0.001cm™.

4.1.4 Dynamical Processes

For a qualitative discussion about the obtained results and involved processes, nu-
merical simulations have been employed. An ion ensemble is assumed to be com-
posed of ortho-N§ with rotational states N = 0,2,4,6; Nj-He and vibrationally
excited N3 (v > 0). Laser excitation has been achieved from the N = 2 rotational

level with a calculated rate of 500s™*

, although an explicit electronic excitation is
neglected [10]. This approximation is valid, because the radiative lifetime of about
10 s is short compared to all other time constants (ms) [6] . Rotational relaxation
is accounted for by three rates ky_,y_2. The reverse rates are then determined
from the detailed balance relation using microscopic reversibility (Appendix A).

The values used, derived rate constants and conditions are summarized in Table
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Parameter Initial Value Result

Without Laser With Laser
N3 -He 0.0 0.045 0.012
N3 (v > 0) 0.5 0.000 0.743
N3 (N = 0) 0.0 0.453 0.082
N3 (N = 2) 0.0 0.474 0.071
N7 (N = 4) 0.0 0.025 0.048
N3 (N = 6) 0.5 0.002 0.015
ks 1 x 1073 cmbs~!
ke 1 x 107 cm3s™!
krel 1 x 107" em3s!
ko—so 1 x 1073 cm3s™!
ka_s4 1 x 1073 cm3s™!
ki 1 x 1073 cm3s!
Kiaser 500571
n[He] 4.75 x 10 ¢cm™3
Thot 10.6 K

Table 4.2: Parameters used and derived from simulations. The initial rates are
obtained from the experiment.

4.2

An initial population of 0.5 for vibrationally excited ions was assumed, accounting
for the conditions from the ion source due to electron bombardment. This popula-
tion is equilibrated much slower than the rotational relaxation with ~40 ms (Figure
(a)). Collision induced dissociation is responsible for an inefficient production
of Nj~He complexes and leads to the experimentally observed 4.5 % reached after

3q—1

100ms. With a given Langevin rate of k, = 6 x 1071%cm3s™!, the vibrational

relaxation into the ground state requires 3 x 10 collisions with helium. This cor-

responds to a rate coefficient of ko = 1 x 107 cm3s~!

. Theoretical calculations
of the rate for quenching the (v = 1,7 = 0) level of Nj in collision with He are

reported to be similar with 1-3 x 107" ecm?®s™! [11].

4.1.5 Conclusion

Formation of ion—He complexes via ternary association is always achievable pro-
viding cryogenic conditions and sufficient collisions; therefore, LIICG is considered
to be generally applicable. It is not yet understood why the fragmentation of the
N3 ~He could not be observed. This has also been reported recently for measure-
ments of vibrational spectra of CHF using LIICG [12, 13]. A possibility could be
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Figure 4.5: Simulation of the relative populations for a trapped ortho-Nj ensemble.
Considered are the rotational states N = 0,2, 4,6, vibrationally excited NJ and
N3 -He complexes. In (a) the dynamics are simulated without laser, in (b) with
laser excitation via the rotational state N = 2.

large induced shifts by the helium messenger. Another reason could be the short
lifetime of the dissociating complex resulting in a broad transitions. In case of
N gas-phase spectra have been very well-characterized which allowed a detailed
analysis of the underlying processes. However, utilizing LIICG to obtain electronic
spectra of other molecules appears to be a difficult task as will be discussed in the

following sections.
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4.2 NCCN'—He

The B*S} + X?II, electronic transition of the cyanogen cation was previously
studied using photoelectron spectroscopy, matrix isolation and a two-color, two-
photon dissociation scheme in the gas-phase [14-16]. The neutral and cationic
species are of astrophysical relevance as both have been identified in Titan’s at-
mosphere |17, [18]. However, the lack of a dipole moment of symmetric dicyano
analogues impede their detection by radio astronomy in the ISM. It was reported
to exhibit lifetimes of a few picoseconds in the B2Y state because of fast in-
tramolecular redistribution of energy and thus made it an interesting candidate for
obtaining spectra with LIICG.

Several known absorption bands of NCCNT-He were recorded, from which the 2§
and the 2452/44 combination bands are shown in Figure[d.6] (b). Apart from the
latter band system, all transition could be fit with Lorentzian functions reflecting
a natural broadening. A summary of the observed band maxima compared to
reported values are listed in Table[d.3] Transitions have been measured using the
Ti:Sapphire ring laser with a 3 GHz bandwidth. In the upper trace, the reproduced
spectrum by Rudnev et al. is plotted as a reference [16]. The reported values for
the frequencies do not reflect the band maxima, which has been found by an one-
color, two-photon fragmentation experiment of NCCN*. A column with corrected

values v* for better comparison are therefore given in Table [4.3]

Large shifts ranging from 11-19cm™! with respect to the absorption bands of
NCCNT were observed, indicating that the spectra were obtained due to photofrag-
mentation of the complex. Attempts to observe any inhibition by irradiating the
ions while gating the piezo valve did not reveal the spectrum of the cyanogen

65! is slightly larger as in

cation. The ternary rate constant of k3 = 5 x 10731 cm
case of Nj , which allowed measurements with 2 He and 3 He attached to cyanogen.
The slope of a linear interpolation from the central wavelengths yields a shift of
11.5 £ 0.3cm ™! per He, also implicating that the absorptions were obtained via
photodissociation. The intercept at n = 0 leads in case of the origin band to
v = 11253 & 1cm™! which is in a good agreement to the value of the two-color,
two-photon experiment. The FWHMs compare well with the bare cation, conse-

quently the ions are equilibrated to the vibrational ground state.

In the lower trace of Figure the spectrum of the 2} absorption band is shown,

when the piezo valve was actuated using a 5ms TTL-pulse at an amplitude of
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Figure 4.6: Absorption spectra of two bands of the B*Y! <+ XZII, electronic
transition of cyanogen cation obtained with two-color, two-photon dissociation (a)
and fragmentation of the complex (b). In (c) the piezo valve was actuated by a
5ms TTL pulse. Shown are the 2} and 2{53 /44 absorption bands. Experimental
data (e) are fit with Lorentzian (=, left panel (b,c)) and Gaussian functions (=,
right panel (b)). The dashed line (--) indicates the band maximum of the reference

spectrum (a) which was reproduced from Ref. .
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NCCN+-He NCCN+ [16]

nHe U,/ cm™ v/ em™! v/ cem™! assignment

1 11268 11265 11253 09

2 11280 11277

3 11291 11288

1 11817 11814 11799 52

2 11829 11824

1 12051 12048 12032 42

1 12339 12335 12319 2}

1 12584 12581 12562 ?

2 12595 12591

3 12607 12603

1 12855 12848 12837 2152 /44

Table 4.3: Comparison of the properties of band maxima obtained for electronic
transition B2X} + XZ2II, of NCCN*-He and NCCN*. * denotes shifted values

for v., because the literature values do not represent the band maxima.

300 V. Conditions could also be created such, that the absorption bands in (b)
and (c) were recorded in the same spectrum. In that particular case, the piezo
valve was gated for 500 ms and the complexes have been probed at the end of the
trapping cycle after evacuation of the buffer gas. This indicates, that (c) is the re-
sult of photofragmentation and different binding sites for the helium exist. A slow
excitation and a fast relaxation rate of NCCN™T may be reasons for not observing

the inhibition signal.

4.3 C14Hf0—He

Phenanthrene belongs to the group of PAHs that have been considered as a carrier
of the DIBs. PAHs need a large amount of energy before they start to fragment.
This requires usually high laser power densities leading to unwanted side effects
like saturation broadening. First gas-phase data have been reported by Bréchignac
and coworkers for the Dy <— Dy electronic transition [19]. A special technique,
the so-called shift additivity rule, allows an extrapolation from measurements of
M*—Ar and M*-Ar; back to the spectrum of the bare cation [20].

Phenanthrene was evaporated slightly above room temperature and ionized by
electron bombardment. The spectrum for C14Hj;~He covering the regions of the
two strongest bands in Figure 4.7| was obtained by probing the complex in a 22-

pole trap at 4.5 K. The band maxima are almost identical within the uncertainty
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Cl4Hfb*He Cl4Hi~_0 I19]

nHe v/ cem™! Av/ em™! v/ cm™! A/ em™!
1 11212 + 1 9+2 11212 16
2 11211 £ 1
1 11752 £ 2 9£2 11754 16

Table 4.4: Observed parameters of C14Hj;~He absorption bands compared to re-
ported values.

to previously reported values (Table [19]. In case of a second helium attached,

' is observed compared to Ci,Hj,~He also

a shift for the origin band of ~ 0.5cm™
indicating fragmentation of the complex rather than inhibition of its formation.
Conditions to identify LIICG could not be obtained, probing the complex with

LIICG or in the fragmentation mode result in the same spectra.

attenuation

1
1
PRI A A A AT A AT Lov v bvv v v Lovay
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Figure 4.7: Two absorption bands of the Dy < Dy electronic transition of Cy4H{y—
He. Experimental data (e) are fit with Lorentzian functions (—). Dashed lines (--)
indicate the band maxima from Ref. [19].

4.4 Conclusion

Laser induced inhibition of complex growth was successfully applied to N3, but
could not be observed in the cases of NCON* and C4Hf,. Finding the right
conditions for LIICG is challenging and the dynamics of the underlying processes
still need further investigations. Positive results have been reported recently in
the case of H and CHZ by state-specific excitation of trapped molecules via their

IR transitions indicating the relevance of LIICG as a spectroscopic method |12} [13].
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Furthermore, electronic spectra could be measured by photofragmentation of the
complexes. The cyanogen cation yields significant discrepancies in the band max-
ima with and without the presence of a He atom revealing shifts of up to 19 cm™!.
In an earlier study by Bieske et al. . the B*Y] < X*XF electronic transition of
N3 —He was recorded with shifts of less than 1cm™! [21]. This agrees more with the
results for C14H{;~He where only small shifts are present. By attachment of 2 He
and 3 He to NCCN™, an extrapolation of the center wavelength of the 2] transition
to the bare cation could be achieved. In case of neutral PAH-helium complexes
produced in a supersonic jet expansion, it has been shown that by increasing the
number of rings unpredictable spectral shifts occur [22]. However, the results from
photofragmentation experiments of weakly bound complexes using helium as a
messenger could be an alternative spectroscopic method to LIICG. The widths of
the absorption bands are comparable with reported values, if not even narrower.

This indicates that the internal degrees of freedom of the two molecules have been

equilibrated to the vibrational ground state.
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We must trust to nothing but facts: These are
presented to us by Nature, and cannot deceive. We
ought, in every instance, to submit our reasoning to
the test of experiment, and never to search for truth
but by the natural road of experiment and

observation.

Antoine Lavoisier

Electronic Spectra of Fullerenes

This chapter discusses the electronic spectra of weakly bound fullerene-helium
complexes obtained by photofragmentation spectroscopy. Although the results
presented in the preceding chapter are promising, finding the right conditions for
LIICG can be a challenging task. The interaction between singly charged fullerenes
and He is expected to be weaker than that of the previously investigated complexes.
Binding energies of ~ 90 cm™! compared to, e.g., ~ 135 cm~! have been estimated
in cases of Cdy—He and N5 —He, respectively [1, 2]. Consequently, their electronic
spectra are obtained via photofragmentation of these weakly bound complexes.
The species of interest includes Cgy, Cdy, C35, and Cg;. A focus is set to the
characteristics of the obtained absorption bands namely frequencies, absorption
cross-sections, relative intensities, and widths. These are the most important cri-

teria for a comparison of laboratory spectra with DIBs [3].

All cations are produced via electron impact ionization. Therefore, a solid sample
of the neutral compound is heated to 350-600°C until a vapor pressure of typically
~ 10~%mbar is reached. Complexes are then synthesized and probed in a 4-pole
trap. In case of Cg results obtained from measurements using a 22-pole trap are

also discussed.
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Figure 5.1: Correlation diagram for the reduction from spherical to I;, and finally to
the predicted Dsq symmetry for Cf,. Indicated with arrows are the dipole allowed
transitions in the investigated spectral region, using the ordering of the energy
levels according to Ref. [6]

5.1 Cf

Special attention has been raised when two bands in the astronomical spectrum
toward several lines-of-sight at 9632 A and 9577 A have been observed, which lie in
the proximity of two absorption bands of C{, measured in a neon matrix experiment
[4, 5]. In icosahedral I, symmetry the NIR absorption bands are assigned to
H, «*H, and ?G, +?H, (Figure[p.1), respectively, but the terms involved are all
distorted by Jahn-Teller effects |6, [7]. However, an unequivocally assignment of
Cgo as a carrier of any DIB was awaiting the gas-phase spectra at low temperature

because of shifts induced by the matrix environment.

5.1.1 C{,—He

The electronic photofragmentation spectrum of Cdy—He in the NIR region is pre-
sented in Figure[5.2] Following the typical evaluation of astronomical data, the
individual absorption bands are fit with Gaussian functions and normalized ac-
cording to their relative intensities. The resulting parameters are listed in Table
5.5l Two strong absorption bands at (10 378.540.1) cm ™! and (10438.1+0.1) cm ™!
are dominating the spectrum, continued by two bands at (10603.24+0.1) cm™! and
(10674.2 4 0.1) cm™* which are around three times weaker. The next absorption
band appears at (10693.3 +0.1) cm™! with an intensity of 7% of the 10438 cm™*
band.
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Figure 5.2: Absorption spectrum of Cf,~He by measuring the attenuation as a
function of the wavelength on the mass channel m/z = 724. The intensities of the

bands have been normalized to the band maximum at A = 9577.5 A. Experimental
data (e) has been individually fit using Gaussian functions (=).

An upper limit for translational temperature of 150 K for Cg, using equation ({2.23))
leads to Ti; = 5.8 K. A calculated rotational envelope at these temperatures pre-
dicts a width of about 1A for Cgg . A similar value can be expected for C,
because the structural change from the neutral is assumed to be small. The mea-
sured transitions do not exhibit a rotationally resolved profile. FWHMSs obtained
from the fits with Gaussian functions are (2.4 + 0.2) em™* and (2.7 £+ 0.2) cm™
for the band maxima at 10379 and 10438 cm™!, respectively. In that case the

absorption bands are lifetime broadened and this can be calculated to

TR = 2ps. (5.1)




v/ cm™t Av /[ ecm™! )\C/A A)\/A Orel f, x 1072

10378.5 24 9632.7 2.2 0.89 1.28
10438.1 2.7 9577.6 2.5 1.00 1.62
10603.2 2.7 9428.5 24 0.33 0.54
10674.2 2.8 9365.9 24 0.24 0.40
10693.3 2.7 9349.1 2.3 0.07 0.11
10796.6 24 9259.7 2.1 0.02 0.03
10803.4 2.3 9253.8 2.0 0.01 0.01
10839.9 24 9222.7 2.0 0.02 0.03
10844.9 2.5 9218.4 2.1 * -
10851.7 2.1 9212.6 1.8 0.02 0.03
10866.0 3.2 9200.5 2.7 0.03 0.06
10881.5 2.0 9187.4 1.7 * -
10905.0 2.3 9167.6 1.9 * -
10907.5 1.4 9165.5 1.1 * -
10915.3 2.0 9159.4 1.7 * -
10919.9 2.1 9155.1 1.8 0.01 0.01
10926.5 1.7 9150.3 2.0 0.01 0.01
10934.2 2.9 9143.1 24 * -
10937.7 2.3 9140.2 1.9 0.01 0.01
10952.2 3.1 9128.0 2.6 0.01 0.02
10958.2 0.6 9123.1 0.5 * -
10963.5 2.5 9118.7 2.1 0.02 0.03
10969.6 1.6 9113.5 1.3 * -
10974.2 1.2 9109.8 1.0 * -
10989.6 2.5 9097.1 2.2 0.01 0.02
10995.0 4.0 9092.5 3.4 * -
11000.0 1.6 9088.4 1.4 * -
11005.9 2.6 9084.3 2.1 0.01 0.02
11008.4 2.3 9081.4 1.9 * -
11022.9 4.0 9069.5 3.2 * -

Table 5.5: Wavenumbers and air wavelength of the band maxima and their corre-
sponding FWHMSs obtained from Gaussian fits. * indicates relative cross-sections
< 0.01. Uncertainties for the first five bands are given with 0.1 cm™?! in frequency
and 0.2 cm ™! in widths. Others have 0.2 cm™! in frequency and 20 % in widths.
Uncertainties for cross-sections have to be considered with 35 %.
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Figure 5.3: (a) Fragmentation of Cg, —He at 9632.5A as a function of laser flu-
ence. Experimental data (e) were obtained by monitoring the number of ions as
a function of laser fluence, N(®). The exponential fit (=) provides characteristic
fluence ®y. The data have been corrected for the background ions appearing at
m/z = T724. (b) Effective potentials for 22-pole (=) and the 4-pole trap (=) for the
parameters: Vo = 150V, m/z = 724, ro = bmm fo = 5 MHz, fy = 780kHz. The
dashed lines (--) indicate the boundaries of the bender electrode, that limits the
size of the beam profile ().

The spectrum in the upper trace of Figure[5.2|shows the region between 11 000 and
10790 cm~! and was recorded with an increased fluence. It reveals a complicated
pattern of transitions with relative intensities below 3%.Probing the ions in the
non-linear regime will lead to a broadening of the bands. Thus, the listed values
in Table are corrected using equation ([2.60)).

An absolute absorption cross-section ¢ can be determined under the assumption
that a single photon ultimately leads to fragmentation of the complex [9]. A
typical measurement of the attenuation as a function of the laser fluence for the
10378 cm™! band is shown in Figure . Results obtained from 22-pole trap mea-
surements differ by almost two orders of magnitude compared to the 4-pole trap
(Table [5.6). The reason for this is found in the different effective potentials and
the constructions of the two traps and the bender. An illustration of the circum-
stances is shown Figure (b). In case of a 22-pole trap, laser radiation does
not interact with the full ion cloud. The beam has to pass the bender electrode
which has a diameter of 3.2 mm and any broader beam profile will be reduced to an
approximate FWHM of ~ 1.6 mm. This is smaller than the radial cross-section of
the ion cloud with a diameter of ~ 3.5mm. The problem would still be persistent

if this electrode is replaced. In the current construction the end cap electrodes
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1

n-Trap r./mm ©» /cm™! profile @5/ mJ-cm™2 0., / cm? ratio

4 0.18 10378 FT 5.2 x 1072 4x107% 0.8
4 0.18 10438 FT 4.8 x 1072 5x 1071 1.0
22 0.37 10378 G 1.4 x 1073 7x 10717 0.8
22 0.37 10438 G 1.1 x 1073 9x 10717 1.0

Table 5.6: Comparison of the absorption cross-sections for Cg,—He obtained from
measurements using the 4-pole and 22-pole trap for a G=Gaussian and FT=Flat-
Top beam profile.

of the 22-pole trap are also smaller and cannot be enlarged. A fraction of the
complexes is not permanently irradiated with the same power density, especially
if patch potentials prevent the interaction with photons at all. Consequently, the

22-pole measurements can only provide relative cross-sections.

Absolute values are extracted from the 4-pole measurements. A Flat-Top beam
profile covers the whole ion cloud with a nearly constant power density. The de-
rived characteristic fluence @y from the exponential fit in Figure (a) can be
directly converted using equation into an absolute cross-section o. For the

two distinct transitions they are determined to

0(10379) = (4 £2) - 107*° cm? (5.2)
0(10438) = (5+£2) - 107** cm? (5.3)

A large uncertainty has to be given, because several systematic sources of errors
have to be accounted for in this measurement. The largest contribution arises
from the effective power density. The bender electrode acts as an iris and provides
a nearly constant power density over the ion cloud (Figure . On the other
hand, a slight shift of 3mm in the laser beam leads to a different interference
pattern and reduces the cross-section by 20 %. Mechanical accuracy of the shutter
caused fluctuations in the irradiation time of up to 2ms and contributes with
another 20 %. The setting of the wavelength to the band maximum can introduce
an error of almost 10 %. Further uncertainties that have to be accounted for are
the determination of the '2Cy4!3C, background and the overlap of the ion cloud
with the laser beam (Figure [3.13), leading to errors of 10% each. Contributions
of other errors, e.g. statistical error, are much smaller and can be neglected. The
uncertainty for the cross-section is then estimated to do = 35%. A very important
factor is the possibility of a re-growth of the complexes during the irradiation

times of typically 10 to 40ms. Measurements have shown that several 100 ms
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of evacuation of buffer gas are necessary to reduce the collision rate such that

competing complex formation is negligible.

5.1.2 C{;—nHe

The spectrum obtained from the tagged cation is assumed to have small deviations
in wavelength compared to that of Cg;. In order to estimate this shift, spectra
in the region of the two strongest absorption bands were recorded with 2 He and
3 He attached at 3.7K and the results are shown in Figure 5.4, The spectra are
well-represented by a Lorentzian and Gaussian function. Deviations in the central

1 1

wavelengths are < 0.2cm™" slightly more pronounced for the 10378 cm™". In

addition, the bands show differences in their FWHMSs, compared to Cgy-He they

Lin case of C;—3He.

increased by ~ 0.5cm™
Band maxima obtained from the Cgy—nHe spectra are plotted as a function of n in
Figure[5.5] A linear extrapolation of the data can provide an uncertainty range due
to the perturbation of the messenger. The slopes yield shifts of 0.7cm™! per He,
resulting in band maxima for Cg; at (10379.240.2) ecm ™! and (10438.740.2) cm™*.
This is consistent with recent results of Cg in 0.37 K helium nanodroplets. A shift
of ~0.7 A per helium was reported for the 10438 cm™" band by extrapolating the
band maxima frequencies as a function of nHe, for n = 5-32 |10]. The intercept at

n = 0 is not given.

The central wavelengths for n > 1 are very sensitive to the experimental condi-
tions. For example, the spectrum of Cgy—2He at 3.7 K yields a value of 10437.4 cm™*
compared to 10438.0cm™! at 5K, which is shown in Figure For the high
temperature measurements a stronger laser fluence was chosen to improve the
signal-to-noise ratio, because of the lower complex formation rates for n > 1. The
10379 absorption band reveals an asymmetric band shape indicating a substructure
caused by the rotational profile or two absorption bands. At temperatures below
4K “He condensates on the trap walls leading to complex formation via bimolecular
reactions between ions and He-clusters rather than ternary association processes.
The different formation mechanism may result in a different isomer. Simulations
predict similar binding energies for He on the pentagonal and the hexagonal sites
of Cgy with the latter favored by only 1.3meV. A doubtless conclusion requires
the gas-phase spectrum of the unperturbed Cgy. Another possibility would be the
use of 3He for complex formation as the boiling point is 1K lower compared to

4He. The low natural abundance and the extensive demand as fusion fuel for this
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Figure 5.4: 9577 A and 9632 A absorption bands of Cg,—2He (a,c) and Cgy—3He
(b,d) at Thom = 3.7K. Experimental data (e) are fit with Gaussian (—) and
Lorentzian (—) functions.
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Figure 5.5: Linear fits (=) to the central wavelengths (e) of the Cd;-nHe (n =
1,2,3) for the two absorption bands at 10379 cm ™! (a) and 10438 cm ™! (b), respec-
tively. The experimental data are averaged values with standard deviations. The
black dashed line indicates the extrapolation to the wavelength for n = 0 (e). The
error bars are estimated for a confidence interval of 95%.
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isotope is to date not affordable [11]. However, the uncertainty of the absolute
band maxima could be narrowed down and allows a confident comparison with

astronomical data.
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Figure 5.6: 9577 A and 9632 A absorption bands of Cgy-He (a,c) and Cdy2He (b,d)
at Thom = 5.0K. Experimental data (e) are fit with Gaussian (—) and Lorentzian
(=) functions.
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5.1.3 Comparison to the DIBs

Several studies confirming the presence of two DIBs near 9577 A and 9632 A toward
different lines-of-sight have been published. A majority of these give wavelengths
without any error bars and some report only integer values. Furthermore, average
values of the wavelengths are provided for observations toward different stars but
individual values for other parameters (FWHM, equivalent width) are listed. A
summary of available data for central wavelengths, FWHMSs, and ratios of their

equivalent widths (EW) can be found in Appendix B.

The deviation in the reported wavelengths of the two NIR DIBs is of about 1.9 A
and 1.3 A for the 9632 A and 9577 A bands, respectively. The laboratory results for
Cgo—He and the inferred values of bare Cj lie within this range for both absorption
bands. Extraction of an accurate wavelength for the 9632 DIB appears more com-
plicated because of the overlap of the Mgl stellar lines at 9322.44 and 9631.89 A 4,
12]. In addition, a continuum level setting needs to be estimated and the spectra
have to be corrected for telluric absorption lines, mainly from water vapor in this
region. Together with systematic errors from the detector it seems to be difficult
to provide uncertainties for the parameters obtained from astronomical observa-
tions. The mean values of the wavelengths from all studies are (9577.040.3) A and
(9632.0 & 0.4) A, where the errors are the standard deviations. These are similar
to the results of the the experimental wavelengths of 9632.1 A and 9577.0 A for C{,
obtained from the extrapolated data (Figure[5.5)).

Reported FWHMs range from 2.3-5.4 A for the DIB at 9577 A and 2.0-4.5 A for
the DIB at 9632 A. The widths are convolutions of instrumental resolution, velocity
dispersion of the line-of-sight and the rotational envelope [15]. A Doppler broad-
ening can usually be corrected by reference measurements of known stellar lines.
The mean values for the 9632 and 9577 DIBs are 3.2+1.0 A and 3.6+£1.0 A, respec-
tively, and these are close to those obtained in laboratory spectrum of Cg,—He. As
discussed earlier, at temperatures below 30 K, the FWHM of ~2.5 A is determined
by the lifetime of the excited electronic state. An increase in the FWHM from this
value indicates temperatures higher than 30 K in the local environment as they are

expected for diffuse clouds [16].
A comparison of the EWs for the two bands provides information of their rela-

tive intensities. The ratio of the EW has a rather large distribution, and spans the

range from 0.8 to 1.6. It also appears to be strongly dependent on the reference
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Laboratory Interstellar

Cz{ofHe C;{O

Wi,
Wos77

9632.7£0.1 22£02 080 9632.1+0.2 9632204 3509 0.83
95776 £0.1 25£02 1.00 9577.0+£0.2 9577.0£0.3 3.2+0.7 1.00
94285£0.1 244£02 033 9427.8+0.2 942844+0.1 3.2+0.1 0.27
93656.9+0.1 24+£02 024 9365.2+0.2 9365.7£0.1 25+0.1 0.16
9349.1+0.1 23+£0.2 0.07 934844+0.2 93485£0.1 144+0.2 0.05

Ae /A AN/A o Ae /A A /A AN/ A

Table 5.7: Summary of the results from laboratory and astronomical observations.
Experimental values are given for Cdy—He at 5K and the central wavelengths ex-
trapolated to Cgy. Relative intensities have uncertainties of 20%. The astronomical
data are provided as mean values. For the ratios the Mgll corrected values for Wygso
have been used. A full list can be found in the Appendix B. Values for DIBs 9249,
9366, and 9349 are from Ref. [13] [14].

star used for the telluric corrections |17, |18]. The mean ratio is obtained to be
1.0 £ 0.2 without corrections and 0.8 £ 0.2 with extracting the contribution of the
overlapping MglI line. This is consistent with the experimentally estimated rela-
tive intensity of 0.8 4+ 0.2.

The next three bands toward shorter wavelengths in the (corrected) laboratory
spectrum are at 9428.5 A, 9365.9 A, and 9349.1 A. Their absorption cross-sections
are weaker by a factor of 4-5 than the two strong absorption bands. Also these
three absorption bands have been observed with similar characteristics in band
positions, FWHMs and relative intensities |13, 14].

The five discussed laboratory and experimental absorption bands are shown in
Figure [5.7] and summarized in Table [5.7. The agreement of the necessary charac-
teristics is compelling, especially if the extrapolated central wavelengths are con-
sidered. By continuing the laboratory and astronomical data, an estimate for the
interstellar abundance of Cfj is inferred. A column density N relies on the knowl-
edge of the oscillator strength f,, the absorption band maximum A, and the EW
Wy [19]. For the 9577 DIB using the averaged values obtained for HD 183143 the
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Figure 5.7: Comparison of the laboratory (e, upper trace) to the astronomical
(—, lower trace) data. The blue curves (—) are Gaussian fits to the experimental
absorption bands. The region around 9349 A has been enlarged in both spectra
by a factor 3. Central wavelengths for C§;—He (--) and the extrapolated Cg, (=)
are shown to indicate experimental uncertainties. The astronomical spectrum is
reproduced from observations toward HD 169454 in the region of the 9429 A band
and HD 183143 in case of the other bands [13-{15].

column density can be calculated to

W
N =1.13x10%. AQ; (5.4)
— 1.13 x 10'7 - 267mA (5.5)
(9577.2A)2.0.0162
=(241) x 10®em™2. (5.6)

The error is estimated from the standard deviations. This column density is an
order of magnitude smaller than that of Hi but is comparable to CH*. Both
molecules were also observed toward HD 183143 [20]. An estimate for the fraction

x of the total interstellar carbon locked up in Cg can be derived with an empirical

relation given by [21]

E‘J/EI:—)\V ~ 10 (A><X104) <fv(;) (5;00) (1(];”2> . (5.7)
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The value for A differs depending on the assumed amount of cosmic carbon with
respect to atomic hydrogen in the interstellar gas, while N¢ is the number of
carbon atoms. Considering only the two strong bands with their averaged values
of W/Ep_y = 350mA /mag toward several lines-of-sight and N¢/Ny = 4 x 1074,
then

X =(443)x107* =0.04%. (5.8)

This is only a rough estimate, because of the large deviation in the EWs. However,
it reflects the significant relevance of Cg, in the interstellar medium and provides

an upper limit for other fullerenes.

5.1.4 Cg_o—L (L :Ne, AI‘, KI‘, HQ, DQ, Ng)

The effects of He attached to C{, allowed estimations of the band maxima for Cgp.
In order to obtain further insights on the influence of weakly bound complexes,
several rare-gas atoms and molecules with higher polarizabilities have been ph-
ysisorbed to Cgy and are discussed in the context of their electronic spectra. To
ensure ion-complex formation, the temperature was increased as a diagnostic for
the formation process. Typically above 15K only Cd, can be detected indicating
low binding energies. The internal energy of Cg is still relaxed via buffer gas
cooling with He. To avoid the competing formation of C¢;—He, complexes are then

formed at an elevated wall temperature of ~ 6 K.

C{,—rare-gas spectra

Photofragmentation spectra of C§;-Rg (Rg= Ne, Ar, Kr) at T,om = 5.7K are
shown in Figure [5.8 The absorption bands have been fit with Lorentzian profiles

and the obtained parameters are given in Table 5.8l

The C{y—He spectrum is characterized by two distinct absorption bands at 7, =
10378.5cm™" and 7, = 10438.1cm™~!. The attachment of heavier atoms leads to

and

small changes in the frequency of 7. For argon and neon shifts of +0.4cm™
+0.5cm ™! are observed, while in the case of krypton the band frequency is almost

identical with the one for helium.

In contrast the region of the 77, band is more sensitive to the tagged atom. The Cgy—
Ne spectrum shows a doublet with band maxima at 10 376.8 cm~! and 10 379.0 cm .
These features are labeled as 7,, and 7, in the following. For argon a splitting of

12.8 cm ™! is observed, and the trend of increasing separation with mass continues to
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Figure 5.8: Electronic spectra of Cdy—L, with L = He, Ne, Ar, Kr. Experimental
data (dots) have been fit with a Lorentzian profile (=). The spectrum of Cg,~He
has been obtained at T,,, = 4 K, the others at T,,,, = 5.7 K. The dashed vertical
lines (--) indicate the C¢y~He band maxima.

krypton with 19cm~!. Additional weak transitions at 10375.9cm ™!, 10430.4cm ™!

and 10435.5cm ™! are measured in the Cgy—Kr spectrum.

C{,—diatomics

Similar but more pronounced effects are noticed in the spectra of physisorbed di-
atomic molecules to Cg, (Figure , Table . The absorption 7, is observed
for Hy at 10366.7cm™", Dy at 10364.0cm™" and at 10357.2cm™! in the case of
Cdo~Ny. For the latter 7, is also redshifted relative to the frequency in the spec-
trum of Cgy—He by —1.9cm™!, those for Hy and Dy are akin with —2.2cm™! and

—2.7cm™!, respectively.

Larger displacements of the frequencies of 7, relative to the Cgy—He spectrum are
found in comparison to the rare-gas complexes. The bands are redshifted for Hy to
10436.0 cm™! and for Dy to 10435.1 cm ™. The trend is reversed by a blueshift for
N, to 10440.8 cm~!. The spectra of Dy and N, have weak shoulders at 7, +3.7 cm ™!

and 7, — 3.8 cm ™!, respectively.
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Figure 5.9: Electronic spectra of Cdy—L, with L = Hy, Dy, Ny at Thom = 5.7K.
Experimental data (dots) have been fit with Lorentzian profiles (=). The spectral
region between 10590 and 10700 cm ™ is enlarged by a factor of two.

Measurements of Cdy—H; and Cgy;—D, were made toward higher energy where three
transitions have been previously observed for Cg,—He. Conjointly redshifted, the
first two exhibit a doublet structure with separations ranging from 2.3 to 3.2 cm™?.
The relative intensities are similar in the two spectra but are weaker compared to
Cgo—He. The doublets have asymmetric intensities. The ratios at ~ 10600 cm™*

are 0.7:1 and 1:0.6 for the doublets at ~ 10670 cm~! within an uncertainty of 10 %.

The shifts of 7, 7, and 7, relative to the Cg,—He bands per reduced mass are
larger for the diatomic than for atomic messengers. This suggests a parallel po-
sitioning of the internuclear axis of the diatomic molecule to the hexagonal or
pentagonal sites of Cg,. According to theoretical results for Cgy—H, a perpendicu-

lar configuration is energetically less favored by ~ 11 meV [23].
In all measured electronic spectra, the widths of the absorption bands become

narrower with increasing mass. A possible explanation is given by treating the

complex in a rigid rotor approximation. Assuming only minor changes in the bond
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distance of Cgy and the messenger, the moment of inertia becomes larger, resulting

in a closer spacing of the rotational energy levels.

Astronomical Implications

A relevance regarding the DIBs is unlikely, because ionized molecules are more
important in HI regions where UV radiation dominates [24]. Only in dense clouds,
in which Hs is more abundant and temperatures are lower with 10-50 K, fullerenes
could be complexed with molecular hydrogen [16]. The high collision frequency
with Hy would exceed the rate of thermal Hy desorption with 10714571, estimated

from a simplified Arrhenius relation in nanodroplet experiments [25].
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98

He Ne Ar Kr H, Do N

- - 10379.0 2.1 103676 14 10360.6 1.1 10366.7 1.7 10364.0 1.9 10357.2 1.2

- - - - - - 103759 1.5 - - - - - -
103785 24 103768 2.1 103776 1.5 10379.6 1.6 103763 2.2 103758 2.6 103766 1.7
: : . - . - 104304 1.2 : . . _ :

- - - - 10435.5 1.0 104314 1.9 - -

10438.1 2.7 10438.5 2.7 10438.6 2.2 10438.1 2.2 10436.0 2.6 10435.1 24 10440.8 1.7
- - - - - - - - - - 104314 1.9 104439 1.4
- - - - - - - - 10598.7 24 10597.1 1.9 -

10603.2 2.7 - - - - - - 10601.0 24 10600.3 2.2 - -

- - - - - - - - 10669.2 1.9 10668.6 2.1 - -
10674.2 2.8 - - - - - - 10672.1 2.3 10671.5 2.2 - -
10693.3 2.7 - - - - - - 10690.7 2.4 10689.7 2.4 - -

Table 5.8: Wavenumbers and full widths at half maxima in cm™! observed in the Cdy—L spectra. Uncertainties are 0.4 cm™~! for the
widths and 4-0.2 cm™! for the band maxima.
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Figure 5.10: Simulation of the neon matrix spectrum (=) seen in Ref. [5]. Relative
intensities of the 7, - 7, doublet (--) and #, are set corresponding to the results in
Figure . The widths are 35 cm™! in accordance with the neon matrix data.

Neon Matrix vs. Gas-Phase Intensities

Relative intensities of the two bands 7, and 7, are different in the neon matrix
spectrum compared to the gas-phase spectrum of Cg;—He [5, 26]. The ratio in case
of the 5K neon matrix is around 1.6:1. The gas-phase experiment at a similar

temperature yields 0.8:1 with an uncertainty of 20 %.

As discussed in the preceding paragraph, the origin band of the Ne complex is split
into two 2.1cm~! broad components that are separated by 7y — 7, = 2.2cm™!.
Electronic spectra obtained from matrix isolation spectroscopy are much broader

and estimated to be &~ 35cm™!.

A simulated spectrum using Gaussian profiles for 7,, 7, and 7, is shown Figure
.10l The relative intensities of the bands are 0.85:0.80:1 according to the results
presented in Figure 5.8l A broadening of the 7,, 7, doublet leads to a superposi-
tion into a single absorption with a relative intensity 1.6 times larger than . This
is similar to the matrix result. Moreover, two and three neon atoms attached to
C{y lead to shifts of 7, 7, and 7, toward lower energies and an increase in their
widths. A comparison between a matrix isolation and a gas phase-experiment is
limited; however, the gas phase observations of C{,—Ne allow a rationalization of

the relative intensities of the absorptions of Cg, embedded in a neon matrix.
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Implications on the electronic structure of Cg,

The energy differences between the three near infrared bands 7,., 7, and 7, do not
correspond to rotational or vibrational modes. In the case of Cgy—He, irradiation of
the two latter transitions leads to complete attenuation in the number of complexes
(Figure [5.3). This indicates that the two transitions arise from a single structural
isomer. Furthermore, it can be concluded that both transitions originate from
the lowest vibrational state of the electronic ground state 2A;, in the predicted
D5y symmetry for Cgy and result in two excited states separated by 59.6cm™!. In
the given symmetry and spectral region, only two electronic transitions are dipole
allowed from the electronic ground state (Figure . Therefore, 7, originates ei-

ther from a different electronic state or is the result of a different structural isomer.

In a previous study Langford and Williamson proposed that the electronic state
2E;, is thermally accessible even at cryogenic temperatures. The level spacings
are predicted to by ~ 6ecm™! [27]. In Figure the spectra in the region of 7,
and 7y of Cdy—Ne at Tyom = 4.0,8.4 and 11.4 K are shown. The attenuation of the
absorption band at 10379 cm™! increases with higher temperature. A Boltzmann
analysis of the intensity ratios yields a separation of 4.2cm ™! assuming a two level
system where the upper level is twofold degenerate. The internal temperature of
Cgo has been approximated by the mass weighted collision temperature assuming
a translational temperature of 150 K. Below 4.5 K a deviation from the Boltzmann
curve is observed, a possible reason could be the phase transition of “He. Similar
measurements have been carried out using Cdy—Ar in a range of 4-8 K. However,

no significant changes in the relative intensities were observed.

Another scheme has been applied by probing the ions with a fluence above the sat-
uration threshold to observe maximum depletion. If all complexes can be depleted
on either transition, the ion cloud would only consist of a single ion ensemble with
a common ground state. For Cd;—Ne this experiment does not work, because the
separation of 7, and 7, is too narrow. The power broadening would superimpose
the two bands into a single one. A larger spacing between the two bands is found
for Cdy—Ar. Power dependent spectra of this complex are shown in Figure . At
higher fluences, the region between 10350 and 10400 cm ™! is congested by further
absorption bands compared to the spectrum in Figure [5.8. The cross-sections of
the additional bands are up to two orders of magnitude weaker than for 7, and
v, . However, in the case of 7, a maximum attenuation is reached at ~ 0.8 in

contrast to 7, where all complexes can be depleted. The full attenuation of 7,
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Figure 5.11: Electronic spectra of Cd;—Ne at nominal temperatures of (a) 4.0 K, (b)
8.4K and (c) 11.4 K. The laser power was P = 48 pW in each. The experimental
data (e) have been fit with a Lorentzian profile (=).

does not support two different ion ensembles in the trap without an additional
mechanism of population exchange. It needs to be emphasized, that the rare gases
have been continuously leaked into the trap. Their densities inside the trap are as-
sumed to be 10'2 to 103 cm 2 at pressures inside the chamber of ~ 5 x 107% mbar.
Within the irradiation time of 35 ms, Langevin theory predicts 100 to 1000 colli-
sions between the complex and the background gas. Enough to induce excitation
and de-excitation processes and a redistribution of the population of multiple ion

ensembles.

Further experiments preferably a two-color double resonance excitation could shed
insight into this problem. Another possibility would be to modify the experimental
setup such that the messenger can be pulsed into the trap and then be evacuated
before laser irradiation. In the current setup, condensation effects of the heavier

rare gas atoms lead to malfunctions of the piezo valve after a couple of minutes.
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5.2 Ci

The identification of Cg, in diffuse interstellar clouds raises the question of the role
played by other fullerenes with respect to the DIBs. Not only Cgy but also C¢ has
been detected in the infrared emission spectrum of a protoplanetary nebula [28]
and identified by laser desorption mass spectrometry of samples from the Allende
and Murchison meteorites [29]. The ionization potential of Cry is with ~ 8¢V as
low as that of Cg,, suggesting that in diffuse clouds it would be in its ionized form
[30]. Furthermore, it satisfies the isolated pentagon rule used to explain the high

stability of fullerenes suggesting C7; as a candidate for another carrier of the DIBs.

First spectroscopic measurements of electronic transitions of C%;, have been ob-
tained in a 5 K neon matrix in the region between 12400 and 14000 cm™! [31]. The
spectrum, which has been assigned to the 2E’ <— 2E" electronic transition in Dsy,
symmetry, shows several vibronic absorption features with similar absorbance over

the covered range. In this region numerous DIBs have been reported (32, 133].

5.2.1 Ci—He

The electronic gas-phase spectrum of confined Cd,—He in the 4-pole trap, is shown
in Figure [5.13] It has been obtained by photofragmentation using the Ti:Sapphire
laser with a 3 GHz bandwidth. The individual bands measured in the range be-
tween 12500-13500 cm~'have been fit with Gaussian functions giving the wave-
lengths and FWHDMs listed in Table. The uncertainties are larger than for Cd,—
He, standard deviations of £1cm™! for the frequencies and 30% for the widths

were estimated.

Unlike the absorption spectrum of Cg , in which the two strong origin bands at
10379 cm ™! and 10438 em ™! provide a major contribution to the oscillator strength,
the system of C4, consists of many overlapping transitions of roughly equal inten-
sity. The origin band at 12560.6 cm™! is a factor of 2-3 weaker than the strongest

1

absorption at 13098.1cm™!. The absorption cross-section at 12560.6 cm™! is de-

termined to be (7 + 3) x 107® cm?.

The origin band of C§—2He was also recorded (Figure m (a)) to provide infor-
mation on the perturbation of the electronic transition of C%, due to the presence
of the weakly bound helium atom. A shift of +0.6cm™! from Cj,~He to Cf—2He
is found at 5 K.

91



A A
7350 7400 7450 7500 7550 7600 7650 7700 7750 7800 7850 7940 7980

. . . s * l:
0.00 I &" LR RN N :.'4 2 w3 i3 Lo, dead i NPT
. T8, O Wy AT ARN Y [ Fais AT R e Vs R ¢ o\ [Xe W
* LRg Yy, vt AT M A % SilehE

0% S N N A RN A T T T N R

0.40 |
060 |
0.80 -

relative attenuation

1.00 | ' o |

‘ ‘ ‘ ‘ L ‘ ‘ ‘ e ‘
13550 13450 13350 13250 13150 13050 12950 12850 12750 12590 12520
1

v/em™
Figure 5.13: Photofragmentation spectrum of Cj,—He in the gas phase recorded by
monitoring the depletion on the m/z = 844 mass channel. Gaussian fits (=) to the
experimental data (e) are the solid lines. The intensities of the bands have been
scaled by the relative absorption cross-sections.

B I 10.00
kS ]
2 2 0.02
g -
g 0.04
§ 10.06
E | \ , 0.08
8 : ) / ]
0.3 (a) : . 40.10
U T I T T T T T T S S ﬂnl nnnnnnnn Ly | I R T ST | I S T ST | I T S ST L
12540 12560 12580 12552 12558 12564 12570

v/em™?

Figure 5.14: (a) Photofragmentation spectrum of the origin band for Cj,—2He.
Experimental data (e) have been fit using a Lorentzian function (—). The dashed
line (--) indicates the band maximum of the corresponding absorption band for
Cly—He. (b) Correction (=) of the broadened absorption band in (a).
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The FWHMs of C#;—He are significantly broader than for Cd,—He and reveal a large
spread ranging from 3.7cm™! to 16.1cm~!. Absorption bands of Cd,—He may be
partly saturation broadened in addition to their natural width. Only the weaker
bands were recorded in the linear regime (attenuation < 20%) A contribution of
power broadening can be estimated by using equation (2.60). As shown in Figure
5.14] (b) the FWHM reduces from 10.5¢cm™" to 9.5cm™" indicating a change of
—10%. These corrections have been applied to the values listed in Table[5.9] A
standard deviation of 30% is estimated as an uncertainty for the FWHMs. The
value is obtained from the evaluation of several scans. Assuming that the absorp-
tion bands obey a natural linewidth and broadened due to fast internal conversion,

the electronic state lifetimes range from 0.5 to 1.4 ps.

5.2.2 Comparison to the DIBs

None of the the laboratory bands of C4; could be matched with the reported bands
from astronomical observations, which is not surprising. The neutral fullerene has
been identified only in the planetary nebula Tc 1 with an abundance comparable to
Ceo [28]. An estimate for the EW of the strongest transition at 13327 cm™! using
equation (5.5) yields Wrs01 &~ 4 mA, assuming the same column density derived for
Cdo. This is close to the reported detection limit at a 3¢ confidence level of 2mA
for the spectrograph used with the CFH 3.6 m telescope [14].
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v/ cm™! A/ em™! )\C/A A)\/A Orel f, x 1073

12560.6 9.9 7959.2 6.3 0.39 0.08
12723.0 7.7 7857.6 4.8 0.12 0.02
12746.6 15.4 7843.1 9.5 0.17 0.06
12782.1 16.1 7821.3 9.9 0.22 0.08
12797.5 12 7811.9 7.3 0.58 0.15
12854.6 6.3 77772 3.8 0.12 0.02
12872.4 9.2 7766.4 5.6 0.15 0.03
12899.7 5.7 7750.0 3.4 0.21 0.03
12936.2 4.9 7728.1 2.9 0.18 0.02
12961.1 8.1 7713.3 4.8 0.24 0.04
12980.2 15.7 7701.9 9.3 0.08 0.03
13007.4 3.7 7685.8 2.2 0.31 0.02
13033.0 7.6 7670.7 4.5 0.68 0.11
13098.1 15.4 7632.6 9.0 0.97 0.32
13185.0 14 7582.3 8.1 0.80 0.24
13226.7 9.1 7558.4 5.2 0.64 0.13
13261.2 12.2 7H538.7 6.9 0.77 0.20
13297.8 4.2 7518.0 24 0.42 0.04
13326.8 15.3 7501.6 8.6 1.00 0.33
13382.8 114 7470.2 6.4 0.62 0.15
13559.6 12.1 7372.8 6.6 0.84 0.22

Table 5.9: Wavenumbers and air wavelength of the band maxima and their corre-
sponding FWHM obtained from Gaussian fit of the photofragmentation spectrum
of C{y—He. Uncertainties for the frequencies are +1cm~'. The widths have been
corrected for power broadening and have uncertainties of 30%. The oscillator
strength f, is given for each band maxima based on their individual absorption
cross-sections and FWHMs.
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Figure 5.15: Mass spectrum of Cgy and Cyy dications with helium attached. The

complexes have been formed in a linear quadrupole trap held at T}, = 4.5 K using

a helium number density of 1 x 10 cm 3.

5.3 Cij—He and C%j—He

By increasing the electron impact potential at the source, doubly charged species
of Cgo and Cry can be detected in the mass spectrum shown in Figure [5.15 The
second ionization potentials are low with ~ 11.5eV and can be easily exceeded with
electron bombardment [34]. Attachment of helium is easier due to the additional
charge and almost a closed solvation shell around C2; and C3%§ could be formed.
For spectroscopic purposes the conditions have been optimized for single helium

attachment by increasing the trap temperature.

From matrix results it is expected that Cgj-He does not reveal any absorption
bands in the NIR and could be confirmed from survey scans using the OPO be-
tween the NIR to the UV [35]. This is in agreement with the singlet ground state
for which electronic transitions occur typically in the UV region. Fragmentation
of the complexes was achieved between 230 and 400 nm; however, no distinct ab-

sorption bands were observed.
An absorption band in the 700 nm region has been recently assigned from mea-

surements in neon matrices to CZJ [36]. The transition at 14196 cm™' was at-

tributed to Cd, in an earlier study [31]. In the gas-phase this feature was recorded
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Figure 5.16: Photofragmentation spectrum of CZf—He in the region between 14000-
14500 cm™!. The normalized experimental data (e) have been fit with Lorentzian
functions (=).

with a pulsed-dye laser between 14000 and 14650 cm™! at E, = 150 uJ. A transi-
tion has been observed at (14223 4+ 1) cm™ followed by a weaker band maximum
at (14432 + 4)em™'. Both bands have rather large FWHMSs of (65 + 10) and
(50 +10) cm ™!, respectively. The correlation coefficients for Lorentzian and Gaus-
sian functions are almost equal. For a natural broadening the lifetime is calculated
to be (80 £ 12)fs. An absorption cross-section for the origin band has been esti-

mated as a lower limit to (8 £5) x 107 cm?, and thus an oscillator strength of

Fose = 0.06.

The determined value for the absorption cross-section of the origin band is compa-
rable to Cdy. The dication could be created in interstellar clouds by far-UV pho-
tons, although fast internal energy conversion would lead to a small cross-section
for photoionization [22]. Therefore, only a small abundance of C2fand possibly
C25in the ISM are expected, even in regions with strong UV flux. Reported DIBs
in the range do not match the characteristics of the two observed absorption bands
of C2§. In the spectrum of HD 204827 a weak absorption is listed as DIB 345 at
Ae = 7030.29 A and has a FWHM of 0.64 A [37]. An absorption feature assigned as
DIB 323 is present in the spectrum of HD 183143 at A, = 7030.31A but the width
of AN = 0.9 A is also much narrower than the ones extracted from the laboratory

gas-phase spectrum [33] 38]. Assuming a column density N(C%J) =1 x 10'2cm™2
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(equation , an EW of Wrgeo = 30mA can be expected. However, it has been
emphasized that the identification of broad DIBs is difficult considering the shal-
low depth of ~ 0.1% in the astronomical spectrum at the given column density

together with the necessary continuum level subtraction [37} |39} 40].

In 2011 the large fullerene Cg, has been proposed as a possible carrier of a DIB
[41]. The assumption was made based on a single absorption band observed at
A = 718,2nm with a FWHM of AX = 3nm in a 5K neon matrix experiment.
It was concluded that the two DIBs at A = 7154 A and A\ = 7136 A (HD 183143)
can be reasonable candidates. Furthermore, a transition of Cg; in oleum has been
identified at A = 810nm [42].

Gas-phase experiments in the vicinity of these transitions could not confirm the
reported absorption band. No fine structure could be resolved between 440 nm and
780nm using pulse energies of F, < 1mJ, although fragmentation was observed
as shown in Figure 5.17 An absorption pattern was also noticed in the UV region

between 230 nm and 440 nm, but distinct bands could not be observed.

Unlike Cgg and Cyg, Cgy has 24 isomers from which Dy and Doy symmetries are the
most energetically favorable [43] 44]. High temperatures in the source (~ 550°C)
may initially obtain a larger distribution of isomers, but it can be expected that

cooling inside the trap reduces the amount of probed Cg4 isomers.

It is also possible that macroscopic properties obeyed by larger fullerenes have to
be considered. Compared to Cgy, Cq; has an increased number of valence electrons
and exhibits a decreased molecular symmetry. Thus, a high number of energy lev-
els forming band like structures could result in extremely broad absorption bands,

in addition to possibly short lifetimes (fs) of the excited electronic states.

5.5 Conclusion

Several fullerene-helium complexes have been investigated and discussed by their
photofragmentation spectrum with the objective to compare them to astronomical
observations. The spectra of Cgy—He, Cdy~He, and C2JHe revealed several absorp-
tion bands in the VIS/NIR. Uncertainties due to induced shifts in the spectrum
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Figure 5.17: Photofragmentation spectrum of Cg,~He (=) in the range 670-770 nm
at E,(A = 720nm) = 1 mJ. The trace (=) on top of experimental data is the power
curve of the dye laser.

caused by the helium have been minimized and thus, five absorption bands of C¢,
could be assigned to known DIBs. Within the possibilities of the laboratory and
astronomical methods all criteria were fulfilled and led to the first identification of

a DIB carrier.

The weak estimated oscillator strengths for C4; and a low expected abundance
of C2f require higher sensitivity of astronomical devices for possible identification
in the ISM. In case of Cj~He and Cg, He a loss in complexes due to laser irradi-
ation was noticed, but no distinct absorption bands have been obtained. On the
other hand, it is questionable if fullerenes larger than C;g should be considered as
carriers of DIBs. Their lower symmetry reduces the degeneracies leading to broad
absorption bands or congested spectra. Some of them were recently studied in the
infrared and there have been no reports of any assignments in Cg, rich interstellar

environments [45].

All fullerenes that were probed in the UV show significant absorptions, but no
distinct pattern. Studies of several fullerenes in oleum revealed two peaks in this
region with comparable central wavelengths [42]. Also the neon-matrix spectrum of
Cgo exhibits a clear pattern with two absorption features between 250 and 350 nm
which are supported by TDDFT calculations [35]. This question should be ad-
dressed again in future experiments as the UV region is relevant for the so-called
UV-bump at 217.5nm [46].
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The absorption cross-section measurements in the 4-pole and 22-pole trap provide
also hints for further LIICG experiments. The efficiency should be much higher in
a 4-pole trap as apparently only a small fraction of the ions in the 22-pole were

excited.

99



Bibliography

1]

M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, and M. F.
Jarrold, “Structural information from ion mobility measurements: Effects of
the long-range potential”, Journal of Physical Chemistry, vol. 100, no. 40,
pp. 16 082-16 086, 1996. DOT1: 10.1021/jp961623v.

B. Follmeg, P. Rosmus, and H. Werner, “Theoretical investigation of collision
induced rotational alignment in N3 -He”, The Journal of Chemical Physics,
vol. 93, no. 7, pp. 4687-4698, 1990. DOI: [10.1063/1.458658.

J. P. Maier, “Interstellar detection of Cg,”, Nature, vol. 370, pp. 423-424,
1994. por: 10.1038/370423b0.

B. H. Foing and P. Ehrenfreund, “Detection of two interstellar absorption
bands coincident with spectral features of Cf,”, Nature, vol. 369, pp. 296

298, 1994. DOI1: 10.1038/369296a0.
J. Fulara, M. Jakobi, and J. P. Maier, “Electronic and infrared spectra of Cg,

and Cg, in neon and argon matrices”, Chemical Physics Letters, vol. 211, no.
2-3, pp. 227-234, 1993. DOI: 10.1016/0009-2614(93)85190-Y.

R. D. Bendale, J. F. Stanton, and M. C. Zerner, “Investigation of the elec-
tronic structure and spectroscopy of Jahn-Teller distorted Cg,”, Chemical
Physics Letters, vol. 194, no. 4-6, pp. 467-471, 1992. DOI1: [10.1016/0009-
2614(92)86084-U.

T. Kato, T. Kodama, T. Shida, T. Nakagawa, Y. Matsui, S. Suzuki, H.
Shiromaru, K. Yamauchi, and Y. Achiba, “Electronic absorption spectra of
the radical anions and cations of fullerenes: Cgg and Cyy”, Chemical Physics
Letters, vol. 180, no. 5, pp. 446-450, 1991. po1: 10.1016/0009-2614(91)
85147-0.

S. A. Edwards and S. Leach, “Simulated rotational band contours of Cgq and
their comparison with some of the diffuse interstellar bands”, Astronomy and
Astrophysics, vol. 272, p. 533, 1993.

T. Pino, N. Boudin, and P. Bréchignac, “Electronic absorption spectrum of
cold naphthalene cation in the gas phase by photodissociation of its van der
Waals complexes”, Journal of Chemical Physics, vol. 111, no. 16, pp. 7337—
7347, 1999. por: [10.1063/1.480105.

100


http://dx.doi.org/10.1021/jp961623v
http://dx.doi.org/10.1063/1.458658
http://dx.doi.org/10.1038/370423b0
http://dx.doi.org/10.1038/369296a0
http://dx.doi.org/10.1016/0009-2614(93)85190-Y
http://dx.doi.org/10.1016/0009-2614(92)86084-U
http://dx.doi.org/10.1016/0009-2614(92)86084-U
http://dx.doi.org/10.1016/0009-2614(91)85147-O
http://dx.doi.org/10.1016/0009-2614(91)85147-O
http://dx.doi.org/10.1063/1.480105

[10]

[18]

[19]

[20]

P. Scheier, M. Kuhn, M. Renzler, J. Postler, S. Spieler, M. Simpson, R.
Wester, A. Lindinger, J. Cami, A. Tielens, and H. Linnartz, “Solvation of
Cd, with He”, in, M. Legrand, Ed., ser. Book of Abstracts: Symposium on
Size Selected Clusters. 2016, p. 35.

S. Newbury and S. Cohen. (2012). Evaluation of earth’s helium supply, [On-
line]. Available: w3 . pppl . gov/ ppst / docs / newbury12 . pdf (visited on
08/15,/2016).

P. Jenniskens, G. Mulas, 1. Porceddu, and P. Benvenuti, “Diffuse interstellar
bands near 9600A: Not due to Cg, yet”, Astronomy and Astrophysics, vol.
327, pp. 337-341, 1997.

G. A. H. Walker, D. A. Bohlender, J. P. Maier, and E. K. Campbell, “Iden-
tification of more interstellar Cg, bands”, The Astrophysical Journal Letters,
vol. 812, no. 1, p. L8, 2015. DOI: [10. 1088/2041-8205/812/1/L8.

E. K. Campbell, M. Holz, J. P. Maier, D. Gerlich, G. A. H. Walker, and D.
Bohlender, “Gas phase absorption spectroscopy of Cgy and C3 in a cryogenic
ion trap: Comparison with astronomical measurements”, The Astrophysical
Journal, vol. 822, no. 1, p. 17, 2016. DOI: 10.3847/0004-637X/822/1/17.

B. H. Foing and P. Ehrenfreund, “New evidences for interstellar C{y”, As-
tronomy and Astrophysics, vol. 317, pp. L59-L62, 1997.

T. P. Snow and B. J. McCall, “Diffuse atomic and molecular clouds”, Annual
Review of Astronomy and Astrophysics, vol. 44, pp. 367-414, 2006. DOI: 10.
1146/annurev.astro.43.072103.150624.

W.D. Vacca, M. C. Cushing, and J. T. Rayner, “A method of correcting near-
infrared spectra for telluric absorption”, The Publications of the Astronomical
Society of the Pacific, vol. 115, no. 805, pp. 389-409, 2003. DO1: 10.1086/
346193.

G. H. Herbig, “The search for interstellar Cgq”, The Astrophysical Journal,
vol. 542, pp. 334-343, 2000. DOI1: 10.1086/309523.

G. H. Herbig, “The interstellar line spectrum of Zeta Ophiuchi”, Zeitschrift
fiir Astrophysik, vol. 68, pp. 243277, 1968.

B. J. McCall, K. H. Hinkle, T. R. Geballe, G. H. Moriarty-Schieven, N. J. E.
I, K. Kawaguchi, S. Takano, V. V. Smith, and T. Oka, “Observations of Hj
in the diffuse interstellar medium”, The Astrophysical Journal, vol. 567, no.
1, pp. 391-406, 2002. DOI: [10.1086/338380.

101


w3.pppl.gov/ppst/docs/newbury12.pdf
http://dx.doi.org/10.1088/2041-8205/812/1/L8
http://dx.doi.org/10.3847/0004-637X/822/1/17
http://dx.doi.org/10.1146/annurev.astro.43.072103.150624
http://dx.doi.org/10.1146/annurev.astro.43.072103.150624
http://dx.doi.org/10.1086/346193
http://dx.doi.org/10.1086/346193
http://dx.doi.org/10.1086/309523
http://dx.doi.org/10.1086/338380

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

[29]

J. Cami, “Can fullerene analogues be the carriers of the diffuse interstellar
bands?”, in Symposium S297 (The Diffuse Interstellar Bands), Proceedings
IAU Symposium, Z. Knezevi¢ and A. Lemaitre, Eds., vol. 9, 2013, pp. 1-5.
DOI: 10.1017/S1743921313016141.

A. Omont, “Interstellar fullerene compounds and diffuse interstellar bands”,
Astronomy and Astrophysics, vol. 590, no. A52, pp. 1-27, 2016. DOI: [10.
1051/0004-6361/201527685.

A. Kaiser, C. Leidlmair, P. Bartl, S. Zottl, S. Denifl, A. Mauracher, M. Probst,
P. Scheier, and O. Echt, “Adsorption of hydrogen on neutral and charged
fullerene: Experiment and theory”, The Journal of Chemical Physics, vol.
138, no. 074311, pp. 1-14, 2013. pOI1: 10.1063/1.4790403|

S. D. Friedman, D. G. York, B. J. McCall, J. Dahlstrom, P. Sonnentrucker,
D. E. Welty, M. M. Drosback, L. M. Hobbs, B. L. Rachford, and T. P.
Snow, “Studies of diffuse interstellar bands V. Pairwise correlations of eight
strong DIBs and neutral hydrogen, molecular hydrogen, and color excess”,
The Astrophysical Journal, vol. 727, no. 1, pp. 1-13, 2011. po1: 10.1088/
0004-637X/727/1/33.

C. Leidlmair, P. Bartl, H. Schobel, S.Denifl, M. Probst, P. Scheier, and O.
Echt, “On the possible presence of weakly bound fullerene-Hy complexes in
the interstellar medium”, The Astrophysical Journal Letters, vol. 738, no. L4,
pp. 1-5, 2011. poI: [10.1088/2041-8205/738/1/L4.

D. Strelnikov, B. Kern, and M. M. Kappes, “On observing Cg, and CZl in
laboratory and space”, Astronomy and Astrophysics, vol. 584, A55, 2015. DOI:
10.1051/0004-6361/201527234.

V. S. Langford and B. E. Williamson, “Magnetic circular dichroism of Cg,
and Cg, radicals in argon matrixes”, The Journal of Physical Chemistry A,
vol. 103, no. 33, pp. 6533-6539, 1999. DOI: 10.1021/jp991393v.

J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, “Detection of Cgy and
Cro in a young planetary nebula”, Science, vol. 329, no. 5996, pp. 1180-1182,
2010. DOI1: 110.1126/science.1192035.

L. Becker, R. J. Poreda, and T. E. Bunch, “Fullerenes: An extraterrestrial
carbon carrier phase for noble gases”, Proceedings of the National Academy of
Sciences, vol. 97, no. 7, pp. 2979-2983, 2000. DOI:10.1073/pnas.97.7.2979.

102


http://dx.doi.org/10.1017/S1743921313016141
http://dx.doi.org/10.1051/0004-6361/201527685
http://dx.doi.org/10.1051/0004-6361/201527685
http://dx.doi.org/10.1063/1.4790403
http://dx.doi.org/10.1088/0004-637X/727/1/33
http://dx.doi.org/10.1088/0004-637X/727/1/33
http://dx.doi.org/10.1088/2041-8205/738/1/L4
http://dx.doi.org/10.1051/0004-6361/201527234
http://dx.doi.org/10.1021/jp991393v
http://dx.doi.org/10.1126/science.1192035
http://dx.doi.org/10.1073/pnas.97.7.2979

[33]

[34]

[35]

R. Worgotter, B. Diinser, P. Scheier, and T. D. Mark, “Appearance and ion-
ization energies of Cij_,,, and CZ_,, ions (with z and m up to 4) produced
by electron impact ionization of C60 and C70, respectively”, The Journal of
Chemical Physics, vol. 101, no. 10, pp. 8674-8679, 1994. DOI: [10.1063/1.
468062,

J. Fulara, M. Jakobi, and J. P. Maier, “Electronic spectra of the C7y molecule
and Cdy, Cz, ions in neon matrices”, Chemical Physics Letters, vol. 206, no.
1-4, pp. 203-209, 1993. DOT: [10.1016/0009-2614 (93) 85542-V.

G. A. Galazutdinov, F. A. Musaev, J. Kretowski, and G. A. H. Walker,
“Narrow diffuse interstellar bands: A survey with precise wavelengths”, Pub-
lications of the Astronomical Society of the Pacific, vol. 112, no. 771, 2000.
DOI: 10.1086/316570.

P. Jenniskens and F. Désert, “A survey of diffuse interstellar bands (3800-
8680 A)*”, Astronomy and Astrophysics Supplement Series, vol. 106, pp. 39—
78, 1994.

H. Steger, . de Vries, B. Kamke, and W. Kamke, “Direct double ionization
of Cgp and Cyg fullerenes using synchrotron radiation”, Chemical Physics
Letters, vol. 194, no. 4-6, pp. 452-456, 1992. DOI1: 10.1016/0009-2614(92)
86081-R.

B. Kern, D. Strelnikov, P. Weis, A. Bottcher, and M. M. Kappes, “IR, NIR,
and UV absorption spectroscopy of Cii and Cgj in neon matrixes”, The
Journal of Physical Chemistry Letters, vol. 5, no. 3, pp. 457-460, 2014. DOTI:
10.1021/3jz402630z.

B. Kern, A. Béttcher, and D. Strelnikov, “IR and UV-NIR absorption spec-
troscopy of matrix-isolated C4, and C5,”, The Journal of Physical Chemistry
A, vol. 120, no. 29, pp. 5868-5873, 2016. DOI: [10.1021/acs. jpca.6b06212.

L. M. Hobbs, D. G. York, T. P. Snow, T. Oka, J. A. Thorburn, M. Bishof,
S. D. Friedman, B. J. McCall, B. Rachford, P. Sonnentrucker, and D. E.
Welty, “A catalog of diffuse interstellar bands in the spectrum of HD 204827”,
The Astrophysical Journal, vol. 680, no. 2, pp. 12561270, 2008. DOI: 10 .
1086/587930.

L. M. Hobbs, D. G. York, J. A. Thorburn, T. P. Snow, M. Bishof, S. D.
Friedman, B. J. McCall, T. Oka, and B. Rachford, “Studies of the diffuse
interstellar bands. I11. HD 183143”, The Astrophysical Journal, vol. 705, no.
1, pp. 32-45, 2009. pOI: [10. 1088/0004-637X/705/1/32.

103


http://dx.doi.org/10.1063/1.468062
http://dx.doi.org/10.1063/1.468062
http://dx.doi.org/10.1016/0009-2614(93)85542-V
http://dx.doi.org/10.1086/316570
http://dx.doi.org/10.1016/0009-2614(92)86081-R
http://dx.doi.org/10.1016/0009-2614(92)86081-R
http://dx.doi.org/10.1021/jz402630z
http://dx.doi.org/10.1021/acs.jpca.6b06212
http://dx.doi.org/10.1086/587930
http://dx.doi.org/10.1086/587930
http://dx.doi.org/10.1088/0004-637X/705/1/32

[39]

[42]

[43]

[44]

[45]

J. Sollerman, N. Cox, S. Mattila, P. Ehrenfreund, L. Kaper, B. Leibundgut,
and P. Lundqvist, “Diffuse interstellar bands in NGC 1448”, Astronomy
and Astrophysics, vol. 429, pp. 559-567, 2005. DOI: [10.1051/0004-6361 :
20041465.

P. Ehrenfreund, J. Cami, E. Dartois, and B. Foing, “Diffuse interstellar bands
towards BD+63° 1964*”, Astronomy and Astrophysics, vol. 317, pp. L28-L31,
1997.

T. M. Halasinski, R. Ruiterkamp, F. Salama, B. H. Foing, and P. Ehren-
freund, “Cgy: A prototype of larger fullerenes. laboratory spectroscopy and
astronomical relevance”, Fullerenes, Nanotubes and Carbon Nanostructures,
vol. 19, no. 5, pp. 398-409, 2011. DOT: [10.1080/15363831003721807.

F. Cataldo, S. Iglesias-Groth, and A. Manchado, “On the radical cation spec-
tra of fullerenes and fulleranes. Part 1: Cgg, Crg, Cr¢, Crs and Cgy”, Fullerenes,
Nanotubes and Carbon Nanostructures, vol. 20, no. 8, pp. 656-671, 2012. DOTI:
10.1080/1536383X.2011.572313.

D. E. Manolopoulos and P. W. Fowler, “Molecular graphs, point groups, and
fullerenes”, The Journal of Chemical Physics, vol. 96, no. 10, pp. 76037614,
1992. DOI: 10.1063/1.462413.

X. Wang, C. Z. Wang, B. L. Zhang, and K. M. Ho, “Structural and electronic
properties of Cgy: A first-principles study”, Physical Review Letters, vol. 69,
no. 1, pp. 69-73, 1992. por1: 10.1103/PhysRevLett.69.69.

F. Cataldo, Y. Hafez, and S. Iglesias-Groth, “FT-IR spectra of fullerenes Crg,
Crg and Cgy at temperatures between —180°C and 4+250°C”, Fullerenes, Nan-
otubes and Carbon Nanostructures, vol. 22, 2014. DOI: 10.1080/1536383X.
2012.749455.

B. T. Draine, “Interstellar dust grains”, Annual Review of Astronomy and
Astrophysics, vol. 41, pp. 241-289, 2003. DOI: [10.1146/annurev.astro.41.
011802.094840.

104


http://dx.doi.org/10.1051/0004-6361:20041465
http://dx.doi.org/10.1051/0004-6361:20041465
http://dx.doi.org/10.1080/15363831003721807
http://dx.doi.org/10.1080/1536383X.2011.572313
http://dx.doi.org/10.1063/1.462413
http://dx.doi.org/10.1103/PhysRevLett.69.69
http://dx.doi.org/10.1080/1536383X.2012.749455
http://dx.doi.org/10.1080/1536383X.2012.749455
http://dx.doi.org/10.1146/annurev.astro.41.011802.094840
http://dx.doi.org/10.1146/annurev.astro.41.011802.094840

Alles ist in der Natur verbunden: ein Zustand

strebt zum andern und bereitet thn vor.

Johann Gottiried Herder

Conclusion and Outlook

A combined technique of ion trapping and mass selection enabled the measure-
ment of the electronic spectra of cationic fullerenes at cryogenic temperatures. The
recorded spectra allowed the confirmation of Cg, as the carrier of the two DIBs
at 9577 A and 9632 A, finally after it was proposed more than 20 years ago. In
addition, three more of them could be assigned to this molecule leaving almost no
doubts. All postulated criteria could be fulfilled and the first five pieces in the
puzzle of the diffuse interstellar bands have been put together |1} 2].

A further investigation by applying, e.g., LIICG to fullerenes should be the aim,
to elaborate this technique to a standard spectroscopic tool. In that case, labora-
tory uncertainties could be almost narrowed down to pure statistical errors. But
not only the laboratory, also the astronomical sensitivity could be improved. One
opportunity may be the James Webb Space Telescope, launch date October 2018.
It is optimized for NIR and IR in the range from 0.6 to 2.3 ym [3]. The telluric
correction as they are necessary for ground-based astronomy can than be omit-
ted and may enable lower detection limits. Already in space is the Hubble Space
Telescope, which is also equipped with a near infrared camera and multi-object

spectrometer, unfortunately this device is currently not operating [4].

The high abundance of Cg; provides a strong stimulus for further optical spec-
troscopy of fullerene derivatives. Fulleranes, substitution of carbon and embedded
atoms or molecules inside the cage as well as endohedral fullerenes lead to enormous
amounts of possible carriers [5-7]. The selection of a candidate by pure chemical
intuition may not be sufficient and different strategies should be thought of. An
interesting approach has been used to find correlations between DIBs with machine
learning [8]. Extending this by including experimental and theoretical results of

already available data may improve the identification process.
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Formation mechanisms of fullerenes have been also extensively discussed. The
rich organic inventory of the ISM allows a multitude of chemical processes. A
build-up of molecules from small to large has been based on ion-molecule or grain-
surface chemistry in hot and dense environments of evolved stars [9} |L0]. However,
this theory can not explain that Cgg is formed also in the cold interstellar regions
[11]. It has been argued that large PAHs are converted by photochemical evolu-
tion into graphene sheets which migrate to fullerenes by spontaneous curling due
to carbon loss [12]. This "top-down” route is supported by laboratory experi-
ments creating Cd, and C3, from photolysis of large PAHs [13]. The detection was
based on mass-spectrometry rather than spectroscopy and may still leave some
doubts. Therefore, the new developments in spectroscopy of fullerenes could solve

this question in future experiments.
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Appendix

A Relaxation Kinetics: Microscopic Reversibilty

The angular momentum in terms of an inelastic collision is expressed by
I'=bxp= b, (A1)

with the b as the impact parameter and p the reduced mass. Quantization of
the angular momentum using h?(J + 1/2) yields a cross-section with transition
probability P/, ;(v)

aHf_zw< )z( D) L), (A2)

By introducing the wave vector

k= (A.3)

where E = F .. is the total energy composed of translational and state specific
internal energy of the system. Furthermore degeneracy of the initial and final states
(27; + 1), (2§ + 1) are added. Now the cross-section has to be summed over the
rotational degeneracies of the final and averaged over the rotational degeneracy of

the initial state:

Oisf =

(2] TS ZJZ S @I+ 1P sm, (B), (A.4)
7 1 mg,myf

where m; and mj; denote the projection quantum number of the angular momen-
tum. The transition probability is now a matrix depending on a particular value of
the angular momentum, and the total energy the independent variable. A property

of the matrix P is, that it is symmetric, which means it satisfies:

P/ . (E)=P/ (E) (A.5)

JiMi,J fm f Jrmg, i;m;

This is a consequence of the invariance of the laws of motion under time reversal,

called microscopic reversibility [1].

For an ensemble of particles with rate constants k(v) with relative velocities v,
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the thermal rate constant can be written as an average of these over a Maxwell-
Boltzman distribution f(v):

K(T) = /0 " k() f(v)do. (A.6)

The rate of collision induced transitions is equal to the cross-section multiplied
with the incoming flux. Furthermore, the flux is defined by the relative velocity

and the number density. Therefore, one can write for a quantized system:

dn;_, f
dt

= pkip(v) = pvoi; f(v) (A7)

Substituting the last two equations into each other yields:

8 (%)
ki (T) = | /wr e /0 exp (Ewor/kpT) 015 1 (E) Eooyd Ecoy (A.8)

Next, the integration variable has to be changed to the total energy E:

ki (T) = ,/MiBT / °° exp (E — &) /kT) ovsp(B)(E — e)dE (A.9)

The rate coefficient for the reversed process is obtained by swapping the indices ¢
and f. Furthermore using eq.(A.5)) together with eq.(A.4) yields:

8 (2j;+1)
Kl =\ e (g 1) P e/ Ko T) (A.10)

./OOO exp (—€;/kgT) o f(E)(E — €)dE

Comparing the results for k;_,;(7T) and ks;(T"), one can find what is called the
detailed balance relation:
kpsi(T) _ (2ji+1)

b (1)~ (2j, 4 1) O Uer = a)/keT) (A.11)

With this equation the reversed rate constants can be calculated. For further

reading see e.g. Ref. [2].
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B Table Parameters of 9577/9632 DIBs

DIB 9577 DIB 9632

Wos: EWS .
A /A FWHM /A A /A FWHM /A - ooz T2 Object Ref.

9577.4+0.2 3.0+£02 9632.6+02 3.0+£02  0.98 - HD43384  [3]
9577.4+0.2 3.0+£02 9632.6+02 3.0+£02  0.92 - HD63804  [3]
9577.4+0.2 3.0+£02 9632.6+02 3.0+02 085 - HD80077  [3]
9577.0 2.85 + 0.20 9632.0 29402 117 - HD183143  [4]
9577.0 40403 9632.0 40+03 109 - HD37022  [4]
9577.0 2.940.4 9632.0 29404 086 - HD80077  [4]
9577.1+£0.2 3.90+£0.12 9632002 270+£0.05 - 1.08  HD161061  [5]
9577.1 £ 0.2 - 9632.0 0.2 - - 1.33  HD147889  [5]
9577.1+0.2 3.30+£0.07 9632002 2504003 - 1.01  HDI183143  [5]
9577.1+0.2 4.80+£0.07 9632002 3.60+0.06 - 0.95 4U1907 [5]
9577.0 4.4 9633.2 4.2 - 092  HD37022  [6]
9577.2 5.4 9633.0 45 - 0.75  HD37041  [6]
9577.0 2.3+0.3 9632.0 20403 123 - PPN [7]
- - - - 1.13 - CygOB2/8A  [§]
9577.2 - 9632.3 - 068 0.86  HD167971  [9]
9576.5 - 9632.1 - 0.77 091  HD168607  [9]
9576.7 - 9632.3 - 088  1.63  HDI86745  [9]
9577.3 - 9632.6 - 068  0.84  HDI83143  [9]
9577.0 - 9632.3 - 075  1.08  HD190603  [9]
9576.7 - 9631.6 - 077 101  HD194279  [9]
9577.0 - 9631.8 - 062  0.74  HD195592  [9]
9576.1 - 9631.3 063 0.82  HD224055  [9]
9576.9 - 9631.9 - 0.68  0.79 BD+404220 [9]
9577.4 3.3 - - - - HD183143  [10]
9577.2 35 - - - - HD169454  [10]
- _ - - 1.00 1.32  HDI193237  [9]
- - - - 0.57  0.88  HD190603  [9]
: . - - 110 1.50  HDI198478  [9]
- - - - 098 117  HDI83143  [9]
- - - - 059 122  HD206165  [9]
- - - - 073 1.06  HD169454  [9]
- - - - 0.50 0.86  HD80077  [9]
- - - - 070 110  HD37022  [9]
9577.0 3.5 9632.2 3.2 083  1.04 mean
0.3 0.9 0.4 0.7 021 024 s.d.

Table B.1: Reported characteristics for 9577/9632 DIBs toward different lines-of-
sight. “Equivalent widths are uncorrected for MglI contamination in the spectrum.
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