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ABSTRACT

The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D),
neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction
rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the
transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a
leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use
cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-
neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA
verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 Me progenitors from
Woosley et al. and discuss the difference between our IDSA results and those existing in the literature.
Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred
milliseconds postbounce with 11, 15, 21, and 27 Me progenitors from Woosley et al. with the HS(DD2) equation
of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia

0.1–0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100–300 ms after bounce and
find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock
instabilities are observed as well. We also find that the level of electron deleptonization during collapse
dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will
lead to a stronger explosion.
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1. INTRODUCTION

Nearly five decades after the first attempt to obtain a
neutrino-driven explosion by Colgate & White (1966), the
explosion mechanism of core-collapse supernovae (CCSNe)
remains elusive. It is generally believed that neutrino transport
and convection are important ingredients in achieving a
successful explosion (see recent reviews in Janka 2012;
Burrows 2013; Foglizzo et al. 2015). However, modeling
CCSNe with Boltzmann transport in three dimensions is
numerically expensive and too time-consuming with current
computing resources, since the neutrino radiation hydrody-
namics with Boltzmann transport is essentially a seven-
dimensional problem: three spatial coordinates, two angular
degrees of freedom, neutrino energy, and time. In addition,
there are three types of neutrino species and their antiparticles
that would require a solution of the Boltzmann equation.

CCSN simulations with Boltzmann transport have been
studied in one-dimensional (1D; Mezzacappa & Bruenn 1993a;
Liebendörfer et al. 2001b, 2004; Sumiyoshi et al. 2005), in
two-dimensional (2D; Livne et al. 2004; Ott et al. 2008; Brandt
et al. 2011), and recently in three-dimensional (3D) with low
resolutions and fixed background profiles (Sumiyoshi et al.
2015). However, these 2D and 3D works have ignored the
velocity-dependent terms and decoupled these from the energy
groups for simplicity, and the spatial resolutions are not
sufficient to achieve a correct turbulence cascade. Therefore,
approximate methods for the neutrino transport in multi-
dimensional simulations are still necessary at this moment.

Simple approximatation schemes include the light-bulb
scheme (Murphy & Burrows 2008; Hanke et al. 2012;
Couch 2013), neutrino leakage (Janka & Mueller 1996;

Rosswog & Liebendörfer 2003; O’Connor & Ott 2011; Couch
& O’Connor 2014), and gray transport (Fryer et al. 1999;
Scheck et al. 2006). In these schemes, neutrino transport is
relatively cheap, and therefore it is possible to perform high-
resolution simulations in three dimensions (with effective
angular resolutions 1°), better describing the turbulence and
convection behind the shock and the standing accretion shock
instabilities (SASI, Blondin et al. 2003). However the neutrino
transport in these schemes is possibly oversimplified because it
does not really follow the transport of the neutrino distributions
and therefore cannot describe the neutrino heating self-
consistently.
A more sophisticated but still approximated scheme for

neutrino transport is called the Moment scheme: the multi-
group flux-limited diffusion scheme (Bruenn et al. 2013;
Dolence et al. 2015) takes the zeroth angular moment of
neutrino moment expansions (i.e., energy density). The M1
moment scheme additionally evolves the momentum density
and considers the higher moment closure with an analytic form
(Pons et al. 2000; Kuroda et al. 2012; O’Connor & Ott 2013;
Obergaulinger et al. 2014; O’Connor 2015; Kuroda et al. 2015)
or by a variable Eddington tensor (Burrows et al. 2000; Rampp
& Janka 2002; Thompson et al. 2003; Buras et al. 2006; Müller
et al. 2012b; Melson et al. 2015b). However, as reported by
Kuroda et al. (2015), the M1 scheme in 3D general relativity
(GR) is still very expensive and difficult to run in long-term
postbounce simulations with high resolution (an effective
angular resolution 4°).
Another approximated transport scheme is the isotropic

diffusion source approximation (IDSA, Liebendörfer et al.
2009). In the IDSA, the distribution function is separated into
an opaque trapped-particle component and a transparent
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streaming-particle component. The two components are linked
by a source term. Therefore, the transport equation becomes a
diffusion problem in the opaque region and a ray-tracing
problem in the transparent region (Liebendörfer et al. 2009).
Multi-dimensional simulations with the IDSA have been
performed by Suwa et al. (2011, 2014) in 2D and Takiwaki
et al. (2014, 2012) in 3D. However, most of these multi-
dimensional studies with the IDSA or with other transport
schemes do not really solve the neutrino transport in multiple
dimensions. Instead, they consider the angular distribution to
be several 1D problems, i.e., apply the ray-by-ray (RbR)
approach. Sumiyoshi et al. (2015) and Dolence et al. (2015)
have pointed out that the RbR approach may artificially
exaggerate the neutrino flux variations in the angular and
temporal components, since the temporal variation of the
neutrino fluxes in convective regions is mosttly ignored in the
RbR approach. Additionally, the RbR approximation over-
estimates the heating of accretion luminosity on its own ray and
underestimates the heating in neighboring rays.

In this paper, we present two-dimensional CCSN simulations
with the IDSA for neutrino transport in cylindrical coordinates,
which are in principle easy to extend to 3D and have better
resolution and boundary conditions for the description of the
proto-neutron star (PNS) than simulations in spherical
coordinates. We solve the trapped-particle component in
multiple dimensions to improve the neutrino transport in
angular and temporal directions. Furthermore, we study the
effects of neutrino transport during collapse by comparing our
IDSA solver with a parameterized deleptonization scheme from
Liebendörfer (2005). We find that the postbounce explosion
dynamics is sensitive to the detailed neutrino interactions
before core bounce, such as neutrino–electron scattering (NES)
and electron-capture rates. Additional effects such as GR and
magnetic fields are also crucial factors in studying the CCSN
explosion mechanism, in particular for fast-rotating and more
massive progenitors, but we leave these parts for future work.
The numerical methods and the IDSA implementations are
described in the following section. A verification of our IDSA
implementation and a comparison with other neutrino transport
schemes are shown in Section 3. In Section 4, we apply our
IDSA implementation to multiple progenitors, using a new SN
equation of state (EOS). In Section 5, we summarize our results
and conclude. A discussion of the different EOSs is presented
in the Appendix.

2. NUMERICAL METHODS AND MODELS

We describe the numerical code and the corresponding setup
of our simulations in Section 2.1. The method and implementa-
tion of the IDSA for neutrino transport are demonstrated
inSection 2.2. We present the investigated EOS and supernova
progenitors in Sections 2.3 and 2.4.

2.1. Numerical Code and Initial Setup

We use FLASH1 version4 (Fryxell et al. 2000; Dubey
et al. 2008; Lee 2013) to solve the Eulerian equations of
hydrodynamics,
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where ρ is the gas density, v is the velocity vector, P is the gas
pressure, E is the total specific energy, Φ is the gravitational
potential, Ye is the electron fraction, Y t is the particle number
fraction, and Z is the particle mean specific energy. The index l
labels different species of trapped particles (i.e., νe and ēn ). A

Table 1
Neutrino Interactions Included in the Simulations

Neutrino Interaction Reference

1. n e pen + +- Bruenn (1985)
2. p e nēn + ++ Bruenn (1985)
3. A e Aen + + ¢- Bruenn (1985)
4. A N A Nn a n a+ + Bruenn (1985)
5. e en n+ +  Mezzacappa & Bruenn (1993b), Lie-

bendörfer (2005)a

Notes. n = free neutrons, p = free protons, N = free neutrons or protons,
A = nuclei besides α particles, α = alpha particles, νe = electron-type
neutrinos, ēn = electron-type antineutrinos, ν = all types of neutrinos,
e− = electron, and e+ = positron.
a In this paper, we include the neutrino–electron scattering by using the
parameterized deleptonization in Liebendörfer (2005) in the prebounce phase,
since this reaction is only important during core collapse.

Figure 1. Density as a function of enclosed mass for the four investigated
progenitor models from Woosley et al. (2002) and Woosley & Heger (2007).

1 http://flash.uchicago.edu
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Table 2
Parameters for the Parameterized Deleptonization

Progenitor s11.0 (W02) s15.0 (W02) s21.0 (W02) s27.0 (W02) s15 (W07) s20 (W07)

ρ1 (g cm−3) 1.5×108 9.0×107 2.5×108 2.5×108 2.2×108 3.0×108

ρ2 (g cm−3) 1.2×1013 9.0×1012 1.0×1013 1.0×1013 9.5×1012 1.0×1013

Y1 0.5 0.5 0.5 0.5 0.5 0.5
Y2 0.287 0.282 0.279 0.279 0.279 0.273
Yc 0.02 0.03 0.017 0.017 0.022 0.017

Note. Parameters used in the fitting formula from Liebendörfer (2005).

Figure 2. 1D radial profiles in the mass coordinate during the collapse of the s15.0 progenitor with LS220 EOS. Different colors represent different times when the
central density reaches ρc=1011, 1012, 1013, and 1014 g cm−3 and at bounce. Solid lines show simulation results from FLASH and dashed lines show simulation
results from AGILE-IDSA. Note that there are some slight time offsets between the results from FLASH and AGILE-IDSA because their output files do not exactly
match the given central densities.
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detailed description of the neutrino transport method will be
presented in Section 2.2.

FLASH is a parallel, multidimensional hydrodynamics code
based on block-structured adaptive mesh refinement (AMR).
Our simulation setup is essentially similar to what has been
implemented in Couch (2013) and Couch & O’Connor (2014),
but replaces their radiation transfer solver by an IDSA solver
(Liebendörfer et al. 2009). We use the third-order piecewise
parabolic method (PPM, Colella & Woodward 1984) for spatial
reconstruction, the HLLC Riemann solver and the Hybrid slope
limiter for shock-capture. The “hybrid” Riemann solver is
widely used to avoid an odd–even numerical instability when
the shock is aligned with the grid (Quirk 1991). However, we
do not see this instability in our CCSN simulations by
comparing simulation results with the hybrid Riemann solver.
The HLLC Riemann solver shows a better turbulent cascade
based on the implicit large-eddy simulations (Radice et al.
2015). Effects from general and special relativity and from
magnetic fields are ignored.

Simulations are performed in 1D spherical and 2D
cylindrical coordinates. The center of a progenitor star is
located at the origin of the simulation box. The simulation box
includes the inner 104 km in radius of a progenitor star in 1D
and the full 180° in cylindrical coordinates with
rmax=zmax=104 km and zmin=−104 km in 2D. The central
r100 km sphere has the smallest zone size of 0.488 km and
the AMR mesh is dynamically adjusted based on the magnitude
of the second derivatives of gas density, pressure, and entropy.
To save computation time, we apply additional AMR
decrements based on the distance to the origin. For exam-
ple,the first AMR decrement is enforced at r∼100 km and the
second at r∼200 km, the next at r∼400 km, and so on. The
maximum zone size is 62.5 km. We employ the “outflow”

boundary condition at the outer boundaries and the “reflect”
boundary condition at the inner boundaries. The gravitational
potential is solved by the new improved multipole solver in
FLASH (Couch et al. 2013) with a maximum Legendre order,
lmax=16.
It should be noted that the “outflow” boundary condition, as

reported by Couch (2013), causes a zero-gradient mass
accretion at the boundary which will overestimate the inflow
and suppress the explosion at late time. We therefore extend
our simulation domain to 10,000 km to minimize the effect of
boundary conditions.

2.2. Neutrino Transport

In the IDSA (Liebendörfer et al. 2009; Berninger et al.
2013), we decompose the distribution function f of transported
particle species and the neutrino transport operator D into a
trapped-particle component and a streaming-particle compo-
nent. We assume that these two components evolve separately.
With this assumption, we rewrite the transport equation,
D f f f Ct s( )= + = , where C C Ct s= + is a collision
integral, by two equations,

D f C 7t t( ) ( )= - S

D f C , 8s s( ) ( )= + S

where Σ is the diffusion source term, which converts trapped
particles (t) into streaming particles (s) and vice versa.
By using the diffusion limit, the diffusion source term Σ in

the trapped transport equation could be expressed as (see
Liebendörfer et al. 2009 for a more detailed discussion)

j f d jmin max
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is a non-local diffusion scalar, j is the emissivity, χ is the
absorptivity, f is the opacity, and μ is the angle cosine. The
distribution functions f t and f s can be solved by using
Equations (8) and (10) in Liebendörfer et al. (2009). Once
the distribution functions are known, the net interaction rates of
transported particles can be calculated and further updates of
the fluid quantities, such as v̇, Yė , Ė , Yl

ṫ , and Z ,l
t˙ can be derived.

We solve the streaming component in 1D with the original
IDSA solver, but solve the trapped component and α in
multiple dimensions. In each time step, we take the angle-
averaged radial bins of fluid and neutrino quantities, such as ρ,
s, T, Ye, Y ,l

t and Zl
t, as 1D inputs for the streaming component.

The radial bins contain 600 zones sampled from the center of
the PNS, defined by the location of maximum density, up to
r = 5000 km. The radial bins are uniformly spaced
(Δr=2 km) up to a radius of r=400 km. Beyond 400 km,
the zone spacing increases logarithmically. The streaming
component carries only to the location of neutrino spheres
Rν(E) and the angular integration of the spectral neutrino flux
Fs(E). The local heating from streaming neutrinos is then
determined based on the local neutrino interaction rates, which
in turn are based on the multidimensional hydrodynamic
quantities.

Figure 3. Profiles of electron fraction (solid lines) and lepton fraction (dashed
lines) at core bounce in model s15.0. Red lines show simulation data from
Agile-IDSA and blue lines represent data from FLASH. The black line
indicates the electron fraction from the fitted PD scheme (Table 2). Both
Agile-IDSA and FLASH are 1D simulations with LS220 EOS and
without NES.
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It should be noted that the assumption of spherical symmetry
in the streaming component may calculate the neutrino flux and
heating incorrectly when shocks become highly asymmetric,
especially in 2D simulations after the SASI have developed. On
the other hand, an RbR approach may artificially enhance the
asymmetry and lead to incorrect results as well (Dolence et al.
2015; Sumiyoshi et al. 2015). It is important to have
multidimensional simulations with both approximations
because they are likely to bracket the actual solution: the
RbR focuses all heating from the accretion luminosity on its
own ray, while the angular integration distributes it over all
directions. In reality, a solution in between these extremes is
expected.

For the trapped component, we explicitly solve the
diffusion source Σ and α in multiple dimensions and update

f t locally. Together with the streaming component, the new
multidimensional interaction rates can be updated. The new
neutrino sources are re-evaluated based on multidimensional
neutrino sources and production rates, and then used for
the next streaming step. Since we solve the diffusion part
explicitly, a stable solution requires a small neutrino time step
t x c x c2 22 ( )l~ D ~ Dn . Therefore, in our 1D and 2D
simulations, we use a fixed hydrodynamic time step with
thydro=10−6 s and do sub-cycling for the neutrino transport.
Since the IDSA solver in the streaming component allows a
larger time step, we adopt two types of sub-cycles: one for the
streaming component with t 5 10s 7= ´n

- s and the other for
the trapped component with t 10t 7=n

- s. Additionally, the
neutrino pressure contributes extra momentum and can be

Figure 4. Particle spectra at 150ms postbounce for the trapped-particle component (blue lines), streaming-particle component (red lines), and their sum (green lines).
Solid lines show spectra from FLASH and dashed lines represent spectra from AGILE-IDSA. Left panels show neutrino spectra and right panels show antineutrino
spectra. Each row indicates spectra at a different radius.
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expressed by
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We note that Equations (6) and (11) include all thermodyna-
mically important O(v/c) terms of the Boltzmann transport
equation. These O(v/c) terms have been considered as crucial
for CCSN modeling (Mezzacappa & Bruenn 1993a; Lieben-
dörfer et al. 2009; Lentz et al. 2012b).

Our IDSA solver only includes electron flavor neutrinos. We
use 20 energy bins that are spaced logarithmically from 3 to
300MeV. For heavy neutrinos, the energy release is treated by
a leakage scheme that is based on the local diffusion and the

local production rates (Hannestad & Raffelt 1998; Rosswog &
Liebendörfer 2003; Perego et al. 2014).
Table 1 summarizes all weak interactions that are included in

this work. All weak interactions in the IDSA solver use the
Bruenn description (Bruenn 1985). Note that the IDSA solver
dose not include NES (interaction 5 in Table 1). NES is
important during the collapse phase but provides minor
contributions in the postbounce phase (Bruenn 1989a; see
Section 3.2 for a demonstration). Liebendörfer (2005) found a
simple relation between the electron deleptonization and the
gas density in the collapse phase, where electron fraction and
entropy can be parameterized by density and chemical
potentials. This parameterized deleptonization (PD) scheme
can effectively take interactions into account that are only
implemented in the Boltzmann solver that is used to determine

Figure 5. Similar to Figure 2, but for the postbounce evolution.
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the parameters for the PD scheme. We have recalibrated the
fitting parameters with different progenitors for the PD scheme
by running AGILE-BOLTZTRAN (Liebendörfer et al. 2004),
since the original parameters in Liebendörfer (2005) are
calibrated for the progenitors G15 (s15s7b2, Woosley &
Weaver 1995) and N13 (Nomoto & Hashimoto 1988). Table 2
summarizes the fitting parameters we use during collapse. In
this paper we include the effect of NES by using the PD
scheme in the collapse phase. Since the scheme is independent
of the neutrino fractions, we update the neutrino fractions and
energy through the IDSA solver during collapse. After bounce,
we turn off the PD and switch to the IDSA solver. For
simulations without NES, we use the IDSA solver from the
beginning of core collapse to postbounce.

To verify our IDSA implementation in FLASH, we provide a
code comparison of FLASH-IDSA with AGILE-IDSA and
with existing results from the literature in Section 3.

2.3. Equation of State

We use the nuclear EOS unit in FLASH, which incorporates
the finite-temperature EOS routines from O’Connor & Ott
(2010) and Couch (2013).2 The Lattimer & Swesty EOS (with
incompressibility, K= 220MeV; Lattimer & Swesty 1991) and
Hempel & Schaffner-Bielich (HS) DD2 EOS are used in this
work. The HS(DD2) EOS employs the density-dependent
relativistic mean-field interactions of Typel et al. (2010). The
description of nuclei in supernova matter is based on Hempel &
Schaffner-Bielich (2010). This EoS was first applied in core-
collapse supernova simulations by Fischer et al. (2014), where
further details can be found. LS220 is one of the most common
and well-studied EOSs in the supernova community. However,
it has some deficiencies, for example it is based on the single-
nucleus approximation for heavy nuclei, and considers only the
alpha particle as a degree of freedom of all possible light
nuclei. See Hempel et al. (2015) for a comparison of
predictions for cluster formation for the HS(DD2) and the
LS220 EOSs with experiments, where good agreement was
found. Furthermore, it was shown by Krüger et al. (2013) and

Fischer et al. (2014) that the neutron-matter EOS of LS220 is in
disagreement with constraints from chiral effective field theory.
Furthermore, its low-density symmetry energy deviates from
constraints obtained from finite nuclei, see Figure9 of Hempel
(2015). No multidimensional simulations have been performed
with HS(DD2) at this moment. We use LS220 for a code
verification test in Section 3 and then use DD2 for our main
simulations in Section 4. A low-density extension for the EOS
is included in the routines from O’Connor & Ott (2010). In the
Appendix we provide a brief discussion of the differences
between LS220 and DD2.

2.4. Supernova Progenitors

In this paper, we consider four different non-rotating, solar-
metallicity progenitors, s11.0, s15.0, s21.0, and s27.0 from
Woosley et al. (2002)3, for our multiple progenitor study. We
also consider two non-rotating, solar-metallicity progenitors,
s15 and s20 from Woosley & Heger (2007), for a comparison
study. Figure 1 shows the initial density distribution of these
six progenitors. The s11.0 progenitor has the highest core
density but the most dilute envelope. The s21.0, s27.0, and s20
progenitors have a similar density distribution and the most
massive envelope among the models, but have different masses
of the iron core and Si/O shell. The locations of regions with a
high density gradient correspond to the Si/O interface. For the
same progenitor mass, s15 has a denser core and more massive
envelope than s15.0. Another common progenitor model used
in the literature is the s15s7b2 progenitor from Woosley &
Weaver (1995). It has the same progenitor mass as s15.0 and
s15 but the Si/O interface is located much further inside. This
difference may make significant changes to the postbounce
evolution of the shock radius when the shock reaches the
interface because of a different mass-accretion history (Suwa
et al. 2014).
To adopt the progenitor models in FLASH, we map the one-

dimensional density, temperature, electron fraction, and radial
velocity profiles from Woosley et al. (2002) into our 1D/2D
grids in FLASH. Other thermodynamic quantities are recalcu-
lated using the EOS solver in FLASH. Neutrino fractions are set
to zero at the beginning.

3. IDSA VERIFICATION

To verify the IDSA implementation in FLASH, we first
compare our 1D FLASH simulations with simulations with
AGILE-IDSA (Liebendörfer et al. 2009) in Section 3.1.
AGILE-IDSA is a 1D spherically symmetric Lagrangian code
that is publicly available online.4 In Liebendörfer et al. (2009),
a nice agreement of AGILE-IDSA with the GR Boltzmann
code AGILE-BOLTZTRAN (Liebendörfer et al. 2004) was
shown. Since we want to compare our results with the same
neutrino transport scheme (IDSA), we run additional simula-
tions in AGILE-IDSA but turn off the GR correction for the
gravitational potential. We also turn off the PD during collapse
in both codes to test the IDSA solver for neutrino transport
before and after bounce.
In Section 3.2, we show 1D and 2D FLASH simulations with

the two widely used progenitors, s15 and s20 from Woosley &
Heger (2007), and discuss the differences compared to other

Figure 6. Time evolution of the shock radius for the four investigated
progenitor models in both FLASH (solid lines) and AGILE-IDSA (dashed
lines). Different colors represent different progenitor models. All results are 1D
with LS220 EOS and without NES. The differences in the models s11.0 and
s27.0 after 0.1s are due to a different handling of shell interfaces and a large
diffusivity of the implicit adaptive mesh in AGILE-IDSA.

2 http://www.stellarcollapse.org

3 http://2sn.org/stellarevolution/
4 https://physik.unibas.ch/~liebend
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transport schemes. Furthermore, we run AGILE-BOLTZTRAN
simulations to demonstrate the importance of NES during core
collapse and discuss the influence of the utilized neutrino
opacities and electron capture rates on the shock evolution and
neutrino signal.

3.1. Code Comparison with AGILE-IDSA

We perform 1D CCSN simulations of the four investigated
progenitors (s11.0, s15.0, s21.0, and s27.0) with the LS220
EOS in both FLASH and AGILE-IDSA. Figure 2 shows the
radial profiles of density, electron fraction, entropy, and radial
velocity of the progenitor s15.0 during collapse. It is clear to
see that the bounce profiles (black lines in Figure 2) are nearly
identical in the two codes. Small differences at the center could

originate from the fact that AGILE-IDSA is a Lagrangian code
with a moving mesh. At the beginning of a simulation, the
innermost region of the progenitor star is much less resolved
than with the Eulerian grid of FLASH. Therefore, the radial
profiles in AGILE-IDSA evolve slightly more slowly than
those in FLASH. Furthermore, the bounce time in FLASH is
about 0.1–12 ms later than in AGILE-IDSA, depending on the
progenitor star.
Figure 3 shows the electron and lepton fractions of the

progenitor s15.0 at core bounce. It is found that the electron
fraction is consistent in both codes, but the lepton fraction
shows a mismatch at 1010ρ1012 g cm−3, suggesting a
lower electron neutrino distribution at low densities in FLASH.
However, this difference does not alter the postbounce

Figure 7. Electron neutrino (left) and electron antineutrino (right) luminosities and mean energies as functions of time. The quantities are averaged over a 5ms time
interval. Different colors represent the different progenitor models. Solid lines represent the FLASH simulations and dashed lines indicate the AGILE-IDSA
simulations.
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evolution much since the neutrinos are simply free-streaming in
the low-density region. We note that in our multidimensional
IDSA solver, we have employed a limiter for the diffusion
scalar α. The limiter enforces the trapped component to have a
small value, when r R E1.25 ( )> ´ n , to prevent unphysical
oscillation in α, when the trapped neutrino density goes to zero
in the free-streaming regime. This limiter leads to small
differences of the neutrino luminosity and mean energy, but
does not affect the hydrodynamic quantities. Figure 4 shows
the particle spectra of the trapped and streaming components at

150ms postbounce of the progenitor s15.0. We show three
different regions where the trapped-particle component dom-
inates (at r= 40 km), where trapped- and streaming-particle
components are comparable (at r= 60 km), and where the
streaming-particle component dominates (r= 100 km). There
are small differences in the particle spectra, but we do not
expect exactly identical spectra in the two codes, since the
hydrodynamic parts are different.
A comparison of radial profiles of the density, electron

fraction, entropy, and radial velocity of the progenitor s15.0 in

Figure 8. Time evolution of shock radius (left) and electron-type neutrino luminosity (right). Different colors represent different models from FLASH and AGILE-
BOLTZTRAN with different neutrino physics. See Section 3.2 for a detailed description.

Figure 9. Time evolution of shock radius (left) and electron-type neutrino signals (right). Different colors represent different progenitor models. In the left panel, thick
lines show the evolution of 2D simulations and thin lines represent 1D simulations. In the right panel, thick lines indicate electron-type neutrino luminosities and thin
lines show the rms neutrino mean energies. Solid lines represent electron neutrino signals and dashed lines represent electron antineutrino signals.
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Table 3
1D Simulation Results During Core Collapse

Property Models
s11.0 s15.0 s21.0 s27.0

Progenitor mass (Me) 11 15 21 27
Progenitor compactness (ξ1.75) 0.066a 0.54 0.68 0.53
Progenitor compactness (ξ2.5) 0.004 0.15 0.22 0.23

w PD wo PD w PD wo PD w PD wo PD w PD wo PD
Abbreviation (1D-) DP11 DA11 DP15 DA15 DP21 DA21 DP27 DA27

Time at ρc=1011 g cm−3 (ms) 176.3 194.1 267.6 278.2 269.7 284.3 273.0 287.2
Time at ρc=1012 g cm−3 (ms) 197.6 224.2 285.7 300.8 286.3 304.0 289.4 306.9
Time at ρc=1013 g cm−3 (ms) 201.9 229.3 289.6 305.5 290.2 308.4 293.2 311.4
Time at ρc=1014 g cm−3 (ms) 203.0 230.7 290.7 306.8 291.2 309.7 294.3 312.7
Time at bounce (ms) 203.5 231.3 291.2 307.3 291.7 310.2 294.7 313.2
Bounce, central ρ (1014 g cm−3) 3.21 3.39 3.14 3.43 3.08 3.35 3.10 3.45
Bounce, central Ye 0.287 0.316 0.282 0.312 0.279 0.310 0.279 0.311
Bounce, shock position (Me) 0.54 0.77 0.56 0.76 0.56 0.75 0.56 0.75

Note.
a Note that the compactness parameter of the s11.0 progenitor is about 10 times smaller than the others due to a smaller core mass and light envelope.

Table 4
Simulation Parameters and Results

Progenitor Abbreviationa NTcollapse
b EOS tbounce

c t400
d tend

e Edia
f MPNS

g RPNS
h

(ms) (ms) (ms) (B) (Me) (km)

1D

s15 (W07) 1D-LA15–07 IDSA LS220 237 L 763 L 1.85 29.1
s15 (W07) 1D-LP15–07 PD LS220 249 L 523 L 1.77 36.1
s20 (W07) 1D-LP20–07 PD LS220 322 L 678 L 1.99 30.4
s11.0 (W02) 1D-LA11 IDSA LS220 206 L 794 L 1.48 27.5
s15.0 (W02) 1D-LA15 IDSA LS220 273 L 727 L 1.84 29.5
s21.0 (W02) 1D-LA21 IDSA LS220 274 L 726 L 1.98 30.4
s27.0 (W02) 1D-LA27 IDSA LS220 283 L 717 L 1.81 31.2
s11.0 (W02) 1D-DA11 IDSA DD2 231 L 766 L 1.47 32.2
s15.0 (W02) 1D-DA15 IDSA DD2 307 L 693 L 1.84 34.6
s21.0 (W02) 1D-DA21 IDSA DD2 310 L 604 L 1.95 37.1
s27.0 (W02) 1D-DA27 IDSA DD2 313 L 687 L 1.81 36.1
s11.0 (W02) 1D-DP11 PD DD2 203 L 761 L 1.47 33.6
s15.0 (W02) 1D-DP15 PD DD2 291 L 709 L 1.84 36.6
s21.0 (W02) 1D-DP21 PD DD2 292 L 708 L 1.98 36.6
s27.0 (W02) 1D-DP27 PD DD2 295 L 705 L 1.81 37.1

2D

s15 (W07) 2D-LP15–07 PD LS220 249 312 524 0.298 1.69 37.1
s20 (W07) 2D-LP20–07 PD LS220 324 284 490 0.347 1.86 40.5
s15.0 (W02) 2D-LA15 IDSA LS220 274 209 311 0.464 1.60 46.8
s15.0 (W02) 2D-LA15lowi IDSA LS220 274 210 369 0.523 1.62 43.5
s11.0 (W02) 2D-DA11 IDSA DD2 232 86 374 0.821 1.31 42.3
s15.0 (W02) 2D-DA15 IDSA DD2 308 186 417 0.506 1.65 43.5
s21.0 (W02) 2D-DA21 IDSA DD2 311 189 411 0.635 1.75 44.8
s27.0 (W02) 2D-DA27 IDSA DD2 314 162 429 0.248 1.66 42.3
s11.0 (W02) 2D-DP11 PD DD2 204 170 376 0.267 1.37 47.4
s15.0 (W02) 2D-DP15 PD DD2 292 275 456 0.255 1.71 45.4
s21.0 (W02) 2D-DP21 PD DD2 292 282 484 0.417 1.82 44.8
s27.0 (W02) 2D-DP27 PD DD2 295 199 484 0.157 1.70 43.5

Notes.
a The model abbreviations are defined by the model’s dimensionality, EOS, neutrino transport scheme, and progenitor mass. See Section 4 for a detailed description.
b Neutrino transport scheme during the collapse phase.
c Bounce time.
d Explosion time after bounce.
e Termination time after bounce.
f Diagnostic explosion energy at the end of the simulation. 1 B≡ 1051 erg.
g PNS mass at the end of the simulation.
h PNS radius (determined as the average radius corresponding to ρ=1011 g cm−3) at the end of the simulation.
i The effective angular resolution in this model is a factor of two lower.
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both codes at different postbounce times is shown in Figure 5.
We note that although there are some differences in the radial
shock location, the profiles and shock locations are consistent
in the mass coordinate. The evolutions of the postbounce shock
radius for the four progenitor models are shown in Figure 6.
Overall, the evolutions of the shock radius are nearly the same
but they show slight differences at ∼120ms (∼220 ms) in the
model s11.0 (s27.0) when the shock reaches the Si/O interface.

Figure 7 shows the time evolution of electron-type neutrino
luminosity and mean neutrino energy for the four considered
models. The values are sampled at a radius of 500 km in both
codes. The electron neutrino luminosities and electron
antineutrino luminosities are similar for the two codes around
bounce and early postbounce. However, at ∼100ms post-
bounce, the neutrino and antineutrino luminosities in FLASH

become slightly higher than in AGILE-IDSA for the
progenitors s15.0, s21.0, and s27.0. The maximum difference
is an increase of 15% in FLASH at ∼150ms postbounce.
After ∼200ms postbounce, the neutrino luminosities are back
to the same value in both codes but the antineutrino luminosity
remains slightly higher in FLASH simulations. For the
progenitor s11.0, the electron neutrino luminosity is the same
in both codes but the electron antineutrino luminosity is
slightly higher in FLASH. However, we note that the mean
neutrino and antineutrino energies in FLASH are about 10%–

20% lower than in AGILE-IDSA. This difference could
originate from the lower neutrino fraction in the low-density
region in FLASH (see Figure 3), since we measure the neutrino
mean energy at r=500 km.

Figure 10. Angle-averaged radial profiles of progenitor s11.0 at different times during core collapse. All models use the DD2 EOS. Different colors indicate different
averaged profiles at certain central densities and bounce. The solid lines show simulations with the PD and the dashed lines show simulations with the IDSA.
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The kernel of our IDSA solver in FLASH is the same as the
solver in AGILE-IDSA. The main differences are from the
hydrodynamics, the explicit solver for the diffusion scalar α in
Equation (10), the detailed treatment of the EOS, and
potentially also the gravity solver. The low-density extension
for the EOS in FLASH and differences in the internal energy
shift may also provide slightly differences. In principle, we
should expect identical results in both codes in 1D. As
presented above, although some little differences have been
observed, most features are consistent and in nice agreement.
Liebendörfer et al. (2005) have performed a code comparison
of the Boltzmann solver AGILE-BOLTZTRAN with the
VERTEX code that has a variable Eddington factor. Both
codes have sophisticated physics input in spherical symmetry
but different implementations. As pointed out in Liebendörfer
et al. (2005), the different grids in the Lagrangian or Eulerian

coordinates produce late-time differences in the shock evolu-
tion when the shock runs through shell interfaces. Since
FLASH is also an Eulerian code, similar differences between
FLASH and AGILE-IDSA as we have found here can be
expected.

3.2. Code Comparisons for the 15 Me and 20 Me Progenitors

The s15 and s20 progenitors from Woosley & Heger (2007)
have been widely studied in the literature, e.g., by Bruenn et al.
(2013), Dolence et al. (2015), Suwa et al. (2014), Hanke
(2014), Summa et al. (2015), and Melson et al. (2015a). In
addition, Lentz et al. (2012b, 2012a) have shown that different
neutrino opacities and approximations could lead to different
postbounce evolutions by using spherically symmetric
AGILE-BOLTZTRAN simulations with the s15 progenitor.
Therefore these two progenitor models are very suitable for

Figure 11. Similar to Figure 10, but for progenitor s15.0.
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comparisons among different SN codes. It is generally agreed
that the Vertex-Prometheus (Rampp & Janka 2002) and
CHIMERA (Bruenn et al. 2013) codes use state-of-the-art
physics for neutrino transport. Therefore, it is worth perform-
ing simulations with these progenitor models to have a direct
comparison. However, there is still different physics employed
in the above-mentioned works. For instance, CASTRO
simulations (Dolence et al. 2015), ZEUS simulations (Suwa
et al. 2014), and our FLASH-IDSA simulations are New-
tonian, but AGILE-BOLTZTRAN simulations (Lentz et al.
2012b, 2012a), CHIMERA simulations (Bruenn et al. 2013),
and Vertex-Prometheus simulations (Hanke 2014;
Melson et al. 2015a) are GR or post-Newtonian. Furthermore,
Dolence et al. (2015) use Shen’s EOS while other groups use

the LS220 EOS. Therefore in this section we only give a
qualitative discussion.
To evaluate whether the PD scheme could effectively

represent NES, we perform three Newtonian AGILE-BOLTZ-
TRAN simulations with the s15 progenitor and the LS220 EOS.
The first simulation (model AB-NR) includes the NES, the
second simulation (model AB-NR-NoNES) ignores the NES,
and the third simulation (model AB-NR-Mix) includes NES
only in the collapse phase. Figure 8 shows the evolutions of the
shock radius and neutrino luminosity of these three simulations
together with FLASH-IDSA simulations with and without PD.
Ignoring NES (models FLASH-IDSA and AB-NoNES in
Figure 8) gives a short period of shock expansion at ∼10ms
postbounce. A signature from this can also be seen in the

Figure 12. Similar to Figure 10, but for progenitor s21.0.
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electron antineutrino luminosity. This behavior is consistent
with the model “N-ReduceOp” in Lentz et al. (2012b), and the
evolutions of the shock and electron-type neutrino luminosity
of our FLASH-IDSA simulation without PD are also consistent
with our AGILE-BOLTZTRAN simulation (AB-NR-NoNES).

The model AB-NR-Mix is nearly identical to the model AB-
NR, demonstrating that NES is important mainly during the
collapse phase (Figure 8). Fischer et al. (2012) showed that
NES plays a role in the late-time PNS cooling and
deleptonization (>1 s) after the explosion. However, our
simulations focus only on the first few hundred milliseconds.
The PD scheme in model FLASH-PD greatly improves the
postbounce simulation, making our FLASH-IDSA simulations
closer to the AGILE-BOLTZTRAN simulation with full
neutrino reactions. Although there is no perfect match, we
conclude that the use of the PD scheme in the collapse phase

could effectively take into account the NES. It should be noted
that heavy neutrinos are treated by a simple leakage scheme,
which could lead to some difference in our IDSA simulations
as well.
In Figure 9, we show the evolution of the shock radius and

neutrino signatures of our 2D FLASH-IDSA simulations of the
s15 and s20 progenitors from Woosley & Heger (2007). To get
a fair comparison, we enable the PD scheme during collapse
and use the LS220 EOS. Both 2D models explode at ∼300ms
postbounce (see Table 4). The explosion time, t400, is defined
by the time when the averaged shock radius exceeds 400 km
and never recedes at the end of the simulation. Overall, the
evolutions of shock radius are similar to the models B15-
WH07 and B20-WH07 in Bruenn et al. (2013) except that the
CHIMERA simulations show earlier explosions. It should be
noted that we use the old neutrino interactions from Bruenn

Figure 13. Similar to Figure 10, but for progenitor s27.0.
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(1985) and that our simulations are Newtonian. Müller et al.
(2012b) have shown that GR effects could enlarge the neutrino
luminosities and therefore make it easier to explode. The model
s20–2007 in Hanke (2014) and Melson et al. (2015a) shows a
similar explosion time to our model s20, but the shock radius at
∼150ms shrinks to ∼150 km due to GR effects. The reasons
for the differences between Vertex-Prometheus and
CHIMERA are still unclear, but the overall features for the
progenitor s20 are still rather similar. However, the model
s15–2007 in Hanke (2014) shows a very different result. The
shock stalls for ∼500ms and then explodes at around
∼600ms.

On the other hand, 2D CASTRO and ZEUS Newtonian
simulations by Dolence et al. (2015) and Suwa et al. (2014) did
not obtain an explosion with the s15 and s20 progenitors. Our
2D simulations show a fast shock expansion after the prompt
convection (∼20 ms, see Figure 9). This is similar to what was
observed in Dolence et al. (2015) but somewhat less dramatic.
The prompt convection and fast shock expansion coincide with
an oscillation of the electron antineutrino luminosity at
10–20 ms (see Figure 9 and Figure 6 of Dolence et al. 2015).
These could be caused by the reduced opacity or incomplete
neutrino interactions as discussed before. Note that Dolence
et al. (2015) use the Shen EOS, which is considered more
difficult to lead to explosions than LS220 (Couch 2013; Suwa
et al. 2013).

Suwa et al. (2014) also use the IDSA (without PD) but
with spherical coordinates and the “RbR” approach. In
principle, we should expect similar results, but the non-
explosion of s15 and s20 in Suwa et al. (2014) suggests that
the different hydrodynamics code, geometry, resolutions, and
multidimensional neutrino transport approximation may also
cause significant differences. Suwa et al. (2014) use 300
logarithmically spaced radial zones (from 1 to 5000 km) and
1°.4 angular resolution. This is roughly three times lower than

our simulations. Adetailed code comparison is therefore
necessary.

4. MULTI-PROGENITOR STUDY

We perform 1D and 2D simulations with s11.0, s15.0, s21.0,
and s27.0 progenitor models from Woosley et al. (2002).
Simulations run from the prebounce core collapse to several
hundred milliseconds postbounce with and without the PD in
the collapse phase. The former is important in order to
effectively take NES into account. Table 3 shows the core
properties of these four progenitors during collapse based on
1D simulations. A summary of all performed simulations is
shown in Table 4. The model abbreviations in Tables 3 and 4
are defined by a set of letters and numbers: the first two
characters define the dimension of the model (1D or 2D); the
first letter after the hyphen denotes the EOS of the model (L for
LS220 and D for DD2); the second letter shows the transport
scheme during the collapse (A for IDSA and P for PD); and the
last two numbers specify the mass of the investigated
progenitor model. A “−07” at the end shows progenitor
models from Woosley & Heger (2007), otherwise they are from
Woosley et al. (2002). For instance, model 1D-DA15 means a
1D simulation of the s15.0 progenitor with DD2 EOS and using
the IDSA in the collapse phase (i.e., effectively without NES).
When we refer to models DA, we consider all models with
“DA” in their abbreviations.

4.1. Stellar Collapse and Core Bounce

Simulations are started from the non-rotating, solar-
metallicity pre-supernova progenitors from Woosley et al.
(2002) without artificial perturbation. Couch & Ott (2013) and
Mueller & Janka (2015) show that small perturbations on the
Si/O interface during collapse could amplify post-shock
turbulence and turn a model that failed to explode toward a
successful explosion. In addition, Couch et al. (2015)

Figure 14. Average shock radius vs.postbounce time for different progenitors and neutrino transport approximations. All models use the DD2 EOS. Different colors
indicate different progenitor models. The left panel represents simulations without the PD and the right panel represents simulation with an effective inclusion of NES
by the PD. The solid lines show 2D simulations and the dashed lines show 1D simulations.
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performed 3D simulations of the final few minutes of iron
core growth in a massive star that includes Si shell burning.
The results suggest that the non-spherical progenitor structure
may have a strong impact on neutrino-driven explosions.
In our models, we do not include these non-spherical features,
and therefore the 2D simulations during collapse show nice
agreement with 1D simulations in all models. However, we
will show that spherical variations due to different levels

of electron deleptonization or neutrino reactions during
collapse may also have a significant impact on neutrino-
driven explosions.
Figures 10–13 show the radial density, electron fraction,

entropy, and radial velocity evolutions of 2D models with an
HS(DD2) EOS based on the IDSA or the PD at different times
during the collapse phase. The 1D data are not shown because
they are barely distinguishable from the 2D data before bounce.

Figure 15. Color maps show the time evolution of the angle-averaged Brunt–Väisälä (BV) frequency ωBV in units of ms−1 (left) and the anisotropic velocity vaniso in
units of the speed of light c (right) in our models 2D-DP. The red lines show the time evolution of the maximum shock radius and the black (left) and white (right)
lines show the time evolution of the averaged shock radius.
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In the bounce profiles, the models DP show a slightly lower
central density but a higher density outside the iron core, due to
an earlier bounce time.

The core evolutions of different progenitors behave
qualitatively similarly during collapse, but show quantitive
differences for the central electron fraction, central density,
and bounce shock locations. Table 3 summarizes important
quantities for the four different progenitors during the collapse
phase. Due to a higher initial central density of the progenitor
s11.0, the central density of s11.0 reaches ρc=1011 g cm−3

∼100 ms earlier than other progenitors. Once the core densities
in different progenitors reach the same ρc, the more massive
progenitors collapse faster than other progenitors.

In addition, since the electrons are highly degenerate and can
only gain energy, this means that neutrinos lose their energy

through NES and therefore escape more easily, accelerating the
collapse process (Bethe 1990). Therefore models DP (with
effective NES) collapse faster than models DA (without NES)
and have a lower Ye (more e-captures), Yl (+ν-escape), and ρc
at core bounce.
Core bounce is defined here by the first time when the

maximum density in the core exceeds 2×1014 g cm−3 and the
maximum peak entropy is above 3kB baryon−1. At bounce, the
bounce shock emerges at ∼0.55 Me (defined by the mass
enclosed within the shock front at bounce) in models DP and at
∼0.75Me in models DA. Since the core mass is proportional to
Ye

2 (Yahil & Lattimer 1982), models DA have higher core mass
than models DP at bounce. The highest infall velocity at
bounce is about ∼70,000 kms−1 in all progenitor models. It
should be noted that the Si/O interface, which corresponds to

Figure 16. Angle-averaged radial profiles of progenitor s11.0 at different postbounce times. All models are evolved in 2D and use the DD2 EOS. Different colors
indicate different postbounce times. The solid lines show simulations with the PD and the dashed lines show simulations without the PD.
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the region of high entropy gradient at about 100–400 km in
Figures 10–13, is at different radii for models DA and DP due
to different bounce times, since the bounce time directly sets
the location of the Si/O interface. These differences will
strongly influence the shock evolution after bounce.

4.2. Shock Expansion and Instabilities

Figure 14 shows the angle-averaged shock radius as a
function of time in our 1D and 2D simulations with the
DD2 EOS. The shock radius of a sample ray is defined here
by the largest radius where the entropy is above smin=
4.5kBbaryon

−1 (smin=6 kBbaryon
−1 for progenitor models

s11.0 and s27.0) after the postbounce time was reached,
tpb=50 ms. In 2D simulations, we sample 180 radial rays.

Before 50ms postbounce, the shock front is defined by the
minimum radial infall velocity.
1D and 2D models behave very similarly in the first few

milliseconds until the bounce shock passes through the neutrino
sphere at ∼10ms. At that time, a prompt entropy- and electron-
driven convection occurs and makes the 2D simulations different
from 1D. Later on, this prompt convection causes a fast shock
expansion and changes the shock radius from r 100sh ~ km to
rsh∼200 km at tpb∼20ms (see Figure 14). While the prompt
convection is caused by the negative entropy and Ye gradient, it
should be noted that this early fast shock expansion during
tpb∼10–20ms may be amplified by our incomplete neutrino
interactions and the old neutrino opacities, and by the grid-effect
in cylindrical coordinates in consideration of the multidimen-
sional treatment of neutrino diffusion, since a Rayleigh–Taylor

Figure 17. Similar to Figure 16, but for progenitor s15.0.
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bubble along the diagonal axis is observed at that time. A similar
fast shock expansion is observed in Dolence et al. (2015) as
well, but is not obvious in any other 2D simulation with
spherical coordinates. However, unlike the results in Dolence
et al. (2015), the shock radius in our simulations shrinks back to
rsh∼150 km after this prompt convection at tpb∼50ms.

The prompt and late convection can be understood from the
local stability analysis via the Ledoux criterion (Ledoux 1947),
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Figure 18. Similar to Figure 16, but for progenitor s21.0.
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In Figure 15, we show the evolution of the angle-averaged
BV frequency and anisotropic velocity of our models DP. The
BV frequencies are positive and high when the shock breaks
through the neutrino sphere and the prompt convection happens
at ∼20ms. Starting from the core regions, the anisotropic
velocities become very strong after the prompt convection has
developed, and therefore drive the fast shock expansion at
∼20ms. However, the convection stops and the anisotropic
velocity returns to small values at ∼50ms. Models DA behave
similarly but on a different timescale due to different shock
evolutions. We note that our estimate of CL may be incorrect at
small radii, where neutrinos are trapped, due to the neglect of
the contribution from neutrinos in Yl, but the overall features
should be the same.

For a given progenitor model, the bounce shocks have a
similar shock strength in both models DA and DP. The
difference in shock radius in models DA and DP during the
prompt convection is mainly due to the difference in the
bounce time, since a different bounce time leads to a different
shock strength when the bounce shock reaches the location of
the negative entropy gradient. Since convection is suppressed
in 1D, we do not observe this prompt convection in 1D models.
However, the prompt convection in 2D models leads to a larger
shock radius than in 1D models at tpb∼50 ms.
After t 50pb ~ ms, the shock stalls at rsh∼150–200 km for

another ∼50–100 ms (except for model 2D-DA11). It is no
surprise that all 1D models fail to explode due to the lack of
convection. However, at first it seems surprising that all our 2D

Figure 19. Similar to Figure 16, but for progenitor s27.0.
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models explode within ∼100–300 ms postbounce regardless of
the progenitor mass and the inclusion of NES during collapse.
But on second thoughts, one has to consider that our
simulations are Newtonian (comparing with Bruenn
et al. 2001; Liebendörfer et al. 2001b; Müller et al. 2012b)
and do not include the most recent electron capture rates (Hix
et al. 2003; Langanke et al. 2003). In general, Newtonian
simulations disfavor explosions compared to general-relativis-
tic simulations (Müller et al. 2012b), and also the old neutrino
interactions and opacities could make our simulations too
optimistic with respect to explosions. Furthermore, we are
using the DD2 EOS, which has more realistic nuclear matter

properties than the LS220 EOS that was used in the above-
mentioned simulations. In the Appendix we show that DD2
leads in our simulations to more favorable conditions for
explosions than LS220. Table 4 summarizes the essential
parameters of our 1D and 2D simulations at the end of the
simulations. Model 2D-DA11 is the fastest explosion model,
exploding already at t400=86 ms by neutrino-driven convec-
tion. For the other DA models, the explosion time is
t400∼160–190 ms. In addition, because of the effective
NES, models DP evolve more slowly and explode at a late
t400∼200–280 ms (t400=170 ms for model 2D-DP11, see
Table 4 for detailed information).
In model 2D-DP11, the shock radius first expands to

rsh300 km at ∼100ms postbounce when it reaches the Si O
interface, but temporarily drops back to rsh300 km at
∼130ms postbounce before it explodes. Progenitors s15.0
and s21.0 explode later than progenitors s11.0 and s27.0
but at a similar time in both models 2D-DA and 2D-DP. In
Figures 16–19, we compare the average radial profiles of
density, entropy, electron fraction, and radial velocity at 1, 3,
50, 100, and 200ms postbounce for models DA and DP. We
terminate the simulations at ∼700–800 ms postbounce in 1D
and at ∼300–500 ms postbounce in 2D.
The 2D entropy distribution of models 2D-DP is shown in

Figure 20 at 150, 250, and 300ms postbounce. At ∼150ms,
the convection is getting stronger (see Figure 15) but the
distribution of shock radius is still spherically symmetric. Later
on, at ∼200ms, the SASI start in models 2D-DP15, 21, and 27
but the models of progenitor s11.0 show mainly convection
without SASI. The SASI activities can be seen in Figure 21,
where we show the normalized coefficients al of the
decomposition of the shock radius rsh(θ) into Legendre
polynomials Pl (Müller et al. 2012a). al can be calculated from

a
l

r P d
2 1

2
cos , 15l l

0
sh ( ) ( )ò q q=

+ p

and a0 corresponds to the averaged shock radius. For the
progenitor s11.0, there is no obvious evidence of SASI
activities in either model 2D-DA11 or 2D-DP11. The
amplitudes of the normalized coefficients for l=1, 2, and 3
modes are small and within the same order of magnitude. For
progenitors s15.0, s21.0, and s27.0, the SASI activities can be
seen and start to grow at ∼200ms postbounce. After ∼200ms
postbounce, the dipole (l= 1) and quadrupole (l= 2) modes
grow to al/a0∼0.2 in the progenitors s15.0 and s21.0, and to
al/a0∼0.1 in progenitor s27.0. The amplitudes do not show
significant differences between models DA and DP, but the
starting time of the high growth rates of the amplitudes
corresponds to the time of fast shock expansion. SASI activities
could also be seen in Figure 22 for the entropy distribution
where the y axis is a line starting from the north pole and going
to the south pole.
To verify the code convergence, we have also performed a

low-resolution run by reducing the angular resolution by a
factor of 2 (model 2D-LA15low). We find that the explosion
time t400 is delayed by 1 ms and the shock expansion evolves
slightly more slowly than for the run with standard resolution
(model 2D-LA15). Overall, we find no significant differences
between the low-resolution run and the standard run.

Figure 20. Entropy distributions of our 2D models with the PD and the DD2
EOS (see Table 4). Each frame shows a section of the domain spanning
800 km. The color scale indicates the entropy in kB/baryon.
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4.3. Neutrino Heating and Explosion Energy

The energy released in neutrinos is about 1053erg in a
typical CCSN (Colgate & White 1966). To power the observed
kinetic energy of a CCSN (∼1051 erg≡1 B), the baryonic
matter has to absorb ∼1% of the neutrino energy (Bethe &
Pizzochero 1990). However, the explosion energies in most
published 2D models are still lower than the standard 1 B
(except for those of Bruenn et al. 2013, 2014). The real
explosion energy is not straightforward to calculate and the
definition may differ from group to group. Figure 23 shows the
“diagnostic energy” of our models 2D-DA and 2D-DP. The
diagnostic energy, Edia, is defined by

E e dV , 16
e

dia
0

tot
tot

( )ò r=
>

where the volume integration is performed over the region
where the total specific energy,

ve e e
1

2
, 17tot 0

2( ) ( )º - + + F

is positive. e represents the specific internal energy (thermal
energy plus binding energy), and v1

2
2 and Φ are the specific

kinetic and gravitational energies, respectively. e0 is the
reference energy value that is defined by the minimum specific
internal energy at the beginning of the simulation, which leads
to a negligible diagnostic explosion energy at the beginning.
We have checked that alternative values for the reference
energy, which are suggested in the literature, do not have a
significant effect on our final results. Depending on progenitor

Figure 21. First, second, and third coefficients a1, a2, and a3 of the spherical decomposition of the shock radius into Legendre polynomials, normalized to the average
shock radius (a0) for different progenitors.
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and simulation domain, e0 is about ∼1017 ergg−1. We find that
the diagnostic energy is insensitive to e0 if we make it a few
times larger or smaller. Note that this expression does not take
into account properly the different binding energy contributions
from different nuclei to the thermal energy. Therefore the so-
called recombination energy is not included. e corresponds
only to the thermal energy that actually should be used in Edia,
if the composition is dominated by 12C or if it has a similar
average binding energy to 12C. The diagnostic explosion
energies (Figure 23) of our models 2D-DP are between 0.1 B
and 0.4 B at ∼400ms postbounce and are still increasing at the
end of our simulations. The models 2D-DA, which ignored the
NES in the collapse phase, have a much stronger explosion
energy, Eexp∼0.2–0.8 B at ∼400ms postbounce. This result

is consistent with the 1D results in Bruenn (1989b). It should
be noted that the only difference between models 2D-DA and
2D-DP is the deleptonization method during collapse. The
postbounce physics employed is identical in both models 2D-
DA and 2D-DP, suggesting that the initial conditions at bounce
may dramatically affect the postbounce evolutions. Further-
more, note that it is difficult to compare the results of models
DP with other groups because there are differences in the input
physics and methods. Additionally, we show the diagnostic
explosion energies of models 2D-LA15 and 2D-LA15low for a
comparison with LS220 EOS and with low resolution. We find
that the model with LS220 EOS leads to a slightly lower
diagnostic explosion energy due to a delay of the explosion.
The low-resolution model also gives a similar result, suggesting

Figure 22. Entropy at the north and the south poles as a function of time for different progenitor masses and for models DA (left) and DP (right) in Table 4.
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that the fast explosion in our models is not due to insufficient
resolution (Figure 23).
Ugliano et al. (2012), Nakamura et al. (2014), and Perego

et al. (2015) suggest that there is a correlation of the
compactness parameter with the explosion energy. We do see
this trend in our simulations except for the progenitor s11.0, if
we define the compactness parameter at an enclosed mass of
1.75Me, i.e.,

R M M1.75
1.75

1.75 1000 km( )
x º

= 
(O’Connor & Ott

2011). In our simulations, the progenitor s11.0, which has the
lowest compactness parameter, has the second highest
diagnostic explosion energy (see Tables 3 and 4). However,
this trend in our simulations will disappear if we use ξ2.5. It
should be noted that we only have four progenitor models in
our simulations, and the correlations found in Ugliano et al.
(2012) and Perego et al. (2015) show a huge scatter between
different models, indicating that the compactness parameter
oversimplifies the complexity of the explosion mechanism.

Figure 23. Diagnostic explosion energies defined in Section 4 as a function of
time. Different colors represent the different progenitor models. Solid lines represent
the models 2D-DP and dashed lines indicate the models 2D-DA in Table 4. The
magenta and yellow lines use LS220 EOS, while other lines use DD2 EOS.

Figure 24. Similar to Figure 7, but for the models DP (solid lines) and the models DA (dashed lines) in Table 4.
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Figure 24 shows the neutrino luminosity and mean energy of
electron-type neutrinos and antineutrinos as functions of time.

The neutrino mean energy, Eν, is defined by E
f d

f d

,

,

3

2

( )

( )

  

  
= ò

ò
n

n

n
,

where f is the distribution function. The neutrino luminosities
in models DA after ∼50ms grow faster than in models DP but
the peak luminosities after ∼100ms are similar in both models
DA and DP. The neutrino mean energies show a similar trend
but the differences are less pronounced. We note that the
neutrino luminosities and mean energies in our simulations are
of a similar order of magnitude to the typical results in the
literature (Janka 2012). Therefore, the high explosion energies
in our simulations require a larger mass in the gain region or a
higher heating efficiency than other investigators.

Figure 25 presents the 2D net heating and cooling rates in
models 2D-DP. The red color shows the heating region and the
blue color indicates the cooling region. The PNS radius
(defined by the average radius of density ρ=1011 g cm−3) is
plotted as well in Figure 25. The gain region is defined as
the post-shock region with positive net heating. In Figure 26,
we show the integrated quantities of net heating (Qnet),
total mass in the gain region, and the heating efficiency as
functions of time. The heating efficiency is defined by

Q L Lheat net ,gain ,gaine e
( )¯h = +n n , since the heating originates

mainly from the electron-type neutrinos.
The early prompt convection shows a very high peak in

heating efficiency at ∼20ms, which could be associated with a
grid-effect in cylindrical coordinates. However, this prompt

Figure 25. Net heating (red) and cooling (blue) distributions of our models 2D-
DP (see Table 4). The solid black lines show the radius of the PNS.

Figure 26. Integral quantities of net heating (top), mass in the gain region
(middle), and heating efficiency (bottom) as functions of time. See Section 4
for the definition of these integral quantities. Different colors represent different
progenitor models. Solid lines represent the models 2D-DP and dashed lines
indicate the models 2D-DA in Table 4.
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heating does not affect the explosion energy directly since
matter is still bound at that time. The shock expansion and the
early convection at tpb∼50 ms enlarge the gain radius and the
mass in the gain region. After tpb∼100–200 ms, the mass in
the gain region continues to increase with time. We noted that
the masses in the gain region (∼0.1 Me) in our simulations are
higher than the values that are reported by other groups,
explaining the high diagnostic explosion energy in our
simulations.

The models 2D-DA11 and 2D-DP11 have the lowest net
heating and heating efficiency among the models (except
during the prompt convection period), but have the second
highest mass in the gain region and diagnostic energy. This is
probably due to the fast shock expansion (see Figure 14) and
low mass-accretion in the progenitor s11.0.

4.4. Proto-neutron Stars

During its evolution, the PNS shrinks due to the neutrino
cooling behind the gain radius. In Figure 27, we show the
evolutions of mass and radius of the PNSs after bounce. An
initial oscillation of the PNS takes place at ∼10ms, when the
shock breaks through the neutrino sphere. Later on, mass
continuously accretes onto the PNS for several hundred
milliseconds so that it reaches ∼1.3–2.0 Me at the end of the
simulations. At that time, the PNS radii have shrunken to
∼40 km. The mass and radii of the PNSs at the end of the
simulations are summarized in Table 4.

The convection and SASI activities help the PNS to accrete
mass during the setup of an explosion. Accretion funnels are
created along the high-entropy convective plumes. This can be
seen in Figure 20. Therefore, the progenitor s11.0, which has
the least SASI activities and accretion funnels, shows the
lowest PNS mass increment, and the growth rate of the PNS
mass is the lowest as well. Furthermore, the progenitor s11.0
has the lowest density distribution outside the iron core, which

gives the lowest mass-accretion rate. After ∼400ms, the mass
increment of the PNS becomes small but the mass of the PNS is
still increasing at the end of the simulations. We find that
although the growth rates of the PNS mass in models 2D-DA
and 2D-DP are different, the final PNS masses in models 2D-
DP are only slightly larger (<5%), and the radii of PNSs in
models 2D-DA are slightly lower than those in models 2D-DP,
giving a more compact PNS core in models 2D-DA. This can
also be related to the earlier explosion times of models DA.
Figure 28 shows the central density, central electron fraction,

lepton fraction, central entropy, and central temperature as
functions of time. Models 2D-DA show higher central densities
and higher central Ye (higher electron pressures), but lower
central entropies and central temperatures than the models 2D-
DP, giving a more compact PNS core. However, the density in
the outer layer of the PNS is higher and more convective in
models 2D-DP than that in models 2D-DA. Therefore, models
2D-DP have a higher PNS mass and radius (see Figure 27).

5. CONCLUSIONS

We have performed self-consistent CCSN simulations for
the four non-rotating, solar-metallicity progenitors, s11.0,
s15.0, s21.0, and s27.0 from Woosley et al. (2002), and s15
and s20 from Woosley & Heger (2007), using the AMR code
FLASH with an IDSA for neutrino transport. A very good
agreement of FLASH-IDSA with AGILE-IDSA is shown in
Section 3.1, though some small differences still exist. In
addition, we have provided a comparison of our multi-
dimensional IDSA results for the s15 and s20 progenitors
from Woosley & Heger (2007) with results in the existing
literature. However, a detailed comparison with an exchange of
data and collaboration among groups would be necessary to
understand remaining different results with regard to the
underlying physics.

Figure 27. Time evolution of the PNS mass (left) and radius (right). The PNS mass and radius are determined at the average radius corresponding to ρ=1011 g cm−3.
Different colors represent different progenitor stars. Solid lines show the models 2D-DP and dashed lines show the models 2D-DA in Table 4.
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The new SN EOS HS(DD2) is employed in this study and a
comparison with the standard LS220 EOS is discussed in the
Appendix. It is found that the DD2 EOS shows a faster shock
expansion, and a higher mass in the gain region, while the
neutrino luminosities are similar, causing the DD2 EOS to lead
to slightly earlier and stronger explosions than the LS220.

We have presented two sets of simulations which compared
the neutrino transport with the IDSA (but ignoring NES;
abbreviated DA) with the PD scheme (which includes NES
effectively; abbreviated DP) during collapse. The results show
clearly that the treatment of neutrino weak interactions and the
level of deleptonziation during the collapse phase have a
significant impact on the neutrino-driven explosions. All our
2D models explode within ∼100–300 ms. Models without NES

explode much more easily, more strongly and faster than
models with NES. The diagnostic explosion energy in our
simulations is around 0.1–0.5 B in models 2D-DP (see Table 4)
and around 0.2–0.8 B in models 2D-DA. Our explosion
energies are likely to decrease when we include general-
relativistic effects and better electron-capture rates in future
models.
In our simulations, we do not use the typical RbR approach

for the neutrino transport. Instead, we solve the diffusion part in
multiple dimensions, improving the neutrino transport in
angular and temporal directions. With this approach, the
prompt convection after the core bounce causes a fast shock
expansion (tpb∼50 ms), enlarging the gain region at late
time, and therefore helps to increase the explosion energy at

Figure 28. Time evolution of central density (ρc, upper left), central electron fraction (Ye) and lepton fraction (Yl, upper right), central entropy (lower left),
and central temperature (lower right). Different colors represent different progenitor stars. Solid lines show the models 2D-DP and dashed lines show the
models 2D-DA in Table 4. In the upper right panel, the thin lines represent the central lepton fraction and the thick lines represent the central electron
fraction.
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late time. However, this prompt convection may be amplified
by grid-effects in cylindrical coordinates. To address this
issue, a full 3D simulation will be necessary or a detailed
comparison with simulations in spherical coordinates. Further-
more, we have found SASI activities at late time in
progenitors s15.0, s21.0, and s27.0, but in most cases the
explosions are mainly due to neutrino-driven convection.
Future work will relax the constraints imposed by axisym-
metry. Models in 3D will permit the study of a more realistic
turbulence cascade and rotation.

We thank the anonymous referee for valuable comments and
suggestions. This work was supported by the European
Research Council (ERC; FP7) under ERC Advanced grant

agreement No. 321263—FISH, by the PASC High Perfor-
mance Computing Grant DIAPHANE, and by the Swiss
National Science Foundation (SNF). The Basel group is a
member of the COST Action New Compstar. Part of this work
was inspired during the MICRA2013 meeting in ECT*. We
thank Albino Perego for the development of the leakage
scheme for heavy neutrinos. We thank Takami Kuroda, Rubén
Cabezón, Kei Kotake, Tomoya Takiwaki, Ko Nakamura, and
Yudai Suwa for useful discussions. K.C.P.acknowledges Sean
Couch for releasing his supernova setup in the public version of
FLASH. FLASH was developed largely by the DOE-supported
ASC/Alliances Center for Astrophysical Thermonuclear
Flashes at the University of Chicago. The simulations have
been carried out at the CSCS Monte-Rosa under grant No.412.

Figure 29. Similar to Figure 10, but for models 2D-DA15 and 2D-LA15 in Table 4.
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Analysis and visualization of simulation data were completed
using the analysis toolkit yt (Turk et al. 2011).

APPENDIX
A COMPARSION BETWEEN DD2 AND LS220

Several simulations in this paper use the new DD2 EOS,
while most multidimensional simulations found in the
literatures use LS220. We therefore briefly describe the
qualitative differences between the simulations with the DD2
and the LS220 EOSs in this section. We perform 1D and 2D
simulations of the progenitor s15.0 with DD2 and LS220 EOSs
(models 1D-DA15, 2D-DA15, 1D-LA15, and 2D-LA15 in
Table 4). Hereafter, we use DA15 to refer to both models 1D-
DA15 and 2D-DA15, and similarly we use LA15 to refer to the
models 1D-LA15 and 2D-LA15. Their main features are

summarized in Table 4. The PD scheme is turned off in order to
study the impact of the EOS on the neutrino transport.
The angle-averaged radial profiles of density, electron

fraction, entropy, and radial velocity are shown in Figure 29
for the prebounce phase. As discussed in Section 4, the radial
profiles in the collapse phase are nearly identical in both 1D
and 2D. In addition, the density and radial velocity evolutions
in models DA15 and LA15 are also similar during the collapse
but models DA15 collapse more slowly than models LA15.
Therefore, models DA15 reach core bounce about ∼30ms later
than models LA15.
While there are no significant differences in the neutrino

luminosity and mean energy between models DA15 and LA15
(Figure 30), models DA15 show a lower central density and
higher PNS radius than LA15. The time evolutions of central
density and electron fraction of models DA15 and LA15 are

Figure 30. Similar to Figure 24, but for models 1D-DA15, 1D-LA15, 2D-DA15, and 2D-LA15 in Table 4.
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Figure 32. Similar to Figure 27, but for models 2D-DA15 and 2D-LA15 in Table 4.

Figure 31. Similar to Figure 28, but for models 1D-DA15, 1D-LA15, 2D-DA15, and 2D-LA15 in Table 4.

Figure 33. Similar to Figure 26, but for models 2D-DA15 and 2D-LA15 in
Table 4.

Figure 34. Similar to Figure 14, but for models 1D-DA15, 1D-LA15, 2D-
DA15, and 2D-LA15 in Table 4.
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shown in Figure 31. Furthermore, models DA15 have a higher
central electronfraction and lepton fraction than models DL15.
2D models also show a lower PNS mass and a higher PNS
radius than 1D (Figure 32), but the PNS masses are similar in
both DD2 and LS220 (see Table 4).

Since the bounce time in models DA15 is longer than in
models LA15, the Si/O interface reaches a smaller radius in
models DA15 (∼90 km) than in LA15 (∼120 km, see
Figure 29). The bounce shock hits the Si/O interface earlier
in models DA15 than in LA15, generating a prompt convection
and fast shock expansion at ∼20ms postbounce. The earlier
interaction between the bounce shock and the Si/O interface in
model 2D-DA15 makes the shock radius in model 2D-DA15
larger than in simulation 2D-LA15. Furthermore, the larger
shock radius in model 2D-DA15 produces a higher mass in the

gain region (see Figure 33), suggesting that the models with the
DD2 EOS explode more easily than the models with the LS220
EOS. The evolution of averaged shock radius of models DA15
and LA15 can be seen in Figure 34. The explosion time (t400)
in 2D-DA15 is about 23ms earlier than in 2D-LA15. In
Figure 35, we compare the radial density, electron fraction,
entropy, and velocity profiles in 1D and 2D for DD2 and
LS220 at 1, 3, 50, 100, and 200ms postbounce. Before
∼20ms postbounce, models LS15 show a faster shock
expansion than models DA15 but the shock radius in DA15
become larger after the Si/O interface has reached the shock
at ∼20ms.
Figure 36 shows the normalized decomposition into

Legendre polynomials (Equation (15)) of the shock radius of
models 2D-DA15 and 2D-LA15. The corresponding entropy

Figure 35. Similar to Figure 16, but for models 1D-DA15, 1D-LA15, 2D-DA15, and 2D-LA15 in Table 4.
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distribution at the north and south poles is shown in Figure 37.
The SASI activities start at ∼0.2s in both 2D-DA15 and 2D-
LA15 after the Si/O interface reaches the shock, and the
amplitudes of the normalized coefficients al/a0 do not show
significant difference. We remark that a more through
investigation of the EOS effects will be the subject of a future
study.
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