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Abstract. We discuss the impact of consistent modeling of weak processes and nuclear
equation of state (EOS) during the deleptonization phase of protoneutron stars (PNS). They
are born in the event of a core-collapse supernova. Being initially hot and lepton rich, PNSs
deleptonize via the continuous emission of neutrinos of all flavors. Unlike during the mass
accretion phase prior to the onset of the supernova explosion, when the neutrinospheres
are located at low densities, they shift to significantly higher densities during the PNS
deleptonization phase after the supernova explosion has been launched. Important during
this phase is the inclusion of medium modifications to the weak processes, which depend on
the nuclear EOS. In particular, these medium modifications depend on the nuclear symmetry
energy and its density dependence. We discuss two selected nuclear models and illustrate
the early PNS deleptonization phase for a particular EOS. As has been realized recently,
including weak processes consistently with the EOS increases the spectral differences of v.
and 7. in comparison to simulations that neglect the underlying medium modifications. This
has important consequences for the nucleosynthesis relevant conditions of the ejecta as well as
for potential neutrino flavor oscillations and hence detection on Earth.

1. Introduction

Stars more massive than about 8 Mg end their life’s as core-collapse supernovae [1, 2]. They are
triggered from the collapse of the stellar core due to electron captures and the photodissociation
of heavy nuclei. The collapse continues until normal nuclear matter density is reached. The
nucleon pressure from the short-range repulsive nuclear interaction halts the collapse and the
supersonically collapsing core bounces back. A sound wave turns into a shock wave which then
propagates out of the core. The object which forms at core bounce is the protoneutron star
(PNS), being hot and lepton rich in which senses it differs form the final supernova remnant,
the neutron star. The moment of core bounce is determined when the maximum central density
is reached just before shock break out. The initially outwards propagating bounce shock finally
halts due to energy losses from the dissociation of heavy nuclei, which fall onto the shock
from the still gravitationally collapsing region above the core, and electron neutrino escapes.
The latter are released in the deleptonization burst which is launched from a large number of
electron captures on free protons when the bounce shock propagates across the neutrinospheres.
The v.-luminosity reaches several times 10°3 erg s~! and lasts only about 10-20 ms after core
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bounce. These sources of energy loss turn the bounce shock into an accretion front which stalls
at about 100-200 km. The revival of this shock wave, the so called supernova problem, is
related to the liberation of energy from the central PNS into the layer above the PNS surface
behind the standing shock. Several scenarios have been explored in the literature, the magneto-
rotational [3], the acoustic [4], the high-density quark-hadron phase transition [5], and the
neutrino heating [6]. The moment of explosion onset can be defined when the standing accretion
shock starts to propagate continuously to increasingly larger radii and does not retreat back at
any later times. It will expel the stellar mantel, ejecting manly a-nuclei up to the iron group.
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Figure 1. Left column: Radial profiles of density (solid black line) and luminosities (v.: solid
red line, 7.: dashed red line, v,,/,: dash-dotted line) at about 2 s after explosion onset. The
region of neutrino decoupling is shown via the energy-dependent transport spheres (for v),
where the color-coding is according to the neutrino energies from FE,,;,, = 3 MeV (black) at
about 16.17 km up to Ey,qe = 300 MeV (white) at 49.11 km. The energy-averaged v.-sphere is
shown in the vertical blue solid line. (color online) Right column: List of weak processes.

Independent from the shock-revival mechanism, a layer of net neutrino heating establishes
above the PNS surface after the explosion has been launched. It drives a low-mass (~ 1074 M)
outflow, known as neutrino-driven wind. It has been explored in parametric [7, 8, [, [10] as well
as in dynamic studies [I1), 12} 13, [I4]. It has also long been investigated as nucleosynthesis site
for the production of both, light p-nuclei and r-process nuclei [I5] [16, [I7]. One of the largest
uncertainties of neutrino-driven winds is the proton-to-baryon ratio Y., which is determined
by the weak processes and at the neutrinospheres. Addressing this question requires
neutrino transport to accurately describe neutrino decoupling from matter at the PNS surface.
It determines the neutrino spectra and luminosities and hence the nucleosynthesis relevant
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conditions in the wind at larger radii [I8]. Note that process will turn matter to the
proton-rich side, while process ((1b]) will turn matter to the neutron-rich side. Moreover, material
at neutrino decoupling is extremely neutron rich yielding Y, ~ 0.05 — 0.1, as a consequence
of the deleptonization burst form core bounce. In order to achieve neutron-rich conditions
for the material being ejected from the PNS surface in the neutrino-driven wind, it has been
demonstrated analytically that for similar v, and 7, luminosities, (Ep. ) — (E,.) ~ 5 MeV [18].
In recent spherically symmetric simulations that are based on general relativistic radiation
hydrodynamics and accurate three-flavor Boltztmann neutrino transport [19, 20], it has been
found that (Ep, ) — (E,.) ~ 2 — 3 MeV, decreasing towards later times during the ongoing PNS
deleptonization. The simulations were carried out for more than 10 s after explosion onset during
which generally Y, > 0.5 was found.

In the following section, we will discuss this aspect and demonstrate the complexity of the
situation. In particular, we will point to the importance of the consistent implementation of
rates for weak processes and nuclear equation of state (EOS). This was not the case in the
studies of refs. [19, 20], as has been pointed out very recently in refs. [21] 22].

2. Protoneutron star deleptonization and role of charged-current weak processes

A typical situation during the early PNS deleptonization phase is illustrated in the left panel
of Fig. [I] at about 2 s after the explosion has been launched. Note the very steep density
profile at the PNS surface, where neutrino decoupling takes place over 5 orders of magnitude
in density, which even steepens during the continuous deleptonization. In this region (see the
neutrino decoupling in the left panel of Fig. neutrino transport is important to determine
the neutrino spectra and luminosities. The magnitude of the luminosity and average energy
differences depends on details of the neutrino transport and in particular on the weak processes
and their implementation. In addition to the charged-current weak processes, other weak
processes are important which are listed in the right panel of Fig. [Il These are neutral current
elastic (exchange of momentum) scattering on nucleons , inelastic (exchange of energy and

momentum) scattering on electrons/positrons (1d)), and pair processes (lefjlg).
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The rate for the charged current process can be expressed via momentum integrals of
the particle occupation numbers, Fj, and the spin-averaged squared matrix element, M, in the
zero-momentum transfer approximation (p,, ~ pp) [24] 25]:

Ny, — Ny
1 — Bud—n)’

GQ
UAEw) = “EVE(gh +363) - B2(1 — (o) 2)
with Fermi constant, G, vector and axial-vector coupling constants, gy and g4, and up-

down entry of the Cabibbo-Kobayashi-Maskawa matrix V,4. A similar expression is obtained
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Figure 3. Neutrino opacity (Eq. [2) for the two interactions DD2 (solid red lines) and TM1
(solid blue lines) at selected conditions [23], T = 7.4 MeV, p = 2.1x 10! g ecm~3, and Y, = 0.035.
It corresponds to U, — U, = 10.5(6.5) MeV for DD2(TM1). In addition, the red dashed line
shows the opacity for DD2 for which we assume zero potentials. (color online)

for reaction . For the reverse process, i.e. the neutrino emissivity, detailed balance
is applied, j,. (E,,) = exp{—-B(E,, — pwd)}1/A(E,,) with equilibrium chemical potential
pod = pe — (un — pp) and inverse temperature § = 1/T. Expression assumes the free
Fermi gas of nucleons, i.e. in the limit of low degeneracy the nucleon density of targets, ny,
must be recovered. Hence, the nucleon chemical potentials, u?v, that enter in (2) must be those
of the free Fermi gas. In supernova codes, these quantities are typically provided by an EOS
based on some nuclear interaction model. Nucleons are treated as quasi-particles that move in
a potential, Uy, and obey the following dispersion relation,

En(pn) = \/PX + mi” + Un, (N ={n,p}). (3)

In the case of uniform matter the single-particle potentials are given by the vector self energy.
They and the effective masses, m};, depend on the independent variables density, temperature,
and Y, such as the entire EOS. Consequently, the nuclear chemical potentials which enter
Eq. must be corrected accordingly in order to reproduce the non-interacting case, i.e.
u?v = puny—Un—m}; where uy are the full potentials that contain contributions from interactions.
Moreover, since neutrino transport uses charged-current reaction rates with respect to the
incoming neutrino energy, E,, (see Eq. , Eq. can be used to relate electron(positron)
energy, E,— (E.+), and electron (anti)neutrino energy for processes and as follows,

E, =E. —(myp—mp)— (U, —U,), Ep =E~++ (myp—my)+ (Up—Up). (4, 5)

From the expressions and it becomes clear that at low densities, where U,, — U, ~
100 keV (see Fig. , the energetics is determined by the vacuum @-value, Qo = m,, — m, =
1.2935 MeV. The density dependence of the quantity U,,—U), is shown in Fig. for selected Y, and
at fixed temperature of about 5 MeV. The figure also compares two nuclear interaction models,
DD2 [26] and TM1 from the comprehensive supernova catalog of ref. [27] which is based on the
statistical model including detailed nuclear composition consistently and have been approved in
supernova simulations [28] 29].
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The v, and v.-opacity are shown in Figs. and at selected conditions. From the
figures one immediately realizes that neglecting (U,,Up) leads to a suppression of low-energy
neutrino absorptions (compare the red solid and dash-dotted lines) for v.. The magnitude scales
almost with U,, — Up. This is attributed mainly to the modified vacuum Q-value and also partly
to the chemical potential modifications. For 7, the opposite holds due to the different sign of
the modified vacuum @Q-value, including the mean-field potentials leads to a suppression of low
v, energies. In addition to DD2, Fig. 3| also shows the opacity for TM1 (blue lines), with lower
mean-field potentials of about 4 MeV at the same conditions. Hence, also the opacity for v,
is reduced accordingly, and increased for .. Note that the opacity differences between DD2
and TMI1 are not entirely due to the different (U,,, U,) but also related in part to their different
neutron and proton abundances.
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Figure 4. Evolution of neutrino energies, Y., and entropy per baryon (both obtained in large
nucleosynthesis calculations) sampled at a distance of 1000 km. Neutron-rich conditions are
obtained between 1.5-2.5 s when the differences between (Ej;_ ) and (E,,) are largest.

The impact of the consistent implementation of charged-current weak rates and EOS in
simulations of the PNS deleptonization has been shown in refs. [21] 22] for the neutrino spectra
and luminosities, as well as the resulting nucleosynthesis relevant conditions. It was found that it
leads to generally larger differences of the average energies and luminosities for v, and 7.. Here we
extend the analysis of ref. [2I] and simulate a 11.2 Mg, progenitor applying our general relativistic
radiation hydrodynamics code AGILE-Boltztran, which is based on three-flavor Boltzmann
neutrino transport [30]. We model a neutrino-driven explosion in our spherically symmetric
setup by enhancing the neutrino heating/cooling rates (for details, see ref. [19]). Fig. [4] shows
the results obtained for the early PNS deleptonization phase where the charged-current weak
rates are implemented consistently with the nuclear EOS DD2. During this early epoch, slightly
neutron-rich conditions are found up to about 3 s after bounce. It allows for the production of
light neutron-capture elements up to Z ~ 45 but no strong r process. The rising Y, at later
times is related to the reducing opacity of the charged-current reactions, due to the increasing
importance of final-state Pauli blocking and the increasing nucleon degeneracy [23]. Instead,
elastic scattering on neutrons starts to dominates the opacity, which does not distinguish between
different neutrino flavors and hence the spectral differences reduce.

3. Conclusions
We have discussed the consistent implementation of charged-current weak rates and nuclear
EOS in radiation hydrodynamics codes and its relevance during the early PNS cooling phase.
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The weak rates have now a direct dependence on the nuclear EOS. We have employed rates
based on the zero-momentum transfer approximation. It is a valid simplification since inelastic
contributions are small for the early deleptonization phase, during which the neutrinospheres
are located at intermediate densities ~ 10" g cm™3. Inelastic contributions, as well as nuclear
correlations [31], may become of some relevance during the later evolution when the neutrino
decoupling region moves to even higher densities (~ 10'* g cm~3). Moreover, corrections due to
weak magnetism, which also have to be consistent with the EOS, are not included. Long-term
simulations up to 10 s are required to cover the entire PNS deleptonization phase and to study
the late neutrino-driven wind, also with particular focus on the nucleosynthesis.

One of the currently largest uncertainties in such studies is the nuclear EOS, in particular at
high densities, finite temperatures and low Y. Future explorations will also study the impact of
different EOS on the PNS deleptonization. E.g., soft EOS that lead typically to a more compact
PNS have also a lower symmetry energy. Since the medium modifications to the charged-current
rates, U, —U,, depend sensitively on the symmetry energy also at intermediate densities, a direct
impact on the PNS deleptonization can be expected.
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