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Shot noise in the edge states of two-dimensional topological insulators
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We calculate the resistance and shot noise in the edge states of a two-dimensional topological insulator that
result from the exchange of electrons between these states and conducting puddles in the bulk of the insulator.
The two limiting cases where the energy relaxation is either absent or very strong are considered. A finite time
of spin relaxation in the puddles is introduced phenomenologically. Depending on this time and on the strength
of coupling between the edge states and the puddles, the Fano factor 7 = S, /2el ranges from 0 to 1/3, which

is in an agreement with the available experimental data.

DOI: 10.1103/PhysRevB.94.045425

I. INTRODUCTION

A principal distinctive feature of two-dimensional (2D)
topological insulators is the existence of helical edge electronic
states in which the electron spin projection is locked to the
direction of its momentum. For this reason, the electrons
cannot be backscattered unless the time-reversal symmetry
is violated. This topological protection of the pair of edge
states with opposite spin directions results in the universal
value of its conductance e?/h, which should hold in the
absence of spin-flip scattering [1]. However, measurements
revealed that the conductance appears to be much smaller
than this universal value. In most cited papers on HgTe/CdTe
quantum wells the suppression of conductance is about 10%
as the length of the conducting channel is about 1 um [2,3],
but in some experiments on these systems, the conductance
decreased by two orders of magnitude and the estimates of
the coherence-breaking length for the edge states were much
lower [4,5]. The common observation for all the experiments
was that the suppression of the conductance was weakly
temperature dependent. A similar behavior of the conductance
was observed in InAs/GaSb/AISb heterostructures [6,7]. These
facts had no satisfactory explanation so far despite a large
number of theoretical papers proposing different mechanisms
of electron backscattering in the edge states. A number of
authors considered spin-flip scattering of electrons on mag-
netic impurities. A spin relaxation of magnetic impurities due
to an interaction with nuclear spins was phenomenologically
introduced in Ref. [8], and the authors of Ref. [9] assumed
that the impurities lack the axial symmetry, and therefore
the corresponding component of the total spin of the electron
and the impurity is not conserved. However, this would lead
to the Anderson localization of the edge states, which is
not experimentally observed. Some authors also considered
mechanisms of inelastic scattering on a point defect taking into
account a strong electron-electron interaction and a violation
of the S, symmetry in the edge states by spin-orbit coupling
[10]. Apart from the scattering by isolated impurities, a capture
of electrons from the edge states into the conducting regions
in the bulk of the insulator was also considered in Ref. [11],
where the formation of these conducting regions was attributed
to the potential fluctuations because of impurity doping. But
even these processes could not explain the weak temperature
dependence of the resistance. In Ref. [12], the authors

2469-9950/2016/94(4)/045425(8)

045425-1

suggested that the backscattering could result from a dephasing
of electrons captured from the edge state into a quantum puddle
with chaotically arranged scatterers, but they could not draw
a definite conclusion about the relevance of this mechanism
to actual experiments. Two-particle scattering on a defect with
localized spin-orbit coupling in a presence of electron-electron
interaction was also considered [13]. This process results
in a backscattering of electrons in the edge states and a
weak temperature dependence of the conductance only if the
Luttinger parameter describing the electron interaction in the
edge states is very close to the value K = 1/4. Nevertheless,
there is a general opinion that the most probable reason of the
observed breaking of topological protection of the edge states
is the presence of structural defects and inelastic-scattering
centers. This opinion is supported by the experiment [14] that
revealed well-localized scattering centers.

The nonequilibrium electric noise provides important infor-
mation about the processes of charge transport, which cannot
be extracted from measurements of average values. Therefore,
acomparison of its theoretical value with the experimental data
could allow one to understand the mechanism of conductance
suppression in topological insulators. So far, only several
theoretical papers on the noise in topological insulators were
published, and most of them considered the electron tunneling
from one edge of the sample to another [15-18]. These authors
neglected the scattering in the edge states themselves and these
states were assumed to be noiseless. As far as we know, the
noise produced by backscattering in these states was calculated
only in Ref. [19], where it resulted from the hyperfine
interaction of the electrons with nuclear spins in a presence of
nonuniform spin-orbit coupling. The Fano factor of the calcu-
lated noise Sy /2el appeared to be larger than unity in the large-
length limit. In recent experiments on the shot noise in the edge
states of HgTe based topological insulators, this ratio varied be-
tween 0.1 and 0.3 depending on the sample [20]. This suggests
that the theoretical model [19] is inapplicable to such systems.

In this paper, we calculate the resistance of the edge
states and the nonequilibrium noise in them that result from
the tunnel coupling between the edge states and charge
puddles in the bulk of the insulators, which is suggested
by recent experimental results [3,5,14]. These puddles are
believed to form because of inhomogeneous distribution of
doping impurities in the adjacent layers of material [11]. We
assume that they have a continuous energy spectrum and the
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motion of electrons in them is two dimensional, so that the
impurity scattering combined with spin-orbit coupling may
result in their temperature-independent spin relaxation via the
Elliott-Yafet [21] or Overhauser mechanism [22]; see Ref. [23]
for a review [24]. Hence the presence of the puddles enables
backscattering of the electrons in the edge states and results
in their increased resistance along with a finite shot noise in
them. We calculate the noise for the two limiting cases where
the energy relaxation of electrons in the puddles is either absent
or very strong. By comparing the magnitude of the shot noise
with the increase in the resistance, one can judge upon the
relevance of this model to real topological insulators.

The paper is organized as follows. In Sec. II, we present
our model and the kinetic equations for the average current
and its fluctuations. In Sec. III, we consider the contribution to
the resistance and noise in the absence of energy relaxation in
the puddles. In Sec. IV, the opposite limit of a strong energy
relaxation is considered, and Sec. V summarizes the results.

II. MODEL AND GENERAL EQUATIONS

Consider a pair of helical edge states with linear dispersion
€, = |plv connecting electron reservoirs that are kept at
constant voltages =V /2. Each of the two directions of the
electron momentum is locked to a definite spin projection,
which is labeled by o = =£1. For simplicity, the interaction
between the electrons in these states is neglected. The edge
states are tunnel coupled with electron or hole puddles that
are formed in the bulk of the insulator because of large-scale
potential fluctuations. We also assume that these puddles are
sufficiently large to have a continuous spectrum and that the
electrons in the puddles are also subject to a spin relaxation
because of spin-orbit processes and, in general, to the energy
relaxation.

The distribution functions of electrons in the edge states
fo(x,e,t) obey the equations

i + i Jol(x,8,1)
— +ov— | fr(x,e,
Jt 0x

==Y i) [fo(x.6.1) = Fio(e,1)], ()

where x is the coordinate along the edge of the insulator, ¢ is
the energy, I';(x) is the rate of electron tunneling from point x
to the puddle i, and F;, (¢,t) is the spin-dependent distribution
function of electrons in the puddle i. As the conductance of
the puddle is much higher than that of the edge states, this
distribution function is spatially uniform inside it and obeys
the equation

BEG 1 d T F: t) [)
ot 27Th1)]),'/ X 1(x)[ 16(8, —fg(x’g, ]
1
+ _(E - F}Y,U) = 18(871‘), (2)
27

where v; is the density of states in puddle i, 7, is the spin-
relaxation time, and the collision integral I, accounts for the
energy relaxation but conserves the number of electrons with
a given spin projection in the puddle. At the zero temperature,
the distribution functions of electrons in the right and left
reservoirs are Fermi steps, so the boundary conditions for f,
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are
f(0,e) =1 — O(e — eV/2),

3
f(Le)=1—0( +eV/)2),

where © is the Heaviside step function and V is the applied
voltage. The current carried by the edge states is given by

e evV/2

=s— de[ f1(x.e) — f-(x,8)]. “4)

2nh J evp

In a semiclassical system, the dynamics of fluctuations
is conveniently described by a set of Langevin equations
for the relevant distribution functions. These equations are
derived by varying the kinetic equations for the corresponding
average quantities and adding Langevin sources to the result
of variation [25]. The variation of Eq. (1) with respect to f,
and F;, gives

0 0
<E + ava—x>3fa _ Xijr,»(x)wfa ~0Fi)+ Y 8o,

&)

where §J;,(x,¢,t) is the Langevin source related to tunneling
of electrons from point x of the edge state with spin projection
o to puddle i and back. Similarly, the variation of Eq. (2) gives

d 1
_8Fm -~z d Fi ‘SFm -4 o
di +27rhvvif * T fa)

1
+ (‘SFz(r - SFi,—(r)
27,

s

=51, —

[axsio+s7a  ©
21 hov;

where §J;, = —6J;._» is the Langevin source related to
spin-flip scattering. The Langevin source related to energy
relaxation is omitted here because it is inessential in the lim-
iting cases considered below. The Langevin sources §J;, and
8 J:» may be treated as independent because they correspond to
different scattering processes. As the scattering is assumed to
be weak, it may be considered Poissonian, and the correlation
functions of the Langevin sources in these equations may be
written as the sums of outgoing and incoming scattering fluxes.
The spectral density of tunneling-related sources is given by
the well-known expression [26]

(SJia(xve)(SJia/(x/’g/)>w
=47hv T;(x)8(x — x")8(e — €')804/8;;
X [fo(1 = Fig) + Fig(1 = f5)], 7

while the spectral density of the sources related to the spin-flip
scattering in the puddles equals [27,28]

(8Ji0(x,)8j T 5 (x'.€))e
1

TV

X [Fig(l = Fi )+ Fi —c(1 = Fi5)]. (3)

The boundary conditions for the fluctuations §f,, at the ends
of the edge states are

8f+(0,6) =8f(L.e) =0. C))

8(e — &)8;;(— 1)o7/
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Equations (5) and (6) together with the correlation functions
(7) and (8) and the boundary conditions (9) allow us to
calculate the spectral density of current noise in the edge states.

III. PURELY ELASTIC SCATTERING

First consider the case where there is no inelastic scattering
of electrons in the puddles. Then the collision integral in
the right-hand sides of Egs. (2) and (6) may be omitted,
and the energy dependences of the distribution functions are
determined solely by the boundary conditions (9). Hence
at low temperatures the distribution functions f, and Fj,
have the characteristic two-step [29] shape: they are equal
to 1 at ¢ < —eV/2, to zero at & > e¢V/2, and to some
position-dependent but energy-independent intermediate
value at —eV /2 < ¢ < eV /2. These partially occupied states
give rise to a finite shot noise that does not vanish even if the
conductance is strongly suppressed by the puddles.

A. Scattering off a single puddle

First consider the case of a single puddle without energy
relaxation, which is described by a single spin-dependent
electron distribution F,(¢) and single tunneling rate I'(x).
In what follows, we will be interested only in the range
—eV/2 < & < eV /2, where f, and F, are different from zero
and 1 and do not depend on ¢. Introducing a new coordinate
variable

x dx’! ,
¢(X)=f — I, (10)
0 v

one may write the formal solution of stationary Eq. (1) for
—eV /2 < & < eV/2 in the form

fi@=e?+0—-e?F,,
fo@) =1 —e"")F_,

where ¢, = ¢(L) describes the total strength of the coupling
between the puddle and the edge states. In terms of the new
variable ¢, Eq. (2) may be recast in the form

[
<¢L N nhv)Fa B mhy = / Ao ().  (12)
T T, 0

s s

an

A substitution of Eq. (11) into Eq. (12) results in a closed
system of equation for F, with the solution

_1142n 11

S 204 T 214

+ (13)
where ; = (1 — e~?)1, /2 hv is the ratio of the spin-flip time
and the dwell time of an electron in the puddle. Substituting
these values into Egs. (11) and making use of the expression
for the current (4), one easily obtains that

eV 1 +e? +2ny

= — 14
4 h 14+m (14)

Hence the conductance of the system varies from e?/2m I for
a weak coupling to the puddle or slow spin relaxation in it to
the minimal value of e%/47h for a strong coupling and fast
spin relaxation (see Fig. 1).
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FIG. 1. Contour plot of the conductance for one puddle given by
Eq. (14) in coordinates effective coupling strength ¢, —normalized
spin-flip time 7,. As the coupling and the spin-flip rate increase, it
decreases from 2 /27 h to e*/4m k.

At low frequencies, the fluctuations of the distribution
functions f, are easily obtained from Eq. (5) in the form

¢
8f1(¢) = (1 —e ?)SF, +/ de'e? T 154,
0

oL
3f-(¢) =1 —e¢‘¢L)6F_+f de'e?=*T-'s7,.. (15
¢

Equation (6) may be rewritten in the quasistationary case as

(d’L 4 Jrhv)(SFa 3 nhvSF_a

s s

2
= f d¢Sf, —T71'8J,) +2rhw 8T,  (16)
0

and a substitution of Egs. (15) results in a closed system of
algebraic equations for § F,,. Making use again of Eqs. (15) and
the linearized Eq. (4), eventually one arrives at the expression
for the fluctuation of the current in the form

51— —° [ aelvmsa, + 1 [" dpT-!
= — v _—
1+ ni oI+ 4 h 0 ¢
x (e? 8, — e‘%})}. (17)

Multiplying two instances of Eq. (17) and making use of the
spectral densities of Langevin sources Eqgs. (7) and (8), one
obtains the equation for the spectral density of the noise

5= & 1 /ds (1 — e~y
- T 5 — e
T amh 0 "

x [Fy(l — F)+ F_(1— F,)]

(23
+ /0 dp{e® [ fr(1 — Fo) + Fo(1 — f)]

+e [fo(1 = F_)+ F-(1 — f—)]}>- (18)
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FIG. 2. Contour plot of Fano factor for one puddle in the absence
of energy relaxation given by Eq. (19) in coordinates effective
coupling strength ¢, —normalized spin-flip time 7. The maximum
Fano factor corresponds to the maximum resistance of the edge states.

The Fano factor F = S;/2el is given by the expression

L+ e7% + 4+ 4nf + 4o
(I +e=0e +2m)(1+ i)

1 -
F=g-e D) (19)
The contour plot of F is shown in Fig. 2. It varies from zero for
¢ = 0 or infinitely large 1, to 1/4 for strong coupling ¢, and
short spin-flip times 1; = 0. Hence the maximum Fano factor
corresponds to the maximum resistance of the edge states.
Note that F is not a unique function of the conductance.

B. Multiple puddles in the continuous limit

Consider now the case where the edge states are weakly
tunnel coupled to many conducting puddles. As the distribution
functions only slightly change from one puddle to another,
it is possible to go to the continuum limit and assume that
the number n of the puddles per unit length of the insulator
edge, the density of states in the puddles v, the coupling
constant

1
re =4 . / dyTi(),

i€lx,x+Ax]

and the electron distributions in the puddles are smooth
functions of the coordinate x. Hence one may just omit the
summation over the puddle number i and replace Fj,(¢,t) by
F,(x,¢e,t) in the right-hand side of Eq. (1). Along with this,
one may factor out f, from the integral in the left-hand side
of Eq. (2) so that it becomes local in space and assumes the
form

aF,
ot

+l(Fa_fa)+i(Fa_Ffa):Oa (20)
T 2T,

s

where 7;(x) = 2mwhvv(x)n(x)/'(x) is the effective dwell
time of an electron in the puddle. In the stationary case, Eq. (20)
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FIG. 3. Contour plot of the conductance for a continuous distri-
bution of puddles given by Eq. (25) in coordinates effective coupling
strength ¢; —normalized spin-flip time 7. As the coupling and the
spin-flip rate increase, it decreases from e? /27 i to zero.

is readily solved for F, giving

1(1+2n)fs .
F(,(x,s)=§( + ’17)1”” , @1)

where n = 1,/7;. A substitution of these values into Eq. (1)
results in a closed system of differential equations for f,

dfy 1 fo=foo

==, —. 22
oY dx 2 147 22)
In terms of a new effective coordinate
*dx' T'(x)
px)= | ———7. (23)
o v 1+nx")
the solutions of this system may be written as
24+¢L— 9@ oL — ¢

=——"  f(p)=——, 24
J+(p) o f~) =73 oL (24)

where ¢; = ¢(L). A substitution of these distribution func-
tions into Eq. (4) gives

2

I = ev 1 , (25)

wh 24 ¢L
which suggests that the conductance of the edge states tends to
zero as the number of puddles increases for any finite spin-flip
time (see Fig. 3).

The Langevin equation for the fluctuation §f,(x,e,t) is
obtained from (5) by omitting the subscript i for all the
quantities and replacing §F;, by §F,(x,e,t). The spectral
density of Langevin sources §J,(x,&,t) is obtained from
Eq. (7) in a similar way.

The Langevin equation for § F,(x,e,t) becomes local in
space and may be written as

8 F, 1 1
+ _((SFU - Sftr) + _(SFO' - SF—U)
at Tq 27
8'](7 ’ 7t
= MbED g e, 26)
27 hvnv
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whereas the spectral density of the spin-flip sources takes up
the form

(85 (x,8)8T5(x",6")) 0
! l)(S()c —x)8(e — eN[Fy(1 — F_

o) + Ffa(l - Fa)]-

s

27)

The system of equations for §f, and 6 F, is solved in a way
similar to the system of kinetic equations for f, and F,, and
the fluctuation of current is expressed in terms of the Langevin

sources as
bL
2ﬂh f / 2 + QL

X [(8Jp —8J-)/ T + 21,8741 (28)

Hence the expression for the spectral density of current
fluctuations is of the form

YL
5= 5o +m2 f / T - Py
FE( = f)+ f(1 - F_) FE(- )

+29[F-(1 = Fy) + Fi.(1 = FO)l}. (29)

The calculation can be carried to the end only if the spatial
dependence of 7 is specified. For simplicity, assume that it is
constant. Together with Eqs. (24) and (21), it results in a Fano
factor

F= %L[m(m +6)(1+ 1)

+12n(* + 0+ D+ 61/[C+ o)A + ). (30)

The contour plot of Eq. (30) is shown in Fig. 4. The Fano factor
vanishes in the ballistic limit and tends to its maximum value

H

0.30
0.25

w

0.20
0.15

N

0.10
0.05

YL

FIG. 4. Contour plot of Fano factor for a continuous distribution
of puddles in the absence of energy relaxation in coordinates effective
coupling strength ¢, —normalized spin-flip time n according to
Eq. (30). The Fano factor vanishes in the ballistic regime and tends
to its maximum value 1/3 regardless of 7 if the conductance of the
edge states tends to zero.
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1/3 regardless of 1 if the conductance of the edge states tends
to zero. This behavior is reminiscent of multimode diffusive
wires [29,30].

IV. STRONG ENERGY RELAXATION

Consider now the opposite case of strong energy relaxation
in the puddles. At zero temperature, the distribution functions
of electrons in the puddles have a steplike shape Fi,(e,t) =
O(uis — €), where w;,(t) is the spin- dependent chemical
potential of electrons in puddle i. However, despite the strong
energy relaxation, the shot noise in such a system is still
possible because in general w;; # ;- and there is a spin
imbalance in the puddles.

Itis convenient to introduce the excess densities of electrons
in the edge states

i[\fo’(x58’t) -
v

m@ﬁ=/2h

Integrating Eq. (1) over the energy results in an equation for
pio(x,t) of the form

(§t+0v ) - Zr(,o(,— “"’) (32)

which should be supplemented by the boundary conditions

eV (L) = eV 33)
dnho’ T T
Upon integrating Eq. (6) over the energy, the inelastic collision
integral drops out because the inelastic scattering conserves the
total number of particles, and one arrives at the equation

O(—¢)]. (€28)

p+(0) =

a/vlfia 1
dxT; ic — 2 hp,
ot 2nhvv,-/ x Lo whoo)
1
+ _(Mia - H'i,fa) =0. (34’)
27

Equations (32) and (34) together with the boundary conditions
(33) form a complete system for determining p, and e,
and the current flowing through the edge states equals I =
ev[p(x) — p—(x)].

As the coefficients in Egs. (1) and (2) are assumed to be
energy independent, the energy relaxation in the puddles does
not affect the average current. Moreover, p,(x) and p;, may
be obtained just by integrating f, and F;, obtained for the
elastic case over the energy. Things are different if the spectral
density of noise is considered because the correlation functions
(7) and (8) are bilinear functions of f, and F;,. Though the
expressions for the spectral density of current noise in terms
of the average distribution functions remain the same, the
resulting values appear to be different.

A. Single puddle

As in the fully elastic case, we start by considering a system
with only one puddle. The average current in it is given by
Eq. (14). The spin-dependent chemical potentials of electrons
in the puddle may be obtained either by solving Eqgs. (32) and
(34) or by making use of the elastic distribution function (13)
and integrating the difference F,(x) — ®(—¢) over the energy.
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This gives us

eV . m
=0— .
Ho 2 1+m

(33)

The distribution functions are easily obtained by solving
Eq. (1) and equal

0, e>eV/2,
fe@.e)=1e? nuy<e<eV/2, (36)
1, &< U4
and
f-(p.e)=1— fi(¢L — P,—¢) (37)

because of the electron-hole symmetry. The fluctuation of the
current and the spectral density of its noise are given by
Egs. (17) and (18). The substitution of f, from Egs. (36)
and (37) and F,(¢) = 0(u, — €) with u, from Eq. (35) into
Eq. (18) results in a Fano factor

1 - e 42
S 21+e 42 L+

(38)

The contour plot of the Fano factor is shown in Fig. 5. It
exhibits a more complicated behavior than in the elastic case
and shows two separate maxima. One of them F = 0.086
corresponds to the limit of fast spin relaxation n; = 0 and
¢ =~ 1 and results from random tunneling between the puddle
and the edge states. The other maximum is nearly of the
same magnitude F ~ 0.09 and corresponds to the limit of
strong puddle-edge state coupling ¢, — oo and moderate spin
relaxation n; & 1.6. It stems from random spin-flip scattering
in the puddle.

4 0.08
3 0.06
m
0.04
2
0.02

—_

0 T T e

0 1 2 3 4 5

oL

FIG. 5. Contour plot of Fano factor for a single puddle with a
strong energy relaxation in coordinates effective coupling strength
¢,—normalized spin-flip time 7, according to Eq. (38). The
maximum of Fano factor at n; = 0 results from the randomness of
tunneling between the puddle and the edge states. The maximum at
N &~ 1.6 stems from the randomness of spin-flip scattering in the
puddle.

PHYSICAL REVIEW B 94, 045425 (2016)

FIG. 6. Approximate coordinate dependence of the chemical
potentials for spin-up and spin-down electrons in the puddles for
the strong energy relaxation. There are finite jumps between the
spin-dependent chemical potentials of the left and right reservoirs
and potentials of the puddles.

B. Continuous limit

If there are many puddles weakly coupled to the edge states
and the energy relaxation in the puddles is strong, one may
consider the continuous limit much like as in Sec. III B. To
this end, we introduce the coordinate-dependent distribution
function of electrons in the puddles F,(x,&,t) = O(u, — ¢€),
where 1, (x,t) is the local spin-dependent chemical potential
of electrons in the puddle at point x. The excess densities
of electrons in the edge states (31) obey Eq. (32) with u;,
replaced by p,(x), and Eq. (34) takes up the form

o
at

1 1
+ — (o — 2hVps) + m— (o — U—o) = 0. (39)
Tq 27

The solution of these equations is easily obtained, and in terms
of the variable ¢ (23), the spin-dependent chemical potentials
may be presented in the form

eV (IL+n)(gL —2¢) + 201
2 Q2+ o)A +n)

o (@) = (40)

An approximate coordinate dependence of the potentials is
shown in Fig. 6. Note that there is a finite jump between the
chemical potentials of the reservoir and the puddles at the left
end

= py=— 41
=g O e sy @Y

and a similar jump at the right end.

The current is given by the same Eq. (25) as in the purely
elastic case. The equation for the fluctuation of current and the
expression for its spectral density are the same as Eqs. (28)
and (29), but the distribution functions f, and F, are now
different. To calculate f, explicitly, one has to specify the
coordinate dependence of 1, and we assume it to be constant
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FIG. 7. Contour plot of Fano factor for a continuous distribution
of puddles for a strong energy relaxation given by Eq. (43) in
coordinates effective coupling strength ¢;—normalized spin-flip
time 7. The smaller maximum of F is located at n = 0, and the
larger is reached at n — oo. F varies from zero to 1/4.

like in Sec. III B. Solving Eq. (1) readily gives

1, e < u4(p),

exp [BH2=2], pi(p) < & < pa(0), o
I+ exp [%ﬂ“*(o)], n+(0) <& <eV/2, (“42)

0, e>eV/2

and f_ is related to f; by the electron-hole symmetry
condition Eq. (37).
The resulting Fano factor equals

oL 1 +2n2
F = 5 5
Q4+ (1+n)

The contour plot of this equation is shown in Fig. 7. Much
like the case of a single puddle, the Fano factor exhibits two
isolated maxima. Both of them correspond to ¢, = 2, i.e., to
the conductance e? /4 h. The smaller maximum F = 1/8 is
located at n = 0, and the larger maximum F = 1/4 is reached
at n — oo. Hence F varies from zero to 1/4, but unlike in

43)
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the elastic case, it vanishes in the limit of zero conductance
regardless of ;.

V. CONCLUSION

In conclusion, we have calculated the conductance and shot
noise of a pair of edge states in a 2D topological insulator using
a semiphenomenological model of conducting puddles in the
bulk of material that can exchange electrons with the edge
states. We have considered two versions of this model. The
first version involves one puddle with arbitrary coupling to the
edge states, and the second version involved a continuum of
puddles weakly coupled by tunneling to these states. The rate
of spin relaxation in the puddles was assumed to be finite, and
the energy relaxation in them was assumed to be either absent
at all or very fast.

In the case of a single puddle without energy relaxation,
the conductance decreases with increasing coupling and spin-
relaxation rate from e?/2mh to % /4w h. Along with this, the
Fano factor increases from zero to 1/4.

In the continuum limit without energy relaxation, the
conductance tends to zero as the coupling and spin-relaxation
rate increase, while the Fano factor increases from zero to 1/3,
as in diffusive metals. One may think that in the most realistic
case of several puddles strongly coupled to the edge states, F
lies somewhere between 1/4 and 1/3.

The presence of a strong energy relaxation does not change
the conductance but significantly changes the noise. The
maximum values of the Fano factor are lower than in the
elastic case and are now reached at intermediate values of
conductance. Moreover, F is a nonmonotonic function of both
coupling and spin-flip rate and vanishes in the limit of zero
conductance.

The experimental values of the Fano factor for the edge
states in HgTe topological insulators [20] vary between 0.1 and
0.3, which roughly agrees with the above model of the noise.
However, to reliably distinguish between different versions of
this model, one has to carefully correlate the Fano factor of
the sample with its conductance, which has yet to be done.
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