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I Introduction 
 

I.1 Adaptive immune responses to acute and chronic viral infections 

Acute viral infections are short-term, self-limiting infections that are readily cleared 

by the host immune defenses. Examples of such infections include infection with 

influenza and parainfluenza viruses or adenoviruses in humans, and vesicular 

stomatitis virus (VSV) infection in mice. Chronic viral infections are characterized by 

the ability of the infecting viruses to establish protracted albeit self-limiting or life-

long infection. Examples thereof include infection with human immunodeficiency 

virus (HIV), hepatitis C virus (HCV) and in some instances hepatitis B virus (HBV). 

Such infections represent a major burden for global health. It is estimated that close to 

40 million (mio) people are infected with HIV and that about 400 mio people suffer 

from chronic viral hepatitis worldwide (1-3). Despite several decades of research, 

neither curative treatments for HIV and chronic HBV infection, nor effective 

vaccination strategies against HIV and HCV are available. 

Lymphocytic choriomeningitis virus (LCMV) is a murine prototypic viral infection 

model (see section 1.5). LCMV can establish either acute or chronic infection in mice, 

depending on the strain and dose of virus, on the route of infection, and on the host 

major histocompatibility complex class I (MHC-I) haplotype (4, 5). It has been 

widely used for several decades as a model to study virus-host interactions in mice.  

LCMV-Armstrong infection of C57BL/6 mice leads to acute infection characterized 

by low-level or undetectable viremia, rapid clearance within two weeks, effective 

activation and differentiation of antiviral CD8+ cytotoxic T lymphocytes (CTLs) (5-

7). CTLs are critical whereas CD4+ T helper cells and antiviral antibodies do not play 

an essential role for the clearance of acute LCMV infection (7). Upon infection, the 

CTL response occurs in three phases: the first activation and expansion phase of the 

CTL response is followed by a contraction phase and establishment of memory (8). 

During the initial phase of the response, virus-specific CTLs can expand up to 105 

fold (9). Similar expansion of antiviral CTLs has also been described in humans 

during acute viral infections (10). While proliferating, CTLs acquire effector 

functions, characterized by the production of inflammatory cytokines such as 
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interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and by the acquisition of 

cytolytic activity (11-14). After the activation and expansion phase, antiviral CTLs 

enter a contraction phase during which the vast majority undergoes apoptosis, and 

about 5% survive and generate memory cells (9, 15). Finally, during the memory 

phase, a constant population of memory CTLs is maintained for a long period of time 

without antigenic stimulation. Memory CTLs display a resting phenotype but have the 

ability to respond rapidly to a new antigen exposure (16, 17).  

In contrast, infection of C57BL/6 mice with LCMV Clone-13 induces chronic 

infection, characterized by protracted viremia and persistence of infectious virus 

particles in some organs for several months (18, 19). Such infection leads to the 

exhaustion of antiviral CTLs and CD4+ T helper cells (19-21). Control of chronic 

LCMV infection eventually occurs after several months and relies not only on CTLs, 

as in the case of acute infection, but also on B cell responses, both of which depend 

on CD4+ T cell help (22-25). Exhaustion of CTLs in chronic LCMV infection have 

been extensively studied and consist of a range of functional impairments 

characterized by the progressive loss of cytotoxic activity, cytokine production and 

proliferative capacity, and of physical loss of antiviral T cell clones (19-21). CD4+ T 

cells have been shown to also display functional dysfunctions upon chronic LCMV 

infection (26). Although the mechanisms leading to CD4+ T cell and CTLs exhaustion 

in chronic LCMV infection might differ, exhaustion is thought to result from 

persisting high antigen loads rather than from initial defect in priming and activation 

of T cells (6, 27, 28). Thus, high viral burden during chronic infection leads to both 

CD4+ T cell and CTL dysfunction, which in turn favors viral persistence. Despite the 

described impairments of CD4+ T cell and CTL responses, both cell types continue to 

exert antiviral effects, mediated either by the remaining antiviral activity of exhausted 

T cells or by a remaining pool of functional T cells (26, 29).  

In addition to the critical role of T cells and unlike what is observed in acute infection, 

B cell and antibody responses play a critical role for the control of chronic LCMV 

infection. Indeed, virus-specific immunoglobulins M (IgMs) and IgGs have been 

shown to be essential to reduce viral load, thereby providing a key support to CTLs 

for the clearance of chronic LCMV infection (22, 30-32). Antiviral antibodies can be 

divided into neutralizing and non-neutralizing antibodies. Neutralizing antibodies 

(nAbs) are defined by the ability to prevent entry of viruses into target cells. In 
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chronic LCMV infection, the emergence of nAbs correlate with clearance of the virus 

(31). Moreover, nAb induction represent the only mechanistic correlate of protection 

of most currently available vaccines (33). In addition, nAbs have been shown to 

efficiently protect against infection in passive immunization experiments and recent 

studies even evidenced a potential curative role of nAbs in a mouse HCV model as 

well as in a monkey SHIV model (34-39). Therefore nAbs represent a very promising 

component of the immune response to chronic viral infection. However, unlike nAbs 

against acute viral pathogens, which typically arise within 2 weeks of infection, nAbs 

against persistent viruses only appear after long periods of protracted infection (40-

43). Several mechanisms have been postulated to explain the weak and late nAb 

responses in chronic viral infection. For example, a negative impact of the massive 

CTL response on virus-specific B cells, structural features of persistent viruses 

preventing efficient neutralization such as glycosylation of the surface glycoprotein 

and mutational escape from neutralization have been described (30, 31, 44-47). Still, 

our understanding of the mechanisms underlying the emergence of nAbs in chronic 

viral infection remains incomplete and the induction of nAbs by vaccination against 

HIV or HCV remains unsuccessful. Unlike nAbs, non-neutralizing virus-specific 

antibodies appear early in the course of chronic LCMV infection as well as in HIV 

infection in humans (41, 48, 49). Several studies have shown that non-neutralizing 

Abs also exert antiviral effects and can act via complement-mediated functions and Fc 

receptors (30, 50-53). Despite the now well-recognized role of neutralizing and non-

neutralizing antibodies in control of chronic viral infection, there is little insight into 

the mechanisms underlying B cell responses in chronic viral infections. Recently, B 

cell dysfunctions have been observed in several persistent microbial infections but 

remain mechanistically ill defined and will be discussed in section I.3. 

 

I.2 B cell responses 

B cell responses to pathogens can be divided into T-dependent (TD) and T-

independent (TI) responses. As the name suggests, TD antigens require T cells to 

induce B cell responses whereas TI antigens do not. Follicular B cells typically 

respond to TD antigen. Circulating naïve B cells enter the lymphoid follicles of the 

spleen and lymph nodes (also called B cell zone), attracted by chemokine (C-X-C 
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motif) ligand 13 (CXCL13), which binds to C-X-C chemokine receptor type 5 

(CXCR5) expressed by naïve B cells and is secreted by stromal cells and follicular 

dendritic cells (FDCs) found in the follicles (54). There, naïve follicular B cells might 

enter in contact with their cognate antigen either directly as soluble antigen or as 

antigen bound by macrophages, FDCs or dendritic cells (DCs). (55-58). After 

engagement of the B cell receptor (BCR), B cells migrate to the border of the T cell 

and B cell zones (T-B border) of the spleen or lymph nodes where they interact with 

cognate CD4+ T cells leading to reciprocal activation (59, 60). The recognition of a 

peptide by CD4+ T cells on the MHC-II of a B cell leads to increased expression of 

cell-surface molecules and cytokines such as CD40L and interleukin-4 (IL-4) that in 

turn induce activation and proliferation of B cells (61, 62). In the next few days some 

B cells migrate to the follicle border in the lymph nodes or to the T cell zone-red pulp 

border, bridging channels and red pulp of the spleen, forming primary foci of 

expanding B cells. Some of the proliferating B cells differentiate into short-lived 

plasmablasts (PBs) secreting low affinity antibodies mostly of the IgM isotype 

although some might undergo isotype class switching. This initial extrafollicular 

response rapidly provides specific antibodies, mostly unmutated IgMs (63-65). In 

parallel some B cells and T cells continue to interact at the T-B border and migrate 

together to the follicle where they keep proliferating and start forming a germinal 

center (GC). GCs are specialized structures composed of 90% of proliferating B cells 

surrounded by CD4+ T cells providing help to B cells. In the GCs, B cells undergo 

extensive proliferation and undergo class-switch recombination (CSR) and somatic 

hypermutation (SHM) through the action of the enzyme activation-induced cytidine 

deaminase (AID). As B cells proliferate and undergo SHM, they accumulate mutation 

in the variable regions of the Ig genes that might alter binding to antigen. Competition 

for help from CD4+ T cells will select B cells with higher affinity for the antigen, a 

processed known as affinity maturation. The GC reaction thus leads to the production 

of high affinity, isotype-switched B cells that eventually differentiate into plasma 

cells (PCs) or memory B cells (memB). The GC then shrinks and eventually 

disappears once the infection is cleared. GCs typically last for 3 to 4 weeks but can 

persist much longer in the context of chronic infections (66-75). Characteristic 

features of PCs include expression of the surface marker CD138, cessation of 

proliferation, and high synthesis and secretion of Igs with down regulation of surface 

Igs. PCs exit the GCs and home to peripheral tissues, medullary cord of lymph nodes 
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or red pulp of the spleen. A subset of PCs migrates to survival niches mostly in the 

bone marrow (BM) where they survive as long-lived plasma cells (LLPCs) for 

extended periods of time (76-78). In addition to LLPCs, memB represent the end-

product of the GC reaction. They do not divide or only very slowly and express 

surface Ig but do not secrete antibodies, however they respond rapidly and robustly to 

secondary exposure to antigen providing protection against previously encountered 

pathogens (78-83). Although memB have classically been thought to be the product 

exclusively of GC reactions it is now recognized that memB can also arise in a GC-

independent manner. Such GC-independent memB are thought to be produced early 

in the course of humoral responses and to require only BCR and CD40 signaling 

without the need for cytokine signals (63, 74). Since CSR but not SHM might occur at 

this stage of the response, GC-independent memB are thought to have BCR 

specificities similar to initially responding B cells and to be mostly of IgM isotype 

although some might have undergone CSR. (63, 64, 84-86). The mechanisms that 

lead to the differentiation of GC B cells into LLPCs or memB are not fully understood 

although several hypotheses have been proposed. For instance, it has been postulated 

that cytokines such as IL-5 or CD40-CD40L interaction could influence the 

differentiation of PCs versus memB (87). Other studies suggested that B cell 

differentiation into distinct phenotypes might be controlled by BCR affinity for the 

antigen, or that it could follow a stochastic process (78, 87, 88). More recent evidence 

suggests that LLPCs and memB might be produced at different time points during the 

GC reaction (74). At the molecular level, PC differentiation is orchestrated by 5 major 

transcription factors: paired box protein 5 (PAX5), B-cell lymphoma 6 protein 

(BCL6), interferon regulatory factor 4 (IRF4), B lymphocyte-induced maturation 

protein-1 (BLIMP1) and X-box binding protein 1 (XBP1). PAX5 and BCL6 act as B 

cell promoting factors whereas IRF4, BLIMP1 and XBP1 are important to repress B 

cell-associated genes and to activate and maintain the plasma cell program. As plasma 

cell differentiation is initiated, expression of PAX5 and BCL6 is thus inhibited while 

expression of IRF4, BLIMP1 and XBP1 is induced (77, 89-96). 

As mentioned before, TI antigens do not require the help of T cells to initiate a B cell 

response. Marginal zone B cells (MZB), a specific subset of B cells, have been shown 

to be particularly important to mediate responses to TI antigens (97). Some TI 

antigens such as lipopolysaccharide (LPS) and bacterial deoxyribonucleic acid (DNA) 
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can induce unspecific B cell proliferation and differentiation through recognition by 

Toll-like receptors (TLRs) (98, 99). Other TI antigens such as polysaccharides of 

bacterial capsules can activate B cells via extensive cross-linking of the BCR due to 

their repetitive structure (100). Therefore, such non-protein compounds, which cannot 

be recognized by T cells, can still induce B cell responses. Although TI antigens can 

induce robust proliferation and long-lasting antibody production in mice, responses to 

TI antigens have been shown to be restrained mostly to extrafollicular foci and to 

induce abortive GCs (85, 101, 102). Accordingly, low levels of SHM have been 

observed in response to TI antigens (84). Although CSR is classically thought to 

occur in GCs and extrafollicular responses have been shown to induce mostly IgM 

expression, production of IgGs and IgAs in response to TI antigens has been observed 

(63, 85, 103, 104). Recently, T-independent mechanisms leading to AID activation 

and CSR have been described (105). Moreover, despite the extrafollicular nature of TI 

responses, generation of memory B cells has been observed in response to TI 

antigens. However, TI memory B cells have been shown to differ greatly from TD 

memory B cells and to resemble naïve B cells with regards to the quality of their 

response (106). Responses to TI antigens are thought to be important to fight against 

blood born pathogens such as encapsulated bacteria (107). 

Most of our understanding of B cell responses is based on observations made in the 

context of immunization with non-replicative immunogens such as sheep red blood 

cells or soluble proteins. Although some of the concepts described above might apply 

to B cell responses to invading pathogens, abnormal B cell populations and antibody 

responses have been observed in infectious context and in particular in persistent 

microbial infections, and will be discussed in section I.3.  

 

I.3 Immune subversion mechanisms of viruses and other pathogens  

Immune subversion represents a hallmark of persistent viral infections. In order to 

persist in their host, viruses have developed countless mechanisms targeting virtually 

all steps of the innate and the adaptive immune responses. For instance cytokine 

production and signaling, MHC class I and class II expression, natural killer (NK) cell 

mediated killing, and the humoral immune response are all targets of viral immune 

subversion mechanisms (108-126). Indeed, several viruses such as HCV, measles 
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virus or human cytomegalovirus (HCMV) have been shown to prevent IFN-I 

signaling (108-112). HCMV, has also been shown to decrease the availability of 

chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1, 

MCP1) and chemokine ligand 5 (CCL5, also known as regulated on activation, 

normal T cell expressed and secreted, RANTES), two potent chemoattractants for 

monocytes, by producing chemokine receptor analogs (113). Down regulation of 

MHC-I expression is another frequently used mechanism to escape immune control. 

For example, the HIV protein Nef can induce MHC-I endocytosis (114). Several 

reports have shown that viruses, such as herpes simplex virus type 1 (HSV-1), 

Epstein-Barr virus (EBV) or HCMV also developed strategies to prevent MHC-II 

expression or presentation (115-117). Although down regulation of MHC-I 

expression can protect infected cells from CTL mediated killing, this mechanism 

might lead to the lysis of cells with low surface MHC-I expression by NK cells. 

However viruses also developed strategies to prevent NK cell cytotoxicity. For 

instance, HIV has been shown to take advantage of the different specificities of 

MHC-I molecules. Indeed, while the Nef protein of HIV is thought to facilitate 

degradation of human leukocyte antigen (HLA)-A and HLA-B it does not affect the 

expression of HLA-C and HLA-E, know to bind to inhibitory receptors on NK cells, 

thereby reducing NK cell mediated killing (118). Similarly, several lines of evidence 

suggest that HCV has developed several strategies to reduce NK cell response, for 

example through the stabilization of HLA-E expression or binding to CD81 (119-

121). Subversion of the complement system is a strategy used by several viruses 

including HSV and HIV. The glycoprotein (gC) of HSV-1 and HSV-2 has been 

shown to interact with the component C3b of the complement cascade thereby 

protecting from complement-mediated lysis (122). Several reports indicate that HIV 

also interferes with complement activation by inducing a down-regulation of the 

expression of several complement receptors (123-125).  

Mutational escape from T cell and antibody control is another important mechanism 

of immune evasion used by persistent viruses such as HIV in humans and LCMV in 

mice (30, 31, 47, 127-133). LCMV escape from nAb control has been observed in 

conditions of increased nAb pressure such as CTL deficiency and several 

neutralization-resistant variants have been characterized (30, 31). Moreover, escape 

variants with mutations in the immunodominant CTL epitopes of the nucleoprotein 
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and glycoprotein have been repeatedly observed. Although CTL responses against 

nonimmunodominant epitopes of such variants can still lead to viral clearance, 

mutational escape from CTL control is thought to contribute to viral persistence (128-

130). In the course of natural HIV infection, mutants escaping nAb control have also 

been observed and have been shown to acquire mutations in the neutralizing epitopes 

of the envelope glycoproteins under the selection pressure exerted by nAbs (47, 132, 

133). Similarly, emergence of CTL escape variants has been observed in HIV-

infected patients (131). Although the nAb response constantly evolves and can lead to 

the emergence broadly neutralizing antibodies (bnAbs) after several years of infection 

in a small fraction of HIV infected patients, viral variants still escape the most potent 

bnAbs (42, 134, 135). 

In addition to mutational escape, other factors that have been suggested to negatively 

impact B cell responses in chronic viral infection include: structural features of the 

HIV and LCMV surface glycoproteins that prevent neutralization, the massive CTL 

response, polyclonal B cell activation, and high antigen load (44-46, 136-139). 

Indeed, the immunopathology associated with the CTL response to chronic LCMV 

infection and the ensuing destruction of the secondary lymphoid organ architecture 

has been proposed to negatively impact B cell responses (44). Alternatively, it had 

been suggested that CTL might directly kill infected nAb-producing B cells although 

this was not found to be reproducible subsequently (140-142). 

Hypergammaglobulinemia has been reported in several persistent-prone infections 

such as HIV, HCV and LCMV infections and is thought to result from non-specific 

polyclonal B cell activation, which might contribute to the poor nAb response 

observed in those infections (136, 143, 144). Lastly, while high antigen load is 

believed to lead to CTL exhaustion the impact of antigen load on B cells is less clear. 

It has been reported that a high antigen to B cell ratio early in LCMV infection might 

induce terminal differentiation of virus-specific B cells into short-lived IgM-

producing antibody-secreting cells (ASCs), thereby preventing effective nAb 

responses (139). However the observation that mice with impaired CTL responses, 

which display elevated virus load, show increased nAb responses argues against this 

hypothesis (31, 44). 

While T cell exhaustion in chronic viral infection and specifically in chronic LCMV 

infection has been extensively studied and although some factors mentioned above 
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have been shown to influence antibody responses, still little is know on the 

mechanism directly regulating B cell responses in chronic infections. B cell 

exhaustion in persistent-prone viral and also bacterial and parasitic infections has 

become a topic of interest and recent data strongly support that persistent pathogens 

can induce B cell dysfunction (145-158). B cell dysfunction is now recognized as a 

major feature of HIV infection affecting mostly the memB compartment but also GC 

B cells and MZ B cells and impairing both the virus-specific as well as the non-HIV-

specific B cell responses (145-155). For instance, a loss of MZ B cells associated with 

increased plasmablasts has been observed in HIV patients and SIV infected macaques 

(153, 156). In humans, classical memory B cells (or resting memory B cells, RM) are 

characterized by the capacity to persist for extended period of time and to rapidly 

respond to BCR stimulation, by high frequencies of SHM, and by the expression of 

CD27 and CD21 (83, 146-148). In healthy humans, RM B cells represent the vast 

majority of circulating memB. However abnormal memB populations constitute the 

majority of the memB pool in HIV viremic patients. Notably, CD21lo CD27- tissue-

like memory B cells (TLM) and CD21lo CD27+ activated memory B cells (AM) have 

been described (146-148). TLM express the inhibitory receptor Fc receptor-like 

protein 4 (FCRL4) together with other inhibitory receptors and have been shown to be 

unresponsive to BCR stimulation, features that are reminiscent of previously 

described exhausted CTLs (146, 159). Moreover, TLM have been shown to harbor 

reduced SHM frequencies as compared to RM, that correlates with weaker 

neutralizing capacity of antibodies produced by TLM (148). While the increased 

frequencies of PBs in blood of HIV-infected patients correlating with 

hypergammaglobulinemia mostly reflect alteration of non HIV-specific B cells, HIV-

specific B cells have been shown to be enriched in TLM and AM populations (146, 

151, 152). Dysfunctions in the HIV non-specific B cell compartment are thought to 

play a role in the increased frequency of autoimmune diseases as well as in the poor 

response to vaccine of HIV patients (149, 152, 153, 160, 161). Other infections in 

which abnormal B cell populations have been described include Plasmodium, 

Schistosoma haematobium, Mycobacterium tuberculosis, Salmonella, HCV and HBV 

infections (157, 158). In Plasmodium infection for example, CD21lo CD27- FCRL4+ 

memB have also been observed. Despite similarities with the TLM B cells described 

in HIV infection, it has been recently reported that the AM B cells observed in 

malaria infection display signs of activation and antibody secretion, and might in fact 
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resemble PBs rather than unresponsive memB. They might therefore contribute to 

immunity to malaria instead of representing an exhausted B cell population (157). 

Although our understanding of the role of B cells in persistent viral infection has 

improved dramatically in recent years, the mechanisms underlying B cell responses in 

persistent viral infection still remain incomplete.  

 

I.4 IFN-I in acute and chronic viral infections 

IFN-I was first described in 1957 for its ability to interfere with replication of 

influenza virus in vitro and is now recognized as a key first line defense mechanism 

against viral infections (162). More recently, however, detrimental effects of IFN-I in 

viral infections and in particular during persistent viral infections have been brought 

to light (145, 163-174). IFN-I is a large family comprising in humans 13 IFN-α 

subtypes, IFN-β and several other subtypes. All IFN-I proteins bind to one common 

cell surface receptor know as IFN-alpha/beta receptor (IFNAR), made of the IFNAR1 

and IFNAR2 chains (175). Downstream signaling occurs via the Janus kinase (Jak) - 

Signal Transducer and Activator of Transcription (STAT) pathway leading to the 

activation of STAT1, STAT2 and Interferon regulatory factor 9 (IRF9) although other 

STATs such as STAT3 and STAT4 can be activated in specific cell types and 

conditions (176-180). IFN-I signaling results in the expression of hundreds of IFN-

stimulated genes (ISGs), whose protein products exert numerous direct and indirect 

antiviral effects as well as immunomodulatory functions (181-195). Direct antiviral 

effects of ISG protein products target virtually all steps of viral replication and can, 

for example, induce viral ribonucleic acid (RNA) degradation, block viral 

transcription or modify protein function (182, 183, 195). For instance, myxovirus 

resistance protein 1 (Mx1) and MxA proteins have been shown to interfere with 

influenza virus replication in mice and humans respectively, and 2’-5’-oligoadenylate 

synthase (OAS) proteins have been shown to induce viral RNA degradation via the 

activation of ribonuclease L (RNaseL) (182, 183). In addition to those direct antiviral 

effects, IFN-I also has many immunomodulatory functions. For example, IFN-I can 

enhance expression of MHC-I molecules. Furthermore, T cell intrinsic IFN-I 

signaling has been shown to provide co-stimulatory effects on CTLs and to protect 

them from NK-mediated cytotoxicity (185-188). IFN-I was also shown to promote 
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NK cell function and survival in numerous viral infection settings (189-191). 

Similarly, several reports have shown that B cell activation and antibody production is 

promoted by IFN-I signaling in several acute viral infections (192-194). The critical 

antiviral role of IFN-I is well illustrated by the increased susceptibility of IFNAR-/- 

mice to several viral infections such as VSV, vaccinia virus (VV) and LCMV 

infections (196). In humans, IRF7 deficiency leads to reduced IFN-I production and 

life threatening influenza infection, further illustrating the critical role of IFN-I in 

antiviral defense (197). 

Despite the important antiviral role of IFN-I described above, detrimental effects of 

IFN-I signaling in several viral infections have recently been brought to light (145, 

163-174). In acute infection it is globally recognized that IFN-I has a beneficial effect 

although it was recently reported that IFNAR deficiency in Sv129 mice decreased 

morbidity and improved survival upon acute influenza infection (163). However, the 

dichotomy between beneficial and detrimental roles of IFN-I in chronic viral 

infections is much more pronounced. For instance, while IFN-I treatment early in SIV 

infection has been shown to prevent disease progression, sustained IFN-I 

administration accelerated progression of the disease (164). Furthermore, non-

pathogenic SIV infection of African green monkey or sooty mangabeys is associated 

with initially high but rapidly controlled IFN-I response, whereas pathogenic infection 

of rhesus macaques induces sustained IFN-I signatures associated with chronic 

immune activation (165, 166). Similarly, elevated IFN-I signatures have been 

reported in HIV-infected progressor (198). Moreover, IFN-I signaling has been 

proposed to contribute to CD4+ T cell loss and to B cell dysfunction in HIV infected 

patients (145, 167). Likewise, while pegylated IFN-α in combination with Ribavirin 

has been a standard treatment for patient with HCV until recently, HCV has been 

shown to be relatively resistant to IFN-I antiviral activity and elevated IFN-I 

signatures have been observed in humans and chimpanzees chronically infected with 

HCV (168-170). Finally, studies in mice chronically infected with LCMV showed 

that IFN-I signaling blockade reduced immune suppression and led to accelerated 

viral clearance despite initially elevated viral load (171, 172). The work by Sandler et 

al. suggests that IFN-I effects may vary depending on the stage of the infection (164). 

Moreover, it has been suggested that specific IFN-I subtypes might play different 

roles in controlling vs. promoting viral persistence (173). However, how the 
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beneficial and detrimental effects of IFN-I are balanced during infection and how they 

can be influenced to favor immune control rather than immunopathology is still not 

fully understood. The impact of IFN-I signaling specifically on B cell responses also 

requires further investigations.  

 

I.5 The lymphocytic choriomeningitis virus model 

LCMV belongs to the Arenaviridae family. The name of the family was given 

because of the sandy appearance of the viruses in electron microscopy due to the 

incorporation of cellular ribosomes during virion formation (199). Arenaviruses are 

divided in two groups, based on geographical and genetic characteristics. The Old 

World group includes LCMV, which is distributed worldwide and Lassa virus found 

in West Africa. Viruses from the New World group comprise Junin, Machupo and 

Guanarito viruses found in South America and Whitewater Arroyo virus in North 

America (200-203). Natural hosts of arenaviruses are mainly rodents (199). The 

LCMV reservoir in mice is established by congenital or transplacental transmission of 

the virus from mother to offspring, leading to asymptomatic lifelong infection. 

Transmission between adult mice may occur via the saliva, urine or feces but usually 

does not lead to chronic infection. LCMV infection of humans can occur upon 

exposure to fresh urine, feces, saliva and nesting material or following accidental 

laboratory exposure. Clinical manifestations range from mild flu-like disease to 

aseptic meningitis. Other Arenaviruses such as Lassa, Junin or Guanarito viruses can 

cause severe hemorrhagic fever in humans (200, 204-206).  

Since its discovery in the early 1930s, LCMV has become a widely used tool in the 

field of viral immunology and has contributed to the understanding of several key 

principles of viral pathogenesis and immunity (207-210). Hence, abundant specific 

tools and knowledge have been developed over almost a century and represent a great 

advantage of research using the LCMV model. Notably, reverse genetic techniques 

have been developed by our group and others and allow us to manipulate viruses 

according to our experimental needs (211, 212). The LCMV genome contains two 

negative single stranded RNA segments and encodes for four proteins. The 

nucleoprotein (NP) and the glycoprotein (GP) are found on the short segment (S) 

whereas the viral polymerase (L) and the matrix protein (Z) are located on the large 
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segment (L) (213-215). Virions are spherical enveloped particles, containing the 

genome segments encapsidated with the NP protein associated with the polymerase L 

(216). The matrix protein is thought to be important for the virus budding (217). The 

GP protein mediates attachment of the virions to the target cells and membrane fusion 

in the endosomes. It is the only surface determinant of LCMV and its outer globular 

domain (GP-1) is the only target of nAbs (218). Our group and others first described a 

reverse genetic technique to recover infectious LCMV entirely from cDNA in 2006 

(211, 212). Briefly, the S and L viral genome segments are introduced on polymerase 

I driven plasmids and the NP and L proteins are encoded on polymerase II driven 

plasmids. Transfection of the four plasmids provides the viral genome as well as the 

necessary trans-acting factors for genome transcription and replication ultimately 

leading to production of infectious LCMV particles. Recovery of LCMV entirely 

from plasmid DNA opens the possibility to introduce mutations in the viral genome 

and to exchange viral proteins according to our experimental purposes. 

The WE strain of LCMV (LCMV-WE) has been the most widely used strain to study 

antibody responses to LCMV. Thus, many tools have been developed to study B cell 

and antibody responses to this strain. Specifically, potent monoclonal nAbs specific 

for WE-GP such as KL25 have been identified and characterized (219). Genetically 

engineered BCR-transgenic mice expressing the KL25 heavy chain (KL25H) and the 

KL25 light chain (KL25L) respectively have been generated and are described in the 

materials and methods section (220). By intercrossing KL25H and KL25L mice, 

KL25HL mice with a virtually monoclonal B cell repertoire specific for WE-GP have 

been generated in our laboratory and represent a very powerful tool to study antiviral 

B cell responses. However, LCMV-WE establishes only transient infection in 

C57BL/6 mice. As discussed above, LCMV-Cl13 is a frequently used model of 

chronic viral infection and can persist for several months in organs of infected 

C57BL/6 mice (5). In order to benefit from the existing tools specific to the WE strain 

in a context of chronic infection, our laboratory has generated a recombinant LCMV-

Cl13 expressing the WE-GP (rCl13) according to the technique described above (211, 

212, 221). 
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II.1 Abstract 

Immune subversion represents a hallmark of persistent infection, but microbial 

suppression of B cell responses remains mechanistically ill-defined. Adoptive transfer 

experiments in a chronic viral infection model evidenced the rapid and profound 

decimation of B cells that responded to virus or to concomitantly administered 

protein. Decimation affected naïve and memory B cells and resulted from biased 

differentiation into short-lived antibody-secreting cells. It was driven by type I 

interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and 

myeloid cells. Durable B cell responses were restored upon IFN-I receptor blockade 

or, partially, when depleting myeloid cells or key IFN-I-induced cytokines. B cell 

decimation represents a molecular mechanism of humoral immune subversion and 

reflects an unsustainable “all-in” response of B cells in IFN-I-driven inflammation.  

 

II.2 One-sentence summary 

Interferon-driven inflammation at the onset of chronic viral infection orchestrates 

unsustainable antibody production and decimation of antiviral B cell populations. 
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II.3 Results and discussion 

Humoral immunity represents a cornerstone of antimicrobial host defense and vaccine 

protection. Infection-induced suppression of humoral immune defense is therefore 

predicted to further microbial persistence and pathogenesis, with the potential to 

thwart B cell-based vaccination efforts. Perturbed or dysfunctional B cell 

compartments represent a hallmark of persistent microbial diseases including HIV, 

hepatitis B, hepatitis C, malaria, schistosomiasis and tuberculosis (222-226). Besides 

delayed and inadequate antibody responses to the causative agent itself (227-229), 

consequences can consist in a generalized suppression of vaccine responses and B cell 

memory (149, 230, 231). In comparison to T cell exhaustion, however, the molecular 

mechanisms leading to viral subversion of the B cell system have remained less well 

defined.  

Here we compared B cell responses to protracted LCMV infection (rCl13) and to 

recombinant vesicular stomatitis virus (rVSV) vaccine vectors. The two viruses were 

engineered to express the same surface glycoprotein (GP) as neutralizing antibody 

target, but served as prototypic models of chronic viremic and acute infection, 

respectively (Fig. 1A). To study antiviral B cell responses in mice, we adoptively 

transferred oligoclonal, traceable (CD45.1+) KL25H B cells, which contain ~2% GP-

specific cells owing to an immunoglobulin heavy chain knock-in (Fig. S1A). The 

transferred KL25H cells mounted only transient GP-specific antibody responses to 

rCl13, whereas rVSV-induced responses were durable and of higher titer (Fig. 1B). 

Moreover, KL25H B cell numbers at four weeks after rVSV immunization were ~20-

fold higher than after rCl13 infection (Fig. 1C). We obtained analogous results, both 

in spleen and inguinal lymph nodes (iLN), when adoptively transferring quasi-

monoclonal KL25HL B cells (~85% GP-specific, Fig. S1A, B), which express the 

matching immunoglobulin light chain transgene in addition to the heavy chain knock-

in (Fig. 1D, S1C). Four weeks after infection, KL25HL B cells populated the 

germinal centers (GCs) of rVSV-immunized mice but not of rCl13-infected animals 

(Fig. 1E). When studying KL25HL B cells in the first week of rCl13 infection, they 

proliferated vigorously and acquired a blast-like morphology within the first three 

days, but disappeared almost completely by day 6 (Fig. 1F, G). On day three, the 

majority of proliferating (CFSElow) KL25HL B cells in rCl13-infected mice were 

apoptotic (7AAD+AnnexinV+, Fig. 1H), whereas KL25HL B cells responding to 
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rVSV remained mostly viable. These observations suggested a near-complete 

apoptotic loss (referred to as “decimation”) of virus-neutralizing KL25HL B cells 

within days after the onset of rCl13 infection. By analogy to T cells (27), high antigen 

loads in rCl13 but not rVSV infection could have accounted for antiviral B cell 

decimation. Counter to this hypothesis, adoptive transfer of KL25HL B cells into 

neonatally infected immunologically tolerant rCl13 carrier mice (232) resulted in 

robust B cell and plasmablast/plasma cell (antibody-secreting cell, ASC) formation 

despite high-level viremia (Fig. 1I and S1D; B cells and ASCs jointly referred to as 

“B cell progeny”). Furthermore, KL25HL B cell transfer on day 3 of rCl13 infection, 

when viremia had set in, yielded ~20-fold more B cell progeny than transfer at the 

onset of infection (Fig. 1J, K (139)). Day 3 transfer of KL25HL B cells resulted also 

in substantially higher neutralizing antibody (nAb) responses and in a more potent 

antiviral effect than transfer on the day of infection (Fig. 1L, M). 

These observations argued against antigen overload as the root cause of KL25HL B 

cell decimation, suggesting rather that the inflammatory milieu at the onset of 

infection was unfavorable to sustained B cell responses. Intriguingly, this 3-day time 

window coincided with the strong systemic type I interferon (IFN-I) response in 

rCl13 infection (Fig. 2A). Moreover, rCl13-induced serum IFN-I responses clearly 

exceeded those induced by rVSV, and IFN-I was below technical backgrounds in 

rCl13 carriers, altogether suggesting an inverse correlation between systemic IFN-I 

levels and sustained antiviral B cell responses. IFN-I transcriptome signatures 

characterize chronic hepatitis C virus, pathogenic immunodeficiency virus infection 

and chronic active tuberculosis (233-236), and IFN-I can exert detrimental effects on 

antiviral T cell responses (171, 172). Hence we speculated that rCl13-induced IFN-I 

accounted for antiviral B cell decimation. Antibody-based blockade of the type I 

interferon receptor (αIFNAR) resulted in ~20-fold more KL25HL progeny on day 3 

of rCl13 infection (Fig. 2B, C). By day 15, αIFNAR blockade yielded >100-fold 

higher numbers of KL25HL memory B cells (memB) and GC B cells, both in spleen 

and iLN, and comparably elevated KL25HL progeny were found in bone marrow 

(BM, Fig. 2D and S2A). By immunohistochemistry we detected KL25HL B cells in 

GCs of IFNAR-blocked mice but not of control-treated animals (Fig. 2E). To 

investigate whether also antigen-experienced B cells were sensitive to IFN-I-driven 

decimation, we expanded KL25H B cells in vivo (~50% GP-specific, Fig. S2B) and 
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transferred them to naïve recipients, followed by rCl13 challenge. αIFNAR blockade 

yielded significantly more KL25H PCs and memB on day 8 and day 67 after rCl13 

challenge, respectively (Fig. 2F and S2C). Performing immunohistochemistry on day 

67, we readily detected KL25H B cells in GCs of IFNAR-blocked but not control-

treated recipients (Fig. 2G). We extended these adoptive transfer experiments to 

polyclonal LCMV-experienced B cells of GFP-transgenic mice. On day 7 after rCl13 

challenge, IFNAR-blocked recipients contained ~30-fold higher numbers of LCMV 

nucleoprotein (NP) -binding GFP+ memB cell progeny than control-treated animals 

(Fig. 2H and S2D). Altogether, this documented that not only primary responses of 

LCMV-specific KL25H and KL25HL B cells but also recall responses of antigen-

experienced LCMV-specific B cells, both oligoclonal (KL25H) and polyclonal, were 

subject to IFN-I-driven decimation. Next we tested whether B cells of unrelated 

specificity, when activated concomitantly with rCl13 infection (“activated bystander 

B cells”), were similarly affected. We transferred traceable (CD45.2+) vesicular 

stomatitis virus glycoprotein (VSVG) -specific B cells (VI10) into syngeneic 

(CD45.1+) wt recipients. Subsequent immunization with VSVG triggered robust 

proliferation (CFSE dilution) and expansion of virtually all VSVG-binding VI10 B 

cells. This response was markedly reduced by concomitant rCl13 infection but 

completely rescued by αIFNAR, extending the concept of IFN-I-driven decimation to 

activated bystander B cells (Fig. 2I). The use of (non-replicating) VSVG protein in 

these experiments corroborated that cognate antigen loads could not readily explain 

rCl13-driven B cell decimation. 

αIFNAR prevented KL25HL B cell apoptosis as determined by flow cytometry 

(AnnexinV/7AAD binding) and by active caspase-3 staining in histology (Fig. 3A-C). 

To better understand IFN-I-driven B cell decimation, we performed whole genome 

RNA sequencing on KL25HL B cells recovered on day 3 of rCl13 infection. A 

pronounced antibody-secreting cell signature (89) in control-treated cells was largely 

reversed by αIFNAR blockade (Fig. 3D). This effect was also evident in αIFNAR-

mediated suppression of ASC-related transcription factors (TF, Fig. S3A). 

Conversely, IFNAR blockade promoted/restored TF expression profiles, which are 

typical for mature B cell stages prior to ASC differentiation, and modulated also GC 

B cell-specific TFs (Fig. S3B, C). In line with its effects on the cells’ ASC gene 

signature, αIFNAR altered the expression of 10 out of 13 genes, which have been 
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linked to terminal B cell differentiation in human HIV infection (Fig. S3D, (145)). 

Flow cytometric analyses corroborated that IFNAR blockade impeded rCl13-induced 

ASC differentiation. As hallmarks of ASC differentiation, most KL25HL B cells in 

control-treated recipients lost B220, CD22 and CD23 expression as they proliferated 

(Fig. 3E). When IFNAR was blocked, a significantly higher proportion of KL25HL 

progeny cells retained these markers. Conversely, fewer KL25HL cells up-regulated 

the ASC marker CD138+, and their intracellular IgM levels were lower (Fig. 3E). 

Altogether these observations indicated that IFNAR blockade prevented specific B 

cell decimation by countering short-lived plasmablast differentiation. 

To differentiate between B cell-intrinsic and –extrinsic IFNAR effects on B cell 

decimation we used IFNAR-deficient and –sufficient KL25HL B cells for adoptive 

transfer. Both B cell types expanded vigorously when challenged with rCl13 in ifnar-/- 

recipients but yielded low progeny numbers when responding in wt recipients (Fig. 

4A). This suggested B cell-extrinsic IFN-I effects as the root cause of rCl13-induced 

B cell decimation. We extended these observations to activated bystander B cells. 

IFNAR-deficient and –sufficient VI10 B cells responded similarly to VSVG protein 

immunization, and both responses were equally suppressed by concomitant rCl13 

infection (Fig. 4B).  When using reciprocal wt and ifnar-/- BM chimeras as recipients 

we found that hematopoietic IFNAR expression was decisive for KL25HL B cell 

decimation (Fig. 4C). To dissect how IFNAR signaling in various immune cell types 

contributed to B cell decimation we exploited cell type-specific IFNAR deletion 

models. KL25HL B cell progeny were significantly more numerous when recipients 

lacked IFNAR in either T cells, dendritic cells (DCs) or myeloid cells. IFNAR 

deletion in the recipient’s B cells only modestly augmented KL25HL ASCs, and 

neither of the above cell-type specific IFNAR deletion models fully phenocopied 

plain ifnar-/- recipients (Fig. 4D). Taken together, IFNAR signaling in several cell 

types, namely in DCs, myeloid cells and T cells contributed to rCl13-induced B cell 

decimation. The essential antiviral role of IFN-I may preclude the success of 

αIFNAR-based immunomodulatory therapy ((164, 171, 172), Fig. S4A). Also T cells 

and DCs are widely recognized as essential components of antiviral immune defense 

(237, 238), but inhibition or depletion of myeloid cells can be pursued to combat 

persistent infection and cancer (239, 240). Hence we tested whether, by analogy to 

myeloid cell-specific IFNAR deficiency, myeloid cell depletion could rescue 
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KL25HL B cell responses. Albeit less dramatically than αIFNAR, also αGr-1 

(Ly6C/G) antibody depletion, a widely used means to deplete myeloid cells in mice, 

augmented KL25HL progeny (Fig 4E). Of note, αGr-1 depletion did not substantially 

affect viral loads or serum IFN-I kinetics (Fig. S4A,B), attesting to the potential 

utility of myeloid cell-targeting strategies for countering B cell decimation. In 

accordance with earlier reports, however, αGr-1 depleted not only inflammatory 

monocytes (InfMo) and neutrophils but also eosinophils, plasmacytoid dendritic cells 

(pDCs) and Ly6Chigh CD8+ T cells (Fig. S4C, D). Yet, the individual depletion of 

neutrophils, eosinophils or pDCs did not increase KL25HL B cell progeny, and cd8-/- 

mice yielded only modestly elevated numbers of KL25HL ASCs (Fig. S4E). NK cell 

depletion (185, 186) did not augment KL25HL progeny either (Fig. S4F). To address 

a potential role of InfMo in B cell decimation we used both InfMo-deficient ccr2-/- 

and klf4fl/flxVav1-icre mice recipients (Fig. S4G-I and (241)). Neither model 

phenocopied the αGr-1 effect, and αGr-1 depletion improved KL25HL progeny 

recovery also in InfMo-deficient ccr2-/- recipients (Fig S4I). Hence, the B cell-sparing 

effect of αGr-1 depletion likely represented its combined impact on multiple myeloid 

and perhaps even non-myeloid cell subsets. Thus we speculated that both αGr-1 and 

αIFNAR countered antiviral B cell decimation by altering virus-induced 

inflammation. When profiling the expression of 248 inflammation-related genes in 

spleen, 128 were altered upon rCl13 infection, and αIFNAR attenuated or prevented a 

majority of these inflammatory gene expression changes (Fig. 4F, S5A, B, Tbl. SI). 

αGr-1 exerted analogous albeit more modest effects, which were largely overlapping 

with those of αIFNAR. Similar results were obtained from BM, indicating that 

treatment-related anti-inflammatory effects were not confined to lymphoid organs 

(Fig. S5C,D, Tbl. SI). In a serum cytokine panel analysis, 19 out of 31 tested 

chemokines and cytokines increased at 24 and 72 hours after rCl13 infection, 

respectively, and were at least 4-fold suppressed by αIFNAR (Fig. 4G, Table. SII). 

Nine of these 19 were also significantly suppressed, albeit less potently, in αGr-1-

treated animals. Taken together, IFNAR deficiency and, to a lesser extent also αGr-1, 

modulated rCl13-induced systemic inflammation, and most if not all αGr-1 effects on 

inflammation were comprised in the αIFNAR effect.  

These observations raised the possibility that the IFN-I-induced inflammatory milieu 

in rCl13 infection caused B cell decimation by altering B cell survival and/or 
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differentiation signals. This hypothesis predicted that i) the supplementation of 

survival signals and also ii) the depletion of deleterious inflammatory mediators or 

blockade of death pathways should augment specific B cell responses in rCl13 

infection. In line with prediction i), KL25HL B cell transfer and rCl13 infection 

yielded ~10-fold more progeny when performed in transgenic recipients 

overexpressing the B cell survival factor BAFF (Fig. 4H). In attempting to test 

prediction ii) we used knock-out mouse models and antibody depletion approaches to 

assess the individual contribution of IL-1β, IL-4, IL-6, IL-10, IL-12, TNF-α, iNOS 

and FasL to rCl13-induced KL25HL B cell decimation. KL25HL B cells yielded 

significantly more progeny when challenged with rCl13 in IL-10-deficient or TNF-α-

blocked recipient mice (Fig 4I). Interestingly, IL-10 as well as TNF-α have been 

linked to B cell dysfunction in HIV-1 infection (242, 243). While we failed to detect a 

statistically significant individual role for IL-1β, IL-4, IL-6, IL-12, iNOS or FasL in B 

cell decimation (Fig. S6A,B), contributive effects of some of these and other IFN-I-

induced factors and pathways (145, 243, 244) remain likely, and may vary between 

infection settings. Accordingly, only their combined suppression alongside with IL-10 

and TNF-α may account for the potent B cell-sparing effect of IFNAR blockade. 

IFN-I driven B cell decimation reflects apparently an “all in” strategy of the humoral 

immune system when facing antigen in a highly inflammatory context. In acute life-

threatening infections, this ASC differentiation bias may augment survival chances by 

maximizing early immunoglobulin production. It thus seems desirable from an 

evolutionary standpoint. Conversely, B cell decimation puts at risk the sustainability 

of humoral responses, both of naïve and immunized hosts, when confronted with 

persistence-prone pathogens. Repertoire replenishment by new bone marrow 

emigrants (139, 245) and GC-driven evolution of low-affinity clones are predicted to 

eventually compensate for early repertoire decimation. But these processes take time, 

and the sustained IFN-I transcriptome signatures in active tuberculosis, chronic 

hepatitis C virus and pathogenic immunodeficiency virus infection raise the 

possibility that B cell decimation extends into the chronic phase of infection (233-

236). In summary, IFN-I-driven B cell decimation offers a molecular mechanism for 

humoral immune subversion under conditions of microbial inflammation. 
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II.4 Materials and Methods 

 

II.4.1 Viruses, virus titrations, infections and immunizations 

Reverse genetically engineered LCMV strain Clone 13 expressing the LCMV strain 

WE glycoprotein (rCl13) has been described (221). A recombinant vesicular 

stomatitis virus vector expressing the LCMV strain WE glycoprotein instead of 

VSVG (rVSV) was generated following established procedures and strategies (246). 

rCl13 and rVSV were grown on BHK-21 cells and were titrated in viral stocks and 

blood samples as previously described (40). Unless specified otherwise, rCl13 and 

rVSV were administered to mice intravenously (i.v.) at doses of 2x106 and 8x106 

plaque-forming units (PFU), respectively. Adult infections were performed 30 min. 

after adoptive B cell transfer. To establish an immunologically tolerant neonatal rCl13 

carrier status, mice were administered 6x105 PFU rCl13 into the skull within 24 hours 

after birth. VSV glycoprotein (VSVG) for immunization was produced in SF9 cells 

using a recombinant baculovirus as previously described (247). For VSVG 

immunization, 20 µg whole cell lysate was administered to mice i.v.. 

 

II.4.2 Flow cytometry and FACS sorting  

To prepare single cell suspensions, tibiae were flushed and spleens were 

enzymatically digested using collagenase D (Roche) and DNAseI (Sigma-Aldrich). 

All cell media were adjusted to mouse osmolarity (248). Single cell suspensions were 

stained with fluorophore- or biotin-conjugated antibodies to detect the following 

markers and molecules: CD138 (clone 281-2), B220 (clone RA3-6B2), IgD (clone 11-

26c.2a), CD45.1 (clone A20), CD45.2 (clone 104), CD22 (clone OX-97), CD23 

(clone B3B4), CD8a (clone 53-6.7), Ly-6C (clone HK1.4), CD11b (clone M1/70), 

CD11c (clone HL3), CCR3 (clone J073E5), SiglecH (clone 551), NK1.1 (clone 

PK136), Thy1.2 (clone 30-H12) and CD19 (clone 6D5) from BioLegend; IgM (clone 

II/41), GL-7 (clone GL-7) and Ly-6G (clone 1A8) from eBioscience; CD95 (clone 

Jo2) and SiglecF (clone E50-2440) from BD Biosciences. Biotin-conjugated 

antibodies were detected using fluorophore-conjugated streptavidin (BioLegend). 

Dead cells were excluded using the Zombie UVTM Fixable viability kit (BioLegend). 

AnnexinV/7AAD staining (BD Biosciences) was performed to detect apoptotic cells 
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by flow cytometry. To label GP-binding B cells for flow cytometric detection we used 

a recombinant fusion protein (GP-Strep-tag, (45)) consisting of the GP extracellular 

domain, fused to a C-terminal streptag (Twin-Strep-tag, IBA GmbH). Detection was 

performed using Strep-Tactin-PE (IBA Biosciences). To label VSVG-binding VI10 

cells we used a recombinant fusion protein consisting of the VSVG ectodomain 

(sVSVG), fused to a C-terminal trimerization motif derived from T4 fibritin (foldon). 

sVSVG-binding cells were identified using Alexa647-labelled anti-VSVG antibody 

VI7 (249). GP-Strep-tag and sVSVG were produced by transient transfection in HEK-

293 cells. For the identification of NP-binding B cells in flow cytometry we used 

bacterially derived and Alexa647-labelled recombinant NP (45). The cells were 

measured on Gallios (Beckman Coulter) and LSRFortessa (Becton Dickinson, BD) 

flow cytometers and data were analyzed with FlowJo software (Tree Star). For sorting 

of KL25HL B cells progeny, labeled with CFSE prior to transfer and rCl13 challenge, 

splenocyte suspensions were stained with antibodies to B220, CD45.1 and CD45.2. 

We sorted CD45.1+CD45.2–CFSEloB220int/hi cells directly into TRI Reagent LS 

(Sigma-Aldrich) using an FACSAria II (Becton Dickinson, BD) cell sorter at the 

Flow Cytometry Core Facility of the University of Basel. RNA was extracted using 

the Direct-zolTM RNA MicroPrep kit (Zymo research). 

 

II.4.3 Immunohistochemistry and image analysis 

For immunohistochemical staining, tissues were fixed in HEPES-glutamic acid 

buffer-mediated organic solvent protection effect (HOPE, DCS Innovative) fixative as 

previously described (250) and embedded in paraffin. Immunostaining was performed 

on 3 µm thick sections using antibodies against active caspase-3 (9661T, Cell 

Signaling) and CD45.1 (clone A20, FITC-labeled, BioLegend). Bound caspase-3 

antibodies were visualized using tyramide signal amplification (Thermo-Fisher). 

Bound CD45.1 antibodies were visualized using rabbit anti-FITC antibody followed 

by incubation with Alexa-fluor goat-anti-rabbit antibody (Life-Technologies). 

Germinal centers were visualized using FITC-labeled Peanut agglutinin (PNA; Life 

technologies).  Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI, 

Invitrogen). 
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Stained sections were scanned using a Panoramic Digital Slide Scanner 250 FLASH 

II (3DHISTECH) at 200x magnification. For representative images, contrast was 

linearly enhanced using the tools “levels”, “curves”, “brightness” and “contrast” in 

Photoshop CS6 (Adobe).  

Whole slide images were analyzed with a custom made rule-set using Developer 

Definiens XD software (Definiens, Munich). Briefly, the regions of interests (ROIs) 

were drawn manually and CD45.1 as well as caspase-3 signal was automatically 

detected based on corresponding spectral channels in conjunction with the DAPI 

signal. Following detection, CD45.1+ cells were classified into caspase-3-positive 

and, -negative cells depending on cellular collocalisation with caspase-3. The total 

ROI area and cell quantification results were exported in CSV-format for further 

analysis. 

 

II.4.4 Whole-genome RNA sequencing and low-density inflammatory gene 
expression profiling 

For RNA sequencing of sorted KL25HL B cells, RNA was extracted using the Direct-

zolTM RNA MicroPrep kit (Zymo research) according to the manufacturer’s 

instructions. Library preparation was performed with a TruSeq kit (Illumina) 

according to the provider’s protocol and sequencing was performed by 50 bp single-

end reads on an Illumina HiSeq 2000 at the Microarray and Deep-Sequencing Core 

Facility, University Medical Center, Göttingen, Germany. Analysis was performed at 

the Bioinformatics Core Facility of the University of Basel as follow: Reads were 

mapped against the mouse genome (version mm9; NCBI build 37) using the spliced-

read aligner STAR (251). Raw reads and mapping quality was assessed by the 

qQCReport function from the R package QuasR (252, 253). Expression of RefSeq 

genes (UCSC version downloaded 2013-07-25) was quantified by counting reads 

mapping into exons using the qCount function of QuasR. The R package edgeR (254) 

was used for detecting differentially expressed genes between conditions. P-values for 

the contrasts of interest were calculated by likelihood ratio tests and adjusted for 

multiple testing by controlling the expected FDR.  

For low density inflammatory gene expression profiling, spleen and BM from naïve 

mice and from rCl13-infected mice treated with αGr-1, αIFNAR or control antibody 
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were harvested on day 3. RNA was extracted using Direct-zolTM RNA MicroPrep kit 

(Zymo research) according to the manufacturer’s instructions. Expression profiling 

was done using the nCounter Nanostring Mouse Inflammation v2 assay (NanoString 

Technologies) at the iGE3 genomics platform of the University of Geneva. Analysis 

was performed at the Bioinformatics Core Facility of the University of Basel as 

follow: Raw counts were scale-normalized using the TMM method of the R package 

limma (255). The transformed counts (log-CPM values) were subsequently used for 

linear modelling. Differential gene expression between conditions was evaluated 

using the lmFit and eBayes functions of limma. P-values of the moderated t-tests were 

adjusted for multiple testing by controlling the expected false discovery rate (FDR). 

Heatmaps were generated using the ComplexHeatmap R package (256). Heatmaps 

employing the Nanostring data show genes with an absolute log2-fold change 

(log2FC) bigger than 0.5 and an FDR-controlled p-value smaller than 0.05. No 

thresholding was used for heatmaps showing pre-defined gene lists. 

 

II.4.5 Mice 

KL25L transgenic mice were generated using a construct as schematically described 

in Fig. S1B. It encoded for the rearranged KL25 V and J segments as well as for the 

light chain kappa constant domain. Additionally, for the efficient screening of 

transgene-expressing founder mice by FACS, a downstream internal ribosome entry 

site (IRES) controlled expression of a cell surface reporter protein consisting of the 

Thy1.1 ectodomain fused to the transmembrane and cytoplasmic domains of the 

mouse PDGF receptor. The complete expression cassette was released from the vector 

using appropriate restriction enzymes and was purified and injected into C57BL/6 

embryos using standard techniques. 

KL25H and VI10 mice carry an immunoglobulin heavy chain knock-in (KI) derived 

from the neutralizing GP-specific and VSVG-specific KL25 and VI10 antibodies, 

respectively (220). KL25H and KL25L mice were intercrossed to obtain KL25HL 

mice, and were brought onto a CD45.1 congenic background for adoptive transfer 

experiments. Intercrosses of KL25HL and VI10 mice with ifnar-/- (196) mice yielded 

KL25HL x ifnar-/- (CD45.1) and VI10 x ifnar-/- (CD45.2) mice, respectively.  
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Wt C57BL/6J mice were purchased from Charles River Laboratories, iNOS-deficient 

nos2-/- (257) and Faslgld mutant mice (258) on C57BL/6 background were bought 

from the Jackson Laboratories. ccr2-/- mice (259) were generously provided by S. 

LeibundGut-Landmann, ifnarfl/fl mice (260) by U. Kalinke, Baff-tg mice (261) by T. 

Rolink, klf4fl/fl x Vav1-icre mice (241) by R. Tussiwand, il1β-/- mice (262) by N. 

Schaeren-Wiemers, il4-/- mice (263) by A. Teubner and il6-/- mice (264) by M. 

Recher. cd19-cre mice (265) were kindly provided by A. Oxenius with authorization 

from the MGC foundation. CD45.1-congenic C57BL/6, il10-/-(266), cd8-/-(267), 

il12p40-/- (268), cd4-cre (269), cd11c-cre (270), LysM-cre (271), ifnar-/- (196) and 

ubc-gfp mice (272) were from the Swiss Immunological Mouse Repository 

(SwImMR). ifnarfl/fl mice were crossed onto B cell-specific (cd19-cre), dendritic cell-

specific (cd11c-cre), myeloid cell-specific (LysM-cre) and T cell-specific (cd4-cre) 

Cre deleter strains to obtain the respective “B-ifnar-/-“ (cd19-cre x ifnarfl/fl), “DC-

ifnar-/-“ (cd11c-cre x ifnarfl/fl), “myeloid-ifnar-/-“ (LysM-cre x ifnarfl/fl) and “T-ifnar-/-“ 

(cd4-cre x ifnarfl/fl) strains. 

 

II.4.6 Animal experiments 

All mice were kept under specific-pathogen-free (SPF) conditions for colony 

maintenance and experiments, and were housed at the Laboratory Animal Services 

Center (LASC) of the University of Zurich and at the Universities of Geneva and 

Basel. Experiments were performed at the Universities of Geneva and Basel, in 

accordance with the Swiss law for animal protection and with authorization by the 

respective Cantonal authorities.  

 

II.4.7 In vivo cell depletion and antibody blockade  

IFNAR-blocking antibody (MAR1-5A3, BioXCell) was administered 

intraperitoneally (i.p.) at a dose of 1 mg on day -1 of infection. TNF-α-blocking 

antibody (XT3.11; BioXCell) was given at doses of 500 µg i.p. on day -1 and day 1 of 

infection. To deplete myeloid cells, we administered 500 µg of anti-Gr-1 (Ly6C/G) 

antibody (RB6-8C5, BioXCell) each on day -2.5 and day -0.5 of infection i.p.. 

Depletion of neutrophils was performed by means of a single i.p. injection of 1mg 
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anti-Ly6G antibody (1A8, BioXCell) on day -1 of infection. Eosinophils were 

depleted by i.p. injections of 20 µg anti-SiglecF (clone 238047, R&D Systems) on 

day -1 and day 1 of infection. The obtained results were independently confirmed in 

experiments relying on the combined administration of 500 µg anti-IL5 antibody 

(Trfk5, BioXCell) and 250 µg of anti-CCR3 antibody (6S2-19-4 (273), generously 

provided by Dr. J. J. Lee) each on day -2.5 and day -0.5 of infection. Plasmacytoid 

dendritic cell depletion was performed by administering 500 µg of anti-mPDCA-1 

antibody (JF05-1C2.4.1, Miltenyi Biotec) i.v. on day -1 and day 0 of infection. 

MOPC-21 mouse IgG1, LTF-2 rat IgG2b, HPRN rat IgG1 and 2A3 rat IgG2a (all 

from BioXCell) were administered as isotype control antibodies. 

 

II.4.8 Generation of bone marrow-chimeric mice 

To generate bone marrow chimeric mice, wt and ifnar-/- recipients were lethally 

irradiated with a fractionated dose of twice 5.5 gray (Gy) at a 6-hour interval. One day 

later, the recipients were given 100 µg of anti-Thy1 antibody (clone T24, BioXcell) 

intraperitoneally to deplete remaining T cells and were reconstituted with ~107 wt or 

ifnar-/- BM cells. The animals were then rested for eight weeks before entering cell 

transfer and infection experiments. 

 

II.4.9 Adoptive cell transfer and fluorescent cell labeling 

For adoptive transfer of naïve B cells and subsequent analysis by flow cytometry, 

splenocyte suspensions (2-4x106 per recipient) in balanced salt solution were 

administered i.v. For histological assessments, MACS-purified B cells (Miltenyi 

Biotec Pan B cell isolation kit, for untouched B cells) were also used. Syngeneic 

C57BL/6J mice served as recipients, except for long-term (>1 week) transfer of 

KL25HL cells, which were performed in KL25L recipients to avoid anti-idiotypic 

responses. To assess in vivo proliferation, splenocyte populations were labeled with 

Carboxyfluorescein succinimidyl ester (CFSE, Sigma-Aldrich) or CellTraceViolet 

(CTV, Life Technologies) according to the manufacturer’s instructions. 
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II.4.10 Generation of antigen-experienced KL25H B cells for adoptive transfer 

To generate antigen-experienced GP-specific KL25H B cells, a sequential in vivo 

transfer system was used. We infected C57BL/6J primary recipients with 200 PFU 

rCl13 i.v. and six days later we transferred 2-4x106 MACS-purified untouched naïve 

B cells from CD45.1+ KL25H mice (purified with the Pan B cell isolation kit of 

Miltenyi Biotec according to the provider instructions). ≥3 weeks later we sacrificed 

the primary recipients and purified antigen-experienced KL25H B cells from spleen, 

which at this stage were enriched to ~50% GP-binding by FACS (Fig S2B). These 

antigen-experienced KL25H B cells were isolated using the Pan B cell isolation kit, 

followed by CD45.2 MACS-based negative selection (both from Miltenyi Biotec) 

according to the manufacturer’s instructions. 2-4x104 CD45.1+ KL25H memory B 

cells (≥95% CD45.1+B220+) were transferred intravenously into naïve C57BL/6J wt 

secondary recipient mice to study the cells’ behavior upon rCl13 challenge.  

 

II.4.11 Generation of polyclonal LCMV-experienced B cells for adoptive transfer 

To generate polyclonal LCMV-specific memory B cells, we infected GFP-transgenic 

UBC-GFP mice (272) with 105 PFU rCl13 i.v.. Fourty days later we isolated 

untouched splenic B cells using the Pan B cell isolation kit (Miltenyi Biotec) 

according to the provider’s instructions. Upon CTV labeling, 2x106 of these LCMV-

experienced B cells (>95% pure) were transferred into naïve syngeneic C57BL/6J 

recipients to study their behavior upon rCl13 challenge. 

 

II.4.12 Antibody, interferon-α and cytokine/chemokine panel measurements 

To assess GP-specific serum antibodies in ELISA we used a recombinant fusion 

protein consisting of the outer globular GP-1 domain, fused to the human IgG1 

constant domain (GP1-Fc) as described previously (41). To discriminate responses of 

adoptively transferred KL25H B cells from endogenous responses in ELISA, 

background GP-1 antibody titers in control mice without KL25H cell transfer were 

determined and were subtracted.  

GP-specific neutralizing antibodies (nAbs) were measured by immunofocus reduction 

assays using rCl13 as a test article (274). IFN-α concentrations in mouse sera were 
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determined by ELISA using the VeriKine Mouse Interferon Alpha ELISA Kit (PBL 

Assay Science). To profile inflammatory responses in mouse serum we used a laser 

bead-based 31-plex cytokine and chemokine array (Eve Biotechnologies). 

 

II.4.13 Statistical analysis 

For comparison of one parameter between two groups, unpaired two-tailed Student’s t 

tests were performed. One-way analysis of variance (ANOVA) was used to compare 

one parameter between multiple groups, two-way ANOVA for comparison of 

multiple parameters between two or more groups. ANOVA was followed by 

Bonferroni’s post-test for multiple comparisons. Dunnett’s post-test was used to 

compare multiple groups to a control group. With the exception of percentages, 

values were log-converted to obtain a near-normal distribution for statistical analysis. 

Data were analyzed using Graphpad Prism software (version 6.0h). P values >0.05 

were considered not significant (ns), p values <0.05 were considered significant (*,#) 

and p values <0.01 highly significant (**,##). 
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II.5 Figures 

 

 
 

 

Fig. 1: Decimation of naïve and memory B cells in rCl13 but not rVSV infection. 

A-H: We adoptively transferred KL25H (A-C) or KL25HL cells (D-H) into naïve 
syngeneic recipients, followed by rCl13 or rVSV challenge. On the indicated days, 
viremia (A) and KL25H-derived GP1-binding IgG (B) were determined. Progeny B 
cells were enumerated by flow cytometry in spleen and iLN (C,D). KL25HL B cells 
(CD45.1+) in germinal centers (E, bar 100 µm) and their abortive expansion following 
rCl13 infection (F, bars 50 µm, inset 20 µm) by histology. Proliferation (CFSE 
dilution) of d3 rCl13-challenged but not unchallenged KL25HL B cells (G). 
Apoptotic (AnnexinV/7AAD+) KL25HL B cells on d3 of rCl13 or rVSV challenge 
(H). I: Proliferation and resulting KL25HL B cell progeny in neonatally infected 
rCl13 carriers or adult rCl13-infected mice. J-M: Upon KL25HL transfer and rCl13 
infection, timed as outlined (J), we measured KL25HL B cell proliferation and 
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expansion (K), nAb responses (L) and viremia (M). Symbols and bars represent 
means±SEM. n= 3-4, N=2-3. FACS plots are gated on CD45.1+B220+ lymphocytes. B 
cells and ASCs gating is shown in Fig. S1D. Numbers in FACS plots indicate 
percentages (mean±SEM). *,#: p<0.05; **,##: p<0.01. *,** compare B cells; #,## 
compare ASCs. 
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Fig. 2: IFNAR blockade restores B cell expansion and GC differentiation in rCl13 
infection. 

A: Serum IFN-α in KL25HL cell recipients, infected with rCl13 at birth or on d0, or 
infected with rVSV on d0. 
B-G: We transferred naïve KL25HL cells (B-E), antigen-experienced KL25H B cells 
(F-G) or antigen-experienced polyclonal GFP+ B cells (H) to αIFNAR- or control-
treated wt recipients, followed by rCl13 infection. B cell progeny in the indicated 
organs were detected by FACS (B,D,F,H) and histology (C,E,G). Note progeny of 
naïve KL25HL cells (E) and of antigen-experienced KL25H cells (G) in GCs of 
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IFNAR-blocked recipients. Magnification bars: 50 µm, inset 20 µm (C); 200 µm (E); 
100 µm (G). Numbers in (H) represent LCMV-NP-binding, proliferated 
(CellTraceViolet/CTVlo) polyclonal donor (GFP+) B cell progeny 
(CTVloGFP+LCMV-NP+ lymphocytes, compare Fig. S2D).  
I: We transferred naïve VI10 cells to αIFNAR- or control-treated recipients, followed 
by VSVG immunization, alone or in combination with rCl13 infection. Proliferated 
(CFSElo) VSVG-binding VI10 B cells were enumerated by FACS. Plots are gated on 
CD45.2+B220+ lymphocytes. Bars represent the mean±SEM. n= 3-4, N=2-3. ns: not 
significant; *,#: p<0.05; **,##: p<0.01. *,** compare total or GC B cells; #,## 
compare ASCs or memB, respectively. 
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Fig. 3: IFN-I-induced short-lived plasmablast differentiation in rCl13 infection. 

We transferred naïve KL25HL cells to αIFNAR- or control-treated recipients, 
followed by rCl13 infection and analysis in spleen on day 3. Apoptotic KL25HL B 
cell were identified in FACS based on AnnexinV/7AAD-binding (A) and by histology 
based on expression of active caspase-3 (B,C, magnification bar 50 µm, inset 20 µm). 
Proliferated KL25HL B cell progeny (CD45.1+B220+CFSElo) were FACS-sorted and 
total RNA was processed for RNAseq (D). Heat maps show expression profiles of 
ASC signature genes known to be upregulated (left) or downregulated (right) upon 
ASC differentiation, respectively (89). Plasmablast differentiation of proliferated 
(CFSElo) KL25HL B cell progeny was determined by flow cytometry (E). Numbers in 
FACS plots indicate the percentage of cells falling into the respective gate (A, 
representative FACS plots, gated as shown in Fig. S1D), the percentage of CFSElo 
cells expressing the respective marker (E) or the MFI of cytoplasmic IgM within 
IgMcyt+CFSElo cells. Numbers and bars show means±SEM. n=3-4, N=2-3 (A-C,E). ns: 
not significant; *: p<0.05; **: p<0.01. 
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Fig. 4: Impact of cell type-specific IFNAR signaling, IFN-I-induced inflammation 
and BAFF overexpression on rCl13-induced B cell decimation.   

A: We transferred KL25HL cells, either wt or ifnar-/-, into wt or ifnar-/- recipients and 
enumerated splenic KL25HL B cell progeny on d3 after rCl13. 
B: We transferred VI10 cells into wt recipients, followed by VSVG immunization and 
rCl13 infection as indicated, and enumerated splenic VSVG-binding VI10 B cells on 
d3. 
C-D: We transferred KL25HL cells into reciprocal wt and ifnar-/- BM chimeras (C) or 
into recipients with cell type-specific, conditional or complete IFNAR deficiency (D) 
and enumerated splenic KL25HL B cell progeny on d3 after rCl13. 
E: We transferred KL25HL cells into wt recipients, treated with αGr-1, αIFNAR or 
control, and enumerated splenic KL25HL B cell progeny on d3 after rCl13. 
F: Low density inflammatory gene expression profiling in spleen of naïve or d3 
rCl13-infected KL25HL recipients. Heat maps shows the 48 genes significantly up-
regulated upon rCl13 infection. 
G: Serum chemokines and cytokines were profiled at 24h and 72h after rCl13, 
respectively. ifnar-/- and αGr-1-treated wt mice are expressed as percentage of control-
treated wt mice. Only those 19/31 profiled chemokines and cytokines are displayed, 
which were ≥4-fold lower in ifnar-/- than wt controls (Tbl. SII). 
H-I: We transferred KL25HL cells into BAFF-transgenic (H), il-10-/- or into wt 
recipients, treated with αTNF-α or control (I), and enumerated splenic KL25HL B cell 
progeny on d3 after rCl13.  
B cells and ASCs were gated as shown in Fig. S1D. Bars show means±SEM. n=3-4. 
N=2-3 (A-E, H). ns: not significant; *,#: p<0.05; **,##: p<0.01. *,** compare B cells; 
#,## compare ASCs. 
 



	 44	

II.6 Supplementary Figures and Tables 
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Fig. S1: Characterization of KL25H and KL25HL mice, and FACS gating 
strategy pursued to analyze the respective B cell progeny in adoptive transfer 
experiments. 

A: GP-binding by B cells in peripheral blood of wt, KL25L (KL25 antibody light 
chain transgenic), KL25H (KL25 antibody heavy chain knock-in) and KL25HL mice 
(cross of KL25L and KL25H). Numbers in plots indicate the percentage of GP-
binding cells amongst total B cells (gated on B220+ lymphocytes). 
B: KL25 light chain (LC) transgene construct. κP: Genomic immunoglobulin kappa 
(Igκ) chain promoter; KL25VJ: rearranged KL25 V and J segments, including leader 
and intron; Cκ: light chain kappa constant domain; IRES: internal ribosome entry site; 
Rep: cell surface reporter protein consisting in the murine Thy1.1 ectodomain fused to 
the transmembrane and cytoplasmic domains of the mouse PDGF receptor; κE: 
genomic Igκ locus enhancer element.  
C: Gating strategy to Fig. 1D. We adoptively transferred CFSE-labeled KL25HL cells 
into naïve syngeneic recipients, followed by rCl13 or rVSV challenge and measured 
KL25HL progeny B cells on day 26. FACS plots on the left are pre-gated on B cells 
(B220+ lymphocytes). Percentages of gated cells are indicated. Representative FACS 
plots are shown. 
D: Gating strategy to enumerate “KL25HL B cell progeny”, i.e. progeny KL25HL B 
cells and ASCs. On d0 we transferred KL25HL cells into adult syngeneic recipients, 
infected with rCl13 since birth (i.e. as neonates) or on the day of cell transfer (d0) and 
assessed B cell progeny (B cells and ASCs) on day 3. FACS plots on the left are pre-
gated on lymphocytes. Representative FACS plots are shown. 
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Fig. S2: Gating strategy and representative FACS plots for adoptively 
transferred LCMV-experienced B cells. 

A: Gating strategy to enumerate memB and GC B cells in Fig. 2D. We adoptively 
transferred CFSE-labeled KL25HL cells into naïve syngeneic recipients, treated with 
αIFNAR or control antibody, followed by rCl13 infection and analysis on day 15. 
FACS plots on the left are pre-gated on lymphocytes. Representative FACS plots are 
shown. 
B: Characterization of antigen-experienced KL25H B cells as used for adoptive 
transfer in Fig. 2F,G. LCMV-reactive KL25H B cells were expanded in vivo, and 3-4 
weeks later were purified from spleen (see Materials and Methods). Such antigen-
experienced KL25H cells from 10 primary recipients were pooled for adoptive 
transfer into secondary recipients. An aliquot thereof was analyzed for purity (~95% 
CD45.1+B220+, not shown) and was compared to B cells of the primary CD45.2+ 
recipient (from the MACS flow-through) for GP-binding. Note the infection-induced 
enrichment of GP-binding KL25H donor B cells from ~2% at baseline (Fig. S1A) to 
>50% on the day of secondary transfer. Plots are gated on either CD45.1+ or CD45.2+ 
B220+ lymphocytes, as indicated. Numbers show the percentage of gated cells. N=3.  
C: Illustrative FACS plots to Fig. 2F. On the indicated days after rCl13 challenge, 
progeny B cells and ASCs of antigen-experienced KL25H B cell were gated as 
outlined in Fig. S1D. These populations were superimposed on the recipient’s 
lymphocytes for display. 
D: Illustrative FACS plot to Fig. 2H. GFP-transgenic polyclonal LCMV-experienced 
B cells were generated in vivo and purified from spleen (see Materials and Methods). 
On d7 after transfer into naïve recipients and rCl13 challenge we analyzed NP-
binding by adoptively transferred (GFP+) B cell progeny. A representative FACS plot 
is shown, gated on CTVloGFP+ lymphocytes. 
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Fig. S3: IFNAR blockade alters transcription factor and terminal differentiation 
profiles of B cells in rCl13 infection. 

We transferred naïve KL25HL cells to αIFNAR- or control-treated recipients, 
followed by rCl13 infection. On day 3, proliferated (CFSElo) KL25HL B cells were 
sorted from spleen and RNA was processed for RNAseq (same samples as in Fig. 
3D). Heat maps show transcription factors associated with the indicated B cell 
differentiation stages (A-C, (89)) and genes associated with terminal B cell 
differentiation in HIV patients (D, (145)). 
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Fig. S4: Effects of depletion antibodies on serum IFN-α, virus loads, myeloid cell 
population and KL25HL B cell recovery, and impact of genetic InfMo deficiency 
on KL25HL B cell recovery. 

A-B: We treated wt mice with αGr-1, αIFNAR or control antibody and infected them 
with rCl13. Viremia (A) and IFN-α concentrations in serum (B) were assessed on the 
indicated days. 
C-E: We adoptively transferred KL25HL cells into wt (C,D) or wt and cd8-/- 

recipients (E), followed by rCl13 infection. Recipients were treated with either αGR-1 
(pan-myeloid depletion), αSiglecF (selective eosinophil depletion), αLy6G (selective 
neutrophil depletion), α-mPDCA1 (selective pDC depletion) or control antibody. C,D: 
We enumerated InfMo (Thy1.2–NK1.1–CD19–CD11b+Ly6G–Ly6Chi, (275)), 
neutrophils (Thy1.2–NK1.1–CD19–CD11b+Ly6GhiLy6Cint cells (275)), pDCs (Thy1.2–

NK1.1–CD19–CD11b–Ly6C+Siglec-H+B220+CD11c+) and Ly6C+ CD8+ T cells 
(CD8+Ly6C+ lymphocytes) on d3 in spleen (C,D). Note that cell type-specific agents 
depleted their respective cell population similarly efficiently as αGr-1. KL25HL B 
cell progeny in spleen on d3 were enumerated (E) based on the gating strategy shown 
in Fig. S1D. 
F: We adoptively transferred KL25HL cells into wt recipients, treated with NK cell-
depleting antibody (αNK1.1), αIFNAR or control antibody, followed by rCl13 
infection. KL25HL B cell progeny were enumerated on day 3 in spleen as in (E).  
G: ccr2-/- and wt control mice were infected with rCl13 and InfMo numbers in spleen, 
iLN and BM were determined in spleen over time as described for (C,D).  
H: We transferred KL25HL cells into klf4fl/fl x Vav1-icre and control klf4fl/fl followed 
by rCl13 infection. Groups of wt mice treated with αIFNAR or control antibody, 
served as high- and low-control groups, respectively. KL25HL B cell progeny were 
enumerated from spleen on d3 as in (E). 
I: We adoptively transferred KL25HL cells into ccr2-/- and wt mice, treated with 
αGR-1 or control antibody as indicated, followed by rCl13 infection. KL25HL B cell 
progeny were enumerated from spleen on d3 as in (E). Same data set as Fig. 4E. 
Symbols and bars represent means±SEM. n=3-4. N=2 (A-F, H-I). ns: not significant; 
*,#: p<0.05; **,##: p<0.01. *,** compare B cells; #,## compare ASCs. 
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Fig. S5: Impact of αGr-1 and αIFNAR on inflammatory gene expression profiles 
in spleen and bone marrow. 

We transferred KL25HL cells into wt recipients, treated with αGR-1, αIFNAR or 
control antibody, followed by rCl13 infection. Additional animals were left 
uninfected (no virus). On day 3 we processed spleen and BM for low-density 
expression profiling of 248 inflammatory genes. Heat maps show all those genes, 
which were significantly different between rCl13-infected control-treated mice and 
uninfected animals. Genes, which were up- (A,C) or down-regulated (B,D) in spleen 
(A,B) and BM (C,D) are shown separately, and were grouped according to whether 
αGR-1, αIFNAR or both treatments interfered with the infection-induced gene 
expression change. Columns represent individual mice, lanes individual genes 
(individually listed in Tbl. SI). Same data set as Fig. 4F. 
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Fig. S6: Individual impact of iNOS, FasL, IL-1β, IL-4, IL-6 and IL-12 on 
KL25HL B cell decimation. 

A-D. We transferred KL25HL cells into wt, iNOS-deficient nos2-/-,FasL-mutant 
faslgld , il12p40-/-, il1β -/-, il4-/- and il6-/- mice, followed by rCl13 infection. Groups of 
wt mice treated with αIFNAR or control antibody, served as high- and low-control 
groups, respectively. KL25HL B cell progeny in spleen on d3 were enumerated based 
on the gating strategy shown in Fig. S1D. B, same data set as Fig. 4I. C, same data set 
as Fig. S4H. Bars represent means±SEM. n=3-4, N=2. ns: not significant; *,#: p<0.05; 
**,##: p<0.01. *,** compare B cells; #,## compare ASCs. 
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Table SI: Profound impact of IFNAR blockade and, more limited but largely 
overlapping, of αGr-1 depletion on inflammatory gene expression profiles in 
spleen and BM. 

Gene  

expression  

change1 

Different  

from  

ctrl Ab in: 

EntrezID Symbol GeneName 

no virus vs  

rCl13 + ctrl Ab6 

rCl13 + αIFNAR vs 

 rCl13 + ctrl Ab7 

rCl13 + αGR-1 vs  

rCl13 + ctrl Ab8 

log2FC adj.P.Val log2FC adj.P.Val log2FC adj.P.Val 

up
-r

eg
ul

at
ed

 in
 rC

l1
3-

in
fe

ct
ed

 sp
le

en
2  

αGR-19 

16163 Il13 interleukin 13 0.91 0.03 -0.68 0.07 -1.05 0.01 

18783 Pla2g4a phospholipase A2, group IVA (cytosolic, calcium-dependent) 0.70 0.00 0.05 0.78 0.51 0.01 

16362 Irf1 interferon regulatory factor 1 1.15 0.00 -0.47 0.04 -0.59 0.02 

αGR-1 &  

αIFNAR10 

17392 Mmp3 matrix metallopeptidase 3 2.22 0.00 -0.63 0.00 2.04 0.00 

12768 Ccr1 chemokine (C-C motif) receptor 1 1.45 0.00 -1.07 0.01 -1.90 0.00 

15958 Ifit2 interferon-induced protein with tetratricopeptide repeats 2 3.31 0.00 -3.15 0.00 -0.83 0.00 

15959 Ifit3 interferon-induced protein with tetratricopeptide repeats 3 2.94 0.00 -2.97 0.00 -0.71 0.03 

16176 Il1b interleukin 1 beta 0.82 0.02 -1.01 0.00 -1.84 0.00 

227288 Cxcr1 chemokine (C-X-C motif) receptor 1 0.73 0.03 -1.11 0.00 -1.30 0.00 

231655 Oasl1 2'-5' oligoadenylate synthetase-like 1 2.46 0.00 -2.89 0.00 -0.75 0.01 

αIFNAR11 

12263 C2 complement component 2 (within H-2S) 1.42 0.01 -1.39 0.00 0.21 0.72 

12267 C3ar1 complement component 3a receptor 1 1.35 0.00 -0.95 0.01 0.35 0.43 

13163 Daxx Fas death domain-associated protein 0.55 0.00 -0.96 0.00 -0.31 0.10 

14103 Fasl Fas ligand (TNF superfamily, member 6) 0.83 0.04 -1.11 0.00 -0.16 0.75 

14962 Cfb complement factor B 2.24 0.00 -0.89 0.00 0.47 0.10 

15945 Cxcl10 chemokine (C-X-C motif) ligand 10 2.04 0.00 -1.62 0.00 -0.77 0.16 

15957 Ifit1 interferon-induced protein with tetratricopeptide repeats 1 2.78 0.00 -2.99 0.00 -0.43 0.19 

15977 Ifnb1 interferon beta 1, fibroblast 1.19 0.00 -0.67 0.02 -0.22 0.49 

15978 Ifng interferon gamma 1.37 0.00 -1.03 0.00 -0.59 0.09 

16153 Il10 interleukin 10 1.36 0.00 -1.22 0.00 -0.16 0.64 

16168 Il15 interleukin 15 0.64 0.02 -0.71 0.00 -0.09 0.80 

16181 Il1rn interleukin 1 receptor antagonist 1.97 0.00 -0.84 0.02 0.10 0.84 

17392 Mmp3 matrix metallopeptidase 3 2.22 0.00 -0.63 0.00 2.04 0.00 

17857 Mx1 MX dynamin-like GTPase 1 0.64 0.01 -1.29 0.00 -0.31 0.18 

17858 Mx2 MX dynamin-like GTPase 2 1.41 0.00 -2.93 0.00 -0.47 0.07 

20296 Ccl2 chemokine (C-C motif) ligand 2 4.23 0.00 -2.20 0.00 0.06 0.93 

20302 Ccl3 chemokine (C-C motif) ligand 3 2.38 0.00 -0.91 0.00 0.30 0.34 

20303 Ccl4 chemokine (C-C motif) ligand 4 1.87 0.00 -1.22 0.00 -0.12 0.80 

20306 Ccl7 chemokine (C-C motif) ligand 7 5.67 0.00 -3.10 0.00 -0.05 0.94 

20846 Stat1 signal transducer and activator of transcription 1 1.53 0.00 -0.63 0.01 -0.36 0.16 

20847 Stat2 signal transducer and activator of transcription 2 1.31 0.00 -1.51 0.00 -0.37 0.10 

50909 C1ra complement component 1, r subcomponent A 0.78 0.00 -0.92 0.00 0.20 0.35 

54123 Irf7 interferon regulatory factor 7 3.13 0.00 -2.91 0.00 -0.09 0.75 

76933 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 2.05 0.00 -2.29 0.00 -0.08 0.88 

99899 Ifi44 interferon-induced protein 44 4.18 0.00 -3.46 0.00 -0.06 0.88 

170743 Tlr7 toll-like receptor 7 0.62 0.00 -1.00 0.00 0.06 0.80 

246728 Oas2 2'-5' oligoadenylate synthetase 2 2.54 0.00 -3.12 0.00 -0.55 0.10 

246730 Oas1a 2'-5' oligoadenylate synthetase 1A 2.23 0.00 -2.22 0.00 -0.25 0.44 

625018 C4a complement component 4A (Rodgers blood group) 0.75 0.01 -1.02 0.00 0.27 0.37 

none12 

13198 Ddit3 DNA-damage inducible transcript 3 0.80 0.00 -0.49 0.05 0.33 0.23 

14825 Cxcl1 chemokine (C-X-C motif) ligand 1 2.04 0.03 -1.39 0.10 0.85 0.40 

16193 Il6 interleukin 6 1.05 0.03 -0.32 0.48 0.06 0.91 

16476 Jun jun proto-oncogene 0.76 0.01 -0.43 0.10 0.16 0.63 

17329 Cxcl9 chemokine (C-X-C motif) ligand 9 2.16 0.01 -0.39 0.62 -0.13 0.89 

19225 Ptgs2 prostaglandin-endoperoxide synthase 2 3.12 0.00 -0.56 0.24 -0.30 0.62 

20307 Ccl8 chemokine (C-C motif) ligand 8 2.45 0.00 -0.96 0.08 1.19 0.05 

20310 Cxcl2 chemokine (C-X-C motif) ligand 2 1.17 0.04 -0.55 0.30 0.19 0.80 

60440 Iigp1 interferon inducible GTPase 1 2.66 0.00 -0.47 0.34 -0.53 0.35 

257632 Nod2 nucleotide-binding oligomerization domain containing 2 0.58 0.05 -0.32 0.24 -0.41 0.18 
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Gene  

expression  

change1 

Different  

from  

ctrl Ab in: 

EntrezID Symbol Gene Name 

no virus vs  

rCl13 + ctrl Ab6 

rCl13 + αIFNAR vs 

 rCl13 + ctrl Ab7 

rCl13 + αGR-1 vs  

rCl13 + ctrl Ab8 

log2FC adj.P.Val log2FC adj.P.Val log2FC adj.P.Val 

do
w

n-
re

gu
la

te
d 

in
 rC

l1
3-

in
fe

ct
ed

 sp
le

en
3  

αGR-19 

16196 Il7 interleukin 7 -1.57 0.00 0.15 0.72 1.38 0.00 

21812 Tgfbr1 transforming growth factor, beta receptor I -0.79 0.00 0.47 0.00 0.60 0.00 

53603 Tslp thymic stromal lymphopoietin -0.61 0.05 0.45 0.11 0.86 0.01 

21947 Cd40lg CD40 ligand -1.37 0.00 -0.50 0.13 -0.72 0.05 

12053 Bcl6 B cell leukemia/lymphoma 6 -1.36 0.00 0.15 0.53 -0.53 0.04 

αGR-1 &  

αIFNAR10 

11936 Fxyd2 FXYD domain-containing ion transport regulator 2 -2.27 0.00 1.64 0.00 0.90 0.03 

12274 C6 complement component 6 -1.14 0.01 1.17 0.00 1.41 0.00 

12771 Ccr3 chemokine (C-C motif) receptor 3 -2.45 0.00 2.25 0.00 2.09 0.00 

15289 Hmgb1 high mobility group box 1 -0.50 0.00 1.15 0.00 0.58 0.00 

17346 Mknk1 MAP kinase-interacting serine/threonine kinase 1 -0.61 0.00 0.55 0.00 0.64 0.00 

17533 Mrc1 mannose receptor, C type 1 -2.21 0.00 1.75 0.00 1.78 0.00 

18829 Ccl21a chemokine (C-C motif) ligand 21A (serine) -3.65 0.00 0.64 0.01 0.57 0.04 

19224 Ptgs1 prostaglandin-endoperoxide synthase 1 -1.19 0.00 0.75 0.00 0.89 0.00 

20299 Ccl22 chemokine (C-C motif) ligand 22 -2.36 0.00 0.94 0.01 1.04 0.01 

93671 Cd163 CD163 antigen -3.01 0.00 2.31 0.00 1.04 0.00 

αIFNAR11 

11687 Alox15 arachidonate 15-lipoxygenase -0.99 0.01 0.88 0.01 -0.19 0.67 

11848 Rhoa ras homolog gene family, member A -0.64 0.00 0.61 0.00 0.40 0.03 

11909 Atf2 activating transcription factor 2 -0.60 0.00 0.51 0.00 0.28 0.02 

12048 Bcl2l1 BCL2-like 1 -1.05 0.00 0.73 0.01 0.38 0.18 

14784 Grb2 growth factor receptor bound protein 2 -0.90 0.00 0.53 0.01 0.14 0.56 

14969 H2-Eb1 histocompatibility 2, class II antigen E beta -1.36 0.00 0.69 0.00 -0.14 0.62 

16160 Il12b interleukin 12b -1.39 0.00 0.96 0.00 0.56 0.13 

16189 Il4 interleukin 4 -0.95 0.00 0.62 0.02 -0.09 0.81 

16194 Il6ra interleukin 6 receptor, alpha -1.57 0.00 0.92 0.04 0.04 0.94 

17134 Mafg 

v-maf musculoaponeurotic fibrosarcom oncog. fam., prot. G 

(avian) -0.98 0.00 0.92 0.00 0.13 0.63 

18751 Prkcb protein kinase C, beta -1.24 0.00 0.61 0.02 0.18 0.55 

19219 Ptger4 prostaglandin E receptor 4 (subtype EP4) -1.03 0.00 0.67 0.00 0.25 0.10 

20416 Shc1 src homology 2 domain-containing transforming protein C1 -0.58 0.00 0.86 0.00 0.36 0.06 

22154 Tubb5 tubulin, beta 5 class I -0.54 0.02 0.86 0.00 0.11 0.68 

26398 Map2k4 mitogen-activated protein kinase kinase 4 -0.57 0.00 0.72 0.00 0.36 0.02 

26409 Map3k7 mitogen-activated protein kinase kinase kinase 7 -0.53 0.00 0.64 0.00 0.28 0.02 

26416 Mapk14 mitogen-activated protein kinase 14 -1.15 0.00 0.81 0.00 0.38 0.05 

26419 Mapk8 mitogen-activated protein kinase 8 -0.84 0.00 0.63 0.00 0.30 0.03 

53791 Tlr5 toll-like receptor 5 -1.58 0.00 1.06 0.00 0.25 0.49 

54473 Tollip toll interacting protein -0.61 0.00 0.64 0.00 0.30 0.01 

71609 Tradd TNFRSF1A-associated via death domain -0.91 0.00 0.52 0.04 -0.08 0.81 

73086 Rps6ka5 ribosomal protein S6 kinase, polypeptide 5 -1.47 0.00 0.68 0.01 0.20 0.48 

97165 Hmgb2 high mobility group box 2 -0.57 0.03 1.38 0.00 0.21 0.47 

237310 Il22ra2 interleukin 22 receptor, alpha 2 -3.13 0.00 1.55 0.00 0.08 0.88 

NA Gpr44 NA -0.72 0.04 1.06 0.00 0.14 0.75 

NA Hras1 NA -1.25 0.00 1.04 0.00 0.19 0.52 

329251 Ppp1r12b protein phosphatase 1, regulatory (inhibitor) subunit 12B -0.71 0.01 0.89 0.00 0.40 0.13 

none12 

11684 Alox12 arachidonate 12-lipoxygenase -1.89 0.01 0.77 0.27 0.76 0.35 

12504 Cd4 CD4 antigen -1.19 0.00 -0.05 0.74 -0.02 0.90 

12767 Cxcr4 chemokine (C-X-C motif) receptor 4 -0.75 0.03 0.15 0.67 -0.55 0.13 

12773 Ccr4 chemokine (C-C motif) receptor 4 -1.01 0.01 0.44 0.24 -0.08 0.88 

12775 Ccr7 chemokine (C-C motif) receptor 7 -1.17 0.00 0.11 0.70 -0.57 0.06 

12912 Creb1 cAMP responsive element binding protein 1 -1.01 0.00 0.26 0.10 0.03 0.88 

13136 Cd55 CD55 molecule, decay accelerating factor for complement -1.35 0.01 0.19 0.68 0.33 0.52 

13712 Elk1 ELK1, member of ETS oncogene family -0.88 0.00 0.44 0.02 0.22 0.34 

14683 Gnas GNAS (guanine nucleot. bind. Prot., alpha stim.) complex locus -0.80 0.01 0.50 0.08 0.00 1.00 

14815 Nr3c1 nuclear receptor subfamily 3, group C, member 1 -0.72 0.00 0.12 0.43 0.05 0.82 

15139 Hc hemolytic complement -1.51 0.00 0.83 0.08 -0.19 0.78 

15962 Ifna1 interferon alpha 1 -0.62 0.00 0.15 0.44 -0.40 0.06 

16155 Il10rb interleukin 10 receptor, beta -0.61 0.00 0.17 0.27 0.35 0.04 
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16177 Il1r1 interleukin 1 receptor, type I -0.65 0.04 0.19 0.51 0.56 0.09 

16183 Il2 interleukin 2 -0.73 0.04 -0.22 0.51 -0.26 0.51 

16885 Limk1 LIM-domain containing, protein kinase -0.64 0.00 0.40 0.01 0.21 0.18 

16994 Ltb lymphotoxin B -0.74 0.01 -0.20 0.43 -0.21 0.49 

17131 Smad7 SMAD family member 7 -1.24 0.00 -0.14 0.37 0.12 0.51 

17135 Mafk 

v-maf musculoaponeurot. fibrosarcoma oncog. Fam., prot. K 

(avian) -0.62 0.00 0.44 0.00 -0.25 0.13 

17195 Mbl2 mannose-binding lectin (protein C) 2 -0.83 0.01 0.10 0.76 -0.27 0.48 

17258 Mef2a myocyte enhancer factor 2A -0.55 0.03 0.26 0.25 0.37 0.15 

17261 Mef2d myocyte enhancer factor 2D -1.04 0.00 0.19 0.34 -0.08 0.80 

18021 Nfatc3 nuclear factor of activated T cells, cytoplasm., calcineurin dep. 3 -0.54 0.03 0.15 0.51 0.02 0.93 

18033 Nfkb1 nuclear factor of kappa light polypep. gene enha. in B cells 1, p105 -0.62 0.01 0.25 0.27 0.24 0.35 

19353 Rac1 RAS-related C3 botulinum substrate 1 -0.51 0.00 0.50 0.00 0.47 0.00 

19697 Rela v-rel reticuloendotheliosis viral oncogene homolog A (avian) -0.59 0.00 0.48 0.00 0.16 0.17 

19698 Relb avian reticuloendotheliosis viral (v-rel) oncogene related B -0.70 0.01 0.15 0.52 0.26 0.34 

19878 Rock2 Rho-associated coiled-coil containing protein kinase 2 -0.53 0.00 0.20 0.22 0.35 0.05 

21390 Tbxa2r thromboxane A2 receptor -1.30 0.00 -0.14 0.72 0.01 0.99 

21413 Tcf4 transcription factor 4 -0.51 0.00 0.14 0.35 0.45 0.01 

21803 Tgfb1 transforming growth factor, beta 1 -0.85 0.00 0.49 0.00 0.49 0.00 

22030 Traf2 TNF receptor-associated factor 2 -0.62 0.00 0.18 0.10 0.03 0.84 

26399 Map2k6 mitogen-activated protein kinase kinase 6 -1.52 0.00 0.44 0.11 0.26 0.42 

26401 Map3k1 mitogen-activated protein kinase kinase kinase 1 -0.80 0.00 0.15 0.40 -0.10 0.63 

26408 Map3k5 mitogen-activated protein kinase kinase kinase 5 -0.53 0.00 0.19 0.24 -0.05 0.81 

26417 Mapk3 mitogen-activated protein kinase 3 -0.90 0.01 0.54 0.09 0.36 0.34 

27056 Irf5 interferon regulatory factor 5 -1.00 0.00 0.32 0.27 0.17 0.64 

54131 Irf3 interferon regulatory factor 3 -0.94 0.00 0.45 0.11 -0.09 0.82 

11596 Ager advanced glycosylation end product-specific receptor -1.12 0.00 0.27 0.35 -0.35 0.32 

208727 Hdac4 histone deacetylase 4 -0.60 0.01 0.10 0.67 -0.25 0.34 

338372 Map3k9 mitogen-activated protein kinase kinase kinase 9 -1.11 0.03 0.05 0.92 0.16 0.81 
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Gene  

expression  

change1 

Different  

from  

ctrl Ab in: 

EntrezID Symbol Gene Name 

no virus vs  

rCl13 + ctrl Ab6 

rCl13 + αIFNAR vs 

 rCl13 + ctrl Ab7 

rCl13 + αGR-1 vs  

rCl13 + ctrl Ab8 

log2FC adj.P.Val log2FC adj.P.Val log2FC adj.P.Val 

up
-r

eg
ul

at
ed
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3-
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fe

ct
ed

 b
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e 
m
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ro

w
4  

αGR-19 

12504 Cd4 CD4 antigen 0.92 0.00 -0.19 0.24 -0.62 0.00 

16362 Irf1 interferon regulatory factor 1 2.04 0.00 -0.40 0.09 -0.81 0.00 

257632 Nod2 nucleotide-binding oligomerization domain containing 2 1.21 0.00 0.11 0.75 -0.88 0.01 

αGR-1 &  

αIFNAR10 

15958 Ifit2 interferon-induced protein with tetratricopeptide repeats 2 3.81 0.00 -2.78 0.00 -0.95 0.00 

15959 Ifit3 interferon-induced protein with tetratricopeptide repeats 3 3.97 0.00 -2.47 0.00 -1.43 0.00 

16153 Il10 interleukin 10 0.62 0.04 -0.78 0.01 -0.99 0.00 

17858 Mx2 MX dynamin-like GTPase 2 2.19 0.00 -2.60 0.00 -0.60 0.04 

20846 Stat1 signal transducer and activator of transcription 1 2.32 0.00 -0.77 0.00 -0.77 0.00 

20847 Stat2 signal transducer and activator of transcription 2 1.98 0.00 -1.54 0.00 -0.86 0.00 

21897 Tlr1 toll-like receptor 1 1.93 0.00 -1.06 0.00 -0.70 0.00 

54123 Irf7 interferon regulatory factor 7 3.46 0.00 -2.27 0.00 -0.52 0.04 

107607 Nod1 nucleotide-binding oligomerization domain containing 1 1.50 0.00 -0.52 0.03 -0.89 0.00 

170743 Tlr7 toll-like receptor 7 1.39 0.00 -1.22 0.00 -0.63 0.00 

231655 Oasl1 2'-5' oligoadenylate synthetase-like 1 3.25 0.00 -3.30 0.00 -0.85 0.00 

αIFNAR11 

12259 C1qa complement component 1, q subcomponent, alpha polypeptide 1.79 0.00 -1.25 0.00 -0.20 0.22 

12260 C1qb complement component 1, q subcomponent, beta polypeptide 2.30 0.00 -1.49 0.00 -0.47 0.00 

12263 C2 complement component 2 (within H-2S) 1.37 0.01 -0.94 0.05 0.20 0.73 

12267 C3ar1 complement component 3a receptor 1 3.72 0.00 -2.83 0.00 -0.69 0.11 

12524 Cd86 CD86 antigen 1.17 0.00 -0.93 0.00 -0.22 0.21 

13163 Daxx Fas death domain-associated protein 1.70 0.00 -1.53 0.00 -0.39 0.05 

14103 Fasl Fas ligand (TNF superfamily, member 6) 1.82 0.00 -0.89 0.02 0.25 0.57 

14433 Gapdh glyceraldehyde-3-phosphate dehydrogenase 1.02 0.00 -0.62 0.00 0.18 0.30 

14962 Cfb complement factor B 5.52 0.00 -2.37 0.00 -0.45 0.14 

15945 Cxcl10 chemokine (C-X-C motif) ligand 10 5.17 0.00 -3.03 0.00 -1.03 0.07 

15957 Ifit1 interferon-induced protein with tetratricopeptide repeats 1 3.44 0.00 -2.09 0.00 -0.27 0.41 

16173 Il18 interleukin 18 1.39 0.00 -1.39 0.00 -0.42 0.04 

16476 Jun jun proto-oncogene 1.73 0.00 -1.49 0.00 -0.05 0.88 

17329 Cxcl9 chemokine (C-X-C motif) ligand 9 5.67 0.00 -1.65 0.03 -0.40 0.65 

17857 Mx1 MX dynamin-like GTPase 1 1.18 0.00 -1.02 0.00 -0.07 0.82 

17869 Myc myelocytomatosis oncogene 1.00 0.00 -0.78 0.00 0.30 0.21 

17874 Myd88 myeloid differentiation primary response gene 88 1.39 0.00 -0.67 0.01 -0.21 0.41 

20296 Ccl2 chemokine (C-C motif) ligand 2 5.84 0.00 -3.87 0.00 -0.93 0.16 

20302 Ccl3 chemokine (C-C motif) ligand 3 1.66 0.00 -1.37 0.00 -0.10 0.79 

20303 Ccl4 chemokine (C-C motif) ligand 4 2.24 0.00 -1.32 0.00 -0.41 0.30 

20306 Ccl7 chemokine (C-C motif) ligand 7 6.43 0.00 -4.75 0.00 -0.32 0.69 

21898 Tlr4 toll-like receptor 4 1.24 0.00 -0.61 0.02 -0.34 0.21 

50868 Keap1 kelch-like ECH-associated protein 1 0.81 0.00 -0.64 0.00 -0.02 0.91 

58861 Cysltr1 cysteinyl leukotriene receptor 1 2.12 0.00 -1.23 0.02 -0.44 0.44 

60440 Iigp1 interferon inducible GTPase 1 5.33 0.00 -1.36 0.01 -1.12 0.05 

76933 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 3.18 0.00 -1.58 0.00 -0.48 0.22 

81897 Tlr9 toll-like receptor 9 1.70 0.00 -1.46 0.00 -0.66 0.06 

99899 Ifi44 interferon-induced protein 44 5.47 0.00 -4.20 0.00 -0.35 0.26 

142980 Tlr3 toll-like receptor 3 1.46 0.00 -1.06 0.00 -0.27 0.28 

209488 Hsh2d hematopoietic SH2 domain containing 1.10 0.00 -0.96 0.00 -0.49 0.04 

246728 Oas2 2'-5' oligoadenylate synthetase 2 2.97 0.00 -1.57 0.00 -0.48 0.17 

246730 Oas1a 2'-5' oligoadenylate synthetase 1A 3.36 0.00 -1.82 0.00 -0.38 0.21 

625018 C4a complement component 4A (Rodgers blood group) 2.49 0.00 -1.43 0.00 -0.28 0.37 

none12 

12608 Cebpb CCAAT/enhancer binding protein (C/EBP), beta 1.34 0.00 -0.49 0.14 -0.45 0.22 

15251 Hif1a hypoxia inducible factor 1, alpha subunit 0.74 0.00 -0.42 0.05 0.32 0.18 

16155 Il10rb interleukin 10 receptor, beta 0.57 0.00 -0.32 0.05 -0.04 0.87 

16885 Limk1 LIM-domain containing, protein kinase 0.81 0.00 -0.27 0.07 0.27 0.10 

16992 Lta lymphotoxin A 0.58 0.04 -0.02 0.94 -0.18 0.55 

17087 Ly96 lymphocyte antigen 96 0.86 0.00 -0.32 0.08 -0.15 0.46 

17164 Mapkapk2 MAP kinase-activated protein kinase 2 1.05 0.00 -0.28 0.11 0.03 0.88 

18033 Nfkb1 nuclear factor of kappa light polypept. gene enh. in B cells 1, p105 0.60 0.02 -0.11 0.70 0.40 0.12 

18783 Pla2g4a phospholipase A2, group IVA (cytosolic, calcium-dependent) 0.78 0.00 -0.47 0.01 0.07 0.74 
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19766 Ripk1 receptor (TNFRSF)-interacting serine-threonine kinase 1 0.61 0.00 -0.14 0.46 0.23 0.27 

20304 Ccl5 chemokine (C-C motif) ligand 5 2.50 0.00 -0.30 0.48 0.02 0.96 

20307 Ccl8 chemokine (C-C motif) ligand 8 3.60 0.00 -0.27 0.69 0.12 0.87 

20848 Stat3 signal transducer and activator of transcription 3 0.56 0.00 -0.17 0.26 0.01 0.96 

21899 Tlr6 toll-like receptor 6 0.85 0.00 -0.31 0.18 -0.49 0.06 

21926 Tnf tumor necrosis factor 0.61 0.01 -0.18 0.45 -0.38 0.14 

24047 Ccl19 chemokine (C-C motif) ligand 19 1.48 0.02 0.20 0.78 1.10 0.10 

26395 Map2k1 mitogen-activated protein kinase kinase 1 0.76 0.00 -0.41 0.02 -0.09 0.65 

50909 C1ra complement component 1, r subcomponent A 0.71 0.00 -0.02 0.94 0.42 0.05 

56221 Ccl24 chemokine (C-C motif) ligand 24 1.69 0.02 -0.28 0.72 -0.21 0.80 

110006 Gusb glucuronidase, beta 1.10 0.00 -0.44 0.04 0.34 0.16 
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Gene  

expression  

change1 

Different  

from  

ctrl Ab in: 

EntrezID Symbol Gene Name 

no virus vs  

rCl13 + ctrl Ab6 

rCl13 + αIFNAR vs 

 rCl13 + ctrl Ab7 

rCl13 + αGR-1 vs  

rCl13 + ctrl Ab8 

log2FC adj.P.Val log2FC adj.P.Val log2FC adj.P.Val 

do
w

n-
re

gu
la

te
d 

in
 rC

l1
3-

in
fe

ct
ed

 b
on

e 
m

ar
ro

w
5  

αGR-19 16177 Il1r1 interleukin 1 receptor, type I -1.45 0.00 0.47 0.11 1.08 0.00 

αGR-1 &  

αIFNAR10 

11687 Alox15 arachidonate 15-lipoxygenase -0.94 0.02 0.80 0.03 -2.16 0.00 

15962 Ifna1 interferon alpha 1 -0.68 0.00 0.67 0.00 0.52 0.03 

αIFNAR11 

11596 Ager advanced glycosylation end product-specific receptor -1.24 0.00 0.99 0.00 0.35 0.29 

12048 Bcl2l1 BCL2-like 1 -2.23 0.00 1.27 0.00 0.17 0.58 

13712 Elk1 ELK1, member of ETS oncogene family -0.85 0.00 0.51 0.01 -0.42 0.06 

17134 Mafg 

v-maf musculoaponeurotic fibrosarc. oncog. fam., protein G 

(avian) -1.13 0.00 0.67 0.00 -0.12 0.64 

17392 Mmp3 matrix metallopeptidase 3 -0.71 0.00 0.56 0.01 0.11 0.64 

17906 Myl2 myosin, light polypeptide 2, regulatory, cardiac, slow -1.53 0.00 1.11 0.01 -0.40 0.39 

18751 Prkcb protein kinase C, beta -0.79 0.01 0.62 0.02 -0.40 0.17 

18795 Plcb1 phospholipase C, beta 1 -0.77 0.03 1.09 0.00 0.12 0.76 

19222 Ptgir prostaglandin I receptor (IP) -0.91 0.00 0.70 0.01 0.42 0.14 

19224 Ptgs1 prostaglandin-endoperoxide synthase 1 -1.20 0.00 0.65 0.01 0.32 0.21 

26408 Map3k5 mitogen-activated protein kinase kinase kinase 5 -0.63 0.00 0.61 0.00 -0.09 0.64 

26417 Mapk3 mitogen-activated protein kinase 3 -0.72 0.04 0.71 0.04 -0.26 0.50 

53791 Tlr5 toll-like receptor 5 -1.32 0.00 1.09 0.00 -0.26 0.44 

97165 Hmgb2 high mobility group box 2 -1.31 0.00 0.79 0.00 0.09 0.79 

none12 

11909 Atf2 activating transcription factor 2 -0.53 0.00 0.27 0.02 0.06 0.65 

12053 Bcl6 B cell leukemia/lymphoma 6 -0.53 0.04 0.47 0.05 -0.52 0.05 

12775 Ccr7 chemokine (C-C motif) receptor 7 -0.67 0.03 -0.05 0.89 -0.28 0.38 

14683 Gnas GNAS (guanine nucleot. Bind. Prot., alpha stim.) complex locus -0.83 0.01 0.50 0.09 -0.38 0.25 

14699 Gngt1 

guanine nucleot. bind. protein (G prot.), gamma transd. Act. polyp. 

1 -0.73 0.01 0.30 0.24 0.31 0.27 

16198 Il9 interleukin 9 -0.89 0.03 0.50 0.18 -0.09 0.87 

17135 Mafk v-maf musculoaponeurotic fibrosarc. Oncog. Fam., prot. K (avian) -0.88 0.00 0.26 0.08 -0.03 0.88 

17165 Mapkapk5 MAP kinase-activated protein kinase 5 -0.87 0.03 0.30 0.44 0.18 0.68 

18750 Prkca protein kinase C, alpha -1.47 0.01 0.84 0.13 0.53 0.40 

18829 Ccl21a chemokine (C-C motif) ligand 21A (serine) -0.73 0.01 0.15 0.58 -0.05 0.87 

21390 Tbxa2r thromboxane A2 receptor -0.87 0.04 0.72 0.07 0.36 0.41 

26401 Map3k1 mitogen-activated protein kinase kinase kinase 1 -0.53 0.01 0.16 0.37 -0.18 0.38 

73086 Rps6ka5 ribosomal protein S6 kinase, polypeptide 5 -0.77 0.01 0.48 0.05 0.05 0.88 

93671 Cd163 CD163 antigen -1.86 0.00 0.50 0.09 -0.34 0.29 

329251 Ppp1r12b protein phosphatase 1, regulatory (inhibitor) subunit 12B -0.70 0.01 0.20 0.42 0.49 0.07 

338372 Map3k9 mitogen-activated protein kinase kinase kinase 9 -1.22 0.02 0.90 0.07 -0.55 0.30 

NA Hras1 NA -0.83 0.00 0.42 0.10 -0.14 0.65 

 

1 We transferred naïve KL25HL cells into wt recipients followed by rCl13 infection. 
Total RNA was extracted from spleen and BM on day 3 p.i. and processed for 
expression profiling of 248 inflammation-related genes. The table displays all those 
genes whose expression was significantly altered upon rCl13 infection (absolute log2 
fold change (log2FC) >0.5 and adjusted p value (adj.P.Val) <0.05 when comparing 
gene expression in uninfected animals to rCl13-infected control-treated animals.   
2 The table shows 49 genes significantly up-regulated upon rCl13 infection in spleen. 
These data are displayed in form of a heat map in Fig. 4F. 
3 The table displays 83 genes significantly down-regulated upon rCl13 infection in 
spleen. 
4 The table displays 67 genes significantly up-regulated upon rCl13 infection in BM. 
5 The table displays 34 genes significantly down-regulated upon rCl13 infection in 
BM. 
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6 Gene expression changes as log2 fold-change (log2FC) and adjusted p value 
(adj.P.Val) when comparing uninfected (no virus) and rCl13-infected control-treated 
mice.  
7 Gene expression changes as log2 fold-change (log2FC) and adjusted p value 
(adj.P.Val) when comparing rCL13 infected αIFNAR-treated mice and rCl13-infected 
control-treated mice.  
8 Gene expression changes as log2 fold-change (log2FC) and adjusted p value 
(adj.P.Val) when comparing rCL13 infected αGr-1-treated mice and rCl13-infected 
control-treated mice.  
9 Genes whose expression was significantly altered in αGr-1-treated as compared to 
control-treated animals.  
10 Genes whose expression was significantly altered in both αGr-1-treated and 
αIFNAR-treated as compared to control-treated animals.  
11 Genes whose expression was significantly altered in αIFNAR-treated as compared 
to control-treated animals.  
12 Genes whose expression was not altered by αGr-1 nor αIFNAR treatment as 
compared to control-treated animals.  
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Table SII: Profound impact of IFNAR blockade and, to a more limited but 
largely overlapping extent, of αGr-1 depletion of inflammatory chemokine and 
cytokine responses in serum. 

Chemokine3 

Experimental group1 

ctrl Ab2 αGR-12 ifnar-/- 2 

mean  SEM mean  SEM mean  SEM 

CCL2 3873.73 658.68 3118.46 1460.51 217.61 93.03 

CCL3 226.09 3.47 432.50 34.29 82.84 8.55 

CCL4 770.38 58.54 1257.12 64.58 63.90 31.97 

CCL5 778.74 113.17 535.88 30.32 92.33 4.09 

CCL11 987.74 41.62 891.78 33.50 526.14 52.38 

CXCL1 465.31 117.45 677.78 231.09 95.51 37.41 

CXCL2 231.37 5.84 165.34 24.87 153.95 35.92 

CXCL5 16152.36 830.11 10648.70 1903.08 17578.23 1945.04 

CXCL9 913.28 101.08 430.89 8.83 366.17 39.26 

CXCL10 1173.96 136.86 832.50 36.37 217.87 7.57 

LIF 6.99 0.50 4.60 0.46 1.75 0.20 

       
Cytokine3 

Experimental group1 

ctrl Ab2 αGR-12 ifnar-/- 2 

mean  SEM mean  SEM mean  SEM 

TNF-α 68.29 9.97 7.01 1.59 5.20 3.04 

IFN-γ 20.86 1.55 5.69 2.01 <0.64 N.A. 

IL-1α 293.45 31.74 409.65 121.65 147.44 22.68 

IL1-β 281.69 78.77 50.23 49.91 <0.64 N.A. 

IL-2 16.85 9.45 25.56 14.58 1.16 0.46 

IL-3 26.15 7.11 19.70 14.34 2.00 1.04 

IL-4 25.43 5.47 0.99 0.67 <0.64 N.A. 

IL-5 100.21 9.90 56.80 3.59 8.67 0.71 

IL-6 115.56 30.20 57.10 30.71 6.27 1.08 

IL-7 113.62 26.91 64.80 5.05 28.81 6.73 

IL-9 85.86 35.49 133.78 71.19 18.83 3.52 

IL-10 97.96 24.94 12.65 3.92 1.87 1.55 

IL-12p40 74.39 42.89 182.91 168.07 26.94 3.87 

IL-12p70 515.30 128.33 48.73 17.86 9.53 9.21 

IL-13 85.90 23.17 47.53 13.93 71.33 10.73 

IL-15 443.36 151.27 180.02 27.39 119.71 24.72 

IL-17 31.33 1.91 20.79 4.92 <0.64 N.A. 

G-CSF 6712.20 587.83 19290.09 905.23 606.98 97.00 

GM-CSF 104.69 28.14 82.16 39.27 8.53 8.21 

M-CSF 55.13 27.95 129.93 121.08 12.62 2.91 

VEGF 1.19 0.47 3.72 1.85 <0.64 N.A. 

 
1 We infected mice with rCl13 and collected serum 24 and 72 hours later. 
2 The experimental groups consisted in wt mice, treated with αGr-1 or isotype control 
antibody, and in ifnar-/- mice.  



	 59	

3 Chemokine concentrations (pg/ml) measured at 24 hours and cytokines measured at 
72 hours after infection are displayed. To calculate means and SEM (n=3), individual 
values below detection limits were set to detection limit (0.64 pg/ml). A selection of 
these data is displayed in Fig. 4G. 
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III Discussion 
 

Although B cell immunity in chronic viral infection has long been paid less attention 

than cellular immunity, it gained a lot of interest over the last decade. Indeed, the 

critical role of B cells to support CTLs in the control of persistent viruses is now well 

recognized (22). However, like T cells, B cells have been shown to display 

dysfunctional features in chronic viral infections. While several recent studies have 

allowed to identify and characterize abnormal B cell populations in various persistent 

infectious settings, the mechanisms shaping antiviral B cell responses in chronic viral 

infection remain ill defined (145-158). Moreover, the poor nAb response to chronic 

viral infection represents a long-standing puzzle to immunologists that is still not fully 

resolved (44-47). With few exceptions nAbs remain the only mechanistic correlate of 

protection of most successful vaccine to date and their induction by vaccination 

against persistent viruses such as HIV and HCV remains a major goal of research (33, 

50, 276, 277). The ambivalent role of IFN-I in chronic viral infection is well 

recognized. Several reports have highlighted elevated IFN-I signatures in chronic 

HCV infection, pathogenic SIV infection, and progressing HIV infection (165-170, 

198). Moreover some studies have suggested that altered expression of genes linked 

to IFN-I signaling could have direct negative effects on CD4+ T cell and B cell 

responses in HIV infection (145, 167). However, there is little understanding of how 

IFN-I signaling impacts B cell responses in chronic viral infections.  

This work provides new mechanistic insights on antiviral B cell responses in a 

chronic viral infection model. We demonstrate that high levels of IFN-I induced by 

infection with a persistent strain of LCMV dramatically influence B cell response at 

the onset of chronic infection. IFN-I signaling biased the antiviral B cell response 

towards rapid end-stage plasmablast differentiation at the expense of memory and GC 

B cell formation, thereby leading to decimation of the B cell response. This 

observation represents a first mechanistic link between elevated IFN-I responses and 

B cell dysfunction in a chronic viral infection model. Importantly, intrinsic IFNAR 

signaling on B cells was not necessary for IFN-I driven plasmablast differentiation. 

Rather, IFN-I exerted its effect through signaling on several other cell types including 

T cells, DCs and myeloid cells. IFN-I induced profound modification of the 
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inflammatory milieu, which we propose altered B cell survival and differentiation. 

The observation that TNF-α blockade and IL-10 deficiency led to a partial rescue of 

the B cell response supported this hypothesis. The partial recue also observed when 

transferring KL25HL B cells in mice overexpressing B-cell activation factor (BAFF) 

further indicate that the decimation is the result of a B cell intrinsic process altering B 

cell differentiation and survival. However it does not allow to conclude that the IFN-I 

effects are mediated by alteration of BAFF signaling.  

We report that T cells might contribute to IFN-I mediated B cell decimation and 

previous studies already outlined the deleterious effects that CTLs might exert on B 

cell responses, notably through the CTL-mediated immunopathologic destruction of 

the lymphoid microarchitecture (44). Although these observations might contribute to 

the poor nAb response and delayed GC formation observed in chronic LCMV 

infection, it is less likely to contribute to the IFN-I-driven B cell decimation described 

in the present work. Indeed the very rapid loss of antiviral B cells within three days of 

infection renders it very unlikely that any specific CTL response and the ensuing 

destruction of lymphoid organ microarchitecture might contribute to the phenomenon 

(278). The partial rescue of the B cell response seen in mice lacking IFNAR on T 

cells (cd4-cre x ifnarfl/fl) and in cd8-/- mice suggest that T cells contribute to IFN-I 

sensing at the onset of infection and most likely participate to the IFN-I-induced 

changes in the inflammatory milieu. However, the latter still needs to be specifically 

tested.  

IFN-I has been postulated to bias CD4+ T cell differentiation towards Th1 responses 

at the expense of Tfh in LCMV infection (279). Moreover, neutrophils have been 

shown to reduce humoral response to chronic LCMV infection by suppressing Tfh 

responses (280). Although it cannot be strictly excluded, a role of a lack of Tfh in B 

cell decimation early after chronic LCMV infection as observed in our work remains 

however unlikely since Tfh responses typically require longer than three days to set in 

(281). Moreover depletion of NK cells in our setting did not have an impact on B cell 

decimation. However, whether increased T cell help is beneficial to B cell responses 

is a very interesting and controversial question (282-284). If so, whether cognate T 

cell help is needed or if unspecific T cell help is sufficient, and whether bona fide Tfh 

only can provide help to B cells at the early stage of the response are still open 

questions.  
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The correlation between high antigen load and CTL exhaustion is well recognized and 

it has been postulated that CTL dysfunction is driven by elevated antigen levels in 

chronic LCMV infection (27). The observation that antiretroviral therapy (ART) in 

HIV-infected patients helps preserving B cell function suggests that high antigen load 

might also negatively influence B cell responses in chronic viral infection (147, 150). 

Here we show that B cell decimation at the onset of chronic LMCV infection does not 

correlate with virus load. Indeed, adoptive transfer of KL25HL B cells in neonatal 

carrier mice with persistently elevated viremia did not lead to B cell decimation in the 

early phase of the response. However this observation does not preclude that 

persistently elevated viral load might have an impact on B cell function later in the 

course of infection.  

While several observations such as the identification of abnormal B cell populations 

in several persistent infections, the impact of CTL-mediated immunopathology on B 

cell responses, mutational escape from nAb control and structural properties of viral 

glycoproteins may all contribute to the late and weak nAb response observed in 

chronic viral infection, mechanistic explanations are still lacking (44-47, 146, 157). 

The present work describes a new mechanism that might contributes to the delayed 

GC and nAb responses in chronic LCMV infection. The adoptive transfer of traceable 

virus-specific B cells allowed to unravel mechanisms at the cellular level that are 

likely to apply to the rare endogenous LCMV-specific B cells present at the onset of 

infection. GCs would thus depend on the recruitment of naïve B cells from the bone 

marrow at a later stage of the infection, when IFN-I driven decimation of B cells does 

no longer occur, thereby delaying their formation. Though adoptive transfer 

experiments might represent a relatively artificial approach, oligoclonal and 

polyclonal B cell transfer experiments supported the concept of IFN-I induced B cell 

decimation in a more physiological setting and further reinforce the hypothesis that 

endogenous B cells might be similarly influenced by IFN-I. Moreover, this setup 

showed that not only naïve B cells but also antigen-experienced cells including 

memory B cells and GC B cells were susceptible to IFN-I driven decimation. The 

concept that an established B cell memory population might be lost if activated under 

highly inflammatory and/or elevated IFN-I signaling conditions has important 

implications for vaccination strategies against persistent viral diseases.  
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Although B cell dysfunction in persistent microbial infection is a complex 

phenomenon certainly ruled by more than one mechanism, the work presented here 

describes a new strategy that likely contributes to viral subversion of B cell response 

in chronic LCMV infection. We show that virus-induced IFN-I redirects the antiviral 

B cell response towards short-lived plasmablast differentiation thereby preventing 

memory and GC B cell formation in the early phase of infection. On the one hand, 

driving unsustainable plasmablast differentiation might be a strategy for the virus to 

establish persistence. On the other hand, rapid production of high numbers of ASCs 

might represent an all-in strategy of the host immune system to combat invading 

pathogens in life threatening situations. Elevated numbers of non-HIV-specific 

plasmablasts have been observed in blood of HIV-infected patients and, more 

generally, chronic viral infections have been associated with polyclonal B cell 

activation and hypergammaglobulinemia (136, 143, 144, 152). Moreover autoimmune 

diseases have been associated with HIV and HCV infection (160, 161). IFN-I driven 

decimation of B cells might also represent a mechanism of the host immune system to 

reduce the risk of self-reactive B cell activation and autoantibody formation in a very 

inflammatory context.  

B cell and nAb responses are key components of immune defenses against persistent-

prone viruses (22). Understanding the mechanisms underlying those responses is 

therefore critical to refine treatment and vaccination strategies against chronic viral 

infection. Taken together, our data describe a novel mechanism of immune subversion 

of B cell responses in highly inflammatory conditions. Strategies, such as 

programmed cell death 1 (PD-1) blockade, aiming at restoring T cell function 

represent a promising therapeutic approach against cancer and chronic viral infection 

(285-287). Treatments to preserve B cell function in chronic viral infection might also 

be beneficial and could represent a promising alternative or complementary strategy. 

Our data suggest that one such approach could reside in the modulation of the 

inflammatory milieu at the early stage of chronic viral infection. Several 

immunomodulatory strategies, such as IFN-I, PD-1, IL-10 or TNF-α blockade have 

been shown to ameliorate T cell function and/or viral control in mice (171, 172, 285, 

286, 288, 289). Moreover, several immunomodulatory drugs such as TNF-α blockers 

already exist and are safely used in humans. However the impact of those treatments 

on the B cell response deserves further investigations. Our data suggest that some of 
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the beneficial effects of such treatments might be due to their impact on B cells. 

Taken together, our work suggest that strategies targeting inflammatory mediators 

such as IFN-I, TNF-α or IL-10 could have tremendous impact on B cell responses in 

chronic viral infection and have a great potential in the treatment of such infections. 
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