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Preface 

 To date, the field of learning and memory has gathered an enormous 

amount of data concerning how the memory is acquired, stored, transferred from 

different regions in the brain and retrieved when necessary. Several regions are 

implicated in this process, the hippocampus and frontal cortices being the most 

obvious regions. However, very few advances were made in the understanding of 

the impairments observed in several psychiatric diseases, especially in 

schizophrenia.  

 In my doctoral thesis, I have used chemogenetics, pharmacology and 

animal behaviour to understand which region in the brain orchestrate the deficits 

observed in a mouse model of schizophrenia and which signalling pathway is 

involved in the dysfunction of a particular type of neuron, the parvalbumin-positive 

basket cell. I describe how the impairments are associated with a specific 

problem in a subtype of those interneurons and how it is possible for those 

neurons to be temporarily rescued by pharmacological treatments. Moreover, I 

demonstrate how this mechanism of rescue can be reverted and applied to wild 

type animals and induce the same type of impairments faced by the 

schizophrenic mutants.  

 This work implicates one of the mechanisms by which antipsychotic 

medication work alleviating positive symptoms. It also brings to light which region 

of the brain is involved in the rescue of the impairments and it confirms that the 

dopamine type 2 receptor is intimately involved in the pathogenesis of the 

disease.  
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1.1. Schizophrenia 

 Schizophrenia is a heterogeneous syndrome, which do not present a 

particular and exclusive defining symptom. Traditionally, it is diagnosed by 

exclusion and when the patient presents psychotic phenomena, as hallucinations, 

delusions as well as thought disorder. By definition, the disease presents three 

main symptoms: positive (hallucinations, delusions), negative (anhedonia, social 

withdrawal) and cognitive symptoms (disorganised speech and thought). 

Schizophrenia is a highly heritable disease, with a heritability score of 0.8 (the 

score ranges from 0-1, where 0 indicates that none of the variability between 

people in a study are due to genetic factors, and 1 the opposite) and, affecting 

around 1% of the population worldwide (reviewed in Ross et al., 2006). 

 The term schizophrenia was coined by the Swiss psychiatrist Paul Eugen 

Bleuler in the early twentieth century, substituting the previous term dementia 

praecox coined by the German psychiatrist Emil Kraepelin, in the late nineteenth 

century. The term derives from Greek roots, which can be translated as “splitting 

of the mind”, which Bleuler intended to describe as the four ‘a’s-disturbances of 

association, affect, ambivalence and autistic isolation. With the split of neurology 

and psychiatric, for most of the twentieth century, influenced by the 

psychoanalytic theory, the concentration of studies on the mind ignored the study 

of the brain. In contrast to most of the other psychiatric diseases, schizophrenia 

presents a severe lag in its neurological treatment.  

 The disease typically presents late onset and the abnormal mental 

functions and disturbed behaviour, characteristically appearing in the late second 

and third decades of life. Schizophrenia presents 1% lifetime incidence, 

independent of genre, culture and racial groups (Bromet and Fennig, 1999). 

However, schizophrenic patients tend to be more prevalent in lower 
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socioeconomic strata and in urban areas (Mortensen et al., 1999). Before the 

disease fully develops, individuals present a prodromal phase, which are usually 

attenuated positive, negative and cognitive symptoms. However, it is still elusive 

how a syndrome with high heritability score presents such delay in eliciting 

clinical symptoms. Only recently, initial evidence pointed out to the role of two-hit 

stress component in the development of neuropsychiatric diseases (Giovanoli et 

al., 2013). In this study, the authors provided evidence that infections during 

pregnancy, followed by stress insults during adolescence, gave rise to consistent 

behavioural deficits similar to those observed in model mice for schizophrenia. 

 Structural brain abnormalities have also been documented in patients with 

schizophrenia, such as enlargement of the ventricles and reduced volume of 

cortical grey matter. These changes are, however, restricted to certain structures 

in the brain, especially the prefrontal cortex, and limbic areas, such as the 

hippocampal formation and the anterior cingulate cortex (Figure 1A). Additionally, 

independent groups observed that cell body size and synaptic/dendritic markers 

are decreased in several regions of the hippocampus (Arnold et al., 1995; Zaidel 

et al., 1997; Weinberger, 1999).  

The structural changes in the prefrontal cortex are less robust then the 

ones observed in the hippocampal formation. Studies using both functional 

magnetic resonance imaging and electrophysiological techniques begin to 

elucidate the cellular physiology of the abnormal cortical activation in 

schizophrenia. Patients with schizophrenia present increased noise in prefrontal 

cortical information processing circuits (Figure 1B). Although not conclusive, 

those data suggest that the greater cortical response variability, i.e. noise, would 

be reflected as less focused activity or circuit inefficiency (Callicott et al., 2003). 

Several studies focused on this structure, motivated by the observation that 
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subjects with schizophrenia present poor performance in cognitive tasks. Working 

memory in these patients is particularly impaired, as evidenced by the decreased 

performance in the Wisconsin Card Sort Task (Weinberger et al., 1986). Since 

the cognitive deficits seem to be correlated to the long-term prognosis of the 

disease, the study of the disturbances in the prefrontal cortex is paramount, 

specially due to the lack of efficient treatments for the disease.  

 

A.

B.
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1.2. The 22q11 deletion syndrome 

 The most common human genetic deletion syndrome is the monoallelic 

microdeletion of the chromosome 22q11 (del22q11), affecting  one in 2,000-4,000 

live birth (Jonas et al., 2014). This syndrome is highly variable, but most of the 

defects observed are due to developmental defects of the pharyngeal apparatus. 

During embryogenesis, the pharyngeal arches are symmetrical structures, which 

develop in a segmented fashion, following the anterior-posterior axis of the 

embryo.  In the 22q11 deletion sydrome (22q11DS), approximately 75% of the 

patients present congenital heart defects, thymic hypoplasia, velopharyngeal 

dysfunction (with or without cleft palate), hypocalcemia (due to 

hypoparathyroidism). However, for the sake of this thesis, I will focus on the 

problems in the 22q11DS related to behavioural and psychiatric disorders. 

 The 22q11DS is associated with an elevated risk for several 

neuropsychiatric diseases, especially psychosis. Approximately 25-35% of the 

patients diagnosed with this syndrome develop schizophrenia or other psychotic 

illnesses, making the 22q11DS the highest known risk factor for schizophrenia 

(Jonas et al., 2014). Although schizophrenia appears in much higher frequency 

among 22q11DS relative to other neurogenetic and developmental disorders 

Figure 1 – Structural and functional brain abnormalities in schizophrenia.  
A. Main affected brain regions in schizophrenia. Hippocampal formation and prefrontal 
cortex present decreased markers of synaptic connectivity; dysregulation in 
dopaminergic transmission, especially in the prefrontal cortex. Adapted from Lewis and 
Lieberman, 2000. 
B. Abnormal cortical signal-to-noise pattern in schizophrenia. Increased prefrontal 
response variability, evidenced by eletroencephalogram. Topographic maps of event-
related eletroencephalogram during an auditory oddball task, showing increased noise 
in schizophrenic patients in delta and theta frequency bands. Adapted from Winterer 
and Weinberger, 2004. 
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associated with intellectual disability, one third to half of the children are 

diagnosed with attention-deficit/hyperactivity disorder (ADHD), anxiety and mood 

disorders, and autism spectrum disorders (ASDs).  

 The monoallelic deletion is typically of 3 megabases (Mb; corresponding to 

90% of the patients) or 1.5 Mb (8% of the patients); the typical human deletion 

encompasses 60 genes and the smaller 1.5 Mb deletion, 35 genes (Karayiorgou 

et al., 2010; Figure 2). Of those genes, half (51.1%) are protein-coding and most 

of those genes are expressed in the brain (89.1%; Guna et al., 2015). These 

genes are known to affect early neuronal migration and cortical development 

(Guna et al., 2015). Additionally, 90% of the cases of 22q11DS are de novo, 

whereas 10% of the cases are inherited in an autosomal dominant fashion. De 

novo cases are due to mispairing of low copy repeats (LCRs) during meiosis 

(Emanuel and Shaikh, 2001), which are regions of great instability in the genome 

and particularly enriched in the 22q11 locus (Emanuel and Shaikh, 2001). The 

mouse syntenic region of the human proximal deletion (1.5 Mb deletion) is 

located in the chromosome 16 (MMU 16qA13) and contains 27 of the 30 human 

protein-coding genes; the exception being clathrin heavy chain-like 1 (CLTCL1), 

chromosome 22 open reading frame 29 (C22orf29), and DiGeorge syndrome 

critical region-6-like (DGCR6L).  
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 In the 1.5 Mb region, syntenic with the mouse models for 22q11DS, are 

present important protein-coding genes, thought to be related with schizophrenia. 

Catechol-O-methyltransferase (COMT) is a strong candidate, as it encodes for 

the enzyme necessary for catecholamine degradation and the main genetic 

variant being associated with schizophrenia is functional. COMT exists in a 

soluble and a membrane-bound form, and catalyses the methylation of catechols, 

such as dopamine, norepinephrine, and catecholoestrogens (Myöhänen et al., 

2010). In the brain, the membrane-bound COMT predominates, and in the 

periphery is the soluble form. The brain-enriched form of COMT presents 

increased affinity for catechols, but low capacity, suggesting a role in 

neurotransmission. Although initial studies identified COMT as mainly a glial 

Figure 2 – The 22q11 hemyzygous deletion.  
A, B, C and D are common breakpoints on the chromosome. 	
A. Genes deleted in the 22q11.2 locus. Prodh and COMT, two main genes, are 

highlighted in bold.  
B. The 1.5 Mb deletion, present in the LgDel/+ model, and the 3 Mb deletion, common 

in humans. Adapted from Jonas et al., 2014. 
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enzyme, recent studies suggest that it is expressed primarily in neurons and with 

more abundantly in the prefrontal cortex and hippocampus (Myöhänen et al., 

2010). COMT seems to be implicated in cortical interneuronal monoaminergic 

signalling, especially dopamine (Kimoto et al., 2012).  

 Another important gene in this locus is the DiGeorge syndrome critical 

region 8 (DGCR8) gene, which is a key component of the microprocessor 

complex of microRNA (miRNA) production, encoding for the miRNA-processing 

protein Pasha. MiRNAs are small non-coding RNAs that regulate gene 

expression at the posttranscriptional level through translational inhibition and 

destabilisation of their target mRNA. In brief, miRNAs are originated from primary 

(pri)-miRNAs and this processing is done by the RNAse III Drosha. Drosha is 

insufficient for substrate binding, and Pasha presents a RNA recognition function, 

forming henceforth the microprocessor (Han et al., 2009). Dgcr8 knockouts (KO) 

fail in producing miRNAs in ES cells, resulting in defects in proliferation and 

differentiation, and the KO embryos arrest in the development (Wang et al., 

2007). Importantly, postmortem analysis of brains of schizophrenic patients 

demonstrated altered miRNA expression profiles. Moreover, the 22q11 locus 

presents a high density of miRNAs in which three of the seven miRNAs are 

expressed in the brain (MIR185, MIR1306, MIR1286).  

 Finally, another important gene in the del22q11 is Zdhhc8, a 

palmitoyltransferase. Protein palmitoylation is the addition of the saturated 16-

carbon palmitate lipid at specific cysteine residues by a liable thioester bond and 

has emerged as a key reversible posttranslational protein modification involved in 

the protein trafficking and the regulation of diverse membrane and cytosolic 

proteins, especially in neurons. Recently, it was demonstrated that Zdhhc8 

palmitoylates several important proteins for axonal development, and its 
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deficiency is linked to decreased axonal arborisation and connectivity. Those 

deficits were shown to impair prefrontal-hippocampal synchrony and thus 

disrupting spatial working memory (Mukai et al., 2015). Those results corroborate 

to an understanding that the connectivity deficiency observed in the 22q11DS, 

along with the other problems aforementioned, may be the result of an 

impairment in protein palmitoylation, leading to decreased short- and long-term 

connectivity between neurons.  

 Taken together, the genes of the deleted site of del22q11 are very 

important to the development of the neurons and to control several synaptic and 

cellular events (Figure 3). It was observed that the children with this syndrome 

present a lower intelligence quotient than typical for the ages analysed, and in 

most cases present verbal delay and decreased attention. The attention deficit 

seems to impair other functions, as visual-spatial memory and space navigation, 

and is also important for inhibiting the processing of irrelevant stimuli. Patients 

with the syndrome present deficits in the inhibitory function, observed by pre-

pulse inhibition test (the patient need to suppress the startle after an almost 

imperceptible warning tone before the aversive noise). 
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1.3. Dopaminergic system 

After the discovery of neuroleptic drugs, the focus on the disturbances in 

the brain chemistry related to the disease became the emphasis. The dopamine 

hypothesis of schizophrenia became the main explanation for the disease, which 

was at the time considered impairment in dopamine regulation. The 

psychotomimetic effects of dopamine-releasing drugs and the countering effects 

of anti-psychotic drugs that blocked dopamine D2 receptor helped this hypothesis 

to gain momentum. However, few advances were made in drug development to 

treat the symptoms of schizophrenia, which traditionally can remediate the 

positive symptoms, being inefficient against the other symptoms. When 

compared to haloperidol and chlorpromazine, the recent drugs present fewer 

Figure 3 – Pathogenesis and pathophysiology of 22q11.2DS.  
Decreased dosage of the genes in the 22q11.2DS and their relation with brain function. 
Black arrows represent experimentally determined effects; grey arrows represent 
inferred effects. Genes marked in red have been characterised at molecular, cellular 
and behavioural levels. Genes marked in blue have been characterised only in the 
behavioural level.  
Adapted from Karayiorgou et al., 2010. 
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extrapyramidal side effects, but they fail to be more efficacious and to treat the 

debilitating negative and cognitive symptoms (Dayalu and Chou, 2008). 

Based on the improvements in the positive symptoms by the treatment 

with antipsychotic medications, the dopamine hypothesis of schizophrenia 

became the main explanation for the positive symptoms. For example, 

hallucinations and delusions, with a typical onset in the late adolescence and 

early adulthood, correlate with the hyperactivity of dopamine transmission.  

 The dopaminergic system is mainly localised in the midbrain, where most 

of the neurons are located in the ventral tegmental area and in the substancia 

nigra pars compacta. These neurons send extensive projections to several 

forebrain areas, but especially to the nucleus accumbens and caudate putamen. 

They also project to the hippocampus, amygdala and other cortical areas. 

Dopaminergic functions are traditionally associated with motor control and reward 

system, based on two main observations: the movement impairments observed in 

Parkinson’s disease due to dopamine depletion, and the modulation of 

behavioural responses to motivated stimuli when interfering in the dopaminergic 

signalling. Dopaminergic neurons present a phasic firing pattern that coincides 

with reward presentation, whether predicted or unpredicted. Those neurons work 

during reward-prediction and, by consequence, in associative conditioning. This 

firing pattern is reduced, however, when the event is fully predictable. The 

difference in the expected reward and the present reward gives rise to the 

reward-prediction error, which is essential for reward-driven learning (Cohen et 

al., 2012; Schultz, 2007; 2013).  

 During aversive learning, however, the dopamine firing rate decreases. 

This is due to increased firing rate of inhibitory GABAergic interneurons in the 

ventral tegmental area (Cohen et al., 2012). This body of data suggests that 
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phasic dopaminergic activity is elicited mostly by non-expected rewards and is 

inhibited in aversive stimulus. Some dopaminergic neurons are activated during 

aversive stimulus, although they appear to be a nonspecific responding 

population, as they also fire during reward presentation. However, sustained 

aversive stimuli or stressors increase the number of dopamine neurons firing over 

longer periods of time (Lisman et al., 2011).  

 Alterations in the temporal firing pattern of dopaminergic neurons are 

correlated to information coding. The tonic and phasic firing are respectively 

synonymous of single-spike and burst firing patterns. They are related to 

temporal changes in firing activity, but not to firing patterns. Hence, phasic firing 

can be related to rapid fluctuations in dopamine concentration, which takes place 

in seconds, and tonic, to slow changes that occur in minutes or hours (Marinelli & 

McCutcheon, 2014).  

 The actions of the dopamine are exemplified by its actions on the medium 

spiny neurons of the striatum. Two subtypes of those neurons, expressing two 

different dopamine receptors, are embedded in a network involving distinct types 

of interneurons and are influenced by dopamine signalling. The dopamine 

receptors are found in the dendrites of those cells and can be divided in two 

systems: the D1, direct striatonigral pathway; and the D2, indirect striatopallidal 

pathway. The striatonigral medium spiny neurons present high expression of 

dopamine D1 receptor coupled with a Gs/olf protein, which activates adenylyl 

cyclase. When activated, the levels of cyclic adenosine monophosphate (cAMP) 

are increased, leading to the activation of protein kinase A (PKA). 

 In contrast, the stratopallidal medium spiny neurons present high 

expression of dopamine D2 receptors, which are coupled to a Gi/o protein, thus 

inhibiting adenylyl cyclase via Gαi. The dopamine D2 receptors (D2R) present an 
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extensive list of possible targets, as the remaining Gβγ subunit can stimulate 

phopholipase Cβ, which leads to protein kinase C activation (Beaulieu and 

Gainetdinov, 2011).  

  The D2R are part of the D2-like receptor family and are present in both 

pre- and post-synapse. This receptor can be present in homomers or in 

heteromers with D1R and D5R (Hasbi et al., 2010), D3R (Maggio & Milan, 2010), 

somatostatin SST5 receptor (medium aspiny neurons in striatum and pyramidal 

cells in cortex; Rocheville et al., 2000) and adenosine A2A receptor (in GABAergic 

enkephalinergic neurons of striatum; Ferré et al., 2010). Additionally, this receptor 

presents two alternate splicing isoforms, the short and the long. The two isoforms 

present different roles in the D2R physiology. The long isoform appears to 

modulate the signalling pathways involving PKA, while the short isoform is a 

bonafide autoreceptor, which mediates dopamine synthesis and release, as being 

required for the motor and rewarding effects of cocaine (De Mei et al., 2009; Bello 

et al., 2011).   

 

1.4. Antipsychotic drugs and schizophrenia 

 Typical antipsychotic agents vary in the D2R affinity, being classified as 

high or low potency. Haloperidol, a prototypical high potency typical neuroleptic, 

is still one of the most used antipsychotic drugs in the therapy of patients with 

both acute and chronic schizophrenia. In the clinic is largely used as an acute 

treatment for schizophrenia, for immediate control of patients with psychosis-

related violent behaviour. Haloperidol is extensively metabolised in the liver and it 

presents its peak plasma concentration 20 minutes after administration in healthy 

individuals and 33.8 minutes in patients with schizophrenia and has a long-lasting 

effect, with a half-life of about 20 hours (Kudo & Ishizaki, 1999). 
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 Haloperidol produces rapid effects on locomotion in the rats, being 

catalepsy the most common, which is associated with antagonism of dopamine 

receptors in the forebrain (Campbell et al., 1982). The effects are long-lasting, 

specially due to the fact that haloperidol has a long half-life in the brain of rats (at 

1 mg/kg the half-life is 6.6 days); neuroleptics present favourable distribution in 

the brain, being up to 40 times more concentrated than in the blood (Cohen et al., 

1992). Based on positron emission tomography data, D2R in human brain 

become unoccupied at a rate of approximately 10% per day following a near-

saturating single dose of haloperidol (Cohen et al., 1992). In schizophrenic 

patients, the clinical response of antipsychotic is given when the D2R occupancy 

reaches 65%, and the side-effects (extra-pyramidal side effects) take place when 

the occupancy reaches 78% (Kapur et al., 2000).  

  The actions of haloperidol are not completely understood, although for 

more than sixty years the drug is being used in the treatment of schizophrenia 

and managing aggressiveness of frontotemporal dementia. Haloperidol is known 

to elicit changes in cFos mRNA and protein expression in the caudate-putamen, 

which is supposed to subserve the extra-pyramidal side effects observed during 

haloperidol treatment (Deutch et al., 1996), but not the therapeutic antipsychotic 

effects. Extra-pyramidal side effects are bothersome and often debilitating 

symptoms caused by typical and some atypical antipsychotic drugs. The main 

symptoms in the acute syndrome are dystonia (sustained muscle activity), 

akathisia (restlessness) and parkinsonism (tremors, rigidity, bradykinesia, and 

postural instability) and in the tardive syndrome are tardive dyskinesia (choreic 

movements of the mouth, limbs, trunk and face) and tardive dystonia (Dayalu and 

Chou, 2008). Conversely, the ventral striatum and limbic areas extensively 

innervated by dopaminergic neurons (such as the entorhinal cortex), would be 
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related to the antipsychotic effects. Comparing haloperidol, which presents both 

antipsychotic effect and extra-pyramidal side-effect, with metoclopramide, which 

presents only extra-pyramidal side effects, it was shown activation of caudate-

putamen with both drugs, but cFos increment in the limbic areas only by 

haloperidol treatment (Deutch et al., 1996). 

 Recently, the glutamatergic hypothesis of schizophrenia gained 

momentum, influenced by human studies with the N-methyl-D-aspartate (NMDA) 

receptor antagonist ketamine. Ketamine produces psychotic symptoms and 

negative symptoms, thought disorder and cognitive impairments, consistent with 

the core symptoms of schizophrenia (reviewed in Moghaddam and Krystal, 

2012). The effects of NMDA non-competitive antagonists to impair cognitive 

function in rodents and monkeys have been intensively studied as an animal 

model of the cognitive deficit in schizophrenia and hypoglutamatergic activity has 

been implicated as a major cause of the cognitive impairment in the disease. 

However, to date, no antipsychotic medication was developed based on the 

premise of countering the effects of NMDAR hypofunction in schizophrenia.  

 

1.5. Circuitry associated with the pathogenesis of schizophrenia 

 The firing of dopaminergic cells is modulated by GABAergic inputs from 

the ventral pallidum, which leads to the majority of the dopaminergic neurons be 

silent at baseline. Activation of ventral subicullum, leads to excitation of nucleus 

accumbens, inhibiting the ventral pallidum. The result is reduced inhibition of 

dopaminergic neurons and thereby increased number of tonically firing cells. 

Tonically firing neurons, but not silent neurons, can be driven into a bursting 

mode by stimuli such as those associated with reward (Lisman et al., 2011). 

Thus, the effect of electrical or chemical stimulation in the ventral hippocampus 
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leads to increased extra-synaptic dopamine throughout the nucleus accumbens, 

a principal target of dopaminergic neurons.  

 The hippocampus is consistently implicated in the progression of 

schizophrenia. Imaging studies provided evidence that patients cannot recruit the 

hippocampus during a task (memory recall; Heckers et al., 1998; Weiss et al., 

2003). This study showed that hippocampal baseline activity at rest is increased, 

but not upon recall of the memory. Interestingly, in healthy individuals several 

areas are recruited during the task, such as retrosplenial cortex, 

parahippocampal area and hippocampus. In patients with schizophrenia, only the 

right prefrontal areas are recruited (Heckers et al., 1998). The CA1 field in the 

hippocampus present increased activity at rest in chronic patients with 

schizophrenia, as well as in prodromal patients, and it is directly correlated with 

clinical measures of psychosis (Schobel et al., 2009). Some authors propose the 

hippocampus as the source of the impairment in dopaminergic regulation in 

schizophrenia (Lisman et al., 2008; Lodge and Grace, 2011).  

 Postmortem studies confirm decreased hippocampal volume. In a large 

study about morphological changes in the medial temporal structures, patients 

with chronic schizophrenia presented bilateral reduction in hippocampal volume, 

but not in the amygdala (Nelson et al., 1998; Velakoulis et al., 2006). 

Interestingly, the reduction in volume is specific to grey matter, but not white 

matter, suggesting loss of neurons in the hippocampus (Gur et al., 2000). 

However, in the biggest case study to date, using more than 30,000 patients 

across several countries, did not find a causal relationship between subcortical 

volumes and schizophrenia risk (Franke et al., 2016).  

 In agreement with the findings in humans, a model of schizophrenia in 

rodents uses ventral hippocampus lesions to emulate the disease. Neonatal 
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hippocampal lesions involve ibotenic acid lesions of the ventral hippocampus and 

subicullum, regions that project to the prefrontal cortex (Lipska and Weinberger, 

2000). In this model is observed frontal lobe abnormalities, dopaminergic system 

dysregulation and changes in molecular markers in the prefrontal cortex 

(decreased GAD67 and brain-derived neurotrophic factor mRNAs). In line with 

this model, the methylazoxymethanol (MAM) model present further evidence for 

the involvement of the medial temporal function in the onset of psychosis 

(Modinos et al., 2015). The methylating agent MAM further evidenced the role of 

a hippocampal-midbrain-striatal circuit, ratifying the concept that subcortical 

dopaminergic function is elevated due to the descending medial temporal lobe 

connection (Modinos et al., 2015).  

 Taken collectively, the results shed light on the role of ventral 

hippocampus in the regulation of the dopaminergic system. This regulation does 

not present a direct innervation of the two main structures (from ventral 

hippocampus to ventral tegmental area; Figure 4). The hippocampus is thus 

related to detecting novelty and then engaging the burst firing of cells in the VTA 

(Lodge and Grace, 2005; 2007). According to this model the impairments in the 

hippocampus would lead to the hyper-responsive dopamine system of the 

schizophrenic patients. The main player appears to be a specific type of 

interneuron, the parvalbumin (PV)-positive basket neurons.  
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Figure 4 - Ventral hippocampus regulation of VTA and dopamine neuron 
activation.  
A. The main hypothesis in the field suggest that the control of VTA dopaminergic 

activity is given by a polysynaptic projection from ventral hippocampus to nucleus 
accumbens, which in turn inhibits the ventral pallidum. This structure then inhibits 
VTA. Consequently, activation of vHP leads to increased dopamine neuron activity. 
In schizophrenia, an abnormal increment in activity of vHP leads to increased 
dopaminergic activity. 

B. In the upper part of the panel, in healthy individuals, a number of dopamine 
neurons will be recruited during a given stimulus. In schizophrenia, the same 
stimulus elicit the recruitment of higher numbers of dopaminergic neurons, 
enhancing the dopamine signal. Due to depolarization block action of antipsychotic 
drugs, decreasing the final dopamine signal. 

Adapted from Lodge and Grace, 2011.	
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1.6. Development of interneurons and role in schizophrenia 

 Interneurons are a highly diverse neuronal population, arising from 

structures in the subpallium in the developing telencephalon. They migrate 

tangentially through long distances and in multiple streams, to reach their 

destinations, whether to the neocortex, striatum, olfactory bulb, and to the 

hippocampus. Postmitotic interneurons arise from the ventricular zones of the 

ganglionic eminences; the progenitor pools are the lateral GE (LGE), medial GE 

(MGE), caudal GE (CGE), ventral pre-optic area and the septal anlage of the 

subpallium. After proliferating in the ventricular zones, the postmitotic neurons 

migrate dorsally to the neocortex, ventrolaterally to the striatum, rostrally to the 

olfactory bulb and caudally to the hippocampus (Guo and Anton, 2014).  

 The MGE is the sole site of generation of PV-positive fast-spiking basket 

neurons (Wonders and Anderson, 2006; Guo and Anton, 2014). In the cortex, an 

early stream of interneurons (~E11.5 in the mouse) from the MGE migrate 

dorsolaterally onto the top of the preplate, where many become layer I Cajal-

Retzius neurons (a heterogeneous population of glutamatergic interneurons in 

layer I of neocortex, expressing reelin; Hevner et al., 2003). Those cells are 

important for the secretion of reelin, a glycoprotein involved in the maintenance of 

the radial glia phenotype. Patients with schizophrenia were shown to present 

decreased levels of reelin, in multiple brain regions (Folsom and Fatemi, 2013). 

Additionally, in rodent models, knockdown of reelin in medial prefrontal cortex 

during puberty or adulthood was shown to impair prepulse inhibition (PPI); the 

knockdown during puberty only, lead to impairments in spatial working memory 

and object recognition (Brosda et al., 2011).  

 Later during corticogenesis (~E13-E15), a second and more prominent 

stream of interneurons, mainly from the MGE, rapidly migrates into the neocortex, 
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through the intermediate zone. Those neurons follow a lateral to medial gradient 

to colonise the cortex, with the younger neurons arriving in lateral portions earlier 

than in medial domains (Guo and Anton, 2014). Parvalbumin, somatostatin and 

calbindin positive interneurons arriving from MGE and pre-optical areas show a 

time-dependent, inside-out pattern, similar to projection neurons. CGE-derived 

calretinin-positive interneurons present, however, an outside-in pattern.  

 In the hippocampus, the main source of interneurons to CA3 and CA1 is 

the CGE (Nery et al., 2002; Yozu et al., 2005). The CA1 region receives also 

interneurons derived from the MGE, but the hippocampus lack LGE-derived 

interneurons (Witcherle et al., 2001). To some authors, however, CGE is not 

properly a structure, since it does not present a sulcus separating it from the LGE 

and from MGE; it also presents both markers of MGE and LGE. In the “Large 

Deletion” (LgDel/+) model of 22q11DS it was observed decreased proliferation of 

basal progenitors of pyramidal cells and impaired migration of PV-positive 

interneurons to the cortex (Meechan et al., 2009). According to this study, 

LgDel/+ animals presented decreased number of PV-positive interneurons in 

medial regions (but not lateral) and delayed or impaired interneuronal migration 

(Meechan et al., 2009).  

 Recently, some evidence point to the dispersion of interneurons from the 

MGE to be less coordinated than imagined. The interneurons are generated by 

asymmetric divisions of the progenitors in the ventricular zone of MGE, giving rise 

to other progenitors, in the subventricular zone. Those progenitors undergo rapid 

clonal expansion by symmetric divisions, exiting this region and migrating 

tangentially, and dispersing throughout several structures, irrespective of their 

siblings. Therefore, sibling interneurons can populate neocortex, hippocampus, 

striatum, and globus pallidus (Harwell et al., 2015; Mayer et al., 2015).   
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 Interneurons are responsible for important steps in the development. 

During an extended period postnatally, GABA present a depolarising effect on 

principal neurons (Marchionni et al., 2007). A model of schizophrenia, the 

Disrupted in Schizophrenia 1 (DISC1) knockout mouse, presents decreased 

duration of the depolarising GABA period and consequent decrement of 

AKT/mTOR signalling pathway activation and arborisation of principal neurons 

(Kim et al., 2012). This study sheds light on the convergence of GABAergic 

control during development and the impact on a model of schizophrenia. 

 Postmortem studies on patients with schizophrenia provided the first 

evidence linking PV basket neuron impairment and the disease. In those initial 

studies, decrement in the number of those cells was observed in several regions 

of the brain (Figure 5; reviewed in Lewis, 2014). The mRNA levels of both GAD67 

and PV are decreased in schizophrenic patients (Straub et al., 2007). How those 

observations relate to the pathophysiology of schizophrenia and the 

symptomatology is still elusive.  

 Recent data point to synaptic deficits in the PV basket neurons in 

schizophrenia. It was observed an important relation of schizophrenia and Erbb4, 

a tyrosine kinase receptor expressed majorly in PV basket neurons, which 

mediates the function of neuregulin-1. Neuregulin-1 knockout mice present 

decreased number of functional NMDAR, defective short-term synaptic plasticity 

and long-term potentiation. Behaviourally, the animals also present deficits in PPI 

and hyperactivity (reviewed in Rico and Marin, 2011). Interestingly, specific 

deletion of Erbb4 in PV-positive interneurons present decreased excitatory 

synapses onto them and schizophrenia-related behavioural deficits, especially in 

PPI, and increased gamma-power oscillations in the hippocampus (Del Pino et 

al., 2013).  
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1.7. Regulation of plasticity and learning by PV+ interneurons 

 Hippocampal and cortical interneurons are responsible for the inhibition of 

principal cells and also to other interneurons. Different classes of interneurons 

target distinct compartments in the pyramidal cells, such as proximal or distal 

dendrites, soma and axonal initial segment (Klausberger and Somogyi, 2008). PV 

basket neurons target specifically proximal dendrites and soma of pyramidal cells 

and are involved in feedforward inhibition of the network. Markedly, PV basket 

neurons fire in bursts after the peak of theta oscillations, in almost opposition to 

Figure 5 - Changes in PV basket and pyramidal neurons in schizophrenia. 
It is reported lower levels of GAD67 enzyme and PV in PV basket neurons, alongside 
with decrease in the perineuronal nets (PNNs) and in the heteromeric potassium 
channel Kv2.1/9.3. Pyramidal neurons also present lower levels of GABAAR alpha1 
subunit. 
Adapted from Lewis, 2014. 	
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the activity of pyramidal cells, after the trough of those oscillations (Klausberger 

and Somogyi, 2008). Theta oscillations are present during memory tasks and 

spacial navigation, being important for network synchrony.  

 The action of PV interneurons on pyramidal cells is well described, but 

only recently, unequivocal data correlated activity of the PV network and learning 

(Donato et al., 2013). The findings described in this work demonstrate that direct 

activation or inactivation of PV basket neurons is direct correlated to the outcome 

of learning paradigms. Moreover, this work led to the finding that PV basket 

neurons are organised in subpopulations, defined by their birthdate (Donato et 

al., 2015). More recently, interesting findings from Wolff and colleagues, 

demonstrated that somatostatin-positive neurons are inhibited by PV basket 

neurons during conditioned stimulus presentation (Wolff et al., 2014). These 

findings highlight the function of the PV interneurons as a central player in 

learning.  

 Other interneurons PV basket neurons are targeted by vasoactive 

intestinal polypeptide (VIP) positive interneurons. These interneurons present a 

pivotal role during learning, since they disinhibit the network, by inhibiting both PV 

basket neurons and somatostatin-positive neurons (Pi et al., 2013). VIP 

interneurons are recruited specifically during reinforcement signals and play 

special role in incremental learning (Donato et al., 2013; Pi et al., 2013).  

 Pyramidal neurons are composed of different populations of cells. In the 

hippocampus, the pyramidal cell layer is composed by neurons situated in the 

deep layers and in superficial layers, which present distinct targets and are 

generated in different waves of neurogenesis. Lee and colleagues observed that 

PV basket neurons present preferential connectivity to deeper pyramidal cells in 

CA1 (Lee et al., 2014). They observed that the neurons in this layer receive more 
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inhibitory boutons specifically from PV basket neurons, and that neurons 

projecting to certain areas in the brain are particularly target of PV neurons (Lee 

et al., 2014).  

 Along with the different pyramidal neuron subpopulations, PV basket 

neurons present distinct populations specified during development (Donato et al., 

2015). The cells born during early phases (early-born PV neurons) presented 

higher ratios of excitatory-to-inhibitory synaptic puncta densities, higher levels of 

PV and GAD67, and targeted preferentially deeper cells (Figure 6). Conversely, 

cells born during later phases of development (late-born PV neurons) exhibited 

lower levels of PV and GAD67, higher inhibitory-to-excitatory synaptic puncta 

ratios, and target especially superficial cells (Figure 6). Functionally, those 

neurons also presented distinct roles. Early-born PV neurons were specifically 

plastic during consolidation of validated rules and late-born PV neurons 

presented plasticity during acquisition of new information (Donato et al., 2015). 

Taken together, subpopulations of pyramidal cells and PV neurons are 

differentially involved in learning and in hippocampal functions, possibly being 

recruited specifically during behaviour. 

The early-born subpopulation presents specific roles in the learning 

process. Those cells are engaged during consolidation, which is evidenced by a 

shift towards high PV and GAD67 configuration, increased excitatory puncta 

density and decreased levels of Mef2a, which is a transcription factor that 

regulates negatively synapse number (reviewed in Caroni, 2015a; b). Those 

results are in accordance to the previous view that putative populations of basket 

cells were derived in distinct epochs in the embryo (Ciceri et al., 2013), and 

establishing niches in the developing neocortex. In this extensive work of Oscar 

Marín group, the authors observed that interneurons generated in the MGE would 
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cluster differentially in the deeper or superficial layers, depending whether they 

were early- or late-born, respectively. 

 

  

 

1.8. Aim and rationale of the thesis 

 Deletions of the 22q11.2 locus are the most common genetic deletion 

syndrome in humans and linked to elevated risk for neuropsychiatric diseases. 

Figure 6 - Microcircuits and subpopulations of hippocampal CA1.  
PV basket cells preferentially inhibit specific subpopulations of pyramidal cells. Deep 
cells are targeted by early-born PV neurons and superficial cells are the main targets of 
late-born PV neurons. The latter has its plasticity regulated by changes in inhibition. In 
contrast, plasticity of early-born PV neurons is elicited by changes in excitation. Other 
interneurons, specially VIP interneurons and somatostatin-positive interneurons play 
significant role in learning, but still elusive whether they present differnt subpopulations.
Adapted from Caroni, 2015.	
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The role of GABAergic interneurons, especially PV-positive basket neurons, were 

shown to be affected in patients and in animal models for the disease, and now 

recognised as the core clinical feature of the disorder. In this thesis, I addressed 

how the network of PV-positive basket neuron is affected in the LgDel/+ model. 

The recently discovered pivotal role of PV neurons in learning (Donato et al., 

2013) paved the way to understand how those neurons correlate to the 

disturbances observed in the model. Few advances were made in the 

understanding of how these neurons are related to the behavioural impairments 

observed in the animal models of schizophrenia and how the antipsychotic 

treatments interfere and act in the hippocampal network. Taking advantage of the 

recent discoveries on the PV basket neuron network function and their role in rule 

learning, I investigated the PV network of LgDel/+ animals in naïve animals and 

during hippocampal dependent learning paradigms. This analysis led to the 

observation of an abnormal baseline of the PV network in the LgDel/+ model, 

which presented limited plasticity upon learning. The mechanisms involved in the 

regulation of the PV levels in the LgDel/+ model were addressed, revealing one 

main mechanism that allows the rescue of the PV network and the behaviour of 

the animals, related to excess of D2R activity. The results obtained from the 

above-mentioned experiments are demonstrated in detail in the following 

sections.  
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2. Results 
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2.1. Parvalbumin network in the LgDel/+ model 

 In order to assess whether the impairments observed in schizophrenia are 

in relation to interneuronal dysfunction, I have used a reliable model for 

schizophrenia, the LgDel/+ mouse model. This model presents a hemyzygous 

deletion from the gene Idd to Hira, in a syntenic region of the human 22q11.2 

(MMU16), encompassing 32 genes (described in Long et al., 2006).  

Changes in the PV network configuration reflect plasticity regulated by 

experience in a given system; high PV shifts are related to increased 

consolidation of memories and low PV shifts in increased plasticity. In order to 

understand the fundamental changes in the circuit, hippocampi of LgDel/+ and 

WT animals were analysed for PV staining. The hippocampus of the LgDel/+ 

animals did not present differences in the gross structure and number of PV 

interneurons. However, a decrement in the immunostaining for PV was observed, 

evidenced by an increment in the low PV fraction compared to WT counterparts 

(Figure 7A, B). This increased fraction of low PV in the CA3 is also observed in 

other brain structures, such as the PrL and granular region of retrosplenial cortex 

(RSG; Figure 7C and D). The modified PV baseline in several brain structures 

points to a different plasticity state of the system. Thus, it was important to 

observe how the behaviour of the LgDel/+ animals correlates to the low PV 

baseline. 
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2.2. LgDel/+ animals present impairment in long-term consolidation 

LgDel/+ animals present increment in the low PV fraction in several 

regions observed. Based on the previous findings from the laboratory (Donato et 

al., 2013; 2015), increased low PV is correlated to higher plasticity and enhanced 

performance in the familiar object recognition (FOR) test. In this test, memory of 

the animals is assessed by presenting two identical objects, and in a second 

moment, five minutes or 24 hours later, a novel object replaces one of the objects 

(Figure 8A). In order to assess whether the changes in the PV network were 

correlated to a strengthened memory of the objects, WT and LgDel/+ animals 

Figure 7 – Analysis of the PV network in hippocampus and cortical 
regions of LgDel/+ animals - increment of low PV fraction.	
(A) PV immunoreactivity in hippocampal CA3 of WT and LgDel/+ animals. Scale bar 

50 um. Colour-coded arrowheads indicate PV neurons. 
(B) PV baseline in CA3. Relative contents of PV neurons of WT and LgDel/+ animals. 

n=3 
(C) PV baseline in PrL. Relative contents of PV neurons of WT and LgDel/+ animals. 

n=3 
(D) PV baseline in RSG. Relative contents of PV neurons of WT and LgDel/+ animals. 

n=3 
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were submitted to the FOR test. Importantly, the FOR is a test that does not elicit 

changes in the PV network; therefore, it reflects the intrinsic state of the PV 

network prior to the test (Donato et al., 2013). 

 The LgDel/+ animals present decreased discrimination of the objects, 

when compared to their WT counterparts (Figure 8B). In the first day of the test, 

both WT and LgDel/+ animals present interest to both objects. When a new 

object substitutes the familiar 24 hours later, WT animals present preference for 

the novel object (Figure 8B), while LgDel/+ animals still present no preference to 

either objects. This result points to an abnormal function of the low PV in the 

LgDel/+ animals. It suggests that the increased lower staining profile is not 

related to increased plasticity to the network. Conversely, in WT animals with 

increased low PV baseline, such as those exposed to enriched environment, it is 

observed enhanced discrimination in the FOR test (Donato et al., 2013). 

 In order to understand whether the decreased discrimination of familiar 

and novel objects are related to changes in consolidation of memories in the 

LgDel/+ mutants, short-term memory was assessed by testing the animals after 

five minutes from the acquisition phase. Both WT and LgDel/+ animals presented 

similar behaviour, represented by discrimination of the objects and increased time 

spent investigating the novel object (Figure 8C). This result suggests that LgDel/+ 

animals present decreased consolidation of memories after one day. Since 

consolidation and PV network plasticity are closely related (Donato et al., 2013), I 

aimed to understand whether this specific correlation is impaired in the model of 

schizophrenia. Changes in consolidation in schizophrenia have been reported 

and are supposed to be related to hippocampal impairments (Genzel et al., 

2015).  
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 To investigate the high-PV induction in the LgDel/+ model, I performed 

contextual fear conditioning, in order to assess the role of hippocampus. 

Contextual fear conditioning (cFC) is a Pavlovian type of learning, which an 

otherwise harmless conditioned stimulus (context) is paired with noxious 

unconditional stimuli, i.e. five consecutive footshocks (reviewed in Tovote et al., 

2015). Re-exposure to the same context elicits freezing in mice. Previously, 

Donato and collaborators observed that cFC evokes plasticity in the PV network, 

inducing a shift to high PV configuration (Donato et al., 2013). I observed that 

after cFC, LgDel/+ animals present freezing to the context in the recall 24 hours 

post-acquisition (Figure 8E), consistent with previous reports (Long et al., 2006). 

Although, the LgDel/+ animals do not present uniform behaviour in the group, 

statistical analysis based on the amount of time spent on freezing indicates no 

difference in comparison to WT animals. However, I observed no change in the 

PV network of those animals, suggesting two possible scenarios (Figure 8G). In 

the first, cFC evokes a transient change in the network, eliciting changes in the 

behaviour, although it is not sufficient to induce changes in the PV network. In 

this case, the animal would have an inconsistent behaviour in the following days, 

since it did not induce long-lasting plasticity required for consolidation, which is a 

PV-positive basket cell dependant event. In a second scenario, sensory stimuli 

coming from the periphery fail to induce proper response in the LgDel/+ model. 

This case, however, seems improbable, since the animals freeze to the context in 

the recall session.  

Donato and collaborators provided strong evidence that both low and high 

PV fractions can be co-induced, when animals are either trained in Morris water 

maze (which in the first days induce low-PV fraction in the hippocampus) and 

followed by cFC (inducing high PV); and also by enriched environment (low-PV 
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configuration induced) followed by cFC (high-PV configuration induced; Donato et 

al., 2015). However, the LgDel/+ model case is denoted lack of plasticity to high-

PV configuration upon cFC.  

 In WT animals, cFC produce long-lasting and consistent fear to the 

specific context, which can last for weeks and months, in rodents. To understand 

whether the plasticity induced by cFC is transient or long-lasting in the LgDel/+ 

model, the long term memory needed to be assessed. I tested the conditioned 

animals one week after the acquisition and observed WT animals freeze to the 

context, indicating that the memory persists. In LgDel/+ animals, the freezing 

behaviour towards the context is decreased in comparison to WT animals, 

suggesting a role of the lack of high PV induction after acquisition (Figure 8F). In 

order to observe changes in the PV network, the perfusion of the animals was 

performed 24 hours after the recall session.   

 Taken together, this data suggest that specifically long-term consolidation 

is impaired in LgDel/+ animals. One of the main players in this process is the PV 

network, and one of the hallmarks of the engagement of this circuitry is the shift 

towards high PV. Recently, it was observed that certain subpopulations of PV 

basket cells present distinct functions and connectivity (Ciceri et al., 2013; Donato 

et al., 2015). The cells generated during distinct time-points in the 

embryogenesis, present specific placement in the cortical layers and in the 

hippocampal strata. The specific subtypes of cells are related to excitation- or 

inhibition-driven learning. 
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Figure 8 – Analysis of behaviour of LgDel/+ animals - impairment in long-
term consolidation and high PV network shift. 
(A) Scheme of behavioural paradigm of FOR. 
(B) Decreased long-term memory in LgDel/+ animals. p<0.05; n=5. 
(C) Short-term memory not impaired in LgDel/+ animals. n=4. 
(D) Scheme of behavioural paradigm of cFC. 
(E) Freezing behaviour 24 hours after acquisition. n=4 and n=3. 
(F) Freezing behaviour 7 days after acquisition. p<0.05; n=3. 
(G) PV shift in WT animals upon cFC, 24h post-acquisition (24h); and, 7 days post 

acquisition, 1 day post-recall (8d). CA3 of LgDel/+ animals fail to induce high PV 
shift. n=3. 

Error bars represent ±SEM. p values were calculated using t-test.	
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2.3. LgDel/+ animals present impairments in early-born PV-positive basket 

cell subpopulation 

 The two subpopulations characterised previously in the lab (Donato et al., 

2015) are consisted of an early-born, excitation-driven population, and a late-

born, inhibition-driven population. The two subpopulation express similar markers 

of PV-positive basket cells, although their baseline level vary; they also present 

different targets, not only in hippocampal CA3, but putatively in other areas of the 

brain (Donato et al., 2013; Caroni, 2015).  

 In order to understand the changes observed in cFC in the LgDel/+ model, 

I traced cells born in two different ages, E11.5 and E13.5. As demonstrated 

previously, the early- and late-born subpopulations are majorly formed in those 

two ages. In order to allow unambiguous labelling of proliferating cells, the mitotic 

marker 5-bromo-2’-deoxyuridine (BrdU), an analogue of the nucleotide thymidine, 

was injected in timed-pregnant females. I found that the subpopulations targeted 

during the definite timepoints present abnormal increment of low-PV cells in the 

adult (Figure 9). Nonetheless, I observed that the PV cells produced during the 

late-born period although also enriched in low-PV cells, present similar pattern of 

WT animals (Figure 9).  

 Early-born PV cells are fundamental for several functions in the network, 

and were shown to be specifically regulated by cFC learning (Donato et al., 

2015). The increment in the low PV fraction of LgDel/+ animals, which does not 

present the same functions of low PV cells of WT animals, therefore, possibly is 

related to this abnormal formation in the early-born period. Based on this result, it 

is important to understand whether excitation driven directly in the PV cells is able 

to induce a shift in the early-born PV cells.  
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2.4. Chemogenetic activation of PV cells fails to induce high PV shift in 

LgDel/+ animals 

 Early-born PV cells are key players in the process of rule consolidation 

(Donato et al., 2015; Caroni, 2015). According to these findings, early-born PV 

cells receive several different inputs arriving from either excitatory or inhibitory 

synapses. However, only excitation is able to drive the shift towards high PV in 

early-born cells. Conversely, only increment in inhibition can modulate the shift to 

low PV in late-born cells. The monosynaptic system of DG-CA3 represents a 

clear system of activation of PV cells, where granule cells innervate specifically 

CA3 pyramidal cells via mossy fibre terminals and interneurons in CA3 via 

filopodia. In order to understand the impairment in the shift to high PV in cFC, 

LgDel/+ animals were crossed with pro-opiomelanocortin-alpha (POMC)-Cre 

Figure 9 – Analysis of the developmental schedule of neurogenesis in the 
LgDel/+ model- baseline of PV levels in the adult reflects increased low PV 
generation in both analysed birth-dates. 
Relationship between schedule of neurogenesis (BrdU labelling time) and PV levels in 
adult dCA3 of LgDel/+ and WT animals.	
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animals. The mouse Pomc promoter drives expression of cre primarily in the 

granule cells of the dentate gyrus subregion of the hippocampus. It was injected 

floxed pharmacologically selective actuator module (PSAM) carrying AAV9 

bilaterally in dorsal DG. In virus-transduced granule cells, chemogenetic 

activation by the ligand, pharmacologically selective effector molecule (PSEM), 

delivery was sufficient to induce high PV shift in CA3 of WT animals. In LgDel/+ 

animals, however, no induction was observed (Figure 10B). 

 Given that the main input of PV cells in the CA3 is unable to elicit changes 

in the PV network of LgDel/+, I aimed to understand whether direct activation of 

those cells would evoke changes in the levels of PV. Therefore, LgDel/+ animals 

were crossed with PV-Cre animals. Floxed PSAM carrying AAV9 was injected 

bilaterally in dorsal CA3, and ligand delivery was sufficient to induce high PV shift 

in WT animals. As previously shown, PV neuron activation is sufficient to induce 

high-PV network configuration (Donato et al., 2013). In LgDel/+ animals, 

however, no induction was observed (Figure 10D). This result highlights the 

impairment in the shift to high PV in the PV cells of LgDel/+ animals. 

Chemogenetic activation via ligand delivery is sufficient to depolarise the 

transduced cell, and it is coincidental with a shift towards high PV in WT PV cells. 

Some mechanism triggering the PV shift may be either missing or dysregulated in 

PV cells of LgDel/+ animals.  
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2.5. Chemogenetic activation of cAMP-PKA signalling pathway induces 

high PV shift in LgDel/+ model 

As discussed previously, some genes deleted in the 22q11 region are 

related to catecholaminergic activity, such as COMT. I aimed to understand 

whether the activity of one of the main pathways involved in the regulation of 

Figure 10 - LgDel/+ hippocampal CA3 PV network fail to induce high PV 
upon chemogenetic activation – analysis of indirect or direct PV activation 
denotes impairment in high PV shift. 	
(A) Scheme of injection of PSAM virus in dDG of POMC-Cre WT and LgDel/+ model.  
(B) Induction of high PV in WT hippocampal CA3, but not in LgDel/+ animals. n=3. 
(C) Scheme of injection of PSAM virus in dCA3 of PV-Cre WT and LgDel/+ model. 
(D) Induction of high PV in WT hippocampal CA3, but not in LgDel/+ animals. n=3. 
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dopaminergic activity, the G-protein-cAMP signalling is involved in the 

impairments observed. 

 The cAMP signalling pathway is a target of several neurotransmitter 

actions, including metabotropic activity of glutamate, GABA, and especially 

dopamine. Dopamine receptors lead to either activation of adenylyl-cyclase (via 

activation of D1R) or inhibition (via activation of D2R). When the [cAMP] is 

increased via inhibition of the main enzyme responsible for its degradation, the 

phosphodiesterase-4 (PDE-4), I observed a shift to high-PV in the PV network of 

WT animals (Figure 11A). However, in LgDel/+ animals, the PDE-4 inhibition 

does not elicit shift to high PV network. This result suggests that the levels of 

adenylyl-cyclase are constitutively low and the inhibition of PDE-4 does not 

facilitate the increment of [cAMP]. 

 Given that a pharmacological intervention in the hippocampus can elicit 

changes primarily in other cells, and what I observed could be solely an indirect 

consequence of cAMP signalling modulation in other cells, I aimed to regulate 

cAMP signalling only in PV neurons. Floxed Gs-DREADD carrying AAV8 was 

injected bilaterally in ventral CA3. Upon activation of the designer receptor with 

clozapine-N-oxide, I observed increased high PV levels in PV cells of both WT 

and LgDel/+ animals (Figure 11C). This result highlights the notion that the cAMP 

signalling is pivotal for the activity of PV neurons and that it constitutes one, if not 

the main, pathway that is impaired in the LgDel/+ model. This result suggests that 

the activity of the G-protein or its activation is impaired in the LgDel/+ model and 

it fails to recruit the increment in the activity of adenylyl-cyclase. When provided 

with DREADDs, activation of this receptors and its signalling cascade is sufficient 

to induce increment in the high PV.  

  



	

 47	

 

2.6. D2R inhibitor haloperidol rescues PV network in LgDel/+ animals 

 Schizophrenia is long associated to changes in the concentration and 

activity of D2R, one of the main players in the regulation of cAMP signalling. In 

face of the results obtained in the activation of this pathway and the induction of 

high PV in the network of LgDel/+ animals, the regulatory mechanisms of [cAMP] 

became important to be investigated. Neuroleptics, a class of drugs that act in the 

regulation of D2R, were used in the LgDel/+ animals.  

 In order to understand how the D2R activity is putatively involved in the 

maintenance of low PV in the LgDel/+ model, I delivered a single dose of 

haloperidol intraperitoneally in WT and LgDel/+ animals. A fast and reversible 

normalisation of the PV network of LgDel/+ animals was observed upon 

haloperidol treatment (Figure 10A). Conversely, the PV network in the WT 

presented an increment in the low-PV fraction. Additionally, I found a time-

dependant effect of haloperidol. The PV normalisation appears after six hours of 

Figure 11 – Analysis of cAMP signalling activity in the LgDel/+ – 
chemogenetic activation of cAMP evokes high PV shift in the LgDel/+.	
(A) PDE-4 inactivation induces high PV shift in WT hippocampal CA3, but not in 

LgDel/+ animals. n=3. 
(B) Scheme of injection of DREADD Gs virus in dCA3 of PV-Cre WT and LgDel/+ 

model. 
(C) Chemogenetic activation of cAMP signalling pathway leads to shift to high PV in 

transduced cells in both WT and LgDel/+ animals. n=3. 
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the delivery, maintaining its effect at 24 hours; after 48 hours of the treatment, the 

PV network returns to its baseline in the LgDel/+ model (Figure 12A). 

 Haloperidol presents several side effects when used chronically, 

extrapyramidal side effects being the most common and impairing problems. In 

order to understand whether acute and chronically delivered haloperidol is 

capable of eliciting changes in the PV network, I implanted matrix-driven delivery 

pellets of haloperidol subcutaneously in LgDel/+ mice. I observed that chronic 

delivery of haloperidol is efficient in eliciting changes in the PV network (Figure 

12A), suggesting that the active effect of haloperidol has a direct impact on the 

PV levels. It also further suggests that PV network is probably related to positive 

symptoms of the disease, since chronic use of haloperidol is efficient in alleviating 

only those symptoms. However, this kind of delivery presented several side 

effects on the mice, the most obvious being the increased weight gain.   

 Taken together, these data suggest that the antipsychotic drug, 

haloperidol, can regulate the PV network. Since haloperidol is involved in 

alleviating the positive symptoms, it could act via the normalisation of the PV 

network. Since it is not possible to infer this through any possible experiment on 

rodents, I used ketamine, which in human produce all the three core symptoms of 

schizophrenia. Ketamine was injected in WT animals in sub anaesthetic doses 

and it was observed increased low-PV fraction in the hippocampus; when the 

animals were submitted to haloperidol treatment, the PV network was again 

normalised (Figure 12B). Additionally, I have observed that the NMDA antagonist 

induced motility, observed in the open field, is reverted by the D2R antagonist. 

This data ratify the notion that the remediation of the positive symptoms possibly 

works via normalisation of the PV network. 
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2.7. Local and long-range effect of haloperidol rescue 

 In order to understand whether the effect observed in the hippocampus is 

specific or general to other areas of the brain, I locally injected haloperidol in the 

CA3, unilaterally. Haloperidol acts in the hippocampus locally, since the effect of 

the rescue is only in the CA3 of the injected side; the saline treated contralateral 

side was unaffected by the action of haloperidol (Figure 11B). This result highlight 

the specificity of haloperidol in rescuing the PV network, and that although other 

mechanisms may influence this effect, the drug per se can act on the PV network 

locally.  

 The hippocampus is one of the brain structures implicated in the changes 

observed in schizophrenia, especially the volume of CA1 and subicullum and 

activation of pyramidal cells. The prefrontal cortices are closely related to both 

Figure 12 – Analysis of PV network upon haloperidol treatment – D2R 
antagonist-mediated rescue in LgDel/+ and ketamine schizophrenia 
models.	
(A) Time-dependent haloperidol rescue of PV network in LgDel/+ animals. Effect of 

rescue is reverted after 48 h.  
(B) NMDAR antagonist ketamine induces low PV configuration in dCA3 of WT animals. 

D2R antagonist rescues PV network to baseline levels. n=3.  
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positive and cognitive symptoms of schizophrenia. Since this structure is densely 

innervated by dopaminergic inputs coming from the VTA, I performed injections 

specifically to this area.  

 I observed that bilateral injections of haloperidol in the prelimbic cortex 

(one subdivision of the prefrontal cortex), was sufficient to rescue the PV network 

locally, but most interestingly, it normalised the hippocampal PV network (Figure 

11D). The data suggest that the prefrontal cortex presents an important role in 

the maintenance of the low PV profile observed in the hippocampus. This 

indicates that once a normal PV network level in the prelimbic cortex is re-

established, it is sufficient to elicit an effect on other areas of the brain.  
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2.8. Haloperidol-induced PV network rescue improves learning and memory 

deficits 

 One of the main findings concerning the impairments on the LgDel/+ 

model is the lack of induction of high PV upon learning. Previous works presented 

no deficit in learning (Long et al., 2006), since after cFC, LgDel/+ animals present 

freezing upon context presentation. My findings indicate a particular problem in 

long-term retention of the memory and lack of induction of high PV in the 

hippocampus in this model for schizophrenia.  

Figure 13 – Analysis of the haloperidol-promoted rescue in local or remote 
circuitries – PrL as the main regulatory structure for the PV network 
rescue.	
(A) Scheme of injection of haloperidol (blue) and saline (green) in dorsal CA3. 
(B) Haloperidol-mediated rescue in injected side, but not in contralateral side. n=3. 
(C) Scheme of injection of haloperidol (blue) in PrL.  
(D) PV network rescue in dCA3 by systemic or PrL injection. n=3. 
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 Based on the results demonstrating rescue of the PV levels to similar 

levels of a WT baseline upon haloperidol treatment, I have treated LgDel/+ 

animals with this drug before the acquisition phase. In order to understand how 

the normalisation of the PV network prior to the test would influence memory, I 

treated LgDel/+ animals with haloperidol six hours before cFC acquisition and 

exposed them to a recall session seven days after. Six hours after the treatment 

is the minimum and sufficient time to induce PV level modulation in both WT and 

LgDel/+ animals. Importantly, after six hours of the treatment, the effects on 

motility are absent and, in the dosage used, other active effects are neglectable 

(Aguilar et al., 1994). Upon this treatment, I have observed an increment in the 

memory, as the animals freeze longer to the context, compared to saline controls 

(Figure 14A). Moreover, cFC induced high PV after the rescue of the baseline of 

PV levels in the LgDel/+ animals by haloperidol (Figure 14D). Haloperidol 

treatment also rescued the memory in the FOR (Figure 14B), as the LgDel/+ 

animals pre-treated with the D2R antagonist presented improved discrimination. 

 Rule consolidation is intimately related to the function of early-born PV 

cells (Donato et al., 2015). In order to understand whether the rescue observed 

by haloperidol treatment was specifically or generally targeting the 

subpopulations of PV cells, I have injected BrdU at E11.5 and treated the animals 

when they reached the age of P60. I have observed that the D2R antagonist 

rescues the early-born PV cells, inducing shift high PV mainly in this 

subpopulation (Figure 14C).  

 Since I previously demonstrated that the prefrontal cortex is the main hub 

for PV levels regulation in the LgDel/+ mouse, I next asked how the rescue in this 

region influences learning and memory mechanisms in those animals. I injected 

haloperidol either in PrL, in vHP, or intraperitoneally. Through this method, small 
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differences raised from the action of haloperidol in the distinct regions of the brain 

(or in all of them at the same time, in the case of intraperitoneal delivery) are 

observed. Animals were injected six hours prior to acquisition with D2R 

antagonist and five footshocks were delivered. It was observed that the animals 

that received the injection in the PrL presented the highest levels of PV staining in 

the vCA3, compared to the animals, which were injected in vHP (Figure 14D). 

This result corroborates the idea that the PrL is the main regulatory centre of high 

PV induction in the LgDel/+ model. 

 In order to understand whether the induction of the high PV is a bona fide 

consolidation event and if the network is being recruited, I checked the activation 

of the early-gene cFos. cFos activation is correlated to the recruitment of a 

particular region upon a task and is a marker of activated neurons. It was 

observed that in the vCA1 region of LgDel/+ animals, at baseline in unconditioned 

animals, an increased percentage of cFos+/NeuN+ is present in comparison to 

WT counterparts. By haloperidol treatment, vCA1 does not present increment in 

the cFos+ cells; which further indicates that after six hours haloperidol is no longer 

active, since previous reports demonstrate that D2R antagonists elicit increment 

in the number of cFos+ cells. Upon cFC, vCA1 of saline injected LgDel/+ animals 

present no change in cFos+/NeuN+ cells. However, the pre-treatment with 

haloperidol locally elicit induction of cFos in the region, comparable to the 

induction observed in WT animals upon cFC (Figure 14E; F).  

 Taken together, the results present an important role for PrL in the 

regulation of the PV network, both locally and especially in the hippocampus. The 

early-born PV cells were specifically rescued by the D2R antagonist, suggesting 

that high PV shift is impaired due to impairments in this subpopulation. The 

results also shed new light on the reduced activation of the hippocampal 
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microcircuit in the LgDel/+ animals, which is reverted when previously treated 

with D2R antagonist. Additionally, PV network rescue in the PrL facilitates 

consolidation and high PV induction in the vHP. However, very little is known 

about the role of D2R activation in the outcome of the impairments observed 

here. 
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Figure 14 - Rescue of early-born subpopulation by haloperidol and effect 
on behaviour – analysis denoted high PV and cFos induction. 
(A) Freezing behaviour during recall, 7 days after cFC acquisition. Haloperidol was 

injected 6 h before acquisition of cFC. p<0.05; n=3. 
(B) Long-term memory in FOR rescued in LgDel/+ treated prior to acquisition with 

haloperidol. p<0.05. n=5 WT; n=3 others. 
(C) Early-born subpopulation is rescued by haloperidol treatment in LgDel/+ model. 

General population and E11.5 population of LgDel/+ animals. n=2. 
(D) PV network of haloperidol-treated LgDel/+ animals 24 h after acquisition. n=5 PrL; 

n=3 others. 
(E) cFos immunoreactivity 90 min after acquisition of cFC. Scale bar 50 um. 
(F) Increased number of cFos-positive cells in the neuronal population after cFC in WT; 

failure of cFos increase upon acquisition in LgDel/+ model. Rescue of induction of 
cFos with haloperidol pre-treatment. * p<0.05; ** p<0.001. n=4 LgDel/+ Ctrl and 
LgDel/+ cFC; n=3 others. 

Error bars represent ±SEM. p values were calculated using t-test or one-way ANOVA.
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2.9. D2R activation impairs learning and high-PV shift in WT animals 

 My previous results suggest an important role for D2R activity in the 

pathogenesis of this schizophrenia model. In order to understand whether 

activation of the D2R is an important step in the impairments observed, I injected 

an agonist of D2R, quinpirole, in the vCA3 of WT animals. The activation of the 

receptor in naïve animals leads to no significant effect on behaviour or in the PV 

network (Figure 15A). It is possible to conclude that D2R activity per se does not 

influence shifts in either low- or high-PV. Since most of the impairments observed 

were related to lack of plasticity of the network during behavioural paradigms, as 

exemplified by cFC, I injected quinpirole six hours before acquisition in WT 

animals, mimicking the state of the network of the LgDel/+ model in the activation 

of D2R. In this case, the WT animals presented decreased freezing upon recall of 

the memory and an anomalous increment in low-PV, in contrast to saline injected 

animals (which presented increased high-PV; Figure 15A, B).  

 In order to understand whether the high-PV shift is impaired upon D2R 

activation, I injected floxed PSAM carrying AAV9 bilaterally in dorsal CA3, and 

ligand delivery was sufficient to induce high PV shift in WT animals. However, in 

animals pre-treated with the D2R agonist, low-PV was induced (Figure 15C). This 

result corroborates to a modulation of PV levels by D2R activity, indicating that 

the levels of PV labelling in the LgDel/+ animals are in part due to the action of 

D2R. The presence of the agonist of D2R is innocuous in naïve animals, it 

suggests that some other factors play a role in the low state of the PV network. 

Yet, the shift to high PV is specifically impaired by the activity of the receptor.  

 One hypothesis of action of D2R is that high PV shift dependent tasks are 

impaired by D2R activity. To test this hypothesis, WT animals were injected with 

quinpirole or saline six hours before the FOR test in the ventral CA3, and no 
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difference was observed in the discrimination of the familiar object in the animals 

treated with D2R agonist prior to acquisition (Figure 15D). This result suggests 

that D2R activity impairs tasks that are dependent on PV shifts. Additionally, D2R 

activation does not impair cFos increment elicited by cFC (Figure 15E). This 

result suggests that the main effect of D2R is related to the PV network activity in 

high-PV dependent tasks.  

Figure 15 - Effect of D2R signalling in the PV network of WT animals. 
(A) PV network of CA3. D2R agonist injection in naive WT does not elicit changes. 

Injection 6 h prior to acquisition of cFC induce increase in low PV. 
(B) Freezing behaviour 24 h after acquisition of cFC. p<0.05. n=3. 
(C) PV network of CA3. D2R activity prevents increase in high PV of PSAM infected 

WT PV-Cre treated with PSEM.  
(D) D2R activity does not impair FOR. n=3. 
(E) D2R activity does not interfere in cFC induced cFos increment.  
Error bars represent ±SEM. p values were calculated using t-test.	
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3. Discussion 
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The results presented in this thesis shed light on important mechanisms 

underlying dysfunctions observed in schizophrenia, especially concerning 

impairments in memory consolidation and hippocampal function (Figure 16). My 

work provides evidence supporting the involvement of the abnormal PV network 

of LgDel/+ animals in the behavioural dysfunctions observed, elucidating the 

mechanism involving both D2R activity and NMDAR function and that the early-

born subpopulation is impaired in the LgDel/+ model. Moreover, I show that 

prelimbic cortex is an important hub for the regulation of the PV network remotely, 

as the rescue of this structure also leads to rescue in other regions of the brain. 

Finally, my results demonstrate that once the PV network is rescued to a 

baseline, the animals can learn and consolidate the memory. Taken together, the 

data provided in this thesis corroborates the three main hypothesis of 

schizophrenia, as I showed that the PV network is a main player in the 

impairments observed (GABAergic hypothesis), the early-born PV cells are the 

subpopulation affected (glutamatergic hypothesis), and the D2R activity propitiate 

the low level of the PV network and the learning impairments.  

 The association of interneuronal network dysfunctions and schizophrenia 

spreads for more than four decades, first observed in schizophrenic patients with 

reduced concentration of GABA and activity of GAD (reviewed in Nakazawa et 

al., 2012). However, very little is known about the direct activity of D2R on 

interneurons, or whether they express this receptor. In my approach, I provided 

evidence for an abnormal resting baseline of PV network in the LgDel/+ animals, 

which is modulated by D2R activity. Therefore, my results point to a regulation 

through this receptor, but whether this is a direct action in basket cells or 

indirectly via the activity on pyramidal or granule cells is not addressed here. 

Nonetheless, the results suggest that the low PV network baseline across 
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different regions of the brain are linked to the main behavioural impairments 

observed in the model. I demonstrate that the PV network, once rescued in the 

LgDel/+ animals, present similar functions of the WT animals. An important 

observation was that the deletion is sufficient to disturb the high PV shift in the PV 

basket neurons, even when those cells were specifically infected, expressed the 

chemogenetic PSAM receptor, and the receptor was activated. This result is 

contrary to what takes place in the WT cells, where the activation by the 

otherwise inert ligand induces consistent increase in PV immunostaining.  

 These experiments also support the notion that the PV basket neuron is a 

central player in schizophrenia. In hippocampal dependent tasks, I observed that 

LgDel/+ animals perform poorly compared to their WT counterparts. Donato and 

collaborators provided evidence that PV basket neurons are intimately related to 

learning processes (Donato et al., 2013). Here, I provided evidence that the 

abnormal PV network baseline of the model is related to the impairments in 

hippocampal learning. My results indicate that upon antipsychotic treatment, most 

of the impairments are normalised. In this sense, my work is pioneer in showing 

the link between the beneficial effects of an antipsychotic drug and the rescue of 

the PV network, and subsequent improvement in behaviour.  

 The impairments observed in the LgDel/+ animals are the result of the 

hemyzygous deletion of 32 genes in the MMU16, a syntenic region of the 

22q11.2. My results show that to most behavioural paradigms and to the PV 

network, the blockade of D2R activity is sufficient for their functional rescue. This 

result suggests that most of the impairments observed in this specific model are 

the result of dopaminergic signalling imbalance. This imbalance can be better 

understood when observing one of the main sites of dopaminergic activity, the 

prefrontal cortex. My results strongly suggest the prefrontal cortex as a main hub 
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for the effects observed in the hippocampus. Application of haloperidol in the PrL 

not only rescued the PV network locally, but also in the hippocampus and other 

areas. In the prefrontal cortex, dopamine exerts a predominantly inhibitory effect, 

decreasing the spontaneous firing of single pyramidal cells recorded 

extracellularly in vivo. Accordingly, D2R agonists were more effective than D1R 

agonists in replicating the dopamine-mediated inhibition of spontaneous firing 

(Thierry et al., 1998). In addition, the enhanced dopaminergic activity in 

schizophrenia may explain a possible inhibition of prefrontal cortex, which leads 

to a PV network baseline different from healthy individuals. In this case, prefrontal 

cortex would provide a top-down effect on other areas of the brain, in particular, 

the hippocampus.  

 The hippocampus in schizophrenia is markedly disrupted. Several groups 

provided evidence that the gross anatomy of regions in the hippocampus are 

decreased, cell size is decreased and functional imaging provided clues that 

activity is paradoxically enhanced at rest (but not upon testing; Schobel et al., 

2009). The connection between prefrontal cortex and hippocampus is not direct. 

Two possible routes are thorough thalamus (via nucleus reuniens) or via 

connection to perirhinal and lateral entorhinal cortices. From the hippocampus, 

there are specific projections from the ventral hippocampus to the prefrontal 

cortex (reviewed in Preston and Eichenbaum, 2013). Therefore, the rescue in the 

hippocampus promoted by haloperidol injections in the PrL is probably an indirect 

effect from the rescue in the frontal structure. In this scenario, I hypothesise that 

the excess of D2R activity in the prefrontal cortex decreases the firing rate of 

pyramidal cells in this brain area and consequently, the connection to the 

aforementioned areas. Therefore, perirhinal and lateral entorhinal cortices receive 

less of any given information coming from the prefrontal cortex. This in turn would 
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lead to less activation of those areas that project to hippocampus. Interestingly, 

this would be involved in what some authors call the “what” stream (in contrast to 

a “where” stream, defined by the connection from parahippocampal and medial 

entorhinal cortices to the hippocampus; Preston and Eichenbaum, 2013), which 

would create contextual representations that linked related memories. The high 

PV shift represents the amalgamation between the contextual representation and 

the learning induced plasticity (only when a “what” is relevant enough to result in 

plasticity, the high PV is induced; in contrast, the “where” stream does not elicit 

changes in the PV network, such as placing an animal in a new environment, 

without any punishment or reward, as in an open field, no plasticity in the PV 

network is elicited). This would explain why the LgDel/+ animals freeze to context 

(functional “where” stream), but do not present the appropriate high PV shift 

(defective “what” stream), which relies on PrL activity. In this sense, the 

structures related to the “where” stream would feed to the hippocampus 

information regarding the context representation. However, the link between the 

given context and the related memory, which is given by the “what” stream, is 

impaired in the LgDel/+ model.  

Upon recovery of the prefrontal cortex with haloperidol, the activity is likely 

restored to WT levels, and the hippocampus now receive activation of the “what” 

stream. In this sense, rescue of the PrL 6h before acquisition of contextual fear 

conditioning, an ultimate hippocampal dependent task, allows rescue of not only 

the PV network in the PrL, but also in the hippocampus. Finally, this leads to high 

PV shift in the ventral and dorsal hippocampi 24h later. But, how does the rescue 

in a remote area elicit changes in a non-rescued hippocampus? This question 

can be answered in two parts. Firstly, injections of haloperidol in the ventral 

hippocampus of LgDel/+ animals 6h before acquisition of fear conditioning lead to 
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less pronounced shift in high PV in the hippocampus, when compared to 

injections performed in the PrL. Secondly, injections of D2R agonist quinpirole in 

the ventral hippocampus 6h before acquisition of fear conditioning lead increase 

in the low PV fraction and no induction of high PV. Taken together, these data 

suggest that the D2R component most probably is not the central problem in the 

hippocampus, but in the PrL. If the message from the PrL is arriving in the 

hippocampus intact (D2R agonist injections in the ventral hippocampus), plasticity 

occurs, but inducing low-PV shift. More experiments in this particular content will 

elucidate if the increment of D2R activity in the PrL is the main impairment to 

learning in the model.  
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 The recruitment of the prefrontal cortex in the regulation of fear expression 

based on previously learned information fits with known roles of this region in 

cognitive control and flexibility. The prefrontal cortex coordinates action through 

the integration of mnemonic inputs and exerts top-down regulation of specific 

brain circuits (reviewed in Gilmartin et al., 2014). An important result from a 

collaboration with my project is regarding another type of rule learning, the trace 

fear conditioning, which also requires prefrontal cortex function. Unpublished data 

from the collaborator (Mukherjee and Caroni) provide evidence of impairment in 

rule learning in LgDel/+ animals. In his work, he observed that WT animals in 

P150 persevere in their freezing behaviour during tone presentation for longer 

periods, when compared to younger animals (P60). LgDel/+ P150 animals, 

however, behave more similarly to P60 animals, suggesting that the maturation of 

the circuits of the prefrontal cortex is impaired. Further analysis demonstrated 

that chronic chemogenetic stimulation of the PV network in PrL of LgDel/+ during 

P60 is sufficient to evoke long-lasting changes in the behaviour of those animals.  

In accordance to findings from this collaborative part of the project, the 

haloperidol-driven rescue of PrL was sufficient to rescue PrL-dependant 

behaviours. LgDel/+ animals perform poorly in most parts of the attention set-

shifting task, except the simple discrimination, which is not prefrontal cortex 

dependant. This test relies on plasticity of the PV network, particularly in regions 

of the prefrontal cortex (infralimbic and PrL), to learn rules and, in a posterior 

step, modify this rule. It requires contribution from working memory, reversal 

Figure 16 - Scheme of the impairments in the LgDel/+. 

The main observations of this thesis are depicted. In the upper part, in green, a 

pyramidal neuron; in the lower part, in blue, a PV basket cell; in the middle, in red a 

dopaminergic axon. 	
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learning, attentional set-shifting and sustained attention (unpublished results, 

Mukherjee and Caroni). However, when LgDel/+ animals were treated with 

haloperidol during the PrL sensitive period (P60-70), the animals presented long-

lasting and consistent recovery of PrL functions in the test. This result provides 

not only an important prospect to the clinical treatment of patients with DiGeorge 

Syndrome during a critical window, but also confirms that the D2R activity in PrL 

impairs the acquisition of new rules, further supporting the hypothesis described 

beforehand. 

Besides the role of D2R in PV network, NMDAR hypofunction plays an 

important role in the onset and establishment of schizophrenia (Korotkova et al., 

2010; Belforte et al., 2012). Belforte and collaborators provided strong evidence 

linking the role of NMDAR during late development, especially in adolescence. 

This work showed that the ablation of NR1 subunit in postnatal ages in a fraction 

of the corticolimbic interneurons elicits dramatic changes in the behaviour, as 

anhedonia and anxiety, but most importantly, impairments in spatial working 

memory and prepulse inhibition were impaired. Moreover, the group showed that 

this deletion led to increased disinhibition in the cortex and hippocampus. 

Similarly, Korotkova and collaborators presented important evidence for the role 

of NR1 subunit in PV neurons in hippocampus (Korotkova et al, 2010). PV 

neuron-restricted NR1 knockout impaired theta and gamma oscillations in the 

hippocampus and . My results provide some evidence in favour of those findings, 

as I have observed increased disinhibition in the hippocampus of WT animals 

when treated with subanesthetic doses of the NMDAR antagonist ketamine. 

Additionally, I observed that the main affected subpopulation in the LgDel/+ 

animals is the early-born PV subpopulation, which present excitatory-driven shift 

in the PV staining. 
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 Selective impairment of early-born population explains the increased low 

PV network in the LgDel/+ animals. The high PV cells are mostly generated 

during the early phases of MGE development, but in the LgDel/+ it is observed an 

abnormal fraction of low PV cells. Furthermore, my results suggest that 

antagonists of D2R activity rescue the early-born PV cells. Once the PV network 

is rescued, LgDel/+ animals improve in learning. However, how D2R acts on the 

PV network remains elusive. The D2R is not present in PV-positive basket cells 

(Gangarossa et al., 2012), but in mossy cells of the DG. Mossy cells are 

glutamatergic neurons of the hilar region of the DG, which present important role 

in the activity of basket cells and granule cells in the DG. It is thought that those 

cells subserve as a relay station for the activation of distant granule cells and 

inhibit local granule cells, propitiating pattern separation in the DG (reviewed in 

Scharfman and Myers, 2013). Dopaminergic inputs arrive in the hippocampus 

from various regions of the brain, including midbrain nuclei, the substantia nigra, 

the ventral tegmental area and the retrorubral field (Gasbarri et al., 1994a; b; 

1996). The main findings of those articles suggest that dopamine, arriving from 

centres involved in distinct and variable functional roles, target especially the CA1 

and subicullum, which are the main projection fields. The authors also highlight 

the CA3 and the hilus as targets, especially from the VTA and retrorubral field. 

Those papers, however, present outdated anatomical techniques for tracing and 

therefore should be revisited in the future with refined viral injections.  

 The results described in my work were mainly collected in the CA3, which 

is targeted preferentially by the VTA. The VTA projects to several other areas in 

the brain, especially to the striatum. Recently, it was demonstrated that the type 

of firing from the VTA to striatum is impaired in a model of schizophrenia, but not 

from other dopaminergic inputs (i.e. from substantia nigra; Krabbe et al., 2015). In 
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brief, the increased D2R activity in the striatum, similar to what is present in 

schizophrenic patients, is accompanied by a decrement of frequency in tonic and 

phasic firing from the VTA. If this model holds true for the hippocampus, a 

decrement in the firing of VTA neurons would in part explain the learning 

disorders observed in the LgDel/+ model.  

 According to one hypothesis of schizophrenia (Lisman and Grace, 2005; 

Lisman et al., 2008), the communication between VTA and hippocampus play a 

major role in the establishment of the disease. The hippocampus, according to 

this hypothesis, is a driving force in detecting novelty and evoking firing of VTA 

neurons (Lisman and Grace, 2005). Consequently, the increment in the firing of 

dopaminergic neurons in the VTA leads to increased long-term potentiation in the 

hippocampus and subsequent memory formation. My results suggest that long-

term memory is reduced in the LgDel/+ animals, when they are tested in the FOR 

test. However, the short-term memory is present; this indicates that the 

hippocampus is indeed recognising the novelty, according to this hypothesis. The 

second step, which involves VTA firing is dysregulated and the memory is not 

formed. 

 My results demonstrate that cAMP signalling pathway is directly correlated 

to the deficits observed in the PV network of LgDel/+ animals. The modulation of 

cAMP signalling pathway improved the high PV shift in LgDel/+ animals. 

Furthermore, the administration of D2R antagonist rescued the PV network of 

hippocampi of LgDel/+ animals to WT levels. This suggests that imbalances in 

the cAMP signalling are related to the abnormal levels of PV in the model. 

Additionally, injections of PDE-4 induce increment of high PV in the WT 

hippocampus, which fails to happen in the hippocampus of LgDel/+ animals. 

Therefore, I hypothesise that cAMP signalling dysregulation is central in the 
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impairments of the PV network in the LgDel/+ model. This data also suggest that 

early-born PV cells may present higher levels of cAMP signalling activity in WT 

animals, but not in the LgDel/+ model, since haloperidol acts specifically in this 

subpopulation to elicit the network rescue. However, the data presented here only 

points to a different regulation of the two subtypes in this model of schizophrenia.   

 PDE-4 is one of the key enzymes related to cAMP metabolism, inactivating 

intracellular cAMP. Knockout mice for this enzyme present learning and memory 

deficits (Rutten et al., 2008), while acute inhibition of this enzyme increases long-

term memory and improves memory deficits elicited by NMDAR antagonists 

(Zhang et al., 2000). My results demonstrate that PDE-4 inhibition in WT animals 

shifts the network to high PV, but LgDel/+ animals present no network change. 

Since PDE-4 sole known action is in inactivating cAMP, the result provides further 

evidence for a decreased cAMP concentration. I hypothesise that the cAMP 

impairment is a central problem in the LgDel/+ model. PDE-4 presents interaction 

with DISC1, a gene implicated in familiar cases of schizophrenia and DISC1 

binds specifically to de-phosphorylated, low-activity PDE-4. Upon cAMP-PKA 

activation, PKA phosphorylates PDE-4, leading to release from DISC1 (Millar et 

al., 2005). Taken together, those findings shed light on the role of cAMP 

signalling pathway in schizophrenia.  

 D2R presents higher affinity for dopamine than D1R - at normal 

concentration, dopamine would activate preferentially D2R (Surmeier et al., 

2007). Since the LgDel/+ model presents decreased dopamine clearance, due to 

the hemizygous deletion of COMT, it is likely that D2R activity is increased in the 

model. Therefore, an increment in the Gi signalling would interfere with Gs 

activity and further decrease the concentration of cAMP. Although I did not 

express DREADDs to increase Gi activity in the WT to further confirm this 
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hypothesis, the data presented here indicates that D2R activity is closely related 

to the impairments in the PV network regulation and learning.  

 My results indicate that D2R activity in the hippocampus of naïve WT 

animals does not promote changes in the PV network. This data indicate that 

other dysregulation is probably present in the LgDel/+ hippocampal circuit. In 

D2R knockout animals, it was observed increased number of PV-positive 

interneurons in the anterior cingulate cortex (Graham et al., 2014). This result 

suggests that D2R activity may be involved in the fate of PV interneurons. My 

data suggest that PV interneurons present impaired function once D2R are 

activated concomitantly with high PV learning, presenting abnormal shift to low 

PV. In the WT animals injected with D2R agonist, learning processes that do not 

require high PV shift, such as FOR, do not present impairments. This result 

contrasts with the impairments in FOR observed in the LgDel/+ model, which are 

rescued by D2R antagonist treatment. However, it is not possible to exclude 

intrinsic differences of activity in the LgDel/+ model and the effect of the different 

classes of drugs. 

 In summary, my results shed new light on the impairments of cAMP 

signalling on PV-positive basket cells in the LgDel/+ model, resulting from an 

overactivity of D2R signalling, especially in early-born PV cells. The results 

described here also support the notion that the impairments in those interneurons 

are central in the evolution of the disease, and the rescue of this network is 

sufficient to improve learning in several behavioural paradigms. Moreover, my 

results also suggest that PV interneuronal network impairments are related to 

positive symptoms, since those are treated by D2R antagonists in patients.  
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4. Materials and methods 
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4.1. Mice 

 LgDel/+ and WT mice were generated and genotyped according to Merscher et 

al., 2000. Animals were genotyped after weaning of the animals. The mice that 

were used in the present study were in a mixed genetic background 

(129Sv/C57BL/6/129SvEvTac/FVB/N/SJL) with a significant contribution of 

C57BL/6J genetic background because they were backcrossed more than five 

generations into this strain, as in Long et al., 2006. The animals were a kind gift 

from Dominique Müller, Geneva.  

LgDel/+ animals were crossed with PV-Cre line (a kind gift from Silvia Arber, 

Basel) and with POMC-Cre line (Jackson laboratories). In both cases, animals 

were genotyped after weaning, controlling for LgDel/+ mutation and Cre.  

Mice were kept in temperature-controlled rooms on a constant 12h light/dark 

cycle. Before the behavioral experiment, mice were housed individually for 2–

3days and provided with food and water ad libitum. All experiments were in 

accordance with institutional guidelines and were approved by the Cantonal 

Veterinary Office of Basel Stadt, Switzerland.  

 

4.2. Genotyping by PCR 

The following primers were used for genotyping of the mice: 

PGK1 – GCTAAAGCGCATGCTCCAGAC 

Neo5F – ACCGCTATCAGGACATAGCGT 

Idd-KO1 – CTGTTGTTGACACAGCACATG 

6x32t3 – AACTCTACCTGTTCCTACTG 

Idd-KO2 – CACGTTGTCATTCTCAGACATG 

HiraR1 – GTGATGCTAGTCTCTAGCTG 

HiraF1 – TCTTGCAACTCTGAGAGGTC 
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CreF – GGACATGTTCAGGGATCGCCAGGCG 

CreR – GCATAACCAGTGAAACAGCATTGCTG 

Idd-KO2/Neo5F or Idd-KO1/PGK1 for identification of a homologous 

recombination event at the Idd locus, Idd-KO1/6x32t3 for amplification of the Idd 

wild-type allele, HiraF1/Neo5F for identification of a homologous recombination 

event at the Hira locus, and HiraF1/HiraR1 for amplification of the Hira wild-type 

allele. To amplify the junction fragment of the Idd and Hira target vectors after a 

deletion event, the primers PGK1/Neo5F were used. Cre-F/Cre-R primers were 

used for amplification of the Cre transgene. The PCR conditions were 94°C for 4 

min, one cycle; 58°C for 45 s, 72°C for 45 s, and 94°C for 30 s (35 cycles); 72°C 

for 1 min, one cycle.  

 

4.3. Behavioral experiments: 

All behavioral experiments were carried out with mice that were 2-3 months old at 

the onset of the experiment. 

4.3.1 Contextual fear conditioning 

 The contextual fear conditioning experiment was carried out as described 

(Ruediger et al., 2011). Briefly, the conditioning chamber (rectangular in shape) 

was cleaned with 2% acetic acid before each session. Once placed inside the 

fear-conditioning chamber, mice were allowed to freely explore the apparatus for 

2.5-3 min and then received five foot shocks (1 second duration and 0.8 mA 

each, inter-trial interval of ~30s). To test for contextual fear memory (recall), mice 

were re-introduced to the same conditioning chamber 24 hours later for 5 minutes 

but with no shock.  

All the experiments – acquisition and recall were digitally recorded and fear 

retention was measured as the percentage of time spent freezing excluding the 
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first 1 minutes of exposure. Freezing was defined as the complete absence of 

somatic mobility, except for respiratory movements.  

4.3.2 Familiar object recognition (FOR)- Incidental memory task: 

Mice explored two identical objects placed in a 30 × 50 cm arena (10 min 

exploration) on day one, returned to their home cage immediately after training 

and were tested for FOR 24 h later, when one of the two objects had been 

replaced with a new one (5 min exploration). Discrimination indices were 

calculated as (tnovel – tfamiliar)/(tnovel + tfamiliar) where tnovel and tfamiliar  are time spent 

with novel and the familiar object respectively. To avoid discrimination of the 

objects based on odor, both the arena and the objects were thoroughly wiped 

with 70% ethanol before and after each trial. 

 

4.4. Fixed tissue preparation: 

Mice were transcardially perfused with cold 4% PFA (pH7.4) and the brains were 

collected and kept in 4% PFA overnight at 40C.For c-fos analysis mice were 

perfused 90 minutes after the behavioral protocol. 

For all other immunostaining, the brains post overnight fixation was kept in PBS 

1X. 40m coronal sections were then prepared using vibratome Leica VT1000S.  

 

4.5. Immunohistochemistry: 

Antibodies and its concentration used are as follows: primary antibodies Rabbit 

anti-RFP (Rockland) 1:1000 Goat anti-PV (Swant biotechnologies) 1:5000; rabbit 

anti c-Fos (Santa Cruz), 1:10000; mouse anti-NeuN (Millipore),1:5000; rat anti-

Brdu (Abcam)1:500.  

The standard immunohistochemistry procedure was as follows: free floating 

transverse / coronal sections were blocked for an hour at room temperature with 
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10% donkey serum in PBS-0.3%Triton X-100 (PBS-T) followed by incubation in 

primary antibody solution in 5% donkey serum, PBS-T overnight at 4°C, washed 3 

times in PBS-T for 20 minutes each, further incubated in secondary antibody 

solution in 3% BSA, PBS-T at room temperature for 2-3 hours and subsequently 

washed 3 times in PBS for 20 minutes each. Later, sections were mounted in 

Prolong Gold antifade reagent (Molecular probes), coverslipped and kept at room 

temperature overnight, sealed with transparent nail polish and stored at 4°C until 

imaging. 

BrdU labeling in vivo was as described (Wojtowicz and Kee, 2006). Mice were 

injected with 0.1 mg of BrdU at defined times during embryonic development, and 

hippocampal sections were analyzed for BrdU labeling in the adult. Only strongly 

BrdU-labeled cells that did not undergo further rounds of DNA replication and cell 

division subsequent to BrdU incorporation were included in the analysis. 

 

4.6. Drug delivery: 

Haloperidol (4-[4-(4-Chlorophenyl)-4-hydroxy-1-piperidinyl]-1-(4-fluorophenyl)-1-

butanone, 4-[4-(4-Chlorophenyl)-4-hydroxypiperidino]-4′-fluorobutyrophenone, 4-

[4-(p-Chlorophenyl)-4-hydroxypiperidino]-4′-fluorobutyrophenone; Sigma-Aldrich) 

was injected intraperitoneally at 0.1 mg/kg bodyweight; haloperidol was diluted in 

0.1 M HCl.  

Haloperidol pellets (Innovative Research of America) were implanted 

subcutaneously at 0.01 mg per pellet on the lateral side of the neck of the animal. 

Pellets were controlled after perfusion.  

Rolipram (4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone; Sigma-Aldrich) 

was injected in the hippocampi via stereotaxic surgeries at 7.5 ug per 

hippocampus. Rolipram was diluted in saline 0.9%. 
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Quinpirole ((–)-quinpirole monohydrochloride, trans-(–)-(4aR)-4,4a,5,6,7,8,8a,9-

Octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline monohydrochloride, LY-171,555; 

Sigma-Aldrich) was injected in the hippocampi via stereotaxic surgeries at 0.3 mg 

per hippocampus; quinpirole was diluted in saline 0.9%. 

Ketamine (± ketamine hydrochloride, Narketan, Vétoquinol) was injected 

intraperitoneally at 30 mg/kg bodyweight; ketamine was diluted in saline 0.9%. 

 

4.7 Stereotactic surgeries 

The drugs mentioned were delivered topically to the dorsal CA3b (bregma −1.7 

(posterior), 2.0 (lateral), 1.75 (down)), ventral CA3b (bregma −3.0 (posterior), 3.0 

(lateral), 3.5 (down)) or in PrL (bregma +1.8 (anterior), 2.2 (lateral), 0.4 (down)). 

Maximum volume was 200 nl per injection. 

 

4.8. Chemogenetic in vivo 

4.8.1. PSAM chemogenetics 

For direct local PV- or POMC-neuron control in vivo, a chemogenetic approach 

aiming for selective activation in hippocampal CA3 was taken. Floxed PSAM-

carrying AAV9 (pAAV(9)-pCAG-flox-PSAM(Leu41Phe,Tyr116Phe)5HT3-WPRE 

was delivered bilaterally in dorsal or ventral hippocampus (maximum volume, 200 

nl per injection) in 60- to 70-day-old WT and LgDel/+ PV–Cre or POMC–Cre male 

mice. As verified upon anti-bungarotoxin visualization, PSAM expression was 

confined to the hippocampus, where it was localized at distal CA3, CA2 and 

proximal CA1. The PSAM constructs were expressed in 75% of PV neurons in 

CA3 and CA2, in 10–20%of PV neurons in CA1, and in no PV neurons in the 

dentate gyrus or in any structure adjacent to the hippocampus. Mice were then 

kept under control conditions for 7–9 days before any experiment, to allow for 
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transgene expression. The agonist PSEM308 was injected intraperitoneally 6h 

before perfusions at the concentration of 5 mg/g of animal weight.  

4.8.2. DREADDs chemogenetics 

The method to DREADDs chemogenetic was as for the PSAM chemogenetics. 

Floxed AAV8-hSyn-DIO-rM3D(Gs)-mCherry was delivered bilaterally in dorsal or 

ventral hippocampus (maximum volume, 200 nl per injection) in 60- to 70-day old 

WT and LgDel/+ PV-Cre male mice. As verified upon mCherry visualization, 

DREADD expression was confined to the hippocampus, where it was localized at 

distal CA3, CA2 and proximal CA1. Mice were then kept under control conditions 

for 7–9 days before any experiment, to allow for transgene expression. The 

agonist clozapine-N-oxide (8-Chloro-11-(4-methyl-4-oxido-1-piperazinyl)-5H-

dibenzo[b,e][1,4]diazepine; Tocris) was injected intraperitoneally 6h before 

perfusions at the concentration of 5 mg/kg of animal weight.  

 

4.9. Imaging 

Samples belonging to the same experiment (for example, from the mice of a 

given time point, with their controls) were acquired in parallel and with the same 

settings (laser power, 2%; Optical Slice, 1.28–1.35 air units; GaAsP detectors 

implemented) on an LSM710 confocal microscope (Zeiss) using an EC Plan-

Neofluar X40/1.3 oil-immersion or X63/1.4 oil immersion objective (Zeiss). For the 

PV-intensity analysis, the dynamic range was set during the acquisition of adult 

(P60) cage control samples. The zero value was set at CA3 pyramidal neurons 

somas, and the highest threshold so that <20% of the pixels belonging to the 

brightest PV cells were saturated (ZEN2010 acquisition software, Zeiss). 

Normalisation and recalibration across different experiments was achieved by 
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using internal control animals, which were included in each experiment, and were 

processed using the same criteria mentioned above. 

 

4.10. Image analysis and data quantification: 

All the image analysis was done using Imaris (Bitplane). XUV tools was used in 

order to stitch the images. Parvalbumin intensity analysis was done as in Donato 

et al., 2013. Briefly, the soma of PV neurons with optimal staining (dampening of 

intensity between the first and last confocal plane <15%) were isolated in three 

dimensions (Imaris). Three-dimensional isosurfaces (smoothness: 0.5 μm) were 

created around each PV-neuron soma and labeling intensities were quantified 

automatically in arbitrary units as the mean of all isolated pixels. The PV cells 

were then classified as low, intermediate low, intermediate high and high based 

on their intensities. 

For cFos analysis, cFos+ cells were selected according to signal intensities using 

an automatic detection (spot detection in Imaris: expected radius,10μm) and 

medium (>550<750) and high (>750) cFos cells were considered in the 

quantification (as in Ruediger et al., 2012). The number of cFos+ cells were 

normalised to total NeuN+ cells in the same section.  

 

4.11. Statistical analysis: 

All statistical analyses were performed using GraphPad Prism 6 (GraphPad 

Softwares). Unless otherwise stated, statistical groups were compared using 

unpaired, nonparametric Student's t-test (Mann–Whitney test). Average values 

are expressed as means ± SEM. 
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