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Abstract

This thesis is devoted to the study of electron spins in quantum dots. In recent
years, the quantum dots have evolved towards smaller sizes and a better control over
the number of electrons on a dot. Comparing to a decade ago, when the quantum
dots were containing hundreds of electrons and behaving unpredictably under small
changes of their electrostatic or magnetic environment, today, the state-of-the-art
quantum dots resemble rather atoms (with well-organized electronic shells and energy
gaps of several meV) than chaotic systems (with randomly distributed energy levels).
These man-made atoms display lucent quantum-mechanical properties, suitable for
use as a resource to extend the classical information processing to the ultimate quan-
tum one. The electron spin, being solely quantum by its nature, enriches the physics
of quantum dots and opens a new (quantum) dimension, which can be used as a
degree of freedom to store and process information. The need to coexist at the same
scale of both quantum degrees of freedom (to encode qubits) and classical degrees of
freedom (to use as local gates to control qubits) renders the scale of quantum infor-
mation processing to the meso-scale — the borderline between the worlds of classical
and quantum. The quantum dots are examples of refined mesoscopic systems, where
the quantum degrees of freedom can be deterministically controlled by classical gates
to implement the quantum Turing machine.

While this is the long-term goal and requires progressive development of appropri-
ate technologies, the present interest to quantum dots is focused on characterizing
the quantum dots (finding ways to learn their parameters), identifying the domi-
nant mechanisms of decoherence, and engineering interactions on demand, which are
needed for quantum computing. The flexibility of quantum dots to design and their
dynamical tunability promises an easy integration of quantum dots into (quantum)
circuits. Once a single building block with required physical properties is constructed,
it can be replicated to a large number of such blocks. Interestingly, this fundamen-
tal building block has to consist of at least two quantum dots (two qubits), owing
to entanglement as a new resource in quantum information processing. This the-
sis considers, thus, single and double quantum dots and studies their spin-related
phenomena in a variety of contexts.

Electron transport is a common method of studying quantum dots. A quantum dot
or a small quantum-dot circuit can be probed by leads at finite source-drain bias.
Based on transport measurements, specific regimes of interest can be identified, to
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which the quantum dots can then be tuned by gates at any time. For quantum com-
puting, it is necessary to have access to specific coupling constants and to know their
dependence on gates. In this thesis, we study in detail two coupled quantum dots and
show that a number of parameters can be extracted from transport measurements.
In particular, the Heisenberg exchange interaction between spins of tunnel-coupled
quantum dots can be accessed in transport in the regimes of sequential tunneling,
cotunneling, and Kondo effect. The electron-electron correlations, such as entangle-
ment, are also of great interest in the physics of quantum dots and for applications
to quantum information processing. In Chaps. 2 and 3, we show that correlations
between electrons can be accessed in transport as well. Most vividly they show up
in the cotunneling conductance at the singlet-triplet transition and in some specific
strong heating regimes away from the singlet-triplet transition. Our results have re-
cently been used in experiment to access these correlations in a two-electron quantum
dot of elongated shape.

The Kondo effect is a correlated many-body phenomenon, distinct by peculiar features
in transport, such as unitary limit of conductance. It arises under specific conditions
that allow the many-body correlations to build up. In tunnel-coupled quantum dots,
the Kondo effect is sensitive to the exchange interaction between spins. The com-
petition between Kondo effect and exchange interaction brings the system close to a
quantum critical point (first studied for the two-impurity Kondo model in context of
magnetic impurities in metals). This quantum critical point can be studied experi-
mentally in the asymptotic limit of weakly coupled quantum dots. It gives rise to a
narrow peak in the linear conductance as function of the inter-dot tunnel coupling,
provided the latter is much smaller than the dot-lead coupling (t ≪ Γ). The com-
petition between Kondo effect and exchange interaction is far more fragile than the
Kondo effect itself, and is thus characterized by a much smaller energy scale than the
Kondo temperature. Observation of the sharp peak in transport will therefore signify
that extremely fragile many-body correlations build up in the system, which alone is
fascinating. The long range nature of the Coulomb interaction between electrons also
reflects on the transport properties of coupled quantum dots. A wide peak emerges in
the linear conductance as function of inter-dot tunnel-coupling due to singlet-triplet
Kondo correlations. With applying an orbital magnetic field this peak turns into a
singlet-triplet Kondo effect, distinct by an enhanced Kondo temperature. Finally,
the Kondo correlations also enhance the signatures of Heisenberg exchange interac-
tion in the temperature dependence of linear conductance and further access to this
important for quantum computing parameter.

Coherence of electron spin is a fundamental question in solid state. In semiconductor
quantum dots, the spin coherence is limited by the dot intrinsic degrees of freedom,
such as phonons, spins of nuclei, particle-hole excitations in metallic gates, switch-
ing impurities nearby the dot (1/f noise), electromagnetic fields, etc. The electron
spin interacts weakly with matter, which makes it a promising candidate for use in
quantum information processing. One important interaction in semiconductors is the
spin-orbit interaction. The spin-orbit interaction mediates coupling of the electron
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spin to any degree of freedom that couples to the electron charge. In this thesis, we
study spin decoherence due to the spin-orbit interaction.

The spin decoherence time T2 — the lifetime of a coherent superposition of spin-up
and spin-down states — must be sufficiently long for quantum computing algorithms
and quantum error correction schemes to be implemented. The decoherence time T2

is limited by spin-flip processes occurring over the spin relaxation time T1. This gives
an upper bound for T2, T2 ≤ 2T1. The spin relaxation time T1 is extremely long in
quantum dots (measured values range from 100µs to 20 ms). Additional reduction of
T2 can occur only due to dephasing, i.e loss of phase of coherent Larmor precession,
which requires a (quantum) fluctuating magnetic field along the spin quantization
axis. Most solid state implementations of qubits suffer strongly from dephasing, which
makes T2 ≪ T1. In Chap. 4, we show that the spin-orbit interaction in quantum
dots is not responsible for a strong reduction of T2. We consider the Rashba and
Dresselhaus spin-orbit interactions in quantum dots and find that only spin relaxation
(i.e. no dephasing) is possible in the leading order in these interactions. We obtain
an effective spin Hamiltonian which contains only purely transverse fluctuations of
magnetic field in the leading order of the spin-orbit interaction. Our finding means
that the decoherence time T2 is close to its upper bound T2 = 2T1 for spin-decay
mechanisms based on the spin-orbit interaction (additional decoherence can occur
due to the hyperfine interaction in a quantum dot). We also calculate the relaxation
time T1 due to phonon emission and find an excellent agreement with experiment
if we use an independently measured spin-orbit length of (8 − 10)µm. Our results
indicate that phonon emission is a dominant mechanism of spin relaxation in GaAs
quantum dots.

For a two-electron quantum dot, we study spin relaxation between singlet and triplet
levels in Chap. 5. Since the orbital wave functions of singlet and triplet differ sig-
nificantly from each other, decoherence is expected to set in at a short time scale
(∼ 1 ns) due to charge noise. In contrast, the spin-flip transitions require spin-orbit
interaction, similarly to spin relaxation in a single-electron quantum dot, and there-
fore, they have a much longer time scale (∼ 100µs). The spin relaxation in a two-
electron quantum dot can thus be used as an additional test to verify the dominant
mechanism of spin relaxation in quantum dots and to obtain an estimate for spin re-
laxation between Zeeman sub-levels in single-electron quantum dots. In experiment,
the triplet-to-singlet spin relaxation is easier to study than the relaxation between
Zeeman sub-levels, since the latter requires application of a large magnetic field to
resolve in energy the spin-up and spin-down levels. The singlet and triplet levels are
well separated from each other already at zero magnetic field and and makes it pos-
sible to study experimentally spin relaxation in the low B-field limit. With applying
an orbital magnetic field the two-electron quantum dot undergoes a singlet-triplet
transition, which allows one to probe the low energy part of the spectral function
of the environment at a finite magnetic field. Due to the spin-orbit interaction we
find avoided crossings of singlet and triplet levels at the singlet-triplet transition. We
calculate the relaxation rates due to phonon-emission and find a rich behavior of rates
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as functions of magnetic field around the singlet-triplet transition. We also analyze
the effect of Coulomb interaction and show that it enhances the role of spin-orbit
interaction in the quantum dot, however it suppresses the interaction with phonons
for the singlet-triplet relaxation.

Motivated by recent spin read-out experiments, we study the effect of a QPC, func-
tioning close to a quantum dot, on the spin relaxation in the quantum dot. We derive
a microscopic model for the spin-charge interaction and calculate the spin relaxation
time T1 in Chap. 6. The interaction of spin with charge occurs due to the spin-orbit
interaction in the quantum dot at a finite magnetic field. We find a strong dependence
(1/r6) of the relaxation rate on the distance to the QPC.

In Chap. 7, we consider several spin read-out schemes based on spin-to-charge conver-
sion and subsequent charge detection by a QPC. We introduce the notion of n-shot
read-out, as opposite to the single-shot read-out, for the case when the“measuring ap-
paratus” has an systematic measurement inefficiency. This measurement inefficiency
is intrinsic to the measurement setup, i.e. it is not related to the signal-to-noise
ratio in a measurement output. In this case, for a qubit which is in either “spin-up”
or “spin-down” state, one has to repeat the preparation and measurement of qubit
some number of times n until the qubit state is known with a given infidelity α. We
characterize the spin read-out using the formalism of positive-operator-valued (POV)
measurements, and calculate n as a function of α and the POV probabilities (specific
to measurement setup). We introduce a measurement efficiency e (0 ≤ e ≤ 1) which
characterizes the measurement apparatus, and analyze examples for which e ≈ 0.5
and e ≈ 1. We show that e < 1 results in a reduced visibility in measurements of
coherent oscillations.

The shot noise of a double quantum dot is studied in Chap. 8 using a phenomenolog-
ical approach. We formulate a stochastic model for shot noise in a multilevel system.
We relate the parameters entering our model to the transmission/reflection ampli-
tudes of the scattering matrix. We study shot-noise close to the Kondo regime in the
double quantum dot. We find super-poissonian noise in the limit of weakly coupled
quantum dots.
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Chapter 1

Introduction

1.1 Spintronics and quantum computing

In the last decade, there has been much interest in the electron spin as a degree of
freedom in semiconductor devices. This interest comes from the solid-state electron-
ics industry, which has enjoyed several decades of constant downscaling of on-chip
integrated circuits, governed by Moore’s law.1 As this progressive miniaturization
is approaching the borderline between the worlds of classical and quantum, further
advances can be made either with the help of purely quantum systems or by utiliz-
ing new physical phenomena, capable of improving the functionality of still-classical
devices. An example of the latter is the spin-polarized electronic transport, where
carriers of opposite spins rather than carries of opposite charges are utilized to build
transistors [1]. This new approach to electronics is called magnetoelectronics [1], and
it started soon after the discovery of the giant magnetoresistance effect (GMR) [2] in
1988. Since then, almost every today’s computer hard drive has magnetic read-out
heads based on the GMR, a non-volatile type of random access memory (memory
that holds its content without power) has successfully been developed using magnetic
materials, and reprogrammable logic microprocessors are going to be developed in the
future. The success of the GMR and the use of magnetic materials in electronics has
initiated a wave of investigation of the spin-related effects in semiconductor materials,
with the focus on spin-coherent effects. This field of research became known as spin-
tronics2 [3, 4]. Semiconductors are generally easier to integrate into complex circuits
than metals, and they provide a richer and almost continuous variety of materials,
due to their strong sensitivity to doping. The spin-polarized electronic transport

1This is an empirical observation, made by Gordon Moore in 1965, stating that the complexity
of the integrated circuits grows exponentially with time (the number of transistors per unit area of
integrated circuit doubles, roughly, every 18 months).

2Spintronics stands for “spin-based electronics” and considers both magnetic metals (ferromag-
nets) and magnetic semiconductors (such as dilute magnetic semiconductors). The term magne-
toelectronics is often used to refer specifically to electronics that is based on ferromagnets, e.g.

electronics utilizing GMR.
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CHAPTER 1. INTRODUCTION

is finding more and more potential applications [3–6] as the electronic devices are
getting smaller and the spin-polarized carriers have to travel over shorter distances.
Ultimately, the quantum-mechanical coherence of the electron spin becomes of great
practical relevance, since it offers the prospect of a better and fundamentally new
spin-based electronics. Both the creation of spin-polarized carriers and their spin
coherence effects have been addressed in a number of experiments [7–9] performed
on electrons in two-dimensional (2D) semiconductor structures. The results show,
e.g., that the electron spin in semiconductor materials has a very long coherence time
(∼ 100 ns) and that the electron can travel over distances of 100µm without loss of
spin coherence. This makes the spin of the band electron in semiconductors attrac-
tive for applications in spintronics and motivates further experimental and theoretical
studies of spin-related phenomena in these materials.

The interest in electron spin is motivated also by nanotechnology [10–12], which is a
new and rapidly developing field. Nanotechnology benefits from the support of differ-
ent scientific communities, such as biologists, chemists, physicists and computational
scientists, who all contribute to the development of a new interdisciplinary subject,
called nanoscience. Although, it is still unsettled which areas of research ought to be
included into nanoscience, the objective of nanoscience is clear: to explore the world
at the nanometer scale, often expressed as “there’s plenty of room at the bottom”
(due to R. Feynman). With the techniques available at present one can manipulate
single molecules and have them act as nano-machines [13], image single atoms resid-
ing on a substrate and arrange to see their “quantum mirages” [14], contact and pass
current through single molecules (such as DNA’s) [15], manufacture and study “ar-
tificial atoms” (quantum dots) [16] and many other interesting nanostructures. The
electron spin has a large potential for application at the nanometer scale. Many of
the spin-related effects can be observed only in confined systems, where the spin and
charge degrees of freedom can be correlated with each other via the Pauli exclusion
principle and Coulomb interaction. This takes place to an equal extent in atoms,
molecules, and quantum dots. The interest in quantum dots is, however, higher be-
cause in these structures it is easier to control the electron confinement, to contact
the structures to leads, and to integrate them into circuits. The quantum dot devices
made with the help of modern nanofabrication techniques are good enough to serve as
building blocks for spintronics, as well as to study the spin coherence and spin-related
phenomena of localized electrons in a variety of materials.

The fast development of nanotechnology promises to reach an ultimate limit, where
purely quantum systems are controlled by classical gates in a deterministic fashion,
inducing only a negligible amount of decoherence (from both gates and environment).
If this is to be achieved, then a new way of computing — quantum computing —
becomes feasible. In quantum computing [17,18], one assumes the existence of a quan-
tum bit (qubit) — a piece of hardware that stores and processes a “bit”3 of quantum
information. A qubit, thus, is a coherent two level system, which can be prepared in
any superposition of its component states and can be coupled to other systems of its

3In general, quantum information is not divisible, because of quantum entanglement.
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1.1. SPINTRONICS AND QUANTUM COMPUTING

like to form coherent superpositions of two- or many-qubit states. In addition, the
qubit should have a property that allows one to read out its content, i.e. collapse the
qubit into one of its component states. All these requirements are explained in detail
in Ref. [19]. Having a number of such qubits and being able to scale it up to any
desired quantity is a dream in the field of quantum information. A scalable quantum
computer would allow one to efficiently simulate quantum-mechanical systems and
solve a number of classical tasks with a better efficiency than classical computers can
do. At present, there are only several quantum computing algorithms that are known
to solve classical tasks more efficiently than their classical counterparts. The most
popular are the number factoring algorithm by Shor [20] and the database search
algorithm by Grover [21]. I will review only the former.

The algorithm developed by Shor [20] allows one to factor numbers into primes with
an efficiency that outperforms all known classical algorithms. The Shor algorithm
utilizes the parallelism of quantum-mechanical superpositions of states to find the
period r of the following function

f(k) = xk mod N, (1.1)

where N is the number to be factored and x is an arbitrarily chosen positive integer.
It is known from number theory that the function f(k) is a periodic function of k
when the integers x and N are relatively prime,4 i.e. when the greatest common
divisor (x,N) = 1. Finding the period of f(k) for different x allows one to guess the
factors of N . By definition, the period r satisfies the equality f(r) = f(0). Using this
equality and Eq. (1.1), one can derive the following:

(xr/2 − 1)(xr/2 + 1) = 0 mod N. (1.2)

The two factors on the left-hand-side of Eq. (1.2) are likely to have a non-trivial
common divisor with N and, by trying out different x, one can eventually find a factor
of N . The Shor algorithm finds r in a very efficient way on a quantum computer.
In contrast to classical computers, quantum computers have a fully coherent register
(consisting of a number of qubits) and can combine states with different content
of their register into quantum-mechanical superpositions. The first step in Shor’s
algorithm is to prepare the following superposition of states

1√
N

N−1∑

k=0

|k〉|f(k)〉, (1.3)

where the first register, |k〉, records the value of k and the second register, |f〉, records
the value of f(k). In the second step, one reads out the register |f〉 and obtains some
random value f = f0. If the function f(k) is periodic, with the period r < N , then
there are several values of k that satisfy f(k) = f0. After the projection on |f0〉, the
state in Eq. (1.3) takes the form

1√
N/r

∑

j

|k0 + jr〉|f0〉, (1.4)

4The probability that two integers picked at random are relatively prime equals 6/π2 ≈ 0.6.

3



CHAPTER 1. INTRODUCTION

where k0 < r and 0 ≤ j ≤ N/r − 1. In the next step, a quantum discrete Fourier
transform is applied to the first register,

|k〉 −→ 1√
N

N−1∑

k′=0

e
2πi
N

kk′|k′〉. (1.5)

Application of the quantum discrete Fourier transform to the number factoring prob-
lem is Shor’s major contribution to this algorithm (both the factoring property (1.2)
and the quantum discrete Fourier transform (1.5) have been known before). The
discrete Fourier transform is implemented in a purely quantum-mechanical fashion,
using unitary operations as quantum gates. The final state of the two registers then
reads,

N−1∑

k=0

ck|k〉|f0〉, where ck =

√
r

N

∑

j

e
2πi
N

k(k0+jr). (1.6)

As seen from Eq. (1.6), an interference effect has enhanced the amplitude of the states
|k〉 = |mN/r〉, where m is an integer, and has reduced the amplitude of the others.
Reading out the content of the first register, thus, yields a multiple of N/r, which
can be used to find the period r (after a number of repetitions). It is important to
note that the coherence of the states in Eqs. (1.3) and (1.4) is crucial for the Shor
algorithm. The discrete Fourier transform used in the algorithm can be interpreted
as a quantum mechanical interference between different parallel outputs/paths of
computation. This parallelism is characteristic also to other quantum computing
algorithms and is, perhaps, the main feature that distinguishes quantum computers
from classical. In the case of Shor’s algorithm, the number of computational steps,
needed to factor a large number N , scales with N as ∼ n2 lnn ln lnn, where n =
log2N . If, instead, classical algorithms are used, the number of computational steps
scales, at best, as ∼ exp(c n1/3 ln2/3 n), where c is a numerical constant of order 1.
For large N the Shor algorithm, thus, needs a much shorter computational time than
the classical algorithms, owing to the parallelism of quantum mechanics.

The physical implementation of a quantum computer is a new paradigm in physics,
and it is a big theoretical and experimental challenge. The ability to prepare (on
demand) coherent superpositions of significantly different states of a system of many
qubits brings up questions about the interpretation of quantum mechanics, best
known as “Schrödinger’s cat” paradox (for a recent point of view see Ref. [22]). Of
course, the coherence of a system of many qubits is far more fragile than the co-
herence of a single qubit, and states like “Schrödinger’s cat” would last very short.
However, there are quantum error correction schemes [23, 24], which allow one to
substantially increase the qubit coherence time and, at least in principle, build qubits
with arbitrarily long coherence times. In these schemes, the qubit is encoded into a
block of several physical qubits. Once in a while, the physical qubits are accessed
by a read-out procedure that traces out errors occurring at the level of the physi-
cal qubits, while leaving the encoded qubit unaffected. Correcting these errors then
reduces the probability of an error to occur at the level of the encoded qubit, and
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thus, the encoded qubit is maintained coherent for a longer time. The quantum error
correction schemes use a constant supply of ancilla qubits (qubits in a known state)
in order to compensate for the entropy growth in the system due to coupling to the
environment. This encoding of qubits can further be scaled up to higher levels, i.e.
qubits are encoded into blocks of already encoded qubits and so on. In this way, the
qubit coherence time can be prolonged indefinitely, at the cost of a larger amount
of physical qubits and sustaining operations. However, the physical qubit should
operate with an error rate that is below a certain threshold value (∼ 10−4 per gate
operation) for the quantum error correction to scale towards a better qubit. It is
therefore desirable to find physical implementations of qubits with the least coupling
to the environment and the largest (most precise) control over the quantum state.

There is a large number of proposals for implementing qubits (for a review see e.g.
Ref. [25,26]). They differ by the physical system used to define the qubit and by the
interactions used to implement the quantum logic gates. Several examples of such
proposals are:

• Electron spins in quantum dots are promising candidates for a scalable quan-
tum computer [27]. The qubits are the lowest in energy spin doublets of single-
electron quantum dots. The spin state of each quantum dot is controlled by
“pushing” the electron wave function into a layer with a different g-factor or ef-
fective magnetic field. Neighboring qubits are coupled with each other using the
Heisenberg exchange interaction between the spins of tunnel-coupled quantum
dots.

• Cold ions confined in a linear trap and interacting with laser beams can be
used to perform small-scale quantum computing [28]. The qubit is defined on
the internal states of the ion and is controlled by laser beams. The coupling
between qubits is mediated by quantized collective motion of ions in the chain
(i.e. by phonons). Quantum logic gates [29] and quantum error correction [30]
have been demonstrated for this system.

• Atoms in a cavity can also be used for a small-scale quantum computer [31],
similar to trapped ions. The cavity mode couples strongly to the atomic states
and makes it possible to access the atoms on a shorter time scale than in ion
traps. The atoms are usually accessed while they are moving through the
cavity in a beam. The cavity mode is also used to couple different qubits with
each other. Quantum logic gates can be implemented experimentally in this
system [32].

• Nuclear spins in certain molecules can be accessed individually, using nuclear
magnetic resonance (NMR) pulses. A small-scale quantum computer can be
implemented within one molecule using the states of the nuclear spins to de-
fine qubits [33–38]. The experiments are usually performed on a macroscopic
amount of molecules in liquid state at room temperature. Both Grover’s algo-
rithm [35,36] and Shor’s [38] algorithm have been implemented in these systems,
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Figure 1.1: Electrons in quantum dots as spin qubits. Each quantum dot contains a single
electron in the Coulomb blockade regime. The Coulomb repulsion “forbids” two electrons
to occupy one and the same quantum dot. The spin 1/2 ground state of each dot is used
to define a qubit. The tunneling between quantum dots mediates a spin-spin exchange
interaction, with the help of which one can implement a universal two-qubit quantum gate.

using the concept of quasi-pure states [34]. With the Shor algorithm, the num-
ber 15 has been factored into primes (15 = 3 × 5), using a quantum computer
with 7 qubits [38].

• In a Josephson junction, the phase difference ϕ between superconductors is a
continuous variable mod 2π. And the number N of Cooper pairs transferred
through the junction is conjugated with ϕ, i.e. [ϕ,N ] = i. Using Josephson
junctions, superconductor islands, and capacitances one can build devices that
display quantum-mechanical behavior and can be used as qubits. The simplest
examples are: (i) the Cooper pair box [39–41], where the qubit is defined on
two charge states of a superconductor island, and (ii) the superconducting flux
qubit [42–44], where two persistent currents in a loop with several Josephson
junctions are used to define the qubit. More complicated structures can be built,
such as e.g. quantronium [45], where the qubit is defined using intermediate
states between charge and flux. Utilizing d-wave superconductors to construct
π-junctions has also been suggested [46].

Among other proposals, charge degrees of freedom in quantum dots [47–51], quantum
dot spins in cavity QED [52], electrons trapped by surface acoustic waves [53], atoms
in optical lattices [54], nuclear spins of phosphorus donors in silicon [55], electrons
on surface of liquid helium [56], nuclei and electrons in quantum-Hall systems [57],
electron-spin-resonance (ESR) transistors in silicon-germanium heterostructures [58]
have been proposed as candidates for qubits.

This thesis is inspired by the work of Loss and DiVincenzo [27], which proposes to
use the spins of electrons confined to quantum dots as qubits. The electron spin is a
natural candidate for the qubit. The whole Hilbert space of spin consists of only two
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states, | ↑〉 and | ↓〉, which can form any superposition of the form

|ψ〉 = α| ↑〉 + β| ↓〉, (1.7)

with |α2 + |β|2 = 1. Such a superposition of states is expected to be long lived in
solid state devices. The reason for this is that the spin interacts weakly with the
environment and the spin states are not composite states, and thus, need not be
protected by a gap. Placing two electrons in two quantum dots, as shown in Fig. 1.1,
defines two qubits, which can then be coupled to each other via the Heisenberg
exchange interaction,

Hs(t) = J(t)SL · SR. (1.8)

This effective Hamiltonian describes the low-energy part of the Hilbert space of two
electrons in a double dot potential [59]. The exchange interaction between spins
originates from the inter-dot tunnel-coupling, while the Coulomb repulsion forbids
two electrons to occupy one and the same quantum dot. By lowering/rising the
tunnel-barrier between quantum dots, one can turn on/off the coupling constant J(t)
in Eq. (1.8) as a function of time. Devising a π/2-pulse of this interaction cre-
ates a universal two-qubit quantum gate [27]. Such a universal quantum gate, if
complimented with arbitrary single-qubit rotations, suffices to carry out any quan-
tum computing algorithm. This follows from the quantum-gate decomposition theo-
rem [60]. The single-qubit rotations can be achieved by locally changing the electron
g-factor [19, 61]. Such a g-factor modulation has been experimentally demonstrated
for extended electrons in two dimensions [62] and should also be feasible for localized
electrons in quantum dots. A different possibility to implement single-qubit rotations
is to have local control over the effective magnetic field seen by the electron. This can
be achieved by combining quantum dots with magnetic materials [4,27]. Having, e.g.,
a magnetic layer with a definite magnetization close to the quantum dots would allow
one to change the effective magnetic field by changing the tunnel coupling between
the quantum dot and magnetic layer. The initialization of the electron spins can also
be easily performed in quantum dots. For this, one applies a magnetic field which
induces a Zeeman splitting much larger than the temperature. The electron spins
relax to the ground state over a time characterized by the spin relaxation time T1. At
the end of the computation the electron spin can be read out using a spin-to-charge
conversion [27] and measuring the charge state of the quantum dot with the help of
a sensitive charge detector. This has recently been implemented in experiment [64].

Spin-based quantum computing [27] belongs to the class of scalable quantum comput-
ing proposals. Scalable means here that the number of qubits in a quantum computer
can be increased indefinitely, once a small number of qubits is realized. This feature
is common to most of the solid state quantum computing proposals. And it is also
common to the classical solid state electronics.
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1.2 Electron spins in quantum dots

In semiconductor quantum dots [16], the conduction band electron is confined to a
small region of space (λd . 100 nm) in all three spatial dimensions. The electron en-
ergy is quantized to a set of discrete values due to the wave nature of the electron. In
few electron quantum dots [16], the electrons form shells of electronic density, like in
atoms. On this reason the quantum dots are often called“artificial atoms”. In contrast
to atoms, the quantum dots are extremely tunable, owing to a set of gates that define
the electrostatic confining potential for the electrons.5 For example, the average num-
ber of electrons on the quantum dot can be controlled with a sub-electron precision by
changing the gate voltage that shifts the dot electrostatic potential [16]. As a function
of this gate voltage, the linear conductance through the dot shows a set of (sequential
tunneling) peaks, corresponding to the zeroes of the dot addition/extraction energy
E+(N) = E−(N + 1) = 0, where E±(N) = E(N ± 1) − E(N) ∓ µ is the addi-
tion/extraction energy with respect to the lead, with E(N) being the energy of the
dot with N electrons, and µ the chemical potential in the lead. The Coulomb block-
ade (CB) effect [65] is pronounced in the presence of a Coulomb correlation energy
U , which does not allow more than one electron to enter or exit the quantum dot.
Thus, the sum of the addition and extraction energies obeys the following inequality

E+(N) + E−(N) ≥ U(N), with U(N) > 0, (1.9)

which results in the electrons occupying/emptying the quantum dot one by one with
shifting the dot electrostatic potential. In the last decade, control over the dot occu-
pation number down to one electron per dot has been achieved in both vertical [67]
and lateral [68] GaAs quantum dots, as well as in self-assembled InGaAs quantum
dots [66] and rings [69]. Recently, charge control down to one electron per dot has
also been realized in double quantum dots [70–73]. In Ref. [70], a quantum point
contact was used as a sensitive charge detector [74, 75] to monitor change of dot
occupation. This method has a number of advantages compared to the traditional,
transport-based method of charge control. In particular, it can be used in quantum
circuits with a too low conductance to be measured.

The simplest signatures of spin in quantum dots are seen in the CB regime [65, 76]
(T ≪ U). When adding electrons one by one onto the dot, one finds alternating
small and large Coulomb blockade valleys [67, 76, 77], indicating the presence of spin
doublets. In symmetric quantum dots [16,67,78], the filling of dot orbitals is governed
by Hund’s rule,6 observation of which indicates that the Coulomb exchange interac-
tion within the quantum dot is relevant and spins larger than S = 1/2 can build

5There exist also self-assembled quantum dots, which are not defined by electrostatic gates, and
hence, cannot be controlled locally in the same fashion. However, these quantum dots can be
manipulated optically, by lasers. The resolution of a local control is usually limited by laser’s spot
size, but an improvement can be achieved using near-field optics.

6When filling a set of (almost) degenerate orbital levels, the states with one and the same spin
component are filled first.
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up. Signatures of such spin-transitions have been observed in experiments [78–83].
Relaxation between quantum dot sates with different spin have also been addressed
in experiment [84] and excited sates with different spins have been studied using pulse
excitation measurements [85].

Single-electron quantum dots have attracted much interest in recent years in the
context of the spin-based quantum computing proposal [27]. For the first time, the
Zeeman energy has been directly observed in transport spectroscopy [86, 87], which
allowed the authors of Ref. [86] to apply the pulse excitation technique [84, 85] to a
single-electron GaAs quantum dot and establish a lower bound on the spin-relaxation
time, T1 ≥ 50µs, in a magnetic field of B = 7.5 T. In a subsequent experiment [64], a
sensitive charge detector was incorporated in the scheme, and the true spin-relaxation
time was found to be T1 ≃ 1 ms. The spin relaxation time was also measured in an
array of self-assembled InGaAs quantum dots using optical methods [88]. Spin life-
times of up to T1 = 20 ms [88] have been found in these smaller quantum dots, with
a strong dependence of T1 on the magnetic field B. The measurements of the spin T1

time suggest that the mechanism considered in Refs. [89, 90] is responsible for spin
relaxation in quantum dots. This mechanism is based on the spin-orbit interaction
and phonon emission and it is considered in detail in Chap. 4 of this thesis.

Two tunnel-coupled quantum dots, each with one electron, have also been realized
recently [70–72]. The exchange interaction J between the spins of such coupled quan-
tum dots is of central interest for spin-based quantum computing [27]. In transport
spectroscopy, the exchange energy J can be seen in a number of ways [91], however
a direct access to J , similar to how the Zeeman energy was accessed [86,87], remains
a challenging task. The difficulties to access J are primarily due to extremely small
values of J achieved in double dots, and also due to not sufficiently stable double-dot
structures. In recent years, a new approach has been taken by Zumbühl et al. [120],
in which the double dot is replaced by a single dot of elongated shape. In the two-
electron regime, this quantum dot has electronic orbitals which are similar to those
of a double quantum dot [121]. The typical values of J are here much larger than
in the state-of-the-art double dots, and can be accessed in transport. This allowed
Zumbühl et al. [120] to measure J as a function of an applied orbital magnetic field
B. The results agree well with the Hund-Mulliken model for the double dot [59],
in particular what concerns the singlet-to-triplet transition occurring with increasing
B. The next step in this approach is to add a side gate to control J down to small
values.

1.3 Quantum entanglement

Quantum entanglement is an important resource, which is provided by the world of
quantum and can be used in a number of ways in communication and cryptography.
Entangled quantum states of two parties (systems) are states that cannot be presented
as a product of states of the two parties. Physically, one can imagine this as a situation
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when each party separately has no definite state, while both parties together have a
definite state. The simplest example (due to Bohm, 1951) is two spin 1/2 particles
in a singlet state and separated from each other at a distance where they no longer
interact. The state of these two particles has the following form

|ψ〉 =
1√
2

(| ↑〉L| ↓〉R − | ↓〉L| ↑〉R) , (1.10)

where | ↑〉L denotes the particle on the left in spin up state, etc. Now, if one performs
a measurement on the left particle and finds it in the spin up state, then a subsequent
measurement on the right particle yields spin down with certainty. This type of (anti-
)correlation is at the heart of the Einstein-Podolsky-Rosen (EPR) paradox7 [92]. Of
course, it is rather counterintuitive to assume that, by measuring the state of one
particle, one can change (instantaneously!) the state of the other particle; the latter
might even be at the other end of the universe. The EPR paradox occurs because
we are used to thinking that the physical reality exists on its own, independent
of the knowledge that is available about it. It is however not so in the example
above. An experimentalist that measures the state of the right particle can by no
local means deduce whether or not any measurement has been performed on the left
particle. In this sense, the local physical reality of the right particle is independent of
measurements carried out on the left particle. This is natural because the particles
do not interact with each other. It is only when the outcome of a measurement
performed on the left particle is available to the experimentalist who measures the
right particle, that he can conclude that measuring the left particle has affected the
state of the right particle.

Pairs of entangled particles became known as EPR pairs. They cannot be used alone
for communication. However, if combined with a classical communication channel,
they can be used for superdense coding [93], quantum cryptography [94], and quan-
tum teleportation [95]. In addition, entangled states can be used to experimentally
verify whether any local hidden-variable theory might be responsible for the quan-
tum behavior that we observe in this world [96]. To test this one performs a set of
measurements (called the Bell inequality test) that measure all different non-local
correlations produced by the EPR pairs. According to quantum mechanics, the wave
function in (1.10) is the complete knowledge about the EPR pair, and no local hidden-
variable theory is capable of reproducing as many different correlations as follow from
Eq. (1.10). Thus, the Bell inequality test can rule out the possibility of any local
hidden-variable theory, without even considering the details of such a theory. While
such a test aims at proving the completeness of quantum mechanics, it can also be
used to measure the decoherence of the EPR pairs.

7In this context, the EPR paradox occurs if one considers two possible choices for the spin
measurement axis: (i) z and (ii) x. After measuring the left particle, the right particle ends up in a
definite state of: Sz in case (i) and Sx in case (ii). Since the operators Sz and Sx do not commute,
the physical reality of the right particle depends on the type of measurement carried out on the
left particle, in spite of the fact that the particles are non-interacting. This constitutes the EPR
paradox.
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Creation and detection of EPR pairs is the state-of-the-art in quantum optics, where
photons with entangled polarizations are used to perform Bell inequality tests [97].
In the solid state, however, this task is rather challenging and has not been put
to practice so far. Both the coherence times and the length scales at which en-
tangled particles can be separated from one another are much shorter in the solid
state. Thus, a Bell inequality test will rather be a test of the quantum-mechanical
coherence of the quasi-particles than of the fundamentals of quantum mechanics.
Nevertheless, entanglement is a very interesting and actual topic in condensed mat-
ter physics. A large number of proposals for creating EPR pairs has been put forward
in recent years [98–107]. Schemes for detection of spin entanglement have also been
suggested [108–114].

In the solid state, it is often difficult to separate two particles away from one another
and still preserve their two-particle state coherent. One might ask the question of
whether the notion of entanglement is meaningful also when the two parties overlap.
This becomes particularly controversial when indistinguishable particles are involved.
A simple example is the double dot shown in Fig. 1.1 at a finite inter-dot tunnel
coupling. The singlet state of the two electrons in the double dot reads [115],

|ψ〉 =
1√

1 + φ2
(d†+↑d

†
+↓ − φd†−↑d

†
−↓)|0〉, (1.11)

where |0〉 is the vacuum state and d†ns creates an electron in the orbital state Φn(r)
and spin state χs(σ). Φ+(r) is the symmetric and Φ−(r) the antisymmetric orbital
wave function of a single electron in the double dot potential. In Eq. (1.11), we
neglected the contribution of highly excited double dot orbitals, assuming that the
tunnel coupling is small compared to the single-dot level spacing. The parameter φ in
Eq. (1.11) describes the correlation between the electrons in the singlet state induced
by the Coulomb interaction. In the Hund-Mulliken approach, it is given by [115]

φ =

√

1 +

(
4tH
UH

)2

− 4tH
UH

, (1.12)

where tH and UH stand for the Hubbard tunneling amplitude and on-site Coulomb
repulsion [59]. Using the measure of entanglement η, introduced by Schliemann et
al. [116,117], we obtain that the singlet state in Eq. (1.11) is entangled, with [91,118]

η =
2φ

1 + φ2
≡ (1 + φ)2

2(1 + φ2)︸ ︷︷ ︸
− (1 − φ)2

2(1 + φ2)︸ ︷︷ ︸
. (1.13)

single & double occupancies

The measure η [116, 117] characterizes the amount of electron-electron correlations
contained in a given state. According to this measure the singlet state in Eq. (1.11) is
not entangled at φ = 0, because it represents a state of the Hartree-Fock type, which
has no quantum correlations beyond the anti-symmetrization of the wave function.

11



CHAPTER 1. INTRODUCTION

Note that this state occurs in the double dot if the Coulomb interaction is absent
(see Eq. (1.12)). In the presence of Coulomb interaction, however, detaching the
dots from each other results in creating entanglement. For decoupled quantum dots
(φ = 1), the singlet state (1.11) is maximally entangled, and can be written in the
form of Eq. (1.10).

The interaction-induced correlations are not the only correlations that give rise to
entanglement. A finite amount of entanglement is contained in the state (1.11) even
at φ = 0, due to the fermionic nature of the electrons. Using a different measure
of entanglement, as introduced by Wiseman and Vaccaro [119], we obtain that the
entanglement between the left and right dots in the singlet state (1.11) is given by8

EP =
(1 + φ)2

2(1 + φ2)
. (1.14)

Note the difference between the measures EP and η for our double dot example. EP

gives the probability to distill an EPR pair from a given quantum state, using local
operations and classical communications (LOCC). Whereas η gives the difference
between the probabilities to distill an EPR and a non-EPR pair, see Eq. (1.13). The
EPR pair is the singlet state with one electron per quantum dot (single occupancy),
and the non-EPR pairs are the singlets with both electrons occupying one and the
same quantum dot (double occupancy).

The interaction parameter φ has recently been accessed experimentally in transport
spectroscopy by Zumbühl et al. [120]. The singlet state (1.11) was realized in an elon-
gated quantum dot with two electrons. Owing to the Coulomb interaction, the two
electrons repel each other to opposite corners of the quantum dot and form a charge
distribution that is similar to the double dot case. This picture is confirmed by nu-
merical studies of electronic structure in elliptic quantum dots [121]. The cotunneling
conductance through the elongated quantum dot allowed the authors of Ref. [120] to
measure the singlet-triplet energy J as a function of the magnetic filed B. Due to the
orbital effect of the magnetic filed, J(B) changes sign at a particular value of B. The
cotunneling conductance shows a rich behavior in the neighborhood of J = 0 [120],
as expected from the theory [115]. This has been exploited in Ref. [120] to extract φ.

Note that the measurement of φ is a measurement of the correlations between the
electrons, and it goes beyond traditional measurements of the dot energy spectrum.
Zumbühl et al. [120] have thus demonstrated for the first time that one can access
the state of correlated electrons in transport spectroscopy, and determine the degree
of its entanglement.

8For this, we write the singlet state in the following form

|ψ〉 =
1

2
√

1 + φ2

[
(1 + φ)(d†L↑d

†
R↓ − d†L↓d

†
R↑) + (1 − φ)(d†L↑d

†
L↓ + d†R↑d

†
R↓)
]
|0〉.
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1.4 Decoherence

Decoherence is a phenomenon that transforms the quantum world into the classical
one, as one goes from simple systems to more complex ones. The systems that
interact with a bath of many degrees of freedom lose their quantum coherence due to
the system-bath interaction and the complexity of the bath. These systems appear to
us as classical, which is a word for saying that they are being continuously measured
and reside in states that exhibit no uncertainty for a macroscopic observer9. We
can be sure of such systems that if their state changes over time then all physical
quantities (those that we have introduced to describe the classical world) have existed
at all times during this change. This appears of course natural to anyone used to the
classical world, whereas in fact it is a fascinating phenomenon of systems with many
degrees of freedom.

The most illustrative example of decoherence is, perhaps, the motion of a pendulum
in the air. The air molecules scatter off the suspended object, and by doing so
they induce a measurement of the coordinate. The quantum mechanical motion
of the pendulum, which would be that of a harmonic oscillator, is perturbed by a
continuous measurement from the environment and, as a result, obeys Newton’s laws
of mechanics with a high precision.

The electron spin is also subjected to decoherence. A superposition of states, as given
in Eq. (1.7), lasts only for a finite amount of time in a realistic system. The coupling
to the environment “entangles” the spin with the environmental degrees of freedom.
Depending on whether the spin state is | ↑〉 or | ↓〉, the environment undergoes
slightly different evolutions. The spin state becomes “known”, in some sense, to the
environment, although, this knowledge might be completely unaccessible to us, due
to the complexity of the environment. The superposition of states in Eq. (1.7) will
decohere to a mixture of states described by the density matrix [122]. For example,
the following state can be realized

ρ =
1

2
(| ↑〉〈↑ | + | ↓〉〈↓ |) . (1.15)

This mixed state is identical to the state of a coin tossed in the air and falling onto
the floor with equal chances for “heads” or “tails”. The state of the electron spin has
therefore been transformed from a quantum state in Eq. (1.7) to a classical one in
Eq. (1.15), due to the interaction with the environment.

The decay of a quantum-mechanical state, due to the interaction with the environ-
ment, is a complex process and is fully described by the density matrix ρ(t). The

9To be precise here, we must say that decoherence is responsible only for the absence of quantum-
mechanical superpositions of states in the classical world. The simultaneous reality of observables,
such as momentum and coordinate, comes about in the classical world due to the fact that the
quantum-mechanical uncertainty of a macroscopic observable is usually small compared to its mean
value. The decoherence ensures only that large uncertainties (e.g. “squeezed” states) are not formed
on the scale of the measured macroscopic observable.
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time evolution of the density matrix depends on the details of both system and envi-
ronment, their (mutual) initial state, and their coupling to each other. In most cases,
however, the environment consists of a large number of degrees of freedom, which
interact with each other in a complicated way. As a consequence, the environment
loses the “memory” about its state over some correlation time τc. [This is to say that
no coherent evolution is expected between the system and any environmental degree
of freedom over a time scale larger than τc.] If the system couples weakly enough
to the environment, then it will take a large number of time intervals τc in order for
the density matrix ρ(t) to change by a sizable amount. Under this condition, the
environment is said to be Markovian with respect to the system. In this case, one
can make the following (Markov) approximation. Instead of describing the system
by its microscopic density matrix ρ(t), one introduces a “coarse graining” of the time
variable t with a time scale τg and describes the system with an effective density
matrix [123],

ρ̃(t) =
1

τg

∫ t+τg

t

ρ(t′)dt′, (1.16)

where both ρ(t) and ρ̃(t) are in the interaction representation. The time scale τg is
chosen such that τc ≪ τg ≪ τ , where τ stands here for system’s decoherence time.
The averaging in Eq. (1.16) smoothes out the rapid changes in ρ(t) that occur on
the time scale τc due to the coherent coupling of the system with the environmental
degrees of freedom. Furthermore, for this approximation to be meaningful in ex-
periment, both the initialization and the measurement of system’s state should be
carried out adiabatically with respect to this coherent coupling, i.e. on the time scale
τg ≫ τc. The Markov approximation implies that the time evolution of ρ̃(t), to a
future moment in time, is independent of the way the system arrived at the density
matrix ρ̃(t). This is so, because the environment is virtually the same at all moments
in time on the “coarse grain” axis, whereas in reality the environment relaxes to its
stationary state on the time scale τc ≪ τg.

The interaction of the spin S = 1/2 with the environment can be generally written
in the following form

H = ~ωZSz + S · h(t), (1.17)

where ~ωZ = gµBB is the Zeeman energy, S = σ/2 is the electron spin operator,
with σ = (σx, σy, σz) being the Pauli matrices. The environmental fluctuations are
represented by h(t) in the interaction representation with the Hamiltonian of the
environment. h(t) can contain both classical and quantum fluctuations. We assume
that averaging over the environment gives h(t) = 0; otherwise, the mean value of
h(t) can be absorbed into the first term in Eq. (1.17), resulting, in general, in a
renormalized ωZ and a different direction of the z-axis. The correlation time τc can
be inferred from the decay of the correlator cij(t) = hi(t)hj(0) as a function of time.
For a sufficiency weak coupling h(t), the environment is Markovian, and ρ̃(t) decays
exponentially to the equilibrium density matrix ρT . In general, this decay is governed
by three decoherence times. For the sake of simplicity, we consider here only the case
when the Zeeman energy ~ωZ is much larger than the decoherence rates (secular
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approximation [123]). Then, the spin precession around the z-axis averages out the
inhomogeneity of the fluctuating field h(t) in the (x, y)-plane and the decay of ρ̃(t) is
governed only by two times (τ = T1, T2). In the Schrödinger representation, the time
evolution of the density matrix then reads,

ρ̃↑↑(t) = ρ̃↑↑(0)e−t/T1 + ρT
↑ (1 − e−t/T1),

ρ̃↓↓(t) = ρ̃↓↓(0)e−t/T1 + ρT
↓ (1 − e−t/T1),

ρ̃↑↓(t) = ρ̃↑↓(0)e−t/T2−iωZt = ρ̃∗↓↑(t), (1.18)

where ρT
↑ = 1−ρT

↓ = [1+exp(~ωZ/T )]−1, with the temperature T measured in energy
units. The decay times are given by the following expressions:

1

T1
=

1

2~2

∫ +∞

−∞
dte−iωZtRe

(
hx(0)hx(t) + hy(0)hy(t)

)
, (1.19)

1

T2

=
1

2T1

+
1

2~2

∫ +∞

−∞
dthz(0)hz(t). (1.20)

The electron spin relaxes to thermal equilibrium on the time scale T1. The processes
that contribute to 1/T1, see Eq. (1.19), involve energy exchange with the environment.
In contrast, the last term in Eq. (1.20) is due to purely elastic processes, and is called
the dephasing contribution. The decoherence time T2 is determined, thus, by both
inelastic and elastic processes, and as a result T2 has the upper bound T2 ≤ 2T1, see
Eq. (1.20). In some cases, the environment cannot efficiently exchange energy with
the electron spin. Then, the elastic processes dominate the decoherence, resulting in
T2 ≪ T1. However, the contribution of the elastic processes can be suppressed by
reducing the correlation time τc, i.e. making the environment more Markovian. [Note
that the last term in Eq. (1.20) decreases with decreasing τc, because the integrand
contributes only in the time interval |t| . τc.] This effect is known as “motional
narrowing” [123], and it occurs usually when the spin is moving in the sample, thus
“seeing” a rapidly changing environment.

A long decoherence time T2 is of great importance for spin-based quantum comput-
ing [27]. In quantum dots, the electron spin interacts with the environment via a
number of interactions:

• The Zeeman interaction HZ = gµBS ·B allows coupling of external fluctuating
magnetic fields to the elelctron spin. In addition, if the g-factor is coordinate
dependent in the sample, such as in Ref. [62], then the electron spin becomes
vulnerable towards charge noise.

• In bulk semiconductors, the spin-orbit interaction leads to a strong spin deco-
herence, caused by the electron being scattered off static impurities. In quan-
tum dots, however, this effect is absent, because the electron is localized. The
spin-orbit interaction is typically a small perturbation on top of a large size-
quantization energy of the dot. The dot ground state is a Kramers doublet

15



CHAPTER 1. INTRODUCTION

and can be considered as an effective spin 1/2. At zero magnetic field, the
time-reversal symmetry protects the electron spin from decoherence. In a mag-
netic field, however, the electron spin couples via the spin-orbit interaction
to all degrees of freedom that interact with the electron charge. In particu-
lar, the electron spin can be efficiently relaxed to thermal equilibrium by the
electron-phonon interaction [90,124]. Measurements of the spin relaxation time
T1 [64, 88] reveal features specific to this mechanism. In quantum dots defined
on a 2DEG, the spin orbit-interaction is linear in momentum. Then, the deco-
herence time T2, due to the spin-orbit interaction and any orbital bath, reaches
its upper bound T2 = 2T1 [90].

• The hyperfine interaction couples the electron spin to a large number N (∼ 105)
of nuclear spins inside the quantum dot. The spin decoherence takes place due
to the uncertainty of the Overhauser field,10 HOv = 〈HOv〉+ δHOv. Typically,
the nuclear spins are at thermal equilibrium and the temperature is much larger
than their Zeeman energy. Then, 〈HOv〉 = 0 and δHOv ≃ A/

√
N , where A is the

atomic hyperfine interaction constant; A/
√
N corresponds to a magnetic field of

100 Gauss in GaAs. The correlation time τc of the nuclear bath is rather large
(τc ∼ 10−4 s), being determined by the dipolar interaction between the nuclear
spins. The decoherence of the electron spin occurs in this case on the time scale
τ = ~

√
N/A, as given by the strength of δHOv. Applying a strong magnetic

field (EZ ≫ A/
√
N) suppresses the electron spin relaxation, since the electron

Zeeman energy (EZ) is too large to be dissipated by the hyperfine interaction.
The decoherence of the electron spin occurs then only due to the uncertainty of
δHOv along the direction of the external magnetic field. The decoherence time
can thus be increased by reducing this uncertainty. The decay of the electron
spin due to the hyperfine interaction has been studied in Refs. [125–130].

• The exchange interaction of the electron spin with magnetic impurities can also
lead to decoherence. At zero magnetic field, this is similar to the decoherence
due to the nuclear spins. However, with applying a magnetic field, the magnetic
impurities “freeze out” and do not give rise to decoherence. In some materials,
like GaAs, the concentration of magnetic impurities can be negligibly small
(nM ≃ 1013 cm−3). There, this mechanism is expected to show up only if a
large number of quantum dots (∼ 103) is fabricated.

The decoherence time of the electron spin in quantum dots can be accessed easily,
if spin manipulation and read-out are combined. The Larmor precession can be
monitored as a function of time in a measurement of Ramsey fringes. For this, the
spin is first initialized in a given state, say | ↑〉, in the presence of a magnetic field.
Then, one applies a π/2-pulse that prepares the spin, at t = 0, in the state (1.7) with

10As a quantum object, the Overhauser field is capable of mixing the electron spin with the
nuclear spins, giving rise to a quantum-mechanical uncertainty. In addition, however, the state of
the nuclear spins is not certain, as it is described by the density matrix at thermal equilibrium. This
adds another source of uncertainty — statistical uncertainty — to the Overhauser field.
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α = β = 1/
√

2. This state is left to evolve freely with time according to Eq. (1.18),
and after some time t another π/2-pulse is applied in the same way. Finally, the
spin is measured, yielding | ↑〉 or | ↓〉 with probabilities p↑ = (1 − e−t/T2 cosωzt)/2
and p↓ = (1 + e−t/T2 cosωzt)/2. If the environment is not Markovian, then T2 can
be viewed as a time-dependent quantity. An example is the decoherence due to the
hyperfine interaction, which gives T2(t) = τ 2/t.

The decoherence time T2 can also be accessed in transport and optical measurements
as proposed in Refs. [131] and [132], resp. For this, a monochromatic ESR source is
required, which should efficiently couple only to the electron spin on the quantum
dot and induce Rabi oscillations. The Rabi oscillations act as a heating mechanism
on the quantum dot and induce non-equilibrium occupation of the excited spin state.
This can be utilized in transport to allow ESR-assisted sequential tunneling though
the quantum dot, or in optics to change the photoluminescence intensity of quantum
dots. The decoherence rate 1/T2 is seen in the current, or in the photoluminescence
intensity, as a function of the ESR frequency ωESR, because the heating efficiency
depends on how well ωESR matches ωZ . The decoherence “smears” the Zeeman energy
over an interval ∼ ~/T2, thus the current (or the photoluminescence intensity) has
a peak of width ∼ 1/T2 around ωESR = 〈ωZ〉. It is crucial for this method that the
ESR source has a narrow frequency width δωESR ≪ 1/T2.

Finally, a third method to assess the decoherence time of spin has recently been
demonstrated in experiment [133]. It exploits the physics of the Pauli blockade regime
in an asymmetric double quantum dot with two electrons [134]. Instead of leads,
however, a sensitive charge detector is used in Ref. [133] to monitor instances of Pauli
blocking of the double dot. The decay of the inter-dot singlet state as a function of
time can be studied by applying a sequence of pulses to the double dot [133], which
allows one to access the decoherence time of a single spin. A decoherence time of 10 ns
was found in Ref. [133], which is attributed to the decoherence due to the hyperfine
interaction.

1.5 Transport and Kondo effect in quantum dots

Electron transport is a common method of studying quantum dots. The differential
conductance G = dI/dV as a function of the source-drain bias V reveals the internal
energy structure of the dot [16]. More recently, also the electron-electron correlations
(entanglement) have been accessed in a two-electron quantum dot using transport
measurements [120]. The simplest transport setup is shown in Fig. 1.2 (a). The
quantum dot is probed by two leads at chemical potentials µL and µR. The dot
Hamiltonian Hd contains the interaction between the electrons in the quantum dot.
Assuming that Hd is not significantly changed by applying a source-drain bias, ∆µ =
µL − µR = −eV , one can access the energy spectrum of Hd by measuring G as
a function of V and Vg. A typical gray-scale plot of G(V, Vg) will look as shown
in Fig. 1.2 (b), where ∆N denotes the excitation energy of the quantum dot with N
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Figure 1.2: (a) A quantum dot with Hamiltonian Hd is tunnel-coupled to two Fermi-
liquid leads at chemical potentials µL and µR. The number of electrons on the dot is
controlled by the gate voltage Vg and the coupling to the leads by the tunneling amplitudes
tL and tR. (b) The differential conductance G = dI/dV as a function of eV and Vg reveals
the energy spectrum of the quantum dot. The quantum dot is biased symmetrically, i.e.

∂(µL + µR)/∂V = 0. The excitation energies ∆N and ∆N+1 (∆N+1 > ∆N ) can be seen
both in the sequential tunneling (solid line) and in the cotunneling (dotted line) regimes.

electrons (∆N+1 > ∆N ). For simplicity, we consider only one lowest excitation energy
per dot occupation number. The transport through the quantum dot is governed by
either sequential-tunneling [16] or cotunneling [135] processes.

Sequential tunneling is the lowest (first) order process in the dot-lead tunnel coupling.
It involves either tunneling of a quantum dot electron into the leads or tunneling of
a lead electron onto the quantum dot. The dot occupation number N , thus, changes
by ∆N = ±1 as a result of this process. The transport through the dot takes place
in the following sequence (assuming µL > µR): an electron from the left lead hops
onto the dot and changes its occupation number from N to N + 1, then, at a later
time, an electron from the dot hops out into the right lead and restores the quantum
dot to its initial occupation number N . As a result of this sequence, one net electron
is transferred from the left to the right lead. The energy conservation restricts the
sequential-tunneling transport to a regime of large source-drain voltages:

{
e|V |/2 ≥ min{E+(N), E−(N)},
E±(N) ≥ 0,

(1.21)

where E±(N) = E(N±1)−E(N)∓µ, with µ = (µL+µR)/2, and we have assumed that
the source-drain voltage is applied symmetrically, ∂µ/∂V = 0. The dot occupation
number N used in the first line of Eq. (1.21) is defined in the second line by the
inequalities therein. Note that E±(N) depends linearly on Vg. By an appropriate
choice of scale for Vg, one can achieve E+(N) = −E−(N + 1) = V N,N+1

g − Vg, where
V N,N+1

g is the position of the sequential-tunneling peak at V → 0 (linear regime).
The bias region not covered by Eq. (1.21) represents a set of Coulomb blockade (CB)
diamonds aligned along the axis V = 0. Inside these diamonds, the transport is
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governed by higher order processes in the dot-lead tunnel coupling.

Cotunneling is the second order process in the dot-lead tunnel coupling. It involves
tunneling of an electron from one lead to the other (or same lead) via the quantum
dot. In contrast to the sequential tunneling, cotunneling does not change the dot
occupation number N . One can distinguish between two kinds of cotunneling pro-
cesses: (i) elastic cotunneling, where the dot state does not change after the electron
tunnels through, and (ii) inelastic cotunneling, where the dot state changes after the
electron tunnels through. Note that, for the elastic cotunneling, the quantum dot is
analogous to a tunnel barrier. For the inelastic cotunneling, however, the same anal-
ogy would imply that the quantum dot is similar to a tunnel barrier which switches
its transmission after an electron tunnels through. The elastic and inelastic cotunnel-
ing can be separated from each other in transport, provided the quantum dot has a
finite excitation energy. For example, the region of elastic cotunneling is represented
by a light-gray scale in Fig. 1.2 (b). The inelastic cotunneling is activated when the
source-drain bias e|V | is larger than the dot excitation energy (∆N or ∆N+1).

Besides sequential tunneling and cotunneling, the electron transport in quantum dots
can be governed also by the Kondo effect [136]. The Kondo effect is a textbook ex-
ample of correlated many-body physics. It was discovered nearly a century ago [137]
in transport through metals which contained magnetic impurities. Since then, the
Kondo effect has been extensively studied in a variety of contexts [136, 138–140].
A “revival” of the Kondo effect [141] occurred with its observation in semiconductor
quantum dots [142]. Because the quantum dots are extremely tunable, they allow one
to study experimentally a variety of models, which before could be studied only the-
oretically. Particularly interesting are instances of non-Fermi-liquid behavior, which
display peculiar features in transport or other properties of the quantum dots. One
such quantum critical point is addressed in Chap. 2.

The simplest Hamiltonian displaying Kondo effect is that of the Kondo model [138],

H =
∑

s

∫ ∫
dxdx′ψ†

s(x)ε(x− x′)ψs(x
′) + JS ·

∑

ss′

σss′

2
ψ†

s(0)ψs′(0), (1.22)

where ε(x− x′) =
1

2π

∫ K

−K

dkεke
ik(x−x′), with εk = ~vFk, (1.23)

Here, ψs(x) annihilates a lead electron with spin s at position x, εk is the kinetic
energy of an electron with wave-vector k, S is the dot spin (S = 1/2), which couples
to the lead electrons at position x = 0 with the coupling constant J . The lead band
ranges in the interval k ∈ (−K,K) and is half-filled with electrons, so that the Fermi
level corresponds to kF = 0. An electron at the Fermi level has the kinetic energy
EF = ~vFK with respect to the lowest band edge ε−K = −~vFK. The interaction
of a single electron in the lead with the dot spin S can at most have the strength
Eint ≃ JK. Note that both energy scales are proportional to K. Typically, J ≪ ~vF

and one obtains Eint ≪ EF . In spite of its smallness, the second term in Eq. (1.22)
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builds up a many-body correlation between the dot spin and the lead electrons at low
temperatures.

The Kondo effect is exhibited in localizing a lead electron to the neighborhood of the
quantum dot at low temperatures. The dot spin S forms a singlet state with the lead
electron and binds it under the Fermi level with some characteristic energy TK . The
spatial extension of the localized electron (Kondo cloud) is given by ξK = ~vF/TK .
Two distinct phenomena are at the heart of the Kondo effect:

1. Localization. If the first term in Eq. (1.22) was not present, then the quantum
dot would favor localization of a lead electron to a region of space of size ξ = 1/K
around the dot (at x = 0) and with a binding energy TK ≡ Eint ≃ JK. Note that
this limit corresponds to a very flat band of lead electrons (vF ≪ J/~). At vF ∼ J/~,
the first and second terms in Eq. (1.22) compete with each other and, at the single-
particle level, the localization disappears as vF reached some critical value ∼ J/~.
A similar localization effect also occurs in a much simpler model, which describes
a spin-less particle moving freely along the x-axis and interacting in one point with
a harmonic oscillator in its ground state. The corresponding Hamiltonian has the
following form [143]

H = − ∂2

∂x2
+

1

2

(
− ∂2

∂q2
+ q2

)
+ Λqδ(x), (1.24)

where q is the harmonic oscillator coordinate and Λ is the coupling constant. The role
of the spin-spin interaction in Eq. (1.22) is played here by the linear in q interaction,
and the role of the energy penalty EF for localizing an electron from the Fermi surface
is played here by the potential energy of the harmonic oscillator. The interaction term
in Eq. (1.24) favors a shift of the equilibrium position of the harmonic oscillator,
provided Λ ≥

√
2, and a localized state of the particle emerges. Similarly to this, a

spontaneous formation of a singlet state occurs in Eq. (1.22), provided J exceeds its
critical value J ≃ ~vF .

2. Scaling. At low temperatures, the lead electrons below the Fermi level are “frozen”
due to the Pauli blockade. The “active” electrons are those at the Fermi level within
an energy band ∼ T . In this case, one can reduce the bandwidth from ~vFK to
∼ T , introducing an effective Hamiltonian in which the frozen electrons from the lead
are excluded. This significantly simplifies the problem, since then we have to deal
with fewer electrons in the lead. It also introduces additional coherent effects, which
before were hidden behind the numerousness of electrons. Thus, when scaling K
down to ∼ T/~vF , one has to take into account the virtual excitations of the frozen
electrons/holes to the active band at the Fermi level. For example, an electron at the
Fermi surface can scatter from state k to k′ either directly, i.e. in the first order of J ,
or indirectly, via an intermediate state k′′ of a frozen electron/hole, i.e. a process of
order J2. In the Kondo model (1.22), such virtual excitations add up coherently to
the coupling constant J . This renormalization of J is a many-body effect and it would
not occur if the lead contained a single electron at the energy εkF

= 0. The physical
reason behind this renormalization is that the quantum dot acts as a memory unit
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(qubit) and correlates the virtual processes of many electrons/holes with each other.
Mathematically, it is expressed in a non-vanishing commutator,

∑

s′′

[S · σss′′,S · σs′′s′] = −2S · σss′ 6= 0. (1.25)

The coupling constant J is enhanced by the scaling procedure (for J > 0), and,
for a sufficiently low temperature, J reaches its critical value Jc ≃ ~vF . Since the
band edge is not sharp, this results in a crossover from the weak to strong coupling,
with a width ∼ T . In the Kondo model, the scaling of J has an “infrared diver-
gence”, which means that for an arbitrarily small bare J there will be always a finite
temperature T = TK at which the effective J reaches Jc. Then, the spin S and
a lead electron form a bound state, with a binding energy that exceeds the scaled-
down bandwidth. The characteristic T of the Kondo effect is the Kondo temperature
TK = ~vFK exp(−2π~vF/J).
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Chapter 2

Kondo effect and singlet-triplet
splitting in coupled quantum dots
in a magnetic field

The interplay between the Kondo effect and the exchange interaction K of two elec-
tron spins in a double quantum dot are studied in this chapter. We calculate [115] the
cotunneling current with elastic and inelastic contributions and its renormalization
due to Kondo correlations, away and at the degeneracy point K = 0. We show that
these Kondo correlations induce pronounced peaks in the conductance G as function
of magnetic field B, inter-dot coupling tH , and temperature. The long-range part of
the Coulomb interaction becomes visible due to Kondo correlations resulting in an
additional peak in G vs tH with a strong B-field dependence. These conductance
peaks thus provide direct experimental access to K, and thus to a crucial control
parameter for spin-based qubits and entanglement.

2.1 Introduction

Semiconductor quantum dots have attracted much interest over the years due to their
rich and reproducible transport properties in the Coulomb blockade (CB) regime,
where the number of electrons on the dot is quantized due to charging effects [76].
More recently, attention has focused on the spin of the electron in such nanostruc-
tures, with the spin introducing new correlation effects such as Kondo effect [139,
140, 142, 144–147], and an interplay of the spin exchange interaction and Kondo ef-
fect in single [148–157] and double dots [158–161]. On the other hand, it has been
pointed out that the spin, confined to a quantum dot or atom, is a suitable candidate
for quantum information processing [27], due to unusually long decoherence time of
spin [7]. A crucial element in such spin-based quantum computing schemes is the
Heisenberg exchange interaction K between spins of adjacent dots, being controlled
via the interdot tunneling [27]. Thus, the primary goal is to achieve control over
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K which then allows one to generate deterministic entanglement of spins. Using a
Hund-Mulliken (HM) approach to describe a realistic double dot (DD) it has been
shown [59] that K is very sensitive to long range Coulomb interaction as well as to
magnetic fields by which a singlet-triplet (ST) crossing can be tuned. Also, recent
experiments [149] and calculations [153–155] on single dots show an enhancement
of the Kondo temperature TK at the ST transition. Motivated by this we study
here transport and the Kondo effect in such a realistic DD system within the HM
approach, thereby going beyond short-range on-site models used so far to describe
the Kondo effect in double dots [158, 160]. In particular, we calculate the current
through the DD via a Schrieffer-Wolff transformation and via a systematic cotun-
neling calculation including elastic and inelastic contributions. Using a perturbative
renormalization group (RG) approach we find an exponentially increasing TK with
increasing the inter-dot coupling tH at the ST degeneracy K = 0. We show that the
conductance in the cotunneling regime shows pronounced peaks induced by Kondo
correlations and long range Coulomb interactions as function of tH , magnetic field,
and temperature. Such Kondo enhanced peaks in the conductance thus provide di-
rect experimental access to singlet/triplet states and their exchange splitting K–the
quantities of crucial importance for spin-based qubit schemes.

2.2 Model Hamiltonian

We consider a DD system consisting of two lateral quantum dots tunnel-coupled to
metallic leads (Fig. 1a) in the presence of a perpendicular B-field. At low tempera-
tures T , the conductance G of the DD versus the common gate voltage Vg shows sharp
doublets of sequential tunneling peaks [162] separated by CB valleys. We consider a
CB valley, where the occupation number of each dot is odd. The low energy sector
of the DD consists of a singlet and a triplet,

|00〉 =
1√

1 + φ2
(d†+↑d

†
+↓ − φd†−↑d

†
−↓)|0〉 ,

|11〉 = d†−↑d
†
+↑|0〉 , |1 − 1〉 = d†−↓d

†
+↓|0〉 , (2.1)

|10〉 =
1√
2
(d†−↑d

†
+↓ + d†−↓d

†
+↑)|0〉 .

Here, we assumed a symmetric DD, which has two electrons on its outermost sym-
metric (d†+,σ) and anti-symmetric (d†−,σ) orbitals; |0〉 is the state of the inner-shell
electrons. A detailed analysis of the DD spectrum has been performed for N = 2 [59]
and N = 6 [167] electrons. The competition between the kinetic energy gain and
Coulomb repulsion is described by the interaction parameter φ =

√
1 + r2

H − rH ,
with the Hubbard ratio rH = 4tH/UH determined by the extended inter-dot tun-
neling amplitude tH and the on-site Coulomb repulsion UH [59]. The Heisenberg
exchange interaction between the DD spins is given by

K =
1

2

√
U2

H + 16t2H − UH

2
+ VC = KH + VC , (2.2)
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Figure 2.1: (a) Double-dot setup: two spin-1/2 quantum dots tunnel-coupled to two metal-
lic leads at chemical potentials µL and µR = µL−∆µ. (b) The ratio K/KH = 1−|VC |/KH ,
showing the significance of long range Coulomb interaction; we apply our model to GaAs
dots with ~ω0 = 3meV and N = 2. (c) A schematic RG flow diagram, showing the crossover
region between two types of particle-hole (P-H) symmetry at tL = tR. The fixed point of
the two-impurity Kondo model (2IKM) is approached for φ→ 1; whereas for φ ≈ 0 the RG
flow evolves efficiently toward the universal Fermi-liquid fixed point (FL). The dot-dashed

line shows the termination point (D ∼ T
(1)
K ) in a realistic system with finite coupling con-

stants. (d) The number γ versus tH at K = 0 for different tR/tL, showing the enhancement
of the Kondo temperature.

where KH is the so called Hubbard part, occurring for short range Coulomb interac-
tion, and VC < 0 is a contribution stemming from long range Coulomb interaction [59].
Here, we consider small dots, for which the screening length is much larger than the
DD size. The contribution VC plays a crucial role in achieving a ST transition. Al-
ready at B = 0, the term VC introduces a significant correction to K over a range of
tH , see K/KH vs tH in Fig. 1b. With applying the B-field, the absolute value of VC

first increases, whereas the value of KH stays almost unaffected; both contributions
are suppressed at B & B0 = mcω0/|e|, where ~ω0 is the one-dot energy spacing,
and e and m are the electron charge and effective mass, resp. The ST transition
occurs due to the orbital effect of the B-field at a value of B smaller than B0, when
|VC| = KH [59]. We neglect the Zeeman energy EZ , assuming TK ≫ EZ .

The metallic leads are described by Hl =
∑

αkσ εkc
†
αkσcαkσ, where c†αkσ creates an

electron-state with momentum k and spin σ in lead α = L, R. The coupling
between the DD and the leads is described by the tunneling Hamiltonian HT =∑

nαkσ(tαnc
†
αkσdnσ + h.c.), with the tunneling amplitudes tL,± = tL/

√
2(1 ± S) and

tR,± = ±tR/
√

2(1 ± S). Here, S is the overlap integral [59], and tL, tR describe
the tunnel junctions at tH = 0, with tL ≥ tR for definiteness. For the CB val-
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ley, we integrate out the charge degree of freedom of the DD, with the help of
the Schrieffer-Wolff transformation [163], and obtain the cotunneling Hamiltonian
Hcot = HT [(i0+ − L̂0)

−1HT ], where L̂0A ≡ [Hd +Hl, A] and Hd is the DD Hamilto-
nian. Next we concentrate on the states (2.1) and project out the higher lying energy
levels by means of the mapping [154]

∑

σσ′

d†nσσσσ′dn′σ′ = S+δnn′ +

(
φ+

2
S− + inφ−SL × SR

)
δ−nn′,

∑

σ

d†nσdn′σ = δnn′

[
1 − n

2
φ+φ−

(
SL·SR − 1

4

)]
, (2.3)

where S± = SL±SR and φ± =
√

2(1±φ)/
√

1 + φ2. The DD spin degrees of freedom
are represented now by two spin 1/2 operators SL,R. The projected out energy levels
stand at a significant energy distance D0 ≃ min(~ω0, UH) from (2.1). With the help
of the “poor man’s” scaling approach [136], we derive an effective Hamiltonian for the
low energy physics of the DD. In this approach, the lead electrons at the cutoff energy
D0 are integrated out, and the cutoff energy is reduced to a new value D = D0 −dD,
which is eventually scaled down to the active region of the Fermi see, i.e. to D = cT ,
with c & 1. The Kondo correlations manifest themselves in a flow of the coupling
constants entering the effective Hamiltonian

Heff = Hl +KSL·SR + ∆H , (2.4)

∆H =
∑

αα′

(
Jαα′sαα′ ·S+ + I+

αα′sαα′ ·S−

+2iI−αα′sαα′ · [SL × SR] − Vαα′ραα′SL·SR

)
, (2.5)

where sαα′ =
∑

kk′σσ′ c
†
αkσ(σσσ′/2)cα′k′σ′ , and ραα′ =

∑
kk′σ c

†
αkσcα′k′σ. The bare values

of J, V, I± are given by

J =
2

EC
V +, I± =

φ±
EC

W±, V =
φ+φ−
2EC

V −, (2.6)

with matrices V ±
αα′ = t∗α′,+tα,+ ± t∗α′,−tα,−, W±

αα′ = t∗α′,−tα,+ ± t∗α′,+tα,−, and with EC =
2E+E−/(E+ +E−). Here, E± = E(N ±1)−E(N)∓µ is the CB addition/extraction
energy, with E(N) being the N -electron DD energy, and µ the Fermi energy. The
scaling equations at K = 0 are best presented in a matrix form:

J̇ = J2 + (I+)2 − (I−)2 , V̇ = 2[I−, I+],

İ± = {J, I±} + [V, I∓] , (2.7)

where the dot denotes d/d(νL), with ν being the lead density of states, and L =
ln (D0/D). Here, we would like to note that a similar two-channel Kondo problem
was recently dealt with in Refs. [153–155], in relation to the Kondo effect in a single
vertical quantum dot [149]. Assuming conservation of the orbital symmetry in tun-
neling from dot to lead, the authors of Refs. [153–155] obtained a model, which in our
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notations formally corresponds to tαn = tnδαn. The flow of Heff, governed by (2.7),
can be analyzed in detail for the generic case, however the parameter space is too
large to allow a comprehensible presentation. Remarkably, there is a simple physical
picture behind the complicated and numerous scaling equations. It relies on two types
of particle-hole symmetry (PHS), introduced in Ref. [164]. Arbitrarily rotating the
lead space, one can search for the invariance of Heff under cαkσ → σc†α,−k,−σ (type I)

or cαkσ → σc†−α,−k,−σ (type II) transformation, where α → −α means L/R → R/L.
If one of such symmetries is found, then it is maintained by the equations (2.7) during
the entire flow. The type I/II transformation reduces formally to sαα′ → s±α′,±α and
ραα′ → 4νDδαα′ − ρ±α′,±α in Eq. (2.5), yielding

J = (J0, Jx, 0, Jz), I+ = (I+
0 , I

+
x , 0, I

+
z ), I− = (I

−
0 , I

−
x , 0, I

−
z ), V = (0, 0, V y, 0), (I)

J = (J0, Jx, Jy, 0), I+ = (I+
0 , I

+
x , I

+

y , 0), I− = (I
−
0 , I

−
x , I

−
y , 0), V = (0, 0, 0, Vz), (II)

where (A0, Ax, Ay, Az) ≡ A0 +
∑

iAiσ
i, and Ak = 0 for ∆H∗ = ∆H (time-reversal

symmetry). From here on, we assume time-reversal symmetry in (2.5), which is the
case for the considered DD setup,1 since t∗αn = tαn. In a realistic system, as a rule,
neither PHS holds, e.g., for our DD, we have J = (J0, Jx, 0, Jz), I

+ = (I+
0 , I

+
x , 0, I

+
z ),

I− = (0, 0, I−y , 0), and V = (0, Vx, 0, Vz). The remarkable feature of equations (2.7)
is that the fixed point of the type I symmetry is unstable with respect to a violation
of PHS, whereas that of the type II symmetry is stable. This means that, if no PHS
is present, the RG flow will evolve towards the type II symmetry in the low energy
limit. The fixed point of the type I symmetry is characterized by two energy scales,
given by T

(±)
K = D0 exp(−1/νJ̃±), where J̃± = J0 ± I+

0 +
√

(Jx ± I+
x )2 + (Jz ± I+

z )2.
For detached dots (tH = 0), two spin-1/2 Kondo effects occur independently, with
J̃± = 4t2L/R/EC . For tunnel-coupled dots (tH 6= 0), the two Kondo effects compete

and occur in two stages; however, at mirror symmetry2, the two energy scales coincide:
J̃+ = J̃− = J0 +

√
J2

x + J2
z + (I+

x )2 + (I+
z )2, and we recover the Hamiltonian of the

two-impurity Kondo model (2IKM), studied in Refs. [153,164]. The 2IKM is known to
have a non-Fermi-liquid critical point at the exchange value Kc ≃ 2.2 TK, separating
the Kondo-screening phase (K < Kc) from the DD singlet phase (K > Kc) by a
step-like transition in the scattering phase shift [164]. We obtain a signature of this
critical point in the linear conductance for weakly coupled dots, see below. The
fixed point of the type II symmetry is characterized by one single energy scale T

(0)
K =

D0 exp(−γ/νJ̃), where J̃ = J0+|Jx|+|I+
0 |+|I+

x |, and γ ≤ 1 is a non-universal number.
At I−y , Vz 6= 0, the flow asymptotes are universal and coincide with those obtained

in Refs. [154, 155] for a single vertical dot: J = (τ 2I, 0, 0, 0), I+ = (0,
√
τ/2I, 0, 0),

iI− = (0, 0,
√
τ/2I, 0), V = (0, 0, 0, τI), where I = 1/2ν ln(D/T

(0)
K ) and τ =

√
5−1
2

.
As pointed out in Ref. [155], this fixed point is rather delicate to achieve in a realistic

1Eqs. (2.7) hold for arbitrary tαn and can also describe a parallel (Aharonov-Bohm) geometry of
the DD.

2At tL = tR, the Hamiltonian (2.4) is invariant under the mirror reflection: SL/R → SR/L,
cL/R,kσ → cR/L,kσ.
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system, since the approach to this universal ratio between the coupling constants is
asymptotic and hence requires an infinitesimally weak coupling to the leads.

2.3 Kondo effect in the double dot

Next we turn to a discussion of the results for the DD. The RG flow terminates in a
crossover region between the type I and type II PHS, e.g. as it is depicted in Fig. 1c.
We associate two energy scales, T

(1,2)
K , with binding of two lead electrons, which screen

the DD spins at K = 0. For weak inter-dot coupling (νJ̃ ≫ φ−tR/tL), the two energy

scales T
(1,2)
K coincide with T

(±)
K and the RG flow terminates in the neighborhood of the

type I PHS, whereas for weak coupling to the leads (νJ̃ ≪ φ−tR/tL), the two energy

scales merge on T
(0)
K , and the RG flow terminates in the neighborhood of the type II

PHS. We could numerically determine the largest energy scale, T
(1)
K , from equations

(2.7) at the ST degeneracy point (K = 0). We find an exponential increase in T
(1)
K as

a function of the inter-dot coupling tH . Using the definition T
(1)
K = D0 exp(−γ/νJ̃),

with J̃ =
t2L
EC

(
2

1−S2 + φ+√
1−S2

)
, we plot γ vs tH for different tR/tL in Fig. 1d. We

choose J̃ to normalize γ to γ = 1 at tR = 0. From these results we can conclude
that there are two physical phenomena responsible for the enhancement of the Kondo
temperature at the ST transition in DDs. The first one is the hybridization of the
DD orbital states combined with the overlap of the DD spin sites3. The definition
of J̃ includes this effect. The second phenomenon is more interesting, since it has
to do with the cross-correlation between two Kondo clouds. At tH = 0, each of the
DD spins is screened by an independent Kondo cloud formed by the respective lead.
For tunnel-coupled dots, a new possibility for Kondo correlations emerges, namely the
processes which do not conserve the number of electrons in each channel. By choosing
the two channels to be linear combinations of left and right leads, it can be shown
that no rotation in the lead space makes the inter-channel current operator vanish. In
addition, the strength of this minimal inter-channel coupling grows strongly under the
RG flow (2.7). The 3rd and 4th terms in (2.5) are responsible for this new behavior.
Such Kondo cross-correlations are present both in DDs and in single vertical dots
studied in Refs. [153–155].

2.4 Signatures of the Kondo effect in transport

We present now the results for the transport through the DD at tL = tR. In lowest
non-vanishing order in ∆H (Eq. (2.5)), the elastic and inelastic parts of the current

3As follows from (2.3), the spins SL,R no longer reside in separate dots as the inter-dot tunneling
is switched on.
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Figure 2.2: Linear G vs tH at different B’s. The unitary limit of G is 2e2/h. Dotted line:
cotunneling contribution. Dot-dashed line: G vs tH with VC → 0 in (2.2).

are,

Iel =
e

~
πν2

[
J2

LR

〈
S2

+

〉
+ V 2

LR

(
9

4
−
〈
S2

+

〉)]
∆µ , (2.8)

Iinel =
e

~β
πν2(I−LR)2g(βK)f(βK, β∆µ), β = 1/T, (2.9)

where 〈S2
+〉 = 6/(eβK +3), ∆µ is the bias, g(u) = (eu +1)/(eu/3+1) accounts for the

degeneracy of the excited level, and f(u, v) = u tanh(u/2) sinh(v)+v[1−cosh(v)]
cosh(u)−cosh(v)

. The scaling

equations (2.7) can be used to obtain the coupling constants in (2.8), (2.9) at T ∼
D ≫ T

(1)
K ,∆µ. The current scales as I(L) = IK(L) + δI(0), where IK = Iel + Iinel,

and δI stems from the potential scattering not present in the low-energy Hamiltonian
(2.4). Using the cotunneling Hamiltonian, we find

δI =
e

~
πν2

[
V 2

LR

(
7

4
−
〈
S2

+

〉)
+ J2

LR

(
E− − E+

E− + E+

)2

−

2VLRJLR
E− − E+

E− + E+

(
2 −

〈
S2

+

〉)]
∆µ . (2.10)

In the cotunneling regime, dI/d∆µ versus ∆µ has a step at ∆µ = ±K, for T ≪ |K|;
the step height is 3 times larger on the singlet side than on the triplet side. The
linear conductance G = e(dI/d∆µ)|∆µ=0 as a function of tH is plotted in Fig. 2. The
dotted line shows the cotunneling conductance, calculated using unscaled coupling
constants. The solid lines show a non-monotonous tH-dependence of G with two
peaks, resulting from Kondo correlations. The sharp peak at a small value of tH
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Figure 2.3: Linear G vs B at the ST transition. K = 0 occurs at B∗ ≈ 1.3T, whereas
B0 ≈ 3.5T. Left inset: G with unscaled coupling constants (cotunneling G); parameters as
in the main figure. Right inset: Linear G vs T , showing a maximum at T ≃ K.

has been studied in detail in Refs. [159, 160]. It occurs at tH ∼
√
UHTK due to the

competition between the inter-dot singlet formation, with the exchange energy K,
and the formation of two Kondo singlets, each with the exchange energy TK . The
transition between the two phases occurs discontinuously in the 2IKM [164] due to
the type I PHS. In the context of the DD system, this non-Fermi-liquid behavior
corresponds to a vanishing width of the sharp peak in Fig. 2. The closeness of the
parameter φ to 1 at K ≃ TK allows the study of the 2IKM critical point in double
quantum dots. The broad peak in G vs tH occurs at the value of tH , at which the
effect of long range Coulomb interaction on the exchange K is significant, see Fig. 1b.
Note that if VC = 0 then this peak is absent, see the dot-dashed line in Fig. 2. The
correction to K induced by VC enhances the Kondo correlations such that the dip in
Fig. 1b translates into the broad peak in Fig. 2. The broad peak is absent at B = 0, if
the coupling to the leads is sufficiently weak such that K ≫ T

(1)
K . However, applying

a magnetic field pronounces the peak, provided long range Coulomb interaction is
present. As a function of the B-field, the conductance G shows a peak at the ST
transition, see Fig. 3. The peak height grows with lowering T for T & T

(1)
K . It is

interesting to note that the cotunneling conductance also has a peak at K = 0, of
width ∆K ∼ T , due to the activation of Iinel at |K| < T , see left inset of Fig. 3. The
signature of a ST Kondo effect is, therefore, not a peak in the conductance at K = 0,
but rather the temperature dependence of this peak, and a conductance value close
to the unitary limit 2e2/h. Finally, the temperature dependence of G for K > 0 has
a maximum at T ≃ K, see right inset of Fig. 3. To the right of the maximum, the
conductance decreases due to the decrease of Kondo correlations with increasing T ;
to the left of the maximum, G decreases due to “freezing” of the inelastic component
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(2.9) at T < K. This maximum can be used to estimate K from the temperature
dependence of the linear conductance.
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Chapter 3

Transport through a double
quantum dot in the sequential
tunneling and cotunneling regimes

In this chapter, we study transport through a double quantum dot, both in the
sequential tunneling and cotunneling regimes [91]. Using a master equation approach,
we find that, in the sequential tunneling regime, the differential conductance G as
a function of the bias voltage ∆µ has a number of satellite peaks with respect to
the main peak of the Coulomb blockade diamond. The position of these peaks is
related to the interdot tunnel splitting and the singlet-triplet splitting. We find
satellite peaks with both positive and negative values of differential conductance for
realistic parameter regimes. Relating our theory to a microscopic (Hund-Mulliken)
model for the double dot, we find a temperature regime for which the Hubbard ratio
(=tunnel coupling over on-site Coulomb repulsion) can be extracted from G(∆µ) in
the cotunneling regime. In addition, we consider a combined effect of cotunneling and
sequential tunneling, which leads to new peaks (dips) in G(∆µ) inside the Coulomb
blockade diamond below some temperature scales, which we specify.

3.1 Introduction

In recent years, there has been great interest in few-electron quantum dots, or so-
called artificial atoms [16, 76]. The interest stems from a variety of fields, such as
nano-electronics, spintronics, quantum computation, etc., which are all rapidly grow-
ing at present. Unlike real atoms, quantum dots can be locally manipulated by
electrical gates and tuned to the regimes of interest such that in one and the same
quantum dot one can realize a whole species of atomic-like electronic structures.
Many of experimental investigations on the Kondo effect, Coulomb blockade effect,
spin blockade effect, etc., have been performed in recent years owing to this tunabil-
ity feature. Yet a not less important feature of quantum dots is the possibility to
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architecture and control, to a great extent, the coupling to their surrounding, be it a
dissipative environment, classical (gate) fields, or, in particular, other quantum dots.
This makes quantum dots attractive for quantum computation [27].

A most promising candidate for a qubit (quantum bit) in solid state is the electron
spin [27]. Confining electrons to quantum dots naturally defines the qubit as the
spin up and spin down states of the dot, provided the dot contains an odd number
of electrons. At the ultimate level of control over the electron charge, the quantum
dot can be tuned to confine one single electron1, thus implementing the artificial
version of the hydrogen atom. This has been successfully achieved in recent years,
first in vertical dots [67] and more recently also in lateral dots [168], due to a special
design of top gates. Observation of shell filling of dot orbitals and the Hund’s rule in
symmetric dots [67] indicates that the electron spin is a relevant degree of freedom
in few-electron quantum dots and that achieving control over it should be feasible
experimentally in the near future.

For quantum computation on an array of qubits [27,118], both single-qubit and two-
qubit gates are required. Two tunnel-coupled quantum dots represent the funda-
mental unit system where these quantum gates can be tested. A single-qubit gate is
implemented as a rotation of the spin on the Bloch sphere. This can be realized if the
magnetic field (or the effective g-factor) is locally controlled. On the other hand, the
two-qubit gate requires formation of a non-local quantum-mechanical correlation be-
tween the qubits, known as entanglement. This can be achieved using the Heisenberg
exchange interaction between the spins Hspin = JS1 · S2, where S1,2 are spin-1/2

operators, and J is the exchange coupling constant. For instance, a π/2-pulse of
exchange J turns out to be a universal quantum gate [27, 59, 118], known as the
“square root of swap gate”. Therefore, the exchange J plays as an important role for
the two-qubit gate as the Zeeman splitting for the single-qubit gates. Moreover, ex-
change can also be used for single-spin rotations: exchange coupling the spin to some
spin-ordered state like a nearby quantum Hall edge state, ferro- or antiferromagnets,
etc.

The Zeeman splitting of a single electron in a quantum dot has been accessed in recent
experiments [86,87], by means of dc transport spectroscopy. The long-lived nature of
the spin states has been tested in Ref. [86], using a pulsed relaxation measurement
technique. This technique [84] uses a sequence of pulses, during which the electron
is allowed to tunnel into an excited state of the quantum dot [85]. Relaxation from
the excited state can be monitored in the average current versus the pulse timing, see
Refs. [84] and [86] for details. The spin relaxation time T1 was found to be larger than
50 µs at B = 7.5 T for single electron GaAs quantum dots [86, 90], thus, indicating
that the spin states in quantum dots are long-lived.

On the other hand, the exchange J is yet to be accessed in experiments. The diffi-

1Having one electron per dot is not a necessary condition for the spin qubit; an odd number
of electrons can be as good [27, 167]. However, it is important that there are no low-lying excited
states, e.g. with spin 3/2, which could restrain the adiabaticity of quantum gate operation and
cause leakage from the spin-1/2 Hilbert space.
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culties in doing a transport spectroscopy of the double dot (DD) are primarily due to
the small currents involved in the few-electron regime. Nevertheless, a DD with one
electron per dot – an artificial H2 molecule – has been realized recently [70, 71]. A
complementary method of charge control was used in Ref. [70], which came with in-
tegrating the quantum dots with sensitive charge detectors [74,75] — quantum point
contacts (QPCs) placed nearby the quantum dots and tuned to the half pinch-off.
Such a detector is capable of sensing a change in the dot charge by as little as a
fraction of an electron [70]. Achieving control over the DD state is promising for
performing further experiments and focusing on the transport properties in greater
detail.

In this chapter, we show that the differential conductance G as well as the DD occu-
pation number N allows one to extract the exchange constant J in the dc transport
regime at a finite bias. We give a detailed analysis of the transport spectroscopy, con-
sidering separately (i) the sequential tunneling and (ii) cotunneling through the DD,
as well as a combined effect of (i) and (ii), which we refer to as cotunneling-assisted
sequential tunneling (iii). Our primary goal is to specify all features that can be seen
in a dc transport spectroscopy and to seek ways to extract the DD parameters from
transport setups which are experimentally accessible.

We begin with explaining the DD parameters in Sec. 3.2, for which we briefly review
the Hund-Mulliken model for the DD [59] used throughout. Next, in Sec. 3.3, we
consider sequential tunneling through the DD. Here, we calculate the tunneling rates
using Fermi’s golden rule and then we find the DD population probabilities ρp by
solving the master equation in the stationary limit in Sec. 3.3.1. This solution allows
us to specify the spectroscopic intervals over which ρp is constant as function of the
applied bias ∆µ at low temperatures. At the boundaries between these intervals,
the probabilities ρp change step-wise. We calculate the sequential tunneling current
in Sec. 3.3.2 and find that the differential conductance G = edI/d∆µ as a function
of ∆µ has peaks, as expected from the spectroscopic intervals of ∆µ. However, not
all peaks are activated due to the sequential tunneling alone. We return to this
question in Sec. 3.6 and show that a combined effect of sequential tunneling and
cotunneling (cotunneling-assisted sequential tunneling) activates the missing peaks.
We demonstrate that the peaks due to the sequential tunneling allow one to extract
the exchange constant J and the tunnel splitting 2t0 of the DD in the I–V plot.
Interestingly, we find that one of the peaks has a negative conductance, G < 0, for
typical values of the DD parameters, which is a novel feature in transport through
quantum dots. In Sec. 3.3.3, we consider charge detection via QPCs and show that
the peaks occurring in G vs ∆µ can also be monitored via the average number of
electrons N on the DD.

In Secs. 3.4 and 3.5, we consider cotunneling through a Coulomb blockaded DD with
one and two electrons, resp. We use again Fermi’s golden rule (2nd order) to calculate
the cotunneling rates and the master equation to obtain the population probabilities
ρp. We show that from the competition of inelastic cotunneling into the same lead and
inelastic cotunneling into the opposite lead a temperature regime of strong heating
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results, where the DD population is determined by the applied bias ∆µ and the DD
parameters. We calculate the elastic and inelastic components of the current and
show that the exchange J can be extracted also in the cotunneling regime. In the
strong heating regime, additional parameters, such as the asymmetry η of coupling to
the leads, and the DD interaction parameter φ, can be extracted from the transport
measurement.

Finally, in Sec. 3.6, we consider a combined effect of sequential tunneling and cotun-
neling in the DD. The inelastic cotunneling induces a non-equilibrium population of
the DD excited states. This results in a switching-on of the sequential tunneling tran-
sitions, which were forbidden to take place from the DD ground state, due to energy
conservation. Here, again we find additional peaks or dips in G vs ∆µ below certain
temperature scales, which we specify. Some of the technical details are deferred to
the App. A–C.

3.2 Energy spectrum of a double quantum dot

For definiteness we consider lateral quantum dots, which are formed by gating a two-
dimensional electron gas (2DEG) under the surface of a substrate. The 2DEG is
depleted in the regions under the gates and, with an appropriate gate design [168],
one can achieve a depopulation of the dots down to 1 and 0 electrons per dot, while
still allowing tunneling between the dots and the surrounding 2DEG. The low energy
sector of a DD at occupation number N = N1 +N2 = 1 consists of two tunnel-split
energy levels, which we label by the orbital quantum number n, with n = + standing
for the symmetric orbital and n = − for the anti-symmetric one. The states of the
DD with one electron can then be written as

|n, σ〉 = d†nσ|0〉 , (3.1)

where σ denotes the spin degeneracy of each level (we neglect the Zeeman splitting),
d†nσ is the electron creation operator, and |0〉 is the DD state with zero electrons. The
splitting between the two levels is given by 2t0, where t0 is the interdot tunneling
amplitude. We assume weak tunnel-coupling between the dots such that t0 ≪ ~ω0,
where ~ω0 is the size-quantization energy of a single dot.

The two-electron spectrum can be obtained using the Hund-Mulliken method [59].
In this method, the single-particle states (3.1) are used to construct two-particle
states. Obviously, there are 6 ways to distribute 2 electrons over 4 states. Using this
truncated Hilbert space one can find the eigenstates of the DD Hamiltonian. The
lowest energy states, one singlet state and 3 triplet states, are given by

|S〉 =
1√

1 + φ2
(d†+↑d

†
+↓ − φd†−↑d

†
−↓)|0〉,

|T+〉 = d†−↑d
†
+↑|0〉, |T−〉 = d†−↓d

†
+↓|0〉,

|T0〉 =
1√
2
(d†−↑d

†
+↓ + d†−↓d

†
+↑)|0〉. (3.2)
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The remaining excited states are separated by a substantial gap, see Eqs. (3.11)
and (3.12) and the discussion therein. The energy splitting between the singlet and
the triplet in Eq. (3.2), J = E|T 〉 − E|S〉, plays the role of the Heisenberg exchange
interaction for the two electron spins in the DD,

Hspin = JS1 · S2. (3.3)

The interaction parameter φ, entering the singlet state in (3.2), is determined by a
competition between tunneling and Coulomb interaction in the DD, and it can be
calculated [115] (Hund-Mulliken method) to be

φ =

√

1 +

(
4tH
UH

)2

− 4tH
UH

, (3.4)

where tH and UH are the so called extended inter-dot tunneling amplitude and on-
site Coulomb repulsion, respectively [59]. We note that tH = t0 + tC ≃ t0, where
tC is a Coulomb contribution, which vanishes with detaching the dots (t0 → 0). To
illustrate the meaning of φ, we also present the states (3.2) in terms of orbitals, which
are mostly localized on one of the dots, see Appendix A. The double occupancy – the
probability to find the two electrons in the same dot — for the singlet state is given
by

D =
(1 − φ)2

2(1 + φ2)
. (3.5)

Double occupancy is absent for the triplet states. The parameter φ also determines
the entanglement between the two electrons in the singlet state. While φ can be used
on its own as a measure of entanglement, we are presenting here a formula for the
concurrence [116] of the singlet |S〉,

c =
2φ

1 + φ2
. (3.6)

The entanglement in the |T0〉 state is maximal (c = 1) at all values of t0.

The energies of the considered DD states are given by

E|0〉 = 0, (3.7)

E|nσ〉 = ε̃− nt0, (3.8)

E|S〉 = 2ε̃+ U12 − J, (3.9)

E|T 〉 = 2ε̃+ U12, (3.10)

where ε̃ ≃ ~ω0 − Ṽg and U12 ≃ e2/2C12, with Ṽg being the energy shift due to the
common gate potential Vg (see Fig. 3.1) and C12 the mutual capacitance between the
dots.
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For small dots (~ω0 > UH), the next excited states are the following two singlets

|S1〉 =
1√
2
(d†−↑d

†
+↓ − d†−↓d

†
+↑)|0〉 , (3.11)

|S2〉 =
1√

1 + φ2
(φd†+↑d

†
+↓ + d†−↑d

†
−↓)|0〉 , (3.12)

with E|S1〉 ≃ E|S2〉 ≃ E|S〉 + UH . The states (3.2) together with (3.11) and (3.12)
complete the resolution of unity for two electrons in the DD orbitals n = ±. We
note that the states (3.11) and (3.12) are separated in energy from the states (3.2)
by δε ≃ UH ≫ J , which ensures that the Hamiltonian (3.3) has room for adiabatic
switching of the exchange J , see Ref. [118].

Finally, we note that according to the Hund-Mulliken method the exchange J consists
of two components,

J = VC + JH , (3.13)

where VC < 0 is responsible for a singlet-triplet transition at a finite magnetic field,
see Ref. [59], and

JH =
1

2

√
U2

H + 16t2H − 1

2
UH (3.14)

resembles the exchange constant obtained in the standard Hubbard model for on-site
Coulomb repulsion. For weakly coupled quantum dots, we have JH ≈ 4t2H/UH .

3.3 Sequential tunneling through the double dot

The setup we are considering is shown in Fig. 3.1a. Each dot is tunnel-coupled to a
metallic lead via a point contact, forming a series lead-dot-dot-lead setup [for a paral-
lel configuration see Refs. [169] and [170]]. The point contact in lateral structures has
a smooth (wave-guide-like) potential, providing a number of lead modes (channels)
that can couple to the dot. By constraining the point contact, the lead modes can
be pinched off one by one, due to the transverse quantization in the contact region.
When the last mode in each point contact is about to be pinched off, the structure
shows Coulomb blockade (CB) effect at low temperatures. In this regime, the point
contacts can be treated as tunnel junctions, with tunneling amplitudes tL and tR, for
the left and right dot, respectively. The leads are then single-channel Fermi-liquid
leads, which we describe by the Hamiltonian

Hleads =
∑

l

Hl =
∑

l

∑

kσ

εkc
†
lkσclkσ, (3.15)

where c†lkσ creates an electron with momentum k (energy εk) and spin σ in lead
l = L,R. The tunneling between the DD and the leads is described by the tunneling
Hamiltonian

HT =
∑

l

H l
T =

∑

l

∑

nkσ

(tlnc
†
lkσdnσ + h.c.) , (3.16)
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Figure 3.1: (a) Two coupled quantum dots, with the inter-dot tunneling amplitude t0,
attached to metallic leads at different chemical potentials µL and µR = µL − ∆µ. The
tunnel coupling between the dots and leads is characterized at t0 = 0 by the tunneling
amplitudes tL and tR. (b) A schematic plot of the linear (∆µ→ 0) conductance G through
the double dot (DD) as a function of the gate voltage Ṽg, showing the Coulomb blockade
(CB) effect, with sequential-tunneling peaks and CB valleys. The number of electrons
contained in the DD, N = N1 +N2, is fixed in the valleys between the peaks. The position
away from the N = 1, 2 peak is defined by δE, which takes on negative (positive) values in
the N = 1 (N = 2) CB valley.

with the tunneling amplitudes:

tL,± =
tL√

2(1 ± S)
, tR,± = ± tR√

2(1 ± S)
. (3.17)

Here, S ∼ t0/~ω0 is the overlap integral between the two dots orbital wave functions
(S = 〈ϕL|ϕR〉). Formulas (3.17) account for the hybridization of the DD orbitals
at 2t0 . ~ω0 with the accuracy of the method of molecular orbitals (Hund-Mulliken
method). The tunnel-coupling to the leads broadens the DD levels n = ±, introducing
the level width Γn = πν(|tLn|2 + |tRn|2), where ν is the lead density of states (at the
Fermi energy) per spin. For later convenience, we also use the notations: Γl = πν|tl|2,
with l = L,R, and η = |tR|2/|tL|2. We assume Γ± . kBT , where T is the temperature,
and kB the Boltzman constant.

The usual CB stability diagram [16,76] for a DD represents a honeycomb structure of
increased linear conductance plotted versus Vg1, Vg2 — the gate voltages controlling
dot 1 and 2, respectively. We are interested in the case when the two dots are similar,
and therefore consider the diagonal of the stability diagram, Vg1 = Vg2 = Vg, in the
vicinity of (1,1)-(1,0)-(0,1) triple point. However, we will be interested also in large
applied bias voltages ∆µ = µL − µR, assuming that the bias voltage drop occurs
on the structure as a whole and does not shift it away from the diagonal of the
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stability diagram. The bias voltage ∆µ can be applied in different ways, e.g. equally
distributed between the left and right leads, or applied to one of the leads alone. To
cover all possibilities, we assume the chemical potentials of the left and right leads to
be respectively equal to:

µL = µ+ ∆µL,

µR = µ− ∆µR, (3.18)

with ∆µL + ∆µR = ∆µ, and the bias-asymmetry parameter: a = ∆µR/∆µL. The
position in the CB is controlled by the common gate voltage Vg. In the linear regime
(∆µ → 0) the conductance G as a function of Vg shows peaks at the degeneracy
points of the chemical potential in the DD and in the leads, see Fig. 3.1b. We focus
on the sequential tunneling peak, where the number of electrons in the DD fluctuates
between N = 1 and N = 2. The degeneracy condition is given by: E(2)−E(1) = µ,
where E(N) is the ground state energy of the DD with N electrons. We assume
the singlet (3.9) to be the ground state for N = 2; therefore, E(2) = E|S〉 and
E(1) = E|+, σ〉. The position in a CB valley is characterized by the addition/extraction
energy: E±(N) = E(N ± 1) − E(N) ∓ µ. The distance away from the peak (in the
scale of Ṽg ∝ Vg) is measured by

δE = E|+, σ〉 − E|S〉 + µ. (3.19)

Positive (negative) values of δE correspond to positions in the N = 2 (N = 1) CB
valley. The size of the N = 1 CB valley (distance between its 1st and 2nd CB peaks)
is given by E+(1) + E−(1) = U12 + 2t0 − J . The size of the N = 2 CB valley is of
order of UH (UH > U12).

The sequential tunneling through the DD is described by the golden rule rates:

W l
Mm =

2π

~

∑

n̄,kσ

∣∣∣〈M ; n̄|c†lkσH
l
T |m; n̄〉

∣∣∣
2

δ(εk − EMm)ρB
l,n̄, (3.20)

W l
mM =

2π

~

∑

n̄,kσ

∣∣〈m; n̄|clkσH
l
T |M ; n̄〉

∣∣2 δ(εk + EMm)ρB
l,n̄, (3.21)

where m stands for one of the states (3.1), and M for one of the states (3.2); W l
Mm

is the probability rate for the DD transition from m to M by exchanging an electron
with the lead l; EMm = EM −Em with EM , Em being one of (3.7)−(3.10). The aver-
aging in (3.20) and (3.21) is performed over the Fermi-sea states |n̄〉 with the grand
canonical density matrix ρB

l = Z−1
l exp(−Kl/kBT ), where Zl = Trl exp(−Kl/kBT ),

Kl = Hl − µl

∑
kσ c

†
lkσclkσ, and T is the temperature (we set kB = 1 in what follows).

In (3.20) and (3.21), we use the notations: ρB
l,n̄ = 〈n̄|ρB

l |n̄〉 and |m; n̄〉 = |m〉|n̄〉. As
a consequence of the thermal equilibrium in the leads, the rates (3.20) and (3.21) are
related by the detailed-balance formula:

W l
mM = W l

Mm exp [(EMm − µl)/T ] . (3.22)
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We provide explicit expressions for the rates W l
Mm in Appendix B.

It is convenient for the calculation to trace out the spin degeneracy in (3.1) and of
the triplets Eq. (3.2). We map the degenerate levels onto non-degenerate ones, using
the following replacement2 [170]

1

NI

∑

i∈I

f∈F

Wfi →WFI , (3.23)

where NI is the degeneracy of level I. Thus, from here on, we deal with 4 non-
degenerate levels, denoted as |+〉, |−〉, |S〉, |T 〉. The transition rates between these
states, for l = L, are:

WL
S,+ =

2π

~
ν
|tL,+|2
1 + φ2

f(−δE − ∆µL),

WL
+,S = 2

2π

~
ν
|tL,+|2
1 + φ2

f(δE + ∆µL),

WL
S,− =

2π

~
ν
φ2|tL,−|2
1 + φ2

f(−δE − 2t0 − ∆µL),

WL
−,S = 2

2π

~
ν
φ2|tL,−|2
1 + φ2

f(δE + 2t0 + ∆µL),

WL
T,+ =

3

2

2π

~
ν|tL,−|2f(J − δE − ∆µL),

WL
+,T =

2π

~
ν|tL,−|2f(−J + δE + ∆µL),

WL
T,− =

3

2

2π

~
ν|tL,+|2f(J − δE − 2t0 − ∆µL),

WL
−,T =

2π

~
ν|tL,+|2f(−J + δE + 2t0 + ∆µL). (3.24)

Expressions for l = R are obtained from above by substituting L → R and ∆µL →
−∆µR. Here, f(E) = 1/ [1 + exp(E/T )] is the Fermi function.

3.3.1 Master equation

Next, we use the rates (3.24) to calculate the probability ρp of finding the DD in a
given energy level p, with p ∈ {|+〉, |−〉, |S〉, |T 〉}. We apply the master equation
approach, assuming for the temperature T ≫ Γ±. Thus, the population probability
ρp satisfies the following equation

ρ̇p =
∑

p′

(Wpp′ρp′ −Wp′pρp) , (3.25)

2This replacement is specific for the case when the population probability of a degenerate level
is equally shared between its sub-levels.
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with Wpp′ being the rate for the DD to transit from p′ to p. In the stationary limit
(ρ̇ = 0), we obtain explicitly

(WS,+ +WT,+) ρ+ = W+,SρS +W+,TρT ,

(WS,− +WT,−) ρ− = W−,SρS +W−,TρT ,

(W+,S +W−,S) ρS = WS,+ρ+ +WS,−ρ− ,

(W+,T +W−,T ) ρT = WT,+ρ+ +WT,−ρ− , (3.26)

where we used the notation Wpp′ = WL
pp′ + WR

pp′. Only three of the equations (3.26)
are linearly independent. Choosing any three of them, and using the normalization
condition

ρ+ + ρ− + ρS + ρT = 1 , (3.27)

one can find the solution for ρp. However, it is convenient for the further discussion
to describe the non-equilibrium stationary state in the DD by the following balance
ratios:

τ =
ρS + ρT

ρ+ + ρ−
, (3.28)

β = ρT/ρS , (3.29)

γ = ρ−/ρ+ , (3.30)

which give the population probability ρp of the DD states as

ρ+ =
1

(1 + τ)(1 + γ)
, ρ− =

γ

(1 + τ)(1 + γ)
,

ρS =
τ

(1 + τ)(1 + β)
, ρT =

τβ

(1 + τ)(1 + β)
. (3.31)

Expressions for τ , β, γ are given in Appendix B. In the linear bias regime, the DD
is in thermodynamic equilibrium, and the occupation of the states is determined by
the temperature T . For this regime, we find the equilibrium values:

βT = 3 exp(−J/T ), γT = exp(−2t0/T ), (3.32)

τT =
(1 + βT ) exp(δE/T )

2(1 + γT )
. (3.33)

In the non-linear regime, the deviation from these equilibrium values due to the ap-
plied bias describe the heating effect in the DD. To simplify our further considerations
we make the following realistic assumptions:

a) |δE| > 2t0 > J > 0 , (3.34)

b) T ≪ J, 2t0 − J, |δE| − 2t0 . (3.35)

For definiteness, we also assume a symmetric bias situation with ∆µL = ∆µR =
∆µ/2. Next, we consider the two following cases.
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Figure 3.2: (a) The ratio τ = (ρS + ρT )/(ρ+ + ρ−) plotted versus ∆µ/2 = ∆µL,R for
δE < 0. (b) The inverse ratio 1/τ versus ∆µ/2 for δE > 0. For both figures, we choose the
units of energy such that |δE| = 1. We use the following parameters: 2t0 = 0.8, J = 0.2,
S = 0.5, and φ = 0.4. The grids above the figures (a) and (b) show the division into the
intervals (3.36) and (3.43), resp. The insets show the transitions which get switched on at
∆µ/2 = |δE|.

Sequential tunneling on the N = 1 CB valley side (δE < 0).

As mentioned in Sec. 3.2, the N = 1 CB valley has the size U12 + 2t0 − J . We
can estimate U12 for a lateral structure from the Hund-Mulliken method, neglecting
screening effects from the top gates. We obtain3 U12 ≈ 2.7 meV for GaAs quantum
dots with ~ω0 = 3 meV coupled so that the distance between the dots centers is
≃ 2aB, with aB =

√
~/mω0 being the Bohr radius of one dot. For the on-site

Coulomb repulsion we obtain UH ≈ 4.5 meV. The screening from the top gates,
which depends on the design of the structure and on the thickness of the insulating
layer between the 2DEG and top gates, reduces, in practice, the inter-dot Coulomb
repulsion as compared to the on-site one. However, we still assume a sizable U12

such that U12 & 2t0, and thus we can neglect the contribution from the N = 0, 1
sequential-tunneling peak at ∆µ/2 ≃ |δE| + J < (U12 + 2t0 − J)/2.

For further consideration it is convenient to divide the range of the applied bias into
the following intervals:

I. 0 < ∆µ/2 < |δE| − 2t0 ,

II. |δE| − 2t0 < ∆µ/2 < |δE| − 2t0 + J ,

III. |δE| − 2t0 + J < ∆µ/2 < |δE| ,
IV. |δE| < ∆µ/2 < |δE| + J ,

V. |δE| + J < ∆µ/2 . (3.36)

At temperatures satisfying (3.35), the solution of the master equation (3.26) is con-
stant within each of these intervals. We plot the quantities (3.28), (3.29) and (3.30)

3V− ≡ U12 in Ref. [59].
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versus ∆µ/2 in Figs. 3.2a, 3.3a and 3.4a, respectively. The units of energy are chosen
such that |δE| = 1. Fig. 3.2a shows the balance between the DD being in the sector
with N = 2 electrons and the DD being in the sector with N = 1 electrons. At small
bias voltages (I, II and III), the occupation of the N = 2 sector is suppressed as
exp [−(|δE| − ∆µ/2)/T ], because of the Coulomb blockade in the N = 1 valley. At
the bias voltage ∆µ/2 = |δE|, the left lead chemical potential µL reaches the value of
the DD N = 2 chemical potential. At this point the following sequence of transitions
becomes possible:

|+〉 ⇄ |S〉 ⇄ |−〉 ⇄ |T 〉, (3.37)

which changes the population probabilities ρp in the DD. It is important to note the
difference between the intervals IV and V. In the interval V we get universal results:
τ = 1/η, β = 3, and γ = 1. This corresponds to setting T → ∞ in Eq. (3.32) for
β and γ, and recognizing that (ρS + ρT ) ∼ ΓL and (ρ+ + ρ−) ∼ ΓR, which yields
τ = ΓL/ΓR = 1/η according to Eq. (3.28). In contrast, in the interval IV the plateau
values of τ , β and γ depend on the DD parameters. For example, in Fig. 3.2a this
non-universal value of τ is denoted by τ<

IV, and we find that

1/τ<
IV = η

[
1 +

1 + 1/φ2 + 2χ(2 + φ2)

1 + 1/φ2 + 2χ/3 + 8η/3(1 + η)

]
, (3.38)

where χ = Γ−/Γ+ = (1 + S)/(1 − S). This “universality versus non-universality”
depends on the way the sequence (3.37) is closed. For the interval IV, only the
transition |T 〉 → |+〉 is allowed, whereas the reverse transition is forbidden by energy
conservation. For the interval V, however, the sequence is closed by |T 〉 ⇄ |+〉. We
can express the fact that, for the regime on the plateau V, the results are universal
by formulating a principle of detailed balance. For the rates entering the master
equation (3.26), such a non-equilibrium detailed-balance principle can be written as
follows

WS,± =
1

2η
W±,S, (3.39)

WT,± =
3

2η
W±,T . (3.40)

This suffices to obtain the universal result for τ , β and γ from the master equation
(3.26).

For the Fig. 3.3a, we find that β changes from zero to a value β<
IV at the border between

the intervals II and III. This is related to the fact that the transition |S〉 → |−〉 → |T 〉
could occur, provided there was a non-vanishing population in the N = 2 sector. But
since τ = 0 for this interval, see Fig. 3.2a, this step-like change in β will not be
observed in physical quantities. Interestingly, when the N = 2 sector acquires non-
zero population at the border between the intervals III and IV, the ratio β = ρT/ρS

stays constant as a function of ∆µ and T , for T satisfying (3.35). The value of β<
IV is

given by

1/β<
IV =

1

3

[
1 + (1 + 1/η)

(
χ+

3

2
(1 + 1/φ2)

)]
, (3.41)
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Figure 3.3: With the same parameters as in Fig. 3.2, the ratio β = ρT /ρS versus ∆µ/2
for: (a) δE < 0 and (b) δE > 0. The shaded area in (a) shows the inactive region with no
population of the N = 2 sector, see Fig. 3.2a. We note that this region can be active if a
combined effect of sequential tunneling and cotunneling is considered, see Sec. 3.6.

and that of γ<
IV, by

1/γ<
IV = 1 +

3

2

1 + 1/φ2 + χ(1 + φ2)

χ + η/(1 + η)
. (3.42)

The population probability of each of the levels can be obtained from the formulas
(3.31). We plot ρ+, ρ−, ρS, and ρT on Fig. 3.5a for the above discussed situation.

Sequential tunneling on the N = 2 CB valley side (δE > 0).

Here, the relevant intervals of applied bias are:

I. 0 < ∆µ/2 < δE − J ,

II. δE − J < ∆µ/2 < δE ,

III. δE < ∆µ/2 < δE + 2t0 − J ,

IV. δE + 2t0 − J < ∆µ/2 < δE + 2t0 ,

V. δE + 2t0 < ∆µ/2 , (3.43)

and we assume δE + 2t0 < UH/2 such that the DD is not populated with 3 electrons
while raising µL. We plot 1/τ , β and γ versus ∆µ/2 in Figs. 3.2b, 3.3b and 3.4b,
respectively. At ∆µ = 0 the DD is in the N = 2 CB valley and as in the previous
case a sizable change in the DD population occurs when ∆µ/2 = δE. At this point
the chemical potential µR in the right lead is low enough such that an electron from
the DD with N = 2 can occupy an empty place above the Fermi sea in the right lead.
The following sequence of transition is immediately activated

|S〉 ⇄ |+〉 ⇄ |T 〉, (3.44)
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Figure 3.4: With the same parameters as in Fig. 3.2, the ratio γ = ρ−/ρ+ versus ∆µ/2
for: (a) δE < 0 and (b) δE > 0. The inset in (b) shows the sequence of transition which
takes place at ∆µ/2 ≥ δE + 2t0 − J (compare with the inset in Fig. 3.2b).

which yields universal values: τ = 2/η, β = 3 and γ = 0, in the interval III. The
corresponding principle of detailed balance is obtained if we disregard the level |−〉 in
the master equation (3.26) and use (3.39) and (3.40) with ± → +. The left-to-right
processes of the sequence (3.44) are illustrated in the inset to Fig. 3.2b. Yet two other
changes in 1/τ occur at ∆µ = δE + 2t0 − J and ∆µ = δE + 2t0, see Fig. 3.2b. The
value of 1/τ on the plateau IV in Fig. 3.2b is given by

τ>
IV =

1

η

[
1 +

χ(7 + 3φ2)/4 − 1/2

3(1 + 1/φ2)/(1 + η) + 1 + χ

]
. (3.45)

Fig. 3.3b shows that, in the interval IV, the triplet level loses its population probability
relative to the singlet level, with the value of β being given by

1/β>
IV =

1

3

[
1 +

2 + 3χ(1 + φ2)

2χ+ 3(1 + 1/φ2)/(1 + η)

]
. (3.46)

Just similarly to Sec. 3.3.1, we have here the following sequence of transitions

|S〉 ⇄ |+〉 ⇄ |T 〉 ⇄ |−〉, (3.47)

which is closed in the interval IV by |−〉 → |S〉, and in the interval V by |−〉 ⇄ |S〉.
The latter results in τ = 1/η, β = 3, and γ = 1, which is identical with the universal
result in Sec. 3.3.1. The detailed balance for this case is also given by Eqs. (3.39)
and (3.40). Finally, the non-universal value of γ in Fig. 3.4 is given by

1/γ>
IV = 1 +

2

3

(1 + η)(1 + χ)

1 + 1/φ2
, (3.48)

and we present each of the population probabilities ρp for the considered case in
Fig. 3.5b.
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Figure 3.5: The population probabilities ρp versus ∆µ/2 calculated from Eqs. (3.31) with
the values of τ , β and γ given by respectively Figs. 3.2, 3.3 and 3.4 for: (a) δE = −1 and
(b) δE = 1.

3.3.2 Sequential tunneling current

Next, we show that the heating effects considered above show up in the transport
spectroscopy. For this, we calculate the average current I through the DD at an
applied bias voltage ∆µ. We consider both the N = 1 (δE < 0) and N = 2 (δE > 0)
CB valley sides, as considered in Sec. 3.3.1. We show that the steps in the population
probabilities ρp shown in Fig. 3.5 result in peaks in dI/d∆µ vs ∆µ.

The electron (particle) current, flowing from the DD into the lead l, reads

I l =
(
W l

+,S +W l
−,S

)
ρS +

(
W l

+,T +W l
−,T

)
ρT

−
(
W l

S,+ +W l
T,+

)
ρ+ −

(
W l

S,− +W l
T,−
)
ρ−. (3.49)

In the stationary regime described by (3.26), one has IL = −IR ≡ I/|e|. The
differential conductance G = edI/d∆µ as a function of δE and ∆µ can be evaluated
for different regimes of interest.

For the regime studied in Sec. 3.3.1, we can use a simplified formula for the current,
namely

I/IR
0 =

2

1 + φ2

(
1

1 + S +
φ2

1 − S

)
ρS +

2

1 − S2
ρT , (3.50)

where IR
0 = |e|ΓR/~. We plot G vs ∆µ/2 for δE = −1 in Fig. 3.6a. The main peak

at ∆µ/2 = |δE| = 1 acquires a satellite peak at ∆µ/2 = |δE|+J , which for the given
parameters has a larger amplitude than the main peak. The origin of the satellite
peak is closely related to the heating effects discussed in Sec. 3.3.1. Eq. (3.50) shows
that the changes in ρS and ρT as functions of ∆µ are directly reflected in the current
I.
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Figure 3.6: The bias dependence of the differential conductance G for: (a) δE = −1 and
(b) δE = 1. The ordinate axis is scaled by Gl = e2πν|tl|2/~T . We use the same parameters
as in Fig. 3.2 and with tL = tR (GL = GR).

For the regime studied in Sec. 3.3.1, we can use a simplified formula for the current,
namely

I/IL
0 =

(
1

1 + S
1

1 + φ2
+

3/2

1 − S

)
ρ+

+

(
1

1 − S
φ2

1 + φ2
+

3/2

1 + S

)
ρ− , (3.51)

where IL
0 = |e|ΓL/~. We plot G vs ∆µ/2 for δE = 1 in Fig. 3.6b. The main peak

at ∆µ/2 = δE = 1 acquires two satellite peaks at ∆µ/2 = |δE| + 2t0 − J and
∆µ/2 = |δE| + 2t0. Interestingly, the first satellite peak has negative differential
conductance for the given parameter values. Eq. (3.51) shows that the current I
reflects the changes in ρ+ and ρ− as functions of ∆µ, discussed in Sec. 3.3.1. The
negative value of G is due to the decrease of ρ+ when going from the interval III to
the interval IV (see Fig. 3.5b) and different tunnel coupling to the n = + and n = −
energy levels. At the very origin of negative G lies the Coulomb interaction in the
DD, which allows us to consider a truncated Hilbert space, namely, consisting of the
states (3.1) and (3.2).

Using Eqs. (3.49) and (3.31), we calculate the differential conductance G for the
whole range of variables δE and ∆µ. Fig. 3.7 shows a gray-scale plot of G for the
case of symmetric biasing: ∆µL = ∆µR = ∆µ/2. The gray color corresponds to
G = 0, the white (black) color corresponds to positive (negative) values of G. We
note that the black line on Fig. 3.7 terminates at a satellite line (δE = −t0 + J ,
∆µ/2 = t0), unlike the other two white (satellite) lines, which terminate at the
main sequential-tunneling peaks. This can be attributed to the origin of the black
line: change in the rate for excited state to excited state transition, see |T 〉 → |−〉
in the inset of Fig. 3.4b (cf. inset of Fig. 3.2b). For ∆µ/2 < t0, the transition
|T 〉 → |−〉 is blocked due to energy conservation. We note that “excited state to
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Figure 3.7: A gray scale plot of G versus δE and ∆µ/2 = ∆µL = ∆µR. The white (black)
color corresponds to positive (negative) values of G; gray stands for G = 0. Here, we use:
2t0 = 1, J = 0.25, S = 0.6, φ = 0.3 and η = 1.

excited state” sequential-tunneling satellite lines have been observed experimentally
for single dots [85]. Finally, in Fig. 3.8, we present a gray-scale plot of G for the case
of asymmetric biasing: ∆µL = ∆µ and ∆µR = 0.

3.3.3 Charge detection via a QPC

Using quantum point contacts (QPCs) placed in the neighborhood of the quantum
dots provides additional information about the DD [70]. Here, we consider the average
charge on the DD, 〈N〉 = ρ+ + ρ− + 2(ρS + ρT ). With the help of Eqs. (3.28) and
(3.27) we relate 〈N〉 to the parameter τ as follows

〈N〉 = 1 +
τ

1 + τ
. (3.52)

At a large bias voltage, corresponding to, e.g., the interval V in Sec. 3.3.1, see
Eq. (3.36), the DD occupation number fluctuates between 1 and 2, being on average
〈N〉 = 1 + 1/(1 + η), for ∆µ > 0. This relation can be used to find the asymmetry
parameter η = |tR|2/|tL|2. In the case of symmetric coupling to the leads one has
〈N〉 = 1.5. In the interval IV of Sec. 3.3.1, the average 〈N〉 assumes a non-universal
value, determined by Eq. (3.38). This result can, in principle, be used to extract the
overlap integral S [or equivalently χ = Γ−/Γ+ = (1 + S)/(1 − S)] in the case when
the parameter φ is known, cf. Sec. 3.5. For symmetric coupling to the leads (η = 1)
and in the limit of weakly coupled dots (φ → 1, S → 0), Eq. (3.38) yields τ = 1/3,
or equivalently 〈N〉 = 1.25. This can be distinguished from the value 〈N〉 = 1.5 in
the interval V with the available sensitivity of QPCs, which is ≃ 0.1 e, see Ref. [70].

49



CHAPTER 3. TRANSPORT THROUGH A DOUBLE QUANTUM DOT IN THE
SEQUENTIAL TUNNELING AND COTUNNELING REGIMES

-2 -1 0 1 2
-2

-1

0

1

2

J

t02

J

∆µ

δΕ
Figure 3.8: The same as in Fig. 3.7, but for asymmetric biasing: ∆µ = ∆µL, ∆µR = 0.

Thus, we conclude that the satellite peaks obtained for the differential conductance G
in Sec. 3.3.2 (Figs. 3.7 and 3.8) can be also observed using QPCs.4 Next, we discuss
the back action of the QPC on the DD.

The QPC detects the charge of the quantum dot via the electrostatic potential the
dot induces in the QPC region. We consider the DD and one QPC close to the right
dot. The term responsible for relaxation of the DD states is as follows5

δHQPC = −1

2
δε(t)

∑

nσ

d†n,σd−n,σ, (3.53)

where δε(t) is the fluctuating field of the QPC, with δε(t) = 0 (bar denotes average
over the QPC degrees of freedom). The relaxation rate is given by [123]

Wfi =
1

4~2

∣∣∣∣∣〈f |
∑

nσ

d†n,σd−n,σ|i〉
∣∣∣∣∣

2

J(Eif/~), (3.54)

where Eif = Ei−Ef is the transition energy. It follows from Eq. (3.54) that the QPC
can induce relaxation only between the states |+, σ〉 and |−, σ〉; all other transitions
are forbidden due to the spin and charge conservation in the Hamiltonian (3.53). The
spectral function J(ω) is defined as follows

J(ω) =

∫ ∞

−∞
δε(0)δε(t)e−iωtdt. (3.55)

4In order to extract χ, more sensitive measurements of charge are required. For the interval IV
of Sec. 3.3.1, we find that δ〈N〉 ≃ (7/96)δχ, in the limit of weakly coupled dots (φ ≃ χ ≃ 1) and
η = 1. Here, δ〈N〉 and δχ are the accuracies of measuring 〈N〉 and χ, resp.

5This term, Eq. (3.53), can be obtained from H = δε(t)
∑

σ d̃
†
R,σ d̃R,σ, with the help of Eq. (A.1).

More rigorously, the left dot counterpart should also be included, however, it merely redefines λll′

of Eq. (3.56).
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The QPC field, δε(t) = ε(t)− ε(t), is proportional to the charge density at the QPC,

ε(t) =
∑

ll′kk′σ

λll′e
i(µ̃l−µ̃l′)t c̃†lkσ(t)c̃l′k′σ(t), (3.56)

where the indices l, l′ = L,R denote the two leads of the QPC (not to be confused
with the DD leads), µ̃l is the chemical potential of lead l, µ̃L = µ̃R + ∆µ̃, and c̃†lkσ(t)
creates a QPC electron. For ω,∆µ/~ < ωc, we have

J(ω) = 4π~ν2
(
λ2
LL + λ2

RR
)
Θ(~ω)

+4π~ν2λ2
LR [Θ(~ω + ∆µ̃) + Θ(~ω − ∆µ̃)] , (3.57)

where Θ(E) = E/ (1 − exp(−E/T )), ν is the density of states per spin in the QPC,
and ωc is the high-frequency cutoff (order of bandwidth). Formula (3.54) is valid
for weak coupling, i.e. νλll′ ≪ 1. At ~ω, T ≪ ∆µ̃, Eq. (3.57) reduces to J(0) =
4π~ν2λ2

LR |∆µ̃|, which formally coincides with J(0) = ~Γd in the weak coupling limit,
where Γd is the QPC decoherence rate for a single dot [171,172]. We summarize here
by writing down the non-zero relaxation rates due to the QPC:

W̃+− =
1

4~2
J(2t0/~), (3.58)

W̃−+ =
1

4~2
J(−2t0/~), (3.59)

where we have already summed over the spin degeneracy, using the rule (3.23). We
note that, for |∆µ̃| < 2t0, the rate W̃−+ is exponentially suppressed at low tempera-
tures. The rates (3.58) and (3.59) describe relaxation of the DD due to, respectively,
excitation and annihilation of an electron-hole pair in the QPC.

Including the rate W̃+− into the balance equations (3.26) yields a correction, δN , to
the average occupation number on the DD, 〈N ′〉 = 〈N〉+ δN , where 〈N〉 is given by
Eq. (3.52). In leading order in W̃+−, the correction reads

δN =
1

(1 + τ)2

γ

(1 + γ)2

W̃+−

W̃0

, (3.60)

where 1/W̃0 is given by Eq. (B.4). Note that δN is proportional to γ and, therefore,
vanishes in the interval III of Sec. 3.3.1, see Fig. 3.4b. In contrast, δN is finite in the
interval V of Sec. 3.3.1. Thus, if N is measured in the interval III, its average value is
given by 〈N ′〉 = 1+1/(1+η/2), see Fig. 3.2b and Eq. 3.52; whereas, if N is measured
in the interval V, its average value is given by 〈N ′〉 = 1 + 1/(1 + η) + δN .

3.4 Cotunneling in the N = 1 Coulomb blockade

valley

The CB valley with N = 1 has the width E−(1)+E+(1) = U12 +2t0−J . Cotunneling
dominates the conductance in the valley at T ≪ U12 + 2t0 − J . In a cotunneling
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process [135], a lead electron (hole) coherently occupies the DD in a state with one
extra (fewer) electron and is transferred to either lead, leaving the DD with the same
energy (elastic cotunneling) or with a different energy (inelastic cotunneling). The
cotunneling rate for a lead electron to go from lead l to lead l′ and the DD to go from
state m to state n is given by the golden rule rate [170]

wnm(l′, l) =
2π

~

∑

m̄n̄

|〈n|Tl′l|m〉|2 δ(Emn + ∆µl l′)ρ
B
m̄, (3.61)

where ∆µl l′ = µl−µl′ and Emn = Em−En. Here, we use the notation Em = Em+Em̄

and |m〉 = |m〉|m̄〉, where Em and |m〉 denote the DD energy (3.8) and state (3.1),
resp.; furthermore, |m̄〉 is an eigenstate of KL +KR with energy Em̄. The averaging
in (3.61) is performed over the leads at thermal equilibrium with the density matrix
ρB

m̄ = 〈m̄|ρB
L⊗ρB

R |m̄〉. The stationary (ω → 0) cotunneling is described by the effective
T-matrix amplitudes (second order perturbation theory)

Tl′l = −
∑

n′k′σ′
nkσ

t∗lntl′n′

(
d†nσdn′σ′

E−(1)
clkσc

†
l′k′σ′

+
dn′σ′A d†nσ

E+(1)
c†l′k′σ′clkσ

)
, (3.62)

where we assumed J ≪ E+(1) ≪ UH and used A = |S〉〈S| +
∑

i |Ti〉〈Ti| to exclude
virtual transitions to the states (3.11), (3.12). Formula (3.62) is valid for ∆µ, T ≪
E±(1). Similarly, to Sec. 3.3 we trace out the spin degeneracy in (3.1), using the rule
(3.23). The cotunneling rates can then be presented as follows

wnm(l′l) =
2π

~
ν2Θ(Emn + ∆µll′)Ml′l

nm, (3.63)

where Θ(E) = E/ (1 − exp(−E/T )), and Ml′l
nm are given in Appendix C. The state

of the DD is described by ρ+ = 1/(1 + γ) and ρ− = γ/(1 + γ), with

γ =
w−+

w+−
=

Θ(−2t0 + ∆µ) + Θ(−2t0 − ∆µ) + (η + 1/η)Θ(−2t0)

Θ(2t0 + ∆µ) + Θ(2t0 − ∆µ) + (η + 1/η)Θ(2t0)
, (3.64)

where wnm =
∑

l′l wnm(l′, l). We note that this result is universal and does not depend
on the number of virtual states taken into account. The cotunneling current [170] is
given by

I = e
∑

nm

wI
nmρm, (3.65)

where wI
nm = wnm(R,L)−wnm(L,R). For T ≪ 2t0, we define the elastic and inelastic

components of the current, I = Iel + Iinel, as follows

Iel = ewI
++, (3.66)

Iinel = ewI
−+ρ+ + e

(
wI

+− + wI
−− − wI

++

)
ρ−, (3.67)
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where we used that
∑

n ρn = 1. We note that the component Iel is a linear function
of ∆µ, whereas dIinel/d∆µ has a step-like ∆µ-dependence with the step at ∆µ = 2t0.

Next, we consider the case of a highly asymmetric coupling to the leads, (η+1/η) ≫ 1.
For ∆µ & 2t0, there is a competition between two types of processes of inelastic
cotunneling. One is the thermal equilibration of the DD, due to inelastic cotunneling
into the same lead; and the second one is the heating effect of the DD, due to inelastic
cotunneling from the left lead to the right lead, provided µL > µR. The strength of
the former effect is proportional to exp(−2t0/T ), for T ≪ 2t0. The latter effect is
proportional to (T/2t0)η/(1 + η2), for ∆µ = 2t0. As a function of T , the crossover
occurs at the energy scale Th = 2t0/w(η + 1/η), where w(x) = ln(x ln(x... ln(x))) for
x ≥ e. At T ≫ Th, the DD is in thermal equilibrium with γ ≡ ρ−/ρ+ = exp(−2t0/T ).
At T ≃ Th, the heating in the DD is governed by both types of processes, and the
ratio γ depends on both T and ∆µ, as given by Eq. (3.64). At T ≪ Th, we are in the
strong heating regime, dominated by processes of inelastic cotunneling from one lead
to the other. Here, we have

γ =

{
ηT

2t0(1+η)2
, |∆µ− 2t0| ≪ T,

∆µ−2t0
∆µ+2t0(1+η+1/η)

, ∆µ − 2t0 ≫ T.
(3.68)

In this regime, we can extract the asymmetry parameter η, for ∆µ− 2t0 ≫ T , in the
following way

4η

(1 + η)2
=

A

1 −A∆µ−2t0
4t0

, A ≡ − 2t0
∆G

dG

d∆µ
, (3.69)

where ∆G = G(∆µ) − G(∞). The value of G(∞) is the value of G at ∆µ − 2t0 ≫
2t0(1 + η)2/η. We note that Eq. (3.69) holds also for η ≃ 1, then the energy scale Th

coincides with 2t0.

3.5 Cotunneling in the N = 2 Coulomb blockade

valley

The width of the N = 2 CB valley is of the order of UH . The energy scale of interest
here is the exchange J ≪ UH . Similarly to Sec. 3.4, we calculate the cotunneling
rates with N = 2 electrons in the DD, using the formula (3.61) with Tl′l given by

Tl′l = −
∑

n′k′σ′
nkσ

t∗lntl′n′

(
d†nσdn′σ′

E−(2)
clkσc

†
l′k′σ′

+
dn′σ′d†nσ

E+(2)
c†l′k′σ′clkσ

)
. (3.70)

Here, we assumed 2t0 ≪ E−(2) and the energy splitting in the N = 3 sector to
be much smaller than E+(2) as well as ∆µ, T ≪ E±(2). The DD states |m〉, |n〉 in
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Figure 3.9: (a) Differential conductance G vs bias in the cotunneling regime for the N = 2
CB valley. The dashed curve corresponds to the asymptotic value of G at low temperatures.
The solid curves are for a finite T = (0.2, 1, 2)Th , where Th is the characteristic temperature
of the strong heating regime, see text. For the calculation we used: S = 0.6, φ = 0.316
(Th ≃ 0.23J), η = 1, E−(2) = E+(2) = EC , and ΓL,R/EC = 0.1. (b) The quantity A/[1 −
A(∆µ − J)/2J ], with A ≡ −(J/∆G)(dG/d∆µ), where ∆G = G(∆µ) − G(∞), is plotted
for the three solid curves of G(∆µ) shown in Fig. 3.9a. The solid curve, corresponding to
T = 0.2Th, saturates with good precision at the value of 8/(2 + κ) = 2(1 − φ)2/(1 + φ2),
whereas the other solid curves (not in the strong heating regime) have a smaller saturation
value. The dotted curves A, B, and C, are plotted for the T = 0.2Th curve and correspond
to choosing the value of G(∞) as shown in Fig. 3.9a by dotted horizontal segments. Only
for a correct choice of G(∞) the curve has a plateau and saturates at a finite value.

(3.61) are now the singlet-triplet states (3.2) and the corresponding energies are taken
from (3.9) and (3.10). After tracing out the spin degeneracy of the triplet (3.2), the
cotunneling rates are given by Eq. (3.63) with Ml′l

nm given in Appendix C.

The following discussion is similar to the one in Sec. 3.4. The heating effect of the
DD is described by the ratio

β =
wTS

wST
=

3
Θ(−J + ∆µ) + Θ(−J − ∆µ) + κΘ(−J)

Θ(J + ∆µ) + Θ(J − ∆µ) + κΘ(J)
, (3.71)

where κ = (η + 1/η)(1 + φ)2/(1− φ)2. The DD population probabilities are given by
ρS = 1/(1 + β) and ρT = β/(1 + β). The formulas (3.65), (3.66) and (3.67) apply to
this case also, provided we substitute the indices + by S and − by T . The differential
conductance G, at T ≪ J , has a step-like ∆µ-dependence, with the step occurring
at ∆µ = J . We plot G vs ∆µ for different temperatures in Fig. 3.9a.

The strong heating regime was considered previously [118] for the case η = 1. We
present the results for arbitrary η here. The energy scale of the strong heating regime
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for κ ≫ 1 is given by Th = J/w(κ), where the function w(x) was introduced in
Sec. 3.4. The asymptotes of β in the strong heating regime, T ≪ Th, are as follows

β =

{
3T

J(2+κ)
, |∆µ− J | ≪ T,

3(∆µ−J)
∆µ+J(1+κ)

, ∆µ − J ≫ T.
(3.72)

For ∆µ− J ≫ T , the following equality holds in the strong heating regime,

8

2 + κ
=

A

1 − A∆µ−J
2J

, A ≡ − J

∆G

dG

d∆µ
, (3.73)

where ∆G = G(∆µ) − G(∞), with G(∞) given by G at ∆µ − J ≫ (2 + κ)J .
Eq. (3.73) allows us to extract κ, and hence, to extract the interaction parameter
φ, provided the asymmetry parameter η is known (e.g. from a similar procedure as
explained in Sec. 3.4). We illustrate how this procedure works in Fig. 3.9b. The r.h.s.
of Eq. (3.73) is plotted for the curves in Fig. 3.9a. With lowering the temperature,
the plateau value saturates at 8/(2 + κ), as one enters the strong heating regime;
compare the three solid curves in Fig. 3.9b. If the value of G(∞) is not known, then
one can proceed in the following way. Starting with a lower bound of G(∞), which
can be e.g. G(∞) = 0, a set of curves is plotted for values of G(∞) increased each
time by an offset value. The curves can be divided into two classes: (i) curves which
have no divergence for ∆µ − J > T , have a maximum, and saturate at zero; and
(ii) curves which monotonically increase, or even diverge, for biases ∆µ − J > T
in the available (measured) range of ∆µ. The separatrix of these two classes has
a monotonic dependence with a plateau at a non-zero value, and it corresponds to
the asymptotic value of the cotunneling conductance G(∞). The dotted curves in
Fig. 3.9b, denoted as A, B, and C, are plotted for values which might mistakenly be
assigned to G(∞), and are related to the curve at T = 0.2Th. The curves A and B
belong to the class (i), and the curve C to the class (ii); the separatrix is the solid
curve at T = 0.2Th. The values of G(∞) taken for the curves A, B, and C, are shown
in Fig. 3.9a by dotted lines, whereas the true value of G(∞) by a solid line. Next,
assuming that the measurement of G(∆µ) has an error bar, we note that the value
at the maximum in curves of class (i) provides a lower bound for 8/(2 + κ).

Finally, we note that the same physics holds true for the case J < 0 (triplet ground
state), which can be realized by applying a magnetic field perpendicular to the 2DEG
plane. Here, one should replace J → |J | and β → 9/β in (3.72), and 8/(2 + κ) →
8/(6 + 3κ) in the l.h.s. of (3.73). Eq. (3.71) remains valid for this case.

3.6 Cotunneling-assisted sequential tunneling

In Sec. 3.3, we identified the spectroscopic intervals [Eqs. (3.36) and (3.43)] and found
that peaks in tunneling spectroscopy can occur at the borders between these inter-
vals, see Fig. (3.6). However, not all expected peaks are activated by the sequential
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tunneling alone. Namely, no peaks are found in Fig. (3.6) for ∆µ/2 < |δE|. The
reason for this is that the DD resides in its ground state until the first transition
takes place, namely the “ground state-to-ground state” transition between N = 1 and
N = 2, which takes place at ∆µ/2 = δE for the symmetric biasing. On the other
hand, we have shown in Secs. 3.4 and 3.5 that, at low temperatures, the inelastic
cotunneling provides a substantial source of heating in the DD.

In this section we consider the interplay of sequential tunneling and cotunneling close
to the sequential tunneling peaks at finite bias. We find that at low temperatures,
T ≪ T0, the heating effect due to cotunneling provides population to the excited
states, from which a subsequent sequential tunneling can occur. Such a cotunneling-
assisted sequential tunneling produces new features (peaks/dips) in G versus ∆µ
and δE. The energy scale T0 is given by T0 = 2t0/ ln(2t0/ΓR) for the N = 1 CB
side, and T0 = J/ ln(J/ΓL) for the N = 2 CB side; here, we assumed symmetric
biasing of the DD with ∆µL = ∆µ/2 > 0. For G versus ∆µ we find a peak at
∆µ/2 = |δE| − 2t0 > 2t0 on the N = 1 CB valley side, as well as a peak/dip at
∆µ/2 = |δE| − 2t0 + J . On the N = 2 CB valley side, we find a peak in G versus
∆µ at ∆µ/2 = |δE| − J > J .

We proceed with considering the N = 1 CB valley side and for the sake of simplicity
of the following expressions we assume J ≪ 2t0 ≪ U12, which corresponds to weakly
coupled dots. We consider a position in the CB valley close to the N = 1, 2 sequential
tunneling peak, E−(1) ≫ E+(1), but still far enough to be able to apply a bias
∆µ > 2t0 and to have E+(1)−∆µL > 2t0. Since ∆µL is comparable to −δE = E+(1),
the cotunneling rates obtained in Sec. 3.4 are not valid here and should be modified
as to account for the energy dependence of the tunneling density of states in the bias
window. We replace Eq. (3.62) by

Tl′l = −
∑

n′k′σ′
nkσ

t∗lntl′n′
dn′σ′A d†nσ

U l
+

c†l′k′σ′clkσ, (3.74)

where U l
+ = E(2) − E(1) − µl, and A was defined below equation (3.62). Formula

(3.74) is valid for T ≪ U l
+. Next, we calculate the cotunneling rates using the golden

rule expression (3.61) and trace out the spin degeneracies according to Eq. (3.23).
We obtain the cotunneling rates close to the sequential tunneling peak,

wnm(l′, l) =
2π

~
ν2

(
1

U l
+

− 1

U l′
+ + Emn

)
M̃l′l

nm, (3.75)

for Emn + ∆µll′ > 0, and wnm(l′, l) suppressed by exp [(Emn + ∆µll′)/T ], for Emn +
∆µll′ < 0. Here, we have assumed T ≪ 2t0 and |Emn + ∆µll′| ≫ T . The quantities
M̃l′l

nm are obtained from Ml′l
nm in Appendix C by setting U− → ∞ and omitting the

1/U2
+ denominators. We note that the diagonal rates wnn(l, l) do not enter our further

calculation, and hence the case Emn+∆µll′ = 0 refers only to the vicinity of ∆µ = 2t0,
where the value of the rate is proportional to T . For this case (|Emn + ∆µll′| ≪ U l

+),
one can use the expressions derived in Sec. 3.4, setting E−(1) ≫ E+(1).
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Figure 3.10: Differential conductance G versus bias for: (a) δE = −1 and (b) δE = 1. Here,
we use the following parameters: t0 = 0.1, J = 0.025, S = 0.2, φ = 0.6, ΓL = ΓR = 0.001,
T = 0.001, ∆µL,R = ∆µ/2. The conductance is scaled by GR = e2ΓR/~T on both plots.

Next we solve the master equation, similar to Sec. 3.3.1, including also the cotunneling
rates. We find that, on the N = 1 CB valley side, it suffices to take into account only
the rates (3.75), i.e. between |+〉 and |−〉, and neglect the cotunneling between |S〉
and |T 〉 (they give higher order correction). From the competition of the cotunneling
rate w−+ and the sequential tunneling rate WS,+ we deduce the energy scale T0 =
2t0/ ln(2t0/νt

2
R), valid for6 ∆µ > 0. For temperatures T ≪ T0, the ratio γ = ρ−/ρ+

is given by

γ = w−+

(
w+− +

W+,SWS,−
W+,S +W−,S

+
W+,TWT,−
W+,T +W−,T

)−1

. (3.76)

This straightforwardly yields a non-vanishing population in the N = 2 sector,

τ = γ

(
WS,−

W+,S +W−,S

+
WT,−

W+,T +W−,T

)
, (3.77)

with the balance between |T 〉 and |S〉 given by

β =
WT,− (W+,S +W−,S)

WS,− (W+,T +W−,T )
. (3.78)

The physical interpretation of equation (3.76) is as follows. In the bias range given
by UL

+ > 2t0, the occupation of the DD is determined by the cotunneling processes,
with γ = w−+/w+−, see Sec. 3.4. For biases ∆µ > 2t0, the population ρ− increases
with increasing bias, see (3.68), and can reach a value comparable to ρ+. A further
increase of the bias brings us to the vicinity of the point UL

+ = 2t0. Here, a new
channel of relaxation opens, namely |−〉 → |S〉 → |+〉 (and also |−〉 → |T 〉 → |+〉 at
UL

+ = 2t0 − J). Since the reversed sequence is forbidden due to energy conservation,
the level |−〉 is emptied efficiently and one has ρ+ ≈ 1. A small non-equilibrium

6For ∆µ < 0, we have T0 = 2t0/ ln(2t0/νt
2
L).
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population persists in the N = 2 sector and in the level |−〉. This allows for a
sequential tunneling current from the excited DD states.

The current through the DD consists of two parts,

I = Iseq + Icot, (3.79)

where Iseq is the sequential-tunneling part given by Eq. (3.50) with ρS,T calculated
above. The cotunneling part Icot can be calculated with Eq. (3.65) and the rates
(3.75). Both terms, Iseq and Icot in (3.79), contribute with the same order of mag-
nitude to the current and differential conductance G. In Fig. 3.10a, we plot the bias
dependence of G on the left-hand-side of the sequential-tunneling peak. The effect
discussed above results in two features, namely (i) a peak at ∆µ/2 = |δE| − 2t0, and
(ii) a peak/dip at ∆µ/2 = |δE| − 2t0 + J (both positions are given for T = 0). The
latter peak turns into a dip with increasing inter-dot coupling7. The positions of the
peaks are temperature dependent. With increasing T both peaks shift to the left; the
peak (i) shifts by δµ ∝ T ln[2t0/νt

2
R(1+1/2η)] and it has a width of the same order of

magnitude, the peak (ii) shifts by δµ ∼ T and has width ∼ T . This scaling behavior
with varying ΓR = πνt2R results from the competition between the cotunneling rate
w+− and sequential tunneling rate WS,− in equation (3.76); for the peak (ii) it is not
present. We note that the peak (ii) is solely due to dIseq/d∆µ, whereas the peak (i)
is present in both dIseq/d∆µ and dIcot/d∆µ.

Next, we proceed with considering the N = 2 CB valley side close to the N = 1, 2
peak (E−(2) ≪ E+(2)). We assume J ≪ 2t0 ≪ UH , which is usually the case for
double dots, and consider a position in the valley such that one can satisfy ∆µ > J
and E−(2) − ∆µR > J . We follow a derivation close to the case discussed above.
Instead of Eq. (3.74) we use

Tl′l = −
∑

n′k′σ′
nkσ

t∗lntl′n′
d†nσA dn′σ′

U l′
−

clkσc
†
l′k′σ′ , (3.80)

where U l
− = E(1)−E(2) + µl and A =

∑
σ |+, σ〉〈+, σ|. To calculate the golden rule

rates we use Eq. (3.75) with U l
− → U l′

+ and M̃l′l
nm given in Appendix C. From solving

the master equation we find results similar to Eqs. (3.76)−(3.78). Namely, we find
that in the temperature regime T ≪ T0, with T0 = J/ ln(J/νt2L) for ∆µ > 0 and
T0 = J/ ln(J/νt2R) for ∆µ < 0, the cotunneling rate wTS provides non-equilibrium
population to the state |+〉 for UR

− . J , where UR
− = E−(2) − ∆µR. The ratio

β = ρT /ρS in this regime is as follows

β = wTS

(
wST +

WS,+W+,T

WS,+ +WT,+

)−1

. (3.81)

7For the parameters used in Fig. 3.10, G has two peaks (and not a peak and a dip) on the N = 2
CB valley side for ∆µ/2 > δE.
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The population in the N = 1 sector is determined by

1

τ
= β

(
W+,T

WS,+ +WT,+

)
, (3.82)

and belongs to the |+〉 state, i.e. γ = 0. The current though the DD is given by
Eq. (3.79). The sequential tunneling part Iseq is given by Eq. (3.51), where one
should assume ρ− = 0, and ρ+ = 1/τ ≪ 1 given by Eq. (3.82). The cotunneling part
Icot is given by Eq. (3.65), where one should use occupation probabilities determined
by Eqs. (3.81) and (3.82), and cotunneling rates as discussed after Eq. (3.80). In
Fig. 3.10b, we plot G vs ∆µ/2 = ∆µR > 0 on the left-hand-side of the sequential-
tunneling peak. The new feature is a peak, which occurs at ∆µ/2 = δE−J for T = 0.
With increasing T , it moves to the left by an amount δµ ∝ T ln[J/νt2L(1 + η/2)], and
has a width of the same order of magnitude. We note that the behavior of this peak
is analogous to that of the peak (i) in the previously discussed case (see above).

To summarize, we have analyzed an effect originating from an interplay of sequential
tunneling and (inelastic) cotunneling, and have specified the regimes where additional
observable features in transport through a DD emerge.

3.7 Conclusions

We have analyzed theoretically the transport spectroscopy of a symmetric DD at-
tached to leads in series. Our motivation was to find ways of characterizing the
DD in dc transport measurements. For this, we have recast the main results of the
Hund-Mulliken method [59], introducing a description of the DD in terms of a set
of parameters, {t0, J, φ,S, U12, UH , ~ω0}, which can be referred to in experiments as
phenomenological parameters, see Sec. 3.2. Direct access to these parameters is nec-
essary for building spin-based qubits using quantum dots, see Ref. [118]. Using a
master equation approach, we have described the transport and the non-equilibrium
probability distribution in the DD both in the sequential tunneling and cotunnel-
ing regimes. We have specified a number of “non-universal” regimes, which reveal
information about these DD parameters. We summarize our main results below.

In the sequential tunneling regime, see Sec. 3.3, the differential conductance at a finite
bias G(∆µ) has satellite peaks of sequential tunneling with respect to the main peaks
of the CB diamond, see Figs. 3.7, 3.8, and 3.6. The exchange coupling constant J
appears as a peak separation in G(∆µ) both on the N = 1 and N = 2 CB sides. The
tunnel splitting 2t0 can be extracted from G(∆µ) on the N = 2 CB side, see Fig. 3.6.
We note that if the two dots are detuned by some energy ∆E . 2t0, then one can
replace 2t0 →

√
4t20 + ∆E2 for the transport spectroscopy of the DD.

In the cotunneling regime, see Secs. 3.4 and 3.5, the exchange coupling constant J can
be observed on the N = 2 CB side as the bias value at which the inelastic cotunneling
turns on. A step in G(∆µ) occurs at |∆µ| = |J |. Similarly the tunnel splitting 2t0 can
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be extracted from the N = 1 CB side. In Sec. 3.4 we have identified a strong heating
regime where the bias dependence of G(∆µ) allows one to extract the asymmetry
parameter η = |tR|2/|tL|2 on the N = 1 CB side. An additional relation involving η
and φ can be obtained on the N = 2 CB side, see Sec. 3.4.

As an alternative to transport measurements we have considered the use of a charge
detector (QPC) close to one of the dots, see Sec. 3.3.3. We found that measuring the
average charge on the DD allows one to extract J and 2t0, similarly to the conductance
measurements in the sequential tunneling regime. Moreover, additional relations
between the DD parameters can be obtained with sensitive QPC measurements. We
have also considered the back action of the QPC onto the DD and found that the
QPC induces relaxation of the DD states with 1 electron. We accounted for this
relaxation in the master equations in Sec. 3.3.3.

Finally, we have analyzed a combined mechanism of sequential tunneling and cotun-
neling, see Sec. 3.6. We found that inelastic cotunneling can provide non-equilibrium
population probability to the excited DD states, which can then enable sequential
tunneling via an excited DD state. Accounting for this effect results in additional
satellite peaks in G(∆µ) at low temperatures.
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Chapter 4

Phonon-induced decay of the
electron spin in quantum dots

In this chapter, we study [90] spin relaxation and decoherence in a GaAs quantum
dot due to the spin-orbit (SO) interaction. We derive an effective Hamiltonian which
couples the electron spin to phonons or any other fluctuation of the dot potential. We
show that the spin decoherence time T2 is as large as the spin relaxation time T1, under
realistic conditions. For the Dresselhaus and Rashba SO couplings, we find that, in
leading order, the effective B-field can have only fluctuations transverse to the applied
B-field. As a result, T2 = 2T1 for arbitrarily large Zeeman splittings, in contrast to
the naively expected case T2 ≪ T1. We show that the spin decay is drastically
suppressed for certain B-field directions and ratios of SO coupling constants. Finally,
for the spin–phonon coupling, we show that T2 = 2T1 for all SO mechanisms in leading
order in the electron–phonon interaction.

4.1 Introduction

Phase coherence of spin in quantum dots (QDs) is of central importance for spin-based
quantum computation in the solid state [4, 27]. Sufficiently long coherence times are
needed for implementing quantum algorithms and error correction schemes. If the
qubit is operated as a classical bit, its decay time is given by the spin relaxation
time T1, which is the time of a spin-flip process. For quantum computation, however,
the spin decoherence time T2 — the lifetime of a coherent superposition of spin
up and spin down states — must be sufficiently long. In semiconductor QDs, the
spin coherence is limited by the dot intrinsic degrees of freedom, such as phonons,
spins of nuclei, excitations on the Fermi surface (e.g. in metallic gates), fluctuating
impurity states nearby the dot, electromagnetic fields, etc. It is well known (and
experimentally verified) that the T1 time of spin in QDs is extremely long, extending
up to 100µs. The decoherence time T2, in its turn, is limited by both spin-flip and
dephasing processes, and can be much smaller than T1, although its upper bound is
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T2 ≤ 2T1. Knowledge of the mechanisms of spin relaxation and decoherence in QDs
can allow one to find regimes with the least spin decay.

Recently, the spin T1 time in a one-electron GaAs QD was measured [86] by a pulsed
relaxation measurement technique (PRMT) [84]. This technique was previously
applied to detect triplet-to-singlet relaxation in a two-electron quantum dot [84],
yielding a spin relaxation time of 200µs. Application of PRMT to Zeeman sub-
levels became possible with resolving the Zeeman splitting in dc transport spec-
troscopy [86, 87], which required a magnetic field B > 5 T. The results of Ref. [86]
show that T1 > 50µs at B = 7.5 T and 14 T, with no indication of a B-field de-
pendence. Experimental values for the spin T2 time in a single QD are not available
yet, but an ESR scheme for its measurement has been proposed [131]. The ensemble
spin decoherence time T ∗

2 was measured in n-doped GaAs bulk semiconductors [7],
demonstrating coherent spin precession over times exceeding T ∗

2 ∼ 100 ns. This in-
dicates that the decoherence time of a single spin is even larger, T2 ≥ T ∗

2 . However,
the mechanisms of spin decoherence for extended and localized electrons are rather
different, cf. Ref. [173].

Different mechanisms of spin relaxation in QDs have been considered, such as spin-
phonon coupling via spin-orbit (SO) [89] or hyperfine interaction [127], and spin-
nuclear coupling [59,125,126]. The SO mechanisms yield no spin decay at B = 0, due
to the Kramers degeneracy of the dot states. Interestingly, for GaAs QDs, the orbital
effect of B leads to no spin decay in lowest order in SO interaction [89, 174, 175].
This is due to the special form (linear in momentum) of the SO coupling in 2D. The
leading order contribution is, thus, proportional to the Zeeman splitting and leads to
long T1 times in GaAs QDs varying strongly with the B-field [89]. However, previous
theories [89] do not apply to the high values of B used in recent experiments [86],
and thus, no comparison could be made so far. As for the nuclear mechanism, the
electron spin decay can be suppressed by applying a B-field or by polarizing the
nuclear system [59,125].

In this chapter, we show that the spin T2 time, caused by SO interaction in GaAs
QDs, is as large as the spin T1 time. We assume low temperatures, T ≪ ~ω0, where
~ω0 is the dot size-quantization energy, and with no external noise in the applied
B-field. We, thus, argue that the lower bound T1 ≥ 50µs established in Ref. [86] is,
in fact, also a lower bound for T2. Furthermore, we show that the spin decay can be
reduced by a special choice of direction of B, if there is Rashba coupling.
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4.2 Model Hamiltonian

The Hamiltonian describing the electron in a QD reads

H = Hd +HZ +HSO + Uph, (4.1)

Hd =
p2

2m∗ + U(r), (4.2)

HSO = β(−pxσx + pyσy) + α(pxσy − pyσx), (4.3)

HZ =
1

2
gµBB · σ, (4.4)

where p = −i~∇ + (e/c)A(r) is the electron 2D kinetic momentum, U(r) is the
lateral confining potential, with r = (x, y), and σ are the Pauli matrices. The axes
x and y point along the main crystallographic directions in the (001) plane of GaAs.
The SO Hamiltonian (4.3) includes both the Dresselhaus SO coupling (β), due to
the bulk inversion asymmetry of the GaAs lattice, and the Rashba SO coupling (α),
due to asymmetry of the quantum well profile in the z-direction (structure inversion
asymmetry). We consider here α and β as model parameters; for their microscopic
derivation see, e.g., Ref. [176]. The magnetic field B = B(sin θ cosϕ, sin θ sinϕ, cos θ)
defines the spin quantization axis via the Zeeman term (4.4). The phonon potential
is given by

Uph(r) =
∑

qj

F (qz)e
iq‖r

√
2ρcωqj/~

(eβqj − iqΞqj)(b
†
−qj + bqj),

where b†qj creates an acoustic phonon with wave vector q = (q‖, qz), branch index
j, and dispersion ωqj; ρc is the sample density [volume is set to unity in (4.5)].
Optical phonons play no role at the low energies considered here. The factor F (qz) in
Eq. (4.5) equals unity for |qz| ≪ d−1 and vanishes for |qz| ≫ d−1, where d is the size
of the quantum well along the z-axis. We take into account both piezo-electric (βqj)
and deformation potential (Ξqj) kinds of electron-phonon interaction [177]. Next, we
derive an effective Hamiltonian for the low temperature (T ≪ ~ω0) spin dynamics,
relaxation and decoherence.

The electron spin couples to phonons due to the SO interaction (4.3). For typical
GaAs QDs the SO length λSO = ~/m∗β is much larger than the electron orbit size
λ. The linear in λ/λSO contribution to the spin-phonon coupling is only due to a
finite Zeeman splitting [89, 174, 175]. We consider a magnetic field B, for which the
spin–phonon coupling dominates the spin decay. For simplicity we assume m∗β2 ≪
gµBB ≪ ~ω0. Using perturbation theory (or Schrieffer-Wolff transformation), we
obtain1 the effective Hamiltonian

Heff =
1

2
gµB(B + δB(t)) · σ, (4.5)

δB(t) = 2B ×Ω(t), (4.6)

1In leading order in HSO, we have H̃ ≡ eSHe−S = Hd +HZ + Uph + [S,Uph], with S given by

[Hd +HZ , S] = HSO. Then, Heff = 〈ψ|H̃ |ψ〉 up to a spin independent part.
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where Ω(t) = 〈ψ|[(L̂−1
d ξ), Uph(t)]|ψ〉. Here, |ψ〉 is the electron orbital wave function,

L̂d is the dot Liouvillean, L̂dA = [Hd, A]. The vector ξ has a simple form in the
coordinate frame x′ = (x + y)/

√
2, y′ = −(x − y)/

√
2, z′ = z (see inset of Fig. 4.1),

namely ξ = (y′/λ−, x
′/λ+, 0), where 1/λ± = m∗(β ± α)/~. Eq. (4.6) contains one

of our main results: in 1st order in SO interaction, there can be only transverse
fluctuations of the effective magnetic field,2 i.e. δB(t) · B = 0. This statement holds
true for spin coupling to any fluctuations, be it the noise of a gate voltage or coupling
to particle-hole excitations in a Fermi sea. Next, we consider the decay of the electron
spin, S = σ/2, governed by Eq. (4.5).

4.3 Bloch equation

The phonons which are emitted or absorbed by the electron leave the dot during a
time τc, d/s . τc . λ/s, where s is the sound velocity. The electron spin decays
over a much longer time span in typical structures, and, therefore, undergoes many
uncorrelated scattering events. Then, the spin obeys the Bloch equation [123]

〈Ṡ〉 = ω × 〈S〉 − Γ〈S〉 + Υ, (4.7)

where ω = ωl, with ω = gµBB/~ and l = B/B. For a generic δB(t), in the Born-
Markov approximation3 [123], we find Γij = Γr

ij + Γd
ij, with

Γr
ij = δij (δpq − lplq) J

+
pq(ω) − (δip − lilp)J

+
pj(ω)

−δijεkpqlkI
−
pq(ω) + εipqlpI

−
qj(ω), (4.8)

Γd
ij = δijlplqJ

+
pq(0) − lilpJ

+
pj(0), (4.9)

where J±
ij (w) = Re [Jij(w) ± Jij(−w)] and I±ij (w) = Im [Jij(w) ± Jij(−w)] are given

by the spectral function

Jij(w) =
g2µ2

B

2~2

∫ +∞

0

〈δBi(0)δBj(t)〉 e−iwtdt. (4.10)

The inhomogeneous part in Eq. (4.7) is given by

2Υi = ljJ
−
ij (ω) − liJ

−
jj(ω) + εipqI

+
pq(ω)

+εiqklklp
[
I+
pq(ω) − I+

pq(0)
]
, (4.11)

where εijk is the anti-symmetric tensor (with Einstein summation convention) and
we have assumed that 〈δB(t)〉 = 0. Eq. (4.7) describes spin decay in a number

2In the rotating frame, HSO produces Zeeman-dependent fluctuations only transverse to B. The
fluctuations induced via orbital B effects can be along B, but for HSO linear in p they drop out
since

∫
p(t)dt = const.

3Since τc ≪ T1,2, the Markov approximation is well justified. For non-Markovian effects in the
spin-boson model, see Ref. [178].
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of problems, such as electron scattering off impurities in bulk systems, nuclear spin
scattering [123], etc. In our notation, the spin decay comes from the symmetric
part of Γ, whereas the anti-symmetric part leads to a correction to ω in Eq. (4.7).
The tensor Γr describes spin decay due to processes of energy relaxation such as
emission/absorption of a phonon. Therefore, the T1 time is entirely determined by
Γr, see Eq. (4.17). The tensor Γd can be non-zero only due to elastic scattering of
spin, i.e. due to dephasing. Γd contributes to the decoherence time T2, and so does
Γr. In many cases, however, the latter contribution is negligible, and Γd entirely
dominates the spin decoherence [123]. This is in strong contrast to what we find
here for an electron localized in a QD. To illustrate this, we first consider an example
when Γd dominates the spin decoherence and then return to our case. A textbook
example is 〈δBi(0)δBj(t)〉 = b̄2δij exp(−|t|/τc). Choosing l = (0, 0, 1), we obtain from
Eqs. (4.8) - (4.10) the non-zero elements: Γr

xx = Γr
yy = Γr

zz/2 = γ2
nb̄

2τc/(1 + ω2τ 2
c ),

and Γd
xx = Γd

yy = γ2
nb̄

2τc, where γn = gµB/~. The longitudinal component 〈Sz〉 decays
over the time T1 = Γ−1

zz = 1/Γr
zz. The transverse components decay over the time

T2 = 1/(Γr
xx + Γd

xx). At ω ≫ 1/τc, the contribution of Γr
xx to T2 is negligible, and

hence, T2 ≪ T1. The latter relation has widely been quoted in the literature on
quantum computing. In stark contrast to this example, we show now below that
there are no intrinsic dephasing mechanisms for our case, which would justify this
relation for the electron spin in GaAs QDs at T ≪ ~ω0.

4.4 Phonon-induced spin decay

We start with calculating the spin decay due to the mechanism (4.6). Here, Γd
ij is

identically zero, due to the transverse nature of the fluctuating field δB. This can
be inferred from Eqs. (4.9) and (4.10), noticing that each term in (4.9) contains
l · δB = 0. In order to calculate Γr

ij , we first find the main axes of the tensor Jij(w),
see Eq. (4.10). Jij(w) is diagonal in the frame (X, Y, Z) (see inset of Fig. 4.1), which
is obtained from (x′, y′, z) by a rotation with Euler angles ϕ′, θ, and χ. Here, the
angles ϕ′ = ϕ−π/4 and θ give B in the frame (x′, y′, z), and χ depends on the details
of U(r). It can be determined from 〈δBXδBY (t)〉 = 0. Assuming U(r) = U(r), we
find4

tan 2χ =
2
(
λ2

+ − λ2
−
)
lx′ly′ lz

λ2
+

(
l2y′ − l2z l

2
x′
)

+ λ2
−
(
l2x′ − l2z l

2
y′
) . (4.12)

We now consider U(r) = m∗ω2
0r

2/2 and evaluate Ω(t) of Eq. (4.6) for the ground
state ψ(r) = exp (−r2/2λ2) /λ

√
π, where λ−2 = ~

−1
√

(m∗ω0)2 + (eBz/2c)2. Using5

y =
−i

~m∗ω2
0

L̂d

(
py −

eBz

~c
x

)
, (4.13)

4We fix the quadrant of χ by requiring that the sign of sin 2χ coincides with the one of the
numerator of Eq. (4.12).

5A similar identity for x is obtained from Eq. (4.13) by replacing: (x, y) → (y, x) and Bz → −Bz.
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Figure 4.1: Solid curve: the relaxation rate 1/T1 of Eq. (4.19) as a function of an in-plane B
for a GaAs QD with ~ω0 = 1.1meV, d = 5nm, λSO = ~/m∗β = 1µm, and α = 0. Dashed
(dotted) curve: contribution of the piezo-electric mechanism (βjϑ) with transverse (longi-
tudinal) phonons. Dot-dashed curve: contribution of the deformation potential mechanism
(Ξj). Note that 1/T1 ∝ 1/λ2

SO.

we find that Ωx′ follows from the r.h.s. of Eq. (4.5) with

exp
(
iq‖r

)
→ −iqy′

m∗ω2
0λ−

exp
(
−q2

‖λ
2/4
)
. (4.14)

Further, Ωy′ is obtained in the same way, using (4.14) with the prefactor qy′/λ− →
qx′/λ+. Finally, we obtain

ReJXX(w) =
ω2w3(Nw + 1)

(2Λ+m∗ω2
0)

2

∑

j

~

πρcs5
j

∫ π/2

0

dϑ sin3 ϑ

×e−(wλ sinϑ)2/2s2
j

∣∣∣∣F
( |w|
sj

cosϑ

)∣∣∣∣
2(

e2β
2

jϑ +
w2

s2
j

Ξ
2

j

)
, (4.15)

where Nw =
(
e~w/T − 1

)−1
, and sj is the sound velocity for branch j. For GaAs, we

use s1 = 4.73 × 105 cm/s and s2 = s3 = 3.35 × 105 cm/s. Furthermore, Ξj = δj,1Ξ0

with Ξ0 = 6.7 eV , and β1,ϑ = 3
√

2πh14κ
−1 sin2 ϑ cosϑ, β2,ϑ =

√
2πh14κ

−1 sin 2ϑ,

β3,ϑ =
√

2πh14κ
−1(3 cos2 ϑ − 1) sinϑ, with h14 = −0.16 C/m2 and κ = 13.1. The

effective SO length Λ+ in Eq. (4.15) is given by

2

Λ2
±

=
1 − l2x′

λ2
−

+
1 − l2y′

λ2
+

±

√(
1 − l2x′

λ2
−

+
1 − l2y′

λ2
+

)2

− 4l2z
λ2

+λ
2
−
. (4.16)

ReJY Y (w) is obtained from Eq. (4.15) by substituting Λ+ → Λ−, and JZZ(w) =
0. ImJXX(w) and ImJY Y (w) are irrelevant for our discussion, see further. From
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Eq. (4.8), we obtain Γr
XX = J+

Y Y (ω), Γr
Y Y = J+

XX(ω), Γr
ZZ = J+

XX(ω) + J+
Y Y (ω),

Γr
XY = −I−Y Y (ω), Γr

Y X = I−XX(ω). Since Γij/ω . ωλ2/ω0Λ
2
± ≪ 1, we can solve the

secular equation iteratively.6 In the general case,

1

T1

:= lplqΓpq = ΓZZ = Γr
ZZ , (4.17)

1

T2
:=

1

2
(δpq − lplq) Γpq =

1

2
(ΓXX + ΓY Y ) . (4.18)

Then, the solution of Eq. (4.7) reads 〈SX(t)〉 = S⊥e
−t/T2 sin(ωt + φ), 〈SY (t)〉 =

S⊥e
−t/T2 cos(ωt+ φ), and 〈SZ(t)〉 = ST + (S0

Z − ST ) e−t/T1 , with the thermodynamic
value of spin being ST = l (l · Υ)T1 = −(l/2) tanh(~ω/2kBT ), and the initial value
〈S(0)〉 = (S⊥ sinφ, S⊥ cosφ, S0

Z). For our special situation with purely transverse
fluctuations (Γd = 0), we obtain

1

T1
=

2

T2
= J+

XX(ω) + J+
Y Y (ω). (4.19)

Keeping in mind the setup of Ref. [86], we plot 1/T1 as a function of B for θ = π/2
and α = 0 on Fig. 4.1 (solid curve). We find that 1/T1 has a plateau in a wide range
of B-fields (cf. Ref. [86]), due to a crossover from the piezoelectric-transverse (dashed
curve) to the deformation potential (dot-dashed curve) mechanism of electron-phonon
interaction. For arbitrary ϕ, θ, and α, we have 1/T1 = f/T1(θ = π/2, α = 0) with

f =
1

β2

[
(α2 + β2)(1 + cos2 θ) + 2αβ sin2 θ sin 2ϕ

]
(4.20)

Note that
√
f describes an ellipsoid in the frame (x′, y′, z), i.e. f = x′2 + y′2 + z2,

with dimensionless x′, y′, z obeying (x′/a)2 +(y′/b)2 +(z/c)2 = 1, where a = 1+α/β,
b = 1 − α/β, and c =

√
a2 + b2. Thus, if α = β, then b = 0, i.e. 1/T1 vanishes

if B ‖ y′. The same is true for α = −β and B ‖ x′. The case α = ±β was
considered previously for extended electron states in a two-dimensional electron gas
(2DEG) [179]. Note that the Hamiltonian (4.1) conserves the spin component σy′(x′)

for α = β (α = −β) and B ‖ y′ (x′). This spin conservation results in T1 being
infinite to all orders in the SO Hamiltonian (4.3). At the same time, 1/T2 reduces
to the next order contribution of (4.3). However, as we show below, a single-phonon
process is inefficient in inducing dephasing and, therefore, 1/T2 can be non-zero only
in the next order in electron-phonon interaction. Next, we note that a long lived spin
state also occurs in a different GaAs structure, namely for a 2DEG grown in the (110)
direction. Then, the normal to the 2DEG plane component of spin is conserved [180],
provided α = 0.

6The decay rates are defined by the secular equation: det ||Γij − Eδij + εijkωk|| = 0, as the real
part of E.

67



CHAPTER 4. PHONON-INDUCED DECAY OF THE ELECTRON SPIN IN
QUANTUM DOTS

4.5 Other spin-orbit mechanisms

We discuss now other SO mechanisms. In Eq. (4.3), we omitted the so-called k3-terms
of the Dresselhaus SO coupling [180], i.e. HSO ∝ ~

−2βd2
(
σx{px, p

2
y} − σy{py, p

2
x}
)
.

They are parametrically small (d2/λ2 ≪ 1) in the 2D limit, compared to the retained
ones. However, their contribution to the spin decay can be important, if gm∗/m0 .

(d/λ)2 cos θ and λ3 . d2λSO, since the orbital effect of B contributes here in the first
place. Otherwise, the orbital effect is given by the 2nd order contribution of (4.3),

i.e. by H
(2)
SO = −HSOL̂

−1
d HSO, and can be important, if gm∗/m0 . (λ/λSO) cos θ. For

in-plane B-fields, however, these mechanisms are negligible.

Additional spin decay mechanisms arise from the direct spin-phonon interaction [89].
The strain field produced by phonons couples to the electron spin via the SO inter-
action, resulting in the term ∆H ′ = (V0/4)εijkσi{uij, pk}, where pi is the bulk kinetic
momentum, uij is the phonon strain tensor, and V0 = 8 × 107 cm/s for GaAs. A
similar mechanism occurs in a B-field, due to g-factor fluctuations caused by lat-
tice distortion. This yields ∆H ′′ = g̃µB

∑
i6=j uijσiBj , where g̃ ≈ 10 for GaAs. The

contribution of these mechanisms to the spin-flip rates in QDs has been estimated
in Ref. [89]. Except for the α = ±β cases discussed above, the direct mechanisms
are usually negligible in QDs. Here, we find that such spin-phonon couplings do
not violate the equality T2 = 2T1. For this, we note that Γd

ij = 0 for a generic

δBi =
∑

qMi(q)(b†−q + bq) in Eq. (4.5), if q |Mi(q)|2 → 0 at q → 0. Obviously, this
condition is satisfied for the direct spin-phonon mechanisms, since uij = 0 at q = 0.
The same follows for the Hamiltonian (4.1) with the phonon potential (4.5) and an
arbitrary HSO; the physical explanation is that the potential of long-wave phonons is
constant over the dot size and, thus, commutes with HSO. Finally, we note that, at
temperatures T ∼ ~ω0, there can be dephasing mechanisms [181], which can result
in T2 ≪ T1.

4.6 Conclusions

In conclusion, we have shown that the decoherence time T2 of an electron spin in
a GaAs QD is as large as the relaxation time T1 for the spin decay based on SO
mechanisms.
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Chapter 5

Spin relaxation at the
singlet-triplet transition in a
quantum dot

In this chapter, we study electron spin relaxation due to spin-orbit interaction and
phonon emission in a quantum dot with Coulomb interaction. We account for the
Coulomb interaction using a special type of variational method, which turns into a
controlled perturbation-theory expansion in the limits of weak and strong Coulomb
interaction. We focus on the lowest in energy singlet and triplet levels of the quantum
dot and calculate the relaxation rates in this subspace as a function of magnetic field
in the vicinity of singlet-triplet transition.

5.1 Introduction

The spin dynamics of electrons in semiconducting nanostructures has become of cen-
tral interest in recent years [3, 4]. It is desirable to understand the mechanisms
which limit the spin phase coherence of electrons, in particular in GaAs semicon-
ductors, which have been shown [7] to exhibit unusually long spin decoherence times
T2 exceeding 100 ns. Besides the spin states in quantum dots are considered to be
promising for physical realization of the quantum computation algorithm [27]. Quan-
tum computation requires coherent coupling between the dots, the coherence to be
preserved on sufficiently long time scales. That makes it relevant to provide a com-
plete theoretical estimation of the typical spin decoherence time of the electron in
the QD. One of the important question is the calculation of T1 time, i.e. the time
of the spin relaxation. The first theoretical investigation of the spin relaxation in a
quantum dot was done in Ref. [183], see also related Refs. [174, 175, 182, 184]. The
spin-flip processes were considered within the one-electron approach. It was shown
that the spin relaxation of the electrons localized in the dots differs strikingly from
that of the delocalized electrons. The most effective mechanisms in the 2D case are
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related to the broken inversion symmetry, either in the elementary crystal cell or
at the heterointerface. Those are described by the spin-orbit terms in the electron
Hamiltonian [180,186] that are linear in the two-dimensional electron momentum, see
below. As it was shown in Refs. [174,183] these terms can be removed in the case of
localized electrons by some spin-dependent unitary transformation. As a result, the
contribution to the spin flip rate proportional to the second power of the spin-orbit
coupling constant appears only if one takes into account the finite Zeeman splitting in
the electron spectrum. This results in unusually low spin-flip rates. These theoretical
predictions were verified experimentally, see Refs. [64, 84–86,187,189].

The natural question arises: to which extent these results survive for a situation when
electrons interact? We consider a quantum dot (either lateral or vertical) which
contains two electrons interacting through Coulomb interaction. As is known the
ground state of this system is a singlet for the external orbital magnetic field which
is lower than some critical value (several tesla) and for larger values of magnetic field
the ground state becomes a triplet. Thus the singlet-triplet splitting can be easily
tuned. Transitions between singlet and triplet states accompanied, for example, by
the phonon emission involve necessarily spin flips. Thus the experimental investiga-
tion of the transition rate between these two states provides the natural probe of the
spin-flip mechanisms in a quantum dot [84].

In this work we show that the conclusion obtained for a one-particle problem holds
also for an interacting problem, i.e. the effect of the spin-orbit interaction cancels in
the lowest order in the spin-orbit coupling constant β in the absence of the Zeeman
field 1. Thus the term in the transformed Hamiltonian linear in the spin-orbit coupling
constant is necessarily proportional to the Zeeman energy EZ . As a result, the energy
gap which determines the anticrossing of singlet and some triplet states is very small,
it is given by the quantity EZ(λ/λSO), where λ/λSO ≪ 1 is the ratio of the dot
lateral size λ and the spin-orbit length λSO = ~/m∗β. This is the reason for a
very strong suppression of the spin-flip rate in the neighborhood of the anticrossing
point. Indeed, the wave functions of singlet and triplet states are orthogonal and
since the corresponding wave vectors of the phonons involved in the transition are
much smaller than the inverse dot size, the matrix element of the phonon-assisted
transition contains very small form-factor. On the other hand, when the current
gap between the singlet and triplet states becomes large (away from the anticrossing
point) then the wave vectors of the phonons involved are large compared to the dot
lateral size and the rate decreases again. As a result, the corresponding curve has
a non-monotonic form with two maxima at the gap values ≈ ~s/λ corresponding to
the phonon wave vectors approximately equal to the inverse dot size, here s is the
speed of sound. Note strong variation (by many orders of magnitude) of the spin-flip
rate in a narrow interval of the gap (i.e. of the orbital magnetic field value) and a
small value of the rate itself, for example, up to seconds in the neighborhood of the

1This fact is not surprising and can be anticipated from the very beginnig since the Coulomb
interaction operator being spin independent commutes with the unitary operator mentioned above.
The lack to observe such a cancellation was the reason for the wrong results obtained in Ref. [188].
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anticrossing point.

5.2 Model Hamiltonian

We consider two interacting electrons in a quantum dot described by the Hamiltonian

H0 = Hd +HSO +HZ , (5.1)

Hd =
∑

i=1,2

(
p2

i

2m∗ +
m∗ω2

0

2
r2
i

)
+

e2

κ|r1 − r2|
, (5.2)

HSO =
∑

i=1,2

[β(−px
i σ

x
i + py

i σ
y
i ) + α(px

i σ
y
i − py

i σ
x
i )] , (5.3)

HZ =
1

2
gµBB · (σ1 + σ2), (5.4)

where rj = (xj , yj) is the j-th electron radius-vector and pj = −i~∂/∂rj +(e/c)A(rj)
is the kinetic momentum, with A(xj, yj) = (−yj , xj)Bz/2 being the vector-potential;
σj = (σx

j , σ
y
j , σ

z
j ) are Pauli matrices. The spin-orbit coupling is given by the Hamil-

tonian (5.3), where the term proportional to β originates from the bulk Dresselhaus
spin-orbit coupling, which is due to the absence of inversion symmetry in the GaAs
lattice; the term proportional to α represents the Rashba spin-orbit coupling, which
can be present in quantum wells if the confining potential (in our case along the z-axis)
is asymmetric. The axes x and y point along the main crystallographic directions
in the (001) plane of GaAs. The magnetic field B = B(cosϕ sin θ, sinϕ sin θ, cos θ)
determines the spin quantization axis and the magnitude of the Zeeman splitting,
EZ = gµBB, where g is the electron g-factor in GaAs. The orbital effect of B is given
by the component Bz = B cos θ entering in A(r), and it allows one to control the
singlet-triplet splitting EST = EST (Bz).

We consider the acoustic phonons as a major source of orbital fluctuations in the
quantum dot. The potential of acoustic phonons reads

Uph(r1, r2) =
∑

qj

F (qz)√
2ρcωqj/~

(eβqj − iqΞqj)

×
(
eiq‖r1 + eiq‖r2

)
(b†−qj + bqj), (5.5)

where b†qj creates an acoustic phonon with wave vector q = (q‖, qz), branch index
j, and dispersion ωqj; ρc is the sample density [volume is set to unity in (5.5)]. The
factor F (qz) equals unity for |qz| ≪ d−1 and vanishes for |qz| ≫ d−1, where d is
the width of the 2D layer . We take into account both the piezo-electric (βqj) and
deformation potential (Ξqj) kinds of electron-phonon interaction [177].
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Figure 5.1: a) The variational parameters γ as a functions of the Coulomb interaction
strength λ/a∗B for the singlet m = 0 and the triplet |m| = 1 states. b) The ratio ω̃/ω as a
function of lg(λ/a∗B) for m = 0 and |m| = 1. To find γ and ω̃/ω we minimize the ground
state energy in Eq.(5.13), see Appendix D for details.

5.3 Energy spectrum and wave functions

We consider here the Schrödinger equationHd|n〉 = En|n〉, withHd given in Eq. (5.2),
and find the energies and wave functions of two interacting electrons. We use of the
separation of variables in the Schrödinger equation in terms of the center of mass,
R = (r1+r2)/2, and the relative motion, r = r1−r2, coordinates. The wave functions
can then be written as |n〉 = |NM〉|nm〉, with

|NM〉 = RNM(R)eiMϕR/
√

2π, M = 0,±1,±2, ..., (5.6)

|nm〉 = Rnm(r)eimϕr/
√

2π, m = 0,±1,±2, .., (5.7)

where ϕR and ϕr are the polar angles of R and r, resp. Note that r1 ↔ r2 corresponds
to ϕr → ϕr + π. Thus, m = 0,±2,±4, ... refers to singlet states (symmetric orbital
wave function), and m = ±1,±3,±5, ..., to triplet states (antisymmetric orbital wave
function). The radial component in Eq. (5.6) reads

RNM(R) =

√
2N !

(N + |M |)!
R|M |

Λ|M |+1
L
|M |
N

(
R2/Λ2

)
e−R2/2Λ2

, (5.8)

where L
|M |
N is a Laguerre polynomial (N = 0, 1, 2, ...) and Λ =

√
~/2m∗ω, with

ω =
√
ω2

0 + ω2
c/4 and the cyclotron frequency ωc = eBz/m

∗c. The radial component
in Eq. (5.7) is given by Rnm(r) = fnm(r)/

√
r, where the function fnm(r) obeys the

Schrödinger equation Hmfnm(r) = εnmfnm(r), with the Hamiltonian

Hm =
~

2

m∗

(
− ∂2

∂r2
+
m2 − 1/4

r2
+

1

a∗Br

)
+
m∗ω2

4
r2, (5.9)
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where a∗B = ~
2κ/m∗e2 is the Bohr radius and r = |r1 − r2|. The functions fnm(r)

obey the boundary conditions fnm(0) = fnm(∞) = 0, and are normalized as follows

∫ ∞

0

fnm(r)fn′m(r)dr = δnn′. (5.10)

The energy spectrum of the Hamiltonian (5.2) is given by

ENMnm = ~ω (2N + |M | + 1) +
~ωc

2
(M +m) + εnm, (5.11)

where εnm are the eigenvalues of Hm in Eq. (5.9). Note that the quantum number m
enters in Hm as a parameter. We apply a variational method to find the ground state
of Hm for each m. For this, we consider first a Hamiltonian H̃m, similar to Eq. (5.9),
but with 1/a∗Br → γ/r2 and with ω → ω̃. From the solution of the Schrödinder
equation for H̃m, we obtain a complete set of functions

f̃nm(r) =

√
2Γ(n+ 1 +

√
m2 + γ)

n!Γ2(1 +
√
m2 + γ)

r1/2+
√

m2+γ

λ̃1+
√

m2+γ

×e−r2/2λ̃2

1F1

(
−n, 1 +

√
m2 + γ; r2/λ̃2

)
, (5.12)

where n = 0, 1, 2, ..., λ̃ =
√

2~/m∗ω̃, Γ(z) is the gamma function, and 1F1(a, b; z) is
the confluent hypergeometric function of the first kind; γ ≥ 0 and ω̃ are variational
parameters. Next, we evaluate the ground state energy of the Hamiltonian (5.9),
using f̃0m(r) as a trial wave function, i.e. we calculate ε0m = 〈f̃0m|Hm|f̃0m〉 and
obtain

ε0m = ~ω̃

(

1 +
m2 + γ/2√
m2 + γ

+
λ̃

2a∗B

Γ(1/2 +
√
m2 + γ)

Γ(1 +
√
m2 + γ)

+
(
1 +

√
m2 + γ

) ω2 − ω̃2

2ω̃2

)
. (5.13)

Minimizing ε0m in Eq. (5.13) with respect to γ and ω̃, we obtain the ground state
energy and wave function of Hm within this variational method. In the absence of
Coulomb interaction (a∗B = ∞), the eigenfunctions of the Hamiltonian (5.9) are the
functions f̃nm(r) in Eq. (5.12), with γ = 0 and ω̃ = ω. With increasing the strength of
the Coulomb interaction, the parameter ω̃ varies non-monotonically and approaches
the value ω̃ =

√
3ω/2 in the limit of strong Coulomb interaction (λ̃/a∗B ≫ 1). At

the same time, the parameter γ increases monotonically and tends to infinity with
increasing the strength of the Coulomb interaction; the leading order term of the
asymptotic expansion of γ reads γ = (3/4)(λ/2a∗B)4/3, where λ =

√
2~/m∗ω. A

detailed analysis of the dependence of ω̃ and γ on the Coulomb interaction strength
λ/a∗B is given in Appendix D. In Fig. 5.1, we plot γ and ω̃/ω as functions of λ/a∗B
and log10(λ/a

∗
B), respectively, both for the singlet state m = 0 and the triplet states

m = ±1. Note that, for the singlet sate m = 0, the parameters γ and ω̃ behave
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Figure 5.2: a) The parameter δ as a function of the Coulomb interaction strength λ/a∗B .
The dotted curve shows δ calculated according to Eq. (5.15). b) The singlet-triplet degen-
eracy occurs at a megnetic field B∗

z (ETS = 0). This figure shows the corresponding ω∗
c/ω0

as a function of λ0/a
∗
B , where ω∗

c = eB∗
z/m

∗c and λ0 =
√

2~/m∗ω0. The dotted curve
corresponds to the fitting function in Eq. (5.16)

non-analytically at the point λ/a∗B = ξc ≈ 0.57, where ξc is given in Eq. (D.5).
Nonetheless, the energy of the m = 0 state, calculated according to Eq. (5.13), is
a smooth function of λ/a∗B, i.e. it has a continuous first derivative with respect to
λ/a∗B.

Now we focus on the singlet-triplet transition, between the singlet state |ψS〉 = |0000〉
and the triplet state |ψT 〉 = |000,−1〉, which occurs with applying an orbital magnetic
field Bz in the presence of the Coulomb interaction (the Zeeman interaction is set
to zero here). Using Eq. (5.11), we obtain for the singlet-triplet splitting (ETS ≡
ET −ES)

ETS =
~

2
δ
√
ω2

c + 4ω2
0 −

~ωc

2
, (5.14)

where ωc = eBz/m
∗c and δ = (ε01 − ε00)/~ω. The Coulomb interaction enters

in δ = δ(λ/a∗B) and, for vanishing strength of the Coulomb interaction, we have
δ(0) = 1. Furthermore, in leading order, we have δ = 1 −√

πλ/4a∗B, for λ/a∗B ≪ 1,
and δ = 1

2
(2a∗B/λ)2/3, for λ/a∗B ≫ 1. A crossover formula for δ reads

δ(λ/a∗B) =

√
1 + c(λ/a∗B)3/2

(1 + bλ/a∗B)17/12
, (5.15)

where b = 3
17

√
π ≈ 0.31 and c = 2−2/3b17/6 ≈ 0.023. In Fig. 5.2(a), we plot the

parameter δ as a function of λ/a∗B, calculated with the help of Eq. (5.13) (solid
curve) and as given by the fitting function (5.15) (dotted curve). Formula (5.15) is
exact in the limits of weak and strong Coulomb interaction, and is accurate within
7% in the crossover region (b−1 . λ/a∗B . c−2/3). According to Eq. (5.14), if δ = 1,
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Figure 5.3: Infidelity 1 − F of the ground state of Hm for |m| = 0, 1, see Eq. (5.21).

the singlet-triplet transition does not occur for arbitrary large Bz, i.e. there is no
singlet-triplet transition without Coulomb interaction.

The singlet-triplet transition takes place at Bz = B∗
z , due to the orbital effect of B,

in the presence of Coulomb interaction. For strong Coulomb interaction, we have
δ ≪ 1 and the singlet-triplet transition occurs at a small value of Bz, B

∗
z ≪ ω0m

∗c/e,
and thus, one can neglect the magnetic field dependence in λ and δ. In this case, the
degeneracy field is given by B∗

z = 2δω0m
∗c/e, or equivalently by ω∗

c = ω0(2a
∗
B/λ0)

2/3,
where ω∗

c = eB∗
z/m

∗c and λ0 =
√

2~/m∗ω0. For weak Coulomb interaction, the
singlet-triplet degeneracy occurs at ω∗

c = 2π−1/3ω0(2a
∗
B/λ0)

2/3. In Fig. 5.2(b), we plot
the ratio ω∗

c/ω0 as a function of a∗B/λ0; the dotted curve corresponds to using the
following crossover function

ω∗
c

ω0
=

[
1 +

(
2

π1/3
− 1

)
F(λ0/a

∗
B)

](
λ0

2a∗B

)−2/3

, (5.16)

where F(x) = (1 + 0.11x2) /
(
1 + 0.3x4/3

)2
.

We discuss now the accuracy of our variational method. We rewrite Eq. (5.9) in the
following form

Hm = H̃m + V, (5.17)

where H̃m has the eigenvalues ε̃nm = ~ω̃(2n + 1 +
√
m2 + γ) and the eigenfunctions

given in Eq. (5.12). The perturbation

V =
~

2

m∗

(
1

a∗Br
− γ

r2

)
+
m∗

4

(
ω2 − ω̃2

)
r2, (5.18)

is expected to be “small” when the variational method works, with “small” meaning
that the off-diagonal matrix elements of V are much smaller than the level spacing
(the diagonal part of V needs not be small). We can show that indeed V ≪ H̃m in the
case λ/a∗B ≪ 1, and also in the case λ/a∗B ≫ 1 for transitions involving the ground
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state. As for intermediate strengths of the Coulomb interaction (λ/a∗B ∼ 1), there
is no small parameter in the problem, which can justify the assumption V ≪ H̃m.
Nonetheless, we calculate the matrix elements of V (see Appendix E) between the
ground and excited states, and find that they are numerically small, as compared to
the level spacing 2~ω̃. In particular, we find that the matrix element 〈f̃1m|V |f̃0m〉 is
identically zero, if the variational parameter ω̃ minimizes the energy of the ground
state in Eq. (5.13) [see also Eq. (D.1)]. Furthermore, we determine an upper bound
on the absolute value of any of the remaining matrix elements (n ≥ 2). We find that,
in both m = 0 and |m| = 1 cases, the matrix element 〈f̃2,m|V |f̃0m〉 has the largest
value in the crossover region λ/a∗B ∼ 1. If measured in terms of the level spacing 2~ω̃,
this upper bound is approximately 0.1 and 0.03, for the m = 0 and |m| = 1 cases,
respectively. Next, we characterize the accuracy of our variational method in terms
of the fidelity

F =
∣∣∣〈Ψ|Ψ̃〉

∣∣∣
2

, (5.19)

where Ψ(r) ≡ f0m(r) is the exact ground state of Hm, and Ψ̃(r) ≡ f̃0m(r) is the
corresponding wave function calculated with the help of the variational method. We
estimate the fidelity, using the perturbation theory expansion [122]

f0m(r) = f̃0m(r) +
∞∑

n=1

〈f̃nm|V |f̃0m〉
ε̃0m − ε̃nm

f̃nm(r) + ... , (5.20)

where we retain terms up to the second order in V (not shown). Thus, we obtain the
infidelity

1 − F =
1

2

∞∑

n=2

∣∣∣∣∣
〈f̃nm|V |f̃0m〉

2n~ω̃

∣∣∣∣∣

2

, (5.21)

where we dropped the n = 1 term, due to its zero contribution. The matrix elements
Vnn′ ≡ 〈f̃nm|V |f̃n′m〉 are calculated in Appendix E. In Fig. 5.3, we plot lg(1 − F ) as
a function of lg(λ/a∗B) for |m| = 0, 1. Figure 5.3 shows that our variational method
is fairly accurate, even in the crossover region λ/a∗B ∼ 1. Finally, we note that
in Eqs. (5.20) and (5.21) we did not include the diagonal part of V in the energy
denominators. More accurately, one has to take this part into account as well, since
Vnn can be comparable to the level spacing ~ω̃. However, it turns out that the
difference Vnn − V00 ≥ 0 monotonically increases with n in the whole range of λ/a∗B.
Therefore, when we replaced 2n~ω̃ → 2n~ω̃ + Vnn − V00 in Eq. (5.21), we obtained
only an insignificant reduction of 1 − F for λ/a∗B ∼ 1 on the scale of Fig. 5.3 (not
shown).
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5.4 Matrix elements of HSO

The spin-orbit Hamiltonian HSO in Eq. (5.3) connects different spin components and
orbital wave functions. The matrix elements of HSO read

〈ns|HSO|n′s′〉 = i (En −En′)
∑

j=1,2

〈n|ξj|n′〉 · 〈s|σj|s′〉, (5.22)

where En and |n〉 = |NMnm〉 are, respectively, the eigenenergies and eigenfunctions
of Hd (see Sec. 5.3), and s stands for the spin quantum numbers of two electrons.
The vector ξj has a simple form in the coordinate frame: x′ = (x + y)/

√
2, y′ =

−(x− y)/
√

2, z′ = z, namely

ξj = (y′j/λ−, x
′
j/λ+, 0), (j = 1, 2), (5.23)

where λ± = ~/m∗(β ± α) are the spin-orbit lengths. To obtain Eq. (5.22), we used
the definition of momentum, pj = (im∗/~) [Hd, rj], with Hd given in Eq. (5.2). Note
that, due to the linear in p form of HSO, the matrix elements (5.22) vanish at the
point of singlet-triplet degeneracy2.

The spin states of two electrons |s〉 are the singlet (S) and triplet (T ) states:

|S〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) , (5.24)

|T+〉 = | ↑↑〉, |T−〉 = | ↓↓〉, (5.25)

|T0〉 =
1√
2

(| ↑↓〉 + | ↓↑〉) , (5.26)

where, arrows in the first (second) place denote the spin state of the first (second)
electron. Using the representation in terms of R = (r1 + r2)/2 and r = r1 − r2, we
write ∑

j=1,2

ξj · σj = ξR ·Σ +
1

2
ξr · σ, (5.27)

where Σ = σ1 + σ2 and σ = σ1 − σ2, and also ξR = (ξ1 + ξ2)/2 and ξr = ξ1 − ξ2.
Then, it is easy to see that the following matrix elements vanish

〈S|HSO|S〉 = 〈T0|HSO|T0〉 = 〈T+|HSO|T−〉 = 0. (5.28)

Next, since the operator Σ is nonzero only in the triplet subspace and σ only be-
tween the singlet and triplets, all matrix elements of HSO in the triplet subspace are
proportional to ξR, and those connecting singlet and triplet are proportional to ξr.
For a magnetic field along l = B/B, we thus have

〈nT±|HSO|n′T±〉 = ±2i (En − En′) 〈n|ξR|n′〉 · l, (5.29)

〈nT±|HSO|n′T0〉 = 2i
√

2 (En − En′) 〈n|ξR|n′〉 · (X ∓ iY ) , (5.30)

2In the presence of Zeeman interaction, this should be understood as the degeneracy of the states
|S〉 and |T0〉.
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where X, Y and Z ≡ l are unit vectors of a coordinate frame with Z along the
spin quantization axis. One possible choice of X and Y is: X = (sinϕ′,− cosϕ′, 0)
and Y = (cosϕ′ cos θ, sinϕ′ cos θ,− sin θ), where ϕ′ = ϕ − π/4 and we wrote vec-
tors in the frame (x′, y′, z). Note that for the vector l in this frame we have l =
(cosϕ′ sin θ, sinϕ′ sin θ, cos θ). The matrix elements of ξR can be easily evaluated us-
ing the wave functions in Eqs. (5.6) and (5.8). To avoid extra phase factors due to the
(π/4)-rotation in going from (x, y, z) to (x′, y′, z), we replace ϕR → ϕR′ and ϕr → ϕr′

in Eqs. (5.6) and (5.7), respectively. Thus, e.g., we have R± ≡ Rx′ ± iRy′ = Re±iϕR′

and |NM〉 = Rnm(R)eiMϕR′/
√

2π. Then, the matrix elements 〈NM |ξR|N ′M ′〉 of the
vector

ξR =

(
i
R− − R+

2λ−
,
R− +R+

2λ+

, 0

)
(5.31)

are given in terms of the following matrix elements,

〈NM |R±|N ′M ′〉 = ΛδM,M ′±1

(
δN,N ′

√
N +

|M | + |M ′| + 1

2
−

δN+|M |,N ′+|M ′|

√
N +N ′ + 1

2

)

. (5.32)

In particular, for the ground stateN ′ = M ′ = 0, we have non-zero only 〈0,±1|R±|00〉 =
Λ, which yields

〈NM |ξR|00〉 =
∑

±

Λ

2
δN,0δM,±1

(
∓iλ−1

− , λ−1
+ , 0

)
. (5.33)

Next, we calculate the remaining three matrix elements of HSO in Eq. (5.22). They
connect the singlet and triplet states, and therefore, the second term in Eq. (5.27)
contributes here. We obtain

〈nT0|HSO|n′S〉 = i (En −En′) 〈n|ξr|n′〉 · l, (5.34)

〈nT±|HSO|n′S〉 = ∓ i√
2

(En −En′) 〈n|ξr|n′〉 · (X ∓ iY ) , (5.35)

where X and Y have been defined above. Analogously to the previous case, we
express ξr in terms of r± = rx′ ± iry′ ,

ξr =

(
i
r− − r+

2λ−
,
r− + r+

2λ+

, 0

)
, (5.36)

which allows us to evaluate 〈nm|ξr|n′m′〉, provided we know 〈nm|r±|n′m′〉. Using
the wave function in Eq. (5.7), we obtain

〈nm|r±|n′m′〉 = δm,m′±1

∫ ∞

0

rf̃nm(r)f̃n′m′(r)dr, (5.37)
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where we recalled that Rnm(r) = f̃nm(r)/
√
r, with f̃nm(r) given in Eq. (5.12). The

function f̃nm(r) contains the variational parameters γ and ω̃, which are determined
from the minimum of the ground state energy of Hm in Eq. (5.9), for each |m|
independently. Therefore, apart from the explicit dependence on |m| in Eq. (5.12),
the function f̃nm(r) depends on |m| also via γ and λ̃ ∼

√
1/ω̃. In what follows,

we provide γ and λ̃ ∼
√

1/ω̃ with an index m . We thus rewrite Eq. (5.12) in the
following form

f̃nm(r) =

√
2Γ(n+ tm)

n!

rtm−1/2

Γ(tm)λ̃tm
m

exp

(−r2

2λ̃2
m

)
1F1

(
−n, tm; r2/λ̃2

m

)
, (5.38)

where tm = 1 +
√
m2 + γm and λ̃m =

√
2~/m∗ω̃m. Then, evaluating the integral in

Eq. (5.37), we obtain

〈nm|r±|n′m′〉 = λmm′δm,m′±1

√
Γ(n + tm)Γ(n′ + tm′)

n!n′!Γ(tm)Γ(tm′)
×

F2

(
1 + tm + tm′

2
;−n,−n′; tm, tm′ ;

2λ̃2
m′

λ̃2
m + λ̃2

m′
,

2λ̃2
m

λ̃2
m′ + λ̃2

m

)
, (5.39)

where F2(α; β, β ′; γ, γ′; x, y) is a hypergeometric function of two variables, see below.
In Eq. (5.39), we used the notation

λmm′ =
λ̃

1+tm′
m λ̃1+tm

m′√
Γ(tm)Γ(tm′)

(
2

λ̃2
m + λ̃2

m′

) 1+tm+t
m′

2

Γ

(
1 + tm + tm′

2

)
. (5.40)

We note that the diagonal part of λmm′ gives the average distance between the elec-
trons in a state with n = 0,

〈r〉m ≡ λmm = λ̃m
Γ(3/2 +

√
m2 + γm)

Γ(1 +
√
m2 + γm)

. (5.41)

In particular, for strong Coulomb interaction, we have 〈r〉m = λ̃mγ
1/4
m = λ(λ/2a∗B)1/3,

in the leading asymptotic order of λ/a∗B ≫ 1.

The function F2(α; β, β ′; γ, γ′; x, y) used in Eq. (5.39) is defined by the series

F2(α; β, β ′; γ, γ′; x, y) =

∞∑

k,l=0

(α)k+l(β)k(β
′)l

(γ)k(γ′)lk!l!
xkyl, (5.42)

where (x)k = Γ(x + k)/Γ(x) is the Pochhammer symbol, and the variables x and y
should obey the condition |x|+|y| < 1 to guarantee convergence. In our case, however,
we have x = 2λ̃2

m′/(λ̃2
m + λ̃2

m′) and y = 2λ̃2
m/(λ̃

2
m′ + λ̃2

m), which gives |x|+ |y| = 2 > 1.
Nevertheless, the series in Eq. (5.42) contains a finite number of terms, and thus
converges. Indeed, since the second and third arguments of F2(α; β, β ′; γ, γ′; x, y) in
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Eq. (5.39) are negative integers, β = −n and β ′ = −n′, the Pochhammer symbols
(β)k and (β ′)l in Eq. (5.42) are identically zero for k > n and l > n′, and thus, the
summation in Eq. (5.42) ends at k = n and l = n′.

Finally, we note that, in particular, for n = n′ = 0, Eq. (5.39) gives

〈0m|r±|0m′〉 = λmm′δm,m′±1. (5.43)

In the absence of Coulomb interaction, Eq. (5.39) reduces to a simpler expression, as
given in Eq. (5.32), but with capital letters replaced by lower-case ones.

5.5 Electron states with spin-orbit interaction

Using the results of Sections 5.3 and 5.4, we proceed now to construct a perturbation
theory in the vicinity of the singlet-triplet transition. We assume that the spin-orbit
interaction in the quantum dot is weak. As we show below, the small parameter of
our perturbation theory is given by the average distance between the electrons in the
dot divided by the spin-orbit length, 〈r〉m/λSO ≪ 1, where 〈r〉m is given in Eq. (5.41)
and λSO is the smallest absolute value of λ± = ~/m∗(β ± α). Next, we consider
separately the case of zero and finite Zeeman interaction.

5.5.1 Case of zero Zeeman interaction (g = 0)

We consider the Hamiltonian H = Hd +HSO. In this case, the matrix elements of the
spin-orbit interaction vanish at the singlet-triplet degeneracy point, see Eq. (5.22),
and we can use perturbation theory for the non-degenerate case [122] up to a close
vicinity of the singlet-triplet degeneracy point. We have to make sure only that,
within each degenerate multiplet, such as a triplet, the basis states are chosen cor-
rectly. For this, we write down the correction to the dot Hamiltonian in the second
order of HSO,

∆H(2) =
1

2

[(
L̂−1

d HSO

)
, HSO

]

=
~

m∗λ−λ+

∑

j

(xjpjy − yjpjx)σjz, (5.44)

where L̂dA = [Hd, A] for ∀A, and the z-axis is perpendicular to the plane of the
2DEG. Going to the relative coordinates in Eq. (5.44) and neglecting transitions
between levels which never intersect, we obtain

∆H(2) ≃ ~
2

2m∗λ−λ+

[
ℓRz + ℓrz +

eBz

~c

(
R2 +

r2

4

)]
Σz, (5.45)

where ℓRz = −i∂/∂ϕR and ℓrz = −i∂/∂ϕr and we have used the cylindrical gauge
A(r) = 1

2
[B× r]. Equation (5.45) gives a spin-orbit induced spin-splitting of the dot
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energy levels. This splitting can be viewed as an effective Zeeman energy which sets
the quantization axis along the [001] crystallographic direction. The terms which we
neglected in Eq. (5.45) are proportional to σz = σ1z − σ2z and thus violate the sym-
metry of a Zeeman interaction. However, since these terms are purely off-diagonal,
their contribution goes to higher orders.

The leading order correction to the two-electron wave function can be easily found
using the matrix elements of HSO calculated in Section 5.4. We choose the unit
vectors X, Y and Z ≡ l to point along the axes x′, y′ and z, respectively (this fixes
our spin measurement frame). The singlet and triplet states in the first order of HSO

then become,

|SNMnm〉′ = |SNMnm〉 + |NM〉
√

2m∗

~
×

∑

n′

{|n′, m− 1〉 (|T+〉α + |T−〉β) 〈n′, m− 1|r−|nm〉+

|n′, m+ 1〉 (|T−〉α + |T+〉β) 〈n′, m+ 1|r+|nm〉} , (5.46)

|T±NMnm〉′ = |T±NMnm〉 − |SNM〉
√

2m∗

~
×

∑

n′

{|n′, m± 1〉α〈n′, m± 1|r±|nm〉+

|n′, m∓ 1〉β〈n′, m∓ 1|r∓|nm〉} ± |T0nm〉2
√

2m∗

~
×

∑

N ′

{|N ′,M ± 1〉α〈N ′,M ± 1|R±|NM〉+

|N ′,M ∓ 1〉β〈N ′,M ∓ 1|R∓|NM〉} , (5.47)

|T0NMnm〉′ = |T0NMnm〉 + |nm〉2
√

2m∗

~
×

∑

N ′

{|N ′M + 1〉 (|T−〉α− |T+〉β) 〈N ′,M + 1|R+|NM〉−

|N ′M − 1〉 (|T+〉α− |T−〉β) 〈N ′,M − 1|R−|NM〉} . (5.48)

We note that Eqs. (5.46), (5.47) and (5.48) can be rewritten in the following general
form

|ns〉′ = (1 − S) |ns〉, (5.49)

S = iξR · Σ +
i

2
ξr · σ = i

∑

j=1,2

ξj · σj, (5.50)

which can be viewed as a spin-dependent gauge transformation |ns〉′ = exp(−S)|ns〉
in leading order of S. We note that this transformation is identical to that used
for a single-electron quantum dot [90, 175, 183,185], with the only difference that we
sum over electrons here. Using the states in Eq. (5.49), it is easy to see that the

81



CHAPTER 5. SPIN RELAXATION AT THE SINGLET-TRIPLET
TRANSITION IN A QUANTUM DOT

matrix elements of any scalar potential, such as, e.g., the electron-phonon interaction
in Eq. (5.5), are diagonal in the spin index,

〈ns|eSUph(r1, r2)e
−S|n′s′〉 = (Uph)nn′ δss′, (5.51)

because S in Eq. (5.50), being a function of coordinates only, commutes with scalar
potentials. Thus, the spin degrees of freedom in the quantum dot decouple from all
scalar potential fluctuations in the first order of HSO. Next, we discuss the validity
of this statement for quantum dots of arbitrary shape.

We arrived at Eqs. (5.49) and (5.50) by considering the harmonic confining potential.
For this confining potential and any other one possessing a center of inversion in the
(x, y)-plane, the diagonal in orbit part

Sns,ns′ = i
∑

j

(
ξj

)
nn

· (σj)ss′ (5.52)

is identically zero for all orbital states |n〉, or it can be made so by shifting the
origin of coordinates. This allowed us to choose the quantization axis for all orbital
levels equally (along z), as required by the interaction (5.45). We now consider a
dot confining potential of an arbitrary shape, for which Sns,ns′ in Eq. (5.52) is not
necessarily zero. We also allow for an arbitrary number of electrons in the quantum
dot. As we show below, the transformation (5.49) takes then the form

|ns〉′ = (1 − SQ) e−SP |ns〉, (5.53)

where SP and SQ are some operators, respectively, diagonal and off-diagonal in the
Hilbert space of Hd, i.e. PSP = SP and QSQ = SQ, with Q = 1 − P and PA =∑

nAnn|n〉〈n| for ∀A. Here, we assume for simplicity that the Hamiltonian Hd has
no orbital degeneracies (otherwise one had to regroup the sets n and s such that
En were non-degenerate). We start with writing down the following formally exact
equality of the Schrieffer-Wolff transformation,

eS (Hd +HSO) e−S = Hd + ∆H, (5.54)

where S = −S† is chosen such that P∆H = ∆H . The Hamiltonian H ′ = Hd + ∆H
is diagonal in the basis of Hd and has the same energy spectrum as the Hamiltonian
H = Hd +HSO; the latter is diagonal in a basis related by exp(−S) to the basis of Hd.
Since in our case PHSO = 0 and thus ∆H = o(H2

SO), it follows from Eq. (5.54) that
[Hd, S] = HSO in leading order of HSO. In matrix form, the latter equation reads

(En −En′)Sns,n′s′ = i (En −En′)
∑

j

(
ξj

)
nn′ · (σj)ss′ , (5.55)

where we used Eq. (5.22) for matrix elements of HSO. Clearly, for En 6= E ′
n, we

obtain from Eq. (5.55) that Sns,n′s′ = i
∑

j

(
ξj

)
nn′ · (σj)ss′, which coincides with what

one obtains from Eq. (5.50). Further, we note that the fully diagonal part Sns,ns are
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unimportant phases and we do not discuss it here. The diagonal in orbit part Sns,ns′

remains undefined by Eq. (5.55), because the perturbation HSO does not lift the spin
degeneracy in the first order (PHSO = 0). Next, we split the transformation (5.54)
into a product, exp(−S) = (1−SQ) exp(−SP), where we retain only the leading order
of SQ. For SQ, we again have [Hd, SQ] = HSO, which now gives

SQ = (1 − P)
∑

j

iξj · σj, (5.56)

where the factor (1 − P) zeroes out the diagonal in orbit part. Note that SQ does
not generally commute with scalar potentials and, unless SP can be chosen such as
in Eq. (5.52), there can be, in principle, spin relaxation in the first order of HSO. As
we have seen above the spin splitting in the dot occurs in the second or higher orders
of HSO and is formally given by ∆H in Eq. (5.54). The operator SP is chosen such
that ∆H is diagonal in the spin subspace of each orbital level. Therefore, SP depends
on the details of Hd, i.e. on the confining potential and the number of electrons in
the quantum dot. Next we briefly discuss ∆H for the two-electron case considered in
this chapter.

The fine structure of a two-electron quantum dot in the absence of orbital degeneracy
(such as singlet-triplet degeneracy) is described by a Hamiltonian of the following form

∆H = A · Σ +
∑

µν

BµνΣµΣν , (5.57)

where Aµ and Bµν = Bνµ are operators diagonal in the orbital space of Hd. In
Eq. (5.57), we did not include energy shifts of the singlet levels, since they are neg-
ligible on the scale of the dot level spacing. On the same reason, we also neglect the
triplet shifts by setting

∑
µ Bµµ = 0. The term A · Σ in Eq. (5.57) can be viewed as

a spin-orbit induced Zeeman interaction. In leading order, A is perpendicular to the
2DEG and can be found from Eq. (5.45), which remains valid also in this case. On
average A has the following magnitude

〈A〉 =
~ωc

4λ−λ+

∑

j=1,2

〈r2
j 〉, (5.58)

where 〈. . . 〉 denotes averaging over many orbital levels. Note that A vanishes at zero
magnetic field due to time reversal symmetry. The remaining terms (second order
in Σ) in Eq. (5.57) describe on-site spin anisotropy. For a given triplet level, we can
choose a coordinate frame in which 〈n|Bµν |n〉 ∼ δµν , and since

∑
µBµµ = 0, there

remain only two independent components of Bµν . We note that Bµν is of higher
order in HSO than A; however, since the spin anisotropy interaction is time-reversal
invariant, BµµΣ2

µ are the only terms left at zero magnetic field.

We now discuss the relevance of the fine structure to the spin relaxation. We have
seen above that the spin-orbit interaction can induce spin splitting in the quantum
dot, and for quantum dots without center of inversion in the (x, y)-plane this results
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in spin coupling to potential fluctuations in the first order of HSO. We mention first
several cases when this coupling does not result in spin relaxation in the two-electron
quantum dot (still assuming g = 0).

(i) There can be no relaxation between singlet and triplet states in the first order of
HSO without Zeeman interaction. This is because Sns,ns′ in Eq. (5.52) is effectively
zero whenever a singlet state is involved, and then we come back to Eqs. (5.49), (5.50)
and (5.51), resulting in no spin decay. Indeed, the left-hand side of Eq. (5.52) can be
rewritten as follows

P
∑

j=1,2

iξj · σj = iPξR ·Σ, (5.59)

where we used the symmetry with respect to exchange of electrons. In a transition
involving a singlet state, the operator Σ gives zero. Thus, Sns,ns′ ∼ Σ is effectively
zero. As a result, the singlet state is block-diagonal in coupling to scalar potential
fluctuations [cf. Eq. (5.51)], i.e. a singlet can relax only to a singlet.

(ii) There can be no relaxation between spin sates belonging to one and the same
orbital level in the first order of HSO without Zeeman interaction. This is obvious
since P[SQ, Uph] = 0, see Eq. (5.51) with S → SQ.

After (i) and (ii) we are now left only with transitions between triplet states of
different orbital levels. Let the triplet states be fine-split with some characteristic
energy ∆fs. This fine splitting can be calculated from the Hamiltonian (5.57), using
coupling constants obtained from the perturbation theory expansion of Eq. (5.54).
However, for the sake of making a simple argument here, we assume ∆fs to be an
independent parameter. Clearly, if ∆fs = 0, we are free to construct any linear
combination of states within a triplet; so we can recover Eqs. (5.49), (5.50) and (5.51),
which yield no spin relaxation. To be more rigorous, we formulate an additional
condition when there is no spin decay in the first order of HSO.

(iii) If the orbital relaxation time τ is much shorter than ~/∆fs, then the spin re-
laxation between triplet states belonging to different orbital levels is suppressed. To
explain this result, we note that, provided ∆fs < ~/τ , we can choose to work with
the states in Eqs. (5.49) and (5.50) instead of the true eigenstates (5.53), because the
internal evolution of the states (5.49), being due to the fine structure splitting ∆fs, is
slower than the lifetime τ . Then, since the states (5.49) undergo no spin relaxation,
the spins can be considered as decoupled from the potential fluctuations on the time
scale ~/∆fs. As a result, the spin relaxation occurs in the second or higher orders of
HSO.

Finally, we conclude that spin relaxation in the first order ofHSO and without Zeeman
interaction is possible only between spin triplet states belonging to different orbital
levels and only if ∆fs > ~/τ . The interaction which causes spin relaxation is propor-
tional to (ξR

nn − ξR
mm) ·Σ, where n and m denote the involved orbital states. We do

not consider this mechanism in further detail here, since it refers to an asymmetric
quantum dot, which goes beyond our model.
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5.5.2 Case of finite Zeeman interaction (g 6= 0)

We consider now the Hamiltonian H = Hd +HZ +HSO in the vicinity of a singlet-
triplet transition. We assume the Zeeman spitting EZ = gµBB to be large compared
to both the fine structure splitting ∆fs and the level broadening ~/τ . This allows us
to set the spin quantization axis along the applied magnetic field B. In Section 5.5.1,
we found the wave functions of two electrons in the quantum dot for the case without
Zeeman interaction. It is convenient now to use these functions as basis states for
studying the effect of Zeeman interaction. We perform the following unitary trans-
formation [175, 183, 185], H̃ = eSQ(Hd + HZ + HSO)e−SQ , with SQ given in leading
order in Eq. (5.56). After this transformation, a basis state |ns〉, associated with the
Hamiltonian H̃ , will correspond to the basis sate |ns〉′ = (1−SQ)|ns〉, associated with
the Hamiltonian H = Hd +HZ +HSO. In the first order of HSO, it is straightforward
to obtain

H̃ = Hd +HZ +HSO
Z , (5.60)

HSO
Z = EZ

∑

j

[
l ×Qξj

]
· σj , (5.61)

where l = B/B, EZ = gµBB, and Q zeroes out the diagonal part of ξj . Below, we
consider the harmonic confining potential, for which we achieve Qξj = ξj by choosing
the origin of coordinates in the dot center. In Eq. (5.61), we can rewrite the sum over
two electrons in terms of the relative coordinates,

∑

j

[
l × ξj

]
· σj = [l × ξR] ·Σ +

1

2
[l × ξr] · σ. (5.62)

The first term on the right-hand side of Eq. (5.62) admixes only triplet states with
different orbital wave functions, and therefore, we can take it into account by means
of perturbation theory for the non-degenerate case. In contrast, the second term on
the right-hand side of Eq. (5.62) is strong at the singlet-triplet transition, since it
connects singlet and triplet states which are degenerate. For this terms, we use below
perturbation theory for the degenerate case [122]. The matrix elements of HSO

Z in
Eq. (5.61), therefore, read

〈nT±|HSO
Z |n′T0〉 = ∓2i

√
2EZ〈n|ξR|n′〉 · (X ∓ iY ) , (5.63)

〈nT±|HSO
Z |n′S〉 = i

√
2EZ〈n|ξr|n′〉 · (X ∓ iY ) , (5.64)

〈nT0|HSO
Z |n′S〉 = 〈nT−|HSO

Z |n′T+〉 = 0 (5.65)

where X and Y are unit vectors in the plane perpendicular to the applied magnetic
field B (see Sec. 5.4). Note that, according to Eq. (5.65), there is no admixture
between any singlet |S〉 and triplet |T0〉 states, as well as between any triplet states:
|T+〉 and |T−〉. This will have an effect on the spin relaxation rates in Sec. 5.6.2,
where the corresponding rates for the transitions S ↔ T0 and T− ↔ T+ are found
to be zero in leading order in spin-orbit interaction. Next, we use Eqs. (5.63) and
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2∆+

2∆−

|ΨS〉 |ΨT+

|ΨT0〉

|ΨT−

Figure 5.4: Sketch of the singlet-triplet transition in a quantum dot with spin-orbit in-
teraction. The triplet level spilts in three due to the Zeeman interaction. The singlet
|ΨS〉 undergoes avoided crossing with the triplets |ΨT±〉, with the splittings ∆± given in
Eq. (5.68). At the same time, the degeneracy of |ΨS〉 and |ΨT0〉 at the transition point is
not lifted.

(5.64) to find the two-electron wave functions for the lowest in energy singlet-triplet
transition in the quantum dot.

We consider first a close vicinity of the singlet-triplet transition, where the contribu-
tion of strong matrix elements is dominant. Substituting Eq. (5.36) into Eqs. (5.63)−(5.65)
and using Eq. (5.43), we obtain for |ΨS〉 = |0000S〉 and |ΨT0,±〉 = |000,−1, T0,±〉 the
following expression

〈ΨT±|HSO
Z |ΨS〉 =

iEZλ1,0√
2

[(
±cos θ

λ−
− 1

λ+

)
cosϕ′

+i

(
1

λ−
∓ cos θ

λ+

)
sinϕ′

]
, (5.66)

〈ΨS,T±|HSO
Z |ΨT0〉 = 〈ΨT+|HSO

Z |ΨT−〉 = 0, (5.67)

where we used the convention for X and Y given below Eq. (5.30). Next, introducing
∆± ≡

∣∣〈ΨT±|HSO
Z |ΨS〉

∣∣, we obtain

∆± = EZ
λ1,0√

2

√
1 − l2x′

λ2
−

+
1 − l2y′

λ2
+

∓ 2lz
λ−λ+

, (5.68)

where we made use of the components of l = (cosϕ′ sin θ, sinϕ′ sin θ, cos θ) to repre-
sent the angular dependence of ∆±. The Coulomb interaction enters in Eqs. (5.66)
and (5.68) via the quantity λ1,0, which is defined in Eq. (5.40). Note that, approx-
imately, we have λ1,0 ≈ 〈r〉. And since the Coulomb repulsion increases 〈r〉, see
Eq. (5.41), we expect a stronger effect of the spin-orbit interaction in quantum dots
with a larger ratio λ/a∗B.

The singlet-triplet transition is shown schematically in Fig. 5.4. The triplet level is
split in three by the Zeeman interaction: ET0 = ET and ET± = ET ∓EZ . The avoided
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crossing of the singlet state |ΨS〉 with the triplets |ΨT±〉 occurs due to the interaction
HSO

Z , with the matrix elements given in Eq. (5.66). The splitting energies are the
doubled ∆± in Eq. (5.68). Note that the degeneracy of the singlet state with the
triplet |ΨT0〉 at the transition point is not lifted. This degeneracy, however, can be
lifted in higher orders of HSO. Next, we consider the interaction between the states:
|ΨS〉, |ΨT+〉, and |ΨT−〉. And since the state |ΨT0〉 couples to neither of these states,
see Eq. (5.62) and the discussion thereafter, we disregard it for the time being here.
Writing the wave function in the form

|Ψ〉 = a|ΨS〉 + b|ΨT+〉 + c|ΨT−〉, (5.69)

we obtain the following set of equations




ES −E WST+ WST−

WT+S ET+ −E 0
WT−S 0 ET− − E








a
b
c



 = 0, (5.70)

where WST± stands for 〈ΨS|HSO
Z |ΨT±〉. The characteristic equation reads

ES −E − ∆2
+

ET+ − E
− ∆2

−
ET− −E

= 0, (5.71)

where ET± = ET ∓ EZ , and ES and ET are the energies of singlet |ΨS〉 and triplet
state |ΨT0〉, respectively. Since ∆± ≪ EZ , we can solve Eq. (5.71) in the secular
approximation. Setting in turn ∆− and ∆+ to zero in Eq. (5.71), we find the following
expressions, for the lower (+) and upper (−) solid curves in Fig. 5.4,

E± =
1

2

[
ET± + ES ∓

√(
ET± − ES

)2
+ 4∆2

±

]
. (5.72)

Next, multiplying Eq. (5.71) by (ET+ − E)(ET− − E) and dividing the obtained
polynomial by E2 − (E+ +E−)E+E+E−, we obtain in leading order the solution for
the S-shaped curve in Fig. 5.4,

E0 = ET +
1

2

√
(ET+ − ES)2 + 4∆2

+

−1

2

√
(ET− −ES)2 + 4∆2

−. (5.73)

Finally, the wave function of a level with the energy E = E±, E0 is given by Eq. (5.69),
with the coefficients

b =
〈ΨT+ |HSO

Z |ΨS〉
E − ET+

a, c =
〈ΨT−|HSO

Z |ΨS〉
E − ET−

a, (5.74)

a =

[
1 +

∆2
+

(E −ET+)2
+

∆2
−

(E − ET−)2

]−1/2

. (5.75)
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Figure 5.5: Angular dependence of the splitting ∆+ as given by Eq. (5.68), evaluated for
λ+/λ− = 2. The direction in space corresponds to the spin-quantization axis, given by
l = B/B. At the “magic angles”, the value of ∆+ equals zero. The angular dependence
of the splitting ∆− in Eq. (5.68) is obtained from this figure by reflecting it in the (x′, y′)-
plane. Note that the circular symmetry of the quantum dot was essential for obtaining this
angular dependence.

Equation (5.69) together with Eqs. (5.72)−(5.75) allows one to calculate transitions
between quantum dot levels under the action of a perturbation. As a perturbation,
in the next Section, we consider the electron-phonon interaction.

Now, we return to Eq. (5.68) and consider the particular case when the magnetic
field B is perpendicular to the 2DEG plane (θ = 0, π). Then, according to Eq. (5.68),
we have ∆+ =

√
2EZλ1,0m

∗|α|/~ and ∆− =
√

2EZλ1,0m
∗|β|/~. These expressions,

in principle, allow one to access the Rashba (Dresselhaus) coupling constant α (β)
separately in a measurement of ∆+ (∆−). We do not exclude here a direct measure-
ment of the splittings 2∆± in transport spectroscopy of quantum dots. However, for
GaAs quantum dots, this requires a fairly low electron temperature and applied bias
voltage, as well as a large magnetic filed. To give an estimate, we assume typical
GaAs values: λ1,0 = 100 nm for the inter-electron distance, ~/m∗β = 8µm for the
spin-orbit length, and a magnetic field B = 10 T (with g = −0.44 ); as a result, we
obtain 2∆− ≈ 20µeV. A different possibility to access ∆± is to measure the spin
relaxation times and to deduce the strength of the spin-orbit interaction therefrom,
see further.

Equation (5.68) has a strong dependence on the direction of l = B/B. For some
angles — “magic angles” — the effect of the spin-orbit interaction vanishes. From
Eq. (5.68), we find that ∆+ = 0 for cos θ = λ−/λ+ and ϕ′ = 0, π, provided |λ+| > |λ−|.
Alternatively, if |λ−| > |λ+|, we find that ∆+ = 0 for cos θ = λ+/λ− and ϕ′ =
π/2, 3π/2. Similarly for ∆−, we have the same expressions, but with cos θ → − cos θ.
In Fig. 5.5, we plot the angular dependence of ∆+ given in Eq. (5.68), calculated for

88



5.5. ELECTRON STATES WITH SPIN-ORBIT INTERACTION

the ratio λ+/λ− = 2. A similar figure can be obtained also for ∆− in Eq. (5.68),
by reflecting Fig. 5.5 in the (x, y)-plane. Clearly, the “magic angles” can be used to
determine the relative strength between the Rashba (α) and Dresselhaus (β) coupling
constants (recall that 1/λ± = m∗(β ± α)/~).

The angular dependence of the splittings ∆± in Eq. (5.68) is specific to the circular
symmetry of the harmonic confining potential used above. In the opposite extreme
case, when the two-electron wave functions can be chosen real (or their imaginary
parts due to Bz are negligible) we obtain ∆+ = ∆− and

∆± =
√

2EZ

√
r̄2
y′

λ2
−

+
r̄2
x′

λ2
+

−
(
r̄y′

λ−
lx′ +

r̄x′

λ+

ly′

)2

, (5.76)

where r̄ = 〈ψT |r|ψS〉 is the dipolar matrix element (not to be confused with 〈r〉), which
we assume to be real. We note that this corresponds to a quantum dot elongated in
one direction, or to a double quantum dot. The singlet-triplet transition can occur in
this case at a value ofBz much smaller than the characteristic confining magnetic field.
Then, the imaginary part of r̄ is negligible. Note that Eq. (5.76) can be rewritten

in the form ∆± =
√

2EZ

√
(r̄y′/λ−)2 + (r̄x′/λ+)2

√
1 − cos2(ϕ′ − ϕ0) sin2 θ, with ϕ0

satisfying tanϕ0 = r̄x′λ−/r̄y′λ+. Then, it is easy to see that Eq. (5.76) describes a
doughnut (or more precisely a horn torus) with the rotation axis at ϕ′ = ϕ0 and
θ = π/2, see Fig. 5.6. In this case, the “magic angle” coincides with the rotation axis
of the torus. Knowing the rotation axis, one can find the relative strength of α and
β, provided the asymmetry of the quantum dot in the directions x′ and y′ is known.
In Fig. 5.6, we plotted the angular dependence of ∆± assuming r̄y′λ+/r̄x′λ− = 2.

Now, we return to the weak matrix elements in Eqs. (5.63) and (5.64). These are the
matrix elements other than those given in Eq. (5.66). As before, we consider the lowest
in energy singlet and triplet levels. In some cases, the contribution of the weak matrix
elements to the wave functions can be comparable to, or even dominating over, the
contribution of the strong ones. For example, away from the singlet-triplet transition,
the energy ETS = ET − ES becomes comparable to the excitation energies of other
excited states in the quantum dot (the closest would be the state |000,−2, S〉). In
this case, the admixture of such excited states to the wave functions of the singlet
and triplet under consideration can be as large as the mutual admixture within the
singlet-triplet subspace due to the strong matrix elements. Another case is when the
direction of B is at the “magic angle” or in its vicinity. Then, the strong matrix
elements vanish and the weak ones dominate. Below, we take into account the weak
matrix elements by means of perturbation theory for the non-degenerate case. It
is convenient to proceed as we did in Section 5.5.1, performing a Schrieffer-Wolff
transformation on the Hamiltonian.

We return now to Eq. (5.60) and separate the weak matrix elements from the Hamil-
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Figure 5.6: Opposite to Fig. 5.5, we plot here the angular dependence of the splittings ∆±
(with ∆+ = ∆−) as given by Eq. (5.76), which describes a quantum dot without circular
symmetry. The degree of asymmetry needs to be large enough, such that in a magnetic field
causing the singlet-triplet transition the imaginary part of r̄ = 〈ψT |r|ψS〉 to be negligible.
For the plot we assumed r̄y′λ+/r̄x′λ− = 2.

tonian into a perturbation,

H̃ = H̃0 + Ṽw, (5.77)

H̃0 = Hd +HZ + PSTH
SO
Z , (5.78)

Ṽw = (1 − PST )HSO
Z , (5.79)

where PST projects onto the singlet-triplet subspace, PSTA =
∑

µν Aµν |µ〉〈ν|, with
µ, ν ∈ (ΨS,ΨT±,ΨT0) and ∀A. Note that all the strong matrix elements are included

into H̃0, whereas all the weak ones into Ṽw. We retain the tilde mark over the
Hamiltonian to denote the Schrieffer-Wolff transformation performed at the beginning
of this Section. In that transformation, we excluded the spin-orbit interaction HSO

from the Hamiltonian, using the transformation matrix SQ in Eq. (5.56). Now we
change the basis a second time, performing this time a Schrieffer-Wolff transformation
which excludes the perturbation Ṽw from the Hamiltonian (5.77). Thus, we transform
H̃ to H̃ ′ = (1 + Sw)H̃(1 − Sw), with Sw ≪ 1 obeying [H̃0, Sw] = Ṽw. After this
transformation, we obtain H̃ ′ = H̃0 in leading order of the spin-orbit interaction. At
the same time, by doing this transformation, we correct the basis states to take into
account the perturbation Ṽw in leading order.

Considering now the phonon potential Uph(r1, r2, t), we apply the same unitary trans-
formations, Ũ ′

ph = (1 + Sw)Ũph(1 − Sw), and obtain in leading order

Uph → Uph + [Sw, Uph]. (5.80)

Note that the first Schrieffer-Wolff transformation, Ũph = (1 + SQ)Uph(1 − SQ), does
not affect the phonon potential (or any other scalar potential), provided we consider
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a parabolic dot confinement, or one with a center of inversion (see Sec. 5.5.1). Fur-
thermore, for an arbitrary dot confinement, we have shown in Sec. 5.5.1 that SQ can
effectively be replaced by S given in Eq. (5.50), provided we consider spin relaxation
between singlet and triplet, or between triplet states of the same triplet level. Under
these restrictions, we set SQ → S and arrive at Eq. (5.80) in the general case as well;
note that S in Eq. (5.50) commutes with scalar potentials.

The transformation matrix Sw in the leading order of HSO
Z formally reads

Sw =
1 −PST

L̂d + L̂Z

HSO
Z , (5.81)

where L̂dA = [Hd, A] and L̂ZA = [HZ , A], for ∀A. We note that Eq. (5.80) has been
derived to describe transitions only within the subspace PST , consisting of singlet
and triplet states under consideration. If relaxation processes between other excited
states are being considered, then PST should span those excited states. Equation
(5.81) is general to an arbitrary shape of the dot confinement and in matrix form it
is given by

〈ns|Sw|n′s′〉 =
〈ns|HSO

Z |n′s′〉
Ens − En′s′

, (5.82)

provided one of the states |ns〉 and |n′s′〉 lies outside of the subspace PST , and
〈ns|Sw|n′s′〉 = 0, otherwise. We note that, away from the singlet-triplet transition
(EST ≫ ∆±), separation of matrix elements into strong and weak is not required:
one can treat all matrix elements of HSO

Z by means of non-degenerate perturbation
theory. This amounts then to replacing PST → P in Eq. (5.81) or, equivalently, to
excluding only identical states (ns 6= n′s′) in Eq. (5.82).

Next, we note that Eq. (5.82) can already be used to find the spin-phonon coupling, by
calculating the matrix elements of [Sw, Uph], see Eq. (5.80). This requires knowledge
about the dot energy spectrum and wave functions, and finding the matrix forms of
Sw and Uph in the Hilbert space of Hd. Often, however, it is convenient to have an
explicit expression for Sw in terms of differential operators. Then, one evaluates the
commutator [Sw, Uph] explicitly and calculates the matrix elements of the resultant
expression only between the singlet and triplet states under consideration.

We consider now our harmonic quantum dot and obtain an expression for Sw. As
before, we are interested in the subspace PST , consisting of a singlet and triplet with
the orbital wave functions |ψS〉 = |0000〉 and |ψT 〉 = |000,−1〉, respectively. For
simplicity, we assume small Zeeman splittings, EZ ≪ ~ω0, which is usually the case
for GaAs quantum dots. Thus, neglecting the Liouvillean L̂Z in the denominator of
Eq. (5.81) and going to the relative coordinates, we rewrite Eq. (5.81) as follows

Sw = EZ

{
1

L̂d

[l × ξR] ·Σ +
1 − PST

2L̂d

[l × ξr] · σ
}
, (5.83)

where we used Eq. (5.61) and the fact that PST ξR = 0 for the considered singlet-
triplet subspace. Considering the first term in Eq. (5.83), we proceed in a way similar
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to Ref. [90]. Namely, we express the coordinates entering in ξR in terms of the
commutator of the Hamiltonian with the momentum operator. For a particle j we
have the identities (solely for harmonic confinement)

xj =
−i

~m∗ω2
0

L̂′
d

(
pjx +

e

c
Bzyj

)
, (5.84)

yj =
−i

~m∗ω2
0

L̂′
d

(
pjy −

e

c
Bzxj

)
, (5.85)

where pj = −i~∂/∂rj+(e/c)A(rj) and L̂′
d is the Liouvillean ofHd in Eq. (5.2) without

the Coulomb interaction term. Since the Coulomb interaction does not couple to the
center of mass coordinate R = (r1+r2)/2, we can use Eqs. (5.84) and (5.85) to obtain

Rx =
−i

2~m∗ω2
0

L̂d

(
Px +

2e

c
BzRy

)
, (5.86)

Ry =
−i

2~m∗ω2
0

L̂d

(
Py −

2e

c
BzRx

)
, (5.87)

where P = −i~∂/∂R + (2e/c)A(R) and L̂d is the Liouvillean of Hd in Eq. (5.2).
Next, substituting the explicit form of ξR = (Ry′/λ−, Rx′/λ+, 0) into Eq. (5.83) and

using Eqs. (5.86) and (5.87), we cancel out the Liouvillean L̂d in the first term of
Eq. (5.83), thus, obtaining

EZ

L̂d

[l × ξR] · Σ =
−EZ

2m∗ω2
0

[l × DR] · Σ + f(R), (5.88)

DR =
(
λ−1
− ∂/∂Ry′ , λ−1

+ ∂/∂Rx′ , 0
)
, (5.89)

where f(R) is a function of coordinates, which is irrelevant here since it commutes
with scalar potentials. Equation (5.88) with the definition (5.89) give us the explicit
operator form of the first term of Sw in Eq. (5.83).

As for the second term in Eq. (5.83), there are two complications arising. One is the
presence of the Coulomb interaction, which couples to the relative coordinate r =
r1 − r2, and the second one is the projector 1−PST , which excludes the contribution
of the strong matrix elements. In the presence of Coulomb interaction, we derive the
following identities

rx

(
1 − λ4

0

2a∗Br
3

)
=

−2i

~m∗ω2
0

L̂d

(
px +

e

2c
Bzry

)
, (5.90)

ry

(
1 − λ4

0

2a∗Br
3

)
=

−2i

~m∗ω2
0

L̂d

(
py −

e

2c
Bzrx

)
, (5.91)

where λ0 =
√

2~/m∗ω0 and p = −i~∂/∂r + (e/2c)A(r). Clearly, the right-hand side
in each of Eqs. (5.90) and (5.91) gives zero at the singlet-triplet degeneracy point
for the matrix element taken between the singlet and triplet orbital states. As a
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|ψS〉 = |0000〉
|ψT 〉 = |000,−1〉

|ψT ′〉 = |0001〉

|0002〉

|0010〉
|001,−1〉

|0011〉

~ωδ(λ/a∗
B)

|0003〉

≃ ~ωδ(λ/a∗
B)≃

2~
ω̃

2~ωc

~ωc

|000,−3〉

|000,−2〉

Figure 5.7: Sketch of several lowest energy levels in the quantum dot, showing the rele-
vant energy scales. The box encloses the energy levels used to make an approximation in
Eq. (5.92). The levels represented by dashed segments are unimportant due to the selection
rule ∆m = 0,±1.

by-product, we thus obtain an exact equality, which we defer to Appendix F. Here,
however, we are interested in the opposite case. Due to the projector 1 − PST in
the second term of Eq. (5.83), the singlet-triplet degeneracy has little effect on Sw.
Therefore, we can use Eqs. (5.90) and (5.91), with some approximations, to express
r in terms of the commutator [Hd,p], similarly to how we did above for R.

We consider first the case of no orbital magnetic field (Bz = 0). Then, Eqs. (5.90)
and (5.91) have a particular simple form and can be rewritten as follows

1

L̂d

r

(
1 − λ4

0

2a∗Br
3

)
=

−2

m∗ω2
0

∂

∂r
, (5.92)

where we have multiplied both sides by L̂−1
d . Next, we make the following approxima-

tion: we replace r3 in the denominator of Eq. (5.92) by some effective value r3
eff . To

determine reff , we require that the operators L̂−1
d r/r3 and L̂−1

d r/r3
eff have on average

equal quantum fluctuations in the low energy Hilbert subspace. Mathematically, we
require that

〈ψα|
1

L̂d

r

r3
|ψβ〉 ≃

1

r3
eff

〈ψα|
1

L̂d

r|ψβ〉, (5.93)

for all singlet-triplet pairs (α, β) enclosed in the rectangular box in Fig. 5.7. In
Fig. 5.7, we show different energy levels in the quantum dot and the relevant energy
scales (for clarity, we show also the orbital splittings due to Bz). Due to the circular
symmetry of the dot, the levels represented by dashed segments in Fig. 5.7 can be
disregarded, since their quantum number m differs by more than ±1 from the lowest
singlet and triplet. Note that the selection rule in Eq. (5.92) reads ∆m = 0,±1.
Furthermore, the Coulomb interaction reduces efficiently the energy spacing between
levels with one and the same quantum number n. Therefore, for the considered lowest
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Figure 5.8: (a) The parameter reff (in units of λ) as a function of the Coulomb interaction
strength λ/a∗B , for (m,m′) = (0, 1) (solid and dash-dotted curves) and (m,m′) = (2, 1)
(dahsed curves). The difference between the solid curve, given by Eq. (5.96), and dash-
dotted curve, given by Eq. (5.94), stems from the infidelity of our variational method. (b)
Similarly to (a), the factor 1 − λ4/2a∗Br

3
eff as a function of λ/a∗B .

singlet and triplet, the contribution of levels with n = 0 is dominant in the limit of
strong Coulomb interaction. Using the singlet and triplet wave functions found in
Sec. 5.3, we obtain from Eq. (5.93) an explicit expression for reff ,

reff ≃
√

2λ̃mλ̃m′√
λ̃2

m + λ̃2
m′

[
Γ(3/2 +

xm+xm′
2

)

Γ(
xm+xm′

2
)

]1/3

, (5.94)

where xm =
√
m2 + γm, and the quantum numbers m and m′ refer to the singlet

and triplet states enclosed in the box of Fig. 5.7. Recalling that λ̃m and γm are even
functions of m, we have that |m| = 0, 2 and |m′| = 1 in Eq. (5.94). Using either (0, 1)
or (2, 1) in place of (m,m′) in Eq. (5.94) is within the accuracy of our approximation.
For definiteness, we choose (m,m′) = (0, 1).

A different method to find reff relies on the commutation relation ∂/∂r = −(m∗/2~
2)L̂dr,

present at Bz = 0. Substituting this expression in the right-hand side of Eq. (5.92),
we obtain the following exact relation at Bz = 0

[
1 − (εnm − εn′m′)2

~2ω2
0

]∫ ∞

0

rfnm(r)fn′m′(r)dr =

=
λ4

0

2a∗B

∫ ∞

0

1

r2
fnm(r)fn′m′(r)dr, (5.95)

where m′ = m ± 1, and εnm and fnm(r) are, respectively, the exact eigenvalues and
eigenfunctions of the Hamiltonian Hm in Eq. (5.9). Substituting n = n′ = m = 0
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and m′ = 1 in Eq. (5.95), we obtain for reff the following relation

1

r3
eff

=
2a∗B
λ4

0

(
1 − δ2

)
, (5.96)

where δ = (ε01 − ε00)/~ω was introduced in Sec. 5.3 (note that λ = λ0 and ω = ω0 at
Bz = 0). In Fig. 5.8(a), we plot reff as a function of λ/a∗B using Eq. (5.96) (solid curve).
If we use Eq. (5.94) with (m,m′) = (0, 1) to determine reff , we obtain a different (but
numerically very close) result, see the dash-dot curve in Fig. 5.8(a). The difference
stems from the fact that our variational method, developed in Sec. 5.3, is not exact.
Note that Eq. (5.94) relies on precise knowledge of wave functions, whereas Eq. (5.96)
relies on precise knowledge of energy spectrum. To avoid discrepancy in the future,
we choose to work with reff given by Eq. (5.96). This is also convenient because δ can
be calculated using the approximate crossover function (5.15). Finally, the dashed
line in Fig. 5.8(a) represents reff obtained from Eq. (5.94) with (m,m′) = (2, 1). This
shows the accuracy of our approximation, see also Fig. 5.8(b).

Using Eq. (5.96) for reff and replacing r3 → r3
eff in Eq. (5.92), we thus obtain (at

Bz = 0)
1

L̂d

r =
−2

m∗δ2ω2
0

∂

∂r
, (5.97)

where the effect of the Coulomb interaction is represented by a single parameter,
δ = δ(λ/a∗B). Clearly, Eq. (5.97) can be interpreted in the following way: the Coulomb
interaction in the quantum dot renormalizes the level spacing, resulting in replacing
~ω0 → ~ω0δ(λ/a

∗
B) as compared to the non-interacting case. However, this is roughly

the case only for the subset of levels with different quantum numbers m and with
N = M = n = 0, see Fig. 5.7. These are the levels we have taken into account when
making the approximation in Eq. (5.92). In addition, however, there is also a ladder
of levels, for each m, differing only in n and having a level spacing ≃ 2~ω̃. At strong
Coulomb interaction, the two energy scales are different, ~ω̃ ≫ ~ωδ, and Eq. (5.97),
being proportional to ∂/∂r = −(m∗/2~

2)L̂dr, tends to overestimate the contribution
of excited states with n > 0.

To exclude the contribution of excited states with n > 0 at strong Coulomb inter-
action, we integrate over the radial coordinate r in Eq. (5.97). Going to the polar
coordinates, (rx, ry) = r(cosϕr, sinϕr), we use the expression

∂

∂rx
± i

∂

∂ry
= e±iϕr

(
∂

∂r
± i

r

∂

∂ϕr

)
, (5.98)

and suppress the quantum fluctuations of the operators ∂/∂r and 1/r. As a result,
we obtain

1

L̂d

(rx ± iry) ≃
∓i2e±iϕr

m∗δ2ω2
0

〈
1

r

〉
∂

∂ϕr

, (5.99)

where we can further approximate 〈1/r〉 by 1/reff . Next, we implement the projector
1 − PST in Eq. (5.99) by eliminating one of its sign components. For example, if we
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are calculating 〈ψS|[Sw, Uph]|ψT 〉, then we can set to zero the upper sign component
in Eq. (5.99), and if we are calculating 〈ψT |[Sw, Uph]|ψS〉, then we can set to zero the
lower sign component.

At finite orbital magnetic field, Eq. (5.99) can be generalized to include terms pro-
portional to Bz. However, due to the projector 1−PST , the orbital magnetic field de-
pendence becomes inessential, since the matrix elements which diverge at the singlet-
triplet degeneracy point are excluded. Therefore, we use Eq. (5.99) as an estimate
for the contribution of weak matrix elements both at Bz = 0 and at Bz . ω0m

∗c/e;
the accuracy of our approximation does not permit accounting for Bz.

Assuming that 〈ψS|[Sw, Uph]|ψT 〉 is being evaluated (〈ψT |[Sw, Uph]|ψS〉 can then be
obtained by complex conjugation), we obtain finally the following expression for the
second term in Eq. (5.83),

EZ
1 − PST

2L̂d

[l × ξr] · σ =
−EZ

m∗ω2
0δ

2
[l × Dr] · σ, (5.100)

Dr =

(
1

λ−
,
−i
λ+
, 0

)
e−iϕr

2reff

∂

∂ϕr
. (5.101)

The sum of Eqs. (5.88) and (5.100) gives us an explicit expression for Sw used in the
next section to calculate 〈ψS|[Sw, Uph]|ψT 〉.

5.6 Phonon-induced spin relaxation

The relaxation and decoherence of the spin degrees of freedom in the quantum dot
are well described by the Bloch-Wangsness-Redfield theory [123]. In that theory,
the time evolution of a system’s density matrix ραα′(t) is governed by a set of linear
differential equations, known as the Redfield equations,

d

dt
ραα′(t) = −iωαα′ραα′(t) +

∑

ββ′

Rαα′ββ′ρββ′(t), (5.102)

where Rαα′ββ′ = (Rα′αβ′β)∗ is constant in time and ωαα′ = (Eα − Eα′)/~, with Eα

being the energy of level α. These equations can be derived microscopically under the
assumption that the system is coupled weakly to its bath (Born approximation) and
that the bath correlation time τc — the time over which the bath loses the “memory”
about its state — is much shorter than the times considered in Eq. (5.102) (Markov
approximation). These two approximations combined are known as the Born-Markov
approximation.

In the case of phonons, the correlation time τc is given by the time it takes a phonon to
traverse the quantum dot, τc = λ/s, where s is the speed of sound in the sample. For
single-electron quantum dots, the spin-phonon coupling [90] is parametrically small,
compared to the bare interaction Uph(r), by a product of two factors: Ez/~ω0 ≪ 1

96



5.6. PHONON-INDUCED SPIN RELAXATION

and λ/λSO ≪ 1. This makes the Born-Markov approximation for the phonon-induced
spin decay easy to validate in typical structures [90]. For example, in GaAs quantum
dots, the experimentally measured spin relaxation times are in the range [64, 88]
T1 ≃ (10 − 104)µs, while the phonon correlation time is always much shorter, τc ≃
10 ps. Moreover, the phonon-phonon correlation function decays rapidly in time.
This can be explained as follows: once a phonon is emitted it leaves the quantum dot
during the time τc and does not come back. The decay law for the phonon-phonon
correlation function depends on the wave function of the electron in the quantum
dot, and can be as fast as a Gaussian decay law. Of course, we ignore here phonon
reflection and localization, which can be controlled by the sample geometry. The
small parameter τc/T1,2 ≪ 1 gives room also for an intermediate time scale ∆t,
such that τc ≪ ∆t ≪ T1,2. The time ∆t is the smallest time resolution allowed
by the Bloch-Wangsness-Redfield theory in Eq. (5.102). During the time ∆t the
phonon fluctuations average out (∆t ≫ τc), while the spin decay has not occurred
yet (∆t ≪ T1,2). It is at this time scale, when the coherent influence of the phonon
potential via the spin-orbit and Zeeman interactions appears as a decay mechanism
for the electron spin [90]. Finally, we note that Eq. (5.102) is valid even in the classical
limit of Uph(r), when there are many phonons in the sample, as long as ∆t exists.

In the case of two electrons in the quantum dot, the dot size λ in the estimate above is
replaced by the average inter-electron distance 〈r〉, which is larger due to the Coulomb
repulsion between the electrons. This enhances the effect of the spin-orbit interaction
and can result in shorter lifetimes compared to the single-electron case. However, in
typical structures the Coulomb interaction is not that strong and usually 〈r〉 ∼ λ.
Therefore, the estimate given above for the single-electron quantum dot does not
change significantly in the case of a two-electron quantum dot. This agrees also with
the fact that measurements of the singlet-triplet relaxation find long lifetimes [84]
& 200µs.

In the Born-Markov approximation, the Redfield tensor acquires the form

Rαα′ββ′ = Γ+
β′α′αβ + Γ−

β′α′αβ

−δα′β′
∑

γ

Γ+
αγγβ − δαβ

∑

γ

Γ−
β′γγα′ , (5.103)

given in terms of different correlators of the system-bath interaction Uint,

Γ+
αα′ββ′ =

∫ ∞

0

dt

~2
e−iωββ′t〈α|Uint(t)|α′〉〈β|Uint|β ′〉, (5.104)

Γ−
αα′ββ′ =

∫ ∞

0

dt

~2
e−iωαα′ t〈α|Uint|α′〉〈β|Uint(t)|β ′〉. (5.105)

Here, the bar denotes averaging over the bath degrees of freedom and |α〉 is a state
of the system. The time dependence of Uint(t) is with respect to the bath only,
Uint(t) = exp(iHBt/~)Uint exp(−iHBt/~), where HB is the Hamiltonian of the bath.
In the expressions above it is assumed that Uint(t) = 0.
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By definition, the two types of correlators in Eqs. (5.104) and (5.105) are related to
each other by (Γ+

αα′ββ′)∗ = Γ−
β′βα′α, which guarantees that ρ(t) preservers its hermitic-

ity in time. The form of Eq. (5.103) also guarantees that the normalization condition∑
α ραα(t) = 1 is not changed by the time evolution. One can check this by verifying

that
∑

αRααββ′ = 0. An additional requirement on ρ(t) is that it evolves in time obey-
ing the rule of “completely positive maps”, which is to say that ρ(t) can be expressed
in terms of ρ(t′) at t′ < t using an expression of the form ρ(t) =

∑
nOnρ(t

′)O†
n, where

{On} is a set of linear operators obeying the normalization condition
∑

nOnO
†
n = 1.

This poses a constrain on the time evolution of ρ(t). It is known that in some cases
Eq. (5.102) with Rαα′ββ′ given in Eq. (5.103) does not support complete positivity of
ρ(t). To guarantee complete positivity, one has to show that Eq. (5.102) can be cast
into the so-called Lindblad form,

d

dt
ρ(t) = − i

~
[HS, ρ(t)]

+
1

2

∑

J

{
[LJρ(t), L

†
J ] + [LJ , ρ(t)L

†
J ]
}
, (5.106)

where {LJ} is a set of linear operators, and HS is a Hermitian operator, representing
the system (possibly renormalized by the system-bath interaction Uint).

The Fermi “golden rule” transition probabilities are reproduced as a particular case
of Eqs. (5.104) and (5.105),

Γαβ = Γ+
βααβ + Γ−

βααβ, (5.107)

where Γαβ is the probability per unit time to transit from state β to state α. For
the rates Γαβ the time integral can be extended to −∞ in the lower bound, which
significantly eases the calculation. Thus, one can use the expression

Γαβ =

∫ +∞

−∞

dt

~2
e−iωαβt〈β|Uint(t)|α〉〈α|Uint|β〉. (5.108)

In our case, the system-bath interaction is given by

Uint(t) = Uph(t) + [Sw, Uph(t)], (5.109)

where Sw was expressed in terms of differential operators in the previous section. The
commutator term in Eq. (5.109) originates from the Schrieffer-Wolff transformation,
performed in the previous section to account for the contribution of the weak matrix
elements. The time dependence of the phonon potential Uph(t) is governed by the
Hamiltonian of free phonons,

HB ≡ Hph =
∑

qj

~ωqj

(
b†qjbqj + 1/2

)
, (5.110)

which includes three branches of acoustic phonons. The optical phonons can be ne-
glected, since usually EST , EZ < ~ωopt, where ~ωopt is the energy of optical phonons.
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The acoustic phonon potential can be rewritten in terms of the relative coordinates
as follows

Uph(R, r, t) =
∑

qj

MqjF (qz)e
iq‖R cos

(
q‖r/2

)

×
[
b†−qj(t) + bqj(t)

]
, (5.111)

Mqj =

√
2~

ρcωqj

(eβqj − iqΞqj), (5.112)

where bqj(t) = bqj exp(−iωqjt) gives the time dependence mentioned above for Uph(t).
The averaging over the bath, denoted by bar in Eqs. (5.104) and (5.105), is a ther-
modynamic mean value, evaluated with the statistical operator of free phonons:

ρph = Z−1
ph e

−Hph/T , (5.113)

where T is the temperature (kB = 1) and Zph is the phonon partition function. At
low temperatures, T ≪ EST , EZ , there are nearly no phonons available to scatter the
dot spins. Nevertheless, spin relaxation can occur even at T = 0 due phonon emission
from the dot. In this case, the dot relaxes from an excited state to the ground state,
and the excitation energy is carried away by a phonon.

The states |α〉 in Eqs. (5.104) and (5.105) are the lowest singlet and triplet states
of the two-electron quantum dot. In Section 5.5.2, we have shown how these states
transform, due to a combined effect of the spin-orbit and Zeeman interactions. In
particular, the singlet state |ΨS〉 undergoes avoided crossings with the triplet states
|ΨT+〉 and |ΨT−〉 at the singlet-triplet transition, see Fig. 5.4. In what follows, we
calculate the relaxation and decoherence rates for transitions between the quantum
dot eigenstates, using the system-bath interaction (5.109) and the definitions (5.104),
(5.105) and (5.108).

5.6.1 Secular approximation

The Redfield equations (5.102) are significantly symplified if there is a separation of
time scales between coherent evolution and decay of quantum states: ωαα′ ≫ Rαα′ββ′

for α 6= α′. The coherent evolution takes place, in our case, on the time scales of
~/EST and ~/EZ . The decay of ραα′(t) to the thermal equilibrium density matrix
takes place on the time scale of spin relaxation/decoherence, which is of the order
of ~/Γαβ for our phonon-induced decay. For a wide range of parameters we have
Γαβ ≪ EST , EZ , which allows us to apply the secular approximation.

In the secular approximation, one decouples the high frequency dynamics of the den-
sity matrix from the low frequency one. A systematic way to do this is to write down
algebraic equations corresponding to the set (5.102). Thus, searching for solutions of
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the form ραα′(t) = ραα′ exp(−iΩt), where Ω is a complex frequency, we arrive at

∑

q

(
Ω(0)

pq − Ωδpq + iRpq

)
ρq = 0, (5.114)

det ‖ Ω(0)
pq − Ωδpq + iRpq ‖= 0. (5.115)

Here, we used a two-index notation for the Redfield tensor Rp,q ≡ Rαα′,ββ′, with
p = (α, α′) and q = (β, β ′). Note that p takes on N2 values, where N is the number

of states taken into account (α = 1, 2, . . . , N). The free evolution part Ω
(0)
pq has the

form

Ω
(0)
αα′ββ′ = (δβ′α′(HS)αβ − δαβ(HS)β′α′) /~ (5.116)

= ωαα′δαβδα′β′ ≡ ωpδpq, (5.117)

where the first line is generic to any basis of states. Equations (5.114) and (5.115)
resemble the problem of standard perturbation theory, in which the role of the unper-
turbed wave function is played by the density matrix ρp and the role of the energy of
an unperturbed level is played by the transition frequency ωp = ωαα′ . If a frequency
ωp is non-degenerate, i.e. there exists no other transition frequency in the system
with the same value, then one can easily find the solutions for the corresponding
eigenvector ˆ̺p and eigenvalue Ωp:

ˆ̺p = ρ̂p +
∑

q 6=p

iRqp

ωp − ωq

ρ̂q + . . . , (5.118)

Ωp = ωp + iRpp +
∑

q 6=p

i2RpqRqp

ωp − ωq

+ . . . . (5.119)

Here, we used the notation ρ̂αα′ = |α〉〈α′| to denote the eigenvectors of the unper-
turbed density matrix (ρ̂p ≡ ρ̂αα′). Equation (5.118) is defined up to an arbitrary
non-zero factor, since ˆ̺p needs not be normalized. The time dynamics of the eigen-
vector ˆ̺p is given by ˆ̺p(t) = ˆ̺p exp(−iΩpt). Further, since the frequency Ωp in
Eq. (5.119) has in general an imaginary part, the eigenvector ˆ̺p(t) will decay after
some time τp, given by 1/τp = −Im[Ωp]. Thus, we find the decoherence time, up to
second order,

1

ταα′
= −R′

αα′αα′ +
∑

β 6=α

β′ 6=α′

2Re[R′
αα′ββ′R′′

ββ′αα′ ]

ωαα′ − ωββ′
+ . . . , (5.120)

where we used the following notations:

R′
αα′ββ′ = (Rαα′ββ′ +Rβ′βα′α) /2, (5.121)

R′′
αα′ββ′ = (Rαα′ββ′ −Rβ′βα′α) /2i. (5.122)

Note that Rpq = R′
pq + iR′′

pq, with hermitian R′
pq = (R′

qp)
∗ and R′′

pq = (R′′
qp)

∗.
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A different interesting case occurs when a non-zero transition frequency ωp1 coincides
accidentally with another transition frequency ωp2 = ωp1, or when the two frequencies
are close to each other, |ωp1 − ωp2| . |Rp1p2|. The secular approximation, in lowest
order, is then carried out by solving two coupled equations of the type (5.114), for
the two considered transition frequencies (ωp2 and ωp1). Higher orders of Rpq/ωp ≪ 1
can be taken into account by replacing Rpq → Rpq in Eq. (5.114), with

Rpp′ = Rpp′ + i
∑

q 6=p1,p2

RpqRqp′

ωp − ωq
+ . . . , (5.123)

where p, p′ ∈ (p1, p2). Retaining terms, up to second order in Rpq, we find two
eigenvectors ˆ̺p± and eigenvalues Ωp±,

ˆ̺p± = c±p1

(

ρ̂p1 +
∑

q 6=p1,p2

iRqp

ωp1 − ωq
ρ̂q + . . .

)

+ c±p2

(

ρ̂p2 +
∑

q 6=p1,p2

iRqp

ωp2 − ωq
ρ̂q + . . .

)

,

(5.124)

Ωp± =
1

2
(ωp1 + ωp2 + iRp1p1 + iRp2p2) ∓

1

2

√
(ωp1 − ωp2 + iRp1p1 − iRp2p2)

2 − 4Rp1p2Rp2p1, (5.125)

where the coefficients c±p1
and c±p2

are related to each other by c±p1
/c±p2

= iRp1p2/(Ωp± −
ωp1 − iRp1p1). As before, Eq. (5.124) has no normalization condition, except that
|cp1|2 + |cp2|2 6= 0. The time dynamics of the eigenvector ˆ̺p± is given by ˆ̺p±(t) =
ˆ̺p± exp

(
−iΩp±t

)
. Thus, as before the decoherence time is given by 1/τp± = −Im[Ωp±].

For simplicity, we consider further the degeneracy point ωp1 = ωp2 and assume that
Rp1p1 = Rp2p2. Then, the decoherence times are given by

1

τp±
= −R′

p1p1
± Re

√
Rp1p2Rp2p1, (5.126)

where we retained only the first term in Eq. (5.123). For the solution to be physi-
cal, the decoherence rates have to be non-negative, 1/τp± ≥ 0, which is satisfied if
−R′

p1p1
≥ ±Re

√
Rp1p2Rp2p1. An interesting case occurs when the equality sign holds

in the latter expression. Then, one of the rates (5.126) equals zero, whereas the other
one is doubled (1/τ = −2R′

p1p1
). In spite of our hypothetical consideration, this

example indicates that at the degeneracy point (ωp2 = ωp1) interference effects can
create an eigenvector with a long decoherence time.

Before we proceed further with the remaining part of Eq. (5.114), we discuss first the
meaning of Eqs. (5.118) and (5.124). These equations represent a transformation,
which connects the operators ˆ̺ and ρ̂ with each other. This transformation can, in
general, be written as follows

ˆ̺p =
∑

q

cpqρ̂q, (5.127)
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where cpq are complex numbers. The matrix cpq needs not be unitary, but it must
have an inverse:

∑
l cplc

−1
lq = δpq, where c−1

pq denotes the inverse matrix. Note that,
if cpq ≡ cαα′ββ′ can be presented as follows: cαα′ββ′ = c̄αβ c̄

∗
α′β′, where c̄αβ is a uni-

tary matrix, then the transformation (5.127) reduces to a basis change of the system
Hamiltonian HS, which is well known in perturbation theory [122] when a pertur-
bation is added to HS. However, in the general case, Eq. (5.127) does not reduce
to a basis change (renormalization) of the system Hamiltonian. It is, actually, not
necessary to prescribe any physical meaning to the transformation Eq. (5.127) and to
the eigenvectors ˆ̺p. The eigenvectors ˆ̺p merely allow us to find the time dynamics
of the unperturbed eigenvectors ρ̂p, given as

ρ̂p(t) =
∑

qq′

e−iΩqtc−1
pq cqq′ ρ̂q′ . (5.128)

Further, using the operator form of the density matrix,

ρ =
∑

αα′

ραα′ |α〉〈α′| =
∑

p

ρpρ̂p, (5.129)

we change representation,
∑

p

ρpρ̂p(t) −→
∑

p

ρp(t)ρ̂p, (5.130)

and obtain

ρp(t) =
∑

qq′

e−iΩqtc−1
q′qcqpρq′. (5.131)

Note that, at t = 0, we have ρp(0) = ρp, which gives us the initial condition on
ρp(t). We also remark that, in general, the time evolution of a matrix element
ραα′(t) is governed by more than one decoherence/relaxation time, as it follows from
Eq. (5.131). However, for a “stand alone” transition frequency, as considered in
Eqs. (5.118)−(5.120), there is only one decoherence time in the lowest order.

Now, we consider the remaining, zero-frequency, part of Eq. (5.114). For simplicity,
we assume that there are no degenerate energy levels in the system, i.e. the equality
ωαα′ = 0 means also α = α′. Then, in the lowest order, we arrive at the Pauli master
equation,

d

dt
ραα(t) =

∑

β

Rααββρββ(t)

=
∑

β

[Γαβρββ − Γβαραα] , (5.132)

or equivalently, at the following secular equation,
∑

β

(Ωδαβ − iRααββ) ρββ = 0, (5.133)

det ‖ Ωδαβ − iRααββ ‖= 0, (5.134)
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where Rααββ = Γαβ − δαβ

∑
γ Γγα. One of the solutions of Eq. (5.134) is Ω = 0,

which corresponds to the stationary density matrix at t → ∞. This solution exists
always, since det ‖ Rααββ ‖≡ 0 due to the property

∑
α Rααββ′ = 0. For simplicity,

we assume now that the rank of the matrix Rααββ equals N − 1, which physically
means that there are no stable (arbitrarily long lived) excited states in the system,
and thus, the stationary state is unique for arbitrary initial conditions. For a bath at
thermal equilibrium, the relaxation rates obey the detailed balance equation,

Γαβ = Γβα exp

(
Eβ − Eα

T

)
, (5.135)

which alone is sufficient to obtain the eigenvector of Eq. (5.133) corresponding to
Ω = 0,

ˆ̺T =
∑

α

e−Eα/T |α〉〈α|. (5.136)

Comparing the latter expression to Eq. (5.127) we obtain cT,αα′ = δαα′ exp(−Eα/T ),
and by imposing the normalization condition on the density matrix (5.131) for an arbi-
trary initial condition ραα′ , we find c−1

αα′,T = δαα′Z−1
S , where ZS =

∑
α exp(−Eα/T ) is

the system partition function. Using the expressions for cT,αα′ and c−1
αα′,T in Eq. (5.131)

and assuming that exp(−iΩqt) vanishes at t → ∞ for all q, except q = T (ΩT = 0),
we recover the equilibrium distribution function

ραα′(∞) = δαα′Z−1
S e−Eα/T . (5.137)

The remaining N − 1 solutions of Eq. (5.134) depend on the rates Γαβ . In what
follows, we calculate these rates for the two-electron quantum dot.

5.6.2 Relaxation rates

The Hilbert space of our system is spanned by N = 4 states: |ΨS〉, |ΨT+〉, |ΨT−〉 and
|ΨT0〉. At zero Zeeman splitting (EZ = 0), these states are the eigenstates of the
Schrieffer-Wolff-transformed Hamiltonian describing the quantum dot, see Sec. 5.5.1,
and we find no spin relaxation within this subspace in the first order (2nd order for
rates) of HSO, as already mentioned in Sec. 5.5.1. The absence of spin relaxation is
now obvious, since for EZ = 0 we have Uint = Uph, and the relaxation rates Γαβ in
Eq. (5.108) vanish for α 6= β due to spin conservation. Higher order in HSO processes
will be considered later, but, for now, we note that Γαβ = O(H4

SO) at EZ = 0.

At a finite Zeeman splitting (EZ 6= 0), the singlet and triplet states are intermixed
by the interaction HSO

Z , given in Eq. (5.61). In Sec. 5.5.2, we found the eigenstates
and the renormalized energy levels of the quantum dot at EZ 6= 0, using methods
of both degenerate and non-degenerate perturbation theory to treat different (strong
and weak) matrix elements of HSO

Z . As a result, we obtained from the degenerate
perturbation theory the renormalized energy levels, given in Eqs. (5.72) and (5.73),
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and the eigenstates in Eq (5.69) with the coefficients in Eq. (5.75). From the non-
degenerate perturbation theory, in its turn, we have derived an effective interaction
Uint, given in Eq. (5.109), where the second term takes into account the weak matrix
elements of HSO

Z .

To keep our derivation simple, we first take into account only the strong matrix
elements of HSO

Z , thus letting Uint = Uph. This should give us most of the dominant
relaxation rates, except for some special cases, e.g. B-filed direction at a “magic
angle”, which we address later on. In the case considered now, the triplet state |ΨT0〉
decouples from the rest of the states, thus forming a stable state in this approximation,
with ΓαT0 = ΓT0α = 0 for α 6= T0. This state is, in fact, metastable, since in our
subsequent consideration we find non-zero relaxation rates for |ΨT0〉 due to the weak
matrix elements of HSO

Z , see below. However, for now, it is convenient to disregard
the state |ΨT0〉, thus considering only N = 3 states: |Ψ0〉, |Ψ+〉 and |Ψ−〉, which are
linear combinations of the singlet |ΨS〉 and two triplets |ΨT±〉 shown in Eq. (5.69).
Then, it is straightforward to obtain the matrix elements of Uint,

〈Ψα|Uint|Ψβ〉 = aαaβ [〈ψS|Uph|ψS〉 − 〈ψT |Uph|ψT 〉]
+δαβ〈ψT |Uph|ψT 〉, (5.138)

where α = 0,± labels the considered eigenstates, and |ψS(T )〉 is the singlet (triplet)
orbital wave function. The coefficients aα read

aα =

[
1 +

∆2
+

(Eα − ET+)2
+

∆2
−

(Eα − ET−)2

]−1/2

, (5.139)

where Eα = E0, E± are the exact solutions of Eq. (5.71). The last term in Eq. (5.138)
is irrelevant for our further discussion, since we consider only Γαβ with α 6= β. Thus,
from the first line in Eq. (5.138), we see that the spin relaxation is owing to the
difference |ψS(r1, r2)|2 − |ψT (r1, r2)|2. This difference turns out to be largest for a
quantum dot without Coulomb interaction (see below), and almost vanishes in a
double quantum dot due to the strong effect of the Coulomb repulsion.

Using the wave functions found in Sec. 5.3, we evaluate next the following form-factor

FST (q‖) = 〈ψS|eiq‖R cos
(
q‖r/2

)
|ψS〉

−〈ψT |eiq‖R cos
(
q‖r/2

)
|ψT 〉. (5.140)

For the wave functions |ψS〉 = |0000〉 and |ψT 〉 = |000,−1〉, we obtain

FST (q‖) = e
− 1

4
q2
‖Λ2

[

e
− 1

16
q2
‖λ̃2

0
1F1

(

−√
γ0, 1;

q2
‖λ̃

2
0

16

)

−e−
1
16

q2
‖λ̃2

1
1F1

(

−
√

1 + γ1, 1;
q2
‖λ̃

2
1

16

)]

, (5.141)
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Figure 5.9: The form-factor FST (q‖) for λ/a∗B = 0, 1, 3, as well as 103FST (q‖) for λ/a∗B =
103.

where γm and λ̃m, withm = 0, 1, are the variational parameters found in Appendix D.
In the absence of Coulomb interaction (γm = 0 and λ̃ = λ), Eq. (5.141) reduces to
the following expression (λ/a∗B = 0)

FST

(
q‖
)

=
~q2

‖
8m∗ω

e−
~q2‖

4m∗ω , (5.142)

where we used that λ =
√

2~/m∗ω and Λ =
√

~/2m∗ω. Note that the function

FST

(
q‖
)

in Eq. (5.142) has a single scale, q‖ ∼
√

4m∗ω/~. For strong Coulomb inter-
action, however, we find that FST

(
q‖
)

has two scales; an additional scale arises due

to the Coulomb interaction and it is given by q‖ ∼ 1/〈r〉, where 〈r〉 = λ(λ/2a∗B)1/3.
In the limit λ/a∗B ≫ 1, we find FST

(
q‖
)

from Eq. (5.140) for both q‖ ≪ 1/〈r〉 and
q‖ ≫ 1/〈r〉, and then match the two asymptotes into the following crossover function
(λ/a∗B ≫ 1)

FST

(
q‖
)

=
q‖a

∗
B

3
J1

(
q‖〈r〉

2

)
e
−

(1+
√

3)~q2‖
8
√

3m∗ω , (5.143)

where 〈r〉 = λ(λ/2a∗B)1/3 and J1(x) is a Bessel function of the first kind. We check
numerically that Eq. (5.143) coincides with Eq. (5.141) in the whole range of q‖ for
λ/a∗B ≫ 1. By comparing Eq. (5.143) to Eq. (5.142), we find that the magnitude
of the function FST

(
q‖
)
, in its maximum, scales as (a∗B/λ)7/6 ≪ 1, in the limit of

strong Coulomb interaction. In Fig. 5.9, we plot FST

(
q‖
)

as a function of q‖λ for
λ/a∗B = 0, 1, 3, showing the suppression of FST

(
q‖
)

with increasing the Coulomb
interaction strength. In addition, we also plot 103FST

(
q‖
)

for λ/a∗B = 103, which
shows that FST

(
q‖
)

oscillates on the scale q‖ ∼ 1/〈r〉, see also Eq. (5.143).

Next, we find the relaxation rates Γαβ by substituting Eq. (5.138) into Eq. (5.108)
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and averaging over phonons at thermal equilibrium,

Γαβ = 2a2
αa

2
βωβα

(
1 +Nωβα

)∑

j

∫ π/2

0

dϑ
sin θ

π~ρcs
3
j

∣∣∣∣F
(
ωβα

sj

cosϑ

)∣∣∣∣
2

×

F2
ST

(
ωβα

sj

sinϑ

)(
e2β̄2

j,ϑ + δj,1Ξ
2
0

ω2
βα

s2
j

)
, (5.144)

where aα is given in Eq. (5.139), ωβα = (Eβ − Eα)/~ is the transition frequency,
and Nw = (e~w/T − 1)−1. In deriving Eq. (5.144), we assumed a linear phonon
dispersion relation, ωqj = sjq, and a transition frequency ωβα smaller than the Debye
energy. We neglect optical phonon modes, since the characteristic transition energies
in GaAs quantum dots do not exceed, typically, 1 meV. In Eq. (5.144), we also used
the following notations:

β̄1,ϑ = 3
√

2πh14κ
−1 sin2 ϑ cosϑ,

β̄2,ϑ =
√

2πh14κ
−1 sin 2ϑ,

β̄3,ϑ =
√

2πh14κ
−1
(
3 cos2 ϑ− 1

)
sinϑ, (5.145)

where the expressions for β̄2,ϑ and β̄3,ϑ depend on the choice of the transverse polar-
izations, while the quantity β̄2

2,ϑ + β̄2
3,ϑ is invariant. Below, we distinguish between

three contributions of phonons in the relaxation rate (5.144),

Γαβ = ΓDP
αβ + ΓPEL

αβ + ΓPET
αβ , (5.146)

where ΓDP
αβ comes from the longitudinal (j = 1) phonon mode, interacting via the

deformation potential mechanism (Ξ0), ΓPEL
αβ comes from the longitudinal (j = 1)

phonon mode, interacting via the piezoelectric mechanism (h14), and ΓPET
αβ is the sum

of contributions of transverse (j = 2, 3) phonon modes, interacting via the piezoelec-
tric mechanism (h14).

Since, in our approximation, the triplet state |ΨT0〉 is infinitely long lived, we need
to consider only three non-trivial relaxation rates: Γ0,+, Γ−,0, and Γ−,+. Other rates
are either zero or can be found using Eq. (5.135). As it follows from Eq. (5.144),
any relaxation rate Γαβ is proportional to a2

αa
2
β . This factor is entirely determined

by the combined effect of spin-orbit and Zeeman interactions, while the other fac-
tors in Eq. (5.144) stem from the particular form of the phonon potential (5.112).
Thus, it is convenient to analyze a2

αa
2
β separately, since it describes the main effect

of the spin-orbit interaction in the relaxation rate. For a weak spin-orbit interaction
(λ/λSO ≪ 1), the avoided crossing splittings ∆± are small compared to the Zeeman
energy, ∆± ≪ EZ . If, in addition, ∆+ and ∆− do not differ significantly from each
other (∆± ≫ ∆2

∓/EZ), then the product a2
αa

2
β can be approximated by the following

expressions:

2a2
0a

2
± =

∆2
±

J2
± + 4∆2

±

(

1 ± J∓√
J2
∓ + 4∆2

∓

)

, (5.147)

4a2
+a

2
− =

(

1 +
J+√

J2
+ + 4∆2

+

)(

1 − J−√
J2
− + 4∆2

−

)

, (5.148)
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Figure 5.10: The factor a2
αa

2
β, which multiplies the relaxation rate (5.144), plotted as a

function B for the following cases: (a) a2
0a

2
+ and a2

−a
2
0, and (b) a2

+a
2
−. For the plot we used

the following model parameters (in arbitrary units): ∆+ = 0.15EZ , ∆− = 0.1EZ , ES = 0,
ET± = 10 − 2B ∓EZ , and EZ = 0.2B.

where J± = ET± − ES. Equation (5.147) gives us a Lorentzian line-shape for a2
0a

2
±

in the vicinity of J± = 0. We plot a2
0a

2
± as a function of B in Fig. 5.10(a). Note

that a2
0a

2
± ≃ 1/4 at J± = 0. In contrast, a2

+a
2
− is suppressed compared to a2

0a
2
± in

the region between the avoided crossings (ET+ ≤ ES ≤ ET−), see Fig. 5.10(b). The
quantity a2

+a
2
− has two maxima, occurring close to the points where J± = 0. The

maximum at J± = 0 scales down as ∼ ∆2
∓/E

2
Z with decreasing ∆∓/EZ . Furthermore,

away from the singlet-triplet transition region, the quantity a2
0a

2
+ is suppressed for

ES > ET− due to the factor in parentheses in Eq. (5.147). Thus, here, we have
a2

+a
2
0 ≃ (∆+∆−/J+J−)2 in contrast to a2

−a
2
0 ≃ ∆2

−/J
2
− and a2

+a
2
− ≃ ∆2

+/J
2
+. Similarly,

on the other side of the singlet-triplet transition region (ES < ET+), the quantity a2
0a

2
−

is suppressed, and we have a2
−a

2
0 ≃ (∆+∆−/J+J−)2 in contrast to a2

+a
2
0 ≃ ∆2

+/J
2
+ and

a2
+a

2
− ≃ ∆2

−/J
2
−.

Next, we proceed with the phonon factor in Eq. (5.144), i.e. we consider Γαβ/a
2
αa

2
β(1+

Nωβα
as a function of ωβα. The spin-orbit interaction enters in this part only as a

renormalization of the transition frequency ωβα. It is, therefore, convenient to study
this part of the rate as a function of ωβα; note that ωβα is also the frequency of
the emitted phonon. For simplicity, we assume T = 0, which allows only sponta-
neous emission of phonons from the quantum dot (Nωβα

= 0). Thus, dropping the
factor a2

αa
2
β(1 + Nωβα

) from Eq. (5.144) and considering each term of the sum over
j separately, we are left with an integration of a product of two form-factors and
some trigonometric functions. This integration introduces several scales for the fre-
quency ωβα. Namely, from the form-factor F (qz), we obtain the scale ωβα ∼ sj/d
and, from the form-factor FST (q‖), we obtain, in general, two scales: ωβα ∼ sj/λ
and ωβα ∼ sj/〈r〉. As a result, the integral in Eq. (5.144) can be taken analyt-
ically only for specific regimes. In Fig. 5.11, we show schematically the phonon
factor Γαβ/a

2
αa

2
β(1 + Nωβα

as a function of ωβα calculated numerically for the defor-
mation potential mechanism and a strong Coulomb interaction in the quantum dot
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Figure 5.11: The phonon factor of the ralaxation rates as a function of the phonon fre-
quency ωβα, plotted for the deformation potential mechanism and a strong Coulomb inter-
action in the quantum dot (λ/a∗B = 103). The function contains three parameters: s/λ,
s/d, and s/〈r〉, where s = s1 is the speed of sound.

(λ/a∗B = 103). The oscillatory part of the phonon factor is not present for weak and
intermediate strengths of the Coulomb interaction, which is usually the case in the
experiment.

Finally, we plot the relaxation rates Γ+,−, Γ+,0, and Γ0,− in Fig. 5.12, calculated for
a GaAs quantum dot parameters. The relaxation rate Γ+,− is strongly suppressed
around the singlet-triplet transition (B∗ ≃ 2.5 T). The relaxation rates Γ+,0, and Γ0,−
have similar line-shape centered at different positions, however, the relaxation rate
Γ0,− is larger due to the overall ∼ B2 enhancement of the coupling strength.
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Figure 5.12: The ralaxation rates Γ+,−, Γ+,0, and Γ0,− as a function of the magnetic field
in the vicinity of the singlet-triplet transition.
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Chapter 6

Spin decay in a quantum dot
coupled to a quantum point
contact

In this chapter, we consider a mechanism of spin decay for the electron spin in the
quantum dot (QD) due to its coupling to a nearby functioning quantum point con-
tact (QPC). The coupling of spin to charge is achieved by means of the spin-orbit
interaction at a finite Zeeman splitting. We calculate microscopically the coupling
constants of the effective Hamiltonian and make prediction about the magnitude of
the QPC-induced spin relaxation/decoherence rate in a realistic system. We find
that, for some specific orientations of the setup with respect to the crystallographic
axes, the spin relaxation/decoherence rate vanishes, while the charge sensitivity of
the QPC is not changed. This can be used in experiments to avoid QPC-induced
spin decay in read-out schemes.

6.1 Introduction

Solid state based quantum information processing is a rapidly developing field which
aims at realizing and scaling up a quantum computer. Recent progress in nanotech-
nology has enabled us to access the electron spin in semiconductors [3, 4, 6], whereas
electron spin in a QD has been proposed as a promising quantum object to implement
a qubit due to its long coherence time [27]. Full control over the coherence time of
the electron spin is thus a crucial point in spin-based qubit proposals. On the other
hand, as a part of a quantum computer, read-out systems play an essential role in de-
termining the final result of the computation. However, read-out devices, in general,
affect the spin state of the system. Quantum point contacts (QPCs) which are used
as charge detectors, in particular, couple to the spin via the spin-orbit interaction.
For small GaAs QDs, the spin-orbit length (≈ 8 µm) is much larger than the dot
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size (≈ 50 nm) and the spin-orbit interaction can often be neglected, however it is
desirable to estimate how small it is and to minimize its effect.

Nowadays, experimentalists have reached the regimes where they can easily manip-
ulate the number of electrons in QDs by electrical gates [70]. Furthermore, they
managed to resolve the Zeeman splitted sublevels [86] and measure the spin relax-
ation time (T1) up to 0.85 ms at an in-plane magnetic field of 8 T [64, 189]. In
these types of experiments, they use a QPC near the QD as a charge detector by
measuring the conductance of the QPC as a function of the number of electrons in
the QD. The shot noise in the QPC affects the electron charge in the QD via the
Coulomb interaction, and therefore, it can couple to the electron spin as well, via
the spin-orbit interaction. While charge relaxation/decoherence in a QD due to a
nearby functioning QPC has been studied before [171, 172], we show that the same
charge fluctuations in the QPC introduce spin relaxation/decoherence by means of
the spin-orbit and Zeeman interactions. Finally as a qubit, in addition to a long T1

time, we need to have a sufficiently long T2 for the electron spin in the QD. Although
there are several proposals to measure decoherence time of electron spin in a QD
(see e.g. Ref. [131, 132, 190]), it has not yet been achieved experimentally. However,
it has been shown [90] that the spin-orbit interaction is inefficient in causing pure
dephasing in QDs, and the decoherence time T2 takes the maximal value T2 = 2T1,
in the absence of other couplings to the electron spin.

In this chapter, we first derive an effective Hamiltonian for spin dynamics in the QD
which contains a transverse (with respect to the external magnetic field) fluctuating
field. We show that this read-out system speeds up the spin relaxation/decoherence
rate and derive a similar expression, as in Ref. [90], for the T1 and T2; however,
there are some regimes in which this effect vanishes (in the first order in spin-orbit
interaction). The relaxation time is then highly dependent on the QPC orientation
on the substrate, the distance between the QPC and the QD, the direction of the
applied magnetic field and so on. Although this effect is, generally, smaller than other
relaxation/relaxation mechanisms (e.g. coupling of spin to phonons [90] or nuclear
spins [130]), it is still measurable with the current setups under certain conditions.
The following results could be of interest to experimentalists to avoid QPC-induced
spin decay due to their read-out systems.

6.2 Quantum dot coupled to a QPC

We consider an electron in a QD and a nearby functioning QPC (Fig. 1). To model
this system, we treat QPC as a one dimensional object coupled capacitively to the
electron confined in the QD. It is also assumed that there is only one electron inside
the dot which can be assured by the measured current in QPC. The Hamiltonian
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describing this coupled system reads H = Hd +HZ +HSO +HQ +HQd, where

Hd =
p2

2m∗ + U(r), (6.1)

HSO = β(−pxσx + pyσy) + α(pxσy − pyσx), (6.2)

HZ =
1

2
gµBB · σ =

1

2
EZn · σ, (6.3)

HQ =
∑

lkσ

ǫkC̄
†
lkσC̄lkσ, (6.4)

HQd =
∑

ll′kk′σ

ηll′(r)C̄†
lkσC̄l′k′σ. (6.5)

Here, Q refers to the QPC and d to the dot, p = −i~∇ + (e/c)A(r) is the electron
2D momentum, U(r) is the lateral confining potential, with r = (x, y), and σ are
the Pauli matrices. The 2DEG is perpendicular to the z direction and the spin-orbit
Hamiltonian HSO in Eq.(6.2) includes both Rashba (α), due to asymmetry of the
quantum well profile in the z direction, and Dresselhaus (β) spin-orbit couplings, due
to the bulk inversion of the GaAs lattice. The Zeeman interaction HZ in Eq. (6.3)
introduces a spin quantization axis along n = B/B = (cosϕ sinϑ, sinϕ sinϑ, cos ϑ).
The QPC consists of two leads coupled via a tunnel barrier and is described by the
Hamiltonian HQ, where C̄†

lkσ, with l = L,R, creates an electron incident from lead l,
with wave vector k and spin σ. We use the bar sign (e.g. over the operator C̄lkσ) to
denote the scattering states in the absence of the electron on the QD. The Hamiltonian
HQd in Eq. (6.5) describes the coupling between the quantum dot electron and the
QPC electrons, the coupling being given by the screened Coulomb interaction

ηll′(r) = 〈lk| e2

κ|r − R| δ̃(R − a)|l′k′〉, (6.6)

where R refers to the location of the electrons in the QPC, κ is the dielectric constant
of GaAs and we ignore the k-dependence of η. We describe the screening by a static
screening factor δ̃(R − a), which is a sharply peaked function with a width given
by the screening length λscr, where the vector a gives the location of the QPC (see
Fig.1).

6.3 Effective Hamiltonian

The quantum dot electron spin couples to charge fluctuations in the QPC via the
spin-orbit Hamiltonian (6.2). The charge fluctuations are caused by electrons passing
through the QPC. To derive an effective Hamiltonian for the coupling of spin to charge
fluctuations, we perform a Schrieffer-Wolff transformation, H̃ = exp(S)H exp(−S)
[191], and exclude the spin-orbit Hamiltonian in leading order. We thus require that
[Hd +HZ , S] = HSO, under the condition λd ≪ λSO, where λd is the quantum dot
size and λSO = ~/m∗(|β| + |α|) is the shortest spin-orbit length. The transformed
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1
θ (1)

1
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L R 1
λd (1)Xr

R

Figure 6.1: Schematic of the coupled QD and QPC. The (X,Y ) frame gives the setup
orientation (left and right leads) with respect to the crystallographic directions x′ ≡ [110]
and y′ ≡ [1̄10]. The QD has a radius λd and is located at a distance a from the QPC. The
vector R shows the QPC electrons and r refers to the coordinate of the electron in the QD.
The noise of the QPC current I perturbs the electron spin on the QD via the spin-orbit
interaction.

Hamiltonian is then given by

H̃ = Hd +HZ +HQ +HQd + [S,HQd] . (6.7)

S =
1

L̂d + L̂Z

HSO =
1

L̂d

+∞∑

m=0

(−L̂Z

L̂d

)mHSO, (6.8)

where L̂ is Liouville superoperator for a given Hamiltonian defined by L̂A ≡ [H,A].
For a harmonic confinement U(r) = 1

2
m∗ω2

0r
2 we have

1

L̂d

pj =
im∗

~
rj, (6.9)

1

L̂d

rj =
1

i~m∗ω2
0

pj (j = x, y), (6.10)

whence we can write the spin-orbit interaction in a more useful way

HSO = iL̂d(σ · ξ), (6.11)

where ξ is a vector in the 2DEG and has a simple form in the coordinate frame
x′ = (x + y)/

√
2, y′ = (y − x)/

√
2, z′ = z, namely, ξ = (y′/λ−, x

′/λ+, 0), where
λ± = ~/m∗(β ± α) are the spin-orbit lengths. In addition, we have the following
relations for the Zeeaman Liouvillian

L̂m
Z (σ · ξ) = iEm

Z [n × ξ] · σ, m odd > 0 (6.12)

L̂m
Z (σ · ξ) = Em

Z [n × (n × ξ)] · σ, m even > 0. (6.13)
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The last term in Eq. (6.7) gives the coupling of the dot spin to the charge fluctuations
in the QPC and the approximate expression (to first order in spin-orbit interaction)
for S in Eq. (6.8) can be derived by using the above relations

−iS = ξ · σ + [n × ξ1] · σ − [n × [n × ξ2]] · σ (6.14)

ξ1 = ((α1py′ + α2x
′)/λ−, (α1px′ − α2y

′)/λ+, 0) , (6.15)

ξ2 = ((β1px′ + β2y
′)/λ−, (−β1py′ + β2x

′)/λ+, 0) , (6.16)

α1 =
~

m∗EZ
E2

Z − (~ω0)
2

(E2
Z − E2

+)(E2
Z −E2

−)
, (6.17)

α2 =
EZ~ωc(~ω0)

2

(E2
Z − E2

+)(E2
Z − E2

−)
, (6.18)

β1 =
~

m∗
E2

Z~ωc

(E2
Z − E2

+)(E2
Z −E2

−)
, (6.19)

β2 = E2
Z

(~ωc)
2 + (~ω0)

2 − E2
Z

(E2
Z − E2

+)(E2
Z − E2

−)
, (6.20)

where EZ = gµBB is the Zeeman splitting and E± = ~ω ± ~ωc/2, with ω =√
ω2

0 + ω2
c/4 and ωc = eBz/m

∗c. Here, we assume that E± − EZ ≫ EZλd/λSO,
which ensures that our QD is a well defined spin qubit. This approximation is well
justified because the typical size of QD is much smaller than the spin-orbit length.
Next we consider low temperatures and biases, T,∆µ ≪ ~ω0, (to insure that only the
ground state is populated so that its Zeeman sublevels constitute a two level system)
and average over the dot ground state in Eq. (6.7). We obtain, using Eqs. (6.9-6.13),
the following effective spin Hamiltonian

Heff =
1

2
gµB [B + δB(t)] · σ, (6.21)

where we have gone to the interaction picture with the leads Hamiltonian H ′
Q =

HQ + 〈HQd〉d and omitted a spin-independent part. Here and below, we use 〈. . . 〉d
to denote averaging over the dot ground state. Note that H ′

Q describes the QPC,
while it is electrostatically influenced by the QD with one electron in the ground
state. Obviously, H ′

Q can be rewritten in the same form as HQ in Eq. (6.4), but with
a different scattering phase in the scattering states. To denote the new scattering
states, we omit the bar sign in our notations. The effective fluctuating magnetic field
δB(t) in Eq. (6.21) is then given by
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δB(t) = 2B × [Ω1(t) + n ×Ω2(t)] , (6.22)

Ω1 =
e~2γ1

m∗
(
λ−1
− Ey′, λ−1

+ Ex′, 0
)
,

Ω2 =
e~2γ2

m∗
(
−λ−1

− Ex′, λ−1
+ Ey′ , 0

)
,

γ1 =
m∗

~EZ

α1 =
E2

Z − (~ω0)
2

(E2
+ −E2

Z)(E2
− − E2

Z)
,

γ2 =
m∗

~EZ
β1 =

EZ~ωc

(E2
+ −E2

Z)(E2
− − E2

Z)
.

Here we have introduced an electric field acting on the QPC electrons,

E =
1

e
〈∇HQd〉d =

∑

ll′kk′σ

εll′C
†
lkσCl′k′σ. (6.23)

where εll′ = e−1〈∇ηll′(r)〉d and the operator Cl′k′σ corresponds to scattering states
in the leads with the dot being occupied by one electron (H ′

Q is diagonal in Cl′k′σ).
As a first result, we note that the fluctuating quantum field δB(t) is transverse with
respect to the (classical) applied magnetic field B (cf. Ref. [90]). The magnetic
field fluctuations here originate from orbital fluctuations that couple to the electron
spin via the spin-orbit interaction. The absence of time reversal symmetry, which
is removed by the Zeeman interaction, is crucial for this coupling. We assume no
fluctuations in the external magnetic field B. The dot electron spin couples to a bath
of fermions, in contrast to the Ref. [90] where the bath was bosonic.

To calculate the coupling constants εll′ in eq. (6.23) , it is convenient to first integrate
over the coordinates of the dot electron. We thus obtain E(R) = E0(R)δ̃(R − a),
where R refers to the location of the electrons in the QPC and the bare (unscreened)
electric field is given by

E0(R) =
e

κ

〈
R − r

|R − r|3
〉

d

=
eR

κR3

(
1 +

3

4

λ2
d

R2
+ . . .

)
. (6.24)

Here, we have assumed a parabolic confinement for the electron in QD, set the origin
of coordinates in the dot center (〈r〉d = 0) and averaged with the dot wave function
Ψd(r) = exp (−r2/2λ2

d)/λd

√
π which is the ground state of a symmetric harmonic

potential in two dimensions. While we choose a very special form for the ground
state wave function, this does not affect substantially the final result, the relaxation
time T1. This is because any circularly symmetric wave function leads to the same
form for E0(R) except that it just alters the second term in eq. (6.24) which is very
small compare to the first term (about one hundredth) and negligible. The same kind
of argument applies to the asymmetric wave functions. The coupling constants in Eq.
(6.23) read εll′ = 〈lk|E(R)|l′k′〉, where |lk〉 denote the scattering states in the leads
and we neglect the k dependence in εll′ .
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6.4 Relaxation time T1

To proceed further, we construct the scattering states [192] out of the exact wave
functions of the electron in the potential of the QPC tunnel barrier. While this is
a generic method, we consider for simplicity a δ-potential tunnel barrier, V (X) =
(m∗/~2

κ)δ(X) where κ gives the strength of the delta potential. In the QPC, elec-
trons come from the left (right) lead, “feel” the tunnel barrier potential and are being
transmitted or reflected, for which the electron wave functions in the even and odd
channels are given by

ψe(X) =
√

2

{
cos(kX + φ), X < 0,
cos(kX − φ), X > 0,

(6.25)

ψo(X) =
√

2 sin kX (6.26)

where φ = arctan(κ/k) and the sample size is set to unity. Note that φ = π/2 − δ,
where δ ≡ δe − δo is the relative scattering phase between even and odd channels.
The transmission through the QPC is related to φ by T = cos2 φ. We construct the
scattering states in the following way

(
ψL

sc

ψR
sc

)
= U

(
ψe

ψo

)
, U =

1

2i

(
eiδ −1
eiδ 1

)
. (6.27)

Up to a global phase, Eq. (6.27) is valid for any tunnel barrier with mirror symmetry.

We now calculate the matrix elements of E(R) using the wave functions (6.25) and
(6.26). Two interesting regimes are studied here : (i) λscr ≪ k−1

F ≪ a and (ii)
k−1

F ≪ λscr ≪ a, where λscr is the screening length in the QPC leads. In case (i),
we set δ̃(R − a) = 2bλscrδ(R − a), with b being the QPC width in the transverse
direction. By calculating the matrix elements of ε in the eigenstates of the potential
barrier, we obtain

εee =
4λscr

κ
T E0(a), εoo = εeo = 0, (6.28)

where we used the odd and even eigenbases and
∫
dY |Φ(Y )|2δ(Y − a) = 1/b, with

Φ(Y ) being the QPC wave function in the transverse direction. Going to the Left-
Right basis, which is more suitable for studying transport phenomena, we obtain

(
εLL εLR

εRL εRR

)
=

1

4
εee

(
1 1
1 1

)
. (6.29)

Note that, in this case, we have εll′ ∝ T , see Eqs. (6.28) and (6.29).

In case (ii), we set δ̃(R − a) = Θ(X + λsc) − Θ(X − λsc), where Θ(X) is the step
function, and obtain in leading order of 1/kFλsc

εee = εoo =
2eλsc

κa2

(
1 +

3λ2
d

4a2
− λ2

sc

a2
+ . . .

)
eY , (6.30)

εeo =
eλ2

sc cos δ

κa3

(
1 +

3λ2
d

4a2
− 3λ2

sc

4a2
+ . . .

)
eX , (6.31)
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where eY is a unit vector parallel to a and eX is a unit vector perpendicular to a

(see Fig. 6.1). Going as before to the Left-Right basis, we obtain

(
εLL εLR

εRL εRR

)
=

1

4

(
εee − 2εeo cos δ 2iεeo sin δ
−2iεeo sin δ εee + 2εeo cos δ

)
. (6.32)

Note that, in this case, we have εLR ∝
√

T (1 − T ), see Eqs. (6.31) and (6.32) in
agreement with the result in Ref. [171]. Next we use the effective Hamiltonian (6.21)
to calculate the relaxation rate (in secular approximation [90]) 1/T1 = ninjΓij, where
the spin decay rate tensor Γij can be expressed in terms of the spectral functions
and ni denote the components of the unit vector in the same direction of the applied
magnetic field (see below). For a generic δB(t) (with < δB(t) >= 0), in the Born-
Markov approximation we have Γij = Γr

ij + Γd
ij (r and d refer to the relaxation and

dephasing, respectively), with [90]

Γr
ij = δij(δpq − npnq)J

+
pq(ω) − (δip − ninp)J

+
pj(ω)

−δijǫkpqnkI
−
pq(ω) + ǫipqnpI

−
qj(ω), (6.33)

Γd
ij = δijnpnqJ

+
pq(0) − ninpJ

+
pj(0), (6.34)

where J±
ij (w) = Re[Jij(w)±Jij(−w)] and I±ij (w) = Im[Jij(w)±Jij(−w)] are given by

the spectral function

Jij(w) =
g2µ2

B

2~2

∫ +∞

0

< δBi(0)δBj(t) > e−iwtdt, (6.35)

where ǫijk is the antisymmetric tensor. In spite of its complicated form, it turns out
that only the diagonal elements of Γij contribute to the relaxation rate. Note that Γd

ij

is identically zero, because of the transverse nature of the fluctuating magnetic field
(niδBi(t) = 0), and the second and the fourth terms on the RHS of Eq. (6.33) are
nonzero but do not contribute to the relaxation rate for the same reason (contraction
of ni with Jik gives zero). As a result we obtain

1

T1

= 2π~ν2 (MLL +MRR)F (EZ) +

2π~ν2MLR [F (EZ + ∆µ) + F (EZ − ∆µ)] , (6.36)

where ν = 1/2π~vF is the density of states per spin and mode in the lead, F (x) =
x coth(x/2T ) and the coefficients Mlr read

Mlr = ωlr · ωrl −
(
n · ωlr

) (
n · ωrl

)
, (6.37)

ωlr = Ωlr
1 + n × Ωlr

2 ,

Ωlr
1 =

e~γ1EZ

m∗
(
λ−1
− εlr

y′ , λ−1
+ εlr

x′, 0
)
,

Ωlr
2 =

e~γ2EZ

m∗
(
−λ−1

− εlr
x′, λ−1

+ εlr
y′, 0
)
,
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where Ωlr
i , i = 1, 2 are matrix elements of Ωi operators with respect to the leads.

To estimate the relaxation time, we use reasonable experimental parameters (the
data belong to GaAs QDs) similar to those used in Ref. [64] and a large bias EZ ≪
∆µ ≪ ~ω0 which simply means that only the second term in Eq. (6.36) appreciably
contribute to the relaxation rate. To calculate the relaxation rate we do not consider
the first term in Eq. (6.36) because there are other sources which make the same
contribution (such as electron-hole excitations in the leads) and only the second term
is purely due to the QPC. Therefore Eq. (6.36) reduces to

1

T1

= 4π~ν2MLR∆µ, EZ ≪ ∆µ ≪ ~ω0. (6.38)

We now consider an in plane magnetic field (15 T) which leads to Ω2 = 0 (γ2 = 0)
and, for simplicity, assume that it is directed in one of the spin-orbit axis (say x′).
In this special case we obtain the following expression (provided k−1

F ≪ λscr ≪ a, see
Fig.6.1)

MLR ≃ e4~2λ2
sc cos2 θ

4m∗2κ2a6λ2
+

E2
Z

(~2ω2
0 − E2

Z)2
T (1 − T ). (6.39)

Note that when θ = π/2, the relaxation rate in this case is zero where θ is the angle
between X and x′ reference frames. For a QPC located at 300 nm from the center of
the QD, the relaxation time is approximately 100 ms which is highly dependent on a
(1/T1 ∝ a−6).

At low temperatures and large bias voltage, the relaxation rate is linear in bias voltage
and quadratic in Zeeman energy. However, the relaxation rate would generally be
zero in the first order of spin-orbit interaction, if we apply the magnetic field in some
specific directions. This can be easily seen from Eq. (6.32) where the matrix elements
Mlr identically vanish for certain values of the setup parameters.

6.5 Conclusions

In conclusion, we have shown that charge read-out devices (e.g. a nearby QPC)
increase spin relaxation/decoherence rate in a QD due to the spin-orbit interaction
(both Rashba and Dresselhaus). Thanks to the transversal nature of the fermionic
fluctuating field δB(t), we found that for this relaxation/decoherence mechanism
T2 = 2T1. Finally, we showed how to calculate this rate microscopically and minimize
this effect by tuning certain (geometrical and engineering) parameters of the setup.
Our results can be used in experiments to avoid QPC-induced spin decay in read-out
schemes.
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Chapter 7

Measurement efficiency and n-shot
read out of spin qubits

In this chapter, we consider electron spin qubits in quantum dots and define a mea-
surement efficiency e to characterize reliable measurements via n-shot read outs [193].
We propose various implementations based on a double dot and quantum point con-
tact (QPC) and show that the associated efficiencies e vary between 50% and 100%,
allowing single-shot read out in the latter case. We model the read out microscopi-
cally and derive its time dynamics in terms of a generalized master equation, calculate
the QPC current and show that it allows spin read out under realistic conditions.

7.1 Introduction

The read out of a qubit state is of central importance for quantum information pro-
cessing [17]. In special cases, the qubit state can be determined in a single mea-
surement, referred to as single shot read out. In general, however, the measurement
needs to be performed not only once but n times, where n depends on the qubit, the
efficiency e of the measurement device, and on the tolerated inaccuracy (infidelity) α.
In the first part of this chapter, we analyze such n-shot read outs for general qubit
implementations and derive a lower bound on n in terms of e and α. We then turn
to spin-based qubits and GaAs quantum dots [27, 63] and analyze their n-shot read
out based on a spin-charge conversion and charge measurement via quantum point
contacts.

7.1.1 n-shot read out and measurement efficiency e

How many times n do the preparation and measurement need to be performed until
the state of the qubit is known with some given infidelity α (n-shot read out)? We
consider a well-defined qubit, i.e., we take only a two-dimensional qubit Hilbert space
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into account and exclude leakage to other degrees of freedom. We define a set of
positive operator-valued measure (POVM) operators [166], EA0 = p0 |0〉 〈0| + (1 −
p1) |1〉 〈1| and EA1 = (1 − p0) |0〉 〈0| + p1 |1〉 〈1|, where p0 and p1 are probabilities.
These operators describe measurements with outcomes A0 and A1, resp. They are
positive and EA0 +EA1 = 1. This model of the measurement process can be pictured
as follows. First, the qubit is coupled to some other device (e.g., to a reference
dot, see below). Then this coupled system is measured and thereby projected onto
some internal state. That state is accessed via an external “pointer” observable Â
[166] (e.g., a particular charge distribution, a time-averaged current, or noise). We
assume that only two measurement outcomes are possible, either A0 or A1, which
are classically distinguishable1. For initial qubit state |0〉 the expectation value is
〈Â〉0 = p0A0 +(1−p0)A1, while for initial state |1〉 it is 〈Â〉1 = (1−p1)A0+p1A1. Let
us take an initial qubit state |0〉and consider a single measurement. With probability
p0, the measurement outcome is A0 which one would interpret as “qubit was in state
|0〉”. However, with probability 1− p0, the outcome is A1 and one might incorrectly
conclude that “qubit was in state |1〉”. Conversely, the initial state |1〉 leads with
probability p1 to A1 and with 1 − p1 to A0. We now determine n for a given α, for
a qubit either in state |0〉 or |1〉 (no superposition allowed2). For an accurate read
out we need, roughly speaking, that 〈Â〉0 and 〈Â〉1 are separated by more than the
sum of the corresponding standard deviations. More precisely [194], we consider a
parameter test of a binomial distribution of the measurement outcomes, one of which
is A0 with probability p. The null hypothesis is that the qubit is in state |0〉 , thus
p = p0. The alternative is a qubit in state |1〉 , thus p = 1 − p1. For sufficiently
large n, namely n p0,1(1− p0,1) > 9, one can approximate the binomial with a normal
distribution3. The state of the qubit can then be determined with significance level
(“infidelity”) α for

n ≥ z2
1−α

(1

e
− 1
)
, (7.1)

e =
(√

p0p1 −
√

(1 − p0)(1 − p1)
)2

, (7.2)

with the quantile (critical value) z1−α of the standard normal distribution function,
Φ(z1−α) = 1 − α = 1

2

[
1 + erf(z1−α/

√
2)
]
. We interpret e as measurement efficiency.

Indeed, it is a single parameter e ∈ [0, 1] which tells us if n-shot read out is possible.

1In other words, we assume a sufficient signal-to-noise ratio of the apparatus to distinguish the
measurement outcome A0 from A1.

2For a qubit in an arbitrary superposition α |0〉+β |1〉 , the expectation value of the measurement
is 〈Â〉 = |α|2〈Â〉0 + |β|2〈Â〉1, which allows to determine |α|2 and |β|2 = 1 − |α|2. (To measure the
phase argα/β, first some single qubit rotations need to be performed.) In order to differentiate a
given |α|2 from a value |α′|2, a sufficient n is given by Eqs. (7.1) and (7.2) after replacing p0 →
|α|2p0 + (1 − |α|2)(1 − p1) and p1 → 1 − |α′|2p0 − (1 − |α′|2)(1 − p1).

3If n is small, one can use Clopper-Pearson confidence intervals. However, if read out of one state
is perfect, say p0 = 1, we can no longer approximate with a normal distribution, even for large n.
In that case, finding A0 as outcome n times in a row, even if the qubit is |1〉 , i.e., read out fails,
occurs with probability (1 − p1)

n. Thus, n ≥ log(α)/ log(1 − e) is sufficient for read out.
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Figure 7.1: Electron spin read-out setup consisting of a double dot. The right “reference”
dot is coupled capacitively to a QPC shown on the right. (a) Read out using different
Zeeman splittings. For ↑, the electron tunnels between the two dots. For ↓, tunneling is
suppressed by the detuning and the stationary state has a large contribution of the left
dot since it has lower energy. This allows single-shot read out, i.e., e = 100%. (b) Spin-

dependent tunneling amplitudes, t↓d < t↑d, also enable efficient read out. (c) Read out with
the singlet state. Tunneling of spin ↑ to the reference dot is blocked due to the Pauli
principle. (d) Schematic current vs. time during a single measurement. Here, τdd is the
time scale for tunneling and we assume Γtot > td, i.e., that the tunneling events can be
resolved in the current.

For p0 = p1 = 1, the efficiency is maximal, e = 100%, and single-shot read out is
possible (n = 1). Conversely, for p1 = 1 − p0 (e.g., p0 = p1 = 1

2
), the state of the

qubit cannot be determined, not even for an arbitrarily large n, and the efficiency
is e = 0%. For the intermediate regime, 0% < e < 100%, the state of the qubit is
known after several measurements, with n satisfying Eq. (7.1).

7.1.2 Visibility v

When coherent oscillations between |0〉 and |1〉 are considered, the amplitude of
the oscillating signal is

∣∣〈Â〉1 − 〈Â〉0
∣∣, i.e., smaller than the value |A1 −A0| by a

factor of v = |p0 + p1 − 1| . Thus, we can take v as a measure of the visibility of
the coherent oscillations. With v and the shift of the oscillations, s = 1

2
(p1 − p0) =

1
2

(
〈Â〉0 + 〈Â〉1 − A0 − A1

)
/
(
A1 − A0

)
, we can get e. We find the general relation

v2 ≤ e ≤ v, where the left inequality becomes exact for p0 = p1 and the right for
p0 = 1 or p1 = 1. Further, for every 0 < ǫ < 1 we can take p0 = 1

2
and p1 = 1

2
+ ǫ

2
,

thus e < ǫv. Hence, given these natural interpretations of e and v, we see that
somewhat unexpectedly the efficiency can be much smaller than the visibility (of
course, e = 0 ⇔ v = 0).
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7.2 Single spin read out

We now discuss several concrete read-out setups and their measurement efficiency.
We consider a promising qubit, which is an electron spin confined in a quantum
dot [27,63]. For the read out of such a spin qubit, the time scale is limited by the spin-
flip time T1, which has a lower bound of ≈ 100µs [84,86] (while T2 is not of relevance
here). One setup proposed in Ref. [27] is read out via a neighboring paramagnetic
dot, where the qubit spin nucleates formation of a ferromagnetic domain. This leads
to p0 = p1 = 3

4
and thus e = 25%. Another idea is to transfer the qubit information

from spin to charge [27,63,131,165,195]. For this, we propose to couple the qubit dot
to a second (“reference”) dot4 and discuss several possibilities how that coupling can
be made spin-dependent, see also Fig. 7.1. The resulting charge distribution on the
double dot will then depend on the qubit spin state and can be detected by coupling
the double dot to an electrometer, such as a quantum point contact (QPC) [70, 74],
see Fig. 7.1 (or, alternatively, a single-electron transistor [196]).

7.2.1 Read out with different Zeeman splittings

First, we propose a setup where efficiencies up to 100 % can be reached, see Fig. 7.1a.
We take a double dot with different Zeeman splittings, ∆L,R

z = E↓
L,R − E↑

L,R, in each
dot and consider a single electron on the double dot. For initial qubit state |↑〉 , the
electron can tunnel from state |L↑〉 =̂ l↑ L lR to state |R↑〉 =̂ lL l↑ R and vice versa,
and analogously for qubit state |↓〉 . We consider time scales shorter than T1, thus
the states with different spins are not coupled. Next, we define the detunings ε↑,↓ =

E↑,↓
L − E↑,↓

R , which are different for the up and down states, ε↓ − ε↑ = ∆L
z − ∆R

z 6= 0.
The stationary state of the double dot depends on ε↑,↓ and so does the QPC current
Ī↑,↓ [we show this below, see Eq. (7.6) and Īincoh]. Therefore, initial states |↑〉 and |↓〉
can be identified through distinguishable stationary currents, Ī↑ 6= Ī↓, thus e = 100%
and single-shot read out is possible.

7.2.2 Spin-dependent tunneling

Spin-dependent tunneling provides another read-out scheme, see Fig. 7.1b, which we
describe with spin-dependent tunneling amplitudes t↑,↓d . For t↓d ≪ t↑d, only spin ↑
tunnels onto the reference dot while tunneling of spin ↓ is suppressed. We assume
the same Zeeman splitting in both dots and resonance ε = 0. It turns out [Eq.
(7.6)] that Ī↑,↓ depends on t↑,↓d and thus the state of the qubit can be measured.
However, the decay to the stationary state is quite slow in case the qubit is |↓〉 , due
to the suppressed tunneling amplitude t↓d . Since the difference in charge distribution

4Instead of a reference dot, the qubit dot can be coupled to a lead. To ensure that only electrons
with, say, spin ↓ can tunnel, one can use spin-polarized leads or a Zeeman splitting on the dot and
properly tuned energy levels [131].
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between qubit |↑〉 and |↓〉 is larger at short timescales, it can thus be advantageous
to measure the time-dependent current (discussed toward the end).

7.2.3 Read out with Pauli principle

We now consider the case where the reference dot contains initially an electron in
spin up ground state, see Fig. 7.1c. We assume gate voltages such that there are
either two electrons on the right dot or one electron on each dot. Thus, we consider
the 5 dimensional Hilbert space |SR〉 =̂ kL k↑↓R, |↑↓〉 =̂ k↑ L k↓ R, |↓↑〉 =̂ k↓ L k↑ R,
|T+〉 =̂ k↑ L k↑ R, |T−〉 =̂ k↓ L k↓ R. We define the “delocalized” singlet |SLR〉 = ( |↑↓〉 −
|↓↑〉)/

√
2 and the triplet |T0〉 = ( |↑↓〉 + |↓↑〉)/

√
2. In the absence of tunneling,

the corresponding energies are ESR
= 2ǫR + U and ESLR

= ET0,± = ǫL + ǫR with
charging energy U and single particle energies ǫL,R. We can neglect states with two
electrons on the qubit dot and the triplet states with two electrons on the reference
dot, since they have a much larger energy (their admixture due to tunneling is small).
We denote the state with an “extra” electron on the right dot as |R〉 ≡ |SR〉 with
corresponding QPC current IR. For state |L〉 ≡ |SLR〉 and for all triplet states,
|T0,±〉 , the current is IL. When tunneling is switched on and the qubit is initially
in state |↑〉 , tunneling to the reference dot is blocked due to the Pauli exclusion
principle [134]. Thus, the double dot will remain in the (stationary) state |T+〉〈T+|
and the current in the quantum dot remains 〈I〉 = IL (a so-called non-demolition
measurement). On the other hand, for an initial qubit state |↓〉 , the initial state
of the double dot is |↓↑〉 = ( |T0〉 − |SLR〉)/

√
2. The contribution |SLR〉 of this

superposition is tunnel coupled to |SR〉 and will decay to the stationary state ρ̄ with
corresponding QPC current Ī (see below for an explicit evaluation). In contrast,
the triplet contribution |T0〉 is not tunnel-coupled to |SR〉 due to spin conservation
and does not decay. In total, the density matrix of the double dot decays into the
stationary value 1

2
(|T0〉〈T0| + ρ̄). For ε = 0, the ensemble-averaged QPC current for

qubit |↓〉 is 〈I〉 = 1
2
(IL + Ī) ≈ 1

4
(3IL + IR) and can thus be distinguished from IL for

qubit |↑〉 . However, in a single run of such a measurement, an initial qubit |↓〉 decays
either into |T0〉〈T0| or into ρ̄, with 50% probability each. Since |T0〉〈T0| and |T+〉〈T+|
lead to the same QPC current IL, these two states are not distinguishable within this
read-out scheme and single-shot read-out is not possible. The read out can now be
described with the POVM model given above, with |↑〉 ≡ |0〉 and |↓〉 ≡ |1〉 and
A↑ = IL; A↓ = Ī; p↑ = 1; and p↓ = 1

2
. Thus, the measurement efficiency is e = 50%,

i.e., to achieve a fidelity of 1 − α = 99%, we need n ≥ 7 read outs.

An analogous read out is possible if the ground state of the reference dot is a triplet,
say |RT+〉 =̂ kL k↑↑R which is lower than the other triplets ( |RT0,−〉 , |RT−〉) due to
Zeeman splitting. Again, we assume that the reference dot is initially |↑〉 . First, for
a qubit state |↑〉 and at resonance, ε = 0, tunneling into |RT+〉 always occurs and
p↑ = 1. Second, the qubit state |↓〉 has an increased energy by the Zeeman splitting
∆z and is thus at resonance with |RT0〉 (which has also an increased energy). If the
double dot is not projected onto the singlet (in 50 % of the cases), tunneling onto
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the reference dot will also occur, i.e., p↓ = 1
2
. Thus, when one detects an additional

charge on the reference dot, the initial state of the qubit is not known. We find again
e = 50%.

7.3 Read-out model

So far we have introduced various spin read out schemes and the corresponding mea-
surement efficiencies. In order to evaluate the signal strength A0 − A1 for these
schemes, we now calculate the stationary charge distribution ρ̄ and QPC current Ī
for the case when the electron can tunnel coherently between the two dots (as a
function of the detuning and the tunnel coupling). We describe the read-out setup
with the Hamiltonian H = Hd + Vd + HQPC + V. Here, HQPC contains the ener-
gies of the (uncoupled) Fermi leads of the QPC. Further, Hd describes the double
dot in the absence of tunneling, including orbital and electrostatic charging energies,
Hd |n〉 = En |n〉 . It thus contains ε = EL − ER, the detuning of the tunneling reso-
nance. The inter-dot tunneling Hamiltonian is defined as Vd = td( |R〉 〈L|+ |L〉 〈R|).
(Note that for tunneling between |SLR〉 and |SR〉 , td is

√
2 times the one-particle

tunneling amplitude, since both states |↑↓〉 and |↓↑〉 are involved). V is a tunneling
Hamiltonian describing transport through the QPC. The tunneling amplitudes, tQL
and tQR, will be influenced by electrostatic effects, in particular by the charge distri-
bution on the double dot. Thus, we model the measurement of the dot state via the

QPC with V =
(
tQL |L〉 〈L| + tQR |R〉 〈R|

)∑(
c†incout + h.c.

)
[197–199]. Here, c†in and

c†out create electrons in the incoming and the outgoing leads of the QPC, where the
sum is taken over all momentum and spin states. We derive the master equation for
the reduced density matrix ρ of the double dot. We use standard techniques and
make a Born-Markov approximation5 in V [200]. We allow for an arbitrary inter-dot
tunnel coupling, i.e., we keep Vd exactly, with energy splitting E =

√
4 t2d + ε2 in the

eigenbasis of Hd + Vd. We obtain the master equation6

ρ̇L = −ρ̇R = 2td Im [ρRL], (7.3)

ρ̇RL =

[
itd + td

ΓQε

E2
(gΣ − 2g0)

]
(ρR − ρL)

−td ΓQ

∆µ
− (κΓQ + Γi − iε) ρRL, (7.4)

5We map the two-level system { |L〉 , |R〉} onto a pseudo spin 1
2

with Hamiltonian H(t) = 1
2
εσz +

tdσx +X(t)σz + 1
2
(tQL + tQR)VQPC(t). The fluctuations due to the QPC are X(t) = 1

2
(tQL − tQR)VQPC(t)

with VQPC(t) = eiHQPCtVQPCe
−iHQPCt.

6We define P = 1
2
Tr ρσ and write the master equation in the standard Bloch notation, Ṗ =

ω × P + Γ′(P − P0), with ω = (2td, 0, 0) and Γ′
a = (0, −tdΓQ/∆µ − tdΓQ(gΣ − 2g0)ε/E

2, ε +
tdΓQ/∆µ) × a + Γa, where Γ is symmetric with elements Γxy = Γyx = −tdΓQ/∆µ; Γxz = Γzx =
Γxy − tdΓQ(gΣ − 2g0)ε/E

2; Γyy = −ΓQ(1 + gΣ) + ΓQ(gΣ − 2g0)ε
2/E2; Γxx = 2Γxy + Γyy; Γyz =

Γzy = Γzz = 0. Finally, P0x = P0y = 0 and P0z = [tdΓQ(2td + ε)/(1 + gΣ)∆µ2 − Γxy]/Γxz.
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for ρn = 〈n|ρ |n〉 and ρRL = 〈R|ρ |L〉 . In comparison to previous work [197–199], we
find an additional term, −td ΓQ/∆µ, which comes from treating Vd exactly. We find

that the current through the QPC is IL = 2πν2e∆µ|tQL |2 for state |L〉 and analogously
IR for state |R〉 , and we choose IL, IR ≥ 0. Here, ∆µ > 0 is the applied bias across
the QPC and ν is the DOS at the Fermi energy of the leads connecting to the QPC. We
define g± = g(∆µ±E), gΣ = g+ + g− and g0 = g(∆µ) with g(x) = x

/
∆µ
(
ex/kT − 1

)
.

The values g±,Σ,0 vanish for ∆µ ± E > kT . In this case, the decay rate due to the

current assumes the known value [197–199], ΓQ =
(√

IL −
√
IR
)2 /

2e. Generally, the
factor κ = 1+(4t2dgΣ+2ε2g0)/E

2 accounts for additional relaxation/dephasing due to
particle hole excitations, induced, e.g., by thermal fluctuations of the QPC current.
For almost equal currents, IL, R = I (1± 1

2
x), we have ΓQ = Ix2/8e+O(x4). Finally,

by introducing the phenomenological rate Γi we have allowed for some intrinsic charge
dephasing, which occurs on the time scale of nanoseconds [201]. For an initial state
in the subspace {|L〉 , |R〉}, we find the stationary solution of the double dot,

ρ̄ =

(
1

2
− ηε

2∆µ

)
|L〉 〈L| +

(
1

2
+

ηε

2∆µ

)
|R〉 〈R| − ηtd

∆µ
( |R〉 〈L| + |L〉 〈R|) , (7.5)

where η = ΓQ/[ΓQ(1+gΣ)+Γi]. Positivity of ρ̄ is satisfied since η ≤ ∆µ/E. The time
decay to ρ̄ is described by three rates, given as the roots of P (λ) = λ3 + 2Γtotλ

2 +
(E2 + Γ2

tot)λ+ 4t2d
[
Γtot + ΓQ(gΣ − 2g0)ε

2/E2
]
, with Γtot = κΓQ + Γi. The stationary

current through the QPC is given by Ī = ρ̄LIL + ρ̄RIR + 2e tdλ(ΓQ/∆µ) Re ρ̄RL and
thus becomes

Ī =
IL + IR

2
+ η

ε

2∆µ
(IR − IL) − ηλ

2eΓQt
2
d

∆µ2
, (7.6)

where λ = 1 − ∆µ(g− − g+)/E. We note that η quantifies the effect of the detuning
ε on the QPC current. To reach maximal sensitivity, η = 1, we need IR . IL/10 for
I ∼ 1 nA and Γi ∼ 109 s−1. In linear response, the current becomes

Ī =
IL + IR

2
+
ε

E
tanh

E

2T

[
1 − Γi∆µ

ΓQE
tanh

E

2T

]
IR − IL

2
− 2e t2dΓQ

E2

[
1 − E

T
sinh

E

T

]
+

e t2dΓi∆µ

E3 cosh2(E/T )

[
sinh

E

T
− E

T

] [
1 − Γi∆µ

ΓQE
tanh

E

2T

]
. (7.7)

Note that the second term in Eq. (7.6) depends on ε, a property which can be used
for read out, as we have discussed above. For example, for different Zeeman splittings
and ε↑,↓ = ±∆µ/2, Γi = 109 s−1, IL = 1 nA, and IR = 0, the current difference is
Ī↓ − Ī↑ = 0.4 nA, which reduces to 0.05 nA for IR = 0.5 nA. However, typical QPC
currents currently reachable are IL = 10 nA and IR = 9.9 nA, i.e., the relaxation of
the double dot due to the QPC is suppressed, η < 10−3, and other relaxation channels
become important.
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7.3.1 Incoherent tunneling

So far, we have discussed coherent tunneling. We can also take incoherent tunneling
into account, e.g., phonon assisted tunneling, by introducing relaxation rates in Eqs.
(7.3),(7.4). For example, for detailed balance rates and neglecting coherent tunneling,
we find the stationary current Īincoh = 1

2
(IL + IR) + 1

2
(IR − IL) tanh(ε/2kT ) (which

becomes IR for ε > kT ). The QPC current again depends on ε and can be used for
spin read out. The current can also be measured on shorter time scales as we discuss
now.

7.3.2 Read out with time-dependent currents

Read out with time-dependent currents is possible if there is sufficient time to dis-
tinguish IL from IR between two tunneling events to or from the reference dot, i.e.,
we consider Γtot > td. In this incoherent regime, the tunneling from qubit to ref-
erence dot occurs with a rate W↑ or W↓, depending on the qubit state, with, say,

W↓ ≪ W↑. Such rates arise from spin-dependent tunneling, t↑,↓d , or from different
Zeeman splittings and tuning to tunneling resonance for, say, qubit |↑〉 while qubit
|↓〉 is off-resonant, see Figs. 7.1a and 7.1b. For read out, the electron is initially
on the left dot and the QPC current is IL. Then, if the electron tunnels onto the
reference dot within time t and thus changes the QPC current to IR, such a change
would be interpreted as qubit in state |↑〉 , otherwise as qubit |↓〉 . For calculating
the measurement efficiency e, we note that p↑ = p0 = 1 − e−tW↑ and p↓ = p1 = e−tW↓

(with this type of read out, W↓ corresponds to a loss of the information, i.e., describes
“mixing” [202]). We then maximize e by choosing a suitable t and find efficiencies
e & 50 % for W↑/W↓ & 8.75 and e & 90 % for W↑/W↓ & 80.

A more involved read out is to measure the current through the QPC at different
times. The current as function of time switches between the values IL and IR, i.e.,
shows telegraph noise, as sketched in Fig. 7.1d. Since the frequency of these switching
events (roughlyW↑ or W↓) depends on the spin, the QPC noise reveals the state of the
qubit. Finally, at times of the order of the spin relaxation time T1, the information
about the qubit is lost. At each spin flip, the switching frequency changes (W↑ ↔ W↓),
which thus provides a way to measure T1.

7.4 Conclusions

In conclusion, we have given the criterion when n-shot measurements are possible
and have introduced the measurement efficiency e. For electron spin qubits, we have
proposed several read-out schemes and have found efficiencies up to 100%, which
allow single-shot read out. Other schemes, which are based on the Pauli principle,
have a lower efficiency, e = 50%.
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Chapter 8

Shot noise in transport through a
double quantum dot close to the
Kondo regime

8.1 Introduction

Spin-flip processes in a spin 1/2 quantum dot attached to leads result in a renor-
malization of the single-particle transmission coefficient T , giving rise to the Kondo
effect [139, 140] below the Kondo temperature TK . Theoretical studies on shot noise
in this system are available [203–205], and show that the noise S obeys qualitatively
the same formula as for noninteracting electrons but with a renormalized T . Here,
we consider a system where the spin fluctuations (that are enhanced near the Kondo
regime) strongly affect the noise, resulting in some cases in super-Poissonian noise –
a result which cannot be obtained from the “non-interacting” formula.

We consider two lateral quantum dots (DD), connected in series between two metallic
leads via tunnel contacts, see inset of Fig. 8.1a. The dots are tuned into the Coulomb
blockade regime, each dot having a spin 1/2 ground state. The low energy sector of
the DD consists of a singlet |S〉 and a triplet |T 〉 ≡ {|T+〉, |T0〉, |T−〉}, with the singlet-
triplet splitting K. The Kondo effect in this system has been studied extensively [115,
152,158–160]. Two peculiar features in the linear conductance G have been found: a
peak in G vs the inter-dot tunnel coupling tH (see Fig. 8.1a), revealing the non-Fermi-
liquid critical point of the two-impurity Kondo model (2IKM) [164]; and a peak in
G vs an applied perpendicular magnetic field B (see Fig. 8.1b), as a result of the
singlet-triplet Kondo effect at K = 0 [115].
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Figure 8.1: (a) Linear conductance G (dotted line), Fano factor (solid line), and the factor
P (dashed line), in vicinity of the 2IKM critical point. Inset: DD setup. (b) Similar to (a),
but in the vicinity of the singlet-triplet Kondo effect (“*” denotes K = 0).

8.2 From scattering matrix to a stochastic model

The problem of shot noise in DDs with Kondo effect is rather involved. Here we
propose a phenomenological approach. For bias ∆µ ≫ TK , K, the scattering problem
can be formulated in terms of the following scattering matrix

s =

(
rS tS
tS rS

)
|S〉 〈S| +

(
rT tT
tT rT

)
|T 〉 〈T |

+

(
rTS tTS

tTS rTS

)
|T 〉 〈S| +

(
rST tST

tST rST

)
|S〉 〈T | , (8.1)

where ti(j) and ri(j) are the transmission and reflection amplitudes. The spin fluctua-
tions in the DD cause fluctuations in the transmission through the DD. The dominant
mechanism for shot noise is qualitatively described by the following stochastic model

f(t) = [f1(t) (1 − F (t)) + f2(t)F (t)]
(
1 −

∣∣∣Ḟ (t)
∣∣∣
)

+ f3(t)
∣∣∣Ḟ (t)

∣∣∣ , (8.2)

where fi(t) = 0, 1 is a white noise (i = 1, 2, 3) with 〈fi(t)〉 = f̄i and 〈fi(t)fi(0)〉− f̄ 2
i =

f̄i(1 − f̄i)δ(t/∆t), and F (t) = 0, 1 is a telegraph noise with F̄ = β/(1 + β) and
〈F (t)F (0)〉 − F̄ 2 = β exp(−ct)/(1 + β)2, for t ≥ 0. In this model, the time t is
discretized in intervals of ∆t = h/2∆µ. The derivative Ḟ (t) takes values 0,±1.
The function f1(2)(t) describes tunnelling through the DD, with the DD staying in
the singlet (triplet) state, while f3(t) describes tunnelling accompanied by the DD
transition between singlet and triplet. The relation to formula (8.1) is given by:
f̄1 = |tS|2 = 1 − |rS|2, f̄2 = |tT |2 = 1 − |rT |2, and f3 = |tST |2/ (|tST |2 + |rST |2) =
|tTS|2/ (|tTS|2 + |rTS|2). The telegraph noise is described by two parameters: β =
w12/w21 and c = w12 + w21, where wij is the probability to go from i to j.
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8.3 Results

The quantity of interest is the Fano factor F = S/e|I|. For a single-channel non-
interacting system, one has F = 1 − T . In order to show the effect of interaction,
we introduce the factor P = F/(1 − T ). The noise power at zero frequency is then
given by S = 2eIimpT (1− T )P , where Iimp = 2e∆µ/h. For the average transmission
probability we obtain

T ≡ 〈f〉 =
f̄1 + βf̄2

1 + β
+

βc∆t

(1 + β)2

(
2f̄3 − f̄1 − f̄2

)
. (8.3)

The noise can be calculated as S = 2eIimpSf , with Sf = T (1 − T ) + ∆Sf , where

∆Sf =
2β

(1 − q)(1 + β)2

{
q(f̄1 − f̄2)

2 +
c∆t(f̄1 − f̄2)

(1 + β)
×

[
f̄3(β − 1)(q + 1) + f̄1(1 − βq) + f̄2(q − β)

]
+

(c∆t)2

4

[(
2f̄3 − f̄1 − f̄2

)2 −
(
f̄1 − f̄2

)2]
}
, (8.4)

with q = exp(−c∆t). The factor P is then given by P = 1+∆Sf/(T −T 2). Deviations
of P from P = 1 show the effect of interactions in the DD. We plot the Fano factor
and the factor P for a DD on Fig. 8.1. The results show that the spin fluctuations
affect the shot noise in the regions where K . TK . A peculiar feature in P is found
both at the 2IKM critical point (Fig. 8.1a) and at the point of the singlet-triplet
Kondo effect (Fig. 8.1b).

For ∆µ ≪ TK the DD spin is screened, and correlations between two electrons passing
through the DD occur only via virtual excitations of the Kondo state. The shot noise
is expected to qualitatively obey the non-interacting formula with the renormalized
T .
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Appendix A

Double dot states in the L-R basis

Using the definition

dnσ =
1√
2

(
d̃Lσ + nd̃Rσ

)
, (A.1)

we rewrite (3.2) in terms of the new operators d̃lσ as follows

|S〉 =
1

2
√

1 + φ2

{
(1 + φ)(d̃†L↑d̃

†
R↓ − d̃†L↓d̃

†
R↑)+

(1 − φ)(d̃†L↑d̃
†
L↓ + d̃†R↑d̃

†
R↓)
}
|0〉 ,

|T+〉 = d̃†L↑d̃
†
R↑|0〉 , |T−〉 = d̃†L↓d̃

†
R↓|0〉 , (A.2)

|T0〉 =
1√
2
(d̃†L↑d̃

†
R↓ + d̃†L↓d̃

†
R↑)|0〉 .

Similarly, for (3.11) and (3.12) we have

|S1〉 =
1√
2
(d̃†L↑d̃

†
L↓ − d̃†R↑d̃

†
R↓)|0〉 , (A.3)

|S2〉 =
1

2
√

1 + φ2

{
(φ− 1)(d̃†L↑d̃

†
R↓ − d̃†L↓d̃

†
R↑)+

(1 + φ)(d̃†L↑d̃
†
L↓ + d̃†R↑d̃

†
R↓)
}
|0〉 . (A.4)
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Appendix B

Sequential tunneling rates

The sequential tunneling rates W l
Mm calculated according to the formula (3.20) are:

W l
〈S|+, ↑〉 =

2π

~
ν
|tl, +|2
1 + φ2

f(E|S〉 −E|+, ↑〉 − µl) ,

W l
〈S|+, ↓〉 =

2π

~
ν
|tl, +|2
1 + φ2

f(E|S〉 −E|+, ↓〉 − µl) ,

W l
〈S|−, ↑〉 =

2π

~
ν
φ2|tl,−|2
1 + φ2

f(E|S〉 − E|−, ↑〉 − µl) ,

W l
〈S|−, ↓〉 =

2π

~
ν
φ2|tl,−|2
1 + φ2

f(E|S〉 − E|−, ↓〉 − µl) ,

W l
〈T+|+, ↑〉 =

2π

~
ν|tl,−|2f(E|T+〉 − E|+, ↑〉 − µl) ,

W l
〈T+|+, ↓〉 = 0 ,

W l
〈T+|−, ↑〉 =

2π

~
ν|tl, +|2f(E|T+〉 − E|−, ↑〉 − µl) ,

W l
〈T+|−, ↓〉 = 0 ,

W l
〈T−|+, ↑〉 = 0 ,

W l
〈T−|+, ↓〉 =

2π

~
ν|tl,−|2f(E|T−〉 − E|+, ↓〉 − µl) ,

W l
〈T−|−, ↑〉 = 0 ,
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W l
〈T−|−, ↓〉 =

2π

~
ν|tl, +|2f(E|T−〉 −E|−, ↓〉 − µl) ,

W l
〈T0|+,↑〉 =

2π

~
ν
|tl,−|2

2
f(E|T0〉 −E|+, ↑〉 − µl) ,

W l
〈T0|+,↓〉 =

2π

~
ν
|tl,−|2

2
f(E|T0〉 −E|+, ↓〉 − µl) ,

W l
〈T0|−,↑〉 =

2π

~
ν
|tL+|2

2
f(E|T0〉 − E|−, ↑〉 − µl) ,

W l
〈T0|−,↓〉 =

2π

~
ν
|tL+|2

2
f(E|T0〉 − E|−, ↓〉 − µl) ,

where f(E) = 1/ [1 + exp(E/kBT )]. The rates for the reverse transitions can be
obtained from above expressions by replacing f(E) → 1 − f(E), satisfying (3.22).

Solving (3.26) and (3.27), we find for (3.28), (3.29), and (3.30) the following expres-
sions:

τ =
(WT,−W−,S +W−,TWS,−) (WS,+ +WT,+) + (WS,+W+,T +WT,+W+,S) (WT,− +WS,−)

(W+,SWS,− +W−,SWS,+) (W+,T +W−,T ) + (W+,TWT,− +W−,TWT,+) (W+,S +W−,S)
,

(B.1)

β =
WT,+W+,S (WS,− +WT,−) +WT,−W−,S (WS,+ +WT,+)

W+,TWS,+ (WS,− +WT,−) +W−,TWS,− (WS,+ +WT,+)
, (B.2)

γ =
W−,SWS,+ (W+,T +W−,T ) +W−,TWT,+ (W+,S +W−,S)

W+,SWS,− (W+,T +W−,T ) +W+,TWT,− (W+,S +W−,S)
. (B.3)

The rate W̃0 entering Eq. (3.60) is given by

W̃−1
0 =

(WS+ −WS−)(W+T +W−T ) + (WT+ −WT−)(W+S +W−S)

W+SWS−(W+T +W−T ) +W+TWT−(W+S +W−S)
. (B.4)
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Appendix C

Cotunneling rates

The cotunneling rates for the N = 1 CB valley are given in Eq. (3.63), with Ml′l
nm

given by

MRL
++ =

(
1

U2
−

+
1

1 + φ2

1

U−U+
+

1

(1 + φ2)2

1

U2
+

)
2 |tL+tR+|2 +

3 |tL−tR−|2
2U2

+

− 3

U−U+
ℜ
(
t∗R+tR−tL+t

∗
L−
)
, (C.1)

MRL
−− =

(
1

U2
−

+
φ2

1 + φ2

1

U−U+
+

φ4

(1 + φ2)2

1

U2
+

)
2 |tL−tR−|2 +

3 |tL+tR+|2
2U2

+

− 3

U−U+
ℜ
(
t∗R+tR−tL+t

∗
L−
)
, (C.2)

MRL
−+ =

(
2

U2
−

+
3

U−U+
+

3

2U2
+

)
|tL−tR+|2 +

2φ2 |tL+tR−|2
(1 + φ2)2U2

+

−

2φℜ
(
t∗R+tR−tL+t

∗
L−
)

(1 + φ2)U−U+

, (C.3)

where U− = E−(1) and U+ = E+(1), and ℜ is real part. For MRL
+−, change tl+ ⇄ tl−

in Eq. (C.3); for MRR
nm, set L→ R.

The cotunneling rates for the N = 2 Coulomb blockade valley (singlet-triplet cotun-
neling rates) are given in Eq. (3.63), with Ml′l

nm given by

MRL
SS = 2

∣∣∣∣

(
φ2

U+
− 1

U−

)
t∗L+tR+

1 + φ2
+

(
1

U+
− φ2

U−

)
t∗L−tR−
1 + φ2

∣∣∣∣
2

, (C.4)

MRL
TT =

[(
U+ + U−
U+U−

)2

+
1

2

(
U+ − U−
U+U−

)2
]
∣∣t∗L+tR+ + t∗L−tR−

∣∣2 , (C.5)

MRL
ST =

(
U+ + U−
U+U−

)2
∣∣t∗L+tR− + φt∗L−tR+

∣∣2

1 + φ2
=

1

3
MLR

TS , (C.6)
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where U− = E−(2) and U+ = E+(2).

To calculate the cotunneling rates wnm(l′, l), close to the sequential tunneling peak
on the N = 2 CB valley side, one can use Eq. (3.75) with U l

− → U l′
+, and with M̃l′l

nm

given by

M̃RL
SS =

2 |tL+tR+|2

(1 + φ2)2 , (C.7)

M̃RL
TT =

3

2
|tL−tR−|2 , (C.8)

M̃RL
ST =

|tL+tR−|2
1 + φ2

=
1

3
M̃LR

TS . (C.9)

The cotunneling is allowed at Emn + ∆µll′ > 0, and forbidden due to energy conser-
vation at Emn + ∆µll′ < 0.
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Appendix D

Variational parameters ω̃ and γ

Equating to zero the derivatives of ε0m in Eq. (5.13) with respect to ω̃ and γ, we
obtain two equations

(1 + x)y4 − 1 − m2

x
− y

λ

2a∗B

Γ(1/2 + x)

xΓ(x)
= 0, (D.1)

x2y4 −m2 − xy
λ

a∗B

Γ(1/2 + x)

Γ(x)
[Ψ(1 + x) − Ψ(1/2 + x)] = 0, (D.2)

where x =
√
m2 + γ, y = λ̃/λ =

√
ω/ω̃, and Ψ(x) is the digamma function. Solving

Eqs. (D.1) and (D.2) with respect to x and y gives the variational parameters γ and
ω̃ as functions of the Coulomb interaction strength λ/a∗B.

We consider first the case m = 0. For weak Coulomb interaction (λ/a∗B ≪ 1), we
expand Eq. (D.2) in terms of x≪ 1 and obtain

x =
2 ln 2 − π−1/2y3a∗B/λ

4 ln2 2 + π2/3
. (D.3)

Note that, for λ/a∗B < y3/2
√
π ln 2, Eq. (D.3) gives x < 0, whereas by definition

x =
√
γ ≥ 0. In this case, the minimum of energy in Eq. (5.13) is achieved at γ = 0

and thus, Eq. (D.2) should be replaced by x = 0 for λ/a∗B ≤ y3/2
√
π ln 2. Setting

x = 0 in Eq. (D.1), we obtain an equation for y,

y4 −
√
π

2

λ

a∗B
y − 1 = 0, (D.4)

which is valid for λ/a∗B ≤ y3/2
√
π ln 2. Considering simultaneously the equality

λ/a∗B = y3(2
√
π ln 2)−1 and Eq. (D.4), we find that λ/a∗B has a critical value, (λ/a∗B)c ≡

ξc, given by

ξc =
1

2
√
π ln 2

(
4 ln 2

4 ln 2 − 1

)3/4

≈ 0.57, (D.5)
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at which ω̃ and γ are non-analytic functions of λ/a∗B. Clearly, such a critical point
is not present in the exact eigenstates of the Hamiltonian (5.9), and is an artifact of
the variational ansatz we use. In the interval 0 ≤ λ/a∗B ≤ (λ/a∗B)c, we have γ = 0
and ω̃ = ω/y2, where y is the positive solution of Eq. (D.4). Although we can solve
Eq. (D.4) analytically for y, it is more convenient to present here an expansion for ω̃
in terms of λ/a∗B,

ω̃

ω
= 1 −

√
π

4

λ

a∗B
+

π

16

λ2

a∗B
2 − 7π3/2

512

λ3

a∗B
3 + ... . (D.6)

Note that, since λ/a∗B ≤ (λ/a∗B)c ≈ 0.57, Eq. (D.6) converges with a good accuracy;
e.g., at λ/a∗B = (λ/a∗B)c the four terms in the series (D.6) give ω̃/ω ≈ 0.797, whereas
the exact solution reads ω̃/ω =

√
1 − 1/4 ln 2 ≈ 0.799.

To the right of the critical point (D.5), both Eqs. (D.1) and (D.2) are valid for m = 0,
and we can use them to study two limiting cases: (i) the neighborhood of the critical
point (D.5) for λ/a∗B ≥ (λ/a∗B)c and (ii) the limit of strong Coulomb interaction
(λ/a∗B ≫ 1). Excluding λ/a∗B from Eqs. (D.1) and (D.2), we express y as a function
of x only,

1

y4
= 1 + x− 1

2 [Ψ(1 + x) − Ψ(1/2 + x)]
. (D.7)

Next we substitute y from Eq. (D.7) into Eq. (D.2) and obtain

a∗B
λ

=
Γ(1/2 + x)

Γ(1 + x)
[Ψ(1 + x) − Ψ(1/2 + x)]1/4

×{(1 + x) [Ψ(1 + x) − Ψ(1/2 + x)] − 1/2}3/4 . (D.8)

Equation (D.8) gives a∗B/λ as a function of x. The inverse function allows one to
find x as a function of a∗B/λ, and then, from Eq. (D.7), also y as a function of a∗B/λ.
Expanding Eqs. (D.8) and (D.7) for x≪ 1, which corresponds to the case (i), we find
for

√
γ = x and ω̃/ω = 1/y2 in leading order,

√
γ = C0

(
1

ξc
− a∗B

λ

)
+ ..., (D.9)

ω̃

ω
=

(
ω̃

ω

)

c

+ C1

(
1

ξc
− a∗B

λ

)
+ ..., (D.10)

where ξc is given in Eq. (D.5), (ω̃/ω)c =
√

1 − 1/4 ln 2, and the coefficients C0 and
C1 read

C0 =
(2/π)1/2(ln 2)3/4(4 ln 2 − 1)1/4

(8 ln 2 − 5) ln2 2 + 2
3
π2(ln 2 − 1

16
)
≈ 0.16, (D.11)

C1 =

(
1 − π2

24 ln2 2

)
C0√

4 − 1/ ln 2
≈ 0.014. (D.12)
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Note that the value ω̃/ω = (ω̃/ω)c at λ/a∗B = ξc is the minimum of ω̃/ω as a function
of λ/a∗B [see also Eq. (D.6) and the text below it].

Next we turn to the case of strong Coulomb interaction (λ/a∗B ≫ 1). Here, we have
x≫ 1 and by expanding Eq. (D.7) in terms of 1/x we obtain

ω̃

ω
≡ 1

y2
=

√
3

2
− 1

16
√

3x
+

11

768
√

3x2
+ ... . (D.13)

Expanding Eq. (D.8) for large x, and inverting the obtained series by means of iter-
ation, we find for γ = x2,

γ =
3

4

(
λ

2a∗B

)4/3

− 7

8
√

3

(
λ

2a∗B

)2/3

− 7

288
+ ... . (D.14)

Then, Eq. (D.13) can be rewritten as follows

ω̃

ω
=

√
3

2
− 1

24

(
2a∗B
λ

)2/3

− 1

192
√

3

(
2a∗B
λ

)4/3

+ ... . (D.15)

To summarize for the case m = 0, the variational parameters γ and ω̃ as functions of
the Coulomb interaction strength λ/a∗B are given, respectively, by γ = 0 and Eq. (D.6)
in the interval 0 ≤ λ/a∗B ≤ ξc, by Eqs. (D.9) and (D.10) in the neighborhood of
λ/a∗B = ξc (for λ/a∗B ≥ ξc), and by Eqs.(D.14) and (D.15) in the limit λ/a∗B ≫ 1.

We consider now the case |m| ≥ 1, and without loss of generality we assume m = |m|.
Here, we find that ω̃ and γ are analytic functions of λ/a∗B. We thus consider only the
limit of weak and strong Coulomb interaction. Proceeding similarly to the previous
case, we find from Eqs. (D.1) and (D.2) the following relations [cf. Eqs. (D.7) and
(D.8)],

y4 =
2 (1 +m2/x) ∆Ψ(x) −m2/x2

2(1 + x)∆Ψ(x) − 1
, (D.16)

a∗B
λ

=
x2Γ(1/2 + x)

(x2 −m2)Γ(1 + x)

[(
1 +

m2

x

)
∆Ψ(x) − m2

2x2

]1/4

×
[
(1 + x)∆Ψ(x) − 1

2

]3/4

, (D.17)

where ∆Ψ(x) = Ψ(1+x)−Ψ(1/2+x) and x takes values in the interval m ≤ x <∞.

In the limit of weak Coulomb interaction (λ/a∗B ≪ 1), we expand the left-hand side
of Eqs.(D.16) and (D.17) in terms of x−m ≈ γ/2m≪ 1, and obtain in leading order

γ

m
=

√
π(2m− 1)!!

2m(m− 1)!

[
(1 +m)∆Ψ(m) − 1

2

]
λ

a∗B
+ ..., (D.18)

ω̃

ω
= 1 −

√
π(2m− 1)!!

2m+1m!

[
1

2
−m∆Ψ(m)

]
λ

a∗B
+ ..., (D.19)
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where ∆Ψ(m) = 2 ln 2 −∑m
k=1

1
(2k−1)k

. In particular for the case |m| = 1, we obtain

γ =
√
π(2 ln 2 − 5/4)(λ/a∗B) and ω̃/ω = 1 −√

π(3/2 − 2 ln 2)(λ/4a∗B).

In the limit of of strong Coulomb interaction (λ/a∗B ≫ 1), we expand the left-hand
side of Eqs.(D.16) and (D.17) in terms of x≫ 1, and as a result we obtain

γ =
3

4

(
λ

2a∗B

)4/3

− 7

8
√

3

(
λ

2a∗B

)2/3

+
72m2 − 7

288
+ ..., (D.20)

ω̃

ω
=

√
3

2
− 1

24

(
2a∗B
λ

)2/3

+
48m2 − 1

192
√

3

(
2a∗B
λ

)4/3

+ ... . (D.21)

Note that in Eqs. (D.20) and (D.21) the dependence on m arises only in the last
terms. Thus, for strong Coulomb interaction, the radial part of the wave function in
Eq. (5.7) [see also Eq. (5.12)] is weakly depending on the quantum number m.
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Appendix E

Matrix elements of V

We calculate first the matrix elements 〈f̃nm|V |f̃0m〉 (n ≥ 0), with V given in Eq. (5.18)
and the wave functions f̃nm(r) in Eq. (5.12). We divide the perturbation into three
terms,

Vn0 ≡ 〈f̃nm|V |f̃0m〉 = V ′
n0 − V ′′

n0 + V ′′′
n0, (E.1)

corresponding, respectively, to the terms proportional to 1/r, 1/r2 and r2 in Eq. (5.18).
For the term V ′ = ~

2/m∗a∗Br, we obtain

V ′
n0 =

~
2

m∗a∗Bλ̃

(2n− 1)!!2−nΓ(t− 1/2)√
n!Γ(t)Γ(n + t)

. (E.2)

Here and below we use the notation t = 1+
√
m2 + γ. For the term V ′′ = ~

2γ/m∗r2,
we obtain

V ′′
n0 =

~
2

m∗λ̃2

γ

(t− 1)

√
n!Γ(t)

Γ(n + t)
. (E.3)

Finally, for the term V ′′′ = 1
4
m∗(ω2 − ω̃2)r2, we obtain

V ′′′
n0 =

m∗λ̃2

4
(ω2 − ω̃2)

[
tδn,0 −

√
tδn,1

]
, (E.4)

where δnn′ is the Kronecker δ-symbol. We note that in the case n = 1, we have
〈f̃1m|V |f̃0m〉 = 0, due to Eq. (D.1).

Next, we consider the general case,

Vnn′ ≡ 〈f̃nm|V |f̃n′m〉 = V ′
nn′ − V ′′

nn′ + V ′′′
nn′, (E.5)

with the same division of the perturbation into three as in Eq. (E.1). For the first
part, we obtain

V ′
nn′ =

~
2

m∗a∗Bλ̃

√
(t)n(t)n′

n!n′!

n∑

k=0

n′∑

l=0

(t)k+l− 1
2
(−n)k(−n′)l

(t)k(t)lk!l!
, (E.6)
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where (x)n = Γ(x + n)/Γ(x) is the Pochhammar symbol. For the second part, we
obtain

V ′′
nn′ =

~
2γ

m∗λ̃2

√
(t)n(t)n′

n!n′!

n∑

k=0

n′∑

l=0

(t)k+l−1(−n)k(−n′)l

(t)k(t)lk!l!
. (E.7)

We note that for n′ = n we have V ′′
nn = V ′′

00 for all values of n. Finally, for the last
part, we obtain

V ′′′
nn′ =

m∗λ̃2

4
(ω2 − ω̃2)

[
(2n+ t)δnn′ −

√
n′(n + t) δn,n′−1

−
√
n(n′ + t) δn,n′+1

]
. (E.8)

We note that for n′ = 0 Eqs. (E.6), (E.7) and (E.8) coinside with Eqs. (E.2), (E.3)
and (E.4), respectively.
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Appendix F

Exact relations at the
singlet-triplet transition

From Eqs. (5.90) and (5.91) at the singlet-triplet transition, we obtain

〈ψS|r±
(

1 − λ4
0

2a∗Br
3

)
|ψT 〉 = 0, (F.1)

where |ψS〉 and |ψT 〉 are the exact orbital wave functions of the singlet and triplet,
respectively. We assume |ψS〉 = |NMnm〉 and |ψT 〉 = |NMn,m − 1〉, with an even
m. For r−, Eq. (F.1) holds trivially, due to angular momentum conservation. For
r+, however, the equality takes place only at the singlet-triplet degeneracy point.
Integrating in Eq. (F.1) over R, ϕR and ϕr, we obtain

∫ ∞

0

(
r − λ4

0

2a∗Br
2

)
fnm(r)fn,m−1(r)dr = 0, (F.2)

where fnm(r) are the exact eigenfunctions of Hm in Eq. (5.9). The condition of
singlet-triplet degeneracy reads εnm = εnm−1 − ~ωc/2, where εnm are the eigenvalues
of Hm.

An additional relation can be obtained if we consider the identity p = (im∗/2~)[Hd, r]
for the momentum operator p = −i~∂/∂r + (e/2c)A(r), with the vector potential
A(r) = (−ry, rx, 0)Bz/2. Going to the polar coordinates, r = (r, ϕr), we use the
relation

∂

∂rx

± i
∂

∂ry

= e±iϕr

(
∂

∂r
± i

r

∂

∂ϕr

)
(F.3)

to evaluate the matrix elements 〈ψS|p|ψT 〉. Considering as before the singlet-triplet
transition, we set 〈ψS|p|ψT 〉 = 0 and obtain the relation

∫ ∞

0

fnm(r)

(
∂

∂r
− m− 1

r
− eB∗

z

4~c
r

)
fn,m−1(r)dr = 0, (F.4)

where B∗
z is the value of Bz at which the singlet-triplet transition occurs.
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