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Summary 

 

Medication around and during surgery includes a broad range of different drugs. Effects like 

anesthesia, analgesia, sedation and muscle relaxation are strived. Other drugs can be added in 

emergency cases or for controlling vital signs like blood pressure or heart rate. Some drugs 

are able to generate more than one of these effects. For a safe surgery episode, however, 

polymedication is necessary. On the other hand a lot of side effects and the risk of 

pharmacokinetic and pharmacodynamic drug drug interactions have to be considered with an 

increasing number of applied drugs. Most of the pharmacokinetic interactions can be solved 

by dose adaptation. For that reason it is important to know as much as possible about 

metabolism, pharmacokinetics and drug drug interactions of the used drugs. In this 

dissertation the combination of the racemic drug ketamine with anesthetic, analgesic and 

antidepressive properties and various sedative α2-receptor agonists was investigated in vitro 

and in vivo in different species using enantioselective capillary electrophoresis (CE). 

Enantiomers of ketamine differ in their pharmacologic and toxicologic profiles. The S-

enantiomer has a higher affinity towards the N-methyl-d-aspartate-receptor. Both racemic 

ketamine and S-ketamine are registered as drugs for human and veterinary use.  

CE is a high-resolution separation technique that permits the separation and analysis of the 

stereoisomers of drugs and metabolites in the same run and can thus be used to determine 

enzyme kinetics, pharmacokinetics and drug drug interactions. In CE a chiral selector like a 

cyclodextrin is added to the background electrolyte in order to achieve enantioselectivity. 

Three different assays were developed and/or optimized during this dissertation to describe 

the interactions between ketamine and the α2-receptor agonists medetomidine, its active 

enantiomer dexmedetomidine, detomidine, xylazine and romifidine. 

In the first project (Chapter 2) the effect of medetomidine and its active enantiomer 

dexmedetomidine on the N-demethylation of ketamine to norketamine was analyzed in vitro 

with canine liver microsomes, human liver microsomes and the single cytochrome P450 

enzymes CYP3A12 (canine) and CYP3A4 (human).  For CYP3A12 the enzyme kinetics had 

to be determined first. For racemic ketamine, a substrate inhibition model was found to 

provide the best fit to the experimental data. For the single ketamine enantiomers, the kinetics 

could be described with the Michaelis-Menten model. Inhibition of norketamine formation in 

presence of medetomidine or dexmedetomidine was observed in most of the performed in 

vitro experiments. The inhibition parameter Ki and IC50 were determined for the single 



 

 

 

 

enantiomers of ketamine by using the four-parameter logistic model and the Cheng-Pursoff 

equation. They are smaller for the formation of R-norketamine.  

Decreased norketamine formation under medetomidine comedication was also seen in an in 

vivo study with Beagle dogs. One group received racemic or single S-ketamine under 

sevoflurane anesthesia and another after medetomidine sedation. For analyzing the blood 

samples which were collected between 0 and 900 min after ketamine injection an 

enantioselective CE microassay was developed and validated (Chapter 3). Besides the 

advantage that only 50 µL of serum or plasma are needed for analysis it quantifies not only 

the enantiomers of ketamine and norketamine (as is the case with the assay used in the first 

project) but also the stereoisomers of 6-hydroxynorketamine (6HNK) and 

dehydronorketamine (DHNK). Stereoselectivities were detected for 6HNK and DHNK. With 

the obtained plasma levels the pharmacokinetics of these substances could be described by 

using two compartment models for ketamine and norketamine enantiomers and single 

compartment models for 6HNK and DHNK stereoisomers (Chapter 4).  

The impact of the four α2-receptor agonists medetomidine, detomidine, xylazine and 

romifidine on the ketamine metabolism was assessed in vitro with equine liver microsomes 

and by calculation of the inhibition parameters for the N-demethylation of ketamine to 

norketamine (Chapter 5). Veterinarians observed that the recovery quality of horses after 

anesthesia with ketamine and an α2-receptor agonist is dependent on the selected α2-receptor 

agonist. The four α2-receptor agonists differ in their activity and selectivity for the α2-

receptor. Medetomidine was found to be the strongest inhibitor, followed by detomidine. The 

incubation time was extended and 6HNK and DHNK were determined as well. In these 

experiments the four α2-receptor agonists exhibited an effect on the formation of all 

metabolites. 

To have a closer look at HNK a new assay was developed which permits the separation of the 

stereoisomers of four hydroxylated norketamine metabolites and DHNK (Chapter 6). HNK 

and DHNK stereoisomers are reported to be responsible for antidepressive effects of 

ketamine.  A mixture of sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin was found 

to be an effective chiral selector for that task. This assay was applied to analyze in vitro and in 

vivo samples and data obtained revealed differences in the ketamine metabolism of dogs and 

horses that could hitherto not be assessed. 
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ACN    Acetonitrile 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor 

AUC    Area under the curve 

BGE    Background electrolyte 

CD    Cyclodextrin 

CE    Capillary electrophoresis 

cmax    Maximal concentration 

CL    Clearance 

CLint    Internal clearance 

CLmax     Maximal clearance 

CLM    Canine liver microsomes 

Conc.    Concentration 

CYP    Cytochrome P450 

D0    Drug dose 

DHNK    5,6-dehydronorketamine 

ELM    Equine liver microsomes 

F    Fraction  

Fig.    Figure 

GC    Gas chromatography 

HLM    Human liver microsomes 

HK    Hydroxyketamine 

HNK    Hydroxynorketamine 

HPLC    High-performance liquid chromatography 

HS-γ-CD   Highly sulfated γ-cyclodextrin 

ID    Inner diameter 

IC50    Half maximum inhibition concentration 

IST    Internal standard 

i.v.    Intravenous 

Ka    Autoactivation constant 

Ki    Inhibition constant 



 

 

 

 

Km    Michaelis-Menten constant 

LOD    Limit of detection 

LOQ    Limit of quantification 

mAU    Milli absorbance unit 

MgCl2    Magnesium chloride 

MRT    Mean residence time 

MS    Mass spectroscopy 

NADPH   Nicotinamide adenine dinucleotide phosphate  

NaOH    Sodium hydroxide 

NK    Norketamine 

NMDA   N-methyl-d-aspartate 

PDA    Photodiode array 

psi    Pound per square inch 

Rac.     Racemic 

Ref.    Reference 

rpm    Rounds per minute 

R
2
    Determination coefficient 

RSD    Relative standard deviation 

S    Substrate 

SD    Standard deviation 

S/N    Signal to noise ratio 

tmax    Time at which maximum concentration is reached 

Tris    Tris(hydroxymethyl)-aminomethan 

UV    Ultraviolet 

Vcentral    Volume of central compartment 

Vmax    Maximum reaction velocity 

Vss    Distribution volume at steady state 

VTi    Volume of peripher compartment
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1. Introduction 

 

1.1 Ketamine 

 

The racemic drug ketamine (for chemical structure see Fig. 1) is well-known in human and 

veterinary medicine. For a long time it was used for anesthesia only. Later the application of 

ketamine in subanesthetic doses as analgesic and antidepressive drug emerged and it became a 

drug of abuse [1–5]. Most of its effects are mediated by the N-methyl-d-aspartate (NMDA) 

receptor. Interactions with opioid, monoaminergic, cholinergic, muscarinic and nicotinic 

receptors are also reported [1]. Both ketamine enantiomers are active at the NMDA receptor 

whereas the affinity of the S-enantiomer is four times higher than of the R-form and two times 

higher than of racemic ketamine [6–8]. Racemic ketamine and the single S-enantiomer are 

used in human and veterinary medicine. Because of its higher activity S-ketamine can be 

applied in lower doses which reduces the occurrence of undesired side effects. Not only 

ketamine itself also its first metabolite, norketamine, which is formed by N-demethylation 

(Fig. 1) has an affinity to the NMDA receptor [1,9]. R-ketamine showed stronger 

antidepressive effects than S-ketamine in experiments with mice. Thus, it is assumed that the 

antidepressive response is independent of NMDA receptor inhibition [9]. For the further 

metabolites, namely hydroxynorketamine (HNK, Fig. 1) and 5,6-dehydronorketamine 

(DHNK, Fig. 1), only little effects at the NMDA receptor were found. An inhibition of the α7-

nicotinic acetylcholine receptor was observed instead. Furthermore, 6HNK activates the α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. The interactions at 

the α7-nicotinic acetylcholine receptor and AMPA receptor are mainly responsible for the 

antidepressive effects. At the AMPA receptor (2R,6R)-hydroxynorketamine (RR-6HNK, Fig. 

1) is more active than (2S,6S)-hydroxyketamine (SS-6HNK, Fig. 1) [9,10]. 

Stereoselectivity is not only seen in the receptor affinities of ketamine and its metabolites and 

thus their effects but also in the metabolism. The metabolism was studied in vivo and in vitro 

in different species [11–20]. Cytochrome P450 (CYP) enzymes catalyze the metabolic 

reactions [7,10,11,19,21]. Most members of this enzyme family are located in the liver but 

they can be found in other tissues as well where the distribution of the isoforms might be 

different. The first main step is the N-demethylation of ketamine to norketamine. The 

formation of S-norketamine is dominant. A hydroxylation to hydroxyketamine (HK) is also 

possible (Fig. 1). Norketamine is hydroxylated very fast to HNK. The hydroxyl group can be 
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added at various positions on the cyclohexanone and the chlorophenyl ring. Hydroxylation at 

positions 3 to 6 at the cyclohexanone ring leads to a second chiral center in the molecule. 

Another pathway to HNK is the N-demethylation of HK [7,10,11,19,21]. DHNK is formed 

via loss of water of 5HNK and/or 6HNK. It is not yet known whether this reaction is also 

catalyzed by CYP enzymes or occurs by chemical reaction [11,22,23]. DHNK and the 

hydroxy metabolites were also found in the breath of mice which received ketamine 

intraperitoneally [24]. Fig. 1 shows the scheme of the ketamine metabolism. In addition to the 

metabolites presented there, norketamine-N-oxide and other metabolites were mentioned in 

the literature but not further investigated [11,25–27].  

 

 

Figure 1: Schematic representation of the main pathways of the ketamine metabolism. Chiral centers 

are marked with asterisks. X: 3, 4, 5 or 6; X´: 2´, 3´, 4´or 5´. 

 

All described stereoselectivities in pharmacological effects and metabolism hypothesize that 

also the pharmacokinetics and pharmacodynamics and the interactions with other drugs are 

affected. In regard to improvement of success and safety in therapy it is important to study the 

characteristics and the behavior of the enantiomers separately. This requires enantioselective 

analytical methods for ketamine and its metabolites. 
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1.2 α2-receptor agonists 

 

Ketamine is often used in combination with other drugs e. g. α2-receptor agonists. They can 

support each other in their therapeutic effects or decrease induced side effects. The risk of 

pharmacokinetic or pharmacodynamic drug drug interactions increases with the number of 

applied drugs. Loss of the effect or reaching of toxic concentrations can be the consequence, 

dependent if inhibitive or inductive interactions take place and if prodrugs are involved. Most 

of the pharmacokinetic interactions can be solved by dose adaptation. Detailed information 

about the interactions is necessary to be able to optimize the application of drug combinations.  

The first α2-receptor agonist, clonidine, was developed as an antihypertensive drug for human 

use. Besides clonidine which is still used, dexmedetomidine, the pharmacologic active 

enantiomer of medetomidine, brimonidine and tizanidine are registered for human therapy. 

They can be found as sedatives, anesthesia adjuncts and in the treatment of wide-angle-

glaucoma, attention-deficit/hyperactivity disorder and panic disorders [29,30]. The 

combination with ketamine is only described for dexmedetomidine and is rarely used [31–35]. 

In contrast, the four sedative α2-agonists medetomidine, detomidine, xylazine and romifidine 

which are available in veterinary medicine are all used in daily practice together with 

ketamine (for chemical structures see Fig. 2). Furthermore, they have anesthetic sparing 

effects, provide muscle relaxation and show analgesic effects [34]. The combination of 

ketamine with an α2-receptor agonist has the advantage of decreasing each other’s side 

effects. Tachycardia, hypertension, salivation and muscular rigidity caused by ketamine are 

reduced. On the other side ketamine counteracts the risk of bradycardia and hypotension [31–

33,37,38]. The α2-receptor antagonists, atipamezole, tolazoline and yohimbine, are available 

as reversal agents [29]. 

The different α2-recetor agonists differ based on their chemical structures in their selectivity 

for the α2-receptor and thus in their sedative and analgesic potency [29,36,39]. Dependent on 

the selected α2-receptor agonist in the combination with ketamine veterinarians observe 

differences in the behavior of horses while recovering after anesthesia [40–43 and 

observations at the Vetsuisse Zürich].  
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Figure 2: Chemical structures of the α2-receptor agonists which are used in veterinary practice. The 

chiral center of medetomidine is marked with an asterisk. 

 

1.3 Enantioselective capillary electrophoresis 

 

Capillary zone electrophoresis (CE) belongs to the family of electrophoretic separation 

techniques. Charged analytes migrate under the influence of an electric field through a 

capillary filled with background electrolyte (BGE). The migration velocity of an analyte in 

the capillary is dependent on the effective electrophoretic mobility of the analyte, the applied 

electric field and the used BGE. The electrophoretic mobility is determined by charge, size 

and form of the analyte molecule and also by the characteristics of the background electrolyte 

(ionic strength, pH, viscosity, presence of buffer additives). In CE, most separations take 

place in narrow bore fused-silica capillaries with 25 to 75 µm ID. These capillaries typically 

exhibit a negative surface charge which induces, upon power application, a buffer flow 

towards the cathode. This flow has a plug profile and its magnitude is dependent on the 

electric field strength, the pH and composition of the BGE, and is referred to as 

electroosmotic flow. Detection can be performed on-column with optical (absorbance and 

fluorescence) or conductivity detectors or at the column end with direct link to ionization and 

mass spectrometric analysis [44–48]. A schematic representation of a CE instrument is given 

in Fig. 3. 
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Figure 3: Schematic of a CE instrument 

 

Characteristics of CE are high resolution, short analysis times, robustness and flexibility. 

Other attractive features are low consumption of chemicals and low costs for capillaries. 

These aspects paved the way for successful use of CE in chiral analysis. CE has advantages 

over the chromatographic techniques like HPLC and GC where expensive chiral stationary 

phases are necessary [53,54]. In order to achieve chiral resolution in CE, small amounts of 

cyclodextrins, chiral crown ethers, macrocyclic glycopeptide antibiotics, linear oligo- or 

polysaccharides, proteins or chiral micelle builders are added alone or in combination to the 

BGE. Different binding affinities of the enantiomers to the chiral selector(s), different 

migration velocities of the formed complexes and/or differences in migration velocities 

between the unbound enantiomer and complex induce chiral separation. The separation 

system can be optimized and adjusted by change of type and concentration of the chiral 

selector and of the composition of the BGE (pH, ionic strength, additional additives) [44–54]. 

Enantiomers can strongly differ in their pharmacologic, toxicologic or pharmacokinetic 

characteristics. Thus, chiral analysis is a crucial part in drug development and quality control, 

for determination of enantiomeric characteristics and purity. CE is an established and 

attractive technique for analysis of chiral pharmaceuticals and their metabolites in in vitro, in 

vivo and environmental samples [49–54]. Chiral CE is listed in the pharmacopoeia europea e. 

g. for determination of enantiomeric purity for ropivacaine and galantamine and was used in 

our laboratory for analysis of ketamine and metabolites [11–20,55]. The data presented in this 
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dissertation were obtained with three enantioselective CE-based assays that were developed 

and optimized for that work [17,20,56, Chapter 6]. Examples of electropherograms which 

illustrate the high resolution obtained for the stereoisomers of ketamine and metabolites in 

one run are shown in Fig 4.  

 

Figure 4: Electropherograms of ketamine and its metabolites obtained with three different CE-based 

methods. (A) Standards of ketamine and norketamine (2.38 µg/mL/enantiomer) were analyzed with    

2 % γ-cyclodextrin as chiral selector (Chapter 2). (B) Standards of 0.01 µg/mL of enantiomer of 

ketamine, norketamine, 6HNK and DHNK were analyzed with the microassay using 0.66 % highly 

sulfated γ-cyclodextrin as chiral selector (Chapter 3). (C) A mixture of norketamine, DHNK and four 

urine fractions of hydroxylated norketamine metabolites were analyzed with an assay based on            

5 mg/mL sulfated β-cyclodextrin and 0.1 % highly sulfated γ-cyclodextrin as chiral selector (Chapter 

6). Key: 1: RR-6HNK, 2: R-II, 3: SS-6HNK, 4: R-IV, 5: S-II, 6: R-III, 7: S-IV, 8: R-NK, 9: S-III, 10: 

S-DHNK, 11: S-NK, 12: R-DHNK, 13: R-ketamine, 14: S-ketamine, IST: internal standard 

lamotrigine (A) and d-(+)-norephedrine (B), respectively.  

 

The importance of in vitro experiments in all stages of drug development is increasing. 

Interactions with other substances or pharmacokinetics can be predicted. Two enzyme assay 

modes based on CE are possible. In off-line assays the incubation is performed in a vial and 

the educts and/or products are analyzed thereafter with CE. In the on-line mode incubation of 

reactants and the analysis takes place in the capillary. This provides the use of the on-line 

approach in fully automated high throughput screening systems [57]. 
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1.4 Pharmacokinetic modeling  

 

Pharmacokinetics describe the concentration of a drug as function of time. A drug undergoes 

the phases of liberation, absorption, distribution, metabolism and elimination. The behavior in 

all these phases and the resulting concentration levels are important for an effective and safe 

use. Pharmacokinetics can be analyzed by using non-compartmental or compartmental 

models. Calculation of pharmacokinetic parameters provides a mean to compare drugs and 

situations. Modeling requires drug concentrations in the blood from administration until 

excretion. Enough data points in all parts and especially in the critical parts of the kinetics are 

inalienable for meaningful results. The concentrations are plotted against the time. The profile 

gives first information about the behavior and the model which describes the kinetic best. 

There are one, two or multicompartment models dependent on the distribution between well-

perfused and fatty tissues [58–60]. Besides the manual way for calculation of the parameters it 

is also possible to estimate them with special software packages. In this dissertation the 

Phoenix WinNonlin 6.4 software was used. On the basis of the input parameters and the 

chosen pharmacokinetic model the curve and the parameters are calculated [17]. For making 

conclusions about the relationship between drug concentration and effect also 

pharmacodynamic data must be considered.  

 

1.5 Goals of the dissertation 

 

The goals of this dissertation were i) to develop analytical methods based on enantioselective 

capillary electrophoresis to analyze ketamine metabolites in a qualitative and quantitative way 

on ppb to ppm concentration levels, ii) to assess the stereoselectivity of metabolic pathways of 

ketamine, and iii) to investigate the influence of the α2-receptor agonists medetomidine, 

dexmedetomidine, detomidine, xylazine and romifidine on the formation and elimination of 

the ketamine metabolites norketamine, 6HNK and DHNK in vitro and in vivo in different 

species.  

Three different enantioselective CE-based assays were developed, optimized and validated 

(Fig. 4). Sulfated cyclodextrins were chosen as the chiral selector. In contrast to existing 

methods two of the assays provide not only the qualitative and/or quantitative analysis of 

ketamine and norketamine enantiomers but also of the stereoisomers of DHNK and different 
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hydroxylated norketamine metabolites, including RR- and SS-6HNK (Fig. 4B and 4C). 

Furthermore, the aims in method development were to decrease detection and quantification 

limits and to reduce the amounts of sample and reagents needed for analysis. All assays are 

based on liquid/liquid extraction of the analytes from the biological matrix prior to analysis of 

the reconstituted extracts by CE. Details about the assays are given in chapters 2, 3 and 6. 

The methods were used to investigate the effects of different α2-receptor agonists on the 

ketamine metabolism. Starting with in vitro experiments with human and canine liver 

microsomes and single CYP enzymes (CYP3A4 and CYP3A12, respectively) the influence of 

racemic medetomidine was contrasted with the impact of its active enantiomer 

dexmedetomidine on the N-demethylation of ketamine to norketamine. Inhibition parameters 

Ki and IC50 were determined for the cases with single ketamine enantiomers as substrates in 

order to compare the effect of interactions. In vitro data are presented in chapter 2.  

The in vitro results could be confirmed with blood samples of Beagle dogs which received 

ketamine under sevoflurane anesthesia or after medetomidine sedation. Pharmacokinetics of 

ketamine, norketamine, 6HNK and DHNK were elucidated. The data obtained represent the 

first study with inclusion of 6HNK and DHNK in a pharmacokinetic model. This part of the 

dissertation offered the opportunity to study pharmacokinetic modeling manually and by 

using Phoenix WinNonlin 6.4 software. Details about the modeling and the obtained data are 

described in chapter 4. 

Besides medetomidine also detomidine, xylazine and romifidine are used in combination with 

ketamine in veterinary medicine. The goal of an in vitro study with equine liver microsomes 

was to compare the effect of all the four α2-receptor agonists on ketamine metabolism via 

calculation of the inhibition parameters in order to find evidence for the clinical observations. 

In practice differences in the behavior of horses while recovering after anesthesia are 

observed which are dependent on the α2-receptor agonist used. Data obtained are presented in 

chapter 5. 

Furthermore, with the development of an assay for separation and analysis of the 

stereoisomers of four hydroxylated norketamine metabolites, differences in the hydroxylation 

of norketamine between equines and canines could be elucidated. Details of the assay and first 

results are presented in chapter 6. 
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Assay developments and analyses of all samples were executed in the Clinical Pharmacology 

Laboratory of the Institute for Infectious Diseases, University of Bern, Bern, Switzerland. All 

samples of dogs and horses analyzed in this dissertation stemmed from studies undertaken in 

the group of Prof. Regula Bettschart-Wolfensberger at Vetsuisse Faculty Zürich, Zürich, 

Switzerland. The experiments with animals were executed with the permission of the 

Committee for Animal Experimentation of Canton Zürich, Zürich, Switzerland.
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2. Effects of medetomidine and its active enantiomer dexmedetomidine 

on N-demethylation of ketamine in canines determined in vitro using 
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2.1 Abstract 

 

Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and 

anesthetic drug ketamine and the α2-adrenergic receptor-agonist medetomidine which is used 

for sedation and analgesia. As racemic medetomidine or its active enantiomer 

dexmedetomidine are often coadministered with racemic or S-ketamine in animals and 

dexmedetomidine together with S- or racemic ketamine in humans, drug drug interactions are 

likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-

cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-

demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with 

racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine 

liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM) and human 

CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for 

the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. 

Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation 

reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger 

inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the 

inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of 

ketamine, a stereoselectivity which is not observed for CYP3A4. Induction is observed at a 

low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM and HLM. 

Based on these results, S-ketamine combined with dexmedetomidine should be the best option 

for canines. The enantioselective CE assay with highly sulfated -cyclodextrin as chiral 
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selector is an effective tool for determining kinetic and inhibition parameters of metabolic 

pathways.  

 

2.2 Introduction 

 

Multiple drug therapy is common in practice. The combination of the effects of the co-

administrated drugs is often connected with pharmacokinetic and/or pharmacodynamic 

interactions, which lead to a decrease or increase of both the desired effect and the toxicity. 

The enzymes of the cytochrome P450 (CYP) family, which are mostly located in the liver, are 

involved in most of the pharmacokinetic interactions. To benefit from the advantages of drug 

combinations, it is important to have detailed information about the metabolic steps because 

many pharmacokinetic problems can be solved by dose adaptation. The combination of 

ketamine and medetomidine (both are chiral compounds, for chemical structures see Fig. 1) is 

well-known in veterinary medicine. Ketamine is a N-methyl-d-aspartate (NMDA) receptor 

antagonist with anesthetic, analgesic and in lower concentrations antidepressive effects [1–4]. 

In addition, ketamine reacts also with opioid, monoaminergic, cholinergic, nicotinergic and 

muscarinergic receptors [2]. The affinity of the S-enantiomer to the NMDA receptor is two 

times higher than that of racemic ketamine and four times higher than that of the R-

enantiomer [5–7]. Medetomidine is an α2-adrenergic receptor agonist used for sedation and 

anesthetic premedication and, because of its anesthetic-sparing effect, it is applied as 

anesthetic adjuvant [8–15]. Low analgesic and myorelaxation effects have also been observed 

[10,11]. The S-enantiomer, dexmedetomidine, is the pharmacologically active enantiomer of 

medetomidine whereas the R-enantiomer, levomedetomidine, is considered to be 

pharmacologically inactive but is involved in kinetic drug interactions, including the 

prolongation of the hepatic metabolism of ketamine [10]. Medetomidine and ketamine 

compensate each other’s side effects. Medetomidine reduces the risk of tachycardia, 

hypertension and salivation conditioned by ketamine and ketamine decreases the side effects 

of medetomidine like bradycardia and hypotension [12,13]. Racemic ketamine, S-ketamine 

and dexmedetomidine are also used in humans. The combination of them is not as popular as 

for animals, but there are examples described in the literature [10–14].  

The main step of the ketamine metabolism is the N-demethylation to the active metabolite 

norketamine. This pathway is catalyzed by several CYP enzymes and some of these enzymes 
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mediate also other metabolic steps, including hydroxylation of the cyclohexanone ring of 

ketamine and norketamine [5,6,15–22]. CYP enzymes are also responsible for the metabolism 

of medetomidine with hydroxylation to hydroxymedetomidine being the main pathway [11]. 

Thus, coadministration of the two drugs results in a competition for the active sites of the 

CYP enzymes. Because of this and the fact that medetomidine is able to bind as an imidazole 

derivate to the heme iron of CYP, what has a negative impact on the CYP enzyme activity, 

drug drug interactions are likely to occur [10]. In previous work from our laboratory, the N-

demethylation pathway of ketamine and hydroxylation of norketamine were studied for 

different animal species in vivo and in vitro using enantioselective capillary electrophoresis 

with sulfated β-cyclodextrin as chiral selector [18–20,22–26]. In addition, the role of selected 

single human CYP enzymes in the ketamine metabolism was studied in vitro [16,27]. As the 

employed chiral selector showed significant undesired lot-to-lot differences, sulfated β-

cyclodextrin was later substituted with highly sulfated -cyclodextrin and this selector was 

applied to the elucidation of the in vitro CYP3A4-catalyzed N-demethylation kinetics of 

ketamine to norketamine and its inhibition in the presence of ketoconazole [27]. Furthermore, 

highly sulfated -cyclodextrin was successfully employed for the characterization of the 

kinetics of this pathway in two different on-line capillary formats [28,29]. 

Ketamine is often coadministered with medetomidine to domestic dogs undergoing anesthesia 

for surgery [12]. Pharmacokinetics and clinical effects of ketamine [25,30] and medetomidine 

[31] have been investigated but, to our knowledge, not with coadministration of the two 

drugs. Furthermore, in vitro investigations with ketamine in presence of canine liver 

microsomes (CLM) in absence [22] and presence of various inhibitors [19,24] were 

conducted. The effect of medetomidine on the ketamine metabolism, however, was not 

studied. The work of Duhamel et al. with CLM revealed that the ortholog of the human 

CYP3A4, namely CYP3A12 is involved in the metabolism of medetomidine [11] and studies 

describing the metabolism/pharmacokinetics of ketamine or medetomidine in presence of 

single canine CYP3A12 were not found in the scientific literature. Thus, the effect of 

medetomidine on the N-demethylation of ketamine in vitro was studied with an assay based 

on enantioselective capillary electrophoresis employing highly sulfated -cyclodextrin as 

chiral selector.  

The goals of this work were (i) to present the specifications of the assay with highly sulfated 

-cyclodextrin, (ii) to describe the kinetics of the ketamine N-demethylation mediated by 
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canine CYP3A12, (iii) to analyze the effect of racemic medetomidine and dexmedetomidine 

on the N-demethylation of racemic ketamine, S-ketamine and R-ketamine catalyzed by CLM, 

canine CYP3A12, human liver microsomes (HLM) and human CYP3A4, and (iv) to 

determine the inhibition constants for the interaction of S-and R-ketamine with 

dexmedetomidine for CLM and canine CYP3A12.  

 

2.3 Material and Methods  

 

2.3.1 Chemicals and reagents 

 

Ketamine and norketamine (as hydrochlorides in methanol, 1 mg/mL of the free base) were 

from Cerilliant (Round Rock, TX, USA) and the single ketamine enantiomers were provided 

from CU Chemie Uetikon (Lahr, Germany). Lamotrigine was from The Welcome Foundation 

(London, UK), medetomidine hydrochloride and dexmedetomidine hydrochloride were from 

Tocris Bioscience, R&D Systems Europe (Abingdon, UK), and highly sulfated γ-cyclodextrin 

(20 % w/v solution) was from Beckman Coulter (Fullerton, CA, USA). Tris and sodium 

hydroxide were from Merck (Darmstadt, Germany) and potassium dihydrogen phosphate, di-

potassium hydrogen phosphate, methanol and phosphoric acid (85 %) were from Fluka 

(Buchs, Switzerland). Ethylacetate was from AppliChem (Darmstadt, Germany), 

dichloromethane was from VWR (Leuven, Belgium) and human albumin was from 

Behringwerke (Marburg, Germany). Canine CYP3A12 (Beagle) + P450 reductase + 

cytochrome b5 SUPERSOMES™,  human CYP3A4 + P450 reductase + cytochrome b5 

SUPERSOMES™,  pooled male CLM (beagle), pooled HLM and nicotinamide adenine 

dinucleotide phosphate (NADPH) regenerating system solutions A and B were from Corning 

(product of Gentest, Woburn, MA, USA). 

 

2.3.2 In vitro reaction for kinetic study 

 

After preincubation (3 min; 37 °C) of racemic ketamine, S- or R-ketamine in ten different 

concentrations ranging from 2.5 to 500 µM per enantiomer with NADPH regenerating system 

consisting of 1.49 mM NADP
+
, 3.2 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate 

dehydrogenase, 2.9 mM MgCl2 and 50 µM sodium citrate in 100 mM potassium phosphate 
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buffer (pH 7.4), the reaction was started by adding 24 pmol CYP3A12 per mL to a final 

volume of 200 µL. The reaction was stopped after 8 min with 50 µL 2 M NaOH and 

lamotrigine (2 µg/mL) was added as internal standard prior to extraction. All experiments 

were performed in duplicates. 

 

2.3.3 In vitro reaction for inhibition study 

 

Different substrates (S-ketamine, R-ketamine, racemic ketamine, 60 µM per enantiomer) were 

preincubated with NADPH regenerating system (as described in Section 2.2) in 100 mM pH 

7.4 potassium phosphate buffer and dexmedetomidine or racemic medetomidine in different 

concentrations (0, 0.075, 0.15, 0.3, 0.6, 0.9 µM per enantiomer) for 3 min at 37 °C. The 

incubation was started by adding CLM, HLM (both 0.5 mg protein/ mL), CYP 3A12 or 

CYP3A4 (both 25 pmol CYP/mL), to a final volume of 200 µL. The reaction was stopped 

after 8 min by adding 50 µL 2 M NaOH and lamotrigine (2 µg/mL) was added prior to 

extraction. All experiments were performed in duplicates. 

 

2.3.4 Sample preparation 

 

For the liquid/liquid extraction, 1500 µL of ethylacetate/dichloromethane (25:75 %, v/v) was 

added to the sample. The tubes were closed, shaken for 10 min and centrifuged at 12000 rpm 

for 5 min. After removing the upper aqueous phase, the organic phase was transferred to a 

new vial. The organic phase was acidified with 10 µL of 50 mM phosphoric acid to avoid the 

loss of analytes during evaporation, dried under a stream of air at 37 °C, reconstituted in    

150 µL methanol, vortexed and transferred in another vial. After evaporation, the residues 

were reconstituted in 30 µL of 17.8 mM Tris-phosphate buffer (pH 2.5). 

 

2.3.5 CE instrumentation and analytical conditions 

 

A Proteome Lab PA 800 instrument (Beckman Coulter, Fullerton, CA, USA) equipped with a 

50 µm i.d. fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA) of 45 cm total 
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length (effective length 36 cm) was used. Samples were injected from 0.5 mL polypropylene 

vials by applying a vacuum of 1 psi for 5 s. A voltage of -20 kV (reversed polarity) was 

applied. The current was about -68 µA. For inducing a buffer flow towards the anode a 

positive pressure of 0.2 psi was applied during the entire experiment. Sample storage and 

capillary cartridge temperatures were set to 20 °C. Analyte detection took place with an on-

column UV variable wavelength detector at 195 nm. The running buffer was composed of 

17.8 mM Tris, phosphoric acid (pH 2.5) and 2 % highly sulfated γ-cyclodextrin. Fresh 

running buffer was prepared every day. Before each experiment, the capillary was 

sequentially rinsed with 0.1 M NaOH (1 min; 20 psi), bidistilled water (1 min; 20 psi) and 

running buffer (1 min; 20 psi). Quantification of ketamine and norketamine enantiomers was 

based on an internal calibration using corrected peak areas. Six calibrators with ketamine and 

norketamine in concentrations between 0.5 and 30 µM of each enantiomer and 3 independent 

controls containing 1.25, 12.5 and 25 µM of each enantiomer were prepared in human 

albumin solution (1.0 mg/mL) and, after addition of the internal standard, extracted as 

described in Section 2.4.  

 

2.3.6 Data analysis 

 

Kinetic and inhibition data were evaluated with SigmaPlot software version 12.5 (Systat 

Software, San Jose, CA, USA). Statistic tests like paired Student’s t-test and F-test were done 

with Microsoft Excel (Microsoft, Redmont, WA, USA). With the F-test the fit of various 

kinetic models for describing the data was tested. The alternative model was accepted, if p < 

0.05. A p-value < 0.05 in the paired Student’s t-test declared a significant difference of two 

data sets. 

 

2.4 Results and discussion 

 

2.4.1 Assay characterization 

 

The assay conditions for determination of the enantiomers of ketamine and norketamine were 

optimized and validated and are based on those described by Portmann et al. [16], Schmitz et  
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al. [22] and Kwan et al. [27]. The use of highly sulfated γ-cyclodextrin required adaptions, 

including the change of the internal standard to lamotrigine. Another improvement was the 

reduction of the final volume of the incubation preparation to 200 µL which has the advantage 

of employing lower amounts of reagents needed for extraction. Furthermore, the time for 

sample preparation became shorter because smaller volumes need less time for evaporation. A 

typical electropherogram with the enantiomers of ketamine, norketamine and medetomidine is 

shown in Fig. 1A and data obtained after incubation of 60 µM racemic ketamine with CLM 

without the inhibitor and with 0.3 µM dexmedetomidine are presented in Figs. 1B and 1C, 

respectively. For assay calibration six calibrators with racemic ketamine and racemic 

norketamine in concentrations between 0.5 and 30 µM per enantiomer and the internal 

standard lamotrigine were prepared in human albumin solution (1.0 mg/mL) and extracted as 

described in Section 2.4. The calibration curves (n=6) were found to be linear with a mean 

value of the determination coefficient R
2
 of 0.9996 for all four compounds (RSD range: 0.031 

to 0.046 %) and the RSD values of the slopes ranged between 2.00 and 2.62 %. All mean 

intercept values were significantly smaller than the responses of the lowest calibrators. For 

each enantiomer of ketamine and norketamine, the LOQ with a signal/noise ratio of 1/10 was 

0.5 µM and the LOD with a signal/noise ratio of 1/3 was 0.2 µM. 

Assay control was performed with three independent control samples containing 1.25, 12.50 

and 25.00 µM of each ketamine and norketamine enantiomer. The interday and intraday 

repeatability was analyzed with these control samples. Intraday RSD values (n=6) for the 

expected amounts were between 1.15 and 5.49 % and for the interday data (n=6) between 

1.76 and 6.43 % (Table 1). There is no significant difference between the intraday and 

interday values, what shows a good repeatability of the method. The recovery was measured 

in triplicates by using the lowest control sample. For all ketamine and norketamine 

enantiomers and lamotrigine, recoveries were between 77 and 82 %. This is in agreement with 

previous data from our laboratory [22,23]. In this assay, the enantiomers of medetomidine 

appeared between 3 and 4 min and thus did not interfere with the migration of ketamine, 

norketamine and lamotrigine (Fig. 1A). 
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Figure 1. Typical electropherograms of extracts obtained with samples comprising (A) racemic 

ketamine, norketamine and medetomidine (30 µM each) and human albumin (1.0 mg/mL), (B) 60 µM 

racemic ketamine incubated with CLM for 8 min, and (C) 60 µM racemic ketamine and 0.3 µM 

dexmedetomidine incubated with CLM for 8 min. Extraction and CE conditions as described in 

Sections 2.4 and 2.5, respectively.  Data are presented with a y-scale shift of 20 mAU. The inserts in 

panels A-C depict the chemical structures of ketamine, norketamine and medetomidine, respectively, 

with asterisks marking the chiral centers. Key: IST: internal standard lamotrigine, S-K: S-ketamine, R-

K: R-ketamine, S-NK: S-norketamine, R-NK: R-norketamine, DM: dexmedetomidine, LM: 

levomedetomidine.  
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Table 1. Intraday and interday data  

Enantiomer Concentration 

level (µM) 

Intraday data
a)

 Interday data
a)

 

 

  Mean 

(µM) 

RSD 

(%) 

Mean 

(µM) 

RSD 

(%) 

S-ketamine 25.00 

12.50 

1.25 

24.86 

12.53 

1.25 

1.15 

2.50 

5.49 

24.74 

12.81 

1.26 

2.23 

2.71 

3.89 

R-ketamine 25.00 

12.50 

1.25 

24.85 

12.57 

1.28 

1.33 

2.63 

4.05 

24.74 

12.75 

1.28 

1.90 

2.64 

5.49 

S-norketamine 25.00 

12.50 

1.25 

23.80 

12.19 

1.18 

4.74 

3.59 

3.06 

24.21 

12.49 

1.23 

2.22 

3.23 

5.63 

R-norketamine 25.00 

12.50 

1.25 

23.85 

12.24 

1.24 

4.57 

3.43 

2.60 

24.34 

12.62 

1.28 

1.76 

2.09 

6.43 

a) Data are based on 6 determinations. 

 

2.4.2 Kinetic study with CYP3A12 

 

The role of different CYP enzymes in the ketamine metabolism was characterized in previous 

studies [16–23,27]. In analogy to the work with human CYP3A4 [16,24], the focus was on 

canine CYP3A12 which was previously only used in the qualitative inhibition study of 

Moessner et al. [24] and in preliminary efforts with ketoconazole and 1-aminobenzotriazole  

which were both found to be effective inhibitors of its norketamine formation in vitro 

(unpublished data from our laboratory). Various amounts of racemic ketamine, S-ketamine or 

R-ketamine were incubated as substrates together with CYP3A12 for 8 min and, after 

extraction, analyzed with the CE assay. The formation rates of norketamine were plotted 
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against the substrate concentrations and analyzed with different models (Figure 2). For 

incubation of single enantiomers separately, the formation rates increased and levelled off at a 

maximum value, i.e. the reaction velocity Vmax (Fig. 2A). Graphs through the data points were 

fitted by using nonlinear regression analysis based on the Michaelis-Menten model (v =  

(Vmax [S]) / (Km+[S])) and the Hill model (v = (Vmax [S]
n
) / (Ka

n
+[S]

n
)) and obtained data are 

presented in Table 2. 

 

 

Figure 2. Kinetic data of CYP3A12 catalyzed N-demethylation for incubation of (A) S- and R-

ketamine alone and (B) racemic ketamine. The graphs for S-norketamine (filled squares as data points, 

solid line) and R-norketamine (filled circles as data points, dashed line) represent those obtained with 

(A) the Michaelis-Menten model and (B) the two-site competition model.  All data points are mean of 

duplicates and line graphs were obtained with consideration of the mean values. 

 

The Michaelis-Menten constant Km is the substrate concentration at which the reaction 

velocity is 0.5 Vmax and it is a measure for the affinity between substrate and enzyme. A small 

Km value stands for a high affinity. The autoactivation constant Ka would be equal to Km, if 

the Hill coefficient n is 1. Furthermore, the clearance was calculated according to the equation 

for intrinsic clearance (CLint = Vmax / Km) and for maximal clearance in consideration to the 

activation (CLmax = (Vmax / Ka) [|(n - 1)| / n × (|n -1|)
1/n

]) as was the case with CYP3A4 [27]. 

The calculated values are listed in Table 2. All previously studied enzymes which catalyze the 

N-demethylation of ketamine followed one of the two kinetic models [16,22,27]. For 

CYP3A12, with regard to the determination constant R
2
 and the result of the F-Test (p ≥ 0.05) 

the Michaelis-Menten model was found to be superior for both enantiomers (Table 2). 

Analysis of the data with the paired Student’s t-test revealed a significant difference in the two 
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norketamine formation rates (p < 0.05). The formation rate of S-norketamine was found to be 

higher compared to that of R-norketamine, a result which is in agreement with the data 

obtained with the human ortholog enzyme CYP3A4 [27]. The same relationship was found to 

be true for Km. No difference was noted for the clearance (Table 2). Compared to human 

CYP3A4, the affinity of the ketamine enantiomers to CYP3A12 was found to be somewhat 

lower. 

 

Table 2. Kinetic parameters for the CYP3A12 mediated N-demethylation reaction of single 

ketamine enantiomers
a) 

Model Parameter  

 

S-ketamine 

 

R-ketamine 

Michaelis-

Menten 

Vmax 

(pmol/min/pmol CYP) 

 

 52.55 ± 1.91 28.95 ± 2.19 

Km 

(µM) 

 

 375.4 ± 36.9 188.1 ± 26.5 

R
2 

 

 

0.994 ± 0.002 

 

0.981 ± 0.004 

 

Clint 

(µL/min/pmol CYP) 

 

 

0.14 ± 0.01 

 

0.15 ± 0.01 

 

Hill Vmax 

(pmol/min/pmol CYP) 

 

 74.20 ± 5.37 32.00 ± 1.27 

Ka 

(µM) 

 

 713.5 ± 31.0 240.2 ± 33.5 

n  

 

0.74 ± 0.14 

 

0.90 ± 0.11 

R
2 

 

 

0.990 ± 0.009 

 

0.969 ± 0.006 

Clmax 

(µL/min/pmol CYP) 

 0.23 ± 0.09 0.19 ± 0.04 

a) Data represent mean values ± SD and were obtained with separate incubations of the two 

enantiomers of ketamine 

 

With incubation of racemic ketamine, a different behavior was observed. For both 

enantiomers, the norketamine formation rate reached a maximum at a concentration of around 

100 µM and decreased continuously with further increase of the substrate concentration (Fig. 

2B). There is an inhibition effect on the formation of S- and R-norketamine, which is 

provoked by the substrate itself. Such data cannot be described by the Michaelis-Menten 
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model or the Hill equation. The data were evaluated with the substrate inhibition model (v = 

Vmax / (1 + Km / [S] + [S] / Ki)) and the two-site competition model (v = (Vmax ([S] + (β[S]
2
) / 

αKi)) / (Km + [S](1+Km/Ki) + [S]
2
/βKi)) [32-36]. These models include an inhibition effect of 

the substrate at higher concentrations. The inhibition constant Ki describes the affinity 

between the inhibitor and the enzyme. The two-site competition model considers that a 

second substrate molecule is able to bind simultaneously at the active site or at a second 

binding site of the enzyme which is described as a nonproductive or inhibitory site. After 

binding a second substrate a complex with different kinetic characteristics is developed. The 

factor α in the equation describes the change in the dissociation in the reaction equilibrium. 

The rate of metabolism is reduced by the factor β which is a measure for the potency of the 

inhibition [32–36]. The calculated parameters are presented in Table 3.  

 

Table 3. Kinetic parameters for the CYP3A12 mediated N-demethylation of racemic ketamine
 a)

 

Model Parameter S-ketamine R-ketamine 

Substrate inhibition model 

 

𝒗 =
𝑽𝒎𝒂𝒙

𝟏 +
𝑲𝒎
[𝑺]

+
[𝑺]
𝑲𝒊

 

Vmax 

(pmol/min/pmol CYP) 

 

540.2 ± 70.6 11.19 ± 2.24 

Km 

(µM) 

 

3825 ± 302 46.24 ± 16.91 

Ki 

(µM) 

 

1.69 ± 0.30 206.16 ± 32.08 

R
2 

 

0.9315 ± 0.0205 0.9675 ± 0.0078 

Two-site competition model 

 

𝒗 =
𝑽𝒎𝒂𝒙 ([𝑺] +

𝜷[𝑺]𝟐

𝜶𝑲𝒊
)

𝑲𝒎 + [𝑺] (𝟏 +
𝑲𝒎
𝑲𝒊

) +
[𝑺]𝟐

𝜷𝑲𝒊

 

Vmax 

(pmol/min/pmol CYP) 

 

Km 

(µM) 

 

25.60 ± 3.47 

 

 

158.7 ± 52.9 

9.04 ± 1.05 

 

 

32.85 ± 8.30 

Ki 

(µM) 

 

287.6 ± 42.0 1010 ± 49 

α -1.48 ± 0.14 

 

-0.83 ± 0.06 

β 0.82 ± 0.25 

 

0.85 ± 0.01 

R
2
 0.9714 ± 0.0002 

 

0.9474 ± 0.0052 

a) Data represent mean values ± SD and were obtained with separate incubations of racemic 

ketamine 
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The two-site competition model with its highest coefficient of determination R
2
 showed the 

best fits for both enantiomers. Stereoselectivity for the formation rate was also found by using 

the paired Student’s t-test (p < 0.05). The stronger substrate inhibition was detected for S-

ketamine. It is interesting to note that corresponding data obtained with the human ortholog 

CYP3A4 revealed Michaelis-Menten kinetics [27]. Data from previous experiments with 

CLM and racemic ketamine, S-ketamine and R-ketamine as substrates in concentrations up to 

1000 µM per enantiomer could be evaluated with the Michaelis-Menten or the Hill model 

[22]. For the single canine CYP3A12 the same is true for S- and R-ketamine as substrates. 

With racemic ketamine, however, a substrate inhibition was detected. Comparing the 

determined kinetic parameters Km and Vmax for CYP3A12 with those reported for CLM in 

[22], it was found that the values for S-ketamine were higher compared to those obtained for 

R-ketamine for all investigated cases.  

 

2.4.3 Interaction with medetomidine and dexmedetomidine 

 

In veterinary medicine the combination of ketamine and racemic medetomidine or 

dexmedetomidine is often used. There are also some applications for humans. 

Dexmedetomidine is the enantiomer of medetomidine with higher pharmacological activity. 

Although levomedetomidine shows no sedative effect, it plays a role in interaction with the 

CYP enzymes [10]. The effects of racemic medetomidine and dexmedetomidine on the N-

demethylation of ketamine were analyzed for CLM, HLM, canine CYP3A12 and human 

CYP3A4. The substrate ketamine was added in its racemic form and as single enantiomers in 

a concentration of 60 µM per enantiomer. The formation rate of S- and R-norketamine 

without racemic medetomidine and dexmedetomidine and with five different inhibitor 

concentrations (up to 0.9 µM per enantiomer, which correspond to blood levels attained for 

sedation and analgesia in canines [31]) was determined with an incubation time of 8 min as 

described in Section 2.3. The formation rate without inhibitor was set as 100 % and results 

were expressed in relation to this value. Both, racemic medetomidine and dexmedetomidine 

were found to inhibit the N-demethylation of ketamine catalyzed by CLM and canine 

CYP3A12 (Fig. 3). At low inhibitor concentrations, inhibition was noted to be higher for 

CLM than for CYP3A12. Furthermore, a difference between the influence of racemic 

medetomidine and dexmedetomidine on the reaction for CLM was observed. The effect of 
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racemic medetomidine is stronger and is more expressed for racemic ketamine (Figs. 3A and 

3C).  

 

 

Figure 3. Effect of racemic medetomidine (open symbols) and dexmedetomidine (filled symbols) on 

ketamine N-demethylation in presence of (A,B) CLM and (C,D) canine CYP3A12. Ketamine was 

added as (A,C) racemate and (B,D) single enantiomers. The formation of S-norketamine (circles) and 

R-norketamine (triangles) was determined by CE. The symbols denote means of duplicates. 

 

Experiments with HLM provided similar data (Figs. 4A,4B), which is in agreement with the 

literature [10]. Kharasch et al. identified levomedetomidine as the stronger inhibitor compared 

to dexmedetomidine for low inhibitor concentrations. Thus, racemic medetomidine has a 

higher inhibitive effect and thereby interaction potential than dexmedetomidine alone. For 

that reason only dexmedetomidine is available for human use.  

This phenomenon is not observed for canine CYP3A12 (same inhibition for all inhibitors). 

Two mechanisms of interaction are possible. As an imidazole derivate medetomidine binds to 
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the heme iron in CYP enzymes [10] and medetomidine is a substrate of CYP enzymes itself 

[11]. These enzymes play also an important role in the ketamine metabolism. A competition 

for the active site is thus likely to occur. The substrate with the higher affinity to the active 

site will block it. The affinity between substrate and enzyme is described by Km values. Km 

values related to CLM, which were found in the literature, confirm the results. A Km value of 

577 nM is reported for medetomidine and CLM [11]. For racemic ketamine and the single 

enantiomers they are around 23 and 90 times higher, respectively [22]. Thus, medetomidine 

has the higher affinity to the active site and limits the metabolism of ketamine. There are no 

Km values for medetomidine and CYP3A12 in the literature.  According to the results 

described above the affinity of medetomidine to CYP3A12 is also higher than that of 

ketamine but there is a smaller difference in the affinities.  

 

 

Figure 4. Effect of racemic medetomidine (open symbols) and dexmedetomidine (filled symbols) on 

ketamine N-demethylation in presence of (A,B) HLM and (C,D) human CYP3A4. Ketamine was 

added as (A,C) racemate and (B,D) single enantiomers. The formation of S-norketamine (circles) and 

R-norketamine (triangles) was determined by CE. The symbols denote means of duplicates. 
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With human CYP3A4, an inhibition was also observed for racemic ketamine as the substrate 

(Fig. 4C). There was no difference in the effect of racemic medetomidine and 

dexmedetomidine, as well as no stereoselectivity. Employing single enantiomers as substrates, 

the inhibition with racemic medetomidine was stronger compared to that of dexmedetomidine 

(Fig. 4D). Furthermore, an induction was detected at lower concentrations of 

dexmedetomidine (Fig. 4D). In the European public assessment report of the committee for 

medicinal products for human use of the European Medicines Agency about 

dexmedetomidine it is mentioned that it inhibits various CYP enzymes, including CYP2A6, 

CYP1A2, CYP2E1, CYP2D6 and CYP2C19, and induces CYP3A4, CYP2B6 and CYP2D6 

[37]. The clinical relevance of the latter inductive potential of dexmedetomidine in the 

interplay of all different CYP enzymes is unknown. In the in vitro experiments with HLM, 

also an environment with various CYP enzymes, the inhibition predominates the metabolism 

of ketamine.  

 

2.4.4 Inhibition parameters for dexmedetomidine 

 

Inhibition parameters are helpful to characterize the inhibition and to provide a mean for 

reliable data comparison. The two inhibition parameters, the inhibition constant Ki and the 

half maximal inhibition concentration IC50, were determined for the inhibitive effect of 

dexmedetomidine on the N-demethylation reaction of single S- and R-ketamine in presence of 

CLM and canine CYP3A12. Ki is the equilibrium constant describing the relation between 

free inhibitor and enzyme on the one side and the inhibitor-enzyme-complex on the other. A 

low Ki value stands for a high affinity between inhibitor and enzyme and therefore a strong 

inhibition of the reaction. The inhibitor concentration, which is needed for reducing the 

formation rate of a product by 50 %, is called IC50. Three different substrate concentrations, 

0.5 Km, 1.0 Km and 2.0 Km, were incubated with dexmedetomidine at five concentrations 

ranged from 0.075 µM to 0.9 µM. The Km values for CLM were taken from previous studies 

[22] and for CYP3A12 from the kinetic study described in Section 3.2. The formation rate of 

norketamine in pmol/min/pmol CYP were plotted against the dexmedetomidine concentration 

in µM and evaluated by nonlinear regression analysis, based on the four-parameter logistic 

model y = min + (max-min) / (1 + (x / IC50)
-n

) [29]. Obtained graphs are presented in Fig. 5.  
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Figure 5. Kinetics of (A,B) CLM and (C,D) CYP3A12 mediated N-demethylation of (A,C) S-

ketamine and (B,D) R-ketamine at three substrate concentrations (0.5 Km, 1.0 Km and 2.0 Km) 

inhibited by dexmedetomidine. Dexmedetomidine concentrations varied from 0.075 to 0.9 µM. 

Nonlinear regression analysis was performed with the four-parameter logistic model. Km values were 

from Ref. [22] and Table 2. Symbols denote means of duplicates. 

 

In the used equation y is the norketamine formation rate, x the inhibitor concentration, min 

and max are the lower and the upper limit of the curve and n the Hill slope. The upper and 

lower limits of the curves were specified by the formation rate measured with the lowest and 

highest inhibitor concentration. The values for the Hill slope are in the range of -0.4886 and   

-2.4154 for CLM and between -1.0232 and -1.5867 for CYP3A12. Ki values were calculated 

with the Cheng and Prusoff equation [38] under inclusion of the determined IC50 values (Ki = 

IC50 / (1+ ([S] / Km))) and obtained Ki and IC50 values are presented in Table 4. Ki for CLM is 

significantly lower than for canine CYP3A12. That means that the inhibition is stronger for 

the microsomes, what confirms the results of the experiments described in Section 3.3. For 
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both, CLM and CYP3A12, the inhibition is stronger for the R- than for the S-enantiomer of 

ketamine. This stereoselectivity is not clearly seen in the data of Fig. 3B and 3D. It is 

interesting to mention that no stereoselectivity was observed with human CYP3A4 and 

dexmedetomidine as inhibitor [29]. Ki and IC50 values, however, were similar to those 

obtained with CYP3A12. 

 

Table 4. Inhibition parameters for dexmedetomidine for CLM and CYP3A12 mediated N-

demethylation of ketamine
a) 

 

Enzyme Substrate IC50  (µM) Ki (µM) 

CLM S-ketamine 0.040 ± 0.007 0.022 ± 0.004 

CLM R-ketamine 0.014 ± 0.008 0.007 ± 0.004 

CYP3A12 S-ketamine 0.375 ± 0.049 0.204 ± 0.062 

CYP3A12 R-ketamine 0.222 ± 0.091 0.096 ± 0.040 

a) Data represent mean values ± SD obtained with three substrate concentrations 

 

2.5 Concluding remarks 

 

The N-demethylation of ketamine mediated by canine CYP3A12 and CLM in absence and 

presence of medetomidine and dexmedetomidine was investigated and compared to data 

obtained with human CYP3A4 and HLM. For CYP3A12 and without inhibitor, Michaelis-

Menten kinetics was determined for the single enantiomers of ketamine and substrate 

inhibition kinetics for racemic ketamine. Upon coincubation with medetomidine and 

dexmedetomidine, drug drug interactions were observed in all experiments. The effect of 

medetomidine and dexmedetomidine on the ketamine N-demethylation differs from canines 

to humans and also from liver microsomes to the single enzymes. In most cases an inhibition 

was found. With CYP3A4, induction was observed at low dexmedetomidine concentrations. 

With CYP3A12, no induction was noted. For the experiments with liver microsomes, the 

inhibition of medetomidine was found to be stronger than that of dexmedetomidine. Inhibition 

parameters, determined for the combination of dexmedetomidine with the single ketamine 

enantiomers in presence of CLM or CYP3A12, show a stronger inhibition of the formation of 
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R-norketamine. Thus, these data suggest that comedication of dexmedetomidine and S-

ketamine should represent the best option for canines. Further investigations, especially in 

vivo studies, will provide insight into the relevance of this interaction for daily clinical 

practice. Enantioselective CE with highly sulfated -cyclodextrin as chiral selector is shown 

to represent an effective tool for determining kinetic and inhibition parameters associated with 

the N-demethylation of ketamine.  
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3.1 Abstract 

 

For the assessment of stereoselective aspects of the metabolism of ketamine, an 

enantioselective CE-based microassay for determination of the stereoisomers of ketamine and 

three of its major metabolites in plasma and serum was developed. The assay is based on 

liquid/liquid extraction of the analytes of interest at alkaline pH from 0.05 mL plasma or 

serum followed by electrokinetic sample injection of the analytes from the extract across a 

buffer plug without chiral selector. Separation occurs cationically at normal polarity in a pH 

3.0 phosphate buffer containing 0.66 % of highly sulfated γ-cyclodextrin (HS-γ-CD). Key 

parameters for optimization are identified as being the amount of HS-γ-CD in the BGE, the 

length of the buffer plug and its concentration, the duration of electrokinetic injection, and the 

extraction medium. Diluted buffer in the plug is employed to ascertain sufficient analyte 

stacking due to a combination of field amplification and complexation. The newly developed 

microassay is robust (intraday and interday RSD < 5% and < 9 %, respectively) and well 

suited to determine enantiomer levels of ketamine and its metabolites down to 10 ng/mL. It is 

more sensitive, uses less plasma or serum, organic solvent and analysis time compared to 

previous CE-based assays and was successfully applied to monitor ketamine, norketamine, 

5,6-dehydronorketamine (DHNK) and 6-hydroxynorketamine (6HNK) stereoisomer levels in 

plasma of a Beagle dog that received a bolus of racemic ketamine or S-ketamine after 

sevoflurane anesthesia. The data suggest that the formation of DHNK and 6-HNK occur 

stereoselectively. 
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3.2 Introduction 

 

In CE detection limits of analytes are not only dependent on the type of detector used, but also 

on the matrix of the sample and the injection procedure employed. CE with UV-absorbance 

detection and hydrodynamic injection of sample typically provides ppm (µg/mL) detection 

limits that are one or two orders of magnitude higher than those encountered in HPLC. Thus, 

procedures leading to concentration and sensitivity enhancements in CE are of high 

importance and discussed in many recent reviews [1–5]. Many of the applied methods include 

electrokinetic sample injection, a process that requires proper control of injection parameters 

in order to achieve acceptable quantitative repeatability [6,7]. For analysis of drugs and 

metabolites in microliter amounts of body fluids, the combination of electrokinetic injection 

from extracts with low conductivity and field-amplified sample stacking at the capillary tip 

provides the basis for ppb (ng/mL) detection limits and robust assays [8–11].  

CE is an important technology for enantioselective analyses, including stereoselective 

bioanalytical drug and metabolite monitoring [12–15]. The rather poor concentration 

sensitivity, however, is an inherent limitation and requires proper attention particularly in 

regard to the charge of the chiral selector employed [5]. For ppb analysis of stereoisomers in 

body fluids by CE with neutral selectors can be dealt with as without involvement of 

complexation, i.e. with electrokinetic injection and field-amplified sample stacking. Examples 

include the analysis of the enantiomers of clenbuterol in urine [16], verapamil and 

norverapamil in plasma [17], and methylphenidate in plasma [18] and oral fluid [19]. With 

charged chiral selectors, however, the setup is more demanding as deleterious interferences of 

the chiral selector occurring during electrokinetic injection have to be avoided. This was 

previously discussed and taken care of via use of a buffer plug without chiral selector at the 

capillary tip such that cationic analytes could be properly electroinjected prior to separation 

and analysis in a setup with MS detection using a partially filled capillary with the BGE 

containing highly sulfated γ-cyclodextrin (HS--CD) as chiral selector [20]. This assay format 

was successfully applied to the ppb monitoring of the enantiomers of 3,4-

methylenedioxymethamphetamine and methadone from large amounts (0.5 to 1.0 mL) of 

plasma [21].  

Mixtures of charged chiral selectors were found to be highly suitable for analysis of the 

enantiomers of the parent compound and many different metabolites in one run, including the 
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monitoring of the stereoisomers of ketamine, norketamine, 5,6-dehydronorketamine (DHNK), 

6-hydroxynorketamine (6HNK) and various other hydroxylated norketamine metabolites in 

biosamples [22–24]. Chemical structures of selected compounds are presented in Fig. 1. 

Ketamine is an intravenous analgesic and anesthetic drug widely used in clinical practice of 

humans and animals. It is administered as racemate (in most countries) or as S-ketamine. 

Ketamine and its metabolites are bases and thus cations at low pH. Our efforts focus on the 

elucidation of stereoselective aspects of the ketamine metabolism in different species both in 

vivo [24–28] and in vitro [24,29–32].  In the work performed thus far, analytes were extracted 

at alkaline pH from 100 to 1000 µL of sample and applied hydrodynamically prior to 

separation of the stereoisomers in a pH 2.5 BGE comprising 10 mg/mL amounts of sulfated β-

CD or 2.0 to 3.3 % of HS-γ-CD. The analytes migrated anionically, which required reversed 

voltage for analysis and detection limits were dependent on the amount of sample used for 

extraction and the volume in which the extract was dissolved prior to hydrodynamic injection. 

For extraction from a 500 µL sample and final reconstitution in a volume of 30 µL, ppb 

detection limits for ketamine and norketamine enantiomers could be reached (2.5 ng/mL, 

[28]) an approach that pushed instrumental possibilities to the limits of the commercially 

available CE technology. In all other approaches, detection limits were up to 20 times higher.  

For the determination of ketamine and metabolites in ppb amounts from 50 µL plasma or 

serum, assay conditions with electrokinetic sample injection and cationic migration of the 

analytes in presence of low amounts (< 1 %) of HS--CD in the BGE were explored. The 

microassay developed is not restricted to the monitoring of the enantiomers of one compound. 

It includes compounds which exhibit large differences in complexation with the chiral selector 

and thus effective electrophoretic mobilities. The concept of using a selector-free preinjection 

plug of buffer for electrokinetic injection reported by Schappler et al. [20,21] was thereby 

extended to fulfill optimized analyte stacking conditions from liquid/liquid extracts prepared 

from 50 µL plasma or serum and to provide applicability to multiple chiral compounds with 

ppb sensitivity. In this paper, the development of the microassay, assay characteristics, and 

assay application to the enantioselective monitoring of ketamine and three of its metabolites 

in plasma samples collected within 900 min after bolus administration of racemic ketamine or 

S-ketamine to a Beagle dog are described. 
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3.3 Material and Methods 

 

3.3.1 Chemicals, reagents, and origin of dog samples 

 

Ketamine and norketamine (as hydrochlorides in methanol, 1 mg/mL of the free base) and 

DHNK (100 µg/mL in ACN) were from Cerilliant (Round Rock, TX, USA). (2S,6S)-

hydroxynorketamine (SS-6HNK) and (2R,6R)-hydroxynorketamine (RR-6HNK) were 

received as a kind gift from Dr. Irving Wainer (Laboratory of Clinical Investigations, National 

Institute on Aging, National Institutes of Health, Baltimore, MD, USA (for information about 

their synthesis see [33,34]). D-(+)-norephedrine hydrochloride (internal standard) and bovine 

serum were from Sigma (St. Louis, Mo, USA). Lamotrigine was from The Welcome 

Foundation (London, UK) and HS-γ-CD (20 % w/v solution) was from Beckman Coulter 

(Fullerton, CA, USA). Disodium hydrogenphosphate, sodium hydroxide and bromothymol 

blue were from Merck (Darmstadt, Germany) and methanol and phosphoric acid (85 %) were 

from Fluka (Buchs, Switzerland). Ethylacetate was from AppliChem (Darmstadt, Germany), 

dichloromethane (HiPerSolv Chromanorm for HPLC) from VWR (Leuven, Belgium) and 

hexane (HPLC grade) from Lab-Scan, Gliwice, Poland. Dog plasma samples stemmed from a 

clinical study executed at Vetsuisse Faculty (Zürich, Switzerland) which was performed with 

the permission of the Committee for Animal Experimentation, Canton Zürich, Switzerland. 

Briefly, Beagle dogs under sevoflurane anaesthesia received i.v. boluses of racemic ketamine 

(4 mg/kg) or S-ketamine (2 mg/kg) and venous blood samples were collected before and at 25 

time points between 1 and 900 min after drug administration.  

 

3.3.2 Preparation of samples and controls 

 

An aqueous mixture of standards composed of the enantiomers of ketamine (1000 ng/mL 

each) and of the enantiomers of the ketamine metabolites norketamine, DHNK and 6HNK 

(250 ng/mL each) was prepared, stored at -20 °C as aliquots in 0.5 mL Eppendorf vials and 

the content of one vial was used for assay calibration. Five calibrators with ketamine 

concentrations between 80 and 2000 ng/mL of each enantiomer and with norketamine, DHNK 

and 6HNK concentrations between 20 and 500 ng/mL each stereoisomer were prepared in 

aliquots of 50 µL bovine serum via addition of appropriate aliquots of the standard mixture 
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and water. The calibrators were pretreated for analysis as described in Section 2.3. Two 

independent control samples in bovine serum were prepared, one comprising 440 ng/mL of 

each enantiomer of NK, DHNK and 6HNK and 1.76 µg/mL of each ketamine enantiomer, the 

second having 60 ng/mL of each enantiomer of NK, DHNK and 6HNK and 240 ng/mL of 

each ketamine enantiomer. 50 µL aliquots of the controls were mixed with 200 µL water and 

stored at -80 °C until analysis.  

  

3.3.3 Sample preparation 

 

For the liquid/liquid extraction, 50 µL of plasma or serum, 200 µL water, 15 µL of IST 

solution (4 µg/mL D-(+)-norephedrine hydrochloride, solution stored at 4 °C), 50 µL indicator 

solution (1.25 mM bromothymol blue in 0.5 M NaOH, solution stored at 4 °C) and 1300 µL 

dichloromethane were pipetted into a 2 mL Eppendorf vial. The closed vials were shaken for 

5 min on a horizontal shaker LS 20 (Gerhardt, Königswinter, Germany) and centrifuged at 

13000 rpm for 3 min. After removing the upper blue aqueous phase with vacuum suction, the 

organic phase was transferred to a new vial, acidified with 10 µL of 1 mM phosphoric acid (to 

avoid the loss of analytes during evaporation and provide increased injection efficiency) and 

dried at 45 °C in a Speed-Vac Concentrator 5301 (Vaudaux-Eppendorf, Schönenbuch, 

Switzerland). The residue was reconstituted in 110 µL water, vortexed and transferred to a 

CE-insert vial (Beckman Coulter, Fullerton, CA, USA) for analysis. Defrosted control 

samples were treated the same way except that no water was added prior to the addition of the 

IST solution.  

 

3.3.4 CE instrumentation and analytical conditions 

 

A Proteome Lab PA 800 enhanced instrument (Beckman Coulter, Fullerton, CA, USA) 

equipped with a 50 µm I.D. fused-silica capillary (Polymicro Technologies, Phoenix, AZ, 

USA) of 45 cm total length (effective length 35 cm) was used. The phosphate buffer was 

prepared by addition of 0.5 M phosphoric acid to a 0.5 M disodium hydrogenphosphate 

solution until a pH of 3.0 was reached. If not stated otherwise, the running buffer was daily 

diluted and comprised 100 mM phosphate buffer (pH 3.0) to which 0.66 % HS-γ-CD was  
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added. Before each experiment, the capillary was rinsed with bidistilled water (1 min; 20 psi; 

1 psi = 6894.8 Pa) and running buffer (1 min; 20 psi). Thereafter, a plug composed of 50 mM 

phosphate buffer (pH 3.0) without chiral selector was pressure injected at 1 psi for 20 s. 

Samples were injected electrokinetically via applying 6 kV for 15 s. A voltage of 20 kV 

(normal polarity) was applied. The current was about 64 µA. Sample storage and capillary 

cartridge temperatures were set to 25 °C and analyte detection was effected at 200 nm (PDA 

detector). Quantification of ketamine and norketamine enantiomers was based on internal 

calibration using corrected peak areas.  

 

3.3.5 Additional tools 

 

Buffer plug lengths were estimated with the CE Expert Lite software (Beckman Coulter, 

Fullerton, CA, USA). The CE Expert Lite calculator is based on the Poiseuille equation which 

describes how fluid under pressure is flowing through a cylindrical vessel. Microsoft Excel 

(Microsoft, Redmont, WA, USA) and SigmaPlot software version 12.5 (Systat Software, San 

Jose, CA, USA) were used for data evaluation and presentation, respectively. 

  

3.4 Results and discussion 

 

3.4.1 Cationic separation of analytes in the presence of HS-γ-CD 

 

In order to explore the use of electrokinetic sample injection with cationic separation of the 

compounds, a 100 mM phosphate buffer (pH 3.0, prepared with disodium hydrogenphosphate 

and phosphoric acid) comprising 0.6-0.8 % HS-γ-CD was employed as separation medium. 

The buffer was the same as used for the monitoring of methylphenidate stereoisomers in oral 

fluid by capillary electrophoresis with head-column field-amplified sample injection [19]. The 

pH 3.0 phosphate buffer was found to have a better baseline stability compared to the pH 2.5 

BGE composed of Tris and phosphoric acid employed previously with hydrodynamic sample 

injection and anionic sample separation [22–32]. Both buffers provided comparable 

separation. Under cationic separation conditions, hydroxylated norketamine stereoisomers are 

detected before the enantiomers of norketamine and ketamine with the R-isomers of these  
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compounds migrating faster compared to the S-isomers. Furthermore, S-DHNK is detected 

shortly after S-norketamine whereas R-DHNK reaches the point of detection after S-ketamine 

(Fig. 1). This order is reversed compared to that under anionic separation conditions used 

previously. All separations were performed at 20 kV and a test sample comprising about       

91 ng/mL of each analyte and 91 µM phosphoric acid was used. 

The concentration of the chiral selector and the temperature of the capillary cartridge were 

found to have an impact of analyte separability. With 0.66 % of HS-γ-CD in the BGE, 

complete separation of the analytes of interest and the IST was obtained and the detection 

time of the compounds occurred between 7 and 16 min (graph A of Fig. 1). Having larger 

amounts of HS-γ-CD resulted in increased detection intervals whereas the use of a lower 

concentration provided shorter detection times and insufficient separation. Lamotrigine and d-

(+)-pseudoephedrine used previously as internal standards could not be used. Lamotrigine 

was too strongly retarded and detected considerably after R-DHNK and d-(+)-

pseudoephedrine interfered with SS-6HNK (data not shown). Many other ephedrine analogs 

were tested and interfered as well with one of the target compounds. D-(+)-norephedrine 

finally provided a nice peak which was detected ahead of all targeted stereoisomers and was 

thus applied as internal standard (Fig. 1).  

The temperature of the cooling fluid flowing through the capillary cartridge was varied 

between 20 and 35 °C at an interval of 5 °C. The separation of S-norketamine and S-DHNK, 

as well as the two 6HNK stereoisomers, were found to be the critical pairs for separation of 

all 8 compounds. At the lowest temperature, the first pair did not separate properly and 

resolution improved with increasing temperature. The opposite was found to be true for the 

two 6HNK stereoisomers (data not shown). The separation of all other compounds of interest 

was complete at all investigated temperatures. Overall best data were obtained at 25 °C. Thus, 

all further experiments were performed at 25 °C with a 100 mM phosphate buffer (pH 3.0) 

containing 0.66 % of HS-γ-CD. 
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Figure 1. Typical analyte separations and chemical structures of ketamine, norketamine, DHNK and 

6HNK. The electropherograms were obtained with standards dissolved in 91 µM phosphoric acid and 

applied via a 15 s injection at 6 kV across a 50 mM buffer plug generated at 1 psi for (A) 10 s and (B) 

40 s. The applied voltage and cartridge temperature were 20 kV and 25 °C, respectively. The 

concentration of each analyte in the sample was about 91 ng/mL. IST refers to the internal standard. 

The insert depicts data obtained without the chiral selector in the BGE and having a 50 mM buffer 

plug generated at 1 psi for 20 s. Key: 1) RR-6HNK, 2) SS-6HNK, 3) R-NK, 4) S-NK, 5) S-DHNK, 6) 

R-K, 7) S-K, 8) R-DHNK. 

 

Finally, the impact of complexation on analyte migration was assessed by comparing data 

obtained without and with the chiral selector in the BGE. In absence of the chiral selector, the 

four compounds could not be completely separated and were detected much earlier compared 

to the case with the chiral selector (insert in Fig. 1). D-(+)-norephedrine was again detected 

first. DHNK, NK and K could not be separated completely, and 6HNK was detected last. The 

electroosmotic mobility was estimated as being 0.70 x 10
-8

 m
2
/Vs. Thus, effective 

electrophoretic mobilities for the five compounds were calculated as being around 2.10 x 10
-8

, 
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1.93 x 10
-8

, 1.90 x 10
-8

, 1.88 x 10
-8

 and 1.74 x 10
-8

 m
2
/Vs, respectively. Effective mobilities in 

presence of complexation with 0.66 % HS--CD were estimated to be in the range between 

1.03 x 10
-8

 m
2
/Vs (IST) and 0.27 x 10

-8
 m

2
/Vs (R-DHNK), indicating that all compounds are 

being strongly retarded by complexation. These mobility data refer to configurations with a 

50 mM buffer plug without chiral selector that was inserted at 1 psi for 20 s prior to 

electrokinetic injection of the analytes. The reasons for the necessity of this buffer plug are 

discussed in Section 3.2. The current for the achiral experiment was about 55 µA (power level 

of 2.44 W/m). With addition of 0.66 % HS--CD to the BGE, the current became about 64 µA 

(power level of 2.85 W/m). This indicates that HS--CD is considerably increasing the 

conductivity of the BGE. 

 

3.4.2 Electrokinetic plug injection 

 

Electroinjection of cations directly into the BGE is possible for fast migrating and weakly 

complexing compounds only. During electroinjection, HS-γ-CD is migrating from the BGE 

towards and into the sample vial which results in complexation of the cationic sample 

components and increase of conductivity of the sample solution. Both effects decrease 

injection efficiency. Thus a short plug of buffer without the chiral selector was introduced 

after insertion of the BGE, thereby producing a temporary barrier for the migration of HS-γ-

CD into the sample vial. For optimization of electrokinetic analyte injection across the plug, 

the impact of buffer concentration in the plug, the plug length, the applied voltage and the 

duration of electrokinetic injection were assessed. A test sample comprising about 91 ng/mL 

of each analyte and 91 µM phosphoric acid was used. 

The effect of the plug buffer concentration on analyte peaks was studied using a 2.68 cm   

(5.96 % of column length, estimated with CE Expert Lite calculator) plug formed at 1 psi for 

20 s together with electrokinetic injection at 6 kV for 15 s. Experiments were performed 

having the same phosphate buffer concentration as in the BGE (100 mM), 50 mM, 25 mM 

and 10 mM (Fig. 2). For presentation purposes, the four electropherograms were aligned for 

equal detection of the IST. Shifts used were  0.2 min. The smallest peaks were detected with 

100 mM buffer in the plug (Fig. 2A). In this configuration, analyte stacking is primarily based 

upon field amplification due to electroinjection from a solution of low conductivity into the 

buffer plug. 
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Figure 2. Electropherograms illustrating the impact of plug buffer concentration obtained with a plug 

formed at 1 psi for 20 s having (A) 100 mM, (B) 50 mM, (C) 25 mM and (D) 10 mM phosphate buffer 

without chiral selector. For presentation purposes, electropherograms were aligned for equal detection 

time of the IST. Other conditions and key as for Fig. 1.  

 

Complexation of analytes with HS--CD and a modest field amplification effect occurring at 

the end of the buffer plug (conductivity change which originates due to the addition of the 

chiral selector to the BGE (see Section 3.1) might also have an impact on peak enhancement. 

Increased sensitivity was reached through decrease of the plug buffer concentration to 25 mM 

(Figs. 2B and 2C). No improvement was observed between 25 and 10 mM (Figs. 2C and 2D). 

Buffer dilution provides a reduction of the conductivity in the plug and thus increased field 

amplified stacking of analytes at the transition between plug and BGE. The buffer 

concentration was also found to have an impact on detection times and resolution of analytes. 

Both parameters became lower as the buffer concentration was decreased (Fig. 2). 50 mM 
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phosphate buffer provided sufficient sensitivity for the purpose of the anticipated 

pharmacokinetic project and was used in the assay reported below. It is important to mention 

that the use of water instead of buffer at the used plug length did not reveal any useful data. A 

water plug provides a region of very low conductivity. For analyte stacking, it length should 

be 8-10 times shorter [8,19]. However, a short water plug does not provide the required 

barrier for HS--CD. Its use was thus not investigated in our work.  

The effect of plug length was assessed with plug injections occurring at 1 psi for 10 to 40 s 

and having a 50 mM plug buffer concentration together with an analyte injection for at 6 kV 

for 15 s. Using the CE Expert Lite software for a temperature of 25 °C, plug lengths were 

calculated to be between 1.34 cm (2.98 % of total column length) and 5.36 cm (11.92 % of 

total column length). Electropherograms obtained for the shortest and longest plugs are 

presented as graphs A and B, respectively, in Fig. 1.  The plug length was found to have an 

impact on the detection time and resolution of analytes. An increase in plug length resulted in 

earlier detection of the analytes and reduced resolution (Fig. 1). The latter effect can have an 

impact on evaluation of the firstly detected peaks (IST, 6HNK stereoisomers) and S-

norketamine and R-DHNK. A plug length of 2.68 cm (5.96 % of column length) effected at    

1 psi for 20 s was considered as ideal and was thus employed in our project (electropherogram 

B in Fig. 2). This buffer plug length compares well with that employed by Schappler et al. 

[20,21]. 

The last important parameters, whose impact had to be assessed, were the injection voltage 

and the injection time. With a plug generated at 1 psi for 20 s, voltages applied were 6, 8 and 

10 kV and the time was varied between 10 and 70 s (6 kV) and 10 and 50 s (8 and 10 kV). It 

was interesting to find that there was a gradual loss of the slowest migrating analytes when 

the injection time became too long. This is illustrated with the data obtained with 6 kV 

presented in Fig. 3. Increased sensitivity was noted for all analytes when the injection time 

was increased from 10 s to 30 s (Fig. 3A and 3B). A further increase of the injection time 

resulted in decreased peak heights for the slowest migrating analytes (see e.g. analytes 6 to 8 

in Fig. 3C at an injection time of 50 s) or even a complete loss of analyte 8 at 70 s (Fig. 3D). 

The opposite behavior was observed for the faster migration analytes (see analytes 1 and 2 in 

Fig. 3). Similar data were obtained at 8 and 10 kV (data not shown). 
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Figure 3. Electropherograms illustrating the impact of the duration of electrokinetic injection at 6 kV 

across a 50 mM buffer plug formed at 1 psi for 20 s having injection times of (A) 10 s, (B) 30 s,       

(C) 50 s and (D) 70 s. For presentation purposes, electropherograms were aligned for equal detection 

time of the IST. Other conditions and key as for Fig. 1.  

 

The penetration of HS-γ-CD from the BGE through the buffer plug into the sample vial 

during electrokinetic injection is believed to be the reason for this behavior. Electrokinetic 

injection at 6 kV for 15 s was considered suitable for the purpose of the undertaken project 

(Fig. 4).  
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Figure 4 Enantioselective electropherograms of (A) a blank serum extract, (B) an extract of a 

calibration sample containing 80 ng/mL ketamine and 20 ng/mL of each metabolite and enantiomer, 

and (C) an extract of a calibration sample containing 800 ng/mL ketamine and 200 ng/mL of each 

metabolite and enantiomer. The graph in panel D depicts the temporal behavior of the current recorded 

during analysis of the extracted calibration sample of panel C. Extracts were prepared as described in 

Section 2.3. Samples were applied via a 15 s injection at 6 kV across a 50 mM buffer plug generated at 

1 psi for 20 s. For presentation purposes, electropherograms were aligned for equal detection time of 

the IST. Key as for Fig. 1. 
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3.4.3 Impact of sample composition and electrode assembly on electrokinetic 

injection 

 

Efficiency of electrokinetic injection of cations is dependent on sample composition, 

particularly conductivity and pH, properties which should both be low [8–11,19]. Thus, 

addition of 45.5, 90.9, 228 and 455 µM of phosphoric acid to the sample was assessed for the 

analytes of interest using the configuration with a 50 mM plug buffer concentration, a 1 psi  

20 s plug and analyte injection at 6 kV for 15 s. Small amounts of phosphoric acid provided 

increased sensitivity. Largest peaks were monitored with 90.9 µM phosphoric acid in the 

sample solution, with the peak magnitudes being twice compared to the case without 

phosphoric acid. A further increase in phosphoric acid resulted in peaks that became smaller 

as function of the phosphoric acid concentration. With 228 µM, analyte peaks were smaller 

compared to those without acid in the sample. Comparable data were obtained after extraction 

of the analytes from aqueous solutions using dichloromethane according to the description 

given in Section 2.3. Based on these data, 90.9 µM was used in all samples.   

In order to find the best liquid/liquid extraction procedure for electrokinetic analyte injection, 

bovine serum samples were extracted at alkaline pH with three organic solvents, hexane, 

ethylacetate and dichloromethane, or mixtures of two of these solvents. Ketamine, 

norketamine and DHNK can be extracted with all three solvents or their binary mixtures. 

However, hexane and mixtures with hexane were found to insufficiently extract the 

hydroxylated norketamine metabolites. Somewhat better results were obtained with 

ethylacetate and good data were obtained with the previously employed mixture of 

ethylacetate/dichloromethane (25:75 %, v/v). Extracts prepared with dichloromethane alone 

resulted in the largest analyte peaks. Thus, extraction recovery was measured in triplicates by 

using samples with up to 8.6 µg/mL amounts of each compound and hydrodynamic sample 

injection (1 psi for 5 s) in order to exclude any bias associated with electrokinetic injection. 

For all compounds involved, ketamine, norketamine, DHNK, 6HNK and the internal 

standard, recoveries were between 51 and 65 % with the lowest values obtained for the 

enantiomers of DHNK. These values are lower compared to those found for the 

ethylacetate/dichloromethane (25:75 %, v/v) system (between 71-82 % [31,32]). It is assumed 

that extracts prepared with dichloromethane have a lower conductivity compared to those 

obtained with the ethylacetate/dichloromethane mixture. Despite the lower recovery obtained 

with dichloromethane, this solvent was used to prepare the samples as it provided larger peaks 
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in the electropherograms. Typical electropherograms obtained with blank bovine serum, an 

extract of a calibration sample containing 80 ng/mL ketamine and 20 ng/mL of each 

metabolite and enantiomer, and an extract of a calibration sample containing 800 ng/mL 

ketamine and 200 ng/mL of each metabolite and enantiomer are presented in panels A, B and 

C, respectively, of Fig. 4. It is important to note that evaporation of the solvent under a stream 

of air at 37 °C as used previously with 100 to 1000 µL samples did not provide sufficient 

reproducibility. Dichloromethane evaporation at 45 °C in a Speed-Vac Concentrator, however, 

resulted in reproducible data (for procedure and data see Sections 2.3 and 3.2, respectively). 

Finally, the efficiency of electrokinetic injection is known to be affected by the distance 

between the capillary end and the electrode [6,7]. With the instrument used, capillary and 

electrode are arranged in parallel, the distance between them is about 2 mm and the positions 

of their ends cannot be varied much. Experiments executed with the capillary end positioned 

about 2 mm longer compared to the end of the electrode, provided analyte peaks that were 

slightly larger (about 5 %) compared to those obtained with capillary and electrodes aligned at 

the same level. On the other hand, retraction of the capillary by about 2 mm compared to the 

electrode end resulted in about 35 % larger analyte peaks. Thus, this latter configuration was 

employed in this work. 

 

3.4.4 Assay characterization 

 

For the purpose of this work with dog plasma samples collected after administration of a 

bolus of racemic ketamine or S-ketamine, a calibration range of 80 to 2000 ng/mL was 

employed for the two ketamine enantiomers whereas that of the stereoisomers of norketamine, 

DHNK and 6HNK were four-fold lower (Section 2.2). Typical calibration data obtained with 

dichloromethane extracts are presented in Fig. 4. Assay control was performed with two 

independent bovine serum control samples (Section 2.2), one comprising 240 ng/mL of each 

ketamine enantiomer and 60 ng/mL of each enantiomer of NK, DHNK and 6HNK, the second 

with 1.76 µg/mL of each ketamine enantiomer and 440 ng/mL of each enantiomer of the three 

metabolites. Detection time variation was assessed with analysis of these two control samples. 

Intraday (n=8) data revealed RSD values that were dependent on analyte detection time and 

increased between the first (internal standard) and last (R-DHNK) detected compounds from 

1.17 % to 2.47 % for the control sample with the lower concentrations. Corresponding values 
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for the sample with higher concentrations were between 1.22 and 2.75 %. All 8 samples of the 

two groups were analyzed alternatively the same day within a 6 h period. Close inspection of 

the data revealed a continuous small decrease of detection time which was more pronounced 

for analytes with higher detection times. As example, for the sample with the lower 

concentrations, the detection times of the internal standard decreased from 8.26 to 7.98 min 

first and 8
th

 sample whereas corresponding data for R-DHNK changed between 17.11 and 

15.90 min. Similar values were obtained with the sample comprising higher concentrations. 

Reasons for these drifts were not investigated and the drifts had no deleterious impact on 

quantification of analytes (see below). Interday (n=8) RSD values of detection times also 

found to be dependent on the analyte detection time interval and increased between 5.31 and 

10.97 % for the sample with lower concentrations and between 6.22 and 13.68 % for the other 

sample. These values are higher compared to those observed for analyses of ketamine and 

norketamine enantiomers with hydrodynamic sample injection. In the assay of 

Sandbaumhüter et al. [32] intraday and interday RSD values of the enantiomers of ketamine 

and norketamine were around 1 % and 3 %, respectively, and were not observed to be 

detection time dependent. The rather large interday RSD values for detection times in the 

microassay did not prohibit quantification of plasma samples as assay calibration and analysis 

of sets of dog samples were performed under the same conditions. Unidentified aging 

processes of the chiral selector used are believed to contribute to changes in detection times. 

Within a few months with the same reagent bottle, the amount of HS--CD in the BGE had to 

be slightly changed (e.g. from 0.66 to 0.64 %) in order to obtain comparable separations. This 

change had an impact on detection times. 

For assay calibration five bovine serum calibrators as described in Section 2.2 were prepared 

and extracted as described in Section 2.3. The calibration curves (n=8) were found to be linear 

with the mean values of the determination coefficient R
2
 being between 0.9961 and 0.9979 

(Table 1, RSD range: 0.13 to 0.26%). RSD values of the slopes ranged between 2.97 and   

5.34 % (Table 1). The interday and intraday repeatability of quantitative results was analyzed 

with the two control samples. Electropherograms used for this evaluation were the same as 

those whose detection times are presented above. Typical intraday RSD values (n=8) for the 

expected amounts were between 2.05 and 4.63 % and for the interday data (n=8) between 

4.56 and 8.99 % (Table 1). These data indicate that the developed microassay with 

electrokinetic sample injection is robust. For each enantiomer, the LOQ with the performed 

calibration was 10 ng/mL. Compared to the anionic assays with hydrodynamic sample 
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injection and reconstitution of the extract in the same sample volume, a 50-fold sensitivity 

enhancement was reached.  

 

Table 1. Typical calibration, intraday and interday data 
a) 

Enantiomer Slope of 

calibration 

graph 
b)

 

 

Correlation 

coefficient R
2
 

Target 

concen-

tration 

level 

(ng/mL) 

Intraday data 

 

Interday data 

 

 

Mean RSD 

(%) 

Mean RSD 

(%) 

Mean 

(ng/mL) 

RSD 

(%) 

Mean 

(ng/mL) 

RSD 

(%) 

R-ketamine 0.0306 3.11 0.9967 0.26 240.0 

1760 

270.8 

1796 

2.10 

2.32 

244.6 

1898 

6.49 

6.14 

S-ketamine 0.0280 3.57 0.9969 0.24 240.0 

1760 

264.8 

1824 

2.05 

2.10 

245.0 

1912 

5.71 

5.07 

R-

norketamine 

0.0263 2.98 0.9972 0.16 60.00 

440.0 

69.06 

464.3 

3.15 

2.57 

63.30 

476.6 

8.82 

7.80 

S-

norketamine 

0.0246 3.25 0.9974 0.22 60.00 

440.0 

68.36 

480.5 

2.60 

2.57 

62.62 

491.8 

7.40 

8.99 

R-DHNK 0.0205 5.34 0.9975 0.13 60.00 

440.0 

64.32 

463.7 

3.35 

2.77 

55.88 

447.7 

6.50 

5.11 

S-DHNK 0.0234 3.67 0.9979 0.15 60.00 

440.0 

64.80 

457.7 

4.39 

2.79 

58.60 

444.4 

4.94 

6.24 

RR-6HNK 0.0287 2.97 0.9961 0.20 60.00 

440.0 

69.80 

435.1 

4.63 

2.33 

68.08 

474.3 

8.13 

7.00 

SS-6HNK 0.0309 4.00 0.9966 0.16 60.00 

440.0 

68.20 

474.2 

3.53 

2.34 

65.22 

488.9 

4.56 

6.27 

a) Mean of 8 determinations. 

b) Interday data. Calibrations with concentrations and ratios of corrected peak areas taken as x and y 

values, respectively. 
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3.4.5 Assay application to dog plasma samples 

 

In the context of a clinical pharmacokinetic study, the described microassay was employed to 

analyze the 8 compounds in more than 550 plasma samples collected before and after bolus 

injection of 2 mg/kg S-ketamine or 4 mg/kg racemic ketamine to Beagle dogs that were 

anesthetized under various conditions. Samples were analyzed over a four month period. 

Typical electropherograms obtained from dog samples that were collected under sevoflurane 

anesthesia are presented in Fig. 5.  

 

Figure 5. Enantioselective electropherograms of plasma extracts of samples collected (A) before and 

(B,C) 20 min after bolus administration of (B) 2 mg/kg S-ketamine and (C) 4 mg/kg racemic ketamine 

to a Beagle dog under sevoflurane anaesthesia. The asterisks mark peaks originating from sevoflurane 

and # denote peaks of unidentified hydroxylated norketamine metabolites. For presentation purposes, 

electropherograms were aligned for equal detection of the IST. Procedures and key as for Figs. 4 and 

1, respectively. 
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Analysis of the sample collected prior to ketamine infusion (Fig. 5A) did not reveal any peaks 

for the compounds of interest. However, peaks originating from sevoflurane that did not 

interfere with ketamine or its metabolites were detected (marked with asterisks in Fig. 5). 

Panel B of Fig. 5 depicts data obtained with a sample collected 20 min after infusion of S-

ketamine. In this sample, S-ketamine, S-norketamine, S-DHNK and SS-HNK were detected at 

levels of 326.6, 202.4, 545.6 and 120.6 ng/mL, respectively. Data obtained at the same time 

point after infusion of racemic ketamine to the same dog after a washout period of several 

weeks, did reveal both S- and R-stereoisomers of the four compounds (Fig. 5C). The R/S 

concentrations of ketamine, norketamine, DHNK and HNK were calculated to be 

255.4/212.4, 368.6/297.4, 123.4/483.8 and 317.0/116.6 ng/mL, respectively.  

Plasma levels for the time periods up to 600 min after drug administration are presented in 

Fig. 6. The data presented indicate that ketamine is being eliminated in an exponential fashion 

within about 300 min. After administration of racemic ketamine, the concentrations of both 

ketamine enantiomers are identical (Fig. 6D). Data evaluation with the Mann-Whitney Rank 

Sum Test revealed a P value of 0.813 which means there is not a statistically significant 

difference. The same is true for the comparison of the S-ketamine levels for the cases of 

racemic and S-ketamine drug administration (P = 0.844).  

Norketamine is formed quickly, reaches a maximum concentration at 10 min and becomes 

eliminated thereafter within about 400 min (Fig. 6C).  After administration of racemic 

ketamine, the concentrations of both norketamine enantiomers do not differ from a statistical 

point of view (P = 0.430) and the same is true for the comparison of the S-norketamine levels 

for the cases of racemic and S-ketamine drug administration (P = 0.650).  

DHNK is formed more slowly compared to norketamine and reaches maximum 

concentrations at 45 min. The elimination is also more slowly and completed after about    

600 min (Fig. 6B). DHNK is formed in a stereoselective manner with S-DHNK plasma levels 

being much higher compared to those of R-DHNK (P = 0.003). S-DHNK levels for the cases 

of racemic and S-ketamine drug administration do not differ significantly (P = 0.969). Finally, 

there is more RR-6HNK formed compared to SS-6HNK (P = 0.018) and these metabolites are 

formed and eliminated in time intervals comparable to those of DHNK (Fig. 6A). SS-6HNK 

levels for the cases of racemic and S-ketamine drug administration do not differ significantly 

(P = 0.790). These data reveal that there are stereoselectivities involved in the metabolism of 
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ketamine in dogs. These aspects will we further discussed with the data of the whole clinical 

study which will also include the determinations of pharmacokinetic parameters.  

 

 

Figure 6. (A) Ketamine, (B) norketamine, (C) DHNK and (D) 6HNK levels monitored after injection 

of a bolus of 4 mg/kg racemic ketamine (referred to as rac) or 2 mg/kg S-ketamine (referred to as S) to 

a Beagle dog under sevoflurane anesthesia.  

 

From an analytical point of view, the quantitative data presented for RR-6HNK and SS-6HNK 

should be considered with caution. First, insufficient amounts of the two standards were 

available to make multiple independent calibrations. Thus, deviations from the real values of 
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up to 10 % can be expected. Second, SS-6HNK corresponds to the previously unidentified 

hydroxynorketamine metabolite S-I [24,31]. Under the conditions of the described 

microassay, this metabolite was found to comigrate with R-IV which is another 

hydroxynorketamine metabolite [24] (data not shown). Similarly, RR-6HNK represents R-I 

[24,31] and comigrates under the conditions of the microassay with the S-IV 

hydroxynorketamine metabolite. According to in vitro work performed with canine liver 

microsomes, no formation of R-IV and small amounts of S-IV were observed [31]. 

Furthermore, metabolite IV is known to be conjugated to an appreciable extent [24]. The 

microassay described, however, does not include hydrolysis of conjugated hydroxylated 

norketamine metabolites. Thus, the stereoselectivity observed in the data presented in Fig. 6A 

should not be affected by metabolite IV. Furthermore, it was interesting to find that the peaks 

in Fig. 5B and 5C detected shortly after those of 6HNK represent those of the unidentified 

hydroxynorketamine metabolite III of [24,31] with R-III being detected before S-III. The lack 

of standards still prevents proper identification of metabolites III and IV. More work is 

required to find experimental conditions to completely separate the stereoisomers of all major 

hydroxylated norketamine metabolites in a cationic assay format. This is particularly 

important in view of the recent findings that SS-6HNK has a potent pharmacological activity 

both in vitro and in vivo [35,36]. 

 

3.5 Concluding remarks 

 

With the newly developed microassay which uses electrokinetic sample injection and cationic 

separation of analytes in presence of small amounts of HS--CD it was possible to determine 

the enantiomers of ketamine and three of its major metabolites in only 50 µL of plasma or 

serum and with an LOQ of 10 ng/mL. The microassay is more sensitive, requires less sample, 

uses less organic solvent and has a lower analysis time compared to our previous assays 

which were based on anionic separations and hydrodynamic sample injection. LOQs of          

 1 ng/mL could be reached with minor modifications, namely by increasing the time interval 

for electrokinetic analyte injection (e.g. to 20 or 25 s, see Fig. 3), use of 25 mM buffer in the 

plug instead of the 50 mM used in this assay (see Fig. 2) and/or reconstitution of the extract in 

a smaller volume. The applicability of the latter aspect is instrument dependent. For the 

instrument used in this work, nanovials holding about 10-fold smaller volumes should 
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become available soon. Electrokinetic sample injection is effected across a buffer plug 

without chiral selector. Diluted buffer in the plug provided the combined action of field 

amplification and complexation used for analyte stacking. The microassay was successfully 

applied to monitor the enantiomers of ketamine and three of its metabolites in dog plasma. 

The microassay is robust and reproducible (interday RSD < 9 %). Sets of 30 samples could be 

analyzed without changing running buffer. For precise quantitative analysis with 

electrokinetic injection, the use of an internal standard is necessary and sample extracts have 

to be very clean (low conductivity). Furthermore, injections of buffer for the plug and sample 

have to be performed with accurate control of time, pressure and voltage. Commercial 

instrumentation is fulfilling these requirements. CE with electrokinetic sample injection 

provides ppb sensitivity and is thus an attractive alternative to HPLC.  
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4.1 Abstract 

 

Ketamine is often used for anesthesia in veterinary medicine. One possible comedication is 

the sedative α2-agonist medetomidine. Advantages of that combination are the compensation 

of side effects of the two drugs and the anesthetic-sparing effect of medetomidine. In vitro 

studies showed that medetomidine has an inhibitive effect on the formation of norketamine. 

Norketamine is the first metabolite of ketamine and is also active. It is followed by others like 

6-hydroxynorketamine (6HNK) and 5,6-dehydronorketamine (DHNK). In an in vivo 

pharmacokinetic study Beagle dogs under sevoflurane anesthesia (mean end-tidal 

concentration 3.0 ± 0.2 %) or following medetomidine sedation (450 µg/m
2
) received 4 mg/kg 

racemic ketamine or 2 mg/kg S-ketamine. Blood samples were collected between 0 and      

900 min after drug injection. 50 µL aliquots of plasma were pretreated by liquid-liquid 

extraction prior to analysis of the reconstituted extracts with a robust enantioselective 

capillary electrophoresis assay using highly sulfated γ-cyclodextrin as chiral selector and 

electrokinetic sample injection of the analytes from the extract across a short buffer plug 

without chiral selector. Levels of S- and R-ketamine, S- and R-norketamine, SS- and RR-

6HNK and S- and R-DHNK were determined. Data were analyzed with compartmental 

pharmacokinetic models which included two compartments for the ketamine and norketamine 

enantiomers and a single compartment for the DHNK and 6HNK stereoisomers. 

Medetomidine showed an effect on the formation and elimination of all metabolites. 
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Stereoselectivities were detected for 6HNK and DHNK, but not for ketamine and 

norketamine. 

 

4.2 Introduction 

 

The combination of the anesthetic drug ketamine and the sedative drug medetomidine is often 

used in veterinary medicine and sometimes also for humans. The benefits of this combination 

include the compensation of side effects of both drugs and the anesthetic sparing effect of 

medetomidine. Medetomidine decreases tachycardia, hypertension, salivation or muscular 

rigidity caused by ketamine whereas ketamine compensates bradycardia or hypotension 

induced by medetomidine [1–5]. Ketamine, a racemic drug (for chemical structure see Fig. 

1A), is a N-methyl-d-aspartate (NMDA) receptor antagonist which is well known in 

anesthesia but also used in analgesia and in the therapy of depressive disorders [6–9]. The S-

enantiomer has a stronger affinity to the receptor [8,10–12] which is the reason that S-

ketamine is registered in some countries as a drug for humans and for selected animals. 

Medetomidine, also a racemate, is an α2-receptor agonist. It is used for sedation or as an 

adjuvant in anesthesia. Only the S-enantiomer dexmedetomidine is pharmacologically active 

[1–4,13]. Both enantiomers are able to inhibit cytochrome P450 (CYP) enzymes whereas 

levomedetomidine is the stronger inhibitor [1,3,4]. Besides advantages, drug combinations 

have always the risk of pharmacokinetic or pharmacodynamic interactions. Most of the 

pharmacokinetic interactions can be handled by dose adaptation. For that purpose, as much as 

possible about the mechanisms of the interaction has to be known. 

In vitro experiments with canine liver microsomes and the single canine enzyme CYP3A12 

revealed an inhibitive effect of medetomidine on the N-demethylation of ketamine to 

norketamine [14]. Norketamine is the first and also an active metabolite of ketamine. 

Furthermore, hydroxylation of ketamine and norketamine at the cyclohexanone and 

chlorophenyl rings takes place. All these metabolic steps are catalyzed by CYP enzymes 

[11,15–18]. Another metabolite is dehydronorketamine (DHNK). Chemical structures of 

selected ketamine metabolites are presented in Fig. 1A. Enzymes of the CYP family are also 

involved in the metabolism of medetomidine and the main metabolite is 

hydroxymedetomidine [1]. Thus, both drugs compete for the active site of the enzyme. 
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Medetomidine as imidazole derivative is also able to bind at the heme iron in the active site of 

the enzyme which results in an inactivation of the enzyme [4]. 

 

 

Figure 1. (A) Chemical structures of ketamine, norketamine, 6HNK and DHNK, and 

electropherograms of plasma extracts of samples collected before and after 5, 20 and 90 min of 

injection of 4 mg/kg racemic ketamine to (B) a Beagle dog under sevoflurane anesthesia and (C) a 

Beagle dog under medetomidine sedation. Asterisks mark the chiral centers in the chemical structures 

and peaks marked with # in the electropherograms stem from sevoflurane. Key: IST, internal standard; 

1, RR-6HNK; 2, SS-6HNK; 3, R-norketamine; 4, S-norketamine; 5, S-DHNK;  6, R-ketamine; 7, S-

ketamine; 8, R-DHNK. 

 

In vitro experiments performed so far in regard to interactions of ketamine with a second drug 

like ketoconazole or medetomidine focused on the N-demethylation of ketamine to 

norketamine only [14,19–21]. The same applies to in vivo pharmacokinetics work performed 

in our laboratory [22,23]. Ketamine and norketamine concentrations were determined 
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enantioselectively by capillary electrophoresis based methods using highly sulfated γ- or 

sulfated β-cyclodextrin as chiral selector. The recent development of a microassay with highly 

sulfated γ-cyclodextrin as chiral selector permits analysis and quantification of the 

enantiomers of ketamine, norketamine, 6-hydroxynorketamine (6HNK) and 

dehydronorketamine (DHNK) [24]. This assay was used to analyze enantiomers of ketamine 

and the three metabolites in plasma samples of Beagle dogs which received a bolus injection 

of 4 mg/kg racemic ketamine or 2 mg/kg S-ketamine under sevoflurane anesthesia or 

following medetomidine sedation. Blood samples were collected up to 15 hours after 

ketamine administration and determined enantiomer drug and metabolite levels were used to 

elucidate the pharmacokinetics via compartmental analysis. Most pharmacokinetic studies are 

focused only on ketamine and the first metabolite norketamine [25,26]. Only a few models 

include also the following metabolites [12,27–29]. To our knowledge, no pharmacokinetic 

study which considers the effect of another drug on the pharmacokinetics of ketamine, 

norketamine, 6HNK and DHNK has been published thus far. 

The goals of this work were (i) to demonstrate the usefulness of enantioselective capillary 

electrophoresis for monitoring the levels of ketamine, norketamine, 6HNK and DHNK in dog 

plasma after bolus drug administration, (ii) to create a pharmacokinetic model for ketamine 

and the three metabolites, (iii) to calculate the pharmacokinetic parameters for the dogs of the 

sevoflurane and of the medetomidine groups and (iv) to elucidate enantioselective effects of 

medetomidine on the pharmacokinetics of ketamine, norketamine, 6HNK and DHNK. 

 

4.3 Material and methods 

 

4.3.1 Chemicals and reagents 

 

Analytical standards for ketamine and norketamine (as hydrochlorides in methanol, 1 mg/mL 

of the free base), and DHNK (as hydrochloride 100 µg/mL in acetonitrile), were from 

Cerilliant (Round Rock, TX, USA). (2S,6S)-6-hydroxynorketamine (SS-6HNK) and (2R,6R)-

6-hydroxynorketamine (RR-6HNK) were received from Dr. Irving Wainer (Laboratory of 

Clinical Investigations, National Institute on Aging, National Institutes of Health, Baltimore, 

MD, USA (synthesis described by Moaddel et al. and Desta et al. [30,31]). Highly sulfated γ-

cyclodextrin (20 % w/v solution) was purchased from Beckman Coulter (Fullerton, CA, 
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USA). D-(+)-norephedrine hydrochloride and bovine serum were from Sigma (St. Louis, Mo, 

USA). Disodium hydrogenphosphate, sodium hydroxide and bromothymol blue were from 

Merck (Darmstadt, Germany), phosphoric acid (85 %) was from Fluka (Buchs, Switzerland) 

and dichloromethane (HiPerSolv Chromanorm for HPLC) was from VWR (Leuven, 

Belgium). Ketamine injection solutions Ketasol-100 (racemic ketamine) and Keta-S (S-

ketamine) used for the dog trials were from Dr. E. Graeub AG (Bern, Switzerland). 

 

4.3.2 Pharmacokinetic animal study 

 

Dog plasma samples were collected in clinical trials at Vetsuisse Faculty (Zürich, 

Switzerland) which were performed as prospective randomized crossover studies with the 

permission of the Committee for Animal Experimentation, Canton Zürich, Switzerland. In 

both trials the washing-out period was one month. Briefly, six Beagle dogs (3 female and 3 

male) with a mean age of 39 (± 9) months under sevoflurane anesthesia (mean end-tidal 

concentration 3.0 ± 0.2 %) received an i.v. bolus injection of 4 mg/kg racemic ketamine 

(mean body mass was 15.15 ± 0.99 kg) or 2 mg/kg S-ketamine (mean body mass: 15.15 ± 

1.01 kg). Another group of five Beagle dogs (2 female and 3 male) with a mean age of 21 (± 

11) months was sedated with medetomidine (450 µg/m
2
) prior to bolus injection of 4 mg/kg 

racemic ketamine (mean body mass: 11.68 ± 2.42 kg) or 2 mg/kg S-ketamine (mean body 

mass: 12.14 ± 2.50 kg). Venous blood samples were collected before ketamine administration 

and at 25 or 26 selected time intervals up to 900 min thereafter which included the complete 

elimination phase. The plasma was separated and stored at -80 °C until analysis. 

 

4.3.3 Sample preparation 

 

Sample preparation followed the procedure described in Ref. [24]. Briefly, analytes were 

extracted with dichloromethane at alkaline pH via addition of 200 µL water, 15 µL of             

4 µg/mL d-(+)-norephedrine hydrochloride solution (internal standard), 50 µL of 0.5 M NaOH 

with 1.25 mM bromothymol blue and 1300 µL dichloromethane to 50 µL plasma. The vials 

were shacken and centrifuged. The upper aqueous phase was removed and the organic phase 

was transferred to a new vial and acidified with 10 µL of 1 mM phosphoric acid prior to  
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drying in a Speed-Vac Concentrator (Vaudaux-Eppendorf, Schönenbuch, Switzerland) at      

45 °C. After reconstitution with 110 µL water the samples were analyzed by enantioselective 

capillary electrophoresis. 

 

4.3.4 Capillary electrophoresis instrumentation and analytical conditions 

 

The analyses were performed on a Proteome Lab PA 800 enhanced instrument (Beckman 

Coulter, Fullerton, CA, USA) equipped with a photodiode array detector as described 

elsewhere [24]. Briefly, the 50 µm id fused-silica capillary (Polymicro Technologies, Phoenix, 

AZ, USA) with a total length of 45 cm (effective length 35 cm) was rinsed before each 

experiment with bidestilled water (1 min; 20 psi) and running buffer (1 min; 20 psi). The 

running buffer was composed of 100 mM disodium hydrogenphosphate buffer (pH 3.0) and 

0.66 % highly-sulfated γ-cyclodextrin (Beckman Coulter, Fullerton, CA, USA). Before 

electrokinetic sample injection at 6 kV for 15 s, a plug of 50 mM disodium 

hydrogenphosphate buffer (pH 3.0) was injected by pressure (20 s; 1 psi). A voltage of 20 kV 

was applied and the current was about 64 µA. The detection was effected at 200 nm. The 

temperature for all parts was set to 25 °C. Analyte quantification was based on internal 

calibration using corrected peak areas. Assay calibration and control was performed with 

fortified bovine serum samples as is described in Ref. [24]. Typical electropherograms 

obtained with plasma samples of two dogs are presented in Fig. 1B und 1C. 

 

4.3.5 Data analysis 

 

Data were evaluated with Microsoft Excel (Microsoft, Redmont, WA, USA) and SigmaPlot 

software version 12.5 (Systat Software, San Jose, CA, USA. The Student’s t-test and the 

Mann-Whitney Rank Sum Test were used to evaluate significant differences of two data sets. 

An overall value of P < 0.05 was considered significant. Pharmacokinetic modeling with 

compartmental analysis and noncompartmental analysis was performed with Phoenix 

WinNonlin 6.4 software (Certara: Implementing Translational Science, Cary, NC, USA). 
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4.4 Results and discussion 

 

4.4.1 Chiral assay and data for ketamine and metabolites 

 

With the applied microassay based on electrokinetic sample injection and cationic separation 

of analytes in presence of a small amount of highly sulfated γ-cyclodextrin it was possible to 

determine the enantiomers of ketamine and three of its major metabolites in 50 µL of plasma 

with a limit of quantification of 10 ng/mL of each enantiomer [24]. Electrokinetic sample 

injection associated with analyte stacking was effected across a buffer plug without chiral 

selector whose concentration was half that used for analyte separation. The microassay is 

robust, repeatable (interday RSD < 9 % [24]) and was successfully applied to monitor the 

enantiomers of ketamine and the three metabolites in about 600 dog plasma samples of this in 

vivo pharmacokinetic study. Samples were collected before and after bolus injection of          

4 mg/kg racemic ketamine or 2 mg/kg S-ketamine to Beagle dogs that were either 

anesthetized with sevoflurane or sedated with medetomidine as is described in Section 2.2. 

Typical electropherograms obtained from a dog of both groups treated with racemic ketamine 

are presented in panels B and C, respectively, of Fig. 1.  

For the group of anesthesia with sevoflurane, the sample collected prior to ketamine infusion 

did not reveal any peaks for the compounds of interest (Fig. 1B). However, peaks originating 

from sevoflurane that did not interfere with ketamine or its metabolites were detected (marked 

with #). Plasma samples collected 5, 20 and 90 min after infusion of 4 mg/kg racemic 

ketamine revealed peaks for all 8 compounds of interest that could be quantitated (Fig.1B).  

The same is true for the samples of the medetomidine group except that no peaks originating 

from medetomidine could be detected (Fig. 1C). Administration of 2 mg/kg S-ketamine 

instead of 4 mg/kg racemic ketamine resulted in electropherograms comprising the S-

stereoisomers of ketamine, norketamine, 6HNK and DHNK only (for example see [24]) and 

drug levels of these S-stereoisomers were comparable to those monitored after administration 

of 4 mg/kg racemic ketamine. Comparison of the electropherograms between the two groups 

immediately revealed that medetomidine comedication resulted in the formation of much 

lower amounts of norketamine stereoisomers (compare e.g. 20 min electropherograms of 

panels B and C of Fig. 1). This aspect and those associated with stereoselectivities are further 

discussed in the context of the pharmacokinetic modeling described in Sections 3.2 and 3.3.  
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As mentioned in [24], the data for RR-6HNK and SS-6HNK should be considered with some 

caution. First, insufficient amounts of the two standards were available to make multiple 

independent calibrations. Thus, deviations from the real values of up to 10 % can be expected. 

Second, SS-6HNK comigrates with R stereoisomer of another hydroxynorketamine 

metabolite referred to as hydroxynorketamine IV in Refs. [16,24] (data not shown). Similarly, 

RR-6HNK comigrates with the S stereoisomer of this metabolite IV [24]. According to in 

vitro work performed with canine liver microsomes, no formation of R-IV and small amounts 

of S-IV were observed [32]. Furthermore, metabolite IV is known to be conjugated to an 

appreciable extent [16]. Thus, as the microassay described does not include hydrolysis of 

conjugated hydroxylated norketamine metabolites, the obtained data for RR-6HNK and SS-

6HNK are not much enhanced due to comigration with metabolite IV.  Efforts are currently 

under way to find conditions to resolve all known hydroxynorketamine stereoisomers in the 

assay format with electrokinetic sample injection from extracts of 50 µl of plasma. 

 

4.4.2 Pharmacokinetic modeling of ketamine and its metabolites 

 

Pharmacokinetic models describe the concentration of a drug which undergoes the processes 

of liberation, absorption, distribution, metabolism and elimination in the body as function of 

time. Modeling can be done with the aid of a polyexponential equation for which the 

coefficients have to be determined step-by-step manually or by comprehensive computer 

modeling using commercial software packages such as Phoenix WinNonlin [33]. Both 

approaches were used in our work and reveal the pharmacokinetic parameters for data 

comparison. For finding the best model for ketamine and the metabolites all concentration-

time plots for one dog were analyzed phase by phase and compared to those obtained using 

Phoenix WinNonlin software. A schematic representation of pharmacokinetic modeling of 

ketamine and its metabolites is presented in Fig. 2.  

Ketamine administered as an i.v. bolus goes immediately into blood circulation which is part 

of the central compartment as well as highly perfused tissues like the liver and the kidneys. 

The semilog plot of the determined S- and R-ketamine concentrations (logarithmic y-axis) as 

function of time (linear x-axis) showed two phases, the distribution and the elimination 

phases. This is typical for a two-compartment model and for drug application via bolus 

injection. The number of compartments which can be found for ketamine pharmacokinetic 
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modeling in the literature varied between two and three and are depended on the 

administration procedure used [6,26,28,29,34]. Ketamine is distributed very fast into a second 

compartment, the so-called tissue or peripheral compartment, which includes skin and fatty 

tissues. The distribution is dependent on drug characteristics like lipophilicity and the 

tendency for protein-binding. Ketamine is eliminated from the central compartment by 

metabolic reactions mediated by CYP enzymes in the liver and other organs [11,17,18] or 

excreted unmodified via the kidneys. The data points of the elimination phase can be analyzed 

by linear regression analysis thereby revealing the slope β and the y-intercept ln(B). With this 

linear equation and the time points of the distribution phase concentration values are 

calculated and subtracted from the experimentally determined concentrations. After 

logarithmization, these results are plotted against time and subjected to linear regression 

analysis thereby revealing slope α and y-intercept ln(A). Finally the pharmacokinetics of 

ketamine can be described with the polyexponential equation c = A*exp(-α*t)+B*exp(-β*t) 

where c and t are the concentration and time, respectively.  

Norketamine is always the first metabolite found after in vitro incubations and also in blood 

samples after ketamine administration in different species [16,32]. Hydroxylation of ketamine 

to hydroxyketamines is possible as well and it can take place on different positions on the 

rings in the molecule [8,15,16]. Norketamine is also an antagonist at the NMDA-receptor but 

its affinity is only one third of that of ketamine [6]. In contrast to the behavior of ketamine, 

there is first a phase in which the concentration of norketamine is rising from 0 to a maximum 

concentration, a fact that must be included in the kinetic model. The calculation starts as 

described above for ketamine, i.e. the elimination and distribution phases. Then the time 

points of the increasing concentration phase are inserted into the linear equation of the 

distribution phase. From the thereby calculated concentration the difference of the 

experimentally determined concentration and the concentration calculated with the linear 

equation of the elimination phase is subtracted. After logarithmization, results are plotted 

against time and analyzed with linear regression revealing the slope γ and the y-intercept 

ln(C). The kinetics of norketamine can thereby be described with a two-compartment model 

using c=A*exp(-α*t)+B*exp(-β*t)-C*exp(-γ*t). 



Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. 

medetomidine comedication assessed by enantioselective capillary electrophoresis 

 

 

78 

 

 

Figure 2. Schematic representation of pharmacokinetic modeling of ketamine and its metabolites 

based on two-compartment models for ketamine and norketamine and one-compartment models for 

6HNK and DHNK enantiomers. The central compartments are labelled with ketamine, norketamine, 

6HNK and DHNK. T1 and T2 are the tissue compartments for ketamine and norketamine, 

respectively. The k values represent inter-compartmental transfer constants. 

 

Elimination of norketamine proceeds via hydroxylation at different positions and unmodified 

excretion via the kidneys. Although the possibility of direct formation of DHNK from 

norketamine is discussed in the literature [12,35], DHNK is more likely formed via loss of 

water from hydroxynorketamine, especially 6HNK and 5HNK [16]. It is not known whether 

DHNK is formed enzymatically or via a chemical reaction [16,36]. Urine of a pony which 

received ketamine was collected and fractionated by HPLC. Two fractions comprising 

hydroxynorketamine metabolites (one with RR- and SS-6HNK) also contained small amounts 
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of DHNK. The appearance of DHNK in these fractions cannot be an impurity of the 

fractionation procedure because DHNK eluted more than 10 min after the 

hydroxynorketamine metabolites [16]. Furthermore, hydroxynorketamine metabolites show 

up earlier compared to DHNK in time-based experimental settings in vivo and in vitro (Fig. 1; 

[16,32]). Thus, DHNK follows hydroxynorketamine in the model presented in Fig. 2 and 

6HNK was included as it was the only hydroxynorketamine analytical standard available. 

6HNK is an interesting metabolite because recent studies showed its antidepressive effects 

[12,35,37]. 6HNK and DHNK are inhibitors of the α7-nicotinergic acethylcholine receptor 

[15]. Norketamine is not the only possible source for 6HNK. It can also be formed by N-

demethylation of 6-hydroxyketamine.  

Analysis of the experimental data of the 6HNK enantiomers in the semilog format revealed 

only one phase after the maximum concentration (elimination phase). Thus, 6HNK data can 

be described with a one-compartment model with first order drug absorption according to 

c=(ka*D0*F)/(V*(ka-k))*(exp(-k*t) - exp(-ka*t)) [33]. The elimination phase in the semilog 

plot is analyzed by linear regression analysis thereby revealing slope k and y-intercept 

ln((ka*D0*F)/(V*(ka-k))). Concentration values were calculated for the remaining time points 

of the first part of the curve and the measured concentration values were subtracted. After 

logarithmization, results are plotted against time and analyzed with linear regression to obtain 

the slope ka and the y-intercept ln((ka*D0*F)/(V*(ka-k))). Theoretically, the y-intercept for the 

initial and elimination phases should be the same. Typically there are not because of the lag-

time and the residuals. The regression line of the elimination phase is based on the original 

values and on more data points. The y-intercept of the elimination phase is assumed to be 

more accurate and is included as an appropriate term in the equation. The same model was 

used for the DHNK data (Fig. 2). Good fits were obtained for both metabolites. For 6HNK 

and DHNK it is more difficult to make statements about the kinetics because it is not exactly 

known what the initial dose of these metabolites is. Thus, noncompartmental analyses were 

performed as well. Noncompartmental analysis is a statistical description of the experimental 

curves. The results were comparable with those obtained with compartmental analysis. 
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Figure 3. Pharmocokinetic modeling of the R-norketamine data of one dog after administration of 

racemic ketamine under sevoflurane aneasthesia using a manual step-by-step elucidation of the 

parameters of the polyexponential function for a two-compartment model (solid line graph graph) and 

the Phoenix WinNonlin 6.4 software for the same model (broken line graph). 

 

For all compounds there was good agreement of the data calculated stepwise as described 

above and the data produced by the software. As an example, data obtained for R-norketamine 

of a dog are presented in Fig. 3. Thus, the data sets of all dogs were analyzed with Phoenix 

WinNonlin 6.4 software using the same models (Fig. 2). Similarly, concentration – time 

relationships were calculated for the mean values of each compound and group and are 

presented in Fig. 4. With the commercial software different variations of the models were also 

checked and compared according to diagnostic data. The proper choice of the models 

presented in Fig. 2 was thereby confirmed.  

 

4.4.3 Pharmacokinetic data 

 

The α2- receptor agonist medetomidine has an effect on the pharmacokinetics of ketamine and 

the metabolites norketamine, 6HNK and DHNK. Pharmacokinetics can be described with the 

model shown in Fig. 2. Based on the equations of the model pharmacokinetic parameters can 

be calculated and compared (Tables 1-4). There is variability in the metabolism of all 

metabolites among the Beagle dogs which is consistent with the literature [29]. For ketamine, 

the values of the pharmacokinetic parameter β-half-life and the mean residence time (MRT) 

are different for the sevoflurane und the medetomidine group (Table 1, P < 0.05). Both 
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parameters are connected to the elimination. The half-life is the time in which the 

concentration of a substance is reduced by 50 %. The MRT is the time a molecule of the 

substance stays on average in the body. The β-half-life (sevoflurane group: 29.74±25.38 and 

28.80±25.35 min for R-and S-ketamine, respectively; medetomidine group: 68.12±10.31 and 

66.77±12.81 min, respectively) as well as the MRT (sevoflurane: 34.04±31.34 and 

32.02±30.15 min; medetomidine: 71.49±13.12 and 69.38±15.71 min) values for both 

enantiomers are higher in the medetomidine group (Table 1). The volume of the peripheral 

compartment (VT1, Table 1) under both conditions is higher than the volume of the central 

compartment (Vcentral). This is typical for lipophilic bases and stands for a high affinity of the 

drug to all parts of the central compartment. VT1, Vcentral and the volume of distribution at 

steady state (Vss, Table 1) are higher in the medetomidine group whereas the inter-

compartmental transfer constants k10, k12, and k21 are higher in the sevoflurane group. For the 

clearance (Cl, Table 1) and the area under the curve (AUC) no significant differences in 

relation to the comedication could be found (Table 1; P > 0.05). Furthermore, no 

stereoselectivities were detected (Fig. 4A, P > 0.05).  
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Figure 4. Pharmacokinetics of (A) ketamine, (B) norketamine, (C) 6HNK and (D) DHNK for the 

mean plasma data of both groups after administration of racemic ketamine and evaluated with the 

Phoenix WinNonlin 6.4 software using the model of Fig. 2. Key: circles and solid lines, sevoflurane 

comedication; triangles and dashed lines, medetomidine comedication; filled symbols, R-enantiomers; 

open symbols, S-enantiomers. 
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Table 1. Pharmacokinetic parameters of ketamine enantiomers
a) 

Ketamine Racemic ketamine 

Sevoflurane 

(n=6) 

Racemic ketamine 

Medetomidine 

(n=5) 

R S 

 

R S 

AUC 

(min*ng/L) 

 

37.22 

± 7.97 

35.44 

± 6.98 

43.13 

± 10.52 

44.85 

± 8.02 

Cl 

(mL/min/kg) 

 

55.69 

± 11.07 

58.17 

± 10.70 

47.41 

± 7.90 

45.76 

± 16.61 

α-half-life 

(min) 

 

1.29 

± 0.58 

 

1.35 

± 0.56 

 

3.41 

± 1.20 

 

3.36 

± 1.13 

 

β-half-life 

(min) 

 

29.74 

± 25.38 

28.80 

± 25.35 

68.12 

± 10.31 

66.77 

± 12.81 

A 

(ng/mL) 

 

6469.47 

± 4820.36 

 

6165.93 

± 3989.23 

 

2845.75 

± 1147.99 

 

3068.43 

± 1225.59 

 

B 

(ng/mL) 

 

958.39 

± 490.15 

 

939.95 

± 510.94 

 

311.78 

± 27.42 

 

328.28 

± 22.19 

 

k10 

(1/min) 

 

0.2231 

± 0.1885 

 

0.2196 

± 0.1654 

 

0.0738 

± 0.0302 

 

0.0760 

± 0.0289 

 

k12 

(1/min) 

 

0.3789 

± 0.2333 

 

0.3467 

± 0.2268 

 

0.1339 

± 0.0670 

 

0.1333 

± 0.0659 

 

k21 

(1/min) 

 

0.1242 

± 0.0694 

 

0.1209 

± 0.0731 

 

0.0320 

± 0.0042 

 

0.0319 

± 0.0044 

 

MRT 

(min) 

 

34.04 

± 31.34 

 

32.02 

± 30.15 

 

71.49 

± 13.12 

 

69.38 

± 15.71 

 

Vss 

(L/kg) 

 

1.63 

± 1.17 

 

1.62 

± 1.23 

 

3.37 

± 0.66 

 

3.13 

± 0.66 

 

Vcentral 

(L/kg) 

 

0.36 

± 0.18 

 

0.35 

± 0.16 

 

0.72 

± 0.34 

 

0.67 

± 0.30 

 

VT1 

(L/kg) 

1.24 

± 1.00 

1.27 

± 1.08 

2.64 

± 0.55 

2.46 

± 0.61 

a) Data represent mean values ± SD and were determined with the Phoenix WinNonlin 6.4 software.  

 

In contrast to ketamine, a large difference between the sevoflurane and the medetomidine 

group was noted for norketamine. This can be seen in the electropherograms presented in Fig. 

1B and 1C, the concentration vs. time plots of Fig. 4B, and the data of Table 2.  



Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. 

medetomidine comedication assessed by enantioselective capillary electrophoresis 

 

 

84 

 

Table 2. Pharmacokinetic parameters of norketamine enantiomers
a) 

Norketamine Racemic ketamine 

Sevoflurane 

(n=6) 

Racemic ketamine 

Medetomidine 

(n=5) 

R 

 

S R S 

AUC 

(min*ng/L) 

 

42.91 

± 12.67 

32.32 

± 16.39 

3.29 

± 2.21 

4.53 

± 2.04 

tmax 

(min) 

 

17.68 

± 3.45 

13.33 

± 3.53 

6.77 

± 2.12 

6.38 

± 2.04 

cmax 

(ng/mL) 

 

316.12 

± 77.37 

 

322.30 

± 106.50 

 

45.35 

± 9.53 

 

55.38 

± 6.91 

 

α-half-life 

(min) 

 

8.94 

± 1.52 

 

7.48 

± 1.75 

 

3.72 

± 1.27 

 

3.42 

± 1.11 

 

β-half-life 

(min) 

 

125.71 

± 26.11 

 

111.28 

± 34.88 

 

78.20 

± 47.83 

 

91.97 

± 43.58 

 

A 

(ng/mL) 

 

-29713.39 

± 55612 

 

-13691.38 

± 242024 

 

-7251.93 

± 19714 

 

-16470.07 

± 30165 

 

B 

(ng/mL) 

 

212.18 

± 52.54 

 

160.04 

± 59.10 

 

25.71 

± 4.77 

 

31.95 

± 4.87 

 

k03 

(1/min) 

 

0.078 

± 0.012 

 

0.097 

± 0.022 

 

0.21 

± 0.07 

 

0.22 

± 0.07 

 

k30 

(1/min) 

 

0.018 

± 0.008 

 

0.029 

± 0.016 

 

0.039 

± 0.016 

 

0.031 

± 0.009 

 

k34 

(1/min) 

 

0.039 

± 0.007 

 

0.049 

± 0.008 

 

0.12 

± 0.05 

 

0.14 

± 0.06 

 

k43 

(1/min) 

0.028 

± 0.009 

0.026 

± 0.010 

0.058 

± 0.023 

0.059 

± 0.016 

a) Data represent mean values ± SD and were determined with the Phoenix WinNonlin 6.4 

software. 

 

Values for the maximum concentration of norketamine (cmax) and the AUC are much lower in 

the medetomidine group. That confirms the previous in vitro experiments in which an 

inhibition of the N-demethylation of ketamine to norketamine was found in presence of 

racemic medetomidine or dexmedetomidine [14]. Two mechanisms of inhibition are possible 

in this drug-drug combination. There is a concurrence on the active site of the enzyme 

because both drugs are metabolized by CYP enzymes. Medetomidine as an imidazole is able 
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to block the CYP-enzymes by binding to the heme iron in the active site of the CYP enzyme 

[4]. Norketamine is an active metabolite. Thus, the effect on the NMDA-receptor is expected 

to be larger in the sevoflurane group. No stereoselectivity for norketamine was detected (P > 

0.05). 

The shorter half-life and MRT of ketamine in the sevoflurane group show that the elimination 

of ketamine in the sevoflurane group is faster. Cmax of norketamine is reached earlier but the 

amounts of norketamine present in the blood are much lower (Fig. 4B, Table 2). The faster 

formation of norketamine is expressed also in the k03 values which are higher after 

medetomidine administration. The processes between the central and the tissue (T2) 

compartments for norketamine are described with k34 and k43. These parameters are also 

higher for the medetomidine group (Fig. 2, Table 2). Thus, the elimination must take another 

way excluding the formation of norketamine. One possibility is the increased formation of 

hydroxyketamine metabolites, another is the increased elimination of unmodified ketamine 

through the kidneys. The α2-receptor agonist medetomidine causes the inhibition of the 

release of vasopressin and the increase of the excreted urine volume [38]. Furthermore, 

hyperglycemia mediated contemporaneously through the α2-receptor in the β-cells in the 

endocrine pancreas results in polyuria [39]. No significant difference in the metabolic pattern 

was found in urines of two dogs which were collected 300 min after administration of 4 

mg/kg racemic ketamine under sevoflurane or medetomidine (data not shown). Thus, the 

second possibility could not be confirmed. 

Data for the stereoisomers of 6HNK and DHNK are presented in Tables 3 and 4, respectively. 

For these metabolites stereoselectivity was observed (P < 0.05). This is also nicely seen in the 

data of panels C and D of Fig. 4. The concentration for RR-6HNK is higher than the 

concentration of the SS-6HNK in both groups (Table 3). Furthermore, the cmax value for RR-

6HNK under sevoflurane is the same as that under medetomidine sedation (180.36±52.34 and 

188.01±53.99 ng/ mL). The same applies for SS-6HNK (101.67±4.90 and 82.68±23.21 ng/ 

mL). The maximum concentrations, however, are reached faster under medetomidine 

comedication (sevoflurane group: 67.57±36.23 min and 48.86±19.25 min; medetomidine: 

16.24±1.60 and 16.65±0.79 min). The AUC values are also lower in presence of 

medetomidine due to the faster elimination. 
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Table 3. Pharmacokinetic parameters of 6HNK enantiomers
a) 

6HNK Racemic ketamine 

Sevoflurane 

(n=6) 

Racemic ketamine 

Medetomidine 

(n=3)
b)

 

RR 

 

SS RR SS 

AUC 

(min*ng/L) 

 

60.08 

± 12.67 

35.97 

± 7.80 

20.37 

± 7.83 

10.00 

± 2.27 

tmax 

(min) 

 

67.57 

± 36.23 

48.86 

± 19.25 

16.24 

± 1.60 

16.65 

± 0.79 

cmax 

(ng/mL) 

 

180.36 

± 52.34 

 

101.67 

± 4.9 

 

188.01 

± 53.99 

 

82.68 

± 23.21 

 

k05 

(1/min) 

 

0.056 

± 0.037 

 

0.078 

± 0.039 

 

0.18 

± 0.04 

 

0.19 

± 0.04 

 

k50 

(1/min) 

0.0039 

± 0.0011 

0.0035 

± 0.0013 

0.012 

± 0.004 

0.010 

± 0.004 

a) Data represent mean values ± SD and were determined with the Phoenix WinNonlin 6.4 

software. 

b) The 6HNK data of two dogs could not be analyzed with this model. 

 

In contrast to these results with 6HNK, for DHNK under sevoflurane (Table 4) the maximum 

concentration of S-DHNK is significantly higher compared to that of R-DHNK. For the 

medetomidine group, the cmax value of S-DHNK is also higher than that of R-DHNK. The 

difference between the enantiomers is much bigger under sevoflurane, not only for cmax but 

also for the AUC. The AUC for R-DHNK in both groups is the same and smaller than the 

values for S-DHNK (Table 4). The velocity constants k05, k50, k06 and k60 show that the 

metabolites HNK and DHNK disperse faster under comedication with medetomidine (Tables 

3 and 4). The highest concentration is reached under sevoflurane by S-DHNK (433.97±  

152.97 ng/ mL). For both 6HNK and DHNK, pharmacological effects at the α7-nicotinergic 

acethylcholine receptor were observed which makes the investigation of these compounds 

worthwhile [15]. 

 

 

 

 



Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. 

medetomidine comedication assessed by enantioselective capillary electrophoresis 

 

 

87 

 

 

Table 4. Pharmacokinetic parameters of DHNK enantiomers
a) 

 

DHNK Racemic ketamine 

Sevoflurane 

(n=6) 

Racemic ketamine 

Medetomidine 

(n=5) 

R S 

 

R S 

AUC 

(min*ng/L) 

 

46.17 

± 13.51 

158.55 

± 24.65 

45.70 

± 13.96 

60.32 

± 15.30 

tmax 

(min) 

 

80.25 

± 29.69 

37.57 

± 4.79 

78.86 

± 37.96 

41.12 

± 4.02 

cmax 

(ng/mL) 

 

138.55 

± 68.24 

 

433.97 

± 152.74 

 

249.44 

± 42.89 

 

275.50 

± 47.47 

 

k06 

(1/min) 

 

0.033 

± 0.012 

 

0.045 

± 0.030 

 

0.065 

± 0.013 

 

0.064 

± 0.008 

 

k60 

(1/min) 

0.0044 

± 0.0022 

0.0035 

± 0.0010 

0.0087 

± 0.0057 

0.0062 

± 0.0020 

a) Data represent mean values ± SD and were determined with the Phoenix WinNonlin 6.4 

software. 

 

For the S-ketamine (2 mg/kg) part of the two dog studies the plasma samples were also 

analyzed with the enantioselective capillary electrophoresis based microassay. It revealed S-

ketamine and all S-metabolites but no R-ketamine and R-metabolites. For the two groups, no 

significant differences in the results for S-ketamine and the metabolites S-norketamine, SS-

6HNK and S-DHNK were found (P > 0.05). Typical electropherograms are presented in Ref. 

[24]. 

 

4.5 Concluding remarks 

 

The pharmacokinetics of S- and R-ketamine and its metabolites S- and R-norketamine, SS- 

and RR-6HNK and S- and R-DHNK were analyzed enantioselectively by using capillary 

electrophoresis in plasma of Beagle dogs under sevoflurane and under medetomidine 

comedication. The norketamine levels are significantly lower after administration of 

medetomidine. Additional experiments revealed that urinary excretion of ketamine and 

norketamine were unaffected by medetomidine. Stereoselectivities were detected for the 

6HNK and DHNK metabolites, but not for ketamine and norketamine. Not all enzymes of the 
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different pathways of the ketamine metabolism are identified and it is not clear which effect 

medetomidine has on them. It seems that some pathways work under medetomidine better 

than others. In previous in vitro studies the combination of S-ketamine and dexmedetomidine 

was found best because the pharmacologically inactive levomedetomidine is the stronger 

inhibitor of ketamine N-demethylation. It would be of interest to elucidate the impact of 

dexmedetomidine on the further metabolites in comparison to racemic medetomidine used in 

this study. Norketamine is also active as a NMDA-receptor antagonist. Thus, it should be 

investigated whether the effect on that receptor is higher in the sevoflurane group. Highly 

sulfated -cyclodextrin based enantioselective capillary electrophoresis with electrokinetic 

sample injection of the analytes across a short buffer plug without chiral selector provided the 

required ppb sensitivity to monitor the stereoisomers of ketamine and the three metabolites in 

extracts of 50 µL aliquots of plasma in an efficient and repeatable way.  
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5.1 Abstract 

 

The combination of ketamine and an α2-receptor agonist is often used in veterinary medicine. 

Four different α2-receptor agonists, medetomidine, detomidine, xylazine and romifidine, 

which differ in their chemical structure and thus in selectivity for the α2-receptor and in the 

sedative and analgesic potency, are typically employed during surgery of equines. In 

veterinary practice recovery following anesthesia with ketamine and an α2-receptor agonist is 

dependent on the selected α2-receptor agonist. This prompted us to investigate i) the inhibition 

characteristics for the N-demethylation of ketamine to norketamine and ii) the formation of 

the ketamine metabolites norketamine, 6-hydroxynorketamine (6HNK) and 5,6-

dehydronorketamine (DHNK) in presence of the four α2-receptor agonists and equine liver 

microsomes. Samples were analyzed with enantioselective capillary electrophoresis using 

highly sulfated γ-cyclodextrin as chiral selector. All four α2-receptor agonists have an impact 

on the ketamine metabolism. Medetomidine was found to be the strongest inhibitor, followed 

by detomidine, whereas xylazine and romifidine showed almost no effect on the ketamine N-

demethylation in the inhibition studies with a short incubation period of the reaction mixture. 

After prolonged incubation, inhibition with xylazine and romifidine was also observed. The 

formation of 6HNK and DHNK is affected by all selected α2-receptor agonists. With 

medetomidine, levels of these metabolites are reduced compared to the case without an α2-

receptor agonist.  For detomidine, xylazine and romifidine, the opposite was found. 
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5.2 Introduction 

 

In equine anesthesia the use of ketamine in combination with α2-receptor agonists for 

anesthesia induction and short duration anesthesia is standard practice for a long time. 

Ketamine has anesthetic, analgesic and antidepressive effects and is administered as racemate 

or S-ketamine. Most of its effects are mediated by the N-methyl-d-aspartate (NMDA) 

receptor. Interactions with opioid, monoaminergic, cholinergic, muscarinic and nicotinic 

receptors are also reported [1–5]. Four different α2-receptor agonists, medetomidine, 

detomidine, xylazine and romifidine, which have anesthetic sparing effects, provide muscle 

relaxation and show analgesic effects, are employed for dose-dependent sedation and 

anesthesia premedication in veterinary medicine [5–12]. Chemical structures of selected 

compounds are presented in Fig. 1. 

 

 

 

Figure 1. Chemical structures of ketamine, its metabolites norketamine, 6HNK and DHNK and the α2-

receptor agonists medetomidine, detomidine, xylazine and romifidine. Stereocenters are marked with 

an asterisk.  
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The first α2-receptor agonist on the market for animals was xylazine. It was developed at the 

same time as clonidine which is used in humans. Besides clonidine the α2-receptor agonists 

dexmedetomidine and tizanidine play a role in human therapy as sedative and 

antihypertensive drugs, as anesthesia adjuncts, in the treatment of attention-

deficit/hyperactivity disorders and panic disorders, and against the symptoms of opioid, 

benzodiazepine and alcohol withdrawal [13]. The affinity of xylazine to the α2-receptor is 

high but there is also some effect on the α1-receptor. They all differ in selectivity (Table 1) and 

their sedative and analgesic potency [5,13,14]. This is also based on the structural differences 

in the molecules (Fig. 1). Thus, different doses are used in the treatment of animals which is 

illustrated with the data for horses presented in Table 1 [6,11,15–17]. As reversal agents α2-

receptor antagonists like atipamezole, tolazoline and yohimbine are available [13]. 

 

Table 1. Dosing of α2-agonists and corresponding cmax values for horses together with Log(P) and 

selectivity ratios for the α2 receptor 
a)

 

   

α2-agonist Dose (mg/kg) cmax (µM) Log(P) 
b)

 Selectivity ratio (α2: α1) 
c)
 

Medetomidine 0.01 [6] 0.043 [6] 3.1 1620:1 [12] 

Detomidine 0.04 [11] 0.55 [11] 2.75 260:1 [12] 

Xylazine 0.6 [15] 2.73 [15] 2.37 160:1 [12] 

Romifidine 0.08 [9] 0.20 [9] 1.02 340:1 [12] 

a) Values from the literature. 

b) Log(P) values were taken from the database chemspider.com (calculated with the ACD/ Labs 

Percepta Platform- PhysChem Module). 

c) Affinity for the α2-receptor compared to the α1-receptor. 

 

In daily veterinary practice, differences in the behavior of horses under and after anesthesia 

with ketamine in combination with an α2-receptor agonist are noted. Observations are 

dependent on the α2-receptor agonist used [17–20 and observations at Vetsuisse Zürich]. In in 

vivo studies with dogs and in vitro studies with human and canine cytochrome P450 (CYP) 

enzymes and liver microsomes it was shown that the α2-receptor agonist medetomidine or its 



Effect of the α2-receptor agonists medetomidine, detomidine, xylazine and romifidine on the ketamine 

metabolism in equines assessed with enantioselective capillary electrophoresis 

 

 

96 

 

single S-enantiomer, dexmedetomidine, has an effect on the ketamine metabolism [21,22]. 

The CYP enzymes are responsible for the metabolism of ketamine and the α2-receptor 

agonists [7,8,10,23–30]. The formation of norketamine in canines was decreased. A 

stereoselective effect on the formation of further metabolites like 6-hydroxynorketamine 

(6HNK, Fig. 1) and 5,6-dehydronorketamine (DHNK, Fig. 1) in canines was also detected 

[31]. Norketamine is active at the NMDA-receptor. Its effect is about one third of that of 

ketamine [1]. DHNK and 6HNK are active at the α7-nicotinic acetylcholine receptor and the 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. These activities 

are connected with the antidepressive effects [32]. The decreased norketamine formation in 

Beagle dogs and in vitro experiments with canine and human enzymes could be explained 

with an inhibitive effect of medetomidine on the CYP enzymes [21,31,33].  

In this work the effect of the four α2-receptor agonists medetomidine, detomidine, xylazine 

and romifidine on the ketamine metabolism, on the N-demethylation of ketamine to 

norketamine and the formation of the further metabolites 6HNK and DHNK, was analyzed in 

vitro with equine liver microsomes (ELM) via use of enantioselective capillary 

electrophoresis. Capillary electrophoresis is an established tool for analyzing samples of in 

vitro inhibition and drug drug interaction studies. Stereospecific separation becomes possible 

with the addition of highly sulfated γ-cyclodextrin to the background electrolyte 

[21,22,24,26,34]. To the best of our knowledge, this is the first study in which the four α2-

receptor agonists used in veterinary practice are compared concerning their effects on the N-

demethylation of ketamine to norketamine and on the formation of further metabolites.  

 

5.3 Material and methods 

 

5.3.1 Chemicals and reagents 

 

Analytical standards for ketamine and norketamine (as hydrochlorides in methanol, 1 mg/mL 

of the free base), and DHNK (as hydrochloride in acetonitrile, 100 µg/mL of the free base), 

were from Cerilliant (Round Rock, TX, USA). (2S,6S)-6-hydroxynorketamine (SS-6HNK) 

and (2R,6R)-6-hydroxynorketamine (RR-6HNK) were from Dr. Irving Wainer (Laboratory of 

Clinical Investigations, National Institute on Aging, National Institutes of Health, Baltimore, 

MD, USA (synthesis described by Moaddel et al. and Desta et al. [35,36])). Highly sulfated γ-
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cyclodextrin (20 % w/v solution) was purchased from Beckman Coulter (Fullerton, CA, 

USA). Lamotrigine was from The Welcome Foundation (London, UK). D-(+)-norephedrine 

hydrochloride, xylazine hydrochloride and bovine serum were from Sigma (St. Louis, Mo, 

USA). Medetomidine hydrochloride was purchased from Tocris Bioscience, R&D Systems 

Europe (Abingdon, UK). Romifidine hydrochloride was from LGC (Teddington, UK). Human 

albumin was from Behringwerke (Marburg, Germany). Disodium hydrogenphosphate, Tris 

sodium hydroxide and bromothymol blue were from Merck (Darmstadt, Germany), potassium 

dihydrogen phosphate, di-potassium hydrogen phosphate, detomidine hydrochloride 

monohydrate, methanol, phosphoric acid (85 %) were from Fluka (Buchs, Switzerland), 

ethylacetate was from AppliChem (Darmstadt, Germany) and dichloromethane (HiPerSolv 

Chromanorm for HPLC) was from VWR (Leuven, Belgium). The nicotinamide adenine 

dinucleotide phosphate (NADPH) regenerating system solutions A and B were from Corning 

(product of Gentest, Woburn, MA, USA). 

 

5.3.2 Equine liver microsomes 

 

The used ELM were the same as those prepared and characterized by Schmitz et al. [37]. 

Briefly, liver samples of crossbreeds or Franches-Montagnes horses of both sexes were taken 

less than 30 min after stunning, placed directly on dry ice and kept at -70 °C until microsomes 

preparation. After grinding the frozen tissues and homogenization the microsome fraction was 

isolated through different centrifugation steps. The total protein concentration was determined 

by using the Biuret method with bovine serum albumin as standard. The total CYP content 

was measured after the protocol of Omura and Sato [38]. For the current experiments their 

activity was tested and the results were comparable with the previous data [37].  

 

5.3.3 In vitro reactions for determining inhibition parameters 

 

The substrate ketamine was preincubated in 3 different concentrations (11.5, 23, 46 µM per 

enantiomer ) with NADPH regenerating system consisting of 1.49 mM NADP+, 3.2 mM 

glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 2.9 mM MgCl2 and     

50 µM sodium citrate in 100 mM pH 7.4 potassium phosphate buffer and medetomidine, 
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detomidine, xylazine or romifidine for 3 min at 37 °C. The ketamine concentrations were 

based on the Km value (23 µM per enantiomer) for ELM which was determined in previous 

work of our laboratory [37]. The concentrations for medetomidine were 0, 0.1, 0.2, 0.4 and 

0.6 µM, for detomidine 0, 0.1, 0.2, 0.4, 0.6 and 0.8 µM, for xylazine 0, 8, 12, 15, 30, 80 and 

200 µM and for romifidine 0, 75, 90, 93, 96, 100 and 200 µM. The incubation was started by 

adding ELM (0.5 mg protein/mL) to a final volume of 200 µL. The reaction was stopped after 

8 min by adding 50 µL 2 M NaOH. Lamotrigine (2 µg/mL, internal standard) was added 

before liquid/liquid extraction as described by Sandbaumhüter et al. [21]. Briefly, 1500 µL of 

ethylacetate/dichloromethane (25:75 %, v/v) were added to these samples followed by shaking 

for 10 min and centrifugation at 12000 rpm for 5 min. The upper aqueous phase was removed 

and the organic phase was transferred to a new vial. The organic phase was acidified with    

10 µL of 50 mM phosphoric acid to avoid the loss of analytes during evaporation under a 

stream of air at 37 °C. After reconstitution in 150 µL methanol the sample was vortexed and 

transferred in another vial. Finally the residues were reconstituted in 30 µL of 17.8 mM Tris 

phosphate buffer (pH 2.5). All experiments were performed in duplicates.  

 

5.3.4 In vitro reactions for analyzing the effect of α2-receptor agonists on ketamine 

metabolites 

 

The effect of the α2-receptor agonists on the different ketamine metabolites was analyzed in 

incubations under similar conditions as described in Section 2.3. The ketamine concentration 

was 60 µM per enantiomer and the concentrations for the α2-receptor agonists were based on 

the mean of the determined IC50 values for the two norketamine enantiomers, namely      

0.091 µM for medetomidine, 0.16 µM for detomidine, 19.37 µM for xylazine and 82.88 µM 

for romifidine. The incubations of a volume of 50 µL were stopped with 15 µL 1M NaOH 

after 0, 30, 120 and 300 min. To 10 µL of this mixture 240 µL bidestilled water, 20 µL 0.5 M 

NaOH and 15 µL of a solution of 4 µg/mL d-(+)-norephedrine hydrochloride were added. 

These samples were analyzed according to Theurillat et al. [22]. Briefly, samples were 

extracted with 1300 µL dichloromethane, shaken for 5 min and centrifuged for 5 min at  

12000 rpm. After removing the aqueous phase the organic phase was transferred to a new vial 

and acidified with 10 µL of 1 mM phosphoric acid. After evaporation to dryness at 45 °C 

using the Eppendorf Speed-Vac Concentrator 5301 (Vaudaux-Eppendorf, Schönenbuch, 
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Switzerland) for 30 min, the residues were reconstituted in 110 µL bidestilled water. All 

experiments were performed in duplicates. 

 

5.3.5 CE instrumentation and analytical conditions 

 

A Proteome Lab PA 800 instrument (Beckman Coulter, Fullerton, CA, USA) equipped with a 

50 µm i.d. fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA) of 45 cm total 

length (effective length 36 cm) was used. Before each experiment, the capillary was 

sequentially rinsed with 0.1 M NaOH (1 min; 20 psi), bidistilled water (1 min; 20 psi) and 

respective running buffer (1 min; 20 psi). 

Samples for determining the inhibition parameters were injected by applying a vacuum of      

1 psi for 5 s. With an applied voltage of -20 kV (reversed polarity) the current was about         

-68 µA. For inducing a flow towards the anode a positive pressure of 0.2 psi was applied 

during the entire experiment. Temperatures for sample storage and capillary cartridge were set 

to 20 °C. Analyte detection took place with an on-column UV variable wavelength detector at 

195 nm. The running buffer was composed of 17.8 mM Tris, phosphoric acid (pH 2.5) and     

2 % highly sulfated γ-cyclodextrin. Assay control and quantification of norketamine 

enantiomers (0.5-30 µM) were based on internal calibration using corrected peak areas as 

described in Ref. [21]. A typical electropherogram of ketamine, its metabolite norketamine, 

the internal standard and the α2-receptor agonists is shown in Fig. 2A. 

The other samples were injected electrokinetically with 6 kV for 15 s across a pressure 

injected (1 psi, 20 s) plug composed of 50 mM phosphate buffer at pH 3 [22]. For separation a 

voltage of 20 kV (normal polarity) was applied. The current was about 64 µA. All 

temperatures were set to 25 °C. In this assay a running buffer of 100 mM phosphate buffer 

(pH 3.0) together with 0.66 % highly sulfated γ-cyclodextrin was used. The quantification of 

the enantiomers of ketamine, norketamine, DHNK and 6HNK was based on internal 

calibration using corrected peak areas. The calibration range for all enantiomers was 1-60 µM. 

Calibration and control solutions were prepared as described elsewhere [22]. The analysis of 

ketamine, norketamine, 6HNK, DHNK, the internal standard and all α2-agonists shows that 

only romifidine is visible in the migration time range of ketamine and its metabolites (Fig. 

2D). 
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5.3.6 Data analysis 

 

Inhibition, kinetic and statistic data were evaluated with SigmaPlot software version 12.5 

(Systat Software, San Jose, CA, USA). The statistic paired Student’s t-test was employed to 

evaluate data sets. With a p-value < 0.05 the difference of two data sets was considered to be 

significant.  

 

5.4 Results and discussion 

 

5.4.1 Inhibition parameter of the N-demethylation of ketamine by α2-receptor 

agonists 

 

The inhibition constant Ki and the IC50 value help to describe the effect of an inhibitor on a 

reaction and provide a mean to compare the influence of various substances on the same 

reaction. Ki describes the equilibrium between free enzyme, inhibitor and the enzyme-

inhibitor-complex. IC50 is the inhibitor concentration at which the formation rate of a product 

is reduced by 50 %. Low inhibition parameters mean a strong inhibition. Ki and IC50 were 

determined to compare the effect of the four selected α2-receptor agonists on the N-

demethylation of ketamine to norketamine. Each α2-receptor agonist was incubated in various 

concentrations with three different ketamine concentrations (0.5, 1.0, 2.0 Km). The Km values 

were taken from a previous study [37]. The concentrations of the α2-receptor agonists were 

chosen depending on their effects on the norketamine formation. Experiments revealed the 

concentrations which showed the first and the maximum effect on product formation. In that 

range 5 or 6 concentrations were taken for the incubation (Section 2.3). The electropherogram 

depicted in Fig. 2C was obtained with medetomidine in the sample and is presented as 

example. Furthermore control incubations without any α2-receptor agonist (Fig. 2B) and with 

the different α2-receptor agonists but without ketamine were performed. No interferences with 

the α2-receptor agonists and the analyzed substances were found (Fig. 2A). The occurrence of 

metabolites of α2-receptor agonists was tested with 30 min incubations of 60 µM of the α2-

receptor agonists with ELM under the same conditions as described in Section 2.3. For 

medetomidine, detomidine and xylazine, no metabolites were detected, whereas a romifidine 

metabolite comigrated with romifidine (data not shown). 
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Figure 2. Electropherograms obtained with (A-C) 2 % highly sulfated -cyclodextrin in the BGE and 

reversed polarity and (D-F) 0.66 % highly sulfated -cyclodextrin in the BGE and normal polarity. 

Samples analyzed were (A) a mixture comprising standards of lamotrigine (internal standard), the 

enantiomers of ketamine, norketamine, and medetomidine (25 µM per enantiomer each), detomidine     

(25 µM), xylazine (15 µM) and romifidine (25 µM), (B, y-scale shift 6 mAU) an extract prepared after 

incubation of 46 µM per enantiomer ketamine with ELM for 8 min, (C, y-scale shift 12 mAU) an 

extract prepared after incubation of 46 µM per enantiomer ketamine and 0.6 µM medetomidine with 

ELM for 8 min, (D) a sample composed of d-(+)-norephedrine (internal standard), the enantiomers of 

ketamine, norketamine, 6HNK and DHNK (25 µM per enantiomer each) and the four α2-agonists    

(25 µM each), (E, y-scale shift 20 mAU) an extract prepared after incubation of 60 µM per enantiomer 

ketamine with ELM for 30 min and (F, y-scale shift 40 mAU) an extract after incubation of 60 µM 

enantiomer ketamine and 0.091 µM  medetomidine with ELM for 30 min. Experimental conditions for 

extract preparation and electrophoretic runs are given in Sections 2.5 and 2.6, respectively. Key: 1: S-

ketamine, 2: R-ketamine, 3: S-norketamine, 4: R-norketamine, 5: RR-6HNK, 6: SS-6HNK, 7: S-

DHNK, 8: R-DHNK, X: xylazine, Dx: dexmedetomidine, D: detomidine, L: levomedetomidine, R: 

romifidine, IST: internal standard lamotrigine or d-(+)-norephedrine. 

 

For each α2-receptor agonist the norketamine formation rates were plotted against their 

concentrations (Fig. 3). Data were evaluated with nonlinear regression analysis using the four-

parameter logistic model y = min + (max-min) / (1 + (x / IC50)
-n

) [39]. In this equation y is the 

norketamine formation rate, x the inhibitor concentration, min and max are the lower and the 

upper limit of the curve, respectively, and n the Hillslope. From the found IC50 value the Ki 

value can be calculated by using the Cheng-Prusoff equation Ki = IC50 / (1+ ([S] / Km)) where 
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[S] is the substrate concentration  [40]. The results are presented in Table 2 and Fig. 3. For 

medetomidine and detomidine the inhibition parameters are much lower than those observed 

for xylazine and romifidine. The inhibition with medetomidine (IC50 0.094 µM for S-

norketamine and 0.087 µM for R-norketamine, Table 2) is stronger than with detomidine (IC50 

0.16 µM for S-norketamine and 0.16 µM for R-norketamine, Table 2). After the application of 

a usual dose of 0.01 mg/kg medetomidine and 0.04 mg/kg detomidine to horses cmax values of 

0.043 µM and 0.55 µM, respectively, were measured [6,11, Table 1]. Thus, the inhibition is 

more important for detomidine although it is stronger for medetomidine. 

 

Table 2. Inhibition parameters
 

α2-agonist Product IC50  (µM) Ki (µM) 

Medetomidine S-norketamine 0.094 ± 0.034 0.043 ± 0.023 

 R-norketamine 0.087 ± 0.059 0.038 ± 0.013 

Detomidine S-norketamine 0.16 ± 0.02 0.079 ± 0.018 

 R-norketamine 0.16 ± 0.03 0.077 ± 0.017 

Xylazine S-norketamine 29.11 ± 21.34 27.11 ± 8.95 

 R-norketamine 9.62 ± 1.83 13.54 ± 8.42 

Romifidine S-norketamine 89.45 ± 4.69 58.67 ± 14.38 

 R-norketamine 76.30 ± 15.31 49.04 ± 9.45 
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Figure 3. Kinetics of ELM mediated N-demethylation of (A,C,E,G) S-ketamine and (B,D,F,H) R-

ketamine at three substrate concentrations (0.5 Km, 1.0 Km and 2.0 Km) effected by (A,B) 

medetomidine, (C,D) detomidine, (E,F) xylazine and (G,H) romifidine. Concentrations for 

medetomidine varied between 0.1 and 0.6 µM, for detomidine between 0.1 and 0.8 µM, for xylazine 

between 8 and 200 µM and for romifidine between 75 and 200 µM. Nonlinear regression analysis was 

performed with the four-parameter logistic model described in the text. Km values were from Ref. [37] 

Symbols denote means ± SD of duplicates. 
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The usual dose of 0.6 mg/kg for xylazine is considerably higher than for the other α2-receptor 

agonists. After i. v. application of xylazine a cmax value of 2.73 µM was found [15, Table 1]. 

The values of inhibition constant and IC50 are higher than for medetomidine and detomidine. 

Furthermore, a difference between the effect on the formation of S-norketamine (IC50      

29.11 µM, Table 2) and R-norketamine (IC50 9.62 µM, Table 2) was observed. The inhibition 

is stronger for the formation of R-norketamine whereas no stereoselectivity was determined 

for medetomidine and detomidine. It was also tested if the plastic walls adsorb xylazine. To 

investigate a possible loss of xylazine, the incubation was repeated in glass vials. No 

difference between glass and plastic vials was found.  

For romifidine no inhibition could be detected. Using small ketamine concentrations there 

was no significant difference (p>0.05) between the determined norketamine levels in presence 

and absence of romifidine. With increasing ketamine concentrations the formation rate of 

norketamine was found to decrease abruptly at one point (Fig 3G and 4H). This does not look 

like a typical inhibition. It rather represents a sudden occurrence of a supersaturation. 

The four substances have different molecular structures (Fig. 1) and thus differ in their affinity 

and selectivity to the α2-receptor (Table 1) and the interaction with the CYP enzymes as a 

substrate and as a modulator as well. CYP enzymes are involved in the metabolism of all 

analyzed α2-receptor agonists [7,8,10,28–30]. There are two characteristics which are 

important for an inhibitive CYP interaction. There must be a nitrogen-containing function 

which can bind to the heme iron and the inhibitor should have a hydrophobic part which can 

interact with the protein part of the CYP enzyme [14,41]. The inhibition will be stronger, if 

both mechanisms work well. Medetomidine and detomidine have both an imidazole group in 

the molecule which can fulfill the first condition. Imidazole derivates are known to be strong 

CYP inhibitors. Xylazine and romifidine have nitrogen for interaction as well. They are, 

however, not predestined to bind to the iron. Mesomeric and steric effects have also an 

influence. The various α2-receptor agonists have the same basic structure but they differ in 

their substituents and in heteroatoms (Fig. 1). The lipophilicity of the α2-receptor agonists can 

be compared with the partition coefficients, the log(P) values (Table 1). These are ratios of the 

drug concentrations in a two-phase system at equilibrium. High log(P) values stand for a 

higher lipophilicity and can therefore more strongly interact with CYP enzymes. The log (P) 

value of medetomidine is almost as high as that of the strong CYP inhibitor ketoconazole 

which has a log(P) value of 3.7 [14]. For the four α2-receptor agonists the log(P) values 
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decrease in the order of the decrease of the observed inhibition. Medetomidine has the highest 

log(P) value whereas romifidine the lowest (Table 1).    

 

5.4.2 Effect of the α2-receptor agonists on the ketamine metabolism 

 

In the first part of this work the effects of different α2-receptor agonists on the N-

demethylation of ketamine to norketamine were analyzed and described with the inhibition 

parameters Ki and IC50. This represents only the first step of the ketamine metabolism. Further 

reactions include the hydroxylation of ketamine and especially norketamine on different 

positions of the rings in the molecules. Furthermore, selected hydroxylated norketamine 

metabolites can then be dehydroxylated to DHNK. In previous studies with Beagle dogs it 

was shown that the impact of medetomidine comedication on the formation of 6HNK and 

DHNK is not the same as that found for norketamine [31]. Thus, the influence of different α2-

receptor agonists on the concentrations of ketamine and its metabolites norketamine, RR-

6HNK, SS-6HNK and DHNK was analyzed with incubations that lasted up to 300 min. This 

is much longer compared to the 8 min time interval used in the experiments discussed in 

Section 3.1. Data obtained with concentrations of the α2-receptor agonists representing the 

mean of the determined IC50 values for the two norketamine enantiomers (Table 2) are 

presented in Fig. 4. Electropherograms of 30 min incubations without and with medetomidine 

are shown as examples in Fig. 2E and 2F, respectively.  

Furthermore, specific experiments were performed in order to be able to exclude any 

interference produced by metabolites of the α2-receptor agonists. For each α2-receptor agonist 

the same incubation procedure was followed without having ketamine in the incubation 

mixture. In the analysis of these samples, a metabolite peak could only be detected in the case 

of romifidine. This peak did not interfere with ketamine or one of its metabolites. Data 

without addition of an α2-receptor agonist were also produced and used as control data to 

which the data obtained with α2-receptor agonists were compared to. 
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Figure 4. Effect of α2-receptor agonists on (A) R-ketamine, (B) S-ketamine, (C) R-norketamine, (D) 

S-norketamine, (E) RR-6HNK, (F) SS-6HNK, (G) R-DHNK and (H) S-DHNK measured in the 

incubation mixtures as function of time. Concentrations of the applied ketamine enantiomers were 60 

µM, whereas those of medetomidine, detomidine, xylazine and romifidine were 0.091 µM, 0.16 µM, 

19.37 µM and 82.88 µM, respectively. The control data are those obtained without comedication. All 

experiments were performed in duplicates. Symbols denote mean values ± SD. 
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The ketamine enantiomer concentrations decrease with time and the decline was observed to 

be faster for S-ketamine than for R-ketamine (Fig. 4A and B). For both enantiomers this 

process is slower under medetomidine than under all other conditions, including the control 

which represents data without an α2-receptor agonist. This finding confirms the results of 

Section 3.1 in which medetomidine was found to be the strongest inhibitor of the ketamine N-

demethylation among the tested α2-receptor agonists. The norketamine formation was 

inhibited in presence of medetomidine and the curve for norketamine is lower than that of the 

control experiment (Fig. 4C and D). Data for detomidine are somewhat in between which was 

expected because of the determined inhibition parameters (Table 2).  

For xylazine and romifidine the inhibition parameters are much higher (Table 2) such that no 

inhibition was expected. Under the influence of these two drugs the ketamine concentrations 

are similar to that of the control experiment without an α2-receptor agonist. The norketamine 

concentration-time curves, however, have a different profile. Norketamine levels first 

followed the values of the control experiment and reached a maximum around 30 min before 

reaching a plateau at about the peak concentration (R-norketamine, Fig. 4C) or at a lower 

plateau value (S-norketamine, Fig. 4D). The concentrations reached at 300 min are lower 

compared to those found with medetomidine, detomidine and without an α2-receptor agonist. 

Furthermore, the xylazine curve is higher than that of romifidine. These data suggest that 

xylazine and romifidine inhibit the N-demethylation of ketamine at prolonged exposure only 

and that processes other than those related to inhibition are taking place.  

Hydroxylation of norketamine occurs at different positions of both the cyclohexanone and the 

aromatic ring [26,35,36,42,43]. Only standard compounds for SS-6HNK and RR-6HNK were 

available. SS-6HNK was found to comigrate with the R stereoisomer of another 

hydroxynorketamine referred to as metabolite IV in Refs. [26,37] and RR-6HNK with the S 

stereoisomer of this norketamine metabolite [22]. In the same work, SS-6HNK and RR-

6HNK could be assigned to hydroxylated norketamine metabolites S-I and R-I, respectively, 

of Refs. [26,37]. Thus, the detected peaks (see Fig. 2E) that were quantified for SS-6HNK and 

RR-6HNK (Fig. 4E and F) represent the sum of the two comigrating compounds. In previous 

in vitro work from our laboratory which was qualitatively evaluated with another assay, it was 

noted that significant amounts of both metabolites are formed which is in contrast to the 

results with canine liver microsomes for which almost no metabolite IV was observed [37]. 

More R-IV than S-IV and more S-I than R-I is formed in incubations of ketamine with ELM 
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[37]. The levels presented in Fig. 4F are much higher than those of Fig. 4E which is in 

agreement with the previous observations. In each case, the lowest levels were detected for 

medetomidine. All curves show a nearly linear increase of the concentrations. The curves for 

detomidine, xylazine and romifidine comedication are all higher than the control curve 

without addition of an α2-receptor agonist (Fig. 4E and F). Thus, detomidine, xylazine and 

romifidine appear to induce the formation of the jointly detected compounds.  

DHNK is the metabolite which is formed last (Fig. 4G and H). The courses of the curves are 

similar but the concentrations are lower than the data of Fig. 4E and F. Under medetomidine, 

the concentrations of both DHNK enantiomers are lower than those of the control experiment. 

Except for one value of the detomidine samples (Fig. 4G) all other results with the α2-receptor 

agonists used are higher than that of the control without comedication. Thus, these data 

suggest that detomidine, xylazine and romifidine have an inductive impact on the formation 

of DHNK. 

The data presented in Fig. 4 were analyzed for stereoselectivity using the paired Student’s t-

test for comparison of the curves of the corresponding R- and S-enantiomers. In all cases, p > 

0.05 (range: 0.26-0.97) was obtained which does not reveal any stereoselectivity. These data, 

however, have to be considered with caution because data presented for single time points 

(see Fig. 4E and F) suggest that there are stereoselectivities in the metabolic steps of 

ketamine. An assay for complete resolution of the stereoisomers of all hydroxynorketamine 

metabolites is currently under development and will provide better insight into stereoselective 

aspects of hydroxylation of norketamine. 

 

5.5 Concluding remarks 

 

All tested α2-receptor agonists showed an effect on the ketamine metabolism. This is 

important and should be considered when the drugs are applied repetitively during total 

intravenous or partial intravenous anesthesia. Medetomidine is the strongest inhibitor which is 

expressed by the lowest IC50 and Ki values of the assessed N-demethylation reaction. Its 

chemical structure and lipophilicity are good requirements for CYP inhibition. Detomidine 

inhibits the N-demethylation of ketamine to norketamine as well. Under medetomidine, levels 

of hydroxylated norketamine metabolites and DHNK become lower compared to the case 

without an α2-receptor agonist. The opposite was found for xylazine and romifidine. 
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Stereoselectivity was found in the inhibition parameters of xylazine only. A possible 

stereoselective formation of hydroxylated norketamine metabolites will have to be assessed 

with an assay that is capable of resolving all observed hydroxynorketamine stereoisomers. In 

vivo investigations under consideration of the different cardiovascular effects of the various 

α2-receptor agonists have to be undertaken in order to show the impact of α2-receptor agonists 

on the pharmacokinetic and pharmacodynamic aspects of ketamine. The two enantioselective 

CE-based assays with highly sulfated -cyclodextrin as chiral selector are shown to represent 

effective tools for determining inhibition parameters and metabolic patterns in presence of 

different drugs as comedication. 
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6.1 Abstract 

 

The racemic N-methyl-d-aspartate (NMDA) receptor antagonist ketamine is used in 

anesthesia, analgesia and the treatment of depressive disorders. It is known that interactions of 

hydroxylated norketamine metabolites and 5,6-dehydronorketamine (DHNK) with the α7-

nicotinic acetylcholine receptor and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor are responsible for the antidepressive effects. Ketamine and its first 

metabolite norketamine are not active on these receptors. As stereoselectivity plays a role in 

ketamine metabolism, a cationic capillary electrophoresis based method capable of resolving 

and analyzing the stereoisomers of four hydroxylated norketamine metabolites, norketamine 

and DHNK was developed. The assay is based on liquid/liquid extraction of the analytes from 

the biological matrix, electrokinetic sample injection across a buffer plug and analysis of the 

stereoisomers in a phosphate BGE at pH 3 comprising a mixture of sulfated β-cyclodextrin   

(5 mg/mL) and highly sulfated γ-cyclodextrin (0.1 %). The method was used to analyze 

samples of in vitro study in which ketamine was incubated with equine liver microsomes and 

in plasma samples of dogs and horses that were collected after an i. v. bolus injection of 

racemic ketamine. 

 

6.2 Introduction 

 

The racemic drug ketamine (for chemical structure see Fig. 1) is applied in anesthesia, 

analgesia and the treatment of depressive disorders. The risk of strong side effects and abuse 
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must be considered for application of this drug. In recent years, metabolites of ketamine 

became the focus of interest and are tested concerning their effects. Norketamine is the first 

metabolite and is formed by N-demethylation. It is active at the N-methyl-d-aspartate 

(NMDA) receptor but to a lesser extent than the parent drug ketamine [1–5]. Norketamine is 

transformed to hydroxynorketamine (HNK). Hydroxylation can take place at different 

positions on the cylohexanone and the chlorophenyl ring (Fig. 1). Addition of a hydroxy 

group at the cyclohexanone ring leads to a second chiral center in the molecule and thus 

different stereoisomers. Hydroxylation of ketamine to hydroxyketamine followed by N-

demethylation is also possible and is believed to represent a minor role in the metabolic 

parthways of ketamine (Fig. 1). The next step is the formation of 5,6-dehydronorketamine 

(DHNK) [6–10]. Most metabolic steps are known to be catalyzed by cytochrome P450 

enzymes [9–13]. For stereoisomers of HNK and DHNK only low activity at the NMDA 

receptor but inhibition of the α7-nicotinic acetylcholine receptor was shown [14]. (2R,6R)-6-

hydroxynorketamine (RR-6HNK) activates processes at the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor [5]. The interactions with the α7-nicotinic 

acetylcholine receptor and AMPA receptor are responsible for antidepressive effects [5,14]. 

RR-6HNK and (2S,6S)-6-hydroxynorketamine (SS-6HNK)  revealed antidepressive effects in 

experiments with mice [8,15]. For ketamine and the metabolites norketamine, 6-

hydroxynorketamine (6HNK) and DHNK a decrease of the intracellular d-serine 

concentrations was also found. D-serine has neurotoxic and neurodegenerative effects on the 

NMDA receptor and is associated with central nervous system diseases [16].  

Analytical methods which are based on enantioselective capillary electrophoresis were 

primarily developed to analyze ketamine, norketamine and DHNK [9,12,17–25]. In the 

microassay of Theurillat et al. which uses 0.6-0.8 % highly sulfated γ-cyclodextrin as chiral 

selector and normal polarity (analytes are migrating as cations), HNK can be determined as 

well. A complete separation of the stereoisomers of HNK was not obtained [26]. 

Stereoisomers of HNK, however, can be resolved under conditions using higher amounts of 

highly sulfated γ-cyclodextrin (unpublished results, tested with 2.0-3.3%) or sulfated β-

cyclodextrin (10 mg/mL [9,22]) and using reversed polarity such that the analytes are 

migrating as anions. Due to high migration times, detected peaks are broad and their analysis 

becomes inaccurate. Because of stereoselectivities in metabolism, receptor affinity and 

antidepressive effects the stereoselective separation of all metabolites is important 
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[5,7,9,11,12,14,17,22–27]. This prompted us to find conditions to properly analyze the 

stereoisomers of hydroxylated norketamine metabolites in biological samples by cationic CE. 

 

 

Figure 1. The main metabolic pathways of ketamine. Stereocenters are marked with asterisks. X: 3, 4, 

5 or 6; X’: 2’, 3’, 4’ or 5’. 

 

The goal of this work was to develop a stereoselective CE-based assay for four hydroxylated 

norketamine metabolites that were found in pony urines collected during a ketamine target 

controlled infusion study [9], in incubations of equine liver microsomes with ketamine [9], 

and in in vitro experiments with liver microsomes of different species [22]. Data collected 

during assay development with various sulfated cyclodextrins, the strategy employed for 

optimization of stereoisomer separation and first results obtained for the analysis of these 

ketamine metabolites in incubations of ketamine with equine liver microsomes (ELM) and in 

plasma samples of horses and dogs are reported. 
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6.3 Material and methods 
 

6.3.1 Chemicals, reagents, and origin of animal samples 

 

(2S,6S)-6-hydroxynorketamine (SS-6HNK), (2R,6R)-6-hydroxynorketamine (RR-6HNK), 

(2S,6R)-6-hydroxynorketamine (SR-6HNK) and (2R,6S)-6-hydroxynorketamine (RS-6HNK) 

were from Dr. Irving Wainer (Laboratory of Clinical Investigations, National Institute on 

Aging, National Institutes of Health, Baltimore, MD, USA ). Their synthesis is described by 

Moaddel et al. and Desta et al. [6,10]. Analytical standards for ketamine and norketamine (as 

hydrochlorides in methanol, 1 mg/mL of the free base), and DHNK (as hydrochloride         

100 µg/mL in acetonitrile) were from Cerilliant (Round Rock, TX, USA). Highly sulfated γ-

cyclodextrin (20 % w/v solution) was purchased from Beckman Coulter (Fullerton, CA, 

USA). Sulfated β-cyclodextrin (lot 04426HJ), d-(+)-norephedrine hydrochloride and bovine 

serum were from Sigma-Aldrich (St. Louis, Mo, USA). Disodium hydrogenphosphate, 

sodium dihydrogenphosphate, sodium hydroxide, acetic acid, sodium acetate trihydrate were 

from Merck (Darmstadt, Germany), phosphoric acid (85 %) and detomidine were from Fluka 

(Buchs, Switzerland) and dichloromethane (HiPerSolv Chromanorm for HPLC) was from 

VWR (Leuven, Belgium). β-glucuronidase/arylsulfatase from Helix Pomatia was from Roche 

(Mannheim, Germany). ELM were prepared and characterized by Schmitz et al. [22]. Animal 

plasma samples stemmed from two previously conducted ketamine studies which were 

executed with the permission of the respective Committee for Animal Experimentations 

[24,27]. In the first trail, ponies received an i. v. bolus of 2.2 mg/kg racemic ketamine under 

isoflurane anesthesia [24].  In the other trial, beagle dogs under sevoflurane anesthesia 

received an i.v. bolus of 4 mg/kg racemic ketamine [27]. 

 

6.3.2 Hydroxynorketamine standards 

 

Analytical standards were only available for 6HNK. Thus, hydroxylated norketamine 

metabolites were fractionated from horse urine using the procedure described in [9]. Before 

fractionation 1 mL urine in 1 mL 0.2 M sodium acetate buffer pH 5 was treated with 100 µL 

β-glucuronidase/arylsulfatase over 12 h. The enzymatic reaction was stopped with 200 µL      

2 M NaOH and the hydrolyzed urine extracted with 6 mL dichloromethane/ethylacetate 
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(75:25 %, v/v). After evaporation of the organic solvent and reconstitution of the dried extract 

with 400 µL water, the sample was applied to HPLC. Briefly, the HPLC system comprised a 

Waters LC-Module I plus equipped with autosampler, absorbance detector and pump (Waters, 

Milford, MA, USA). The stationary phase was a Purospher RP 18e column (4 mm x 125 mm 

x 5 µm) (Merck) and the mobile phase was composed of 30 mM ammonium phosphate buffer 

pH 7.2 (solvent A) and acetonitrile (solvent B). The elution of the hydroxylated norketamine 

metabolites was performed with 20 % acetonitrile in the mobile phase and the four fractions 

containing hydroxylated norketamine metabolites were collected manually into glass tubes 

and referred to as HNK fractions I to IV [9]. Collected fractions were stored at -20 °C until 

further use. 

6.3.3 In vitro reaction with ELM 

 

60 µM per enantiomer ketamine were preincubated with NADPH regenerating system 

consisting of 1.49 mM NADP+, 3.2 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate 

dehydrogenase, 2.9 mM MgCl2 and 50 µM sodium citrate in 100 mM pH 7.4 potassium 

phosphate buffer and 0.16 µM detomidine for 300 min at 37 °C. Detomidine is a sedative α2-

receptor agonist which is often used in combination with ketamine in veterinary medicine. 

The incubation was started with the addition of ELM (0.5 mg protein/mL) to a final volume of 

200 µL. Samples of 50 µL were taken after 0, 30, 120 and 300 min and the reaction was 

stopped with addition of 15 µL 1 M NaOH. 

 

6.3.4 Sample preparation 

 

10 µL of the incubation samples were mixed with 240 µL of water and 20 µL of 0.5 mM 

NaOH. Similarly, 50 µL of animal plasma were prepared with 200 µL water and 50 µL        

0.5 mM NaOH. After adding 1300 µL of dichloromethane the sample was first shaken for    

10 min and then centrifuged (5 min at 12000 rpm). Afterwards the upper aqueous phase was 

removed and the organic phase was transferred into another vial and acidified with 10 µL       

1 mM phosphoric acid. The dichloromethane was evaporated by using the Eppendorf 

concentrator 5301 (Vaudaux-Eppendorf, Schönenbuch, Switzerland) for 30 min at 45 °C. The 

residues were reconstituted with 110 µL water and then analyzed by capillary electrophoresis.  
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6.3.5 CE instrumentation and analytical conditions 

 

A Proteome Lab PA 800 instrument (Beckman Coulter, Fullerton, CA, USA) equipped with a 

50 µm i.d. fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA) of 45 cm total 

length (effective length 35 cm) was used. The capillary was rinsed before each run with water 

(20 psi; 3 min) and running buffer (20 psi; 1 min). If not stated otherwise, the background 

electrolyte (BGE) was composed of 50 mM sodium dihydrogenphosphate solution which was 

adjusted with phosphoric acid to pH 3, 5 mg/mL sulfated β-cyclodextrin and 0.1 % highly 

sulfated γ-cyclodextrin. A plug of four times diluted phosphate buffer (pH 3) was injected 

with pressure (4 psi; 4 s) followed by electrokinetic analyte injection at 7 kV for 10 s. A 

voltage of 20 kV was applied. The current was about 40 µA. The temperature was set to       

20 °C. Detection of the analytes was performed with a PDA detector at 195 nm. Data obtained 

with this new method were compared to those obtained with the microassay of Theurillat et 

al. [26]. In this assay, a BGE comprising 100 mM phosphate buffer (pH 3.0) and 0.66 % 

highly sulfated γ-cyclodextrin was used. The sample was injected at 6 kV for 15 s across a 

pressure injected plug (1 psi, 20 s) of 50 mM phosphate buffer (pH 3.0). A voltage of 20 kV 

was applied, the current was about 64 µA, the temperature for all parts was set to 25 °C and 

the detection was effected at 200 nm. Typical electropherograms of both methods are 

presented in Fig. 2. Corrected peak areas, i. e. peak areas divided by detection time (units 

µAU), were used to compare the analyte peaks. 
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Figure 2. Representative electropherograms of 6HNK (urine fraction I), norketamine, DHNK        

(100 ng/mL/enantiomer each) and the diluted urine fractions II, III and IV obtained with (A) the 

microassay of Ref. [16] and (B) the newly developed assay. Data obtained for analysis of urine 

fractions I to IV with the microassay BGE are presented as insert in panel A (y-scale shift of 8 mAU). 

The CE conditions were as described in Section 2.5. Key: 1: RR-6HNK (R-I), 2: R-II, 3: SS-6HNK 

(S-I), 4: R-IV, 5: S-II, 6: R-III, 7: S-IV, 8: R-NK, 9: S-III, 10: S-DHNK, 11: S-NK, 12: R-DHNK. 

 

 

6.3.6 Data analysis 

 

SigmaPlot software version 12.5 (Systat Software, San Jose, CA, USA) and Microsoft Excel 

(Microsoft, Redmont, WA, USA) were used for data evaluation. Plug lengths were calculated 

with the CE Expert Lite calculator software (Beckman Coulter, Fullerton, CA, USA) which is 

based on the Poiseuille equation and describes the flow of a fluid through a cylindrical vessel. 
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6.4 Results and discussion 

 

6.4.1 Background and initial attempts for separation 

 

Enantioselective separation conditions comprising 2.0-3.3 % highly sulfated γ-cyclodextrin or 

10 mg/mL of sulfated β-cyclodextrin and reversed polarity revealed that migration times were 

dependent on the lot of the cyclodextrin used and the age of the product [9,17,18,22]. HNK 

stereoisomers migrated slowly and were detected as broad peaks after those of ketamine, 

norketamine and DHNK such that they could not be evaluated accurately. Due to lack of 

standards, the stereochemistry of the four hydroxylated HNK metabolites extracted from 

equine urine and referred to as metabolites I to IV could not be identified at that time [9,22]. 

The recent availability of RR-, SS-, RS- and SR-6HNK revealed that R-I and S-I are RR-

6HNK and SS-6HNK, respectively. RS-6HNK and SR-6HNK could not be detected in 

samples of horses and dogs both in vivo and in vitro (data not shown). 

With use of a smaller amount of the chiral selector and normal polarity, the detection order 

becomes reversed. In the microassay format with 0.6-0.8 % highly sulfated γ-cyclodextrin the 

stereoisomers of ketamine, norketamine, 6HNK and DHNK could be quantitated [26]. 

Separation of the stereoisomers of the four hydroxylated norketamine metabolites I to IV, 

however, was not possible (Fig. 2A). RR-6HNK (metabolite R-I of [9,22]) comigrated with 

metabolite S-IV and SS-6HNK (metabolite S-I of [9,18]) with metabolite R-IV (insert of Fig. 

2A). Similarly, S-II and S-III had the same migration time. Small changes of cyclodextrin 

concentration, buffer concentration (50 instead of 100 mM), plug characteristics and other 

parameters such as applied voltage or cartridge temperature and otherwise identical assay 

conditions did not reveal any significant improvements. Thus, efforts with other buffer 

compositions were investigated namely those based on the use of Tris phosphate [17]. 

Separation of the four hydroxylated norketamine metabolites could not be obtained with       

50 mM, 100 mM or 150 mM Tris phosphate BGEs of pH 2.0 to 4.5 comprising highly 

sulfated γ-cyclodextrin between 0.1 and 0.6 % and 0 to 20 % of an organic solvent (methanol, 

ethanol, propanol, acetonitrile, isopropanol and various mixtures of two of these solvents). 

Varying migration time intervals were observed within one day and between different days 

such that tests with buffers containing Tris and phosphate were not continued.  
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6.4.2 Separations with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin 

 

Further work was geared towards the investigation of various sulfated chiral selectors in a 

solution of 50 mM sodium dihydrogenphosphate adjusted with phosphoric acid to pH 3, 

including sulfated β-cyclodextrin that was previously used by Schmitz et al. and others 

[9,12,18,22–25]. In that work, 10 mg/mL were added to the BGE and the assay was operated 

in the reversed polarity mode. Rabanes et al. used the same selector for separation of 

alprenolol enantiomers under conditions of reversed polarity (5 mg/mL) and normal polarity               

(0.3 mg/mL) [28]. Separation of the stereoisomers of the four hydroxylated norketamine 

metabolites was assessed under normal polarity with increasing amounts of sulfated β-

cyclodextrin in the phosphate buffer (Fig. 3 A-D). With 0.3 mg/mL and 1 mg/mL sulfated β-

cyclodextrin in the BGE no resolution was obtained (Fig. 3A and B) whereas with 5 and         

6 mg/mL respectable separation of the stereoisomers of HNK, norketamine and DHNK was 

observed (Fig. 3C and D). In the former case, there was an interference between S-IV and S-

DHNK (Fig. 3C) and in the latter configuration the separation between R-IV and S-II as well 

as between R-NK and S-IV were insufficient (Fig. 3D). Experiments with other available lots 

of sulfated β-cyclodextrin provided similar results. Finally, mixtures of sulfated β-

cyclodextrin and highly sulfated -cyclodextrin were applied and found to reveal best 

resolution when 0.1 % of highly sulfated γ-cyclodextrin was combined with 5 mg/mL sulfated 

β-cyclodextrin (Fig. 3E). With a higher amount of highly sulfated γ-cyclodextrin (0.2 %) 

separation of all stereoisomers was not observed (Fig. 3F). These data illustrate how delicate 

the composition of the chiral selector is for the anticipated task. Thus, a BGE composed of   

50 mM sodium dihydrogenphosphate adjusted with phosphoric acid to pH 3.0 together with   

5 mg/mL sulfated β-cyclodextrin and 0.1 % highly sulfated γ-cyclodextrin was used for the 

rest of the work presented in this paper. 
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Figure 3. Electropherograms of 6HNK, norketamine, DHNK (100 ng/mL/enantiomer each) and the 

diluted urine fractions II, III and IV obtained with BGEs containing (A) 0.3 mg/mL sulfated β-

cyclodextrin, (B) 1 mg/mL sulfated β-cyclodextrin, (C) 5 mg/mL sulfated β-cyclodextrin, (D)              

6 mg/mL sulfated β-cyclodextrin, (E) a mixture of 5 mg/mL sulfated β-cycodextrin and 0.1 % highly 

sulfated γ-cyclodextrin and (F) 5 mg/mL sulfated β-cyclodextrin and 0.2 % highly sulfated γ-

cyclodextrin. Other CE conditions were as described in Section 2.5. Key: 1: RR-6HNK, 2: R-II, 3: SS-

6HNK, 4: R-IV, 5: S-II, 6: R-III, 7: S-IV, 8: R-NK, 9: S-III, 10: S-DHNK, 11: S-NK, 12: R-DHNK. 

Data presented with a y-scale shift of 5 mAU. 
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6.4.3 Assay development 

 

For electroinjection of analytes as described in [26], a plug of buffer without chiral selector is 

employed to achieve highest sensitivity and to avoid contamination of the sample with the 

negatively charged cyclodextrin and phosphate from the BGE. Plug buffer concentrations in 

the range of 2 to 5 times diluted phosphate buffer were investigated. The separation of 

analytes and sensitivity improved up to a four-fold dilution. Thus, a plug of four times diluted 

phosphate buffer was chosen. The length of the buffer plug was another important aspect [26]. 

Injections at 1 psi for 15 s (17.87 mm plug calculated for 20 °C with CE Expert Lite 

software), 10 s (11.91 mm) and 8 s (9.53 mm) were tested. Best analyte resolution was 

obtained for the 15 s plug. Comparable plugs can also be produced by applying 2 psi for 7.5 s, 

3 psi for 5 s and 4 psi for 4 s (19.06 mm). The last combination was chosen for the assay as 

most repeatable results were obtained under these conditions. Electroinjection was 

investigated with application of 7 kV for time intervals between 5 and 30 s. With a 10 s 

injection the peaks were twice as high compared to application of power for 5 s. With larger 

injection times (20 and 30 s) the peak heights of the slower migrating analytes decreased 

whereas peak heights of the faster migrating analytes increased (20 s) and did not further 

change (30 s). Thus, an injection time of 10 s with 7 kV was chosen for the final method. 

Finally, injections from liquid/liquid extracts prepared with a mixture of dichloromethane and 

ethylacetate (75:25 %, v/v; [9,12,17,22,26,27]) or dichloromethane alone [26] were compared. 

Although best analyte recovery was obtained with the solvent mixture, extraction with 

dichloromethane provided better peak shapes with electrokinetic sample injection [26]. Using 

hexane instead of dichloromethane did not provide any better data. 

 

6.4.4 Assay characterization 

 

Repeatability of detection times was assessed with a mixture of the urine fractions I to IV. 

Interday data (n=7) show RSD values less than 4 % (Table 1). For the same samples the 

corrected areas were evaluated as well (RSD =14-30 % (Table 1)). Due to lack of standards, 

calibration could only be performed for RR- and SS-6HNK, the enantiomers of norketamine 

and the enantiomers of DHNK. The search for an internal standard proved to be difficult. 

Most of the candidates had too long migration times. Imidazole passes the detector about       
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6 min earlier than the first hydroxylated norketamine stereoisomer and can be considered as a 

possible internal standard. The peak of 2,6-xylidine was found to be closer to the HNK peaks. 

It is, however, a metabolite of lidocaine which is often used as comedication of ketamine.  

Samples containing standards of RR- and SS-6HNK and imidazole as internal standard (n=4) 

were prepared at two different concentration level (12.5 and 25 ng/mL), extracted with 

dichloromethane and analyzed. The RSD values for the ratio of the corrected areas of analytes 

and internal standard varied between 5 and 11 %. For RR- and SS-6HNK, the limits of 

detection and quantification were 5 and 10 ng/mL, respectively. 

 

Table 1. Intraday data (n=7) obtained with a mixture containing the urine fractions I-IV 

HNK 

stereoisomers 

Migration time Corrected peak areas 
a)

 

Mean 

(min) 

 

RSD 

(%) 

Mean 

(µAU) 

RSD 

(%) 

R-I 11.15 2.40 244 29.61 

S-I 11.93 2.34 184 19.23 

R-II 11.75 2.53 167 22.75 

S-II 12.43 3.72 2268 19.93 

R-III 13.51 3.03 817 16.55 

S-III 15.45 3.00 234 14.20 

R-IV 12.21 3.02 1485 20.90 

S-IV 13.80 3.10 643 29.20 

a) Peak areas divided by detection time. 

 

6.4.5 Analysis of in vitro and in vivo samples 

 

With the newly developed assay it is now possible to resolve most stereoisomers of 

hydroxylated norketamine metabolites as cations and to detect them with short analysis times. 

Electropherograms obtained with extracts of incubations of racemic ketamine and detomidine 
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with ELM are presented in Fig. 4. The samples were analyzed with the microassay (Fig. 4A) 

and with the new assay for hydroxylated norketamine metabolites (Fig. 4B). Data for 

incubation of ketamine in the presence of detomidine at time intervals of 0, 30, 120 and      

300 min are depicted in panels A and B of Fig. 4. Comparison of the obtained data reveals that 

the latter assay provides much improved data for the stereoisomers of HNK. With that method 

metabolites I and IV are now resolved (see peaks labeled 1, 3, 4, and 7 in Fig. 4B in 

comparison to 4A). The same is true for peaks 2 and 9 (compare with data of Fig. 2). The data 

nicely show that a significant amount of R-IV metabolite is formed in presence of ELM. 

Thus, data obtained with the microassay (Fig. 4A) overestimate the formation of SS-6HNK 

(interference is much larger than 10 %; corrected peak areas of R-IV and SS-6HNK in the  

300 min data of Fig. 4B are 964 and 1996 µAU, respectively).  

 

Figure 4. Electropherograms of incubation samples. 60 µM/enantiomer ketamine were incubated with 

0.16 µM detomidine and ELM for 0, 30, 120 and 300 min. The samples were analyzed with (A) the 

microassay and (B) the HNK-method. CE conditions were as described in Section 2.5. Key: 1: RR-

6HNK, 2: R-II, 3: SS-6HNK, 4: R-IV, 5: S-II, 6: R-III, 7: S-IV, 8: R-NK, 9: S-III, 10: S-DHNK, 11: S-

NK, 12: R-DHNK, 13: R-ketamine, 14: S-ketamine, IST: internal standard d-(+)-norephedrin. An 

unknown peak is marked with #. Data is presented with a y-scale shift of 14 and 6 mAU, respectively. 
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For RR-6HNK, the situation is similar (corrected peak areas of 108 and 348 µAU for S-IV 

and RR-6HNK, respectively). The data obtained with the new assay further reveal that 

metabolites I and IV are formed stereoselectively. This is in agreement with previous 

observations using a different assay format [9,22]. 

Furthermore, metabolites II and III could be detected as well (peaks 2, 6 and 9 representing R-

II, R-III and S-III, respectively, in Fig. 4B). The stereoisomer S-II was not detected in these in 

vitro preparations with ELM. In addition to the hydroxylated norketamine metabolites, the 

newly developed assay provides also peaks for norketamine (peaks 8 and 11 in Fig. 4B), 

DHNK (peaks 10 and 12) and R-ketamine (peak 13). S-ketamine migrates much more slowly 

and was not detected in the analyzed time interval (Fig. 4B). This approach is thus not 

suitable for the analysis of the ketamine enantiomers. For that purpose the previously 

published microassay should be used (Fig. 4A). The migration times in Fig. 4B are shorter 

than those observed in Fig. 2B und 3. Different sample matrices and undefined aging 

processes of the cyclodextrin preparations used are believed to be responsible for that change. 

Furthermore, the results of Fig. 4 indicate that some of the HNK peaks appear earlier than 

those of DHNK. This confirms the pathway presented in Fig. 1 in which DHNK is formed 

from HNK and not directly from norketamine. 

The electropherograms presented in Fig. 5 show the differences in the metabolism between 

dogs and horses. The levels of metabolite IV are much higher in a sample of a pony that 

received 2.2 mg/kg racemic ketamine under isoflurane anesthesia (Fig. 5A) than of a dog that 

received 4 mg/kg racemic ketamine under sevoflurane (Fig. 5B). The samples were collected 

64 and 60 min, respectively, after ketamine injection. In both species the 6HNK stereoisomers 

(peaks 1 and 3 in Fig. 5) are the prevalent hydroxylated norketamine metabolites. They are 

formed stereoselectively. SS-6HNK (peak 3) is dominant in the pony whereas RR-6HNK 

(peak 1) in the dog. Furthermore, these data confirm that the newly developed assay is 

required for equine samples. As discussed above for the in vitro samples, compounds 3 and 4 

have lower impact on the results as was assumed in [27]. Formation of HNK stereoisomers is 

species dependent. This is in agreement with the data of Schmitz et al. [22]. 
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Figure 5. Electropherograms of in vivo samples of (A) a pony that received 2.2 mg/kg racemic 

ketamine under isoflurane anesthesia and of (B) a dog that was treated with 4 mg/kg racemic ketamine 

under sevoflurane anesthesia. The samples were taken 64 min and 60 min, respectively, after ketamine 

injection, were prepared as described in Section 2.4 and were analyzed with the HNK assay under the 

conditions of section 2.5. Key: 1: RR-6HNK, 2: R-II, 3: SS-6HNK, 4: R-IV, 5: S-II, 6: R-III, 7: S-IV, 

8: R-NK, 9: S-III, 10: S-DHNK, 11: S-NK, 12: R-DHNK, 13: R-ketamine. IST: internal standard 

imidazole. Data is presented with a y-scale shift of 10 mAU. 
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6.5 Concluding remarks 

 

Ketamine is mainly metabolized to norketamine, various hydroxylated norketamine 

metabolites and DHNK. The data presented in this paper demonstrate that the newly 

developed assay is a useful tool for analyzing the stereoisomers of these metabolites in 

biosamples. The main focus is on the stereoselective separation of four hydroxylated 

norketamine metabolites that were extracted from equine urine and found in equine, canine 

and human samples. Hydroxylated norketamine metabolites are believed to play an important 

option in the therapy of depressive disorders and even central nervous diseases [16].  A 

mixture of sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin was found to be suitable 

as chiral selector to completely resolve most of the stereoisomers of the four hydroxylated 

norketamine metabolites. The assay is based upon electroinjection across a plug of diluted 

buffer without the chiral selector. Proper adjustment of assay parameters, including plug 

concentration, plug length and analyte injection conditions, provided the conditions for a 

sensitive and repeatable assay. The analysis of in vitro and in vivo samples showed that it is 

important to separate the hydroxylated norketamine metabolites to obtain reliable results for 

RR- and SS-6HNK concentrations. The identification and quantification of HNK peaks other 

than those of SS-6HNK and RR-6HNK will be possible when analytical standards become 

available. The assay will then provide further information about the metabolic pathways of 

ketamine and the participating enzymes. 
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7. Conclusions 

 

The α2-receptor agonists medetomidine, its active enantiomer dexmedetomidine, detomidine, 

xylazine and romifidine have an effect on the ketamine metabolism. In vitro and in vivo they 

influence the formation and/or elimination of ketamine and its metabolites norketamine, HNK 

and DHNK. In vitro studies with canine and human liver mircrosomes and the single human 

CYP3A4 and the canine ortholog CYP3A12 showed that medetomidine is a strong inhibitor 

of the N-demethylation of ketamine to norketamine. The racemic medetomidine inhibits the 

norketamine formation more than the single S-enantiomer dexmedetomidine. Differences 

between the species and liver microsomes and single enzymes were found.  The calculated 

inhibition parameters assessed with the single ketamine enantiomers as substrates revealed 

that the inhibition of the R-norketamine formation is stronger (Chapter 2).   

Reduced norketamine levels under medetomidine sedation in comparison to sevoflurane 

application were determined in in vivo experiments with Beagle dogs. Concentrations of 

ketamine, norketamine, 6HNK and DHNK were measured in plasma samples which were 

collected between 0 and 900 min after ketamine injection. Pharmacokinetics were described 

by using compartmental analysis with two compartment models for ketamine and 

norketamine and single compartment models for 6HNK and DHNK. The calculated 

pharmacokinetic parameters show that medetomidine has an impact on the pharmacokinetics 

of all analyzed compounds. The half-life of ketamine was decreased as well as AUC, tmax and 

cmax of norketamine. Smaller AUC values were also found for 6HNK and S-DHNK. The 

elimination of the metabolites was faster under medetomidine comedication. 

Stereoselectivities were detected for 6HNK (RR-6HNK > SS-6HNK) and DHNK (R-DHNK 

< S-DHNK) (Chapter 4).  

Medetomidine and also detomidine as imidazole derivates have good structural requirements 

for binding to the heme iron of CYP enzymes. This leads to an inactivation of the enzymes 

and was assessed with incubations of ketamine with ELM in presence and absence of α2-

receptor agonists. Detomidine is less hydrophobic and has higher inhibition parameters in 

comparison to medetomidine whereas the inhibition parameters for xylazine and romifidine 

indicate almost no inhibition potential. For extended incubation time intervals xylazine and 

romifidine show an impact on the formation of the ketamine metabolites as well (Chapter 5). 
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Further investigations under consideration of the various cardiovascular effects will have to 

be undertaken in vivo in order to elucidate the impact of the comedication on the plasma 

levels of ketamine and its metabolites. 

Enantioselective CE with cyclodextrin as chiral selector was found to be a good technique to 

determine ppb to ppm amounts of ketamine, norketamine, HNK and DHNK in biosamples. 

For analyzing the N-demethylation of ketamine to norketamine an existing assay was 

optimized and validated. Highly sulfated γ-cyclodextrin could be employed as chiral selector 

and lamotrigine as internal standard. The robust assay (interday RSD < 7 %) requires less 

reagents and less preparation time (Chapter 2). Due to the fact that additional metabolites 

should be considered, a microassay for the stereoisomers of ketamine, norketamine, 6HNK 

and DHNK was developed. The consumption of sample and reagents could be further reduced 

and the assay was determined to be repeatable (interday RSD < 9 %). Furthermore, 

electrokinetic sample injection across a buffer plug provided increased sensitivity. The limit 

of quantification was decreased by a factor of 12 (Chapter 3).  

For a detailed assessment of hydroxylated norketamine metabolites another method had to be 

found. Chiral separation of four hydroxylated norketamine metabolites, norketamine and 

DHNK was obtained by using a mixture of sulfated β-cyclodextrin and highly sulfated γ-

cyclodextrin as chiral selector. This method is also based on electrokinetic sample injection. 

After optimization of a range of parameters, including the composition of the BGE, the 

composition and length of the buffer plug, the injection time and voltage and sample 

preparation, this method could be applied for studying the differences in the formation of 

hydroxylated norketamine metabolites between dogs and horses (Chapter 6). At the moment 

only analytical standards for RR- and SS-6HNK are available. The other hydroxylated 

norketamine metabolites will have to be identified in the future.  

The pathways in the ketamine metabolism and the involved enzymes must be further 

elucidated also with regard to the discussion about hydroxylated norketamine metabolites and 

their role in human therapy. The presented methods can play a role in the determination of 

ketamine and its metabolites in in vitro experiments and in blood, urine or tissue samples of 

clinical trials. Investigations of the effects of the different α2-receptor agonists on the 

ketamine metabolism in vitro were only the first step to improve safety in veterinary 

anesthesia. In vivo studies must follow. Such investigations are also important for human 

medicine in which the combination of dexmedetomidine and ketamine is applied as well.
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