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THESIS OVERVIEW 
 

This PhD thesis is based on the following publications: 

 Gonzalez-Sandoval A., and Gasser, S.M. Towards the functional relevance of spatial 
organization of chromatin in interphase nuclei. In preparation. 

 Harr, J.C., Gonzalez‐Sandoval, A. & Gasser, S.M. (2016) Histones and histone 
modifications in perinuclear chromatin anchoring: from yeast to man. EMBO reports, 
p.e201541809. 

 Gonzalez-Sandoval et al. (2015). Perinuclear Anchoring of H3K9-Methylated 
Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos. Cell. 163, 1333-1347. 

 Gonzalez-Sandoval A., Towbin B.D., and Gasser, S.M. (2013). The formation and 
sequestration of heterochromatin during development. FEBS Journal. 280, 3212–
3219. 

 Towbin B.D., Gonzalez-Sandoval A., and Gasser, S.M. (2013). Mechanisms of 
heterochromatin subnuclear localization. Trends in Biochemical Sciences. Vol. 38, No. 
7, 356-363. 

 

This thesis consists of four chapters. Chapter 1 and 2 are based on published manuscript 
(Gonzalez-Sandoval et al., 2015). Chapter 3 includes unpublished experimental data and 
Chapter 4 summarizes the work and discusses future directions. 

Chapter 1 is an introduction based in reviews from the Gasser lab, to which I have 
contributed. These are recently published (Gonzalez-Sandoval et al., 2013; Harr et al., 2016; 
Towbin et al., 2013) or in preparation  (Gonzalez-Sandoval and Gasser S.M.). The main 
message of each review is kept but they are arranged or modified in a way to avoid 
redundancy and provide clarity. Additional relevant literature that is not discussed 
adequately in either of the reviews has been included. The chapter gives an updated overview 
of the field of spatial organization of chromatin in the interphase nucleus. 

Chapter 2 presents the work published in Cell, 2015. It is an experimental chapter in which 
I present the identification, characterization and function of a novel C. elegans chromodomain 
protein called CEC-4 (Caenorhabditis elegans chromodomain protein 4), which mediates the 
anchoring of chromatin at the nuclear periphery in C. elegans embryos. Experiments were 
primarily performed by myself, but I indicate where others have carried our experimental 
work for this publication. 

Chapter 3 presents unpublished data that further characterizes CEC-4. 

Finally, Chapter 4 places the work presented in the thesis in the context of spatial chromatin 
organization and provides a future outlook based on this study. 
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CHAPTER 1: INTRODUCTION 
 

Based on scientific reviews of the field that are published or in preparation, to which I have 
contributed (see Thesis Overview for list). 

 

SUMMARY 

In eukaryotic organisms, gene regulation occurs in the context of chromatin. Local 
modulation of DNA accessibility and contacts with other loci or distal regulatory elements 
(enhancers) provides a level of regulation that establishes and maintains differential 
transcription states.  Moreover, chromatin is not randomly distributed inside the nucleus and 
specific types of chromatin can occupy distinct nuclear regions. In the interphase nucleus, 
euchromatin and heterochromatin occupy distinct space. This organization can add further 
constraints to fine-tune gene expression. Heterochromatin is progressively formed and 
becomes enriched at the nuclear periphery during differentiation in multicellular organisms. 
A long-standing question is whether this type of spatial segregation contributes to the control 
of gene expression. An understanding of the mechanisms that govern this type of nuclear 
organization will shed light on its functionality. Here we describe the field of nuclear 
organization, focusing on the segregation of chromatin near the nuclear periphery. We 
summarize the mechanisms that have been proposed to date to mediate such chromatin 
organization. 
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NUCLEAR ARCHITECTURE  

Cell identity is determined by the specific set of genes that are expressed (and repressed) at 
a given time. The packaging of DNA into chromatin is critical both for the physical 
compaction of the genome into the nucleus and to regulate access to the genetic material for 
DNA-based transactions, such as transcription, replication and repair. The winding of DNA 
around the nucleosome, to form the basic repeat unit of chromatin, is sufficient to antagonize 
DNA recognition by sequence-specific binding factors (Cote et al., 1994).  

On the level of the individual genes, there is a strong correlation between transcriptional 
activity and associated histone modifications. Histone modifications can influence the 
recruitment of non-histone proteins, determining the level of chromatin compaction, 
transcription factor binding, and RNA polymerase (Pol) elongation. Beyond the nucleosome, 
chromatin folds into successively higher-order structures that remain poorly described on a 
molecular level. 

In a higher order of organization, chromosomes are not randomly positioned but rather 
maintain a certain “territory”, with some chromosomes being more internal than others 
(Cremer et al., 2001; Spector, 2001). This radial distribution correlates with the density of 
LINE/SINE repetitive elements in mammalian cells (Meuleman et al., 2013). One example 
of these territories is the inactivated X-chromosome in mammals, which localizes close to the 
nuclear periphery and is highly compacted (reviewed in Sharma and Meister, 2015). 
Additionally, some chromatin segregates into foci marked by specific proteins, such as P-
bodies which are enriched for Polycomb group proteins (Sexton et al., 2012). Dense-staining 
heterochromatin often clusters or segregates towards the nuclear periphery and around the 
nucleolus during differentiation. The more open, euchromatic, regions are dispersed in the 
nucleoplasm or underlie nuclear pores (Comings, 1980).  

The functional significance of chromatin segregation is a matter of debate. It is hypothesized 
that compartmentalization facilitates the concentration of factors, leading to an increased 
efficiency of biological functions that rely on proteins present in limiting concentrations. In 
many cases it has been difficult to untangle whether organization is a consequence or a cause 
of this regulation (Meister and Taddei, 2013). How sequestration acts, remains poorly 
understood. 

The specific aim of this thesis is to investigate the association of heterochromatin with the 
nuclear periphery in C. elegans embryos, in order to address its functionality. The following 
sections review our understanding of chromatin organization inside the interphase nucleus. 
I will first present the best characterized example of chromatin organization: the budding 
yeast nucleus. Even though the mechanism through which it silences chromatin is more of 
an exception than a paradigm for other species, some of the underlying mechanisms appear 
to be applicable to chromatin organization in other organisms.  

 

Budding yeast as an example of nuclear architecture 

Much of our understanding of the molecular mechanisms that drive nuclear organization 
stems from studies in budding yeast (S. cerevisiae), even though its nucleus is small and 
heterochromatic domains are scarce (Taddei and Gasser, 2012). Unlike centromeres in other 
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species, those of budding yeast are defined by a short, non-repetitive sequence that forms a 
“point-like” kinetochore. Repetitive DNA and heterochromatin-like domains in yeast are 
found at the ends of each chromosome and at two silent mating type loci on its “sex 
chromosome”, Chromosome III. Constitutive repression of transcription at these mating-type 
loci uses the same mechanism as subtelomeric domains.  

Yeast chromosomes adopt a striking organization within the interphase nucleus. The 
centromeres anchor to the spindle-pole body (SPB) and the telomeres cluster with silent 
mating type loci in 3 to 8 foci distributed at perinuclear sites that are distinct from nuclear 
pores (reviewed in Taddei and Gasser, 2012) (Figure 1.1). This configuration reflects the so-
called Rabl organization of chromosomes, which arises during mitosis when a force is placed 
on centromeres as they are pulled to opposite ends of the nucleus by the mitotic spindle. 
Telomeres are dragged behind as chromosomes segregate and this contributes to their 
clustering which is based on chromosome arm length, and their subnuclear positioning away 
from the SPB (Schober et al., 2009; Schober et al., 2008). During interphase, a large single 
nucleolus, which occupies nearly a third of the nuclear volume, is positioned directly opposite 
the SPB. The nucleolus is a scaffold not only for ribosome biogenesis, but also for tRNA 
(transfer RNA) genes which associate with the periphery of the nucleolus when actively 
transcribed (Thompson et al., 2003). However, recently it has been described that during 
mitotic (M) phase some tRNAs are transcribed near nuclear pores to coordinate with nuclear 
export. This set of tRNAs are not found close to the nucleolus at any stage (Chen and 
Gartenberg, 2014).  

The spatial organization in yeast was originally documented using imaging techniques such 
as FISH (Fluorescence in situ hybridization), GFP-protein fusions and GFP-LacI/lacO 
localization. Moreover, recent studies using ligation-based Chromosome Conformation 
Capture (3C) technology (reviewed in de Wit and de Laat, 2012) have confirmed this polarized 
organization, and the importance of the nucleolus in yeast as an organizational element 
(Berger et al., 2008). Consistent with imaging approaches, 3C and 4C (Chromosome 
Conformation Capture on Chip) results detect a spatial juxtaposition of centromeres and 
telomeres in separate foci, but not for tRNAs, putting into question the robustness of the 
earlier imaging data (Duan et al., 2010; Miele et al., 2009).  

The sequestration of silent domains and the SIR (Silent Information Regulator) complex in 
perinuclear foci (Gotta et al., 1996; Palladino et al., 1993), and the association of a subset of 
inducible genes at nuclear pores (Casolari et al., 2004), suggest that nuclear 
subcompartments may have specialized functions. This hypothesis has been tested in 
budding yeast in the context of transcription by several laboratories (Andrulis et al., 1998; 
Casolari et al., 2004; Egecioglu and Brickner, 2011; Taddei et al., 2006; Taddei et al., 2009). 
In particular, the clustering of silent chromatin domains encouraged scientists to test 
whether telomeric foci promote repression. This was achieved by tethering a gene at the 
nuclear envelope (NE) and placing it artificially near a telomere, through addition of a 
transmembrane domain. This tethering did favor silencing, but only if the reporter construct 
contained a “silencer”, a short sequence element that targets the SIR repression complex 
through its interaction with sequence-specific binding factors (Andrulis et al., 1998). Besides 
this silencer, position-dependent repression also required that yeast telomeres were clustered 
in foci at the NE, leading to a local enrichment of SIR factors (Taddei et al., 2009). It was 



11 
 

concluded that the critical parameter for repression is proximity to sufficiently abundant 
pools of SIR factors, and not to the NE per se (Taddei et al., 2009). 

While this peripheral positioning facilitates SIR-mediated silencing in wild-type cells, in 
some mutant conditions it is not required for repression. Notably, the loss of telomere 
anchoring led to the dispersion of SIR proteins from silencing foci, and allowed promiscuous 
repression across the genome of a handful of genes. Coincidentally, telomere-proximal 
promoters were derepressed (Taddei et al., 2009). This shows that presence of foci containing 
repressed, repetitive chromatin, affects transcription genome-wide. Additional proof for 
effects of spatial organization came from a gain-of-function experiment in which a gene was 
targeted to the nuclear pore. The promoter was roughly 2 fold more active at the pore, 
showing that transcription of some promoters can indeed be favored by positioning at the 
pore rather than in the nucleoplasm (Taddei et al., 2006). This is consistent with the finding 
that genes induced by heat-shock or by growth on non-glucose carbon sources shift to the 
nuclear periphery and associate with the nuclear pore upon activation (Akhtar and Gasser, 
2007; Egecioglu and Brickner, 2011). Taken together, one can argue that the nuclear 
periphery can favor either repression or activation, depending on the sequence and context 
of the promoter as well as the NE factors to which chromatin is associated. The important 
principle is that position alone does not determine activity state, yet spatial juxtaposition can 
cooperate with cis-acting sequences and regulatory factors to favor a transcriptional state.  

 

 

Figure 1.1. The budding yeast nucleus. The rDNA (ribosomal DNA) locus is sequestered apart from 
the rest of the genome in the nucleolus (in yellow) where RNA Pol I transcribes and assembles 
ribosome subunits and RNA Pol III transcription foci (blue circle) can be observed. Repressed telomere 
clusters (in orange) can be found in proximity to the nuclear periphery. Centromeres are clustered 
close to the Spindle Pole Body (SPB) – not depicted. Inducible genes bind the nuclear pore complex 
(NPC), as well as some tRNAs during M phase. Transcription of RNA Pol II genes can be found spread 
throughout the nucleus (Off/On). Image reprinted from (Taddei and Gasser, 2012).  

 

The organization of chromatin such as tethering to the nuclear periphery, localization at 
pores or the nucleolus, can also be seen in other organisms. Yeast is a model system that has 
provided an advantage in understanding the molecular principles of nuclear organization.  
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In the following sections I will summarize our understanding of chromatin organization in 
other organisms, starting from the basics of chromatin types and what is known about long-
range chromatin contacts and their functionality. The second half of this chapter will describe 
the features of chromatin that come in contact with the nuclear periphery, known factors 
involved in this positioning and open questions in this field of study. 

 

CHROMATIN TYPES 

Since the earliest studies on integrated gene reporters (Dobzhansky, 1936), it has been 
documented that the landing location or “position” of the reporter impacts expression. 
Unfortunately, no clear explanation of this effect was identified. Thanks to the revolution in 
genome wide mapping of different chromatin related factors and histone modifications, 
chromatin has been classified into different types (reviewed in Ciabrelli and Cavalli, 2015) 
giving a notion that indeed not all genomic regions share the same characteristics, and if a 
reporter lands close to a specific chromatin type, that neighborhood can influence its 
expression levels. According to these classifications, there are ‘active’ chromatin domains as 
well as ‘inactive’ ones (Figure 1.2). Active chromatin is marked by histone modifications such 
as methylation (me) of histone H3K4, K36, K79, acetylation (ac) on H3 and H4 N-terminal 
tail lysines and multiple factors related to active gene transcription such as RNA Pol II 
(Filion et al., 2010; Kharchenko et al., 2011). Inactive chromatin was found to be further 
subdivided depending on the combination of different factors or the lack of enrichment of 
some of them (reviewed in Bickmore and van Steensel, 2013; Ciabrelli and Cavalli, 2015). 
Relevant to our studies, we highlight two of these inactive chromatin types: (1) Polycomb-
enriched which also contain the repressive histone modification H3K27me3, such as Hox 
clusters, X-inactivation sites and imprinted regions; (2) Lamina-associated domains (LADs) 
that are enriched for repressive H3K9me2 and H3K27me3 at the borders but not necessarily 
Heterochromatin protein 1 (HP1, a canonical reader of methylated H3K9), and tend to be 
gene poor (Guelen et al., 2008; Pickersgill et al., 2006). Recently, it was shown by a method 
called Thousands of Reporters Integrated in Parallel (TRIP) that endogenous active genes 
have a higher impact on expression of nearby integrated reporters (within 200 kb range), 
than inactive genes. It remains to be determined how propagation of the ‘active’ status 
happens. In addition, LADs were found as true attenuators of transcription, in part due to 
low density of functional enhancers, poor accessibility of binding factors, and degree of 
compaction, although all of these factors combined do not fully explain the capacity of LADs 
to reduce transcription. Indeed, other unknown features may contribute to the mechanisms 
that regulate transcription in LADs (Akhtar et al., 2013).  
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Figure 1.2. Schematic representation of chromatin types. This figure does not represent any actual 
data. For conceptual simplicity we just represent chromatin types with few known chromatin factors. 
Depending on the type of factor enriched on specific positions: proteins (Lamin, Polycomb, MRG, HP1), 
histones (H1, H2A.Z) or histone modifications (H3- K4me3, -K9me3, -K27me3, -K36me3 or 
H4K20me3), chromatin can be grouped into different categories. The overall consensus is that there 
are different groups of active (blue and green) and repressed (black, orange, yellow) chromatin. 

 

LONG-RANGE CHROMATIN INTERACTIONS 

Transcriptional regulation is not solely through the proximal promoter region of a gene, but 
also distal regulatory elements, such as enhancers, have been shown to participate in such 
regulation. Assembly of multiple factor complexes aid in these long-range interactions, which 
can be intra- or inter- chromosomal contacts. Several methods have emerged to study the 
three-dimensional (3D) arrangement of chromatin inside the nucleus. A method that 
identifies the likelihood of sequence-sequence interactions, called Chromosome Conformation 
Capture (3C) (Dekker et al., 2002) and its derived techniques, in particular Genome-wide 3C 
(Hi-C), allow the definition and study of such chromatin contacts (reviewed in de Wit and de 
Laat, 2012). Several studies have defined units of chromatin that are in close proximity with 
each other in a 3D space - Topological associated domains (TADs) (Dixon et al., 2012; 
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Lieberman-Aiden et al., 2009; Nora et al., 2012; Sexton et al., 2012).  TADs are generally 
conserved among different cell types and across species (Jin et al., 2013; Rao et al., 2014; 
Vietri Rudan et al., 2015), however Dixon et al. found discrete chromatin reorganization 
during lineage specification in human embryonic stem (ES) cells (Dixon et al., 2015).  The 
insulator protein CCCTC-binding factor (CTCF) as well as Cohesin are enriched at the 
borders of TADs, and have been described to play a role in the formation and maintenance of 
long-range chromatin loops (Hadjur et al., 2009; Mishiro et al., 2009; Nativio et al., 2009). In 
addition, it has been shown that across species, CTCF binding orientation is conserved and 
sequence divergence of the binding insulation region underlies changes in local structures 
within TADs (Rao et al., 2014; Vietri Rudan et al., 2015).  

Chromatin has been separated into two major compartments: A and B, by associations 
between TADs, located both in cis and in trans. The A compartment is enriched for proteins 
and histone modifications involved in active transcription and is correlated with early 
replication. The B compartment is related to inactive gene expression, enriched for inactive 
factors and histone marks and correlated with late replication (Dixon et al., 2012; Ryba et 
al., 2010). Recently, these A and B compartments have been further subdivided into two and 
four subcompartments respectively, thanks to higher resolution in Hi-C data (Rao et al., 
2014).  The relationship of chromatin contacts, global chromatin organization and gene 
regulation is an active area of study. Chromatin contacts among enhancers and promoters 
can precede gene activation and most of the contact changes have been reported within the 
same TAD, with relatively few associations between different TADs (Dixon et al., 2012; Jin 
et al., 2013; Noordermeer et al., 2011; Sexton et al., 2012). CTCF-mediated loops were 
strongly enriched at the border of LADs (Handoko et al., 2011), while LADs themselves were 
refractory to loop formation. This suggested an intimate link between the anchoring of 
chromatin to the nuclear lamina, and an inhibition of long-range DNA contacts mediated by 
CTCF (Phillips and Corces, 2009). CTCF was also found enriched around euchromatic islands 
within large heterochromatic domains (Wen et al., 2012), suggesting that it may also control 
the spread of lamin association in cis. 

Hox gene clusters are a well-studied system of chromatin architecture. Gene expression 
inside a cluster is coordinated in time and space during embryonic development. These genes 
are colocalized in the genome in an order that corresponds to their actual expression along 
the body axis, which is termed collinear expression (Noordermeer and Duboule, 2013). The 
HoxD cluster is involved in vertebrate limb development, and some genes within are 
transcribed in two subsequent phases. Central genes are transcribed early, which will 
correspond to the central part of the limbs (forearm and partially the arm); later an 
overlapping group of genes together with genes closer to one extremity of the cluster will be 
expressed in the corresponding distal part of the limbs (hand). The mechanism of regulation 
of genes being transcribed in the early and late phases of the HoxD cluster involves the switch 
of regulatory elements between two adjacent TADs, denominated telomere-proximal and 
centromere-proximal domains (T-DOM and C-DOM, respectively), flanking the HoxD cluster 
(Andrey et al., 2013). Hoxd11 to Hoxd9 genes are expressed in both early and late phases of 
limb development. In early stages their expression is driven by T-DOM regulatory region and 
in late phases it is the C-DOM region which participates in control of expression (Figure 
1.3A). Coincident with the switch, there is a loss of the active histone mark H3K27ac, and 
gain of H3K27me3 in the T-DOM region and gain of H3K27ac over the C-DOM in digits. This 
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study highlights the importance of chromatin contacts in the fine-tuning of gene expression 
during development; showing that the change of chromatin interactions of regulatory 
elements localized in different topological domains contributes to the timing and patterning 
of expression of the HoxD cluster. What are the factors triggering the switch of regulatory 
regions? Is this type of topological switch governing other type of loci through development 
or does it only apply to collinear gene regulation? 

Recently, Lupianez et al. very elegantly addressed the impact of 3D chromatin organization 
on human limb development (Lupianez et al., 2015). Specifically, they studied three diseases 
that carry structural variations of a genomic region that encompasses the EPHA4 gene-
containing TAD and its flanking TADs. (1) Brachydactyly involves a heterozygous deletion of 
a 1.75-1.9 Mb region including the gene EPHA4 and the TAD boundary to the right of the 
locus. Importantly, EPHA4 inactivation alone does not cause limb skeleton changes 
(Helmbacher et al., 2000). (2) F-syndrome involves a heterozygous inversion of a 1.1 Mb 
genomic region, disrupting the orientation of a gene cluster adjacent to the WNT6 gene, with 
an additional change in orientation of the left side EPHA4-containing TAD boundary. (3) 
Polydactyly holds a heterozygous 900 kb duplicated region which brings the IHH gene, from 
the left flanking TAD, in proximity to the EPHA4-containing TAD; in mice polysyndactyly 
was shown to be caused by a 600 kb deletion affecting the same region.  

In this study, the authors engineered alleles in mice that mimic the rearrangements of the 
first two described human diseases and used an existing mouse model of polydactyly. Hi-C 
and 4C techniques were used to study the long-range interaction changes among these allele 
variants, as well as to check patterns of expression in limbs of key genes associated to these 
diseases: Pax-3 for brachydactyly, Wnt6 for F-syndrome and Ihh for polydactyly. For each 
allele variant, there was a boundary loss of the EPHA4-containing TAD and each of the 
probed genes gained contact with a regulatory region within the EPHA4-containing TAD 
(Figure 1.3B). Concomitant with this ectopic interaction, was a change in expression pattern 
of Pax-3, Wnt6 and Ihh in their respective disease alleles. Interestingly, this ectopic 
expression was highly similar to the pattern of expression of Epha4 for all of them, suggesting 
that regulatory sequences governing the expression pattern of Epha4 were aberrantly 
affecting the expression of the probed genes due to their gained interaction frequency with 
Epha4 TAD. Remarkably, applying the same long-range interaction experiments to 
fibroblasts cells of limb malformation patients revealed the same ectopic interactions. 
Furthermore, the authors identified a small common region (around 150 kb) between all the 
ectopic interactions in both mouse and human and found a cluster of enhancers that interact 
with EPHA4 promoter in wild-type conditions.  Confirming the importance of the TAD 
boundary, similar deletion alleles of brachydactyly and mouse polydactyly were produced, in 
which the region containing a predicted TAD boundary element was left intact (100-200 kb). 
Leaving the TAD boundary intact was sufficient to prevent the formation of limb 
abnormalities. The genes retained their endogenous expression pattern and there were no 
ectopic interactions with the EPHA4-containing TAD. Clearly, this shows that chromatin 
architecture, defined by TAD boundaries, is implicated in the phenotypes of the disease. In 
other words, once TAD borders are disrupted, ectopic interactions arise and gene mis-
expression occurs, triggering morphological limb defects. It remains an open question 
whether other developmental genes are regulated in a similar manner.  
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Figure 1.3. Involvement of TADs in the regulation of limb development. (A) Expression of the HoxD 
cluster during development of limbs involves the switch between two adjacent TADs. The telomere-
proximal domain (T-DOM) regulates early transcription in the arm and forearm. The centromere-
proximal domain (C-DOM) subsequently patterns the hands. During limb development, a switch 
occurs between landscapes as specific HoxD genes swing from one regulatory domain to the other 
through a conformational change. This modular organization creates a domain in-between, which will 
form the wrist. Image reprinted from (Andrey et al., 2013). (B) Disease-associated structural variants 
affecting TAD boundaries of the EPHA4-containing TAD (TADa), cause pathogenicity by acquiring 
ectopic interactions of gene promoters in TADb and TADc with the Enhancer cluster in TADa leading 
to altered gene expression. Gene1 = EPHA4, Gene2 = PAX3, Gene3 = IHH, Gene4 = WNT6. The 
different Enhancer-GeneX interactions lead to different malformation syndromes. Image reprinted 
from (Lupianez et al., 2015). 
 

SPATIAL SEGREGATION OF CHROMATIN 

A recurrent theme in nuclear organization is the spatial segregation of chromatin subtypes.  
Chromatin domains with high transcriptional activity are located in the nuclear center and 
in some cases associated with nuclear pores, while transcriptionally silent domains are 
associated with the nuclear periphery and the nucleolus. Although some differentiated cells 
such as those found in the rod photoreceptor cells of nocturnal rodents (Solovei et al., 2013) 
have an inverted nuclear organization, most cells from yeast to man have the conventional 
distribution of active and inactive domains. In the earliest stages of mammalian 
embryogenesis, cells are characterized by extensive chromatin remodeling, including 
dynamic changes in DNA methylation, histone variants and histone modifications (Fadloun 
et al., 2013). A rapid exchange of the core histones, H2A, H3.1, and H3.2, is seen in murine 
pre-implantation embryos, yet this is lost as cells transition from undifferentiated to more 
determined states (Boskovic et al., 2014). Unlike most somatic cells, pericentromeric major 
satellite sequences are initially localized around pre-nucleolar bodies and only later become 
clustered forming structures called chromocenters (Martin et al., 2006).  
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In mammals, the Barr body is one prominent structure inside the nucleus of female cells. It 
is localized mostly at the nuclear periphery or around the nucleolus, and contains the inactive 
copy of the X chromosome coated with the Xist long non-coding RNA and typical repressive 
histone marks of heterochromatin (DNA methylation on CG-rich promoters, Polycomb group 
and H3K27 and H3K9 methylation) (Brinkman et al., 2006). Inactivation of the X 
chromosome is needed for gene dosage compensation, as males have one X chromosome (XY) 
and females have two (XX). Many studies have addressed the mechanism that inactivate one 
X chromosome in female cells (Heard and Disteche, 2006) but the contribution of its spatial 
relocation remains unclear.  Recently, it was described that depletion of the NE protein LBR 
(Lamin B Receptor) leads to an upregulation of genes on the inactive X, but no change in the 
position of the chromosome (McHugh et al., 2015). In contrast, the long non-coding RNA Firre 
was found to play a role in anchoring the inactive X to the nucleolus and maintaining the 
repressive H3K27me3 mark, but interestingly no gene reactivation was seen (Yang et al., 
2015). Perhaps due to unchanged levels of H3K9 methylation the repressed status of the 
genes is unaltered, which was not tested in the mentioned study. It will be interesting to look 
for a factor that is required for the repositioning of the silent X towards the nuclear periphery 
at the very early points of inactivation, in order to understand its functional participation in 
the process.  

Importantly, in the case of C. elegans the dosage compensation strategy is different, yet it is 
again linked to spatial nuclear organization. Hermaphrodites downregulate the expression 
of both copies of the X chromosome, to match the expression of the single X chromosome of 
males (Strome et al., 2014). Chromosome X in hermaphrodite worms is enriched for 
H3K27me1 in contrast to mammalian X chromosome which is enriched for H3K27me3; 
enrichment of H3K9 methylation happens only on the left arm of the chromosome. Even 
though the X chromosome modifications and dosage compensation strategy in nematodes 
differs from those in mammals, a molecular mechanism of perinuclear positioning and gene 
regulation of this chromosome has been proposed. It was shown that the X chromosome in 
males localizes to the nuclear periphery by interaction with nucleoporins, allowing an 
increase in X-linked gene expression (Sharma et al., 2014).  

Another example of spatial segregation of chromatin is seen in C. elegans where tRNA 
clusters are expressed in proximity to nuclear pore proteins (Ikegami and Lieb, 2013). Stress-
induced genes in particular, tend to co-localize with nuclear pores both prior to and after their 
induction, in organisms as diverse as yeast, flies and worms (Brickner and Walter, 2004; 
Dieppois et al., 2006; Kurshakova et al., 2007; Rohner et al., 2013). Therefore, one has to keep 
in mind that segregation of chromatin to the nuclear periphery can facilitate both activation 
and repression, and the outcome depends on the interactor partners at the nuclear periphery.   

In addition, there have been reports of age-related changes in chromatin organization in 
human fibroblasts. Specifically, chromatin normally located at the nuclear periphery 
reorganized into foci and shifted to the nuclear center during senescence. Oncogene-induced 
senescence (OIS) is generated by activation of RAF1 kinase in the model system WI-38h 
(Jeanblanc et al., 2012) and is used as a model for aging related studies. The foci formed on 
OIS cells are called SAHF (senescence-associated heterochromatic foci) and are enriched for 
H3K9 methylation and HP1. Chandra et al. characterized the changes in chromatin 
organization by carrying out Hi-C on growing and senescence induced cells and observed a 
global change in chromatin interactions between the two cell types. Contrary to their 
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expectations, senescent cells had a reduction of local contacts in GC-poor LADs correlating 
with a loss of LMNB1 association, and a gain of new loci relocating to the nuclear periphery. 
As expected, the same LADs that lost local contacts, gained distal interactions being freer to 
interact in trans. Analyzing pre-senescent cells they observed that LADs that lose local 
contacts are first marked by a shift towards earlier replication timing. This suggests that 
replication, can trigger changes in chromatin organization (reviewed in Rhind and Gilbert, 
2013). Finally, Progeria fibroblast (as another model for studying aging) and IOS cells shared 
only loss of local contacts in GC-poor LADs as a common feature, explaining that SAHF 
formation comes from the additional gain of distal contacts in OIS cells (Chandra et al., 2015). 

The question remains, how do we reconcile the microscopy based observations of chromatin 
in the nucleus and the chromatin contacts measured by deep-sequencing molecular 
approaches? This major task will be the next required step to broaden our understanding in 
the functionality of nuclear organization. One has to keep in mind that microscopy based 
assays address single cell measurements and molecular methods are mostly based on cell 
populations, therefore the direct link between these approaches is not straightforward. The 
spatial organization of the genome involves a hierarchy of structures, from chromatin loops 
that connect genes with distal regulatory elements intra- or inter-chromosomally, to 
chromosome territories and then nuclear subcompartments (Figure 1.4). An interesting 
perspective of nuclear organization is reviewed in (Gibcus and Dekker, 2013). In any given 
cell, longer chromatin domains tend to be more stable within one cell cycle, but the pattern 
will not be reproduced in the subsequent cycle. In contrast, chromatin contacts between loops 
within TADs are variable within each cell cycle, but highly reproducible in the next cycle. 
Concluding that TADs are the chromatin units that confer chromatin organization in both 
directions, stability and reproducibility (Gibcus and Dekker, 2013). One would have to keep 
this in mind when trying to make the connection between the microscopy observations and 
the molecular approaches.  

 

Figure 1.4. Schematic representation of the spatial segregation of chromatin inside the nucleus. TADs 
are units of chromatin in which long-range chromatin contacts occur – distal regulatory elements 
(Enhancers) interact with promoters to activate (green arrow) or repress (red arrow) genes. On 
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different scale, the nuclear lamina (represented by Lamin only) and the nucleolus serve as repressive 
nuclear compartments (TAD2/LAD and TAD5/NAD, respectively), repressed chromatin can also be 
found as foci in the nucleoplasm (TAD3). Active chromatin is generally found in the nucleoplasm 
(TAD4), but certain loci are also found actively expressed (TAD1) at nuclear pore complexes (NPC). 
NE – Nuclear envelope. 

 

Spatial organization is seen across species and one distinctive feature is the enrichment of 
heterochromatin at the nuclear periphery. In the next section, I will discuss the emerging 
role of the nuclear periphery as a sub-compartment within the nucleus. 

 

Tethering towards the nuclear lamina 

Studies in organisms including yeast, worms, flies and mammals have been performed to 
understand the mechanism and function of the sequestration of chromatin to the nuclear 
periphery, although it is not fully understood yet. Below is a summary of experimental 
evidence of factors involved in chromatin tethering (across species) to create a broad picture 
and to asses our current level of understanding of the molecular mechanisms implicated in 
tethering. 

The visualization of genetic loci in living cells by time-lapse microscopy has shown that 
chromatin undergoes constant Brownian-like motion in the nucleus within restricted 
domains (Heun et al., 2001; Marshall et al., 1997). Interestingly, silent genes that are 
associated with the nuclear periphery are more constrained in their movement than active 
genes in the nuclear center (Chubb et al., 2002; Hediger et al., 2002; Heun et al., 2001). This 
suggests that genes at the nuclear periphery could be molecularly tethered, albeit in a 
reversible manner, to a relatively immobile nuclear landmark structure. The radial 
distribution of chromatin subtypes change significantly during cell differentiation. This 
altered positioning can be observed during physiological events, such as mammalian 
hematopoiesis (Brown et al., 2001; Hubner et al., 2015; Kosak et al., 2007; Ugarte et al., 2015) 
or C. elegans development (Fakhouri et al.; Meister et al., 2010) and with induction of 
neuronal cell types from pluripotent ES cells (Dixon et al., 2015; Peric-Hupkes et al., 2010; 
Williams et al., 2006). While all cells of an organism contain the same DNA sequence, it is 
the expression of cell-type specific genes at the appropriate time that determines cell fate and 
function. Given that gene activity depends on transcription factor availability, histone 
modification and local chromatin structure (Chen and Dent, 2014; Gomez-Diaz and Corces, 
2014), the inner nuclear membrane (INM) sequestration of promoters might impact these 
factors, or impose an added layer of regulation. 

Heterochromatin is enriched in repressive histone modifications including, H3K9me2 and 
me3. Distribution of H3K9me2 and me3 changes with the establishment of differentiated cell 
states. Furthermore, the differentiation of stem cells was shown to be dependent on G9a, the 
H3K9 methyltransferase responsible for mono- and di-methylation (Ugarte et al., 2015). 
Another study reported an increase in levels of H3K9me2 during ESC differentiation, and 
the concurrent formation of “large domains of chromatin bearing H3K9-modifications” or 
LOCKs (Wen et al., 2009). In contrast, Lienert et al. found that the total level of H3K9me2 
was stable during the transition from ESC to differentiated neurons, although they scored 



20 
 

changes at specific promoters (Lienert et al., 2011). While these varied conclusions may stem 
from different modes of quantitation (Filion and van Steensel, 2010; Hu et al., 2012), it is 
clear that methylation of H3K9 correlates with enhanced efficiency in reprogramming cell 
fate (Bao et al., 2015; Baxter et al., 2004; Chen et al., 2013; Sridharan et al., 2013). Indeed, 
independent of its level, the subnuclear distribution of H3K9me3 changes as cells 
differentiate, as was particularly well documented during rodent development (Solovei et al., 
2009; Solovei et al., 2013). Additionally, down-regulation of both PRDM3 and PRDM16 (two 
H3K9-specific mono-methyltransferases) led to loss of H3K9me1, which precluded higher 
levels of H3K9 methylation. This alteration lead to dispersal of centromeric foci, 
accumulation of major satellite transcripts, and perturbed the ultrastructure of the nuclear 
lamina (Pinheiro et al., 2012), further implicating H3K9 methylation as an important signal 
on chromatin for nuclear organization. It is important to note that centromeric foci are not 
necessarily lamin-associated, yet there may be secondary effects from the loss of one 
heterochromatic structure what would impact on other chromatin domains, leading to 
disruption of overall chromatin organization. Alternatively, the loss of one heterochromatin 
compartment may feedback to influence the integrity of the lamin/LAD compartment, 
generating the described phenotypes indirectly. 

The major ligand of H3K9 methylation is HP1, which has at least three isoforms in 
mammalian cells (HP1α, HP1β and HP1γ) and two in C. elegans (HPL-1 and HPL-2) and S. 
pombe (Chp2 and Swi6) . All HP1 proteins contain an N-terminal chromodomain and a C-
terminal chromo-shadow domain. The chromodomain specifically recognizes both H3K9me2 
and me3 (Lachner et al., 2001; Nielsen et al., 2002), while the chromo-shadow domain 
mediates interaction with other proteins. The spacer region between the two domains binds 
RNA in fission yeast (Keller et al., 2012). Intriguingly, different HP1 variants have very 
distinct roles in the ESC-to-differentiated cell transition, and not all HP1 binding correlates 
with heterochromatic gene repression (Mattout et al., 2015). Furthermore, the residence time 
of HP1 on chromatin is very short (Cheutin et al., 2003) and in S. pombe its RNA binding 
functions are associated with the restricted spread of silent domains (Keller et al., 2013; 
Stunnenberg et al., 2015). Although, HP1 seems to be a good candidate for the association of 
heterochromatin to the nuclear periphery, its direct involvement is still not clear.  

From the nuclear envelope perspective, the nuclear lamina is presented as a platform for 
chromatin tethering. The nuclear lamina is composed of integral INM proteins including 
LAP2, Emerin and MAN1 (the so-called LEM proteins) and nuclear lamins; and is present in 
all eukaryotes that undergo open mitosis. The mechanisms by which chromatin is tethered 
to it are still poorly defined (reviewed in Kind and van Steensel, 2010; Meuleman et al., 2013; 
Wilson and Berk, 2010). Below we describe some nuclear lamina components and their 
implication on chromatin tethering.  

Lamins interact directly with histones and DNA in vitro (Goldberg et al., 1999; Luderus et 
al., 1992). Although it is unclear if these low affinity interactions are relevant in vivo, the 
role of lamins as a scaffold for perinuclear chromatin is supported by genetic data. Loci that 
were preferentially NE-associated relocated to the nuclear center upon the depletion of 
lamins (Mattout et al., 2011; Shevelyov et al., 2009; Towbin et al., 2010). Additionally, 
reduction of Lamin B1 in cultured cells was shown to alter positional chromatin organization 
(Malhas et al., 2007; Shimi et al., 2008). Lamin A/C has also been implicated in large scale 
chromatin organization (McCord et al., 2013; Solovei et al., 2013), yet mutations that 
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interfere with the recognition of a specific chromatin motif have not been reported. Indeed, it 
is likely that lamins affect chromatin positioning by altering the stability or spatial 
organization of lamin-associated proteins, like LEM domain proteins, LBR, and many other 
inner nuclear membrane proteins (Wilson and Foisner, 2010). 

Two important studies have helped in our understanding of the involved of lamin together 
with other factors, in chromatin tethering to the nuclear periphery. Solovei et al. focused on 
a generalized mechanism of heterochromatin anchoring in different tissues throughout 
development and found anchoring to be dependent on Lamin A/C and LBR (Lamin B 
Receptor) (Solovei et al., 2013). Harr et al. focused on specific loci contained at the border of 
LADs and implicated H3K9me2/me3, H3K27me3 and the transcription factor YY1 to be 
involved (Harr et al., 2015) (Figure 1.5).  

In the extensive study by Solovei et al., changes in heterochromatin position and gene 
expression were observed and correlated with alterations in NE composition in mammalian 
cells. In rod cells of the nocturnal rodent retina, which lack both LBR and Lamin A/C 
proteins, heterochromatin is positioned at the center of the nuclei. Surprisingly, the ectopic 
expression of LBR was sufficient to change heterochromatin localization to the nuclear 
periphery. Throughout a range of differentiated tissues, it was shown that LBR and Lamin 
A/C are differentially and often sequentially expressed, changing the patterns of genes that 
are tethered at the NE.  Indeed, in myogenic cells the mutation of either LBR or of Lamin 
A/C had opposite effects on the expression of muscle-related genes during differentiation into 
myoblasts: loss of LBR caused gene up-regulation while loss of Lamin A/C led to down-
regulation of the same subset of genes. This effect was not seen in differentiated muscle cells. 
These observations reinforce the potential of chromatin organization at the nuclear periphery 
as a means to regulate gene expression and drive differentiation. The work of Solovei et al. 
argues that the sequestration of heterochromatin at the NE in differentiating tissues relies 
on partly redundant systems requiring Lamin A/C on one hand, and LBR on the other. The 
authors propose a mechanism whereby LBR mediates peripheral chromatin localization 
during early development, while lamin A/C become more important as cells terminally 
differentiate (Solovei et al., 2013). However, depletion of any one of these factors, is 
accompanied by pleiotropic effects due to additional functions exerted by the proteins on 
various aspects of nuclear metabolism, rendering difficult to assess the functionality of 
chromatin anchoring per se. Another question that remained was related to the specificity of 
anchoring by each tethering pathway. LBR contains a Tudor domain that binds histone 
H4K20me2 (Hirano et al., 2012). This affinity could contribute to a developmentally 
controlled positioning of facultative heterochromatin, yet this histone modification is 
distributed broadly across the genome without significant enrichment in LADs (Barski et al., 
2007). This does not exclude that in some situations, LBR-H4K20me2 interaction supports 
chromatin sequestration, but it is clear that this would depend on other marks or secondary 
interaction domains, given its broad distribution. Lamin A/C apparently requires additional 
proteins or factors to interact with chromatin, which in some tissues may be transcription 
factors or RNA Pol II regulatory complexes. LBR was also reported to bind HP1α and HP1γ 
(Ye and Worman, 1996). While this sounds promising, HP1α-containing chromocenters are 
not necessarily perinuclear and HP1γ is bound to many non-peripheral euchromatic loci 
(Minc et al., 1999). Moreover, ablation of HP1α or HP1β in pluripotent or differentiated 
embryonic stem cells did not alter pericentric heterochromatin organization (Mattout et al., 
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2015). Further studies will be required to elucidate the exact mechanisms of tethering 
dependent on LBR and Lamin A/C. 

In the study directed to elucidate the mechanisms of anchoring in mammalian cells for 
specific loci, Harr et al. focused on the borders of specific LADs, which are enriched for genes 
that are repressed in a cell-type dependent manner and are critical for cell fate 
determination, called variable LADs (vLADs) (Harr et al., 2015; Peric-Hupkes et al., 2010). 
Whereas a number of mammalian cell studies have investigated the positioning of repetitive 
reporters, the system used by the Reddy laboratory instead scored for unique sequences that 
trigger relocation to the nuclear periphery. The targeting sequences were introduced adjacent 
to a repetitive lacO array, which was shown to carry H3K9me2/3. In this case, however, K9 
modification was not sufficient for perinuclear localization, at least in differentiated murine 
fibroblasts. In these fibroblasts, single integrated sequences derived from vLAD-specific DNA 
shifted the reporter to the INM (Harr et al., 2015; Harr and Reddy, 2015). The relocation 
function was reduced upon knockdown of the H3K9 methylation-depositing histone methyl 
transferase (HMT), SUV39H1, or by treatment with a G9a inhibitor, which also reduces 
H3K9 methylation. Similarly, Belmont and colleagues showed that the peripheral positioning 
of a randomly integrated β-globin locus was dependent on both Suv39H-mediated H3K9me3 
and G9a-mediated H3K9me2 (Bian et al., 2013). G9a inhibition had effects on endogenous 
sequences as well, reducing the association of LADs with the INM genome-wide (Kind et al., 
2013). Finally, reduction in components of the PRC2 (Polycomb Repressive Complex 2), the 
H3K27 methyltransferase, and/or treatment with specific inhibitors, led to similar reductions 
in the perinuclear positioning vLADs (Harr et al., 2015). The question arose as to what might 
recruit PRC2 to vLADs, and therefore YY1, a transcription factor known to interact with 
PRC2 (Basu et al., 2014; Satijn et al., 2001; Srinivasan and Atchison, 2004; Wilkinson et al., 
2010), was targeted to the reporter sequence. Targeted YY1 led to high levels of H3K27me3 
on the tagged chromatin and enhanced its association with the INM (Harr et al., 2015). 
Relocation was reduced upon inhibition of the PRC2 catalytic subunit, EZH2, implicating 
H3K27 methylation in the process. FISH studies confirmed that the localization of vLAD-
associated cell-type specific genes at the INM were sensitive to EZH2 inhibition in fibroblasts 
(Harr et al., 2015). It is interesting that YY1 is a transcription factor not particularly enriched 
at the periphery but rather dispersed throughout the nucleus, pointing out to the complexity 
that for specific loci, factors that are not necessarily enriched at the periphery do play a role 
in their positioning. Still, the extent of this mechanism to other loci remains to be studied. 
Are there other specific types of transcription factors, like YY1, regulating gene expression 
at the nuclear periphery? 

In the case of LEM proteins, Emerin and MAN-1 act redundantly in the anchoring of 
heterochromatic arrays and endogenous chromatin in C. elegans. Both were associated with 
repression of muscle and nervous system function related genes, yet only Emerin was shown 
to impact the activity of neuromuscular junctions (Gonzalez-Aguilera et al., 2014; Mattout et 
al., 2011). In mouse fibroblasts, LAP2β was shown to play a role in the silencing and 
association of the developmentally regulated IgH and Cyp3a loci to the nuclear periphery. 
Importantly, the association was also dependent on a sequence-specific motif found in these 
loci, the transcription factor cKrox, and HDAC3 (histone deacetylase 3) (Zullo et al., 2012). 
This shows a combinatorial effect of sequence-specific motifs and histone modifications in the 
positioning of genes towards the nuclear periphery, yet it is not a generalized mechanism.  



23 
 

Barrier to Autointegration Factor (BAF) can be found at the nuclear periphery due to its 
associations with DNA, certain histones, LEM proteins, Lamin A, and certain transcription 
factors (Margalit et al., 2007). It has been suggested that BAF is the link between chromatin 
and the nuclear periphery thanks to its multiple interactions at the nuclear lamina, though 
the specificity of this binding to heterochromatin remains unclear, since it has also been 
shown to associate with active histone marks (Montes de Oca et al., 2011). 

Samp1 is an INM protein connected to LINC (linker of nucleoskeleton and cytoskeleton) 
complexes, and was shown in HeLa cells to have an impact on heterochromatin localization. 
However, the Samp1 dominant negative mutant compromised nuclear integrity and 
mislocalized nuclear lamina proteins such as Emerin, Sun-1 and LaminA/C, making it 
difficult to understand if the effect is direct or indirect (Gudise et al., 2011). Another example 
in HeLa cells is the PRR14 (PRoline-Rich protein 14) protein, which was shown to localize at 
the nuclear periphery, interact with lamin and bind HP1α at the onset of anaphase to 
promote chromatin re-tethering after mitosis. Depletion of this factor caused defects in 
nuclear structure, and partial loss of perinuclear attachment of H3K9 methylated chromatin 
(Poleshko et al., 2013). To date, PPR14 is the only example where there is a clear bridge of 
nuclear lamina and H3K9 methylated chromatin through binding of HP1. Further studies of 
PPR14 expression in different cell types are needed to understand its physiological 
implications; although its intrinsic impact on nuclear structure might bring difficulties in the 
conclusions related to anchoring function alone. 

In addition to the above mentioned INM associated proteins and their potential roles in 
regulation of nuclear organization, the INM proteome is very complex, containing over 100 
different proteins that are cell-type specific (Malik et al., 2010; Wong et al., 2014). 
Overexpression of 5 Nuclear Envelope Transmembrane (NET) proteins (NET5, NET29, 
NET39, NET45 and NET47), led to a dramatic shift of chromosome 5 towards the nuclear 
periphery in fibroblast cells where is normally internal. These proteins are differentially 
expressed in a tissue specific manner. NET45 and NET47 are preferentially expressed in 
liver cells coincidental with a peripheral position of chromosome 5. Depletion of any of these 
two NETs resulted in a shift towards an internal position for this specific chromosome 
(Zuleger et al., 2013). Unfortunately the impact of this reorganization in gene control or other 
effect remains to be studied, as well as the mechanism by which these NETs recognize specific 
chromosomes.  

The apparent redundancy in tethering mechanisms and the high number of INM proteins 
suggests that the answers of mechanism and functionality of tethering to the nuclear 
periphery, will not be as straight forward as one would expect, particularly in mammalian 
systems (de Las Heras and Schirmer, 2014; Wong et al., 2014).  Many studies have implicated 
specific histone modifications in this process and this suggests they are a common 
denominator in this process. Further research to understand the combinatorial factors and 
tissue specific roles will be required to decipher the mechanism and functional relevance of 
perinuclear sequestration.   
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Figure 1.5. Anchoring chromatin to the nuclear periphery in mammalian cells. (A) vLAD anchoring 
mechanisms. Borders of vLADs are enriched for both H3K9me2 and H3K27me3 and shift to the 
nuclear periphery in a manner dependent on PRC2 activity as well as on Suv39H1 and G9a. (B) 
Mechanisms implicated in the anchoring of constitutive/common LADs. They depend on H3K9 
methylation deposited by G9a and Suv39h and involve ligands which may include HP1 and other 
unknown methylation readers. Transcription factor interactions with INM proteins, such as the 
cKrox/HDAC3/Lap2β bridge, may also be relevant for tissue-specific LADs. Image reprinted from 
(Harr et al., 2016). 

 

The last section of this introduction is dedicated to discussing a mechanism of tethering 
identified in C. elegans due to its importance for the work presented in this thesis. 
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PERINUCLEAR CHROMATIN SEGREGATION VIA H3K9 METHYLATION IN C. ELEGANS 

C. elegans has been used effectively to examine the impact of nuclear organization on gene 
expression during differentiation (reviewed in Meister et al., 2011; Meister and Taddei, 
2013). Using LacI/lacO tagged integrated arrays bearing tissue-specific promoters, Meister 
et al. successfully demonstrated a role for promoter-bound factors in the subnuclear 
positioning of developmentally regulated genes (Meister et al., 2010). Several 
developmentally regulated promoters, including muscle specific, intestine specific and 
neuronal specific ones, were analyzed for cell-type specific subnuclear organization during 
development. In early embryos, small transgenes bearing inactive tissue-specific promoters 
were found to be randomly distributed throughout the nucleus. Over the course of 
differentiation, a spatial segregation of the transgenes was observed, which depended strictly 
on the transcriptional status of the promoter. Inactive promoters shifted to the nuclear 
periphery, while active promoters were sequestered internally, in differentiated tissues 
(Meister et al., 2010). This was not true in the relatively undifferentiated nuclei of early 
embryos, where only very large arrays carrying 300-500 copies of either housekeeping or 
tissue-specific promoters, were found at the NE (Towbin et al., 2010). These large arrays 
carry marks typical for heterochromatin, including histone H3K9 and H3K27 methylation , 
in a manner dependent on the number of repeats (50 were insufficient, while 250 were enough 
to generate a heterochromatic state) (Towbin et al., 2010). Nonetheless, the activation of a 
tissue-specific promoter could overcome the anchoring of the repressed arrays. Indeed, 
several lines of evidence argue that the internal shift of developmentally regulated genes 
depends on factors that bind the relevant promoters, driving gene activation. 

A genome-wide RNAi screen was carried out using these large C. elegans gene arrays to 
identify the mechanisms that link heterochromatin to the INM. Whereas loss of various 
chromatin modifiers led to a loss of transcriptional repression, only one RNAi target released 
the array from the nuclear periphery. This RNAi target was a pair of closely related genes 
that encode S-adenosyl methionine synthetase (SAMS – sams-3 and sams-4). Loss of these 
enzymes reduced histone methylation globally, leading to both transcriptional up-regulation 
and the release of the array from the NE. Many other RNAi clones led to derepression without 
affecting localization, underscoring the fact that peripheral anchoring is not sufficient to 
silence. A second targeted screen was performed to identify the relevant HMTs necessary for 
array attachment at the NE. The screen tested 12 single and double mutants’ combinations 
of putative HMTs in C. elegans. The majority of the different mutants were defective in array 
silencing, but not in array anchoring. Only the combined elimination of two HMTs, MET-2 
and SET-25 showed that heterochromatic arrays were released as efficiently as in a SAMS-
3/-4 knockdown. MET-2 is the worm homolog of human SetDB1/ESET, while the catalytic 
domain of SET-25 is human G9a-like. The former experiments, together with mass 
spectroscopy analysis of the histone methylation status in single and double mutants, allowed 
one to conclude that (1) both HMTs target specifically lysine 9 of histone H3, (2) H3K9me1 
and -me2 are sufficient for array anchoring, and H3K9me3 as well can mediate this contact, 
(3) and finally that the trimethylated state was needed for transcriptional silencing (Towbin 
et al., 2012). Since chromatin bearing H3K9me1 and me2 was not repressed, one can conclude 
that the level of H3K9 methylation distinguishes a perinuclear anchoring signal from 
transcriptional repression, even though they are on the same methylation pathway.   
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To understand the orchestration of how a heterochromatin subcompartment can be formed, 
strains were created that expressed either MET-2 or SET-25 fused to the red fluorescent 
protein mCherry. Interestingly, MET-2 was enriched in the cytoplasm, where it appears to 
act on cytoplasmic histones, prior to their incorporation into chromatin. Such an activity has 
previously been described for a human homolog of MET-2 (ESET/SetDB1) (Andersen and 
Horvitz, 2007; Bessler et al., 2010). In contrast to MET-2, mCherry::SET-25 was located in 
the nucleus and formed foci. These foci were enriched at the NE and co-localized with 
transgene arrays. A version of SET-25 that lacked its catalytic domain was still able to 
interact with peripheral heterochromatin, although its binding required that H3K9me3 had 
been deposited (for example, by an intact SET-25 molecule). Thus, SET-25 is recruited to the 
nuclear periphery by its affinity for chromatin carrying H3K9me3, which is the mark that 
this HMT uniquely deposits. It does not get sequestered by H3K9me1 or me2, although 
exactly how it recognizes the mark is unknown, as SET-25 does not contain a canonical me-
lysine recognition domain.  Sequestration of SET-25 at the NE is proposed to help ensure the 
faithful establishment and/or maintenance of the silent state (Towbin et al., 2012) (Figure 
1.6). It remained unresolved what component of the nuclear lamina recognizes the H3K9me1, 
me2 or me3 marks, and whether it is one or several proteins that tether the modified histones. 
The binding of HP1 homologue (HPL-2) and/or LIN-61, an MBT (Malignant Brain Tumor) 
domain protein that also recognizes H3K9me2/me3, can repress transcription but neither is 
involved directly in anchorage of the H3K9metylated chromatin (Koester-Eiserfunke and 
Fischle, 2011; Towbin et al., 2012). Downregulation of HPL-1 also affects transcription of 
endogenous loci, but is not sufficient to derepress the transgenic array, and it also does not 
appear to be essential for silent chromatin anchoring at the NE (Studencka et al., 2012; 
Towbin et al., 2012). 

Importantly, we note that although H3K9 methylation is essential for anchoring in early C. 
elegans embryos, this pathway is not the only heterochromatin-anchoring mechanism 
functioning in worms. At later developmental stages, such as the first larval stage, when 
most cells have acquired a cell-type specific pattern of gene expression and morphology,  
sequences that were released from the INM in H3K9-methylation deficient embryos became 
re-anchored, although H3K9 methylation remains absent (Towbin et al., 2012). Thus, 
alternative pathways for heterochromatin anchoring are induced during terminal 
differentiation, perhaps explaining the unexpected finding that C. elegans embryos lacking 
all histone H3K9 methylation still develop into adult worms with the full range of 
differentiated tissues. One pathway that has already been characterized is the anchorage of 
C. elegans telomeric repeats (Ferreira et al., 2013).  These repeats are anchored at the nuclear 
envelope and become increasingly peripheral in terminally differentiated cells. Their 
anchorage is not dependent on H3K9 methylation, but requires a factor that recognizes the 
ss telomeric overhang (POT-1) and an inner nuclear membrane SUN domain protein, SUN-
1. The interaction is also affected by sumoylation, reminiscent of telomere anchoring in 
budding yeast (Ferreira et al., 2011; Ferreira et al., 2013). 
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Figure 1.6. A self-reinforcing mechanism for perinuclear anchoring and silencing of heterochromatin. 
The step-wise establishment of H3K9me3 involves deposition of H3K9me1/2 by cytoplasmic MET-2 
prior to nucleosome assembly, and trimethylation by nuclear foci-associated SET-25. H3K9me1/2 
initiates perinuclear chromatin targeting, and H3K9me3 is needed for complete array silencing and 
enhanced attachment. SET-25 requires its own reaction product, H3K9me3, to accumulate in 
perinuclear foci. Image reprinted from (Towbin et al., 2012). 

 

SCOPE OF THESIS PROJECT 

Despite the progress made in identifying different components at the nuclear periphery 
which help anchor chromatin (in many cases redundantly), for most of these factors the 
specificity of their interaction with chromatin remained undemonstrated. As mentioned 
above for lamins, some factors may indirectly influence chromatin association by perturbing 
the localization or stability of other tethers. The fact that some of these related anchoring 
factors are known to have additional functions besides chromatin anchorage, complicates the 
study of chromatin sequestration function.  

Knowing that H3K9 methylation is required for anchoring of C. elegans heterochromatin in 
embryos (Towbin et al., 2012), we used a genetic approach to identify H3K9 methylation 
readers that would function as tethers of heterochromatin to the nuclear periphery.  

Chapter 2 describes the work done with the goal of identifying this type of anchor protein in 
C. elegans embryos. In particular, we utilized RNAi to down-regulate each gene containing a 
potential histone methylation binding domain, based on characterized binding motif. We next 
scanned for the loss of perinuclear position of an integrated high-copy number array that is 
fluorescently tagged by GFP-LacI (Meister et al., 2010). We identified an undescribed 
chromodomain protein, CEC-4, as a positive hit for array de-localization and went on to 
characterize it molecularly using cell biology and functionally by assaying its effects on 
transcription, development and cell-type stability under conditions of induced cell fate. Our 
data show that in C. elegans early embryos the perinuclear chromodomain protein CEC-4 
directly binds endogenous H3K9me-containing chromatin and anchors it to the nuclear 
periphery. In vitro, the CEC-4 chromodomain recognizes me1-, me2- and me-3 K9 in a histone 
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H3 peptide, with equal affinity. Remarkably, CEC-4 is not necessary for transcriptional 
silencing of endogenous genes nor of our heterochromatic array, whereas methylation of 
H3K9 is. Lack of CEC-4 presents no visually obvious phenotype on the life cycle of worms. 
Nevertheless, CEC-4 is needed for the stable commitment of embryos to a forced induction of 
muscle specification, unveiling potential chromatin anchoring contribution to cell fate 
commitment. 

Chapter 3 describes additional characterization of cec-4 null mutant worms, our attempts to 
understand the localization of perinuclear localization of CEC-4, as well as trial experiments 
to understand the relationship between known factors related to H3K9 and loss of anchoring. 

Chapter 4 summarizes conclusions from the thesis project and indicates future directions 
that will help us understand the relevance of nuclear organization. 
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SUMMARY 

Interphase chromatin is organized in distinct nuclear sub-compartments, reflecting its 
degree of compaction and transcriptional status. In C. elegans embryos, H3K9 methylation 
is necessary to silence and to anchor repeat-rich heterochromatin at the nuclear periphery. 
In a screen for perinuclear anchors of heterochromatin, we identified a previously 
uncharacterized C. elegans chromodomain protein, CEC-4. CEC-4 binds preferentially mono-
, di-, or tri-methylated H3K9 and localizes at the nuclear envelope independently of H3K9 
methylation and nuclear lamin. CEC-4 is necessary for endogenous heterochromatin 
anchoring, but not for transcriptional repression, in contrast to other known H3K9 methyl-
binders in worms, which mediate gene repression but not perinuclear anchoring. When we 
ectopically induce a muscle differentiation program in embryos, cec-4 mutants fail to commit 
fully to muscle cell fate. This suggests that perinuclear sequestration of chromatin during 
development helps restrict cell differentiation programs by stabilizing commitment to a 
specific cell fate.  
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SUMMARY

Interphase chromatin is organized in distinct nuclear
sub-compartments, reflecting its degree of compac-
tion and transcriptional status. In Caenorhabditis
elegans embryos, H3K9 methylation is necessary to
silence and to anchor repeat-rich heterochromatin
at the nuclear periphery. In a screen for perinuclear
anchors of heterochromatin, we identified a previ-
ously uncharacterized C. elegans chromodomain
protein, CEC-4. CEC-4 binds preferentially mono-,
di-, or tri-methylated H3K9 and localizes at the nu-
clear envelope independently of H3K9 methylation
and nuclear lamin. CEC-4 is necessary for endoge-
nous heterochromatin anchoring, but not for tran-
scriptional repression, in contrast to other known
H3K9 methyl-binders in worms, which mediate
gene repression but not perinuclear anchoring.
When we ectopically induce a muscle differentiation
program in embryos, cec-4 mutants fail to commit
fully to muscle cell fate. This suggests that perinu-
clear sequestration of chromatin during develop-
ment helps restrict cell differentiation programs by
stabilizing commitment to a specific cell fate.

INTRODUCTION

Cues stemming from the spatial organization of chromatin are

widely thought to influence the function of eukaryotic genomes.

Indeed, chromatin assumes distinct patterns of distribution in

the interphase nucleus in response to cell-type-specific gene

expression (reviewed in Meister et al., 2011; Talamas and Capel-

son, 2015). Dense-staining heterochromatin and repressed tis-

sue-specific genes are sequestered at the inner nuclear

membrane (INM) in both plant and animal cells. In metazoans,

an INM-associated network of the intermediate filament protein

lamin and other associated proteins provides a scaffold that

helps the interphase nucleus reform after mitosis (Nigg, 1992).
The chromatin that associates with the nuclear lamina (lamin-

associated domains or LADs) is generally gene poor, transcrip-

tionally silent, and enriched for repressive histone marks

(Gerstein et al., 2010; Guelen et al., 2008; Ikegami et al., 2010;

Pickersgill et al., 2006). Importantly, in C. elegans embryos the

integrity of two histone methyltransferases (HMTs) that target

histone H3K9, MET-2, and SET-25 was shown to be essential

for the peripheral localization of heterochromatin (Towbin et al.,

2012). Perturbed H3K9 methylation also partially compromised

proper heterochromatin organization in mammalian cells (Kind

et al., 2013; Pinheiro et al., 2012). However, no nuclear envelope

protein has yet been identified that anchors H3K9-methylated

chromatin specifically.

Studies of nuclear organization during the development of

multicellular organisms or of embryonic stem cell (ESC) differen-

tiation in vitro showed that perinuclear chromatin sequestration

is a dynamic process that changes with cell-type-specific gene

expression (Fussner et al., 2010; Harr et al., 2015; Meister

et al., 2010; Peric-Hupkes et al., 2010). Important genetic studies

of Solovei et al. (2013) showed that heterochromatin tethering in

differentiated mammalian cells depends on two partially redun-

dant pathways that reflect the sequential induction through

development of lamin B receptor (LBR) and lamin A/C. In some

mouse tissues both LBR and lamin A/C are expressed; in others,

expression of only one is sufficient to ensure the conventional

sequestration of heterochromatin at the INM. In the absence of

both perinuclear components, heterochromatin accumulated

at the nuclear core (Solovei et al., 2013).

Despite these genetic implications, it was unclear what

bridges chromatin to LBR or lamin A/C. LBR has been shown

to bind the chromodomain (CD) of Heterochromatin proteins

1a and g (HP1a and HP1g; (Ye and Worman, 1996), which

are hallmarks of heterochromatin. But HP1a-containing chro-

mocenters are not necessarily perinuclear, and HP1g is bound

to many euchromatic loci positioned away from INM (Minc

et al., 1999). Moreover, complete ablation of HP1a or b in

either pluripotent or differentiated ESCs does not change

chromocenter positioning (Mattout et al., 2015). Mammalian

LBR also binds histone H4K20me2 in vitro through its C-termi-

nal Tudor domain (Hirano et al., 2012), yet H4K20me2 is
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Figure 1. cec-4 Is Required for Anchoring and Compaction of a Heterochromatic Array

(A) Heterochromatic transgene array gwIs4 [baf-1p::GFP-lacI::let-858 30UTR; myo-3p::RFP] reporter.

(B) Zoning assay for array distribution. Radial position is determined relative to the INM, and values are binned into three concentric zones.

(legend continued on next page)

2 Cell 163, 1–15, December 3, 2015 ª2015 Elsevier Inc.

Please cite this article in press as: Gonzalez-Sandoval et al., Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell
Fate in C. elegans Embryos, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.10.066



Please cite this article in press as: Gonzalez-Sandoval et al., Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell
Fate in C. elegans Embryos, Cell (2015), http://dx.doi.org/10.1016/j.cell.2015.10.066
broadly distributed without enrichment on LADs (Barski et al.,

2007).

Whereas mammalian lamins were reported to bind AT-rich

DNA and histone dimers in vitro (reviewed in Wilson and Foisner,

2010), this affinity cannot account for selective heterochromatin

binding. Nor is it explained by lamin A/C interaction with tran-

scription factors or the barrier to autointegration factor (BAF),

which may link specific promoters to lamins (Kubben et al.,

2012; Meuleman et al., 2013). Similarly, the lamin associated

Lap2b interacts with HDAC3 and the transcription factor cKrox,

a ligand of GAGA motifs, leading to the repression and perinu-

clear anchoring of a subset of mammalian promoters (Zullo

et al., 2012). Yet LADs extend far beyond promoters, coinciding

instead with extensive domains of H3K9 methylation (Towbin

et al., 2012).

Alternatively, nuclear lamins may act indirectly by providing a

stable platform for the localization of other INM proteins (e.g.,

Lap2b, Emerin and Man1 [Brachner and Foisner, 2011]). Indeed,

depletion of the C. elegans lamin, LMN-1, mislocalizes Emerin

(EMR-1) and Man1 (LEM-2), and the worm Emerin in turn helps

stabilize repressed muscle and neuronal genes at the INM in

differentiated worm tissues (González-Aguilera et al., 2014).

Yet neither Emerin nor Man1 bind heterochromatin directly. A

similar indirect effect was ascribed to mammalian SAMP-1, an

INM protein connected to LINC (linker of nucleo- and cytoskel-

eton) complex, whose loss compromises nuclear integrity and

leads to Emerin, SUN-1, and Lamin A/C mislocalization (Gudise

et al., 2011). Finally, loss of PRR14, a perinuclear HP1-binding

protein, altered perinuclear attachment of H3K9-methylated do-

mains in mammalian nuclei, yet led to general defects in nuclear

structure, raising the question of indirect effect on DNA localiza-

tion (Poleshko et al., 2013).

Here we exploit the power of RNAi screens in the nematode

C. elegans to find a methyl-H3K9-specific perinuclear anchor

for heterochromatin. We have individually downregulated genes

that harbor characteristic histonemethylation bindingmotifs and

monitored changes in the perinuclear anchoring of heterochro-

matin in early embryos. We identified a previously uncharacter-

ized C. elegans CD protein, CEC-4, as our only positive hit.

CEC-4 localizes at the INM where it directly binds endogenous

H3K9-methylated chromatin through its CD’s aromatic cage.

CEC-4 is not necessary for the transcriptional silencing of either

endogenous genes or a heterochromatic reporter, although the

methylation of H3K9 and its ligands HPL-2 and LIN-61 are.

Despite this, a reproducible fraction of cec-4 embryos were un-
(C) Array distribution quantitation, as described in (B), in early embryos (50–25

distribution of 33%.

(D) Design of candidate RNAi screen in lin-61;hpl-1 deficient strain. L1 larvae s

screened for array delocalization.

(E) Z-projection of representative embryos bearing gwIs4 in WT and cec-4(ok31

tribution, zone 1 data in early embryos as indicated, n = foci scored per condition

mutant yielded p values < 0.001 by c2 test.

(F) Z-projection of GFP fluorescence in embryos of indicated genotype with gwI

intensity displayed as box plot in log2 scale, whiskers = 1st and 3rd quartiles. Bl

n = embryos scored.

(G) 3D spot volume and distance from INM in WT and cec-4(ok3124) embryos. N

237, respectively, from five embryos each; pair-wise comparisons with p-values

See also Figure S1.
able to maintain the muscle specification induced by a pulse of

HLH-1 (MyoD) expression. We suggest that perinuclear seques-

tration of chromatin contributes to cell fate commitment under

conditions of perturbed development.

RESULTS

CEC-4 Is a Chromodomain Factor that Anchors a
Heterochromatic Array
To search for proteins involved in the anchoring of methylated

H3K9 chromatin, we designed an RNAi screen with a fluores-

cent reporter for perinuclear heterochromatin positioning in

C. elegans embryos. Our reporter is an integrated plasmid array,

gwIs4, which expresses the GFP-LacI fusion protein under con-

trol of the ubiquitously active baf-1 promoter. GFP-LacI binds a

lacO site that occurs once per 3.5 kb (�300x), generating a fluo-

rescent focus that binds the INM in embryonic nuclei (Figure 1A).

The histones on the array are trimethylated on H3K9 and H3K27,

but lack H3K4 methylation, and have reduced gene expression,

thereby recapitulating conserved features of heterochromatin

(Meister et al., 2010; Towbin et al., 2010). Array position is deter-

mined with a zoning assay in which radial distances from the

spot to the nuclear periphery, scored in the focal plane in which

the spot is the brightest, are binned into 3 zones of equal surface

(Figure 1B). Deviation from 33% indicates nonrandom

localization.

The C. elegans genome encodes 65 proteins that contain

methyl-lysine/-arginine binding motifs, namely CD, MBT (malig-

nant brain tumor), PHD (plant homeodomain) and Tudor domains

(Table S1; reviewed in Taverna et al., 2007). This set of proteins

includes HPL-1 and HPL-2, homologs of HP1, a highly

conserved CD protein that binds methylated H3K9 to silence

heterochromatin (Nestorov et al., 2013). HPL-1 co-localizes

with the heterochromatic gwIs4 array in worm embryos and ap-

pears to repress transcription in a promoter-specific manner

working together with the H1 variant HIS-24 in larvae (Studencka

et al., 2012a). HPL-2 binds H3K9me2/3 as well as H3K27me2/3

in vitro, and it is needed to repress large heterochromatic arrays

in both embryos and germline cells, as well as to fine-tune other

gene expression events (Couteau et al., 2002; Studencka et al.,

2012b). A third H3K9me2/me3 ligand is the MBT-domain protein

LIN-61, whose loss compromises vulva development, silencing

of heterochromatic arrays, and a neuron-specific reporter in so-

matic cells (Koester-Eiserfunke and Fischle, 2011; Zheng et al.,

2013). Remarkably, elimination of these known H3K9me ligands,
0 cell stage) of indicated genotypes (Tables S1 and S3). Red line = random

ubjected to RNAi for candidates listed in Table S3, and embryonic progeny

24) strains. Insets: single nuclei. Scale bar, 5 or 2 mm, respectively. Array dis-

. Pair-wise comparisons of mock RNAi and WT conditions with cec-4 RNAi or

s4. Insets: bright field. Scale bar, 20 or 10 mm, respectively. Quantified signal

ack lines: median, blue dots: mean, red dashed line: baseline = mean of WT.

otched box plots overlapping individual measurements as above. n = 209 and

< 0.001 by Student’s t test.
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singly or in combination, had little impact on the perinuclear

sequestration of the gwIs4 heterochromatic array, although the

mutants did lose transcriptional repression (Figure 1C; Towbin

et al., 2012).

Conscious that anchor redundancy might be a concern, we

downregulated other methyl-binding candidates by RNAi in

hpl-1;lin-61 double mutant embryos. Only one RNAi target,

cec-4, which encodes an uncharacterized CD protein, affected

the perinuclear anchoring of the heterochromatic reporter (Fig-

ures 1D and 1E). The percentage of heterochromatic foci in the

outermost nuclear zone dropped from 92% to 20%, following

cec-4 RNAi (Figures 1E and S1B). Although cec-3/eap-1 has

been described as an H3K9me1-3 binder involved in neuron-

specific gene expression (Greer et al., 2014; Zheng et al.,

2013), cec-3 RNAi had no impact on heterochromatin anchoring

in our screen (data not shown).

The effect of cec-4 RNAi on array position did not depend on

the absence of LIN-61 or HPL-1, for the same RNAi in WTworms

yielded identical array delocalization (Figures 1E and S1B). To

rule out off-target effects of cec-4RNAi, we scored array position

in embryos carrying the null mutant cec-4(ok3124), which lacks

the 50 UTR and first 2 exons (Figure S1A). The genetic ablation

of cec-4 phenocopied cec-4RNAi, yielding full array detachment

from the INM, identical to that scored in embryos that lack H3K9

methylation; i.e., the met-2 set-25 double mutant (Towbin et al.,

2012). Thus, the CD-encoding cec-4 gene is required, like H3K9-

methylation, for the perinuclear anchoring of heterochromatic

arrays in C. elegans early embryos.

We examined the effect of cec-4 ablation on gene expression

by quantifying the fluorescent intensity of GFP-LacI, which is ex-

pressed from a housekeeping promoter on the gwIs4 array.

Although the expression levels are strongly upregulated in

met-2 set-25 mutant, deletion of cec-4 did not alter GFP-LacI

expression in embryos (Figure 1F). Both H3K9me3 and the

enzyme mediating this terminal modification, SET-25, remained

enriched on the delocalized array in cec-4mutant embryos (Fig-

ures S1C and S1D), consistent with the observed transcriptional

repression. We conclude that CEC-4-mediated anchoring is not

essential for heterochromatic array repression. Nonetheless,

coupled with the loss of anchoring we scored a significant de-

compaction of the reporter, upon release from the INM. Moni-

tored by a quantitative 3D volume rendering protocol, we found

that the mean volume expanded from about 192 to 239 voxels

upon cec-4 deletion (Figure 1G).

CEC-4 Localizes Intrinsically to the Nuclear Periphery
We next examined the subcellular localization of CEC-4. A

mCherry-tagged version of cec-4 was integrated as a site-

specific, single-copy genomic insertion under control of its

endogenous cec-4 promoter and 30UTR (Figure S2A). Confocal

fluorescence microscopy of CEC-4-mCherry (CEC-4-mCh)

showed that the protein forms a ring at the nuclear periphery at

all embryonic stages (Figure 2A). This distribution persisted in

larval and adult differentiated tissues and in the germline of adult

worms (Figure 2D; data not shown). CEC-4 localizationwas inde-

pendent of H3K9methylation; the same perinuclear CEC-4-mCh

ring was found in the met-2 set-25 mutant, in which H3K9 is un-

methylated and heterochromatin was delocalized and ex-
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pressed (Figure 2C). Only in mitosis did CEC-4-mCh become

dispersed (data not shown), much like lamins, which undergo

phosphorylation by cyclinB/Cdk in mitosis (Nigg, 1992).

Quantification of fluorescence intensity of CEC-4-mCh in L1

larval stage showed protein level variation in a tissue-specific

fashion. CEC-4 is weakly expressed in intestine, highly ex-

pressed in muscle, and is found at intermediate levels in almost

every other tissue (Figure 2D). This unequal tissue-specific

expression was not observed for an EMR-1 fusion construct de-

signed and integrated in a similar manner (EMR-1-mCherry; Fig-

ures 2D and S2A).

To characterize CEC-4’s nuclear rim pattern further, we

imaged embryos at 100 nm resolution using super-resolution

structured illumination microscopy (SR-SIM). The CEC-4-mCh

ring resolved into a perinuclear, punctate pattern (Figure 2B),

and counterlabeling of nuclear pores or LMN-1 (lamin) showed

CEC-4 in the same concentric plane as lamin and is situated

mostly between pores (Figure 2B). Lamin and CEC-4-mCh

were in very close proximity, yet could be resolved as distinct

foci (low yellow signal in red/green channel merge; Figure 2B),

suggesting that CEC-4 might localize to the INM independently

of lamin. Indeed, after treating these worms with lmn-1 RNAi,

CEC-4 perinuclear ring persisted (data not shown). The same

was true after RNAi against Emerin, LEM-2, SUN-1, UNC-84,

BAF-1, and all other known C. elegans INM components (Table

S6).

We reasoned that if CEC-4 localizes independently of lamin, it

might also associate with the nuclear envelope of budding yeast,

which lacks lamin entirely (reviewed in Taddei andGasser, 2012).

Indeed, when expressed as aGFP fusion protein under control of

the GAL1 promoter, CEC-4-GFP formed a perinuclear ring at

INM of yeast nuclei (Figure S2B). To map the domain that directs

CEC-4 to the INM, we expressed complementary N- and C-ter-

minal fragments of CEC-4, fused to GFP. Both yielded a diffuse

nuclear distribution (Figure S2C), suggesting that the integrity of

the holoprotein is necessary for INM enrichment (Figure S2C).

Similar results were obtained with similar constructs expressed

ectopically in C. elegans (data not shown). Finally, in yeast as

inworms, ablation of known INMand pore basket proteins (Table

S7) did not alter CEC-4-GFP localization. We therefore propose

that either CEC-4 has an intrinsic affinity for the INM, or else it

binds a conserved but uncharacterized membrane component.

CEC-4 Chromodomain Preferentially Binds
Methylated H3K9
Based on sequence analysis, the CEC-4 CD (aa 82–141) shares

42% identity with mammalian HP1a CD and 33% with HPL-1/2

CDs, yet CEC-4 lacks the HP1-specific chromoshadow and

RNA-binding hinge domains (Couteau et al., 2002). Protein com-

parison failed to reveal a strict homolog of CEC-4 in mammalian

genomes, apart from the CD and a second conservedmotif, here

called PD (putative domain, aa 25–76), which is found in other

CD-containing proteins (Figure 3A).

The CEC-4 CD has a canonical secondary structure like

mammalian HP1 and Pc3 (Fischle et al., 2003b), with an aromatic

cage containing two tyrosine residues that are predicted to

recognize methylated lysine within the H3 ARK(S/T) motif. To

characterize the specificity of CEC-4 CD binding, we expressed
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Figure 2. Perinuclear CEC-4 Localization Is Independent of H3K9 Methylation, and Varies from Tissue to Tissue

(A) Single plane images of indicated embryo stages expressing CEC-4-mCh.

(B) SR-SIM microscopy of CEC-4-mCh transgenic embryos, counterstained for nuclear pores, lamin or mCherry. Embryo sections and single nuclear planes

shown.

(C) Z-projection of CEC-4-mCh inmet-2 set-25mutant background; images of mCherry alone and merged with gwIs4 GFP-LacI signal are shown. Insets: single

plain nuclei. Quantification of array distribution, n = foci scored.

(D) Single plane confocal images of CEC-4- and EMR-1-mCh transgenic L1 larvae; scheme of L1 worm color-coded by tissue, M: muscle, I: intestine, H: hy-

poderm. Measured mCh signal intensity displayed as box plots in a.u. as in Figure 1. Black circles = outliers, n = number of nuclei per tissue; pair-wise com-

parisons for * and **p value < 0.001 in Wilcoxon test. Scale bar, 5 mm in whole/section embryos and larvae; 2mm in single nuclei/insets.

See also Figure S2.
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and purified the WT CD-containing fragment of CEC-4 (CEC-4

CD; aa 25–141) and a mutated version of the same fragment

(Y87A and Y111A; CEC-4 cd-2YA; Figures 3A and S3A), bearing

point mutations that should disrupt the aromatic cage. Using
magnetic beads coated with unmethylated (me0) or tri-methyl-

ated (me3) H3K9 peptide (aa 1–20+Cys), we found that the WT

CEC-4 CD bound a H3K9me3 peptide specifically, while the

CEC-4 cd-2YA mutant fragment did not (Figure 3B).
Cell 163, 1–15, December 3, 2015 ª2015 Elsevier Inc. 5
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Figure 3. CEC-4 CD Binds Methylated H3K9 Peptides

(A) Schematic comparison of H. sapiens HP1a,C. elegans HPL-1/2 and CEC-4. CD (green), purple: chromoshadow (ChSh) domain, blue: conserved PD. Purified

CEC-4 CD fragments in blue; red X = Y87A and Y111A mutations.

(B) Pull-down of recombinant His-tagged CEC-4 CD fragments (A) by unmodified or me3-H3K9 resin-immobilized peptides. Protein visualized by SYPRO Ruby

staining.

(C) AlphaScreen scheme: donor and acceptor microbeads coated with 188 different biotinylated peptides and His-tagged CEC-4 CD, respectively. Interaction

produces a fluorescent signal through singlet oxygen (1O2) transfer from donor to Ni+2 ions on acceptor beads. Three peptide concentrations tested with equal

amounts of CEC-4 CD (200 nM). Color-coded results reflect signal intensity (see Table S4 for rest of library).

(D) Dose-response binding curves for indicated H3K9 peptides with CEC-4 CD in AlphaScreen assay.

(E) Quantitation of binding affinities of H3K9 peptides to CEC-4 CD and cd-2YA mutant determined by ITC. In (D) and (E) solid lines represent a nonlinear least-

square fit using one-sided fitting equation.

See also Figures S3 and S4.
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We evaluated CEC-4 CD specificity by scoring interaction with

a range of modified and unmodified histone tail peptides in a

quantitative chemiluminiscence assay (Alpha Screen; Taouji

et al., 2009). We screened the ALTA Biosciences library, which

contains 188 histone tail ligands each with a different epigenetic

modification (Table S4; Figure 3C). Consistent with the pull-

down assay, strong interaction signals were detected almost

exclusively between CEC-4 CD and a peptide of histone H3

bearing me1-, me2-, or me3-K9. Intriguingly, CEC-4 affinity for

H3K9me3-containing peptides was compromised by addition-

ally phosphorylating S10 and/or T11 (Figure 3C and Table S4).

Such modifications have been proposed to release HP1 from

chromatin in mitosis (Fischle et al., 2003a).

The interaction of CEC-4 CD with methylated H3K9 was

confirmed by serial dilutions of each peptide in the AlphaScreen

(Figure 3D) and IC50 (half maximal inhibitory concentration) was

determined by peptide displacement. CEC-4 CD bound to

me1-, me-2, or me3-K9 H3 peptides with similar affinities (Fig-

ure S3C). We then measured binding energies using Isothermal

Titration Calorimetry (ITC). Dissociation constants (Kd) for

CEC-4 CD bound to the methylated H3K9 peptides ranged

from 5 to 9 mM. There was a slight preference for me2 and no

detectable binding to the unmodified H3 peptide (Figures 3E,

S3D, and S4A). Similar Kd values have been reported for human,

mouse, andDrosophilaHP1 homologs (reviewed in Steffen et al.,

2012). The interaction requires the characteristic aromatic cage

of the CEC-4 CD, as CEC-4 cd-2YA gave only background level

interaction (Figures 3E and S4A). We conclude that CEC-4 CD

recognizes H3K9me1, me2, and me3. Its affinity for all three

methyl-H3K9 forms is consistent with the fact that heterochro-

matic arrays remain peripherally sequestered in the set-25

mutant, which has H3K9me1/me2, but no H3K9me3 (Towbin

et al., 2012).

In addition to its strong affinity to H3K9me-peptides, we de-

tected interaction of the CEC-4 CD with me1- or me-2 H3K37

(aa 28–48; Figures 3C and S3B; Table S4). Methylation of

H3K37 has not been reported to occur in native C. elegans chro-

matin and was not detected in our own mass spectrometry of

embryonic histones (data not shown; Towbin et al., 2012). To

date, the only documented occurrence of H3K37me1 is in tan-

dem with H3K36me1 at origins of replication in budding yeast,

outside of S phase (Unnikrishnan et al., 2010). However,

CEC-4 did not recognize H3K36me. In addition, CEC-4 CD had

significantly lower affinity for H3K37me than for methylated

H3K9 (Figures S3D, S3E, and S4B). Thus, the physiological rele-

vance of this second binding site is unclear.

The CEC-4 CD Is Essential for Heterochromatin
Anchoring in Embryos, but Is Redundant in
Differentiated Tissues
The single-copy CEC-4-mCh fully restores array anchoring in

the cec-4 null mutant. It is enriched on the anchored heterochro-

matic reporter due to its affinity for H3K9me (Figures 4A and

S2C). An identical integration construct bearing the aromatic

cage mutations described above (CEC-4cd-2YA-mCh) did not

complement for anchoring, nor did it bind to the array (Figure 4B).

Thus, disruption of the CEC-4 CD aromatic cage is sufficient to

disrupt the anchoring of heterochromatin at the INM in embryos
and the binding of methylated H3K9 peptides in vitro. On the

other hand, CD integrity is not involved in CEC-4 localization,

given that CEC-4cd-2YA-mCh forms a perinuclear ring like WT

CEC-4-mCh (Figure 4B).

In contrast to the situation in embryos, the ablation of cec-4

did not provoke relocalization of the heterochromatic array in

differentiated L1 larval tissues, such as intestine and hypoderm

(Figure 4C). The same was observed in the met-2 set-25 double

mutant (Towbin et al., 2012). It appears, therefore, that compen-

satory or redundant mechanisms for anchoring heterochromatin

are induced in the differentiated tissues of the L1 larva. It is un-

clear whether these mechanisms are fully independent of

CEC-4 or if CEC-4 contributes to tissue-specific anchoring in a

redundant manner (Figure 2D). Both the redundancy and tis-

sue-specificity aspects are reminiscent of lamin A/C and LBR

effects in mice (Solovei et al., 2013).

Loss of CEC-4 Alters the Spatial Distribution of
Endogenous Chromosome Arms
Thus far integrated transgenic arrays were used as a surrogate

for heterochromatin. To see if CEC-4 affects the distribution of

endogenous chromatin, we performed LEM-2 chromatin immu-

noprecipitation coupled to deep sequencing (ChIP-seq) in WT

and mutant embryos. C. elegans chromosomes are holocentric

and lack pericentric satellite heterochromatin but are enriched

for H3K9 methylation and repetitive elements along the distal

arms of all autosomes and the left arm of chromosome X(Ger-

stein et al., 2010; Ikegami et al., 2010). Previous ChIP and

lamin-Dam-ID studies had shown that chromosome arms are

proximal to the INM in C. elegans embryos, larvae, and adults.

Moreover, the loss of H3K9 methylation (met-2 set-25) was

enough to compromise INM-anchoring of the repeat-rich auto-

somal arms (González-Aguilera et al., 2014; Ikegami et al.,

2010; Towbin et al., 2012).

We used ChIP-seq to map LEM-2-binding along endogenous

sequences in WT, cec-4, and met-2 set-25 embryos. Euclidian

distances were measured showing high similarity between rep-

licas. Hierarchical clustering resolved WT LEM-2 ChIP as

different from either mutant, while the met-2 set-25 and cec-4

mutants clustered together (Figure S5A). All input samples

were very similar. Plotting the LEM-2 signals along the chromo-

somal sequences showed that distal arms lost anchoring in

cec-4 null embryos to the same degree as in the H3K9me-defi-

cient met-2 set-25 mutant (Figures 5A and S5B).

As expected, LEM-2 binding along wild-type autosomes was

polarized: chromosome arms were enriched at the INM and cen-

ters were depleted. This polarization was reduced for each auto-

some similarly in both mutants. The integrated LEM-2 signal on

each chromosomal extremity was plotted against the signal inte-

grated over each center, to visualize the effects of the mutations

(Figure 5B). We conclude that the INM binding of the endoge-

nous repeat-rich domains on chromosome arms requires H3K9

methylation and its recognition by CEC-4. Nonetheless, other

positioning pathways likely exist, since chromosome extremities

were displaced to different degrees.

In many organisms heterochromatin is also clustered around

the nucleolus, the site of rDNA transcription by RNA Pol I (Pa-

deken and Heun, 2014). The C. elegans rDNA is found on the
Cell 163, 1–15, December 3, 2015 ª2015 Elsevier Inc. 7
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distal arms of ChrI and ChrV in heterochromatic regions (Fig-

ure 5A). We therefore checked whether nucleoli change their

radial position in the cec-4 mutant by staining for a conserved

marker of the nucleolus, fibrillarin (Figure 5A). In embryos lacking

CEC-4, nucleoli shifted quantitatively away from the perinuclear

lamin (Figure 5C), confirming that CEC-4 contributes profoundly

to the positioning of endogenous chromatin in embryos.

Monitoring Gene Expression in the Absence of CEC-4
It has long been debated whether nuclear localization is suffi-

cient to influence gene expression. To test this we generated

gene expression profiles (RNA-seq) of WT, met-2 set-25, and

cec-4 mutant embryos. Pairwise comparison of two indepen-

dent biological replicas of mutant and WT samples showed a
8 Cell 163, 1–15, December 3, 2015 ª2015 Elsevier Inc.
reproducible upregulation (>4-fold) of a large number of genes

in embryos lacking H3K9 methylation (met-2 set-25), whereas

the loss of CEC-4 led to robust upregulation of a single gene,

srw-85 (Figure 5D). The modest effect of cec-4 mutation on

gene expression is consistent with our results from the array-

borne GFP-LacI (Figure 1F). In the case of endogenous genes

in early embryos, the lack of derepression might simply reflect

the absence of transcription factors needed for tissue-specific

gene expression. However, given that the loss of H3K9 methyl-

ation does upregulate many genes in embryos, it is more likely

that H3K9me-ligands other than CEC-4 mediate gene repres-

sion. Analysis of datasets in 500 bp windows across the whole

genome, for potential changes in non-genic regions, yielded

similar results to the gene-centric analysis; only genomic
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windows spanning the srw-85 locus were reproducibly upregu-

lated in cec-4(ok3124) (Figure S5C).

The dramatic induction of srw-85 (> 16-fold) upon displace-

ment from the INM is a notable exception (Figures 5A and

5D–5F). Its derepression correlates strongly with subnuclear

position, and not with H3K9methylation state, as it was not dere-

pressed in met-2 or set-25 single mutant embryos, which retain

anchoring (Towbin et al., 2012). SRW-85 is a member of the

C. elegans chemoreceptor family of seven transmembrane G

protein-coupled receptors (7TM-GPCR). The gene sits on

ChrV-right, along with 90% of the 145 srw family members,

and is normally expressed in non-ASE type (gustatory) neurons

(Etchberger et al., 2007). Given that surrounding genes are not

equally upregulated (Figure S5D), we conclude that srw-85 is

an exception rather than the rule. CEC-4, unlike other H3K9

methylation readers, serves primarily to position chromatin,

although the H3K9me2/me3 modification it recognizes also me-

diates transcriptional silencing.

Perinuclear Anchoring Helps Stabilize an Ectopically
Induced Cell Differentiation Program
We examined cec-4 mutant worms for developmental defects.

Surprisingly, we found no drop in brood size nor embryonic

lethality (either at 20�C or 26�C). We scored no reproducible dif-

ferences in the developmental timing of embryonic stages, and

except for a slight increase in the proportion of male progeny,

proliferation appeared normal under standard laboratory condi-

tions (data not shown). Given that alternative anchoring path-

ways are induced in L1 larvae, we sought to test the role of

CEC-4-mediated chromatin tethering specifically in embryos.

To this end, we used an assay that induces muscle cell spec-

ification in embryos in response to a cell-type independent burst

of HLH-1 (MyoD) expression, a master regulator for muscle dif-

ferentiation (Fukushige and Krause, 2005). Induction of HLH-1

is driven by the hsp-16.2 heat-shock (HS) promoter on a trans-

gene array (HS::hlh-1) and is achieved by placing embryos at

34�C for 10 min; about 24 hr after, efficiency of induction can

be monitored by morphology and muscle-specific gene ex-

pression (Figure 6A). To test whether cec-4 mutant alters the

efficiency of muscle induction, we introduced the HS::hlh-1

transgene and the gwIs4 array into WT and cec-4 mutant, using

the latter as a fluorescent reporter for muscle-specific gene

expression (myo-3p::RFP). At 40 min after HS, hlh-1 mRNA

was expressed at comparable levels in both genotypes, as

was the downstream muscle specific myosin, myo-3, at 24 hr

after HS (Figure 6B).

We induced HLH-1 expression at different time points during

synchronized embryonic growth and monitored the outcome

by microscopy. A striking difference between WT and mutant

embryos was noted when we exposed the bean stage (�560

cells; 300 min growth at 22.5�C) to the HLH-1 pulse (Fig-

ure 6C–6F). Whereas 100% of the wild-type embryos turned

into lumps of muscle-like cells with muscle-twitching behavior,

among the heat-shocked cec-4 null embryos a reproducible

25% continued to develop, reaching the point of hatching from

the eggshell despite their documented HLH-1 expression (Fig-

ure 6C and 6D). These hatched larva-like organisms were clearly

abnormal, as they were disrupted by the slightest manipulation
and failed to survive. Nonetheless, they had progressed well

beyond embryonic stages and did not manifest the muscle

morphology of their WT counterparts (Figure 6C and 6E). To

rule out a general temperature sensitivity of cec-4 deletion, we

exposed the mutant embryos lacking the HS::hlh-1 to HS, yet

observed no effect on development: all embryos yielded normal

larvae (Figure 6C).

After HLH-1 induction, the fluorescent reporter myo-3p::RFP

was detected in patches of cells in both genotypes, with an over-

all higher intensity in WT cells (Figures 6E and S6A). The subset

of cec-4 mutant embryos that became muscle, like the WT em-

bryos, showed twitching behavior. In contrast, the cec-4 null

hatched larva-like worms had a dispersedmyo-3p::RFP expres-

sion pattern throughout the organism, which was distinct from

the usual myo-3 expression pattern in L1 larvae body wall mus-

cle (Figure 6E). We could complement the cec-4 deletion by

introducing the tagged CEC-4-mCh; indeed, this restored the

normal WT response to HLH-1 induction, and 100% of the em-

bryos became muscle cells. In contrast, complementing with

CEC-4cd2YA-mCh yielded results reminiscent of the cec-4

null, albeit less penetrant (Figure S6B).

The inefficiency of the cec-4mutant for muscle tissue conver-

sion in response toMyoD, appears to reflect an inability to lock in

the muscle specification program and repress other differentia-

tion programs. In other words, despite high level expression of

HLH-1, the cec-4 mutant appeared to remain more permissive

to other differentiation signals and therefore continued to

develop other tissues while expressing muscle-specific genes.

We confirmed this by tracking an intestine cell marker that is

not expressed in either genotype at the bean stage when we

perform HS. The reporter (kind gift of G.-J. Hendriks and H.

Grosshans, personal communication) expresses a GFP-tagged

nuclear pore protein from an L1-stage gut-specific promoter

(nhx-2). At 18 hr after HS, we find that the fluorescent gut marker

(nhx-2p::npp-9::GFP) was detected in 94.5% of cec-4 mutant

embryos, but significantly less in WT (39.6%; Figure 6F).

Given the fragility of the hatched larvae-like structures, neither

immunostaining nor manual isolation for RNA-seq was possible.

However, their morphology alone allows one to conclude that a

significant fraction of the cec-4mutant embryos failed to restrict

gene expression to the muscle program. Thus, the perinuclear

sequestration of silent genes by CEC-4 in embryonic stages ap-

pears to help stabilize the HLH-1-induced muscle cell fate.

DISCUSSION

Perinuclear Chromatin Sequestration through Histone
H3K9 Methylation
Heterochromatin, or transcriptionally silenced chromatin, is

often juxtaposed to the INM in eukaryotic organisms. Previous

work has identified H3K9 methylation as essential for hetero-

chromatin anchoring in worms (Towbin et al., 2012) and impor-

tant in mammalian cells (Kind et al., 2013; Pinheiro et al.,

2012). However, no INM anchor that selectively binds this epige-

netic mark was known. Here we describe CEC-4 as a perinuclear

C. elegans protein which is necessary for the tethering of endog-

enous chromatin bearing me1-, me2-, or me3-H3K9 histones. Its

CD’s aromatic cage is necessary for H3K9me binding in vitro and
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in vivo. Ablation of CEC-4 delocalizes heterochromatin, but

does not necessarily lead to its derepression, whereas loss of

histone H3K9 methylation compromises both. Other H3K9me-

ligands (HP1 homologs HPL-1 and HPL-2, or LIN-61) contribute

to transcriptional repression by binding H3K9me2 or me3, but

do not mediate perinuclear anchoring. This bifurcation in func-

tion of a single methylated lysine in a histone tail, through

divergent sets of methyl-lysine readers, provides a paradigm

for how epigenetic states can coordinate distinct activities. In

this case, chromatin can be anchored without silencing and

silenced without anchoring, even though the two functions are

correlated through H3K9 methylation. H3K9me1/me2 is suffi-

cient for tethering through CEC-4, while H3K9me3 is needed

for gene repression mediated by other H3K9me-readers (Fig-

ure 7). It remains to be seen if CEC-4 and other H3K9me readers

interact.

CEC-4 Contributes to the Robustness of Ectopically
Induced Differentiation
This finding gave us the opportunity to examine what happens

during development when heterochromatin anchorage is

compromised, without loss of H3K9methylation or the transcrip-

tional repression it mediates. Although cec-4 mutant embryos

yielded normal adult worms when development proceeded un-

perturbed, we were able to demonstrate a function for hetero-

chromatin anchoring in early development by inducing muscle

differentiation with ectopic expression of MyoD (HLH-1). Unlike

the WT strain, a significant fraction of cec-4 deficient embryos

(about 25%) did not maintain the muscle fate provoked

by HLH-1 induction (Figure 6) and continued to develop. In

contrast, the induction ofmuscle cell fate and repression of alter-

native programs of differentiation occurred in 100% of the WT

bean-staged embryos. The failure of the mutant to sustain an

HLH-1-induced muscle program could either mean that CEC-4

actively supports muscle-specific gene expression, or else that

it helps repress other tissue-specific programs. Given that

muscle markers were expressed in heat-shocked cec-4 mutant

embryos and that muscles develop normally in the mutant

without HS, we favor the latter hypothesis: upon loss of CEC-

4-mediated heterochromatin sequestration, non-muscle pro-

grams may not be properly repressed during ectopic muscle

induction. This is consistent with earlier studies that showed a

clear spatial segregation of active and inactive tissue-specific

genes in differentiated cells of C. elegans larvae (Meister et al.,

2010).

Because cec-4 ablation per se seems to have a very limited

effect on normal transcription patterns, we propose that CEC-

4-mediated tethering does not control gene repression directly,
(B) LEM-2 ChIP enrichment of arms (left or right) compared with corresponding c

(C) Representative merged color, single plane nuclei are shown for WT and cec-4

2 mm. Zoning assay of nucleolar foci in 50–250 cell stage embryos, n = foci scor

(D) Relative gene expression profiles as scatter plots of met-2 set-25 and cec-4

circled, bold star = srw-85.

(E) LEM-2 ChIP qPCR for srw-85 and C18D4.6 genes. ChIP values as a percenta

(F) Gene expression levels of indicated genotypes by qRT-PCR, normalized to pm

replicas.

See also Figure S5.
but instead influences events that prepare genes for tissue-

restricted patterns. These events might be the remodeling of

epigenetic states (e.g., through histone deacetylases that bind

the nuclear envelope [Zullo et al., 2012]), the sequestration of

promoters away from their regulators, or the timing of replication

of tissue-specific genes (Hiratani et al., 2008). These changes

may not directly repress transcription, but rather change the

compaction state of chromatin as a prerequisite for stage-spe-

cific repression. Indeed, the INM-released arrays in cec-4 mu-

tants are less compact (Figure 1), although we did not detect

less histone H3K9 methylation by genome-wide ChIP (data not

shown).

ESC differentiation studies have shown that the timing of repli-

cation of genes, and their reassembly into chromatin following

replication, are compromised by spatial misorganization (re-

viewed in Hiratani et al., 2009). Moreover, it has been suggested

that altered replication timing precedes commitment to differen-

tiation-related expression patterns (Hiratani et al., 2008). Thus,

we propose that CEC-4-mediated chromatin positioning and

compaction may contribute to a replication timing program,

which in turn reinforces appropriate gene repression. We expect

that the compromised commitment of cec-4 mutant is not

restricted to muscle differentiation, but rather is a general mech-

anism that becomes important when normal development is per-

turbed. Whereas the ectopic HLH-1 induction is definitely a

strong perturbation, less dramatic perturbations during develop-

ment may rely on spatial sequestration to ensure proper patterns

of tissue-specific gene expression.

Extending Nuclear Anchoring Mechanisms to Other
Organisms
Although CEC-4 is the first CD protein reported to form a ring at

the nuclear perimeter autonomously, CEC-4’s anchoring func-

tion becomes either redundant or replaced by other mechanisms

in L1 larvae, the stage at which most cells reached terminal dif-

ferentiation. We note that heterochromatin can be anchored in

differentiated tissues without H3K9 methylation, and without

HPL-1, HPL-2, or LIN-61 (Studencka et al., 2012b; Towbin

et al., 2012). Another CD protein, CEC-3, had no impact on em-

bryonic array distribution in our screen, although it appears to

restrain the expression of a neuronal specific transcription factor

in larvae (Greer et al., 2014; Zheng et al., 2013). Thus, four

H3K9me binders—HPL-1, HPL-2, LIN-61 and CEC-3—con-

tribute to transcriptional silencing during development, while

CEC-4 specifically sequesters H3K9me-containing chromatin

in embryos. CEC-4 may also contribute to heterochromatin

anchoring in some differentiated worm tissues, albeit in a redun-

dant manner (data not shown).
enter plotted for each genotype. Error bars = SEM.

mutant stained for anti-fibrillarin, lamin, and gwIs4 array (anti-GFP), Scale bar,

ed; pair-wise comparison p value < 0.001, c2 test.

mutants versus WT early embryo extracts. Genes significantly changed are

ge of respective input DNA.

p-3 gene and shown relative toWT expression. Error bars = SEM of 3 biological
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We have not identified a direct homolog of CEC-4 in non-nem-

atode species, and we suspect that this protein’s two functions,

INM-association and specific H3K9me-recognition, may be

embodied in two separate polypeptides in mammals. As

mentioned, an example of such split function may be

the mammalian nuclear membrane-spanning protein PPR14,

which can bind HP1. The interpretation that PPR14 anchors het-

erochromatin through this ligand is complicated, however, by the

pleiotropic effects its loss has on nuclear shape (Poleshko et al.,

2013). Similarly, themammalian LBRmay bind HP1 and carries a

Tudor domain with a preference for H4K20me2 in vitro (Hirano

et al., 2012; Ye andWorman, 1996).Whereas there is no compel-

ling evidence that either H4K20me2 or HP1 mediate perinuclear

anchoring in early development, LBR itself is implicated in the

spatial organization of the genome in differentiated mammalian

cells, particularly in cells that do not express Lamin A/C (Clowney

et al., 2012; Solovei et al., 2013). Unfortunately, indirect

effects again complicate the interpretation of LBR ablation, since

this transmembrane protein has sterol reductase activity that

regulates cholesterol metabolism and maintains appropriate

spacing between inner and outer nuclear membranes (Holmer

et al., 1998). Thus, both indirect effects and redundancy among

anchors have made it difficult to characterize chromatin-teth-

ering pathways in mammalian cells. Nonetheless, it is possible
(B) Quantitation of hlh-1 and muscle specific myo-3 expression by qRT-PCR in indicated genotypes, 40 m

normalized to pmp-3 gene. Error bars = SEM of 3 biological replicas.

(C) Stereoscopic representative images of synchronized bean stage embryos before and 24 hr after HS. As

treated similarly. Hatched larva-like worms highlighted with dashed white line and arrow. Scale bar, 20 mm.

(D) Average hatching ratio after HS according to genotype in bar plot. Error bars = SEM of six independent

(E) Muscle reporter pattern for indicated genotypes. Z-projections of bright field and fluorescent myo-3p::RF

type L1 imaged independently. Scale bars = 5 mm.

(F) Intestine reporter nhx-2p::npp-9::GFP pattern for indicated genotypes. Z-projections taken as in (E). n

respectively. Scale bars,5 mm.

See also Figure S6.
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that these INM proteins function through

chromatin binding proteins that resemble

CEC-4. Separation of function mutations

that uniquely compromise chromatin

positioning will be needed to define these

pathways unequivocally.
In other species, repressive epigenetic marks other than

H3K9 methylation may contribute to the spatial sequestra-

tion of repressed chromatin. In mouse 3T3 embryonic fibro-

blasts (MEFs), the Polycomb mark H3K27me3 was reported

to contribute to perinuclear positioning at the edges of

LADs (Harr et al., 2015). In worms, the loss of Polycomb

components MES-3 and MES-6 led to derepression of our

heterochromatic reporter in embryos (Towbin et al., 2012),

but did not trigger release from the nuclear periphery. More-

over, in most species, the H3K27me3-positive foci found in

differentiating cells are not perinuclear (Eberhart et al.,

2013). This, however, does not preclude the possibility that

combinatorial epigenetic signatures target chromatin to the

INM.

The relative simplicity of the C. elegans system and the

conserved nature of its epigenetic and developmental programs

has allowed us to dissect nuclear organization with a genetic

approach. Given the conserved role H3K9me has in chromatin

positioning, it is likely that factors with analogous functions as

CEC-4 exist elsewhere. Functional screens in compromisedback-

grounds will be able to shed light on relevant anchors in differenti-

ated cells. Disruption of specific anchors in differentiated tissues

will extend our understanding of the function of heterochromatin

sequestration.
in and 24 hr after HS relative to before HS; data

control, cec-4 null embryos lacking HS::hlh-1 were

assays, n = total embryos tested.

P (from gwIs4) imaging taken 18 hr after HS. Wild-

= 3, total number of embryos scored = 53 and 55

, December 3, 2015 ª2015 Elsevier Inc. 13
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EXPERIMENTAL PROCEDURES

RNAi Screen

RNAi was performed at 22.5�C by placing L1 worms on feeding plates as pre-

viously described (Timmons et al., 2001). For the list of genes used (Table S3) in

the RNAi screen see Supplemental Experimental Procedures.

Microscopy

Microscopywas carried out on a spinning disc confocalmicroscope, using 2%

agarose pads for live-microscopy or poly-lysine coated slides for fixed sam-

ples. Acquisition and analysis of array and nucleolus distribution, array spot

volume, expression levels of GFP-LacI and CEC-4-mCh, and enrichment of

CEC-4 over array are online, along with a description of super resolution-struc-

tured illumination microscopy (SR-SIM; Elyra S.1 [Carl Zeiss]).

AlphaScreen Direct Binding and In Vitro Assays

Purified recombinant His-tagged CEC-4 CD (200 nM) was screened for its

binding to modified histone peptides with the ALTA Biosciences peptide array

system (Alta Biosciences, UK) and the AlphaScreen assay. Details for protein

purification, peptide pull down and ITC are in Supplemental Experimental

Procedures.

LEM-2 ChIP-Seq and RNA-Seq

Early embryonic progeny was harvested after synchronization (60–65 hr de-

pending on each strain) for WT, met-2 set-25, and cec-4 mutant strains in

two independent biological replicates. LEM-2 ChIP was performed as

described (Ikegami et al., 2010). Total RNA was extracted by phenol/chloro-

form, further purified, and depleted for rRNA. Detailed information about library

preparation and data analysis is described in Supplemental Experimental

Procedures.

Heat-Shock Induced Muscle Differentiation

Two cell-stage embryos, of different genetic backgrounds containing the

HS::hlh-1 transgene, were allowed to develop until bean stage (300 min at

22.5�C). HS at 34�C for 10 min was performed either on 2% agarose pads

or on liquid with a thermal cycler with in situ slide block. After recovery for

24 hr, evaluation of hatching larva-like worms was determined by stereomicro-

scopy, and reporter markers by spinning disc confocal microscopy. Details for

qPCR of HS samples is described in Supplemental Experimental Procedures.
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Figure S1. Genomic Context of cec-4 and Its Deletion Allele, Related to Figure 1

Heterochromatic array contains H3K9me3 and co-localizes with SET-25 even when it is away from nuclear periphery in cec-4 mutant.

(A) Schematic representation (not to scale) of genomic region where cec-4 gene is localized, and deletion allele coverage.

(B) Quantitation of array distribution in different experimental conditions as indicated, n: foci scored in presented order. Pair-wise comparisons ofmock RNAi and

WT conditions with the respective cec-4 RNAi and cec-4 mutant show statistically significant differences with p-value < 0.001 in all comparisons, c2 test.

(C) Immunofluorescence (IF) of transgene gwIs4 array (anti-GFP) and repressive histone mark H3K9me3 in WT and cec-4 mutant strains. Z-projection of

representative nuclei are shown, co-localization observed as yellow signal in merged panels. Scale bar, 2 mm.

(D) Live microscopy of N-terminally tagged SET-25 with mCherry (mCh-SET-25) together with array in indicated genotypes. Z-projection images of embryos in

individual and merged colors. Insets: single nuclei. Scale bars, 5 and 2 mm for embryos and insets respectively.
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Figure S2. CEC-4 and EMR-1 Constructs Used for This Study, Related to Figures 2 and 4
CEC-4 forms a nuclear ring in S. cerevisiae, which is compromised by loss of full-length protein.

(A) Schematic representation of CEC-4 and EMR-1 fusion constructs to mCherry. Both constructs were integrated as single copy on Chr II by MosSCI. cec-

4::mCherry transgene contains the endogenous promoter (upstream �3kb from transcription start site) and 30UTR (542bp after stop codon) of cec-4 gene. emr-

1::mCherry was kindly provided by Askjer P. and contains the endogenous promoter (upstream �1.567kb from transcription start site) and 30UTR (300bp after

stop codon) of emr-1 gene.

(B) Expression of intron-less full-length CEC-4 fused C-terminally to GFP in S. cerevisiae. Bright field, CEC-4-GFP, NUP-49-CFP (as perinuclear marker) and

merged single plane images are shown.

(C) Full-length, N-term and C-term fragments of CEC-4 fused to GFP expressed in yeast. Schematic representation of each construct is presented, in which the

GAL1-10 promoter (pGAL) drives CEC-4-mCherry and corresponding fragment fusions. Single plane images of representative patterns are shown. Scale bars on

(B) and (C) panel, 2 mm.

(D) Quantitation of CEC-4-mCherry intensity level on array-bound region in contrast to a non-array perinuclear region, as described in Supplemental Experimental

Procedures forWT andmet-2 set-25mutant embryos.Whiskers: 1st and 3rd quartiles, black circles: outliers, black lines:median, blue dots:mean, red dashed line:

baseline set as no difference in enrichment, n: total number of arrays per nuclei measured of each genotype.

Cell 163, 1–15, December 3, 2015 ª2015 Elsevier Inc. S3



C

B

CEC-4 CD

IC50 (μM)

>100

2.736

2.351

2.695

1.214

1.373

1.426

ndH3(1-21)

K9me1

K9me2

K9me3

H3(1-21)

H3(1-21)

H3(1-21)

H3(1-21)

K9me1

K9me2

K9me3

H3(1-21)

H3(1-21)

H3(1-21)

Hill slope

N
or

m
al

iz
ed

 A
lp

ha
-s

cr
ee

n 
si

gn
al

 (%
)

20

80

100

40

60

10-2 10-1 101 102 103
Concentration of competitor peptide (μM)

100

A

D

K9me2H3(1-21)

K9me3H3(1-21)

N

0.72 ± 0.03

0.73 ± 0.01

1.06 ± 0.04

Ka
(M-1)

1.64 ± 0.21 x105

1.91 ± 0.08 x105

1.18 ± 0.17 x105

ΔH
(kcal/mol)

-23.93 ± 1.30

-19.61 ± 0.31

-16.40 ± 0.93

ΔS
(cal/mol/deg)

-56.4

-41.6

-31.8

C
E

C
-4

 C
D

K37me   1H3(28-48)

K37me   2H3(28-48)

K9me1H3(1-21)

K37me   3H3(28-48)

1.25 ± 0.04

1.17 ± 0.06

1.00 ± 0.00

6.44 ± 0.06 x104

2.59 ± 0.22 x104

1.15 ± 0.03 x104

-13.28 ± 6.67

-16.74 ± 1.30

-8.844 ± 0.12

-22.6

-35.9

-11.1

ITC determined parameters

E

kc
al

/m
ol

 o
f m

et
hy

l-H
3K

37
 p

ep
tid

e

0

-2

-4

-6

-8

-10

Kd (μM)

15.5±0.15

27.9±1.75

87.0±2.30

-H3(28-48)

K37me1

K37me2

K37me3

H3(28-48)

H3(28-48)

H3(28-48)

CEC-4 CD ITC

0 1 2 3
Molar Ratio (peptide:CEC-4 CD)

H3(28-48)

K37me1

K37me2

K37me3

H3(28-48)

H3(28-48)

H3(28-48)

K37me2H3(28-48)

CEC-4 cd-2YA ITC

0 1 2 3
Molar Ratio (peptide:CEC-4 cd-2YA)

-10

0

-2

-4

-6

kc
al

/m
ol

 o
f m

et
hy

l-H
3K

37
 p

ep
tid

e

CEC-4 CD 

-8

ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVAL

Lysine 9 Lysine 37

Histone H3 tail sequence

1 48 
aa

Interaction with CEC-4 CD 
when methylated

0% 100%

Identity

Y A
87

Y A
111

CEC-4 cd-2YA:
aa:

Chromodomain

HP1β-CBX1 / 1-185
HP1γ-CBX3 / 1-183
HP1α-CBX5 / 1-191

PC3-CBX8 / 1-389
CEC-4 / 1-270

82 141 aa

Figure S3. CEC-4 Chromodomain Is Conserved and Binds to All Methylated Forms of H3K9 and to H3K37me with Lower Affinity, Related to

Figure 3

CD point mutations impair binding to all substrates tested.

(A) ClustalWmultiple sequence alignment of CEC-4’s CD (82-141 aa) with differentH. sapiensCBX proteins as indicated. Blue color range represents percentage

of identity, and consensus sequence is displayed. The two highlighted lysines (dashed red boxes) replaced by alanines in the CEC-4 cd 2YA construct.

(B) Histone H3 tail sequence for visualization of amino acid context of lysines 9 and 37, to which CEC-4 CD showed positive.

(C) IC50 (half maximal inhibitory concentration) of H3K9 peptides binding to CEC-4 CD measured by AlphaScreen peptide displacement assay. Non-biotinylated

H3K9 peptides were used to compete with the binding of CEC-4 CD and biotin-H3K9me2 peptide in AlphaScreen binding assay.

(D) Table showing parameters measured for association of CEC-4 CD and the different methylated states of indicated H3 peptides. N (stoichiometry), K (as-

sociation constant), DH (enthalpic change) and DS (entropy change) in Isothermal Titration Calorimetry (ITC) assay.

(E) Quantitation of binding affinities of methylated H3K37 peptides to CEC-4 CD and mutant cd-2YA, determined by ITC. For all graphs solid lines represent a

nonlinear least-square fit using one-site fitting equation.
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Figure S4. Intact CEC-4 CD Binds Preferentially to All Methylated Forms of H3K9 and with Less Affinity for H3K37 (me1 > me2 > me3) as

Monitored by ITC, Related to Figure 3

(A) Raw binding data of ITC injections of all methylated forms of H3K9 for both CEC-4 CD andCEC-4cd-2YA is shown. Dissociation constants (Kd) determined are

shown in Fig 2E. Kd’s with CEC-4cd-2YA were unable to be determined.

(B) Same as in (A) except that the peptides are related to methylation of H3K37. Kd’s are shown in Fig S2E.
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Figure S5. LEM-2 ChIP Enrichment Signals of met-2 set-25 and cec-4 Mutants Cluster and Are Different from WT, with a Less Polarized

Pattern, Related to Figure 5

Genes srw-85 and C18D4.6 are depleted for H3K9me in cec-4 embryos, while only srw-85 is derepressed.

(A) Heat-map of hierarchical clustered Euclidean distances of LEM-2 ChIP and Input (total chromatin extracted) normalized reads of WT,met2 set-25, and cec-4

mutants in duplicate.

(B) Average of duplicates of LEM-2 ChIP enrichment plotted over chromosomes. Tracks are shown only for autosomal chromosomes. Averaged signals (Z scores

of IP – input) are shown in 200 kb windows.

(C) Relative expression profiles in windows of 500 bp (not strand assigned) for the whole genome of cec-4mutants to WT levels in early embryos. Scatter plots

compare replicas of indicated genotypes.

(D) qRT-PCR mRNA level quantitation for indicated genes in WT and cec-4 mutant background. Data shown normalized to pmp-3 gene and relative to the

expression in WT. Error bars = SEM of five biological replicas of early embryo extracts.
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Figure S6. Muscle-Specific myo3-RFP Expression Occurs in Both Genotypes after HS, Albeit at Higher Levels in WT, Related to Figure 6

Restoration by expression of CEC-4-mCherry, but not the CEC-4 CD-2YA mutant.

(A) Muscle specificmyo-3p::RFP reporter (contained in gwIs4 array) for indicated genotypes 24 hr after HS. Z-projection images of bright field andmyo-3p::RFP

are shown. Scale bar, 5 mm. Quantitation of RFP intensity signal 24 hr after HS for indicated genotypes. Intensity levels are plotted in a.u., black line: median, n:

number of embryos of respective genotype.

(B) Table showing number of hatched larva-like worms for different strains tested.
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CHAPTER 3: ADDITIONAL CHARACTERIZATION OF CEC-4 
 

Adriana Gonzalez-Sandoval,1,2 Benjamin D. Towbin,1,3 Peter Zeller,1,2 Veronique Kalck,1 and 
Susan M. Gasser1,2 

1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland 
2Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland 
3Present address: Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, 
Israel 
 

 

Preliminary unpublished data. A. G.-S. together with B.D.T. and P. Z. contributed to the 
experiments presented on the first section. V. K. generated the results of the other sections 
with direct supervision and collaboration of A. G.-S.; S.M.G. functioned as supervisor for all 
sections. 

 

SUMMARY 

This chapter describes unpublished experiments that did not fit into the scope of the paper 
published, but were performed for the purpose of further characterization of cec-4. The first 
section is related to the phenotypic characterization of homozygous cec-4 mutant worms. We 
find that these worms show no differences in comparison to wild-type worms in relation to 
H3K9 distribution, embryonic developmental timing, brood-size, embryonic lethality and 
male induction. The second section contains experiments related to the targeting of CEC-4 
at the nuclear periphery. CEC-4 has an intrinsic localization to the nuclear periphery, which 
appears to be independent of lamin or known INM proteins. The third section presents a pilot 
experiment for genetic interactions of cec-4 with other readers of H3K9 in relation to the 
levels of expression of our GFP-LacI reporter contained in gwIs4 array. Quite unexpectedly 
cec-4 mutant shows a suppressive effect on hpl-2 and met-2 set-25 mutants, suggesting an 
active role of cec-4 in the higher levels of expression of our reporter when these genes are 
missing. This last section is a potentially interesting direction to continue the study of 
perinuclear anchoring of chromatin. 
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PHENOTYPIC CHARACTERIZATION OF CEC-4 MUTANT 

The mutant allele of cec-4 was not previously characterized. When we identified cec-4 as a 
factor required for chromatin anchoring in embryos, we sought to test whether its loss had 
any physiological impact.  

Since CEC-4 contains a chromodomain that recognizes H3K9 methylation (Gonzalez-
Sandoval et al., 2015), we determined if the distribution of these mark was altered in the 
absence of it. We used two approaches: (1) Immunofluorescence and measurement of radial 
distribution (Figure 3.1) and (2) Chromatin Immunoprecipitation followed by deep-
sequencing (Figure 3.2). In the absence of CEC-4 the levels and distribution of H3K9me2 and 
me3 were not significantly altered on a chromosomal level, but there seems to be a slight 
shift inwards of chromatin marked by H3K9me3, when scored by fluorescence microscopy. 

The mislocalization effect of cec-4 mutant occurs only in early embryonic stages, afterwards 
compensatory mechanisms again anchor our heterochromatic reporter (Gonzalez-Sandoval 
et al., 2015). Therefore we wanted to first address the effects in these early embryonic stages 
and thought that developmental timing could be an immediate phenotype to score. We saw 
no change in embryonic development scored by two different means (Figure 3.3).  

A more general characterization of phenotypes in worms is to measure brood-size, embryonic 
lethality and male induction. In comparison to wild-type worms, cec-4 mutants do not change 
brood-size nor embryonic lethality scores, but they do have a very slight difference in male 
induction (Figure 3.4). Differences in male induction suggest possible issues in X chromosome 
segregation and gonad function, but further experiments need to be done to properly 
understand the involvement of CEC-4 and chromatin organization in this phenomenon.  

In each following section we described the experiments in more detail and suggest possible 
directions in which these studies could continue. 

 

H3K9 me2/me3 radial distribution 

Immunofluorescence of H3K9me2 and me3 as well as nuclear pores or lamin, as indicated in 
Figure 3.1, were performed to score the radial distribution of chromatin marked by these two 
epigenetic marks. CEC-4 is a chromodomain protein that reads all methylated forms of H3K9 
with similar affinities (Gonzalez-Sandoval et al., 2015). Therefore, we wanted to monitor 
whether or not their nuclear distribution changes due to the lack of this reader.  
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Figure 3.1. H3K9me2 chromatin is enriched at the INM independent of cec-4. H3K9me3 partially 
requires cec-4. N=1. (A) Representative nuclear central focal plane of cec-4 mutant embryo stained for 
H3K9me3 and nuclear pore. Dotted line on merge panel represents line profile used for quantification.  
(B) Quantification of radial intensity of wild-type and cec-4 mutant embryos. Embryos were stained 
for the indicated histone modification (green), DNA (blue), and LMN-1 or nuclear pore (red). For each 
panel, the indicated number (n) of radial line profiles was scaled and polled into 100 binds, normalized, 
and averaged.  

 

There is a difference in the global distribution of H3K9me3 as monitored by immunostaining 
in the cec-4 mutant, but no obvious change of H3K9me2. CEC-4 has a slightly higher affinity 
for H3K9me2, which seems not to be affected, in contrast to H3K9me3. This difference may 
reflect alternative modes of INM association, such as the tethering of telomeres (which are 
also H3K9me-enriched) to SUN-1, which we previously showed to be independent of all forms 
of H3K9 methylation (Ferreira et al., 2013). Nonetheless, we know from LEM-2 ChIP that 
the perinuclear localization of chromosome arms is compromised in the cec-4 mutant. Is the 
global pattern of H3K9me3 staining a reflection of the shift of endogenous chromatin away 
from LEM-2? This is a likely hypothesis. More interesting is the question why H3K9me2 does 
not shift away. Are there additional and distinct ligands that recognize these marks, and are 
they INM associated? Or does it reflect the kind of loci that contain the marks, e.g. H3K9me3-
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enriched promoters might be more likely to shift away due to transcription, while H3K9me2-
enriched repetitive elements may not shift, since they may not be transcriptionally active. A 
high-resolution correlation of histone modification and positioning by CEC-4 ChIP-seq would 
be one way to pursue this. One would expect that CEC-4 correlates better with the pattern 
of H3K9me3, since its radial distribution seems to change in the absence of cec-4. 

Another way to continue this study would be to do Electron Microscopy (EM) negative 
staining in order to visualize endogenous heterochromatin and score if there is a difference 
in the global distribution of heterochromatin in the cec-4 mutant embryos. One caveat may 
be that perinuclear heterochromatin is less pronounced in embryos, thus it might be difficult 
to see a significant difference. Nonetheless, it could be tested.  

 

H3K9 me2/me3 distribution by chromosome 

Chromatin Immunoprecipitation followed by deep-sequencing (ChIP-seq) of H3K9me0, 
H3K9me2 and H3K9me3 was performed in wild-type and cec-4 mutant embryos, and was 
compared to Input chromatin, to score differences in the levels and distribution of these 
marks throughout the genome.  

 

Figure 3.2. Lack of anchoring by cec-4 mutant does not seem to alter enrichment of H3K9me2 and me3 
globally. N=1. H3K9me0, H3K9me2 and H3K9me3 ChIP-seq profiles over chromosomes of early 
embryos of wild-type (dark gray) and cec-4 (red) mutants. Dashed line shows srw-85 and C18D4.6 
genes, and triangles show rDNA clusters. 

 

There are no dramatic changes in the distribution of H3K9 along the chromosomes in the cec-
4 mutant. However, as reported in (Gonzalez-Sandoval et al., 2015) there is a change in 
compaction of the heterochromatic reporter array. This change in compaction may be 



68 
 

independent of H3K9, at least at the level of resolution obtained by ChIP-seq, since we score 
no major changes in the enrichment and distribution of this mark. This further confirms the 
absence of change in gene expression profiles. Compaction and transcription can be 
uncoupled (Therizols et al., 2014), and our results confirms this statement in C. elegans 
embryos for the heterochromatic reporter. Still we need to test if there is decompaction of 
endogenous chromatin in cec-4 mutant and what effects this may have on genome function.  

What is the mechanism of compaction at the nuclear periphery? It may be that the spatial 
distribution of CEC-4 along the INM physically constrains or compacts chromatin that 
contains methylated H3K9. To test this, one needs a quantitative means to monitor 
chromatin compaction. One approach would be to integrate differential fluorescent probe 
binding sites (or to do FISH), for loci that are 50kb or 100kb apart, in a zone containing 
H3K9me3.  If the distance between the two probes increase in a cec-4 mutant, but the 
H3K9me pattern does not change, one can attribute the compaction to CEC-4 itself. One 
could test chromatin also by monitoring accessibility to Micrococcal nuclease (MNase) and 
subsequence deep-sequencing of the accessible sites (Zhang and Pugh, 2011), in the presence 
and absence of CEC-4. The relative accessibility of linker DNA to MNase is generally thought 
to correlate with decompaction, thus MNAse sensitivity may allow us to score the 
decompaction of the endogenous genome when it is released from the INM. One would expect 
differences mostly in chromosome arms, whose localization at the nuclear periphery is 
compromised in cec-4 mutants. If this is the case, one means to confirm the correlation would 
be to target the enrichment of H3K9 methylation to a specific locus that is not normally 
localized at the periphery, and to see if it becomes compacted and localizes at the nuclear 
periphery. We cannot exclude the possibility of factors or elements, other than CEC-4 or those 
that are independent of H3K9 methylation, which could mediate compaction at the nuclear 
periphery. 

 

Embryonic Developmental Timing 

To score effects of lack of anchoring specifically in embryonic stages, we decided to compare 
the time of development in cec-4 mutant and wild-type embryos. We first recorded a time-
lapse of embryonic development every 15 minutes over 6 hours. We started imaging embryos 
from 2-cell stage to assure that the comparison between stages and timing was accurate. In 
the second approach we picked 2-cell stage embryos in pools of approximately 10 embryos, of 
each genotype, and let them develop for 5 hours at 22.5 °C (bean-stage). Then we made a 
stringent categorization of embryos reaching bean stage by eye, to see if there was a 
difference in the proportion of embryos reaching the specific stage. 
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Figure 3.3. Lack of anchoring by cec-4 mutant does not alter timing of embryonic development. N=1 
for each experiment. (A) Bright light microscopy of synchronized wild-type and cec-4 mutant embryos 
at specific time points as indicated. Scale bar = 5µm (B) Schematic representation of experimental 
procedure. Table shows classification of embryos before/after and at bean stage. Chi2 test shows no 
significant differences for both genotypes. Genotypes are mark with stars because both also contain 
the HS::hlh-1 and gwIs4 transgenes. Representative image of wild-type embryos which shows embryos 
of each classification: BB – Before Bean stage, B – Bean stage, AB – After Bean stage. Scale bar = 
20µm.   

 

No significant difference in the timing of embryonic development, between wild-type and cec-
4 mutant genotypes, was seen by time-lapse nor by synchronization when picking 2 cell-stage 
embryos. These experiments demonstrate no visual phenotypic difference in embryos that 
lack chromatin anchored to the nuclear periphery. Perhaps the differences are occurring at 
the molecular level and changes in early and late replicating origins could be an option to 
analyze further.  

The cec-4 dependent phenotype reported in (Gonzalez-Sandoval et al., 2015) occurred only 
with the condition of forced muscle differentiation. Altering cell cycle timing in embryos is 
another approach to assay the importance of anchoring that may become more evident under 
stress conditions. The experiment proposed here is to block replication in embryos by 
Hydroxyurea (HU) or another chemical treatment and then release them from it. If 
chromatin anchoring is important for proper replication control, one would expect that cec-4 
mutant embryos would have a deficit in recovery after the release of HU. Temperature stress 
or hypoxia stress would be another set of environmental perturbations to test in this assay. 
It is possible that the spatial organization of heterochromatin in the embryo is only there to 
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dampen effects of environmental or stochastic perturbation of the normal developmental 
program.  

 

Brood-size, Embryonic lethality and Male Induction at 26°C 

A common phenotypic experiment performed on mutants of C. elegans is to score brood-size, 
embryonic lethality and male induction, at regular (15-22.5°C) and heat-stress temperatures. 
We decided to score these phenotypes at elevated temperature, i.e. 26°C. We grew the worms 
at 26°C for two generations, in order to allow them to adjust to the temperature. In the third 
generation we singled 20 L4-stage worms per genotype. Over 3 consecutive days we passed 
each singled worm to a new plate and counted the total number of embryos laid, the number 
of larvae progeny produced and the number of males. Brood-size refers to the total number 
of larvae hatched on plates. Embryonic lethality is the ratio of larvae hatched by the total 
number of embryos counted. Male induction refers to the proportion of larvae that are males. 

 

Figure 3.4. At 26°C, cec-4 mutant worms have a similar brood-size and embryonic lethality as wild-
type, with a slight increase of males. N=1. Boxplots representing brood-size, embryonic lethality and 
male induction as indicated for each genotype; whiskers = 1st and 3rd quartiles, black lines: median, 
number of worms scored = 20 for each condition. 
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At the stress temperature of 26°C, the mutant of cec-4 behaves similar to wild-type worms in 
relation to brood-size, embryonic lethality and male induction. There is a very slight increase 
in the proportion of males in cec-4 mutant, which is not statistically significant. Nonetheless, 
we observe, anecdotally, that it is easier to find males on growing plates and to induce male 
production for crosses with the cec-4 mutant strain. A change in male induction rates can be 
associated with issues in X chromosome segregation. Preliminary observations of cec-4 
mutant embryos did not show striking differences in chromosome segregation, although this 
conclusion is again qualitative and anecdotal. Careful quantification of chromosome 
segregation in a large number of embryos would be needed to significantly identify 
differences, since the increment in male induction seems to be very low. 

If we consider the difference in male induction as meaningful, does this mean that cec-4 has 
a role specifically on the X chromosome? The X chromosome is not enriched for H3K9 
methylation, except for the left arm (Ikegami et al., 2010).  Recently it was reported that the 
X chromosome on males is located closer to the nuclear periphery due to association with the 
nuclear pore (Sharma et al., 2014). No additional interactions of the X chromosome and 
nuclear lamina have been reported. Perhaps the effect of cec-4 is indirect or independent of 
its function in recognizing H3K9 methylation. The CEC-4 chromodomain can also bind to 
H3K37me1/2 although with a lower affinity (Gonzalez-Sandoval et al., 2015), but this 
unusual modification has not been reported to exist in C. elegans. It is possible that CEC-4 
has an alternate role in gonads, specifically for the segregation of chromosome X. This could 
be identified using CEC-4 ChIP-seq to show an unexpected enrichment of CEC-4 on the sex 
chromosome. Additionally, using chromosome paints for the X chromosome, in males and 
hermaphrodites in both wild-type and cec-4 mutant backgrounds would help us to understand 
if CEC-4 affects the nuclear organization of the X chromosome. 

 

CEC-4 LOCALIZATION TO THE NUCLEAR PERIPHERY 

CEC-4 has no transmembrane domain and no obvious CAAX motif as is found in mammalian 
Lamin A. Therefore we wanted to characterize how CEC-4 is localized at the INM. We used 
three approaches to study the localization of CEC-4: (1) downregulation or deletion of known 
NE proteins in worms and yeast respectively, (2) yeast two hybrid screen of interactor 
partners followed by RNAi test in worms and (3) we scored the localization of fluorescently 
tagged fragments of the CEC-4 protein, in both worms and budding yeast. 

In worms, we performed RNAi against known NE components, with no successful candidates 
leading to the loss of CEC-4 perinuclear localization (Figure 3.5). In yeast, ectopically 
expressed, fluorescently tagged CEC-4 also localizes at the nuclear periphery, as it does in 
worms (Gonzalez-Sandoval et al., 2015). Deletion alleles of INM components and nuclear pore 
proteins were tested for the mislocalization of CEC-4 and no positive candidate was found 
(Figure 3.6).  

We also tried to identify interactors of CEC-4 by a yeast two hybrid (Y2H) screening. The 
four screens performed yielded several hits, but some of them were false positives (Table 1). 
Hits from the first screen were tested by RNAi for delocalization of CEC-4, but none had an 
effect (Figure 3.7). 
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Finally, as it was reported in (Gonzalez-Sandoval et al., 2015) for yeast, we expressed 
complementary N- and C-terminal fragments of CEC-4 in worms, to identify the domain of 
CEC-4 required for its position at the nuclear periphery. Neither truncated form was 
enriched at the nuclear periphery, in contrast to the intact protein, suggesting that both the 
N- and C-termini are important (Figure 3.8). Additionally, we know that a two-point mutated 
chromodomain of CEC-4 does not perturb its localization (Gonzalez-Sandoval et al., 2015). 

In each section below, we described these experiments in more detail and give possible ways 
to continue these studies. 

 

RNAi of known NE proteins in worms 

To identify factors at the nuclear periphery required for the perinuclear localization of CEC-
4, we utilized RNAi to silence known NE components. We silenced each candiate gene 
individually and in pair-wise combinations, and scored the localization of CEC-4-mCherry 
fusion in embryos. Here we show one example of the RNAi results. 

 

Figure 3.5. Localization of CEC-4 is not disrupted when known NE components are depleted. N=2. (A) 
Single plane images of representative embryos treated by RNAi as indicated. Worm strain carries a 
fusion version of CEC-4 (CEC-4-mCherry). Scale bar = 5 µm. (B) List of NE components silenced by 
RNAi, single or in pair-wise combination of all of them.  

 

There was no change in the localization of CEC-4 by silencing, individually or in combination, 
known NE components. Three explanations can be given: (1) CEC-4 localization is 
independent of other INM proteins, but since it does not contain a predicted transmembrane 
domain this is unlikely; (2) there is an unknown protein required to anchor or (3) there are 
multiple factors that aid in CEC-4 peripheral localization. We predict more than two known 
proteins would be involved since we tested known INM proteins pair-wise.  

An additional screen will need to be performed to identify possible factors involved in the 
perinuclear localization of CEC-4. The experiment proposed is a mutagenesis screen with 
Ethyl methanesulfonate (EMS) for the delocalization of CEC-4-mCherry in embryos. This 
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experiment can be done in a mutant background or in wild-type worms. This may allow us to 
identify potential mutations within CEC-4 or other uncharacterized factor required for the 
proper localization of CEC-4. 

 

CEC-4 expressed in yeast – mutants of NE components 

In budding yeast, an inducible plasmid carrying a fused version of CEC-4 with GFP is 
localized at the nuclear periphery, similarly as in worms. This experiment confirmed that the 
localization of CEC-4 is independent of lamin, since yeast do not have intermediate filament 
proteins nor a distant homologue of lamin (Gonzalez-Sandoval et al., 2015). To screen for the 
mislocalization of CEC-4, the CEC-4-GFP plasmid was transformed into different yeast 
mutant backgrounds related to NE components 

 

 

Figure 3.6. Deletion of nuclear envelop components in yeast does not disrupt the perinuclear 
localization of CEC-4-GFP. N=2. (A) Expression of intron-less full-length CEC-4 fused C-terminally to 
GFP in S. cerevisiae. CEC-4-GFP, NUP-49-CFP (as perinuclear marker) and merged channels, single 
plane images, are shown for two different genotypes. Scale bar = 2 µm. (B) List of yeast mutant strains 
used for experiments, all related to NE components. Since mlp1 deletion also perturbs sumoylation, 
this modification is also unlikely to be involved in CEC-4 localization, even though SUMO plays a role 
in heterochromatin localization in yeast. 

 

The exogenously expressed CEC-4-GFP formed rings in all NE yeast mutants tested. In other 
words no NE tested is involved in CEC-4’s perinuclear distribution. To identify how CEC-4 
is localized to the nuclear periphery, a straightforward experiment would be random 
mutagenesis of the CEC-4-GFP fusion on a yeast expression plasmid, followed by 
fluorescence microscopy to identify the localization of each mutant form. Plasmid 
transformation is much faster in yeast than in worms, therefore the screening will be more 
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efficient and any hits can be flowed up with studies in worms. This may allow us to identify 
the domain or core amino-acids important for the perinuclear localization of CEC-4. 

 

CEC-4 interaction partners by Y2H screen 

We used Hybrigenics Services© to screen by Y2H, potential interactors of CEC-4 that would 
be later tested for the localization of CEC-4 in worms. Four independent screens were 
performed, using the same Prey library (C. elegans embryo_RP1) which contains all proteins 
reported to be expressed during embryogenesis. As a bait a C-terminal fragment (162-270 aa) 
of CEC-4 and full length were used, both with two different promoters (LexA and Gal4- 
inducible). Two different promoters were tested preventing potential issues that may arise 
due to expression of CEC-4 in yeast, which is not endogenous. Two versions of CEC-4 were 
tested with the expectation that differences in the interactors identified may arise (more are 
expected with the full length protein than with the C-terminal fragment). Since the 
chromodomain of CEC-4 is on the N-terminal region, we hypothesized that the C-terminal 
portion would be more likely to interact with nuclear periphery. Experiments expressing 
complementary fragments (N- and C- terminal) in worms and yeast, led to the conclusion 
that the holoprotein is necessary for CEC-4’s perinuclear localization (Figure 3.8 and 
Gonzalez-Sandoval et al., 2015). The hits obtained in the first screen (Screen 1) were further 
tested for the interaction with CEC-4 by Y2H in our laboratory.  

Using confirmed RNAi clones of Screen 1 hit genes, we depleted each independently in worms 
to score for the localization of CEC-4-mCherry in embryos. Two genotypes were used: wild-
type background and met-2 set-25 mutant, where heterochromatin is localized away from the 
periphery. The mutant was used as a sensitized background, thinking this would facilitate 
CEC-4 displacement from the periphery.  

 

Table 1. Summary of results derived from Y2H screens. In house, Y2H confirmation led to four 
reproducible hits. However, when tested independently by RNAi, none altered CEC-4 perinuclear 
localization. N=1. 

Screen 1 Screen 2 Screen 3 Screen 4 Confidence* 
Y2H 

confirmation RNAi Gen 1 Gen 2 
ncam-1 ncam-1   Very high positive Yes No No 
B0024.11 B0024.11   Moderate positive Yes No No 
ceh-37 ceh-37 ceh-37 ceh-37 Low false positive Yes No No 
 C06E1.1   Good not tested No  
 C09F9.2   Good not tested No  
C15H9.4    Moderate positive Yes No No 
 apl-1   Good not tested No  
 atad-3   Moderate not tested No  
 cpna-2   Moderate not tested No  
 csn-5   Low not tested No  
 egl-9   Moderate not tested No  
 myo-3   Moderate not tested No  
let-607    Moderate positive Yes No No 
 ret-1   Moderate not tested No  
ttx-1   ttx-1 Low false positive Yes No No 
  ztf-13 ztf-13 Very high not tested No  
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  C08H9.16 C08H9.16 Moderate not tested No  
   hecd-1 Moderate not tested No  
   unc-53 High not tested No  
   vab-3 non specific not tested No  

 
Screen 1 – LexA promoter, C-term-CEC-4 
Screen 2 – Gal4 promoter, C-term-CEC-4 
Screen 3 – LexA promoter, CEC-4 
Screen 4 – Gal4 promoter, CEC-4 
Confidence* - PBS® value, Hybrigenics Services© 
Y2H confirmation – In house, see Figure 3.7 
RNAi – RNAi test in worms for delocalization of CEC-4 in embryos in two different genetic backgrounds 
Gen1 – wild-type worms with integrated CEC-4-mCherry 
Gen2 – met-2 set-25 mutant worms with integrated CEC-4-mCherry 
 

 

 

Figure 3.7. Y2H confirmation in house of Screen 1 hits, 4 out of 6 hits are true positives. N=1. (A) 
Assays were performed by mating the two yeast strains transformed with the B0024.11-prey or 
C15H9.4-prey and cec-4-bait or empty-bait plasmids as indicated. Diploid yeasts expressing both 
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proteins were selected on SC media lacking histidine, leucine and tryptophan (SC –His –Leu –Trp) 
and on media with additional 3AT drug in indicated concentrations (SC –His –Leu –Trp +3AT) to 
ensure positive interactors. (B) Same as in A but with different prey plasmids: ceh-37-prey and let-
607-prey. (C) Same as in A but with different prey plasmids: ncam-1-prey and ttx-1-prey. (D) Same as 
in A but with different prey plasmids: ncam-1-prey and ceh-37-prey and let-607-prey. SC –His –Leu –
Trp +3AT selection media only. 

 

In the Y2H confirmation experiment only diploid yeast bearing the two interacting proteins 
can grow on the selective media. Confirmation of the specificity of the result happens when 
prey plasmids are co-transformed with the empty-bait vector and cells do not grow. For ceh-
37-prey and ttx-1-prey plasmids, these interaction was not specific, meaning it was a false 
positive result. Higher concentrations of 3AT drug were used for two preys, to increase 
stringency of the selection and confirm the interaction of ncam-1-prey. In worms ncam-1 
(neuronal cell adhesion molecule homolog -1) is reported to have a transmembrane domain 
and localize at the cell membrane of neuronal cells and pharynx, but CEC-4 is expressed in 
all cell-types in all life stages, therefore is unlikely that this interactor is involved in the 
global localization of CEC-4. The other confirmed positive hits are not well characterized, 
making it difficult to address a proper connection with CEC-4 and the nuclear periphery at 
this time. B0024.11 is an orthologue of PUS7 (pseudouridylate synthase 7 (putative)) related 
to RNA processing. C15H9.4 is an orthologue of human TMCC1/2/3 (transmembrane and 
coiled-coil domain family 1/2/3) and TEX28 (testis expressed 28), but nothing more has been 
reported about this gene. let-607 is an orthologue of CREB (Cyclic AMP-responsive Element-
Binding) family of transcription factors and its deletion is lethal (WormBase Version:WS251). 

In worms we depleted by RNAi the hits from Screen 1 and found no effect on the localization 
of CEC-4 in any of the two genotypes used.  

Since 33% of the hits from Screen 1 turned out to be false positives, further Y2H confirmation 
of hits from Screens 2-4 is needed. A similar RNAi strategy can be carried out for true hits, 
but if none are positive it is likely that Y2H will not lead to the identification of a CEC-4 
nuclear periphery interactor. As suggested above, an EMS screen in worms or random 
mutagenesis of CEC-4 in yeast could be used to answer the question of the perinuclear 
localization of CEC-4.  

 

CEC-4 domains in worms 

In order to map the domain required to direct CEC-4 to the INM, we reported in (Gonzalez-
Sandoval et al., 2015) the expression and localization of complementary, N- and C-terminal, 
fragments of CEC-4 in yeast. The N-terminal fragment contains CEC-4 chromodomain (82-
141 aa) and a second conserved motif - PD (putative domain, 25-76 aa), found in other CD-
containing proteins. The C-terminal fragment does not contain an  identifiable domain and 
is predicted to be disordered by secondary structure analysis. Both fragments yield a diffuse 
nuclear distribution in yeast (see Chapter 2, Figure S2C), suggesting that the integrity of the 
holoprotein is necessary for its enrichment to the nuclear periphery. We also tested N- and 
C- complementary fragments in worms, with expression of extrachromosomal and integrated 
plasmids. 
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Figure 3.8. Complementary N- and C- fragments of CEC-4 have a dispersed signal inside the nucleus. 
As expected, the CD labels foci of heterochromatin, while the C-terminal domain does not (only in 
extrachromosomal injections) N=2. (A) Schematic representation of CEC-4 full length and 
complementary fragments expressed in worms. PD – putative domain (blue), Chromo – chromodomain 
(green). (B) CEC-4 fragments fused to mCherry were injected into worms extra-chromosomally. Single 
plane images of representative embryos of each fragment are shown. 

 

Similar to the expression in yeast, N- (1-161 aa) and C- (162-270 aa) fragments of CEC-4 are 
dispersed inside the nucleus of C. elegans embryos, suggesting that the integrity of the whole 
protein is required for perinuclear localization. It was extremely difficult to identify embryos 
expressing the extra-chromosomal fragments and integrated versions were expressed at even 
lower levels. Perhaps fragmentation of the protein is not a strategy that should be followed 
for CEC-4. Rather mutagenesis of the holoprotein may yield more promising results.   

 

GENETIC INTERACTIONS BETWEEN H3K9 RELATED FACTORS 

What are the dynamics between readers/writers of H3K9 methylation? We know that HPL-
1 and CEC-4 accumulate on the heterochromatic reporter (Gonzalez-Sandoval et al., 2015; 
Towbin et al., 2012).  HPL-1 appears to bind all methylated forms of H3K9 (Fischle W., 
unpublished data), while HPL-2 and LIN-61 recognize H3K9me2/3. We do not have 
convincing data on enrichment of HLP-2 and LIN-61 on the array, although ChIP for HPL-2 
does indeed detect the array (Meister et al., 2011). 

In embryos, CEC-4 has little involvement in gene expression, in contrast to HPL-2 and LIN-
61. In relation to anchoring, the scenario is reverese, CEC-4 plays a role and the other two 
H3K9 readers do not. We were curious to explore if the changes in gene expression that occur 
in hpl-2 and lin-61 mutants would be enchanced or reduced when there is a lack of anchoring 
(i.e. when cec-4 is deleted). In addition, MET-2 and SET-25 act redundantly for the anchoring 
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of heterochromatin and each has a role in gene expression. We next asked if there is epistasis 
between these two factors and CEC-4 with respect to silencing, given they are all required 
for anchoring. 

 

Gene expression changes in cec-4 mutant combined with other H3K9 related proteins  

We made strains combining wild-type, hpl-1, hpl-2, lin-61 and met-2 set-25 mutants with the 
mutant allele of cec-4, to addreess genetic interactions between these factors in relation to 
gene expression. We measured the intensity levels of the GFP-LacI protein expression from 
a housekeepin promoter (baf-1p) in the gwIs4 heterochromatic reporter in early embryos. All 
the strains were imaged under identical conditions in order to direcly compare the fluorescent 
signals.  

 

 

Figure 3.9. Suppressive effect of cec-4 mutant in combination with hpl-2, lin-61** and met-2 set-25 
mutants in relation to expression of GFP-LacI heterochromatic reporter. N=3. Quantified signal 
intensity displayed as box plot in log2 scale, whiskers = 1st and 3rd quartiles. Black lines: median, 
blue dots: mean, n = embryos scored per strain in given order, pair-wise comparison for * p-value < 
0.001 in Wilcoxon test. ** The effect related to lin-61 was not observed in the other two replicas of this 
experiment. 

 

Quite unexpectedly, there is a suppressor effect when cec-4 is combined with hpl-2, lin-61 or 
the met-2 set-25 double mutant. The effect with lin-61 although shown here, was not 
reproducible in experimental replicates, so perhaps it does not have an effect as strong as the 
other mutants.   
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We conclude that CEC-4 has an activating role at the nuclear periphery in the absence of 
hpl-2 and lin-61. Interestingly, there is no suppressor effect with the hpl-1 mutant, 
suggesting that the activating role of CEC-4 can only be seen in the presence of active 
transcription. It is important to consider that we are limited by the ability to image GFP-
LacI by microscopy and cannot measure minimal levels of GFP-LacI expression. In order to 
properly assign this last conclusion other mutants non-related to H3K9 that alter the 
expression of the array need to be screened in combination with cec-4 mutant. One possibility 
is that the activating role of CEC-4 is indirect and there is an unidentified ‘activating’ factor 
(Factor A) that interacts with CEC-4 at the nuclear periphery. In a wild-type situation, 
competition between Factor A and HPL-2/LIN-61 for binding sites on the array favors the 
later, and the array will be kept silent. When HPL-2/LIN-61 is deleted, the array remains at 
the periphery thanks to CEC-4 and Factor A can help in the activation of array expression. 
When CEC-4 is deleted, the interaction of the array with Factor A is lost, and the array does 
not change its expression as dramatically as it does it at the nuclear periphery. 

In relation to the met-2 set-25 mutant where there is no H3K9 methylation present, the 
explanation has to be different. In this double mutant the array is already away from the 
nuclear periphery and the additional removal of cec-4 does not change its position. The first 
conclusion is that met-2 set-25 and cec-4 mutants are not entirely epistatic, not with respect 
to gene expression. Although, they are likely to be epistatic for chromatin positioning because 
the two point chromodomain mutant mimics cec-4 null for array positioning (Gonzalez-
Sandoval et al., 2015). This suggest that CEC-4 has an additional role independent of 
anchoring heterochromatin at the nuclear periphery. We note that CEC-4 can also bind to 
H3K37me1/me2 in vitro (Gonzalez-Sandoval et al., 2015), perhaps the unknown function of 
CEC-4 is through the recognition of this mark. This is highly speculative, since this 
modification has not been reported to exist outside of S. ceverisiae and was not detected in 
our analysis of C. elegans methylated peptides. Interestingly, there is a striking and additive 
brood-size reduction of the met-2 set-25; cec-4 triple mutant under normal laboratory 
conditions, qualitatively assessed. Is this reduction related to the other function of CEC-4 
that becomes more prominent when H3K9 methylation is not present? Or is it an indirect 
effect due to genes that remain upregulated when worms lack H3K9 methylation and CEC-
4? Further experiments are required to further to understand this phenotype. 

The first experiment proposed to address these questions is qPCR or RNA-seq analysis of the 
mutants, which show this suppressive effect on the array. This would confirm whether 
endogenous genes are similarly (or oppositely) affected. In addition, a careful quantification 
of brood-size, embryonic lethality and male induction should be done for all these mutants. 

In order to further understand the genetic interaction effects identified, we need to discover 
physical interactor factors for all the proteins related to H3K9 methylation. We know that 
HPL-1 and CEC-4 sit on the heterochromatic reporter array, but we do not know if this is the 
case for LIN-61 or how significant is the enrichment of HPL-2 (assessed by ChIP-qPCR). 
There is still missing data on the binding affinity of some of these factors to H3K9 
methylation, which would help in concluding remarks about binding competition. We propose 
to do Bio-ID (proximity-dependent biotin identification), which is a relatively recent method 
for screening protein-protein interactions in living cells (Roux et al., 2012). Knowing about 
physical interactor partners of CEC-4 will help us to elucidate its other functions independent 
of anchoring. 
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EXPERIMENTAL PROCEDURES 

Strains and Constructs 

All worm and yeast strains used are listed in Table S1 and S2 respectively. Plasmids are 
listed in Table S3.  

For CEC-4 domain constructs, the whole gene was first amplified from N2 worms genomic 
DNA, and fragments were further amplified with specific primers for each position. All 
plasmid constructs were generated by MultiSite Gateway® cloning (Invitrogen). 
Transformation of plasmids into worms was done by injection, using the MosSCI technique 
(Frokjaer-Jensen et al., 2008). We used two different types of transformed worms, either with 
plasmids not integrated, or the integrated version.  

Worms for microscopy and developmental (Figure 3.3B) experiments were grown at 22.5˚C. 
H3K9 ChIP sequencing strains were grown at 20˚C. Brood-size, embryonic lethality and male 
induction worms were starved at 22.5°C and then shifted to 26°C.  

For yeast experiments, CEC-4 full length (1-270 aa – plasmid #3582) was cloned into 
Advanced Gateway destination vector plasmid #14193 (pAG415GAL-ccdB-EGFP). All 
plasmids were transformed using standard transformation protocol in GA-3628 (wild-type 
with nuclear pore fluorescently labeled) or strains listed in Table S2. Yeast were grown at 
30°C. 

Immunofluorescence (IF) 

IF was done as described in (Towbin et al., 2012). Antibodies used in pairs: monoclonal anti-
H3K9me2 (Abcam, ab1220) and Alexa-568 anti-mouse; polyclonal anti-H3K9me3 (Cell 
Signalling Technology, #9754S) and Alexa-568 anti-rabbit; for nuclear pores: monoclonal 
mAB414 (Abcam, ab24609) and Alexa-555 anti-mouse; for lamin: anti-CeLMN-1 (a gift from 
Y. Gruenbaum, The Hebrew University of Jerusalem, Jerusalem, Israel) and Alexa-488 anti-
rabbit. 

Microscopy 

Except Figure 3.3B, microscopy was carried out on spinning disk multipoint confocal 
microscopes: (1) AxioImager M1 [Carl Zeiss] + Yokogawa CSU-22 scan head, Plan-Neofluar 
100×/1.45 NA oil objective, EM-CCD camera [Cascade II; Photometrics], and MetaMorph 
7.7.2 software or (2) Olympus IX81 + Yokogawa CSU-X1 scan head, PlanApo 100x/1.45 
TIRFM or 60x/1.45 NA oil objectives, 2X Back-illuminated EM-CCD EvolveDelta 
(Photometrics), and VisiView 2.1.4 software. Live microscopy embryo samples were prepared 
as previously described in (Meister et al., 2010). Figure 3.1 images were de-convolved with 
Huygens Pro software. Single plane images and analysis were generated using Fiji/ImageJ 
software (Schindelin et al., 2012).  

For radial quantitation of H3K9me (Figure 3.1), more than 120 independent manually 
selected line profiles (5 pixels wide) were used at the central nuclear plane, lines were 
extended laterally by 12.5% of the nuclear diameter, and signal intensities were extracted 
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and pooled into 100 bins. Individual profiles were normalized, averaged, and plotted by using 
R. 

Embryonic development bright-light images (Figure 3.3A) were recorded as time-lapse 
microscopy, one image every 5 minutes for 5 hours (61 frames total). Embryos were selected 
at 2-cell stage as starting point of recording. Specific time-points were selected for illustrating 
purposes. 

For Figure 3.3B, microscopy was carried out on fluorescence stereomicroscope (Leica MZ FL 
III, PlanApo 2x/0.07 NA, Leica DFC350 FX camera 0.63x lens, and Imagic ims Client 
V14Q4_p3 software).  

Quantitation of GFP signal intensity on focal stack images (Figure 3.9) was done by selecting 
the plane at the embryo middle section and then subtracting the average background of each 
corresponding image. Box-plots were created using R. 

For yeast experiments, cells were cultured overnight at 30°C in a synthetic medium 
containing 2% raffinose, 0.1% sucrose and lacking the leucine amino acid to prevent the loss 
of the CEC-4-GFP plasmid. Next day cultures were diluted in the same medium containing 
raffinose and imaged when cells are at a concentration of 0.2-0.4 x107 cells/ml, live yeast cells 
were mounted on pad of agarose (1.4%) containing raffinose or galactose. 

H3K9 ChIP-seq 

Early embryo extracts, ChIP, library preparation and analysis was performed as described 
in (Gonzalez-Sandoval et al., 2015) with some modifications. ChIP was performed with 3-6 
ug of each antibody coupled with Dynabeads Sheep Anti-mouse IgG (Invitrogen). Antibodies 
used: H3 (Abcam, ab10799), H3K9me2 (MBL, MABI0317) and H3K9me3 (MBL, MABI0318). 
Chromatin concentration used for over-night incubation: 10ug for H3 and 20ug for 
H3K9me2/3 ChIP. Finally, ChIP-seq signals are displayed as z-scores of IP – input for both 
wild-type and cec-4 mutant samples.  

Brood-size, Embryonic lethality and Male Induction scoring 

Worms of corresponding genotypes were starved at 22.5°C, and shifted to 26°C on new plates 
with food for two generations. L4-stage worms of F3 were placed on individual plates and 
after 24hrs worms were removed from each plate into a new plate. This process was repeated 
over 3 consecutive days. Embryos, larvae and males were counted from each plate where the 
singled worms were placed. Brood-size is equal to the total number of larvae per worm. 
Embryo lethality is the ratio of total number of larvae by total number of embryos. Male 
induction is the total number of males divided by the total number of larvae. 

RNAi 

RNAi was performed by placing larval stage 1 (L1) worms on feeding plates as previously 
described (Timmons et al., 2001). Table S4 lists genes tested for CEC-4-mCherry localization 
experiments. All RNAi clones used were sequenced first to confirm target. As a mock RNAi 
control, the L4440 vector (Fire vector library) was modified by removing an EcoRV fragment 
containing 25bp identical to GFP-LacI.  
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Hybrigenic Services© 

ULTImate Y2H™ is an optimized version of Y2H in the cell-to-cell mating process, patented 
by the company. Screen parameters: Nature – cDNA, Reference bait fragments – 
Caenorhabditis elegans-cec-4 (aa 162-270) & (aa 1-270), Prey library – Caenorhabditis 
elegans embryo_RP1, Vectors – pB27 (N-LexA-bait-C fusion) & pB35 (N-GAL4-bait-C fusion, 
inducible). Analyzed Interactions – 61, 62.3, 69, 64.8 millions in each screen respectively. 

Y2H drop assay 

Bait and prey vectors (all constitutively expressed under ADH promotor) (Table S3) provided 
by Hybrigenics Services© and an in-house positive control, were transformed in specific 
combinations (Table S5) in the yeast strain GA-6307. For drop assay 3 independent colonies 
were tested. The cultures were done in liquid medium lacking leucine (Leu) and tryptophan 
(Trp) to be sure to keep both plasmids. The Histidine (His) reporter gene was used to monitor 
the possible protein-protein interactions. Cultures were spotted on the appropriate synthetic 
medium (SC-Leu-Trp-His with or without 3AT) with highest concentration of 105 cells and a 
serial dilution of 5 fold. Plates after incubation for 2 days at 30o C were analyzed for 
interaction. The assay was performed in presence or absence of 3AT at indicated 
concentrations, as inhibitor of HIS3 to reduce possible false positives interactions. 

 

Table S1. List of worm strains used 

Strain Genotype Reference 
N2 wild-type, Bristol isolate  

GW105 gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X; 
gvIs[hsp-16.2::hlh-1 rol6(su1006)] 

(Meister et al., 
2010) 

GW211 
hpl-1(tm1624) gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; 
myo-3p::RFP] X 

(Gonzalez-
Sandoval et al., 
2015) 

GW215 hpl-2(tm1489) III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; 
myo-3p::RFP] X   

(Gonzalez-
Sandoval et al., 
2015) 

GW631 lin-61(n3809) I; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; 
myo-3p::RFP] X 

(Towbin et al., 
2012) 

GW637 
met-2(n4256) set-25(n5021) III; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X 

(Towbin et al., 
2012) 

GW828 cec-4(ok3124) IV 
(Gonzalez-
Sandoval et al., 
2015) 

GW833 
cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; 
myo-3p::RFP] X   

(Gonzalez-
Sandoval et al., 
2015) 

GW849 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II 
(Gonzalez-
Sandoval et al., 
2015) 
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GW860 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II; gwIs4 
[baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X 

(Gonzalez-
Sandoval et al., 
2015) 

GW871 
gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II; met-
2(n4256) set-25(n5021) III; gwIs4 [baf-1p::GFP-lacI::let-
858 3’UTR; myo-3p::RFP] X 

(Gonzalez-
Sandoval et al., 
2015) 

GW964 gwEx80[cec4p::cec4_161-270::Wmcherry-NLS-3'UTR] This study 

GW977 
cec-4(ok3124) IV; hpl-1(tm1624) X ; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X 

This study 

GW978 hpl-2(tm1489) III; cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X 

This study 

GW979 lin-61(n3809) I; cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X 

This study 

GW984 met-2(n4256) set-25(n5021) III; cec-4(ok3124) IV; gwIs4 
[baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X 

This study 

GW1017 cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; 
myo-3p::RFP] X; gvIs [hsp-16.2::hlh-1 rol6(su1006)] 

(Gonzalez-
Sandoval et al., 
2015) 

GW1153 gwSi25[cec4p::cec4_161-270::Wmcherry-NLS-3'UTR]II This study 
GW1174 gwSi26[cec4p::cec4_1-161::Wmcherry-NLS-3'UTR]II This study 
No stock cec4p::cec4_1-161::Wmcherry-NLS-3'UTR This study 

 

Table S2. List of yeast strain used 

Strain Background Genotype Reference 

GA-1340 W303 can1-100 mlp1::URA3 mlp2::HIS3 
esc1::KanMx4 

(Andrulis et al., 
2002) 

GA-1469 W303 mlp1::TRP1 (Hediger et al., 2002) 

GA-1470 W303 mlp2::HIS3 (Hediger et al., 2002) 

GA-1526 W303 mlp1::TRP1, mlp2::HIS3 (Hediger et al., 2002) 

GA-2470 W303 nup133::HIS3 (Bucci and Wente, 
1998) 

GA-3628 W303 can1-100 NUP49::CFP-NUP49 
URA3  

(Taddei et al., 2006) 

GA-4887 W303 mps3::mps3 delta75-150KanMx6 
tel1::URA 

(Schober et al., 2009) 

GA-5306 W303 can1-100 nup84::His3 (Nagai et al., 2008) 

GA-5307 W303 can1-100 nup120::His3 (Nagai et al., 2008) 

GA-5545 W303 src1::hygro NUP49-GFP (Ferreira et al., 2011) 

GA-5670 W303 mlp1::URA3 mlp2::HIS3 
siz2::cloNAT 

(Ferreira et al., 2011) 



84 
 

GA-6307 L40 MATa his3-Δ200 ade2 leu2-3, 112 
trp1-901 lys2-801am 
LYS2::(lexApo)4-HIS3 
URA3::(lexAop)8-LacZ 

(Horigome et al., 
2011) 

 

Table S3. List of plasmids used 

Plasmid Description 

#1741 pFN3 pLexA-GAD4 

#3488 pIK37_cec4p_cec4-D3(161-270)Wmcherry 

#3508 pB27 cec-4 fusion N-lexA-cec-4-D3-C 

#3509 pP6 Prey, fusion N-Gal4-AD-B0024.11-C 

#3510 pP6 Prey, fusion N-Gal4-AD-C15H9.4-C 

#3511 pP6 Prey, fusion N-Gal4-AD-ceh-37-C 

#3512 pP6 Prey, fusion N-Gal4-AD-let-607-C 

#3513 pP6 Prey, fusion N-Gal4-AD-ncam-1-C 

#3514 pP6 Prey, fusion N-Gal4-AD-ttx-1-C 

#3515 pB27 Fusion N-LexA-C 

#3516 pP6 fusion N-Gal4_AD_C 

#3582 pAG415GAL_cec4-GFP 

#3677 pIK37_cec4p_cec4-D4(1-161)Wmcherry 

 

Table S4. List of genes silenced by RNAi  

Genes silenced by RNAi 

anc-1 

B0024.11 

baf-1 

C15H9.4 

ceh-37 

emr-1 

lem-2 

let-607 

lmn-1 

ncam-1 
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Genes silenced by RNAi 

sun-1 

ttx-1 

unc-83 

unc-84 

zyg-12 

 

Table S5. Combination of plasmids for Y2H interaction test 

Bait Prey Clone name Interaction 

#3508 no 
no-prey 
cec-4-bait negative control 

#3508 #3516 
empty-prey  
cec-4-bait negative control 

#3508 #3509 
B0024.1-prey 
cec-4-bait interaction test 

#3508 #3510 
C15H9.4-prey 
cec-4-bait interaction test 

#3508 #3511 
ceh-37-prey 
cec-4-bait interaction test 

#3508 #3512 
let-607-prey 
cec-4-bait interaction test 

#3508 #3513 
ncam-1-prey 
cec-4-bait interaction test 

#3508 #3514 
ttx-1-prey 
cec-4-bait interaction test 

#3515 no 
no-prey 
empty-bait negative control 

#3515 #3516 
empty-prey 
empty-bait negative control 

#3515 #3509 
B0024.11-prey 
empty-bait interaction test 

#3515 #3510 
C15H9.4-prey 
empty-bait interaction test 

#3515 #3511 
ceh-37-prey 
empty-bait interaction test 

#3515 #3512 
let-607-prey 
empty-bait interaction test 

#3515 #3513 
ncam-1-prey 
empty-bait interaction test 

#3515 #3514 
ttx-1-prey 
empty-bait interaction test 

#1741 no LexA-AD-fusion positive control 
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CHAPTER 4: CONCLUDING REMARKS AND FUTURE 

PROSPECTS 
 

In this thesis I have investigated a mechanism through which chromatin is associated to the 
nuclear periphery in C. elegans embryos.  

Using an established transgene-based reporter of heterochromatin, we have identified CEC-
4, and H3K9me1/2/3 binding protein that is localized at the nuclear periphery for chromatin 
anchoring purposes. We confirmed the majority of the effects seen with the heterochromatic 
reporter to occur in endogenous chromatin. Thanks to the characteristics of CEC-4, further 
experiments identified a functional role of perinuclear chromatin anchoring in an induced 
muscle differentiation developmental program. 

CEC-4 is a chromodomain protein with an intrinsic localization at the nuclear envelope. CEC-
4 recognizes all three methylated forms of H3K9, a signal required for the perinuclear 
sequestration of chromatin. Therefore, it functions as a chromatin anchor protein. Anchoring 
by CEC-4 in embryos supports full commitment to an induced muscle differentiation program 
(Chapter 2). Work by Dr. D. Cabianca has shown that CEC-4 also has a partially redundant 
role in nuclei of some differentiated tissues, though CEC-4 is only essential for anchoring in 
embryos. Extensive characterization of CEC-4, shows that CEC-4 contributes to the 
perinuclear distribution of H3K9me3 marked chromatin, although distribution of H3K9me2 
or me3 along the chromosomes is independent of CEC-4. Additionally, anchoring of chromatin 
by CEC-4 is not involved in timing of embryonic development under standard laboratory 
conditions nor brood-size or embryonic viability under stress temperature (26°C). Only a very 
slight increase in male induction is seen in cec-4 mutant worms at 26°C, but further 
experiments are needed to confirm this result. While CEC-4 does not have a putative 
transmembrane domain, we attempted to identify an additional protein interactor that would 
anchor CEC-4 at the nuclear periphery. Several experiments were performed in both C. 
elegans and S. cerevisiae to screen for potential INM factors and none were identified. Finally, 
CEC-4 seems to have an activating role on gene expression under sensitized conditions (i.e. 
lack of other readers of H3K9) (Chapter 3) that is independent of its role in anchoring through 
H3K9 methylation. 

The major conclusion drawn from the work presented on this thesis and potential future 
research are discussed here. 

 

Perinuclear localization of chromatin is not necessary for gene silencing nor for cell 
differentiation under normal developmental conditions 

There is a striking enrichment of dense staining, silent chromatin at the nuclear periphery 
(Comings, 1980). This nuclear sub-compartmentalization is gained over time during 
differentiation and several studies have presented the nuclear lamina as a repressive gene 
environment (reviewed in Akhtar and Gasser, 2007; Ciabrelli and Cavalli, 2015; Fadloun et 
al., 2013; Gibcus and Dekker, 2013; Kind and van Steensel, 2010; Mattout et al., 2015; 
Mattout and Meshorer, 2010; Towbin et al., 2009). Tethering experiments of genes towards 
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the nuclear lamina led to the ambiguous conclusion that for some genes it has a silencing 
effect, but for others it does not (Kumaran and Spector, 2008; Reddy et al., 2008). Several 
components of the nuclear lamina have been implicated in the tethering of chromatin to the 
nuclear periphery and only some of these components have an effect on gene expression. 
Unfortunately, many of thesenuclear envelope components have other important functions 
in the cell, making it difficult to conclude that changes in gene expression stem from changes 
in chromatin anchoring. Moreover, it has been described that tissue specific nuclear envelope 
proteins are required for the perinuclear position of whole chromosomes, yet no changes in 
gene expression were reported (reviewed in Talamas and Capelson, 2015). 

We are beginning to understand the importance of histone and DNA modifications, and the 
enzymes that deposit or remove them, in both transcription and the formation of 
transcription-correlated compartments. Still we know little about what regulates epigenetic 
changes in chromatin structure and whether nuclear sub-compartments are a result or an 
active participant in epigenetic control. A greater understanding of the mechanisms involved 
in chromatin localization will allow us to address the cross-talk between spatial distribution 
and chromatin structure, and how they influence nuclear function. 

Histone H3K9 methylation is essential for the sequestration of chromatin at the nuclear 
lamina in C. elegans (Towbin et al., 2012), and most likely this is a conserved phenomenon 
(Kind et al., 2013; Pinheiro et al., 2012). In this thesis we show that CEC-4 recognizes the 
methylation of H3K9 on chromatin for anchoring purposes (Gonzalez-Sandoval et al., 2015). 
Strikingly, gene expression profiles are not altered in embryos where anchoring is disrupted. 
This argues that anchoring of heterochromatin is not an essential driving force for silencing. 
In other words, gene silencing can occur without the need of nuclear periphery localization. 
Although many studies have reported the nuclear lamina as a repressive environment, 
additional studies are required to determine whether the sequestration of chromatin at the 
nuclear periphery (or its release) is a result or a cause of gene regulation. At least, in C. 
elegans early embryonic development, chromatin anchoring is not necessary for proper gene 
expression under normal conditions, scored on a mix-stage embryonic population level. Under 
the experimental conditions performed, we cannot exclude stochastic changes or cell to cell 
variations. Additionally, since chromatin at the periphery accumulates over time, we cannot 
exclude that at later stages anchoring does play a role in maintaining proper gene expression. 

Moreover, H3K9 methylated chromatin anchoring does not play a significant role in cell 
differentiation. In both conditions where chromatin is detached in C. elegans embryos (lack 
of H3K9 methylation or of CEC-4), development continues without any dramatic difference 
in cell differentiation. This can also be seen in mouse, where it has been described an LBR 
and Lamin A/C dependent tethering of chromatin. Mice that lack both of these proteins 
present major issues in cell structure and nuclear organization and die immediately after 
birth. Yet ablation of both proteins does not prevent cell differentiation (Solovei et al., 2013). 

Genome-wide analysis of DNA replication domain distribution correlates with the 3D 
organization of chromatin domains (Pope et al., 2014; Ryba et al., 2010). Chromatin 
associated with the nuclear lamina (LADs) correlate with late replicating domains (Rao et 
al., 2014). Upon neuronal differentiation, 20% of the genome changes replication timing 
concomitant with changes in gene expression of intermediate/low CpG-containing promoters 
and radial positioning towards the nuclear periphery for the specific loci tested (Hiratani et 
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al., 2008). Perhaps perinuclear localization of chromatin plays a more important role in 
relation to replication, than in the control of gene expression per se. In order to prove a causal 
link between subnuclear position and altered genome function, it is necessary to show 
genetically that the mechanism that mediates positioning also mediates late replication. 

 

Chromatin anchoring can be involved in gene silencing, supporting the commitment to an 
induced differentiation program 

The cec-4 mutant worms proliferate like wild-type worms with no difference in brood-size or 
embryonic lethality at 20°C or 26°C (heat stress). We observed no obvious developmental 
delay nor other defect in embryonic stages in which we see delocalization of heterochromatin 
(Chapter 3). At later stages of worm development compensatory anchorage mechanisms act 
even in the cec-4 mutant (Gonzalez-Sandoval et al., 2015) and perhaps masks the impact of 
mislocalization. This is also observed in the absence H3K9 methylation in worms (Towbin et 
al., 2012). Therefore, we sought a method to test the functionality of anchoring specifically 
during embryonic stages. Embryos lacking anchoring by deletion of cec-4 do not have a 
reproducibly altered gene expression profile (except for one gene). This characteristic helped 
us directly address the effects of a lack of anchoring, since there would not be any indirect 
effects due to misexpressed genes. We examined the effect of cec-4 mutation on an induced 
differentiation program, by the heat-shock inducible expression of the muscle master 
regulator HLH-1 (MyoD). In wild-type embryos, induction of HLH-1 forces cells into the 
muscle specification pathway, resulting in 100% conversion of embryos into muscle bodies. 
In contrast, about 25% of the cec-4 mutant embryos manage to develop for the subsequent 24 
hours to the point of hatching from the eggshell. Our interpretation is that the loss of 
heterochromatin anchoring impedes the proper commitment of cells to muscle, allowing cells 
to continue expressing other developmental programs, which lead to a larva-like state. Thus 
under this forced condition, anchoring of heterochromatin supports gene expression 
silencing, but unfortunately we do not understand how. It may influence events that prepare 
genes for tissue-restricted patterns of expression, such as early or late replication.  

In mammalian cells a mechanism of oscillatory expression of the PARD3 circadian hub, 
through association with the nuclear lamina has been described (Zhao et al., 2015). PARD3 
interacts with LADs and this contact is regulated by CTCF-PARP1. When cells are starved 
by serum shock and then released, the circadian rhythms are synchronized in HCT116 cells, 
allowing examination of the interactions of the PARD3 locus over time. Transcriptional 
activity of PARD3 remains high at the peak of recruitment to the nuclear lamina, and 
attenuation of transcription occurred after several hours concomitant with the addition of 
H3K9me2. The mechanism is not very well understood, but this study highlights that 
reposition of circadian genes towards the nuclear periphery is part of their regulation, but 
that association with the nuclear periphery does not lead to immediate transcriptional 
repression. Could the nuclear lamina function only to fine-tune gene regulation? The nuclear 
periphery seems to be influencing events related to silencing and depending on the case by 
case gene regulation, certain factors will retain silencing more efficiently at this location. The 
role of CEC-4 in such mechanisms remains to be discovered. 

Worms have proven to be an invaluable tool for the study of nuclear organization, and further 
experiments may find conditions of physiological stress in which perinuclear anchoring plays 
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a role. In addition, identification and ablation of other anchors that function at later stages 
of development, will help us further understand the function of this nuclear subcompartment.  
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Supplemental Experimental Procedures: 

Constructs and Strains 

Gene synthesis of cec-4 for protein expression and yeast constructs were from GenScript USA 

Inc. For the CEC-4 tagged construct, the gene was amplified from N2 worm genomic DNA. All 

plasmid constructs were generated by MultiSite Gateway® cloning (Invitrogen). The Y87A and 

Y111A point mutations in the cec-4 gene, referred to as 2YA, were introduced by multi-site-

directed mutagenesis (Agilent Technologies) for both in vivo and in vitro experiments. All worm 

and yeast strains used are listed in Table S1 and S2, respectively. The cec-4(ok3124) strain 

received from CGC was out-crossed six times to N2 wild-type strain. CEC-4 tagged wild-type 

and mutant cd2YA versions, were made using the MosSCI technique (Frokjaer-Jensen et al., 

2008). The MosSCI strains were out-crossed twice to N2 wild-type strain. The EMR-1-mCherry 

strain was kindly provided by P. Askjer; the intestine specific marker strain (nhx-2p::npp-

9::GFP) in Fig. 6F by Hendricks G.J. and H. Grosshans (Friedrich Miescher Institute for 

Biomedical Research, Basel, Switzerland, personal communication). Worms for microscopy 

experiments were grown at 22.5˚C; RNA and LEM-2 ChIP sequencing strains were grown at 

20˚C; qPCR strains were grown at 20˚C except for Fig. 6B at 22.5˚C. For yeast experiments, 

CEC-4 full length (1-270 aa), CEC-4N (1-144 aa) and CEC-4C (142-270 aa) were cloned into 

Advanced Gateway Destination vector plasmid 14193 (pAG415GAL-ccdB-EGFP); plasmids 

were transformed using standard transformation protocol in GA-1981 or GA-3628 strains (see 

Table S2 for strain details). Yeast were grown at 30°C. 

RNAi  

RNAi was performed by placing larval stage 1 (L1) worms on feeding plates as previously 

described (Timmons et al., 2001). Table S3 and S6 lists genes tested in RNAi screen and CEC-4-



 
 

mCherry localization experiments. All RNAi clones used were sequenced first to confirm target. 

As a mock RNAi control, the L4440 vector (Fire vector library) was modified by removing an 

EcoRV fragment containing 25bp identical to GFP-LacI.  

Immunofluorescence (IF) 

IF for Fig. S1C was done as described in (Meister et al., 2010), and for Fig. 2B and 5C IF as 

described in (Rohner et al., 2013). Antibodies used in pairs: for gwIs4: monoclonal anti-GFP 

(MBL-D153-3) and Alexa-488 anti-rat; for H3K9 methylation: monoclonal anti-H3K9me3 

(Wako #303-34832) and Alexa-568 anti-mouse; for nuclear pores: monoclonal mAB414 (Abcam 

ab24609) and Alexa-555 anti-mouse; for lamin: anti-CeLMN-1 (a gift from Y. Gruenbaum, The 

Hebrew University of Jerusalem, Jerusalem, Israel) and Alexa-488, -555 or -647 anti-rabbit; for 

CEC-4-mCherry: monoclonal anti-mCherry (Life technologies M11217) and Alexa-488 anti-rat; 

for nucleolus: anti-Fibrillarin (kindly provided by P. Heun, Welcome Trust Center for Cell 

Biology, Edinburgh, UK) and Alexa-555 anti-human. 

Microscopy 

Except for Fig. 2B and 6C, microscopy was carried out on spinning disk multipoint confocal 

microscopes: (1) AxioImager M1 [Carl Zeiss] + Yokogawa CSU-22 scan head, Plan-Neofluar 

100×/1.45 NA oil objective, EM-CCD camera [Cascade II; Photometrics], and MetaMorph 7.7.2 

software or (2) Olympus IX81 + Yokogawa CSU-X1 scan head, PlanApo 100x/1.45 TIRFM or 

60x/1.45 NA oil objectives, 2X Back-illuminated EM-CCD EvolveDelta (Photometrics), and 

VisiView 2.1.4 software. Live microscopy samples were prepared as previously described 

(Meister et al., 2010). Figs. 1E, 1F, 5C and S1C were de-convolved with Huygens Pro software. 

Single plane and 3D reconstruction (maximum intensity Z-projections) images and analysis were 

generated using Fiji/ImageJ software (Schindelin et al., 2012). Quantitation of array and 



 
 

nucleolus distribution on focal stacks of images was done with plugin PointPicker 

(http://bigwww.epfl.ch/ thevenaz/pointpicker/) as described (Meister et al., 2010); for proper 

quantitation in cec-4(ok3124) mutant, we used a strain with an additional copy of a lacO free 

baf-1p::GFP-LacI transgene (gwIs39), to enhance the GFP signal and be able to identify nuclear 

periphery.  

Quantitation of GFP/RFP signal intensity on focal stack images was done selecting the plane at 

the embryo middle section and subtracting the average background of corresponding image. In 

Fig. 1F all strains were compared to average wild-type signal intensity. In Fig. S2D, quantitation 

of CEC-4-mCherry enrichment over array on focal stacks of images was done measuring, for 

each nucleus, the mCherry intensity in the nuclear volume occupied by the array and divided by 

the mCherry intensity in an equivalent region outside the array at the nuclear periphery. In Fig. 

2D, quantitation of CEC-4-mCherry and EMR-1-mCherry fluorescent intensity in various tissues 

of L1 worms was performed on single nuclei, selecting a middle nuclear section plane; the 

obtained intensity values were normalized on the average background fluorescence of the 

corresponding image. Zoning assay graphs were done in Microsoft Excel and Intensity signal 

box-plots in R. 

For Fig. 1F Fiji ImageJ was used to change de dynamic range of deconvolved images, giving 

more value to low intense pixels (same settings applied to all images). Pixel classification in 

Ilastik 1.1.5 image analysis and classification software (Sommer, 2011)was used to segment the 

greyscale images in 3D space. With all Ilastik features selected, three individual labels were 

trained for detecting (1) the background, (2) the nuclei and (3) the GFP foci. A Matlab based 

function was used analyze the Ilastik probability maps and calculate different nuclei and foci 

parameters. Spot volume describes the 3D foci dimensions in voxels and Spot distance is 



 
 

calculated by measuring the minimal 3D distance from the Spot centroid to the nuclear 

periphery. 

For Fig. 2B, high-resolution imaging was performed with a super resolution-structured 

illumination (SR-SIM) microscope (Elyra S.1 [Carl Zeiss], Plan-Apochromat 63x/1.4 NA 

objective lens, EM-CCD camera [iXon 885; Andor Technology], and ZEN Blue 2010D software 

[Carl Zeiss]). Processing was performed with Zen software [Carl Zeiss]. For Fig. 6C, microscopy 

was carried out on fluorescence stereomicroscope (Leica MZ FL III, PlanApo 2x/0.07 NA, Leica 

DFC350 FX camera 0.63x lens, and Imagic ims Client V14Q4_p3 software).  

For yeast experiments (Fig. S2B and C), cells were cultured overnight at 30°C in a synthetic 

medium containing 2% raffinose, 0.1% glucose and lacking leucine to prevent the loss of the 

plasmid. The next day cultures were diluted in the same medium containing raffinose only, and 

were imaged when cells reached a concentration of 0.2-0.4 x107 cells/ml. Live yeast cells were 

mounted on pad of agarose (1.4%) containing raffinose or galactose for imaging. 

Multiple sequence alignment  

CEC-4 and H. sapiens CBX protein sequences were aligned with ClustalW (www.ebi.ac.uk), and 

visualized by Jalview (Waterhouse et al., 2009). 

Recombinant protein purification 

The CEC-4 CD (aa 25-141) and CEC-4 cd-2YA (aa 25-141, Y87A-Y111A) constructs were 

cloned into pOPINF vector using the In-Fusion system (Clontech) (Berrow et al., 2007), proteins 

were expressed in the E. coli strain BL21 Rosetta pLysS and affinity purified through the His tag 

binding to ProBond Ni-NTA resin (Invitrogen) according to manufacturer’s instructions. For ITC 

experiments His tag was removed by HRV 3C protease digestion (Novagen) and proteins were 

http://www.ebi.ac.uk/


 
 

further purified by gel filtration on a HiLoad 16/60 Superdex 75 column in 20 mM Tris pH 7.5, 

200 mM NaCl, 0.02% NaN3 and 1 mM TCEP. Purity was confirmed by SDS–PAGE and 

Coomassie blue staining. Protein concentration was measured by UV absorbance (280 nm). 

Binding Assay SulfoLink 

H3K9me0 and H3K9me3 peptides (aa 1-20 + Cys) (gift from A. Peters, Friedrich Miescher 

Institute for Biomedical Research, Basel, Switzerland) were reduced and coupled to SulfoLink 

beads (Thermo scientific) according to manufacturer’s instructions. 25µM of recombinant His 

tagged CEC-4 CD and CEC-4 cd-2YA were incubated with the peptide-beads slurry (7µM 

peptide concentration) for 2 h at 4ºC on a rotator. After washing three times with 20mM Tris-

HCl pH 7.5, 0.2M NaCl and 0.05% Triton X-100 for 1min-5min-1min, respectively, bound 

proteins were released from the beads, run on an SDS-PAGE gel, and stained by SYPRO® 

Ruby. 

Peptide array library and AlphaScreen direct binding 

AlphaScreen direct binding assays were performed in 384-well plate (ProxiPlateTM-384 Plus, 

Perkin Elmer) with AlphaScreen Histidine Detection kit (Nickel Chelate, PerkinElmer 

#6760619) in optimized assay buffer (25mM   HEPES, 100mM NaCl, 0.1% BSA, 0.05% 

Tween20, pH=7.5). The binding of CEC-4 CD to histone peptides was performed by 

AlphaScreen assay with ALTA Biosciences peptide array system (Alta Biosciences, UK). Three 

different peptide concentrations (62.5, 125 and 250nM) were used to screen histone peptides 

binding to CEC-4 CD (200nM). Quantitation was based on the intensity readout. The peptides 

with an intensity of 50-fold more than the control (assay condition without protein) were 

considered as hits. Table S4 shows raw data generated from AlphaScreen. 



 
 

AlphaScreen direct binding was further used for confirmation of methylated H3K9 binding to 

CEC-4 CD. 3µl of 2-fold serial dilutions of N-terminal biotinylated histone H31-21K9 peptides, 

final concentration 0.5-500nM, were plated in a 384-well plate followed by adding 3µl of N-

terminal His-tagged CEC-4 CD (final 200nM). After incubation at room temperature for 1 hour, 

3µl of streptavidin-coated donor beads (20ug/ml) and 3µl of nickel chelate acceptor beads 

(20ug/ml) were then added under low light conditions. The plates were sealed and incubated at 

room temperature for 1 h, then read on an EnVision multilabel Plate Reader (Perkin Elmer). 

Peptide displacement assay 

IC50 (half maximal inhibitory concentration) for H3K9 peptides to CEC-4 CD were measured 

by AlphaScreen peptide displacement assay and done in duplicate. 2-fold series dilution of non-

biotinylated H3K9 peptides starting from 100μM were used for competing with the binding of 

biotin-H3K9me2 (50nM) to CEC-4 CD (25nM). After incubation at room temperature for 1 

hour, streptavidin-coated donor beads (20ug/ml) and nickel chelate acceptor beads (20ug/ml) 

were then added under low light conditions. The plate was then read on the EnVision using the 

AlphaScreen protocol after 1 hour incubation. 

Isothermal Titration Calorimetry (ITC) 

ITC was carried out on a MicroCal iTC200 calorimeter (GE Healthcare) at 25°C in 20 mM Tris-

HCl pH7.5, 100 mM NaCl. 30 μM recombinant-cleaved CEC-4 CD and CEC-4 cd-2YA proteins 

were loaded into sample cell, 450µM histone H31-21K9 or H328-48K37 peptide solution was 

sequentially injected into sample cell; with exception of 800µM for H328-48K37me3 . 

Thermodynamic parameters N (stoichiometry), Ka (association constant), ΔH (enthalpic change) 

and ΔS (entropy change) were obtained by nonlinear least-square fitting using Origin software. 

ITC experiments were performed twice. 



 
 

LEM-2 Chromatin Immuno-precipitation followed by deep sequ encing (ChIP-seq) 

Wild-type, met-2 set-25 and cec-4 mutant strains were grown in parallel and in two independent 

biological replicas. For each strain, 400,000 L1 worms were grown synchronously in 500 ml S-

medium containing HB101 E. coli strain, as food source, under continuous agitation (180 rpm) at 

20ºC until gravid adults with early embryos were observed (between 60-65 hours depending on 

strain). Embryonic progeny was harvested using hypochlorite treatment. Embryos were cross-

linked with 2.16% formaldehyde in M9 buffer for 30 minutes at room temperature, washed twice 

with M9 and once with FA buffer (50mM HEPES-KOH pH7.5, 1mM EDTA, 1% Triton X-100, 

0.1% sodium deoxycholate, 150mM NaCl). LEM-2 ChIP was performed as described (Ikegami 

et al., 2010) with anti-LEM-2 (Novus Biologicals #48540002).  Libraries were prepared from 

chromatin IP (1.7 -7.4 ng) and input (10 ng) samples using the NEBNext ultra DNA library prep 

kit for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina (NEB # E7335), 

according to the manufacturer’s recommendations. No size selection was performed during 

sample preparation and the libraries were indexed and amplified using 15 PCR cycles, using the 

recommended conditions. After a final cleanup with Agencourt AmPure XP beads (Beckman # 

A63881), the library size distribution and concentrations were determined using a BioAnalyzer 

2100 (Agilent technologies) and Qubit (Invitrogen) instrument, respectively. The final pools 

were prepared by mixing equimolar amounts of all individually indexed libraries and then 

sequenced on a HiSeq 2500 (Illumina) in Rapid mode (Paired-End 50). Processing of the LEM-2 

ChIP-seq data, all paired-end ChIP-seq data (2x50bp) were mapped to the C. elegans genome 

(ce6) with the R package QuasR (Gaidatzis et al., 2015) 

(http://www.bioconductor.org/packages/3.1/bioc/html/QuasR.html) using the included aligner 

bowtie (Langmead et al., 2009) allowing only for uniquely mapping read pairs. The command 

http://www.bioconductor.org/packages/3.1/bioc/html/QuasR.html


 
 

used to do the alignments was "proj<- qAlign("samples.txt","BSgenome.Celegans.UCSC.ce6")" 

which instructs bowtie to align using the parameters "--fr -m 1 --best --strata --maxins 500 --

phred33-quals". Read density along the genome was calculated by tiling the genome into 200kb 

windows (non-overlapping) and counting the number of sequence fragments within each 

window. The command used to create the window count table was 

qCount(proj,regions,useRead="first"). This instructs QuasR to position each read at the middle 

of its respective fragment (determined by the two reads) and to only consider the first read (on 

any strand) for quantitation in order to avoid double counting. To compensate for differences in 

the read depths of the various libraries, we divided each sample by the total number of mapped 

reads and multiplied by the average library size. Log2 expression levels were calculated after 

adding a pseudocount of 1 (y=log2(x+1)). Finally, ChIP-seq signals are displayed as z-scores of 

IP – input. 

RNA followed by deep sequencing (RNA-seq) 

Wild-type, met-2 set-25, cec-4 mutant strains were grown in two independent biological replicas. 

For each strain, 100,000 - 200,000 L1 worms were grown synchronously in 250 ml S-medium 

containing HB101 E. coli strain under continuous agitation (180 rpm) at 20ºC until gravid adults 

with early embryos were observed (between 60-65 hours depending on strain). Embryonic 

progeny was harvested using hypochlorite treatment, re-suspended in 500µl Trizol® and snap-

freeze in liquid nitrogen. Extraction of RNA was performed according to the WormBook 

protocol (Stiernagle, 2006). Total RNA was purified using RNeasy kit (QIAGEN 74104) 

including DNase treatment. Depletion of ribosomal RNA was done for 5 µg of total RNA with 

Ribo-Zero™ Margnetic Gold Kit (Epicentre MRGZG12324) and further concentrated with RNA 

Clean & Concentrator™ kit (Zymo Research R1015) according to corresponding manufacturer’s 



 
 

instructions. From the depleted RNA 50ng were used for library preparation with the ScriptSeq 

v2 RNA-seq Library preparation kit (Epicentre). Equimolar pools of 3 samples were created and 

loaded on an Illumina HiSeq v3 flowcell using a cBot. Sequencing was performed on a HiSeq 

2500 sequencer for 51 cycles running RTA 1.17.21.3. Samples were demultiplexed and FastQ 

files were generated using blc2fastq-1.8.4. Processing of the RNA-seq data, gene expression 

levels from RNA-seq data were quantified as described previously (Hendriks et al., 2014) using 

WormBase (WS190) annotation for coding transcripts and in windows of 500bp (unstranded) for 

the whole genome, in order to track non-genic changes.  

Real-Time Quantitative PCR (RT-qPCR) 

For gene expression levels in Fig. 5F same initial RNA extracts were used as for RNA-seq with 

addition of parallel grown and extracted cultures of met-2 and set-25 single mutant strains. For 

Fig. 6B three independent replicas of mixed stage embryo extracts were collected as described 

below in the Heat-shock induced muscle differentiation section. For Fig. S5C five independent 

early embryo extracts were used:  starting from 25, 000 synchronized L1 worms of wild-type and 

cec-4 mutant grown on peptone-rich (PR) plates with OP50 E.coli for 60-65 hours until gravid 

adults with early embryos were observed; RNA extraction was performed by 4 rounds of freeze 

cracking, treat with chloroform and transfer aqueous phase to Direct-zol™ column and follow 

manufacturer’s instructions (30 minutes DNase I digestion included). For all RNA extracts 

cDNA synthesis was done with SuperScript® III First-Strand Synthesis System (Thermo Fisher 

Scientific 18080-051) according to manufacturer’s instructions, starting from 1-2 µg of total 

RNA and using (dT)20 oligos; RNase H treatment was included.   

LEM-2 ChIP qPCR samples of corresponding genotypes were produced as described above for 

LEM-2 Chromatin Immuno-precipitation followed by deep sequencing.  



 
 

All RT-qPCR reactions were done in 10µl volume, using diluted cDNA to 500ng or total volume 

of ChIPed and Input (10% of total material used) samples, with SYBR® Green PCR Master Mix 

(Life technologies 4309155) for Fig. 6B and 5F mRNA or GoTaq® Green Master Mix (Promega 

M712) for Fig. 5E and S5C according to manufacturer’s instructions. Gene-specific primers (see 

Table S5) were used in 300nM concentration. StepOnePlus™ System (Life technologies 

4376600) was used for qPCR run and data collection. Further analysis was done in Microsoft 

Excel.  

All primer pairs were tested and selected for amplification efficiencies ranging from 90-100%, 

except for unc-98 with 83%, C18D6.4 with 73% and myo-3 with 68%. For gene expression 

analysis ΔΔCT method was used, pmp-3 carried as housekeeping gene for sample normalization. 

For ChIP-qPCR ChIP sample data was normalized to corresponding input chromatin (reported as 

percentage input on figures).  

Heat-shock induced muscle differentiation  

Except for Fig. 6B, two cell stage embryos were isolated from transgenic gravid adults 

containing heat-shock (HS) expression construct gvIs[hsp-16.2::hlh-1 rol6(su1006)]  and gwIs4 

[baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] or [nhx-2p::npp-9::BLRP:GFP:3xHA-unc-54 

3'UTR] and different genetic backgrounds as stated in each figure; in Fig. 6C an extra cec-4 

mutant alone was carried as control for HS induction. Isolated embryos were incubated for 300 

min at 22.5°C, either directly on agarose slides or in liquid inside humid chamber. All working 

genotypes reach embryonic bean stage after this incubation period. Embryos were shifted to 

34°C for 10 min in a thermal cycler with a In-Situ slide block. Recovery from HS induction was 

done at 22.5°C in humid chamber and assessment of hatched larva-like worms was done in 

between 18 to 24 h after HS. Images were taken on stereomicroscope and/or spinning disk 



 
 

confocal microscope, as appropriate. As controls for myogenic conversion we observed 

twitching and fluorescent reporter myo-3p::RFP bared in gwIs4 array. For Fig. 6B, synchronized 

L1 worms of corresponding genotypes were plated on PR-plates with OP50 bacteria, and 

incubated for 2 days at 22.5°C until gravid adulthood. Embryonic progeny was harvested using 

hypochlorite treatment. Mixed stage embryos were split into three 1.5ml tubes with equal 

volumes: one tube was re-suspended in 500µl Trizol® and snap-frozen in liquid nitrogen (before 

HS condition), the rest were heat-shocked in a thermal cycler for 10 min at 34°C. They recovered 

at room temperature, one tube for 40 min (40’ after HS) and second tube 24 h (24h after HS). 

Both tubes were re-suspended in Trizol® and snap-frozen like the “before HS” sample. 

  



Table S1. List of worm strains used in this study. Related to Experimental Procedures

Strain Genotype Reference
N2 wild-type, Bristol isolate
GW76 gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X (Meister et al., 2010)

GW105 gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X; gvIs[hsp-16.2::hlh-1 rol6(su1006)] (Meister et al., 2010)

GW211 hpl-1(tm1624) gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X This study
GW215 hpl-2(tm1489) III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X  This study

GW566 gwIs39 [baf-1p::GFP-LacI::let-858 3'UTR; vit-5p::GFP] III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-
3p::RFP] X

(Towbin et al., 2012)

GW631 lin-61(n3809) I; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X (Towbin et al., 2012)
GW637 met-2(n4256) set-25(n5021) III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X (Towbin et al., 2012)
GW638 met-2(n4256) set-25(n5021) III (Towbin et al., 2012)
GW641 set-25(n5021) III (Towbin et al., 2012)
GW793  lin-61(n3809) I; hpl-1(tm1624)  gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X This study

GW796 lin-61(n3809) I;  hpl-2(tm1489) III;  hpl-1(tm1624)  gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-
3p::RFP] X

(Towbin et al., 2012)

GW828 cec-4(ok3124) IV This study

GW829 gwIs39 [baf-1p::GFP-LacI::let-858 3'UTR; vit-5p::GFP] III; cec-4(ok3124) IV;  gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X

This study

GW833 cec-4(ok3124) IV;  gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X  This study
BN142 bqSi142 [pBN20 Pemr-1::emr-1::mCherry)] II (Morales-Martinez et al., 2015)

GW835 ttTi5605 II?; unc-119(?) gwIs39 [baf-1p::GFP-LacI::let-858 3'UTR; vit-5p::GFP] III; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X ; gwIs85 [his-72p::mcherry-set-25::his-72 3'UTR; unc-119(+)] 

This study

GW836
ttTi5605 II?; unc-119(?) gwIs39 [baf-1p::GFP-LacI::let-858 3'UTR; vit-5p::GFP] III; cec-4(ok3124) IV; 
gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X ;   gwIs85 [his-72p::mcherry-set-25::his-72 
3'UTR; unc-119(+)] 

This study

GW849 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II This study

GW860 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-
3p::RFP] X

This study

GW862 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II; cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 
3’UTR; myo-3p::RFP] X 

This study

GW871 gwSi17 [cec-4p::cec-4::WmCherry::cec-4 3'UTR] II; met-2(n4256) set-25(n5021) III; gwIs4 [baf-1p::GFP-
lacI::let-858 3’UTR; myo-3p::RFP] X

This study

GW905 gwSi18 [cec-4p::cec-4cd2YA::WmCherry::cec-4 3'UTR] II; cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-
858 3’UTR; myo-3p::RFP] X

This study

GW907 met-2(n4256) III This study

GW1017 cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X; gvIs [hsp-16.2::hlh-1 
rol6(su1006)]

This study

GW1041 bqSi142 [pBN20 Pemr-1::emr-1::mCherry)] II; gwIs39 [baf-1::GFP-LacI::let-858 3'UTR; vit-5::GFP] III; 
cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X  

This study

GW1056 bqSi142 [pBN20(unc-119(+) Pemr-1::emr-1::mCherry)] II; gwIs39 [baf-1::GFP-LacI::let-858 3'UTR; vit-
5::GFP] III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X

This study

GW1160 met-2(n4256)set-25(n5021) III; gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X; gvIs [hsp-
16.2::hlh-1 rol6(su1006)]

This study

GW1192 gwSi17 [cec-4p::CEC-4-WmCherry::cec-4 3'UTR] II; cec-4(ok3124) IV; gwIs4 [baf-1p::GFP-lacI::let-858 
3’UTR; myo-3p::RFP] X; gvIs [hsp-16.2::hlh-1 rol6(su1006)] 

This study

GW1193 gwSi18 [cec-4p::CEC-4_Y87A_Y111A-WmCherry::cec-4 3'UTR] ttTi5605 II; cec-4(ok3124) IV; gwIs4 [baf-
1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] X; gvIs [hsp-16.2::hlh-1 rol6(su1006)]

This study

GW1262 [nhx-2p::npp-9::GFP] II; gvIs [hsp-16.2::hlh-1 rol6(su1006)] Unpublished
GW1263 [nhx-2p::npp-9::GFP] II; cec-4(ok3124) IV; gvIs [hsp-16.2::hlh-1 rol6(su1006)] Unpublished
RB2301 cec-4(ok3124) IV Obtained from CGC*

*CGC: Caenorhabditis Genetics Center
Alleles marked with a question mark (?) were not genotyped after genetic crosses



 
 

Supplemental Tables:  

Table S2. List of yeast strains. Related to Experimental Procedures 

Strain Background Genotype Reference 

GA-1340 W303 can1-100 mlp1::URA3 mlp2::HIS3 
esc1::KanMx4 

(Andrulis et al., 
2002) 

GA-1469 W303 mlp1::TRP1 (Hediger et al., 2002) 

GA-1470 W303 mlp2::HIS3 (Hediger et al., 2002) 

GA-1526 W303 mlp1::TRP1, mlp2::HIS3 (Hediger et al., 2002) 

GA-1981 W303 MATa/MATα, leu2-3,112/leu2-3,112, 
his3-11,15/his3-11,15, trp1-1/trp1-1, 
can1-100/can1-100, ade2-1/ade2-1, 
ura3-1/ura3-1 = W303 diploid 

(Thomas and 
Rothstein, 1989) 

GA-2470 W303 nup133::HIS3 (Bucci and Wente, 
1998) 

GA-3628 W303 can1-100 NUP49::CFP-NUP49 URA3  (Taddei et al., 2009) 

GA-4887 W303 mps3::mps3 delta75-150KanMx6 
tel1::URA 

(Schober et al., 2009) 

GA-5306 W303 can1-100 nup84::His3 (Nagai et al., 2008) 

GA-5307 W303 can1-100 nup120::His3 (Nagai et al., 2008) 

GA-5545 W303 src1::hygro NUP49-GFP (Ferreira et al., 2011) 

GA-5670 W303 mlp1::URA3 mlp2::HIS3 
siz2::cloNAT 

(Ferreira et al., 2011) 

  



Table S3. Potential me-K ligands screened for anchoring function. Related to Fig 1

Screened by Gene Public Name Sequence Name Domain Title
mutant* hpl-1 K08H2.6 Chromo
mutant* hpl-2 K01G5.2 Chromo
RNAi cec-1 ZK1236.2 Chromo
RNAi cec-2 C50A2.2 Chromo
RNAi cec-3 T09A5.8 Chromo
RNAi cec-4 F32E10.2 Chromo
RNAi cec-5 F32E10.6 Chromo
RNAi cec-6 T12E12.2 Chromo
RNAi cec-7 Y37D8A.11 Chromo
RNAi cec-8 Y55B1BR.3 Chromo
RNAi cec-9 C29H12.5 Chromo
RNAi cec-10 ZK973.2 Chromo
RNAi chd-1 H06O01.2 Chromo
RNAi chd-3 T14G8.1 Chromo & PHD
RNAi let-418 F26F12.7 Chromo & PHD
RNAi mrg-1 Y37D8A.9 Chromo
RNAi mys-1 VC5.4 Chromo
RNAi mys-2 K03D10.3 Chromo
RNAi set-31 C15H11.5 Chromo
 NA tag-192 T04D1.4 Chromo
mutant* lin-61 R06C7.7 MBT repeat
RNAi mbtr-1 Y48G1A.6 MBT repeat
RNAi athp-1 C44B9.4 PHD
RNAi athp-3 Y116A8C.22 PHD
RNAi dpff-1 C28H8.9 PHD
RNAi F53H1.4 F53H1.4 PHD
RNAi flt-1 ZK783.4 PHD
RNAi ing-3 Y51H1A.4 PHD
RNAi jmjd-1.1 F43G6.6 PHD
RNAi jmjd-1.2 F29B9.2 PHD
RNAi jmjd-2 Y48B6A.11 PHD
RNAi lin-49 F42A9.2 PHD
RNAi lsy-13 T06A10.4 PHD
RNAi nra-3 C17G1.4 PHD
RNAi phf-31 F13E6.3 PHD
RNAi phf-32 F17A2.3 PHD
RNAi phf-33 K09A11.5 PHD
RNAi rpy-1 C18H9.7 PHD
RNAi set-16 T12D8.1 PHD
RNAi set-8 F02D10.7 PHD
RNAi set-9 F15E6.1 PHD
RNAi slx-1 F56A3.2 PHD
RNAi W03H9.1 W03H9.1 PHD



RNAi Y52E8A.2 Y52E8A.2 PHD
RNAi zfp-1 F54F2.2 PHD
NA athp-2 H20J04.2 PHD
NA C11G6.3 C11G6.3 PHD
NA dgk-1 C09E10.2 PHD
NA lin-59 T12F5.4 PHD
NA mys-4 C34B7.4 PHD
NA nurf-1 F26H11.2 PHD
NA phf-10 F33E11.6 PHD
NA phf-14 Y59A8A.2 PHD
NA phf-15 Y53G8AR.2 PHD
NA phf-30 T23B12.1 PHD
NA phf-34 F21G4.4 PHD
NA rbr-2 ZK593.4 PHD
NA set-26 Y51H4A.12 PHD
RNAi C56G2.1 C56G2.1 Tudor
RNAi ekl-1 F22D6.6 Tudor
RNAi F32E10.5 F32E10.5 Tudor
RNAi rsd-6 F16D3.2 Tudor
RNAi smn-1 C41G7.1 Tudor
RNAi tag-250 C29E4.5 Tudor
RNAi tsn-1 F10G7.2 Tudor

* Studied in (Towbin et al., 2012)
NA – Not available in Vidal or Ahringer RNAi libraries or not confirmed after sequencing clone



Table S4. AlphaScreen raw data with ALTA Biosciences Peptides. Related to Fig 3

62.5nM 125nM 250nM

H31-21 N-term ARTKQTARKSTGGKAPRKQLA 1860 4708 15808

H31-21R2me1 N-term ATKQTARKSTGGKAPRKQLA 1516 6560 15248

H31-21R2me2a N-term ATKQTARKSTGGKAPRKQLA 1392 2976 11752

H31-21R2me2aT3p N-term AKQTARKSTGGKAPRKQLA 1384 1364 2492

H31-21R2me2aT3pK4me3 N-term AQTARKSTGGKAPRKQLA 1400 1480 3172

H31-21R2me2aK4me3 N-term ATQTARKSTGGKAPRKQLA 1440 1964 13780

H31-21T3p N-term ARKQTARKSTGGKAPRKQLA 1520 1672 5552

H31-21T3pK4me3 N-term ARQTARKSTGGKAPRKQLA 1400 2188 8048

H31-21K4me1 N-term ARTQTARKSTGGKAPRKQLA 1684 6840 16040

H31-21K4me2 N-term ARTQTARKSTGGKAPRKQLA 2084 11680 14632

H31-21K4me3 N-term ARTQTARKSTGGKAPRKQLA 1468 4796 14120

H31-21K4me3K9ac N-term ARTQTARSTGGKAPRKQLA 2144 1948 3972

H31-21K4me3K9me3 N-term ARTQTARSTGGKAPRKQLA 1147000 1118404 1091920

H31-21K9ac N-term ARTKQTARSTGGKAPRKQLA 2636 2996 8060

H31-21K9acS10p N-term ARTKQTARTGGKAPRKQLA 1480 1372 2272

H31-21K9acT11p N-term ARTKQTARSGGKAPRKQLA 1304 1304 1480

H31-21K9acS10pT11p N-term ARTKQTARGGKAPRKQLA 1816 1768 1852

H31-21K9me1 N-term ARTKQTARSTGGKAPRKQLA 1071532 1048212 1067344

H31-21K9me2 N-term ARTKQTARSTGGKAPRKQLA 1174624 1158512 1155104

H31-21K9me3 N-term ARTKQTARSTGGKAPRKQLA 1153844 1140156 1119316

H31-21K9me3T11p N-term ARTKQTARSGGKAPRKQLA 899188 811312 898040

H31-21K9me3S10p N-term ARTKQTARTGGKAPRKQLA 960912 969700 927200

H31-21K9me3S10pT11p N-term ARTKQTARGGKAPRKQLA 2620 2860 3140

H31-21S10p N-term ARTKQTARKTGGKAPRKQLA 1508 1852 4808

H31-21T11p N-term ARTKQTARKSGGKAPRKQLA 1752 5004 7804

H31-21S10pT11p N-term ARTKQTARKGGKAPRKQLA 1556 1972 1772

H31-21S10pT11pK14ac N-term ARTKQTARKGGAPRKQLA 1280 1344 1588

H31-21S10pT11pK14me3 N-term ARTKQTARKGGAPRKQLA 1192 1324 1404

H31-21T11pK14ac N-term ARTKQTARKSGGAPRKQLA 1296 1668 2872

H31-21T11pK14me3 N-term ARTKQTARKSGGAPRKQLA 1736 1748 5080

H31-21K14ac N-term ARTKQTARKSTGGAPRKQLA 1888 2336 8732

H31-21K14acR17me2a N-term ARTKQTARKSTGGAPKQLA 1884 2040 3348

H31-21K14me1 N-term ARTKQTARKSTGGAPRKQLA 1864 3144 13728

H31-21K14me2 N-term ARTKQTARKSTGGAPRKQLA 1808 2268 9724

H31-21K14me3 N-term ARTKQTARKSTGGAPRKQLA 1468 1560 3496

H31-21K14me3R17me2a N-term ARTKQTARKSTGGAPKQLA 1176 1232 1212

H31-21R17me1 N-term ARTKQTARKSTGGKAPKQLA 2036 13696 12868

H31-21R17me2a N-term ARTKQTARKSTGGKAPKQLA 1324 1396 2440

H314-34 N-term KAPRKQLATKAARKSAPATGG 1268 9568 10812

H314-34R17me2aK18ac N-term KAPQLATKAARKSAPATGG 1320 1344 2548

H314-34K18ac N-term KAPRQLATKAARKSAPATGG 1212 5252 6032

H314-34K18acK23me3 N-term KAPRQLATAARKSAPATGG 1268 1356 2784

H314-34K18acK23me1 N-term KAPRQLATAARKSAPATGG 1300 1372 1756

H314-34K18acK23ac N-term KAPRQLATAARKSAPATGG 1244 1464 1540

H314-34K23ac N-term KAPRKQLATAARKSAPATGG 1264 2972 5236

H314-34K23acR26me2a N-term KAPRKQLATAAKSAPATGG 1224 1192 1584

H314-34K23acR26me2aK27ac N-term KAPRKQLATAASAPATGG 1156 1276 1260

H314-34K23me1 N-term KAPRKQLATAARKSAPATGG 1388 1628 9924

H314-34K23me2 N-term KAPRKQLATAARKSAPATGG 1608 3308 12672

H314-34K23me3 N-term KAPRKQLATAARKSAPATGG 1332 2472 9180

H314-34K23me3R26me2a N-term KAPRKQLATAAKSAPATGG 1440 1516 2552

H314-34K23me3R26me2aK27ac N-term KAPRKQLATAASAPATGG 1464 1288 1928

H314-34R26me1 N-term KAPRKQLATKAAKSAPATGG 2380 10000 11668

Peptide name
Peptide concentration

Spacer-Biotin Sequence



H314-34R26me2a N-term KAPRKQLATKAAKSAPATGG 1440 2036 4144

H314-34R26me2aK27ac N-term KAPRKQLATKAASAPATGG 1348 1308 2988

H314-34R26me2aK27acS28p N-term KAPRKQLATKAAAPATGG 1248 1440 1548

H314-34R26me2aS28p N-term KAPRKQLATKAAKAPATGG 1380 1520 4604

H314-34K27ac N-term KAPRKQLATKAARSAPATGG 1348 5832 7692

H314-34K27acS28p N-term KAPRKQLATKAARAPATGG 1248 1280 1564

H314-34K27me1 N-term KAPRKQLATKAARSAPATGG 1272 3120 8008

H314-34K27me2 N-term KAPRKQLATKAARSAPATGG 1400 1724 6760

H314-34K27me3 N-term KAPRKQLATKAARSAPATGG 1384 2268 1856

H314-34R26me2aK27me3 N-term KAPRKQLATKAASAPATGG 1304 1412 1324

H314-34K27me3S28p N-term KAPRKQLATKAARAPATGG 1252 1252 1732

H314-34R26me2aK27me3S28p N-term KAPRKQLATKAAAPATGG 1788 1328 1296

H314-34S28p N-term KAPRKQLATKAARKAPATGG 1208 1368 2180

H318-38S28pT32p N-term KQLATKAARKAPAGGVKKP 1308 1328 1248

H328-48 N-term SAPATGGVKKPHRYRPGTVAL 1484 2720 3088

H328-48T32p N-term SAPAGGVKKPHRYRPGTVAL 1384 1472 1548

H328-48K36me1 N-term SAPATGGVKPHRYRPGTVAL 3052 2504 3904

H328-48K36me2 N-term SAPATGGVKPHRYRPGTVAL 1264 1692 3532

H328-48K36me3 N-term SAPATGGVKPHRYRPGTVAL 1204 1344 1584

H328-48T32pK36me3 N-term SAPAGGVKPHRYRPGTVAL 1824 1840 1848

H328-48K37me1 N-term SAPATGGVKPHRYRPGTVAL 1188136 1171004 1112992

H328-48K37me2 N-term SAPATGGVKPHRYRPGTVAL 128376 1222320 1124428

H328-48K37me3 N-term SAPATGGVKPHRYRPGTVAL 1404 3056 6148

H328-48T32pK37me3 N-term SAPAGGVKPHRYRPGTVAL 1300 1364 1512

H328-48K36me3K37me3 N-term SAPATGGVPHRYRPGTVAL 1284 1516 2500

H328-48T32pK36me3K37me3 N-term SAPAGGVPHRYRPGTVAL 1204 1364 1360

H371-91 N-term VREIAQDFKTDLRFQSSAVMA 1260 1456 1208

H371-91K79me1 N-term VREIAQDFTDLRFQSSAVMA 1172 1208 1184

H371-91K79me2 N-term VREIAQDFTDLRFQSSAVMA 1320 1196 1280

H371-91K79me3 N-term VREIAQDFTDLRFQSSAVMA 1268 1328 1196

H3110-130 N-term CAIHAKRVTIMPKDIQLARRI 1296 1400 1184

H3110-130K115ac N-term CAIHARVTIMPKDIQLARRI 1328 1496 1944

H3110-130K115acT118p N-term CAIHARVIMPKDIQLARRI 1772 1816 1968

H3110-130T118p N-term CAIHAKRVIMPKDIQLARRI 1508 1988 1776

H3110-130K122ac N-term CAIHAKRVTIMPDIQLARRI 1256 1504 1404

H3110-130T118pK122ac N-term CAIHAKRVIMPDIQLARRI 1240 1268 1204

H3110-130K115acT118pK122ac N-term CAIHARVIMPDIQLARRI 1236 1336 1280

H3115-135 N-term KRVTIMPKDIQLARRIRGERA-acid 1256 1444 2940

H3115-135R128me1 N-term KRVTIMPKDIQLARIRGERA-acid 1204 1836 1620

H3115-135R128me2a N-term KRVTIMPKDIQLARIRGERA-acid 1284 2196 1252

H3115-135K122acR128me2a N-term KRVTIMPDIQLARIRGERA-acid 1208 1288 1216

H31-21 C-term ARTKQTARKSTGGKAPRKQLA 4076 3604 2976

H31-21R2me1 C-term ATKQTARKSTGGKAPRKQLA 4164 3376 2944

H31-21R2me2a C-term ATKQTARKSTGGKAPRKQLA 3620 3316 2804

H31-21R2me2aT3p C-term AKQTARKSTGGKAPRKQLA 2452 2352 1952

H31-21R2me2aT3pK4me3 C-term AQTARKSTGGKAPRKQLA 2468 2260 1792

H31-21R2me2aK4me3 C-term ATQTARKSTGGKAPRKQLA 4764 4104 2968

H31-21T3p C-term ARKQTARKSTGGKAPRKQLA 3980 3404 2540

H31-21T3pK4me3 C-term ARQTARKSTGGKAPRKQLA 3772 3220 2628

H31-21K4me1 C-term ARTQTARKSTGGKAPRKQLA 4736 4160 3332

H31-21K4me2 C-term ARTQTARKSTGGKAPRKQLA 5208 4804 3972

H31-21K4me3 C-term ARTQTARKSTGGKAPRKQLA 5440 4836 3540

H31-21K4me3K9ac C-term ARTQTARSTGGKAPRKQLA 3320 2656 2084

H31-21K4me3K9me3 C-term ARTQTARSTGGKAPRKQLA 594572 702360 587016

H31-21K9ac C-term ARTKQTARSTGGKAPRKQLA 3508 3412 2684

H31-21K9acS10p C-term ARTKQTARTGGKAPRKQLA 1648 1472 1352



H31-21K9acT11p C-term ARTKQTARSGGKAPRKQLA 2064 1744 1476

H31-21K9acS10pT11p C-term ARTKQTARGGKAPRKQLA 1636 1576 1576

H31-21K9me1 C-term ARTKQTARSTGGKAPRKQLA 580476 471332 420048

H31-21K9me2 C-term ARTKQTARSTGGKAPRKQLA 840592 793300 729364

H31-21K9me3 C-term ARTKQTARSTGGKAPRKQLA 530060 592652 551024

H31-21K9me3T11p C-term ARTKQTARSGGKAPRKQLA 5044 4104 3260

H31-21K9me3S10p C-term ARTKQTARTGGKAPRKQLA 6996 4384 3428

H31-21K9me3S10pT11p C-term ARTKQTARGGKAPRKQLA 1920 1828 1488

H31-21S10p C-term ARTKQTARKTGGKAPRKQLA 2248 1920 1784

H31-21T11p C-term ARTKQTARKSGGKAPRKQLA 2864 2856 2264

H31-21S10pT11p C-term ARTKQTARKGGKAPRKQLA 1592 1712 1612

H34-24S10pT11pK14ac C-term Ac-KQTARKGGAPRKQLATKA 1208 1460 1260

H34-24S10pT11pK14me3 C-term Ac-KQTARKGGAPRKQLATKA 1196 1256 1212

H34-24T11pK14ac C-term Ac-KQTARKSGGAPRKQLATKA 1248 1216 1248

H34-24T11pK14me3 C-term Ac-KQTARKSGGAPRKQLATKA 1696 1624 1668

H34-24K9acK14ac C-term Ac-KQTARSTGGAPRKQLATKA 1536 1712 1552

H38-28K14ac C-term Ac-RKSTGGAPRKQLATKAARKS 3140 2980 2556

H38-28K14acR17me2a C-term Ac-RKSTGGAPKQLATKAARKS 1980 1740 1592

H38-28K14me1 C-term Ac-RKSTGGAPRKQLATKAARKS 4456 3664 3052

H38-28K14me2 C-term Ac-RKSTGGAPRKQLATKAARKS 3832 3564 2864

H38-28K14me3 C-term Ac-RKSTGGAPRKQLATKAARKS 4616 4452 3256

H38-28K14me3R17me2a C-term Ac-RKSTGGAPKQLATKAARKS 3324 3164 2232

H38-28R17me1 C-term Ac-RKSTGGKAPKQLATKAARKS 5228 5024 3508

H38-28R17me2a C-term Ac-RKSTGGKAPKQLATKAARKS 2172 3424 2368

H38-28K14acK18ac C-term Ac-RKSTGGAPRQLATKAARKS 2168 1940 1700

H312-32R17me2aK18ac C-term Ac-GGKAPQLATKAARKSAPAT 1204 1200 1228

H312-32K18ac C-term Ac-GGKAPRQLATKAARKSAPAT 1176 1248 1076

H312-32K18acK23me3 C-term Ac-GGKAPRQLATAARKSAPAT 1188 1180 1188

H312-32K18acK23ac C-term Ac-GGKAPRQLATAARKSAPAT 1232 1192 1148

H318-38K23ac C-term Ac-KQLATAARKSAPATGGVKKP 1180 1388 1324

H318-38K23acR26me2a C-term Ac-KQLATAAKSAPATGGVKKP 1148 1192 1428

H318-38K23acR26me2aK27ac C-term Ac-KQLATAASAPATGGVKKP 1236 1260 1220

H318-38K23me1 C-term Ac-KQLATAARKSAPATGGVKKP 1924 1952 1304

H318-38K23me2 C-term Ac-KQLATAARKSAPATGGVKKP 1860 1636 1448

H318-38K23me3 C-term Ac-KQLATAARKSAPATGGVKKP 1460 1376 1392

H318-38K23me3R26me2a C-term Ac-KQLATAAKSAPATGGVKKP 1228 1220 1172

H318-38K23me3R26me2aK27ac C-term Ac-KQLATAASAPATGGVKKP 1144 1232 1260

H320-40 C-term Ac-LATKAARKSAPATGGVKKPHR 4764 1920 2340

H320-40R26me1 C-term Ac-LATKAAKSAPATGGVKKPHR 2880 2072 1648

H320-40R26me2a C-term Ac-LATKAAKSAPATGGVKKPHR 2032 1752 1772

H320-40R26me2aK27ac C-term Ac-LATKAASAPATGGVKKPHR 1388 1304 1228

H320-40R26me2aK27acS28p C-term Ac-LATKAAAPATGGVKKPHR 1252 1308 1548

H320-40R26me2aS28p C-term Ac-LATKAAKAPATGGVKKPHR 1488 1648 1068

H320-40K27ac C-term Ac-LATKAARSAPATGGVKKPHR 1608 1712 1620

H320-40K27acS28p C-term Ac-LATKAARAPATGGVKKPHR 1368 1112 1092

H320-40K27me1 C-term Ac-LATKAARSAPATGGVKKPHR 2940 2896 1908

H320-40K27me2 C-term Ac-LATKAARSAPATGGVKKPHR 2176 2544 1808

H320-40K27me3 C-term Ac-LATKAARSAPATGGVKKPHR 2588 2564 2100

H320-40R26me2aK27me3 C-term Ac-LATKAASAPATGGVKKPHR 2636 2560 1624

H320-40K27me3S28p C-term Ac-LATKAARAPATGGVKKPHR 1520 1344 1220

H320-40R26me2aK27me3S28p C-term Ac-LATKAAAPATGGVKKPHR 1416 1356 1152

H320-40S28p C-term Ac-LATKAARKAPATGGVKKPHR 1528 1404 1224

H41-21 C-term SGRGKGGKGLGKGGAKRHRKV 6232 5768 7256

H41-21S1p C-term GRGKGGKGLGKGGAKRHRKV 6964 6480 4612

H41-21R3me1 C-term SGGKGGKGLGKGGAKRHRKV 5584 6008 5856

H41-21R3me2a C-term SGGKGGKGLGKGGAKRHRKV 8584 4560 4272



H41-21R3me2aK5ac C-term SGGGGKGLGKGGAKRHRKV 5960 5540 4480

H41-21S1pR3me2aK5ac C-term GGGGKGLGKGGAKRHRKV 5628 4332 4136

H41-21K5ac C-term SGRGGGKGLGKGGAKRHRKV 5568 5380 4544

H41-21K5acK8acK12ac C-term SGRGGGGLGGGAKRHRKV 3116 2616 2532

H41-21K5acK8ac C-term SGRGGGGLGKGGAKRHRKV 5360 4260 3796

H41-21K8ac C-term SGRGKGGGLGKGGAKRHRKV 5648 5424 4280

H41-21K8acK12ac C-term SGRGKGGGLGGGAKRHRKV 2760 4176 3620

H41-21K12me1 C-term SGRGKGGKGLGGGAKRHRKV 4348 6924 6048

H41-21K12me2 C-term SGRGKGGKGLGGGAKRHRKV 4928 4544 4120

H41-21K12me3 C-term SGRGKGGKGLGGGAKRHRKV 6188 6516 5368

H41-21K8acK12me1 C-term SGRGKGGGLGGGAKRHRKV 5776 4976 4608

H41-21K8acK12me3 C-term SGRGKGGGLGGGAKRHRKV 5856 4916 4660

H46-26K12me1K16ac C-term Ac-GGKGLGGGARHRKVLRDNI 1908 1776 1548

H46-26K12me3K16ac C-term Ac-GGKGLGGGARHRKVLRDNI 2176 2164 2052

H46-26K16ac C-term Ac-GGKGLGKGGARHRKVLRDNI 2000 2076 1884

H411-31 C-term Ac-GKGGAKRHRKVLRDNIQGITK 2016 1876 1812

H411-31K20ac C-term Ac-GKGGAKRHRVLRDNIQGITK 1416 1664 1632

H411-31K16acK20ac C-term Ac-GKGGARHRVLRDNIQGITK 1484 1692 1480

H411-31K16acK20me1 C-term Ac-GKGGARHRVLRDNIQGITK 1564 1668 1492

H411-31K16acK20me3 C-term Ac-GKGGARHRVLRDNIQGITK 1444 1512 1296

H411-31K20me1 C-term Ac-GKGGAKRHRVLRDNIQGITK 1892 1860 1680

H411-31K20me2 C-term Ac-GKGGAKRHRVLRDNIQGITK 1676 1772 1716

H411-31K20me3 C-term Ac-GKGGAKRHRVLRDNIQGITK 2120 2016 1888
no peptide 1316 1292 1232

 = acetyl-Lysine
 = monomethyl-
Lys

 = dimethyl-Lys

 = phospho-Ser  = phospho-Thr  = monomethyl-Arg

All the peptides have C-terminal amide groups (Ac-) unless specified

 = trimethyl-Lys

 = asym dimethyl-Arg

Spacer= aminohexanoic acid, Ahx



 
 

Table S5. RT-qPCR primer pairs used in this study. Related to Figs. 5 and 6 

Target Sequence 
srw-85 F 
srw-85 R 
C18D6.4 F 
C18D6.4 R 
pmp-3 F 
pmp-3 R 
genomic srw-85 F 
genomic srw-85 R 
genomic C18D6.4 F 
genomic C18D6.4 R 
hlh-1 F 
hlh-1 R 
myo-3 F 
myo-3 R 
F21D9.4 F 

GCGTGTCCCGAAATAAAGTC 
GATCTTCAAGTCTCGAATGCAG 
TACAGTGCTCATCAACTTGCC 
GCAATAAGAAGAGCATCTTCAAGG 
GTTCCCGTGTTCATCACTCAT 
ACACCGTCGAGAAGCTGTAGA 
GTGAGATGTGCCTGAGGAGT 
CCTACCGCTATCCATTCACG 
CGGGCTCTGGATGAGGTAAT 
TGCTATTGGCGGGAGGCTTA 
CAAAGAACGTGTCCGAATCC 
TGAGAGGAAGTCACATAATCGT 
AGACAGGTTGAGGAGGCTGA 
TCTGATAAGCGCACTGGATG 
CAGAGTATACTACAAAGGACTGGAG 

F21D9.4 R AGCCGATTGAGGTTGATGAC 
C25F9.5 F 
C25F9.5 R 

TTTCATCACACGAGATGAGATGG 
GTATACGTAGGTAGCAAGTCCTG 

Y43F8A.5 F TTAATGATCCTCAACATGCGCT 
Y43F8A.5 R 
unc-98 F 

GAGGTGCTATCCGTAAGTGTG 
TCCAGATACAACAATGGATGACGA 

unc-98 R TGAGCACTTGAACTTCCGACA 
unc-45 F 
unc-45 R 
pal-1 F 
pal-1 F 

GCTGATGAATTATACACTGAAGC 
GAGCCTCTTTTGCGTCTTGA 
GGAAGTAGCAGTAGTGATAGTGG 
GAATCCCTGAAACTGTTGATAATCC 

 

  



 
 

Table S6. Depletion of nuclear envelope components to address CEC-4-mCherry perinuclear 
localization in worms. Referred in text section “CEC-4 is intrinsically localized at the nuclear 
periphery” 

RNAi of NE related gene CEC-4-mCh localization 
anc-1 Perinuclear ring 
baf-1 Perinuclear ring 
emr-1 Perinuclear ring 
lem-2 Perinuclear ring 
lmn-1 Perinuclear ring 
sun-1 Perinuclear ring 
unc-83 Perinuclear ring 
unc-84 Perinuclear ring 
zyg-12 Perinuclear ring 

 

 

Table S7. Yeast mutations in nuclear envelope components used to address CEC-4-mCherry 
perinuclear localization in yeast. Referred in text section “CEC-4 is intrinsically localized at the 
nuclear periphery”  

Mutation Tested CEC-4-mCh localization 
mlp1 mlp2 esc1 Perinuclear ring 
mlp1 Perinuclear ring 
mlp2 Perinuclear ring 
mlp1 mlp2 Perinuclear ring 
mlp1 mlp2 siz2 Perinuclear ring 
nup133 Perinuclear ring 
mps3::mps3 delta75-150 tel1 Perinuclear ring 
nup84 Perinuclear ring 
nup120 Perinuclear ring 
src1 Perinuclear ring 
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ABBREVIATIONS 
 

3C Chromosome Conformation Capture 
3D Three Dimensional 
4C Chromosome Conformation Capture on Chip 
ac Acetylation 
BAF Barrier-to-Autointegration Factor 
Bio-ID proximity-dependent Biotin IDentification 
C. elegans Caenorhabditis elegans 
CDOM Centromere-proximal DOMain 
CEC-4 Caenorhabditis elegans Chromodomain protein 4 
ChIP Chromatin ImmunoPrecipitation 
CREB Cyclic AMP-responsive Element-Binding 
CTCF CCCTC-binding factor 
DNA Deoxyribonucleic acid 
EM Electron Microscopy 
EMS Ethyl MethaneSulfonate 
Epha4 Eph receptor A4 
ES Embryonic Stem 
EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit 
FISH Fluorescence in situ hybridization 
GFP Green Fluorescent Protein 
HDAC3 Histone Deacetylase 3 
Hi-C Genome-wide 3C 
His Histidine 
HMTs Histone MethylTransferases 
HP1 Heterochromatin Protein 1 
HPL-1/2 HP1 Like ½ 
HU Hydroxyurea 
HxKx Histone x Lysine x 
IF ImmunoFluorescence 
IgH Immunoglobulin heavy chain complex 
Ihh Indian hedgehog 
INM Inner Nuclear Membrane 
LAD Lamina Associated Domain 
LBR Lamin B Receptor 
LEM LAP2, Emerin and MAN1 domain 
Leu Leucine 
LINC LInker of Nucleoskeleton and Cytoskeleton 
LINE Long Interspersed Nuclear Element 
LMN-1 Lamin-1 
LOCKs Large Organized Chromatin K9-modifications 
MBT Malignant Brain Tumor 
me (1,2,3) Methylation (mono-, di-, tri-) 
MNase Micrococcal Nuclease 
NE Nuclear envelope 
NET Nuclear Envelope Transmembrane 
OIS Oncogene-Induced Scenescence 
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PARD3 Par-3 family cell polarity regulator 
PARP1 Poly (ADP-ribose) polymerase 1 
Pax3 Paired box 3 
Pol Polymerase 
PPR14 PRoline-Rich protein 14 
PRC2 Polycomb Repressive Complex 2 
PRDM3/16 PR domain containing 3/16 
PUS7 PseudoUridylate Synthase 7 
rDNA ribosomal DNA 
RNA Ribonucleic acid 
RNAi RNA interference 
S. cerevisiae Saccharomyces cerevisiae 
S. pombe Schizosaccharomyces pombe 
SAHF Senescence-Associated Heterochromatic Foci 
SAMS S-adenosylmethionine Synthetase 
SetDB1 SET domain, bifurcated 1 
SINE Short Interspersed Nuclear Element 
SIR Silent Information Regulator 
SPB Spindle Pole Body 
Suv39H1 Suppressor of variegation 3-9 homolog 1 
TAD Topological Associated Domain 
TDOM Telomere-proximal DOMain 
TEX28 Testis EXpressed 28 
TMCC1/2/3 TransMembrane and Coiled-Coil domain family 1/2/3 
TRIP Thousands of Reporters Integrated in Parallel 
tRNA transfer RNA 
Trp Tryptophan 
vLADs variable LADs 
Wnt6 Wingless-type MMTV integration site family member 6 
Y2H Yeast two Hybrid 
YY1 Ying-Yang-1 
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