

Original document stored on the publication server of the University of Basel http://edoc.unibas.ch

This work is licensed under a Creative Commons CC BY-NC-ND 4.0 international license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Structured Approaches to Interaction Design:
A Way to Bridge the Gap Between

the Results of Foundational User Research and
the Final Design of a User Interface

Inaugural Dissertation
submitted to the Department of Psychology of the University of Basel

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

by
Christian Hübscher

from Basel (BS)

Basel, 2017

STRUCTURED APPROACHES TO INTERACTION DESIGN II

Approved by the Department of Psychology
at the request of:

Prof. Dr. Rui Mata (Chair)
Prof. Dr. Klaus Opwis (First Reviewer)
Prof. Dr. Markus Stolze (Second Reviewer)

Basel, 24 April 2017

Prof. Dr. Roselind Lieb

STRUCTURED APPROACHES TO INTERACTION DESIGN III

Statement of Authorship

I. I, Christian Hübscher, hereby declare that I have written the submitted doctoral thesis
“Structured Approaches to Interaction Design” without any assistance from third
parties not indicated.

II. I only used the resources indicated.
III. I marked all the citations.
IV. My cumulative dissertation is based on four manuscripts, of which three manuscripts

are already published, and one manuscript is under review.
I certify here that the articles in this dissertation concern original work.
I contributed substantially and independently to all manuscripts in this dissertation.
I have been jointly responsible for the idea, conception, data collection, analyses, and
writing of all manuscripts.
This characterization of my contributions is in agreement with my co-authors’ views.

Basel, 20 September 2016

Christian Hübscher

STRUCTURED APPROACHES TO INTERACTION DESIGN IV

Abstract

The present manuscript-based doctoral thesis addresses the question of how approaches to
interaction design can be made more structured. This is an attempt to make it more transpar-
ent how one can come to a final design of a user interface starting from the results of founda-
tional user research. The results of this analysis can help designers to work very systematic at
times, to better reflect on their own idiosyncratic design process “on the job”, or to learn in-
teraction design in the first place. In user-centered design (UCD) there are lifecycles and
methods that already provide a certain degree of structuring with the discrimination of differ-
ent phases etc. But they leave open some gaps here and there. This work is an attempt to close
some of the gaps and bring closer together these individual methods.

Interaction design patterns are a way to describe solutions to problems in designing user in-
terfaces in a very systematic way. However, pattern libraries usually are far from complete.
They mostly lack patterns to support the early phases of interaction design and therefore they
do usually not link to the abstract models of conceptual design. The third manuscript
describes an organizational scheme for interaction design patterns to support the process of
implementing a complete pattern language covering all the different levels of the solution
domain. The scheme has been found by analyzing several established UCD lifecycles and it
has been evaluated by organizing all the individual patterns of several public pattern libraries
into it. The first manuscript describes a process of systematically building up a pattern lan-
guage alongside of a redesign project of a complex application in a corporate environment.
The second manuscript describes how patterns have been evaluated in the aforementioned
project, when there were several different solutions for one problem. This is shown with two
interaction design patterns for the problem of making required input fields visible to users.

The fourth manuscript is an attempt to bring together the idea of a complete pattern language,
as a description of the solution domain of interaction design, with the different parts of the
problem domain. Therefore, the same UCD lifecycles (as in the third manuscript) have been
analyzed to find a universal structure of the problem domain. Then all the mappings between
the individual parts of the two domains have been described in order to link the two domains
in this direct way. Another way of looking at the gap between the problem domain and the
solution domain is by seeing it as a distance of levels of abstraction between results of foun-
dational user research and the final user interface. From this point of view a bridging of the
gap can be seen in different intermediate representations (abstract models, sketches, and
prototypes) and linking them together in a coherent way.

STRUCTURED APPROACHES TO INTERACTION DESIGN V

These different ways of bridging the gap between foundational user research and the final
design of a user interface can be seen as cognitive artifacts to foster problem solving and
learning of interaction designers.

The original manuscripts are included in the appendix.

STRUCTURED APPROACHES TO INTERACTION DESIGN VI

Contents

User-Centered	Design	..	1	
User	Centered	Design	Lifecycles	..	1	
Interaction	Design	in	User	Centered	Design	..	1	
Interaction	Design	Patterns	...	1	
Abstract	Models	for	Interaction	Design	...	2	
Prototypes	...	3	

Structured	approaches	to	interaction	design	..	4	
Improved	interaction	design	patterns	...	4	
Gap	between	problem	domain	and	solution	domain	..	4	
About	this	Doctoral	Thesis	...	5	

Manuscript	1:	Building	an	Interaction	Design	Pattern	Language:	A	Case	Study	6	
Challenge	..	6	
Results	...	6	
Conclusions	...	7	

Manuscript	2:	Error	Prevention	in	Online	Forms:		Use	Color	Instead	of	Asterisks	to	
Mark	Required-Fields	..	8	
Challenge	..	8	
Results	...	8	
Conclusions	...	9	

Manuscript	3:	The	Organization	of	Interaction	Design	Pattern	Languages	
Alongside	the	Design	Process	...	10	
Challenge	...	10	
Results	..	10	
Conclusions	..	11	

Manuscript	4:	Analyzing	the	gap	between	the	results	of	foundational	user	research	
and	the	final	design	of	a	user	interface	...	12	
Challenge	...	12	
Results	..	12	
Conclusions	..	14	

Final	Conclusions	..	15	
References	..	17	
Acknowledgements	...	19	
Appendix	...	20	

STRUCTURED APPROACHES TO INTERACTION DESIGN 1

User-Centered Design

User-centered design (UCD) is the part of human-computer interaction (HCI) that provides
several methods and lifecycles to support the development of interactive systems. One of the
main goals of UCD is a high user experience of the solution. The involvement of end users
into the project is a very important part of this approach. It is advised to do foundational user
research in order to understand the requirements for a system and to evaluate the designs in
usability tests with users and refine them iteratively.

User Centered Design Lifecycles

There are several well-established UCD lifecycles (e.g. Mayhew, 1999). They are all similar
in their setup, even if they have their specialties. The lifecycles describe various skills,
methods, and work products. The lifecycles are all structured into distinct phases and iteration
is a very important principle how to move trough them. Usual parts of a UCD lifecycle are:
user research, modeling, prototyping, evaluation, and implementation.

Interaction Design in User Centered Design

The skill of interaction design, as part of UCD, is about the translation of the goals and gen-
eral conditions of a project and the results of foundational user research into a user interface.
In early phases of a project a concept for a user interface might be visualized with the help of
abstract models and later with prototypes. The earlier phases of interaction design can also be
called conceptual design and the later ones concrete or physical design. Some lifecycles dis-
tinguish even more distinct phases of interaction design (e.g.: Garrett, 2002; Baxley, 2002).
Another tool to support the task of interaction design (conceptual and concrete) are interac-
tion design patterns.

Interaction Design Patterns

Patterns are a concept that originally has been introduced by Alexander et al. (1979) to de-
scribe solutions to recurring challenges in architecture. Later, Gamma et al. (1995) have ap-
plied it to software engineering and finally also interaction designer have adopted the idea
(Borchers, 2001). The individual patterns are documented in a structured format and usually
contain the description of a problem, contextual application rules, a description of the solution
and links to related patterns. A pattern language is a coherent collection of a limited number
of patterns, which can produce a multitude of sound solutions in a certain domain.

STRUCTURED APPROACHES TO INTERACTION DESIGN 2

Interaction design patterns state solutions in terms of perceived interaction behavior of an
interface (Dearden and Finlay, 2006). The individual interaction design patterns are on differ-
ent levels of a user interface (see Figure 1 for examples). Thus with a complete pattern lan-
guage the whole user interface can be “assembled” with a certain number of patterns (see:
Alexander, 1979; van Welie and van der Veer, 2003). There are several public interaction
design pattern libraries (e.g. Tidwell, 2006; van Duyne et al., 2007; Yahoo! Inc., 2009; van
Welie, 2009). Most of them are not complete pattern languages. In most cases they mainly
focus on the level of behavior of the user interface.

Figure 1. Interaction design patterns on different levels (from manuscript 4)

Abstract Models for Interaction Design

In the conceptual design phase interaction designers often use abstract models to visualize
certain aspects of a user interface. These models provide a means to visualize specific aspects
of a user interface in a compact form. A navigation map is one example of such a model to
visualize the structure of a user interface (see Figure 2). There are UCD approaches that pro-
vide a rather structured way of linking together some of the different abstract models (e.g.:
Constantine & Lockwood, 1999; Roberts et al., 1998). However, they do not the same with
prototyping and interaction design patterns respectively.

STRUCTURED APPROACHES TO INTERACTION DESIGN 3

Figure 2. Example of a navigation map

Prototypes

In the phase of concrete design interaction designers build prototypes in order to visualize the
user interface in a more tangible way. They can be simple paper-pencil prototypes or more
sophisticated interactive ones. There are various software tools to support the task of proto-
typing (see Figure 3 for an example of a prototype). These tools do often contain some inter-
action design patterns, mostly in the form of “atomic” user interface elements and simple
modules – mostly on the user interface level of behavior. However, in most cases they do not
support patterns on other levels.

Figure 3. Prototype designed with the tool Axure RP

STRUCTURED APPROACHES TO INTERACTION DESIGN 4

Structured approaches to interaction design

It could be shown that there are already some parts of interaction design that can be described
in a rather structured way. But there is this idea that the core part of interaction design is just
“too messy” to be understood in an analytical way and that the only way to learn it is by prac-
tice. This view might be prevalent in different other design disciplines as well. In the area of
architecture, Alexander (1964) also stressed the need for a more systematic approach and con-
firmed the existence of skepticism among designers against analytic approaches.

Improved interaction design patterns

Interaction design patterns are a means to synthesize a user interface in a systematic way. The
descriptions of the individual patterns already are very structured. With a complete and well-
organized pattern language all parts of the entire user interface could be described. Unfortu-
nately, in most cases, do designers not have a complete language at hand. Today’s pattern
libraries especially lack patterns for conceptual design (as will be shown in the third manu-
script). So there is a certain gap between the patterns and the abstract models of conceptual
design. Having a complete pattern language and working with it in a systematic way would be
a big step in the direction of a more structured approach to interaction design. The first three
manuscripts will show how this could be achieved.

Gap between problem domain and solution domain

Even if a user interface is fully designed with interaction design patterns, there still is a gap
between the results of foundational user research and the concept for this user interface.
Wood (1997) has described the nature of this gap and has provided solutions to bridge it. The
fourth manuscript describes such an approach of combining this bridging of the gap with a
systematic way to use interaction design patterns.

STRUCTURED APPROACHES TO INTERACTION DESIGN 5

About this Doctoral Thesis

The studies for the manuscripts 1-3 have been conducted in the course of a user-centered re-
design project of a large corporate client-advisor workbench application at Zürcher Kantonal-
bank.

All the manuscripts contained in this thesis are:

1. Pauwels, S. L., Hübscher, C., Bargas-Avila, J. A., & Opwis, K. (2010). Building an
interaction design pattern language: A case study. Computers in Human Behavior,
26(3), 452-463.

This work explores how to build and validate a pattern language as part of a user-
centered design process in a corporate environment.

2. Pauwels, S. L., Hübscher, C., Leuthold, S., Bargas-Avila, J. A., & Opwis, K. (2009).
Error prevention in online forms: Use color instead of asterisks to mark required
fields. Interacting with Computers, 21(4), 257-262.

This work shows the validation of one individual interaction design pattern, the
marking for required fields, as part of the project mentioned in the first manuscript.

3. Hübscher, C., Pauwels, S. L., Roth, S., Bargas-Avila, J. A., & Opwis, K. (2011). The
organization of interaction design pattern languages alongside the design process. In-
teracting with Computers, 23(3), 189-201.

This work is about finding an organizational scheme for interaction design patterns in
order to develop more useful pattern languages. It has been part of the project men-
tioned in the first manuscript.

4. Hübscher, C., Seckler, M., Tuch, A. N., & Klaus Opwis, K. (under review). Analyzing
the gap between the results of foundational user research and the final design of a user
interface. [submitted]

This work explores the nature of the gap between problem domain and solution
domain of interaction design together with possible ways to bridge this gap.

STRUCTURED APPROACHES TO INTERACTION DESIGN 6

Manuscript 1: Building an Interaction Design Pattern Language: A Case Study

Challenge

At Zürcher Kantonalbank the client-advisor workbench application has been developed step
by step over seven years. Because of this growth, which was rather organic, the usability of
the application has suffered with each release. Then, in the year of 2007 the bank decided to
redesign the application in order to improve its usability. Since the application has a plethora
of screens, the approach had to be very structured, in order to clean up all the existing incon-
sistencies. The project team mapped out a user-centered redesign process with the goal to
also build up an interaction design pattern language on the way. The pattern language should
inform the redesign at hand but should also be a tool for further development of the applica-
tion.

A process had to be established to create patterns, validate them, and then bring them together
into a pattern library. The existing “patterns” on the many screens of the existing application
had to be collected in order to find the ones with the best usability. To have a firm basis for
the creation of new patterns, user research, and prototyping had to be done. For the similar
patterns solving the same problem an evaluation approach was needed to choose the best
patterns.

Results

To develop the pattern language, the following steps have been done (see also Figure 4): A
complete screen-by-screen analysis of the application’s previous version had been conducted
to collect all existing interaction design solutions and user interface elements (i.e. “patterns”).
To identify the user’s context and current problems, eighty-seven structured interviews with
users have been conducted. The interfaces for the most important tasks and for problematic
workflows have been iteratively redesigned with paper-based prototyping sessions. When
there were different competing patterns the possible variants have been tested with an inter-
active prototype in a usability lab. An example of such a pattern testing is documented in the
second manuscript.

For the pattern language the individual patterns had to be brought together. The initial draft
of the language consisted of 136 brief stubs of patterns. The aforementioned prototyping ses-
sions and formal usability tests helped to finalize more and more of the patterns. The final
version of the pattern language consisted of 93 interaction design patterns. It was substantially

STRUCTURED APPROACHES TO INTERACTION DESIGN 7

smaller than the initial draft, because the draft also contained the divergent versions of pat-
terns based on the previous version of the application.

Figure 4. The proposed procedure for developing a generative language
of design patterns (from this manuscript)

Conclusions

This study shows how the development of an interaction design pattern language can be done
in a real-world redesign project in order to do the redesign itself but also build a basis for fu-
ture projects. The analysis of the application’s previous version for initial versions of interac-
tion design patterns helped to better focus the redesign work itself but also to build up the
pattern language.

In order to make the pattern language as complete, but also as compact as possible, it was im-
portant to have a good organizational scheme for the patterns. This part of the work will be
presented in the third manuscript.

STRUCTURED APPROACHES TO INTERACTION DESIGN 8

Manuscript 2: Error Prevention in Online Forms:
Use Color Instead of Asterisks to Mark Required-Fields

Challenge

In the project described in the first manuscript possible variants of some patterns had to be
tested with users, in order to find the best solution. In the work described here one such case
is documented.

In applications, as the one redesigned in this project, there are a lot of forms to fill-in. In most
forms there are required entry fields and optional ones. It is a best practice to mark the re-
quired fields as such, in order to help users decide what fields they have to fill-in at the least.
The analysis of the existing patterns has shown that in the application there were two different
ways to indicate required fields:

1. Marking the fields with red asterisks (the de-facto web-standard)
2. Coloring the required fields’ background with yellow

The yellow background filled the complete entry field and was consequently a much larger
indicator than the small asterisk. Therefore, our hypothesis was, that yellow field-back-
grounds lead to faster, more effective, and satisfying form fill-in.

Results

For this study, participants filled out two different versions of a form from the application in
an interactive prototype. The study used a related samples design. The independent variable
was the type of marking applied to required fields. Dependent variables were the number of
errors a participant made during the task, task completion time and a post-test questionnaire
to assess a participant’s satisfaction with the user interface.

It could be shown that yellow-marked backgrounds of required entry fields lead to more relia-
ble and faster fill-in of forms. Furthermore, users reported greater satisfaction with systems if
required fields are marked with a colored background. All our hypotheses were supported by
these results.

For large and complex input forms, such as some that were implemented in the application to
be redesigned, the salient required field markings are an easy and effective way to raise user
efficiency and prevent errors. Future research might explore limitations of this finding. In
small web forms like simple registration pages, usability might improve less than it does for

STRUCTURED APPROACHES TO INTERACTION DESIGN 9

large transaction forms. Furthermore, the amount of required fields in proportion to non-re-
quired fields can play a role in choosing the ideal marking for required fields.

Conclusions

In this project other conflicting patterns have been tested in the same way. So there were these
results to back decisions concerning patterns for the most important aspects or with the most
difficult-to-solve solutions in order to build a high quality pattern language.

STRUCTURED APPROACHES TO INTERACTION DESIGN 10

Manuscript 3: The Organization of Interaction Design Pattern Languages
Alongside the Design Process

Challenge

If one wants to build an interaction design pattern language for the redesign of a very complex
application and to optimally support project staff, which does not have a deep background in
interaction design, the language has to have the following properties:

1. It has to be complete.
2. It has to be as generative but also as compact as possible.
3. It should support a proven approach to interaction design in a broader sense.

To achieve these three aspects, a solid organizational scheme is needed. In analyzing different
existing UCD approaches one could find out what is needed:

1. What is the topology of the solution domain of interaction design?
2. What are intelligent ways to chunk individual patterns? For this it is helpful to analyze

existing pattern collections.
3. How can the different types of patterns be aligned with proven ways to design user

interfaces?

To achieve this, the most prevalent UCD approaches (Nielsen, 1993; Rantzer, 1996; Beyer
and Holtzblatt, 1998; Roberts et al., 1998; Mayhew, 1999; Constantine and Lockwood, 1999;
Garrett, 2002; Baxley, 2002; Cooper et al., 2007) and interaction design pattern collections
(Tidwell, 2006; van Duyne et al., 2007; Yahoo! Inc., 2009; van Welie, 2009) have been ana-
lyzed accordingly.

Results

The analyzed UCD approaches have in common that they differentiate at least two stages of
interaction design. The conceptual design is about working out task flows, the involved user
objects, and their relationships and organization. Based on the conceptual design the concrete
design can be done to design the actual screens of the user interface. Other approaches distin-
guish even more of such levels.

The approach from Baxley (2002, 2003) goes the farthest concerning its granularity. It has
nine layers organized into three tiers. So it can serve as a useful categorization scheme for
patterns, because of its connection to interaction design and its high granularity. To challenge
this, well-known pattern collections have been re-categorized using Baxley’s layers. Only one

STRUCTURED APPROACHES TO INTERACTION DESIGN 11

group of patterns could not be fit into the layers. However, they could all be taken together in
the new category called requirements patterns. These patterns were about certain functions to
enable a user to achieve certain goals (functional requirements) or about how a user interface
is designed, in a general, overall sense (non-functional requirements). This extended model is
shown in Figure 5. It has similarities with the approach of Garrett (2002).

Figure 5. The extended model (from this manuscript)

Conclusions

We have found that this extended model allows a classification of the patterns from the four
collections analyzed. Furthermore, the classification helps to advance a pattern language to
more completeness (see: Alexander, 1979; van Welie and van der Veer, 2003). The classifi-
cation shows possible gaps in the form of unused layers. For example, most pattern collec-
tions focus on the behavioral tier and provide little support in solving structural problems like
workflows. This helps to find missing patterns. The fine-grained classification supports the
separation of design problems more clearly from one another. Some existing interaction de-
sign patterns try to resolve forces from multiple layers, which makes them inflexible and dif-
fuse. To make a pattern language more generative, authors should rather decompose such a
pattern into individual ones that correspond with different layers.

This organizational scheme helped to further optimize the pattern language in the project de-
scribed in the first manuscript and to align it with a state of the art approach of designing user
interfaces.

STRUCTURED APPROACHES TO INTERACTION DESIGN 12

Manuscript 4: Analyzing the gap between the results of foundational user
research and the final design of a user interface

Challenge

Interaction designers have the challenging task to turn findings of foundational user research
into a user interface. In the UCD literature there is a lot of material about how to conduct user
research and there is also much advice on generic best practices for the design of user inter-
faces. In contrary to this, there is not as much found about this transformation of the results of
foundational user research into a user interface. To capture the nature of this transformation,
the problem domain and solution domain of interaction design have to be analyzed and
linked. This fosters the understanding of the gap between the two domains and possible ways
to bridge it. What is done in the solution domain by interaction designers can be described as
a choosing from a body of several “building blocks” and combine them together. These
blocks can have the form of interaction design patterns. Therefore, the organization of a
complete pattern language, as described in the third manuscript, can be seen as a description
of the solution domain. In the work described here, it had to be found a similar description of
the problem domain. Based on the maps of these two domains, the nature of the gap between
the two could be examined.

Results

To show the topology of the problem domain, several UCD approaches have been analyzed
(the same as for the third manuscript). Based on the description of the two domains it could be
shown that the gap between them can be captured in two ways: The gap can be seen as (1) a
distance of levels of abstraction of the results of foundational user research in relation to the
final user interface, or (2) the need of a mapping between the individual parts of the two do-
mains. In the existing UCD literature there is a lot of material on how to overcome this dis-
tance with the help of different phases, iterations, and intermediate representations (models,
sketches, and prototypes). Since there is not much material found about a mapping between
problem and solution domain, this aspect has been analyzed in detail. The analysis of the
mapping between the two domains shows how the individual aspects of these two domains
are linked. For all individual influences there could be found examples of advice from the
literature. See Figure 6 for an example with the mappings on the structure level.

STRUCTURED APPROACHES TO INTERACTION DESIGN 13

Figure 6. Mapping on the structure level (from this manuscript)

Then it has been explored how this could be brought together with the existing material about
intermediate representations. Figure 7 shows how different intermediate representations are
spread across the distance of the levels of abstraction between the results of foundational user

STRUCTURED APPROACHES TO INTERACTION DESIGN 14

research and the final design of the user interface. It also shows how they can be mapped from
one domain to the other.

Figure 7. Combination of mapping and distance to be bridged (from this manuscript)

Conclusions

As the organization of interaction design patterns was a basis for this work, its results can
further inform the construction of individual interaction design patterns. Every pattern de-
scription should contain the forces, which help to decide whether this particular pattern is a
good fit in a certain situation. So these descriptions have to refer to the aspects of the problem
domain relevant for a certain type of pattern and therefore contain the different mappings.

Even if the gap has been closed to a further degree with the results of this work, it is easy to
find several aspects in which the gap can be closed even further.

STRUCTURED APPROACHES TO INTERACTION DESIGN 15

Final Conclusions

In the first three manuscripts it has been shown how interaction design patterns can be used
to systematically “assemble” a user interface. The fourth manuscript has shown how the
problem domain can be mapped out and the user interface can be derived from it in a system-
atic way. Hence, it can be said that the gap between foundational user research and the final
design of a user interface has been bridged to a further degree.

Now the questions arise: Can, one day, a user interface be designed entirely in an algorithmic
way? If not, why should we then do this work of coming up with even more structured ap-
proaches to interaction design? I would argue that in fact it will never be fully possible to de-
sign a good user interface in a mechanical way. A free, unstructured process of design will
always be needed as an important ingredient in order to really finish a design. Nonetheless,
such a detailed understanding of a structured process can be of great value.

Figure 8. Two modes of design and the reflection on the design process

I do see two types of benefits we can draw from such highly structured approaches (see also
Figure 8): They can (1) map out a structured process of design we can follow but they can
also (2) provide a means to more effectively think about our idiosyncratic process of design in
the moment of doing so or to learn interaction design in the first place.

Even if the entire structured process cannot be mapped out to every last detail, these results
still can give some guidance over larger parts of the interaction design journey. The structured
process can provide help with the start of a design by gaining a certain initial overview over
all the relevant aspects, especially in very complex projects. It can also support a certain

STRUCTURED APPROACHES TO INTERACTION DESIGN 16

switching between two “modes of design”. I would say that every designer benefits from
switching back and forth between a more structured process of design and a more unstruc-
tured one. Reasons to switch from a structured to a more unstructured mode can be to escape
analysis paralysis or to explore different variants of solutions. Switching from a rather un-
structured mode into a more structured one can be helpful when designers realize that a de-
sign does not really “work”, but they do not exactly know why.

For more effectively thinking about the design process the mapping out of the structured
approach can serve as a cognitive artifact (Norman, 1991). This can be helpful to reflect on
ones idiosyncratic design process in the moment of doing design – in the sense of a reflection-
in-action (see Schön, 1983; Löwgren and Stolterman, 2004). However, it can also be very
useful in HCI education as a basis to teach interaction design.

STRUCTURED APPROACHES TO INTERACTION DESIGN 17

References

Alexander, C. (1964). Notes on the synthesis of form. Harvard University Press, Cambridge.
Alexander, C. (1979). The timeless way of building. Oxford University Press, New York.
Baxley, B. (2002). Making the web work: Defining effective Web applications. New Riders.
Baxley, B. (2003). Universal model of a user interface. In Proceedings of the 2003

Conference on Designing for User Experiences (pp. 1–14). ACM, New York.
Beyer, H. & Holtzblatt, K. (1998). Contextual design: Defining customer-centered systems.

Morgan Kaufmann, San Francisco.
Borchers, J. O. (2001). A pattern approach to interaction design. AI & Society, 15, 359-376.
Constantine, L. L. & Lockwood, L. A. D. (1999). Software for use: A practical guide to the

models and methods of usage-centered design. Addison Wesley, Reading.
Cooper, A., Reimann, R., & Cronin, D. (2007). About face 3: The essentials of interaction

design. Wiley Pub., Indianapolis.
Dearden, A., & Finlay, J. (2006). Pattern Languages in HCI: A critical review. Human-

Computer Interaction, 21(1), 49–102.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston.

Garrett, J. J. (2002). The elements of user experience: User-centered design for the web. New
Riders, Indianapolis.

Hübscher, C., Pauwels, S. L., Roth, S., Bargas-Avila, J. A., & Opwis, K. (2011). The
organization of interaction design pattern languages alongside the design process.
Interacting with Computers, 23(3), 189-201.

Hübscher, C., Seckler, M., Tuch, A. N., & Klaus Opwis, K. (under review). Analyzing the
gap between the results of foundational user research and the final design of a user
interface. [submitted to Interacting with Computers]

Löwgren, J. & Stolterman, E. (2004). Thoughtful interaction design: A design perspective on
information technology. The MIT Press, Cambridge.

Mayhew, D. J. (1999). The usability engineering lifecycle: A practitioner’s handbook for user
interface design. Morgan Kaufmann Publishers, San Francisco.

Nielsen, J. (1993). Usability engineering. Academic Press, Boston.
Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction:

Psychology at the human-computer interface (pp. 17-38). Cambridge University Press.
Pauwels, S. L., Hübscher, C., Leuthold, S., Bargas-Avila, J. A., & Opwis, K. (2009). Error

prevention in online forms: Use color instead of asterisks to mark required fields.
Interacting with Computers, 21(4), 257-262.

STRUCTURED APPROACHES TO INTERACTION DESIGN 18

Pauwels, S. L., Hübscher, C., Bargas-Avila, J. A., & Opwis, K. (2010). Building an
interaction design pattern language: A case study. Computers in Human Behavior, 26(3),
452-463.

Rantzer, M. (1996). The delta method – a way to introduce usability. In D. Wixon & J.
Ramey (Eds.), Field methods casebook for software design (pp. 91–112). Wiley
Computer Pub., New York.

Roberts, D., Berry, D., Isensee, S., & Mullaly, J. (1998). Designing for the user with OVID:
Bridging user interface design and software engineering. Software engineering series.
Macmillan Technical Pub., Indianapolis.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Basic
Books, New York.

Tidwell, J. (2006). Designing interfaces. O’Reilly, Beijing.
Van Duyne, D. K., Landay, J. A., & Hong, J. I. (2007). The design of sites: Patterns for

creating winning web sites. Prentice Hall, Upper Saddle River, 2nd edition.
Van Welie, M. (2009). Patterns in interaction design. Retrieved May 7, 2009, from

http://www.welie.com/patterns/
Van Welie, M. & van der Veer, G. C. (2003). Pattern languages in interaction design:

Structure and organization. In Proceedings of Interact, vol 3: 1-5.
Wood, L. E. (1997). User interface design: Bridging the gap from user requirements to

design. CRC Press, Boca Raton.
Yahoo! Inc. (2009). Design pattern library. Retrieved May 29, 2009, from

http://developer.yahoo.com/ypatterns/

STRUCTURED APPROACHES TO INTERACTION DESIGN 19

Acknowledgements

I would like to thank the following people for their contributions to my thesis. Without their
help and support, this thesis would not have been possible:

• Klaus Opwis, my thesis supervisor, for his support of my work and for bringing HCI
to the University of Basel

• Javier Bargas-Avila and Alexandre Tuch for heading the HCI research group and for
supporting me with my work

• My co-authors Klaus Opwis, Stefan Pauwels, Javier Bargas-Avila, Mirjam Seckler,
Sandra Roth, Stefan Leuthold, and Alexandre Tuch for their valuable contributions to
the manuscripts

• Laura Wiles, for helping me with the English proofreading
• My doctoral committee for evaluating this work: Rui Mata (Chairman), Klaus Opwis

(First Reviewer), and Markus Stolze (Second Reviewer)
• Most of the research presented in this doctoral thesis was funded by and conducted at

Zürcher Kantonalbank – special thanks to Andreas Staub and Roger Huber for making
this possible

• The projects in which this research at the Zürcher Kantonalbank was embedded were
setup and conducted to a great extent by Stimmt AG

• All the study participants, for their help and patience
• My students at the University of Basel and at the MAS HCID for giving me feedback

on my theoretical work and my way of teaching UCD and interaction design
• The many HCI colleagues who gave me feedback on my ideas about interaction

design and UCD
• The people who introduced me to the world of HCI back then at the University of

Zurich: Thomas Rothenfluh, Daniel Felix and Markus Stolze
• And, finally, my family and all my friends who supported me in various ways

STRUCTURED APPROACHES TO INTERACTION DESIGN 20

Appendix

1. Pauwels, S. L., Hübscher, C., Bargas-Avila, J. A., & Opwis, K. (2010). Building an

interaction design pattern language: A case study. Computers in Human Behavior,
26(3), 452-463.
https://doi.org/10.1016/j.chb.2009.12.004

2. Pauwels, S. L., Hübscher, C., Leuthold, S., Bargas-Avila, J. A., & Opwis, K. (2009).
Error prevention in online forms: Use color instead of asterisks to mark required
fields. Interacting with Computers, 21(4), 257-262.
https://doi.org/10.1016/j.intcom.2009.05.007

3. Hübscher, C., Pauwels, S., Roth, S., Bargas-Avila, J. A., and Opwis, K. (2011). The
organization of interaction design pattern languages alongside the design process.
Interacting with Computers 23(3), 189-201.
https://doi.org/10.1016/j.intcom.2011.02.009

4. Hübscher, C., Seckler, M., Tuch, A. N., & Klaus Opwis, K. (under review). Analyzing
the gap between the results of foundational user research and the final design of a user
interface. [submitted]

Building an interaction design pattern

language: A case study

Stefan L. Pauwels ⇤, Christian Hübscher,
Javier A. Bargas-Avila, Klaus Opwis

University of Basel, Faculty of Psychology, Department of Cognitive Psychology

and Methodology, 4055 Basel, Switzerland

Abstract

Interaction design patterns are a proven way to communicate good design. However,
current pattern collections are not su�ciently powerful and generative to be used
as a guide for designing an entire application such as those used in complex busi-
ness environments. This study shows how we built and validated interaction design
patterns that serve as the specification for the redesign of an application. Addition-
ally, they were integrated into a pattern language, as a ruleset for human-computer
interaction (HCI) non-professionals to continue development of the application. We
demonstrate how individual phases in the redesign of an application can be matched
with the process of creating an interaction design pattern language. To facilitate the
writing of individual interaction design patterns as well as the development of the
pattern language as a whole, a combination of user interviews, controlled experi-
ments and analytical methods has been applied successfully.

Key words: Design patterns, Pattern languages, Interaction design

1 Introduction

1.1 Interaction design patterns

Design patterns describe good solutions to recurring design problems in spe-
cific contexts. The concept of design patterns was originally developed by
Christopher Alexander as a method of capturing and communicating good

⇤ Corresponding author. Tel.: +41-61-2673568.
E-mail address: stefan.pauwels@unibas.ch (Stefan L. Pauwels).

Preprint submitted to Elsevier 21 January 2010

This is a pre-copyedited, author-produced version of an article accepted for publication in Computers in Human Behavior following peer review. The version of record Stefan L. Pauwels, Christian Hübscher, Javier A. Bargas-Avila, Klaus Opwis; Building an interaction design pattern language: A case study, Computers in Human Behavior, Volume 26, Issue 3, May 2010, Pages 452-463. is available online at: https://doi.org/10.1016/j.chb.2009.12.004

architectural design (Alexander et al., 1979). Each of Alexander’s design pat-
terns has a unique name, a numerical ID and gives an overview of the pattern’s
context and what the solution is about, mostly in the form of a short summary
and a picture or figure (see figure 1 for an example). The overview is followed
by a detailed description of the problem, how to implement the solution, a
rationale why the solution is good and in what context the design pattern
should be applied. (Alexander et al., 1977).

Fig. 1. Overview of Christopher Alexander’s design pattern Couple’s realm (Alexan-
der, 2001).

The di↵erentiation between problem and context in the detailed pattern de-
scription seems noteworthy: Multiple design patterns can solve the same prob-
lem for di↵erent contexts. Consequently, multiple design patterns can have
similar or even identical statements as their problem attribute. Many pattern
authors use the term “forces” to describe the constraints that define a prob-
lem. By contrast, the context attribute should make clear, when to choose one
pattern over the other. This crucial attribute can be defined by a list of condi-
tions that must apply for a pattern to be justified or by a careful description

2

of the context.

The design pattern concept was later adopted by software engineers. Gamma
et al. (1995) described a collection of influential software design patterns which
are now widely used. Software design patterns di↵er from Alexander’s design
patterns in an important aspect: Software design patterns are developed by
and for professionals whereas Alexander’s architectural design patterns were
specifically designed to give non-professionals the power to create good design
(Alexander et al., 1979).

In recent years, design patterns have found their way into the field of human-
computer interaction (HCI). Early HCI-related patterns appeared at the Pat-
tern Languages of Programming (PLoP) conference and pattern workshops
began emerging at the Computer-Human Interaction (CHI) conference (Bayle
et al., 1998). Since then many pattern libraries have been published (Tidwell,
2005; Van Duyne et al., 2007; Van Welie, 2008; Yahoo! Inc., 2006) and more
are appearing each year. Figure 2 shows an example of a typical interaction
design pattern. In the di↵erent implementations of the design pattern concept
in HCI, the internal structure of a pattern has mostly stayed true to Alexan-
der’s pattern form; the attributes’ names however vary among implemented
design pattern collections. Table 1 shows an overview of typical design pattern
attributes used in HCI.

E-learning is another emerging area of application for design patterns that
is closely related to HCI. Recent studies analyzed the design of learning en-
vironments by evaluating solutions to various problems as design patterns
(Van Diggelen and Overdijk, 2009) whereas other studies looked into tech-
niques of finding and writing e-learning and collaborative learning design pat-
terns (Kohls and Uttecht, 2009; Winters and Yishay, 2009).

Dearden and Finlay (2006) proposed the term interaction design pattern to
define design patterns in the HCI field because they state solutions in terms
of perceived interaction behavior of an interface. This enables a clear distinc-
tion between interaction design patterns used in interface design and software
design patterns whose solutions focus on source code and software structures.

Similar to Alexander’s original design patterns, interaction design patterns
are written for professionals and non-professionals alike. Interface design often
involves people from a broad, interdisciplinary field of designers, developers,
business analysts, researchers and users (Borchers, 2001) who need to have a
common understanding of design problems and solutions in order to cooperate
e↵ectively. Interaction design patterns enable the communication of design
solutions among co-workers of various fields (HCI, IT, business) or users for
participatory design (Dearden et al., 2002).

Design patterns are essentially a way of structuring knowledge and not a

3

Fig. 2. Example of an interaction design pattern (Van Welie, 2008).

method to find new solutions to problems. Solutions described in design pat-
terns need not be new or original but should be proven to work in practice.
Consequently, design patterns are not derived from theory but identified as

4

Table 1
Typical attributes of design patterns.

Design pattern attribute names Description

Name, Title Gives the pattern a unique and meaningful
name hinting at the solution.

Overview Makes it immediately obvious to the reader,
what the solution is about. If possible this
should contain images, such as screenshots or
illustrations.

Problem, Goal, What Describes the problem that has to be solved
or a goal that one wants to achieve with the
design.

Context, Forces, Use when When should the pattern be used? Exact de-
scription of the context in which the given so-
lution is applicable. This is often stated as a
set of “forces” that influence design solutions
in the context.

Solution, How, Resolution What is the solution to the problem, how can
the solution be achieved and how does the re-
sulting interface behave?

Rationale, Why, Principle Why is the given solution favored over its
alternatives? How does it resolve contextual
forces? Research that supports the solution.

Related pattern Is this design pattern part of a higher-level
pattern? What other patterns does it contain
as parts of its detailed solution? Are there sim-
ilar design patterns that achieve the same goal
in similar contexts?

Examples, Known uses Where has this pattern already been imple-
mented?

invariant aspects of solutions that emerge as best practices. The identification
of these invariants is often referred to as pattern mining (Dearden and Finlay,
2006).

Successful use of interaction design patterns is reported for example by Lin
and Landay (2008), who have used design patterns as a central part of a pro-
totyping tool. They showed that designers who made more use of the available
design pattern language were able to produce better results than those using
the patterns less or not at all. Borchers (2001) reports another successful inter-
action design pattern case: Interaction design patterns were created based on
results of a user-centered design (UCD) project and were successfully reused
later in similar interface design projects. Apart from using interaction design

5

patterns directly for the design process, Hughes (2006) proposes using them
to conserve knowledge gained from usability studies.

1.2 Pattern languages

A single design pattern has a small impact on the design process of a graphical
user interface (GUI). To leverage the design pattern concept it is usual to in-
tegrate multiple related patterns into a pattern library. Some pattern libraries
have been published either as books (Tidwell, 2005; Van Duyne et al., 2007)
or online (Van Welie, 2008; Yahoo! Inc., 2006). Public pattern libraries such
as the above-cited are collections of interaction design patterns of varying size
and scope that the respective authors have observed or applied themselves
time and time again.

In order to connect the individual design patterns of a library, an impor-
tant aspect of a design pattern is its relation to other patterns. Thus, rules
for a design pattern’s use - its context - can consist of references to other
patterns. GUI design solutions can be encapsulated through design patterns
that inherit from or contain each other, not unlike classes in object-oriented
programming. The connection between design patterns is already aparent in
Alexander’s patterns (see figure 1). Typical interaction design pattern collec-
tions link individual design patterns in a “related patterns” section, where
alternative solutions to similar contexts or patterns, which include or com-
plete other patterns, are placed. A design pattern can be related to another
design pattern in di↵erent ways. Van Welie and Van der Veer (2003) distin-
guish between three fundamental relations:

(1) Aggregation: A design pattern can include others that complete it.
(2) Specialization: A design pattern can be derived and specialized from an-

other design pattern.
(3) Association: Multiple design patterns can occur in the same context or

solve similar problems.

If a pattern library can be built that contains the necessary rules for combining
the patterns in a way that allows designing a variety of interfaces, the pattern
library forms a language. A formal language allows the building of an infinite
number of well-formed formulas using a finite number of symbols and rules.
A natural language such as English uses words as symbols and grammatical
rules, hence enabling the building of an infinite number of correct English
sentences. Alexander argues that a pattern language correspondingly allows us
to build an infinite number of di↵erent but well-formed buildings using a finite
set of architectural design patterns as symbols and the patterns’ context and
connection definitions as rules (Alexander et al., 1979). To advance a pattern

6

collection to the level of a pattern language, a systematic way of connecting
individual patterns is needed, which can be used for the implementation of
the design formation rules. Such rules should be able to lead through the
GUI design process, thus extending the structure to a generative level. This
allows designers to move from problem to problem in a logical way, hence
designing a GUI by combining patterns according to their application rules,
just as we formulate sentences by combining words according to grammatical
and semantical rules in a natural language.

Besides providing formation rules for pattern combination, a pattern language
needs to be of adequate size to allow for the combination of a finite set of sym-
bols and rules to form an infinite number of designs, just as natural language
allows for the production of sentences. But when is a pattern language com-
plete? Van Welie and Van der Veer (2003) argued that a pattern language is
complete when every good design we find can be described using it. Based on
the language aspect of design patterns, Alexander on the other hand argued
that a pattern language can be morphologically and functionally complete: It
is morphologically complete when it can account for a complete design, with-
out any missing parts, and functionally complete when it resolves all the forces
in the system (Alexander et al., 1979). Other researchers argued that pattern
languages should only include significant big ideas and not state obvious so-
lutions, thereby denying that pattern languages need or even benefit from a
certain completeness. Such a sparse collection of significant design patterns,
however, does not cater for a generative language in Alexander’s sense.

A pattern language can constitute a valuable design tool for interface design
because it is an interdisciplinary field where cognitive scientists, graphic de-
signers and software developers work together. Communication in these inter-
disciplinary design teams can become a problem. Erickson (2000), Granlund
et al. (2001) and others suggested that pattern languages and interaction de-
sign patterns can help communication among the di↵erent groups involved
in design and indeed Borchers (2001) reports the successful use of patterns
by teams in interdisciplinary projects. In large enterprises, where GUIs are
usually specified by business analysts who develop business requirements to
IT solutions, a pattern language can connect requirements to proven solutions
and lead to consistent interaction design even with multiple business analysts
working on di↵erent parts of an application, because people are able to see
whether a design pattern describes the solution to their problem in a specific
context.

In addition to any connecting structures of design patterns, pattern languages
can be organized into categories according to the scale of the problem that
they solve (Van Duyne et al., 2007) or thematically, based on the type of user
goal that they address (Tidwell, 2005). A categorization by scale additionally
allows for a hierarchical organization of a pattern language, linking high-level

7

design patterns to design patterns that deal with details of the former. In
HCI, however, applying a hierarchical structure is not a trivial matter because
interaction design is not solely geometrically hierarchical but also has to take
sequential and timing aspects into account.

Traditional tools to help designers create user interfaces that meet certain
quality criteria have included guidelines, standards and principles in various
forms. They mostly focus on consistency rather than usability. Some disad-
vantages of standards, guidelines and principles are given by Mahemo↵ and
Johnston (1998):

(1) Di�culty of guideline interpretation.
(2) Too simplicistic, and not capable of being used e↵ectively by people who

are not human factors experts.
(3) Excessive e↵ort required to find relevant sections.

Design patterns can address these problems. Dearden and Finlay (2006) dis-
cusses the di↵erences between guidelines and pattern languages in detail and
give an overview of how pattern languages can solve the shortcomings of tra-
ditional tools. In summary, interaction design patterns have the following ad-
vantages:

(1) They include information about the problem that a given solution actu-
ally addresses.

(2) They o↵er details about contextual constraints of a solution.
(3) They explain rationales for solutions, including empirical findings.
(4) They o↵er the possibility of organizing single interaction design patterns

into pattern languages that lead to a generative process of traversing
through design problems in varying degrees of detail.

1.3 Building a domain-specific pattern language

The following case study is embedded in a redesign project of a large in-house
customer relationship management (CRM) and advisor workbench applica-
tion. The application is developed and used in a financial institution and has
between 3,000 and 4,000 users. In its previous version, it had been developed
step by step during a timeframe of seven years and grew larger after each
release. It is expected to grow further as more and more applications are inte-
grated into it. Specification of functionalities is done within the company by
di↵erent people with various backgrounds. However, neither a user-centered
design process nor a prescriptive ruleset was applied for development. As a
result, many design solutions turned out to be suboptimal and inconsistent.
The redesign of the application followed a user-centered design process to ad-
dress the usability problems that had arisen. A description of the user-centered

8

design process can be found in ISO (1999) or Mayhew (1999). It is also impor-
tant to note that the application is a customized version of a standard CRM
solution, which means that design choices are sometimes limited unless there
is good reason to deviate substantially from this standard.

Because the application is expected to be developed further, another goal
(apart from a successful redesign) was to make sure that insights gained during
user research and prototyping could be preserved for future design projects and
that the application’s interaction design became more consistent. To achieve
both of these goals, we decided to use the application redesign as an opportu-
nity for the development of an interaction design pattern language.

Today, most interaction design pattern languages in the HCI field are sparse
collections of some solutions to a large problem space, e.g. the entire web or
even user interfaces in general. Although this might be a source of inspiration
for GUI design, the generative power of a language that is needed to ensure
good and consistent interface design is mostly missing. A pattern language
that would be able to constitute such a generative tool has to allow for the
generation and description of a variety of possible solutions for the domain
for which it is created, addressing design problems of di↵erent scales during
di↵erent design steps. It was our goal to provide further insights into the devel-
opment of empirically validated interaction design patterns and prescriptive,
generative pattern languages and to make a case for doing so in the course
of an application design. For our pattern language to be able to satisfy these
needs, a sparse collection of big ideas is insu�cient. Instead, we strove for
Alexander’s definition of morphological and functional completeness. Applied
to our situation, these completeness criteria can be defined as follows:

(1) Morphological completeness: The pattern language must be able to de-
scribe the redesigned application’s user interface completely, i.e. the ap-
plication consists only of solutions described in the pattern language and
every pattern is clearly described and/or its possible components are ref-
erenced.

(2) Functional completeness: The pattern leaves no forces unresolved, i.e. all
problems and requirements identified during the redesign process must
be taken into account and solved by the pattern language.

Our hypothesis is that building a complete, validated pattern language for
a specific domain takes four basic steps (see figure 3) that addresses all the
important pattern language issues:

(1) Collecting previous design solutions (Pattern mining).
(2) User research (Analyzing problems and contexts).
(3) Prototyping new design solutions (Resolving forces).
(4) Testing individual interaction design patterns (Empirical validation of

9

solutions).

These steps are discussed in detail in the following sections.

Fig. 3. The proposed procedure for developing a generative language of design pat-
terns.

User research

Collecting previous
design solutions

Prototyping new design
solutions

Testing individual
design patterns

Redesigned
application

Initial situation

Pattern language draft

Identify context & problems

Identify best solutions
Remove inconsistencies

Final design pattern language

Building the pattern languageApplication redesign

2 Collecting previous design solutions

2.1 Method

To achieve a prescriptive interaction design pattern language for the redesigned
application, we focused on patterns in the application early on. We wanted to
ensure that:

10

(1) A redesign can be described completely by referencing the pattern lan-
guage, i.e. describe the latest version of elements once and apply it to the
entire prototype and describe screens and task flows that also reference
the constitutive patterns.

(2) Future development of functionalities and screens inside the application
can continue to use this pattern language, providing a ruleset that pre-
serves the HCI knowledge gained during the redesign.

We collected and categorized all interface elements and design solutions of the
application’s previous version to obtain initial versions of interaction design
patterns. This procedure defined the problem space and provided an initial
draft and an estimate on the size of the pattern language.

To get the initial pattern language draft, every single screen of the application
was systematically searched for possible interaction design patterns. Because
no complete system documentation existed, this was done by hierarchically
traversing through the application’s structure and collecting business-related
task-flow solutions, page types and layouts, visual design, interactions and ev-
ery element on the page. The collected items were not brought to a pattern
structure at this stage, because they were not yet best practice and finding the
best solutions to all the design problems was done later. However, we grouped
them according to the problem area that they addressed. Using the pattern
relating principles of aggregation, specialization and association enabled us
to draft patterns referencing essential patterns from other groups. This elim-
inated redundancy while providing a complete description of solutions on all
levels of the interface.

2.2 Results

An overview over the initial draft of interaction design patterns can be seen
in table 2.

The initial pattern language draft consisted of design pattern “stubs” with
an ID, a name, a short description of the solution and a category indication.
They further di↵ered from ideal interaction design patterns in quality: These
were not the proven best practices, which design patterns normally constitute,
but observed solutions regardless of their usability.

11

Table 2
Initial pattern language draft: 136 interaction design patterns.

Category Number of
patterns

Category description Examples

Content patterns 15 Recurring business-
relevant task flows

Delegate, Edit

Page type patterns 6 Purpose of a page Object detail-
page

Layout patterns 15 Page-layout elements and
areas

Header

Interaction
patterns

24 Behavior of GUI elements
and GUI element combina-
tions on user input

Filter, single-
selection

Visual design
patterns

8 Display-related accentua-
tions

Form section
divider

GUI elements 68 Basic building blocks of in-
terface elements

Button, Hyper-
link

Total 136

3 User research

3.1 Method

To study the users’ most important work tasks and discover where the most
severe problems occurred, a user and task analysis (Hackos and Redish, 1998)
was conducted. This analysis laid the groundwork for the redesign. Because the
studied application’s users work in many di↵erent sections of the enterprise,
finding and understanding a single working context proved di�cult and not to
the benefit of the di↵erent users. To be able to adapt parts of the user interface
to the user group that relies upon it most, we chose to apply Cooper’s (2004)
method of defining and describing user groups as personas. Going into detail
of the persona method is, however, not within the scope of this study. We
proposed a set of five hypothetical personas with diverging task and problem
importance and frequency.

Eighty-seven interviews were conducted during user research. Users from all
parts of the enterprise where the application is used were recruited. Every par-
ticipant took part in an interview before being observed while handling tasks
that were both frequent and important for this user’s work. In the interviews,
participants were asked to specify all tasks that they have to handle and to
rate the tasks frequency and importance. During observation of the user han-

12

dling these tasks, details of problems with the application were collected. All
design goals and most of the rationale for design decisions to be made are
based on understanding about the di↵erent personas’ working environments
and context, main work tasks and problems that they experienced working
with the application. Concerning interaction design patterns, user research
should help us to identify not only the problems but also the forces defining
a problem’s context.

3.2 Results

Analysis of the interviews identified the most important and frequent tasks
for all of the personas. Three of the five proposed personas could be con-
firmed based on analyzed task frequency and importance. The two remaining
hypothetical personas showed no di↵erences regarding task importance and
frequency. This allowed us to focus optimization of interaction design pat-
terns on specific tasks.

Observing users handling important and frequent tasks showed us the appli-
cation’s main problems, on which we could focus later during the prototyping.
As an example, users had di�culty navigating between di↵erent sections of
the application. The standard software, on which our application is based, left
us no choice but to implement the main navigation as horizontally arranged
tabs. But because the application has a considerable number of sections (the
exact number depends on the user’s role), the main navigation needed more
space than screen width available. In the previous version of the application,
this was solved by making the main navigation as a whole horizontally scrol-
lable in order for the rightmost tab to be reached. Users often had di�culty
remembering where a desired section’s tab was located and got lost scrolling
back and forth in the main navigation.

4 Prototyping

4.1 Method

We started to redesign the application by developing an initial paper proto-
type. Based on the application’s previous version, possible design changes on
design pattern level included:

(1) Modifying the solution of an existing interaction design pattern: Although
the problem and context remained unchanged, a previous solution with

13

usability problems was redesigned.
(2) Creating new interaction design patterns: Discovered problems that were

not addressed in the application’s previous version were solved and added
to the design pattern language.

(3) Removing interaction design patterns: Design solutions that were obso-
lete through redesigning other design patterns were removed from the
design pattern language. Also, many solutions for the same problem and
context existed, causing the aforementioned inconsistency in the applica-
tion design. Obsolete and redundant design patterns were removed from
the pattern language.

These changes were documented on pattern level. Not every single screen was
captured as a design pattern because most of the screens themselves were not
solutions to recurring problems, although they could be implementations of a
certain page type design pattern. Prototyping took place during five stages.
During each stage, 10 users tested a current paper version of the prototype
and interaction design patterns. Each stage focused on the user personas’
main tasks. The paper prototypes covered all screens that were necessary to
complete the tasks. Prototypes (and design patterns) were adapted during
stages to react to usability problems that had not yet been solved.

4.2 Results

The resulting prototype consisted of several PowerPoint documents. Slides of
the presentation corresponded to steps that the user had to go through to
complete the main work tasks. It implemented all the redesigned interaction
design patterns.

Fig. 4. The Data Manipulation interaction design pattern.

Data manipulation serves as an example for a modified solution of an existing
interaction design pattern: In the previous version of the application, data
manipulation was inconsistent. Sometimes, users had to choose to go into
edit-mode before fields were editable. In some cases, changes were saved to
the database instantly when changing focus of a field, whereas in others the
same did not happen until a “Save” or “Submit” button was pressed. The
proposed data manipulation design pattern contained an edit-mode and a
“Save” Button, to reduce confusion (Figure 4).

14

5 Testing individual design patterns

5.1 Method

Studies to compare measured usability for di↵erent design solutions have been
conducted by various researchers. Consider for example Bargas-Avila et al.
(2007) who compared di↵erent solutions for the presentation of form input
error messages. Couper et al. (2004) analyzed di↵erences of usability between
various solutions for designing single selection: Drop down boxes, radio buttons
and scrollable option boxes. Pauwels et al. (2009) found that required fields
in forms can lead to more e↵ective input behavior if the fields’ backgrounds
are colored.

The common ground of the above-mentioned studies and the pattern testing
that we applied in this study is the empirical validation of isolated solutions
to interaction design problems. The di↵erence between our pattern testing
and other interaction design testing lies (a) in the research goals and (b) the
external validity:

(a) In this study, solutions were to be documented as interaction design pat-
terns and became part of a pattern language. Our goal was to close gaps
in the pattern language.

(b) Our stimuli were selected with the need to identify the best solution for
our application. We had to take several constraints into account which do
not apply for most environments. What we identified as a best solution for
our design pattern library, therefore, is not necessarily fit for all situations.

A pattern was included in testing if one of the following cases occured:

(1) The best solution was not clear. Design expertise and prototyping would
not identify which of the possible solutions was optimal.

(2) The benefit of a solution was to be shown. Some proposed solutions im-
plied technically complex changes for the IT department. The inclusion
of the design pattern in testing was done to explore eventual usability
benefits of the solution that justify the costs and implementation e↵ort,
especially for deviations from standard solutions of the underlying plat-
form.

On this basis, solutions for seven interaction design problems (see table 3) were
analyzed in the usability lab. For each of the seven tested patterns, up to four
alternatives were developed. Tasks were selected that contained the patterns
in question and prototypes that di↵ered in regard to the tested patterns were
implemented.

15

Because prototyping and pattern testing are two approaches of design valida-
tion at di↵erent levels of granularity, they were split into alternating phases.
This led to ideal feedback of insights from pattern testing to prototyping and
of problem statements from prototyping to pattern testing.

Fig. 5. Alternating phases of prototyping and pattern testing.

- Prototypes based on the patterns
- Qualitative testing

- Quantitative measurement
- Find the best solution

Prototyping new
design solutions

Testing individual
design patterns

Feedback

PatternsUser Research

Pattern Library

Five pattern testing phases were conducted. A minor drawback was that design
problems which were introduced at a late pattern testing phase could not be
tested with as many participants as early design problems (see table 3), which
were also tested in later pattern testing phases to achieve greater statistical
power. Eight participants per phase were recruited amongst all users of the
CRM application, yielding a total of 40 participants for the whole pattern
testing, aged 19-50. Of the participants, 22 were male, with a mean age of
33.5 years (SD = 8.5), and 18 were female, with a mean age of 32.2 (SD =
8.4).

Table 3
Seven interaction design patterns have been tested empirically

Number of participants

Tested pattern Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Total

Search Input 8 8 8 8 8 40

Deep Links 8 8 0 0 0 16

Multiselection 8 8 8 0 0 24

Required Fields 0 8 8 8 0 24

Wizard 0 0 8 8 8 16

Main Navigation 0 0 0 8 8 16

Filter 0 0 0 0 8 8

The di↵erent pattern variants for the selected interaction design problems were
tested empirically in a usability lab using clickable prototypes of specific tasks

16

that contained the tested patterns. The prototypes were recreated as part of a
mock-up of the CRM application using HTML and Adobe Flash technology.
The mock-up was presented on a laptop computer and sessions were recorded
with the usability test recording software TechSmith Morae (version 2.0.1). Er-
rors were tracked using markers in Morae. Task completion time was logged
automatically by the software. Participants received a paper interview guide
that included a short demographic questionnaire, the instructions to the two
tasks that they had to complete, and the short version of Questionnaire for
User Interface Satisfaction (QUIS) after every task. Finally, two extra ques-
tions were added, to explore whether the experimental task was realistic and
how frequently the participants encountered it during their work.

Let us consider the main navigation (figure 6) as an example: It was identified
as a problem in user research (see section 3.2). The redesigned application
still has a considerable number of sections (figure 6.a). To prevent people
from getting lost scrolling through the tabs as in the previous design (figure
6.b), two di↵erent solutions for the Main Navigation interaction design pattern
were tested: Making extra tabs available through a menu instead of a scrol-
lable navigation (figure 6.c) and grouping the available application sections
hierarchically to allow for a two-level navigation (figure 6.d).

Currently three categories of usability measures are common for usability stud-
ies: E↵ectiveness, e�ciency and satisfaction (Hornbæk, 2006). Hornbæk rec-
ommends using measures of all three groups because there seems to be no
implicit correlation between them. We used five usability measures during
pattern testing (see table 4).

Table 4
Usability measures applied during pattern testing.

Measure Category Explanation

Errors E↵ectiveness Number of errors during task - Wrong but-
ton/link clicks - Missing required input - User
does not know how to proceed

Task completion
time

E�ciency Time to complete the task

Mouse movement E�ciency Distance a user covered with the mouse (in
pixels)

Mouse clicks E�ciency Number of mouse clicks to complete task

User satisfaction Satisfaction The Questionnaire for User Interface Satis-
faction (QUIS) is a validated tool for mea-
suring post-use user satisfaction (Chin et al.,
1988).

17

Fig. 6. Di↵erent possible solutions for organizing too many tabs were evaluated in
pattern testing.

5.2 Results

Interaction design patterns with two alternatives were compared using T-tests.
Table 5 shows e↵ect sizes for these tests. Patterns with three or more alterna-
tives were tested using ANOVAs with a factor “pattern alternative”. Table 6
shows the percentage of explained variance (partial ⌘2) of the ANOVAs.

Comparing the di↵erent design pattern variants we found medium or large
e↵ects mostly for “number of errors”. E�ciency was generally less influenced
by varying design pattern alternatives. There were also di↵erences in regard
to design patterns. Comparing variants for the patterns, Multiselection, Re-
quired Field and Main Navigation yielded greater e↵ects than others: Direct
Drilldown variants on the other hand did not show di↵erences in any of the
measures.

These results suggest that much time and e↵ort can be saved by focusing on
user errors while experimentally validating isolated design pattern solutions.
E�ciency and, to a lesser degree, satisfaction measures, although commonly

18

used in most system usability tests, are found to be less appropriate for iden-
tifying di↵erences in user performance on pattern level.

Table 5
E↵ect sizes of di↵erences between pattern with two variants.

Errors Task com-
pletion time

Mouse
movement

Mouse
clicks

QUIS

Search Input Type 1.76 .04 .21 .03 .07

Required Fields .59* .41* .37 .47 .57*

Main Navigation 1.10** .28 .36 .42 .3

**:p<.01 *:p<.05

Table 6
Partial ⌘2 for ANOVAs of patterns with more than two variants.

Errors Task com-
pletion time

Mouse
movement

Mouse
clicks

QUIS

Direct Drilldown .02 0 .01 0 0

Multiselection .40** .12** .06 .10** .22**

Wizard .03 0 .02 .01 .13*

Filter .54** .06 .16 .07 .10

**:p<.01 *:p<.05

For example: Two di↵erent new solutions of the main navigation interaction
design pattern were tested: (a) Grouping the available application sections
hierarchically to allow for a two-level navigation and (b) making extra tabs
available through a menu instead of a scrollable navigation.

Table 7
Statistical parameters for Main Navigation design pattern variants.

Main navigation
design

Measures n Hierarchical
grouping
M (SD)

Overflow menu
M (SD)

Errors 16 1.688 (1.014) .375 (.619)

Mouse clicks 16 37.250 (8.291) 33.313 (6.019)

Mouse movement (pixels) 16 32,455 (13,835) 28,015 (7,260)

Task completion time (sec) 16 290.594 (74.820) 257.945 (105.864)

Satisfaction (QUIS rating) 16 7.675 (.786) 7.913 (.700)

Table 7 shows observed dependent variables for the two tested solutions of

19

the Main Navigation design pattern. Hierarchical grouping of the application’s
sections leads to significantly less e↵ective navigation behavior, i.e. users made
more navigation errors, t(15) = 4.392, p = .001 (two-tailed). No significant
di↵erences were found for mouse clicks, t(15) = 1.667, p = .116 (two-tailed),
mouse movement, t(15) = 1.346, p = .198 (two-tailed), task completion time,
t(15) = 1.115, p = .282 (two-tailed), and satisfaction (QUIS) ratings, t(15) =
1.191, p = .252 (two-tailed) but results nevertheless favored an overflow menu
over hierarchical grouping.

6 Final interaction design pattern language

The resulting interaction design pattern language is complete for this appli-
cation, i.e. it describes every solution and element that may be used during
specification of new functionality of the application. This sets our pattern
collection apart from published, more sparse collections such as the Yahoo!
Design Pattern Library (Yahoo! Inc., 2006) or Designing Interfaces (Tidwell,
2005). Table 8 gives an overview of the final pattern language’s scope. In line
with our goal to weed out inconsistencies, the redesigned application achieves
the same functionality as the previous version using fewer patterns in most
of our pattern categories. For example, we reduced the variety of di↵erent
implementations of business relevant task-flows from 15 to 7 content design
patterns.

As an example, figures 7 and 8 show final versions of the interaction design
patterns Required Field and Data Manipulation.

7 Conclusions

This study shows that an application redesign o↵ers great opportunities to
create interaction design patterns able to form a pattern language that is
generative enough to allow for the design of a wide a variety of functionality
with a limited number of design solutions. This allows the pattern language
to be used as a prescriptive tool for application design. More specifically, a
domain-specific and validated interaction design pattern library can be built
alongside a redesign process by mining the application’s previous version for
initial versions of interaction design patterns, analyzing problems and contexts
during user and task analysis, resolving the observed forces and validating the
results during prototyping.

Through the identification of possible design patterns on the basis of the appli-
cation’s previous version (one of the most time-consuming steps) and collecting

20

Table 8
Final pattern language: 93 interaction design patterns.

Category Previous
version

Final
version

Category
description

Examples

Content
patterns

15 7 Recurring business-
relevant task-flows

Delegate, Edit

Page-type
patterns

6 7 Purpose of a page Object detail-
page

Layout
patterns

15 8 Page-layout elements
and areas

Header

Interaction
patterns

24 22 Behavior of GUI ele-
ments and GUI element
combinations on user
input

Filter, single-
selection

Visual
design
patterns

8 7 Display-related accen-
tuations

Form section di-
vider

GUI
elements

68 42 Basic building blocks of
interface elements

Button, Hyper-
link

Total 136 93

them as an initial pattern language draft, it was possible to estimate the nature
and extent of the solutions needed to describe the application. Additionally,
it provided insight into basic interactions, task-flows and transactions of the
specific business and enabled the design of validated design patterns by ana-
lyzing what worked and where the problems were; and subsequently redefining
solutions.

We show that completeness of a domain-specific pattern language can be
achieved during a user-centered redesign project. Mining an application’s pre-
vious version systematically for all solutions that it contains, as well as docu-
menting all changes on pattern level guarantees morphological completeness,
while conducting user research to identify all problems and verifying changes
in prototyping and pattern testing sessions guarantee functional completeness.

However, the aim of the study was to validate the process of building a pattern
language, not to produce a domain-independent pattern language which would
be valid for various applications. Our pattern language describes the problem
space for the continuous development of a specific application. Without this
domain-specifity, reaching the level of completeness of our language would not
be possible.

The study also demonstrates that to further examine or underpin the pattern

21

Fig. 7. The final Main Navigation interaction design pattern.

solutions, experimental pattern testing can be highly e↵ective. This consti-
tutes a way of combining the qualitative, conceptual method of identifying
and developing interaction design patterns with quantitative and experimen-
tal validation into a complex, integrative approach. The practicability of this
approach has been tested and verified by adapting it to a non-trivial but
realistic real-world situation, namely the redesign of an aging, inconsistent in-
house application, and providing a way of keeping future development of the
application consistent and in line with the redesign’s intentions.

Measuring influences of single design patterns on usability is di�cult because
alternatives sometimes vary only in minimal ways and a design pattern often
accounts for only a small part of the chain of interactions in a complex task.
We found that e�ciency measures su↵er the most because of this and are
the least influenced by variations of design solutions. However, user testing
of interactions without embedding in a task can easily lead to low validity
because it loses relatedness to real situations in which a tested system will
be used. E↵ectiveness and satisfaction measures are less dependent on task
selection, because of their focus on outcomes and subjective post-use ratings,

22

Fig. 8. The final Data Manipulation interaction design pattern.
Data Manipulation

Overview

Data can be manipulated after clicking an “Edit” Button.

User goal
The user needs to edit existing data.

Used when?
Wherever existing data in the application can be changed, this design pattern applies.

Solution
Objects, whose attributes are allowed to change, offer an “Edit” functionality. This is
activated by a Button labeled “Edit” and placed in the Applet Toolbar of the Form Applet
which displays the attributes of an object.
After pressing the Button, the Form Applet switches into edit-mode that allows the values
of attributes shown in Input Fields to be altered. The “Edit” Button is replaced by a “Save”
Button.
Clicking the “Save” Button saves all values and the Form Applet returns to its initial state.

Why?
The application contains editable and non-editable data. Consistently implementing an
edit-mode for editable data makes it clear for the user, when and how he can change
values of attributes of an object.
Furthermore, a web-based application that allows editing at any time does not make it
clear whether a given user input is saved after input, after the focus moves away from the
input field or after submitting the data.

Related Patterns
- Form Applet
- Input Field

respectively, proved to be of much more value for this type of experiment,
with subtle variations in selected elements. This finding is consistent with
other comparable studies that analyzed isolated interaction design solutions
on a pattern level in a setting where users had to complete realistic tasks,
e.g. some of the above-mentioned works comparing solutions on pattern-level
(Bargas-Avila et al., 2007; Couper et al., 2004) which found that variation of
these solutions had a significant influence on e↵ectiveness and even satisfaction
measures but little to none on e�ciency.

If there is no possibility of testing designs at an early stage with a complete
interactive prototype, testing individual patterns o↵ers a great way of validat-
ing solutions to critical parts of a user interface and can complement paper
prototyping. We found that the quantitative measuring of these basic building
blocks led to valuable performance benchmarks that facilitate design decisions
and help justify design solutions to IT departments and management. Based
on this research, focusing on e↵ectiveness testing for the experimental valida-
tion of single interaction design patterns is recommended.

Beyond building a generative library of interaction design patterns, further
research is needed on setting up the library for optimal use. In particular, this

23

study did not try to gain insight into finding the appropriate communication
vehicle for such a pattern language. There are three main aspects a design
pattern tool can address (Deng et al., 2005):

(1) Pattern catalog: Provide a way to navigate a pattern language, find and
validate design solutions.

(2) Pattern management: Manipulate, create and delete design patterns.
(3) Pattern-based design: Provide support for an interface design tool by

integrating interaction design patterns as a resource and/or support sys-
tem.

Identifying an optimal pattern language tool would also imply exploring how
software designers would prefer to browse such a pattern catalog structure.
Would they look for patterns that address a problem that they encounter?
Would they want to drill down a hierarchical tree of design pattern catego-
rizations or prefer to type in keywords to find a solution? This also raises the
question, how design by using a complete interaction design pattern language
should be integrated into a standard requirements engineering process of an
organization with its own software development department.

In future studies, we hope to gain insight into these questions and related
issues concerning the practical application of this interaction design pattern
library in the studied application’s interface design process.

Acknowledgements

The authors would like to thank the Zürcher Kantonalbank (ZKB) in Zürich,
Switzerland for the support and funding of this research as part of the UCD
ZKBconnect project.

References

Alexander, C., 2001. A pattern language sampler.
URL http://www.patternlanguage.com/apl/aplsample/aplsample.

htm

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,
Angel, S., 1977. A pattern language: Towns, buildings, construction. Oxford
University Press, New York.

Alexander, C., et al., 1979. The timeless way of building. Oxford University
Press, New York.

Bargas-Avila, J. A., Oberholzer, G., Schmutz, P., de Vito, M., Opwis, K.,

24

2007. Usable error message presentation in the world wide web: Don’t show
errors right away. Interacting with Computers 19 (3), 330–341.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B.,
Gross, B., Lehder, D., Marmolin, H., Moore, B., Potts, C., Skousen, G.,
Thomas, J., 1998. Putting it all together: Towards a pattern language for
interaction design: A CHI 97 workshop. ACM SIGCHI Bulletin 30 (1), 17–
23.

Borchers, J. O., 2001. A pattern approach to interaction design. AI & Society
15, 359–376.

Chin, J. P., Diehl, V. A., Norman, K. L., 1988. Development of an instrument
measuring user satisfaction of the human-computer interface. Proceedings
of the ACM CHI 88 Human Factors in Computing Systems Conference,
213–218.

Cooper, A., 2004. The Inmates Are Running the Asylum. SAMS, Macmillan
Computer Publishing, Indianapolis.

Couper, M. P., Tourangeau, R., Conrad, F. G., Crawford, S. D., 2004. What
they see is what we get - response options for web surveys. Social Science
Computer Review 22 (1), 111–127.

Dearden, A., Finlay, J., 2006. Pattern Languages in HCI: A critical review.
Human-Computer Interaction 21 (1), 49–102.

Dearden, A., Finlay, J., Allgar, E., McManus, B., 2002. Using pattern lan-
guages in participatory design. Proceedings of the Participatory Design
Conference, 104–102.

Deng, J., Kemp, E., Todd, E., 2005. Managing UI pattern collections. Pro-
ceedings of the 6th ACM SIGCHI New Zealand chapter’s international con-
ference on Computer-human interaction: making CHI natural, 31–38.

Erickson, T., 2000. Lingua francas for design: Sacred places and pattern lan-
guages. Proceedings of the 3rd conference on Designing interactive systems:
processes, practices, methods, and techniques, 357–368.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: Ele-
ments of reusable object-oriented software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston.

Granlund, Å., Lafrenière, D., Carr, D. A., 2001. A pattern-supported approach
to the user interface design process. Proceedings of HCI International 2001
9th International Conference on Human-Computer Interaction.

Hackos, J., Redish, J., 1998. User analysis and task analysis for interface de-
sign. Wiley, New York.

Hornbæk, K., 2006. Current practice in measuring usability: Challenges to
usability studies and research. International Journal of Human-Computer
Studies 64, 79–102.

Hughes, M., 2 2006. A pattern language approach to usability knowledge man-
agement. Journal of Usability Studies 1 (2), 76–90.

ISO, 1999. 13407 human-centred design processes for interactive systems.
ISO/IEC 13407.

Kohls, C., Uttecht, J.-G., 2009. Lessons learnt in mining and writing design

25

patterns for educational interactive graphics. Computers in Human Behav-
ior 25 (5), 1040–1055.

Lin, J., Landay, J. A., 2008. Employing patterns and layers for early-stage
design and prototyping of cross-device user interfaces. In: Proceedings of
ACM CHI 2008 Conference on Human Factors in Computing Systems. pp.
1313–1322.

Mahemo↵, M. J., Johnston, L. J., 1998. Principles for a usability-oriented
pattern language. Proceedings 1998 Australasian Computer Human Inter-
actionConference. OzCHI’98, 132–139.

Mayhew, D. J., 1999. The usability engineering lifecycle. Morgan Kaufmann,
San Francisco.

Pauwels, S., Hübscher, C., Bargas-Avila, J. A., Opwis, K., 2009. Error preven-
tion in online forms: Use color instead of asterisks to mark required fields.
Interacting with Computers 21 (4), 257–262.

Tidwell, J., 2005. Designing interfaces: Patterns for e↵ective interaction design.
O’Reilly.

Van Diggelen, W., Overdijk, M., 2009. Grounded design: Design patterns as
the link between theory and practice. Computers in Human Behavior 25 (5),
1056–1066.

Van Duyne, D., Landay, J., Hong, J., 2007. The Design of Sites: Patterns,
Principles, and Processes for Crafting a Customer-centered Web Experience.
Addison-Wesley Professional.

Van Welie, M., 2008. Patterns in interaction design.
URL http://welie.com/patterns

VanWelie, M., Van der Veer, G., 2003. Pattern languages in interaction design:
Structure and organization. Proceedings of IFIP INTERACT03: Human-
Computer Interaction 3, 1–5.

Winters, N., Yishay, M., 2009. Dealing with abstraction: Case study gener-
alisation as a method for eliciting design patterns. Computers in Human
Behavior 25 (5), 1079–1088.

Yahoo! Inc., 2006. Yahoo design pattern library.
URL http://developer.yahoo.com/ypatterns

26

Error prevention in online forms: Use color

instead of asterisks to mark required fields

Stefan L. Pauwels ⇤, Christian Hübscher, Stefan Leuthold,
Javier A. Bargas-Avila, Klaus Opwis

Department of Psychology, University of Basel, Switzerland

Abstract

In this study, a simple but important user interface design choice is examined: When
marking required fields in online forms, should GUI designers stick with the often
used asterisk that many form design guidelines cite as the de-facto web standard, or
should they choose a colored background as a new design solution to visually signal
which input fields are required? An experiment with 24 participants was conducted
to test the hypotheses that e�ciency, e↵ectiveness and satisfaction ratings of colored
required fields exceed those of asterisk-marked required fields. Results indicate that
colored required field marking leads to fewer errors, faster form fill-in in and higher
user satisfaction.

Key words: Online Forms, Required Fields, Error Prevention, User Feedback,
Interaction Design

1 Introduction

Entering data into forms is the information worker’s equivalent to the factory
worker’s placing items on a conveyor belt. Both computer applications and
machines installed along the conveyor belt are fed input, data or items, based
on which they carry out certain transformations. In order to avoid process
errors (e.g. transformations applied to the wrong item, yielding undesirable or
at least unpredictable results), both computer applications as well as factory
machines need to stop processing and alert the worker if no input is present.
If input is present and properly formatted as required by the transformations
applied, both types of machines work with great speed and accuracy.

⇤ Corresponding author. Tel.: +41-61-2673568.
E-mail address: stefan.pauwels@unibas.ch (Stefan L. Pauwels).

Preprint submitted to Elsevier Science 19 December 2008

This is a pre-copyedited, author-produced version of an article accepted for publication in Interacting with Computers following peer review. The version of record Stefan L. Pauwels, Christian Hübscher, Stefan Leuthold, Javier A. Bargas-Avila, Klaus Opwis; Error prevention in online forms: Use color instead of asterisks to mark required-fields. Interact Comput 2009; 21 (4): 257-262. is available online at: https://doi.org/10.1016/j.intcom.2009.05.007

As Frederick Winslow Taylor, the founder of scientific management, argued,
companies should strive for the greatest possible productivity, because this
leads to the greatest possible prosperity for company owners and workers
alike (Taylor, 1911). Productivity can be defined as data or items processed per
time unit (US Federal Bureau of Justice Assistance, 2008). Thus, for computer
applications, in order to achieve greatest possible productivity, companies need
to prevent errors in data input and design input systems to maximize input
and transformation e�ciency. Knowing what input a process needs in order
to proceed and how exactly to enter data in the correct format are the two
main problems form design needs to address from the information worker’s
perspective. This study examines a part of the first question: How should
required input fields for data input on an online-form be marked?

Wroblewski (2008) mentions three di↵erent usage contexts of online forms: e-
commerce applications, applications for social interactions, and productivity-
based applications. He finds that form design should not be neglected by
companies with online user interfaces, stating increased completion rates of
between 10% and 40% from improvements indicated by his research and expe-
rience. Spool (in Wroblewski, 2008) mentions a real-life example of an online-
form redesign yielding increased revenues of $1.5 million in the first week, with
a total of over $300 million increased revenue in the first year.

1.1 Theoretical Background

Cooper et al. (2007) devote the first chapter of their textbook on user inter-
face design to goal-directed design, which rests on the awareness that human
behavior is goal-oriented from the age of three (Klossek et al., 2008). Behaving
in a goal-oriented way means that users choose their actions in order to get
as much value as possible from an IT system with the least amount of e↵ort
expended. As for forms, they will try to enter the least possible amount of
data in order to get the desired result, e.g. start or proceed with a process
or become authorized to do something. The only reasons to enter more in-
formation are either errors in input field validation, or the system’s failure to
interpret the user’s input in such a way as to arrive at a single possible path of
the process, therefore asking for more information. Cooper et al. (2007) argue
that it is best to provide the user with rich modeless feedback, signaling that
required data is missing without interrupting the user’s work.

Most web design guidelines are derived from a rather small set of heuristics
like “Minimize the user’s memory load” or “Provide an obvious way to undo
actions” (e.g. Nielsen and Landauer, 1993; Polson and Lewis, 1990). Nielsen
(1994) shows that a few heuristics are indeed enough to explain a remarkable
number of observed usability errors. Tidwell (2005) presents twelve behavioral

2

patterns gathered from user observations, and derives the heuristic of marking
required input fields from the pattern of “deferred choices”, stating that users
often want to or have to skip input fields and may want to come back to them
later. Considering the five usability metrics introduced by Nielsen (1993), the
marking of required fields can be assumed to contribute mainly to e�ciency
and error prevention, which, for online forms, translates into four steps:

(1) The user’s perceptive and cognitive acts of finding the required fields with
respect to the current task

(2) Entering properly formatted data into the input fields as quickly as pos-
sible

(3) Navigation between form input elements
(4) Validation of form input, where each blank required input field and each

formatting error decreases e�ciency substantially

The first step is addressed by all web design guidelines examined for this
study, which argue that required fields should be clearly marked in order to
make users e�cient and prevent errors (Fowler et al., 2004; Horton, 2005; Koy-
ani et al., 2004; Shneiderman and Plaisant, 2004; Tidwell, 2005; Wroblewski,
2008). One exception is found in the Apple Human Interface Guidelines (Ap-
ple Inc., 2008), which states that, to prevent visual clutter, an asterisk or
custom icon next to a required input field should be displayed only after the
user attempts to leave the current context (e.g. by clicking Continue or OK).

Whereas Horton (2005) is satisfied with marking required fields, other guide-
lines explicitly state design solutions: Wroblewski (2008) argues use of an
asterisk, because it has become the de-facto standard on the web, and, for
top-aligned input field labels, even the use of “* required” instead of the as-
terisk alone. He warns not to use the same indicator for required fields as for
optional fields throughout a web site. Fowler et al. (2004) also argue for the
asterisk, but mention the use of arrows or other symbols to indicate required
fields. They advise against using color (for either field background or label)
or boldface, because screenreaders are not able to interpret their meaning,
necessitating a lot of guesswork for the visually impaired or blind people us-
ing screen readers. Shneiderman and Plaisant (2004) state having taken their
guidelines from practitioners’ works, since there is “a paucity of empirical
work on form fillin”. They argue that optional fields should be marked with
the word “optional” or another distinct visual mark, and that optional fields
should be placed after required fields. In addition, they recommend using a
clear completion signal, so users understand at what point they can safely
submit the form because all necessary information has been entered.

In the only empirical study that has been identified to date, Tullis and Pons
(1997) compared several possibilities for marking required input fields. They
found only small di↵erences in completion time between chevrons placed before

3

the field label and colored fields, but users preferred colored fields to chevrons
in ratings on scales of visual appearance and overall e↵ectiveness.

As for the second and third steps, entering data in the right format and navi-
gating between input elements: Because expert users are fastest if they don’t
have to home between mouse and keyboard, speeding up form input entry is
a main priority of form design. Shneiderman and Plaisant (2004) advise en-
abling the Tab key to move the cursor between fields. Many other guidelines
for form entry and form navigation can be found in the works quoted above,
like considering the layout of form input elements or using e↵ective default
values. For this study, it is su�cient to state that if users are able to enter
data as quickly as possible, they are faster the fewer input fields that are re-
quired and the fewer optional ones they have to attentively process in order
to rule them out and focus on the required ones. The most e�cient form is
the one that has the fewest possible required fields grouped together, clearly
indicating that users can submit the form once they have completed the fill-in
of the group. This line of argument is found in several works, e.g.Fowler et al.
(2004) and Wroblewski (2008).

Concerning the fourth step, validation of form input, Bargas-Avila et al. (2007)
researched the presentation of error messages but not the marking of required
fields. Their Modal Theory of Form Completion suggests that users enter
data into a form while in completion mode before being mentally ready to ad-
dress errors in revision mode. It is not known whether required field markings
support users during completion mode, revision mode or both. Since Bargas-
Avila et al. (2007) show that users tend to just overlook messages relevant
for evaluation during completion mode and their form fill-in performance is
not negatively influenced, it can be assumed that good required field design
cannot do any harm even if unnecessarily present in completion mode.

Practitioners in form design mention the trade-o↵ between e�ciency and error-
prevention (Baxley, 2002): Forms can either be optimized for expert users, who
know data type and format of every single entry field, or they can be optimized
for novice or infrequent users in order to prevent data entry errors. Thus, form
design should take into consideration variance in user behavior (frequent vs.
infrequent users; expert vs. novice users) in order to maximize e�ciency, and
de-facto standards, using what users already know and understand to prevent
errors in data entry.

The di↵erent theoretical and practical considerations mentioned above can be
summarized into two overarching guidelines:

(1) Make required fields clearly visible on first sight (Fowler et al., 2004; Hor-
ton, 2005; Koyani et al., 2004; Shneiderman and Plaisant, 2004; Tidwell,
2005; Wroblewski, 2008) in order to facilitate fill-in for novice users and

4

speed up perception by expert users. An asterisk is probably not the pre-
ferred visual mark because it takes more time to perceive (Ware, 2008),
although it can be read by a screenreader (Fowler et al., 2004).

(2) Add additional visual elements if the user wants to leave the context
and a required field is still empty, in order to draw his attention to the
correct location on the screen (Apple Inc., 2008). This supports the switch
from completion mode to revision mode (Bargas-Avila et al., 2007) and
is modeless (Cooper et al., 2007).

This study is concerned with the overarching guideline 1 mentioned above,
namely the marking of required fields. The aim of the study is to explore an
alternative to the visually not very salient asterisk next to field labels: Marking
required fields by coloring their background, a measure that should ease form
fill-in for users according to recommendations to clearly mark required fields.
In particular, professional users of a financial services firm were asked to fill
out a rather complex online form in a real-life task. The number of errors they
committed was measured as was the speed with which they could complete
the form when the required fields of the online forms were either marked by
an asterisk, as is the convention in web design (Wroblewski, 2008), or colored.
In this study, the following questions are explored: Does marking required
fields with background color instead of using an asterisk besides the text label
lead to fewers errors in form fillin? Are participants able to complete form
fill-in faster if required fields are marked with background color instead of
asterisks? And finally, does marking required fields with colored backgrounds
a↵ect user satisfaction positively compared to asterisk markings?

2 Method

2.1 Design

For this study, participants filled out two di↵erent versions of a form that is
part of a browser-based CRM application. The study used a related samples
design. The independent variable was the type of marking applied to required
fields. It had two levels: Marking by labels with asterisks and marking by col-
ored field backgrounds. Figures 1 and 2 show parts of the forms with di↵erent
marking types for required fields.

Dependent variables were the number of errors a participant made during the
task, task completion time and a post-test questionnaire to assess a partici-
pant’s satisfaction with the user interface. Once a participant tried to submit
a form, each empty required field was counted as an error. A message was pre-
sented to the user, containing information about the missing required fields.

5

Fig. 1. Part of the stock exchange order form with required fields marked by colored
backgrounds.

The form was not submitted until all required fields were complete. The short
form of QUIS (Chin et al., 1988), a validated and widely used questionnaire
(Shneiderman and Plaisant, 2004) for user interface satisfaction, was applied
to measure user satisfaction.

2.2 Participants

The study was conducted with 24 participants. Their age ranged from 21 to 48
with a mean of 32 (SD = 7.2). Thirteen of the participants were women. All
participants were employees of a financial institute. They were all users of the
CRM application from which the manipulated forms were taken. The CRM
application implemented both versions of required field markings in di↵erent
screens in an inconsistent manner, therefore participants were used to both
variants.

6

Fig. 2. Part of the stock exchange order form with required fields marked by asterisks
besides labels.

2.3 Apparatus and Materials

The two versions of the web based form were recreated as part of a mock-
up of the CRM application using HTML and Adobe Flash technology. Flash
was used so the look and feel of the proprietary CRM application could be
mimicked. The mock-up was presented on a laptop computer and sessions were
recorded with the usability test recording software TechSmith Morae (version
2.0.1). Errors were tracked using markers in Morae. Task completion time was
logged automatically by the software. Participants received a paper interview
guide that included a short demographic questionnaire, the instructions to
the two tasks they had to complete, and the short version of QUIS after every
task. Finally, two additional questions where added, to explore whether the
experimental task was realistic and how frequently the participants encounter
it during their work.

7

2.4 Procedure

Participants completed the experiment individually. They were presented with
the start page of the application mock-up and were told to complete the
questions and tasks in the interview guide. The two tasks in the interview
guide had the following form:

“Customer <C> called and asked you to buy <N> registered shares of <Stock
X> (Symbol: <Y>) at market. Use portfolio number <Z>.”

After completing the task, all participants answered the satisfaction ques-
tionnaire and the task suitability questions. Every participant completed two
tasks, one for every required field marking type. The order of the two required
field marking types was alternated to counter sequence e↵ects: Half the partic-
ipants’ forms had required fields marked by asterisks during the first task and
colored backgrounds during the second task, the other half of the participants
had forms with required fields marked by colored backgrounds during the first
task and asterisks during the second task.

3 Results

The measured dependent variables of the two required field marking conditions
are shown in table 1.
Table 1
Statistical parameters for di↵erent required field markings.

Asterisk Colored background

Measures n M (SD) M (SD)

Number of errors 24 2.540 (2.621) .830 (1.239)

Task completion time (s) 24 152.852 (96.008) 108.146 (71.912)

Satisfaction (QUIS) 24 6.560 (1.454) 7.342 (1.775)

To test the hypotheses that colored backgrounds as required field markings
lead to fewer errors, faster form fill-in and greater satisfaction compared to
asterisk markings, t-tests for related samples and an alpha level of .05 were
used. There were statistically significant di↵erences: Marking required fields
by colored background caused fewer errors, t(23) = 2.777, p = .006, shorter
task completion time, t(23) = 1.836, p = .04, and higher satisfaction, t(23) =
1.754, p = .047 (one-tailed tests).

To control the applied sequence e↵ect counter measures, the data were anal-
ysed using two-way analyses of variance (ANOVA) with required field marking

8

Fig. 3. Average numbers of errors, task completion times and satisfaction ratings
for di↵erent required field markings split by task position.

(asterisk, colored background) and experimental sequence (asterisk - colored
background, colored background - asterisk) as the two factors and an alpha
level of .05. Dependent variables were, again, number of errors, tasktime and

9

satisfaction. Figure 3 shows that in the second trial, participants committed
fewer errors, F (1, 22) = 6.102, p = .022, were faster, F (1, 22) = 19.844, p <
.001, and were more satisfied, F (1, 22) = 4.510, p = .045, no matter what task
they did second. Alternating the order of required field markings in the tasks
successfully countered these sequence e↵ects as all three analyses showed no
significant main e↵ect for experimental sequence for number of errors, F (1,
22) = 2.538, p = .125, tasktime, F (1, 22) = .023, p = .881, and satisfaction
F (1, 22) = 2.631, p = .119.

4 Discussion

Participants completed form fill-in commiting significantly fewer errors when
required fields were indicated by colored backgrounds rather than by the usual
asterisk. Furthermore, the colored background let them complete the forms
significantly faster and more satisfied.

Since we measured task completion time as the duration from initial display
of the form to its succesfull completion, we have to assume that task times
were influenced directly by whether a form could be submitted free of errors
on the first try or whether the participants had to deal with it again after an
unsuccessful attempt. The influence of task completion times was therefore to
a large degree moderated by the number of errors committed. This had the
advantage of getting a realistic picture of the actual time loss during form fill-
in from the users perspective: Complete successfull form fill-in takes 41% more
time if required fields are not properly highlighted. It was also shown that,
although a general performance increase from first to second form fill-in exists,
this benefit is in addition to any requiredness-marker related di↵erences. In
other words, colored backgrounds are better markers for requiredness than
asterisks no matter how well a form is known.

An important question is why required fields with colored backgrounds help
participants to commit fewer errors? Although the asterisk is a de-facto stan-
dard to indicate required fields, it seems the additional saliency provided by
the colored background, which is of course much larger than the asterisk, has
a much better chance of preventing incomplete form submission. The fact that
participants were significantly more satisfied with the forms with colored re-
quired fields suggests that the raised saliency is a welcome help rather than
an annoying or unnecessary distraction.

The practical implications of this study are therefore that form designers can
ease form input for users by marking required fields with a colored background.
One disadvantage of colored required fields was mentioned earlier: The inabil-
ity of screenreaders to recognize the color-markings. Consequently we advise

10

designers to use colored backgrounds as an additional marker of requiredness
rather than an exclusive one.

However, this study does however not answer the question, to what degree
this finding is applicable to other forms. The form used in this experiment was
quite complex and targeted towards a professional completing a critical task.
Many forms on the Internet (e.g. forms for account creation) are smaller and
have fewer or less dire consequences in the event of errors than an erroneous
stock exchange order. However, many online forms are appearing in various
order and checkout process pages where the support provided by improved
required field marking could prove helpful. It should be mentioned, that it is
not possible to draw any conlusions on what color should be used to highlight
the required fields’ backgrounds. Yellow backgrounds provided the results re-
ported here, but di↵erent factors could influence the best color choice. Usage
of colors throughout a page’s or application’s design could influence saliency of
yellow required fields as well as general or site-specific information or warnings
implied by the use of certain colors.

Acknowledgements

The authors would like to thank the Zürcher Kantonalbank (ZKB) in Zürich,
Switzerland for the support and funding of this research as part of the UCD
ZKBconnect project.

References

Apple Inc., 2008. Apple human interface guidelines: User experience.
URL http://developer.apple.com/documentation/UserExperience/Conceptual/AppleHIGuidelines

Bargas-Avila, J. A., Oberholzer, G., Schmutz, P., de Vito, M., Opwis, K.,
2007. Usable error message presentation in the world wide web: Don’t show
errors right away. Interacting with Computers 19 (3), 330–341.

Baxley, B., 2002. Making the Web Work: Designing E↵ective Web Applica-
tions. Sams Publishing.

Chin, J. P., Diehl, V. A., Norman, K. L., 1988. Development of an instru-
ment measuring user satisfaction of the human-computer interface. In: CHI
’88: Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, New York, NY, USA, pp. 213–218.

Cooper, A., Reimann, R., Cronin, D., 2007. About Face 3: The Essentials of
Interaction Design. John Wiley & Sons.

Fowler, S., Stanwick, V., NetLibrary, I., 2004. Web Application Design Hand-
book: Best Practices for Web-based Software. Morgan Kaufmann.

11

Horton, S., 2005. Access by Design: A Guide to Universal Usability for Web
Designers. New Riders Publishing Thousand Oaks, CA, USA.

Klossek, U. M. H., Russell, J., Dickinson, A., 2008. The control of instrumental
action following outcome devaluation in young children aged between 1 and
4 years. Journal of Experimental Psychology: General 137 (1), 39–51.

Koyani, S. J., Bailey, R. W., Nall, J. R., Allison, S., Mulligan, C., Bailey, K.,
Tolson, M., 2004. Research-Based Web Design and Usability Guidelines.
Washington, DC: Health and Human Services Department.

Nielsen, J., 1993. Usability Engineering. Academic Press.
Nielsen, J., 1994. Enhancing the explanatory power of usability heuristics.

In: Proceedings of the SIGCHI conference on Human factors in computing
systems. pp. 152–158.

Nielsen, J., Landauer, T., 1993. A mathematical model of the finding of us-
ability problems. Proceedings of the SIGCHI conference on Human factors
in computing systems, 206–213.

Polson, P. G., Lewis, C. H., 1990. Theory-based design for easily learned in-
terfaces. Human-Computer Interaction 5, 191–220.

Shneiderman, B., Plaisant, C., 2004. Designing the User Interface: Strategies
for e↵ective Human-Computer Interaction, 4th Edition. Addison-Wesley.

Taylor, F. W., 1911. The Principles of Scientific Management. Harper & Broth-
ers Publishing.

Tidwell, J., 2005. Designing interfaces: patterns for e↵ective interaction design.
O’Reilly.

Tullis, T. S., Pons, A., 1997. Designating required vs. optional input fields.
In: CHI ’97: CHI ’97 extended abstracts on Human factors in computing
systems. ACM, New York, NY, USA, pp. 259–260.

US Federal Bureau of Justice Assistance, 2008.
URL http://www.ojp.usdoj.gov/BJA/evaluation/glossary/

Ware, C., 2008. Visual Thinking for Design. Morgan Kaufman.
Wroblewski, L., 2008. Web Form Design: Filling in the Blanks. Rosenfield

Media.

12

1

The organization of interaction design pattern languages
alongside the design process

Christian Hübscher, Stefan L. Pauwels, Sandra P. Roth,
Javier A. Bargas-Avila, Klaus Opwis

University of Basel, Department of Psychology,

Center for Cognitive Psychology and Methodology, 4055 Basel, Switzerland

Abstract

This work explores the possibility of taking the structural characteristics of approaches to
interaction design as a basis for the organization of interaction design patterns. The Universal
Model of the User Interface (Baxley, 2003) is seen as well suited to this; however, in order to
cover the full range of interaction design patterns the model had to be extended slightly. Four
existing collections of interaction design patterns have been selected for an analysis in which
the patterns have been mapped onto the extended model. The conclusion from this analysis is
that the use of the model supports the process of building a pattern language, because it is
predictive and helps to complete the language. If several pattern writers were to adopt the
model, a new level of synergy could be attained among these pattern efforts. A concluding
vision would be that patterns could be transferred freely between pattern collections to make
them as complete as possible.

Keywords: design patterns; pattern languages; interaction design

1 Introduction

In the project that was the trigger for this research (see Pauwels et al., 2009, 2010) one of the
challenges was to build a library of interaction design patterns for an internal system. This
library had to be designed to cover the whole design space of this application with patterns.
Then it had to be positioned as an authoritative source of information about interaction design

This is a pre-copyedited, author-produced version of an article accepted for publication in Interacting with Computers following peer review. The version of record Christian Hübscher, Stefan L. Pauwels, Sandra P. Roth, Javier A. Bargas-Avila, Klaus Opwis; The organization of interaction design pattern languages alongside the design process. Interact Comput 2011; 23 (3): 189-201. is available online at: https://doi.org/10.1016/j.intcom.2011.02.009

2

for the business analysts and developers in the company. This is the background of this work.
The article now explores whether it is possible to take knowledge from approaches to
interaction design as a basis for the organization of interaction design patterns. Publicly
available pattern collections (Tidwell, 2006; van Duyne et al., 2007; Yahoo! Inc., 2009; van
Welie, 2009) are used to illustrate the analysis.

1.1 The problem of pattern categorization

In recent years, many interaction design pattern collections have been published and more are
appearing each year (for an overview, see: http://www.hcipatterns.org). With collections
growing bigger, the question of pattern categorization becomes more important. According to
Dearden and Finlay (2006), the organization of pattern languages is an important area of
research in human-computer interaction (HCI).

There is currently a certain “duplication of effort” (Dearden and Finlay, 2006, p. 88) in the
field of interaction design patterns and this indicates that in building pattern languages, the
wheel has already been (re-)invented several times. Ironically, this is exactly what the concept
of patterns intends to prevent designers from doing. Because pattern collections are all
organized differently, it is very hard to compare them and to transfer individual patterns from
one collection to the other. With the pattern language markup language (PLML) (Fincher,
2003), important steps have been made toward a standardization of the structure of individual
patterns, but no such organized effort has yet been made to find a unified organization of
pattern languages. To have such a standard in the organization of languages may bring
synergies to the HCI field as a whole and make it easier for individual projects to build their
own pattern language, based on the work of others.

1.2 Interaction design patterns and pattern languages

Dearden and Finlay (2006) define a pattern as “a structured description of an invariant
solution to a recurrent problem within a context” and a pattern language as “a collection of
such patterns organized in a meaningful way”. The concept of design patterns was originally
developed by Christopher Alexander (1964) in the field of architecture. Software engineers
Gamma et al. (1995) then adopted the concept to describe software design patterns (see
Gabriel (1996) for more about these efforts). Borchers (2001) later applied patterns to
problems in the field of HCI. One emerging area of an application for design patterns, which
is closely related to HCI, is e-learning (see Dimitriadis et al., 2009).

3

This study focuses on interaction design patterns: “A problem is stated in the domain of
human interaction issues, and the solution is stated in terms of suggested perceivable
interaction behavior” (Dearden and Finlay, 2006, p. 52). The description of a pattern is
structured with the topics problem, context, solution, and forces included in many cases;
however, the structure and naming of these sections vary among pattern collections (see
Figure 1). Most include further sections such as examples.

Figure 1. Example of an interaction design pattern description (van Welie, 2009)

Alexander’s (1964, 1979) idea behind design patterns is (see Kohls and Uttecht, 2009) that
they should support design as a problem-solving task to achieve fitness between form and
context. A design problem occurs because competing “forces” have to be satisfied. Thus

4

multiple design patterns can solve the same problem in different contexts (e.g. checkboxes
and a list builder both solve the problem of selecting multiple items). In this case, they have
identical problem attributes but the context attributes make clear when to choose one pattern
over the other. Alexander uses the term forces to describe these context-dependent constraints
that have an effect on how to solve the problem. The proper configuration of a group of
patterns is in itself a pattern on a more abstract level. Alexander stresses the point that one
needs a pattern language to achieve a coherent design and that “a bunch of good ideas”
(Alexander, 1999, p. 75) are not enough to do the job. Pattern languages should be capable of
producing coherent wholes; i.e. they should be generative.

Dearden and Finlay (2006) conclude that there are two evident forms of organization in
Alexander et al. (1977): patterns come in sets according to levels of physical scale and build
up a network, where patterns are referenced to other patterns. The linking of individual
interaction design patterns is usually made in a “related patterns” section, where alternative
solutions to similar contexts or patterns are placed. Van Welie and van der Veer (2003)
distinguish between three fundamental relations:
• Aggregation: A design pattern can include others that complete it.
• Specialization: A design pattern can be derived and specialized from another design

pattern.
• Association: Multiple design patterns can occur in the same context or solve similar

problems.

An interesting question concerns the completeness of a pattern language. Alexander (1979)
argues that a pattern language can be morphologically and functionally complete: It is
morphologically complete when it can account for a complete design, without any missing
parts, and functionally complete when it is self-consistent, i.e. it does not create forces that it
cannot resolve. For interaction design patterns, van Welie and van der Veer (2003) say that a
pattern language is complete when every good design that we find can be described using it.

1.3 Recent work on the organization of interaction design patterns

In architecture, Alexander (1979) defined physical scale as being the main organizational
principle for patterns. The organization of interaction design patterns, on the other hand, is not
so straightforward; therefore, we must put more effort into coming up with good organization-
nal principles for patterns in the field of HCI. Different approaches on how to work out an
organization of interaction design patterns have been suggested (for an overview, see Dearden
and Finlay, 2006). Several authors argue that the best way to organize a pattern language is
alongside a design process. Fincher and Windsor (2000) discuss different organizing

5

principles. Their final solution brings their taxonomies in an order that could be associated
with the phases of a design process. They distinguish: analysis space (context and values),
problem space (structure: tasks; structure: information) and solution space (structure: scale).
Van Welie and van der Veer (2003) argue that the organization should be based on a top-
down design process and they distinguish the following levels: business goals, posture level,
experience level, task level, and action level. These authors’ organization is done according to
a design process but they do not explicitly relate it to concrete user-centered or interaction
design approaches. They only mention Cooper et al. (2007) as a basis for their choice of the
category “posture type patterns”. Borchers (2000) maps different types of patterns onto
Nielsen’s (1993) usability engineering lifecycle but he does this more to argue that we can use
patterns across a whole project lifecycle than to discuss the organization of patterns. Dearden
and Finlay (2006) give an overview of the different requirements for an organizing principle
for pattern languages. According to Fincher and Windsor (2000), an organizing principle
should taxonomise, proximate, be evaluative and generative; i.e. it should enable users to find
(related) patterns, it should allow users to consider the problem from different viewpoints and
to build new solutions. Fincher (2002) argues that it would also be desirable that an organiza-
tion is predictive; i.e. it should actively support the process of identifying new patterns. Using
the periodic table of the elements in chemistry as an example; she argues that such an
organization would help to discover missing patterns. This is a very interesting idea, which
suggests giving preference to a top-down categorization based on a certain model over a
bottom-up approach.

2 Structural characteristics of interaction design approaches

As mentioned above, several authors suggest that the organization of interaction design
patterns should be based on a design process (e.g., van Welie and van der Veer, 2003; Fincher
and Windsor, 2000). There is a vast literature on the topic of how to proceed in designing user
interfaces, and many design processes have been published so far. This study seeks to extract
the relevant aspects from these published works and use them as a basis for structuring inter-
action design pattern languages. The focus is on the design aspect of such processes – even
though patterns can also be used to support other phases of the process (see Borchers, 2000,
or Granlund et al., 2001).

6

Different sources can be considered as interaction design processes; i.e. usability engineering
lifecycles or user-centered design processes:
• Nielsen’s Usability Engineering Lifecycle (Nielsen, 1993)
• Delta Method (Rantzer, 1996)
• Contextual Design (Beyer and Holtzblatt, 1998)
• OVID (Robert, 1998)
• Mayhew’s Usability Engineering Lifecycle (Mayhew, 1999)
• Usage Centered Design (Constantine and Lockwood, 1999)
• The Elements of User Experience (Garrett, 2002)
• Universal Model of a User Interface (Baxley, 2002, 2003)
• Goal Directed Design (Cooper et al., 2007)

To define how to organize interaction design patterns alongside a design process, we extract
the structural characteristics of these approaches in order to perform a mapping of different
kinds of patterns onto them. Most approaches to interaction design foster a layered approach
in which different levels of the user interface are designed one after another. Some approa-
ches distinguish two phases; others have more levels of design.

Many design approaches make the distinction between conceptual and concrete design, or
conceptual and physical design as Sharp et al. (2007) call it. Rantzer (1996), Beyer and
Holtzblatt (1998), Robert (1998), Constantine and Lockwood (1999), and Cooper et al. (2007)
make such a distinction in the processes that they describe. Mayhew (1999) distinguishes a
1st, 2nd, and 3rd level of design in her process, but in her levels 2 and 3 concrete design is
carried out. In level 2, the central and recurring interactions are designed and in level 3 the
rest of the user interface is specified. Here, her distinction is more a matter of scope than a
matter of different aspects. One can argue that Mayhew’s design process is also based on the
distinction of conceptual and concrete design.

In conceptual design, the structural base of the user interfaces – the “user interface architect-
ture” – is defined. The name for this design task varies: conceptual design (Rantzer, 1996),
user environment design (Beyer and Holtzblatt, 1998), conceptual model design (Mayhew,
1999), content model (Constantine and Lockwood, 1999), and interaction framework (Cooper
et al., 2007). In this phase, the designer works out relationships between user objects, organi-
zational schemes, and workflows. The deliverables of these tasks are, for the most part,
diagrams, storyboards, and sketches of user interfaces. Some of these deliverables do not
really look like user interfaces.

7

In concrete design, the user interface – in the form of concrete user interface elements – is
defined. This task is called prototyping (Beyer and Holtzblatt, 1998; Rantzer, 1996), detailed
design (Cooper et al., 2007; Mayhew, 1999), or the implementation model (Constantine and
Lockwood, 1999). The deliverables of concrete design are interactive prototypes or render-
ings of screens, which often look and behave very similarly to the real system.

Besides the distinguishing of two phases of design, there are several authors who describe an
approach with three or more levels. These approaches, however, are not contradictory to the
notion of conceptual and concrete design; they are more an extension of this thinking. The
classical work of IBM (1992) explains the levels of designing a user interface with the meta-
phor of an iceberg, which has the three levels: structure, behavior, and presentation. The
approaches by Garrett (2002) and Baxley (2003) build on these levels. Garrett (2002) has a
model with the five layers: strategy, scope, structure, skeleton, and surface. The layers
strategy and scope, however, are more to “set the stage” for doing the interaction design,
although structure, skeleton, and surface are similar to the layers of the aforementioned “ice-
berg model”. The tiers of structure, behavior, and presentation bring in a more sophisticated
discrimination between different types of design tasks and hence patterns. Following this
thinking, using website navigation as an example (see e.g., Leuthold et al., 2011), one can
distinguish patterns that describe the structure of navigation (e.g., hierarchical vs. flat), the
behavior of navigation (e.g., dynamic vs. static), and the presentation of navigation (e.g., left
vs. horizontal placement in the layout). All these different aspects of navigation are influ-
enced by their own forces and therefore it makes sense to distinguish between these aspects
by using different interaction design patterns.

An elaborate model in this sense is Baxley’s (2003) Universal Model of the User Interface. In
his model, the same three main tiers exist as in the “iceberg model”: structure, behavior, and
presentation. However, these three tiers are further divided into three sub-layers each:

• Structure
o Conceptual model
o Task flow (formerly called structural model by Baxley, 2002)
o Organizational model

• Behavior
o Viewing and navigation
o Editing and manipulation
o User assistance

• Presentation
o Layout
o Style
o Text

8

The models of Baxley (2003) and Garrett (2002) are similar, because they both describe a
layered top-down design approach. In general, they can be seen as similarly well suited to
organizing patterns into categories, but Baxley’s (2003) model is much more fine-grained. It
actually distinguishes nine layers that are relevant for interaction design patterns. For this
reason, it is taken as a basis for this analysis. However, Garrett’s (2002) model has a wider
scope and therefore it will be taken as an extension of Baxley’s model to cover the whole
range of interaction design patterns (see section 3.2).

3 A model for the organization of interaction design patterns

It is a goal of this research to find a model that is based on an interaction design process and
that can be used to organize interaction design patterns. As indicated above, Baxley’s model
has the required properties, so its detailed structure is presented here as described by Baxley
(2002, 2003). However, the model does not cover the full range of interaction design patterns
as defined by Dearden and Finlay (2006). Therefore the authors have made an extension to
the model with the introduction of the category “requirements patterns”. Following this, the
relationship between the model and technical platforms is discussed.

3.1 The original structure of Baxley’s model

Baxley’s “Universal Model of the User Interface” (2003) has similarities with the other
models described above but it divides design tasks in a more sophisticated way. The model
has nine layers divided between three tiers (see Figure 2). Baxley divides these layers into
further topics and sub-topics (Baxley, 2002), see Table 1.

The nine layers of Baxley’s model distinguish different aspects of a user interface; for
example, whether we are dealing with the structure of the user interface or with its behavior
and whether the behavior is for the manipulation of data by users (i.e. editing and manipu-
lation) or for helping them by doing so itself (i.e. user assistance). These nine layers can be
seen as building on each other.

9

Figure 2. Illustration of Baxley’s “Universal Model of the User Interface” (Baxley, 2003)

Baxley (2002) breaks down most of the layers in a topical manner (see the column “topics” in
Table 1). These sub-divisions cannot be seen as clearly building on each other. Most of them
are topical in nature and are often just different aspects of a layer. This finer structure is opti-
mized for the design of web applications (which is the topic of Baxley’s book; Baxley, 2002)
and it has been created to provide an optimal structure for the “patterns” that Baxley (2002)
discusses. Baxley mentions “interaction design patterns” for all the different levels of the user
interface of web applications; however, he does not call them “patterns” but rather “conven-
tions”: “Unfortunately, the use of the word ‘pattern’ in this context, although definitely
accurate, is a bit arcane.” (Baxley, 2002, p. 14). Baxley seems to have developed the model to
organize interaction design patterns – as well as for other purposes – but uses a different ter-
minology.

10

Table 1. The layers broken down into topics (Baxley, 2002)

Tier Layer Topics Sub-topics

Structure

Conceptual Model “Examples” Store; Catalog

Structural Model
(later called task flow by
Baxley, 2003)

Pages Views; Forms; View/Form Construct

Workflows Hubs; Wizards; Guides (hub/wizard
hybrid)

Organizational Model
Classification schemes

Objective:
Alphabetic; Numeric; Chronologic;
Geographic

Subjective:
Topical; Functional; Audience-based;
Metaphorical

Models of association Indexes; Hierarchies; Webs

Behavior

Viewing and Navigation

Navigation High-level navigation; Low-level
navigation; Utility navigation

Selecting objects and issuing
commands Shared controls; Dedicated controls

Viewing lists of data Changing column sets; Paging; Sorting;
Filtering; Searching

Editing and Manipulation
Input controls Check boxes; Radio buttons; List boxes;

Menus; Text boxes; Buttons
Common interaction
problems and solutions

Selecting a single item; Selecting multiple
items; Selecting a date

User Assistance
Help Conceptual help; Procedural help;

Definitional help; Instructional help

Alerts Error alerts; Status alerts; Confirmation
alerts

Presentation

Layout

Simplicity Clarity; Reduction; Leverage

Consistency Web conventions; Templates and grids;
Standards and guidelines

Order Grouping; Hierarchy; Alignment

Style

Evaluating style
Individuality; Brand consistency;
Appropriateness for the audience and
function

Preventing style from
messing other things up

Working within the medium; Legibility
(contrast, line length, typeface, type size,
font styling, density/leading, balance the
variables affecting legibility); Providing
visual cues to behavior (visual cues for
text-based hyperlinks, visual cues for
clickable images)

Text

Eliminate superfluous text Eliminate superfluous text

Text: what’s it good for Navigation; Titles; Labels; Instruction and
help; Marketing messages

Writing for the web
Be courteous, not patronizing; Leverage
the context; Don’t repeat yourself; Avoid
multisyllabic words that obfuscate

3.2 An extension of Baxley’s model

The definition of interaction design patterns is meant to distinguish these patterns from user
interface software design patterns (Dearden and Finlay, 2006) in the area of patterns concer-

11

ning the user interface (see Figure 3). The former are concerned with the perceivable aspects
of the user interface and the latter with the inner working of the system related to the user
interface.

Figure 3. Different patterns concerning the user interface

The perceivable aspects of the user interface, which can be documented as interaction design
patterns, can be of two kinds: (a) user requirements i.e. a function to enable a user to achieve
a certain goal and (b) the conceptual implementation of these requirements in the form of a
user interface. Baxley’s Model is very detailed but does not cover the whole scope of
interaction design patterns. The conceptual implementation (how it is done) is the scope of
Baxley’s model, which further breaks down the different solutions into categories. The user
requirements (what is implemented in the user interface) can be seen as beyond the scope to
Baxley’s model and suggest an extension of the model (see Figure 4). Baxley describes a
requirements phase in his book but does this within his larger scope design process (Baxley,
2002, p. 44):

1) Understanding (user needs, competition, business opportunity, technical constraints)
2) Vision (core design values, opportunity statement, persona profiles & goals)
3) Requirements (functional, technical, business, usability)
4) Design (structure, behavior, presentation)

12

Figure 4. The different interaction design patterns

This extended model bears a similarity to Garrett’s (2002) model, which also contains a layer
dealing with requirements (see Figure 5). This scope layer deals with the question of whether
a feature or function is part of a system’s functional requirements or not, whereas the strategy
layer does not deal with solutions to users’ problems but rather with the definition of the
needs of users or the business objectives and therefore is beyond the scope of interaction
design patterns.

Figure 5. Comparison of the models of Garrett (2002) and Baxley (2003)

Garrett’s (2002) structure, skeleton, surface and Baxley’s (2003) structure, behavior,
presentation both cover the conceptual implementation of the user interface but they have

13

certain differences in the mapping of patterns onto the model; for example, Baxley (2003)
puts “layout” in the presentation tier whereas Garrett (2002) sees it as part of his skeleton
layer (which otherwise would correspond more to behavior). For the sake of this analysis,
however, it is not relevant to analyze these differences to a further extent.

These “requirements patterns” and “patterns for the conceptual implementation of a user
interface” are described below. The definitions are meant to distinguish between these two
types of patterns. It is important so separate them accurately otherwise this extended model
will not work as an organizational model.

3.2.1 Requirements Patterns

Patterns describing abstract features that allow the user to achieve a certain goal are what we
call “requirements patterns”. In the example of a fictitious “publish to Twitter” function, the
pattern would focus on the goal of the user (let friends know of discoveries made while
surfing). This pattern would focus on why a user needs a “publish to Twitter” function as
opposed, say, to a “subscribe to RSS feed” function. These patterns focus on the forces that
distinguish the different goals a user could have, but they do not describe the way that the user
achieves these goals in the form of an interaction. This would be described independently of
the conceptual and technical implementation. The forces are described on the level of a goal
that a user wants to achieve as opposed to another goal. The patterns aim at the optimization
of utility (Grudin, 1992). If such patterns are described independently of their implementation,
the patterns are valid under different circumstances and on different technical platforms. If, on
the other hand, the feature is described as a pattern “Twitter icon”, the user requirement is
mixed up with the conceptual implementation and the solution is no longer the best if
circumstances change. In a situation in which multiple such functions (for Twitter, Facebook,
etc.) have to be provided for a certain object, the function would no longer be implemented as
an icon but would maybe rather be part of a menu. Thus described in an implementation-
agnostic way, the requirement pattern “publish to Twitter” would be “stable” under various
circumstances.

The patterns discussed above are functional requirements but there are also patterns that
describe non-functional requirements. The pattern “site accessibility” (van Duyne et al., 2007)
is such an example. It is a very high-level pattern, which might also contain several more
detailed patterns (e.g. “hidden jump to navigation link” for users with screen readers, good
contrast, the use of certain HTML tags). So the category of “requirements patterns” is meant
to include both functional and non-functional requirements that have an impact on perceived
aspects of the user interface.

14

3.2.2 Patterns for the conceptual implementation of a user interface

The patterns for the conceptual implementation of a user interface describe ways to realize
user requirements on a conceptual level. These patterns are the different parts used for the
implementation of a user requirement. Which of these parts does this best depends on the
specific circumstances. These patterns focus on the forces, which are influenced by different
configurations of such patterns. If a function is the only function to be used in a list of objects,
this function can be conceptually implemented as an icon. If this function is one among many
others it might be implemented as a menu. These patterns do not focus on “specific end
goals” of users but more on “generic sub-goals”. The patterns aim at the optimization of one
aspect or more of usability – the effectiveness, efficiency, or satisfaction of the user
(Hornbaek, 2006) – but not on the utility (Grudin, 1992). With the help of Baxley’s model, the
different solutions for the conceptual implementation can be broken down into nine
categories.

3.3 The scope of platform applicability of Baxley’s model

Because Baxley (2002) introduced his model to explain “how to make the web work”, one
might ask whether this model is also valid for other platforms. Baxley later started to call it
the “Universal Model of the User Interface” and discussed ATMs, DVD menu systems,
Amazon.com and Microsoft Word to support this point (Baxley, 2003). The fact that IBM
(1992) used the same layers of design in a pre-web area shows that at least the main tiers
structure, behavior, and presentation are relevant beyond the web. But one might ask, where
do the patterns for mobile or rich web interaction design belong? To explain this, it is better to
look at the relationship between the layers of Baxley’s model and the technical platform.

In the logic of the model, different platforms can be seen as orthogonal to the tiers structure,
behavior, and presentation (see Figure 6). Tidwell’s (2006) patterns are more or less plat-
form-agnostic and can be used on several platforms. Her “one-window drilldown” pattern
works on different platforms and she uses examples from the iPod, Mac OS X, and a charac-
ter-based e-mail application to explain the pattern. The platform-independent description of
the pattern and also the implementations on the different platforms unambiguously belong to
the structure tier. Although her pattern “movable panels” is not so platform-independent it
nevertheless belongs to the behavior tier. The pattern “expanding screen width” (van Duyne
et al., 2007) is rather web-specific but it applies to both “classic” and “rich” websites and
belongs to the presentation tier. On the other hand, the pattern “self-healing transition”
(Yahoo!, 2009) is a pattern from the behavior tier (user assistance, because it helps the user to

15

better understand the effects of a manipulation) and is targeted at rich interaction web
interfaces. It cannot be used in “classic” web applications, because of technical limitations,
even though this distinction will fade away more and more with the establishment of new web
standards. However, the “self-healing transition” could also be used on a desktop OS or a
modern mobile OS.

Figure 6. Pattern collections for different platforms

These examples show that there are whole pattern collections that are rather platform-
independent (e.g. Tidwell’s, 2006). However, in collections written for special platforms there
are also patterns that are more or less platform-independent whereas others make no sense in
another environment. Aside from the question of platform, all the patterns concerned with the
conceptual implementation of the user interface can be categorized into Baxley’s model in a
stable way.

16

4 The analysis of four pattern collections

Following the presentation of Baxley’s model, we discuss some interaction design pattern
collections in relation to the following eleven categories (ten for interaction design patterns):
• Requirements (with an impact on perceived aspects of the user interface)
• Conceptual Model
• Task Flow
• Organizational Model
• Viewing and Navigation
• Editing and Manipulation
• User Assistance
• Layout
• Style
• Text
• Software Design (user interface software design patterns)

Because there are dozens of interaction design pattern collections (some published as books
but most of them available in the World Wide Web), the analysis focuses on a small sub-set:
• Book: Designing Interfaces by Jenifer Tidwell (2006)
• Book: The Design of Sites by van Duyne et al. (2007)
• Website: “Welie.com” by Martijn van Welie (2009)
• Website: “Yahoo! Design Pattern Library” by Yahoo! Inc. (2009)

These four interaction design pattern collections have been chosen for this analysis because
on the one hand, they contain a certain number of patterns similar in scope but on the other
hand, they are well established; i.e., it is likely that they will still be around in the future. In
1997, Tidwell started with an online pattern language called “Common Ground” (Tidwell,
2009) and then, based on that work, published the book Designing Interfaces (Tidwell, 2006),
making it the pattern book with the longest traceable history. The book The Design of Sites
(van Duyne et al., 2007) has already been published in its second edition. The first edition
dates back to 2002 (van Duyne et al., 2002), which makes it the first fully-fledged collection
of interaction design patterns available in the form of a book. The roots of the website
“Welie.com” by Martijn van Welie (2009) date back at least to 2000 (see van Welie and
Trætteberg, 2000) thus it can be said that it is one of the most established online collections of
interaction design patterns. The Yahoo! Design Pattern Library (Yahoo! Inc., 2009) is the
most recent collection in this analysis, and contains the least number of patterns. However,
the fact that it is the only corporate collection of interaction design patterns that is at least
partially public makes it an interesting candidate for this analysis. There is also a case study
available for the Yahoo! Pattern Library (Leacock et al., 2005).

17

4.1 The process of categorization

In the analysis of these four collections, all the patterns were put into the proposed categories
in order to explore whether:
• all patterns can be classified into the categories
• there are layers that do not have any patterns in them
• the distribution of patterns across the layers is even or not
• there is any ambiguity in classifying patterns in such a way

The first author conducted the analysis of the four pattern collections. It was identified, for
each pattern, on which layers its forces operate. Because there are certain patterns with forces
on different levels, the analysis distinguishes a first and a lower priority of mapping. How-
ever, for all the patterns it was possible to decide on which level the forces mainly operate.

To control for interrater effects, the second author performed an independent categorization
for the first priority mapping of 20% of the patterns from each pattern collection (74 patterns).
An interrater reliability analysis using the Kappa statistics was performed to determine
consistency among raters. The interrater reliability was found to be high, with Kappa = 0.766
(p < 0.000), 95% CI (0.662, 0.870).

The analysis of the mappings has shown that indeed most of the patterns could be categorized
into these layers (see 4.2 below) and a comparison of these mappings over all the collections
shows interesting differences (see 4.3 below). There were also several patterns that could be
mapped onto multiple layers (see 4.4 below). The detailed results of the analysis can be found
on http://goo.gl/OWQI2

4.2 The analysis of the pattern collections

The first priority mapping of patterns from Tidwell (2006), van Duyne et al. (2007), van
Welie (2009), and Yahoo! Inc. (2009) is shown in the following tables (Table 2 through Table
5).

4.2.1 Book “Designing Interfaces” by Jenifer Tidwell

The scope of Tidwell’s (2006) patterns is the design of desktop applications, websites, web
applications, and mobile devices. The patterns are rather platform-independent and they are
illustrated with examples from several platforms.

18

Her book Designing Interfaces uses the following organization scheme for a total of 82
patterns:

• Organizing the Content
• Getting Around
• Organizing the Page
• Doing Things
• Showing Complex Data
• Getting Input From Users
• Builders and Editors
• Making It Look Good

All of these patterns could be classified into the layers of Baxley’s model; there are no
requirements and no software design patterns (see Table 2).

Table 2. Tidwell’s categories (Tidwell, 2006) mapped onto the layers

 Tidwell’s categories (number of patterns)

Layer O
rg

an
iz

in
g

th
e

C
on

te
nt

G
et

tin
g

Ar
ou

nd

O
rg

an
iz

in
g

th
e

Pa
ge

D
oi

ng
 T

hi
ng

s

Sh
ow

in
g

C
om

pl
ex

D

at
a

G
et

tin
g

In
pu

t F
ro

m

U
se

rs

Bu
ild

er
s a

nd

Ed
ito

rs

M
ak

in
g

It
Lo

ok

G
oo

d

Total
Requirements 0

Conceptual Model 1 1

Task Flow 5 5 1 2 13

Organizational Model 0

Viewing and Navigation 1 4 2 7 14

Editing and Manipulation 1 2 7 10

User Assistance 1 1 2 6 4 8 2 24

Layout 6 2 2 10

Style 1 1 1 7 10

Text 0

Software Design 0

Total 8 11 12 10 14 11 9 7 82

There are layers of Baxley’s model that remain empty. There were no patterns for the
organizational model, despite Tidwell discussing models of organization in the introduction
to chapter 2. There were no patterns for text and only one for conceptual model. The other
layers contain patterns, but most patterns are situated in the behavior tier. The structure tier
contains the fewest patterns.

19

4.2.2 Book “The Design of Sites” by van Duyne et al.

The patterns of van Duyne et al. (2007) are written especially for the design of pre-Web 2.0
websites. The 107 patterns in their book, The Design of Sites, are organized in the following
way:

• Site Genres
• Creating a Navigation Framework
• Creating a Powerful Homepage
• Writing & Managing Content
• Building Trust & Credibility
• Basic E-Commerce
• Advanced E-Commerce
• Helping Customers Complete Tasks
• Designing Effective Page Layouts
• Making Site Search Fast & Relevant
• Making Navigation Easy
• Speeding Up Your Site
• The Mobile Web

Most of these patterns could be fitted into Baxley’s model (see Table 3) but 10 of them are
software design patterns (e.g., fast-loading images) and 25 describe requirements patterns
(e.g., e-mail notifications).

With the other patterns, all nine layers of Baxley’s model are covered. The patterns are more
or less evenly distributed across all the three tiers. It is interesting to see that there are some
categories that fit directly into one tier of Baxley’s model, whereas others show up in two
tiers, and still others are spread across all three tiers; for example, the patterns under “site
genres” all fit into the conceptual model layer, whereas the patterns from the chapter “the
mobile web” are spread across all three tiers.

20

Table 3. Categories of van Duyne et al. (2007) mapped onto the layers

 Categories of van Duyne et al. (number of patterns)

Layer Si
te

 G
en

re
s

C
re

at
in

g
a

N
av

ig
at

io
n

Fr
am

ew
or

k
C

re
at

in
g

a
Po

w
er

fu
l

H
om

ep
ag

e
W

ri
tin

g
&

 M
an

ag
in

g
C

on
te

nt

Bu
ild

in
g

Tr
us

t &

C
re

di
bi

lit
y

Ba
si

c
E-

C
om

m
er

ce

Ad
va

nc
ed

 E
-C

om
m

er
ce

H
el

pi
ng

 C
us

to
m

er
s

C
om

pl
et

e
Ta

sk
s

D
es

ig
ni

ng
 E

ffe
ct

iv
e

Pa
ge

 L
ay

ou
ts

M

ak
in

g
Si

te
 S

ea
rc

h
Fa

st
 &

 R
el

ev
an

t
M

ak
in

g
N

av
ig

at
io

n
Ea

sy

Sp
ee

di
ng

 U
p

Yo
ur

 S
ite

Th
e

M
ob

ile
 W

eb

Total

Requirements 1 3 8 4 5 1 1 1 1 25

Conceptual Model 12 12

Task Flow 1 1 4 2 5 2 15

Organizational Model 6 6

Viewing and Navigation 1 2 6 1 10

Editing and Manipulation 2 1 3

User Assistance 4 3 7

Layout 1 2 1 6 1 1 12

Style 1 1 2

Text 3 2 5

Software Design 3 1 1 5 10

Total 12 9 2 11 9 9 7 13 6 3 17 6 3 107

21

4.2.3 Website “Welie.com” by Martijn van Welie

Earlier versions of van Welie’s website distinguished the patterns in web design patterns, GUI
patterns, and mobile UI design patterns but today, he just lists patterns in the categories
below and the examples all seem to be from websites and web applications (van Welie, 2009).

The actual online catalogue Welie.com (May 2009) contains 131 patterns and has the
following structure:

• User needs
o Navigating around
o Basic interactions
o Searching
o Dealing with data
o Personalizing
o Shopping
o Making choices
o Giving input
o Miscellaneous

• Application needs
o Drawing attention
o Feedback
o Simplifying interaction

• Context of design
o Site types
o Experiences
o Page types

All but 18 of van Welie’s patterns can be classified into Baxley’s model. They are all
requirements patterns and include all “experiences (context of design)” patterns and some of
the “user needs” type patterns (e.g., the pattern testimonials). There are no software design
patterns in this collection.

There are patterns distributed across most of the layers of Baxley’s model but the text and the
organizational model layers have no patterns. The other patterns are distributed more or less
evenly across structure and behavior but with a few in the presentation tier. All but one of the
“shopping” patterns fit into the task flow layer.

22

Table 4. Van Welie’s categories (van Welie, 2009) mapped onto the layers

 Van Welie’s categories (number of patterns)

 User needs (83) Application
needs (12)

Context of
design (35)

Layer N
av

ig
at

in
g

ar
ou

nd

Ba
si

c
in

te
ra

ct
io

ns

Se
ar

ch
in

g

D
ea

lin
g

w
ith

 d
at

a

Pe
rs

on
al

iz
in

g

Sh
op

pi
ng

M
ak

in
g

ch
oi

ce
s

G
iv

in
g

in
pu

t

M
is

ce
lla

ne
ou

s

D
ra

w
in

g
at

te
nt

io
n

Fe
ed

ba
ck

Si
m

pl
ify

in
g

in
te

ra
ct

io
n

Si
te

 ty
pe

s

Ex
pe

ri
en

ce
s

Pa
ge

 ty
pe

s

Total

Requirements 1 1 1 4 1 8 2 18

Conceptual Model 14 14

Task Flow 1 3 3 2 8 1 1 9 28

Organizational Model 0

Viewing and Navigation 25 4 5 8 2 44

Editing and Manipulation 1 2 1 4

User Assistance 1 4 1 1 2 2 2 13

Layout 1 1 1 3 6

Style 4 4

Text 0

Software Design 0

Total 25 7 13 14 3 9 5 3 5 8 2 2 14 8 13 131

4.2.4 Website “Yahoo! Design Pattern Library” by Yahoo! Inc.

The public patterns of the Yahoo! Design Pattern Library (Yahoo! Inc., 2009) cover different
web design issues and many of them are Web 2.0 specific. The actual online catalogue con-
tains 39 patterns (May 2009) and has the following structure:

• Search
• Navigation
• Browsing
• Selection
• Rich interaction
• Social

All but the “social” patterns, which can be seen mostly as requirements, could be classified
into Baxley’s model (see Table 5; Yahoo! categorized the pattern search pagination under
“search” and “browsing”, so by category the count of viewing and navigation patterns is 8 and
the total count of patterns is 40). There are no software design patterns in Yahoo!’s pattern
library.

23

Table 5. Yahoo!’s categories (Yahoo!, 2009) mapped onto the layers

 Yahoo!’s categories (number of patterns)

Layer Se
ar

ch

N
av

ig
at

io
n

Br
ow

si
ng

Se
le

ct
io

n

Ri
ch

 in
te

ra
ct

io
n

So
ci

al

Total
Requirements 12 12

Conceptual Model 0

Task Flow 1 1

Organizational Model 0

Viewing and Navigation (1) 4 2 1 7

Editing and Manipulation 1 1

User Assistance 2 15 17

Layout 1 1

Style 0

Text 0

Software Design 0

Total (1) 4 3 3 16 13 39

In the Yahoo! library, only one pattern could be found that fitted into the structure tier (sign-
in continuity) and the presentation tier (page grids), respectively; the other patterns all fitted
into the behavior tier. What is interesting about Yahoo!’s organization of the patterns is that
there are some higher-level patterns (e.g., pagination) that contain sub-patterns (item pagi-
nation and search pagination in this case) as different solutions to these higher-level patterns.
Table 5 only counts the “leaf patterns”; i.e. the higher-level patterns (e.g., pagination) have
not been counted.

4.3 The pattern collections in comparison

Table 6 shows an overview of the mappings of the different pattern collections onto our cate-
gories. It shows that some of the four collections cover all (van Duyne et al., 2007) or most of
the nine layers (van Welie, 2009) of Baxley’s model. Other collections focus on behavioral
issues, with only a few patterns related to structure or presentation (Tidwell, 2006; Yahoo!
Inc., 2009). Van Duyne et al.’s (2007) collection is the only one that also contains software
design patterns (the others all focus on interaction design patterns) whereas Tidwell’s (2006)
is the only one that also contains no requirements patterns but is fully focused on the
conceptual implementation of the user interface.

24

Table 6. Comparison of the four pattern collections (Tidwell, 2006; van Duyne et al., 2007;
van Welie, 2009; Yahoo! Inc., 2009) by percentage (and by number of patterns)

Layer
Tidwell Van Duyne

et al.
Van Welie Yahoo!

 Total
Requirements 23.4% (25) 13.7% (18) 30.8% (12) 15.3% (55)

Conceptual Model 1.2% (1) 11.2% (12) 10.7% (14) 7.5% (27)

Task Flow 15.9% (13) 14.0% (15) 21.4% (28) 2.6% (1) 15.9% (57)

Organizational Model 5.6% (6) 1.7% (6)

Viewing and Navigation 17.1% (14) 9.3% (10) 33.6% (44) 17.9% (7) 20.9% (75)

Editing and Manipulation 12.2% (10) 2.8% (3) 3.1% (4) 2.6% (1) 5.0% (18)

User Assistance 29.3% (24) 6.5% (7) 9.9% (13) 43.6% (17) 17.0% (61)

Layout 12.2% (10) 11.2% (12) 4.6% (6) 2.6% (1) 8.1% (29)

Style 12.2% (10) 1.9% (2) 3.1% (4) 4.5% (16)

Text 4.7% (5) 1.4% (5)

Software Design 9.3% (10) 2.8% (10)

Total 100% (82) 100% (107) 100% (131) 100% (39) 100% (359)

In this overview, there are clearly identifiable gaps in the pattern collections. It is also
apparent what other collections one could consider to fill the gaps. An overview of the
original categories of the pattern collections shows that such a comparison is not possible
there because the libraries only have categories where they have patterns and the different
categories are very hard to reconcile (see Table 7).

25

Table 7. Original category names of the four pattern collections (Tidwell, 2006; van Duyne
et al., 2007; van Welie, 2009; Yahoo! Inc., 2009)

Tidwell Van Duyne et al. Van Welie Yahoo!
• Organizing the Content

• Getting Around

• Organizing the Page

• Doing Things

• Showing Complex Data

• Getting Input From Users

• Builders and Editors

• Making It Look Good

• Site Genres

• Creating a Navigation
Framework

• Creating a Powerful
Homepage

• Writing & Managing
Content

• Building Trust &
Credibility

• Basic E-Commerce

• Advanced E-Commerce

• Helping Customers
Complete Tasks

• Designing Effective Page
Layouts

• Making Site Search Fast
& Relevant

• Making Navigation Easy

• Speeding Up Your Site

• The Mobile Web

User needs:

• Navigating around

• Basic interactions

• Searching

• Dealing with data

• Personalizing

• Shopping

• Making choices

• Giving input

• Miscellaneous

Application needs:

• Drawing attention

• Feedback

• Simplifying interaction

Context of design:

• Site types

• Experiences

• Page types

• Search

• Navigation

• Browsing

• Selection

• Rich interaction

• Social

Going back to the comparison using the unified categories (Table 6), one could see for
example where to look to make Tidwell’s (2006) collection more complete. It contains only
one conceptual model and no organizational model patterns but the collection of van Duyne
et al. (2007) has some of them. The missing text patterns could also be found there. Van
Welie (2009) has more than three times the number of viewing and navigation patterns, so
there might also be some potential here.

4.4 The patterns categorized into multiple layers

As mentioned above, there are several patterns that could be mapped onto multiple layers.
This means that these patterns are not written with a clear focus in relation to these layers but
describe aspects, which sometimes contain aspects of multiple layers in one pattern. An
example from van Duyne et al. (2007) is the pattern “category pages”, which covers aspects
of structure, behavior, and presentation. The pattern describes how users should be able to
navigate across different parts of a large site and that these parts should be organized into
categories (organizational model). These categories should have a consistent navigation
(viewing and navigation) placed in the layout in a consistent way (layout). The use of color

26

coding (style) should support discrimination between these categories. Van Welie’s (2009)
pattern “home link” has aspects of the structure of navigational pathways (task flow) and of
navigational elements (viewing and navigation).

5 Conclusions

We conclude with a discussion of the characteristics of the different interaction design
approaches first. We then discuss Baxley’s (2003) model and its extension, together with the
analysis of the four pattern collections. In a final step, we present our concluding vision and
suggest further steps that might be taken in order to achieve it.

5.1 The characteristics of different interaction design approaches

This study looks at several approaches to interaction design, to find out how the catego-
rization of interaction design pattern languages can be enhanced by basing it on the structural
characteristics of these approaches. Analysis of design approaches shows that most of them
do not go into much detail in the stage where interaction design patterns come into play; i.e.,
when the user interface is designed. This raises an interesting question: why do most
approaches see the task of designing the user interface rather like a black box? One explana-
tion for this could be that experienced designers and researchers like Donald Schön (1984)
consider the process of design as unpredictable to some extent. Schön sees design as an
ongoing reflective conversation with the entity to be designed. Thus the path to the final
design cannot be predicted; it is developed de novo in every project. This is why a linear
process is not a realistic model for design activities. On the other hand, it can be argued that
the performance of a reflective practitioner has certain distinguishable stages anyhow. Just as
an artist would usually first use a pencil to sketch the overall form of a picture and later
progress to oil-based paint to finish it, the work of the interaction designer moves through
certain phases, building on each other. The different layered design processes can be seen as a
task analysis in this sense. So even if the real process is not linear in nature, one can say that
the organization of interaction design patterns, according to such a model, is “alongside the
design process”.

5.2 Baxley’s model

We have identified Baxley’s (2003) “Universal Model of the User Interface” as an interaction
design approach with a very detailed description of the design phase. This model is based on
common principles of design processes, such as a layered procedure, but its distinction of
design sub-tasks is much more fine-grained than that of the other design processes. So it

27

fulfills two important requirements of models for the organization of a pattern language: it is
based on a design process and it provides enough “slots” to perform an effective organization.
We have learned that the model does not cover all the interaction design patterns as defined
by Dearden and Finlay (2006) but can be extended slightly to achieve this. However, 80% of
all the analyzed patterns fall into the categories covered by Baxley’s model. The model has
been extended with a new category called “requirements patterns” as a working title: this is a
category for the interaction design patterns that are “above” Baxley’s model. For our analysis,
this is detailed enough but for other pattern collections it may be valuable to sub-divide this
category even further.

Even though Baxley’s model has been developed in the context of web design, it seems to be
robust enough to work on different platforms. The platforms can be seen as orthogonal to the
model, and the “requirements patterns”, as defined here, are ideally platform-independent. It
can be said that the highest level of categorization with the tiers structure, behavior, and
presentation is much more robust than the nine levels or even the sub-categories used by
Baxley (2002). A voice user interface also has certain structure, behavior, and presentation
aspects to it. But if one looks closer at the nine layers of Baxley’s model, it can be seen that
most notably the presentation tier is more focused on visual than on voice user interfaces. On
the other hand, the speech of a voice user interface also has certain “layout” characteristics
(e.g. order), a “style” (e.g. consistency to brand), and is made up of “text” (e.g. superfluous
text should be avoided).

There are possible aspects to a user interface, such as audio and video, that are missing from
the model. It would be necessary to add these categories to the model to make it more
complete for other collections of patterns.

5.3 The analysis of the four pattern collections

To answer the question whether it is possible to organize interaction design patterns according
to an extended version of Baxley’s (2003) model, an analysis of four pattern collections was
conducted. It cannot be guaranteed that this categorization is correct in every aspect, but we
are convinced that this approach can make important aspects of pattern categorization visible.
The aim of this work is not to discuss how individual patterns are categorized but to show the
benefits of taking such a “unified” top-down approach to pattern categorization for the
construction of pattern languages.

One result of the analysis is that all of the patterns focusing on interaction design could be
fitted into these categories. The analysis of the four pattern collections has also shown that

28

some of them cover most or all of the categories. However, some collections focus on
behavioral issues with only few patterns related to structure or presentation issues. From this,
it can be concluded that some collections are more complete than others, in the sense that they
span the whole problem space of user interface design in a systematic and detailed way. The
extended model provides a stable framework of “problem slots”.

These conclusions indicate that the use of such a model helps to build a pattern language that
is not only complete, but also actively supports the process of identifying new patterns; i.e., it
is predictive. In striving for a complete pattern language, one is forced to describe the full
range of “user interface problems” and has to find all the common solutions to a given level
of the model. For the individual patterns, the implication is that they cannot only describe
solutions on a merely morphological or behavioral level (i.e. how they look or work) but must
also describe them on a semantic level (i.e. what they are used for in the user interface). A
certain user interface mechanism can be used for different purposes; for example the compo-
nent of a drop-down list box can be used for filtering a table (viewing and navigation) or for
the selection of different given values for data entry (editing and manipulation). Following
this thinking, one is forced to describe not the user interface mechanisms per se but the
solution to the user’s problems.

5.4 A common model for the organization of interaction design patterns

As Gabriel (1996) reports from the area of software engineering, patterns are not used enough
in projects in this field and we think that the same can be said for the field of HCI. From our
point of view, one of the biggest problems is that existing pattern collections are far from
complete and it is not easy for the individual designer to know where to look for missing
patterns. This searching for patterns is time-consuming. The vision of this work is for pattern
collections to be written on the same basis – for example, based on the extended model
presented here – enabling individual patterns to move freely between collections to make
them more complete.

Even with the extended model as defined above, there are still some problems to be solved
before the vision can be fulfilled. There are patterns that do not fit unambiguously into the
model; they have mixed forces according to the levels of the model. So if one were to write
patterns with forces precisely formulated in relation to the model, the particular patterns
would therefore be accurately separated; this would lead to clearer identification of the levels
on which gaps in a certain pattern collection exist.

29

Another issue is that of platform. As it has been shown above, there are patterns that are
platform-independent and others that are not. We think that it makes no sense to demand
patterns to be fully platform-independent in every case. This would unreasonably limit the
range of issues that can be described as interaction design patterns. However, it would be a
requirement to describe individual patterns as platform-independent as possible to make them
available on a wide range of technical platforms. Then, in order to know which patterns can
be moved from one collection to another, the patterns need to be tagged by platform-
dependence to filter them accordingly.

5.5 Outlook

This work shows why Baxley’s model may be a good foundation for the organization of
interaction design patterns to achieve pattern collections that allow a free transfer of patterns.
But there are several other milestones to be met before this vision can be achieved. The first is
that although the logic of the model seems to work there are several gaps in it (audio, video,
etc.) that have to be filled to make it universally applicable. To handle large numbers of
patterns, the category of “requirements patterns” on the one hand and the nine layers of
Baxley’s model on the other should be made more fine-grained in a robust way. Also, new
trends in the technology have to be taken into account. It is not the aim of this work to prove
that Baxley’s model is the only one capable of performing such a task, but rather to show the
advantages of such a “unified model”. For the moment, no better model could be found.

Because in this study we have focused more on the construction of complete interaction
design pattern languages, in the next stage it would be important to focus on the usage of
these languages by interaction designers. It would be very interesting to investigate whether
interaction designers engaged in a design activity could specify – when interrupted and
asked – to which level of the model this activity belonged.

There is another issue that must be mentioned: This work focuses on the structural aspects of
pattern organization. As mentioned in the introduction, there are two main aspects to pattern
organization: the organization according to several levels of design and the network of
patterns defined by reference. There is already some research about the linking of design
patterns (van Welie and van der Veer, 2003), but it would be interesting to explore this
question to a further extent, also taking into consideration the findings presented here.

30

Acknowledgements

The authors would like to thank Zürcher Kantonalbank (ZKB) in Zurich, Switzerland for the
support and funding of this research as part of the UCD ZKBconnect project.

References

Alexander, C. (1964). Notes on the synthesis of form. Harvard University Press, Cambridge.
Alexander, C. (1979). The timeless way of building. Oxford University Press, New York.
Alexander, C. (1999). The origins of pattern theory: the future of the theory, and the

generation of a living world. IEEE software, 16(5):71–82.
Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A pattern language: towns, buildings,

construction. Oxford University Press, New York.
Baxley, B. (2002). Making the Web work: defining effective Web applications. New Riders.
Baxley, B. (2003). Universal model of a user interface. In Proceedings of the 2003 conference

on Designing for user experiences, pages 1–14. ACM New York, NY, USA.
Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered systems.

Morgan Kaufmann, San Francisco, CA.
Borchers, J. (2000). Interaction design patterns: Twelve theses. In Proceedings of the SIGCHI

conference on Human factors in computing systems, volume 2, page 3.
Borchers, J. (2001). A pattern approach to interaction design. Wiley, Chichester, England.
Constantine, L. L. and Lockwood, L. A. D. (1999). Software for use: a practical guide to the

models and methods of usage-centered design. Addison Wesley, Reading, Mass.
Cooper, A., Reimann, R. and Cronin, D. (2007). About face 3: the essentials of interaction

design. Wiley Pub., Indianapolis, IN.
Dearden, A. and Finlay, J. (2006). Pattern languages in HCI: A critical review. Human-

Computer Interaction, 21(1):49–102.
Dimitriadis, Y., Goodyear, P., and Retalis, S. (2009). Using e-learning design patterns to

augment learners’ experiences. Computers in Human Behavior, 25(5): 997–998.
Fincher, S. and Windsor, P. (2000). Why patterns are not enough: some suggestions

concerning an organising principle for patterns of UI design. In CHI’2000 Workshop on
Pattern Languages for Interaction Design: Building Momentum.

Fincher, S. (2002). Patterns for HCI and Cognitive Dimensions: two halves of the same story.
In Kuljis, J., Baldwin, L., Scoble, R., Proceedings of the Fourteenth Annual Workshop of
the Psychology of Programming Interest Group, pages 156–172.

Fincher, S. (2003). PLML: Pattern language markup language report of workshop held at CHI
September 2003. Interfaces, 56 (pp. 26–28).

31

Gabriel, R. (1996). Patterns of software: tales from the software community. Oxford
University Press New York.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co. Inc.,
Boston.

Garrett, J. J. (2002). The elements of user experience: user-centered design for the web. New
Riders, Indianapolis, Ind.

Granlund, Å., Lafrenière, D., and Carr, D. A. (2001). A pattern-supported approach to the
user interface design process. In Proceedings of 9th International Conference on Human-
Computer Interaction HCI International.

Grudin, J. (1992). Utility and usability: research issues and development contexts. Interacting
with computers, 4(2): pages 209–217.

Hornbaek, K. (2006). Current practice in measuring usability: Challenges to usability studies
and research. International Journal of Human-Computer Studies, 64(2): pages 79–102.

IBM Corporation. (1992). Object-Oriented Interface Design: IBM Common User Access
Guidelines. QUE, New York.

Kohls, C., Uttecht, J. (2009). Lessons learnt in mining and writing design patterns for
educational interactive graphics. Computers in Human Behavior 25 (5), 1040–1055.

Leacock, M., Malone, E., and Wheeler, C. (2005). Implementing a pattern library in the real
world: A Yahoo! case study. In American Society for Information Science and
Technology Information Architecture Summit, Montréal, Québec, Canada.

Leuthold, S., Schmutz, P., Bargas-Avila, J.A., Tuch, A.N. & Opwis, K. (2011). Vertical
versus dynamic menus on the world wide web: Eye tracking study measuring the
influence of menu design and task complexity on user performance and subjective
preference. Computers in Human Behavior, 27(1), 459-472.

Mayhew, D. J. (1999). The usability engineering lifecycle: a practitioner’s handbook for user
interface design. Morgan Kaufmann Publishers, San Francisco, Calif.

Nielsen, J. (1993). Usability engineering. Academic Press, Boston.
Pauwels, S.L., Hübscher, C., Leuthold, S., Bargas-Avila, J.A., & Opwis, K. (2009). Error

prevention in online forms: Use color instead of asterisks to mark required fields.
Interacting with Computers, 21(4), 257-262.

Pauwels, S., Hübscher, C., Bargas-Avila, J., and Opwis, K. (2010). Building an interaction
design pattern language: A case study. Computers in Human Behavior, 26(3), pages 452-
463.

Rantzer, M. (1996). Field methods casebook for software design: The delta method – a way to
introduce usability, pages 91–112. John Wiley & Sons, Inc., New York, NY.

Robert, D. (1998). Designing for the user with OVID: bridging user interface design and
software engineering. Software engineering series. Macmillan Technical Pub.,
Indianapolis, IN.

32

Schön, D. (1984). The Reflective Practitioner: How Professionals Think In Action. Basic
Books.

Sharp, H., Rogers, Y., and Preece, J. (2007). Interaction Design. Wiley, New York, 2nd
edition.

Tidwell, J. (2006). Designing interfaces. O’Reilly, Beijing.
Tidwell, J. (2009). Common Ground: A Pattern Language for Human-Computer Interface

Design. Retrieved May 7, 2009, from
http://www.mit.edu/~jtidwell/common_ground.html

van Duyne, D. K., Landay, J. A., and Hong, J. I. (2002). The design of sites: patterns,
principles, and processes for crafting a customer-centered Web experience. Addison-
Wesley Professional.

van Duyne, D. K., Landay, J. A., and Hong, J. I. (2007). The design of sites: patterns for
creating winning web sites. Prentice Hall, Upper Saddle River, NJ, 2nd edition.

van Welie, M. and Trætteberg, H. (2000). Interaction patterns in user interfaces. In Proc.
Seventh Pattern Languages of Programs Conference: PLoP, pages 13–16.

van Welie, M. and van der Veer, G. (2003). Pattern Languages in Interaction Design:
Structure and Organization. In Proceedings of Interact, volume 3, pages 1–5.

van Welie, M. (2009). Patterns in interaction design. Retrieved May 7, 2009, from
http://www.welie.com/patterns/

Yahoo! Inc. (2009). Design pattern library. Retrieved May 29, 2009, from
http://developer.yahoo.com/ypatterns/

1

Analyzing the gap between
the results of foundational user research
and the final design of a user interface

Christian Hübscher, Mirjam Seckler,
Alexandre N. Tuch, Klaus Opwis

University of Basel, Department of Psychology,

Center for Cognitive Psychology and Methodology, 4055 Basel, Switzerland

Abstract

This work explores how, in the area of designing user interfaces, the gap between problem
domain and solution domain can be bridged. It is very important to better understand this
translation between these two domains because interaction designers have to do it again and
again in their daily work. We first analyze the anatomy of these two domains and explain the
nature of the gap. In this context, interaction design patterns can be seen as “building blocks”
to construct the resulting user interface. Therefore, the organization of patterns can be taken
as a description of the solution domain. In the discussion of the different means to bridge the
gap between these domains two such ways are highlighted. The bridging of the distance
between the results of foundational user research and the final design of the user interface can
be achieved mainly with different phases, iterations, and intermediate representations.
Alternatively, bridging the gap between problem domain and solution domain as a whole can
be described as a mapping between the different parts of these two domains. As not much
work about such a mapping has yet been undertaken, it is analyzed here in detail. Finally,
these different means of bridging the gap are brought together and the possible impact of
these findings are discussed.

Keywords: user-centered design; interaction design; design patterns; pattern languages

2

1 Introduction

User-centered design (UCD) in the area of human-computer interaction (HCI) means the
following: Foundational user research is undertaken to understand the needs of the users and
all other relevant aspects of the context of usage. Based on this knowledge, the user interface
is designed. The resulting designs are tested with users and refined iteratively. Interaction
design in the area of UCD means that these user research results have to be translated into a
concept for a user interface. This translation is at the very heart of the interaction designer’s
task. Interaction designers also need great knowledge of generic best practices in user
interface design. Much work has already been carried out in the areas of methods for
foundational user research and best practices for user interface design (see, e.g., Hackos and
Redish, 1998; Courage and Baxter, 2004; see also, Mayhew, 1992; Cooper et al., 2007;
Shneiderman and Plaisant, 2004). However, there is very little material available that
describes in detail the translation from results of foundational user research into a user
interface. However, this translation is what interaction designers have to do in their projects
again and again. Therefore it is important that HCI practitioners not only have proven
methods of user research and generic interface design advice but also have support in
achieving this translation. Wood (1997b) has already mentioned this gap between user
requirements and the design of the user interface.

The work presented here shows a way of closing this gap even further. First, the problem and
the solution domain for interaction design will be analyzed. The problem domain comprises
aspects that build all the preconditions for interaction design. That is what is analyzed in
foundational user research. The solution domain is the “design space” in which the user
interface has to be designed. These two domains are shown to be very different in their
internal topology. Following on from these differences, the gap between the two domains will
be highlighted. The gap can be described as either a distance to be bridged or the need for a
mapping between the two domains. Regarding the aspect of bridging the distance, a lot of
work has already been done, mainly with the breakdown into different phases, with iterations,
and with intermediate representations; however, there is not much material to be found for a
mapping between the two domains. Therefore we present a mapping of the different aspects
of the problem domain to the different levels of the solution domain. Finally, we show a
combination of these different means to bridge the gap.

2 Problem domain, solution domain, and the gap between the two

Interaction design can also be described in the following way: In order to design a user
interface, the designer has to choose from a body of several “building blocks” and combine
them. In order to know which blocks to use, the designer has to understand the needs of the

3

users and all the other aspects of the context of usage. The interaction designer has to know
the problem domain very well. The solution domain consists of the range of all possible user
interfaces that could be designed. Another part of the solution domain are the laws about what
types of “building blocks” are needed in order to design a complete user interface and the
rules about how such blocks can be combined. Therefore, in the context of the solution
domain we will also discuss interaction design patterns as one possible form that these
“building blocks” could have.

Because the two domains contain very different sets of information, it can be said that there is
a certain gap between them. In this part of our work, we want to show the anatomy of these
two domains and explain the nature of the gap.

2.1 Problem domain

The problem domain consists of all aspects of the world that have to be taken into
consideration for designing a user interface. In order to come up with an exhaustive
description of the problem domain, we have analyzed several UCD processes to see what they
consider to be relevant. We have looked into the work of Nielsen (1993), Rantzer (1996),
Beyer and Holtzblatt (1998), Roberts et al. (1998), Mayhew (1999), Constantine and
Lockwood (1999), Garrett (2002), Baxley (2002), and Cooper et al. (2007) to find out how
these authors describe the problem domain. All aspects mentioned in these different works are
listed in Table 1.

Because the problem domain is described in very distinct ways in the works mentioned above,
we have looked for a way to categorize the individual aspects listed by the authors. Shackel
(2009) has come up with a model that is well established (see Day et al., 2009). This model
says that there are “four principal components of any user-system situation: user, task, tool
and environment.” (Shackel, 2009, p. 339). We took these four components – user,
environment, task and tool (which will be explained in more detail later) – to categorize the
contents of Table 1. Most of the aspects could be categorized into one of the four components.
However, a few items did not fit into any of these four categories but they could be grouped
into a new category, called project. This category covers certain facets of a typical UCD
project itself. These facets include project objectives, interests of different stakeholders,
project resources, etc. and are mentioned by Garrett (2002), Baxley (2002), and Cooper et al.
(2007).

4

Table 1. Analysis of UCD lifecycles concerning problem domain tasks

UCD lifecycle Aspects of the problem domain
 User Environment Task Tool Project
 The four categories taken from Shackel (2009) A new category
Nielsen
(Nielsen, 1993)

Individual user
characteristics
The evolution of
the user and the
job

 The user’s
current and
desired tasks
Functional
analysis

Delta Method
(Rantzer, 1996)

User profiling Task analysis

Contextual Design
(Beyer & Holtzblatt,
1998)

 Flow model
Cultural model
Physical model
Artifact model

Sequence
model

OVID
(Roberts et al., 1998)

User classes
User goals

 Current tasks
User objects

Usability Engineering
Lifecycle
(Mayhew, 1999)

User profile Task analysis Platform
capabilities
and constraints
General design
principles

Usage Centered
Design
(Constantine &
Lockwood, 1999)

Role model Operational
model

Task model

The Elements of User
Experience
(Garrett, 2002)

User needs Site objectives

Universal Model of a
User Interface
(Baxley, 2002)

User needs Technical
constraints

Competition
Business
opportunity
Core design
values
Opportunity
statement

Goal Directed Design
(Cooper et al., 2007)

User interviews &
observations:
understand user
needs
Personas: user &
customer
archetypes

Other models:
represent domain
factors beyond
individual users &
customers

User interviews
& observations:
understand
user behavior

 Scope: define
project goals &
schedule
Audit: review
existing work &
product
Stakeholder
interviews:
understand
product vision &
constraints

The results of this analysis have been taken to draw the map shown in Figure 1. Here, only the
structure of the problem domain and the influences within this domain are explained. The
influences on the solution domain are explained in section 4.

5

Figure 1. The problem domain in detail

2.1.1 Project

This can be seen as the setup of the whole undertaking. The basic components of a project
setup are the “objectives” and the “general conditions”. Most UCD approaches remain silent
about these project setup tasks, but recent approaches such as Garrett (2002), Baxley (2002),
and Cooper et al. (2007) stress the importance of these first steps. Based on the “objectives”
of a project, it should be clear “what users” are the important ones. The “general conditions”

6

can be seen as preconditions for the system. For example, often some technical aspects are
already fixed and cannot be challenged. They have an influence on the system (tool) part of
the problem domain. The different aspects of a project can also have a direct impact on the
solution domain.

2.1.2 User

The totality of all the users can be segmented into user groups or modeled with personas
(Cooper, 1999). This step is about the different types of users and is called “what users”. In a
UCD approach, the question “what platforms” should partly be answered based on the
prioritization of the user groups. The individual user groups will then be further analyzed in
more detail. The most important aspects of a group of users are the “goals of a user” (as
stressed by Cooper, 1999). The goals influence “what situations of usage” are probable; they
also influence “what tasks” have to be supported. Together with the goals, there are also
“characteristics of a user” that are relevant (e.g., domain knowledge, age). All these aspects
can influence the solution domain, at least indirectly.

2.1.3 Environment

In the environment, in which the users use a system, different aspects influence the fitness of a
solution. The question “What situations of usage?” influences “what platforms” have to be
supported. For example, if a system is used while commuting with public transport, mobile
platforms have to be supported. There are also “characteristics of the environment” that have
to be taken into account such as lighting, noise. All these aspects can also have a direct
influence on the solution domain.

2.1.4 Task

In the analysis of the tasks there are several things to consider. First, an analysis is carried out
of “what tasks” are to be supported. For every task, further analysis is needed. In regards to
the “structure of a task”, one wants to know what sub-tasks and individual steps there are. But
the “characteristics of a task” are also relevant such as importance and frequency of the
individual tasks. These aspects can all directly influence the solution domain.

7

2.1.5 System (Tool)

According to Shackel (2009), a user-system situation consists of user, task, tool, and
environment. In this sense, tool is the implemented solution with the final user interface
design. Therefore most of it is part of the solution domain, but there are also aspects of the
tool that are given as preconditions for the interaction design. These preconditions are part of
the problem domain and are henceforth called system.

The first question of the system component is “what platforms” have to be supported.
Depending on the technical platforms the corresponding “user interface framework” is given.
In most cases these frameworks define the supported interaction techniques and given
standard user interface components. On most technical platforms these frameworks are
implemented as a set of APIs (application programming interfaces), which allow the
developers to use some modules without having to program them themselves (see e.g.,
“Cocoa” in Apple, 2016a). Together with the user interface frameworks most platforms also
have their “styleguide” (also called guidelines in many cases, see e.g., Apple, 2016b; SAP,
2016), which gives guidance on the visual aspects and texts in a user interface. For the sake of
simplicity in this work, the aspects “user interface framework” and “styleguide” are clearly
separated. Here the “user interface framework” contains structure and behavior facets of the
user interface and the “styleguide” presentation facets (see section 2.2 for more about
structure, behavior, and presentation). In reality, this distinction is not possible in this way
and how these aspects are addressed depends on the platform. Existing interaction design
patterns of a certain platform can also be seen as part of the framework or the styleguide. In
the context of the problem domain, they are the set of all possible patterns that can be chosen
from, in order to design a solution (see section 2.2.1 for the role of patterns in the context of
this work). These different system aspects can all directly influence the solution domain.

2.2 Solution domain

The solution domain can be described as the assembling of several interaction design patterns
until the user interface has been designed in all of its dimensions. If one takes an
organizational scheme for such patterns, this provides a “map” of the solution domain (see
Figure 2). Therefore the role of interaction design patterns and their organization is explained
in more detail below.

The anatomy of the solution domain, as it is presented here, is based on our recent research
into the organization of interaction design patterns (see Hübscher et al., 2011). It is based on
the logic of Baxley’s model (see Baxley, 2002, 2003), which is similar to that of Garrett
(2002). The logic of these approaches is that their individual layers have to be based on the

8

preceding layers (see Baxley, 2002; Garrett, 2002). As these two authors emphasize, this
should not to be mistaken for a waterfall approach, but has to be done iteratively.

Figure 2. Illustration of the solution domain

2.2.1 The role of interaction design patterns

This work is based on the assumption that a user interface can be composed entirely of
interaction design patterns. The patterns are on different levels (see Figure 3 for examples). In

9

this way the whole user interface can be assembled with these “building blocks”. This is also
how Baxley (2002) describes the process of interaction design in his approach. However,
most pattern libraries are not designed in a way that this is possible, because most of them
have “holes” on certain levels (see Hübscher et al., 2011).

Figure 3. Patterns on different levels of the solution domain

In the context of this work, the patterns can be formally described as those coming from a
pattern library (such as Tidwell, 2006; van Duyne et al., 2007; Yahoo! Inc., 2009; van Welie,
2009) or from the experience of a seasoned designer.

2.2.2 The organization of interaction design patterns

A coherent collection of patterns is called a pattern language (Dearden und Finlay, 2006).
The organizational scheme for a pattern language can be seen as a “map” for the solution
domain, because a complete pattern language should cover its whole solution domain (see
Dearden und Finlay, 2006; van Welie and van der Veer, 2003). Such an organizational
scheme has been presented in Hübscher et al. (2011). It is based on the nine layers of
Baxley’s (2003) model and is extended with a new category called “requirements patterns”
(see Figure 4). Thus, this gives it even more similarities with the approach of Garrett (2002).

10

Figure 4. The extended model for the organization of interaction design patterns
(adapted from Hübscher et al., 2011, based on Baxley, 2003)

This extended model is used in the work here to subdivide the solution domain. In the
following, the four main levels requirements, structure, behavior, and presentation are
described in more detail. More examples explaining the levels can be found in Hübscher et al.
(2011) and Baxley (2002).

2.2.3 The requirements level

The most basic level of the solution domain is that of requirements. In the context of this
work, the relevant requirements are those that have a perceivable impact on the user interface.
There are two types of such requirements (see Wiegers and Beatty, 2013 for the different
ways to discern requirements). The non-functional requirements say how a user interface is
designed, in a general, overall sense. The functional requirements say what the tasks are that
are supported; that is, what functionality should be implemented. A certain requirement can
influence the structure of a solution but it can also have a direct impact on its behavior or
presentation. The functional requirement “e-mail notifications” (van Duyne et al., 2007) could
be implemented as a simple user interface element with a pattern on the level of behavior or if
the feature is more complex it could also influence the structure of the user interface. The
non-functional requirement “site accessibility” (van Duyne et al., 2007) can contain aspects
with an influence on the level of behavior, such as the use of invisible navigation mechanisms
to support users with screen readers. Or it can influence the presentation level with the need
for heightened contrast to support visually impaired users.

11

2.2.4 The structure level

The next level is the structure of a user interface. This level is about patterns such as
conceptual models, page types, workflows, and information architectures. Baxley (2003)
defines the enclosing levels conceptual model, task flow, and organizational model here.
These patterns are not so much about the contents of individual screens but more about the
organization of several screens together. On this level it is decided whether, for example, a
wizard pattern or a guide pattern (see Baxley, 2002) should be used. The structure of a user
interface can further influence its behavior and presentation.

2.2.5 The behavior level

The patterns on the level of behavior are about the direct interaction of the user with the user
interface. Baxley (2003) names the enclosing levels of viewing and navigation, editing and
manipulation, and user assistance. Those include mechanisms for navigation, searching,
filtering, data entry, help, alerts, etc. The patterns on the level of behavior can then use
presentation patterns to support them. For example, certain user interface elements, such as
important buttons (behavior), can be supported in their visibility with a certain color for
emphasis (presentation).

2.2.6 The presentation level

The patterns on the presentation level concern the design of the visual appearance (color, icon
style, etc.) or the writing of texts (alerts, menu items, etc.) in a user interface. Baxley (2003)
describes the enclosing levels of layout, style, and text. They could also concern other audio-
visual aspects of a user interface not mentioned by Baxley (2002).

2.3 The gap between problem domain and solution domain

After the analysis of the problem and the solution domain, we focus on the gap between the
two. Wood (1997b) describes the gap as follows:

… while there are some excellent sources of information on user interface design, none contains
specific descriptions on how a designer transforms the information gathered about users and their work
into an effective user interface design. … Some might argue that is to be expected because that process
is a highly creative one and that creative processes are inexplicable by their nature. While this may be
true in a limited sense, designs don’t really appear as if by magic. [italics in the original] (Wood, 1997,
p. 3)

12

In the book edited by Wood (1997a), different authors describe this gap in various ways
(Graefe, 1997; Ludolph, 1997; Scholtz and Salvador, 1997; Simpson, 1997). Dirbach et al.
(2011) describe the field of software engineering in a similar way. This material has inspired
much of our approach, focusing on two separate aspects.

There is a first aspect of the gap that is mentioned by many authors (see section 3.1), even if
they describe it slightly differently. Here, it is called the distance to be bridged between
foundational user research and final design. This distance can be seen as the changing levels
of abstraction of the different steps’ results between foundational user research and the final
user interface design.

A second, more unusual way of looking at the gap is to see it as a result of the different
structures of the problem and the solution domain. From this point of view, the bridging can
be seen as a mapping of the individual parts of the two domains. When one looks at the
illustrations of the problem domain in section 2.1 and the solution domain in section 2.2 it is
striking that their setup is very different. As an example, results from foundational user
research provide neither the ideal navigation structure nor the ideal font size for a user
interface. Rather, one learns something about users and their tasks. From these user research
results, designers then have to derive the design of a user interface.

3 Existing research about the bridging of the gap

There is already some research about the bridging of the gap; however, much more material is
available on the aforementioned first way of looking at the gap than on the second.

3.1 Distance to be bridged

In relation to the final design of a user interface, the results of foundational user research have
a level of abstraction that is very high. In order to “overcome this distance” there are different
ways to segment it into sections. The three main ways to do this are:

• Different phases
• Iterations
• Intermediate representations

All authors in Wood’s (1997a) book use some methods of segmenting their approach into
different phases. Authors of different UCD approaches also do this (including those
mentioned above: Nielsen, 1993; Rantzer, 1996; Beyer and Holtzblatt, 1998; Roberts et al.,
1998; Mayhew, 1999; Constantine and Lockwood, 1999; Garrett, 2002; Baxley, 2002; Cooper

13

et al., 2007). Possible examples of design phases are conceptual design and prototyping
(Rantzer, 1996). More examples can be found in Hübscher et al. (2011). Such phases also
give advice on the sequence in which intermediate representations should be worked out. In
the work here, to a great extent, this aspect is already contained implicitly in the definitions of
problem and solution domain (see sections 2.1 and 2.2.).

Iteration is another important approach to breaking down the distance between analysis and
design. Iterative approaches have a long history in computer science (see Larman and Basili,
2003). But they are also an established mandatory aspect to successful design in UCD (see
International Organization for Standardization, 2010; Dow et al., 2009). As the use of
different phases, iteration is a concept that is mentioned throughout Wood’s (1997a) book and
it is also an important part of the different UCD approaches mentioned above.

A lot of material exists in the area of intermediate representations. The main groups of
intermediate representations are models, sketches and prototypes. The models can represent
aspects of the problem domain or the solution domain. They can be informal or formal,
abstract or concrete. Models in the solution domain are a way to visualize certain aspects of
the user interface before doing so with the more concrete sketches or prototypes.

Some established models in the problem domain are:

• Personas (Cooper, 1999; Goodwin, 2009)
• User roles and task cases (Constantine and Lockwood, 1999)
• Scenarios (Carroll, 2000)
• The five work models of Beyer and Holtzblatt (1998)
• User object models (Van Harmelen, 2001)
• Task organizational models (Mayhew, 1999)

Examples of models in the solution domain are:

• Navigation maps and abstract prototypes (Constantine and Lockwood, 1999)
• User environment design (Beyer and Holtzblatt, 1998)
• Storyboards (Greenberg et al., 2012)
• Wireframes (Brown, 2007)
• Mood boards (Endrissat et al., 2016)

Prototypes are the most concrete and maybe the representation with the most material.
Research has been carried out into the different techniques of prototyping (e.g., Warfel, 2009;
Snyder, 2003; Arnowitz et al., 2007). There is a plethora of prototyping tools on the market.
More theoretical treatises on prototyping can be found in Houde and Hill (1997), Lim et al.

14

(2008), and McCurdy et al. (2006). See Buxton (2007) for the difference between sketches
and prototypes.

3.2 Mapping between problem and solution domain

Another way of bridging the gap between the two domains is with the description of the
various influences of aspects of the problem domain on different levels of the solution
domain. This approach is mentioned less often in existing research discussing the gap.
Nevertheless, a number of authors provide some insight into how to map aspects of the
problem domain on the solution domain (e.g., Graefe, 1997; Ludolph, 1997; Scholtz and
Salvador, 1997; Simpson, 1997). However, these descriptions mostly describe mappings
between certain intermediary results, rather than between the problem and the solution
domain as a whole. If more direct mappings are mentioned, they focus on individual aspects
only. To the authors’ knowledge no overview exists of the different mappings between these
two domains.

There are many individual guidelines about single mappings between aspects of the problem
domain and certain levels of the solution domain. Work on design principles (e.g., Cooper
et al. 2007; Mayhew, 1992; U.S. Dept. of Health and Human Services, 2006; Matrai, 2010;
Johnson, 2007) as well as collections of interaction design patterns (Tidwell, 2006; van
Duyne et al., 2007; van Welie, 2009; Yahoo! Inc., 2009) provide valuable sources. Based on
such material, we will analyze the mapping of the problem domain on the solution domain in
the next section.

4 The mapping

Analysis of the mapping is outlined in this section, organized by the four levels of the solution
domain: requirements, structure, behavior, and presentation. As a “unit” of such a mapping in
the solution domain, we assume having several interaction design patterns. These patterns can
be formally described or those from other sources. It is not the aim of this work to list all the
possible patterns but rather to describe exemplary patterns in order to make the various
mappings clear. There are aspects of the problem domain that have a direct influence on the
solution domain and there are some that do this indirectly in combination with other aspects
of the problem domain. The effects within the problem domain have already been described in
section 2.1.

15

4.1 Requirements level

Figure 5 shows that part of the mapping affecting the level of requirements. The “units” of
this mapping are these interaction design patterns, which we call requirements patterns (see
section 2.2.3 above). In Table 2 there are examples for requirements patterns in relation to the
different aspects of the problem domain.

Figure 5. Mapping on the level of requirements

16

At the design level, requirements’ most essential task is to define the different types of user
interfaces that are needed. This depends on the number of primary personas (see Cooper et al.,
2007; Goodwin, 2009), but also on the platforms to support. General requirements concerning
the design of the user interface depend on the characteristics of the users such as accessibility
issues (e.g., Pfeil et al., 2009), the different situation of usage (e.g., day and nighttime usage),
and individual characteristics of these situations (e.g., a noisy environment). Furthermore,
there exist requirements arising from the objectives and general conditions of a project.

Table 2. Requirements patterns

Problem domain Type of pattern Examples References

Objectives
Essential functions (derived
from main objectives of a
project)

Applications on different
platforms to share, sync, and
store files across devices

Eisenmann et al. (2012)

General conditions
General conditions for the
design of the user interface

Limitations of hardware
available influence what is
possible in the user interface

Perkins et al. (1997)

What users? Different user interfaces for
different primary personas

User interfaces for expert
users and for beginners

Cooper et al. (2007);
Goodwin (2009)

Characteristics of a user
User interfaces for different
types of users

Accessible user interfaces;
user interfaces for seniors

Fink et al. (1997); Peissner
(2011); Pfeil et al. (2009);
Karahasanovića (2009)

What situation of usage? User interfaces for different
or changing contexts

User interfaces for day and
nighttime use

Schmidt et al. (1999); Dey
(2001)

Characteristics of the
environment

Optimizing a user interface
for a certain context

A user interface for a noisy
environment

Gerfelder et al. (2000); Kunc
et al. (2013)

Functions for support of
context

Magnification of an interface
area to facilitate clicking

Mankoff et al. (2000)

What tasks? Main functions A mapping of tasks to
functions

Maguire & Bevan (2002)

What platforms? User interfaces for different
platforms

A web version and a mobile
version of the user interface

Heller & Rivers (1996);
Eisenstein et al. (2000)

4.2 Structure level

Figure 6 shows the graphical mapping from the problem domain on the level structure of the
solution domain. See Table 3 for examples of patterns on the structure level.

17

Figure 6. Mapping on the level of structure

To define the structure of a user interface, one has to consider several aspects of the problem
domain: It is essential to know the characteristics of a user in order to match the conceptual
model of the interface (e.g., Roth et al., 2010; Zhang, 2008) and to organize the functions
based on the user’s mental model (e.g., Young, 2008). Furthermore, all aspects concerning
task of the problem domain are crucial for the structure of an interface. Research about what
task a user wants to perform influences the conceptual model (e.g., Yadav, 2010) and the

18

organization of functionality based on the number and the types of tasks to support (e.g., Vu
and Proctor, 2011) also have an influence on how the structure of the interface should be
defined. Moreover, the structure of the task (e.g., process navigation following a certain
business process, see Johnson et al., 2000) as well as its overall structure (e.g., Kosters et al.,
1996) should be considered. Characteristics of a task furthermore help to decide the
placement of important functions on different views of a user interface (Tidwell, 2006), and
characteristics of the environment help design the solution’s structure to support the structures
found in the environment (e.g., a process navigation following the structure of paper
documents used by users, Fouse et al., 2011). Finally, the user interface framework has to be
considered to define the types of processes or interaction contexts provided by the platform
used (e.g., Apple, 2016b; Microsoft, 2016).

Table 3. Patterns concerning structure

Problem Domain Type of Pattern Examples References

Characteristics of a user

Conceptual model based on
the mental model of the user

Metaphors such as shopping
cart, album

Roth et al. (2010); Zhang
(2008)

Organization of functions
based on mental model of the
user

Topical navigation (based on
card-sorting results)

Young (2008)

Characteristics of the
environment

User interface structure
following the structures found
in the environment

Process navigation following
the structure of paper
documents used by users

Fouse et al. (2011)

What tasks?

Conceptual model based on
the tasks

Conceptual model for
information-retrieval task

Yadav (2010)

Organization of functionality
based on the number and the
types of tasks to support

Topical navigation (based on
hierarchical task analysis)

Vu & Proctor (2011)

Structure of a task

User interface structure
following the structure of the
task

Process navigation following
a certain business process

Johnson et al., (2000)

Organization of functionality
based on the overall structure
of the main task

Task-based organizational
scheme

Kosters et al., (1996)

Characteristics of a task
Placement of important
functions on different views
of a user interface

Placing an “escape hatch” on
each page, which brings the
user back to a known place

Tidwell (2006)

User interface framework
Types of processes or
interaction contexts provided
by the platform used

Assistant (Mac OS) or wizard
(Windows); Window; Panel;
Pane

Apple (2016b); Microsoft
(2016)

4.3 Behavior level

Figure 7 shows the mapping from the problem domain to the behavior level and Table 4
shows examples of such patterns.

19

Figure 7. Mapping on the level of behavior

Aspects from the problem domain encountered at the behavior level include the
characteristics of a user, characteristics of the environment, what tasks, characteristics of a
task, as well as the user interface framework. Typical types of patterns involve mechanisms
and assistance of an interface. For aspects regarding users, mechanisms and assistance help to
support users’ abilities (Findlater and McGrenere, 2004) or special user groups (Lunn and
Harper, 2011). Characteristics of the environment for example include mechanisms that are

20

best for a certain situation of usage (e.g., tangible interactions vs. graphical interfaces, see
Horn et al., 2012). Aspects regarding tasks include mechanisms that are best for a certain user
goal (Cutrell and Guan, 2007) and support different variants of tasks (Linderman and Fried,
2004). The user interface framework, finally, could show different mechanisms available on a
platform that influence the behavior level for example.

Table 4. Patterns concerning behavior

Problem Domain Type of Pattern Examples References

Characteristics of a user

Mechanisms best for users
abilities

Dynamic vs. static menus Findlater & Mc Grenere
(2004)

Assistance best for certain
users

Providing assistance to older
users of dynamic web
content

Lunn & Harper (2011)

Characteristics of the
environment

Mechanisms best for a
certain situation of usage

Situations in which tangible
interaction seems to offer
advantages over graphical
interfaces for learning

Horn et al. (2012)

What tasks? Mechanisms best for a
certain user goal

Search vs. browsing Cutrell & Guan (2007)

Characteristics of a task

Mechanisms best for
different variants of a tasks

Textboxes vs. radio buttons,
checkboxes or drop-down
menus in web forms

Linderman & Fried (2004)

Assistance best for certain
tasks

Adaptive user interfaces that
support routine situations

Lavie & Meyer (2010)

User interface framework

Mechanisms available on a
platform

A system that considers a
user’s position in a task when
reasoning about when to
interrupt

Bailey et al. (2006)

4.4 Presentation level

Figure 8 highlights the mappings from the problem domain to the presentation level and
Table 5 shows examples of such patterns.

21

Figure 8. Mapping on the level of presentation

Linderman and Fried (2004) highlight the importance of using a text style that is appropriate
to the user (for example, for error messages). George et al. (2011) showed the importance of
the layout to fit the user and Taslim et al. (2009) revealed that the style is important to suit the
user, as children, for example, differ from adults in their preferences for interface type, font
type, and background color. Patterns about the characteristics of the environment concern the
text and the style (Hall et al., 2002; Schleicher et al., 2011). The layout should also help to

22

support the structure of a task (Chang and Nesbitt, 2006; Thalheim and Düsterhöft, 2000) and
characteristics of a task (Gruber, 1995; Microsoft, 2016; Wu and Yuan, 2003). Finally, the
system layer in the problem domain is represented by the styleguide and should consider
standard text, styles and layouts (Becker and Mottay, 2001; Kascak et al. 2013).

Table 5. Patterns concerning presentation

Problem Domain Type of Pattern Examples References

Characteristics of a user

Text style to fit the user Simple and understandable
error messages

Linderman & Fried (2004)

Layouts to fit users Layout for right to left
reading users

George et al. (2011)

Style that suits user Colorful appearance for
kids

Taslim et al. (2009)

Characteristics of the
environment

Match text to text used in
environment of usage

Labels similar to those in
some of the supporting
tools used by the users

Schleicher et al. (2011)

Style to fit the environment High contrast for low light
conditions

Hall et al. (2002)

Structure of a task

Layouts to fit structure of a
task

Structuring of a dialog to fit
the workflow

Thalheim & Düsterhöft
(2000)

Make structures visible Gestalt principles to make
structures more visible and
consistent

Chang & Nesbitt (2006)

Characteristics of a task

Placement of functions in
the layout

Important task placed
prominently in the layout

Microsoft (2016)

Make some functions
visible

Highlighting of dangerous
functions by red color

Wu & Yuan (2003)

Match text to task domain Use of task specific labels
(e.g., for designing
ontologies)

Gruber (1995)

Styleguide

Standard layouts Same layout for different
languages

Becker & Mottay (2001)

Standard styles Icon styles Kascak et al. (2013)
Standard text Standard button labels Becker & Mottay (2001)

5 Combination of the different ways to bridge the gap

After analyzing the mapping between problem and solution domain we will explore what a
combination of distance bridging and mapping could mean. Then, possible influences on the
creation of interaction design pattern languages are shown together with design rooms as a
possible area of the results’ direct application.

5.1 A combination of mapping and distance bridging

Figure 9 shows a combination of mapping between the two domains and a bridging of the
distance. As mentioned in section 3.1, the main ways to bridge the distance between problem
and solution domain are the use of different phases, iterations, and intermediate
representations. Here, in this analysis, the focus is on intermediate representations. They are
aligned alongside of several phases and some of them are mapped according to the different

23

design levels. The choice of variants of models, prototypes, and other methods are not meant
to be exhaustive; their only purpose is to illustrate the ideas presented here.

Figure 9. Combination of mapping and distance to be bridged

The objectives and general conditions of the project as well as the results of foundational user
research have the highest level of abstraction in relation to the final design. The raw data of
user research is condensed into models for the users, the environment, and the tasks.
Examples of such models are: personas (Cooper, 1999) for the users, the work models of
Beyer and Holtzblatt (1998) for the environment, and scenarios (Carroll, 2000) for the tasks.
These models are still very distant to the final design, but they are stripped of information not
relevant for interaction design. If the technical platform is given, its technical possibilities and
constraints as well as the possible interaction design patterns and styleguide have to be taken
as a basis for interaction design.

The next phase contains the models, which can be seen as a direct basis for the user interface.
They are still part of the problem domain, but because they are mapped on the different levels
of the solution domain, they are much closer to the final design than the set of previously
mentioned models. On the level of requirements, the example is not a model per se but a list

24

of requirements that result in certain features. A user object model (Van Harmelen, 2001) and
a task organizational model (Mayhew, 1999) can be seen as the foundation for the structure
of the user interface. In the solution domain, this structure can be modeled with storyboards
(Greenberg et al., 2012) and navigation maps (Constantine and Lockwood, 1999). On the
level of behavior, there can be detailed scenarios (Carroll, 2000) to describe details of the
various tasks. Functions for these tasks can be visualized with models such as abstract
prototypes (Constantine and Lookwood, 1999). Certain aspects relevant for presentation can
be captured in mood boards (Endrissat et al., 2016), which can directly inform, for example,
the construction of a color scheme (see chapter “Color” in Google, 2016, as an example).

Further concretization within the solution domain is the use of prototypes. A first step can be
to focus prototypes on the different levels of design. A prototype can show the different
requirements, without taking into account other aspects of interaction design. These
prototypes can be called role prototypes (Houde and Hill, 1997). Buxton (2007) calls such
representations, which are meant to explore what to build, sketches. Other prototypes can
focus on the different levels of structure, behavior, or presentation. These kinds of prototypes
can be called look and feel prototypes (Houde and Hill, 1997). Even closer to the final
solution are prototypes, which show all aspects of design together in a balanced way. If they
consider all the mentioned aspects together with technical feasibility, they can be called
integration prototypes (Houde and Hill, 1997). Based on all these models and prototypes, the
final design is implemented on the target platform.

The concepts of iteration and evaluation are included in Figure 9, showing that models and
prototypes should be iterated together with their evaluation and redesign.

5.2 Design room

One possible direct application of these results could be in the setup of a design room. A
design room is a room that is permanently available for a design team to work in, but also a
place to put the important preliminary project results on its walls. This helps the team always
to have the important information in view and not lose sight of the big picture. Several
authors advocate the use of such rooms in interaction design (Karat and Bennett, 1991;
Rantzer, 1997; Rohlfs, 1997; Simpson, 1997; Beyer and Holtzblatt, 1998). The grid shown in
Figure 9 can be taken as a grid for a wall in a design room in order to have an overview of the
transformation of foundational user research results into a user interface (see Figure 10 for an
example).

25

Figure 10. A wall in a design room of an educational project

5.3 Influence on the creation of interaction design pattern languages

For the construction of a formal interaction design pattern language, this work could mean the
following: First, sufficient patterns are needed to cover the whole solution domain and level
to which they belong must be clear (see Hübscher et al., 2011 for more on this topic). The
second point is that the patterns have to “refer back” to all the different related aspects of the
problem domain and to the levels of the solution domain that are prior to the one a pattern is
on. All these relations have to be considered in the description of a pattern. If the patterns do
not embody all these influences, the language might not be sufficiently differentiated.

6 Discussion

Here, some reflections will be made on the significance of this work together with a possible
outlook.

6.1 The significance of this work

The mapping presented in section 4 shows that almost every aspect of the problem domain
has an impact on various levels of the solution domain. For the task of designing a user
interface, this means that on every level the designer needs to be informed about all relevant

26

aspects of the problem domain. The results of this work can be seen as cognitive artifacts
(Norman, 1991) supporting problem solving and/or learning of HCI practitioners and
students. It can also support reflection-in-action (Schön, 1983; Löwgren and Stolterman,
2004) in order to improve one’s interaction design skills. Furthermore, it can help to improve
other UCD methods such as those for foundational user research, the setup of design rooms,
and the development of interaction design pattern languages.

This work was initially developed to support the education of HCI students. The first author
has used earlier versions of these ideas over several years in HCI education and it has been
possible to evolve the ideas over time. This publication might pave the way to use the work
even more in teaching and also in actual interaction design projects.

6.2 Outlook

Because this gap between user requirements and design of a user interface is very complex, it
is easy to find several aspects to improve this work and therefore close the gap even further.

As discussed in Hübscher et al., (2011) the model proposed by Baxley (2002) could be made
more complete and robust in various ways. It might also be worth trying to particularize
Shackel’s (2009) model even more. To have models of these two domains, which are very
elaborate, would be of great benefit in other areas of HCI as well. The sub-categories of the
four main aspects of Shackel’s (2009) model introduced in section 2.1 have only been defined
for the use in this work and not with a more general purpose in mind.

The examples of “patterns” mentioned in section 4 have been chosen purely to illustrate the
various mappings. It would be interesting to have a complete pattern language to do the
mapping with. The mapping could also be performed on the more detailed description of the
solution domain with all the sub-layers mentioned by Baxley (2002).

The aspects that have been considered in Figure 9 are mainly different phases and
intermediate representations in combination with the mapping. The aspects of iteration and
evaluation have only considered marginally here. But because iteration and evaluation are
very important topics in UCD, it would be very fruitful to include them in a more
fundamental way. The mapping has only been made between the models as a basis for the
user interface, the user interface modeling, and the prototyping. The gap between the user
and context models and the models as a basis for the user interface is still unresolved thus a
similar mapping could be done between these.

27

Acknowledgements

The authors would like to thank Zürcher Kantonalbank in Zurich, Switzerland for the support
and funding of this research.

References

Apple (2016a). Mac technology overview. Retrieved May 14, 2016, from

https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Tech
nology_Overview/

Apple (2016b). OS X human interface guidelines. Retrieved June 1, 2016, from
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSX
HIGuidelines/

Arnowitz, J., Arent, M., & Berger, N. (2007). Effective prototyping for software makers.
Elsevier, Amsterdam.

Bailey, B. P., Adamczyk, P. D., Chang, T. Y., & Chilson, N. A. (2006). A framework for
specifying and monitoring user tasks. Computers in Human Behavior, 22(4): 709-732.

Baxley, B. (2002). Making the web work: Defining effective web applications. New Riders.
Baxley, B. (2003). Universal model of a user interface. In Proceedings of the 2003

Conference on Designing for User Experiences (pp. 1–14). ACM, New York.
Becker, S. A., & Mottay, F. E. (2001). A global perspective on web site usability. Software,

IEEE, 18(1): 54-61.
Beyer, H. & Holtzblatt, K. (1998). Contextual design: Defining customer-centered systems.

Morgan Kaufmann, San Francisco.
Brown, D. (2007). Communicating design. Peachpit Press, Berkeley.
Buxton, B. (2007). Sketching user experiences. Morgan Kaufmann, Amsterdam.
Carroll, J. M. (Ed.). (2000). Making use: Scenario-based design of human-computer

interactions. The MIT Press, Cambridge, MA.
Chang, D., & Nesbitt, K. V. (2006). Developing gestalt-based design guidelines for multi-

sensory displays. In Proceedings of the 2005 NICTA-HCSNet Multimodal User
Interaction Workshop-Volume 57 (pp. 9-16). Australian Computer Society, Inc.

Constantine, L. L. & Lockwood, L. A. D. (1999). Software for use: A practical guide to the
models and methods of usage-centered design. Addison Wesley, Reading.

Cooper, A. (1999). The inmates are running the asylum. SAMS, Macmillan Computer
Publishing, Indianapolis.

Cooper, A., Reimann, R., & Cronin, D. (2007). About face 3: The essentials of interaction
design. Wiley Pub., Indianapolis.

28

Courage, C. & Baxter, K. (2004). Understanding your users: A practical guide to user
requirements. Morgan Kaufmann, San Francisco.

Cutrell, E., & Guan, Z. (2007). What are you looking for? An eye-tracking study of
information usage in web search. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 407-416). ACM.

Day, D., Lindgaard, G. & Noyes, J. (2009). Editorial: In Memoriam Brian Shackel 1927-
2007. Interacting with Computers, 21(5-6): 324.

Dearden, A. & Finlay, J., 2006. Pattern languages in HCI: A critical review. Human-
Computer Interaction, 21(1): 49-102.

Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing,
5(1): 4-7.

Dirbach, J., Flückiger, M., & Lentz, S. (2011). Software entwickeln mit Verstand. dpunkt,
Heidelberg.

Dow, S. P., Heddleston, K. & Klemmer, S.R. (2009). The efficacy of prototyping under time
constraints. In Proceedings of the Seventh ACM Conference on Creativity and Cognition
(C&C’09), (pp. 165–174). ACM, New York.

Eisenmann, T. R., Pao, M., & Barley, L. (2012). Dropbox: 'It Just Works'. Harvard Business
School Entrepreneurial Management Case, (811-065).

Eisenstein, J., Vanderdonckt, J., & Puerta, A. (2000). Adapting to mobile contexts with user-
interface modeling. In Mobile Computing Systems and Applications, 2000 third IEEE
workshop (pp. 83-92). IEEE.

Endrissat, N. Islam, G. & Noppeney, C. (2016). Visual organizing: Balancing coordination
and creative freedom via mood boards. Journal of Business Research, 69: 2353-2362.

Findlater, L., & McGrenere, J. (2004). A comparison of static, adaptive, and adaptable menus.
In Proceedings of the SIGCHI Conference on Human factors in Computing Systems (pp.
89-96). ACM.

Fink, J., Kobsa, A., & Nill, A. (1997). Adaptable and adaptive information access for all
users, including the disabled and the elderly. In International Conference UM97. (pp.
171-173). Springer, Wien.

Fouse, A., Weibel, N., Hutchins, E., & Hollan, J. D. (2011). ChronoViz: A system for
supporting navigation of time-coded data. In Proceedings of the 2011 Annual Conference
Extended Abstracts on Human Factors in Computing Systems (pp. 299-304). ACM.

Garrett, J. J. (2002). The elements of user experience: User-centered design for the web. New
Riders, Indianapolis.

George, R. P., Anwar, R., & Jeyasekhar, S. (2011). Visual reading patterns on Arabic
interfaces: Insights from eye tracking. Journal of Computing, 3(11).

Gerfelder, N., Spierling, U., & Müller, W. (2000). Novel user interface technologies and
conversational user interfaces for information appliances. In CHI’00 Extended Abstracts
on Human Factors in Computing Systems (pp. 41-42). ACM.

29

Goodwin, K. (2009). Designing for the digital age. Wiley, New York.
Google (2016). Material design. Retrieved June 1, 2016, from

https://www.google.com/design/spec/material-design
Graefe, T. M. (1997). Transforming representations in user-centered design. In L. E. Wood

(Ed.), User interface design: Bridging the gap from user requirements to design (pp. 57-
79). CRC Press, Boca Raton.

Greenberg, S., Carpendale, S., Marquardt, N. & Buxton, B. (2012). Sketching user
experiences: The workbook. Elsevier, Amsterdam.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5): 907-928.

Hackos, J. T. & Redish J. C. (1998). User and task analysis for interface design. John Wiley
& Sons, New York.

Hall, S., Cockerham, K., & Rhodes, D. (2002). What’s your color? [human-machine interface
design]. Industry Applications Magazine, IEEE, 8(2): 50-54.

Heller, H., & Rivers, D. (1996). So you wanna design for the web. Interactions, 3(2): 19-23.
Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning: The case

for a hybrid approach. Personal and Ubiquitous Computing, 16(4): 379-389.
Houde, S., & Hill, C. (1997). What do prototypes prototype? In M. Helander, T. Landauer, &

P. Prabhu (Eds.), Handbook of human-computer interaction (pp. 367–381). Elsevier
Science, Amsterdam, 2nd edition.

Hübscher, C., Pauwels, S., Roth, S., Bargas-Avila, J. A., & Opwis, K. (2011). The
organization of interaction design pattern languages alongside the design process.
Interacting with Computers, 23(3): 189-201.

International Organization for Standardization (ISO). (2010). ISO 9241-210: Human-centered
design for interactive systems. International Organization for Standardization, Genève.

Johnson, J. (2007). GUI bloopers 2.0: Common user interface design don’ts and dos. Morgan
Kaufmann, San Diego.

Johnson, P., Johnson, H., & Hamilton, F. (2000). Getting the knowledge into HCI:
Theoretical and practical aspects of task knowledge structures. In J. M. Schraagen, S. F.
Chipman, & V. L. Shalin (Eds.), Cognitive task analysis (pp. 201-214). Lawrence
Erlbaum and Associates, Mahwah.

Karahasanović, A., Brandtzæg, P., Heim, J., Lüders, M., Vermeir, L., Pierson, J., Lievens, B.,
Vanattenhoven, J., & Jans, G. (2009). Co-creation and user-generated content – elderly
people’s user requirements. Computers in Human Behavior, 25(3): 655-678.

Karat, J. & Bennett, J. L. (1991). Using scenarios in design meetings – a case study example.
In J. Karat (Ed.), Taking software design seriously (pp. 63-94). Academic Press
Professional, Inc., San Diego.

30

Kascak, L., Rébola, C. B., Braunstein, R., & Sanford, J. A. (2013). Icon design for user
interface of remote patient monitoring mobile devices. In Proceedings of the 31st ACM
International Conference on Design of Communication (pp. 77-84). ACM.

Kosters, G., Six, H. W., & Voss, J. (1996). Combined analysis of user interface and domain
requirements. In Requirements Engineering, 1996, Proceedings of the Second
International Conference on (pp. 199-207). IEEE.

Kunc, L., Macek, T., Labský, M., & Kleindienst, J. (2013). Speech-based text correction
patterns in noisy environment. In Human-Computer Interaction. Interaction Modalities
and Techniques (pp. 59-66). Springer, Berlin.

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. A brief history.
Computer, 36(6): 47-56.

Lavie, T., & Meyer, J. (2010). Benefits and costs of adaptive user interfaces. International
Journal of Human-Computer Studies, 68(8): 508-524.

Lim, Y. K., Stolterman, E. & Tenenberg, J. (2008). The anatomy of prototypes: Prototypes as
filters, prototypes as manifestations of design ideas. ACM Transactions on Computer-
Human Interaction (TOCHI), 15(2): 7.

Linderman, M., & Fried, J. (2004). Defensive design for the web: How to improve error
messages, help, forms, and other crisis points. New Riders Publishing.

Löwgren, J. & Stolterman, E. (2004). Thoughtful interaction design: A design perspective on
information technology. The MIT Press, Cambridge.

Ludolph, F. (1997). Model-based user interface design: Successive transformations of a
task/object model. In L. E. Wood (Ed.), User interface design: Bridging the gap from
user requirements to design (pp. 81-107). CRC Press, Boca Raton.

Lunn, D., & Harper, S. (2011). Providing assistance to older users of dynamic web content.
Computers in Human Behavior, 27(6): 2098-2107.

Maguire, M., & Bevan, N. (2002). User requirements analysis. In J. Hammond, T. Gross & J.
Wesson (Eds.), Usability: Gaining a competitive edge (pp. 133-148). Springer US.

Mankoff, J., Hudson, S. E., & Abowd, G. D. (2000). Interaction techniques for ambiguity
resolution in recognition-based interfaces. In Proceedings of the 13th Annual ACM
Symposium on User Interface Software and Technology (pp. 11-20). ACM.

Matrai, R. (Ed.) (2010). User interfaces. InTech, Rijeka, Croatia.
Mayhew, D. J. (1992). Principles and guidelines in software user interface design. Prentice

Hall, Englewood Cliffs.
Mayhew, D. J. (1999). The usability engineering lifecycle: A practitioner’s handbook for user

interface design. Morgan Kaufmann Publishers, San Francisco.
McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., & Vera, A. (2006). Breaking the

fidelity barrier: An examination of our current characterization of prototypes and an
example of a mixed-fidelity success. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 1233–1242). ACM.

31

Microsoft (2016). Design applications for the Windows desktop. Retrieved June 1, 2016, from
https://developer.microsoft.com/en-us/windows/desktop/design

Nielsen, J. (1993). Usability engineering. Academic Press, Boston.
Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction:

Psychology at the human-computer interface (pp. 17-38). Cambridge University Press.
Peissner, M., Schuller, A., & Spath, D. (2011). A design patterns approach to adaptive user

interfaces for users with special needs. In Human-Computer Interaction. Design and
Development Approaches (pp. 268-277). Springer, Berlin.

Perkins, R., Keller, D. S., & Ludolph, F. (1997). Inventing the Lisa user interface.
Interactions, 4(1), 40-53.

Pfeil, U., Arjan, R., & Zaphiris, P. (2009). Age differences in online social networking – a
study of user profiles and the social capital divide among teenagers and older users in
MySpace. Computers in Human Behavior, 25(3): 643-654.

Rantzer, M. (1996). The delta method – a way to introduce usability. In D. Wixon & J.
Ramey (Eds.), Field methods casebook for software design (pp. 91–112). Wiley
Computer Pub., New York.

Rantzer, M. (1997). Mind the gap: Surviving the dangers of user interface design. In L. E.
Wood (Ed.), User interface design: Bridging the gap from user requirements to design
(pp. 153-184). CRC Press, Boca Raton.

Roberts, D., Berry, D., Isensee, S., & Mullaly, J. (1998). Designing for the user with OVID:
Bridging user interface design and software engineering. Software engineering series.
Macmillan Technical Pub., Indianapolis.

Rohlfs, S. (1997). Transforming user-centered analysis into user interface: The redesign of
complex legacy systems. In L. E. Wood (Ed.), User interface design: Bridging the gap
from user requirements to design (pp. 185-214). CRC Press, Boca Raton.

Roth, S. P., Schmutz, P., Pauwels, S. L., Bargas-Avila, J. A., & Opwis, K. (2010). Mental
models for web objects: Where do users expect to find the most frequent objects in online
shops, news portals, and company web pages? Interacting with Computers, 22(2): 140-
152.

SAP (2016). SAP design guidelines and resources. Retrieved June 1, 2016, from
https://experience.sap.com/guidelines/

Schleicher, R., Shirazi, A. S., Rohs, M., Kratz, S., & Schmidt, A. (2011). WorldCupinion
experiences with an android app for real-time opinion sharing during soccer world cup
games. International Journal of Mobile Human Computer Interaction (IJMHCI), 3(4):
18-35.

Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to context than location.
Computers & Graphics, 23(6): 893-901.

32

Scholtz, J., & Salvador, T. (1997). Systematic creativity: A bridge for the gaps in the software
development process. In L. E. Wood (Ed.), User interface design: Bridging the gap from
user requirements to design (pp. 215-244). CRC Press, Boca Raton.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Basic
Books, New York.

Shackel, B. (2009). Usability – context, framework, definition, design and evaluation.
Interacting with Computers, 21(5-6): 339-346.

Shneiderman, B. & Plaisant, C. (2004). Designing the user interface: Strategies for effective
human-computer interaction. Addison Wesley, Boston, 4th edition.

Simpson, K. T. (1997). The UI war room and design prism: A user interface design approach
from multiple perspectives. In L. E. Wood (Ed.), User interface design: Bridging the gap
from user requirements to design (pp. 245-274). CRC Press, Boca Raton.

Snyder, C. (2003). Paper Prototyping the fast and easy way to design and refine user
interfaces. Morgan Kaufmann, Elsevier Science, San Francisco.

Taslim, J., Adnan, W. A. W., & Bakar, N. A. A. (2009). Investigating children preferences of
a user interface design. In Human-Computer Interaction. New Trends (pp. 510-513).
Springer, Berlin.

Thalheim, B., & Düsterhöft, A. (2000). The use of metaphorical structures for internet sites.
Data & Knowledge Engineering, 35(2): 161-180.

Tidwell, J. (2006). Designing interfaces. O’Reilly, Beijing.
U. S. Dept. of Health and Human Services. (2006). The research-based web design &

usability guidelines. U.S. Government Printing Office, Washington, enlarged/expanded
edition.

Van Duyne, D. K., Landay, J. A., & Hong, J. I. (2007). The design of sites: Patterns for
creating winning web sites. Prentice Hall, Upper Saddle River, 2nd edition.

Van Harmelen, M. (Ed.). (2001). Object modeling and user interface design: Designing
interactive systems. Addison-Wesley Longman, Inc., Reading.

Van Welie, M. (2009). Patterns in interaction design. Retrieved May 7, 2009, from
http://www.welie.com/patterns/

Van Welie, M. & van der Veer, G. C. (2003). Pattern languages in interaction design:
Structure and organization. In Proceedings of Interact, vol 3: 1-5.

Vu, K. P. L., & Proctor, R. W. (Eds.). (2011). Handbook of human factors in web design.
CRC Press, Boca Raton.

Warfel, T. (2009). Prototyping: A practitioner’s guide. Rosenfeld Media, Brooklyn.
Wiegers, K. & Beatty, J. (2013). Software requirements. Microsoft, Redmond.
Wood, L. E. (1997a). User interface design: Bridging the gap from user requirements to

design. CRC Press, Boca Raton.

33

Wood, L. E. (1997b). Introduction: Bridging the design gap. In L. E. Wood (Ed.), User
interface design: Bridging the gap from user requirements to design (pp. 1-14). CRC
Press, Boca Raton.

Wu, J.-H., & Yuan, Y. (2003). Improving searching and reading performance: The effect of
highlighting and text color coding. Information & Management, 40(7): 617-637.

Yadav, S. B. (2010). A conceptual model for user-centered quality information retrieval on
the world wide web. Journal of Intelligent Information Systems, 35(1): 91-121.

Yahoo! Inc. (2009). Design pattern library. Retrieved May 29, 2009, from
http://developer.yahoo.com/ypatterns/

Young, I. (2008). Mental models: Aligning design strategy with human behavior. Rosenfeld
Media, New York.

Zhang, Y. (2008). The influence of mental models on undergraduate students’ searching
behavior on the web. Information Processing & Management, 44(3): 1330-1345.

