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1. Summary

Steroid hormones have a pivotal role in many physiological processes. For example, the glucocorticoids
are crucial in the regulation and maintenance of sugar balance, immunity, stress response, and mood,
whereas the mineralocorticoids are involved in electrolyte- and water balance thus regulating blood
pressure. Androgens are crucial for muscle function, cardiovascular system and the development and
maintenance of male characteristics. Therefore, the disruption of the steroidogenesis is associated with
severe diseases such as cancer, metabolic syndrome, cardiovascular diseases, immune disorders,

impaired brain function, and developmental dysfunctions.

In the first part of this thesis, we were interested in the in vitro investigation of xenobiotics affecting the
human steroidogenesis. We focused on the adrenal steroidogenesis, which is rather neglected by many
regulatory agencies, despite its pivotal role in humans. We provided a critical overview of the current
available cell lines used to screen for potential endocrine disruptors and to study their effects on adrenal
steroidogenesis. Moreover, we discussed their advantages/disadvantages, and the need for
improvements of the well-established human carcinoma cell line H295R and the associated validated
OECD test guideline 456, namely the “H295R steroidogenesis assay”. This resulted in a refined version
of the H295R steroidogenesis assay, which is distinguished from the currently used OECD protocols by
analyzing multiple adrenal steroids simultaneously with exclusive separation techniques combined with
mass spectrometry, as well as including additional controls, such as medium composition at the starting
time and reference compounds with known mechanism. The obtained results of the steroid changes
can then be further combined with the observed effects on gene expression, providing first mechanistic
hints on steroidogenesis disruption. By using the newly established refined version of the H295R
steroidogenesis assay, we demonstrated that exposure of H295R cells to the UV-filter octyl
methoxycinnamate and the plasticizer acetyl tributylcitrate resulted in increased corticosteroid levels, as
well as enhanced CYP11B2 expression, similar to the corticosteroid inducer torcetrapib (positive
control). To summarize, the refined H295R steroidogenesis assay is a valuable in vitro tool to screen
and study chemicals potentially disrupting the production of adrenal steroids and provides initial

mechanistic evidence in combination with gene expression data.

Many psychoactive drugs can lead to immense increases in cortisol by stimulating the hypothalamic-
pituitary-adrenal (HPA) axis. However, a comprehensive analysis of drug induced changes of several
steroids, such as glucocorticoids, mineralocorticoids and adrenal androgens along with their full time
courses is missing. In the second part of this thesis, we studied the effects of lysergic acid diethylamide
(LSD), which has sparked a renewed interest in psychiatric research, lisdexamfetamine, a new drug for
the treatment of attention deficit hyperactivity disorder (ADHD), and D-amphetamine on the circulating
steroids in vivo. Plasma samples were obtained from two individual clinical trials, where healthy
volunteers were administered a single dose of either LSD (200 pg), lisdexamfetamine dimesylate (100
mg) or immediate-release D-amphetamine sulfate (40.3 mg) at equimolar doses. Both studies were
conducted using a randomized, double-blind, placebo-controlled, cross-over design and plasma steroids
for the concentration—time profiles were quantified by ultra-high pressure liquid chromatography-tandem

mass spectrometry (UHPLC-MS/MS). We could demonstrate, that LSD produces significant acute



effects on circulating steroids compared to placebo in 16 healthy volunteers. The glucocorticoids cortisol,
cortisone, corticosterone and 11-dehydrocorticosterone were significantly increased following LSD
administration, indicating HPA axis stimulation. Cortisol and corticosterone reached the maximum
concentration (cmax) after 2.5 h and 1.9 h of LSD administration, respectively. Evaluation of the
relationship between the LSD concentration in plasma and the glucocorticoid response to LSD indicated
no acute pharmacological tolerance. Furthermore, the androgens dehydroepiandrosterone (Cmax and the
area under the concentration-time curve from time 0 to 10 h (AUCi0)) and androstenedione (AUCu1o)
were significantly increased by LSD, but not the other androgens, mineralocorticoids or progestogens

compared to placebo.

We showed, that the administration of equivalent doses of lisdexamfetamine and D-amphetamine exhibit
an identical pharmacokinetic profile for plasma D-amphetamine. However, lisdexamfetamine
administration showed a significantly longer onset time (1.4 vs. 0.8 h) and tmax (4.4 vs. 3.2 h) for plasma
D-amphetamine compared to D-amphetamine administration, due to the rate-limiting hydrolysis of
lisdexamfetamine. Furthermore, lisdexamfetamine and D-amphetamine showed a similar enhancement
of glucocorticoid production (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, and 11-
deoxycortisol), increases in androgen precursors (dehydroepiandrosterone, its sulphated metabolite,
and androstenedione) and adrenocorticotropic hormone (ACTH) in plasma in 24 healthy volunteers.
This suggests a HPA axis stimulation. Moreover, an acute pharmacological tolerance of the drug-
induced change in active glucocorticoids was demonstrated. The other circulating steroids, such as the
mineralocorticoids (aldosterone and 11-deoxycorticosteone), androgens (testosterone and
androsterone) and progestins (17a-hydroxyprogesterone and progesterone (but not the male

progesterone levels)), were not affected by lisdexamfetamine or D-amphetamine.

In conclusion, LSD, lisdexamfetamine and D-amphetamine had an acute and profound effect on the
circulating steroids, especially on the glucocorticoids, suggesting HPA stimulation. This emphasizes the
need for further research to understand drug induced changes in steroid homeostasis during chronic
administration of amphetamine based ADHD treatments, notably in the pediatric population. Obtained

results, should then support an appropriate benefit-risk assessment of these drugs.



2. Preface

This thesis describes “in vitro” and “in vivo” investigations | undertook to address toxicological effects of
xenobiotics in human steroidogenesis. The main body of the text consists of published research, a
review article and work in preparation for publication. Detailed within the manuscripts is a precise
description of the current understanding of the human steroidogenesis, an outline of the current needs

of the research field and based on my experimental observations, future perspectives.



3. Steroidogenesis

In humans, the adrenal cortex, the gonads (testes and ovaries), and the placenta synthesize steroid
hormones [1]. These are all derived from cholesterol and have a pivotal role in controlling a wide variety
of physiological functions. Alterations in steroidogenesis are associated with cancer, metabolic
syndrome, cardiovascular diseases, immune disorders, neurobehavioral and learning dysfunctions, and
disorders of sexual differentiation, reproduction, and fertility [2-4]. Steroids are synthesized de novo from
cholesterol and further metabolized by the cytochrome P450 (CYP) enzymes and hydroxysteroid
dehydrogenases [3] in the mitochondria and smooth endoplasmic reticulum [2]. Furthermore, the
produced steroids are secreted into blood circulation, where they are in an equilibrium of protein-bound
and unbound steroids. To ensure an ubiquitous distribution and increased half-life, steroids are mainly
bound to corticosteroid-binding globulin (CBG), sex hormone-binding globulin (SHBG), or albumin [1].
Only low concentrations of the steroids are unbound and therefore available to exert effects on their
target organs. Alternatively, unbound steroids can be further metabolized in the peripheral tissues [5,
6]. Steroids are mainly excreted in the urine (75%) or feces following bile degradation (25%) [7, 8].
According to their physiological behavior [9] and the nuclear receptor to which steroids bind [2, 10], they
can be classified as glucocorticoids, mineralocorticoids, androgens, estrogens and progestogens.
Steroids upregulate target genes by first binding to their corresponding nuclear receptor
(glucocorticoid-, mineralocorticoid-, progesterone-, androgen-, or estrogen receptor). The steroid-
receptor complex then translocates into the nucleus and binds to specific response elements on the

promotor of their target genes [11-13].

The hypothalamus has a pivotal role in the coordination of the endocrine system [14]. Two distinct areas
of the hypothalamus, the suprachiasmatic nucleus (SCN) and the paraventricular nucleus (PVN)
regulate the “biological clock” and hypothalamic-pituitary-adrenal (HPA) axis, respectively. The light-
activated CLOCK system, causes the circadian release of glucocorticoids, reaching their highest
concentration in the morning and the lowest in the evening [15-17]. Furthermore, the CLOCK system
influences the activity of the HPA axis. This neuroendocrine axis, consisting of the PVN, the pituitary
and the adrenal gland, mediates the adaptive response to stressors, besides keeping circadian activity
[15]. The PVN releases corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), which
induce the secretion of adrenocorticotropic hormone (ACTH) from the pituitary. Subsequently, the ACTH
then stimulates adrenal synthesis of glucocorticoids in the adrenal gland. Additionally, there is a
feedback loop from the circulating glucocorticoids resulting in inhibited secretion of CRH and ACTH [14,
18]. A disrupted circadian rhythm of glucocorticoids or chronic activation of the HPA axis may result in
an impaired immune system, obesity/dyslipidemia, insulin resistance, alternation in mood and cognition,

and cardiovascular diseases [15, 19].

The mineralocorticoid aldosterone is regulated by the renin-angiotensin-aldosterone system (RAAS), as

well as serum potassium and sodium concentrations [20, 21].

The human adrenal glands, which are located above the kidney, are composed of the medulla
(producing catecholamines) and the cortex (Fig. 1). The cortex can be further divided into three
morphologically and biochemically distinct zones (Fig. 1) from the outermost zona glomerulosa, to the

zona fasciculata, to the innermost zona reticularis [18, 22].
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Fig. 1. Schematic overview of the adrenal gland and the different layers. Adapted from [23].

The zona glomerulosa synthesizes the mineralocorticoids. They are involved in electrolyte- and water
balance in the kidney (reabsorption of sodium and secretion of potassium and hydrogen ions), thus
regulating blood pressure [18, 24, 25]. Aldosterone is the most potent mineralocorticoid receptor
activator, followed by 11-deoxycorticosterone, corticosterone, and cortisol [26]. Excessive production of

aldosterone by the adrenal gland can lead to primary hyperaldosteronism [27].

Glucocorticoids produced in the zona fasciculata play a crucial role in regulating cellular metabolism
(since they can stimulate gluconeogenesis) [1], immune system [13], modulation of the central nervous
system [3, 28], cardiovascular system [18] and the stress response [3]. The main human glucocorticoid
is cortisol [29], followed by corticosterone [1]. The interconversion of the active glucocorticoids, cortisol
and corticosterone, to their inactive metabolites, cortisone and 11-dehydrocorticosterone, is catalyzed
by the enzyme 113-hydroxysteroid dehydrogenase type 2 (11BHSD2). The reverse reaction is catalyzed
by 11B-hydroxysteroid dehydrogenase type 1 (11BHSD1) [13]. An inappropriate excess of cortisol
results in Cushing’s syndrome, whereas Addison’s disease is characterized by an insufficient production
of cortisol [30].

Androgens are crucial for the development and maintenance of male characteristics [31]. The weak
androgens androstenedione, and dehydroepiandrosterone (DHEA), as well as its sulphate conjugate
(DHEAS), which are the most abundant steroids in the circulation, are synthesized in the zona reticularis
[18, 32]. In the periphery, they can be further metabolized to the main androgen testosterone [18].
Moreover, the zona reticularis is able to produce minor amounts of testosterone [33]. Nevertheless,

testosterone is mainly produced in the testis by the Leydig cells [31]. Testosterone is further converted



to the more potent androgen 5a-dihydrotestosterone in the target tissues such as prostate, skin, and
hair follicles [1, 34]. Low concentrations of estrogens and progestins are produced in the adrenal cortex
[35]. Estrogens, specifically estradiol and the less potent estrone, are crucial for the development and
maintenance of female sexual characteristics. They are produced in the ovaries or by enzymatic
conversion of androgens in the peripheral tissues [8, 36]. Progestins have a pivotal role during the

menstrual cycle and pregnancy, where progesterone is the main progestin [37].

A schematic overview of the steroidogenesis (major produced steroids and involved enzymes) is
depicted in Fig. 2. The steroid biosynthesis is described in detail in the published review paper

“Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools”.
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Fig. 2. Overview of steroidogenesis. Steroids are depicted in bold, the enzymes in regular and the
corresponding catalyzing reactions by arrows. CYP = cytochrome P450; HSD = hydroxysteroid

dehydrogenase; SULT = sulfotransferase; StAR = steroidogenic acute regulatory protein.




4. In vitro investigations of xenobiotics affecting human

steroidogenesis

4.1 Adrenocortical endocrine disruption

There is a raised global concern in the identification, as well as hazard- and risk assessment of endocrine
disruptors [20, 38, 39]. The WHO defines an endocrine disruptor as an “exogenous substance or mixture
that alters function(s) of the endocrine system and consequently causes adverse health effects” [20].
Endocrine disruptors can affect the endocrine system, through multiple mechanisms, such as: hormone
mimicking, hormone receptor blocking, or interference with the synthesis, transport, metabolism, or
excretion of an endogenous hormone [40]. Potential endocrine disruptors can be found in personal care
products, cosmetics, pharmaceuticals, agricultural and industrial chemicals, additives or contaminants in

food [20, 41]. They can cause adverse effects in humans and in wildlife [42].

The Organisation for Economic Co-operation and Development (OECD) has set out specific framework for
testing and assessing endocrine disrupters. Importantly, this framework is only intended to be a guide and
is not to be a testing strategy. It consist of levels of increasing complexity, starting at level 1 which
recommends using existing data e.g. in silico observations and progresses to in vitro and in vivo assays in
the higher levels [43]. In order to practically implement the “Three Rs” - Replacement, Reduction and
Refinement in animal testing [44], a part of the strategy has be a drive to develop more predictable in vitro
models, which are cheaper, less laborious and have a greater throughput rate compared to the in vivo
studies. The currently available cell lines used for studying the effects of chemicals on adrenal and gonadal
steroidogenesis are presented in the following section within the published review paper “Disruption of
steroidogenesis: Cell models for mechanistic investigations and as screening tools”“. Additionally, the

limitations and required improvements of the cell systems and protocols are discussed.

Many regulatory agencies focus their endocrine disruption testing strategies towards developmental and
reproductive toxicity, whereas adrenocortical function in adults is rather neglected [38, 45]. This is
inconsistent with the pivotal role of the adrenal gland in the endocrine system, where the adrenal cortex
synthesizes more than 30 different steroids [1] and is the exclusive endocrine organ in the production of
glucocorticoids and mineralocorticoids [35]. The adrenal cortex is reported to be the most common
toxicological target in the endocrine system [38, 46]. In the past it was shown, that compounds affecting the
adrenal gland function, lead to therapy and drug development failures. For example, etomidate, an
anesthetic induction agent used in the clinics, can induce fatal adrenocortical insufficiency [47] by CYP11B1
inhibition [48]. Moreover, torcetrapib, developed as a lipid reducer by a pharmaceutical company, increased
aldosterone plasma levels, as well as it induced the expression of the enzymes CYP11B2 and CYP11B1.

This resulted in an increased morbidity and mortality in torcetrapib-treated patients and therefore
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termination of the clinical drug development trial [49, 50]. Altogether, this emphasizes once more the need

to identify adrenocortical endocrine disruptors.

Currently, there are only limited adrenocortical cell lines available [51, 52], with the human carcinoma cell
line H295R being the most well established. Additional adrenocortical cell systems (human derived cell
lines: NCI-H295, H295A, the H295R clones H295R-S1, H295R-S2 and H295R-S3, as well as HAC13,
HAC15 and HAC50; mouse derived cell lines: Y-1, ATC1 and ATC7-L) for testing adrenal toxicity are
presented in detail in the published review paper “Disruption of steroidogenesis: Cell models for mechanistic
investigations and as screening tools" together with their specific benefits and disadvantages. Due to its
ability to express the majority of enzymes involved in human steroidogenesis (in contrast to the human
situation, where there is a tissue and developmental stage specificity), as well as to secrete adrenal
steroids, the H295R cell line provides an excellent cell model to study adrenocortical endocrine disruptors
[53-55]. At present, both the OECD and the Environmental Protection Agency have issued guidelines for
the H295R steroidogenesis assay to screen for chemicals affecting the steroid production. In this assay,
the H295R cells are incubated with the chemical of interest for 48 h in 2.5% Nu-serum supplemented
medium [56, 57]. However, these protocols are only validated for testosterone and estradiol, which are only
minor products of the adrenals, and not for the glucocorticoids, mineralocorticoids and adrenal androgens.

Additionally, the assay does not aim to provide mechanistic data on the mode of action.

Further limitations of the H295R cell system (e.g. insensitivity towards ACTH), as well as the protocol
recommended by the OECD guideline, are listed in the published review paper “Disruption of
steroidogenesis: Cell models for mechanistic investigations and as screening tools”. Moreover, we
identified specific unanswered experimental gaps in the current H295R cell system and its corresponding
recommended protocol, which needed to be addressed. This included,1) usage of a stimulated cell system
for studying inhibitors, 2) extended steroid profiling for a comprehensive steroid disturbance understanding,
3) inclusion of eligible controls (reference compounds, as well as medium control at the starting time of an
experiment) for an enhanced data interpretation, 4) the requirement of gas- or liquid chromatography
combined with mass spectrometry based detection methods instead of antibody-based approaches in the

hormone pattern analysis, is addressed.

In the follow up manuscript, “Steroid profiling in H295R cells to identify chemicals potentially disrupting the
production of adrenal steroids”, we sequentially addressed all the points mentioned above in order to
establish a refined H295R steroidogenesis assay. Moreover, the time-dependent steroid synthesis in
H295R cells was studied. Our improved protocol was then used to test 31 compounds (reference and test
compounds) on their ability to affect the adrenal steroidogenesis, followed by concentration-dependent

experiments and steroidogenic gene expression investigations for a subset of compounds of interest.
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4.2

Published review paper: Disruption of steroidogenesis: Cell models

for mechanistic investigations and as screening tools
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In the modern world, humans are exposed during their whole life to a large number of synthetic
chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to
the development and/or progression of major diseases. Every year approximately 1000 novel chemicals,
used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the
market, often with limited safety assessment regarding potential endocrine activities. Steroids are
essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for

i?;‘évs;is" endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell
Testis lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations
Ovary and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting
Leydig activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order
Granulosa to apply them properly, and there is a great demand for improved cell-based testing systems and
Endocrine disrupting chemical protocols. This review intends to provide an overview of the available cell lines for studying effects of
In vitro chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future
improvements of cell-based testing systems and protocols.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction and disruption of endocrine functions leading to adverse health

effects. This is considered by the European Union (EU) that defines

There is an increasing interest in the identification of chemicals
that interfere with the endocrine system. The Endocrine Society
defines an endocrine disrupting chemical (EDC) as an “exogenous
chemical or mixture of chemicals that can interfere with any aspect
of hormone action” [1]. It is important, in our opinion, to
distinguish between transient influences followed by adaptation

* Corresponding author.
E-mail address: alex.odermatt@unibas.ch (A. Odermatt).

http://dx.doi.org/10.1016/j.jsbmb.2016.01.009
0960-0760/© 2016 Elsevier Ltd. All rights reserved.

an EDC as an “exogenous substance that causes adverse health
effects in an intact organism, or its progeny, secondary to changes
in endocrine function” [2,3]. The protection of human health and
the environment is of high priority for major organizations and
regulatory authorities. Regarding the large number of chemicals
that need to be tested for potential endocrine disrupting effects, in
programs such as REACH (Registration, Evaluation, Authorization
and Restriction of Chemicals, http://ec.europa.eu/growth/sectors/
chemicals/reach/index_en.htm), the EPA’s EDSP (Environmental
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Protection Agency’s Endocrine Disruptor Screening Program,
http://www.epa.gov/endo/) or the FDA (U.S. Food and Drug
Administration) guidelines for drug development (http://www.
fda.gov/Drugs/GuidanceComplianceRegulatorylnformation/Gui-
dances/), it is important to first evaluate the most relevant
chemicals, i.e. chemicals with evidence of causing adverse effects
and for which relevant exposure is known or can be expected.
Besides chemicals used in industrial production, agriculture,
electronics, and consumer products, the safety of pharmaceuticals
and food constituents need to be assessed. Thus, a huge number of
chemicals need to be tested for a wide range of possible adverse
effects, including such caused by a disruption of steroid hormone
action.

Amongst other endocrine hormones, steroids play crucial roles
in the regulation of nearly all physiological processes. Several
reports provided evidence for an association of disturbances of
steroid hormone action caused by exogenous chemicals with
developmental defects [4], infertility and reproductive dysfunc-
tions [5,6], testicular, prostate and breast cancer [7-9], obesity and
diabetes [10-12], immune disorders and neurobehavioral and
learning dysfunctions [13,14]. Further research is needed to
identify other chemicals disrupting steroid hormone action, to
evaluate the mechanisms by which such chemicals disrupt steroid
hormone action, and to assess the critical exposure windows and
concentrations that are relevant regarding development and
progression of diseases.

For the initial endocrine safety testing of a large number of
chemicals, improved in silico and in vitro assays are needed to
facilitate the prioritization of chemicals for further toxicological
investigations. Cell-based steroidogenesis assays represent a
suitable starting point to assess disturbances of steroid biosyn-
thesis, induced by direct inhibition of steroidogenic enzymes or by
affecting their expression. The advantage of the cell-based models
is that several enzymes and receptors required for the synthesis of
steroids, as well as the signaling pathways regulating their
activities, may be covered in a single assay. In addition to the
identification of potentially hazardous chemicals, the cell-based
steroidogenesis assays allow first mechanistic insights into the
mode-of-action of EDCs; however, the users need to be aware of
the limitations of the system applied in order to avoid drawing
inappropriate conclusions and over-interpretation of results. This
review focuses on the cell lines that are available to study
steroidogenesis, their advantages and limitations, and the existing

gaps for early safety testing of chemicals disrupting steroid
homeostasis.

2. Steroidogenesis

Primary organs that are producing steroids from their precursor
cholesterol include the adrenal glands and the gonads, with testes
in males and ovaries in females. Additionally, in females the
placenta produces high amounts of progesterone during pregnan-
cy [15]. Other organs expressing steroidogenic enzymes include
the brain [16,17], the intestinal tract [18] and the skin [19].
However, the steroids produced in these tissues seem to be
restricted to affect local rather than systemic levels, and the
relevance of steroidogenesis in these tissues will not be discussed.

The major steroidogenic organs synthesize steroids de novo
from cholesterol that is either produced directly by the cell from
acetyl-CoA or taken up from dietary cholesterol bound to low-
density lipoproteins (LDL) in the circulation (for a comprehensive
review see [20]). Cholesterol can be esterified, stored in lipid
droplets and be released by the activity of hormone-sensitive
lipase. The rate-limiting step in adrenal and gonadal steroidogen-
esis is the uptake of cholesterol into the mitochondria. The
steroidogenic acute regulatory protein (StAR) facilitates the
transfer of cholesterol from the outer to the inner mitochondrial
membrane, and its conversion to pregnenolone by the cytochrome
P450 side chain cleavage enzyme (P450scc, CYP11A1) in coopera-
tion with adrenodoxin reductase that functions as an electron
transfer protein of CYP11A1 [20]. Dependent on the organ,
pregnenolone is then further converted by tissue- and cell type-
specific enzymes into androgens, estrogens, glucocorticoids or
mineralocorticoids.

The cortex of the adult human adrenals is responsible for the
production of mineralocorticoids in the zona glomerulosa, gluco-
corticoids in the zona fasciculata and precursors of active
androgens in the zona reticularis (Fig. 1). The zona reticularis
expresses high levels of CYP17A1 [21], which possesses 17a-
hydroxylase activity for the formation of 17«-hydroxypregneno-
lone and 17,20-lyase activity for the subsequent formation of
dehydroepiandrosterone (DHEA). The high expression of cyto-
chrome b5, in the presence of cytochrome P450 reductase, allows
efficient 17,20-lyase activity that is needed for the production of
DHEA [20,22]. Additionally, the zona reticularis expresses high
levels of the steroid sulfotransferase SULT2A1 that is responsible

Adrenal Gland

Zona Reticularis Zona Fasciculata

: Zona Glomerulosa

Pregnenolone 17a-Hydroxypregnenolone €— Pregnenolone Pregnenolone
: CYP17A1 :
CYP17A1 : 3R-HSD2 lars-Hsoz : 38-HSD2
17a-Hydroxypregnenolone i 17a-Hydroxyprogesterone ¢« Progesterone i  Progesterone
: CYP17A1 : :
lCYP17A1 : CYP21A2 | CYP21A2 lcvpzmz
3R-HSD2 o v :
A ---------> Androstenedione : 11-Deoxycortisol 11-Deoxycorticosterone: 11-Deoxycorticosterone
| . 1 .
lsuuzm o KRics : l,CYP11B1 | CYP11B1 lCYP11BZ
: M :
DHEAS Testosterone  : Cortisol Corticosterone  :  Corticosterone

CYP11B2
: Aldosterone

Fig. 1. Schematic overview of adrenal steroidogenesis. Major steroids produced are indicated in bold and by solid lines, minor metabolites are indicated by dashed lines.
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for the formation of sulfated DHEA (DHEAS) [23], the most
abundant steroid in human blood [24]. Importantly, 33-hydrox-
ysteroid dehydrogenase 2 (3(3-HSD2) is expressed in the zona
reticularis at very low levels, thus leading to only low amounts of
A4-androstene-3,17-dione (androstenedione) production [20].
Since 17P-hydroxysteroid dehydrogenase type 3 (173-HSD3) is
absent and 17[3-HSD5 (AKR1C3) expressed at very low levels in the
zona reticularis [21,25], only very low levels of testosterone are
produced by the adrenals [26,27]. CYP21A2 is absent in the zona
reticularis, thus no mineralocorticoids and glucocorticoids are
formed in this layer [20].

In the zona fasciculata pregnenolone is converted to 17a-
hydroxypregnenolone by CYP17A1, and pregnenolone and
17a-hydroxypregnenolone are converted to progesterone and
17a-hydroxyprogesterone, respectively, by 33-HSD2. Most of the
progesterone formed is also 17a-hydroxylated. Further metabo-
lism by CYP21A2 leads to 11-deoxycortisol and lower amounts of
11-deoxycorticosterone that are further converted by CYP11B1,
which is specifically expressed in this zone, into cortisol and
corticosterone, respectively [20,28]. Cytochrome b5 is expressed at
background levels in the zona fasciculata [21], resulting in very low
CYP17A1 17,20-lyase activity and thus low amounts of DHEA
formation [20]. The zona fasciculata expresses the melanocortin-2-
receptor and is therefore responsive to adrenocorticotrophic
hormone (ACTH) [20,28].

The zona glomerulosa does not express CYP17A1, and pregnen-
olone is converted to progesterone by 3(3-HSD2 and further to 11-
deoxycorticosterone by CYP21A2, and to corticosterone and
aldosterone by CYP11B2. In the adrenals, CYP11B2 expression is
restricted to the zona glomerulosa and the production of aldoste-
rone is regulated by angiotensin Il receptors [20].

The human fetal adrenals produce high amounts of DHEAS,
which is abolished soon after birth where the adrenals mainly
consist of a zona glomerulosa and a zona fasciculata and thus
produce mineralocorticoids and glucocorticoids [29]. The zona
reticularis actively starts producing adrenal androgens at adre-
narche at around 6-8 years of age and reaching peak levels in the
third decade of life, before declining gradually [30,31].

In the testis, steroidogenesis is restricted to the Leydig cells.
They convert pregnenolone by CYP17A1 into 17a-hydroxyprege-
nenolone and further to DHEA (Fig. 2). Because of the high
expression of 3(3-HSD2 and 173-HSD3 but the absence of SULT2A1,
DHEA is not sulfated and therefore further converted to
androstenediol, or by a lower extent to androstenedione, and
subsequently to testosterone in Leydig cells [20,32]. Furthermore,
CYP21A2, CYP11B1 and CYP11B2 are absent, thus no gluco- and
mineralocorticoids are produced. Testicular steroidogenesis is
under the control of human chorionic gonadotropin (hCG) and
luteinizing hormone (LH).

Leydig Cell
Pregnenolone
l CYP17A1
17a-Hydroxypregnenolone
CYP17A1

3B-HSD2 CYP19A1
DHEA B—) Androstenedione ------- > Estrone

l17B-HSD3 17B-HSD3

Androstenediol m)Testosterone CYPI9A1 > Estradiol

Fig. 2. Schematic overview of steroidogenesis in Leydig cells.

In the ovaries, steroidogenesis is mediated by theca and
granulosa cells. The granulosa cells are located in the avascular
cellular compartment surrounding the oocyte, and the theca cells
reside in the ovarian stroma; these cellular compartments are
separated by the basal membrane. The theca and granulosa cells
both express StAR and CYP11A1 [33]. Because granulosa cells do
not express CYP17A1 [34], they can synthesize pregnenolone from
cholesterol and they convert it further to progesterone in the
corpus luteum (Fig. 3) [20]. However, for the production of
estrogens, pregnenolone needs to be secreted from the granulosa
cells and taken up by the theca cells, or it is produced directly by
the theca cells, to form DHEA. The theca cells express 3(3-HSD2 and
convert DHEA into androstenedione [35]. Androstenedione is then
delivered back to the granulosa cells for the aromatase-dependent
production of estrogens [34]. Granulosa cells also express 17[3-
HSD1, which is needed for the conversion of estrone into estradiol.
There are cycle-dependent changes in ovarian steroidogenesis: in
the luteal phase the luteinized granulosa cells are supplied with
sufficient cholesterol, due to enhanced vascularization of the
previously avascular compartment, and elevated LH levels enhance
the expression of CYP11A1 and 33-HSD2, resulting in the synthesis
of high amounts of progesterone [33]. In the follicular phase,
follicle stimulating hormone (FSH) enhances the expression of
aromatase and 17[3-HSD1 for the production of increased amounts
of estradiol from theca cell-derived androstenedione. LH also
activates LH receptors on theca cells to induce CYP17A1 expression,
thereby enhancing androgen precursors for estrogen production by
granulosa cells. Thus, a tight control of the cooperation of
granulosa and theca cell function is essential for the appropriate
regulation of estradiol synthesis.

3. Leydig cell models to investigate steroidogenesis

Three independent large epidemiological studies revealed a
decline in male serum testosterone levels in the general population
[36-38]. Obesity was identified as a contributing factor for some
but not all observations [39]. Increasing evidence suggests that
exposures to EDCs contribute to male reproductive diseases and
that prevention of EDC exposures may reduce the burden of male
reproductive health problems [40]. As an example, cryptorchidism
is a typical impairment following exposure to antiandrogenic
chemicals during male sexual development [41]. Evidence was
provided that levels of polybrominated diphenyl ethers (PBDEs) in
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Fig. 3. Schematic overview of ovarian steroidogenesis.
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human breast milk are associated with congenital cryptorchidism,
although a contribution of other environmental factors cannot be
excluded [42]. PDBEs have been shown in in vitro studies to directly
antagonize AR activity (ICsp of approximately 5 M for the mixture
DE-71 in an MDA-kb2 cell model expressing an AR-dependent
luciferase reporter), and PDBEs additively and/or synergistically
acted with other AR antagonistic compounds [43]. In in vivo studies
PDBEs were shown to cause diminished growth of androgen-
dependent tissues and a delay in puberty in the male rat following
a pubertal exposure to 60 and 120 mg/kg/day of the DE-71 mixture
[44]. Although such high exposure levels are unlikely to be reached
in humans, the fact that humans are exposed to a multitude of
compounds that may exert additive or synergistic effects
emphasizes the need for the screening of chemicals for potential
antiandrogenic effects. Because of the high public demand to
reduce animal testing [45], improved cell-based assays are needed
that allow the identification of chemicals disrupting the biosyn-
thesis of steroids and the gaining of insights into the mode-of-
action of such chemicals.

There are several immortalized rodent Leydig cell lines
available for studying the regulation of steroidogenesis and to
assess the impact of substances on steroid hormone production.
However, to our knowledge, no human Leydig cell model is
currently available that can be used for screening purposes and for
toxicological studies. The available rodent Leydig cell lines have
been derived from spontaneous tumors, upon experimental
induction, or by in vitro immortalization. All of these cell systems
have their limitations, as some of the steroidogenic enzymes and
regulatory pathways are expressed at very low levels, if at all, likely
as a result of the selection of cell clones that rapidly proliferate and
because of dedifferentiation and loss of initial phenotype during
prolonged cultivation.

Probably the most widely used immortalized Leydig cell line is
MA-10 [46]. MA-10, the related MA-12, and the frequently used
mLTC-1 are all derived from a C57BI/6 Leydig cell tumor
(designated M5480) [47]. These cell lines express LH receptors,
and incubation with LH/hCG induces cAMP-dependent steroido-
genesis. MA-10 cells also express mouse epidermal growth factor
receptor (EGFR), which suppresses the hCG-induced steroidogen-
esis [48]. In both, MA-10 and mLTC-1, progesterone was the main
steroid being produced, in line with the observation that the
original tumor M5480 secreted progesterone but only very low
amounts of testosterone, and the two cell lines displayed similar
functional characteristics [47]. These observations suggest that
3B-hsd1 activity is dominant over Cyp17al; therefore, pregneno-
lone is mainly converted into progesterone, with only minor
amounts being further converted into androstenedione and
testosterone. For these reasons, we propose that, using progester-
one as a read-out, MA-10 and mLTC-1 cells can serve as suitable
models to detect chemicals that affect the induction of steroido-
genesis, the cCAMP- and PKA-dependent signaling, or that directly
inhibit the activities of StAR, Cypl1lal or 3B-hsdl. Due to the
generation of only low amounts of testosterone by these cell lines,
it is difficult to quantitatively assess the effect of chemicals that
disrupt Cyp17al or 17[3-hsd3 activities. Nevertheless, the mRNA
expression of key steroidogenic enzymes, including StAR,
Cypllal and 3B-hsd1l, and to a lesser extent that of
Cyp17al and 17p-hsd3, has been detected in MA-10 and mLTC-
1 cells, and has been found to be affected upon exposure to
chemical modulators [49-51].

MA-10 cells are applied by many investigators to study the
impact of EDCs on the regulation of steroidogenesis; only a few will
be mentioned in this review as examples. Recent studies on effects
of bisphenol A (BPA) and its analogs on steroidogenesis in MA-
10 cells suggested that tetrabromobisphenol A (TBBPA) concen-
tration-dependently increased testosterone production at

concentrations of 3 wM and higher, while bisphenol S (BPS) had
no effect and BPA and bisphenol F (BPF) induced testosterone
secretion only at very high concentrations (30 and 100 M,
respectively) [49,50]. Following incubation of the cells for 48 h in
the presence of 10 wM of TBBPA, BPF or BPS an increased
production of progesterone, and in the case of TBBPA of 17«-
hydroxyprogesterone and androstenedione, was measured. Fur-
thermore, incubation of cells with 10 M of BPF, BPS or TBBPA led
to an elevated expression of 5a-reductase 1, indicating an
increased production of 5a-androstanedione and dihydrotestos-
terone. Importantly, the authors provided evidence that the
TBBPA-mediated increase in testosterone production may be
due to an inhibition of the efflux of androgen precursors required
for testosterone synthesis by the multidrug resistance proteins
MRP1 and MRP4 [50]. These observations emphasize the need to
include steroid transporters in the assessment of EDCs and provide
a further explanation for the low amount of testosterone produced
by MA-10 cells under basal conditions.

MA-10 cells were also used to study direct effects of mono-
phthalates on testicular steroidogenesis [52]. The LH-induced
production of cAMP and progesterone was significantly inhibited
in MA-10 cells treated with 30 M of mono(2-ethylhexyl)
phthalate (MEHP), whereas testosterone production was signifi-
cantly lowered upon incubation of the cells with 1 wuM MEHP, 3 uM
monobutylphthalate (MBP), 10wM mono-n-oxtylphthalate
(MnOP) or 3 wM monebenzylphthalate (MBeP) but not in the
presence of monoethylphthalate (MEP) or monomethylphthalate
(MMP) [52]. At the high concentration of 100 uM MEHP the mRNA
expression levels of StAR, Cyp11A1 and Cyp17A1 were down
regulated. Interestingly, in mLTC-1 cells (not induced by LH) the
phthalates di-n-butyl phthalate (DBP), MBP, di(2-ethylhexyl)
phthalate (DEHP) and MEHP seemed to increase testosterone
production at low concentrations of 0.001 to 0.1 M but inhibited
at high concentrations of 100 wM. Interestingly, the mRNA
expression levels of Cyp11A1, Cyp17 and 33-HSD1 were decreased
even at concentrations as low as 0.1 wM [53,54]. Also, the impact of
the major metabolites of MEHP and DEHP on the expression of
steroidogenic genes has been analyzed, suggesting that the
metabolite 2-ethylhexanal might inhibit Leydig cell testosterone
formation, although this effect was only observed at high
concentrations of 100 uM [55]. The human relevance of such high
concentrations are questionable and further research using lower
concentrations is needed. Also, it should be noted that progester-
one and testosterone were measured by ELISA in this study.
Furthermore, a possible effect of phthalates on the efflux of
androgen precursors or on cholesterol flux in MA-10 or in mLTC-
1 cells has not been investigated.

Other studies focused on initial steps of steroidogenesis.
Incubation of MA-10 and mLTC-1 cells with an organochlorine
compound mixture resulted in a decreased expression of StAR,
CYP11A1 and the adrenodoxin reductase, enzymes crucial for the
production of pregnenolone from cholesterol [56]. The cAMP- and
hCG-induced production of progesterone tended to be lower at
1 wg/ml and was significantly lower at 10 pg/ml of organochlorine
mixture. Also, the UV-filter chemical 2,2’,4,4'-tetrahydroxybenzo-
phenone (BP2), applied at 30 uM, was found to alter the expression
of StAR, 33-hsd and Cyp17al and had opposite effects on Leydig
cell steroidogenesis than thyroid hormone signaling [57]. More-
over, MA-10 cells were employed to test pesticide formulations
that are widely used in agriculture. The pesticide mixture
Roundup, a broad-spectrum systemic herbicide containing glyph-
osate (N-phosphonomethyl-glycine), inhibited the cAMP analog-
induced progesterone production at subcytotoxic concentrations
of 25 pg/ml by decreasing the expression of the StAR protein [58].
Furthermore, the benzodiazepine midazolam was found to
stimulate progesterone and testosterone production, measured
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by radio-immunoassay, at the subcytotoxic concentrations of
30 and 150 wM in primary mouse Leydig cells and in MA-10 cells by
an induction of the expression of the peripheral-type benzodiaze-
pine receptor and StAR, probably via a pathway involving protein
kinase A (PKA) and protein kinase C (PKC) [59]. Murine mLTC-
1 Leydig cells were used to further investigate the reproductive
toxicity of perfluorooctanic acid (PFOA) that was observed in mice
treated by gavage [60]. Exposure of mLTC-1 cells with 100 uM
PFOA decreased Cypllal mRNA and protein expression and at
300 .M PFOA progesterone production was significantly de-
creased. Also, StAR protein seemed to be decreased, likely as a
result of oxidative stress caused by PFOA exposure [60,61]. The
mycotoxin zearalenone at concentrations of 5 wM was suggested
to affect steroidogenesis in mLTC-1 cells by disrupting lipid
metabolism and inducing endoplasmic reticulum stress-mediated
apoptosis [62,63]. Furthermore, the polybrominated diphenyl
ether BDE-47 at a concentration of 1 wM was found to decrease
progesterone production via cAMP-PKA-dependent downregula-
tion of CYP11a1 [64]. Thus, a multitude of chemicals were shown to
affect inial steps of steroidogenesis by different mechanisms. It
should be noted that in order to judge on the human relevance of
the findings described above further investigations are required, as
in most if these in vitro studies the concentrations applied were
either much higher than concentrations measured in humans or
data on such concentrations are not yet available.

Another mouse Leydig cell line, designated TTE1, was derived
from transgenic mice, upon immortalization using a temperature-
sensitive simian virus 40 (SV40) large T-antigen [65]. These cells can
be grown at 33 °C and differentiated at a non-permissive tempera-
ture of 39°C. The cell model was used to study genes involved in
Leydig cell differentiation characteristics, and the expression of the
terminal enzyme of testosterone synthesis, 173-hsd3, was con-
firmed at least on the mRNA level [66]. TTE1 cells were only used in
very few studies, so for example to investigate the impact of
diethylstilbestrol on the expression of steroidogenic genes [67,68].
Diethylstilbestrol at concentrations of 50 nM or higher decreased
Cypllal expression and, furthermore, diminished apoptotic cell
death pathways and DNA repair capability, suggesting an increased
carcinogenic potential of the exposed cells.

Mice transgenic for the SV40 T-antigen under the control of the
inhibin-a« promoter were used to establish the steroidogenic
Leydig cell line BLT-1 [69]. BLT-1 cells responded well to LH and
hCG by increased cAMP levels and enhanced production of
progesterone. As observed for MA-10 and mLTC-1, BLT-1 cells
are only producing very low amounts of testosterone, as measured
by enzyme immunoassay. Regarding investigations into EDCs, the
BLT-1 derived cell clone BLTK1 was used to study several
environmental toxicants [70]. BLTK1 cells seem to express all
key steroidogenic proteins such as StAR, Cypl1lal, Cypl17al, 33-
hsd1, 173-hsd3 and 5a-reductase 1. These cells were shown to
respond to hCG and forskolin, which resulted in enhanced cAMP
production and expression of steroidogenic genes. An elevated
production of progesterone and testosterone was indicated by
enzyme immuno assays measurements. The antifungals pro-
chloraz (30 wM) and triclosan (30 wM) seemed to decrease the
hCG-induced testosterone production, whereas MEHP (300 wM)
and atrazine (at concentrations of 30 WM or higher) promoted
basal testosterone formation but inhibited the hCG-dependent
testosterone synthesis. Furthermore, the triazine herbicides
atrazine, simazine, propazine and terbuthylazine were reported
to enhance progesterone and testosterone production in
BLTK1 cells at high concentrations (with significant effects
observed at 100 wM or higher), effects explained by the altered
expression of steroidogenic genes [71]. However, in these studies
very high concentrations of questionable human relevance were
used.

The non-tumor mouse epithelial Leydig cell line TM3 was
originally derived from the testis of an immature Balb/c mouse
[72]. TM3 cells respond to LH, but not FSH, with an increased cAMP
production [73]. Evidence was provided that LH and EGF are
involved in the regulation of cyclin-dependent kinase 5 (Cdk5)
expression and activity, and that this signaling pathway modulates
hormonally stimulated testicular steroidogenesis [74]. Further-
more, LRH-1 was found to regulate Cyp19al expression via
promoter II in multiple testis cell types [75]. Additionally, a role
for hypoxia-inducible factor-1a by mediating hypoxia-dependent
changes on steroidogenesis by regulating the transcriptional
expression of 3(3-hsd1 was reported [76]. The Clq and tumor
necrosis factor-related protein (CTRP3) was found to induce
testosterone production by increasing cAMP and phosphorylation
of cAMP response element-binding protein (CREB) by PKA and
subsequently enhancing the expression of StAR and Cyp11al [77].
TM3 cells express V1 type arginine vasopressin receptors that
seem to act independent of the adenylate cyclase system [78] and
calcitonin receptors, which mediate calcium influx and stimulate
cAMP formation and testosterone secretion [79]. They also express
inhibin/activin 3-A subunits and activin receptors Il and IIB [80]. A
role for the Src tyrosine kinase in the regulation of phosphodies-
terase PDE4 activity and the production of CAMP was reported [81].
TM3 cells mainly produce progesterone, and only minor amounts
of testosterone (own observations), suggesting that they can serve
as a model to study early steps of the regulation of steroidogenesis
and direct inhibition of the activities of StAR, Cypl1lal and 33-
hsd1.

The TM3 mouse Leydig cell line is frequently used to study the
impact of environmental pollutants on testicular toxicity and on
alterations in steroidogenesis. A study on gap junctional intercel-
lular communication in TM3 cells showed inhibitory effects by
estradiol and diethylstilbestrol via an estrogen receptor (ER)-
dependent mechanism [82]. Interestingly, similar effects were
observed at 10 pM and 10 wM concentrations for both diethylstil-
bestrol and estradiol, and these effects were fully reversed in the
presence of an ER antagonist. Incubation of TM3 cells with diesel
exhaust particles led to a reduced expression of ERa (at 0.1 pg/ml
particle concentration) and an induction of Cyplal (at 1 g/ml)
[83]. A transcriptomics analysis was performed on the impact of
1 and 5mM methoxyacetic acid, the active metabolite of the
industrial chemical ethylene glycol monomethyl ether, on
TM3 cells revealing alterations in steroidogenesis, inflammation
reactions and metabolic functions [84]. It needs to be noted that
these concentrations are very high, and thus the human relevance
is questionable. Two recent studies provided evidence for a
protective role of the activation of the transcription factor
Nrf2 toward the toxicity caused by the phthalate DBP, indicating
the importance of the antioxidant defence system to protect Leydig
cells from toxic chemicals [85,86]. Studies on chemicals affecting
testosterone production in TM3 cells are rather uncertain, since
these cells produce very low amounts. Furthermore, results on
changes in testosterone production obtained using ELISA Kkits
should be confirmed using quantification by GC-MS or LC-MS.

[-10 clonal Leydig cells were originally obtained from a
spontaneous mouse testicular tumor [87]. Like other mouse
Leydig cell lines described above, I-10 were reported to mainly
produce progesterone, which was stimulated by cAMP [88],
although not as efficient as in MA-10 and mLTC-1 cells. I-10 Leydig
cancer cells were scarcely used for the assessment of EDCs. A study
on PCBs showed enhanced CYP19al expression in mouse I-
10 Leydig and human H295R adrenal cells following incubation for
24h with the high concentration of 10wM PCB126 [89].
Interestingly, this effect was blunted in hCG and cAMP analog-
treated cells, and the authors proposed a role for AhR in these
effects. Similarly, the mouse Leydig tumor cell line K28 was applied
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only in a few studies, including the investigation of the time-
dependent induction of StAR mRNA expression and progesterone
production by 9-cis and all-trans of retinoic acid (increases at
concentrations greater than 10 nM) [90], the impact of LH on the
expression of Nur77 (NR4A1) [91], the effect of 1 wM BPA under
serum-free conditions for 24h on the induction of Nur77
expression and the production of progesterone [92], as well as
the stimulating effects of 30 WM cadmium chloride on CREB
protein phosphorylation and StAR expression [93].

The rat Leydig tumor interstitial cell line R2C displays high StAR
expression and produces high amounts of progesterone [94-96].
The high expression of StAR, Cyp11al and 3[3-hsd1 was confirmed
by RT-PCR and Western blot [97] and the production of
progesterone was detected by ELISA and RIA measurements
[98,99]. The expression of Cypl7al and the production of
testosterone have been reported [97-99]; however, a general
problem with antibody-based quantification of proteins and
steroids remains the often limited specificity of the antibodies
used [100]. Thus, testosterone production by R2C cells should be
confirmed using quantification by GC-MS or LC-MS. An interesting
property of R2C cells is that they are insensitive to cAMP regulation
and do not require trophic stimulation to produce progesterone,
which might be explained by a constitutively activated down-
stream signaling pathway [95,101]. Because of the constitutive
production of progesterone, these cells are suitable to test
chemicals that directly inhibit the activity of StAR, Cyp1lal or
3B-hsd1. On the other side, this cell line is not suitable to study
chemicals affecting the induction of steroidogenesis due to the lack
of sensitivity of the involved signaling pathways.

R2C cells were used in a comparative study with MA-10 cells to
assess effects of various phthalates on testosterone production
measured by ELISA [98]. The phthalates MBP and MEHP
significantly inhibited testosterone synthesis at concentrations
of 1 and 3 M, with ICso values of 3 and 6 uM respectively.
Phthalates with shorter alkyl side chains were found to be less
active or inactive. Interestingly, R2C cells express substantial levels
of Cyp19al, and this cell line has been applied to characterize
aromatase inhibitors [102,103]. A study on effects of BPA
(concentrations of 0.1-10nM) on steroidogenesis suggested an
up regulation of Cyp19al protein expression and activity, whereas
testosterone synthesis was decreased [104]. Testosterone was
measured by ELISA. Using R2C cells the anabolic androgenic
steroids nandrolone and stanozolol (at 1 WM concentration) were
shown to increase Cyp19al expression as well as estradiol
production [105]. Further, these authors provided evidence for
an additive effect of androgens and IGF-1 on R2C cell proliferation
and aromatase expression. In contradiction, a recent study showed
that treatment of R2C cells with the androgen mibolerone up
regulated the transcription factor DAX-1 and inhibited the
expression and activity of Cyp19al, in line with observations in
old Fischer rats with spontaneous Leydig cell tumors where AR and
DAX-1 were down regulated and Cyp19a1l was up regulated [106].
The reason for the discrepances of the above studies remains
unclear and requires further research.

A major limitation for mechanistic investigations into the
regulation of steroidogenesis in Leydig cells and the assessment of
the impact of potential EDCs is the fact that currently no human
Leydig cell model is available. There are considerable species
differences in the functions of Leydig cells. For example, it has been
shown that the expression level of LH receptors is an order of
magnitude higher in rat compared with human Leydig cells, and
that rat Leydig cells respond with hyperplasia to hCG, whereas
human Leydig cells become hypertrophic [107-110]. Furthermore,
rat Leydig cells express gonadotropin-releasing hormone, whereas
mouse and human Leydig cells do not [111,112].

Additionally, several studies demonstrated species-specific
inhibition of testicular steroidogenesis by EDCs. Using organotypic
primary culture systems, the phthalate MEHP at a concentration of
10 M was shown to decrease testosterone production in rat but
not in human fetal testis explants [113,114]. Further support for
species-specific effects of phthalates was provided by studies
where rat and human fetal testes were xenografted into a host
mouse or rat [115,116]. Treatment with di-n-butylphthalate
(500 mg/kg per day for four days) inhibited steroidogenesis in
animals with rat but not human xenografts. Also, diethylstilbestrol
did not affect human fetal testicular steroidogenesis in the
xenograft model [117] and in human fetal testis explants, in
contrast to rat and mouse testis cultures [118,119], a difference
explained by the fact that ERa is expressed in rat and mouse but
not in human fetal Leydig cells [117]. Moreover, the anti-diabetic
drug metformin inhibited testosterone production at an order of
magnitude higher concentrations in human compared with mouse
testis explants [120]. In contrast, it was shown that BPA inhibited
testosterone synthesis at 100 times lower concentrations in human
compared with rat and mouse fetal testis explants [118]. These
studies demonstrate important species-specific differences in the
susceptibility of human, rat and mouse testes to xenobiotics and
further emphasize the need to establish a human Leydig cell model
for the investigations into the molecular mechanisms of steroido-
genesis disruption.

4. Cell-based systems to study effects of EDCs on ovarian
steroidogenesis

In the industrialized countries, there is an increasing incidence
of reproductive disorders such as polycystic ovary syndrome
(PCOS) [121], which is characterized by chronic anovulation and
hyperandrogenism and results in hirsutism, infertility and
menstrual disturbances. As with male infertility, there is evidence
for the contribution of EDCs from consumer products or
environmental pollutants to the increasing incidence of female
reproductive disorders (for a recent comprehensive review see
[122]). Several EDCs and potential EDCs have been detected in
human samples, including follicular fluid, from the general
population [123-127]. Exposure to EDCs likely contributes to
sub-fecundity, ovarian failure and infertility, and affects reproduc-
tive behavior. Exposure to EDCs may contribute to ovulatory
dysfunction by decreasing estradiol biosynthesis in granulosa cells
or as abortifacients by disrupting progesterone production in luteal
cells [128].

In vivo testing of EDCs for reproductive toxicity is mostly
conducted in rodents, with fertility as a primary endpoint [129].
Alteration in serum steroid levels may indicate an adverse effect
but it may also represent an adaptive response, thus often not
providing sufficient information on the toxicity of a given
chemical. Also, changes in circulating steroid levels may be due
to a direct effect on steroidogenesis or an altered feedback
regulatory system. Ex vivo tissue samples, e.g. whole ovaries or
isolated individual follicles, can be used to study follicular
development, ovulation and steroidogenesis, and assays using
such samples can provide results on multiple fertility-related
endpoints [130]. In order to allow high throughput analyses and to
gain mechanistic insight into the action of EDCs, cultured cells are
advantageous. Isolated primary theca and granulosa cells can be
applied for functional studies, and they retain the normal
responses and steroidogenic pathways [131]. Porcine and bovine
primary cells can be isolated from ovaries obtained from the
slaughterhouse or from ovaries of rodent animal models; however,
there are significant species-specific differences in the steroido-
genic pathways, which need to be taken into account when trying
to extrapolate results to the human system. Human granulosa cells
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are mostly obtained from women undergoing in vitro fertilization;
however, these cells are usually subjected to supraphysiological
concentrations of hCG and FSH, and these cells can only be
cultivated for a relatively short time [132]. For these reasons, there
is a great demand for suitable human theca and granulosa cell lines
to investigate a large number of individual EDCs at various
concentrations and incubation time as well as mixtures of EDCs.
The establishment of a theca cell line was not successful so far; in
contrast, several granulosa cell lines are available for investigating
effects of chemicals on steroidogenesis.

Granulosa cell lines are useful to study the impact of potential
EDCs on progesterone synthesis as well as on the aromatase- and
173-HSD1-dependent production of estradiol upon incubation of
these cells with androstenedione. There is a large number of
human ovarian cancer cell lines available (for a recent review see
[133]). Most of them express CYP19A1 and 17(3-HSD1 and their
proliferation is stimulated by estrogens. Additionally, immortal-
ized granulosa cell lines from various animal species and of human
origin have been described [134].

Among the rodent granulosa cell lines, KK-1, GRMO1 and
GRMO02 were found to produce progesterone, and retain respon-
siveness to cCAMP, FSH and LH/hCG [134]. KK-1 cells were derived
from mice bearing an SV40 T-antigen driven by the inhibin-a
promoter, and treatment of these cells with hCG, forskolin and FSH
increased cAMP 10-fold, 40-fold and 2.6-fold, respectively,
indicating enhanced steroidogenesis [135]. KK-1 cells were shown
to express Cyp19al and 173-hsd1 and convert androstenedione to
estradiol. The KK-1 cell line was used, for example, to study effects
of phthalates on the stimulation of steroidogenesis [136]. The
phthalate MEHP at high concentrations of 20-100 .M stimulated
basal steroid production in KK-1 granulosa cells, a finding
confirmed in mLTC-1 Leydig cells. The expression of StAR and
cAMP-mediated signaling did not seem to be affected, and the
authors suggested that MEHP may stimulate steroidogenesis by
enhanced cholesterol supply. Thus, KK-1 represents a mouse cell
system to study granulosa steroidogenesis. GRM01 and GRMO02
granulosa cell lines were established by transfection of murine
granulosa cells with v-myc [137]. Both cell lines retained
steroidogenic activity and were shown to express 33-hsd2 and
173-hsd1 [138]. GRMO1 was able to produce both progesterone
and estradiol de novo, whereas GRMO02 produced progesterone but
not estradiol [139]. However, aromatase activity was also
demonstrated in GRMO02 upon the addition of androstenedione
or testosterone to the culture medium. Steroid production was
induced in both GRM01 and GRMO2 by LH/hCG, FSH, forskolin and
cAMP analogs. Both cell lines also express inhibin-«, which has a
role in feedback regulation by inhibiting pituitary FSH secretion.
They represent alternative murine cell models to study the impact
of potential EDCs that act as direct inhibitors of enzymes involved
in progesterone or estradiol production or of the signaling
pathways involved in steroidogenesis in granulosa cells.

There are several human granulosa cell lines that are useful for
the investigation of endogenous regulators of steroidogenesis as
well as pathways involved in metabolic regulation, the regulation
of cell proliferation and apoptotic pathways. The cell lines HGP53,
HO23, HGL5, HTOG and SVOG were primarily used to study
signaling pathways, which are involved in the regulation of
steroidogenesis and effects on apoptosis as well as cell prolifera-
tion [140-145]. The immortalized human granulosa cell line
COV434, initially isolated from a primary granulosa cell tumor, was
shown to express FSH receptor and CYP19A1. In FSH supplemented
medium COV434 was able to produce estradiol from androstene-
dione [146]. FSH and forskolin both stimulated steroidogenesis by
induction of cAMP. Pharmacological inhibition of the FSH receptor
was found to inhibit COV434 cell proliferation [147]. Furthermore,
incubation of COV434 cells with soy isoflavones, considered to act

as phytoestrogens, promoted cell proliferation [148]. Incubation
with 5-50 .M genistein led to increased expression of ERa and
enhanced cell proliferation by repressing proapoptotic genes. The
human relevance of these observations remain uncertain because
of the low bioavailablity of oral intake of isoflavones.

The most widely used human ovarian granulosa-like tumor cell
line is KGN. Progesterone production as well as CYP19A1-and 173-
HSD1-dependent estradiol formation from androstenedione sup-
plemented culture medium was found to be induced by FSH via
induction of IGF-1 in KGN granulosa cells [149]. Additionally,
several endogenous regulators, such as steroidogenic factor-1 (SF-
1) [150], liver receptor homolog-1 (LRH-1) [151], AMP-kinase
(AMPK)/sirtuin-1 (SIRT1) [152], oocyte-derived growth differenti-
ation factor and bone morphogenic protein 15 [153], the Notch
signaling patway [154] and the Hippo pathway [155], were shown
to affect progesterone production and CYP19A1- and 173-HSD1-
dependent estradiol synthesis.

Several investigators used the KGN granulosa cell line to
address the impact of xenobiotics on steroid synthesis. Bisphenol-
A (BPA) was found to activate peroxisome proliferator-activated
receptor (PPAR)y and inhibit the FSH-stimulated insulin-like
growth factor-1 (IGF1)-dependent induction of CYP19A1 expres-
sion and estradiol synthesis in KGN cells and in primary granulosa
cells [156]. A significant blunting of the FSH-induced CYP19A1
expression was seen at 40 uM whereas estradiol production was
reduced after treatment with 80 wM of BPA. The BPA concen-
trations applied are very high and human relevance of this findings
remains uncertain. Another study found that BPA concentration-
dependently down regulated CYP19A1 expression in KGN cells as
well as in human fetal osteoblastic cells, with significant effects
seen at 5 wM [157]. Additionally, DEHP (5 wM) and TCDD (10 nM)
were found to inhibit the FSH-induced estradiol synthesis and to
enhance the AhR expression in a PPAR-dependent manner [158].
Another study found that atrazine and simazine at 10 wM
enhanced the stimulatory effect of transfected SF-1 on aromatase
mRNA expression and activity in KGN cells [159]. Recently, the
pesticide simazine was found to shorten anogenital distance and to
decrease whole body, ovarian and uterine weights in offspring of
pregnant mice treated with 5-500 g/kg of this pesticide [160].
Simazine at a concentration of 1 nM diminished the viability and
proliferation of KGN granulosa cells. Interestingly, a U-shaped
curve was observed, whereby concentrations of 100-1000 nM no
longer inhibited cell viability and proliferation.

Currently, most studies on EDCs affecting ovarian steroidogen-
esis are conducted using tumor cell lines of granulosa origin, where
several pathways may be altered compared with normal granulosa
cells. This limitation needs to be considered in the interpretation of
results. Also, most cell lines are cultivated in medium containing
high glucose concentrations and fetal bovine serum as well as
under hyperoxia, a situation clearly distinct from that of the
physiological context and likely to affet metabolic pathways and
steroid production. Another limitation is that currently no suitable
human theca cell line is available. Since the production of steroids
by the ovaries requires a tight cooperation of granulosa and theca
cells, ideally a co-culture system of granulosa and theca cells
should be applied for the investigation of ovarian steroidogenesis.

5. Adrenal cell models to investigate disruption of
steroidogenesis

The adrenal glands play an essential role in the regulation of
electrolyte and energy homeostasis [161]. An over production of
glucocorticoids by the adrenal glands ultimately causes Cushing's
syndrome, which is characterized by increased visceral adipose
tissue, insulin resistance, skin and skeletal muscle atrophy, and
impaired wound healing. In contrast, insufficient glucocorticoid
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production causes Addison's disease, characterized by hypoten-
sion, fatigue, muscle weakness, loss of body weight and depres-
sion. The clinical observations emphasize the importance of
including the assessment of chemicals applied to humans (drugs,
chemicals in food and personal care products) or released at high
amounts into the environment for potential adrenal toxicity. In this
respect, fatal adrenal isufficiency, due to unexpected severe
adverse drug effects [162-165], is a known clinical problem that
has been recognized by the FDA [166]. In contrast to the
investigations of the safety of chemicals regarding reproductive
and developmental endpoints, with a major focus on the
disruption of sex steroid hormone action, the adrenal gland has
been neglected in EDCs regulatory testing strategy, as recently
discussed by Harvey [167]. However, there are several chemicals,
e.g. drugs, chemicals contained in consumer products and
environmental pollutants, that were shown to cause adrenal
toxicity (for reviews see [163,167,168]), further emphasizing the
necessity of testing chemicals for potential adrenal toxicity.

Nevertheless, regarding the use of cell-based testing systems,
there is a widely used human adrenal cell line, i.e. H295R. The
OECD (Organization for Economic Cooperation and Development)
published a guideline for the testing of chemicals using this cell
line [169]. The H295R cell line was derived from the NCI-H295 cell
line that was established from an adrenocortical carcinoma of a
female patient [170]. The use of NCI-H295 cells was limited by the
slow proliferation and the fact that they formed cell clusters in
culture. Using GC-MS analysis and radio-immuno assays (RIA) NCI-
H295 cells were shown to produce about 30 different steroids
[170-174]. Importantly, this cell line was shown to express most of
the major steroidogenic genes; it also expresses CYP11B2 and has
the ability to produce aldosterone, mainly upon stimulation with
angiotensin Il or potassium. The parental NCI-H295 cells were used
to derive the H295A cells [175] as well as the H295R cells [173].
H295R cells can further be distinguished as H295R-S1, H295R-
S2 and H295R-S3 clones, depending on the cultivation conditions.
H295R-S1 are cultivated in a medium containing Nu-serum,
H295R-S2 in a medium with the serum substitute Ultroser-G and
H295R-S3 in a medium containing Cosmic calf serum [176].
Furthermore, three additional clones were derived from NCI-H295,
namely HAC13, HAC15 and HAC50 [176-178]. The NCI-
H295 derived clonal cell lines all grow as adherent monolayers
but show significant differences in the expression of steroidogenic
enzymes, the response to endogenous regulators and the amounts
of steroids synthesized, emphasizing the importance of the culture
medium composition. Nevertheless, the NCI-H295 cell lines
respond to angiotensin Il and potassium by increased aldosterone
production; however, their response to ACTH is either absent or
very weak [179]. Besides the NCI-H295 clonal cell lines, no other
human adrenal cell line with substantial steroidogenic properties
has been reported to date.

Based on the secreted steroids and mRNA analyses the NCI-
H295 clonal cell lines appeared to express all of the adrenocortical
enzymes that were present in the original tumor including StAR,
3B-HSD2, CYP11A1, CYP17A1, CYP21A1, CYP11B1, CYP11B2, 3f3-
hydroxysteroid sulfotransferase and low levels of CYP19A1
[173,178]. The expression pattern and steroids produced indicates
that these cells represent characteristics of the different adrenal
zones. It needs to be noted that the basal production of cortisol and
aldosterone in H295R cells is low, indicating a low expression of
CYP11B1 and CYP11B2 in the absence of inducers. However,
treatment with endogenous regulators can enhance some zone-
specific effects. Forskolin and cAMP analogs enhance the produc-
tion of adrenal androgens (DHEA, DHEAS, androstenedione) and
glucocorticoids (cortisol, 11-deoxycortisol, corticosterone), where-
as angiotensin II, the primary regulator of the renin-angiotensin-
aldosterone system, and potassium induce the production of

aldosterone in H295R cells [171,172,180,181]. It was shown that
H295R cells mediate angiotensin II effects through angiotensin
receptor 1 (AT1) [172,179,182-184]. In contrast, H295A do not
express substantial levels of AT1 and lack sensitivity to angiotensin
I1 [185]. NCI-H295 clonal cell lines show weak or absent response
to ACTH due to the very low expression of melanocortin 2 receptor
(MC2R) [177]. Interestingly, in H295R cells ACTH induced a
transient increase in aldosterone but not in cortisol production.
Thus, depending on whether the cells are used in the basal state or
upon stimulation with various effective agonists, the adrenal cell
lines may be used to study the effect of EDCs on the functions of the
different adrenocortical zones.

Besides the human NCI-H295 clonal cell lines, mouse adrenal
cell lines have been used in several studies on adrenal steroido-
genesis. The mouse Y-1 cells were reported to exhibit character-
istics of both zona fasciculata and zona glomerulosa, and they are
able to produce corticosterone and aldosterone [173,186-188]. Y-
1 cells were shown to respond to ACTH with increased expression
of steroidogenic genes and enhanced corticosterone production;
however, the stimulatory effect was rather modest compared with
that of isolated primary mouse adrenal cells [179,189]. Later, two
other cell lines, designated ATC1 and ATC7-L, established from
adrenal tumors of two transgenic mice expressing the SV40 large
T-antigen under the control of the akr1b7 promoter, have been
described [190]. Both cell lines exhibited a typical phenotype of the
zona fasciculata. They produced high amounts of corticosterone
and retained responsiveness to ACTH. Incubation of these cells
with ACTH increased SF-1 and decreased DAX-1 expression,
providing an explanation for the observed stimulation of
corticosterone production. Thus, ATC1 and ATC7-L represent
useful cell models to study zona fasciculata specific function.

In contrast to the testicular and ovarian cell models, there is a
human adrenal cell model (H295R) that has been recognized by the
regulators for toxicity screening and resulted in an OECD test
guideline for the evaluation of EDCs [169]. Therefore, a large
number of studies applied the H295R cell model for the
assessment of chemicals that cause disturbances of steroidogene-
sis, including pharmaceuticals, consumer products, food constit-
uents and environmental pollutants [191-198], and it is out of the
scope of this review to cover the findings of these studies.
Currently, the OECD guideline only focuses on the use of H295R
cells in their basal state and on the production of estradiol and
testosterone as endpoints [199], two hormones not typically
produced by the adrenals. Thus, there are limitations of the current
protocol as well as in the use of the H295R cells and the
exploitation of this cell model could be significantly extended.
Interestingly, the measurement of the main adrenal steroids, i.e.
adrenal androgens, glucocorticoids and mineralocorticoids, is
currently not covered by the OECD guideline and an extended
protocol to include the quantification of DHEA, cortisol and
aldosterone needs to be validated [200,201]. Other important
steroids such as progesterone, 17a-hydroxyprogesterone, 11-
deoxycorticosterone and 11-deoxycortisol should also be deter-
mined simultaneously with the major adrenal steroids in order to
obtain a broader picture of disturbances caused by a given
chemical.

Since in their basal state H295R cells produce only low amounts
of cortisol and aldosterone, the cells should be used in the basal
state to detect chemicals that induce steroidogenesis and upon
treatment with specific agonists such as ACTH, angiotensin Il and
potassium [202] in order to detect chemicals that inhibit
steroidogenesis. For the latter, the time point of adding a chemical
is important. The pre-incubation or simultaneous addition of a
chemical with an inducer may allow to identify chemicals that
disrupt regulatory pathways of steroidogenesis. Incubation of a
chemical following stimulation of the cells will allow to identify
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compounds that directly inhibit steroidogenic enzymes. Thus,
different protocols need to be applied depending on the mode-of-
action of a given compound. Also, inclusion of appropriate
reference compounds (positive and negative controls) and time
course analysis of the steroid production would aid the interpre-
tation of the data. Another important issue is the inclusion of
measurements of the steroid concentrations in the complete
medium at the time of the start of the experiment, as the amounts
of these steroids are influenced by the composition of the serum
used. Furthermore, the availability of LC-MS based methods allows
to simultaneously quantify several steroid hormones and specific
steroid pattern analysis can be performed for reference com-
pounds and individual EDCs [201,203-205]. In many recent studies
antibody-based detection methods have still been used for
quantification of steroids. These methods often are lacking
specificity due to cross-reactivity of the antibodies. Thus, GC-
MS and LC-MS methods should not only allow more accurate
quantification but allow the simultaneous assessment of multiple
steroids.

A major limitation of the H295R cell system is the insensitivity
toward ACTH. Thus, the establishment of an additional human
adrenal cell line is required. Regarding ACTH response, murine
ATC1 and ATC7-L cells may represent useful alternatives for testing
until a suitable human cell system is available; however, species-
specific differences in signaling pathways need to be taken into
account.

6. Conclusions and outlook

Cell-based steroidogenesis models are highly valuable for
mechanistic studies of chemicals disrupting steroidogenesis and
allow an initial medium to high throughput assessment of the
potential endocrine toxicity of chemicals. In contrast, to adrenal
steroidogenesis, there is no commonly used cell line or standard-
ized procedure to assess effects of chemicals on steroidogenesis in
Leydig cells and ovarian cells. Future efforts should therefore aim
at establishing a human Leydig cell line with the capability to
respond to LH and produce testosterone. To investigate ovarian
steroidogenesis, a human theca cell model is needed and, ideally, a
theca granulosa co-culture cell system responding to FSH should
ideally be established, with the capability for de novo steroid
synthesis up to the final step of estradiol production. Moreover,
there is a need for an ACTH-sensitive human adrenal cell line.

In order to extend and improve the current cell-based testing
protocols for studying chemicals that disrupt steroidogenesis and
to facilitate the comparison of results from different laboratories,
several general issues should be considered: (1) the description of
experiments using steroidogenic cell lines should include passage
number, cell density, incubation time and the composition of the
complete medium used, including glucose concentration, possible
use of antibiotics, amount of serum as well as the amount of
steroids contained in the complete medium. Cells should only be
used within certain passage numbers to guarantee comparable
steroidogenic activity and responsiveness of the involved signaling
pathways; (2) Ideally, the same positive and negative controls
should be included in every experiment to verify the responsive-
ness of the cell batch used; (3) The cells should be used in the basal
state as well as upon stimulation with specific inducers. Ideally, the
same inducers, concentrations and conditions should be applied in
different laboratories and experiments to allow a direct compari-
son of the results. The chemicals to be tested should be added prior
to stimulation or simultaneously with the inducer in order to
investigate whether the response to an inducer is blunted or
potentiated, as well as following stimulation in order to detect
direct effects on steroidogenic enzymes; (4) The quantification of
steroid metabolites should be performed by GC-MS or LC-MS to

assure specificity of the results. The major steroids should be
quantified rather than a single steroid; and (5) another key issue
remains the experimental concentration of a given chemical to be
tested. A drawback of cell-based studies is the short duration of the
incubation compared with humans who might be exposed for a
long period of time. Also, often human exposure data is not
available and concentrations of a given compound can vary
significantly from its tissue concentration. Usually concentrations
chosen for in vitro experiments are higher than those observed in
humans. Nevertheless, it has to be distinguished between studies
aiming at providing mechanistic information and studies for risk
assessment. For the latter, it is crucial to choose concentrations
that realistically can be reached after occupational exposure or in
case of environmental toxicants after exposure in the general
population. As suggested by Teeguarden and Hanson-Drury
toxicity study exposures should be directly compared to human
exposure if such data are available and qualification of a study as
“low dose” in the absence of reliable human exposure data should
be avoided [206].

Thus, there is still considerable room for improvement of the
currently available cellular testing systems and the protocols for
measurements of chemical-induced disturbances of steroidogen-
esis.
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The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of
testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals.
This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering
with the production of key adrenal steroids. H295R cells’ supernatants were characterized by liquid
chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental
conditions including time and serum content was assessed. Steroid profiles were determined before and
after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal
steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins,
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ls-lti?;]; glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone.
Profiling However, testosterone contained in Nu-serum was metabolized during the 48 h incubation. Thus,

inclusion of positive and negative controls and a steroid profile of the complete medium prior to the
experiment (t=0h) was necessary to characterize H295R cells’ steroid production and indicate
alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and
acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib.
Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced
CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the
toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid
production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that
act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further
investigations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction deoxycorticosterone), which are essential for the regulation of

electrolyte balance, blood pressure, immune system and energy

The adrenals produce active glucocorticoids (i.e. cortisol,
corticosterone) and mineralocorticoids (i.e. aldosterone, 11-

Abbreviations: DMEM, Dulbecco's modified Eagle's medium; DMSO, dimethyl
sulfoxide; EDCs, endocrine disrupting chemicals; LC-MS, liquid chromatography-
mass spectrometry; LOD, limit of detection; LLOQ, lower limit of quantification;
MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; OECD, Orga-
nization for Economic Co-operation and Development; REACH, Registration,
Evaluation, Authorization and Restriction of Chemicals.
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Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50,
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E-mail address: alex.odermatt@unibas.ch (A. Odermatt).

http://dx.doi.org/10.1016/j.tox.2017.02.010
0300-483X/© 2017 Elsevier B.V. All rights reserved.

homeostasis. They also produce progestins (i.e. progesterone, 17~
hydroxyprogesterone) and adrenal androgens (i.e. A4-androstene-
3,17-dione(androstenedione), dehydroepiandrosterone) that serve
as precursors for peripheral formation of active sex steroids.
Impaired adrenal steroidogenesis has been associated with
cardiometabolic, immune and psychiatric diseases (Gallo-Payet
and Battista, 2014; Miller and Auchus, 2011). In Addison's disease,
insufficient glucocorticoid synthesis leads to hypotension, fatigue,
muscle weakness, weight loss and depression. In Cushing's disease,
an over production of glucocorticoids results in visceral obesity,
insulin resistance, skin and skeletal muscle atrophy and impaired
wound healing. An over function of the adrenal cortex can also
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cause hyperaldosteronism, associated with cardiovascular disease,
and hyperandrogenism, associated with hirsutism. This empha-
sizes the importance to evaluate or test for adrenal toxicity
chemicals that are contained in pharmaceuticals, food and
consumer products or are released into the environment.

Drug-induced adrenal toxicity is a well-recognized clinical
problem; however, in contrast to the investigations into endocrine
disruption affecting sex steroid action, disruption of adrenal
steroidogenesis has been neglected in the endocrine disrupting
chemicals (EDCs) regulatory testing strategy despite compelling
evidence for the existence of chemicals contained in consumer
products and environmental pollutants that can cause adrenal
toxicity (FDA, 2013; Harvey, 2016; Harvey and Everett, 2003;
Harvey et al., 2007; Harvey and Sutcliffe, 2010; Hinson and Raven,
2006; Martinez-Arguelles and Papadopoulos, 2015). Also, the
interference of industrial chemicals besides PCBs (Johansson et al.,
1998, 2005), arsenic (Gosse et al., 2014; Kaltreider et al., 2001) and
the organotin dibutyltin (Gumy et al., 2008) with glucocorticoid
and mineralocorticoid hormone action requires further research
(Macikova et al., 2014; Neel et al., 2013; Odermatt and Gumy, 2008;
Stavreva et al., 2012).

The human adrenal cortical cell line H295R exhibits the main
steroidogenic properties (Gazdar et al., 1990; Gracia et al., 2006)
and has been validated to assess chemical effects on testosterone
and estradiol production (Hecker et al., 2011; OECD, 2011). For the
identification of EDCs, this protocol can be significantly extended
by including progestins, adrenal androgens, glucocorticoids and
mineralocorticoids (for a general overview of steroid synthesis see
Fig.1)(Odermatt et al., 2016). In fact, several studies addressed this
issue and included several steroid metabolites in their analytical
method (Feng et al., 2016; Karmaus et al., 2016; Mangelis et al.,
2016; Nakano et al., 2016; Rijk et al., 2012; Saito et al., 2016; Tonoli
etal., 2015; vanden Dungen et al., 2015; Wang et al., 2015). Besides,
the OECD testing guideline does not explicit the analytical method
to be used as well as determined the read-out after a 48h
incubation period without inclusion of a control at the start of the
experiment. Because improved testing protocols are especially
important for situations where no clinical studies are performed,
e.g. chemicals contained in cosmetics, UV-filters, food additives,
drugs of abuse and designer steroids, the aim of the present study
was to establish conditions for the LC-MS-based detection of
changes of a series of progestins, adrenal androgens, glucocorti-
coids and mineralocorticoids upon exposure to reference chem-
icals and to chemicals that based on evidence from the literature
might exert endocrine disrupting effects by disturbance of steroid
hormone action.

Cholesterol
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2. Materials and methods
2.1. Chemicals and reagents

Test and reference compounds (angiotensin II (CAS Nr. 4474-91-3), forskolin
(CAS Nr. 66575-29-9), prochloraz (CAS Nr. 67747-09-5), etomidate (CAS Nr. 33125-
97-2), abiraterone acetate (CAS Nr. 154229-18-2), formestane (CAS Nr. 566-48-3),
trilostan (CAS Nr. 13647-35-3), torcetrapib (CAS Nr. 262352-17-0), abietic acid (CAS
Nr. 514-10-3), benzophenone-1 (CAS Nr. 131-56-6), chlorophene (CAS Nr. 120-32-1),
enoxolone (CAS Nr. 471-53-4), escitalopram oxalate (CAS Nr. 219861-08-2),
genistein (CAS Nr. 446-72-0), mitotane (CAS Nr. 53-19-0), rofecoxib (CAS Nr.
162011-90-7), sotalol (CAS Nr. 959-24-0), triclocarban (CAS Nr. 101-20-2), valproic
acid sodium salt (CAS Nr. 1069-66-5), yohimbine hydrochloride (CAS Nr. 65-19-0),
zidovudine (CAS Nr. 30516-87-1), octocrylene (CAS Nr. 6197-30-4), octyl
methoxycinnamate (CAS Nr. 5466-77-3), acetyl tributylcitrate (CAS Nr. 77-90-7),
linuron (CAS Nr. 330-55), digoxin (CAS Nr. 20830-75-5), digitoxin (CAS Nr. 71-63-6),
amiodarone hydrochloride (CAS Nr. 19774-82-4), clofazimine (CAS Nr. 2030-63-9),
sulforaphane (CAS Nr. 142825-10-3), and CDDO methyl ester (CAS Nr. 218600-53-
4)) of the highest grade available were obtained from Sigma-Aldrich (Buchs,
Switzerland). Stock solutions (10 mM) were prepared in dimethyl sulfoxide (DMSO).
UHPLC-grade purity methanol, acetonitrile and formic acid were obtained from
Biosolve (Dieuze, France). Aldosterone, 11-deoxycorticosterone, corticosterone,
dehydroepiandrosterone-3-sulfate, androstenedione, testosterone, pregnenolone
and [2,2,4,6,6,21,21-H,]-aldosterone (98% isotopic purity) were purchased from
Sigma-Aldrich. 11-Dehydrocorticosterone, dehydroepiandrosterone, progesterone,
17a-hydroxyprogesterone, 17a-hydroxypregnenolone, 11-deoxycortisol, cortisol
and cortisone were purchased from Steraloids (Newport, RI). [1,2-2H,]-Testosterone
(98% isotopic purity), [2,2,4,6,6,16,16-°H,]-4-androstene-3,17-dione (98% isotopic
purity) and [2,2,4,6,6,17,21,21->Hg]-corticosterone (98% isotopic purity) were
purchased from C/D/N Isotopes Inc. (Pointe-Claire, Canada). Deuterated analogues
[2,2,4,6,6,21,21,21-?Hg]-17a-hydroxyprogesterone and  [9,11,12,12-2H4]-cortisol
were purchased from Toronto Research Chemicals (Toronto, ON, Canada). Stock
solutions (10mM and/or 1 mM) of above mentioned steroids were prepared in
ethanol or methanol.

2.2. Cell culture and H295R steroidogenesis assay

The human adrenocortical carcinoma cell line H295R was obtained from
American Type Culture Collection (ATCC, Manassas, USA) and grown in Dulbecco's
modified Eagle's medium (DMEM)/Ham's nutrient mixture F-12 (1:1, v/v) (Life
Technologies, Zug, Switzerland), supplemented with 1% (v/v) IST+Premix (BD
Bioscience, Bedford, MA, USA), 2.5% (v/v) Nu-serum (Lot: 2342913, BD Bioscience,
Bedford, MA, USA), 15mM HEPES buffer and 1% (v/v) penicillin-streptomycin
(Sigma-Aldrich) at 37°C with a humidified 5% CO, atmosphere. The Nu-serum
consists of 25% newborn calf serum and 75% of a proprietary formulation containing
epidermal growth factor, endothelial cell growth supplement, insulin, transferrin,
triiodothyronine, progesterone, estradiol, testosterone, cortisol, selenous acid, o-
phosphorylethanolamine, glucose, amino acids, vitamins and other trace elements
and nutrients in its Ham's F12 medium base. The concentrations of the supplements
are not declared by the supplier.

The H295R steroidogenesis assay was performed according to the OECD test
guideline (OECD, 2011). Briefly, cells at passages between 5 and 10 were seeded in
24-well plates at a density of 200,000 cells/ml in complete medium. The medium
was replaced 24h later with fresh medium containing test and reference
compounds where indicated. DMSO (0.1% (v/v)) served as vehicle control. For
studying time-dependent steroid production, cells were incubated for either 4, 8, 24
or 48 h in separate wells, and culture supernatants were collected and frozen at
—20°C until further analysis. For the other experiments, cells were incubated for

SULT2A]
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——>11B-Hydroxyandrostenedione
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Fig. 1. Overview of steroidogenesis. Steroids are indicated in bold, the key enzymes in regular and the corresponding catalyzing reactions by arrows. CYP = cytochrome P450;
HSD = hydroxysteroid dehydrogenase; SULT = sulfotransferase; StAR = steroidogenic acute regulatory protein.
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48 h. Complete medium prior to adding to the cells (t=0h) served as control. To
study the impact of serum, the complete medium was replaced 24 h after seeding by
Nu-serum-free medium, followed by incubation for 48 h and collection of culture
supernatants. All experiments were performed three times independently and in
triplicates, with the exception of the untargeted analysis of steroid changes upon
treatment with test and reference compounds; this experiment was performed two
times independently, each in triplicates.

2.3. Assessment of cytotoxicity

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
assay was used to evaluate possible effects of the test compounds on cellular
metabolic activity. Briefly, H295R cells were seeded in 96-well plates (30,000 cells/
100 ! complete medium). The medium was replaced after 24h and cells were
incubated with fresh medium containing the compounds of interest in a range of
0.04-50 M, as indicated in the figures and tables. After 48 h, cells were inspected
under the microscope. None of the treatments shown in this study, for both H295R
cells kept in complete medium and cells kept in Nu serum-free medium, resulted in
morphological changes. Then, 20 pl of MTT (5 mg/ml) was added to the medium,
followed by incubation for another 3 h. For dissolving of the formed formazan
crystals, the medium was aspirated and 100 ! of Sorenson's glycine buffer was
added to each well. The plates were analyzed after 5min at 565 and 650 nm
(reference wavelength). The MTT assay was performed three times independently
with technical triplicates. The conditions and concentrations used for the
experiments presented in this study did not result in reduced cellular metabolic
activity (values lower than 80% compared to vehicle control). Signs of cytotoxicity
were observed, however, when incubating cells in the absence of Nu-serum with
10 uM forskolin. For this reason, the lower forskolin concentration of 5 M was
used for experiments with Nu-serum free medium.

2.4. Targeted steroid quantification

Targeted analysis of steroid hormone levels in H295R culture supernatants was
performed as previously described with minor adaptations (Strajhar et al., 2016).
Briefly, for solid-phase extraction, 1 ml of each H295R cell supernatant was mixed
with 0.1 ml of protein precipitation solution (0.8 M zinc sulfate in water/methanol
50/50, v/v) that contained deuterium-labeled aldosterone, corticosterone, andro-
stenedione and testosterone as internal standards. After incubating the samples ina
shaker for 10 min at 4°C with thorough shaking (1300 rotations/min), they were
centrifuged for 10 min at 16,000 x g at 4°C. The supernatants (950 wl) were
transferred to Oasis HLB SPE cartridges, preconditioned with methanol and water.
Steroids were eluted with 1 ml of methanol after washing once with 1 ml of water
and twice with 1 ml of methanol/water (10/90, v/v). The samples were evaporated
to dryness and then reconstituted in 25wl of methanol. The separation and
quantification of the steroids was performed by ultra-high pressure LC-MS/MS
(UHPLC-MS/MS) using an Agilent 1290 UPLC coupled to an Agilent 6490 triple
quadrupole mass spectrometer equipped with a jet-stream electrospray ionization
interface. The steroids were separated using a reverse-phase column (Waters
Acquity UPLC BEH (18, 1.7 pum, 2.1 mm x 150 mm) and a mobile phase A and B,
consisting of water—acetonitrile—formic acid (95/5/0.1; v/v/v) and (5/95/0.1; v/v/v),
respectively. For data acquisition and analysis, Mass Hunter software (Agilent
Technologies) was used. Lower limits of quantification (LLOQ) are shown in Table 1.
The steroid levels measured in all supernatants of incubated H295R cells were
above the LLOQ. Recoveries for all steroids analyzed were between 80% and 120%.

2.5. Steroid quantification using an untargeted acquisition mode

Protein precipitation was performed adding 0.5 volume of protein precipitation
solution in cell culture supernatant (1 ml). Precipitation solution was prepared
adding 0.4 ml of 17a-hydroxyprogesterone-d8, cortisol-d4 at 1 g/ml in methanol,
and 0.2 ml of testosterone-d3 at 1 pg/ml in methanol (final concentrations in the

Table 1

Targeted quantification of steroids by LC-MS. Subset of 11 steroids used for
quantification with their respective lower limits of quantification (LLOQ) values in
nM.

Analyte LLOQ (nM)
Progesterone 0.05
17a-Hydroxyprogesterone 0.78
11-Deoxycorticosterone 0.78
Aldosterone 0.20
Corticosterone 0.98
11-Deoxycortisol 0.78
Cortisol 1.95
Dehydroepiandrosterone 3.91
Dehydroepiandrosterone 3-sulfate 19.5
Androstenedione 0.78
Testosterone 0.39

cellular medium equal to 4, 4 and 2 ng/ml, respectively) into 49 ml of 6% perchloric
acid solution in water. Samples were mixed for 10 min at 1400 rotations/min and
15°C with a Thermomixer (Vaudaux-Eppendorf, Buchs, Switzerland). Samples
underwent then centrifugation for 10 min at 4°C and 12,000 x g. Supernatant was
then loaded onto Oasis HLB cartridges (Waters, Milford, MA, USA) in 96-well plate
format (30 mg, 30 wm particle size). Prior to supernatant deposition, cartridges
were conditioned with 1ml of methanol, dried for 10min at 10 in Hg, and
equilibrated with two times 1 ml of water. Cartridges were then washed three times
successively with 1 ml of water/methanol (90:10, v/v) and dried for 1 minat 10in Hg
before elution with 1 ml of methanol. Fractions were then transferred into 1.5 ml
polypropylene tubes and evaporated to dryness under vacuum with a centrifugal
evaporator (RC1022, Jouan, Instrumenten Gesellschaft AG, Zirich, Switzerland).
Samples were then reconstituted in 50 .l of water +0.1% formic acid/acetonitrile +
0.1% formic acid (90:10, v/v) and homogenized in a Thermomixer for 10 min at 20 °C
and 1400 rotations/min (Vaudaux-Eppendorf, Buchs, Switzerland) before 10 .l
injection into the LC-MS system. Separation was performed with an UHPLC Acquity
H-Class (Waters) including a quaternary solvent manager (QSM), a sample manager
(SM-FTN) and a column manager (CM-A). The separation was performed on a
Kinetex C18 column (2.1 mm x 150 mm, 1.7 um) (Phenomenex, Torrance, CA) with a
SecurityGuard ULTRA C18 (2.1 mm x 2 mm) (Phenomenex). Mobile phase A was
water +0.1% formic acid, and mobile phase B was acetonitrile + 0.1% formic acid. The
flowrate was set at 300 pl/min. The composition in mobile phase B was increased
linearly from 5% up to 80% in 14 min, then up to 90% in 0.5 min (hold for 1.5 min) and
equilibrated back to original mobile phase conditions in 0.1 min for 6 min. Total
analysis time was of 22.1 min per sample. Column was kept at 30°C during the
analysis while samples were kept at 8°C in the autosampler. The automatic
calibration procedure was performed as described by Tonoli et al. (2015). MaXis 3G
QTOFMS (Bruker, Bremen, Germany) was equipped with an electrospray ionization
source operated in positive mode. Source parameters were as follows: end plate
offset was set at —500V, nebulizer pressure at 1.8 bar, dry gas flowrate at 5.5 I/min,
and temperature at 225 °C. Capillary voltage was set at —4.7 kV. Accumulation time
was set at 1 s and mass range monitored was from m/z 50 to m/z 1000. Acquisition
was performed in profile mode. Data were acquired using Compass v1.5 SR3
software suite from Bruker and HyStar v 3.2 SR2. UHPLC was controlled using plug-
in for Waters Acquity UPLC v.1.5.

2.6. Analysis of mRNA expression

Following a medium change and 48 h of incubation of H295R cells with the
respective compounds, RNA was extracted using Tri-reagent (Sigma-Aldrich) and
purified with the Direct-Zol RNA Mini Prep kit (Zymo research, Irvine, CA, USA)
according to the manufacturer's instructions. RNA quality and yield was assessed
using a Nano-Drop ND-1000 spectrophotometer (NanoDrop Technologies).
Complementary DNA (cDNA) was synthesized from RNA using Superscript III
reverse transcriptase (Invitrogen, Carlsbad, CA, USA) as previously described
(Chantong et al., 2014). RT-qPCR was performed using KAPA SYBR FAST qPCR kit
(Kapasystems, Boston, MA, USA) with the primers for the genes CYP11B2, CYP17A1,
CYP21A2, HSD3B2, CYP11A1, StAR, and CYP19A1 (Hilscherova et al., 2004), CYP11B1
(Xu et al.,, 2006), GAPDH (Tanaka et al., 2008), and HSD17B1, HSD17B2, HSD17B3,
AKR1C3 (sequences of oligonucleotide primers are listed in Table S1 in the
Supporting Information) and using the rotor-gene 6000 (Corbett Research, Sydney,
Australia). Relative gene expression compared with the internal control GAPDH was
determined using the 2-(ACt sample-ACt control) method. GAPDH was chosen as
reference gene because its expression did not change between the various
experimental conditions and time points applied in the present study. S18 RNA and
PPIA were also analyzed but did not fulfill the quality criteria to be used as reference
in these experiments (Taylor et al., 2010). Each sample was analyzed in triplicate.

2.7. Statistics

Computational analysis was performed in MATLAB™ 8 environment (The
MathWorks, Natick, USA). For analysis of data obtained from three independent
steroid profiling experiments each performed in triplicate (n=9), Shapiro-Wilk test
was used to verify the normality of data. One-way analysis of variance (ANOVA) and
Dunnett's multiple-comparison test were performed to evaluate differences
between chemical treatments compared to the solvent control. Differences in
gene expression were evaluated using a one-sample t-test of the fold changes after
log2 transformation. Differences with p < 0.05 were considered to be significant. For
analysis of data obtained from a representative experiment performed in triplicate
(n=3), Kruskal-Wallis test followed by Dunn's test was used.

3. Results

According to the OECD test guideline 456, H295R cells are
incubated in medium containing 2.5% Nu-serum with the chemical
of interest for 48 h, followed by determination of testosterone and
estradiol as read-out and expression of the results as relative
changes in hormone production compared with the solvent
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controls (Hecker et al., 2011; OECD, 2011). In the present study, an
untargeted LC-MS-based acquisition mode was chosen for the
initial characterization of the H295R cell model and for a
qualitative assessment of changes in the profile of 14 steroids
upon exposure to various reference and test chemicals. In a second
step, a targeted LC-MS-based method was used for quantification
of steroid profiles upon exposure of cells to selected chemicals.
This methods covered 11 adrenal steroids, including progestins,
adrenal androgens, glucocorticoids and mineralocorticoids;

A progestins
2.5+ <>¢
*
@ E 2.0 ¢
o2 ’
85 151 .
3]
© T
28 1.0
S s
S E
[} -
g5 0.5 i
[ =
0.0+
1 1 T ] T 1
= L £ = < =
(=] < [} < 0 o)
1l 1l 1l N < <
heat s S R |}
0.1% DMS £
o
4
-e- pregnenolone 4
-0~ 17a-hydroxypregnenolone £
-+ progesterone =
—<- 17a-hydroxyprogesterone e
mineralocorticoids
15+ *
x
® E 10+ *
Sw
e= 5-
S S .
ST os0o °
g 2 050
S s
©
o E
E5 0.254
=
0.00-
L L L L L
o < -] < ]
11 11 1] N <
0.1% DMSO

-%- 11-deoxycorticosterone
-O- corticosterone
-o— aldosterone

10 uM forskolin t=48h @ ®

however, not estrogens as they did not properly ionize under
the conditions applied.

3.1. Time-dependent production of steroids in H295R cells

As a first analytical step, untargeted signal acquisition led to the
detection of approximately 130 steroid-like metabolites annotated
automatically based on exact mass. Starting from this panel of
candidate compounds, 14 main steroids were unambiguously
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Fig. 2. Time-dependent steroid synthesis in H295R cells. H295R cells were cultivated following a medium change for 48 h in complete medium in the presence of vehicle (0.1%
DMSO) or 10 uM forskolin as positive control to stimulate steroidogenesis. The secretion of (A) progestins, (B) adrenal androgens, (C) mineralocorticoids and (D)
glucocorticoids into the medium was measured in culture supernatants by LC-MS. Kruskal-Wallis test followed by Dunn's test was used for statistical analysis. Data represent
peak areas normalized to internal standard (ISTD), median with range, from one (out of three) representative experiment, performed in triplicate (n=3). Significant
differences (p <0.05) for hormones (pregnenolone (*), 17a-hydroxypregnenolone (+), 17a-hydroxyprogesterone (i), 11-deoxycorticosterone (*), corticosterone (+),
aldosterone (@), 11-deoxycortisol (@), cortisol (1), cortisone (+), androstenedione (*), testosterone (@), and dehydroepiandrosterone (+)) compared to vehicle (0.1% DMSO) at

starting time point (t=0h) are indicated by the respective symbols.
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identified by comparison with reference standards. Based on mean
peak areas, a relative abundance comparison was conducted at 0, 4,
8, 24 and 48h of incubation of the cells in complete medium
containing 2.5% Nu-serum (Fig. 2). Additionally, steroidogenesis
was stimulated in H295R cells by adding 10 wM forskolin and
incubating the cells for 48 h.

Inclusion of steroid measurements of the complete medium
prior to adding it to the cells at the start of the experiment (t=0h)
revealed the presence of steroids that are added by the producer of
Nu-serum (BD Bioscience), i.e. progesterone, testosterone and
cortisol (estradiol is also added but was not measured by the
method applied in this study) as well as cortisone in the complete
medium (Fig. 2). While progesterone levels were not significantly
altered upon incubation for up to 48h, even in the presence of
forskolin, the progestins pregnenolone, 17-hydroxypregnenolone
and 17a-hydroxyprogesterone showed time-dependent increases
and were further enhanced upon treatment for 48 h with forskolin
(Fig. 2A). A similar time-dependent increase was observed for the
androgens androstenedione and, much less pronounced, for
dehydroepiandrosterone (Fig. 2B), as well as for the corticosteroids
11-deoxycorticosterone, corticosterone, 11-deoxycortisol, and, less
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pronounced, for aldosterone, cortisone and cortisol (Fig. 2C and D).
An exception was testosterone that was lower after 48 h of
incubation (Fig. 2B). Also, the presence of forskolin did not
stimulate the production of testosterone, and, although not
reaching significance, a trend decrease was observed. These
results show that H295R cells, in line with adrenal steroidogenesis,
produce progestins, adrenal androgens, mineralocorticoids and
glucocorticoids, reaching significant levels under the conditions
applied after 48 h of incubation. In contrast, the testosterone
contributed by addition of the Nu-serum seemed to be metabo-
lized by the H295R cells.

3.2. De novo synthesis of androstenedione but very low amounts of
testosterone

The production of androgens was further studied in H295R cells
incubated for 48 h in the presence or absence of Nu-serum. This
confirmed the presence of testosterone in the Nu-serum (compare
DMSO control at t=0h in Fig. 3A and B) and that only very low
amounts were produced de novo by the H295R cells (Fig. 3B). After
48 h of incubation in the absence of Nu-serum the amount of
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Fig. 3. De novo synthesis of testosterone, androstenedione and 113-hydroxyandrostenedione by H295R cells. Steroids were quantitated in culture supernatants of H295R cells
incubated either in complete medium (A) or in Nu-serum-free medium (B) for 48 h with vehicle (0.1% DMSO solvent control), 10 uM forskolin, 1 wM prochloraz, 1 uM
letrozole or 200 nM androstenedione. Controls for complete medium and Nu-serum-free medium (t=0h) were included for comparison. Steroids (mean peak areas) were
measured by LC-MS and represent median with range from one (out of three) representative experiment, performed in triplicate (n=3). Kruskal-Wallis test followed by
Dunn's test was used to analyze significant difference (p < 0.05) of solvent control at t=0 to chemical treatment at t=48 h (*).
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testosterone produced was approximately 10-fold lower than the
level present in the complete medium containing Nu-serum, thus
masking de novo testosterone synthesis in cells kept in complete
medium. Interestingly, forskolin did not affect the amount of
testosterone in cells kept in the complete medium compared to
vehicle control (Fig. 3A, DMSO control at t=48 h), despite of an
activation of testosterone formation observed in serum-free
medium (Fig. 3B). The metabolism of testosterone from Nu-serum
in cells kept in complete medium (Fig. 3A, also seen in Fig. 2B)
could be prevented by the CYP17A1/CYP21A2 inhibitor prochloraz
but not by the CYP19A1 inhibitor letrozole, suggesting that
metabolism to estradiol had at best a minor contribution to the
observed decrease of testosterone from the complete medium.
However, formation of estrone and estradiol was not analyzed in
this study because the LC-MS method applied was not designed to
quantify these estrogens. Addition of androstenedione led to a
trend increase (1.7-fold) in testosterone amounts in cells kept in
complete medium, but a more pronounced increase (4.5-fold) that
was further enhanced upon forskolin treatment (7.5-fold) in cells
in the absence of serum, demonstrating the capability of H295R
cells to produce testosterone (Fig. 3B). A comparison of H295R cells
cultivated in complete medium with cells kept in Nu-serum-free
medium revealed that androstenedione was synthesized de novo
and that its production was further enhanced by forskolin (Fig. 3A
and B). Also, 113-hydroxyandrostenedione, a steroid produced by
the human adrenals and found at higher concentration than
androstenedione in adrenal vein sampling (Rege et al., 2013; Swart
et al., 2013), was produced de novo by the H295R cells and was
further enhanced upon forskolin treatment. While prochloraz
abolished the formation of androstenedione and 113-hydroxyan-
drostenedione, letrozole had no effect on the amounts of these
steroids, suggesting that CYP19A1 plays a minor role under these
conditions and that these androgens were not converted in
substantial amounts to estrogens.

The adrenals can also form other hydroxylated metabolites of
androstenedione and testosterone (Ford et al., 1975; Wang et al.,
2010). For example, as shown in Fig. S1 (see Supplementary
information), 16c- and 19a-hydroxyandrostenedione were found
to be produced by the H295R cells and further increased by
forskolin treatment, both in the presence and absence of Nu-
serum. Also, 16a- and 16[3-hydroxytestosterone were produced by
the H295R cells and further enhanced by forskolin, and these
metabolites were not present at substantial amounts in the
complete medium. Thus, hydroxylation of testosterone by cyto-
chrome P450 enzymes provides a possible explanation for the
observed decrease of testosterone added by the complete medium
upon incubation of H295R cells.

Table 2

3.3. Impact of Nu-serum and forskolin on mRNA expression of
steroidogenic genes

In order to assess the impact of Nu-serum removal on
steroidogenic gene expression, H295R cells were subjected to a
medium change and incubated in Nu-serum-free medium for 48 h
in the presence of 0.1% DMSO. The comparison of mRNA expression
levels with cells kept in complete medium revealed only minor
differences in basal gene expression with CYP11B2 and StAR being
expressed at about 2-fold lower levels (Table 2). Next, the
stimulation of steroidogenesis by forskolin was analyzed. The
most pronounced increase in mRNA expression was observed for
33-HSD2 followed by CYP21A2, CYP11B2 and CYP19A1. All genes
involved in steroidogenesis were induced at least 2-fold upon
treatment with forskolin. Additionally, the expression of genes
involved in the final steps of testosterone and estradiol synthesis
were measured. 17(3-HSD3 (converting androstenedione to testos-
terone), 173-HSD1 (converting estrone to estradiol) and 173-HSD2
(converting estradiol to estrone, testosterone to androstenedione)
were not expressed at substantial levels. AKR1C3 mRNA was well
expressed; thus, the enzyme responsible for the last step of de novo
testosterone formation in H295R cells seems to be AKR1C3 and not
173-HSD3, the key enzyme in Leydig cell testosterone formation
(Miller and Auchus, 2011). AKR1C3 decreased 2-fold upon forskolin
treatment in both cells kept in complete medium and in cells
incubated in Nu-serum-free medium. Forskolin stimulation of
steroidogenesis was in general more pronounced in Nu-serum-free
medium, which may be explained by higher free concentrations of
the compound in the absence of binding to serum proteins. At
forskolin concentrations of 10 wM and higher, morphological
changes indicating cytotoxicity were observed in cells incubated in
Nu-serum-free medium (not shown); therefore a forskolin
concentration of 5wM, which did not lead to morphological
changes, changes in the MTT assay, or changes in the expression
levels of the GAPDH control, was chosen for these experiments.

3.4. Qualitative effects of reference and test compounds on the steroid
profile in H295R cells

In the present study, H295R cells were incubated in medium
containing 2.5% Nu-serum (complete medium) with the com-
pounds of interest for 48 h, followed by collection of culture
supernatants, according to the OECD test guideline. Relative
amounts of the identified steroids, including the main adrenal
steroids plus testosterone, were compared to those of cells
incubated with vehicle (0.1% DMSO) (Fig. 4). The steroid profile
of the complete medium at the start of the experiment (t=0h) was

Impact of serum and forskolin on mRNA expression of steroidogenic genes. H295R cells were cultivated for 48 h in complete medium or in Nu-serum free medium in the
presence or absence of 10 wM or 5 wM of forskolin, respectively, followed by quantification of mRNA expression by qPCR. Data represent mean =+ SD from three independent
experiments (n=9), each performed in triplicates. GOIs = genes of interest; GAPDH = glycerinaldehyde-3-phosphatedehydrogenase; Ct = cycle threshold. Differences in gene
expression were evaluated using a one-sample t-test of the fold changes after log2 transformation. Differences with p <0.05 were considered to be significant.

Complete medium

Nu-serum-free medium

Ct value Fold change GOI/GAPDH Ct value Fold change GOI/GAPDH

DMSO 0.1% Forskolin 10 uM DMSO 0.1% Forskolin 5 uM
GAPDH 13.7+0.5 1.0+04 13.6+0.7 1.0+0.1
StAR 159+0.5 224+04* 170+ 0.4 56+11*
CYP11A1 17.5+0.5 24+08" 17.9+0.6 31+0.3%
3B-HSD2 24.6+0.6 279+5.2% 25.0+0.2 25.8+10*
CYP17A1 19.5+04 3.4+0.6* 20.0+0.5 7.34+23*
CYP21A2 20.0+0.7 8.0+1.9* 20.8+0.8 19+£5.9%
CYP11B1 291+0.7 2.9+1.0* 29.1+0.9 53+3.2%
CYP11B2 259+0.6 91+21* 26.9+0.5 143 £5.7*
CYP19A1 23.4+0.5 7.7 +1.6* 23.0+0.3 10.5+1.1*
AKR1C3 21.6 +£0.6 0.5+0.1* 22.0+0.5 0.5+0.0*
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Fig. 4. Qualitative analysis of effects of reference and test chemicals on the H295R steroid profile. H295R cells were incubated following a medium change in complete medium for

48 h with vehicle (

0.1% DMSO) or the respective reference or test compound at the indicated concentration. Changes in steroid levels were measured by LC-MS. Data are expressed

3).Steroid metabolites down

as afold change relative to the solvent control and represent mean + SD from one (out of two) representative experiment, performed in triplicate (n

regulated by 1.5-fold or more are indicated in green and steroids up regulated 1.5-fold or higher are depicted in red in order to indicate trend changes. The complete medium

control was taken at the start of the experiment (t

0h). RF: reference compound; TC: test compound; SC: solvent control; MC: medium control.
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included to distinguish steroids produced by the cells from steroids
contributed by the Nu-serum. Progesterone, testosterone and
cortisol were mainly contributed by the Nu-serum. Aldosterone
was present at very low levels in unstimulated cells and varied in
the medium control of the two experiments, thereby affecting the
fold increase upon stimulation.

Next, in a qualitative experiment, the effects of various
reference compounds were analyzed. As expected, angiotensin II
and forskolin both enhanced the production of corticosterone,
cortisol as well as the CYP11B product 113-hydroxyandrostene-
dione (Fig. 4). Forskolin additionally enhanced the levels of 17a-
hydroxyprogesterone, dehydroepiandrosterone and androstenedi-
one, in line with an overall stimulation of the steroidogenesis.
Prochloraz, which besides CYP17A1 also inhibits CYP21A2
(Ohlsson et al., 2009), prevented the further metabolism of
progesterone, resulting in its accumulation, and led to reduced
levels of corticosteroids and adrenal androgens. As mentioned
above, the metabolism of testosterone from the Nu-serum was not
affected by prochloraz treatment. Etomidate, at the concentration
used in the present study, was found to inhibit CYP11B1, CYP11B2
and CYP11A1 (Hahner et al., 2010), explaining the almost complete
block of steroidogenesis observed. Abiraterone, a known inhibitor
of CYP17A1 and 3B-HSD2 (Jarman et al., 1998; Li et al., 2012),
resulted in the simultaneous increase in progesterone and
decrease in adrenal androgens and corticosteroids. Formestane
at 10 wM exhibited a similar inhibition pattern with the exception
of enhanced pregnenolone levels. The 33-HSD inhibitor trilostane
(Cooke, 1996) led to reduced adrenal androgen production. Since
one of the aims of the present study was to establish conditions to
identify chemicals disrupting corticosteroid synthesis, torcetrapib
was used as a positive control. Torcetrapib was initially developed
as a lipid lowering drug for treatment of cardiovascular disease but
failed in phase III clinical trials due to excessive production of
corticosteroids (Clerc et al., 2010; Hu et al., 2009). As expected,
incubation of H295R cells with torcetrapib enhanced the CYP11B1/
CYP11B2 products aldosterone, corticosterone, cortisol and 113-
hydroxyandrostenedione. The steroid profiles obtained for these
reference compounds should facilitate classifying effects of test
chemicals that yield a similar pattern, providing initial mechanistic
insight and helping to prioritize further investigations.

Numerous test compounds were then analyzed for potential
disruption of adrenal steroidogenesis. Several of them did not
affect the steroid profile and/or presented very moderate effects. A
general reduction of steroid production was observed for
triclocarban, as reported earlier (Tonoli et al., 2015), and for
mitotane, although the effects were moderate. Genistein led to
enhanced pregnenolone, 17a-hydroxypregnenolone and dehydro-
epiandrosterone, but reduced progesterone, 17a-hydroxyproges-
terone, corticosteroids and 33-HSD-dependent androgens, in line
with earlier findings of an inhibition of 3(3-HSD activity (Sirianni
etal., 2001). Five compounds, the UV-filter octocrylene, the cardiac
glycosides digoxin and digitoxin, and the Nrf2 activators sulfo-
raphane and CDDO methyl ester, resembled the steroid profile of
abiraterone, suggesting inhibition and/or down regulation of
CYP17A1 as an underlying mechanism. Two compounds, the
UV-filter oxtyl methoxycinnamate and the phthalate replacement
compound acetyl tributylcitrate, resembled the steroid profile of
torcetrapib, suggesting an induction of CYP11B1 and CYP11B2
expression and activity.

3.5. Concentration-response study of selected chemicals on steroid
production and impact on gene expression

To confirm the impact on the steroidogenesis of various
concentrations of three important compounds, namely octocry-
lene, acetyl tributylcitrate and octyl methoxycinnamate, a

supplementary set of experiments was conducted. For this
purpose, targeted analyses on a QqQ system were then carried
out to complement the first screening and determination of the
extended steroid profiles with quantitative data. The use of
targeted MS analysis of 11 reference steroid compounds allowed to
unambiguously identify the concentration-dependent effects of
the selected compounds on the alteration of steroid production.
Incubation of H295R cells in complete medium containing 10 wM
of octocrylene confirmed the increased progesterone and 17a-
hydroxyprogesterone levels but suggested only a weak trend
decrease for the corticosteroids 11-deoxycortisol, cortisol and
corticosterone (Fig. 5). Exposure of H295R cells to acetyl
tributylcitrate tended to increase the synthesis of the corticoste-
roids corticosterone and aldosterone and increased 11-deoxycor-
ticosterone production. As seen with torcetrapib, acetyl
tributylcitrate enhanced progesterone and 17a-hydroxyprogester-
one levels. Octyl methoxycinnamate enhanced corticosterone and
aldosterone and tended to increase cortisol levels. Hence, these
results suggest that acetyl tributylcitrate and octyl methoxycin-
namate increase mineralocorticoid production at concentrations
of 10 wM, while none of these steroid metabolites were altered at
lower concentrations.

As the initial goal of this study was to search for chemicals
enhancing corticosteroid production and thereby contributing to
hyperaldosteronism and hypercortisolism, the effect of acetyl
tributylcitrate and octyl methoxycinnamate on the expression of
key steroidogenic genes was determined (Fig. 6). As positive
control, torcetrapib led to a profound up regulation of the
expression of CYP11B2 and 3[(3-HSD2 and a more moderate
induction of CYP11B1, CYP21A2, StAR, CYP11A1 and CYP17A1. The
elevated expression of 3[3-HSD2 explains the increased production
of progesterone and 17a-hydroxyprogesterone, whereas the
enhanced CYP11B1, CYP11B2 and CYP21A2 are responsible for
the observed increase in aldosterone, cortisol, corticosterone and
11B-hydroxyandrostenedione. At concentrations of 10 M, octyl
methoxycinnamate and acetyl tributylcitrate both increased
CYP11B2, 33-HSD2 and CYP21A2 expression. They also increased
or tended to increase CYP11B1 expression, thus explaining the
torcetrapib-like effects previously observed in the qualitative
assessment on the extended steroid profile.

4. Discussion

The OECD test guideline 456 describes a steroidogenesis assay
validated for using the H295R cell line in its basal state to detect
chemicals affecting the levels of testosterone and estradiol as
endpoints (Hecker et al., 2006; OECD, 2011). According to the test
guideline, the cells are incubated with the chemicals for 48 h.
Testosterone and estradiol levels are being compared between
cells exposed to vehicle and cells exposed to the test chemical
(relative concentration determination). The steroidogenesis inhib-
itor prochloraz (1 wM) and the inducer forskolin (10 wM) are
suggested as relevant controls. The present study proposes several
suggestions for improvement of using H295R cells to detect
chemicals interfering with adrenal steroid production. Using MS-
based methods an extended panel of adrenal steroids can be
quantified in culture supernatants of H295R cells at the start of the
experiment (t=0h) and upon incubation (t=48h), allowing
distinguishing between steroids produced by the cells and steroids
contributed by the serum. Additionally, comparison of the
observed changes caused by a given test chemical in the steroid
profile with that of reference compounds acting on specific
steroidogenic enzymes can provide initial mechanistic informa-
tion.

First, because H295R cells and the complete medium with 2.5%
Nu-serum represent a complex biological matrix already
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Fig. 5. Concentration-dependent effects of octocrylene, octyl methoxycinnamate and acetyl tributylcitrate on the H295R steroid profile. H295R cells were incubated
following a medium change for 48 h with 0.1% DMSO (solvent control), 0.3 wM torcetrapib (reference compound) or the test compounds at the concentrations indicated. A

complete medium control (t

9) were

0h) was included for comparison. Targeted quantification of steroids was performed by LC-MS. Data depicted in nM (mean + SD; n=

obtained from three independent experiments, each performed in triplicates. Steroid levels are shown as absolute values in nM. Values are depicted in a color code; where

down regulation (>1.5-fold) is indicated in green and up regulation (>1.5-fold) in red compared to vehicle control. Shapiro-Wilk test was used to verify the normality of data.
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Fig. 6. Impact of torcetrapib, octyl methoxycinnamate and acetyl tributyl citrate on steroidogenic gene expression. H295R cells were incubated for 48 h with 0.3 uM
torcetrapib, 10 wM octyl methoxycinnamate (OMC) or 10 wM acetyl tributyl citrate (ATC), followed by determination of the mRNA expression of steroidogenic genes of
interest (GOIs). Values were normalized to glycerinaldehyde-3-phosphatedehydrogenase (GAPDH) and represent fold change over DMSO control (solid bars: up regulation;
open bars: down regulation). Data, obtained from three independent experiments each performed in triplicates, are expressed as mean +SD; n=9. Differences in gene
expression were evaluated using a one-sample t-test of the fold changes after log2 transformation. Differences with p < 0.05 were considered to be significant. *p < 0.05

compared to control.

containing about 30 different steroids (Gazdar et al., 1990; Rainey
et al., 1993, 1994), appropriate analytical methods, i.e. LC-MS and
GC-MS, should be applied to obtained a sufficient analytical
selectivity and the specific quantification of individual steroids.
Antibody-based methods often fail to discriminate between
similar steroid metabolites, resulting in an over estimation of
the concentration of an individual steroid metabolite. For example,
antibodies recognizing testosterone might also bind 6-,11-,16- and
19-hydroxylated or 5a-reduced metabolites, thus explaining the
higher values obtained compared to MS-based quantification
methods (Handelsman et al., 2015). The specificity analysis of
commercially available antibody-based steroid quantification kits
usually includes only a few steroid metabolites, thus the

application of such kits should be restricted to well-defined
samples. Also, a comparison of antibody-based Kkits revealed
heterogeneity regarding recovery and linearity of steroid quantifi-
cation (Buttler et al., 2013; Haisenleder et al., 2011; Handelsman
and Wartofsky, 2013; Rosner et al., 2007). These issues emphasize
the use of hyphenated approaches such as LC-MS and GC-MS
methods for quantification of steroids, already considered as
routine use determination in other important scientific fields such
as doping analysis (Badoud et al., 2011 ). Moreover, untargeted LC-
MS acquisition allows the retrospective analysis of the data
without the need to reprocess the samples (Boccard et al., 2011).
Such an approach constitutes therefore an appealing alternative
for future developments of an extended profiling of the molecular

One-way analysis of variance (ANOVA) and Dunnett's multiple-comparison test were performed to evaluate differences between chemical treatments compared to the
solvent control. Differences with p < 0.05 were considered to be significant. *p < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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actors involved in steroidogenesis, to complement the OECD
reference guideline.

Second, to distinguish between changes in levels of steroids
produced by the H295R cells from changes of steroids contributed
by the Nu-serum, a control sample of the complete medium at the
start of the experiment (t=0h) should be included. The composi-
tion of Nu-serum shows batch-dependent variations that are not
defined by the vendor; besides varying concentrations of
testosterone and other steroids (own observations), other compo-
nents such as growth factors may show Nu-serum batch-
dependent differences, which may explain some of the inter-
laboratory differences of steroid values and responses reported for
this cell line (LeBaron et al., 2014). The Nu-serum used in the
present study contained a relatively high concentration of
testosterone (6.4nM in complete medium containing 2.5% Nu-
serum), and upon incubation with the cells part of this exogenously
added testosterone was metabolized by enzyme(s) that could be
inhibited by prochloraz (Fig. 3A and Fig. S1), likely involving CYP
enzymes. In an earlier report, Zhang et al. reported the presence of
testosterone in the culture medium (1260 pg/ml, corresponding to
4.4nM) (Zhang et al., 2011); however, in their study they observed
testosterone formation in complete medium (470 pg/ml, 1.6 nM)
and forskolin led to a 2.9-fold increase in testosterone production.
In the present study, the H295R cells in the absence of Nu-serum
produced 0.55 nM testosterone, which was increased to 0.87 nM
(158%) upon forskolin treatment, in line with the OECD guideline
standard for induction/inhibition of testosterone synthesis (OECD,
2011). However, the H295R cells used in this study seemed to be
less responsive to forskolin and they seemed to have a higher
capacity to metabolize testosterone than the cells used by Zhang
et al. (2011).

A limitation of the present study includes that estrone and
estradiol, generated from androstenedione and testosterone by
CYP19A1, were not quantified. Nevertheless, an induction of
CYP19A1 by forskolin was observed, as reported in other studies
focusing on CYP19A1 expression and activity (Caron-Beaudoin
et al., 2016; Sanderson et al., 2000, 2002; Zhang et al., 2011).
Compared with androstenedione synthesis, the capacity of H295R
cells to produce estrogens seems to be rather low. For example
Zhang et al. found approximately 50% lower amounts of estradiol
produced compared to testosterone (Zhang et al., 2011). The
present study showed that androstenedione was synthesized by
the H295R cells, reaching an estimated concentration of 39 nM
after incubation for 48 h in Nu-serum free medium (Fig. 3B). This
compares with the much lower levels of testosterone generated
under Nu-serum free conditions (0.55nM), indicating inefficient
17-oxoreduction, and, as indicated by the study of Zhang et al.
(2011) of estradiol, thus providing an explanation why incubation
with the potent CYP19A1 inhibitors letrozole and formestane did
not result in an accumulation of androstenedione and testosterone
upon blocking the conversion to the corresponding estrogens.

Whilst comparison of treatment with vehicle versus chemical
allows detecting compounds that cause changes in steroid levels,
the inclusion of a complete medium control (t=0h) within any
experimental design is mandatory to distinguish between steroids
produced by the cells and steroids from the Nu-serum that then
might be metabolized by the cells, thereby providing mechanistic
information. For example, in the present study in the presence of
Nu-serum, treatment of cells with prochloraz resulted in higher
testosterone levels (Fig. 3A), which could be misinterpreted as a
testosterone inducing chemical effect if no t=0h control were
included and if no comparison with cells incubated in Nu-serum-
free medium would have been analyzed. Thus, the use of H295R
cells in the absence of serum represents a useful alternative for
testing of chemicals interfering with steroidogenesis. Neverthe-
less, due to the higher unbound fraction of chemicals in the

absence of serum, cytotoxicity of test compounds might be higher
and should be excluded under these conditions.

Third, the simultaneous quantification of a panel of progestins,
adrenal androgens, glucocorticoids and mineralocorticoids can
provide initial mechanistic insight into the effects of a new test
chemical. Measuring a group of important steroids provides more
reliable information than determination of a single steroid. For
example, ratios between selected compounds could be used to
improve analytical reproducibility. Upon stimulation of CYP11B1
expression, the corticosteroids corticosterone, cortisol and 113-
hydroxyandrostenedione are expected to increase, whereas the
progestins progesterone, 17a-hydroxyprogesterone, pregnenolone
and 17a-hydroxypregnenolone remain unchanged or tend to
decrease. A modulation of adrenal androgens is indicated if
dehydroepiandrosterone, its sulfated form, androstenedione and
its 113-hydroxylated form are altered. Testosterone appears not to
be a reliable marker, since it is present at a substantial level in Nu-
serum (Zhang et al, 2011) and can be metabolized, thereby
masking the production by the H295R cells. Furthermore,
inhibition of the initial steps of steroidogenesis, i.e. StAR or
CYP11A1, is indicated by a pattern resembling that of the complete
medium at the start of the experiment, thus further emphasizing
the inclusion of this important control.

Fourth, the use of several reference compounds with known
mechanisms allows classifying effects of new test chemicals. As
shown in this study, for the UV-filter chemical octocrylene a
steroid profile similar to that of abiraterone (Mangelis et al., 2016;
Rijk et al., 2012), with enhanced progesterone but slightly
decreased corticosteroids and adrenal androgens was observed
(Fig. 4), suggesting further mechanistic studies on whether
octocrylene might inhibit and/or down regulate the expression
of CYP17A1 and 3[-HSD2. The toxicological relevance of the
observed effects of octocrylene needs to be investigated in a
follow-on study. The observed inhibitory concentration was high
and reliable concentrations in exposed individuals need to be
established; however, mixtures of UV-filter chemicals need also to
be considered in such follow-on studies. Similarly, future experi-
ments should investigate whether the cardiac glycosides digoxin
and digitoxin and the Nrf2 activators sulforaphane and CDDO
methyl ester indeed act on CYP17A1. For this purpose, the use of
forskolin stimulated cells should be considered because H295R
cells produce rather moderate levels of adrenal androgens and
corticosteroids in their basal state. The use of stimulated cells will
facilitate the identification of chemicals inhibiting different steps
of steroidogenesis. Also, the use of reference inhibitor compounds
such as etomidate (Hahner et al., 2010; Rijk et al., 2012; Ulleras
etal., 2008) and abiraterone (Mangelis et al., 2016; Rijk et al., 2012)
can be optimized to use concentrations where a more selective
inhibition of CYP11B1/CYP11B2 and CYP17A1, respectively, is
achieved.

Using a corticosteroid inducer such as torcetrapib as a reference
compound (Clerc et al., 2010; Hu et al., 2009), the two chemicals
octyl methoxycinnamate and acetyl tributylcitrate were found to
have a similar pattern. A supplementary concentration-depen-
dence experiment revealed that only the highest concentration of
10 .M showed corticosteroid inducing effects (Fig. 5). Although it
seems unlikely that such high concentrations are reached in vivo in
the adrenals, a significant contribution of this compound when
present in mixtures cannot be excluded and further studies should
address this important issue of potential synergistic effect between
EDCs. Furthermore, torcetrapib may serve as a useful reference
compound to induce corticosteroid production and search for
chemicals that are associated with hypocortisolism and hypo-
aldosteronism by inhibiting corticosteroid production. Determi-
nation of incubation time and type of inducer is important for such
studies. In a recent study, Karmaus et al. used H295R cells that
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were stimulated for 48 h with forskolin prior to incubation with the
test chemicals for profiling a large number of chemical effects on
steroidogenesis, aiming at the categorization of action (Karmaus
et al., 2016).

Finally, as shown in the present study, the steroid profile
changes induced by a given chemical should ideally be confirmed
or at least combined with gene expression analysis. As demon-
strated for octyl methoxycinnamate and acetyl tributylcitrate, the
torcetrapib-like steroid pattern with increased corticosteroids
could be explained by elevated expression of CYP11B2 and 3[3-
HSD2 mRNA levels (Fig. 6). Thus, these compounds do not directly
modulate the activity of these enzymes but rather alter their
expression levels. Follow-on investigations need to show whether
L-type calcium channels might be involved in the mode of action
and whether the increased CYP11B2 expression is a result of
enhanced activation of the nuclear receptor NR4A2 as reported for
torcetrapib expressed H295R cells (Clerc et al., 2010). Often, mRNA
expression does not translate into protein expression; thus,
determination of protein expression and/or enzyme activity
measurements can complement mRNA expression analysis.

5. Conclusion

H295R cells represent an invaluable tool for the detection of
hazardous chemicals interfering with steroidogenesis. The simul-
taneous measurements of a panel of progestins, adrenal andro-
gens, glucocorticoids and mineralocorticoids by separation
techniques hyphenated to MS such as LC-MS or GC-MS, as well
as inclusion of a complete medium control at the start of the
experiment allow identifying chemicals altering adrenal steroid
production and provide initial mechanistic insight into the effects
of such chemicals. Comparison with the steroid profiles of suitable
reference compounds further allows classifying new test chem-
icals, thereby facilitating the prioritization of follow-on in vitro and
in vivo experiments.

The results of the test chemicals suggest that the UV-filter
octocrylene, the cardiac glycosides digoxin and digitoxin and the
Nrf2 activators sulforaphane and CDDO methyl ester affect
steroidogenesis by inhibiting or down regulating CYP17A1. Further,
octyl methoxycinnamate and acetyl tributylcitrate increase
corticosteroid production via induction of CYP11B2 and 3[3-
HSD2 expression. Further studies need to address the toxicological
relevance of these observations. Finally, additional investigations
of the untargeted steroid profiles will be carried out to extend the
number of potential biomarkers and offer a more complete picture
of the biochemical events resulting from H295R exposure to
possible EDCs.
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4.4 Achieved knowledge and future perspectives

The first goal of this thesis was to provide a critical overview of the current cell lines available to test for
potential endocrine disruptors (published review paper “Disruption of steroidogenesis: Cell models for
mechanistic investigations and as screening tools”), as well as addressing their advantages/disadvantages.
We then outlined recommendations for improvements in the H295R steroidogenesis assay. My work then
specifically focused on experimentally addressing the key issues raised in the review with respect to the
OECD/EPA steroidogenesis assay. This resulted in the establishment of the refined version of the H295R

steroidogenesis assay compared to the currently used protocols published by the OECD and the EPA.

Briefly, the five major improvements in the usage of the H295R cell system and the current guidelines, as
detailed in the published manuscript “Steroid profiling in H295R cells to identify chemicals potentially
disrupting the production of adrenal steroids”, include: 1) monitoring of an enlarged adrenal steroid profile,
2) exclusive hormone analysis by separation techniques combined with MS, 3) inclusion of the medium
composition at the starting time of an experiment leading to an improved data interpretation as well as 4)
simultaneous testing of reference compound with a known mode of action to further classify the effect of
the test compounds, and 5) performance of gene expression investigations indicating first mechanistic hints

of changes in steroid profiles.

As previously mentioned, humans may be exposed to endocrine disruptors from numerous sources such
as consumer products (cosmetics and UV-filters used in sun creams), agricultural and industrial chemicals,
plant constituents, food additives, synthetic hormones and designer drugs [20]. For chemicals where no
clinical trial or in vivo studies [58] can be performed, such as for cosmetics, the in vitro cell systems are the
only biological tool available for investigative screening. Based on evidence from the literature, | selected
31 reference and test compounds based on their endocrine disrupting properties and tested for their

potential to disturb the key adrenal steroids in the enhanced H295R steroidogenesis assay.

In addition, concentration-dependent experiments with the UV-filters octocrylene (OC), octyl
methoxycinnamate (OMC) and the plasticizer acetyl tributylcitrate (ATC) were conducted, revealing
significant changes in hormone production only at the highest test concentration (10 uM). These findings
and its toxicological relevance need to be further assessed. However, it remains unclear at which
concentration a chemical should be tested. Certainly, the research question mainly influences the chosen
test concentration. For screening approaches, high concentrations (without cytotoxic effect) are frequently
used to identify hits [59-61]. Subsequently, these chemicals can then be selected for concentration-
dependent experiments to help identify the concentrations by which they can affect enzymes involved in
steroidogenesis. This is complex, since a chemicals can selectively affect its target enzyme at low
concentrations, whereas at high concentrations can affect multiple enzymes in steroidogenesis [59]. For
example, etomidate inhibits CYP11B1 at low concentrations (ICso 15 nM), whilst higher concentrations (ICso
400 nM) also blocked CYP11A1 [62]. Likewise, the enzymes CYP17A1 (ECso values in the range 0.26—
0.82 uM) and CYP11A1l (ECso value of 1.60 uM) exert a concentration dependent sensitivity towards
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ketoconazole treatment [63]. It is essential to consider, that mixtures of low potent endocrine disruptors can
also lead to considerable changes in steroid profiles. Importantly, in the risk assessment, concentrations
close to the predicted human exposure should be evaluated. However, predicting exposure in humans is
complex and influenced by numerous factors such as different concentration in biofluids, tissue distribution,
accumulation, population heterogeneity (age, gender, state of health, nutrition, and previous exposures),
route of chemical exposure (oral, dermal, inhalation), compound metabolism, external measurements

(levels in water, food), and collecting/analysis design [20].

Studies often combine steroid hormone measurements with gene expression of selected steroidogenic
enzymes [22, 63-66] providing initial mechanistic hints of how the chemicals can affect steroidogenesis.
The enzymes involved in steroidogenesis are considered as essential targets for adrenocortical endocrine
disruptors [59]. We could show that treatment with ATC (10 yM) and OMC (10 uM), similar to torcetrapib
(0.3 yM), upregulated the expression of CYP11B2, CYP11B1 and CYP21A2, consistent with the increase
of corticosterone and aldosterone. Nevertheless, it was reported that there is not always a direct relationship
between changes in steroid production and gene expression [66]. The mMRNA levels determined by RT-
gPCR offer a robust method to investigate gene expression [67], however when possible, should be
supplemented with the protein expression and enzyme activity analysis. In our screening approach using
the H295R cells, treatment with cardiac glycosides (digoxin, digitoxin), UV-filter (octocrylene) and Nrf2
activators (sulforaphane and CDDO methyl ester) results in similar steroid profile changes as seen with the
CYP17ALl inhibitor abiraterone. Therefore, it would be interesting to investigate the effect of these chemicals

on the mRNA, protein and activity levels.

The use of stimulated cell systems would favor the identification of adrenocortical endocrine disruption [59],
which may be missed in the basal state, where the H295R produces only low levels of corticosteroids and
adrenal androgens. For cell system stimulation, we suggest using torcetrapib or forskolin. Torcetrapib
shows a profound stimulation of corticosteroids and forskolin additionally stimulates adrenal androgens.
Furthermore, it would be helpful to test potential adrenocortical endocrine disruptors using an in silico

approach, thus increasing the positive hit rate and potentially reducing cell based testing.

Our refined H295R steroidogenesis assay needs further analytical improvements by including estradiol,
estrone, and the 11-hydroxylated adrenal androgen metabolites 113-hydroxytestosterone and 11[3-
hydroxyandrostenedione in the hormone analysis. The strategy of increasing the numbers of steroidogenic

analytes in this assay will help to delineate the effects of chemicals on adrenal steroidogenesis.

In our studies, we observed a batch-to-batch variability in steroid concentrations derived from the Nu-serum,
which is a medium additive used in the H295R steroidogenesis assay. To avoid misinterpretation in
hormone changes, the medium composition (with or without Nu-serum, as well as its exact steroid content)

has to be strictly defined prior experimental usage.

It would also be interesting to investigate chemically induced time dependent disruption of steroidogenesis,

as shown by others [68, 69]. This may lead to the identification of time-dependent sensitive steroids, which
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may be used as markers to delineate different steroidogenic pathways, similar to the approach described
by Tonoli et al. on concentration dependent sensitivity [41]. The H295R cell line could also be used to
investigate receptor-mediated effects. For example, a study in the H295R cells showed the glucocorticoid

receptor, regulated steroid production by an autocrine positive feedback loop [70].

In the past, a major limitation of the H295R cell line was its poor response to the most potent physiological
modulator of steroidogenesis ACTH [70, 71]. This was overcome following treatment of forskolin or cAMP
analogues [72] or by using H295RA, an ACTH-responsive human adrenocortical cell line, recently
developed by genetic manipulation of the H295R cell line. ACTH stimulation of H295RA cells results in an
increase of the major adrenal steroids [73]. However, the H295R steroidogenesis assay is not a useful tool
to comprehensively study chemicals affecting the HPA. Currently, assays to assess the disruption of HPA
by endocrine disruptors are, due to its high complexity, regulation, and numerous potential targets, poorly
developed and no approved regulatory protocols are available [74]. Therefore, in vivo studies are
unavoidable. In rodent studies, HPA disturbance can be identified by corticosterone and ACTH
measurements [74]. Moreover, an increased ACTH stimulation of the adrenal gland can be observed by
adrenocortical hypertrophy. Here, it is important to distinguish between stress related changes from direct

adrenal toxicity (adrenocortical steroidogenesis inhibition) [45].

The H295R steroidogenesis assay is not an appropriate assay to study the effect of chemicals on the
circadian rhythm of adrenal glucocorticoids, as it lacks a HPA regulation and feedback mechanism.
Nevertheless, a peripheral clock system in H295R cells was demonstrated, where the glucocorticoids affect
the periodic oscillations of clock genes [75]. This is consistent with other reports, where an adrenal intrinsic
mechanism is suggested in the local adrenal clockwork [17]. However, the H295R cell line is not suitable
to study circadian rhythm on the steroid levels, based on our time-dependent steroid synthesis experiments

in H295R cells, where no oscillations in steroid levels were observed.

Furthermore, the H295R can be used to study signaling mechanisms involved in steroidogenesis pathways.
For example, Krug et al. addressed the association between body weight and inadequately increased
aldosterone levels. By using the H295R cells they showed that adipokines can directly stimulate
aldosterone secretion, mediated via ERK1/2-dependent upregulation of StAR [69]. In addition, complex
steroidogenic interactions can be studied by using a co-culture model. For instance, H295R co-cultured
with an estrogen receptor-positive breast cancer cell line, such as MCF7 [76], can be used to investigate
aromatase inhibitors on hormone dependent breast cancer cell proliferation [77]. Moreover, co-cultures of
H295R cells and the human choriocarcinoma BeWo cells provide an in vitro model to investigate the
steroidogenic interactions between placenta and fetus, thereby enabling to screen for potential endocrine
disrupting chemicals during pregnancy [78]. In our studies, the H295R cells express the enzyme AKR1C3
but not 173-HSD3 (both enzymes catalyze the conversion from androstenedione to testosterone). However,
we demonstrated that H295R cells only have minor testosterone production capacity. This could be

overcome with stable transfection of human 173-HSD3 in H295R cells.
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Currently, no human adrenocortical zone specific cell lines are available. Due to the low prevalence of
adrenocortical carcinoma, which can affect every single zone in the adrenal cortex in humans [79], isolating
primary cells from zone specific adrenocortical carcinoma is challenging. Nevertheless, combinations of
steroidogenic inducers or inhibitors in the H295R cell line could be tested to mimic zone specific steroid
expression patterns. For instance, exposure of H295R to the 33-HSD inhibitor trilostane [80] could block
forskolin induced glucocorticoid elevation, favoring the production of adrenal androgens, as seen in the
zona reticularis. The steroid pattern of the zona fasciculata could be replicated in H295R cells with the
combined treatment of the aldosterone inducing angiotensin Il [81] and CYP17 inhibitor abiraterone [80]
preventing the production of glucocorticoids and adrenal androgens. In addition to their utility in studies of
adrenal steroidogenesis, the H295R cell line can be a useful tumor model for studying adrenocortical
carcinoma and for in vitro screening of chemotherapeutic agents [51, 82]. Due to experimental limitations,
such as short life span and lack of proliferation, possible contamination with non-steroidogenic cells, or
donor dependent variability, primary cultures from adrenal cortex [83] are not the preferred in vitro model

to screen for chemicals potentially disrupting the production of adrenal steroids [84].

In general, it remains challenging to translate the information obtain from the H295R assay to the in vivo
situation. The H295R assay, due to its limited incubation time with a chemical, cannot mimic the repeated
acute or chronic exposure as seen in humans. Moreover, it is also complex, to incorporate data obtained
from the H295R steroidogenesis assay into animal studies, due to important species differences. For
example, the main glucocorticoid in rodents (due to lack in CYP17) is corticosterone whereas in humans it
is cortisol [45]. Furthermore, the human adrenals produce high amounts of adrenal androgens, whereas

mouse and rat adrenals produce very low amounts of androgens [85].

In contrast, as shown previously in the case of “torcetrapib” [49, 50], the H295R cell line can be an excellent

tool to study the underlying mechanisms of action of clinically manifested endocrine disrupting effects.

In conclusion, the improved H295R steroidogenesis assay described in this thesis, is an important in vitro
tool to investigate adrenocortical disruptors. First mechanistic hints of chemically disrupted steroidogenesis
can be observed by linking the changes in steroid hormone levels to gene expression of the steroidogenic

enzymes.
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5. In vivo investigations of xenobiotics affecting human steroid

homeostasis

5.1 Acute effects of psychoactive drugs on steroids in healthy

volunteers

Human steroidogenesis can be affected by many drugs. As a consequence, the disruption of steroid
homeostasis can either be clinically intended, as seen with the CYP19A1 inhibitor formestane in the
treatment of breast cancer [86] or it can be a result of an off-target effect, for example in case of the
anesthetic agent etomidate that induced fatal adrenocortical insufficiency due to CYP11B1 inhibition [47].
Previously, it has been reported that many psychoactive substances, such as 3,4-
methylenedioxymethamphetamine (MDMA) and cocaine, increase the level of glucocorticoids by activating
the hypothalamic-pituitary-adrenal (HPA) axis [4, 87-89]. A perturbation of the glucocorticoid circadian
rhythm is associated with learning, memory and behavioral deficits, mood disorders, impaired immune
system, and development of metabolic syndrome [17, 19, 20, 90, 91]. Since there was limited data in the
literature monitoring the effects of psychotropic drugs on circulating steroids, we sought to close this
knowledge gap with respect to the psychoactive drugs lysergic acid diethylamide (LSD), lisdexamfetamine,

and D-amphetamine.

LSD is a direct serotonin agonist [92, 93], which is used recreationally or in psychiatric research [94, 95].
Animal studies showed that LSD affects steroid homeostasis. Upon LSD administration, the 17-hydroxy-
corticosteroide and 17-ketosteroid urine levels in rats were increased, and in zebrafish the levels of cortisol
were augmented [96, 97]. In humans, LSD led to increases in 17-ketosteroid levels in urine [98, 99]. In a
more recent study [94], which was a double-blind, placebo-controlled, cross-over clinical trial in 16 healthy
volunteers, it was shown, that LSD significantly increases plasma cortisol levels, indicating HPA axis
activation. In the same study, cortisol levels were measured up to 3 h after LSD administration [94] in order
to study the stress response. In our study, we aimed to further characterize the full steroid profile of the
same volunteers following LSD exposure over a 24 hour time course. Our new analysis included
glucocorticoids, mineralocorticoids, progestins, and androgens. These results were published in the paper
“Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects”.

D-amphetamine, is a psychostimulant [100, 101] used in the clinic to treat attention deficit hyperactivity
disorder (ADHD) or is a substance of recreational abuse [102]. D-amphetamine increases the levels of
norepinephrine (NE) and dopamine (DA) in the brain, by releasing NE and DA in the synaptic gap, and by
inhibiting their corresponding transporters NET and DAT [100, 103]. Lisdexamfetamine is D-amphetamine
covalently bound to the amino acid L-lysine [104-106]. In the blood circulation, lisdexamfetamine has first
to be hydrolyzed in the erythrocytes to become the active D-amphetamine (for the rest of the text, | will refer
to the D-amphetamine measured in the plasma after lisdexamfetamine or D-amphetamine administration

as ‘amphetamine’) [107, 108]. Lisdexamfetamine has been marketed in the USA (Vyvanse®) and
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Switzerland (Elvanse®) since 2007 and 2014, respectively. In the USA it has been clinically used to treat
ADHD and binge-eating disorder [109], and in Switzerland for the treatment of ADHD in patients not
responding to methylphenidate [110]. The activation step for lisdexamfetamine, results in altered
pharmacokinetics of amphetamine compared to the administration of immediate-release D-amphetamine.
For example, amphetamine has a lower maximum concentration (Cmax) and a prolonged tmax after
lisdexamfetamine compared to immediate-release D-amphetamine administration. However, the total
plasma exposure (AUC) of amphetamine after lisdexamfetamine is similar to D-amphetamine at equimolar
doses [105, 111-113]. Importantly, the appearance of amphetamine in the brain is delayed after
lisdexamfetamine [105], which is critical for its market ability, since it reduces abuse potential and extends
the length of therapeutic effect compared to D-amphetamine [104, 105, 111]. Furthermore, it is well
documented that D-amphetamine administration increases cortisol concentrations [101, 114-119], but the
effect on other steroids remains unclear. We first, compared the effects of lisdexamfetamine and immediate-
release D-amphetamine at equimolar doses on multiple steroids, such as corticosteroids, progestins and
androgens. Second, we tested whether lisdexamfetamine, due to its altered pharmacokinetic profile, shows
an attenuated endocrine response compared to D-amphetamine administration. Additionally, we monitored
the subjective effects and vital signs after lisdexamfetamine and D-amphetamine administration. Therefore,
we set up a randomized, double-blind, placebo-controlled, cross-over study, where 24 healthy volunteers
(12 women, 12 men) were orally administered with single oral doses of either lisdexamfetamine dimesylate
(100 mg), D-amphetamine sulfate (40.3 mg), and placebo in three experimental sessions. The results of
this study are described in detail in the paper draft “Acute effects of D-amphetamine and lisdexamfetamine
on plasma steroid concentrations in healthy subjects” and the submitted manuscript “Pharmacokinetics and

pharmacodynamics of lisdexamfetamine compared with D-amphetamine in healthy subjects”.
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5.2

Published paper: Acute effects of lysergic acid diethylamide on

circulating steroid levels in healthy subjects
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Lysergic acid diethylamide (LSD) is a serotonin 5-hydroxytryptamine-2A (5-HT,,) receptor agonist
that is used recreationally worldwide. Interest in LSD research in humans waned after the
1970s, although the use of LSD in psychiatric research and practice has recently gained increas-
ing attention. LSD produces pronounced acute psychedelic effects, although its influence on
plasma steroid levels over time has not yet been characterised in humans. The effects of LSD
(200 pg) or placebo on plasma steroid levels were investigated in 16 healthy subjects using a
randomised, double-blind, placebo-controlled, cross-over study design. Plasma concentration-
time profiles were determined for 15 steroids using liquid-chromatography tandem mass-spec-
trometry. LSD increased plasma concentrations of the glucocorticoids cortisol, cortisone, corti-
costerone and 11-dehydrocorticosterone compared to placebo. The mean maximum
concentration of LSD was reached at 1.7 h. Mean peak psychedelic effects were reached at
2.4 h, with significant alterations in mental state from 0.5 h to > 10 h. Mean maximal concen-
trations of cortisol and corticosterone were reached at 2.5 h and 1.9 h, and significant eleva-
tions were observed 1.5-6 h and 1-3 h after drug administration, respectively. LSD also
significantly increased plasma concentrations of the androgen dehydroepiandrosterone but not
other androgens, progestogens or mineralocorticoids compared to placebo. A close relationship
was found between plasma LSD concentrations and changes in plasma cortisol and corticos-
terone and the psychotropic response to LSD, and no clockwise hysteresis was observed. In con-
clusion, LSD produces significant acute effects on circulating steroids, especially glucocorticoids.
LSD-induced changes in circulating glucocorticoids were associated with plasma LSD concentra-
tions over time and showed no acute pharmacological tolerance.

Key words: lysergic acid diethylamide, serotonin, steroid, glucocorticoid

doi: 10.1111/jne.12374

Lysergic acid diethylamide (LSD) was discovered in 1943 and is the
prototypic serotonergic hallucinogen (1,2). LSD was used in psychi-
atric research in the 1950s to 1970s to study psychotic-like states
(i.e. model psychosis) and as an adjunct to psychotherapy (1) before
its widespread recreational use. Today, LSD is still frequently used
for personal and spiritual purposes. Additionally, renewed interest
has been seen in the use of LSD in psychiatric research (3) and
practice (4). Pharmacologically, LSD mainly acts as an agonist at
serotonin  5-hydroxytryptamine-1 (5-HT;) and 5-HT, receptors,
although it also interacts with dopamine D,;, D, and D5 receptors
and adrenergic o receptors (2). By contrast to stimulants such as

amphetamines or cocaine, LSD does not interact with monoamine
transporters (2). In humans, LSD induces alterations in perception,
methylenedioxymethamphetamine (MDMA)-like empathogenic mood
effects and moderate sympathomimetic stimulation (3).

Many psychoactive substances activate the hypothalamic-pitui-
tary-adrenal (HPA) axis, leading to the release of adrenocorti-
cotrophic hormone (ACTH) and glucocorticoids (5,6). However,
limited data have been reported on the effects of LSD on the HPA
axis. In rats, LSD increased 17-hydroxy-ketosteroid and 17-ketoster-
oid levels in urine, which is consistent with HPA axis activation (7),
although effects on circulating corticosterone could not be shown
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(8). LSD was reported to increase cortisol levels in zebrafish (9).
Early studies in humans found that LSD increased 17-ketosteroid
excretion in urine (10,11), although effects on circulating steroid
levels were not investigated. LSD also blunted the normal increase
in 17-ketosteroid after ACTH administration (10). We recently found
that LSD significantly increased plasma cortisol 180 min after LSD
administration in humans (3), which is also consistent with HPA
axis activation. However, we previously determined the concentra-
tions of cortisol only (and not of other steroids) and only up to
180 min (3) despite the much longer effects of LSD. A more com-
prehensive analysis of the effects of LSD on circulating levels of
different steroids and including full time courses is still missing.

Corticosteroids, androgens and progestogens may all contribute to
or modulate psychotropic drug actions (12,13). For example, ampheta-
mine or MDMA-induced increases in plasma cortisol levels were associ-
ated with subjective drug effects (14,15) and stress-induced increases
in plasma cortisol levels correlated with euphoric responses to amphe-
tamine (16). Testosterone plays a role in social behaviour (17) that is
enhanced by MDMA (18). Testosterone and progesterone both reduced
cocaine self-administration in female rhesus monkeys (19) and proges-
terone is known to be associated with reductions of subjective
responses to and the use of psychostimulants in women (13,20,21).
Plasma dehydroepiandrosterone (DHEA) levels correlated with the sub-
jective response to MDMA (14). Increases in DHEA and progesterone
were also observed after y-hydroxybutyrate administration (22).

Glucocorticoids are involved in the stress response and the modula-
tion of behaviour. In humans, inactive cortisone and active cortisol are
the main glucocorticoids (23). Inactive 11-dehydrocorticostrone and
active corticosterone (i.e. the major glucocorticoids in rodents) are
present at lower concentrations than cortisone and cortisol in human
plasma. However, corticosterone, which also has additional mineralo-
corticoid properties, presents a higher brain/plasma concentration
ratio than cortisol (24). Mineralocorticoids are involved in the regula-
tion of sodium absorption and blood pressure (25) and they also play
a role in modulating the immune response (26). 11-Deoxycortisol is a
precursor of cortisol (27). Aldosterone is the most important mineralo-
corticoid. 11-Deoxycorticosterone is a precursor of corticosterone and
aldosterone and has mineralocorticoid activity (28).

To characterise the influence of LSD on plasma steroid levels, we
newly evaluated the acute effects of LSD on the plasma concentra-
tions of a series of steroids over 24 h in healthy subjects. We also
explored the effects of LSD on a wide range of other steroids not
previously measured. The plasma LSD concentration-steroid effect
response curves over time were also plotted and compared with
the LSD exposure-psychotropic effect relationship. The psychotropic
effects of LSD were reported previously (3) and selected effects
were included here to determine associations with steroid levels.

Materials and methods

Study design

The present study used a double-blind, placebo-controlled, cross-over design
with two experimental test sessions in balanced order. The washout periods
between sessions were at least 7 days. The study was conducted in accor-
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dance with the Declaration of Helsinki and the International Conference on
Harmonization Guidelines in Good Clinical Practice and was approved by the
Ethics Committee of the Canton of Basel, Switzerland, and the Swiss Agency
for Therapeutic Products (Swissmedic). The administration of LSD to healthy
subjects was authorised by the Swiss Federal Office for Public Health, Bern,
Switzerland. The study was registered at ClinicalTrials.gov (NCT01878942). All
of the subjects provided their written informed consent after being given
written and oral descriptions of the study, the procedures involved, and the
effects and possible risks of LSD administration.

Participants

Sixteen healthy subjects (eight men and eight women; mean £ SD age :
28.6 + 6.2 years; range 25-51 years) were included. The exclusion criteria
were pregnancy, personal or family (first-degree relative) history of psy-
chotic or major affective disorder, reqgular use of medications, chronic or
acute physical illness, lifetime prevalence of illicit drug use > 10 times (ex-
cept for tetrahydrocannabinol), illicit drug use within the last 2 months and
illicit drug use during the study as reported in detail elsewhere (3). The sub-
jects were asked to abstain from excessive alcohol consumption between
test sessions and particularly to limit their use to one drink on the day
before the test sessions. Additionally, the participants were not allowed to
drink caffeine-containing liquids after midnight before the study day. Three
subjects were light smokers (< 10 cigarettes/day) and were told to maintain
their usual smoking habits but not to smoke during the sessions. We per-
formed urine drug tests at screening and before each test session using
TRIAGE 8 (Biosite, San Diego, CA, USA). Safety recommendations for high-
dose hallucinogen research were followed (29).

Study procedures

The test sessions began at 08.00 h. A urine sample was taken to confirm
abstinence from drugs of abuse, and a pregnancy test was performed in
women. An indwelling intravenous catheter was placed in an antecubital vein
for blood sampling and the subjects completed baseline measurements. A sin-
gle dose of LSD (200 ug) or placebo was administered orally at 09.00 h. A
standardised lunch and dinner were served at 13.30 h and 17.30 h, respec-
tively. The subjects were sent home the next day at 09.30 h after the 24 h
blood sample collection. The sessions were conducted in a calm laboratory
environment. The subjects did not engage in any physical activity and were
resting in hospital beds during the test session. Blood samples for the analysis
of plasma steroid hormone levels were collected in lithium heparin tubes 1 h
before and 0.5, 1, 1.5, 2, 25, 3, 4, 6, 8, 10 and 24 h after LSD or placebo
administration. Blood samples were immediately centrifuged, and plasma was
rapidly stored at —20 °C. Plasma LSD concentrations were determined using
liquid-chromatography tandem mass-spectrometry (LC-MS/MS) (30). The phar-
macokinetics of LSD have been reported previously (31) and LSD concentra-
tions are included here to describe the LSD exposure-steroid response effect
relationship. The subjective and autonomic effects of LSD were also recorded
in the present study and have been reported previously (3). The subjective
effects of LSD over time were repeatedly recorded at the times of blood sam-
pling using visual analogue scales (VAS) as reported previously (3,31). VAS
items included ‘any subjective drug effects', (reflecting the overall subjective
response in a single scale), ‘good drug effects' 'bad drug effects', ‘fear' and
‘stimulation”. VAS items were presented as 100-mm horizontal lines (0-100%)
marked ‘not at all' on the left and ‘extremely’ on the right (3,32).

Steroid quantification

Plasma steroid hormone levels [cortisol, cortisone, corticosterone, 11-dehy-
drocorticosterone, 11-deoxycorticosterone, aldosterone, DHEA, DHEA sul-
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phate (DHEAS), A4-androstene-3,17-dione (androstenedione), testosterone,
11-deoxycortisol, progesterone, 5a-dihydrotestosterone, androsterone and
17a-hydroxyprogesterone] were determined as described previously with
minor adaptations (6). A detailed description of the materials, procedure,
and method validation is included in the Supporting information supplemen-
tal methods and Tables S1-S5.

Briefly, for solid-phase extraction, 700 pl of each plasma sample was
mixed with 100 pl of protein precipitation solution (0.8 m zinc sulphate in
water/methanol; 50/50, v/v) that contained deuterium-labeled aldosterone,
corticosterone, androstenedione, androsterone, 5a-dihydrotestosterone and
testosterone as internal standards, and diluted to a final volume of 1 ml
with water. The samples were incubated in a thermoshaker for 10 min at
4 °C with thorough shaking (1300 rotations/min). The samples were then
centrifuged for 10 min at 16 000 g at 4 °C, and 700 pl of the super-
natants was transferred to Oasis HBL SPE cartridges (Waters, Milford, MA,
USA), preconditioned with methanol and water. After washing once with
1 ml of water and twice with 1 ml of methanol/water (10/90, v/v), the
steroids were eluted with 1 ml of methanol and evaporated to dryness.
The samples were then reconstituted in 25 pl of methanol. The steroids
were separated and quantified by ultra-pressure LC-MS/MS (UPLC-MS/MS)
using an Agilent 1290 UPLC coupled to an Agilent 6490 triple quadrupole
mass spectrometer equipped with a jet-stream electrospray ionisation
interface (Agilent Technologies, Santa Clara, CA, USA). Analyte separation
was achieved using a reverse-phase column (1.7 pm, 2.1 x 150 mm;
Acquity UPLC BEH C18; Waters). massHunter software (Agilent Technologies)
was used for data acquisition and analysis. As described in detail in the
Supporting information (Table S5), the variation coefficient was < 15%
and accuracy was between 85% and 115% tested at three concentrations
for all analytes. The recovery of control samples was in the range 80-
120%.

Drugs

Gelatin capsules that contained 100 pg of LSD (p-lysergic acid diethylamide
hydrate; Lipomed AG, Arlesheim, Switzerland) and corresponding placebo
capsules were prepared with authorisation from the Swiss Federal Office for
Public Health. LSD was administered in a single absolute dose of 200 ug,
corresponding to a dose of 2.8 + 0.1 pg/kg body weight (mean & SEM).
The same dose was previously used in LSD-assisted psychotherapy in a
clinical study (4). The dose was in the upper range of doses that are taken
for recreational purposes and is expected to induce robust effects in
humans (1).

Statistical analysis

To determine differences between LSD and placebo, maximum concentration
(Cmax) Vvalues and areas under the concentration-time curve (AUCs) were
compared for each steroid using repeated-measures anova, with drug (LSD
versus placebo) as the within-subject factor. Sex differences were deter-
mined by including sex (male versus female) as a between-subject factor in
the anova. To test how long the subjective and endocrine responses last over
time, data were also analysed using two-way Anovas with drug and time as
factors and Tukey's test was used for post-hoc comparisons between corre-
sponding time points. Cnax was determined directly from the concentration-
time curves. AUC values were determined from time 0.5 h to 10 h (AUC;()
using the trapezoidal method. The LSD exposure-steroid concentration
response relationships were explored by plotting the LSD response as a
function of steroid concentration after LSD administration minus the indi-
vidual time-matched concentration after placebo as a function of LSD
plasma concentrations at each time point (hysteresis curves). Correlations
between mean LSD concentrations and mean LSD-induced subjective (five
scales) or endocrine responses (cortisol and corticosterone) over time and
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correlations between subjective and endocrine responses over time (n = 12
time points) within the 16 subjects were then analysed using Spearman's
rank correlations. P < 0.05 was considered statistcally significant. Seventeen
correlations were tested, giving a Bonferroni-corrected statistical threshold
of P < 0.003. The statistical analyses were performed using STaTiSTICA, version
12 (StatSoft, Tulsa, OK, USA).

Results

The plasma concentration-time curves of the different steroid
hormones after LSD and placebo administration are shown in
Figs 1 and 2. Peak steroid concentrations, total steroid exposure
over time (AUC,, values) and statistics are presented in Table 1.
LSD significantly increased the plasma concentrations of the glu-
cocorticoids cortisol, cortisone, corticosterone and 11-dehydrocorti-
costerone compared to placebo (Fig. 18-£). LSD also significantly
increased  the sums of cortisol + cortisone and  corticos-
terone + 11-dehydrocorticosterone and the cortisol/cortisone and
corticosterone/11-dehydrocorticosterone ratios (Table 1), indicating
elevated glucocorticoid production. LSD had no effect on plasma
concentrations of the cortisol precursor 11-deoxycortisol (Fig. 1),
the mineralocorticoid aldosterone (Fig. 16) or the moderate miner-
alocorticoid  11-deoxycorticosteone  (Fig. 1F).  LSD significantly
increased plasma concentrations of DHEA compared to placebo
(Fig. 2a) and also increased the plasma exposure (AUC,, but not
Crax) Of androstenedione compared to placebo (Fig. 2¢). By con-
trast, LSD did not alter plasma concentrations of the androgens
DHEAS (Fig. 28), testosterone (Fig. 2p,f), 5a-dihydrotestosterone or
androsterone (Table 1). Similarly, LSD had no effect on plasma
concentrations of the progestogens progesterone (Fig. 26) and
17a-hydroxyprogesterone (Fig. 2¢). As expected, testosterone levels
were higher in men than in women, although no sex differences
in testosterone levels in response to LSD were found compared to
placebo. Similarly, no other drug and sex interaction effects on
any of the steroid levels were observed.

LSD exposure-steroid concentration response relationships are
shown in Fig. 3. Pharmacokinetic data on LSD from the present
study have been reported in detail elsewhere (31). The Cpay of LSD
was reached 1.7 & 1 h (mean + SD) after LSD administration
(Fig. 3a8). The peak psychotropic effect was reached at
2.4 + 0.8 h, with significant alterations in mental state from 0.5 to
10 h after LSD administration (Fig. 3A8). Maximum concentrations
of cortisol (Fig. 3c,0) and corticosterone (Fig. 3eF) were reached at
25408 h and 1.9 & 0.5 h (mean =+ SD), and significant eleva-
tions were observed 1.5-6 h and 1-3 h after LSD administration,
respectively. Thus, plasma levels of corticosterone increased more
rapidly and fell more rapidly back to baseline levels compared to
cortisol levels (Fig. 3. Counterclockwise hysteresis was observed
for subjective ‘any drug effects' and cortisol, which is consistent
with an initial delay between increases in plasma LSD concentration
and drug effects that was attributable to drug absorption/distribu-
tion up to 2.5 h (Fig. 3s,0). After maximal drug effects were reached
at 2.5 h, the psychotropic effects and changes in plasma cortisol
levels decreased slowly, paralleling the steady decrease in the
plasma levels of LSD (Fig. 3ac) and presenting a close concentra-
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Fig. 1. Plasma concentration-time profiles of glucocorticoids and mineralocorticoids following lysergic acid diethylamide (LSD) or placebo administration. The
values, obtained from 16 subjects, are expressed as the mean £ SEM. LSD or placebo was administered at t = 0 h. LSD significantly increased the plasma con-
centrations of the glucocorticoids cortisol (8), cortisone (c), corticosterone (o) and 11-dehydrocorticosterone (e) compared to placebo. LSD did not alter plasma
concentrations of the cortisol precursor 11-deoxycortisol (a) or the mineralocorticoids 11-deoxycorticosterone (f) and aldosterone (c). 11B-HSD, 11B-hydroxys-
teroid dehydrogenase; CYP, cytochrome P450. *P < 0.05, **P < 0.01 and ***P < 0.001 compared to the time-matched placebo concentration (Tukey's test
based on significant drug x time interactions in the two-way analysis of variance).

tion-effect relationship up to 24 h (Fig. 38,0). The average plasma
level of LSD was strongly correlated with the average subjective
‘any drug effects' and the average level of cortisol over time
(Rs = 094, P < 0.001 and Rs = 0.97, P < 0.001, respectively). The
relationship between 'subjective any drug effect’ and circulating
glucocorticoids was explored by plotting the LSD-induced subjective
‘any subjective drug effect' as a function of changes in the plasma
concentrations of cortisol and corticosterone (Fig. 36,H). After LSD
administration, subjective drug effects increased together with
plasma corticosterone levels but more rapidly than plasma cortisol
levels. At 1 h after LSD administration, 80% of the average maximal
subjective drug effect was reached, with more than 50% of the
maximal corticosterone response but less than 50% of the maximal
cortisol response. Thus, the psychotropic effects of LSD appeared to
emerge faster than the LSD-induced changes in plasma cortisol
levels. Nevertheless, the average subjective ‘any drug effect' was
closely related to the levels of cortisol and corticosterone
(Rs = 0.97, P < 0.001 and Rs = 0.90, P < 0.001, respectively). LSD
produced pronounced subjective ‘good drug effects’ and 'stimula-
tion" but induced only small increases in subjective 'oad drug
effects’ and ‘fear’ compared to placebo, as reported previously (3).
Average subjective ‘good drug effects’ and 'stimulation’ were both
strongly associated with the plasma levels of LSD over time
(Rs = 0.88, P < 0.001 and Ry = 0.84, P < 0.001, respectively). Aver-
age 'good drug effects' and 'stimulation’ were both also associated
with the plasma levels of cortisol (Rs = 0.93, P < 0.001 and
R, = 0.82, P < 0.001, respectively) and corticosterone (R = 0.86,
P <0001 and R;=0.84, P <0.001, respectively). By contrast,
LSD-induced ‘bad drug effects’ or ‘fear' did not correlate with
LSD-induced increases in cortisol or corticosterone over time. The
Supporting information (Fig. S1) shows the concentration-effect
curves of MDMA (125 mg) for ‘any drug effects’, cortisol and corti-
costerone based on our previous study in 16 healthy subjects (6,33)
for comparison with the concentration-effect curves of LSD
(Fig. 38,0,f). The MDMA concentration-effect relationships for the
psychotropic effects and glucocorticoid responses exhibited clock-
wise hysteresis, indicating acute pharmacological tolerance (see
Supporting information, Fig. STA-C). Consistently, the average sub-
jective ‘any drug effects' did not significantly correlate with the
average plasma levels of MDMA over time. After MDMA administra-
tion, the subjective drug effects increased faster and particularly
decreased faster than the plasma levels of cortisol (see Supporting
information, Fig. S1D) and corticosterone (see Supporting informa-
tion, Fig. S1E) (i.e. clockwise hysteresis). Thus, MDMA-induced
changes in plasma glucocorticoid levels over time did not reflect
the psychotropic effects of the drug very well, in contrast to LSD,
for which no tolerance was observed.

Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12374

Discussion

The present study provides insights into the acute effects of LSD
on the plasma levels of a series of steroids in healthy humans. LSD
increased circulating glucocorticoid levels, with the levels of both
inactive 11-dehydrocorticosterone and cortisone and active corti-
costerone and cortisol being elevated compared to placebo, indicat-
ing HPA axis stimulation. The LSD-induced changes in circulating
cortisol and corticosterone had, in contrast to the glucocorticoid
response to MDMA, a close relationship with both the plasma con-
centrations of LSD and the psychotropic response to LSD. No clock-
wise hysteresis in the LSD concentration-effect plots was observed,
thus indicating no acute tolerance to the effects of LSD on gluco-
corticoid concentrations or subjective drug effects, in contrast to
the pronounced acute tolerance observed with MDMA. LSD also sig-
nificantly increased plasma concentrations of the androgens DHEA
(AUC0, Cnay) and androstenedione (AUC,o), although the concen-
tration of testosterone was unaltered, and the ratio of active to
inactive androgens (testosterone/androstenedione) decreased. Other
androgens, as well as progestogens and mineralocorticoids, were
unaffected by LSD.

The LSD-induced relative increase in corticosterone was greater
than the increase in cortisol. The brain penetration of corticosterone
is greater compared to cortisol because of differential transport by
P-glycoprotein at the blood-brain barrier (24). Thus, the effect of
LSD on brain corticosterone concentrations may be more prominent.
Additionally, the LSD-induced changes in circulating corticosterone
in the present study also more closely reflected psychotropic alter-
ations over time, in which plasma cortisol levels increased later in
time than the subjective effects of LSD after drug administration.

Stimulation of the HPA axis by LSD has previously been demon-
strated in animals (7,9), as well as in a preliminary study in humans
(10). The present study in humans provided a more comprehensive
analysis of plasma concentration-over-time profiles up to 24 h
after drug administration and of a series of different steroids. LSD
is a prototypic serotonergic hallucinogen that mainly acts as a
potent serotonin 5-HT; and 5-HT, receptor agonist. It also less
potently binds to dopamine D,_; and adrenergic o receptors but
does not inhibit monoamine transporters (2,34). In the present
study, LSD also increased plasma levels of prolactin (3), which is a
marker of increased serotonergic activity (35,36). Similar to LSD in
the present study, the hallucinogen psilocybin increased plasma
levels of cortisol in healthy humans, along with increases in pro-
lactin and ACTH (37). Importantly, psilocybin (psilocin) activates
5-HT receptors similar to LSD but does not exhibit relevant binding
to D13 and o receptors, unlike LSD (34), indicating that HPA axis
activation by serotonergic hallucinogens including LSD involves

© 2016 British Society for Neuroendocrinology
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Fig. 2. Plasma concentration-time profiles of androgens and progestogens following lysergic acid diethylamide (LSD) or placebo administration. The values,
obtained from 16 subjects (eight per sex for testosterone), are expressed as the mean 4 SEM. LSD or placebo was administered at t = 0 h. LSD significantly
increased plasma concentrations of dehydroepiandrosterone (DHEA) compared to placebo (a). LSD also increased the area under the concentration-time curve
but not the maximal concentration of androstenedione compared to placebo (c). By contrast, LSD did not alter plasma concentrations of dehydroepiandros-
terone sulphate (DHEAS) (g) or testosterone (p, f). Similarly, LSD did not change plasma levels of the progestogens progesterone (g) and 17a-hydroxyprogester-
one (). 17B-HSD, 17B-hydroxysteroid dehydrogenase; CYP, cytochrome P450. *P < 0.05 and ***P < 0.001 compared to the time-matched placebo
concentration (Tukey's test based on significant drug x time interactions in the two-way analysis of variance).

Table 1. Plasma Steroid Concentrations Following Lysergic Acid Diethylamide (LSD) or Placebo Adminstration.

Crnax AUC,o
Placebo LSD *Fiis Pvalue Placebo LSD *Fi15 P value
Glucocorticoids
Cortisol (nm) 691 + 77 1060 =+ 40 19.78 < 0.001 3545 + 247 6160 + 256 4585 < 0.001
Cortisone (nm) 583 + 4.2 73.1 + 49 6.17 <0.05 349 + 23 507 + 31 2505 < 0.001
Corticosterone (nwm) 743 +£ 10 382 + 3.6 57.60 < 0.001 279 + 22 101 + 9.8 48.66 < 0.001
11-Dehydrocorticosterone (nw) 443 + 0.7 8.70 £+ 0.7 1397 <001 257 + 3.4 398 + 4.4 416 NS
Cortisol + cortisone 737 + 81 1119 + 41 18.96 < 0.001 3886 + 260 6666 + 267 4586 < 0.001
Cortisol/cortisone ratio 139 + 1.1 20.1 + 1.3 3276 < 0.001 994 + 74 120 + 7.7 10.89 < 0.01
11-Deoxycortisol (precursor of cortisol) (nm) 167 £ 03 253 £ 05 209 NS 13.0 £ 20 13.0 £+ 3.1 0.00 NS
Corticosterone + 11-dehydrocorticosterone 1.7 £ 16 46.4 + 4.2 46.00 < 0.001 53.6 + 5.2 141 £ 135 27.67 < 0.001
Corticosterone/11-dehydrocorticosterone ratio 226 + 0.3 513 + 04 3411 < 0.001 134 + 23 212 £ 15 747 <005
Mineralocorticoids
Aldosterone (nwm) 0.42 + 0.03 0.41 + 0.04 0.08 NS 333 £ 0.1 3.33 £ 0.13 0.00 NS
11-Deoxycorticosterone (nw) 093 £+ 0.16 1.16 + 0.17 050 NS 7.03 £ 15 994 + 1.7 099 NS
Androgens
DHEA (nm) 11.1 £ 13 19.1 £ 2.3 1212 < 0.01 719 + 6.8 106 + 12.1 1033 < 0.01
DHEAS (nwm) 1761 + 234 2070 + 318 1.03 NS 11551 4+ 1751 15224 + 2509 1.94 NS
Androsterone (nw) 4.03 + 0.3 3.59 + 0.2 153 NS 263 + 1.1 270 + 09 0.23 NS
Androstendione (nw) 3.68 £ 05 437 £ 05 203 NS 225 + 22 288 + 3.0 859 <001
Testosterone (nm) 102 + 2.3 9.15 £+ 2.1 0.80 NS 71.8 £ 171 713 + 158 0.54 NS
Testosterone in women (nw) 207 + 04 1.58 + 0.3 1.30 NS 112 +£17 119 + 3.4 0.10 NS
Testosterone in men (nwm) 183 £ 1.9 16.7 £ 1.6 0.44 NS 1324 £ 141 123.3 99 0.65 NS
Testosterone/androstendione ratio 450 + 1.0 3.85 £ 09 3.62 NS 317 £ 7.1 247 + 5.7 943 < 0.01
5a-Dihydrotestosterone (nwv) 1.86 £+ 0.3 212 £ 05 240 NS 855 + 1.8 803 £+ 16 0.04 NS
Progestins
Progesterone (nw) 0.22 + 0.03 0.31 + 0.05 205 NS 1.28 4+ 0.1 1.40 + 0.1 0.36 NS
170-Hydroxyprogesterone (nw) 299 + 05 296 + 0.4 0.00 NS 16.8 £+ 3.4 15.6 + 2.6 0.17 NS

Values are the mean + SEM in 16 subjects. DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulphate; C.x, peak plasma concentration; AUC;,

area under the concentration-time curve up to 10 h. NS, not significant.
*F,7 if only men or women.

mainly 5-HT receptors. Consistently, it has been shown that 5-HT,,
c receptors stimulate ACTH and corticosterone release and activate
corticotrophin-releasing factor-expressing cells in the hypothalamic
periventricular nucleus (38,39).

Many psychotropic drugs activate the HPA axis (5). Acute admin-
istration of serotonin transporter inhibitors (35,40), but not dopa-
mine transporter inhibitors (6,41,42), increases plasma cortisol
levels, indicating that serotonin rather than dopamine mediates
HPA axis stimulation. Cocaine inhibits presynaptic serotonin, dopa-
mine and norepinephrine reuptake transporters, and increases ACTH
and cortisol in humans (12,43). Amphetamine activates the nore-
pinephrine and dopamine but not serotonin systems and increases

Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12374

cortisol (15,42), although to a lesser extent than the serotonergic
drugs LSD and MDMA. One speculation is that the stimulant-
induced increase in cortisol may depend on dopamine-mediated
HPA axis stimulation (15,43). However, the stimulatory effects of
amphetamines on ACTH secretion are mediated by adrenergic
receptors (44) and not by dopamine (45). Additionally, methylpheni-
date activates the dopamine system and produces effects of stimu-
lation and euphoria that are similar to those produced by
amphetamines (33,46), although methylphenidate did not increase
plasma cortisol levels (6,42) or only to a small extent (46). Further-
more, the MDMA-induced increase in circulating cortisol was
reduced by pharmacologically blocking the MDMA-induced release
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Fig. 3. Lysergic acid diethylamide (LSD) exposure-response relationships. LSD responses are shown as LSD effect (item ‘any subjective drug effect’ reflecting
the overall subjective response to LSD, cortisol or corticosterone concentration) minus the individual time-matched effect of placebo. Any subjective responses
to LSD (a) and LSD-induced changes in cortisol (c) and corticosterone () over time are presented with the corresponding LSD concentrations over time
(mean 4= SEM) in 16 subjects. LSD or placebo was administered at t = 0 h. Subjective responses to LSD (8) and LSD-induced changes in cortisol (o) and corti-
costerone (F) concentrations (mean & SEM) are plotted as a function of mean LSD plasma concentrations (hysteresis curves). The time of sampling is noted
next to each point (in hours after LSD administration). The maximum concentration of LSD was reached 1.7 & 1 h after LSD administration (4, 8). The peak
psychotropic effect was reached at 2.4 + 0.8 h, with significant alterations in mental state from 0.5 h to > 10 h after LSD administration (a, 8) [drug x time
interaction in the two-way analysis of variance (aNovA): Fiq 165 = 41.39; P < 0.001]. Maximum concentrations of cortisol (c, b) and corticosterone (g, ) were
reached at 2.5 + 0.8 h and 1.9 £ 0.5 h (mean + SD), with significant elevations from 1.5 to 6 h and from 1 to 3 h after LSD administration, respectively
(Fi1165 = 17.71; P < 0.01 and Fyq 465 = 13.35, P < 0.001, respectively). Counterclockwise hysteresis was observed for any drug effects (8) and cortisol (o),
which is consistent with an initial delay between plasma concentration and an effect that was attributable to drug absorption. Beyond 2 h after LSD adminis-
tration, the psychotropic effects () and changes in plasma cortisol levels (c) decreased slowly, in parallel with the plasma levels of LSD, exhibiting a close con-
centration-effect relationship up to 24 h (8, ). LSD significantly increased plasma levels of cortisol 1.5-6 h after LSD administration (c). By contrast, plasma
levels of corticosterone increased more rapidly but fell more quickly back to baseline levels, resulting in significant differences in plasma levels 1-3 h after LSD
administration and compared to placebo (£). There was no evidence of acute pharmacological tolerance (clockwise hysteresis) for any of the effects of LSD.
After drug administration, subjective drug effects increased together with plasma levels of corticosterone but more rapidly than plasma levels of cortisol (g, H).
*P < 0.05 and ***P < 0.001 compared to the time-matched placebo concentration (Tukey's test based on significant drug x time interactions in the two-

Way ANOVAS).

of serotonin and norepinephrine (47,48) but not when dopamine
release was blocked (41). The greater effects of amphetamine on
cortisol release compared to methylphenidate are thus likely attri-
butable to its greater noradrenergic versus dopaminergic properties
compared to methylphenidate (42,49,50). Nonetheless, the present
study shows that stimulation of the serotonin system by LSD
increased cortisol levels similarly to MDMA, which has more
amphetamine-type properties and stimulates both the serotonin
and norepinephrine systems.

Stimulation of the HPA axis involves serotonin and nore-
pinephrine systems (45). Similar to LSD, the serotonin and nore-
pinephrine releaser MDMA increased the plasma concentrations of
the glucocorticoids cortisol, corticosterone and 11-dehydrocorticos-
terone (6). Unlike LSD and MDMA, methylphenidate, which activates
dopamine and norepinephrine systems but not the serotonin sys-
tem, did not significantly alter plasma steroid levels in humans
(6,42), further supporting a role for serotonin receptors in drug-
induced HPA axis stimulation. Unexpectedly, the glucocorticoid
response was more pronounced after LSD administration than after
MDMA administration (6). This is consistent with the greater psy-
chotropic response to LSD compared to MDMA (33) (see Supporting
information, Fig. S1A). By contrast, MDMA produced more stimu-
lant-type effects, including greater increases in blood pressure and
heart rate (33). The greater glucocorticoid response after LSD com-
pared to MDMA indicates that the direct serotonergic stimulation
of postsynaptic 5-HT; and 5-HT, receptors by LSD similarly or even
more effectively stimulated the HPA axis compared to the release
of both serotonin and norepinephrine by MDMA (48). The relatively
similar time courses of the glucocorticoid response and the psy-
chotropic effects of LSD, together with the greater glucocorticoid
and psychotropic responses to LSD compared to MDMA, raise the
issue of whether the subjective effects of LSD contribute to or fur-
ther enhance HPA axis stimulation by LSD. We observed a close
relationship between LSD-induced subjective drug effects and
changes in plasma corticosterone levels. Associations between
amphetamine-induced increases in cortisol and subjective arousal
and euphoria have been reported previously (15,42). The covariance
of the psychological and endocrine drug responses indicates that

Journal of Neuroendocrinology, 2016, 28, 10.1111/jne.12374

both are mediated by the same transmitter, likely norepinephrine in
the case of amphetamine (42) and serotonin in the case of LSD. It
is unlikely that glucocorticoids critically mediate the psychotropic
drug response because the subjective effects of methamphetamine
(51) and cocaine (52) are unaltered when the drug-induced cortisol
response is pharmacologically augmented or blocked. On the other
hand, the psychotropic effects of LSD might have contributed to
the endocrine stress response. Indeed, the subjective effects
occurred faster than the cortisol response to LSD. However, only
the subjective 'good drug effects' and 'stimulation' induced by LSD
and not the 'bad drug effects' or 'fear' correlated with the steroid
response over time. Thus, the endocrine changes in response to LSD
appear be related to the positive and stimulant subjective LSD
effects but not to anxiety.

Both cortisol and prolactin levels increase when the serotonin
system is pharmacologically activated (35,36,53). Interestingly, the
prolactin response was greater after MDMA administration (33)
than after LSD administration (3), whereas the glucocorticoid
response was less, indicating differential effects of LSD and MDMA
on markers of serotonergic activity, and further supporting the view
that the LSD-induced increase in glucocorticoids may have been
enhanced by the more pronounced subjective effects of LSD.

A striking difference was found between the plasma concentra-
tion-effect curves of LSD in the present study and the plasma con-
centration-effect curves of MDMA in our previous study (33).
Specifically, the plasma concentration-effect curve of MDMA
showed pronounced clockwise hysteresis for the psychotropic
effects of MDMA (33) and also for the cortisol and corticosterone
responses (see Supporting information, Fig. S1A-C), suggesting
acute tolerance to the effects of MDMA. By contrast, we observed
no tolerance to the effects of LSD. This means that the effects of
LSD on the HPA axis are longer-lasting than those of MDMA,
although MDMA has a longer plasma half-life than LSD (31,33).
The finding could be explained by the pharmacological mechanisms
of MDMA and LSD. MDMA releases endogenous serotonin and
norepinephrine from presynaptic terminals (48), whereas LSD
directly interacts with postsynaptic 5-HT receptors (2). Indeed, the
MDMA-induced cortisol response was blocked after duloxetine pre-
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treatment, which prevents MDMA from interacting with the sero-
tonin and norepinephrine transporters (47). In the case of cocaine,
cocaine-induced euphoria is also short-lasting and exhibits acute
tolerance (12), which is similar to MDMA, whereas the cortisol con-
centration-time curve is concordant with the cocaine-plasma con-
centration time curve (12), similar to LSD.

Unlike LSD, MDMA also increased the mineralocorticoids
11-deoxycorticosterone and aldosterone. Mineralocorticoids promote
sodium retention and increase extracellular fluid volume, thereby
increasing blood pressure (25). The MDMA-induced increase in
mineralocorticoids may thus contribute to the greater increase in
blood pressure after MDMA administration (33) compared to LSD
(3). The mechanisms that underlie the differential effects of MDMA
and LSD on mineralocorticoid production remain unclear.

LSD increased DHEA. DHEA is a precursor of many other steroids
and may itself modulate y-aminobutyric acid-ergic and glutamater-
gic neurotransmission (54). DHEA has well-documented anxiolytic
and antidepressant effects (54-57). An interesting line of investiga-
tion would be to evaluate further the role of DHEA in the potential
anxiolytic effects of LSD that are reported in terminally ill patients
(4).

The present study has limitations. First, only a single dose and
single administration of LSD were used. However, a relatively high
dose of LSD was administered, which produced pronounced psy-
chotropic effects and was within the range of doses used clinically
(4) and recreationally (1,2). Additionally, we present LSD exposure-
effect relationships that can partially substitute for a multiple
dose-level study. Second, only psychiatrically and somatically
healthy subjects with limited previous experience with hallucino-
genic drugs were included. LSD may differentially affect steroid
profiles in chronic LSD or polydrug users. Third, we did not assess
concentrations of corticotrophin-releasing factor or ACTH to
describe the effects of the drug on other mediators within the HPA
axis.

In conclusion, LSD induced significant effects on plasma gluco-
corticoids, which is consistent with HPA axis stimulation via sero-
tonergic receptors. Plasma levels of cortisol and particularly
corticosterone covaried in close relationship to the plasma levels of
LSD over time. The corticosterone response was also closely related
to the subjective effects of LSD. The glucocorticoid response to LSD
showed no acute pharmacological tolerance, in contrast to the
response to MDMA.
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5.3 Paper draft: Acute effects of D-amphetamine and lisdexamfetamine

on plasma steroid concentrations in healthy subjects

This manuscript still requires major revision in order to avoid redundant information and for optimal
completion of the submitted manuscript «Pharmacokinetics and pharmacodynamics of lisdexamfetamine
compared with D-amphetamine in healthy subjects».

Moreover, currently some calculations are undertaken for comparison of drug induced changes in steroid
homeostasis after administration of D-amphetamine with methylphenidate, 3,4-

methylenedioxymethamphetamine (MDMA), and LSD.
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ABSTRACT

Introduction: Lisdexamfetamine is a novel prodrug of D-amphetamine used for the treatment of
attention-deficit/hyperactivity — disorder (ADHD). D-amphetamine releases dopamine and
norepinephrine and stimulates the hypothalamic-pituitary-adrenal (HPA) axis, which may contribute to
its reinforcing effects and risk of abuse. The goal of the present study was to assess effects of
lisdexamfetamine on circulating steroids in comparison with classic D-amphetamine. Method:
Equimolar doses of D-amphetamine (40 mg) and lisdexamfetamine (100 mg), and placebo were
administered in 24 healthy subjects in a randomized, double-blind, placebo-controlled, cross-over
study. Plasma concentrations of steroids and D-amphetamine were determined up to 24 h.

Results: D-amphetamine plasma concentrations increased and reached peak levels later after
administration of lisdexamfetamine compared with D-amphetamine, but maximal concentrations and
total exposure (AUC) were similar. Lisdexamfetamine and D-amphetamine significantly increased
plasma concentrations of ACTH, the glucocorticoids cortisol, cortisone, corticosterone, 11-
dehydrocorticosterone, 11-deoxycortisol, the androgens dehydroepiandrosterone,
dehydroepiandrosterone sulfate, androstendione, and of progesterone (only in men) compared with
placebo. Steroid concentration-time curves were shifted to the right due to the significantly later onset
after lisdexamfetamine compared with D-amphetamine, but maximal plasma concentrations and AUC
value of the steroids did not differ between treatments. None of the treatments changed plasma
concentrations of the mineralocorticoids aldosterone and 11-deoxycorticosterone or of testosterone.
The effect of amphetamines on glucocorticoid production was similar to those previously shown for
methylphenidate (60 mg) but weaker than those of the serotonin releaser 3,4-
methylenedioxymethamphetamine (MDMA, 125 mg) or the serotonin agonist lysergic acid
diethylamide (LSD, 0.2 mg).

Conclusion: Lisdexamfetamine produced comparable HPA axis activation and pharmacokinetics
compared with D-amphetamine with the exception of a later onset time. Serotonin (MDMA, LSD) may

more effectively stimulate the HPA axis than dopamine and norepinephrine (D-amphetamine).

Keywords: lisdexamfetamine, D-amphetamine, steroids, glucocorticoids, mineralocorticoids,

pharmacokinetics, psychostimulants
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INTRODUCTION

Lisdexamfetamine is a prodrug of D-amphetamine [1-3] and both are used for the treatment of
attention-deficit/hyperactivity disorder (ADHD) similar to methylphenidate. However, amphetamines
and methylphenidate are also misused recreationally to induce euphoria or to stay awake [4-8]. After
oral administration, the conversion of lisdexamfetamine to D-amphetamine is thought to occur
gradually in the circulation [9, 10], reportedly resulting in a prolonged pharmacokinetic profile with low
peak but sustained plasma amphetamine concentrations [11]. Such a prolonged pharmacokinetic
profile is considered to be associated with slower effects on dopamine (DA) release, lower euphoric
effects, and a possibly lower risk of misuse [11-13]. Indeed, in rats, the peak plasma concentration
(Cmax) of amphetamine was lower after lisdexamfetamine, and it produced a gradual and sustained
increase in dopamine efflux and much less locomotor activity compared with D-amphetamine [14]. In
humans, 100 mg lisdexamfetamine produced lower subjective “drug liking” than an equivalent dose of
40 mg D-amphetamine [11]. Amphetamines and methylphenidate not only enhance subjective mood,
concentration and wakefulness but also act as acute pharmacological stressors and stimulate the
hypothalamic-pituitary-adrenal (HPA) axis to elevate concentrations of circulating stress hormones
including adrenocorticotropic hormone (ACTH), cortisol, epinephrine, and norepinephrine (NE) [15-
19]. The effects of lisdexamfetamine on the HPA axis are unknown. In particular, it has not been
studied whether lisdexamfetamine would produce smaller HPA axis stimulation than D-amphetamine
based on its reportedly prolonged kinetic characteristics [11-13]. Animal studies indicate that HPA
axis stimulation may be associated with a greater risk of drug abuse. Specifically, rats that show
greater HPA axis reactivity or were administered corticosterone were more likely to self-administer D-
amphetamine [20, 21]. Lisdexamfetamine may have a reduced risk of oral abuse compared with D-
amphetamine because of a slowed increase in plasma amphetamine but also because of a
consequently reduced HPA response. Therefore, we directly compared the plasma concentrations of
ACTH and steroids after administration of equivalent and relatively high doses of D-amphetamine and
lisdexamfetamine. The study hypothesis was that lisdexamfetamine would produce lower Cmax and
longer time to Cmax (Tmax) values for plasma amphetamine and steroids compared with classic
immediate release D-amphetamine. Lisdexamfetamine and D-amphetamine were expected to result
in equivalent area under the plasma concentration-time curve (AUC) values for amphetamine and

steroids confirming the use of equivalent doses.
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The present study used relatively high doses of lisdexamfetamine and D-amphetamine. D-
Amphetamine at low oral doses of 10-20 mg has repeatedly been shown to increase concentrations
of plasma or saliva cortisol [19, 22-28] while no effect on plasma cortisol were also reported [29]. Few
studies used higher doses of D-amphetamine that would better reflect stimulant misuse. One study
showed increases in plasma cortisol compared to baseline after 34 mg D-amphetamine [30].
However, this study did not include a placebo control condition. Therefore, the present study
investigated the effect of relatively high doses of D-amphetamine (40 mg) and lisdexamfetamine (100
mg) and placebo on plasma concentrations of ACTH and cortisol and other steroids not previously

measured.

Both D-amphetamine and methylphenidate enhance DA and NE neurotransmission. While D-
amphetamine releases DA and NE from presynaptic terminals and inhibits their reuptake [31],
methylphenidate only inhibits their reuptake without inducing transporter-mediated release [32].
Although methylphenidate stimulates DA and NE systems similar to D-amphetamine,
methylphenidate seems to produce only very moderate stimulating effects on the HPA axis. Single
oral doses of 10-20 mg methylphenidate had no significant effect on plasma cortisol concentrations
compared with placebo [26] and a single oral dose of 40 mg methylphenidate only moderately
increased plasma cortisol levels [17]. A dose of 60 mg methylphenidate only non-significantly
increases plasma levels of cortisol, cortisone, corticosterone, and 11-dehydrocorticosterone
compared with placebo [16, 18]. Interestingly, the relatively high dose of 60 mg methylphenidate
produced at lease similar subjective liking to 30 mg D-amphetamine [18, 33] indicating that
methylphenidate may induce lower HPA axis stimulation than D-amphetamine at equivalently
psychostimulant doses. This view is supported by one study that directly compared cortisol plasma
concentrations after 10-20 mg doses of both D-amphetamine and methylphenidate [26] but higher
doses of both drugs have not been compared. Therefore, the present study also indirectly compared
the effects of a high dose of 40 mg D-amphetamine with those of a high dose of 60 mg
methylphenidate previously tested in the same laboratory and using the same clinical and analytical
methods [16]. Based on previous data [16, 18, 26] the hypothesis was that D-amphetamine would

produce greater HPA axis activation than methylphenidate.

A final goal of the present study was to explore the role of the different monoamine

neurotransmitters in regulating HPA activity. D-amphetamine releases DA and NE and may release
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cortisol mainly via NE [34]. The amphetamine derivative 3,4-methylenedioxymethamphetamine
(MDMA) mainly releases 5-HT and NE [31, 35, 36]. Therefore, MDMA and D-amphetamine can be
used as pharmacological tools to study the role of 5-HT versus DA release in HPA axis stimulation.
Accordingly, we indirectly compared the effects of D-amphetamine on the plasma concentrations of
steroids with those of 125 mg oral MDMA previously tested in the same laboratory and using the
same clinical and analytical methods [16]. To further study the role of 5-HT versus DA and NE release
in HPA axis stimulation by psychoactive substances in humans, we also compared the effects of D-
amphetamine in the present study with similar historic data [37] on the direct 5-HT receptor agonist
LSD [38]. We hypothesized that MDMA and LSD would produce greater cortisol increases in humans
than D-amphetamine indicating a more prominent role of 5-HT compared to DA and NE in the

stimulation of this major steroid by psychoactive substances.

MATERIALS AND METHODS
Study design

The study used a double-blind, placebo-controlled, cross-over design with three experimental
test days (D-amphetamine, lisdexamfetamine, and placebo) in balanced order. The washout periods
between sessions were at least 7 days. The study was conducted in accordance with the Declaration
of Helsinki and International Conference on Harmonization Guidelines in Good Clinical Practice and
approved by the Ethics Committee northwest/central Switzerland (EKNZ) and the Swiss Agency for
Therapeutic Products (Swissmedic). The study was registered at ClinicalTrials.gov (NCT02668926).

All of the subjects provided written informed consent prior to participating in the study.

Participants

Twenty-four healthy subjects (twelve men and twelve women; mean age + SD: 25.3 + 3.0
years; range: 21-34 years) were included. The inclusion criteria were age between 18 and 45 years,
body mass index between 18 and 27 kg/m?, and birth control for women. The exclusion criteria were
chronic or acute medical conditions including clinically relevant abnormality in physical exam,
laboratory values, or ECG, personal or family (first-degree relative) history of psychotic or major

affective disorder, lifetime prevalence of illicit drug use > 5 times (except for tetrahydrocannabinol),
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illicit drug use within the last 2 months, pregnancy, regular use of medications, smoking (>10
cigarettes/day), and alcohol consumption of alcoholic drinks (>10/week). The subjects were asked to
abstain from excessive alcohol consumption between test sessions and not to drink caffeine-
containing liquids after midnight before the study day. A urine drug tests were performed at study

inclusion and before each test session using TRIAGE 8 (Biosite, San Diego, CA, USA).

Drugs

Gelatin capsules either containing lisdexamfetamine dimesylate (100 mg salt; Opopharma,
Rumlang, Switzerland) or D-amphetamine sulfate (40.3 mg salt; Hanseler, Herisau, Switzerland), both
corresponding to a dose of 29.6 mg D-amphetamine, as well as the placebo capsules (mannitol) were

prepared by the pharmacy of the University Hospital Basel according to Good Manufacturing Practice.

Study procedures

Before the test session, a urine sample was taken to verify abstinence from drugs of abuse,
and a pregnancy test was performed in women. At 8:00 AM the test session began by placing an
indwelling intravenous catheter in an antecubital vein for blood sampling. At 9:00 AM a single dose of
lisdexamfetamine, D-amphetamine, or placebo was administered orally. During the test session the
subject did not engage in any physical activity, were resting in hospital beds in a calm standard
hospital room, and were served a standardized lunch and dinner at 11:30 AM and 6:30 PM,
respectively. For the analysis of hormone and D-amphetamine concentrations in plasma, blood
samples were collected in lithium heparin tubes 1 h before and 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8,
10, 12, and 24 h after drug administration. The blood samples were immediately centrifuged and the
plasma stored at -20°C. For the determination of adrenocorticotropic hormone (ACTH)
concentrations, blood samples were drawn into EDTA-containing tubes 1 h before and 3.5 h after
drug administration. The test session ended at 9:00 PM. Subjects returned home and returned to the
following day at 9:00 AM and for drawing the final 24h blood sample. Subjective, autonomic, and

adverse responses were also assessed and are published elsewhere.

Steroid quantification in plasma

The following plasma steroid hormones with the corresponding lower limit of quantification
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(LLOQ) (values in brackets) were determined using a previously published UHPLC-MS/MS method
[37] with minor adaptations: cortisol (1.95 nM), cortisone (1.95 nM), corticosterone (0.98 nM), 11-
dehydrocorticosterone (0.98 nM), 11-deoxycorticosterone (0.78 nM), aldosterone (0.2 nM), DHEA
(3.91 nM), DHEA sulfate [DHEAS] (19.53 nM), A4d-androstene-3,17-dione [androstenedione] (0.78
nM), testosterone (0.39 nM), 11-deoxycortisol (0.78 nM), progesterone (0.05 nM), androsterone (3.91
nM), and 17a-hydroxyprogesterone (0.78 nM)) The accuracy was between 85 and 115% and the
variation coefficient was <15% tested at three concentrations for all analytes. The recovery of control
samples was in the range of 80-120%. The used method in detail and its validation are reported
previously [37]. Briefly, after protein precipitation, the plasma samples (containing deuterium-labeled
aldosterone, corticosterone, androstenedione, androsterone, and testosterone as internal standards)
were solid-phase extracted. After evaporation and reconstitution in methanol, the steroids were
separated and quantified by ultra-pressure LC-MS/MS (UPLC-MS/MS) using an Agilent 1290 UPLC
coupled to an Agilent 6490 triple quadrupole mass spectrometer equipped with a jet-stream
electrospray ionization interface. Analyte separation was achieved using a reverse-phase column
(Waters Acquity UPLC BEH C18, 1.7 um, 2.1 x 150 mm). Mass Hunter software (Agilent

Technologies) was used for data acquisition and analysis.

Quantification of adrenocorticotropic hormone (ACTH) in human plasma samples
ACTH was determined by a chemiluminescent immunometric assay (Immulite 2000 ACTH,;

Siemens, Erlangen, Germany).

Quantification of amphetamine (D-amphetamine) concentrations in blood plasma

Plasma concentrations of D-amphetamine were measured using an Ultra-High pressure LC-
MS/MS (UHPLC-MS/MS). Materials, procedures, and method validation are described in detail in the
Supplementary Material. The method had a lower limit of detection (LOD) of 0.26 ng/mL, respectively
a lower limit of quantification (LLOQ) of 0.78 ng/mL for D-amphetamine and was validated over the
range of 0.78 to 200 ng/mL for D-amphetamine. Plasma concentrations of D-amphetamine were
primarily measured to confirm the use of bioequivalent lisdexamfetamine and D-amphetamine doses
regarding total D-amphetamine exposure and to assess the D-amphetamine-steroid response

relationships. The comprehensive pharmacokinetic data from this study are shown elsewhere.
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Statistical analyses

Maximum concentrations (Cmax) and time to reach Cmax (tmax) values were derived directly from the
observed data. Time to reach 10% of Cmax (tonset), and areas under the concentration-time curve from
time O to 24 h (AUCz4) were calculated using the linear trapezoidal method in Phoenix WinNonlin
(Version 6.4, Pharsight, St. Louis, MO). Statistical analyses were performed using STATISTICA 12
software (StatSoft, Tulsa, OK, USA). Kinetic parameters of the steroids were compared using
repeated-measures analysis of variance (ANOVA), with drug (D-amphetamine, lisdexamfetamine, and
placebo) as the within-subject factor, followed by Tukey post hoc tests. Sex differences were
assessed by adding sex as between-subject factor to the analysis. Plasma amphetamine
concentrations after administration of lisdexamfetamine and D-amphetamine were compared using
paired t-tests The amphetamine concentration-effect relationships were studied by plotting the
endocrine responses as difference from time-matched placebo against the amphetamine
concentration for each time point. Selected peak endocrine effects of D-amphetamine and
lisdexamfetamine calculated as differences from placebo were then compared with the effects of 60
mg methylphenidate [16], 125 mg MDMA [16] and 200 pg LSD [37] obtained in previous identical
studies in healthy subjects in the same laboratory using ANOVA and drug as between-subject factor
followed by Tukey post hoc tests. The use of placebo-corrected values accounted for between-subject

differences in baseline steroid levels and circadian within-subject changes.

RESULTS
Blood could not be drawn from one subject under the D-amphetamine condition and therefore
complete datasets were available for D-amphetamine and lisdexamfetamine for 23 and 24 subjects,

respectively.

Plasma levels of amphetamine after administration of D-amphetamine and lisdexamfetamine

The amphetamine plasma concentration-time curves were identical after administration of D-
amphetamine and lisdexamfetamine with the exception of significantly longer Tonset and Tmax values
after lisdexamfetamine compared with D-amphetamine (Figure 2). The Cmax and AUC24 values were

similar (Table 1).
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Effects of D-amphetamine and lisdexamfetamine on plasma steroid concentrations

Effects of D-amphetamine, lisdexamfetamine and placebo on the plasma steroid hormone
concentrations are depicted in Figure 1 and 2. Table 1 shows the corresponding Tmax, Cmax and AUC
values and comparative statistics. Both active treatments significantly and similarly increased the
plasma concentrations of the glucocorticoids cortisol, cortisone, corticosterone, 11-
dehydrocorticosterone, and 11-deoxycortisol compared with placebo (Fig. 1A-E, Table 1). Elevated
glucocorticoid production was evidenced by the significantly increased sums of cortisol + cortisone
and corticosterone + 11-dehydrocorticosterone as well as cortisol/cortisone and corticosterone/11-
dehydrocorticosterone ratios (Table 1). Only Tonset and Tmax Values differed between D-amphetamine
and lisdexamfetamine while Cmax and AUC24 values and the shape of the concentration-time curves
were practically identical (Fig. 2E, Table 1). Neither the mineralocorticoids aldosterone (Fig. 1F) and
11-deoxycorticosteone, nor the progestins 17a-hydroxyprogesterone (Fig. 2C) and progesterone were
changed by lisdexamfetamine or D-amphetamine compared with placebo. An exception was
progesterone concentration in men, where increased Cmax and AUC values were seen compared with
placebo (Table 1). The plasma concentration of DHEA and DHEAS and androstenedione (Fig. 2A, B,
D, F) were significantly increased by the two active drugs compared with placebo. Likewise,
lisdexamfetamine and D-amphetamine had an effect on Cmax and AUC values of the sum of
androstenedione + testosterone in women, but not in men. In contrast, lisdexamfetamine and D-
amphetamine had no effect on the concentrations of androgens testosterone and androsterone (Table
1). The plasma concentrations of 11-deoxycorticosterone were above the LOD but below the LLOQ

and therefore the quantification of this steroid was not validly possibly.

Relationship between amphetamine and steroid plasma concentrations after administration of D-
amphetamine and lisdexamfetamine

Selected drug exposure-steroid concentration response relationships are shown in
Supplemental Figure S1. Clockwise hysteresis was observed indicating acute pharmacological
tolerance. Plasma concentrations of ACTH are shown in Figure 3. There was a main effect of drug at
the 3.5 h time point (F240 = 33.83, P<0.001) and both active drugs increased ACTH plasma

concentrations compared with placebo at 3.5 h (both P<0.001).
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Peak endocrine effects D-amphetamine and lisdexamfetamine compared with other prototypical
substances.

The peak endocrine effects of D-amphetamine, lisdexamfetamine, methylphenidate, MDMA
and LSD are shown in Table 2. The drug effects are presented as within-subject changes from
placebo. D-amphetamine, lisdexamfetamine, and methylphenidate produced comparable increases in
cortisol. D-amphetamine increased cortisone and 11-dehydrocorticosterone to greater levels than
methylphenidate. MDMA induced higher peak concentrations of cortisol, lower levels of cortisone, but
still higher cortisol+cortisone levels than D-amphetamine. LSD produced much higher peak
concentrations of cortisol and corticosterone than D-amphetamine but in contrast to MDMA did not

reduce cortisone of 11-dehydrocorticosterone levels relative to D-amphetamine.

DISCUSSION
The main finding of the present study was that lisdexamfetamine produced identical HPA axis
stimulation and steroid plasma concentration-time curves as classic immediate release D-
amphetamine. This finding was not in agreement with the study hypothesis of a smaller and
prolonged endocrine response to lisdexamfetamine compared with D-amphetamine. The reason for
the identical endocrine responses of the two D-amphetamine formulations was the unexpected finding
of similar amphetamine peak concentrations after administration of lisdexamfetamine or D-
amphetamine. Lisdexamfetamine had a significantly longer onset and Tmax but otherwise a very
similar amphetamine plasma concentration-time curve shape to D-amphetamine. Administration of D-
amphetamine 1 hour later would likely have produced a similar pharmacokinetic profile to
lisdexamfetamine. The steroid concentration time-curves were right-shifted similar to the
amphetamine plasma concentration-time curve after lisdexamfetamine compared with D-
amphetamine but this effect did not reach significance for any of the Tmax values. The similar Cmax of
amphetamine and peak steroid responses at doses of lisdexamfetamine and D-amphetamine
producing equivalent AUCs is in contrast to previous preclinical [14] and clinical [11, 12] reports used
to set up the present study hypotheses.

In the present study we statistically compared the endocrine effects of D-amphetamine with

other psychoactive substances tested in previous separate studies in our laboratory under similar
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conditions [16, 37]. In contrast to our hypothesis, D-amphetamine and lisdexamfetamine produced
similar effects on plasma cortisol and corticosterone to methylphenidate. Although, the effects of
methylphenidate on these active corticosteroids did not reach significance compared with placebo in
our previous smaller study [16], the respective effects of D-amphetamine that were significant
compared with placebo in the present study were not significantly greater than those of
methylphenidate. = However, = D-amphetamine  produced greater cortisone and 11-
dehydrocorticosterone levels than methylphenidate. Nevertheless, the present study indicates that the
overall effects on plasma steroids of D-amphetamine, lisdexamfetamine and methylphenidate at
equivalent psychostimulant doses [33] are largely similar.

NE, DA, and serotonin (5-HT) have all been implicated in mediating HPA axis stimulation.
However, the relative contribution of these monoamines to HPA axis stimulation by psychotropics in
humans is unclear [39, 40]. D-amphetamine may release cortisol mainly via NE [34]. Specifically, D-
amphetamine more potently interacts with the NE compared with the DA and 5-HT transporters and it
has a very low potency at the 5-HT transporter [31, 41]. Additionally, the effects of D-amphetamine or
methamphetamine on plasma corticosteroids were blocked by a-adrenergic receptor antagonists [42,
43] but not by DA receptor antagonists [44, 45]. On the other hand, purely or predominantly
serotonergic substances strongly stimulate the HPA axis [29, 37, 46]. In the present study, we
compared the effects of D-amphetamine with similar historic data on MDMA and LSD obtained in the
same laboratory and with the same clinical and analytical methods [16, 37]. Compared with D-
amphetamine and methylphenidate, which stimulate NE and DA, MDMA and LSD, which mainly
stimulate 5-HT, produced greater increases in plasma concentrations of the biologically active
glucocorticoids cortisol and corticosterone. This finding supports the view that 5-HT primarily or more
strongly increases cortisol compared with DA or NE [16, 37, 46]. Notably, the MDMA-induced
increases in cortisol and corticosterone were paralleled by relatively smaller changes (decreases
compared with D-amphetamine) in the respective 11B-hydoxysteroid dehydrogenase 2 (113-HSD2) -
formed metabolite and precursor cortisone and 11-dehydrocorticosterone indicating 11B3-HSD2
inhibition by MDMA. In contrast, the LSD-induced increase in cortisol was paralleled by a similar
increase of its metabolite cortisone and both reached significantly greater levels compared with D-
amphetamine. Both the 5-HT releaser MDMA and the 5-HT receptor agonist LSD [38] increased the

sum of cortisol + cortisone more than D-amphetamine indicating greater glucocorticoid production.
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This finding further supports the critical role of 5-HT in HPA axis stimulation by psychoactive
substances [16, 37].

The HPA axis activation by amphetamines may be clinically relevant. The activation reflects a
pharmacological stress response and has been shown to include increases in other endocrine
markers of stress including copeptin, oxytocin, epinephrine, and norepinephrine in the case of MDMA
[16, 18, 36, 47-49]. In recreational settings, MDMA increased plasma cortisol levels by up to 800%
[50]. These marked endocrine responses induced by psychostimulants may affect mood, energy
metabolism, sleep, and immune function [15, 49, 51]. For example, D-amphetamine,
methylphenidate, or MDMA increase natural killer cells in plasma reflecting activated innate immune
function [15, 23] and increases in plasma concentrations of epinephrine after administration of
methylphenidate and MDMA were associated with acute increases in circulating natural killer cells
[15]. Increases in plasma cortisol following MDMA administration correlated with its cardiovascular
effects and subjective drug liking [52]. Steroids may contribute to the mood-enhancing effects of
psychostimulants [49, 52, 53], enhance the rewarding and reinforcing drug effects [20, 21], and
increase the risk of misuse.

The present study has limitations. We used only one relatively high dose of lisdexamfetamine
and D-amphetamine. We cannot exclude possible differences in the pharmacokinetics and endocrine
effects of lisdexamfetamine and D-amphetamine at lower or higher doses than those used in the
present study. Furthermore, repeated lisdexamfetamine administration may result in tolerance to the

endocrine effects, which has been reported for the subjective effects with chronic use [54-56].
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Figure 1. Plasma concentrations of glucocorticoids and mineralocorticoids (mean and SEM) following
administration of D-amphetamine, lisdexamfetamine, and placebo in 23, 24, and 23 subjects,
respectively. CYP = cytochrome P450; HSD = hydroxysteroid dehydrogenase. Lisdexamfetamine and
D-amphetamine significantly increased the plasma concentrations of the glucocorticoids cortisol (C),
cortisone (E), corticosterone (D), 11-dehydrocorticosterone (B), and 11-deoxycortisol (A) compared
with placebo. The plasma concentration of aldosterone (F) was not altered after D-amphetamine and
lisdexamfetamine administration compared with placebo.
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Figure 2. Plasma concentrations of androgens, one progestogen, and amphetamine (mean and
SEM) following administration of D-amphetamine, lisdexamfetamine, and placebo in 23, 24, and 23
subjects, respectively. Data in men represent mean and SEM in 12 subjects. Data in women
represent mean and SEM in 11, 12, 11 subjects following administration of D-amphetamine,
lisdexamfetamine, and placebo, respectively. The plasma concentrations of dehydroepiandrosterone
(DHEA) (A), dehydroepiandrosterone sulfate (DHEAS) (B), and androstenedione in women (D) and
men (F) were significantly elevated following administration of D-amphetamine and lisdexamfetamine
compared with placebo, whereas no effect was observed on 17a-hydroxyprogesterone (C). Plasma
concentration-time curves of amphetamine (E) were similar after administration of lisdexamfetamine
compared with D-amphetamine with the exception of a significantly later onset and therefore longer
time to reach maximal concentrations. However, maximal concentrations of amphetamine and areas
under the concentration-time curves were similar after the two treatments.
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Figure 3. Plasma concentration of ACTH, measured 1 h before and 3.5 h after drug administration
(mean and SEM). ACTH plasma concentrations were increased (P<0.001) at 3.5 h following
administration of D-amphetamine and lisdexamfetamine compared with placebo.
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Table 1. Kinetic parameters of plasma steroids and amphetamine after D-amphetamine, lisdexamfetamine, or

placebo.
Main effect
D-Amphetamine  Lisdexamfetamine Placebo of drug P value
(3F2,40)
Amphetamine Tonset 0.8+0.1 1.4+0.1%##
Tiax 3.240.2 4.4%0. 2%
Cnax 134+7 12845
AUC1. 1014+47 983+42
Glucocorticoids
Cortisol Trax 2.72 + 0.29* 3.17 + 0.41* 1.20 + 0.41 6.89 <0.01
Crmax 534 + 28.9%** 519 + 24.9%*+ 417 +35.2 16.93 <0.001
AUC1, 4116 + 286*** 4207 + 287*** 2621 + 252 60.19 <0.001
Cortisone Tmax 4.39 + 0.3* 4.67 £0.3** 2.80+0.5 6.92 <0.01
Crmax 80.6 + 4.2%+* 82.8 + 4.3%+* 58.0 + 3.0 42.47 <0.001
AUC1, 707 + 35.2%+* 739 + 35.5%*+ 503 + 26.4 52.99 <0.001
Corticosterone Trmax 2.59 + 0.47 3.0+0.38 2.24+05 171 NS
Crmax 22.6 £ 2.6%+* 20.1 + 2.0%** 11.6+1.4 15.43 <0.001
AUC12  85.1  6.2%* 83.1 £ 6.0%** 36.6 +3.2 59.28 <0.001
11-Dehydro- Trmax 2.96 £ 0.48 2.88 £0.38 2.46 £ 0.55 0.66 NS
corticosterone Crmax  8.93 +0.86%* 8.82 + 0.64%** 5.43 + 0.53 22.03 <0.001
AUC12  51.4 + 4.0%* 53.7 £ 3.2%%* 28.8+2.2 63.36 <0.001
Cortisol + Trmax 2.93+0.3* 3.65 + 0.38*** 1.20 + 0.41 9.42 <0.001
cortisone Crnax 601 + 31w 583 + 26.5%% 469 + 36 19.44 <0.001
AUC1> 4824 + 299*** 4945 + 307*** 3124 + 266 66.47 <0.001
Ratio Tmax 1.83 £ 0.44 3.10 £ 0.61 2.02 + 0.63 2.57 NS
cortisol/cortisone Crnax 9.42 +0.57 9.25 + 0.49 8.81 +0.72 0.59 NS
AUC1,  72.3+5.1%* 69.8 + 4.0** 61.5+5.2 10.50 <0.001
Corticosterone + Tmax 2.59 + 0.47 3.0+0.36 2.37+0.54 1.34 NS
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dehydro-
corticosterone

ratio
corticosterone/
dehydrocorticosterone

11-Deoxycortisol

Mineralocorticoids
Aldosterone

11-Deoxy-

corticosterone

Androgens

DHEA

DHEAS

Androsterone

Androstenedione
in women

Cmax
AUC12

Tmax
Cmax

AUC12

Tmax
Cmax
AUC12

Tmax
Crax
AUC12
Tmax
Crax
AUC12

Tmax
Crax
AUC12
Tmax
Crmax
AUC12
Tmax
Crmax
AUC12
Tmax
Crmax
AUC12

31.2 £ 3.3
136 £ 9.5***

259+0.44
3.01 + 0.24**

18.7 £ 1.1

3.02+0.29
2.70 £ 0.17**
17.7 £ 1.08***

4.11+0.84
0.31+0.03
3.06 £0.2
3.43+£0.44
0.53+0.08
5.84+0.88

3.50+0.53
80.9 + 7.0**
609 £ 41.1%**
5.40 + 0.68
13764 + 1397**
129057 £ 15047*
493 +0.89
6.93+0.44
46.6 + 3.6
3.36 + 0.52
3.63 £ 0.40***
31.5+3.4*

28.5 £ 2.6***
137.0 £ 8.6%**

2.98 £0.43
273+0.14

17.3 £ 0.93***

3.83+£0.32
2.68 = 0.17**
18.1 + 1.2%**

3.88+0.73
0.34 +0.03
3.19+£0.21
3.85+0.48
0.57 + 0.07
6.10 £ 0.87

4.88 £ 0.53
78.5 = 6.0**
608 + 43.0***
5.80 + 0.58
14452 + 1307***
136822 + 12643**
5.08 +0.79
6.25 + 0.46
44135
5.13 + 0.58*
3.46 £ 0.23**
31.2+2.1*

16.9+19
65.3+£5.0

2.39+0.56
2.24+0.14

13.9+1.03

4.22 +0.67
1.60+0.14
11.0+1.2

3.43+£0.67
0.31+0.03
3.12+0.24
2.98 £ 0.65
0.49 + 0.07
5.45 £ 0.86

3.76 £ 0.7
57.1+53
455 + 36.9
4.50 £ 0.64

11896 + 1280
113005 + 13334

4.74 £ 0.76
6.42 £ 0.58
43.3+45
2.23+0.81
259+0.24
236+21

17.32
70.78

0.28
7.06
17.27

2.41
34.33
44.47

0.06
1.23
2.03
0.54
2.42
1.88

1.45
8.35
22.01
1.33
11.18
7.10
0.15
0.08
0.26
5.02
11.58
8.07

<0.001
<0.001

NS
<0.01
<0.001

NS
<0.001
<0.001

NS
NS
NS
NS
NS
NS

NS
<0.001
<0.001

NS
<0.001

<0.01

NS

NS

NS

<0.05
<0.001
<0.01
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Androstenedione
in men

Testosterone
in women

Testosterone
in men

Testosterone +
androstenedione
in women

Testosterone +
androstenedione
in men

Progestins
Progesterone
in women

Progesterone
in men

17a-Hydroxy-
progesterone

Tmax
Crax
AUC12
Tmax
Crax
AUC12
Tmax
Crmax
AUC12
Tmax
Crmax
AUC12
Tmax
Crmax
AUC12

Tmax
Crmax
AUC12
Tmax
Crmax
AUC12
Tmax
Crmax
AUC12

3.46 £ 0.57
2.68 + 0.18**
223+ 1.2%
3.32+0.96
0.88+0.1
925+1.1
421+1.0
6.23 £ 0.40
62.0+ 4.3
3.41+0.52
4.45 + 0.39**
40.8 £ 3.5*
4.38 + 0.96
8.50 £ 0.48
84.4+47

573+13
33824
31.8+24.4
3.25+0.40
0.52 £ 0.06***
4.34 £ 0.64**
4.20 £ 0.58
4.01 +£0.47
31.2+3.8

3.96 £ 0.51
2.52 +0.18*
23.0 £ 1.6**
6.25+0.83
0.88+0.1
9.59+1.2
4.75 + 0.66
6.17+0.4
62.0+ 3.8
5.13 + 0.58*
4.30 £ 0.22*
40.8 £ 2.2*
4.13 + 0.62
8.54 £ 0.48
85.0+4.7

6.54 + 0.98
495+3.2
41.6 + 26.7
3.42+0.6
0.50 + 0.06**
4.47 £ 0.64**
4.27 £0.35
3.72 + 0.46
30.8+4.0

2.83+0.82
2.14 +0.19
18.7+1.8
3.64 +1.05
0.87+0.14
8.14 £ 0.98
3.50+0.79
5.69 £ 0.37
57.0+3.6
2.50+0.78
3.40+0.28
31.7+24
3.04 + 0.69
7.62+0.51
75.7+4.7

47314
19411
17.4+11.7
4.75+0.94
0.39 £ 0.06
3.84 + 0.68
424 +0.79
2.91+0.58
245+5.0

0.70
8.42
8.67
2.36
0.15
0.77
0.64
1.46
1.60
4.14
7.74
6.83
0.79
2.86
3.20

0.12
0.76
0.57
1.53
13.72
13.88
0.01
2.80
1.54

NS
<0.05
<0.01

NS

NS

NS

NS

NS

NS
<0.05
<0.01
<0.01

NS

NS

NS

NS
NS
NS
NS
<0.001
<0.001
NS
NS
NS
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Values are mean + SEM in 23 and 24 subjects after administration of D-amphetamine and lisdexamfetamine. Cmax, peak

plasma concentration (nM); NS, not significant; Tmax, time to reach Cmax (h); AUC24, area under the concentration—time
curve to 24 h (ngxh/mL and nMxh and for amphetamine and steroids, respectively); DHEA, dehydroepiandrosterone;
DHEAS, dehydroepiandrosterone sulphate; 2only women F (2;18) or only men F (2;22). *P<0.05, **P<0.01, ***P<0.001

compared with placebo. ##significant difference compared with D-amphetamine. There were no significant differences in

the steroide plasma concentrations between D-amphetamine and lisdexamfetamine.

Table 2. Peak effects of D-amphetamine, lisdexamfetamine, methylphenidate, MDMA, and LSD on plasma glucocorticoids.

D-

amphetamine lisdexamfetamine methylphenidate = MDMA 125 LSD 200 ug Fase P
- - a = a - b g

40 mg (N=23) 100 mg (N=24) 60 mg (N=16) mg (N=16) (N=16) value
Cortisol 330.1+27.4 306 +17.8 310.5+52.2 523.7 £51.2** 713 +£54.1** 17.84 <0.001
Cortisone 43.2+3.9 40.7 £ 3.4 21.9 + 2.9%** 21.6 £ 2.5%** 40.7+35 10.27 <0.001
Cortisol + Cortisone 360.4 + 30.7 333.8 + 20 32514518  5326+527* Lol 1652 <0001
Cortisol / Cortisone 49104 46+04 8.5+1.6* 159+ 1.5 11.3+0.9** 234 <0.001
Corticosterone 19.7+2.7 165%2 11.3+£23 272+24 35+£3.7* 11.3 <0.001
11-Dehydrocorticosterone 6.5+0.8 6.2+ 0.6 2.0 £ 0.4%x* 43+04 6.7+0.8 8.43 <0.001
Corticosterone + 11- 26+3.4 221425 12.6 + 2.7+ 313425  41+43% 985 <0.001
Dehydrocorticosterone

Corticosterone / 11- 2+0.3 1.6+0.1 9.2+3.6 17.6+7.8*  39+04 354 <0.01
Dehydrocorticosterone

Values are mean + SEM of the peak differences from placebo. *P<0.05, **P<0.01, ***P<0.001 Tukey post hoc test compared with D-amphetamine.

MDMA, 3,4-methylenedioxymethamphetamine or ecstasy; LSD, lysergic acid diethylamide. Data were adjusted from 2Seibert et al. 2014 and
bStrajhar et al. 2016.
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Abstract

Background and Obijective Lisdexamfetamine is a prodrug of b-amphetamine, and both are used
for the treatment of attention-deficit/hyperactivity disorder (ADHD). Lisdexamfetamine is thought
to have a prolonged pharmacokinetic profile compared with oral b-amphetamine, possibly
associated with lower euphoria, lower drug liking, and a lower risk of misuse. However,
differences in the pharmacokinetics and pharmacodynamics of lisdexamfetamine and D-
amphetamine have not been directly compared in healthy subjects.

Methods Equimolar doses of b-amphetamine and lisdexamfetamine, corresponding to 30 mg D-
amphetamine base, and placebo were administered in 24 healthy subjects in a randomized,
double-blind, placebo-controlled, cross-over study. Plasma concentrations of amphetamine,
subjective effects, and vital signs were repeatedly assessed. The pharmacokinetic parameters
were determined using compartmental modeling.

Results The increase in plasma concentrations of amphetamine had a 0.6 + 0.6 h (mean £ SD)
longer lag time and reached peak levels 1.1 + 1.5 h later after lisdexamfetamine administration
compared with D-amphetamine administration, but no differences in maximal concentrations or
total exposure (area under the concentration-effect curve) were found between the two
treatments. Consistent with the pharmacokinetics, the subjective and cardiovascular stimulant
effects of lisdexamfetamine also occurred later compared with b-amphetamine. However, no
differences in peak ratings of potentially abuse-related subjective drug effects (e.g., drug liking,
drug high, stimulation, happy, well-being, and self-confidence) were observed after
lisdexamfetamine  administration = compared with  D-amphetamine  administration.
Lisdexamfetamine and b-amphetamine also produced similar peak increases in mean arterial
blood pressure, heart rate, body temperature, pupil size, and adverse effects.

Conclusions The pharmacokinetics and pharmacodynamics of lisdexamfetamine are similar to
D-amphetamine administered 1 h later. Lisdexamfetamine is likely associated with a similar risk

of oral abuse as the classic stimulant b-amphetamine.
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The study was registered at ClinicalTrials.gov (NCT02668926).

Key points

e The conversion of lisdexamfetamine to bD-amphetamine occurs in the circulation and is
thought to result in a more prolonged pharmacokinetic profile and attenuated subjective
effects and abuse risk compared with D-amphetamine.

e The study compared pharmacokinetics of lisdexamfetamine and b-amphetamine
directly within-subjects.

e Lisdexamfetamine and D-amphetamine produced similar peak plasma amphetamine
concentrations and subjective and cardiovascular peak responses.

e The risk of oral misuse of lisdexamfetamine is likely similar to D-amphetamine.

Keywords: D-amphetamine, lisdexamfetamine, subjective effects, autonomic effects,

healthy subjects
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1. Introduction

Lisdexamfetamine is an inactive prodrug formulation of D-amphetamine [1-3] that is
marketed for the treatment of attention-deficit/hyperactivity disorder (ADHD). b-amphetamine is
a stimulant drug that is used as a second-line treatment for ADHD. D-amphetamine is similarly
or even more effective than methylphenidate in the treatment of ADHD [4]. However,
amphetamine is also misused recreationally to induce euphoria or enhance cognitive
performance, with a lifetime use prevalence of 5.5-15% in adults [5, 6]. Lisdexamfetamine is
thought to have lower abuse potential than D-amphetamine [7]. The conversion of
lisdexamfetamine to its active metabolite D-amphetamine occurs in the circulation [8, 9]. When
lisdexamfetamine is misused by intranasally or intravenously, the pharmacokinetics are similar
to oral use [10, 11], and the subjective effects are not enhanced by parenteral administration.
Intravenous lisdexamfetamine use also produced significantly lower increases in “drug liking”
and “stimulant effects” compared with D-amphetamine in intravenous substance users [12]. After
oral administration, the conversion of lisdexamfetamine to b-amphetamine is thought to occur
gradually, reportedly resulting in a prolonged pharmacokinetic profile with low peak but
sustained plasma amphetamine concentrations [12, 13]. Such a prolonged pharmacokinetic
profile is considered to be associated with slower effects on dopamine release, lower euphoric
effects, and a possibly lower risk of misuse [7, 12, 14]. This view is supported by animal studies.
In rats, the peak plasma concentration (Cmax) of amphetamine was lower after lisdexamfetamine,
and it produced a gradual and sustained increase in dopamine efflux and much less locomotor
activity compared with b-amphetamine [15]. Thus, in this rat study, lisdexamfetamine was shown
to have markedly less stimulant effects than an equivalent dose of D-amphetamine [15].
However, differences in the pharmacokinetics of lisdexamfetamine and D-amphetamine after
oral administration have not been studied. Additionally, we are aware of only one study that
directly compared the acute pharmacodynamic effects of lisdexamfetamine and b-amphetamine
within-subjects in humans [12]. In current stimulant users, 100 mg lisdexamfetamine produced
significantly lower subjective “drug liking” than an equivalent dose of 40 mg b-amphetamine [12].

However, subjective drug effects were comparable on the morphine-benzedrine scale
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(euphoria), amphetamine scale, and benzedrine (stimulation) scale of the Addiction Research
Center Inventory (ARCI) [12]. Nonetheless, this previous study [12] did not assess the
pharmacokinetics of amphetamine to demonstrate the equivalence of the doses used.
Additionally, data from healthy non-stimulant-using subjects are lacking, and no industry-
independent studies have been conducted. Therefore, in the present study, we directly
compared both pharmacokinetic and pharmacodynamic differences between equimolar oral
doses of lisdexamfetamine and D-amphetamine in healthy, non-stimulant-using subjects. Based
on data from animal studies [15] and limited human data [12], we hypothesized that
lisdexamfetamine would have (i) a longer time to Cmax (Tmax) than D-amphetamine, (ii) a lower
Cmax than D-amphetamine, (iii) an area under the amphetamine concentration-time curve that is
identical to D-amphetamine, (iv) a longer Tmax, (V) @ smaller maximal effect (Emax) than D-
amphetamine, and (vi) an area under the observed subjective drug effect-time curve that is

identical to b-amphetamine.

2. Methods
2.1. Study design

The present study used a double-blind, placebo-controlled, cross-over design with three
experimental test days (D-amphetamine, lisdexamfetamine, and placebo) in balanced order. The
washout periods between sessions were at least 7 days. The study was conducted in
accordance with the Declaration of Helsinki and International Conference on Harmonization
Guidelines in Good Clinical Practice and approved by the Ethics Committee northwest/central
Switzerland (EKNZ) and Swiss Agency for Therapeutic Products (Swissmedic). All of the
subjects provided written consent before participating in the study, and they were paid for their

participation. The study was registered at ClinicalTrials.gov (NCT02668926).

2.2. Participants
Twenty-four healthy subjects (12 men, 12 women) with a mean = SD age of 25.3 = 3.0

years (range: 21-34 years) were recruited from the University of Basel. Inclusion criteria were
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age 18-45 years, body mass index 18-27 kg/m?, and birth control for women. Subjects with a
personal or first-degree-relative history of psychiatric disorders or chronic or acute physical
illness were excluded. Additional exclusion criteria were tobacco smoking (> 10 cigarettes/day),
the consumption of alcoholic drinks (> 10/week), and a lifetime history of using illicit drugs more
than five times, with the exception of occasional cannabis use in the past. Subjects who used
any illicit drugs, including cannabis, within the past 2 months or during the study period were
excluded. The subjects were asked to abstain from excessive alcohol consumption between test
sessions and not to drink caffeine-containing liquids after midnight before the study day. We
performed drug tests at screening and before each test session using TRIAGE 8 (Biosite, San
Diego, CA, USA). Female subjects were investigated during the follicular phase of their
menstrual cycle (day 2-14) to account for cyclic changes in the reactivity to D -amphetamine

[16].

2.3. Study procedures

The study included a screening visit, three experimental sessions (test days), and an
end-of-study visit. Experimental sessions began at 8:00 AM. An indwelling intravenous catheter
was placed in an antecubital vein for blood sampling. A single oral dose of b-amphetamine,
lisdexamfetamine, or placebo was administered at 9:00 AM. Autonomic and subjective drug
effects were assessed repeatedly throughout the session. For the analysis of amphetamine
concentrations in plasma, blood samples were collected in lithium heparin tubes 1 h before and
0,05,1,15, 2,25, 3,35, 4,5, 6, 8, 10, 12, and 24 h after drug administration. The blood
samples were immediately centrifuged, and the plasma was rapidly stored at -20°C and later at
-80°C until analysis. During the test sessions, the subjects did not engage in any physical
activity, were resting in hospital beds in a calm standard hospital room, and were served a
standardized lunch and dinner at 11:30 AM and 6:30 PM, respectively. The test session ended
at 9:00 PM. The subjects returned home and returned the following day at 9:00 AM for the final

24 h measurements and drawing of blood samples.
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2.4. Study drugs

Gelatin capsules that contained either lisdexamfetamine dimesylate (100 mg salt;
Opopharma, Rimlang, Switzerland) or b-amphetamine sulfate (40.3 mg salt; Hanseler, Herisau,
Switzerland), both corresponding to an equivalent dose of 29.6 mg b-amphetamine, and placebo
capsules (mannitol) were prepared by the pharmacy of the University Hospital Basel according
to Good Manufacturing Practice. To induce greater subjective drug liking and mimic misuse, the
selected dose of lisdexamfetamine was relatively high and above the upper recommended daily

dose of 70 mg.

2.5. Measures
2.5.1. Quantification of amphetamine concentrations in blood plasma

Plasma concentrations of amphetamine were measured by ultra-high pressure liquid
chromatography-mass spectrometry/mass spectrometry. The materials, procedures, and
method validation are described in detail in the Supplementary Material. Lower limits of detection

and quantification were 0.26 ng/ml and 0.78 ng/ml, respectively.

2.5.2. Subjective effects

Visual Analog Scales (VASs) were repeatedly used to assess subjective effects over

time. The VASs included “any drug effect,” “good drug effect,” “bad drug effect,” “drug liking,”

“drug high,” “stimulated,” “alertness,” “content,” “happy,” “closeness to others,” “talkative,”

“open,” “concentration”, “trust”, and “want to be with others” and have previously been used [17,
18]. The VASs were presented as 100-mm horizontal lines (0 to +100), marked from “not at all”
on the left to “extremely” on the right. The VASSs for “happy,” “closeness to others,” “open,” “trust”,
and “l want to be with others” were bidirectional (x 50), marked from “not at all” on the left (-50),
to “normal” in the middle (0), to “extremely” on the right (+50). The VASs were administered 1 h

before and 0, 0.5, 1, 1.5, 2, 25, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, and 24 h after drug

administration.
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The 60-item Adjective Mood Rating Scale (AMRS) [19] was administered 1 h before and
2, 3,4, 12, and 24 h after drug administration. The AMRS subscales for well-being, extroversion,
emotional excitability, and self-confidence have previously been shown to be sensitive to the

effects of psychostimulants [20, 21].

2.5.3. Autonomic effects

Blood pressure, heart rate, and tympanic body temperature were repeatedly measured
1 h before and 0, 0.5, 1, 1.5, 2.0, 2.5, 3, 3.5, 4,5, 6, 7, 8,9, 10, 11, 12, and 24 h after drug
administration. Diastolic and systolic blood pressure and heart rate were measured using an
automatic oscillometric device (OMRON Healthcare Europe NA, Hoofddorp, Netherlands). The
measurements were performed in duplicate at an interval of 1 min and after a resting time of at
least 10 min. The averages were calculated for analysis. The rate-pressure product was
calculated as systolic blood pressure x heart rate. Core (tympanic) temperature was measured
using an GENIUSTM 2 ear thermometer (Tyco Healthcare Group LP, Watertown, NY, USA).
Pupillometry was performed 1 h before and 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, and
24 h after drug administration using a hand-held PRL 200 infrared pupillometer (NeurOptics,
Irvine, CA). Pupil function was measured under standardized dark-light conditions and assessed
by a Voltcraft MS-1300 luxmeter (Voltcraft, Hirschau, Germany) following a dark adaption time

of 1 min as previously described [22].

2.5.4. Adverse effects
Adverse effects were assessed 1 h before and 12 h (acute) and 24 h (sub-acute) after
drug administration using the 66-item List of Complaints [23]. The scale yields a total adverse

effects score and reliably measures physical and general discomfort.

2.6. Pharmacokinetic analyses
All of the pharmacokinetic and pharmacodynamic analyses were performed using

Phoenix WinNonlin 6.4 (Certara, Princeton, NJ, USA). Pharmacokinetic parameters were
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estimated using compartmental modeling. A one-compartment model was used with first-order
input, first-order elimination, and lag time. Initial estimates were derived from non-
compartmental analyses. The model fit was assessed by visual inspection and Akaike
information criteria. The model fit was impaired without lag time and not relevantly improved by
a two-compartment model. A non-compartmental analysis was also performed prior to the
modeling. Peak plasma concentration (Cmax) and time to Cmax (Tmax) Were obtained directly from
the observed data. The terminal elimination rate constant (A,) was estimated by log-linear
regression after semi-logarithmic transformation of the data using at least three data points of
the terminal linear phase of the concentration-time curve. The area under the concentration-
time curve (AUC) from 0 to 24 h after dosing (AUC.4) was calculated using the trapezoidal
method. The AUC to infinity (AUC.,) was determined by extrapolation of the AUC24 by using A..

The lisdexamfetamine- and D-amphetamine-induced subjective and autonomic effects
were determined as differences from placebo in the same subject at corresponding time points
to control for circadian changes and placebo effects. Maximal effect (Emax) and the time to reach
Emax (Tmax) Of the pharmacodynamic response were determined directly from the observed
effect-time curves. The area under the observed effect-time curve (AUEC) was determined
using the trapezoidal method. The onset of the response was determined using the effect-time
curve, with 10% of the individual maximal response as the threshold. To assess the
amphetamine exposure-effect relationship, the changes in pharmacodynamic effect after
lisdexamfetamine and D-amphetamine administration for each time point were plotted against

the respective plasma concentrations of amphetamine (hysteresis plots).

2.7. Statistical analyses

The data were analyzed using repeated-measures analysis of variance (ANOVA), with
drug as the within-subjects factor. Repeated measures are expressed as Emax and AUEC values
prior to the ANOVA. Tukey post hoc comparisons were performed based on significant main

effects of drug. Plasma amphetamine concentrations after administration of lisdexamfetamine-
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and p-amphetamine and differences from placebo were compared using paired t-tests. The

criterion for significance was p < 0.05.

3. Results
3.1. Pharmacokinetics

The plasma amphetamine concentration-time curves after D-amphetamine and
lisdexamfetamine administration are shown in Fig. 1. Individual plots are shown in
Supplementary Fig. S1. The corresponding pharmacokinetic parameters that were derived from
the compartmental and non-compartmental analyses are shown in Table 1 and Supplementary
Table S1, respectively. As planned, the administration of equimolar doses of D-amphetamine
and lisdexamfetamine resulted in similar AUC values. The increase in plasma amphetamine
concentrations had a 0.6 £ 0.6 h (mean + SD) longer lag time and reached peak levels 1.1 + 1.5
h later after lisdexamfetamine administration compared with D-amphetamine administration (Fig.
1, Table 1, Supplementary Table S1). Both Tiag and Tmax vValues were significantly different (t =
2.87, p < 0.001, and t = 3.54, p < 0.001, respectively; Table 1) between the two active drug
conditions. However, the absorption constant, Ko1, was only nonsignificantly greater after bD-
amphetamine administration compared with lisdexamfetamine administration (t = 1.86, p =
0.07). Cmax values were similar (Table 1, Supplementary Table S1) after the administration of
both drugs. Thus, in contrast to our hypothesis, a curve shift was observed, but no relevant
difference in the shape or peak size of the two amphetamine concentration-time curves was

found (Fig. 1).

3.2. Subjective effects

Subjective drug effects over time are shown in Fig. 2. Lisdexamfetamine and D-
amphetamine produced similar increases in VAS and AMRS scores compared with placebo
(Fig. 2 and Supplementary Fig. S2, respectively; Table 1, Supplementary Table S2). The
subjective drug effect-time curves were shifted to the right because of significantly longer Tonset

and Tmax values after lisdexamfetamine administration compared with D-amphetamine
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administration, consistent with the pharmacokinetics of the two drugs. However, no differences
in Emax or AUEC values were found between lisdexamfetamine and D-amphetamine. After both
lisdexamfetamine and D-amphetamine administration, the subjective drug effect-concentration
curves revealed similar clockwise hysteresis, indicating similar extents of acute pharmacological

tolerance to lisdexamfetamine and b-amphetamine (Supplementary Fig. S3).

3.3. Autonomic effects

Vital signs over time are shown in Fig. 3. Lisdexamfetamine and D-amphetamine
produced similar increases in blood pressure, heart rate, body temperature, and pupil size (Fig.
3, Supplementary Fig. S4, Table 2, Supplementary Table S2). The blood pressure-time curves
were shifted to the right because of significantly longer Tonset Values after lisdexamfetamine
administration compared with D-amphetamine administration (Fig. 3, Supplementary Table S2).
Diastolic blood pressure reached significantly higher values after b-amphetamine administration
compared with lisdexamfetamine administration (Table 2). No differences were found in the
placebo-adjusted increases in diastolic blood pressure (Supplementary Table S2), mean arterial
pressure, or rate-pressure product, indicating similar overall cardiovascular stimulant effects
after the two treatments (Table 2). After both lisdexamfetamine and D-amphetamine
administration, the blood pressure responses returned to baseline faster than the plasma levels
of amphetamine (Fig. 1, Fig. 3), whereas the heart rate responses increased more slowly and
remained high up to 24 h. The blood pressure-concentration plot presented clockwise
hysteresis, similar to the subjective drug effect-concentration plots, indicating acute
pharmacological tolerance (Supplementary Fig. S5). In contrast, the heart rate responses
presented counterclockwise hysteresis in the effect-concentration plots, indicating that the
responses lagged behind the changes in plasma concentration, with no tolerance
(Supplementary Fig. S5) to the effects of either lisdexamfetamine or b-amphetamine. These
results indicate that there were no differences in the effect-concentration relationships between

lisdexamfetamine and D-amphetamine.
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3.4. Adverse effects

Both lisdexamfetamine and D-amphetamine increased acute and subacute adverse
effect ratings compared with placebo (Table 2). Acute adverse effects mainly included a lack of
appetite and dry mouth in most of the subjects. Subacute adverse effects mainly included

insomnia in most of the subjects after both treatments.

4. Discussion

The present study compared the pharmacokinetics and pharmacodynamics of
lisdexamfetamine and D-amphetamine within-subjects in healthy volunteers. In contrast to our
hypothesis, no differences were found in the peak plasma concentrations of amphetamine and
the associated subjective and cardiovascular peak effects between lisdexamfetamine and D-
amphetamine. Increases in the plasma concentrations of amphetamine occurred an average of
0.6 h later and reached peak levels 1.1 h later after lisdexamfetamine administration compared
with D-amphetamine administration, but the amphetamine concentration-time and drug effect-
time curves were otherwise comparable between treatments. Thus, the pharmacokinetics and
pharmacodynamics of a high dose of the newly marketed medication lisdexamfetamine were
practically identical to an equimolar dose of the classic immediate-release D-amphetamine
administered 1 h later. The present data indicate that the conversion of the prodrug
lisdexamfetamine to D-amphetamine slightly delays the onset of the increase in amphetamine
concentrations in the body without causing relevant alterations in the slope or maximal
concentrations.

Pharmacokinetic factors, such as rapid drug delivery to the brain, are important
predictors of abuse liability [24-26]. Substances with a slow absorption rate are less likely to be
abused than drugs with a rapid absorption rate [24, 25, 27]. A slow rise of simulant blood
concentration, which is usually observed with extended-release formulations, is associated with
lower subjective effects and possibly lower abuse potential [26, 28]. Lisdexamfetamine was
reportedly developed with the goal of providing a long duration of action and lower abuse

potential [12, 13]. Preliminary unpublished data that were reported in a previous study [12]
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indicated a longer Tmax and lower Cnax of D-amphetamine from lisdexamfetamine than from D-
amphetamine. However, the present study found no such difference in Cnax values after
lisdexamfetamine and D-amphetamine administration. A previous study compared the
pharmacodynamics (but not pharmacokinetics) of lisdexamfetamine and D-amphetamine and
found lower peak ratings of drug liking in current stimulant users after lisdexamfetamine
administration compared with D-amphetamine administration using the same doses as in the
present study [12]. However, ratings of drug liking in the stimulant users reached mean peak
levels that were only 17% of the scale maximum after administration of 40 mg D-amphetamine
[12]. In the present study, mean ratings reached 51% and 48% of peak scale levels in the healthy
and mostly stimulant-naive subjects after D-amphetamine and lisdexamfetamine administration,
respectively. Additionally, lisdexamfetamine and D-amphetamine produced similar peak
euphoria and amphetamine effects on the ARCI and cardiovascular effects and were reported
by stimulant users to have similar abuse-related monetary street value [12]. These latter findings
in stimulant users are consistent with our results, in which we found no relevant differences
between the pharmacokinetics and pharmacodynamics of lisdexamfetamine and D-
amphetamine. A study in adults with ADHD also reported comparable cardiovascular stimulation
after administration of 50 mg lisdexamfetamine and 20 mg of mixed immediate-release
amphetamine salts [29]. An analysis of exposures that were reported to poison centers reported
overall similar clinical effects of lisdexamfetamine and D-amphetamine, including agitation,
tachycardia, and hypertension [30]. A marked increase in reported lisdexamfetamine misuse
cases was reported to poison centers between 2007 and 2012, resulting in more cases
associated with lisdexamfetamine than immediate-release D-amphetamine [30].

Intranasal and intravenous lisdexamfetamine use has been shown to result in delayed
and reduced subjective effects [10, 11]. In contrast, the minimal changes in the oral
pharmacokinetics and pharmacodynamics of lisdexamfetamine compared with D-amphetamine
that were observed in the present study did not relevantly slow the rise of amphetamine
concentrations or subjective effects and thus were not sufficient to reduce the abuse potential

of oral lisdexamfetamine use. In contrast, clear differences were found between the kinetics of
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extended-release and immediate-release formulations [28, 31] and possibly also between
extended-release formulations and lisdexamfetamine [32, 33].

The present study has limitations. We used only one relatively high dose of
lisdexamfetamine and D-amphetamine. We cannot exclude possible differences in the
pharmacokinetics and pharmacodynamics of lisdexamfetamine and b-amphetamine at lower or
higher doses than those used in the present study. Additional studies that administer 50 and
150 mg lisdexamfetamine and 20 and 60 mg D-amphetamine, respectively, would be needed to
further validate the present findings. The recommended doses of lisdexamfetamine for the
treatment of ADHD are 30-70 mg/day, with an initial dose of 30 mg. Thus, the present study
used a higher single dose (100 mg) in non-treated subjects to mimic the misuse of
lisdexamfetamine rather than therapeutic steady-state conditions. Additionally, our subjects
were fasted when the drugs were administered. Tmax Values have been reported to be prolonged
by approximately 1 h in the fed state compared with the fasted state [34]. Furthermore, repeated
lisdexamfetamine administration results in tolerance to the pronounced subjective and
cardiostimulant effects, which has been reported with chronic use [13, 35, 36]. Similarly, acute
insomnia was observed in the majority of the subjects after the single high-dose administration
of lisdexamfetamine in the present study, but lisdexamfetamine was not associated with sleep
disturbances when used chronically [37-39].

We are unaware of published direct comparisons of the pharmacokinetics of
lisdexamfetamine and D-amphetamine. The present pharmacokinetic data for lisdexamfetamine
and D-amphetamine are consistent with previous investigations of either formulation alone [2,
13, 40-43]. The present study showed that plasma amphetamine concentrations remained high
after both lisdexamfetamine and D-amphetamine administration, with similarly long plasma
elimination half-lives, consistent with previous studies [2, 40, 44]. However, the present study
illustrates that acute tolerance develops to the subjective drug effects, which were similar for
both formulations. This means that the subjective stimulant drug effect lasts only up to 8 h, but
plasma concentrations of amphetamine remain high. Interestingly, in contrast to the subjective

response, the cardiovascular effects did not present acute tolerance and remained high in
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parallel with the plasma drug concentrations. The blood pressure response to both formulations
presented clockwise hysteresis, but this effect was offset by counterclockwise hysteresis for
heart rate that resulted from a net effect of no tolerance to the rate-pressure product. Similarly,
previous studies showed that b-amphetamine rapidly increased blood pressure to peak values
within 3 h after drug administration but produced only a very moderate and slow increase in
heart rate [40, 44, 45]. Altogether, the findings indicate that D-amphetamine primarily induced a
blood pressure response, whereas the heart rate response was reduced, likely via the
baroreceptor reflex. As a result, the rate-pressure product better reflected the cardiovascular
stimulation that was induced by D-amphetamine than the blood pressure or heart rate response
alone, and the rate-pressure product also better reflected the plasma concentrations of
amphetamine. In contrast to D-amphetamine, methylphenidate induced rapid and parallel
elevations in both blood pressure and heart rate [17, 20, 45]. The mechanisms of the differential
effects of bD-amphetamine and methylphenidate on blood pressure and heart rate are unclear.
Additionally, lisdexamfetamine and b-amphetamine significantly increased pupil size similarly to
the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) [22], but
comparable mydriatic effects were not induced by methylphenidate [20]. Thus, the autonomic
effects of D-amphetamine and methylphenidate are different, despite their common stimulant
action on the catecholamine systems.

Similar to the present study, previous studies reported the development of acute
tolerance to the subjective but not cardiostimulant effects of D-amphetamine in healthy
volunteers [40, 44]. No tolerance to the cardiostimulant effects of 60 mg methylphenidate was
found [20]. However, in contrast to the present study, no tolerance to the subjective effects of
methylphenidate was observed [20]. Another amphetamine derivative and serotonin and
norepinephrine releaser, MDMA, also presented marked acute pharmacological tolerance to
both subjective and cardiovascular effects [20, 46]. Tolerance was also observed after repeated
daily oral administration of 10 mg methamphetamine [47]. The present observations of
differential tolerance to the subjective and cardiovascular effects of b-amphetamine may have

clinical implications. First, it indicates that pharmacokinetic properties may not necessarily

99



predict subjective stimulant effects. The clinical therapeutic response may be subject to similar
tolerance, although the behavioral and motor activity responses in children have been reported
to be related to the time course of plasma amphetamine levels [41]. Second, the mechanisms
that underlie acute tolerance need to be further studied. For example, no tolerance was found
to the subjective and cardiovascular effects of a direct serotonin receptor agonist [48], but
tolerance was found to the effects of an indirect serotonin receptor agonist that releases
serotonin from presynaptic terminals via the serotonin transporter [46]. D-amphetamine acts as
an indirect dopamine and norepinephrine agonist and releases these catecholamines via their
respective monoamine transporters [49]. In contrast, methylphenidate acts only as an inhibitor
of the dopamine and norepinephrine transporter, without inducing their release [50]. Both
stimulants show no relevant effects on monoamine receptors beyond their interaction with their
transporters [49, 50]. Thus, monoamine depletion through release could potentially explain the
phenomenon of acute tolerance to the subjective effects of b-amphetamine, in contrast to pure
uptake inhibition by methylphenidate. However, this assumption is speculative and needs further
study.

In rats, counterclockwise hysteresis was observed between the plasma concentration of
amphetamine and locomotor activity after administration of lisdexamfetamine, but no such
hysteresis was observed after D-amphetamine administration [15]. Additionally,
counterclockwise hysteresis was observed between dopamine concentrations in the striatum
and locomotor activity after lisdexamfetamine administration, but clockwise hysteresis was
observed after b-amphetamine administration [15]. In contrast to these preclinical data, no
differences were found in the hysteresis curves between lisdexamfetamine and b-amphetamine
in the present study, further supporting the similarity of the two formulations.

In conclusion, the single oral dose pharmacokinetics and pharmacodynamics of
lisdexamfetamine were similar to immediate-release D-amphetamine, although
lisdexamfetamine had a longer lag time for the increase in plasma amphetamine concentration
and subjective response. The risk of oral misuse of lisdexamfetamine is likely similar to D-

amphetamine.
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Figure 1. Amphetamine concentration-time curves (mean + SEM) in 24 and 23 subjects after
administration of lisdexamfetamine and D-amphetamine, respectively. The onset and peak times
of the amphetamine concentration-time curve were longer after lisdexamfetamine administration
compared with D-amphetamine administration, but no differences were found in the maximal
concentrations, areas under the concentration-time curves, or absorption or elimination
constants between the two treatments. The inset shows the semilogarithmic plot. The
amphetamine concentration-time curves were shifted to the right after lisdexamfetamine
administration compared with D-amphetamine administration but were otherwise almost
identical. The drugs were administered at t = 0. The corresponding pharmacokinetic parameters
were derived from compartmental and non-compartmental analyses and are shown in Table 1

and Supplementary Table S1, respectively.
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Figure 2. Lisdexamfetamine and D-amphetamine produced similar subjective responses
compared with placebo. The effect onset and maximal response were nonsignificantly delayed
after lisdexamfetamine administration compared with D-amphetamine administration, but the
maximal effects and curve shapes were similar. The data are expressed as the mean £ SEM in

24 subjects.
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Figure 3. Lisdexamfetamine and bD-amphetamine produced similar cardiostimulant responses
compared with placebo. The blood pressure response onset was delayed and the diastolic
pressure response was reduced after lisdexamfetamine administration compared with D-
amphetamine administration. However, the rate-pressure product, reflecting the overall
cardiovascular response, similarly increased after both active treatments compared with

placebo. The data are expressed as the mean £ SEM in 24 subjects.
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Table 1. Pharmacokinetic parameters of amphetamine based on compartmental modeling

Dose N=

ko1 (1/h) A(1/h) Vg (L) Conax (NQ/ML) tag tax (M) t, ()  AUC. (ng-h/mL) CL/F (L/h)
D-amphetamine 23 geometric mean (95% Cl) 1.3 (0.84-1.95) 0.088 (0.077-0.101) 195 (172-220) 120 (108-133) 0.8(0.6-1.0) 3.3 (2.7-3.9) 7.9 (6.9-9.1) 1727 (1540-1935) 17 (15-19)
range 0.41-17 0.046-0.162 113-375 77-181 0.3-2.0 0.9-5.9 4.3-15 1116-3463 9-27

Lisdexamfetamine 24 geometric mean (95% Cl) 0.78 (0.63-0.98) 0.088 (0.078-0.098) 186 (166-209) 118 (108-128) 1.5 (1.3-1.7)* 4.6 (4.1-5.2)** 7.9 (7.1-8.9) 1817 (1637-2017) 16 (15-18)
range 0.25-1.9 0.055-0.148 88-266 83-174 0.8-2.4 2.5-8.4 4.7-13 1087-3031 10-27

AUC., area under the plasma concentration-time curve from time zero to infinity; Cnax, €stimated maximum plasma concentration; t;,, estimated plasma elimination

half-life; tag, lag time or time; tyax, estimated time to reach Cpay; Koa, first-order absorption koefficient; A, first order elimination coefficient; V4, volume of distribution.

***P<0.001 compared with D-amphetamine.

Table 2. Comparison of the maximal pharmacodynamic effects of lisdexamfetamine and D-amphetamine

Main effect of

Placebo Lisdexamfetamine D-amphetamine drug
(mean £ SEM) (mean £ SEM) (mean £ SEM) F 246
Autonomic effects
Systolic blood pressure (mmHg) Emax 131+2.7 157+3.1%** 158+2.8*** 106.56
Diastolic blood pressure (mmHg) Emax 79+1.1 93+1.7*** 97+1.8%**# 93.97
Mean arterial blood pressure (mmHg) Emax 96+1.2 114+2.0%** 116+1.8*** 111.47
Heart rate (beats/min) Emax 76x1.5 94+£3.1%** 94+3.4*** 28.42
Rate pressure product (beats‘mmHg/min) Emax 9655+236 13083+561*** 13245+603*** 43.01
Body temperature (°C) Emax 37.3+0.07 37.7£0.06*** 37.7£0.07*** 24.05
Pupil size (mm) Emax 6.8+0.09 7.4+0.11%** 7.4+0.10%** 79.56
Pupil size after light stimulus (mm) Emax 5.0+0.08 5.8+0.11*** 5.7+£0.11%** 55.46
Constriction amplitude (mm) Emin 1.7+0.04 1.5+0.08 1.6+0.05 5.03
Subjective effects
Visual Analoge Scale (VAS, %max)
Any drug effect Emax 5.313.1 36+4.9*** 39+4.8*** 27.31
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Good drug effect
Bad drug effect
Drug liking

Drug high
Stimulated
Alertness

Content

Happy

Closeness to others
Talkative

Open
Concentration
Trust

| want to be with others

Adjective Mood Rating Scale (AMRS score)
Well-being
Extroversion
Excitablility
Self-confidence

Adverse Effects
Acute adverse effects

Sub-acute adverse effects

Emax
Emax
Emax
Emax
Emax
Emax
Emax
Emax
Emax
Emax
Emax
Emax

Emax

Emax

AEmax
AEmax
AEmax
AEmax

A12h
A24h

4.0£2.5
0.04+0.04
3.7+£2.6
3.3+2.6
2417
2411
1.1+0.63
1.7£1.3
0.79+0.79
1.3£1.0
0.88+0.79
0.38+0.27
0.96+0.96
1.3+0.89

1.9+0.7

1.3:0.4
0+0.2

0.9+0.3

-0.3+0.3
-0.8+0.3

4246.5%**
5.1+1.9*
48+6.9%**
29+6.3***
38+6.9%**
50+7.2%**
19+3.0%**
18+£2.9%**
15+2.8***
232, 7%
22+2.6%%*
21+£3.1%%*
15+2.6%**
18+3.6***

4.6+0.6**

3.4+0.4***
1.6+0.5**
2.2+0.4*

6.6+1.0%**
7.3+1.5%**

49+5.6%**
4.0+1.3
51+5.8%**
36+5.6%**
4445, 7%+
56+6.4***
18+2.9%**
17+2.8%*
1542 5%
2142 3***
2242, 7%
16+2.8%**
17+3.1%%*
16+3.1%+*

5.6+0.6***
3.4+0.4***
2.4+0.4%**
2.8+0.5**

6.7+0.9%**
6.9+1 2%

36.65
481
37.57
16.98
24.97
41.31
24.93
21.77
19.01
39.33
43.55
26.97
21.18
15.60

11.48

13.61

14.58
6.72

29.25
26.72

Values are meantSEM in 24 subjects. *P<0.05, **P<0.01, and ***P<0.001 compared with placebo. #P<0.05 compared with

lisdexamfetamine.

111



5.5 Achieved knowledge and future perspectives

We showed for the first time in humans that LSD induces changes in circulating steroids in a time course
up to 24 h. The steroid plasma concentrations were determined after optimizing and newly validating a
previously published ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) method [4]. The validated method is further described in the appendix “Supplementary data: Acute

effects of lysergic acid diethylamide on circulating steroid levels in healthy subjects”.

The major findings of this study were, LSD significantly increased the glucocorticoids cortisol, cortisone,
corticosterone and 11-dehydrocorticosterone compared to placebo, indicating that total glucocorticoid
production was enhanced. Furthermore, the plasma concentrations of androstenedione (only the area
under the concentration-time curve from time 0 to 10 h (AUCi)) and dehydroepiandrosterone were
significantly elevated by LSD. Although the adrenocorticotropic hormone (ACTH) plasma levels were not
determined, the data suggests a disturbance of the HPA axis by LSD [91]. Previously, it has been shown,
that LSD also increases prolactin plasma levels [94], which is an indicator of serotonin activity [120]. It is
well established that serotonin stimulates the HPA axis [88]. We therefore postulate, that LSD may activate
the HPA axis through serotonin receptor stimulation. This mechanism would be consistent with other reports

on serotoninergic drugs, such as psilocybin [121], and MDMA [4, 122].

The other steroids such as the androgens androsterone, testosterone, DHEAS, and 5a-
dihydrotestosterone, the glucocorticoid 11-deoxycortisol, the mineralocorticoids aldosterone and 11-
deoxycorticosterone, and the progestins progesterone and 17a-hydroxyprogesterone were not affected by
LSD. Furthermore, we wanted to study the relationship of active glucocorticoids cortisol and corticosterone
with LSD plasma concentrations and the subjective “any drug effects”. The pharmacokinetic and
psychotropic data used in this study were previously published [94, 123]. We demonstrated a close
relationship between LSD concentrations in the plasma and LSD induced changes in cortisol and
corticosterone, where no acute pharmacological tolerance was observed. Nevertheless, our results cover
only the steroid changes of a single dose of 200 pug LSD (pronounced psychotropic effects) in healthy
volunteers. The LSD induced changes in steroid homeostasis in polydrug users, patients with comorbidities

or chronical uses of LSD are still unknown.

Although 6%—-8% of adults will abuse LSD in their lifetimes, there is currently a renewed interest of LSD in
psychiatric research e.g. brain research [93, 124-126]. Furthermore, LSD has also been investigated for
new medical indications, such as cluster headache [127], or anxiety associated with life-threatening
diseases [94, 95]. However, since the 1970s only limited clinical research with LSD has been performed
[93]. Therefore, our obtained results and findings lead to a better understanding of the pharmacology of

LSD and support an appropriate benefit-risk assessment of LSD.

The worldwide prevalence of ADHD is estimated to be around 3.4% [128]. In 2010, the most prescribed
pharmacological ADHD therapeutics in pediatrics patients were methylphenidate (38%), a mixture of D-

amphetamine:L-amphetamine salts (22%), lisdexamfetamine (15%) and D-amphetamine (0.4%) [102].
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Surprisingly, with the increasing prevalence of ADHD and the use of the amphetamine based drugs for its
treatments, there is limited information as to the effects of this drug class on circulating steroids. Therefore,
for the first time we investigated the effects of lisdexamfetamine and D-amphetamine on the steroid
homeostasis in a study with healthy volunteers. Primarily, we measured plasma amphetamine
concentrations after a single oral dose of lisdexamfetamine dimesylate (100 mg) or D-amphetamine sulfate
(40.3 mg) by UHPLC-MS/MS. The validated method is presented in the appendix “Supplementary data:
Pharmacokinetics and pharmacodynamics of lisdexamfetamine compared with D-amphetamine in healthy
subjects”. We showed that the pharmacokinetic parameters cmax, AUC24 and terminal plasma elimination
half-life (tu2) of plasma amphetamine were identical after administration of lisdexamfetamine or immediate-
release D-amphetamine at equimolar doses. However, lisdexamfetamine showed a significantly longer
onset time (1.4 vs. 0.8 h) and tmax (4.4 vs. 3.2 h) compared with D-amphetamine, as a consequence of the
required bioactivation of lisdexamfetamine by the erythrocytes [107, 108]. The only clinical data
investigating the pharmacokinetics of lisdexamfetamine compared to immediate-release D-amphetamine
at equimolar dose in healthy adults (N = 12) was sponsored by the New River Pharmaceuticals Inc. and
reported in a poster presented at the ‘US Psychiatric and Mental Health 19th Annual Congress’ in 2006
[112], which has been referred to on numerous occasions in the literature [111-113, 129]. This abstract
suggests [112] that lisdexamfetamine may be beneficial for ADHD patients due to its prolonged therapeutic
duration and reduced abuse potential, however we did not observe a significant difference in cmax values
(128 ng/ml vs. 134 ng/ml) for plasma amphetamine between lisdexamfetamine or D-amphetamine
administration. The pharmacokinetics and pharmacodynamics of lisdexamfetamine and D-amphetamine in
healthy volunteers are discussed in detail in the submitted manuscript “Pharmacokinetics and

pharmacodynamics of lisdexamfetamine compared with D-amphetamine in healthy subjects”.

Both lisdexamfetamine and D-amphetamine affects the circulating steroids compared to placebo.
Consistently with previous studies [101, 114-119], we demonstrated, that D-amphetamine, as well as
lisdexamfetamine significantly and similarly increased cortisol levels compared to placebo. Furthermore,
the glucocorticoids cortisone, corticosterone, 11-dehydrocorticosterone, and 11-deoxycortisol, and the
androgen precursors DHEA, DHEAS and androstenedione were significantly elevated after
lisdexamfetamine and D-amphetamine administration. Corticosterone may have an eminent role in brain
function, due to its ability to cross the blood-brain barrier more effectively than cortisol. This is reflected by
a greater corticosterone to cortisol ratio in cerebrospinal fluid than in the plasma [130, 131]. In steroid
concentration-time curves, the Cmax and AUCi2 were identical between lisdexamfetamine and D-
amphetamine. However, the time to onset and consequently the time to maximal effects were delayed after
lisdexamfetamine compared to D-amphetamine administration. The elevated glucocorticoid production, and
increased levels of ACTH, DHEA and androstenedione after lisdexamfetamine or D-amphetamine suggest
a stimulation of the HPA axis [132], which we hypothesize was mediated by adrenergic receptors [133, 134]
rather than dopamine [135]. In contrast, lisdexamfetamine and D-amphetamine had no effect on the plasma

concentrations of the mineralocorticoids; aldosterone and 11-deoxycorticosteone, the progestins; 17a-
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hydroxyprogesterone and progesterone (except the male values), or the androgens; testosterone and
androsterone. Progesterone, androgens and their precursors, such as dehydroepiandrosterone (DHEA),
are associated with the magnitude of drug induced subjective response [136-138] and may be directly
involved in the mechanisms of drug addiction [139-141]. In a next step, the drug-induced increase in
glucocorticoids observed in the plasma samples, should be supported by determination of glucocorticoid
metabolites in the 24-h urine samples, which were additionally collected during the clinical trial, by

determining the urine steroid profile.

Phase plots of plasma amphetamine concentrations versus drug-induced changes in cortisol and
corticosterone after lisdexamfetamine or D-amphetamine showed clockwise hysteresis, suggesting acute
pharmacological tolerance. Previously, it was reported that a positive association exists between
amphetamine-induced increases in cortisol levels and subjective drug effects [116, 142]. In addition, the
HPA axis has a prominent role in the regulation of subjective drug effects [140]. In our study, we did not
observe a correlation between plasma levels of amphetamine or cortisol and subjective “any drug effect” at
the corresponding time points after lisdexamfetamine and D-amphetamine administration, which was
analyzed using Spearman’s rank correlations (data not shown). Positive correlations between the MDMA-
induced 11-deoxycorticosterone and aldosterone and systolic blood pressure have been demonstrated
previously [4]. Therefore, it would be interesting to correlate in a next step the drug induced changes in
steroid concentrations with the measured vital parameters such as systolic or diastolic blood pressure or

heart rate after lisdexamfetamine and D-amphetamine administration.

However, the observed lisdexamfetamine or D-amphetamine induced HPA stimulation, resulting in a
profound increase in circulating steroids, especially glucocorticoids, was solely demonstrated after a single
acute supra-therapeutic dose in healthy adults. In contrast to the acute administration of psychostimulatory
recreational drugs such as LSD, the treatments for ADHD symptoms involves chronic daily administration
of lisdexamfetamine or D-amphetamine [105, 111, 143]. Therefore, the following questions still have to be
addressed: first, how does chronic administration of lisdexamfetamine and D-amphetamine affect the HPA
axis and steroid levels and second, does the HPA axis adapt over time. In rats, it was shown, that repeated
administration of D-amphetamine down regulates the glucocorticoids receptors in the hippocampus [144].
Furthermore, they observed an increase in plasma ACTH and corticosterone levels compared to placebo.
However, across the days, the ACTH and corticosterone responses to D-amphetamine decreased,
suggesting partial desensitization of the HPA axis [145]. Humans given two repeated doses of MDMA (24
h apart), showed elevated cortisol levels (AUC) upon the first dose, which was further significantly increased
following a second dose [146]. In another study, healthy volunteers exposed to repeated psychological
stress (Trier Social Stress Test, which consists of a public speaking and mental arithmetic task in front of
an audience), generally showed a significant elevation in cortisol levels in each examination. However,
based on the magnitude in cortisol response after repeated mental stress, cortisol “high” and “low”
responders could be distinguished [147]. Interestingly, following a discriminant analysis of psychological

variables (personality questionnaires) of the healthy volunteers, the cortisol high responders showed results
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similar to patients with depression or anxiety disorders [147]. It was shown, that depressed patients have

an altered cortisol response to psychological stress [148].

Co-existing psychiatric problems such as anxiety (44%) and depression (32%) are common phenomena in
ADHD patients, where greater than 85% of patients suffer from at least one co-existing psychiatric condition
[149]. Therefore, we suspect that ADHD patients suffering such a comorbidity and/or receiving a
pharmacotherapy, such as selective serotonin reuptake inhibitor citalopram [150] or the tricyclic
antidepressant imipramine [151], which stimulate the HPA axis, may have an altered steroid response to
lisdexamfetamine or D-amphetamine administration compared to ADHD patients alone. For example, it was
demonstrated that children with ADHD and comorbid anxiety showed a greater increase in cortisol levels
upon stress compared to ADHD children without anxiety [152]. However, there was no change in cortisol
elevation upon mild psychosocial stress in ADHD patients without any medical or psychiatric comorbidities

compared to healthy volunteers [153].

As previously detailed in the section “Acute effects of psychoactive drugs on steroids in healthy volunteers”,
perturbations of HPA axis or circadian rhythm may have severe health related consequences such as
learning and memory deficits, anxiety, depression, altered stress response and brain development,
cardiovascular diseases [15, 17, 19, 20, 90, 91, 154-156]. The highest prevalence of ADHD is reported in
6—12 years-old children (11.4%), which decreases in adulthood (5.0%) [157]. Additionally, children due to
their lower body size or ability to metabolize drugs, may have an increased drug exposure compared to
adults. It was reported, that after lisdexamfetamine administration the cmax and AUC- of D-amphetamine
were higher in children compared to adults for the same dose [111]. Taking together, and keeping in mind
that children have ongoing brain development e.g. higher cognitive functions [158], the pediatric population
is extremely vulnerable to drug induced changes in steroid homeostasis. This highlights once again the
requirement for further research, especially in the pediatric population, to enhance the current knowledge
of drug induced HPA stimulation, steroid disturbance, its recovery after the end of drug administration and
the potential for adverse effects. This should allow a better benefit-risk assessment for the use of

psychostimulants such as lisdexamfetamine and D-amphetamine for treatment of ADHD.

Subsequently we suggest, to conduct a randomized, double-blind, placebo-controlled, cross-over study,
similar to our conducted study, but in a pediatric ADHD population and with a modified study procedure
(dose, treatment duration) (Fig. 3). ADHD patients without any further pharmacotherapy, would be
administered an oral once-daily maximal therapeutically dose of 70 mg of lisdexamfetamine, D-
amphetamine at equimolar dose or placebo, following dose titration (Fig. 3). We suggest that each
treatment should last for 1 week, since steady-state plasma concentrations of amphetamine after once-
daily dosing of 70 mg lisdexamfetamine were achieved at day five [159]. Plasma samples should be
collected over a 24 h period on selected days in all phases (dose titration, final study dose, washout) to
obtain full steroid and ACTH profiles. This will allow us to monitor the drug induced changes in steroid

homeostasis at a therapeutically dose, and additionally to observe how the steroids and the HPA axis adapt
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during the drug titration phase. This setup, differed to our previous study, where drug-naive volunteers
received one single dose of 100 mg lisdexamfetamine without dose escalation. Moreover, the washout
period can be used to mimic the drug withdrawal. This will allow us to monitor how the steroid system
“recovers” and the way in which it reacts upon further drug challenge. A study in rats revealed that D-
amphetamine was able to induce sensitization of the HPA axis following drug challenge. After chronic
administration of D-amphetamine (2 mg/kg for day 1-7, and 4 mg/kg for day 8-14), followed by a washout
phase, the rats were challenged with a single D-amphetamine injection (2 mg/kg), which resulted in higher
corticosterone and ACTH plasma levels compared to the drug challenged control group (chronic
administration of vehicle) [160]. In another non-related study in rats, which followed a similar experimental
design, but used a different D-amphetamine treatment scheme (2.5 mg/kg for 14 days), showed that D-
amphetamine withdrawal potentiates restraint stress-induced corticosterone in the ventral hippocampus,

but not in plasma compared to the control group [161].

study week 1 2 8 4 5 6 7 8 9 10 11 12
study phase | dose titration final study dose washout| dose titration final study dose washout| dose titration final study dose washout
study drug | dose fitration | 70 mg lisdexamfetamine dimesylate dose titration | 70 mg lisdexamfetamine dimesylate dose titration | 70 mg lisdexamfetamine dimesylate
schema® or schema® or schema® or
28.2 mg d-amphetamine sulfate 28.2 mg d-amphetamine sulfate 28.2 mg d-amphetamine sulfate
or or or
placebo placebo placebo

*The dose titration schema is dependent on the final study dose in the study week 3/7/11:

For the final study dose of 70 mg lisdexamfetamine dimesylate: first week 30 mg lisdexamfetamine dimesylate and second week 50 mg lisdexamfetamine dimesylate
For the final study dose of 28.2 mg d-amphetamine sulfate: first week 12.1 mg d-amphetamine sulfate and second week 20.2 mg d-amphetamine sulfate

For the final study dose placebo: 2 weeks of placebo

Fig. 3. Study procedure with study phases and drugs.

In general, clinical trials are costly and time consuming. Therefore, we suggest to measure the steroid
concentration profiles in plasma samples from pre-executed trials. One such example would be the
placebo-controlled, crossover study conducted by Biederman et al. 2007 [162], where each child diagnosed
with ADHD received 1 week of placebo, 1 week of mixed amphetamine salts extended-release XR, and 1

week of lisdexamfetamine at equimolar dose.

Unfortunately, with both experimental approaches, we cannot investigate the long-term adverse effects of
drug induced disturbances of steroid homeostasis. For this, we could conduct an observational study (e.g.
case-control study) to investigate the association between ADHD pharmacotherapy lisdexamfetamine or
D-amphetamine and the risk of developing diseases related to HPA axis disruption such as learning and
memory deficits, impaired immune system and brain development, decreased intelligence quotient,
cardiovascular diseases, metabolic syndrome in a pediatric ADHD population without comorbidities or any
further pharmacotherapy. For this purpose, we could use the Clinical Practice Research Datalink (CPRD),
which is an ongoing primary care database of anonymized medical records (diagnoses, drug prescriptions,
demographics and personal characteristics e.g. body mass index (BMI)) of approximately 11.3 million
patients from the United Kingdom (UK) [163, 164]. The current limitation of this approach would be the
small sample size of patients receiving lisdexamfetamine dimesylate (Elvanse), since it was only recently
launched in the UK in 2013 [165], whereas D-amphetamine was licensed in the UK in 2008 [166].
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In conclusion, we showed the pharmacokinetic profiles of amphetamine in the plasma following
lisdexamfetamine and D-amphetamine administration to healthy volunteers are identical, except for a
longer onset time and tmax. Furthermore, lisdexamfetamine and D-amphetamine, as well as LSD, had a

profound effect on the circulating steroids, notably on the glucocorticoids, indicating HPA stimulation.
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6. Appendix

6.1 Supplementary data: Steroid profiling in H295R cells to identify

chemicals potentially disrupting the production of adrenal steroids

Supplementary information

Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of
corticosteroids and adrenal androgens

Petra Strajhar,2¢ David Tonoli,>¢ Fabienne Jeanneret,b¢ Raphaella M. Imhof,2 Vanessa Malagnino,?
Melanie Patt,2 Denise V. Kratschmar,2 Julien Boccard,? Serge Rudaz,b¢ Alex Odermattac*

Table S1: Sequences of oligonucleotide primers used for qPCR

Gene Sense primer (sequence 5'-3') Antisense primer (sequence 5'-3")
GAPDH CAGCCTCAAGATCATCAGCA TTCTAGACGGCAGGTCAGGT
STAR GTCCCACCCTGCCTCTGAAG CATACTCTAAACACGAACCCCACC

CYP11A1 GAGATGGCACGCAACCTGAAG |CTTAGTGTCTCCTTGATGCTGGC
HSD3B2 TGCCAGTCTTCATCTACACCAG | TTCCAGAGGCTCTTCTTCGTG
CYP17A1 AGCCGCACACCAACTATCAG TCACCGATGCTGGAGTCAAC
CYP21A2 CGTGGTGCTGACCCGACTG GGCTGCATCTTGAGGATGACAC
CYP11B1 GGTTTGCCAGGCTAAGC CAAACTGCCCAGAGGACAG
CYP11B2 TCCAGGTGTGTTCAGTAGTTCC | GAAGCCATCTCTGAGGTCTGTG
CYP19A1 AGGTGCTATTGGTCATCTGCTC | TGGTGGAATCGGGTCTTTATGG
AKR1C3 GGATTTGGCACCTATGCACCTC | CTATATGGCGGAACCCAGCTTCTA
HSD17B1 GAAGGCTTATGCGAGAGT GAAGGTGTGGATGTCCGT
HSD17B2 AAAGGGAGGCTGGTGAAT GCAACTTTAATTCCCCAC
HSD17B3 TGCTTCCAAACCTTCTCCC AGACCTTTCTGCCTTGATTCC
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Fig. S1. De novo synthesis of 16a-
hydroxyandrostenedione, 19-
hydroxyandrostenedione, 16a-hydroxytestosterone
and 16B-hydroxytestosterone by H295R cells. Steroids
were quantified in culture supernatants of H295R cells
incubated either in complete medium (A) or in Nu-serum-
free medium (B) for 48 h with vehicle (0.1% DMSO solvent
control), 10 uM (in A) or 5 uM (in B) forskolin, 1 uM
prochloraz, 1 pM letrozole or 200 nM androstenedione.
Controls for complete medium and Nu-serum-free medium
(t=0 h) were included for comparison. Steroids (mean peak
areas) were measured by LC-MS and represent median
with range from one (out of three) representative
experiment, performed in triplicate (n=3). Kruskal-Wallis
test followed by Dunn’s test was used to analyze significant
difference (p < 0.05) of solvent control at t=0 to chemical
treatment at t=48 h (*).
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6.2 Supplementary data: Acute effects of lysergic acid diethylamide on

circulating steroid levels in healthy subjects

Supplementary data

Acute effects of LSD on circulating steroid levels in healthy subjects

Petra Strajhar,! Yasmin Schmid,” ! Evangelia Liakoni,? Patrick C. Dolder " Katharina M. Rentsch,°

Denise V. Kratschmar,2 Alex Odermatt,® 2 and Matthias E. Liechti? 2

Supplemental methods:
1. Quantification of steroid hormones in human plasma samples
1.1. Chemicals and reagents

UPLC-grade purity methanol, acetonitrile and formic acid were purchased from Sigma-Aldrich (St. Louis,
MO) or Biosolve (Dieuze, France). Distilled water was deionized using a MilliQ water purification system
(Millipore, USA). Aldosterone, 11-deoxycorticosterone, corticosterone, dehydroepiandrosterone-3-sulfate,
androstenedione, testosterone and [2,2,4,6,6,21,21-?H7]-aldosterone (98% isotopic purity) were purchased
from Sigma-Aldrich (St. Louis, MO). 11-Dehydrocorticosterone, dehydroepiandrosterone (DHEA), 5a-
dihydrotestosterone, androsterone, progesterone, 17a-hydroxyprogesterone, 11-deoxycortisol, cortisol,
cortisone, [16,16-?Hz]-androsterone (98% isotopic purity) and [16,16,17-2Hz]-5a-dihydrotestosterone (98%
isotopic purity) were purchased from Steraloids (Newport, RI). [1,2-2Hz]-Testosterone (98% isotopic purity),
[2,2,4,6,6,16,16-°H7]-4-androsten-3,17-Dione  (98% isotopic purity) and [2,2,4,6,6,170,21,21-2Hg]-
corticosterone (98% isotopic purity) were purchased from C/D/N Isotopes Inc. (Pointe-Claire, Canada). All

other chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and of the highest grade available.
1.2. Instrumentation and analytical conditions

Analytical instruments: All analytes were measured simultaneously by ultra-pressure liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS) using a Agilent 1290 UPLC instrument
equipped with a binary solvent delivery system, an auto sampler (at 4 °C), and a column oven, coupled to
an Agilent 6490 triple quadrupole mass spectrometer equipped with a jet stream electrospray ionization
interface (AJS-ESI) (Agilent Technologies, Basel, Switzerland).

Liquid chromatography: The chromatographic separation of the analytes was achieved using a Waters
ACQUITY UPLC BEH C18, 1.7 pm, 2.1x150 mm, column (Waters, Wexford, Ireland). The column

temperature was maintained at 65 °C. Steroids were separated using a mobile phase consisting of water-
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acetonitrile-formic acid (A) (95/5/0.1; viviv) and (B) (5/95/0.1; v/v/v). The injection volume was 5 L per
sample. Methanol in water (50/50 v/v) was used as needle and needle-seat flushing solvent for 10 s after
sample aspiration. Samples were stored until analysis in the auto sampler (maintained at 4 °C). Method A:
Aldosterone, corticosterone, 11-dehydrocorticosterone, cortisol, cortisone, DHEA, DHEA-3-sulfate,
progesterone, 17a-hydroxyprogesterone, 11-deoxycortisol, 11-deoxycorticosterone, aldosterone-d7, and
corticosterone-d8 were eluted by the gradient 25 - 70% of mobile phase B during 0 - 10 min, and 100% of
mobile phase B at 10.1 min onwards at a constant flow rate of 0.63 mL/min. The run was stopped after 12.0
min, followed by re-equilibration of the column for 2 min. Method B: Androsterone, testosterone,
androstenedione, 5a-dihydrotestosterone, androsterone-d2, testosterone-d2, androstenedione-d7, and 5a-
dihydrotestosterone-d3 were eluted by the gradient of 25 — 59% of mobile phase B during 0 - 20 min at a
gradient flow rate from 0.65 mL/min to 0.36 mL/min, and 100% of mobile phase B at 22 min onwards at a
constant flow rate of 0.65 mL/min. The run was stopped at 24 min, followed by re-equilibration of the column

for 1 min.

Mass spectrometry: The AJS-ESI source was operated with nitrogen as drying and collision gas in the
positive ion mode for all analytes, except for aldosterone and aldosterone-d7, which were analyzed using
negative ionization. The ion source conditions were identified and optimized for all individual analytes using
the source optimization software module (Agilent Technologies, California, USA, B.07.01) (Supplemental
Table S1). Analytes were monitored by multiple reaction-monitoring (MRM) and characteristic precursor
ions and corresponding transitions for quantifier- and qualifier-ions were automated defined by the use of
the compound optimizer software module included within the Mass Hunter Workstation software (Agilent

Technologies, California, USA) (Supplemental Table S2).

Data analysis: Data acquisition and subsequent data analysis was performed using Mass Hunter
Workstation Acquisition software Version 07.01 SP1 and MassHunter Workstation Software Quantitative
Analysis Version B.07.00 /Build 7.0457.0, respectively (Agilent Technologies, California, USA).

Sample extraction: Sample extraction was performed using a vacuum manifold (Agilent Technologies,
California, USA) equipped with Oasis HBL SPE cartridges (Waters, Massachusetts; USA, Lot No.
116B32307A). Samples were evaporated to dryness using a Genevac EZ-2 plus centrifugal vacuum

evaporator (Genevac, Suffolk, UK).

Standard solutions: Stock solutions of analytes and deuterium internal standards (1.S.) were prepared by
weighing pure compounds on an analytical balance (Mettler-Toledo, Switzerland) and dissolving in
methanol to obtain a concentration of 10 mM for analytes and |.S. The standard solutions of analytes and
I.S. were freshly prepared in methanol by further diluting the corresponding stock solution to obtain a

concentration of 100 uM. All stock solutions of standards and I.S. were stored at -20 °C.

Sample preparation: For solid phase extraction each sample, calibrator or quality control (QC) (700 uL) was
mixed with protein precipitation solution (100 pL, zinc sulfate 0.8 M in water/methanol (50/50 v/v)) containing

I.S. and diluted to a final volume of 1 mL with water. The samples were incubated for 10 min in a
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thermoshaker with thorough shaking (1300 rpm, 4 °C) and centrifuged (10 min, 16,000 x rcf, 4 °C).
Supernatants (700 pL) were transferred to Oasis HBL SPE cartridges (preconditioned with methanol and
water, 1 mL each). Following one wash with water (1 mL) and two washes with methanol/water (1 mL,
10/90 v/v), the samples were eluted with methanol (1 mL) and evaporated to dryness. The samples were
reconstituted in 25 pL methanol (10 min, 1300 rpm, 4 °C, thermoshaker) and transferred into new glass

vials.

Chromatographic performance: Ten point calibration curves were generated by a zero sample (charcoal
treated human plasma/water mixture containing 1.S.) and nine calibrators (Supplemental Table S3). To
meet requirements of the FDA guidance for industry, the coefficient of determination (R?) has to be higher

than 0.96 and at least 75% of all calibrators have to be valid (Supplemental Table S3).

Specificity: Blank samples without the addition of analyte and I.S. were processed and injected into the
UPLC-MS/MS within an analytical run. The peak areas evaluated in the blank samples were not allowed

to exceed 20% of the mean LLOQ peak area.

Recovery: The absolute recovery was determined by comparing the mean peak areas for extracted with
unextracted samples (100% recovery) at the concentrations of QC high, QC medium, and QC low

(Supplemental Table S4).

Limit of detection (LLOD) and limit of quantification (LLOQ): Lower limit of detection (LLOD) and lower limit
of quantification (LLOQ) were determined by direct injection of decreasing amounts of analyte and were
calculated as the concentration giving peaks with a signal-to-noise ratio of = 3 and = 5, respectively. The
LLOQ was decided as the lowest concentration on the calibration curve which fulfilled the criteria of

imprecision +15%, and inaccuracy within £15% (Supplemental Table S3).

Reproducibility: Five replicates of QCs at three concentration levels (QC high, QC medium, and QC low)
were processed and injected into the UPLC—MS/MS. To ensure the reproducibility, these sets of QCs were
tested within validation runs. In each run, intra-run imprecision (% coefficient of variation; CV%) of each QC
series had to be below 15% (20% at the LLOQ) and intra-run inaccuracy (% relative error of measurement;
RE%) had to be within £15% of the nominal values (£20% at the LLOQ) (Supplemental Table S5).

Carry-over: To evaluate the carry-over of all analytes and I.S. in each analytical run blank samples were
injected immediately after the highest calibrator upper limit of quantification (ULOQ). Mean carry-over in
the blank sample following the ULOQ had not to exceed 20% of the signal of the LLOQ for analyte and 5%
for I.S.
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Supplemental Table S1 Optimized ion source conditions and analytical parameters.

Testosterone-d2

Analyte
4 o | B 8, |8 Su | Bu| Bu|B.
5 = o 5 = N S | fx x| <o 4
T o © E| 2% ~ 0@ 2| Ly 20
o ~| & S5 £E= | 88| 9% | >5| >33 23
0S4 ws| 22|52~ 85|58 RF |28|2%| 58| 5%
s EU © £ k%) E0 = = 4] ) O )
Gedos|ze|hec|he|8¢|2S |£a|85|2z5|2a
11-Dehydrocorticosterone 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
11-Deoxycorticosterone 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
11-Deoxycortisol 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
17a-Hydroxyprogesterone 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
5a-Dihydrotestosterone / 290 20 15 350 11 3000 | 1500 120 | 90 150 | 60
5a-Dihydrotestosterone-d3
Aldosterone / 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
Aldosterone-d7
Androstendione / Androstendione-d7 | 290 20 15 350 11 2000 | 1500 | 170 |90 150 | 60
Androsterone / 290 20 15 350 11 2000 | 1500 | 170 |90 150 | 60
Androsterone-d2
Corticosterone / Corticosterone-d8 290 14 20 300 11 3000 | 1500 200 110 | 150 | 60
Cortisol 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
Cortisone / 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
Cortisone-d2
Dehydroepiandrosterone 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 | 60
Dehydroepiandrosterone-3-sulfate 290 14 20 300 11 3000 | 1500 200 110 | 150 | 60
Progesterone 290 14 20 300 11 3000 | 1500 | 200 | 110 | 150 |60
Testosterone / 290 20 25 350 11 2500 | 1500 | 170 |90 150 | 60
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Supplemental Table S2 Multiple reaction monitoring (MRM) analyte transitions.

Analyte s IS _ 2
g2 | |28|55 |2 |- |EE.
$|fE |3E|35|828 |8 |FE|25¢
11-Dehydrocorticosterone A 345.2 121 54.9 | 21;57 | positive 100 Corticosterone-d8
11-Deoxycorticosterone A 331.2 97.1 | 109 28; 25 | positive 100 Corticosterone-d8
11-Deoxycortisol A 347.2 97 109 32; 24 | positive 100 Corticosterone-d8
17a-Hydroxyprogesterone A 331.2 97 109 32; 28 | positive 100 Corticosterone-d8
5a-Dihydrotestosterone B 291.2 159 255 24; 12 | positive 100 5a-Dihydrotestosterone-d3
5a-Dihydrotestosterone-d3 B 294.3 163 258 24; 12 | positive 100
Aldosterone A 359.2 331 189 17; 24 | negative | 400 Aldosterone-d7
Aldosterone-d7 A 366.2 338 196 17; 24 | negative | 200
Androstenedione B 287.2 97.1 | 109 24; 20 | positive 100 Androstenedione-d7
Androstenedione-d7 B 294.3 100 113 24; 28 | positive 100
Androsterone B 273.2 147 255 24 ;12 | positive 200 Androsterone-d2
Androsterone-d2 B 275.2 118 257 52;8 positive 100
Corticosterone A 347.2 121 329 25;9 positive 100 Corticosterone-d8
Corticosterone-d8 A 355.2 125 337 25; 12 | positive 100
Cortisol A 363.2 121 105 36; 56 | positive 100 Cortisone-d2
Cortisone A 361.2 121 163 36; 24 | positive 100 Cortisone-d2
Cortisone-d2 A 363.2 123 165 36; 24 | positive 100
Dehydroepiandrosterone A 271.2 253 213 6; 12 positive 100 Androstenedione-d7
Dehydroepiandrosterone-3-sulfate | A 271.1 253 213 6; 10 positive 200 Corticosterone-d8
Progesterone A 315.2 109 97.1 | 20;24 | positive 50 Corticosterone-d8
Testosterone B 289.2 97.1 | 109 28; 32 | positive 50 Testosterone-d2
Testosterone-d2 B 2915 111 125 13; 24 | positive 50
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Supplemental Table S3 Limit of detection (LLOD), lower limit of quantification (LLOQ), signal-to-noise ratio

(S/N), retention time (RT), linearity, and calibration range.

Analyte LLOD | LLOQ (SIN) | RT Linearity | Calibration range
(M) | (M) (min) | (R) " | (M)
11-Dehydrocorticosterone 0.49 0.98 10.5 3.1 0.998 0.98-250
11-Deoxycorticosterone 0.39 0.78 13.7 51 0.998 0.78-200
11-Deoxycortisol 0.39 0.78 9.9 3.73 0.992 0.78-200
17a-Hydroxyprogesterone 0.39 0.78 10.5 5.59 0.998 0.78-200
5a-Dihydrotestosterone 0.49 0.98 60.7 11.9 0.999 0.98-250
Aldosterone 0.10 0.2 12.0 1.72 0.999 0.2-50
Androstenedione 0.39 0.78 13.8 8.85 0.999 0.78-200
Androsterone 1.96 3.91 5.6 16.2 0.999 1.95-500
Corticosterone 0.49 0.98 54.1 3.56 0.996 0.98-250
Cortisol 0.98 1.95 5.7 2.29 0.991 3.91-1000
Cortisone 0.98 1.95 38.0 2.24 0.994 1.95-500
Dehydroepiandrosterone 1.96 3.91 7.3 5.37 0.999 1.95-500
Dehydroepiandrosterone 3-sulfate 9.77 19.53 9.1 3.55 0.993 19.53-5000
Progesterone 0.03 0.05 7.6 7.4 0.994 0.39-100
Testosterone 0.20 0.39 55.3 7.6 0.999 0.39-100
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Supplemental Table S4 Recovery (QC high, QC medium, QC low).

Nominal Recovery (%) CV%

concentration (nM)

QC QC QcC QcC QcC QC QC QC QC

high | medium | low high medium | low high medium | low
11-Dehydrocorticosterone | 125 | 31.3 2.0 114.0 | 103.2 959 | 3.7 2.1 2.2
11-Deoxycorticosterone 100 25.0 1.6 98.5 95.4 90.4 | 8.9 3.1 3.3
11-Deoxycortisol 100 | 25.0 1.6 106.7 | 91.8 95.0 | 6.7 2.9 3.4
170- 100 | 25.0 1.6 82.7 | 835 81.8 |93 4.4 14
Hydroxyprogesterone
5a-Dihydrotestosterone 125 | 31.3 2.0 88.7 120.2 96.6 | 20.0 15.3 13.9
Aldosterone 25 6.3 0.4 99.2 | 99.1 98.3 | 5.2 4.6 10.3
Androstenedione 100 | 25.0 1.6 100.2 | 100.7 98.0 | 1.8 2.4 3.5
Androsterone 250 | 62.5 3.9 94.9 98.4 1025 | 1.7 5.8 0.2
Corticosterone 125 31.3 2.0 111.4 | 98.9 95.1 5.6 2.0 2.2
Cortisol 250 | 625 3.9 108.0 | 102.9 974 |35 4.5 2.2
Cortisone 250 | 62.5 3.9 100.2 | 104.5 98.5 | 4.9 5.1 1.6
Dehydroepiandrosterone | 250 | 62.5 3.9 102.1 | 102.7 107.8 | 54 4.3 5.7
Dehydroepiandrosterone- | 2500 | 625.0 39.1 | 88.9 103.8 96.8 | 5.6 4.1 2.6
3-sulfate
Progesterone 50 12,5 0.8 80.9 92.4 98.0 |114 6.0 0.8
Testosterone 50 12.5 0.8 101.7 | 103.9 100.5 | 3.9 15 2.2
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Supplemental Table S5 Reproducibility: Nominal and measured concentration, standard deviation (S.D.), imprecision (CV%), and inaccuracy (RE%) of QC
high, QC medium, and QC low.

Nominal Measured S.D. CV% RE%
concentration (nM) concentration (nM
Analyte QC QC QC QC QC QC QC QC QC QC | QC | QC QC QC QC

high med low high med low high | med | low high | med | low high med low

11-Dehydrocorticosterone | 125 31.3 2.0 120.7 | 28.6 1.8 9.9 1.0 0.1 8.2 34 |7.0 -3.5 -8.5 -6.8

11-Deoxycorticosterone 100 25.0 1.6 101.6 | 25.3 1.7 5.3 0.6 0.1 5.2 22 |82 1.6 11 5.8

11-Deoxycortisol 100 25.0 1.6 96.5 24.2 1.5 8.1 0.5 0.1 84 |19 |36 -3.5 -3.2 -1.8
17a-Hydroxyprogesterone | 100 25.0 1.6 102.9 26.0 1.4 9.4 0.7 0.1 9.2 2.9 8.6 2.9 3.9 -12.4
5a-Dihydrotestosterone 125 31.3 2.0 123.8 | 30.2 1.8 2.9 0.5 0.1 24 |17 |37 -0.9 -3.4 -5.3
Aldosterone 25 6.3 0.4 235 5.5 0.3 1.9 0.5 0.0 80 |84 |10.7 |-6.0 -11.6 | -13.1
Androstenedione 100 25.0 1.6 98.9 24.3 1.4 1.7 0.9 0.0 1.7 |37 |1.0 -1.1 -2.8 -9.7
Androsterone 250 62.5 3.9 250.8 58.9 4.1 4.5 1.0 0.1 1.8 1.7 2.3 0.3 -5.8 4.5
Corticosterone 125 31.3 2.0 122.6 31.3 1.8 9.2 0.8 0.1 7.5 25 8.1 -1.9 0.0 -7.6
Cortisol 250 62.5 3.9 240.7 | 63.7 4.5 191 |11 0.3 79 |17 |77 -3.7 2.0 13.9
Cortisone 250 62.5 3.9 2435 | 63.9 3.4 115 |23 0.3 47 |35 |94 -2.6 2.2 -13.5

Dehydroepiandrosterone 250 62.5 3.9 236.6 | 53.5 3.7 19.3 | 3.0 0.4 8.2 5.7 114 | -54 -14.3 | -5.9

Dehydroepiandrosterone- | 2500 625.0 | 39.1 | 2643.0 | 685.2 |42.0 |5.8 38.7 |6.1 0.2 5.7 146 | 5.7 9.6 7.4
3-sulfate

Progesterone 50 12.5 0.8 49.2 11.2 0.7 3.2 0.2 0.0 6.5 21 | 4.2 -15 -10.7 | -11.2

Testosterone 50 12.5 0.8 43.8 12.3 0.7 15 0.5 0.0 34 |40 |65 -12.3 | -1.5 -13.4
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Supplemental Figure S1 MDMA exposure-response relationship. MDMA responses are shown as
MDMA effect (any drug effect, cortisol or corticosterone concentration) minus the individual time-
matched effect of placebo. MDMA or placebo was administered at t = 0 h. Subjective responses to
MDMA (A) and MDMA-induced changes in cortisol (B) and corticosterone (C) concentrations (mean +
SEM) of 16 subjects are plotted against mean MDMA plasma concentrations (hysteresis curves). The
time of sampling is noted next to each point (in hours after MDMA administration). Clockwise hysteresis
was observed for any drug effects (A), cortisol (B), and corticosterone (C) consistent with acute tolerance
to the effects of MDMA. After drug administration, the subjective drug effects increased faster and in
particular decreased faster than the plasma levels of cortisol (D) or corticosterone (E) over time
(clockwise hysteresis). Thus, over time MDMA-induced changes in glucocorticoids do not well reflect

the psychotropic effects of the drug in contrast to LSD.
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6.3 Supplementary data: Acute effects of D-amphetamine and
lisdexamfetamine on plasma steroid concentrations in healthy
subjects
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Supplemental Figure S1. Drug-induced changes in plasma concentrations of cortisol (A) and
corticosterone (B) plotted against D-amphetamine concentrations over time (hysteresis curves) after
administration of lisdexamfetamine and D-amphetamine in 24 and 23 subjects, respectively. The
endocrine response represents the difference from placebo calculated for each time point to account for
circadian changes in hormone levels. Lisdexmfetamine and D-amphetamine were administered att = 0.
The time of sampling is noted next to each point. The clockwise hysteresis indicates acute
pharmacological tolerance to the endocrine response of amphetamine which was comparable after
administration of the two formulations. Data are mean + SEM.

130



6.4 Supplementary data: Pharmacokinetics and pharmacodynamics
of lisdexamfetamine compared with D-amphetamine in healthy

subjects

Supplemental methods
Quantification of D-amphetamine in human plasma samples

Chemicals and reagents: HPLC-grade purity methanol and formic acid were purchased from Sigma-
Aldrich (St. Louis, MO) or Biosolve (Dieuze, France). Distilled water was deionized using a MilliQ water
purification system (Millipore, USA). Solutions of d-amphetamine hydrochloride and d-amphetamine-Ds
sulfate >99.9% were obtained from Lipomed (Arlesheim, Switzerland). All other chemicals were

purchased from Sigma-Aldrich (St. Louis, MO), and of the highest grade available.
Instrumentation and analytical conditions

Analytical instruments: Ultra-High pressure liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS) using an Agilent 1290 UHPLC instrument equipped with a binary solvent delivery
system, an auto sampler (at 4°C), and a column oven, coupled to an Agilent 6490 triple quadrupole
mass spectrometer equipped with a jet stream electrospray ionization interface (AJS-ESI) (Agilent

Technologies, Basel, Switzerland) was used to determine d-amphetamine and d-amphetamine-Da.

Liquid chromatography: The chromatographic separation was performed on a Waters Acquity UPLC
BEH C18, 1.7 um, 2.1x150 mm, column (Waters, Wexford, Ireland) at column temperature of 65°C. The
mobile phase was water-methanol-formic acid (41/59/0.1; v/v/v) and the flow rate was set at 0.45
mL/min. The analysis time was 1.5 min. A methanol in water (75/25 v/v) mixture was used as needle
and needle-seat flushing solvent for 10 s after sample aspiration. Samples were stored until analysis in
the auto sampler (maintained at 4°C). The injection volume was 3 pL per sample. Under these

conditions, d-amphetamine and d-amphetamine-Ds showed a retention time of 0.8 min.

Mass spectrometry: Characteristic precursor ions and their corresponding product ions for multiple
reaction monitoring (MRM) were defined by using the compound optimizer software module included
within the Mass Hunter Workstation software (Agilent Technologies, California, USA). D-amphetamine
and d-amphetamine-Ds (internal standard) were quantified using the corresponding mass transitions (d-
amphetamine m/z 136.1—91.0 (16 V, Dwell 100 ms), m/z 136.1->119 (12 V, Dwell 100 ms) and d-
amphetamine-Dz m/z 139.1—94.0 (16 V, Dwell 10 ms)). The AJS-ESI source conditions were optimized
using the integrated source optimizer tool and set in the positive ion mode as following: Nitrogen gas
temperature (290°C), gas flow (14 L/min), nebulizer (20 psi), sheath gas temperature (300 °C), sheath
gas flow (11 L/min), capillary voltage (3000 V), and nozzle voltage (1500 V) (Agilent Technologies,
California, USA, B.08.00/Build 8.0.8023.0).

Data analysis: The Mass Hunter Workstation Acquisition software Version B.08.00/Build 8.0.8023.0
and MassHunter Workstation Software Quantitative Analysis Version B.07.01 /Build 7.1.524.0,
respectively (Agilent Technologies, California, USA) was used for data acquisition and subsequent data

analysis.
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Standard solutions: D-amphetamine hydrochloride (1 mg free base /1 mL methanol) and d-
amphetamine-Ds sulfate (0.1 mg free base /1 mL methanol) solutions were bought as reference
standards. Stock solutions in methanol containing 10 pL/mL d-amphetamine or d-amphetamine-Dz were

prepared and stored at -20°C.

Sample preparation: To 100 pL of sample, calibrator or quality control, 20 yL of a d-amphetamine-Ds
internal standard solution (0.25 pg/mL), and 500 pL ethyl acetate for liquid—liquid extraction was added.
The samples were shortly vortexed, vigorously mixed on a rotating mixer for 5 min, and centrifuged for
10 min at 16,000 x g at 4°C. The upper ethyl acetate layer (350 pL) was transferred into fresh vials and
evaporated to dryness under nitrogen. Afterwards the samples were reconstituted in 50 uL methanol

(20 min, 1300 rpm, 4°C, thermoshaker) and transferred into new glass vials.

Chromatographic performance: Ten point calibration curves over the range of 0.78 to 200 ng/mL for
d-amphetamine were generated by a zero sample and nine calibrators in human plasma. The coefficient

of determination (R?) was 0.99 and at least 75% of all calibrators have to be valid.

Specificity: Human plasma samples without the addition of d-amphetamine and d-amphetamine-Ds
were processed and injected into the UHPLC-MS/MS within an analytical run. The peak areas evaluated

in the blank samples were not allowed to exceed 20% of the mean LLOQ peak area.

Recovery: By comparing the mean peak areas of extracted with those of unextracted samples (100%
recovery) the absolute recovery was determined. The d-amphetamine recoveries were 101.7%, 102.2%,
and 100.3% at concentrations of 1.66, 12.5, and 100 ng/mL.

Limit of detection (LLOD) and limit of quantification (LLOQ): Lower limit of detection (LLOD) and
lower limit of quantification (LLOQ) were assessed by analyzing decreasing amounts of d-amphetamine
in human plasma and were calculated as the concentration giving peaks with a signal-to-noise ratio of
=5 and = 10, respectively. The LLOQ was decided as the lowest concentration on the calibration curve
which fulfilled the criteria of imprecision below 20%, and inaccuracy within £20%. The method had a

LLOD of 0.26 ng/mL, respectively a LLOQ of 0.78 ng/mL for d-amphetamine.

Reproducibility: Five replicates of quality controls (QCs) at the concentration of 1.66, 12.5, and 100
ng/mL were processed and injected into the UHPLC-MS/MS. To ensure the reproducibility, these sets
of QCs were tested within validation runs. In each run, intra-run imprecision (% coefficient of variation;
CV%) of each QC series had to be below 15% (20% at the LLOQ) and intra-run inaccuracy (% relative
error of measurement; RE%) had to be within +15% of the nominal values (+20% at the LLOQ). The
intra-day precision was less than 8.8% and the accuracy ranged from —12.5 to 14.9% throughout all QC
concentrations.

Stability: The stability of d-amphetamine in human plasma was assessed using QC at the
concentrations of 1.66, 12.5, and 100 ng/ml. The samples were reanalyzed after kept at different storage
conditions. The determined auto sampler stability (QC stored at 4°C for 24 h), as well as the short-term

stability (storage of QC samples at -20°C for 1-week) were within £15% of the nominal values.
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Supplementary Figures
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Figure S1. Individual plasma amphetamine
concentration-time curves. D-amphetamine
was orally administered at a dose of 40 mg,
and lisdexamfetamine was administered at a
dose of 100 mg att = 0 in the same subjects.
The data represent individual observed
plasma  amphetamine concentrations
measured at different time points (e, D-
amphetamine; o, lisdexamfetamine) and
amphetamine concentrations predicted by
the one-compartment pharmacokinetic
model (black lines). Note the longer lag time
in the lisdexamfetamine condition in most
subjects but the otherwise similar curve
shapes, including similarly steep rates of
increasing amphetamine concentrations.
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24 subjects.
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presented similar clockwise hysteresis after administration of lisdexamfetamine and D-amphetamine,

indicating comparable acute pharmacological tolerance. The data are expressed as mean + SEM. The

time of sampling is noted next to each point. The drugs were administered at t = 0.
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Figure S5. Amphetamine concentration-effect plots (hysteresis curves). The blood pressure response
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Supplementary Tables

Table S1. Pharmacokinetics of amphetamine after administration of D-amphetamine or lisdexamfetamie based on non-compartmental analysis

Drug condition  N= Cmax (ng/mL) tmax () tonset (h) tuz (h) AUC24 (ng-h/mL) AUC- (ng-h/mL)

D-Amphetamine 23 geometric mean (95% CI) 130 (117-145) 3.1 (2.7-3.6) 0.73 (0.58-0.92) 8.5(7.6-9.6) 1494 (1355-1646) 1800 (1601-2024)
range 80-219 1-5 0.2-1.6 4.7-16.8 1040-2514 1098-3648

Lisdexamfetamine 24 geometric mean (95% Cl) 126 (115-139) 4.3 (3.8-4.7)** 1.4 (1.2-1.6)** 9.2 (8.4-10) 1564 (1435-1705) 1955 (1759-2174)
range 84-185 3-8 0.7-2.3 6.7-14.6 1096-2208 1277-3392

AUC., area under the plasma concentration-time curve from time zero to infinity; AUC24, area under the plasma concentration-time curve from time zero to 24 h; Cmax,
maximum plasma concentration; tuz, terminal plasma elimination half-life; tmax, time to reach Cmax; tonset, time to reach 10% of Cmax; ***P < 0.001 significant difference
compared with D-amphetamine (T=5,11 and 3,76 for tonset and tmax, respectively).
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Table S2. Pharmacodynamic effect parameters and statistics

Lisdexamfetamine D-amphetamine Difference P value
(meantSEM) (meantSEM) (T value)
Subjective effects (Visual Analog Scales)
Any drug effect
Tonset (h) 1.5+0.13 0.8+0.08 4.63 <0.001
Tmax () 4.3+0.38 3.0+£0.32 2.58 <0.05
Emax (%) 36+4.9 39+4.8 0.44 0.66
AUEC (%-h) 203+35 194+30 0.19 0.85
Drug liking
Tonset (h) 1.6+0.15 0.9+0.10 3.65 <0.001
Tmax (h) 4.1+0.50 2.7+0.37 2.28 <0.05
Emax (%) 48+6.9 51+5.8 0.36 0.72
AUEC (%-h) 363185 280x48 0.85 0.40
Stimulated
Tonset (h) 1.5+0.14 1.0£0.13 2.63 <0.05
Tmax () 3.5£0.34 2.310.21 2.94 <0.01
Emax (%) 38+6.8 44457 0.66 0.51
AUEC (%-h) 194+47 189+32 0.08 0.94
Autonomic effects
Systolic blood pressure
Tonset (h) 1.3+0.14 0.7+0.09 3.64 <0.001
Tmax (h) 3.8+£0.45 3.3£0.36 0.91 0.37
Emax (MMHQ) 37£2.5 40+2.2 0.91 0.37
AUEC (mmHg-h) 274+39 307+45 0.57 0.57
Diastolic blood pressure
Tonset (h) 0.9+0.13 0.6+0.09 2.21 <0.05
Tmax () 3.3+x0.32 3.2+0.31 0.16 0.88
Emax (MMHQ) 27+2.1 31+2.2 1.25 0.22
AUEC (mmHg-h) 22537 257137 0.61 0.54
Mean arterial pressure
Tonset (h) 1.1+0.14 0.6+0.09 3.13 <0.01
Tmax (h) 3.5+£0.27 3.3£0.39 0.40 0.69
Emax (MMHQ) 29+2.1 33x2.1 1.21 0.23
AUEC (mmHg-h) 241+34 274136 0.65 0.52
Rate pressure product (beats-mmHg/min)
Tonset (h) 1.3£0.12 1.0£0.15 1.80 0.08
Tmax () 7.7+£0.58 6.2+0.61 1.85 0.07
Emax (MmHg-BPM) 53991429 5556+497 0.24 0.81
AUEC (mmHg-BPM-h) 6826716281 68554+8250 0.03 0.98

Values are differences from placebo (meantSEM) in 24 subjects.
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