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Summary

In the last few years there has been a growing interest in the possible applications of
quantum properties of different physical systems in well established technologies. This
was motivated by the miniaturization of electronic devices. For very small systems, the
laws of quantum mechanics start to govern their behavior and it is then to expect that
for instance electronic components reach their “quantum limit”. A good example of
the introduction of quantum properties into conventional technologies is the case of the
electron spin, which offers an alternative to electron-charge for the storage and transport
of information in electronics. The idea of using electron spins in electronics gave rise to
the new and exciting field of spintronics and was encouraged by experiments that showed
coherent spin transport over long distances (over hundred micrometers) in semiconductors
and long electron spin dephasing times. In addition to its applications in conventional
technologies, the use of the electron spin as information-carrier has been suggested for
the new field of quantum information processing. An important advantage of the electron
spin with respect to other quantum information-carriers proposed is that it can profit
from the well developed semiconductor industry and its related technologies. For the
long-range transport of information, however, the highly interacting environment in solid-
state devices represents a difficulty to the use of electron spins. In contrast, photons are
very weekly coupled to their environment, and therefore more suitable for the transfer
of information over long distances (on the order of kilometers), required, for instance,
in quantum communication. Furthermore, the technology needed for the transport of
photons over such long distances is well developed. Thus, an efficient transfer of quantum
information between electron spins and photons is highly desirable.

In this dissertation, we show that the transfer of entanglement, a quantum correlation,
from electron spins to the polarization of photons is not only theoretically possible, but
also feasible under realistic experimental conditions. We study the transport of an entan-
gled pair of electron spins through Fermi leads which split them spatially until they reach
spin-LEDs, semiconductor structures containing quantum dots. In these structures, the
electrons optically recombine with holes, producing then photons. We analyze the polar-
ization state of the out-coming photons and give the conditions for which the entanglement
of the electron spins is fully recovered in the photon-polarizations. We further show that
it is possible to produce four-photon entanglement.

We also include in this work the study of coherent spin-transfer between quantum dots
layers bridged by molecules. This study was motivated by an experiment showing that the



i

molecules act not only as binders to construct the multilayer structures, but also as “wires”
for the information through electron spins in the quantum dots. We show that a two-site
Hamiltonian captures some of the essential features of the experiment. We calculate the
dependence of the experimentally observed Faraday rotation (FR) signal as a function of
probe energy on microscopic parameters such as spin transfer probabilities. The Faraday
angle is related to the difference in the dielectric response for different polarizations of the
light. We calculate the dielectric response functions of coupled quantum dots and derive
an analytical expression for the FR angle in terms of electron transfer probabilities and
Heisenberg exchange splittings.
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Chapter 1

Introduction

The fields of semiconductor physics and electronics have been successfully combined for
many years. The invention of the transistor meant a revolution for electronics and has led
to significant development of semiconductor physics and its industry. More recently, the
use of the spin degree of freedom of electrons, as well as the charge, has attracted great
interest [1-3]. In addition to applications for spin electronics (spintronics) in conventional
devices, for instance based on the giant magneto-resistance effect [4] and spin-polarized
field-effect transistors [5], there are applications that exploit the quantum coherence of
the spin. This was encouraged by ground-breaking experiments that showed coherent spin
transport over long distances in semiconductors and long electron-spin dephasing times,
on the order of 100 nanoseconds [6,7]. In addition, spin-polarized carrier injection from
magnetic to non-magnetic semiconductors has been demonstrated [8,9]. Since the electron
spin is a two-level system, it is a natural candidate for the realization of a quantum bit
(qubit) [10], the basic unit of information in quantum computation and communication.
In this chapter we will give an introduction and overview to some of the most important
issues related to the use of electron spins in semiconductors for quantum information and
spintronics. In Sec. 1.1 we introduce one of the main resources for quantum information
processing, entanglement. A summary of the experimental achievements in spin-related
issues in semiconductors is given in Sec. 1.2.

1.1 Entanglement

Entanglement is one of the most interesting features of Quantum Mechanics. At first, the
interest in entanglement was related to its non-local character, in the frame of foundations
of Quantum Mechanics. More recently, the growing field of Quantum Information Theory
has renewed the interest for entanglement, since it is one of its main resources. There
had been many proposals describing entanglers [11-18], setups which work as sources of
entangled particles. In particular, the use of the spin of the electron as a degree of freedom
for quantum computation and the growing field of spintronics [1] make entanglement of
electron spins an important object of study.
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1.1.1 Basic description

Entanglement is a quantum correlation. It is defined with respect to some given properties
of a composite system. Some physical properties of several parts of a composite system
are said to be entangled if the state of each individual part referred to these particular
physical properties cannot be defined, while the state of the composite system as a whole
is clearly defined. This implies that a full description of the state of the system in terms
of the individual components is not possible. Formally, we can formulate this statement
as follows !:

Two or more parties are said to be entangled if and only if the state of the composite
system cannot be decomposed into the direct product ? of the individual states of the parties.

To illustrate this idea, let’s take as an example two spins % in the singlet state |[¥™).
The Hilbert space of each spin can be spanned on the basis {|1);, |{);} with ¢ = 1,2.
The Hilbert space for the two electrons as a system can be then spanned on the basis

{111), 119, [41), [14)}, where

[T =111 @ [1)2
[T =111 @12
1) =11 @ [1)2

)= )

N 1@ [1)2

The singlet can be written in this basis as (0, Lz’ —%, 0). This state is an entangled state,

because we can show that it cannot be decomposed in the direct product of states of the
individual spins. In general, the state of a single spin 7 = 1,2 can be written as

(| 1)+ Bil 1)) /N; with N; = /|c|? + |5i]? and «;, fB; arbitrary complex numbers. There-
fore, given two arbitrary states of the single spins, the most general two-spin state
obtained from the direct product of the individual single-spin states takes the form
0) = 77 (| + Aild)1) @ 7; (a2 1)2 + B2 d)2). Now we will prove that there are
no «;, f; such that |¥~) = |¢).

IHere we restrict ourselves to pure states. For mixed states, we need to look at the density matrix
p corresponding to a state. A mixed state is then entangled if and only if p cannot be written as the
statistical mixture of unentangled pure states.

2Between the Hilbert spaces of each part of the system.
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1 1
19) = — (| +Bildh) ® (a2 P2 + Ba]d)2)
N1 N2
1
= [ aa| 1) + a1 B2 1) + Braz| 1) + BiBa| L])]
N1 N,
109 = 0
NiNs
? 1 1 051ﬁ2 = V2
= [¥7)=— - — —
| > \/§|T\L> \/§|\LT> 01251 — _N\l/]%b
| Bib=0
Clearly, ajas = 0 implies that at least one of the «; is zero, and therefore it is
impossible to fulfill a; 8, = % and aspf5; = —% at the same time. Thus, no set of

«;, B; can be found such that |¥~) = |¢), that is, |[¥~) cannot be written as the direct
product of individual states of the spins.

1.1.2 Non-locality of entanglement

One of the most striking features of entanglement is its non-local nature. The fact that an
entangled state cannot be factorized into individual states of the parts of a system, even
if these parts are far apart from each other, leads to the non-locality of entanglement.
We can illustrate this idea coming back to the example of the spin-singlet from Subsec-
tion 1.1.1. Once that the two spins are prepared in the singlet spin-state, as long as the
spin is preserved, they will stay in this entangled state, independently of what happens
with the other properties of the electrons. For instance, position and orbital state of one
spin can be completely independent of these properties for the other electron. Therefore,
the two electrons can be located at any distance from each other, as far as to not be
able to interact anymore, and still have an entangled spin-state. Since entanglement is a
correlation, to observe the spin of one of the electrons gives information about the spin of
the other, although information exchange between the electrons is not possible. For the
singlet, the spins are anticorrelated, which means that the outcomes for each spin after a
measurement along a given axis are always opposite. If the electrons are separated enough
so that they cannot interact anymore, and a measurement of the spin along an axis a is
performed on one of them, from the output one can immediately know with certainty the
outcome of a spin measurement along a performed on the other electron, although infor-
mation between them could not be exchanged. This means that the first electron could
not “inform” the second about the outcome of the measurement, as to “set” the second
spin to the opposite state. Still, this correlation is present. This motivated discussion
among scientists, including Einstein [19] and Bohr [20], since the early days of Quantum
Theory. In 1935 Einstein, Podolsky and Rosen [19] pointed out that a physical theory
should obey a locality principle, their seminal paper being the starting point of hidden
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variable theories. According to Einstein, the probabilistic behavior of the outcomes of
measurements in quantum mechanics is a result of our ignorance of some parameters of
the system (“hidden variables”). This idea applies for instance to the measurement of a
spin along orthogonal axis. Let us take as an example the measurements of spin compo-
nents (e.g. along 2 OR %) of a pair of spins % in the singlet state. The singlet is seen
in this model as two particles, the z and x spin components of which have opposite sign.
In an experiment where two observers measure one of the two components of the spin
(chosen at random) of one of the members of the singlet each one, and repeat this with
many singlets, the outcome predicted is the same that quantum mechanics would predict:
measurements performed along different axes would have no correlation, and perfect an-
ticorrelations would be observed for measurements along the same axis, without need for
any non-local correlation. But not all type of measurements show agreement between the
quantum mechanical predictions and those expected from local hidden variables theories.
Thirty years passed until Bell showed that hidden variable theories obeying Einstein’s
locality principle predict experimental results contradicting Quantum Mechanics [21]. In
his work, Bell presents a testable inequality in which quantum mechanics and local hidden
variables models disagree. We will show the ideas underlying Bell’s work with a concrete

example to gain insight and later derive Bell’s original inequality.

Simple model and derivation of a Bell-type inequality
We will consider:
e Three axes non mutually orthogonal a, IS, ¢
e [ight possible pairs of particles of opposite type with different populations (N;)

All possible pairs are shown in Table 1.1.

Table 1.1: Possible combinations of properties for a pair particles and their corresponding pop-
ulations (“natural abundance”).

Population | Particle 1 Particle2
N, (a+, b+, ¢+) | (a—,b—,é—)
N, (a4, b+, ¢—) | (a—,b—, é+)
N; (a4, b—,¢4) | (a—, b+, é—)
N, (a+,b—,é—) | (a—, b+, é+)
Ns (a—, b+, é+) | (a+,b—,é—)
Ne (a—,b+,ée—) | (a+,b—, é+)
N- (a—,b—, é4) | (a+,b+,é—)
Ng (a—,b—,é=) | (a+, b+, é+)
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In this picture two observers measure the spin S along one of the three axes, choosen at
random. They could measure, say, along a and b and both obtain +. The number of pairs
for which this happens is
N3 + Ny
Since N; > 0 the following holds
N3+ Ny < (Ny + Ny) + (N3 + N7) (1.1)

Let’s define P(a+; l;+) as the probability of both observers obtaining + along a and b

in a random selection. This probability is

_ N3+ Ny

-8
SN
i=1

Then, from Eq. (1.1), dividing every term by Zle N; and comparing with Table 1.1, we
obtain Bell’s inequality:

P(a+;b+) (1.2)

P(a+;b+) < P(at; e+) + P(é+; b+) (1.3)

For pairs of particles of spin % in the singlet state, quantum mechanics predicts
. 1 0,
P(itsb+) = 3 sin2(7b) (1.4)
where 6, is the angle between the axes a and b. The factor % comes from the probability

of (a+) and given this result, then sin?(%t) is the probability of (b+). As an example,
we choose the three axes in the same plane and in such a way that

Hab =20 and Hac = 901) =40 (15)

Thus, Bell’s inequality is violated for 0 < 6 < 5. To illustrate it we take a particular
value for 6

sin?(%t) = 3
0= =9 sin’(%) =1 (1.6)
sinQ(%b) =1
Then Bell’s inequality leads to
3u1 11
4 =4 4 2
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Bell’s original inequality

Now we derive the original form of Bell’s inequality. For this, we consider the following
starting points:

i) Spin measurements for singlets (or analogous)

i1) Two observers obtain results A, (1) and By(nsy) the possible values of which are +1.
A is the set of local hidden variables (LHV) and 7, are the directions chosen for the
measurement.

tit) Correlation of the results:
EP (i, fig) = / Ay (1) Ba(22) p(\)dA
r

where I' is the total A\ space.

As a consequence of 1) — Ef(n;,n;) = —1. Then,
Ep(ﬁ/la ﬁ?) - Ep(ﬁla ﬁ/?)) —
= = [ ) A () ~ Ay ()] oY) dX =
I
= — [ A (i) (1 Ay (2) s () () N
I

And therefore, using 1)

|EP(fy,n9) — EP(Ny,13)| < 1 — E?(ng, n3)
=

|E? (71, Mg) — EP (1, nig)| + EP(ng, 11g) <1

which is the original Bell’s inequality.

Generalization of Bell’s inequality (CHSH)

In 1969 J. Clauser et al. [22] presented an adaptation of Bell’s inequality to realizable ex-
periments. In the following we present their inequality, known as CHSH Bell’s inequality.

We will refer to the values measured in two different apparatus as A(a) and B(b)
where a and b are the parameters related to the setting of each apparatus and A(a)
and B(b) can take one of two possible values £1. The correlation between A(a) and
B(b) is due to information shared in the past for the particles of the pair, which now
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carry this information with them. In the frame of LHV the results are deterministic
{A(a, \), B(b,\)} due to the information shared in A (set of hidden variables) and by virtue
of locality A(a, \) (B(b, A\)) is independent of b (a). Also p()) (probability distribution of
the ensemble) is independent of both a and b. The correlation function P(a,b) is defined
as follows,

Pla,b) = / — A(a, ) B(b, \)p(\)dA (1.7)
r
where again I' is the total A space. We then have

P(a,b) - Pla,c)| < /F A0, \)B(b, A) — A(a, )B(e, \)| p(A)dA (1.8)
_ /F A(a, B V| [1 = B(b, ) B(e, )] p(\)dA = /F 1= B(b, \)B(e, A)] p(\)dA

~1 —/B(b, NB(e, \)p(A)dA.

Suppose that for some b and O’ P(V/,b) = 1 — § with 0 < § < 1, where experimental
interesting cases are those for which § is close but not equal to 0. This allows for non-
perfect correlations, in contrast to Bell’s original inequality, and is more realistic from
the experimental point of view. We now divide I' in two regions I'y and I'_ such that
Iy = {MA®,A) =£B(b,A\)}. Then [. p(A)dA = 16, therefore

A(b’,)\)B(b,)\)p()\)d)\—Q/ AV, \)B(b, \)p(A)dA (1.9)

r_

/F B(b, \)B(e, ) p(\)dA = /

r

> PV, ) — 2/ LAY, \)B(b, \)| p(\JdA = P(V, ¢) — 6.

Using the result of Eq. (1.9) combined with Eq. (1.8) we obtain

P(a,b) — P(a,c) <|P(a,b) — P(a,c)| <2—P(',b) — P(V',c)

= P(a,b) — P(a,c) + P(V',b) + P(V,c) <2 (1.10)

In quantum mechanics and for measurements performed on two 1/2-spin particles, the
correlation is
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Pa,b) = (¢| G-a & b |o) (1.11)

where @ and b are the unit vectors corresponding to the directions along which each spin
is measured, ¢ is the two-spin state of the particles and & = (01, 09, 03) with o; the Pauli
matrices.

Bell’s results motivated many experiments [23-25] which showed agreement with the
predictions of Quantum Mechanics. Nevertheless, these experiments suffer from so-called
“loopholes”, which means that not all the conditions for the test of Bell’s inequalities are
strictly met in the experiments. In some experiments, the locality loophole is present, in
the others the detection loophole. In the detection loophole the problem is that not all the
particles under test can be detected. Therefore, the test is performed only on a sample of
the total particles; if the sample is not representative, the test is not strictly valid. This is
the case in the experiments performed on photons. In the case of the locality loophole, the
problem is that particles cannot be put apart from each other at a distance long enough,
while preserving entanglement, so as to rule out the possibility of information exchange.
This is the case for experiments performed on massive particles.

1.1.3 Production of entanglement

Here we give a brief overview of some of the schemes proposed for the production of
entangled electron spins (entanglers). Entanglement of electron spins is quite often present
in nature; for instance, the ground state of a Helium atom is a singlet. The Cooper pairs
in a superconductor are also in a singlet state. However, for quantum communication,
entangled spins need to be individually controlled and separated in space. Therefore, a
crucial prerequisite for an entangler is to produce spatially separated entangled electrons.
One approach to obtain entangled and spatially separated electrons is to take advantage
of the entanglement present in nature, extract the electrons from where they are present
and use interactions or energy conservation to separate them. Another approach is to
use interaction between the electrons to create entanglement between them and then
try to separate them while preserving entanglement. In the following, as example, we
shortly describe the underlying ideas in three different proposals for entanglers [11,16,18].
In the first two the entanglement present in nature is extracted and in the third one,
entanglement is created via interaction of the electrons.

Andreev entangler with quantum dots

The Andreev entangler [11] is schematically shown in Fig. 1.1. A superconducting
contact with chemical potential pg is weakly coupled to two quantum dots in the Coulomb
blockade regime. The dots are also weakly coupled to Fermi liquid leads at the same
chemical potential y;. The tunneling amplitudes between superconductor and dots, and
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dots and leads, are denoted by Tsp and Ty, respectively. A bias voltage Au = ps — py is
applied between the superconductor and the leads. The chemical potential of the dots (e;
and €,) are tuned by external gate voltages, so that €; + € = 2ug. This condition makes
the tunneling of the two electrons via different dots into different leads resonant. The
resonance for electrons tunneling into the same dots is suppressed by the on-site Coulomb
repulsion U of the dots and/or the superconducting gap A. The regime under which the
entanglement of the Cooper pairs in the superconductor is successfully transported to the
leads is

AU, 0e > Ap > vy, kgT  and v > g

where de is the mean level separation of the dots, v, = 27y, |TDL|2 and vg = 27vg |TSD|2
are the tunneling rates from the dots to the leads and from the superconductor to the dots
respectively, with 1, and vs being the corresponding electron densities of states per spin
at the Fermi level. Under this regime processes are excluded in which electrons already
present in the dots are transported, single electron tunneling and tunneling via the same
dot. Also, the asymmetry of the tunneling barriers (7, > 7g) excludes correlations between
subsequent Cooper pairs. The time delay between electrons from the same Cooper pair
is given by 1/A and the time separation between pairs is given approximately by ~;/7%.

Triple-quantum dot entangler

The setup for this proposal [16] is shown in Fig. 1.2.  Electrons are injected into the
quantum dot D¢ from a source via tunneling. This dot accepts at most two electrons.
The idea is to get an entangled pair from D¢ since its ground state is a singlet. Similarly
to the Andreev entangler, to get the entangled pair out of the dot and suppress non-
entangled currents, the idea is to have a resonance for the joint transport of the two
electrons from D¢ to secondary dots (D and Dg), from where the electrons tunnel to
the output leads. The non-entangled currents come from the tunneling of single electrons
or tunneling of a pair into the same lead. To get the desired resonance the condition
€7, + €g = 2¢c must hold, where €;, and eg are the energy levels available in D, and Dp
respectively, and 2¢¢ is the total energy of the two electrons in the dot D¢. The transport
of a single electron is suppressed by the energy mismatch ec + U # €y, €g, where ec + U
is the energy of the other electron in the dot D¢. The time delay between electrons of an
entangled pair is approximately 1/U, and the time separation between entangled pairs is
approximately 2/«, with a the tunneling rate from the electron source to the dot De.

Coulomb scattering entangler

In this case, a setup is proposed [18] as shown in Fig. 1.3.  Entangled electron-spin
pairs are generated by collision of pairs of electrons in a 2-DEG interacting electron gas.
Electrons are coming from two reservoirs and their momenta are filtered by two quantum
point contacts, so that p; ~ —p5. The electrons collide and scatter, and later are collected
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by two detectors, which are placed such that only electrons that collide at a scattering
angle around 7 /2 are collected. At this angle there is constructive two-particle interference
in the spin-singlet channel and the scattering amplitude vanishes for the spin-triplet states.
Therefore, collecting at 7/2 allows to get the spin-singlets, each electron of the pair in
a different detector. Because of the condition p; ~ —p5, the energies are individually
conserved (p; =~ py =~ p| ~ ply, p; = |p;| and ﬁl the momenta after the scattering). This
ensures that the outgoing scattering states are unoccupied (pj o > kr). The electrons are
further assumed to be injected with small excitation energies & = h*p?/2m — Er < Ep
with Er = l%k%/2m the Fermi energy and m the effective mass in order to have well-
defined quasiparticle states with long lifetimes. It is important to prevent in the counting
of uncorrelated electrons which accidentally enter the detectors (e.g., due to impurities).
For this purpose, coincidence measurements could be carried out or an AC modulation
could be applied to each reservoir with different frequencies w; and ws. This way electrons
which have actually interacted could be selected, since they would be modulated by the
frequency wy 4 ws.

1.1.4 Characterization of entanglement

In order to characterize entanglement, there are two important aspects, the quantitative
and the qualitative. With respect to the former, it is of practical interest to quantify the
amount of entanglement of a given system, and for that purpose there have been several
ideas on how to measure entanglement. One of these entanglement measures is the von
Neumann entropy, which we will use later on in Chap. 2. For a pure bipartite system
described by a density matrix p it is defined as follows:

E(p) = —tra (palogypa) = —trp (pp logypp)

where psp = trpap are the partial density matrices obtained by tracing out one of
the subsystems. The value of E(p) lies between E = 0 (no entanglement) and £ = 1
(maximal entanglement). Among maximally entangled states, there are some of particular
relevance. This is the case for the so-called “Bell states”. These are two-particle states,
where the entangled properties of the particles are %—spins?’. The Bell states form a basis
called “Bell’s basis”. These states are

6%) =
[v*) =

(J00) + (11|) (1.12)

(101) & (10)

DN — D[ —

where |ij) = |i)®|j) and {|0), |1)} represents the basis for the 3-spin-like property of each
particle. For multipartite entanglement, where more than two particles are involved, there

3Tt can also be defined for other properties with the same formal properties as the %—spin.
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are also maximally entangled states of practical relevance, since Greenberger, Horne and
Zeilinger [26] have shown quantum predictions for these states which cannot be reproduced
by any local hidden variables theory. These are known as GHZ states and for three
particles take the general form

1 .
NG = — (|000) + €% 111 1.13
We will be interested in the following four-photon states

U — oo 0 0.)* |0 0p0.0), (1.14)
%) — |0 0 0i0.) o0 0 0 ), (1.15)

where o denotes the two orthogonal states in the circularly polarized photon-state basis.
These states are equivalent to the four-particle generalization of GHZ states, since (1.14)
and (1.15) can be obtained from the GHZ state by redefining + and - for two of the
photons. We come back to these photon-polarization entangled states in Chap. 2.

1.2 The electron spin in quantum dots

In this section we will focus on spins in solid-state systems. More specifically, we will
discuss different issues related to the electron spin in quantum dots, since these systems
are a central part of this work. We will give an overview over the main points to take into
account and their current state on the experimental side.

1.2.1 Spin control

It has been shown that the single-electron states in the low-energy range of quantum
dots agree with a shell model. In lateral quantum dots, the confinement is stronger
in one dimension, therefore the dot potential is effectively two dimensional and can be
approximated by a two-dimension harmonic oscillator potential. If a magnetic field is
applied, the degeneracy between the spin states | 1) and |]) is lifted due to the Zeeman
interaction and makes them distinguishable. The precise control over the number of
confined electrons has been demonstrated in InGaAs self-assembled quantum dots [27],

in gated vertical quantum dots [28], in quantum rings [29], and also in electrostatically
defined single [30] and double [31-33] dots in GaAs.

1.2.2 Spin relaxation and decoherence

One of the conditions for the use of the spin degree of freedom of electrons is a long spin
lifetime. There are two important processes that contribute to a shortening of the spin
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lifetime: spin relaxation and spin decoherence. Their time scales are characterized by
the relaxation (7)) and decoherence (73) times respectively. The relaxation time 77 is
the time required for the relaxation of a single spin in an external magnetic field from an
excited state into the thermal equilibrium. The decoherence time 75 is the time in which
a relative phase in a superposition state between spin-up and spin-down of a single spin
is preserved. Usually 75 < T7, so the limiting time scale for applications based on the
electron spin is T5. The relevance of this scale has motivated a lot of work both on the
theoretical and experimental sides, which intends to find the value of 77 and T, under
different conditions and in several systems. For the electron-spin relaxation in quantum
dots, Fujisawa et al. [34] reported a triplet-to-singlet relaxation time of 75 1 = 200 us
in vertical quantum dots. More recently, a lower bound on the singlet-triplet relaxation
time has been measured in lateral dots, giving 7s_1 > 70 us [35]. Later, a much longer
relaxation time (7s_p = (2.58 £+ 0.09) ms) was measured independently [36]. Several
groups have measured 77 for single electron spins, reporting values of e.g. T} 2 50 us at
a magnetic field of B = 7.5T in gated GaAs dots [37] and later [38] 7} ~ (0.85+0.11) ms
at B =8 T. For In(Ga)As self-assembled dots there has been recently established [39] a
lower bound 7} 2 20 ms at 7' = 1K and B = 4 T. In this experiment, the larger level
spacing of self-assembled dots (compared to gated GaAs dots) is responsible for the longer
T, -time.

1.2.3 Spin initialization

There are two possibilities to initialize the spins. First, a strong magnetic field can be
applied, such that the Zeeman splitting is larger than the thermal energy. This way
the spins reach their thermodynamical ground state in which they are aligned with the
magnetic field, and therefore a strong polarization is achieved. Second, spin-polarized
currents can be injected. The injection of spins from ferromagnetic semiconductors into
normal semiconductors has been reported with polarizations up to 90% [8,9]. In addition,
initialization of single spins can be achieved using a spin filter (see 1.2.4) or by optical
schemes (see 1.2.5).

1.2.4 Single-spin detection

The magnetic moment of a single spin 1/2 is very small and therefore, hard to detect
directly. For this reason there have been many proposals to detect spins based on the
transfer of information stored in the spin to an orbital degree of freedom, called “spin-
charge conversion” [10,37,38,40-46]. The spin can be read using a spin filter, which
is a device that only transmits electrons with a particular spin polarization and blocks
the opposite polarization. Recher et al. [40] have proposed a spin-filter implementation
consisting of a quantum dot in the Coulomb blockade regime, weakly coupled to two
current leads. In a static magnetic field, the direction of the transmitted spin can be
changed by tuning a gate voltage applied to the dot. Experimental demonstrations of a
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spin filter have been achieved by Folk et al. [41], Potok et al. [42], Hanson et al. [37], and
Elzerman et al. [38]. The first two of these implementations have demonstrated the spin-
filtering effect with a GaAs quantum dot in the open [41] and in the Coulomb-blockade
regime [42]. Another approach to the detection of spins is to perform an n-shot readout.
This procedure consists in identically repeating n times the experiment, so that errors
during the measurement can be statistically eliminated. There is a lower bound in the
number n of measurements to be performed so that a statistical analysis can be done.

This lower bound is given by
1
n>z <— — 1)
n

where 2;_, is the critical value of the standard normal distribution function, ®(z_,) =
1 —a=(1/2)[1 +erf(z;_o/V2)], ais called the infidelity, and

0= (vam - it (1.16)

can be interpreted as a measurement efficiency with n € [0,1]. p+ and p; are the proba-
bilities that the experimental readout of the spin states |1) and |]) respectively gives the
correct result. Recently, single-shot readout of a single electron spin in a quantum dot
has been experimentally demonstrated by Elzerman et al. [38].

1.2.5 Optical interaction, initialization and readout of spins

The currently very active field of ultrafast laser technology suggests that single spin states
can be optically detected and manipulated within very short times (picoseconds or even
femtoseconds), several orders of magnitude faster than in schemes based on the transport
of electric charge. Via the absorption of a photon, an electron in a confined valence-
band state can be excited to a confined conduction-band state. For such inter-band
transitions, optical selection rules apply and establish conditions on the quantum numbers
of the optically coupled states. Several methods have been developed to optically probe
and manipulate states of single quantum dots [47]. Optical schemes have further been
proposed to achieve initialization of electron spins, for the detection of the T)-time of
electron spins, for single-qubit gates, and for two-qubit gates. In these schemes and
also in many other schemes exploiting the spin states of an electron, a quantum dot
initially contains a single excess electron. Optical excitation of such a state creates a
negatively charged exciton (sometimes also called “trion”) in the dot, i.e., a compound of
two conduction-band electrons and one valence-band hole. If the quantum dot is in the
so-called strong confinement regime, the (single-particle) confinement energies are much
larger than the Coulomb interaction energies of the carriers in the dot. This criterion
is typically satisfied for small self-assembled dots and colloidal dots. The two electrons
then occupy the lowest single-particle level of the dot and form a spin singlet. Note
that the excess electron initially occupies one of the available spin states. Due to the
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Pauli principle, the absorption of a circularly polarized photon is only possible if the
corresponding electron spin state is not already occupied. A o -polarized photon can
only be absorbed if the spin of the excess electron is in the state | ]), whereas a o*-
polarized photon can only be absorbed for |1). In the photoluminescence spectrum, the
lines belonging to these two transitions coincide for zero magnetic field and split for non-
zero magnetic fields. If a circularly polarized photon with an energy that matches the
corresponding transition energy is absorbed, the initial spin state of the excess electron is
identified. This experiment has recently been performed with a single InGaAs/GaAs dot
by Hogele et al. [48] using high-resolution laser absorption spectroscopy. Equivalently, the
photoluminescence (which is only emitted after a successful photon absorption) could be
detected instead of the absorption. One can also apply an electric field to the dot such that
an electron and a hole tunnel out of the dot after a photon has been absorbed. Instead
of the photoluminescence, the resulting electric current (the so-called photocurrent) can
then be detected [49].
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non-local singlet

Figure 1.1: Setup for the Andreev entangler with quantum dots. To entangled electron from
a Cooper pair in the semiconductor SC' tunnel from 7; and 75 with amplitude Tsp to the
quantum dots D and Ds. Then the electrons tunnel to normal Fermi liquid leads L; and Lo
with amplitude Tpy. The superconductor is kept at the chemical potential pg and the leads at
. (Figure courtesy of P. Recher.)
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ENTANGLER

Figure 1.2: Setup for the triple-quantum dot entangler. The dot D¢ can accept at most two
electrons coming from the source lead at a rate . The two-electron ground state of the dot is
the singlet. From the dot D¢ the electrons can tunnel coherently with amplitude 7y to the dots
Dy, and Dp, which can only take 0 or 1 electrons. The secondary dots Dy, and Dp act as energy
filters, and from them the electrons can tunnel out to drain leads with at the rate . (Figure
courtesy of D. Saraga.)
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Figure 1.3: Setup for the Coulomb scattering entangler. Electrons coming from two sources
are filtered by quantum point contacts such that they have momenta p}| ~ —ps. They collide
(shaded area) and scatter off from each other. Due to interference, at the scattering angle 7/2
only the singlet channel is allowed and the triplets are suppressed. The electrons of the singlet
pair are collected each at a detector, positioned so that only electrons with scattering angles
approximately equal to 7/2 are collected. (Figure courtesy of D. Saraga.)
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Chapter 2

Entanglement transfer from electron
spins to photons.

In this chapter we show that electron recombination in spin light-emitting diodes provides
an efficient method to transfer entanglement from electron spins onto pairs of polarization-
entangled photons. We also show the possibility to create 4-photon states of the GHZ
type. From the GHZ state, two fully entangled photons can be obtained by a measurement
of two photons in the linear polarization basis, even for quantum dots with observable
fine structure splitting for neutral excitons and significant exciton spin decoherence. Due
to the interplay of quantum mechanical selection rules and interference, maximally entan-
gled electron pairs are converted into maximally entangled photon pairs with unit fidelity
for a continuous set of observation directions. We model the dynamics of the conver-
sion process using a master-equation approach and show that the implementation of our
scheme is feasible with current experimental techniques. In Section 2.2 we concentrate
on the electron-spins along their transport trough Fermi leads, describe their state before
they enter the structures where they recombine, and give a rate for this whole injection-
recombination process. In Section 2.3 we focus on the recombination process and analyze
the optical output. Finally, in Section 2.4 we draw our conclusions.

2.1 Introduction

Spin light-emitting diodes (spin-LEDs), [1,8,9,39,50-53] in which electron recombination
is accompanied by the emission of a photon with well-defined circular polarization, provide
an efficient interface between electron spins and photons. The operation of such devices
at the single-photon level would allow one to convert the quantum state of an electron
encoded in its spin state into that of a photon with a wide range of possible applications.
In view of quantum information schemes, converting spin into photon quantum states
corresponds to a conversion of localized into flying qubits, which can be transmitted over
long distances and could overcome limitations caused by the short-range nature of the
electron exchange interaction [1]. On a more fundamental level, the photon polarization
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can be readily measured experimentally such that an interface between spins and pho-
tons will allow one to measure quantum properties of the spin system via the photons
generated on recombination. More specifically, entanglement of electron spins could be
demonstrated not only in current noise [54,55] but also by measurements of photon polar-
izations which allows one to test Bell’s inequalities [21] without the stringent limitations
posed by decoherence in a solid state environment. In addition to its applications in quan-
tum communication, this transfer can be used to characterize the output of an electron
spin entangler [11-18] in a setup as shown in Fig. 2.1. The entangler injects the electrons
of the entangled pair into separate leads. Subsequently, the electrons recombine optically
in quantum dots located within two spin-LEDs (denoted by L and R), and two photons
are emitted. In the following, we also use the labels L and R for the two dots where
optical recombination occurs. Such a setup can further act as a deterministic source of
polarization-entangled photon pairs. Recently, the decay of biexcitons in single quantum
dots has been proposed for the production of entangled photons [56,57]. However, several
experiments [58-62] have only shown polarization correlation but not entanglement of the
photons. The fine structure splitting denx of the bright exciton ground state [63] has been
identified to be crucial for the lack of entanglement: Firstly, the polarization-entangled
photons are also entangled in energy if dep, is larger than the exciton line-width [64].
Secondly, for denx 7# O the exciton spin relaxation rate due to phonons 1/7; x is en-
hanced [65] and leads to an increased decoherence rate 1/T, x = 1/2T x +1/T,, x, where
1/T, x is the pure decoherence time. To overcome these difficulties we propose to use
positively charged excitons (XT), for which den = 0 up to small corrections. Moreover,
we demonstrate that the antisymmetric hole ground state of the X enables the produc-
tion of entangled four-photon states. By calculating the von Neumann entropy we study
the transfer of entanglement for different photon emission directions. Due to quantum
mechanical interference, the fidelity of this process approaches unity not only for pho-
ton emission along the spin quantization axis, but for a continuous set of observation
directions.

2.2 Electrons injection and recombination
The effective Hamiltonian of the system is given by
H = HL+HR+Hrad+Hinta (21)

where H, = p?/2m + Vy(r) is the Hamiltonian of the quantum dot o = L, R with
confinement potential Viq(r). For convenience, we use the labels L and R for the two
dots involved in the recombination. The Hamiltonian of the electromagnetic field is
H..g= Zk,/\ hwkabak,\%—% and Hi,y = —eA - p/moc = Hey+h.c. is the optical interaction
term, which is linear in both the vector potential A and the electron momentum p and
can be decomposed into a photon emission term H., and its hermitian conjugate. For
simplicity, we assume that the dots L and R are identical, with cubic crystal structure and
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Photon 1 Spin Entangler Photon 2
y4 Z
O 0,
L a2 Electron1  Electron 2 NG :\
Spin-LED L Spin-LED R

Figure 2.1: Schematic setup for the transfer of entanglement between electrons and photons. An
electron entangler (gray box) injects a pair of spin-entangled electrons into two current leads.
The electrons then recombine individually in one of the quantum dots located in the left (L) or
the right (R) spin-LED and give rise to the emission of two photons.

with aligned main crystal axes. We choose the z axes parallel to the quantum dot growth
direction (e.g., [001]). If the quantum dot confinement is stronger in the z direction than
in the zy plane, z defines the spin quantization axis and heavy-hole (hh) and light-hole
(Ih) states are energetically split by App p, (typically Ay ~ 10meV). Alternatively,
uniaxial strain can define a spin quantization axis and also lifts the degeneracy of hh and
lh states [66]. We consider a hh ground state, with angular momentum projection £3/2 in
terms of electron quantum numbers. We further focus on the strong-confinement regime,
where the dot radius is smaller than the exciton Bohr radius. Then, for the recombi-
nation of a single electron, optical selection rules ensure a one-to-one correspondence of
electron spin polarization and circular photon polarization if (and only if) the photon is
emitted along the spin quantization axis, but not for the general case of photon emission
into an arbitrary direction (6, ¢), where # and ¢ are the polar and the azimuthal angle,
respectively.

The quantum dots in both spin-LEDs are prepared in a state |x,), where two excess
holes occupy the lowest hh level in each dot. This initial state, which can be generated
by applying an appropriate bias voltage across the LED, has several advantages. Firstly,
electrons with arbitrary spin states can recombine optically, as demonstrated for electron
spin detection in a recent experiment [52]. Secondly, the z component of the total hole
spin vanishes. This is a consequence of the fact that in quantum dots the electron-hole
exchange energy Agyy (typically Aepy < 0.1 meV) is smaller than Ayy,_j,. Thus, circularly
polarized X luminescence is obtained from the injected electron recombining with a
hh, up to corrections of order Aepy/Apy . This remains true for dots with asymmetric
confinement in the xy plane, in stark contrast to the case with an electron and only one
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hole in the dot [63], where the good exciton eigenstates are horizontally polarized and are
split in energy typically by dep =~ 0.1 meV, due to the electron-hole exchange interaction.
Therefore, the electron-hole exchange interaction can be neutralized in anisotropic dots by
initially providing two holes. The scheme we propose here equally works for initial states
with more than two holes, as long as the total hole angular momentum along z vanishes.
Inter-band mixing of hh and lh states (e.g., present in anisotropic dots) reduces the
maximum circular polarization of photons emitted from spin-polarized electrons [51] and
reduces the fidelity of our scheme. However, because the inter-band transition probability
for lh states is three times smaller than that for hh states and hh-lh mixing is typically
controlled by some small parameter in elliptical dots [63], we neglect lh transitions.

We first describe the dynamics of the electron injection and recombination in the
two spin-LEDs using a master equation. The rate for the injection and the subsequent
relaxation of electrons into the conduction band ground state in the dot « is denoted
by Weo. It has been demonstrated that this entire process is spin-conserving and occurs
much faster than the optical recombination [52,53], which is described by the rates .
Typically, Wpa ~ 1ns™ and W,, ~ 0.1 ps~" for the incoherent transition rates. We solve
the master equation for the classical occupation probabilities and obtain the probability
that two photons are emitted after the injection of two electrons into the dots at t = 0,

W (1 — e ™Wre) — W (1 — e Wea

Wea - Wpa

a=L,R

For Wya < Wea, Pop = [[ap z(1 — e7"7=). After photon emission, bipartite photon
entanglement is achieved by a measurement of the hole spins as we describe in Section 2.3
and the initial state is finally restored by injection of two holes into each of the two
dots. We estimate the production rate of entangled photons in a setup to test some of
the proposed electron entanglers [11-18]. For example, pairs of entangled electrons in a
spin singlet state [¥~) = (| 1)) — | }1))/V/2 are produced by the Andreev entangler [11]
with an average time separation At ~ 1075s, while for the entangler based on three
quantum dots [16], At ~ 107%s. The two spin-entangled electrons of a pair typically are
injected into the current leads with a relative time delay 7 ~ 10~'s and 7 ~ 1073 for
the Andreev and the three-dots entangler respectively. Because T, Wp’o} < At, photons
originating from a single pair of entangled electrons can be identified with high reliability.
In the steady state, the generation rate of entangled photons is determined by the rate at
which entangled electron pairs leave the entangler, 1/At.

2.2.1 Two-spin dynamics

The effect of relaxation and decoherence is taken into account for the two spins by the
single-spin Bloch equation [67]. Given that the electrons are in different leads, they
interact with independent environments (during times ¢ and ¢, respectively). Therefore,
we consider different magnetic fields h and h', enclosing an angle (3, acting each on
an individual spin. We calculate the two-spin density matrix x(¢,t'), which is given in
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Ref. [67] for t = ¢’ and § = 0. We apply the Bloch equation directly to the first electron,
for which we choose h || z. Along 2 we define the spin basis {f,|}. For the second
electron the same Bloch equation is valid in the basis {+, —} of the spin states which are
defined along h'. Therefore, for the second electron a change of base has to be applied
after evolving its density matrix with the Bloch equation, in order to get a transformation
into the base of the first spin. The change of base reads

Pry = % [(pr + puy) + cosB (prr — puy) — sinf (pry + py)] (2.3)
pi- = % [sinf (pr+ — pyy) + (pry — put) + cosB (pry + pis)],
Py = % [sinf3 (prr — py) = (pry — pig) + cosP (pry + pit)],
p-— = % [(pr1 + pyy) = cosPB (pry — puy) +sinf (pry + pia)]-

After some algebra, the elements for the density matrix of the second spin for time #' in
terms of the initial density matrix at time ' = 0 can be obtained:

o) = 3 [cosBfi +sinB i + oy (0) + o (0)] (1 — cosd)], (2.4)
prt) = 3 (cosBfa— s +sinB oy (0) + piy(0)] + 1)
pir(t) = %(COSﬁfA—Sinﬂf{Jrsinﬁ [p11(0) + p . (0)] = f3) ,

1

pu(t) = 5 [—cosBf] —sinffa+ [pr(0) + pyy(0)] (1 + cosp)],
where

i = (p(0) + pyy(0) (1 +a'P') + e /71 (cosB [pr(0) — py(0)] — sinB [py,(0) + py(0)])
fa = B {COS(M) (cos [p1,(0) + pu1(0)] + sinf [p11(0) — py,(0)]) (2.5)

isin(ht) [p1,(0) = pi3(0)]}

fs = et {Cos(ﬁt') [14(0) = puy (0)] + isin(ht) (cos [p11.0) + py2(0)]
+sinf [p11(0) — py,(0)])} -

Here, T and T} are the relaxation and decoherence times for the second spin respectively,
o =1—e /1 and P’ is the stationary spin-polarization for the second spin.
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In order to describe the time evolution of the two-spin density matrix in the basis
{1,J} for both electrons, we decompose the initial singlet state. This will be done as
follows: first, we will decompose the initial state (singlet) in terms of the two-spin basis

{1, 114, 141, [44) } in the following way

1
x(t,t'=0)= §(X(a) — X — X(e) + X(@))- (2.6)
Here,
1 2
X = A @pl (2.7)

N INC)
X = P @ P>

_ (M (2
X(e) = Pyt @Prps

_ e @
X@) = P ®piy-

The transformation is now applied to the two-spin state via the corresponding single-spin
transformations in each Hilbert space. Explicitly,

x(t, 1) = A(t,1)[x(0,0)] = % (A1 (t) ® Aa(t)[x(0) (0, 0)] = As(t) ® Aa(t)[x()(0,0)] (2.8)
— A1 (1) ® A2 () [x(0)(0, 0)] + Av () ® Aa (') [x(a) (0, 0)])

where A;(t) describes the time evolutions due to the Bloch equation for the first spin,

A1 (8)[p(0)] (2.9)
1 1 1 1)y —t/Tytiht (1
%(png) + pi\t))(l +a(t)P) + %(png) _ pii))e t/Ty ot/ Tot htp‘(ri)
—t/Ty—iht (1 1 1 1 1)y
ot/ T2 htpiT) %(p‘(ﬁ) + pi¢))(1 —a(t)P) — %(p%T) - pii))e t/T1

and Ay(t') is the corresponding transformation for the second spin obtained in Eq. (2.4).
The full matrix elements of the two-spin state after the transformation are given in Ap-
pendix A.

From Eq.( 2.8), the fidelity f = 4(U~ |x(¢,t")| ¥ ) of the singlet is calculated, for the
moment right before the electrons are injected into the spin-LEDs. We obtained
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[ = 1—cospad PP+ e, [ejsin®Bcos(W't') + €} cos’B] + eq€)sin®f cos(ht) +
+ez€h [2 cosBsin(ht) sin(h't') + (cos®8 + 1) cos(ht) cos(h't")] ,

where for the first (second) spin ¢; = e /T (el = e */T), a=1—¢ (a' =1—¢}), P
(P') is the equilibrium polarization, and Ty and T} (73 and T7) are the spin decoherence
and relaxation times, respectively. For ¢t < T1,T, and t' < T, T} (in bulk GaAs Ty ~
100 ns and typically T} > Ty), the electrons form a non-local spin-entangled state after
their injection into the dots L and R and after their subsequent relaxation to the single-
electron orbital ground states ¢.q(req, o). A local rotation of one of the two spins (for
h # h') enables a transformation of |¥~) into another (maximally entangled) Bell state
) = (| 11) + [ID)/V2 or |@F) = (|11) £|14))/V/2. This can be achieved, e.g., by

controlling the local Rashba spin-orbit interaction! in the current leads [55,67].

2.3 Recombination process and optical output

We next turn to a microscopic description of the optical recombination process of the
two electrons which occur independently, except for the entanglement of the spin wave
functions. We consider now one single branch «« = L, R of the apparatus and omit the
index «a. The state of the single quantum dot which is charged with two hhs in the orbital
ground state and into which a single electron with spin ¢ has been injected is given by

,0) = [ Ered (e, ol ). 2.10)

Here, b}, creates an electron with spin S, = ¢/2 = +1/2 in the state n of the dot,
IX) =2 [ Brod®roody(rer, 73 T2, 7' )byrbyr |g), where |g) is the electro-statically neu-
tral ground state of the quantum dot, and ¢,(r,1,7;r,2,7") is the orbital part of the
two-hole wave function. In the strong-confinement regime where Coulomb correlations
are negligible, ¢, is a product of the single-particle valence band states. The labels 7, 7/
denote the hh spin component S, = 7/2 = £1/2 that factor out for angular momen-

tum J, = £3/2. We now calculate the emission matrix element [68] (f|Hepml|i) with
initial state |i) = |e,0) ® | ..., nkn,...) and final state |f) = b, |g) @ | ..., ex + 1,...),
where | ... ngy,...) is a Fock state of the electromagnetic field, typically the photon vac-

uum. Because of quantum mechanical selection rules, the optical transitions connect only
states with the same spin such that 7 = o and 7" # 0. We apply the envelope-function
approximation for the single-particle levels and write ¢, (r,, o) = ¥, (r,)Une(r,), Where
Une(ry) is a Bloch function and v, (r,) an envelope function determined by Viq(r), where
n = ¢, v1,vy. The ¢ band Bloch wave function is an s-type function |s), whereas the hh
band has a p-type function |x 4 i7y). In the dipole approximation, we obtain [68]

I This interaction provides an effective momentum-dependent magnetic field, which produces a spin
precession.
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. € * *
[ Henlil] = —— Aolw)Vir 1 lef bty Conl (211)
0
where p*, = py. is the inter-band momentum matrix element, ey, = (cos#cos¢p —

i\sin ¢, cos@sin ¢ + i\ cos ¢, —sinf)//2 is the unit polarization vector with A = %1 for
circular polarization |o1), Ag(wi) = (I/2eewi V)2, and Cpp, = [ d®r 1% (x, o)1, (x, 0). For
cubic symmetry, €}, - Pi, = Pes(c0s 0 — oN)e™? /2 = p.,m(0, @), where p., = (s|p.|x).
With the transition |e,o) — b, ,|g), a photon in the state

|07 97 ¢> = N(Q) (ma,-l-l(ea ¢)|O-+> + ma,—l(ea ¢)|O-—>) (212)

is emitted into the direction (0, ¢). Here, N(#) = [2/(1 + cos?#)]'/? is a normalization
factor. Equation (2.12) shows that for = 0, a spin up (0 = +1) electron generates a |o_)
photon, whereas a |0, ) photon is obtained from a spin down (¢ = —1) electron which
ensures a one-to-one correspondence between spin and photon polarization. The admix-
ture of the opposite circular polarization increases with 6, leading to elliptical polarization
for 6 € (0,7/2) and linear polarization for # = 7/2. For 6 # 0, the spin-inverted states
|+1,0,¢) and | — 1,60, ¢) have interchanged coefficients for |0, ) and |o_), up to a relative
phase which is determined by the global phase factors exp —(io¢) of the single-photon
states. Note that in two-photon states the azimuthal angles thus can provide a relative
phase as we exploit below.

The two photons produced at recombination are entangled with the two holes which
remain in the dots, due to the antisymmetric hole ground state. By injecting a pair of
electrons with spins polarized in the zy plane into the dots?, a four-photon state of the
Greenberger-Horne-Zeilinger (GHZ) type can be produced if T} x and 75 x exceed the
exciton lifetime 7x. For circularly polarized photons emitted along z, the electron Bell
states give rise to the photon states

%) — oo 0 0.)* |0 0p0,0), 2.13)

%) — |o_o_oy0.) *|ororo o), (2.14)

where the first two entries indicate the first photon pair (L,R) and the third and fourth
entry the second photon pair (L,R), respectively. Normalization has been omitted for
simplicity. Yet, the second photon pair is generated by neutral excitons and is thus
exposed to the same problems as the biexciton decay cascade in asymmetric quantum
dots. Here, a cavity can be used to maintain the GHZ state since the energy entanglement
of the second photon pair can be erased [64] and 7x can be shortened due to the Purcell

2To switch between the production of entangled and polarized electron pairs, a double quantum dot
with tunable exchange splitting J can be used, to which an in-plane magnetic field B, is applied [54].
For J smaller (larger) than the Zeeman energy, the two-electron ground state is a triplet with spins along
B, (a singlet). Alternatively, for subsequent injection of two entangled electron pairs, = — + on the
right-hand side of Egs. (2.13)—(2.16).
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effect to reduce exciton polarization decoherence. Full bipartite photon entanglement of
the first photon pair is obtained, e.g., by directing the second photon pair via secondary
optical paths to a linear polarization measurement which is performed before the first
photon pair is measured?, see Fig. 2.2. Even different bases {|H), |V)} and {|H'), [V")}
can be chosen for the two photons of the second pair. Note that the electron-hole exchange
interaction in elliptical dots assists this projection into a linear basis, and even loss of the
(linear) polarization coherence is tolerable. Still, quantum dots with 77 x > 7x [65] are
required for entanglement of the first photon pair. If the second photon pair is measured
in the state |[HH') or |VV’), the electron Bell states have given rise to the two-photon
states

UE)  — 41,01, 1)1 |1, 09, do)r £ | 1,01, b1)r | +1, Oa, $o) i, (2.15)
1DF) = | 41,01, 61)1 [+, 02, 02)r £ | 1,01, 1)1 | —1, 0, b2) &. (2.16)

Here, normalization has been omitted for simplicity. If the second photon pair is measured
as |[HV') or [VH'), £ is replaced by F on the right-hand side of Eqs. (2.15) and (2.16).
Obviously, the two-photon states (2.15) and (2.16) are maximally entangled for 6, = 6, =
0. For 6, = 60, € (0,7/2), the total relative phase factor between the two-photon states
in Eq. (2.15) is exp(iy + 2iA¢). Here, A¢p = ¢y — ¢o, v = 7w for [¥7), and v = 0 for
|Ut). For Eq. (2.16), the relative phase factor is exp[iy + 2i(¢1 + ¢2)], with v = 7 for
|®~) and 7 = 0 for |®T). By tuning the relative phase factors in Eqs. (2.15) and (2.16)
to —1, two circularly polarized photons can be recovered for 8, = 6, € (0,7/2) from the
elliptically polarized single-photon states due to quantum mechanical interference*. Thus,
maximal entanglement is transferred from two electron spins to the polarizations of two
photons for certain ideal emission angles. For [¥~) (|U*)), A¢ =0 (A¢ = 7/2) needs to
be satisfied modr, whereas the condition for [®7) (|®1)) is ¢y + ¢ = 0 (1 + ¢ = 7/2)
modr. Note that for §; = 6, = 7/2 these two-photon states vanish completely due to
destructive interference.

For arbitrary emission directions of the two photons, the degree of polarization en-
tanglement can be quantified by the von Neumann entropy E = —try(plog, p). Here,
p = tryp is the reduced density matrix of the two-photon state p with the trace try taken
over photon 1. For a maximally entangled two-photon state £ = 1, while £ = 0 represents
a pure state p (which implies the absence of bipartite entanglement). If the two electrons
recombine after times much shorter than the spin lifetimes 77, T}, T3, 15, E oscillates for
Eq. (2.15) as a function of the relative azimuthal angle A¢ of the two emitted photons
between a minimal value [68],

3 An alternative suggestion by A. Imamoglu (private communication) is to perform a Hadamard oper-
ation on the hh states which are left in the dots after emission of the first photon pair [e.g., via an optical
Raman transition, see A. Imamoglu et al., Phys. Rev. Lett. 83, 4204 (1999)], followed by a hole-spin
measurement along z, e.g., via state-selective absorption of circularly polarized photons.

4Such ideal angles can analogously be found for the four-photon GHZ states.
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Bell measurement Bell measurement

A V Vv’ A

Photon 1 - A Photon 2
Photon 3 oton
L —T—» H H |< T - N

/ﬁ linear polarization ﬁ\

measurements
Spin—LED L Spin—LED R

Figure 2.2: Schematic setup to obtain bipartite entanglement of photon 1 and 2 by measuring the
photons 3 and 4 of the GHZ state in bases of linear polarizations H,V and H’',V’, respectively
(see text).

T1T2

Emin = 1Og2(1 + l‘ll‘Q) — 10g2($1$2), (217)

1+ T1T2
and a maximal value that is (only) obtained for the ideal angles ¢; and ¢, mentioned
above, see Fig. 2.3. Explicitly,

zilogy (1)  walogy(wy)

(2.18)
T1 + To T1 + To

Emax - 10g2(l'1 + .1'2) -

where x; = cos®f;. For Eq. (2.16), E oscillates between E;, and Ey.x as a function of
1 + ¢a. As expected, Eyax = 1 for all 6, = 0y € [0,7/2). Note that the discontinuity in
Erayx for 01 = 05 = /2 is due to the vanishing two-photon state.

Taking into account that photo-detectors collect photons from a finite solid angle,
we allow for small deviations 60 = 6; — 6, and d¢ = ¢; — ¢ from the ideal emission
angles. Here, the large refraction index of the capping material of the dots (typically
GaAs) compared to air strongly limits the possible deviations. We expand the two-photon
density matrix in d¢ and 66 and recalculate the von Neumann entropy. We obtain

B(0,60,66) ~ 1- %mgQ (F(0,50,06)f, (6,0, 66))

5 14(0,60.08) ~ 1) x o, (2200

7+ (9, 56,50) (2.19)
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Figure 2.3: The von Neumann entropy (a) £ = Epj, and (b) £ = Epy,,; as a function of
the polar angles ; and 62 for photon emission. Depending on the azimuthal angles ¢; and
¢9, E oscillates between (a) and (b). The photon-polarization entanglement is maximal for
01 = 02 = 0, whereas for 6; = 7/2 entanglement is absent. (a) Fmn;, slowly decreases with
increasing ;. In (b), Ene, = 1 for the continuous set of directions 6; = 0y € [0,7/2).

where f1(0,00,00) = 1 + tgh\/06% + 6¢%sin®f. In Fig. 2.4, the von Neumann entropy
is plotted as a function of d¢ and 66 for different values of the polar angle . Since
for 00 = 0¢p = 0 we recover the ideal angular configuration, for which the entanglement
is exactly one, we can directly observe in the graphs the loss of entanglement due to
the angular variations. The values of # used in the plots were chosen according to the
deviations from the normal direction (¢ = 0) which can be expected in experimental
setups. We find that the von Neumann entropy is only reduced by less than 6% from its
maximal value due to variations in the photon emission angles from the ideal configuration.

(b)

Figure 2.4: The von Neumann entropy for the cases §; = 03 = 6 and ¢; = ¢ = ¢ including
small angular deviations from this configuration, 660 and d¢, for (a) 6 = 7/16, ¢ = 0 and (b)
0 =7/6, ¢ = 0. For these parameters, a variation in ¢ has a negligible effect on Eye,.
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2.4 Conclusions

In this chapter we have studied the transfer of entanglement from electron spins to photon
polarizations. We have discussed the generation of entangled four-photon and two-photon
states using quantum dots charged with two excess holes. We have proposed a scheme
to achieve complete entanglement transfer from two electron spins to two photons with
quantum dots, in spite of an exciton exchange splitting. We have shown the dependence
of the entanglement obtained for the photons as a function of the emission angles and
identified the conditions under which this entanglement is maximal. This offers the possi-
bility to efficiently test Bell’s inequalities for electron spins. In addition, our results show
that a continuous set of directions exist along which entanglement is maximal. We have
also discussed the influence of deviations from the ideal configuration. We have estimated
that the loss of entanglement under realistic experimental conditions is smaller than a few
percents. Finally, the scheme we have discussed here can also be realized for the efficient
and deterministic production of entangled photons with two tunnel-coupled dots [69] in-
stead of two isolated dots. In such a setup, entanglement of the two electron spins is
provided from the singlet ground state of the delocalized electrons and is transferred to
the photons as described in this work.



Chapter 3

Coherent spin transfer in coupled
quantum dots

Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron
spin between quantum dots coupled by conjugated molecules. In this chapter, using
a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday
rotation signal as a function of the probe frequency in a pump-probe setup using neutral
quantum dots. Additionally, we study the signal of one spin-polarized excess electron in
the coupled dots. We show that, in both cases, the Faraday rotation angle is determined
by the spin transfer probabilities and the Heisenberg spin exchange energy.

The chapter is organized as follows. In Sec. 3.1 we shortly describe the experiment that
motivated this work. In Sec. 3.2 we discuss the model used for the calculations. In Sec. 3.3,
we calculate the time-resolved Faraday rotation (FR) signal for an electron wave function
which is delocalized over quantum dots A and B. In Sec. 3.4, we calculate the FR angle
as a function of probe energy for an initial spin polarization created by optical pumping.
We take into account both electron transfer processes and the Coulomb interaction and
show that these terms give rise to an exchange splitting of the two-exciton eigenstates. In
Sec. 3.5, we perform the related analysis for a system in which an initial spin polarization is
created not by optical pumping but by doping of the quantum dots. In Sec. 3.6, we discuss
our results for the parameters of CdSe quantum dots coupled by benzene molecules [70],
calculate the transfer matrix element and spin transfer probabilities. In Sec. 3.7, we draw
our conclusions.

3.1 Introduction

The past years have evidenced rapid experimental progress in the field of spintronics [50,
71]. Coherent transport of electron spins in semiconductors has been demonstrated over
several micrometers [6], nourishing hopes that the electron spin may be used as carrier of
information similar to the electron charge. Such applications of the spin degree of freedom
for classical or quantum information processing [10] require control of the electron spin not

31
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only in extended systems such as 2DEG’s, but rather also for spins localized in quantum
dots (QD’s). Recently, coherent transfer of electron spin has been observed between
QD’s with different radii 74 ~ 1.7nm (QD A) and rg ~ 3.5nm (QD B) coupled by a
benzene ring [70]. The different QD size allows one to pump and probe selectively the spin
polarization for QD’s of species A and B. The main result of Ref. [70] is that an electron
spin polarization created by optical pumping in QD B is transferred ‘instantaneously’ to
QD A. The efficiency of this transfer mechanism is of order 10% at low temperatures
T < 50K and increases to approximately 20% for 7" 2 100 K. The observed shift of
the exciton energies to lower values compared to isolated QD’s is also consistent with a
coherent delocalization of the electron or hole over the system formed by the QD’s and
the bridging molecule. In the following Subsection we give an overview of this experiment,
which motivated our work.

3.1.1 Experimental motivation

The system used in the experiment is an artificial solid made of layers of CdSe quantum
dots of different radii. The dots are bridged by conjugated molecules (1,4-benzene-
dimethanethiol)(schematically depicted in Fig. 3.1). Different structures can be achieved
by selecting the sequence of layers of dots, for instance, an AB structure is a bilayer
made of one layer of dots of type A and subsequently a layer of dots of type B. The first
exciton energy-separations are Ey4 = 2.41eV and E g = 2.06 eV for A and B respectively.
Because the dots are different, and so are their corresponding excitation energies, they
can be individually addressed with a laser. The laser used in the experiment to selectively
excite the dots is a 150-fs pulsed laser with tunable energy (E,um,). After a delay time
At of exciting the dots, a linearly polarized probe pulse measures the spin magnetization
(S;) along the laser propagation direction in either quantum dot. The energy of the probe
pulse (Epope) is tuned independently of the pumping energy.

The spin magnetization S, along the laser probe pulse is proportional to the angle
fr that the linear polarization of the probe pulse has rotated after interacting with the
dots. This effect is known as the Faraday effect. In the experiment the time-resolved
Faraday rotation is measured. This means that an in-plane magnetic field B is applied.
The spins precess around the direction of this magnetic field, and therefore the Faraday
rotation signal oscillates. The oscillation frequency v depends on the sample. An initial
electron spin polarization is created in the quantum dots B by optical pumping. The spin
magnetization is then probed in the quantum dots A by the time-resolved measurement
of the Faraday rotation angle. In Fig. 3.2 the time resolved FR data from a ABAABA
and its FFT spectra is shown for different probing energies, as well as the normalized
FFT spectra of the time resolved Faraday rotation data as a function of v and the probe
energy. As it can be seen, although the dots of type B were excited, at certain probing
energies one finds spin magnetization in the dots of type A, since the FFT has maximal
values at the corresponding frequency for these dots.

The purpose of the work exposed in this chapter is to show that a two-site Hamilto-
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nian with a transfer term captures some of the essential experimental features. We aim at
calculating the dependence of the experimentally observed Faraday rotation (FR) signal
as a function of probe energy on microscopic parameters such as spin transfer probabili-
ties. The FR angle is proportional to the difference in refractive indices for o* circularly
polarized light which is determined by the difference of the dielectric response functions.
We calculate the dielectric response functions of coupled QD’s and derive an analytical
expression for the FR angle in terms of electron transfer probabilities and Heisenberg
exchange splittings. The experimental data provide strong evidence that the spin trans-
fer is mediated by the m-conjugated molecule. We do not aim to describe this transfer
mechanism microscopically, but consider the transfer matrix elements for electrons and
holes as parameters of the Hamiltonian.

3.2 The theoretical model

For CdSe QD’s with radii r4 and rpg, the single-particle level spacing for electrons and
holes is large compared to the temperatures 7' < 200 K explored experimentally. This
allows us to restrict our attention to the lowest orbital levels in the conduction and valence
band of both QD’s. A possible admixing of higher orbital levels caused by the Coulomb
interaction is determined by the parameter r4 p/ax, where ax ~ 5.4nm is the exciton
radius for CdSe [72]. For the small QD’s in Ref. [70], the Coulomb interaction is small
compared to the single-particle level spacing, such that the admixing of higher orbital
levels to the ground state is small as well. (For details on experimental parameters, see
Sec. 3.6.) This allows us to describe the coupled QD’s by the Hamiltonian

H = Hy + Heou + Hr, (3.1)
where A
Hy= Y (Bredhe,+Eee,) (3.2)
v=A,Bjo=+

contains the single-particle levels of uncoupled QD’s v = A, B. The operators ¢/” and ¢,°
annihilate an electron in the lowest level EY of the conduction band with spin quantum
number s, = 01/2 and the highest level in the valence band, E?, with angular momentum
J. = 03/2, respectively, where 0 = +. Here, we have adopted a simple model for the
change in the band structure of CdSe due to the QD confinement. We assume a spherical
QD shape and a splitting of the j = 3/2 valence band at the I" point into the heavy hole
(hh) and light hole (lh) subband with total angular momentum projection j, = £3/2
and j, = £1/2, respectively, as obtained, e.g., from the Luttinger Hamiltonian with
an additional anisotropy term for the crystal field of the hexagonal lattice [73]. The lh
subband will be neglected in the following. The Coulomb interaction energy is

2 UV NN NAEN% NN
HCoul - Z 7 [nc (TLC - 1) + T, (nv - 1) - 2”0”1}] ’ (33)
v=A,B
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where 22 =% _ &t/ and ny =3 _, & ¢t are the number operators for electrons
in the conduction band level and holes in the valence band level. U, ~ e?/4meeyr, is the
characteristic charging energy of QD A and B, respectively. Transfer of spin and charge
between the QD’s is accounted for by the transfer Hamiltonian

Hy = (telel, +t,6/5el, + he), (3.4)

c,0Ce,o v,0C0,0
o==%

where we assume that transfer of electrons through the m-conjugated molecule conserves
the electron spin both in the conduction and the valence band.

The ansatz for the Hamiltonian in Egs. (3.1)—(3.4) is a model in which the biexciton
shift, the exciton fine structure, and the electrostatic coupling between the QD’s have
been neglected. We will justify this in Sec. 3.6 below where we discuss our results for
the experimental parameters of Ref. [70]. Because the focus of this work is to calculate
the FR angle that results from transfer of electrons between the QD’s, we assume for
simplicity that the symmetry axis of the QD’s with hexagonal crystal structure is parallel
to the direction of pump and probe laser pulses. The effect of a random QD orientation
will be discussed in Sec. 3.6.

In the following, we analyze the results of Ref. [70] based on the Hamiltonian Eq. (3.1).

3.3 Time resolved Faraday rotation for coupled Quan-
tum Dots

Before we calculate the FR angle for the general Hamiltonian Eq. (3.1) in Secs. 3.4 and
3.5 below, we first consider time-resolved FR for a particularly simple case in which a
single electron is in a coherent superposition of states in QD’s A and B at time ¢t = 0,
19(0)) = (€21 +acsl)]0)/v/1 + a?. We further assume t,, = 0 and E4 = EP in Eq. (3.1)
for t > 0. Here, |0) denotes the vacuum state in which the valence band in both QD’s is
filled and the conduction band states are empty. This simple scenario, although unrealistic
because transfer matrix elements are assumed to vanish after the initial state |1y) has
been prepared, will allow us to derive simple analytical expressions for the FR angle even
in presence of a magnetic field. The simplifying assumptions ¢., = 0 and FZ! = F? will
be lifted in the microscopic discussion in Secs. 3.4 and 3.5.

The different radii 74 and g of the CdSe QD’s lead to different g-factors and different
Larmor precession frequencies w, = g, g Best/h [74-76], where B, is an external mag-
netic field perpendicular to the spin quantization axis which is given by the symmetry
axis of the CdSe QD’s, and g, are the electron g-factors for v = A, B. At time ¢,

1
() = it

+acos(wat/2)élt — iasin(wat/2)ét | 0). (3.5)

cos(wpt/2)elt — isin(wpt/2)elt
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This time evolution of the electron spin can be detected by FR because the FR angle
0 is determined by the population imbalance between the s, = +1/2 conduction band
states in this situation [77-79]. For probe pulse frequency E/h, 0 is proportional to
the difference of the real parts of the dielectric response functions €(E) for o* circularly
polarized light [77]. With the spectral representation of the response functions, 0z (F) is
expressed in terms of the transition matrix elements between the state |¢)(¢)) with energy
Ey and all intermediate states |1);) which are virtually excited by the probe pulse,

br(E,0) = B ot PO o ((aipatvn]| - [ won]).

o Ey)]2 + 12

The polarization operators ﬁi = dAééléf’i + dBéfléffi couple to the o circularly
polarized components of the probe pulse. d, are the dipole transition matrix elements
for transition from the j, = £3/2 valence band states to the s, = +1/2 conduction band
states in QD’s A and B. Ey = EP and E; are the energy eigenvalues of the initial state
and the intermediate state [1);), respectively, and the level broadening I' accounts for a
finite lifetime of the orbital levels. The prefactor C' o< L/(heng) is determined by the size
L of the sample and the refraction index ngy of bulk CdSe.

Because we have assumed an initial state |¢/(0)) with one electron, all intermediate
states |1;) in Eq. (3.6) are energy eigenstates with two electrons and one hole. For
tew = 0 in Eq. (3.1), these are of the form |[¢);) = AZE&ZUAZJ |0) with 0,0’ = + and
v, = A, B. Pauli blocking prohibits the creation of an exciton with electron spin o1/2
if the conduction band level is already occupied by an electron with the same spin. The
resulting difference in transition matrix elements for P+ and P_ is proportional to the
population imbalance of the s, = +1/2 levels. For a probe pulse at time ¢, from Eq. (3.6)
we obtain directly

CE [, FE-EB

0r(E.t) = i
F( ; ) 1+Oé2 B(E—E§)2+F2COS(wB)
E — F%
+a’d?, o E§)2X+ = cos(wat)| , (3.6)

where E¥ = EY — E! — U, is the exciton energy for QD v. 0p(FE,t) shows coherent
oscillations with frequencies w, and wg caused by the electron spin precessing around the
external magnetic field. In reality, these coherent oscillations are exponentially damped
with a spin dephasing rate I's which is typically much smaller than the orbital dephasing
rate, ['s < I'. Taking into account spin dephasing, the Fourier transform of the time-
resolved FR signal as a function of the probe pulse energy E and the Fourier frequency
w is



36 3 Coherent spin transfer in coupled quantum dots

E E— EB r
0p(Fw) = 2 x |3 X s
1+a (B — EB)? + T2 (w—wp) +1%
E - E4 r
+a’d? X 5 (3.7)

(E—E$)?+T2 (w—wy)® +1%

Op(F,w) shows characteristic features for £ ~ FE% and w ~ w,. The two terms in
Eq. (3.7) describe the dielectric response due to virtual creation of an exciton in QD
A and B, respectively. For EZ < E < E4, they have different sign and may cancel.
Figure 3.3(a) shows a grayscale plot of |0p(E,w)| for the experimental values E£ =
2.06eV, B4 = 241eV, I' = 0.05eV, and I's/2m = 0.5 GHz, assuming d%/d% = 1 and
a? = 0.2. For Fig. 3.3(b), T' = 0.035eV, and I's/27r = 1.2GHz, and o = 0.4. One of
the most characteristic features of the experimental data (Fig. 2D in Ref. [70]) is that
|0 (E,w)| vanishes and reappears as a function of probe pulse frequency E for w ~ w,.
This can also be clearly seen in the theoretical result.

Above, we have assumed that the electron delocalized over both QD’s at t = 0 retains
spatial coherence. For rapid decoherence of the orbital part of the wave function, the initial
state is described by the density matrix p = (éfi|0><0|éf’+ +a2¢t |0) (0|6é+) (1+ a?).
The FR signal in this case is the incoherent superposition of the FR signals for QD A and

B, and is identical to the results in Eqs. (3.6) and (3.7). Hence, a FR signal as shown in
Fig. 3.3 does not allow one to distinguish coherent from incoherent spatial superpositions.

3.4 Optical spin injection

In the preceding section, 0r(E) was calculated for the simple case of a single electron
delocalized over the coupled QD’s. So far, we have also neglected that all intermediate
states [1;) in Eq. (3.6) that are virtually excited by the probe pulse will be modified by
finite transfer energies ¢.,. We next turn to a microscopic analysis in which we take into
account t., # 0 also for the intermediate states.

In Ref. [70], the initial state prepared by optical pumping is a one-exciton state.
Similar to the analysis in Sec. 3.3 above, the FR angle as a function of probe energy is
proportional to the difference of dielectric response functions for o® circularly polarized
light [Eq. (3.6)]. In order to evaluate this expression, both the initial one-exciton state and
all intermediate two-exciton states which are virtually excited by the probe pulse must be
calculated for the coupled QD’s. In this section, we first calculate the one-exciton energy
eigenstate of the coupled QD’s prepared by the pump pulse and subsequently identify all
two-exciton eigenstates |1;) which are virtually excited by the probe pulse. Our analysis
is based on perturbation theory in the transfer energies and is valid if |¢.,| is the smallest
energy scale, |t.,| < 0E.,|0E,|,Ua,Ug, |0E., & Uy g|. Here, we have defined the energy
differences §E. = EX — EZ > 0 and 0E, = E2 — EP < 0 between the conduction and
valence band levels of QD’s A and B.
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In Ref. [70], an initial spin polarization was created by optical pumping. For t., = 0,

the states cZJ[T ¢y ,10) are one-exciton eigenstates with energy eigenvalues

B =F - E" -1, (3.8)

which are prepared by absorption of a —o circularly polarized pump pulse. To first order
in the transfer energies t.,, the energy eigenstates are

te Bt ~ ty AA A
Xan) = b0+ (et + e ) 0 (9w
t t
Xpo) = BIeB 0y 4 (——te patep _ T amaa Yoy (39p
| B, > CO’ U0'| > 6EC+UBCC,0'C’U,0' (SE U CO’ UU’ | > ( )

with eigenenergies

t2 t2
EY = B c _ . __ 3.10
X T B TSR UL 9B, + Uy (3.102)

t? t2
EE = B0 - 3.10b
X X SE, + Ug 6E Ug’ ( )

As expected, the eigenenergies are shifted due to the delocalization of electrons and holes
over the coupled QD’s. The exciton states in Eq. (3.9) are the only one-exciton states
which can be prepared by the absorption of a photon with circular polarization —o if the
photon is incident along the hexagonal axis of the CdSe crystal structure. However, a
photon with energy £ ~ E% no longer creates an exciton only in QD B, but an exciton in
which electron and hole are delocalized over the coupled QD system. This delocalization
of the quantum mechanical wave function is consistent with the short time-scale for spin
transfer observed experimentally [70].

We now turn to the calculation of the FR angle, assuming that the pump pulse has
prepared an initial state [¢)) = | Xp ). The evaluation of the dielectric response function
will require us to calculate all two-exciton states that are virtually excited by the probe
pulse. Interesting features in the FR signal effected by spin transfer are of order t?yv. In
order to keep the following expressions simple, we assume that spin is transferred between
the conduction band states and set Z, = 0. Then, only the seven states |ALBy), [To), |S),

|B,B_), |Tp), |S), and |B+ _) listed below and in Appendix B have finite matrix elements
up to O(t?) with Pi|Xp_). For 6F, + Uy # 0, only the eigenenergies of |A_B,), |Tp),
and |S) are close to the excitation energy of a probe pulse with frequency E/h ~ E% /h.
Hence, these states dominate the spectral representation in Eq. (3.6) !

The polarization operator P, induces transitions from the initial state |Xp ;) to

!Two-exciton eigenstates which are energetically offset compared to E + EZ will also contribute to
the FR signal. However, their contribution varies slowly as a function of probe energy and leads at most
to an offset in the results derived below. See also Appendix B.
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Ay By) = éleke) el [o) (3.11)

with energy eigenvalue

Ea,p, = B39 + E2O. (3.12)

The notation indicates that two electrons with the same spin s, = 1/2 occupy the
conduction band states in QD’s A and B, respectively, and form a spin triplet state.
|A; By) is an exact eigenstate of the Hamiltonian even for ¢, # 0 because transfer of the
conduction band electrons is blocked by Pauli’s exclusion principle. The matrix element
(A, B{|P,|Xp,) is the only finite matrix element of the operator P,.

Finite matrix elements for P_ come from the states in which the electrons in the
conduction band level form a spin triplet and singlet, respectively,

1 AT A AT A ~ ~
) = 7(61 e+ edelt) el e o), (3.13a)

1
19) o ﬁ(ef‘*éfi—ag‘iéfi) A1) (3.13b)
t
+f< fe _patpat - te éBTcBT_>><ch 0
6E. +Up Y7 S§E,—U, 7 +10);

and the holes with j, = —3/2 and j, = +3/2 are localized in QD’s A and B, respectively.
Note that the projection of the total conduction band spin onto the spin-quantization
axis vanishes for the triplet state |7j). The normalization constant for |S) is defined by
(S|S) = 1. The eigenenergies

By, = B3O+ EZO (3.14a)

1 1
Es = EYO 4+ B o <6E 5 +UB>

show an energy offset which is caused by the inter-dot exchange coupling [10,68]. The
energies of |A, B, ) and |Tp) are not shifted by electron transfer because of Pauli blocking
and destructive interference of transfer paths, respectively.

The state

t
~Bt ~B ~AT ~B ~AT ~B
|B+B_) CLCT_'—ﬁ(CCTCCL_CCLCCT)
JAF AA
2t7 ciccT— oA oB

) (3.15)

U:

OB, U (0B, —Ua+ Up)
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with

t?
Ep,p. =EYY £ EP _EA —9__¢ (3.16)

Y SE.—Ua
is offset in energy from Eﬁ(o) + E)’?(O’ even to zeroth order in ¢. and does not contribute
significantly to 0p(FE) for E ~ E4. The three states in Eqs. (3.13) and (3.15) provide
the dominant terms in the spectral representation for 6 in Eq. (3.6). In particular, they
exhaust the sum rule 37, |(1/)Z-|ééiéf’_|XBi+>|2 = 1 up to O(#?). In Fig. 3.4, the spin
configurations for |[A,By), |S), and |T) are shown schematically.

From Eqgs. (3.9b)—(3.16), the FR angle 0 is readily evaluated. We denote the electron

transfer probability from QD v to QD v by p,_,,.. We obtain

2
le
S 1
PA-B <6Ec — UA) ; (3.17a)
; 2
= | —=— . 17b
PB—A <5EC+ UB) (3.17b)

For the transition matrix elements of the dipole operators in Eq. (3.6), we obtain in
terms of the transfer probabilities

|(A+B+|I5+|X37+)|2 = (1 - ppsa) di, (3.18a)
~ 1 —

(TP X = 54, (3.18b)
. 1 -2

[(SIP| X, )P = LA PAB (3.18¢)

(ByB_|P_|Xp ) = passnd?. (3.184)

Because of the exchange splitting E7;; — Eg between conduction band triplet and
singlet states, finite transfer probabilities p4_.p and pg_,4 lead to pronounced features
in the FR angle as a function of the probe pulse frequency E/h. For probe energies
Erp = Er,— E¥ < E < Esp = Es — EZ, the FR signal varies strongly with energy and
is given by

CEd? E— Ens
O0r(E) = A1 - 0
r(F) > | p&”HE—&wV+W
E — Esp
— (1 -2 3.19

For |E — Esp| 2 |Er, — Es|, Eq. (3.19) simplifies to
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E - EgY

0p(E) ~ CEd i
(B-B{") +1

(PasB — PB>4) - (3.20)

This result is surprising because the FR angle is not only determined by the probability
PB4 that the electron created by the pump pulse has been transferred to QD A. Rather,
even the sign of the FR angle depends on the parameters 6 E,. (and J F, if transfer between
valence band states is included) and Ua p. 6 > 0 for [0E.—Ua| > |0E.+Ug|, and 0p < 0
for [0E. — Ua| < |0E. + Ug|. Although counterintuitive at first sight, this can be readily
understood from the one- and two-exciton eigenstates. The matrix element for the virtual
creation of an exciton with s, = 1/2, j, = 3/2in QD A is reduced by the probability pp_, 4
that the conduction band electron created by the pump pulse in B has been transferred
to A. In this case, it blocks the creation of a second exciton with the same spin. The
transition matrix element for the creation of an exciton with s, = —1/2, j, = —3/2 is
reduced by the probability p4_, g that the electron with spin s, = —1/2 in the conduction
band state of QD A is transferred to QD B. This transfer process is not prohibited by
Pauli blocking and leads to the virtual occupation of |ByB_) which is energetically far
off resonance. The interplay of both processes results in Eq. (3.20).

Our derivation of Eq. (3.20) was based on the assumption that t. is the smallest
energy scale in the system. As will be discussed in Sec. 3.6 below, for the experimental
parameters in Ref. [70], 0F, + Uy ~ 0. For ¢, = 0, this does not lead to divergences
in the perturbative expansion in t.. However, these special parameters require that two
additional two-exciton states are taken into account for the calculation of fr(E) because
they are nearly degenerate with |A,B,), |S), and |T;) (see Fig. 3.5). The states |S) and

A

|Ty) defined in Eq. (B.1) have finite overlap matrix elements with P_|Xp ),

R 2 pB%ACFB
(o P-| X )" = — (3.21a)
. d2

(SIP | Xp ) = PR, (3.21b)

The spin configuration for the states |S) and |Tp) are shown schematically in Fig. 3.6(a).
Note that both holes occupy the valence band states of QD B. The accidental degen-
eracy of |S) and |Ty) with |S) and |Tp) arises because, for the parameters of Ref. [70],
the decrease in orbital energy 0F, is comparable to the increase in Coulomb energy U ,.
Transitions between an initial state |Xp_) and |S), |Tp), are two-step processes. A o+
polarized probe photon creates an exciton with s, = —1/2 and j, = —3/2 in B, and one
of the conduction band electrons in B is subsequently transferred to A. These processes
are shown schematically in Fig. 3.6(b).

Taking into account all two-exciton states with energies

‘Ei _ (E;;m n E)]?(O))‘ < max||6E, + Ua|, | Er, — Es]],
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the FR angle is

CE E — Enp
0p(E) = —<d% |(1— 0
F( ) 9 { A {( pB—>A) (E—ETOB)2+F2
E — Egp
E — Egp)?+ 12
E_E,fOB + E_ES’B
E—Ezp)P?+T1?2 (E—E;p)2+T2]]

- (1 +pB~>A - 2pA%B) ( (3-22)

- d2BpB~>A |: (

The energy differences Ef, p = Eg, —E% and Eg = Eg—E% are given by the eigenenergies
in Eq. (B.2). For |E — Er,p|, |E — Esp| < |E — Ej, g|, |E — Egpl, Eq. (3.22) simplifies to
Eq. (3.19). 2

Above, we have only considered . # 0 and ¢, = 0, i.e., a scenario in which electrons in
the valence band remain localized in the QD’s while electrons in conduction band states
can be transferred. The case t, # 0 and t. = 0 can be mapped onto the problem discussed
above by mapping electrons onto holes, i.e., by interchanging ¢ and v in above expressions.
In particular, Egs. (3.19) and (3.20) remain valid if the transfer probabilities for electrons
are replaced by the corresponding values for holes, e.g., pa_5 = [t./(0E, +U4)]?, and the
energy eigenvalues are calculated for transfer in the valence rather than the conduction
band.

In the limit of small QD’s with similar sizes, Us g > t., > 0E,, |0 E,|, configurations
in which electrons and holes occupy different QD’s are strongly suppressed. If ¢.,/Us p ~

0 but t.t,/Us s (E}%(O) - E)E;(O)) remains finite, a joint transfer of electron and hole via

a virtual intermediate state is possible. Evidence for this coherent delocalization of an
exciton has been reported for QD’s of similar sizes [80,81]. The observation of incoherent
exciton tunneling between QD’s has also been reported [82-85].

3.5 Doping of coupled Quantum Dots

In the last section, we have analyzed the FR angle for an initial spin population created
by optical pumping, the method used in Ref. [70]. We now calculate the FR angle 0p(E)
for the case that the initial spin density is carried by an excess electron rather than the
exciton. Spin injection could be achieved, e.g., by doping one CdSe QD with a single
donor atom. For a chemical potential EZ <y < E2, EP 4+ Up, the conduction band level
of QD B is filled with one electron while QD A remains empty. The excess electron can
be spin polarized by cooling in presence of a magnetic field. Again, we set ¢, = 0 to keep
our results transparent.

2In order to calculate 8y (E) for arbitrary energies F, also virtual transitions to |By B_),| By B_), and
the vacuum state |0) have to be taken into account. The corresponding expression is omitted here, but
can be directly obtained from Eq. (3.6).
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The transfer matrix element for the conduction band level leads to the delocalization
of the excess electron in QD B,

2
tc . le .
1+ <5E ) (dj; — 5Eccgfj,> 0) (3.23)
with eigenenergy E? = EP —{2/§E,. Note that the energy shift is different from the one
found for the exciton because there is no Coulomb attraction between electron and hole
in the present case.
We calculate the FR angle for an initial state |ep ) and probe energy E ~ E+. Similar

to the analysis in Sec. 3.4, three intermediate states dominate the spectral representation
for Op(E). These states are the following.

—-1/2

|6B,rf> =

_ AAT A ~
A B}) = efeBlet o) (3.24)
with energy eigenvalue
By 5 = EXO 4 EP (3.25)

is populated by creation of an exciton with conduction and valence band spins s, = 1/2
and j, = 3/2, respectively *. Virtual creation of an exciton with s, = —1/2 and j, = —3/2
leads to transitions to the spin triplet and singlet states

1

Ty) = 7 (AAT et ++ C?LéBT> 6‘5‘,,|0> (3.26a)
1

57 o (éA* ¢Bl—efMelt ) ¢t 10) (3.26b)

AT t Bt Bt
+\/_ c AT AT c ¢ TC t
( Gt T B — Ua— Uy o™

xé, |0,

where the normalization constant for |S™) is determined by (S7|S™) = 1. The eigenen-
ergies

E- = EYO4EB (3.27a)

0

1 1
Es- = B3O+ EF v 22 ( - )

VE. —Us—Up JFE.

are split by the exchange coupling of the conduction band levels. Further, there are
several states with energies differing from Eﬁ(o) + EZ (see Appendix C). For probe pulse

3The superscript distinguishes the states with two electrons and one hole from the two-exciton states
discussed in Sec. 3.4.
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energies F ~ Eﬁ(o) and [0E, + Uy — Up| 2 T, Op(FE) is dominated by virtual excitations
into the states |[ALB.), |T; ), and |S7). In this case, all other energy eigenstates with
two conduction band electrons and one hole listed in Appendix C are energetically far off
resonance and can be neglected.

The transition matrix elements of the polarization operators Py between lep +) and
the states Eqgs. (3.24) and (3.26) are readily evaluated. The probabilities for electron
transfer between the QD’s are now given by

. te )
pB*)A = <6E > ’ (328&)
¢ 2
Pasp = <6Ec — UCA — UB> : (3.28b)
Then,
(A BT |Pyles ) = (1= ppa) i, (3.29a)
. 1 — po
TP |ep )P = — LBoap2. 3.20h
0 s 9 A
o 14 pp 0 — 204
(S7IP-Jep,y) [ = —FE=A LoD (3.29¢)

Inserting these matrix elements into the spectral representation of 65 (E), Eq. (3.6), we
find for the FR angle

CEd - E—Epp
QF(E) - 2 (1 _pBaA) (E . E%B); 4+ T2
0
. _ E—-ES
- (1 +Ppa— 2pA—>B) (E — EZ )ii_ T2 (3.30)
SB

for probe energies £ ~ Eﬁ(o), in close analogy to Eq. (3.19) for optical spin injection.
The energy differences are defined by Ep, , = E;.- — EF and Egp = Es- — EP. Because
of the exchange splitting between |7;7) and |S™), 0(F) will in general exhibit several
peaks and lack point inversion symmetry. The functional dependence on probe energy is
determined by the transfer probabilities and the energy differences E, p and Fqp. For a
more detailed analysis which takes into account all finite transition matrix elements up
to O(t?), see Appendix C.

Experiments on doped QD’s could provide valuable information supplementing the
experimental data obtained for optical pumping. The main advantage over optical spin
injection is that spin decoherence times are expected to be substantially longer because
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they are not limited by electron-hole recombination. Even more importantly, FR mea-
surements on doped coupled QD’s can clarify whether spin transfer occurs predominantly
between the conduction or valence band levels because, for t. = 0 and t, # 0, 0p(E) ~ 0

for probe energies F ~ Eﬁ(o).

3.6 Comparison with experiment

In order to compare the results of Sec. 3.4 with experimental data from Ref. [70], we first
provide numerical values for 6FE,., dF,, Us, and Ug. The energy level spectrum of CdSe
QD’s is well established both experimentally and theoretically [86,87]. The absorption
energies EQ(O) = 2.41eV and E)]?(O) = 2.06eV in Ref. [70] are consistent with r4 ~ 2.0nm
and rp ~ 3.5nm, and we will use these radii for the following calculations. From Ref. [86],
0E.~0.30eV and 0F, ~ —0.10eV.

From the bulk values for the static dielectric constant, ¢ = 9.7, and the band masses
in the conduction and valence band, m./m, = 0.12 and m, /m. = 0.45, one obtains the
exciton radius 5.4nm [72,88-90]. The exciton radius is larger than r4 5, and electrons
and holes are strongly confined in the QD’s as assumed in Eq. (3.1). The characteristic
energy scale of the Coulomb interaction is U, ~ e?/4meegr,. For the given values of 74
and rg, Uy = 0.07eV and Ug = 0.04eV.

The Hamiltonian Eq. (3.1) does not take into account biexciton shifts, the exciton fine
structure, and inter-dot Coulomb interactions. For CdSe QD’s with radii 1.5-4 nm, the
biexciton shift is of order 0.01-0.02eV (Ref. [91]) and the characteristic energy splitting
between bright and dark excitons is smaller than 0.01eV [92]. The characteristic energy
scale for inter-dot Coulomb interactions is Upp ~ €?/4mege(ra +rp) < 0.03eV. However,
it is relevant only if neither of the two QD’s is electrically neutral. The most important
effect of the inter-dot Coulomb interaction is to lower the energy eigenvalues of |T) and
S) [Eq. (B.1)] by Uap. All these energy scales are small compared to the level broadening
[ and can safely be neglected.

In the following, we assume that only electrons in conduction band levels are trans-
ferred between the QD’s while valence band electrons remain localized. As discussed in
Sec. 3.5, this assumption can be tested by experiments on doped QD’s. Mediated by
electron transfer through the molecular bridge, the lowest conduction band level in QD
B hybridizes with the lowest conduction band level in QD A. Comparing the observed
energy shift E% — Ef;(o) = —0.02eV with Eq. (3.10), we find

t, = \/(E§(°> . E;g) (6E. + Ugy) = 0.082eV. (3.31)

Our theory predicts that the exciton absorption peak for QD A is shifted to larger
energies for the coupled QD’s, in contrast to the experimental result F4 — Eﬁ(o) < 0. The
most likely explanation for this is that the lowest conduction band level in QD A hybridizes
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also with higher excited levels in QD B which are nearly degenerate with E4 4. In order
to account for quantitative changes effected by this hybridization, the energy EQ(O) must
be replaced by the true value of the hybridized state in all expressions for the two-exciton
eigenenergies. This value can be obtained from E)é(o) +t2/(6E.4+Uy4) ~ 2.36 eV, where the
latter is the experimental value for the exciton absorption edge of QD A in the coupled
QD’s. Hence, E}?(O) — 2.33eV.

From these parameters, we calculate for the transfer probabilities between the lowest
conduction band states py_,p = 0.13 and pg_,4 = 0.06. The energy differences between
the two-exciton states and the initial state are Eqp = 2.35eV, Egp = 2.37eV, ETOB =
2.32eV, Ez5 = 2.31eV. The oscillator strength for exciton creation, proportional to di,B,
is independent of the QD size in the strong confinement regime and proportional to the
QD volume for weak confinement. Because both QD’s are close to the strong confinement
limit, we assume a weak scaling d%/d% = 2 for the following Figures.

In Fig. 3.7(a), we show the FR angle calculated from Eq. (3.20) as a function of
probe energy for different values of I', I' = 0.05eV (solid), 0.02 eV (dashed), and 0.08 eV
(dotted). We note that even qualitative features depend strongly on the microscopic
parameters such as ['. For small I', additional peaks emerge because the contributions
from the individual two-exciton states can be resolved.

In spite of the dependence on microscopic parameters, some pronounced features in
01 (E) are generally present: (i) 05 (E) does not exhibit point-inversion symmetry, in stark
contrast to the FR angle expected from virtual transitions to a single state. (ii) 6 has in
general more than two maxima or minima. The positions and heights of the extrema are
determined by the interplay of the transfer probabilities p4_,p and pg_, 4, and the energy
splittings between the different two-exciton states. Experiments have demonstrated the
strong dependence of the FR angle on the probe energy E, including a fine structure of
the resonance [93].

In Fig. 3.7(b), we compare the calculated FR signal for coupled QD’s A and B with
the corresponding result for uncoupled QD’s A pumped at resonance. For a probe energy
E ~ 2.42¢V, the FR signal for coupled QD’s A and B is significantly smaller than the
FR signal of the AA system, consistent with experimental observations [70].

So far, we have assumed that the symmetry axis of the CdSe QD’s with hexagonal
crystal structure is parallel to the propagation direction of pump and probe laser pulses.
However, in experiment the QD’s are randomly oriented. We discuss next how the random
orientation changes our results. The propagation direction of pump and probe laser pulse
is z, the polarization vector of the probe pulse X, and the symmetry axes of QD’s A and
B are denoted by ¢4 and ¢g, respectively. We define the azimuthal angles ¢4 = Z(x,¢4)
and ¢p = Z(X,Cp), and the angle enclosed by the two symmetry axes ¢sp = Z(C4,Cp)
[see Fig. 3.8(a)]. The conduction band spin eigenstates with quantization axis ¢4 p are
denoted by | 14,5) and | L4 5).

4This hybridization with higher lying levels in QD B does not invalidate our calculation of the FR
angle in Sec. 3.4 because the pump pulse leads to occupation of the lowest conduction band level in QD
B only.
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For arbitrary angle Z(z, ¢p), the probability for the circularly polarized pump pulse
to create a net spin polarization in the conduction band level decreases from its maximum
value at Z(z,¢g5) = 0 to zero at Z(z,¢p) = w/2. For Z(z,¢p) < m/2, the majority of
conduction band electrons is in spin state | 15), with the quantization axis defined by ¢p.
On transfer to QD A, the conduction band electron retains its spin state because states
with s, = +1/2 are degenerate in both QD’s and ¢, is spin-independent. The characteristic
level spacing of valence band states is large compared to the crystal field splitting in bulk
CdSe, which allows us to treat the latter as a small perturbation, following Ref. [91].

In the following, we calculate the FR angle for a random orientation of QD’s assum-
ing that the pump pulse has created a conduction band electron with spin | 15). The
random orientation of QD’s affects the FR of the probe pulse in two ways. Firstly, the
matrix elements for transitions from the j, = £3/2 valence band levels to the s, = +1/2
conduction band levels in QD A (B) decrease by sin ¢4 (sin ¢ ) compared to the oriented
sample [91]. More importantly, also the relative orientation of ¢4 and ¢p modifies the FR
angle. For illustration, consider two QD’s with . = 0, and a conduction band electron
in spin state | T5) in B. The o~ circularly polarized component of the probe pulse with
E ~ E4 excites a virtual exciton in A, with a conduction band electron in spin state
| 14). Note that the spin direction is defined by ¢4, the symmetry axis of A. Expanding
| T4) = cos(pap/2)| TB) +isin(dap/2)| L) in terms of the eigenstates along quantization
axis Cg, the product state of the two excitons contains terms in which the two conduction
band spins are antiparallel and have a finite overlap with the spin singlet state. This is
in stark contrast to the oriented sample, where the two conduction band electrons would
always form a triplet.

The analogous analysis for coupled QD’s must take into account both the reduced
transition matrix elements for the probe pulse and the relative orientation of QD’s A and
B. Because virtual transitions to |T,) and |S) involve excitation of QD B which was
populated by the pump pulse, the matrix elements in Eq. (3.21) are reduced by a factor
| sin ¢ g| which is independent of the relative orientation of ¢4 and ¢p. In contrast, virtual
transitions in QD A probe the spin polarization relative to the quantization axis ¢4 after
an electron with spin pointing along ¢g has been transferred, and the transition matrix
elements depend also on ¢p [Fig. 3.8(b)]. For the FR angle, we find

CE ( , .9 E — Enp
HF(E) = T dACOS¢AB S1n ¢A (1 _pB%A) E_ ETB (;—{—F2 (332)
0
E— ESB 2 .. 9 E— EfB
—(1+ -2 — dysin -
( PB—A pA%B) (E _ ESB)2 +F2:| B ¢BpB~>A (E _ ETOB)Q +F2

L+ E —FEzp ‘
(B — Egp)?+1?
The dependence on the relative orientation of the two QD’s, ¢ 4, is readily understood.

For ¢ 4p = 7/2, the first and second term in the expression for fz(FE) vanish because the
conduction band spin created in QD B is perpendicular to the spin quantization axis in
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QD A. A laser pulse probing QD A does not show any FR because the net spin along ¢4
vanishes [Fig. 3.8(b)].

In experiment, ¢4 and ¢p are randomly distributed over the unit sphere. Performing
this average in Eq. (3.33), we find for the FR angle

— CE (3 E — FErp
0p(E) = — {4 —d% |(1 - 0

E — Esp
E — Egp)? + I?

b - E,fOB + E— ES‘B
E—Epp)+1?  (E—-Egp)+1?] )

- (1 +PBsaA— 2pA%B) ( (333)

2

- gd%PBaA [ (

Note that the spectral weight of the last term increases compared to the oriented sample.

3.7 Conclusions

We have calculated the Faraday rotation angle for coupled QD’s as a function of the probe
pulse frequency. We have considered an initial spin polarization in neutral QD’s (created
by optical pumping) and of one excess electron in the two coupled QD’s. Our results lead
us to the following conclusions.

(i) The Faraday rotation angle shows a nontrivial functional dependence on the probe
energy, the details of which depend on the spin exchange energy and spin transfer proba-
bilities [see Eq. (3.20) and Fig. 3.7(a)]. Most notably, because several two-exciton states
are separated in energy by a small spin exchange coupling, 0r(FE) is not invariant under
point inversion symmetry. Measurement of 6z(E) as a function of probe energy would
allow one to identify the contributions of the various two-exciton states that are virtually
excited by the probe pulse.

(ii) Experiments on doped QD’s would allow one to determine whether spin transfer
is mediated by transfer in the conduction or valence band states. In particular, from a
vanishing Faraday rotation angle for probe pulse energies close to the resonance of QD A
one could exclude that an excess electron injected into QD B has been transferred to A.
In contrast, for optical spin injection, spin could be transferred both between conduction
and valence band states.

(iii) In general, measurement of the Faraday rotation signal at a given probe frequency
does not provide enough information to determine spin transfer probabilities between the
QD’s. However, from the experimentally observed energy shifts, we calculate a charac-
teristic energy scale t. = 0.08eV for spin transfer in the conduction band. Based on
the transfer Hamiltonian ansatz, this implies a probability of 6% for electron spin to be
transferred from QD B to QD A, and of 13% for the opposite direction.

The purpose of this work was to establish the connection between spin transfer and
the Faraday rotation signal observed in experiment. Our analysis was based on a transfer
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Hamiltonian ansatz. Some of the most interesting results of Ref. [70] remain to be explored
theoretically. Most notably, the transfer Hamiltonian ansatz is based on the assumption
that electrons are transferred between the QD’s via the bridging benzene molecule. Mi-
croscopic work will have to clarify why conjugated molecules provide efficient transfer
paths between QQD’s. Very recently, further studies of the problem were presented [94],
the results of which provide support for the work described in this chapter.

The results obtained here can provide important guidance also for the identification of
microscopic transfer mechanisms. The increase of the Faraday rotation signal at a fixed
probe frequency has been interpreted as increase of the spin transfer efficiency for higher
temperatures [70]. According to our results, an increase in the transfer matrix element ¢,
also leads to a shift of the exciton edge in absorption spectra toward lower energies. If
the exciton absorption edge does not change with increasing temperature, the increased
Faraday rotation signal is more likely effected, e.g., by additional incoherent transfer paths
than by an increase of the transfer matrix element.
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Figure 3.1: Schematic bilayer of the different types of dots A (size 3.4 nm) and B (size 7Tnm).
The structure is denoted as AB.(Figure courtesy of M. Ouyang and D. D. Awschalom.)
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Figure 3.2: (A) Time resolved FR curves for structures AAAA and BB and their FFT spectra.
These curves serve as control and reference, showing that at the pumping energy corresponding
to A (B) a peak at the corresponding frequency is observed. (B) FR curves from a ABAABA
sample for different probing energies. (Figure courtesy of M. Ouyang and D. D. Awschalom.)
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Figure 3.4: Schematic representation of the spin configurations (in the electron picture) for states
(a) A4 B4) and (b) |S), |To) to leading order in #.. The dashed lines represent the conduction
and valence band edge in bulk CdSe.
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Figure 3.5: Energy level scheme of all two-exciton eigenstates discussed in the text. The eigenen-
ergies fall into three groups which are split by terms of order O(t2) or O(6E,). For the QD’s
used in Ref. [70], 6E, + Uy ~ 0, and the five states |4, B.), |Tp), |S), |To), and |S) are nearly
degenerate.
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Figure 3.6: (a) Schematic representation of the spin configurations for the states |S), |Tp) to
leading order in .. (b) Transitions between an initial state |Xp ) and |S), |Ty) are effected
by the absorption of a o polarized probe photon and subsequent tunneling of one conduction
band electron.
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Figure 3.7: (a) Plot of the FR angle as a function of probe pulse frequency calculated from
Eq. (3.20) for different level broadenings I' = 0.05eV (solid), 0.02eV (dashed), and 0.08eV
(dotted). All other parameters are as described in the text. For small I', 0r(F) clearly shows
the individual contributions from the various two-exciton states. (b) Comparison of the FR
angle for coupled QD’s for I' = 0.05eV (solid) with the calculated signal for a AA structure

(dashed).
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QD A
QDB ~

O

Figure 3.8: (a) The hexagonal symmetry axes of QD’s A and B are in general oriented randomly
relative to the direction of the laser pump and probe pulse. Because of the interband selection
rules, a o~ circularly polarized laser pulse generates a spin polarization along the symmetry axis
of the respective QD. (b) A conduction band electron created in QD B retains its spin direction
on transfer to QD A. FR in QD A probes the projection of this spin onto the symmetry axis
¢4, which gives rise to a factor cos ¢p4p for the first and second term in Eq. (3.33).



Appendix A

Two-spin density matrix

In the following we show the density matrix for the two-spin state of the electrons right
before injection into the spin-LEDs, obtained as described in Sec. 2.2.1.

Xerra (& 1)
Xt (6, 1)
X{ttny (8 7)
Xt (6, 1)
Xty (&, 1)
Xt (6 7)
Xty (6, 1)
Xty (6, 1)
Xty (1)
Xy (¢ F)

Xty (6 1)

]. ! ! ! ! g

1 {(1 +aP) [l +a'P cosf]—e T [e’t /M1 cos? B+ e "'/T2 sin? ﬁcos(ht')} }

sin 3
4

_8125 o~/ Totiht {_e—t’/T{ cos 3+ e~t'/13 [cos Beos(ht') —i sin(ﬁt')} }

.
_sin”j ot/ Ta+iht [eft’/T{ _ et/ cos(ilt')}

{—a'P' (14 aP) + e WNH/T) co5 g — o= U/THE/T) [cosﬁcos(izt') +1 sin(ﬁt')] }

4
8126 {—a'P'(l + aP) + e WNH/T) o5 B 4 ¢~ W/TH/T2) [— cos B cos(ht') + i sin(ﬁt')] }
1 ! U ! ! 7
1 {(1 + aP)[1 — d'P'cos f] + et/ [e‘t /Mt cos? B+ e~"/"2 sin? Bcos(ht')} }

eft/T2+i ht

— {e’t'/T{ sin? § 4 et/ [cos(ﬁt') (14 cos® B) — 2i cosﬁsin(ﬁt')] }

_s126 o—t/Totiht {eft’/T{ cos f 4+ et/ [_ Cosﬁcos(iuf’) +14 sin(ﬁt’)] }

—# e HTa—iht {—e‘t'/T{ cos 3+ et/ [cos Beos(ht') + i sin(ﬁt')] }
e—t/T2—i ht - - ~ ~

—— {e‘t /Migin® B 4 e~/12 [cos(ht') (1+ cos® B) +2i cosﬁsin(ht')} }

]. ! 4 ! ! g

1 {(1 —aP)[1+d P cos f] + et [e‘t /Mt cos? B+ e~"'/"2 sin? Bcos(ht')} }
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xumn(tt) = Sliﬁ {—a'P' (1 — aP) — e~ WhH/T) cog B 4 o~ W/T1HE/T2) [cosﬂcos(ﬁt') +1 sin(ﬁt')] }
. 9
X t,t') = _sin p e UTamiht | o=U/T1 _ o=t/T2 cog(ht!
{411} 4
’ Sin /B —t/T —iht —t’/T' —t’/T’ T, .. 7,
X tt) = ———e 72 e 1cosff—e 2 |cos S cos(ht') 4+ 7 sin(ht
{414} 1
Xt t) = Sliﬁ {—a'P'(l — aP) — e WNH/T) ¢og § 4 e~ W THE/T) [cosﬁcos(ﬁt') —1 sin(ﬁt')} }

]. ! ! ! J g
X6 t) = 1 {(1 —aP)[l —d' P cos 3] — e VT2 [e’t /M1 cos? f+ e /T2 sin? ﬁcos(ht')} }



Appendix B

Two-exciton eigenstates of coupled
quantum dots

In order to evaluate the FR angle 0 (E) from Eq. (3.6) for arbitrary probe energies E, all
two-exciton intermediate states |¢;) with finite transition matrix elements (¢;|Py|Xp ;)

must be calculated. States with energies F; ~ E + E)]?(O) lead to the dominant contri-
butions in the expression for the FR angle, Eq. (3.6). The states |A;B.), |S), and |Tp)
defined in Egs. (3.11) and (3.13) have energy eigenvalues E; with |E§(O) + E)]?(O) —F;| <
Olt2/(0E.—Uy),t2/(6E.+U,)], and are the most important intermediate states for probe

pulse energies F ~ Eﬁ(o). However, for the experimental values of Ref. [70], dE, + Uy is
small and two additional two-exciton states must be taken into account.
The states

+ T CiCo” c da
AL, ) ¢ a8 o), B
~At B ~At B

(CC‘LCC,I— - ch—cci) Cy -I-CU —|0>

te At te i,
+\/§< N R —_ BT) B ¢B 10y (B.1b)

E\H&\H

0B, + Us + 20Uzt~ " 5B, + Uy ot e

differ from the corresponding states in Eq. (3.13) in that both holes are localized in
QD B. The normalization constant for |S) is fixed by (S|S) = 1. The eigenenergies

E;, = E{V+EYY 1 0E, +U,, (B.2a)
Es = EYO+E 46B,+U, (B.2b)

1 1
212 —
+ c<6E6+UB 6Ec+2UB+UA>
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|¥i) E; E; — EZ [eV]
1A,B,) | EYO 4+ ESO 2.35

ITy) EL” + EYY 2.35

B EL” + EYY 2.37
|B.B_) | E? — EA + EP© 2.06

Ty) | EA — EB + E5O 2.32

1S) | EA—EP 4+ 2O 2.33
|B,B_) 2650 2.04

Table B.1: Two-exciton eigenstates |1;) which contribute to the FR angle up to second order in
t.. We also list the corresponding eigenenergies to O(t?) and evaluate them for the parameters
discussed in Sec. 3.6. As noted in the main text, the degeneracy of [Tp), |S) with |Tj), |S) is a
consequence of 0, + Uy ~ 0 for the QD’s used in experiment.

are shifted relative to Ey, and Eg by 6E, + Uj.

The state
—_ tc . . .
|B+B,> X écBLéff + m (CAJr ij_ — C?Z_Cfi)
226 et b
CotCe Co G |0 B.3
T OE. 7 Up)(20E. + Us 5 305) | ot Co-10) (B3)
with
B(0) te
E—~ =2E¢" —2—F-— B.4
By B- 5Ec + Up ( )
is energetically separated from Ep, and Eg by EQ(O) — E)]?(O).

In Table B.1, we summarize all two-exciton eigenstates which contribute to the spectral
representation of 0x(E) up to order t2. We also list the formal expressions for their
eigenenergies to leading order O(t%) and give the numerical values, taking into account
terms up to O(t?) for the parameters discussed in Sec. 3.6.



Appendix C

Eigenstates of doped coupled
quantum dots

Here, we calculate eigenstates and energy eigenvalues for states with two electrons and
one hole in the coupled QD’s. These are the intermediate states |1/;) in Eq. (3.6) which
have finite overlap matrix elements with pi|637+> and determine the FR angle for coupled
QD’s doped with a single excess electron.

In addition to the states |AyBl), |S7), and |T;) defined in Eqs. (3.24) and (3.26),
five states have contributions of order ¢ to the FR angle. These are

. Bt B 3 At B At B .

|B+Bf> X |:CC,T|‘CC,T— + 6Ec _ UCA _ UB (CC,‘LCC,L - CC,lcC,i)] C:UA,7|0>7 (Cla)
AAT A A~

|A+B+ > = CC,TFCCB,LCU,—&—m% (Clb)

el ettt el o), (C.1¢0)

1
7

(calelt —ealelt) + (C.1d)

t t
\@( c oAt oAt _ te oBi &f)} é£7|0>,

0. + Ua + Ug @~ 5B, ot fem

BB ) {éfiéf* - (el - ééiéf*)] ¢8_0), (C.le)
C

with the proportionality constants chosen to ensure normalization. The corresponding
energy eigenvalues are
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t2
E, .- = 2EB +Uz—FE*—2 ¢ C.2
BB~ c + B v 5EC_UA_UB7 ( a)
Big- = BXV+EL (C.2b)
+B+
Ep = EXV+E. (C.2¢)
1 1
Es. = EZO 4 B2 4o -
§ x ot e\ SE T SE U1 U )
t2
_ = EBOLEgP_9_c (C.2d)

0E.

From Eq. (C.1), we obtain the transition matrix elements in terms of the transfer
probabilities defined in Eq. (3.28),

(BBZIP-les ) = piaudh, (C.3a)
(A By [Piles )P = ppady, (C.3b)
(7 |Pofens)? = H5Ad3, (C.30)
S|P lep )P = PBoAg C.3d

! 2
(ByB_ P fens ) = (1-ppa.)ds. (C.30)

These transition matrix elements and the eigenenergies allow one to calculate 6 (E) for
arbitrary energies. However, the states in Eq. (C.1) are offset in energy from Eﬁ(o) + EB,
For probe energies F ~ Eﬁ(o), virtual transitions to the states |[A4By), |S7), and |T} )
are dominant, and 0p(F) simplifies to the approximate expression given in Eq. (3.30).

In Table C.1, we list all states with two electrons and one hole which contribute to
0r(E) up to O(t?). We also provide the general expressions for the eigenenergies to order
O(t?) and evaluate them numerically for the parameters discussed in Sec. 3.6.



|13 B E;, — E7 [eV]
1A,B7) | EY©4+EB 2.34
Ty) B w + EB 2.34
15-) Eq w +EP 2.36
|B,B") 2E§3 +Up — EX 2.19
A,B_ )| EZO4pa 2.27
75) ESO 4 pA 2.27
15-) EYO 4 pA 2.28
B,B_ )| EZ©4Ep 2.03
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Table C.1: Eigenstates |¢;) with two electrons and one hole which contribute to the FR angle
up to second order in t.. We also list the corresponding eigenenergies to O(t?) and evaluate
them for the parameters discussed in Sec. 3.6.
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