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Abstract 

The current prevailing understanding of sensory processing in cortical areas is largely based on the 

presentation framework proposes that neural activity form presentations of external stimulus. 

However, with recent advances in technologies of recording neuronal activity in awake behaving 

animals, it has been shown that the primary visual cortex (V1) is also strongly driven by self-

movement, suggesting that the presentation framework of visual cortex function is incomplete. 

Particularly, a subset of neurons in V1 selectively respond to transient visuomotor mismatches, and 

it could be explained by the predictive coding framework which postulates V1 compares the 

predicted and received visual input and sense the difference between the two. Experience of normal 

visuomotor coupling has been shown to be crucial for the development of visual-guided behavior, 

therefore it is likely that the prediction of visual input depends on the experience of visuomotor 

coupling, which shapes the functional development of V1. 

In the present study, we use a virtual reality system and trained dark-reared mice with either normal 

or random visuomotor coupling, and recorded the neural activity in layer 2/3 neurons of V1. We 

show that mismatch responses in excitatory neurons were strongly dependent on visuomotor 

experience. By recording several different types of layer 2/3 interneurons in V1 and manipulating 

their activity with designer receptor exclusively activated by designer drugs (DREADDs) or 

optogenetics tools, we propose a circuit model showing that the mismatch response could be the 

result of a disinhibition mediated by local somatostatin (SST) interneurons. Mismatch responses in 

both groups of mice with different visuomotor training conditions merged together after they were 

transferred to normal rearing environment. These data demonstrate that neurons in layer 2/3 

mouse V1 computes a difference between an excitatory motor-related input and an inhibitory visual 

input, where the balance between the two inputs is finely tuned by visuomotor experience. 
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Introduction 

Vision provides a major fraction of the information we receive, process, and perceive in our 

everyday life. Thus, the visual system, the part of our nervous system which takes charge of vision, 

plays a pivotal role in our interaction with the environment. In mammals, visual processing starts 

when light hits on the retina, where light is transformed into neural signals and are sent to a part of 

thalamus called lateral geniculate nucleus (LGN); from there the signals are further relayed to 

primary visual cortex (V1), which is the main brain area focused in this thesis. 

Representation framework 

The representation framework of visual cortex function is the idea that neural activity in the visual 

cortex serve to form a representation of external stimuli (Marr, 2010). This framework is largely 

based on the concept of receptive field and is currently the prevalent understanding of visual cortex 

function. 

The term “receptive field” was coined in 1906 by neurophysiologist Sir Charles Scott Sherrington in 

the somatosensory context (Sherrington, 1906), and was adapted in the sense of single neurons in 

the visual system by Hartline (Hartline, 1938). Horace Barlow later discovered inhibitory surround in 

the receptive field in frog’s retina, provided the first evidence for “feature detector” hypothesis, as 

described in the paper: “It is difficult to avoid the conclusion that the 'on-off' units are matched to 

the stimulus and act as fly detectors (Barlow, 1953).” Many related studies on receptive field 

followed (Spillmann, 2014), including works by Hubel and Wiesel who showed elongated-shape-

receptive fields with selective orientations and positions. Hubel and Wiesel termed “simple”, 

“complex” and “hypercomplex” cells based on the receptive field properties of the neurons they 

recorded (Hubel and Wiesel, 1962, 1959). Follow the notion of the above findings, David Marr 

summarized in his book using the term “representational framework” suggesting that the function of 

the visual system is to form a representation of the external stimuli, i.e. light intensities. This 

representation has multiple hierarchical levels, with lower levels form relatively simple features such 

as edges and bars, feedforward to higher levels where signals integrated to form more complex 

features and ultimately a perception of a 3D object (Marr, 2010). 

Predictive coding framework 

Visual signals in the natural world are highly redundant. It is of general interest of signal transmission 

to reduce this redundancy for better efficiency. Horace Barlow suggested that sensory neurons 

encode a representation of sensory stimuli based on its statistical characteristics to save the limited 

bandwidth of the sensory processing pathway, as called efficient coding hypothesis (Barlow, 1961). 
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As an extension of this, there has been an increasing number of theoretical works on the predictive 

coding strategy of the brain. 

Rao and Ballard proposed a predictive coding model of visual processing in the cortex. In their 

model, the visual system consists of multiple processing levels, just like in the presentation 

hypothesis. The key difference here is that the model make use of top-down signals as predictions of 

the incoming signal received in the adjacent lower level. At each level, the difference between the 

received and predicted signal is calculated, and only this difference (referred to as “residual error”) is 

propagated further to the higher level. In this way, as Rao and Ballard suggested, the dynamic range 

of coding capacity of the visual system is more efficiently used (Rao and Ballard, 1999). Spratling also 

suggested a modified version based on Rao and Ballard’s model (Spratling, 2008). Notably, Friston 

provided a unified predictive coding framework under the free energy principle (Friston and Kiebel, 

2009). Also see (Clark, 2013) for a more comprehensive review on predictive coding. 

The predictive coding framework is a step forward over the representation framework. In addition to 

the classical feedforward bottom-up signals, the feedback top-down signals are arguably equally 

important, and a function of sensory cortex is to compare the two and compute the difference. This 

way of understanding could even be applied to the function of cortex or even the brain in general. 

Visuomotor coupling 

Sensory feedback is inherently coupled to movement, as in the case of vision, we see a flow of 

change in our visual field as a result of our own movements. The importance of visuomotor coupling 

was first revealed by pioneering visual neuroscience studies. Early experiments have shown that 

kittens reared in a holder with exposure to a patterned environment failed at a movement 

discrimination task, while kittens reared with free moving in the same environment appeared 

normal as control groups (Riesen and Aarons, 1959). This suggests that visuomotor coupling is 

required for the development of functional vision. Interestingly, similar observations were also made 

in several human studies, in which subjects were asked to wear wedge prisms in front of their eyes. 

Subjects were able to quickly adapt to the rearranged visual coordinates, and this adaptation only 

happened when voluntary bodily movements were involved (Held and Bossom, 1961; Held and 

Freedman, 1963). 

This notion is further demonstrated by Held and Hein with an elegantly designed experiment. In this 

classic experiment, they reared kittens in complete darkness from birth, and started training them in 

a custom-built apparatus, referred to as a “kitten carousel”. Of the two kittens being trained 

simultaneously, only one of them had its paws on the floor of the apparatus, thus being able to 

control the rotation of the whole apparatus (referred to as the active kitten), while the other kitten 
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had no influence on the rotation when it moves (referred to as the passive kitten). In this way, only 

the active kitten has the visual feedback coupled with its own movements (Held and Hein, 1963). 

The beauty of this design is that the visual stimulus received by the pair of kittens is well controlled, 

as provided by the vertical gratings painted on the wall, and both kittens can freely move during the 

exposure to the apparatus. Thus, the only difference between the two kittens is the visuomotor 

coupling. In subsequent tests, passive kittens didn’t show a visually guided paw placement response 

when held approaching a table surface, and failed to discriminate shallow and deep in the visual cliff 

test, while active kittens appeared normal (Hein et al., 1970; Held and Hein, 1963). 

Interestingly, different visually guided behaviors, or different components of the same behavior, are 

developed independently, which require the experience of that specific corresponding visuomotor 

coupling, as later shown by Held and Hein. Kittens reared in normal environment but don’t have 

sight of their own limbs successfully developed paw placement response, however, the accuracy of 

the placement is greatly impaired (Hein and Held, 1967). Similar results were later observed in 

monkeys as well (Bauer and Held, 1975). Moreover, the development of this paw placement 

behavior is also eye dependent, as if only one eye was exposed with proper visuomotor coupling, the 

kitten only show the behavior with that eye open, but not with the other eye (Hein et al., 1970). 

Thus, “the system for visual guidance of movement consists of components which can be acquired 

independently”. 

Motor-related signals in V1 

As illustrated by Rao and Ballard, visual predictions could be made based on spatial/temporal 

adjacent visual inputs. Along the same line of thinking, visual predictions could also be made based 

on motor-related signals, that is, the animal’s own motor commands. It has been proposed that the 

brain sends an “efference copy” (also called “corollary discharge”) of the motor commands and use 

it for sensorimotor integration. 

In recent years, there has been an accumulating body of works indicating that neural activity in V1 is 

strongly modulated (Fu et al., 2014; Niell and Stryker, 2010) and driven (Keller et al., 2012; Saleem et 

al., 2013) by self-generated movement. These motor-related signals are not only much more 

prominent than visual stimulus-evoked responses alone, but also exist even without visual stimulus 

(Keller et al., 2012). While this led people to rethink the classical definition of sensory cortices, it 

seems that the long proposed sensorimotor integration could already happen at a rather low-level 

cortical area such as V1. 

Moreover, there are a subset of cells in V1 selectively respond to the mismatch between predicted 

and actual visual input (Keller et al., 2012). By introducing brief halts to perturb the normal visual 
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flow feedback when mice running in a virtual reality environment, cells in V1 respond strongly to this 

brief halt. This mismatch response cannot be explained by visual stimulus alone as it clearly depends 

on the integration of both visual stimulus and motor-related signals. If this mismatch response is 

indeed based on the learned correlation between forward running and coupled backward moving 

visual flow, then it is very likely that this mismatch response depend on the prior visuomotor 

experience of the animal. 

In the present study, we adapted the aforementioned “kitten carousel” training paradigm to mice 

with virtual reality environment, that is, with either coupled or non-coupled visuomotor experience, 

and then image the neural activity in V1, to see whether visuomotor coupling experience affect the 

mismatch response in mice V1, and try to identify a local microcircuit that underlie the computation 

of the mismatch response. 
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Results1 

Mice were dark-reared from birth and only exposed to visual stimulation in six two-hour training 

sessions every other day over the course of 12 days, starting on postnatal day 32 (Figure 1A). During 

the training sessions each mouse was trained either in a coupled visuomotor condition (coupled 

trained: CT), in which the visual flow feedback was coupled to the mouse’s own locomotion, or in a 

non-coupled condition (non-coupled trained: NT) in which visual flow was independent of the 

mouse’s locomotion (Figure 1B). Mice were head-fixed on a spherical treadmill (Dombeck et al., 

2007) surrounded by a toroidal screen that provided visual flow feedback in the form of full-field 

vertical gratings on the walls of a virtual corridor. To match the visual experience of both groups, 

mice were trained in pairs (one CT and one NT mouse) in two separate virtual reality environments 

such that the locomotion of the CT mouse was used to control the visual flow of both virtual 

environments (Figure 1B). In this way, both CT and NT mice experienced identical visual flow. A third 

group of mice was reared and trained in complete darkness (dark trained, DT). After the 6 training 

sessions, we recorded neural activity in V1 of all 3 groups of mice by two-photon imaging of a 

genetically encoded calcium indicator GCaMP5 (Akerboom et al., 2012) or GCaMP6f (Chen et al., 

2013) during different visual flow feedback conditions in 5 imaging sessions every other day, starting 

on postnatal day 44. After the second imaging session is finished, mice were transferred to a normal 

dark-light cycle environment (Figure 1A). Imaging sessions for all groups of mice consisted of 1 or 2 

repetitions of approximately 8 minutes (500 s) of locomotion coupled to visual flow feedback 

(closed-loop session), and 2-3 replays of the same visual flow patterns during an open-loop session 

to quantify visual responses. To probe for feedback mismatch responses, we briefly halted visual 

flow for 1 second at random times during the closed-loop session (referred to as mismatch), while in 

open-loop sessions these halts of visual flow were also replayed to the mice, which we refer to as 

playback halts. Note that analysis of playback halts was restricted to times when the mouse was not 

running (see Materials and methods). Mice were free to run during the entire experiment, including 

open-loop sessions and did so spontaneously. In early sessions, mice that exhibited low locomotor 

activity were prompted to run using air-puffs to the neck. CT and NT mice exhibited similar 

locomotion behavior during both training and imaging sessions (Figures S1A and S1B). 

We expressed GCaMP5 in C57BL/6J mice and GCaMP6f in vGAT-Cre (Vong et al., 2011) x Ai14 

(Madisen et al., 2010) mice using an AAV2/1-EF1α-GCaMP vector (see Methods). We chose to use 

vGAT-Cre x Ai14 mice which inhibitory neurons express tdTomato to identify excitatory and 

                                                           
1 Part of the Results section also appear in the manuscript of the paper which has been submitted to Cell, with 
modifications. 
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inhibitory neurons in our imaging data. We found that the overlap between green and red labelled 

cells are very small, resulting 96.8% ± 0.7% (mean ± s.e.m.) of GCaMP6f labelled neurons were 

excitatory (Figures S1C and S1D). Thus, we pooled all the data from wild-type C57BL/6J mice and 

vGAT-Cre x Ai14 mice and referred them as excitatory neurons. In total, we recorded from 2259 

excitatory neurons in CT mice (996 putative excitatory and 1263 identified excitatory neurons) and 

2104 excitatory neurons in NT mice (764 putative excitatory and 1340 identified excitatory neurons). 

Responses in excitatory neurons 

We found that in CT mice, a considerable fraction of excitatory neurons responded to mismatch (865 

of 2259 neurons or 38.3%; Figures 1C and 1D) resulting in a large population mismatch response 

(Figure 1E). In CT mice, mismatch responses cannot be explained by visual input alone as there was 

no population response to playback halt (Figure 1C and 1E; note, mismatch and playback halt are 

identical visual stimuli). This is consistent with what we previously found in normally reared mice 

(Keller et al., 2012). In NT mice, the fraction of neurons that responded to mismatch was smaller 

(425 of 2104 neurons or 20.2%) and the population response to mismatch was weaker than in CT 

mice (Figure 1E and S1E). Interestingly, in NT mice the response to mismatch was of similar 

magnitude as the response to playback halt (Figure 1E) and individual neurons often responded to 

both mismatch and playback halt (Figures S1F and S1G). With increasing mismatch response, 

neurons in CT, but not NT, mice became increasingly selective for mismatch (Figure S1H). Thus, 

whereas in CT mice, mismatch responses cannot be explained by visual input alone and require 

integration of motor-related and visual inputs, mismatch responses in NT mice are predominantly 

visually driven.  In both CT and NT mice, the response reliability of mismatch responsive neurons 

increased with average amplitude of the mismatch response. On average mismatch neurons 

responded to 37.5% of mismatches in CT mice and 33.8% in NT mice (Figure S1I). A subset of 

neurons, separate from mismatch neurons, responded with a decrease in activity to mismatch as 

well as playback halts (Figure 1D and S1J). This response type is consistent with a visual response 

driven by visual flow: upon cessation of the visual flow, the neuron decreases its response. 

However, the running-onset response during the closed-loop session (referred to as running-onset 

response) and the visual flow onset responses during open-loop sessions (referred to as playback-

onset response) were similar between CT and NT mice (Figure 1F). Thus, the differences in mismatch 

responses between CT and NT mice cannot be explained by differences in average visual or motor-

related input to V1. In dark trained mice, running-onset responses were normal, but mismatch and 

playback halt responses were smaller (Figure S2). This suggests that visual and motor-related inputs 

are maintained independently, and that visuomotor coupling is necessary for the development of 

normal integration of visual and motor-related inputs. 
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The next thing we tried to find out is how is the mismatch response generated? To do it the 

mismatch cell needs to receive both motor-related input and visual input, and the simplest model 

for this would be that these two inputs have opposite signs, one being excitatory and the other one 

being inhibitory. Motor-related inputs have been shown to drive activity in mouse V1 (Keller et al., 

2012; Saleem et al., 2013), thus mismatch cells should receive inhibitory visual input, and this feed-

forward visual inhibition would need to be relayed by local inhibitory neurons (Figure 2A). In this 

model, inhibitory and excitatory inputs are balanced when predictions match feed-forward input. At 

mismatch onset, a decrease in visual feed-forward inhibition would then allow the excitatory motor-

related input to activate the neuron. To test this, we computed the correlation of the activity of each 

neuron with visual flow and with running speed during the open-loop sessions. As running and visual 

flow are independent in open-loop sessions, the activity of a neuron that receives net inhibitory 

visual input and net excitatory motor-related input would have a negative correlation with visual 

flow and a positive correlation with running speed and vice versa. Plotting the distribution of the 

correlations of all neurons revealed that neurons with a strong mismatch response, had a negative 

correlation with visual flow and a positive correlation with running speed, on average (Figure 2B). 

When comparing the entire population of neurons, we found that in CT mice, neurons with a 

positive correlation with running speed tended to have a negative correlation with visual flow, 

whereas in NT mice neurons with a positive correlation with running speed tended to also have a 

positive correlation with visual flow.  We quantified this interaction for every mouse as the angle (A) 

of the first principal component of the correlation scatter plot and found that, in CT mice, this angle 

was on average negative (-41° ± 10°, mean ± s.e.m.), whereas in NT mice it was on average positive 

(9° ± 13°, mean ± s.e.m.; Figures 2B and 2C). This suggests that visuomotor coupling establishes a 

balance between inhibition and excitation, such that those layer 2/3 excitatory neurons that are 

strongly activated by running are also strongly inhibited by visual input. 

Responses in inhibitory neurons 

As most long-range input to V1 are excitatory, to make the aforementioned circuit work, visual input 

needs to be relayed by a local inhibitory interneuron in V1, such that visual input excite this 

interneuron, and it further inhibit the mismatch cell. To test this, we repeated the same training and 

imaging paradigm using 4 different Cre mouse lines to selectively express GCaMP6f (AAV2/1-EF1α-

DIO-GCaMP6f-WPRE) in somatostatin (SST) (Taniguchi et al., 2011), vasoactive intestinal polypeptide 

(VIP) (Taniguchi et al., 2011), parvalbumin (PV) (Hippenmeyer et al., 2005), or neuropeptide-Y (NPY) 

(Gong et al., 2007) interneurons. These SST-Cre, VIP-Cre and PV-Cre lines target approximately 80% 

of interneurons in mouse V1 and are largely non-overlapping (Pfeffer et al., 2013). 



12 
 

We found that among all the interneuron subtypes we tested as well as excitatory neurons, SST 

interneurons showed highest correlation with visual flow (Figure 3). Moreover, only SST 

interneurons responded, on average, with a drop in activity to both mismatch and playback halt 

(Figure 4A). This drop in activity on visual flow halt was independent of visuomotor experience as it 

was present in both CT (5 mice, 118 neurons) and NT mice (5 mice, 157 neurons), indicating that the 

visual input onto SST neurons is established independently of motor-related input. Note that 

although running onsets in closed-loop session strongly activate SST interneurons (Figure 4B), but 

running-onset responses were almost absent in darkness (Figure S3A), indicating the strong 

activation seen in closed-loop session is largely due to visual input. 

The responses of VIP interneurons were also independent of visuomotor experience. In both CT and 

NT mice, they responded with an increase of activity to mismatch but not to playback halt (Figure 

4C; CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons). Since SST and VIP interneurons mostly 

project reciprocally in the cortex (Pfeffer et al., 2013), mismatch responses may result from the 

combination of a running-related excitatory input to VIP interneurons (Fu et al., 2014) and a relief 

from SST interneuron mediated inhibition. Interestingly, running-related input to VIP interneurons 

was strongly experience dependent. VIP interneurons were only driven by running onset during 

closed-loop sessions in CT but not in NT mice (Figure 4D). Consistent with the strong reduction of 

running-onset responses in SST interneurons in darkness, a running-related input to VIP 

interneurons in NT mice was unmasked in darkness (Figure S3B). Taken together, our findings 

suggest that the inhibitory connection from SST interneurons onto VIP interneurons is stronger in 

absence of visuomotor experience. 

Responses in both PV interneurons (CT: 5 mice, 498 neurons; NT: 6 mice, 344 neurons) and NPY 

interneurons (CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons) were behavioral state and 

visuomotor-experience dependent. These two interneuron subtypes were activated by mismatch in 

CT mice, but unresponsive to mismatch in NT mice and unresponsive to playback halt in both CT and 

NT mice (Figures 4E, S3C-E). This highly selective response to mismatch in CT mice could be a direct 

consequence of the stronger activation of the excitatory neuron population in CT mice in response 

to mismatch (Figure 1E). Either excitatory neurons recruit PV and NPY interneurons only above a 

given activity level or the calcium dynamics in PV and NPY interneurons are such that we are unable 

to measure activity changes below a given threshold. Note however, that such a simple 

measurement threshold cannot account for the observation that in CT mice the population response 

of excitatory neurons to running onset is smaller than that to mismatch (Figures 1E, 1F), but the 

running-onset response of PV interneurons is larger than that to mismatch (Figures 4E, 4F). One 

potential consequence of a selective activation of PV interneurons in CT mice is that the PV 
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activation could lead to a response normalization in excitatory neurons (Wilson et al., 2012) that 

narrows the population response to mismatch. Consistent with this, we found that the distribution 

of mismatch responses is narrower in CT mice (Figure S3F). This narrowing of the distribution of 

mismatch responses could function to make mismatch responses more selective to one particular 

type of mismatch. 

Our data indicate that layer 2/3 excitatory mismatch neurons and VIP interneurons receive 

excitatory, motor-related input, while SST interneurons receive strong excitatory visual input. 

Consistent with the finding that SST interneurons receive strong input from surrounding excitatory 

neurons (Adesnik et al., 2012; Fino and Yuste, 2011; Jiang et al., 2015), we found that excitatory 

neurons whose activity correlates positively with visual flow (CT: 24% or 539 of 2259 of neurons; NT: 

24% or 513 of 2104 neurons) exhibit a decrease in activity on mismatch similar to SST interneurons 

(Figure S4). Based on the connectivity motif of excitatory neurons, SST and VIP interneurons (Pfeffer 

et al., 2013; Pi et al., 2013), we propose a schematic model circuit to explain mismatch responses in 

layer 2/3 excitatory neurons (Figure 5A). SST interneurons target the apical dendrites of layer 2/3 

excitatory neurons (Markram et al., 2004). A reduction of feed-forward visual input onto SST 

interneurons during mismatch thus relieves the apical dendrite of inhibition, and would allow 

excitatory motor-related input to activate the neuron. Based on this model we predict that both SST 

interneuron activation and inhibition should lead to a decrease of the mismatch response in 

excitatory neurons, but should have opposing effects on running-related activity in excitatory 

neurons (Figure 5B). To test this, we manipulated the activity of SST interneurons using DREADDs 

(Armbruster et al., 2007). We injected either AAV-EF1α-DIO-hM4D(Gi)-mCherry or AAV-EF1α-DIO-

hM3D(Gq)-mCherry into V1 of normally reared SST-Cre mice. In addition, we unconditionally 

transfected neurons with GCaMP6f to record mismatch and running related activity in putative 

excitatory neurons. Note that in these experiments we cannot exclude the possibility that some of 

these putative excitatory neurons are non-SST interneurons. We found that DREADD inhibition of 

SST interneurons led to an increase in running-related activity in excitatory neurons, while DREADD 

activation of SST interneurons led to a decrease in running-related activity (Figure 5C). In addition, 

both inhibition and activation of SST interneurons led to a decrease in the mismatch response of 

excitatory neurons (Figures 5D and 5E). These results are consistent with a model of mismatch 

computation in which mismatch responses in layer 2/3 neurons are the result of a relief of SST 

interneuron mediated inhibition. To test the effect of a transient manipulation of SST and VIP activity 

on mismatch responses we injected AAV-EF1α-GCaMP6f and either AAV-EF1α-DIO-ChrimsonR-

tdTomato (Klapoetke et al., 2014) or AAV-CAG-FLEX-ArchT-tdTomato (Han et al., 2011) into V1 of 

normally reared SST-Cre mice and VIP-Cre mice. We then identified putative excitatory mismatch 
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neurons based on their responses to mismatch events in closed-loop sessions (in the following 

simply referred to as mismatch neurons) and measured the responses of these neurons to brief (1 s) 

activation or inhibition of SST or VIP interneurons (see Methods). We found that activation of SST 

interneurons resulted in an inhibition of mismatch neurons that was strong enough to fully suppress 

mismatch responses in mismatch neurons when SST interneurons were activated concurrently with 

a mismatch event (Figure 6A). Consistent with this, inhibition of SST neurons resulted in an 

activation of mismatch neurons and concurrent inhibition of SST interneurons with a mismatch 

event resulted in increased mismatch responses (Figure 6B). Conversely, activation of VIP 

interneurons resulted in an activation of mismatch neurons and an increase of the mismatch 

response when VIP interneurons were activated concurrently with a mismatch event (Figure 6C). 

Finally, inhibition of VIP interneurons resulted in an inhibition of mismatch neurons that was strong 

enough to suppress mismatch responses (Figure 6D). All of these effects are stronger for mismatch 

neurons than for putative excitatory neurons that do not respond to mismatch (Figure S4). In 

summary, these results are consistent with the classical cortical SST-VIP disinhibitory circuit (Pfeffer 

et al., 2013; Pi et al., 2013), and suggest that this circuit plays a central role in mismatch computation 

with mismatch neurons under inhibitory control of SST interneurons. Thus, the relief of SST-

mediated feed-forward visual inhibition combined with a top-down motor-related excitatory drive 

can account for visuomotor mismatch responses in layer 2/3 excitatory neurons. 

Response change in the time course 

Given that both CT and NT mice learned to perform visuomotor tasks over the course of a few days, 

visuomotor coupling should rapidly restore normal visuomotor processing in V1. To quantify the 

change in neural processing in V1 with the exposure to visuomotor coupling, we measured mismatch 

responses in both CT and NT mice over the course of 8 days following restoration of visuomotor 

coupling (exposure to both open-loop and closed-loop conditions and normal visuomotor experience 

with the transfer to rearing in a normal light/dark cycle; Figure 1A). We found that mismatch 

responses of excitatory neurons in CT and NT mice equalized rapidly with normal visuomotor 

experience (Figures 7A - 7C). The population mismatch responses of SST and VIP interneurons 

remained stable throughout the course of the experiment for both CT and NT mice (Figures 7D and 

7E). This is consistent with the idea that the mismatch response of VIP and SST interneurons 

developed independent of visuomotor coupling. Similar to excitatory neurons, mismatch responses 

in PV and NPY interneurons equalized after restoration of normal visuomotor coupling (Figures 7F 

and S6A). Interestingly, we found not only an increase of mismatch responses in NT mice with 

exposure to closed-loop sessions and normal visuomotor experience, but also a decrease of 

mismatch responses in CT mice with exposure to open-loop sessions and normal visuomotor 
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experience. Similarly, we found that for the distribution of visual flow and running speed 

correlations, the angle of the first principle component (Figures 2B and 2C) equalized and 

approached zero for both CT and NT mice (Figures 7G and S6B). Altogether, these results suggest 

that the artificial restriction of visuomotor coupling to only a subset of movements (forward 

locomotion and eye movements) leads to an overrepresentation of the visuomotor processing of 

these movements that needs to be unlearned for the restoration of normal visuomotor behavior. 

This is consistent with the finding that a lack of visuomotor coupling for a specific range of 

movements leads to behavioral impairments that are specific to those movements (Hein and Held, 

1967). 

Behavior 

We performed a similar visual cliff test for the first batch of wild-type CT and NT mice as in Held and 

Hein’s study (Held and Hein, 1963). Mice were tested both after finishing the second imaging session 

(last session before transferring to normal rearing environment) and the fifth imaging session. In 

contrast to the results of Held and Hein’s, we found both CT and NT mice failed at the visual cliff 

test, in both before and after normal visuomotor exposure, while normal-reared mice always chose 

the safe side (Table S1). In addition, we found both CT and NT mice were reluctant to step down 

from the ridge, resulting many time outs and limited total number of trials (Table S1), as oppose to 

the presumption of the visual cliff test that mice will try to avoid elevated places in general. This 

potential confound made it hard to interpret the results, however, it seems that both CT and NT 

mice have impaired visual functions and 6 days of exposure to normal environment is not enough to 

fully recover the normal behavior in visual cliff test. 

We also tested if CT and NT mice can learn to perform visuomotor tasks after exposure to normal 

visuomotor coupling. After the coupled and non-coupled training, mice were trained either to 

navigate a 2-dimensional (2D) virtual environment or to detect mismatch (see Methods). Both CT 

and NT mice learned to perform the 2D virtual locomotion task over the course of 6 training sessions 

of 1 hour each (Figures S5A, S5B). Also, both CT and NT mice learned to report the occurrence of 

mismatch over the course of 3-5 training sessions of 1 hour each (Figure S5C). These results suggest 

that NT mice could quickly adapt and establish normal visuomotor processing with exposure to 

proper visuomotor coupling. 

To quantify the behavioral response to mismatch, we also measured pupil dilation at the onset of 

mismatch. Mice showed a measurable pupil dilation response with a delay of approximately 450 ms 

after the neural response to a mismatch (400 ms for CT, 500 ms for NT; see Methods; Figure 7H). 

This pupil dilation response was larger in CT mice than in NT mice, and may reflect a startle 
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response. Similar to the time course effect in neural activity, the pupil dilation response also 

equalized after exposure to normal visuomotor experience (Figure 7I). 

Gene expression 

To explore the potential difference in gene expression in the visual cortex of CT and NT mice, we 

planned to adopt a genetically defined cell-type specific gene profiling approach, called translating 

ribosome affinity purification (TRAP) method (Heiman et al., 2008). As a trial experiment, we first 

tried gene profiling on total RNA extracted from V1 tissue after coupled or non-coupled visuomotor 

training. No genes were found to have significant difference in expression fold-change (p < 0.01, 

fold-change > 2) after three two-hour training sessions between CT and NT mice (Figure S7). 

However, when compared between male and female mice, we could show that there are five genes 

stands out the criteria (Figure S7), all of them locate on the X or Y chromosomes (Table S2). The 

results suggest that our gene profiling microarray system does seem to work, but total RNA 

preparation might be too crude to identify differences in gene expression between CT and NT 

treatments. 
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Discussion 

In the present study, we have shown that the development of mismatch responses in mouse V1 

depends on the prior visuomotor experience, and such response could be resulted from the 

transient release from the inhibition of local SST interneurons. We suggest that a subset layer 2/3 

computes the difference between predicted and received visual flow, based on excitatory motor-

related input and inhibitory visual input, and the balance between the two is tuned by visuomotor 

experience. Our results provide another piece of evidence in favor of the predictive coding 

framework of sensory cortex function, as opposed, or a supplement, to the prevailing representation 

framework. 

One common misunderstanding of the term “mismatch” we use here is that it is something “bad” 

and needs to be corrected. This is not necessarily true. In the context of predictive coding framework 

(Rao and Ballard, 1999), sensing the mismatch helps the brain to focus on the meaningful fraction of 

sensory stimuli while ignoring the rest. Thus, the mismatch is something the brain needs “pay 

attention” to, but not always needs to correct. Of course, as the internal model is still plastic after 

established, and it could adapt to some mismatch if it happens every time thus not interesting 

anymore. Note that as predictive coding framework is also based on a multiple hierarchical 

structure, internal models could be updated only at lower levels and in short terms (e.g. sensory 

adaptation). 

Another common misunderstanding of the mismatch paradigm we use in this study and the previous 

study (Keller et al., 2012) is that this kind of “mismatch” is not likely to happen in real life, thus why 

would the visual cortex evolutionarily develop a computational circuit dedicated to detect such 

situation? First, in terms of visuomotor mismatch, there will be two kinds of it by definition: either 

received visual input is less (slower), or more (faster) than expected. In extreme cases, it would be 

either the animal is not moving but see moving gratings, or that the animal is running but visual flow 

stops. The former would be the same as a classical visual stimulus and has been described in early 

visual neuroscience research (Hubel and Wiesel, 1959). To demonstrate the difference between 

predictive coding and representation framework, we chose the latter kind of mismatch as responses 

to these mismatch cannot be explained by the representation framework. Second, the sudden halt 

of full-field visual flow is just a simplified paradigm we chose, potentially maximize the response we 

record. Local mismatch could happen in real life (e.g. a small object moving at the same speed as you 

move), and as shown in a recently published paper from our lab, mismatch cells also have receptive 

fields, which their sizes match to those classified as pure “visual responsive” cells and are also 

organized in the same retinotopic structure (Zmarz and Keller, 2016). 
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There are studies in recent years reported that motor-related excitatory input to V1 serve as a kind 

of neuromodulation, which amplify visual responses without changing the basic response properties 

(Fu et al., 2014; Niell and Stryker, 2010). We don’t think the motor-related signals are just 

modulatory. First, the running-related gain associated with visual responses (approximately a factor 

of 2 to 3) cannot account for the difference between the playback halt response and the mismatch 

response (roughly a factor of 9)(Zmarz and Keller, 2016). Hence to describe mismatch responses as a 

visual response with a running-induced gain would require invoking a stimulus specific change in 

running-related gain (a different running-related gain for classical visual stimuli and the playback halt 

stimulus, respectively). Second, the amplitude of mismatch responses scales linearly with the 

difference between running speed and visual flow speed (Keller et al., 2012; Zmarz and Keller, 2016). 

Moreover, this relationship of mismatch response with the difference between running speed and 

visual flow is identical when computed on playback data (where running speed and visual flow vary 

independently and continuously) or mismatch events (where the is an abrupt halt of visual flow). 

This means the stimulus driving the mismatch signal is the difference of visual flow and running 

speed, not the abrupt halt of visual flow. This is also exemplified by the fact that we can use 

playback data to estimate the parameters of the integrate-and-fire neuron model (Figure 2E,F) and 

predict the responses to mismatch events. Hence, also a nonlinear combination of a running-related 

signal and a visual response to the playback-halt stimulus cannot explain mismatch responses, as 

such a combination of two excitatory signals could not easily result in a linear increase with the 

difference between visual flow speed and running speed. 

Our results suggest that functional mismatch neurons receive both excitatory motor-related input 

and inhibitory visual input, the latter of which is mediate by SST interneurons. As we show that in NT 

mice this mismatch signals are impaired, precise targeting the two input onto the same cell might 

require the normal exposure of such visuomotor experience. On the contrary, mismatch responses 

in SST and VIP interneurons do not depend on visuomotor experience (Figure 4A,C), suggesting that 

visuomotor experience mainly modifies the synaptic inputs onto the excitatory neuron. The balance 

between excitation and inhibition is established in this way and further maintained and updated by 

visuomotor experience (Figure 7C-F). 

What are the potential brain areas that send motor-related and visual input to the V1 model circuit 

we proposed there? Feed-forward visual input onto SST interneurons likely comes from surrounding, 

visually-driven layer 2/3 excitatory neurons (Adesnik et al., 2012; Fino and Yuste, 2011; Jiang et al., 

2015). The source of the motor-related excitatory input is less clear. V1 receives input from various 

other cortical areas, including direct projections from motor-related areas like the anterior cingulate 

cortex (Miller and Vogt, 1984; Vogt and Miller, 1983; Zhang et al., 2014) and the retrosplenial cortex 
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(Miller and Vogt, 1984; Vogt and Miller, 1983). These projections could convey the signal of 

predicted visual flow based on the motor output of the animal. 

The idea of sensorimotor integration, efference copy and internal model has long been suggested, 

and many theoretical works argue that making predictions and error correction is one of the 

essential function of the brain. Along the same line of thinking, we propose that the comparison of 

feed-forward input with a top-down prediction may be a general principle of cortical function, where 

predictions from higher areas are continuously compared to signals from lower areas, and 

mismatches between the two are used to refine these predictions (Clark, 2013; Friston, 2010). It is 

intriguing to speculate that impairments in this comparison may underlie cortical dysfunctions 

where the balance between predictions and feed-forward input is systematically perturbed (Frith et 

al., 2000; Sinha et al., 2014), as it could account for many symptoms observed in autism spectrum 

disorders and schizophrenia. Thus, the circuit mechanism for computing visuomotor mismatch we 

described here could potentially be a testable model for studying pathology and treatments for 

those diseases. 
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Figures and tables 

Figure 1. Mismatch responses in excitatory neurons depend on visuomotor experience. 

(A) Experimental timeline. Mice were dark-reared from birth. AAV injection and imaging window 

implantation occurred on postnatal day 30 (P30). From P32 to P42, mice had 6 training sessions in 

either coupled (coupled trained: CT), non-coupled (non-coupled trained: NT), or dark (dark trained: 

DT) conditions, followed by 2 to 5 imaging sessions beginning at P44 and spaced by 2 days. Some of 

the mice were put on a normal 12 h/12 h light/dark cycle after the second imaging session.  

(B) Schematic of the training setup. Mice were trained in pairs; visual flow (black arrows) on both 

training setups was coupled to the locomotion of the CT mouse (blue arrows). The NT mouse was 

free to run but had no influence on the visual flow it was seeing. 

(C) Sample fluorescence traces (ΔF/F, black lines) of an excitatory neuron in a CT (left) and a NT 

(right) mouse, during a closed-loop (top traces) and an open-loop session (open-loop sessions 

consisted of a replay of the visual flow generated during the preceding closed-loop session, bottom 

traces). Vertical bars indicate mismatch (orange) and playback halt (green) events. Binarized visual 

flow (green) and running speed (purple) are indicated below the fluorescence traces. In CT mice, we 

found neurons that selectively respond to mismatch, whereas in NT mice, neurons that responded 
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to mismatch also responded to corresponding playback halts in open-loop sessions. Note that all 

data presented in this and the following panels are from the first imaging day. 

(D) Average mismatch response (ΔF/F) of all neurons in CT mice (left, 9 mice, 2259 neurons) and NT 

mice (right, 9 mice, 2104 neurons), sorted by amplitude of mismatch response. Black and grey 

shading to the right indicates significance of responses (grey: p ≥ 0.05, black: p < 0.05, Mann-

Whitney-U test; see Methods). Orange bar marks the duration of mismatch. In CT mice, the fraction 

of neurons with a significant mismatch response was larger than in NT mice (CT: 40% ± 5%; NT: 26% 

± 5%, p = 0.03, Mann-Whitney-U test; see Methods). 

(E) The average population response (ΔF/F) to mismatch (solid) was stronger in CT (blue) than in NT 

(red) mice. Population response to playback halt was negligible in CT mice, but was as large as the 

mismatch response in NT mice (dashed lines). Orange area indicates duration of mismatch; shading 

indicates s.e.m. The data in the different curves are compared bin-by-bin (100 ms bins) using a 

Student’s t test. Bins with a significant difference (p < 0.01) are marked by a black line above the 

curves; those without are marked as light gray (see Methods). Each comparison is marked by a pair 

of line segments to the left, corresponding in color and line style to the data plotted, indicating 

which two curves are being compared. 

(F) Same as in (E), but for running onset in closed-loop sessions (solid lines) and playback onset in 

open-loop sessions (dashed lines, see Methods). Shading indicates s.e.m.   
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Figure 2. Mismatch responses can be explained as a difference between an excitatory motor-related 

input and an inhibitory visual input.  

(A) Circuit model in which an excitatory mismatch neuron (MM, grey) integrates excitatory motor-

related input and inhibitory visual input relayed by a local inhibitory interneuron (orange) to 

compute the difference between predicted and actual visual flow. 

(B) Correlation coefficients between neural activity (ΔF/F) of layer 2/3 excitatory neurons with 

running speed and with visual flow in CT (left; 9 mice) and NT (right; 9 mice) mice during open-loop 

sessions. Each dot represents a single neuron (CT: 2259 neurons; NT: 2104 neurons). Dot color 

indicates the amplitude of the mismatch response. Black circles indicate the mean correlation 

values. The angle A indicated by the solid black line is the average angle between the first principle 

component of the distribution and the y-axis (see Methods). Note that all data presented in this and 

the following panels are from the first imaging day. 

(C) Mean angle of the first principle component relative to the y-axis of the distribution of 

correlation coefficients as in (B) for CT (n = 9) and NT mice (n =9). Error bars indicate s.e.m., Mann-

Whitney-U test, p = 0.04.  
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Figure 3. SST interneurons are strongly driven by visual flow.  

Average correlation of neural activity with visual flow during open-loop sessions for excitatory 

neurons (average correlations: CT: 0.00, NT: -0.01) and SST (CT: 0.13, NT: 0.04), VIP (CT: -0.01, NT: -

0.03), PV (CT: -0.01, NT: 0.00) and NPY (CT: 0.02, NT: 0.02) interneurons in CT and NT mice. Average 

correlation of activity with visual flow was highest for SST interneurons. Error bars indicates s.e.m. *: 

p < 0.05, **: p < 0.01, ***: p < 0.001, n.s., not significant, p ≥ 0.05, Student’s t test.  
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Figure 4. Experience dependent visuomotor integration in inhibitory interneurons.  

(A) Average population responses to mismatch (solid line) and playback halt (dashed line) for SST 

interneurons from CT (blue, 5 mice, 118 neurons) and NT (red, 5 mice, 157 neurons) mice. For both 

CT and NT mice, SST interneurons responded with a decrease in activity to mismatch and playback 

halt. Orange area indicates duration of mismatch; shading indicates s.e.m. Note that all data 

presented in panels A-F are from the first imaging day. The data in the different curves are 

compared bin-by-bin (100 ms bins) using a Student’s t test. Bins with a significant difference (p < 

0.01) are marked by a black line above the curves; those without are marked as light gray (see 

Methods). Each of the four comparisons is marked by a pair of line segments to the right, 

corresponding in color and line style to the data plotted, indicating which two curves are being 

compared. 

(B) Same as in (A), but for running onset in closed-loop sessions (solid lines) and playback onset in 

open-loop sessions (dashed lines).  

(C and D), Same as in (A and B), but for VIP interneurons (CT: 3 mice, 189 neurons; NT: 3 mice, 137 

neurons). VIP interneurons responded with an increase in activity independent of experience but did 

not respond to playback halt. 

(E and F) Same as in (A and B) but for PV interneurons (CT: 5 mice, 498 neurons; NT: 6 mice, 344 

neurons). The mismatch response in PV interneurons was strongly experience dependent.  
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Figure 5. A drop in SST activity leads to a mismatch response in excitatory neurons.  

(A) Schematic of a model circuit describing the computation of mismatch responses in layer 2/3 of 

V1. Excitatory neurons and VIP interneurons receive excitatory motor-related input (purple arrow; 

dashed purple line depicts idealized running profile around a mismatch, indicated by orange 

shading). SST interneurons receive feed-forward visual flow input (green arrow; dashed green line 

depicts idealized visual flow around a mismatch, indicated by orange shading). Blue lines next to 

neurons depict average mismatch responses of excitatory neurons (Figure 1E), SST (Figure 4A) and 

VIP (Figure 4B) interneurons from CT mice. During mismatch, visual flow is halted and the activity of 

SST interneurons decreases, thereby disinhibiting the apical dendrites of mismatch neurons and 

allowing the excitatory motor-related input to activate the neuron. VIP interneurons amplify this 

effect by further suppressing SST interneuron activity. 

(B) Predicted effects of pharmacogenetic manipulation of SST interneurons on excitatory neurons. 

Idealized activity profiles of excitatory motor-related activity (purple line) and SST interneuron 

activity for a short period of running during a closed-loop session including a mismatch (onset 

marked by vertical line). In normal conditions (top), SST interneuron activity balances the motor-

related input and the mismatch response of excitatory neurons is maximal (mismatch-triggered 

difference between excitatory and inhibitory input, orange shading). Inhibition of SST interneurons 

(middle) should result in a smaller mismatch-induced difference in inhibition and therefore a smaller 

mismatch response as well as increased running-related activity. Excitation of SST interneurons 
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(bottom) should also result in smaller mismatch responses due to an over-inhibition of excitatory 

neurons, but decreased running-related activity.  

(C) Mean running related activity before and 30 min after injection of DREADD activator CNO (5 

mg/kg i.p.) in mice expressing an inhibitory (left; 829 neurons, *** p < 0.001, Wilcoxon signed-rank 

test) or an excitatory (right; 411 neurons, *** p < 0.001, Wilcoxon signed-rank test) DREADD in SST 

interneurons. 

(D) Average population mismatch responses of excitatory neurons before (green trace) and 30 min 

after (yellow trace) the injection of CNO in mice expressing an inhibitory DREADD in SST 

interneurons (4 mice, 829 neurons). Orange bar indicates duration of mismatch, shading indicates 

s.e.m. Statistical comparisons as in Figure 1E.  

(E), Same as in (D), but for mice expressing an excitatory DREADD in SST interneurons (2 mice, 411 

neurons).  
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Figure 6. Mismatch neurons are inhibited by SST activation or VIP inhibition and activated by SST 

inhibition or VIP activation.  

(A) Left: Schematic of the experimental design. ChrimsonR was selectively expressed in SST 

interneurons and GCaMP6f in all neurons. We then locally activated SST interneurons through the 

imaging objective while imaging GCaMP6f activity in all neurons. Right: Response of putative 

excitatory mismatch-responsive neurons (165 neurons, 5 mice) to mismatch (green line), 

optogenetic activation of SST interneurons during running (purple line), and concurrent mismatch 

and optogenetic activation of SST interneurons (yellow line). Orange area indicates duration of 

mismatch and duration of optogenetic stimulation respectively, shading indicates s.e.m. Statistical 

comparisons as in Figure 1E, but for 67 ms bins. Upper line marks comparison of manipulation-only 

against baseline, lower line marks comparison of mismatch only against concurrent mismatch and 

optogenetic stimulation. 

(B) Left: As in (A), but expressing ArchT in SST interneurons. Right: Responses of mismatch neurons 

(236 neurons, 4 mice) as in (A), but for optogenetic inhibition of SST interneurons. 

(C) Left: As in (A), but expressing ChrimsonR in VIP interneurons. Right: Responses of mismatch 

neurons (114 neurons, 4 mice) as in (A), but for optogenetic activation of VIP interneurons. 

(D) Left: As in (A), but expressing ArchT in VIP interneurons. Right: Responses of mismatch neurons 

(107 neurons, 3 mice) as in (A), but for optogenetic inhibition of VIP interneurons. 
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Figure 7. Normal visuomotor experience restores normal visuomotor integration. 

(A) Average responses to mismatch (solid lines) and playback halt (dashed lines) of neurons with 

positive correlation of activity with running speed (running correlation greater than 0.05) and 

negative correlation of activity with visual flow (visual correlation smaller than -0.05) on the first 

imaging day (CT: 12% ± 2% of neurons per mouse, 9 mice; NT: 10% ± 3%, 9 mice). Orange area 

indicates duration of mismatch, shading indicates s.e.m. Statistical comparison as in Figure 1E. 

(B) Same as (A), but for last imaging day (CT: 10% ± 2% of neurons per mouse, 8 mice; NT: 9% ± 1%, 7 

mice). 

(C) Average responses to mismatch and playback halt (see Methods) of excitatory neurons selected 

as in (A) as a function of imaging days for CT and NT mice. Mice were dark reared until the second 

imaging session (indicated by gray area). Error bars indicate s.e.m.  *: p < 0.05, **: p < 0.01, ***: p < 

0.001, n.s., not significant, p ≥ 0.05, Mann-Whitney-U test. 

(D) Average population responses to mismatch of SST interneurons, as a function of imaging days for 

CT and NT mice. 
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(E) As in (D) but for VIP interneurons. 

(F) As in (D) but for PV interneurons. 

(G) Mean angle of first principal component (as in Figures 2B and 2C; see Methods) relative to the y-

axis for CT and NT mice as a function of imaging days. Gray area indicates dark rearing, error bars 

indicate s.e.m. 

(H), Average pupil dilation in response to mismatch and playback halt for CT (25 mice) and NT mice 

(25 mice; see Methods) on the first imaging day. Orange area indicates duration of mismatch, 

shading indicates s.e.m. Statistical comparisons as in Figure 1E, but for p<0.05. 

(I), Average pupil dilation in response to mismatch and playback halt a function of imaging days for 

CT and NT mice. Gray area indicates dark rearing, error bars indicate s.e.m. *: p < 0.05, **: p < 0.01, 

***: p < 0.001, Mann-Whitney-U test. 
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Figure S1. Analysis of running behavior, tdTomato expression, and additional analysis of mismatch 

and playback halt responses. Related to Figure 1. 

(A) Fraction of time spent running increased during training period (left) for CT mice (36 mice) and 

NT mice (36 mice) and remained stable during imaging sessions (CT: 31 mice; NT: 30 mice). Error 

bars indicate s.e.m., gray shading indicates dark rearing. n.s., not significant, p ≥ 0.05, Student’s t 

test. 

(B) Same as in (A), but for average running speed. Average running speed increased during training 

(left) and remained stable during imaging sessions (right). Error bars indicate s.e.m., gray shading 

indicates dark rearing. 
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(C) Two-photon image of layer 2/3 neurons in mouse V1. In vGAT-Cre x Ai14 mice, inhibitory 

interneurons express tdTomato and are shown in red. Expression of GCaMP6f (green) under the 

EF1 promoter resulted in 96.8% ± 0.7% (3321 of 3438 in total,  mean ± s.e.m.) of GCaMP6f-positive 

neurons that were not tdTomato positive. The surprisingly small overlap between GCaMP6f and 

tdTomato expression may in part result from the selection bias of GCaMP6f-positive neurons 

towards active neurons. 

(D) Number of GCaMP6f-expressing neurons and tdTomato-expressing neurons per field of view 

(375 µm x 300 µm; note that the example shown in (C) is not a full field of view; 7 mice). The ratio of 

GCaMP6f-expressing neurons to tdTomato-expressing neurons is approximately 3.5 across mice. If 

labeling were complete, and assuming that roughly 20% of neurons in cortex are interneurons 

(Markram et al., 2004), one would predict a ratio of 4. 

(E) As in Figure 1E, but for individual mice. Average population response to mismatch in all CT (thin 

red lines) and NT (thin blue lines) mice. The mean response over all neurons of CT (NT) mice is the 

thick blue (red) line. 

(F) Scatter plot of average mismatch and playback halt responses for CT mice (left; 865 neurons, 25 

outside axis limits and not shown) and NT mice (right; 423 neurons, 3 outside axis limits and not 

shown) in excitatory neurons with significant response to mismatch (see Methods). 

(G) Correlation between mismatch responses and playback halt responses for neurons with 

significant response to mismatch was significantly different from 0 in NT mice (9 mice, Student’s t 

test, p = 0.001), but not in CT mice (9 mice, Student’s t test, n.s., p = 0.43, see Methods). Error bars 

indicate s.e.m. 

(H) Mismatch selectivity measured as the absolute ratio of the mismatch response to the playback 

halt response as a function of the mismatch response, in CT (blue) and NT mice (red). With 

increasing mismatch response, mismatch neurons in CT, but not NT, mice become increasingly 

selective for mismatch versus playback halt. Data are represented as mean plus s.e.m. 

(I) Scatter plot for response reliability as a function of mismatch response for CT (blue; 865 neurons) 

and NT mice (red; 423 neurons) in excitatory neurons with significant responses to mismatch. 

Response reliability was calculated for each neuron as the fraction of mismatch events with a 

significant response (see Methods). Reliability was variable, but tended to increase with increasing 

mismatch responses.  

(J) Average responses to mismatch (solid lines) and playback halt (dashed lines) of neurons with 

positive correlation of activity with visual flow (correlation greater than 0.05) on the first imaging 
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day (CT: 24% or 539 of 2259 of neurons, 9 mice; NT: 24% or 513 of 2104 neurons, 9 mice). Orange 

area indicates duration of mismatch, shading indicates s.e.m. Statistical comparison as in Figure 1E. 
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Figure S2. Population responses and correlation patterns in dark trained (DT) mice. Related to 

Figures 1 and 2. 

(A) Average population responses to mismatch (solid line) and playback halt (dashed line) for 

excitatory neurons in DT mice (6 mice, 1076 neurons). Shading indicates s.e.m. Statistical 

comparisons as in Figure 1E, but for 67 ms time bins. 

(B) Same as in (A), but for running onset in closed-loop session and playback onset in open-loop 

session. 

(C) As in Figure 2B, but for DT mice. Correlation coefficients between neural activity (ΔF/F) of layer 

2/3 excitatory neurons with running speed or with visual flow during open-loop sessions in DT mice. 

Each dot represents a single neuron. The color of each point indicates the amplitude of the 

mismatch response. The black circle marks mean correlation values. The solid black line indicates the 

angle of the mean first principle component of the distribution (see Methods).  

(D) Comparison of mismatch responses and playback halt responses of CT, NT and DT mice. *: p < 

0.05, ***: p < 0.001, Student’s t test. 
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Figure S3. Additional analysis of interneuron responses. Related to Figure 4. 

(A and B), Running-onset responses in complete darkness for SST (A; CT: 5 mice, 118 neurons; NT: 5 

mice, 157 neurons) and VIP (B; CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons) interneurons on 

first imaging day. Statistical comparisons as in Figure 1E.  

(C) Average population responses to mismatch (solid line) and playback halt (dashed line) for NPY 

interneurons from CT (9 mice, 456 neurons) and NT (7 mice, 445 neurons) mice on first imaging day. 

Orange area indicates duration of mismatch, shading indicates s.e.m. Statistical comparisons as in 

Figure 1E. 

(D) Same as in (C), but for running-onset responses in closed-loop sessions (solid lines) and playback 

onset in open-loop sessions (dashed lines) on first imaging day. Statistical comparison as in Figure 

1E. 

(E) Same as in (D), but for running-onset responses in complete darkness on first imaging day. 

Statistical comparison as in Figure 1E. 

(F) Cumulative density plot of normalized mismatch responses of excitatory mismatch responsive 

neurons for CT (2259 neurons) and NT (2104 neurons) mice on first imaging day. Note the response 

distribution of the NT neurons is wider than that for CT neurons (p < 0.01, Kolmogorov–Smirnov 

test). This indicates that the distribution of mismatch responses over neurons is sharpened in CT 

mice, potentially by the selective activation of PV interneurons (Figure 4E). 
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Figure S4. A subset of excitatory neurons decrease activity during mismatch. Related to Figure 6. 

(A) Left: Average responses to mismatch of 20% of neurons with the largest, positive mismatch 

response (solid green line, 165 neurons, 4 mice, the same neurons shown in Figure 6) and of 20% of 

neurons with no mismatch response (dashed green line, 165 neurons). Middle: Average response of 

the same mismatch responsive (solid purple line) and non-mismatch responsive neurons (dashed 

purple line) to optogenetic activation of SST interneurons. Right: Average response of mismatch 

responsive (solid yellow line) and non-mismatch responsive neurons (dashed yellow line) to 

concurrent optogenetic activation of SST interneurons and mismatch. Orange area indicates 

duration of mismatch and duration of optogenetic stimulation, shading indicates s.e.m. Statistical 

comparison as in Figure 1E, but for 67 ms time bins.  
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(B) As in (A), but for optogenetic inhibition of SST interneurons (236 neurons in each group, 4 mice). 

(C) As in (A), but for optogenetic activation of VIP interneurons (114 neurons in each group, 4 mice). 

(D) As in (A), but for optogenetic inhibition of VIP interneurons (107 neurons in each group, 3 mice). 
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Figure S5. Both CT and NT mice learn to perform visuomotor tasks. Related to Figure 7. 

(A) In a two-dimensional (2D) virtual locomotion task, water restricted mice need to learn to control 

a freely rotating styrofoam ball in order to traverse a linear corridor and reach a reward zone (blue 

shaded area). The length of the corridor was automatically increased as performance increased to 

keep reward rate constant. Upper panel: Sample trajectories of a single mouse in the 2D virtual 

environment on day 1. Trajectories were random, however the tunnel was short (approximately 0.5 

m) and mice obtained rewards by chance. Once a reward was obtained, the mouse was teleported 

back to the beginning of the tunnel after a brief timeout (2 s) to start the next trial. Lower panel: 

Sample trajectories of the same mouse as in upper panel, but on day 6 when the mouse had learned 

the task (tunnel length approximately 6 m). 

(B) Both CT (6 mice) and NT mice (4 mice) learned the 2D virtual locomotion task over the course of 

6 training sessions (1 h/day). Task performance was quantified as the fraction of time spent running 

towards the reward zone. There was a significant increase from training session 1 to training session 

6 for CT and NT mice (Student’s t test). Shading indicates s.e.m. 

(C) In a mismatch detection task, mismatch is followed by a water reward (100 ms delay after end of 

mismatch). Behavior is quantified as the latency to the first lick relative to the water reward (see 

Methods). Mice were water restricted and habituated to licking from the water spout prior to 

testing. In the first training sessions, mice only licked after reward delivery. Over the course of 3 to 5 

training sessions (1 h per day), both NT (n = 2) and CT (n = 3) mice started to lick during mismatch, 
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before the reward was delivered. Orange area indicates mismatch. Shown is the mean time to the 

first lick as a function of the fraction of rewards obtained throughout training. To assess learning, we 

compared the distribution of the lick times of the first training session to the last training session for 

each mouse (sided Mann-Whitney-U test, p-values indicated adjacent to learning curve). 
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Figure S6. Normal visuomotor experience equalizes mismatch responses in NPY interneurons and 

correlation patterns in excitatory neurons. Related to Figure 7. 

(A) Mismatch responses of NPY interneurons averaged over a 1 s window (see Methods) as a 

function of imaging days for CT and NT mice. Mice were dark reared until the second imaging session 

(indicated by gray area). Error bars indicate s.e.m. *: p < 0.05, **: p < 0.01, ***: p < 0.001, Mann-

Whitney-U test. 

(B) Correlation coefficients between neural activity (ΔF/F) and running speed or visual flow in CT 

(left) and NT (right) mice during open-loop sessions on imaging day 5. Each dot represents a single 

neuron (CT: 8 mice, 2213 neurons; NT:  7 mice, 1686 neurons). Dot color indicates the neuron’s 

mismatch response. Black circles indicate mean correlations. Solid black lines indicate mean angle of 

first principle component of the distributions for each mouse (see Methods). 
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Figure S7. Volcano plots highlighting genes with significant fold changes when comparing between 

CT and NT animals (A) or comparing between male and female animals (B).Cutoff thresholds are p < 

0.01 and two-folds. 

  



41 
 

Table S1 

  2nd session   5th session  

 Safe Cliff Safe% Safe Cliff Safe% 

CT1 6 4 60% 2 1 67% 

NT1 3 5 38% 0 0 - 

CT2 3 0 100% 0 0 - 

NT2 6 0 100% 6 1 86% 

CT3 4 2 67% 1 0 100% 

NT3 1 0 100% 0 0 - 

CT total 13 6 68% 3 1 75% 

NT total 10 5 67% 6 1 86% 

Controls 6 0 100% - - - 

Table S1. Results of visual cliff tests for CT and NT animals after the second imaging session and after 

the 5th imaging session. Number of choices made on the safe or cliff side are listed, with percentage 

of choosing safe over the total number of choices. Data from controls animals are from a few 

different normal-reared animals. 
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Table S2 

Gene ID Gene Name Gene Description mRNA ID 

NR_001463 Xist inactive X specific transcripts NR_001463 

NM_011419 Kdm5d lysine (K)-specific demethylase 5D NM_011419 

NM_012011 Eif2s3y eukaryotic translation initiation factor 2, subunit 3, 

structural gene Y-linked 

NM_012011 

NM_009484 Uty ubiquitously transcribed tetratricopeptide repeat 

gene, Y chromosome 

NM_009484 

NM_012008 Ddx3y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked NM_012008 

Table S2. Genes that appeared as with significant fold changes in Figure S7B.  
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Methods2 

Animals and surgery. All animal procedures were approved by and carried out in accordance with 

guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. Six different mouse 

lines were used in the present study: wild-type C57BL/6J mice, vGAT-Cre x Ai14 tdTomato mice, PV-

Cre (Pvalbtm1(cre)Arbr) (Hippenmeyer et al., 2005), SST-Cre (Ssttm2.1(cre)Zjh) (Taniguchi et al., 2011), VIP-Cre 

(Viptm1(cre)Zjh) (Taniguchi et al., 2011) and NPY-Cre (NpyRH26Gsat/Mmucd) (Gerfen et al., 2013) mice.  Mice 

were dark-reared from birth (except mice used for pharmacogenetic manipulation experiments) and 

weaned on postnatal day 21 (P21). On P30, mice were briefly anesthetized with isoflurane in the 

dark and then received a subcutaneous injection of a Fentanyl (0.05 mg/kg; Actavis), Midazolam (5.0 

mg/kg; Dormicum, Roche) and Medetomidine (0.5 mg/kg; Domitor, Orion) mixture. A 4 mm 

craniotomy was made over the right V1, centered on 2.5 mm lateral and 1 mm anterior of lambda. 

We labelled neurons with a calcium indicator by injecting an AAV2/1 vector (see section “Viral 

constructs” below for details) into right monocular V1, centered on 2.5 mm lateral and 0.5 mm 

anterior of lambda (3-4 injections per mouse, approx. 100-150 nl per injection). A 4 mm circular 

cover glass was glued in place using gel superglue (Ultra Gel, Pattex). The remaining exposed surface 

of the skull was scored with a needle to increase adhesion with glue and dental cement, and covered 

with Histoacryl (B. Braun). A titanium head bar was fixed to the skull using dental cement (Paladur, 

Heraeus Kulzer) (Leinweber et al., 2014). Mice were returned to their home cage in darkness after 

anesthesia was antagonized by an intraperitoneal injection of a Flumazenil (0.5 mg/kg; Anexate, 

Roche) and Atipamezole (2.5 mg/kg; Antisedan, Orion Pharma) mixture. 

DREADD and optogenetic experiments. We used 7 to 16 weeks old male and female SST-Cre mice 

(for DREADD and optogenetic experiments) and VIP-Cre mice (for optogenetic experiments) that 

were reared in normal conditions. Craniotomy, virus injection, and headbar fixation was performed 

as described above. Mice were habituated to the setup 9 days post surgery. Imaging experiments 

started 2 weeks post surgery.  

Viral constructs. We used AAV2/1-EF1α-GCaMP5 (titer: 3.4 * 1011 GC/ml) for wild-type, EF1α-

CGaMP6f (titer: 5.6 * 1011 - 4.4 * 1012   GC/ml) for vGAT-Cre x Ai14, pharmacogenetic, and 

optogenetic experiments, and EF1α-DIO-GCaMP6f (titer: 3.0 * 1011 - 7.8 x 1011 GC/ml) for inhibitory 

interneuron marker lines. To manipulate neural activity pharmacogenetically, we injected AAV2/1-

EF1α-DIO-hM4D(Gi)-mCherry (titer: 7.0 * 1011 GC/ml) or AAV2/1-EF1α-DIO-hM3D(Gq)-mCherry 

(titer: 3.4 * 1011 GC/ml). For optogenetic manipulations of SST and VIP interneuron activity, we 

                                                           
2 Most of the Methods section also appear in the manuscript of the paper which has been submitted to Cell, 
with modifications. 
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injected AAV2/1-EF1α-DIO-ChrimsonR-tdTomato (titer: 2.2 * 1011 GC/ml) or AAV1-CAG-FLEX-ArchT-

tdTomato (titer: 3.1 * 1012 GC/ml). 

We initially attempted to label Cre-positive interneurons by means of a floxed RFP virus (AAV2/1-

EF1α-DIO-tdTomato) and bulk label all neurons with an unconditional GCaMP6f (AAV2/1- EF1α-

GCaMP6f) to concurrently record the activity of the selected interneuron type and all other neurons. 

However, for reasons unclear to us, this led to a very low co-labeling yield and signals in 

interneurons were often contaminated by the much stronger signals in surrounding excitatory 

neurons. We speculate that the reason for this may be that the promoter used (EF1α) to drive the 

GCaMP6f expression is stronger in excitatory neurons than interneurons.  

Virtual reality environment setup. The setup is based on the design of Dombeck and colleagues 

(Dombeck et al., 2007). Briefly, mice were head-fixed and free to run on an air-supported spherical 

treadmill. Rotation of the ball was restricted around the vertical axis with a pin. The virtual reality 

environment was projected onto a toroidal screen covering approximately 240 degrees horizontally 

and 100 degrees vertically of the mouse’s visual field using a projector (Samsung SP-F10M) 

synchronized to the resonant scanner of the two-photon microscope. The virtual environment 

consisted of an infinite corridor with walls patterned with vertical sinusoidal gratings with a spatial 

frequency of approximately 0.04 cycles per degree (Leinweber et al., 2014). 

Two-photon imaging. Functional two-photon calcium imaging was performed using 2 custom-built 

two-photon microscopes (Leinweber et al., 2014). Illumination source was a tunable femtosecond 

laser (Insight, Spectra Physics; Coherent Chameleon) tuned to 990 nm. Emission light was band-pass 

filtered using a 525/50 filter for GCaMP and a 607/70 filter for tdTomato/mCherry (Semrock) and 

detected using a GaAsP photomultiplier (H7422, Hamamatsu). Photomultiplier signals were 

amplified (DHPCA-100, Femto), digitized (NI5772, National Instruments) at 800 MHz, and band-pass 

filtered around 80 MHz using a digital Fourier-transform filter implemented in custom-written 

software on an FPGA (NI5772, National Instruments). The scanning system of the microscopes was 

based either on a 12 kHz or an 8 kHz resonant scanner (Cambridge Technology). Images were 

acquired at a resolution of 750 x 400 pixels (60 Hz / 40 Hz frame rate, respectively), and a piezo-

electric linear actuator (P-726, Physik Instrumente) was used to move the objective (Nikon 16x, 0.8 

NA) in steps of 15 µm between frames to acquire images at 4 different depths. This resulted in an 

effective frame rate of 15 Hz or 10 Hz, respectively. The field of view was 375 µm x 300 µm. 

Simultaneous two-photon imaging and optogenetic stimulations.  ChrimsonR or ArchT stimulation 

and functional imaging of GCaMP6f-expressing neurons was done by using a modified Thorlabs B-

Scope with a 12 kHz resonance scanner (Cambridge Technology) for line scanning. Illumination 
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source for the optogenetic stimulation was a fast LED (UHP-T-595, Prizmatix) with a wavelength of 

595 nm and which allowed fast TTL triggered operation. For spectral filtering we used a dichroic 

mirror (ZT775sp-2p, Chroma) to combine the two-photon laser and stimulation light. A second long-

pass dichroic mirror (F38-555SG, Semrock) was used to split the GFP emission from both illumination 

light sources. Light leak from the 595 nm stimulation LED was reduced by synchronizing the LED light 

output to the turnaround times of the resonant scanner (during which imaging data were not 

acquired). Lastly, amplified PMT signals were digitally bandpass filtered at 80 MHz to reduce the 

effect of ringing in the amplifier. This allowed for near stimulation-artifact free synchronous imaging 

and optogenetic stimulation.  

Experimental design. Mice were kept in the dark for an additional 2 days following surgery, after 

which they were introduced to the virtual reality environment. Mice were briefly anesthetized with 

isoflurane in the dark and then head-fixed on the setup. CT and NT mice were trained in pairs. The 

visual flow projected onto both screens was coupled to the locomotion of the CT mouse (Figure 1B). 

For dark training, mice were head-fixed and trained on the setup in complete darkness. All mice 

were free to run on the ball throughout training. In total, all CT, NT, and DT mice underwent 6 

training sessions of 2 hours every other day (Figure 1A). 

The first imaging experiment was performed 2 days after the last training session. The design of the 

imaging experiments was as previously described (Keller et al., 2012). Typically, an imaging 

experiment consisted of 1 closed-loop session and 2 open-loop sessions. In closed-loop sessions, the 

visual flow was coupled to the locomotion of the mouse, and was randomly perturbed with brief (1 

s) halts (mismatch; one perturbation every 15 seconds on average). In open-loop sessions, the visual 

flow generated in the closed-loop session (including perturbations, here referred to as playback halt) 

was replayed to the mouse independent of its locomotion. For some mice, open-loop sessions were 

followed by a dark session, where the virtual reality and all other light sources in the room were 

turned off. Each closed-loop, open-loop or dark session lasted 500 s. To minimize the effect of 

altered visuomotor experience (non-coupled experience in open-loop sessions for CT mice, and vice 

versa), we controlled the visual stimuli between imaging sessions so as to be the same as they were 

experienced in the training sessions, such that CT mice experienced closed-loop conditions (no 

perturbations) and NT and DT mice experienced open-loop conditions. Mice were kept in darkness 

between training and imaging sessions until after the second imaging session at which point they 

were transferred to in a normal 12 h/12 h light/dark cycle (Figure 1A). Note that DT mice were only 

imaged on time points 1 and 2. 
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At the end of each experiment intrinsic optical imaging was performed as described previously 

(Zmarz and Keller, 2016) to verify that the retinotopic location of recording sites corresponded to a 

part of the visual field covered by the toroidal screen. 

Two-photon imaging data analysis. Calcium imaging data were processed as previously described 

(Keller et al., 2012) and all data analysis was done in MATLAB (MathWorks). Briefly, raw images were 

full-frame registered to correct for brain motion. Neurons were manually selected based on mean 

and maximum fluorescence images. Raw fluorescence traces were corrected for slow drift in 

fluorescence using an 8th-percentile filtering with a 15 s window (Dombeck et al., 2007). ΔF/F traces 

were calculated as mean fluorescence in a selected region of every imaging frame and subsequently 

subtracted and normalized by the median fluorescence. 

To quantify average response traces, we first calculated the average event-triggered fluorescence 

trace for each neuron. The responses of all neurons were then averaged and the baseline (mean 

ΔF/F in a 0.5 s window pre event onset) was subtracted. To quantify the significance of the 

difference of two average calcium responses as a function of time, we performed a separate 

Student’s t test for every bin of the calcium trace (10 Hz or 15 Hz) and marked bins as significantly 

different for p < 0.01. For visual clarity, we removed isolated significant bins, such that a significant 

bin was only marked if at least one of the two neighboring bins was also significant.  

To calculate the average response of each neuron to mismatch or playback halt, we first calculated 

the difference between the average event-triggered response and the average response to 1000 

randomly triggered events to generate a random-corrected trace. Average responses to mismatch 

and playback halt were then calculated as the mean fluorescence of the random-corrected average 

in a response window minus the mean fluorescence in a baseline window for each neuron (the 

response window for mismatch, playback halt, running onset and playback onset was +500 ms to 

+1500 ms, and the baseline subtraction window was -1000 ms to 0 ms). To determine the 

significance of a neuron’s response, we calculated individual neuron responses to each mismatch 

event as described above and compared this distribution to the distribution generated by 1000 

randomly triggered events. Significance was determined with a two sided Mann-Whitney-U test (p < 

0.05). For mismatch and random events to be included in the analysis, mice had to be running above 

threshold (10-2 cm/s) before and after event onset (from -600 ms to + 1100 ms).  In addition, for 

playback halt events to be included, mice had to be stationary during the playback halt (no running 

from -600 ms to +1100 ms). For running onset, mice had to be stationary for at least 600 ms prior to 

the running onset and continue running for 1100 ms above threshold following the onset. Similarly, 

for playback onset (quantified only during open-loop sessions) there had to be no visual flow for 600 
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ms prior to visual flow onset, followed by continuous visual flow above threshold for at least 1100 

ms after onset, mice had to be stationary during this time. 

To determine correlation between mismatch responses and playback halt responses (Figures S1F 

and S1G), we calculated Pearson’s linear correlation coefficients for each mouse between the vector 

containing the mismatch responses of all neurons and the vector containing the playback halt 

responses for each neuron. 

We calculated Pearson’s linear correlation coefficients to determine the correlation between 

individual neural activity and visual flow or running speed during the open-loop sessions. To 

minimize the influence of running-induced z-motion on the correlation coefficients, we calculated a 

threshold for each neuron (3.72 * standard deviation of the lower half of the fluorescence 

distribution) (Keller et al., 2012) and set all activity below this threshold to 1 (note that for ΔF/F, 

baseline is at 1). To calculate the average correlations over days (Figure 3), we first calculated the 

average correlations per day and then averaged these across all imaging time points. 

To calculate the principal component of the correlation distributions, we used the standard 

implementation available in MATLAB. We calculated the principal component for each imaging 

region separately. To calculate the average angle, we averaged the vector sum of the normalized 

principle components of all imaging regions.  

We calculated the average traces for the optogenetic experiments (Figures 6, S4), as described 

above. To further reduce the stimulation artefact after filtering, we used the following approach. 

The remaining stimulation artifact was approximated as a box function and subtracted from the 

average stimulation response of each neuron. The amplitude of the box function was estimated as 

the average of the of the absolute difference between the calcium signal on frame n-1 and n, and m 

and m+1, where the stimulation light was switched on between frame n-1 and n and switched off 

between m and m+1. On average this signal was 0.8% dF/F and much smaller than the typical neural 

response (Figure 6 and S4). 

Average running speed during training and imaging sessions was calculated as the mean speed while 

the mouse was running above threshold (10-2 cm/s). Fraction of time running during training and 

imaging sessions was calculated as the fraction of time running speed was above threshold (10-2 

cm/s) over total session duration. Note that during imaging sessions, fraction of time spent running 

and average running speed were calculated on the combined closed-loop and open-loop sessions. 

Pupil dilation. Images of the left eye, contralateral to the craniotomy, were recorded with a CMOS 

camera at 30 Hz (DMKBUC03, Imaging Source). Pupil position was computed offline by smoothing 
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and thresholding the images and fitting a circle to the pupil. Data containing eye blinks were 

excluded from analysis. To extract mismatch induced pupil diameter changes, we computed the 

difference between the average dilation triggered on mismatch and the average dilation triggered 

on 1000 randomly chosen onsets. Average responses to mismatch was calculated as the difference 

between the amplitude averaged over a window pre (-100 ms to 0 ms) and post (+500 ms to +1500 

ms) mismatch on the random-subtracted traces. To quantify significant difference as a function of 

time, we used the same bin-by-bin comparison described for calcium responses above, but with 

black bars indicating p < 0.05. 

To determine neural response times, we calculated the time point of significant deviation between 

mismatch response traces of neurons with significant response to mismatch and randomly triggered 

traces (see above). For each neuron, we compared the fluorescence distributions of mismatch 

responses to random responses for each frame after the event onset (from 0 ms to +1500 ms). The 

response time was then taken as the first frame where the two distributions were significantly 

different (Mann-Whitney-U test, p < 0.05). The response time was only scored if the response 

distributions at 0 ms were not different and the responses diverged within the time window. This 

was the case for all excitatory neurons with significant response to mismatch. Pupil response times 

were calculated similarly. 

Mismatch detection paradigm and 2D virtual locomotion task. Mice were dark-reared from birth 

and trained as either CT or NT, as described above. After the last training session, the water bottle 

was removed from the home cage. The weight of the mice was monitored throughout behavioral 

training and water was supplemented if necessary to keep the weight above 80% of initial weight. 

Mice were habituated to the lick spout in 2 sessions (1 h each). Experiments started 2 days after the 

last training session. For the mismatch detection paradigm, we put the mice into the same virtual 

reality environment as described above in a closed-loop configuration including visual perturbations 

(mismatch) as described above. A droplet (approx. 10 µl) of sucrose solution (15% in water) was 

delivered 100 ms after a mismatch via a metal spout placed in front of the mouse’s snout. As mice 

learned the task, we observed anticipatory licking, which manifested as mice starting to lick during 

the 1 s mismatch, prior to reward delivery. A single experiment consisted of a 1 h closed-loop 

session during which the mice received approximately 100 rewards for a total of approximately 1 ml 

of sucrose solution. To assess learning for each mouse, the distribution of lick response times from 

the first training day was compared to the distribution of lick response times to the last training day 

using a Mann-Whitney-U test. 
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For the 2D virtual locomotion task, mice had to learn to navigate a virtual tunnel towards to a 

reward area marked by a blue cylinder. The rotation of the ball was not restricted and mice had to 

learn to control heading in the virtual tunnel via rotation of the ball. When a mouse reached the 

reward area, a droplet (approx. 10 µl) of sucrose solution (15% in water) was delivered via a lick 

spout. After a brief timeout (2 s), the position of the mouse in the virtual reality was reset to the 

starting location. The virtual tunnel was kept very short initially and the tunnel length was increased 

progressively as mice learned the task, such that the average number of rewards received per 

minute was held approximately constant (at 1.3 rewards per min). The behavior was quantified as 

the amount of time the mice spent running in the direction of the reward area (± 36° from reward-

area direction), as a fraction of total time spent running.  To quantify learning, the fraction of time 

spent running towards the target during training session 1 was compared to the fraction of time 

spent running towards the target on the last session for each mouse using a Student’s t test. 

Visual cliff test. The visual cliff apparatus consists of a piece of transparent glass (85 x 58 x 0.86 cm) 

surrounded by a 30 cm high wall made from white card paper to form an open top box. Half of the 

box was placed on the bench with another half suspended about 1 m above the floor. A piece of 

checkerboard cloth was placed between the glass and the bench and extended off the bench to the 

ground, highlighting the visual depth of the cliff. A black ridge (58 x 3 x 3 cm) was placed on the glass 

at the position of the bench edge, dividing the arena into a “shallow” and “deep” side. A lamp was 

placed under the glass to illuminate the apparatus and make the glass surface invisible. Each mouse 

was lifted with its tail and lowered onto the ridge, and waited until the mouse step off the ridge with 

all four paws on either side of the arena. Mouse which not steps off in 5 minutes will be counted as 

time out. The choice of the mouse will be recorded. Then the mouse was taken out of the apparatus 

and the procedure will be repeated up to ten times for each mouse. 

Gene profiling. Wild-type C57BL/6J mice were dark-reared, and had head bar fixation surgeries on 

P26-30, as described earlier. For the first batch of mice, they were put in the virtual reality 

environment with either coupled or non-coupled training for a single session lasted six hours on P29-

31; for the second batch of mice, they underwent three training sessions on three consecutive days, 

each session lasted for two hours. Mice were euthanized immediately after training, and bilateral 

visual cortices were dissected on ice for each mouse. RNAs were extracted using TRIzol Reagent (Life 

Technologies) and purified with RNeasy Mini Kit (QIAGEN), following procedures provided on the 

product manuals. RNA samples were then quantified with Nanodrop 1000 (ThermoFisher) and 

verified integrity with Bioanalyzer, and submitted to the FMI Functional Genomics platform for gene 

expression profiling with GeneChip microarray system (Affymetrix). Data are normalized and 

analyzed with linear models (limma) on a FMI hosted Galaxy server.  
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