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ABSTRACT

Low carbohydrate/high-fat (LCHF) diets are increasingly popular dietary interventions for body weight
control and as treatment for different pathological conditions. However, the mechanisms of action are
still poorly understood, in particular in long-term administration. Besides liver, brain and heart, skeletal
muscle is one of the major organs involved in the regulation of physiological and pathophysiological
ketosis. We now assessed the role of the peroxisome proliferator-activated receptor y coactivator 1a
(PGC-1a) in skeletal muscle of male wild type control (CTRL) and PGC-1a muscle-specific knockout
(PGC-1a mKO) mice upon 12 weeks of LCHF diet feeding. Interestingly, LCHF diet administration
increased oxygen consumption in a muscle PGC-la-dependent manner concomitant with a blunted
transcriptional induction of genes involved in fatty acid oxidation and impairment in exercise
performance. These data reveal a new role for muscle PGC-1la in regulating the physiological

adaptation to long-term LCHF diet administration.

Abbreviations: Acadl, Acyl-CoA dehydrogenase long chain; Acadvl, Acyl-CoA dehydrogenase very long
chain; Acatl, Acetyl-CoA acetyltransferase 1; ALAT, Alanine transaminase; ASAT, Aspartate
transaminase; Atp5a, ATP synthase 5 alpha; Bdh1, 3-hydroxybutyrate dehydrogenase type 1; B-OHB,
B-hydroxybutyrate; CD36, Cluster of differentiation 36; Cptlb, Carnitine palmitoyltransferase 1b; Cs,
Citrate synthase; ERRa, Estrogen-related receptor a; Glut 4, Glucose transporter 4; HKII, Hexokinase Il;
LCHF, Low carbohydrate/high-fat; Mct1, Monocarboxylate transporter 1; Ndufb8, mitochondrial NADH
dehydrogenase 1 beta subcomplex subunit 8; NEFA, non-esterified fatty acids; Oxct1, Succinyl-CoA:3-
ketoacid-coenzyme A transferase 1; Pdk4, Pyruvate dehydrogenase lipoamide kinase isozyme 4; Pfkm,
Phosphofructokinase; PGC-1a, Peroxisome proliferator-activated receptor y coactivator 1a; PGC-1B,
Peroxisome proliferator-activated receptor y coactivator 1B; Pkm1, Pyruvate kinase muscle 1; PPARa,
Peroxisome proliferator-activated receptor a; PPARS, Peroxisome proliferator-activated receptor 6;
RER, Respiratory exchange ratio; Sdhb, Mitochondrial succinate dehydrogenase iron-sulfur subunit;

Ugcrc2, Mitochondrial cytochrome b-c1 complex subunit 2
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INTRODUCTION

In recent years, ketogenic diets have emerged as potent therapeutic strategies for numerous diseases
(27). In contrast to classical high fat diets, ketogenic diets are characterized by a lower content of
carbohydrates and proteins and will promote a dietary state reminiscent of fasting, diametrically
opposite of the fed-like phenotype evoked by high fat diets. Historically, low carbohydrate/high-fat
(LCHF) diets have been developed for and successfully used in the treatment of epilepsy, in particular
to reduce seizures in children who are non-responders to pharmacological interventions (19).
Increasing evidence has expanded the usage of LCHF diets to metabolic disorders like obesity,
cardiovascular diseases or type 2 diabetes, but also certain types of cancer (6, 7, 9, 12, 30, 37). LCHF
diets induce a state known as ketosis, which also occurs physiologically after prolonged fasting periods,
exercise or other contexts of low carbohydrate availability (20). Ketosis is characterized by the
increased production of ketone bodies like B-hydroxybutyrate (B-OHB) and acetoacetate in a process
called ketogenesis in the liver (14). Circulating ketone bodies are then used by extrahepatic tissues as
energy substrates in the Krebs cycle and oxidative phosphorylation (OXPHQS), in particular in the brain,
skeletal and heart muscles. The exact mechanisms by which LCHF diets exert their actions are still
poorly understood. However, increased fatty acid oxidation (25, 34), mitochondrial biogenesis and ATP
production (8) have been proposed to be important pathways mediating the positive effects of
ketogenic diets.

The peroxisome proliferator-activated receptor y coactivator 1a (PGC-1a) functions as an essential
transcriptional coactivator for target genes in all of these metabolic processes (4). Furthermore, PGC-
la regulates ketolytic gene expression in skeletal muscle and thereby potently affects systemic ketosis
(33). Strikingly, high muscle PGC-1a reduced post-exercise ketosis in mice as previously observed in
trained vs. untrained individuals (1, 33) and thus constitutes a major regulator of ketone body
homeostasis in exercise. Moreover, skeletal muscle emerges as the key tissue to actively and
voluntarily modulate ketone body homeostasis. Importantly, the beneficial and detrimental effects of
long term administration of LCHF diets are still debated and the compatibility with exercise training is

unclear. Therefore, we now tested whether muscle PGC-1a, the regulatory nexus in endurance
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training, also contributes to the local and systemic effects of long-term LCHF diet feeding and thus
evaluated whole body homeostasis and skeletal muscle metabolism in wild type control (CTRL) and
PGC-1a muscle-specific knockout (PGC-1la mKO) mice fed a LCHF diet for 12 weeks. Indeed, we
demonstrate that PGC-1a in skeletal muscle is not only essential for basal ketolytic gene expression,
but also affects exercise performance and whole body oxygen consumption upon LCHF diet feeding.
These findings reveal a new role for PGC-1a in systemic ketone body metabolism and shed new light

onto the mechanisms through which LCHF diets exert their effects.
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MATERIAL & METHODS

Mice and diets

Male mice at the age of 15 weeks were housed in a conventional facility with a 12 h light/12 h dark
cycle with free access to food and water. Experiments were performed in accordance with Swiss
federal guidelines and were approved by the Kantonales Veterindramt of Kanton Basel-Stadt. The
C57BL/6 PGC-1a muscle-specific knockout (mKO) mice used in this study were generated as described
in (33). A chow diet (AIN-93G; 7% fat, 58.5% carbohydrates, and 18% protein) and a ketogenic diet
(XL75:XP10; 74.4% fat, 3% carbohydrates, and 9.9% protein) were purchased from Provimi Kliba AG
(Kaiseraugst, Switzerland). After 12 weeks of chow or LCHF diet feeding ad libitum, mice were not fed

for 2h in the morning, euthanized by CO; inhalation and tissue samples collected.

Body composition and indirect calorimetry

Body weight was monitored weekly and body composition was determined using an EchoMRI-100™
analyzer (EchoMRI Medical Systems) at the end of the treatment period.

Mice were placed in a CLAMS system (Columbus Instruments) to assess VO, consumption, VCO;
production, the respiratory exchange ratio (RER) as well as food intake and spontaneous locomotion

(number of breaks of infrared beams in XYZ dimensions).

Exercise tests

Animals were acclimatized to an open treadmill (Columbus Instruments) for 2 d before the start of the
experiment, for 5 min at 0 m/min followed by 5 min at 8 m/min and 5 min at 10 m/min, with an incline
of 5°. The endurance exercise trial started at 5 m/min for 5 min with a 5° incline, followed by 8 m/min
for 10 min. The speed of the treadmill was subsequently increased by 2 m/min every 15 min until
exhaustion. Basal blood glucose and lactate levels were assessed in tail vein blood before and after
exercise. For indirect calorimetry assessments, mice were acclimatized to treadmill running as

described above. Mice were placed in a closed treadmill (Columbus Instruments) where they first sat
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for 5 min at 0 m/min at a 5° incline. Subsequently, the test started at 8 m/min for 5 min and the speed

was increased every 5 min for 2 m/min until exhaustion.

Blood analysis

Blood glucose, lactate and B-OHB were measured in tail vein blood with a glucose meter (Accu-Chek;
Roche, Mannheim, Germany), a lactate plus meter (Nova Biomedical; LSF, Menziken, Switzerland) or a
B-OHB meter (Precision Xtra; Abbott Laboratories, Chicago, IL, USA). For plasma analysis, whole tail
vein blood was collected in microvette tubes (Sarstedt, Nimbrecht, Germany) and centrifuged at 2000
g for 5 min. Total cholesterol, ASAT and ALAT levels were analyzed with a Cobas ¢ 111 system (Roche
Diagnostics AG, Rotkreuz, Switzerland). NEFA were measured in plasma using a NEFA-Kit according to

the manufacturer’s instructions (Wako Diagnostics, Richmond, VA, USA).

Glycogen measurement

10 mg of frozen tissue were homogenized in 200 pl of water using a motorized pestle. To inactivate
enzymes samples were boiled at 95°C in a water bath for 10 min before centrifugation at 18000 g.
Supernatant was assayed for glycogen using a glycogen assay kit according to the manufacturer’s

instructions (Abcam, Cambridge, UK).

RNA extraction and qRT-PCR

Frozen tissue was homogenized and total RNA was extracted with Trizol reagent (Thermo Scientific-
Invitrogen, Zug, Switzerland) according to the manufacturer’s protocol. cDNA synthesis was done using
1 pg of total RNA. Semi-quantitative real-time PCR analysis was performed with Fast SYBR Green
Master Mix on a StepOnePlus Real-Time PCR System (both from Thermo Scientific-Applied Biosystems,
Foster City, CA, USA). Relative expression levels for each gene of interest were calculated with the AACt

method, using 18S rRNA as the normalization control. The primer sequences are listed in Table 1.

Immunoblot analysis
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Tissues were homogenized in RIPA buffer, and equal amounts of proteins were separated on SDS-
polyacrylamide gels and transferred to a nitrocellulose membrane (Whatman; Sigma-Aldrich). The
proteins of interest were detected with the following antibodies: OXCT1 (ab105320; Abcam), ACAT1
(HPA004428; Sigma-Aldrich), eEF2 (2332; Cell Signaling Technology), mitoprofile (MS604;
MitoSciences) and polyclonal swine anti-rabbit immunoglobulins/horseradish peroxidase or polyclonal
rabbit anti-mouse immunoglobulins/horseradish peroxidase, respectively (P0399 and P0260, Dako,
Kyoto, Japan). Densitometric analysis of immunoblots was performed on 6 individual samples with
Imagel) software (National Institutes of Health, Bethesda, MD, USA); a representative selection from

this group is presented in the respective figures.

Seahorse assay

Total mitochondria were isolated from fresh Quadriceps muscle using gradual centrifugation. Minced
muscle was homogenized with a motorized pestle and centrifuged at 700 g for 10 min. Supernatant
was re-centrifuged at 10500 g for 10 min to obtain crude mitochondrial pellet. Equal amounts of
protein were plated on a 96-well Seahorse plate and mitochondrial respiration was measured using
the Seahorse XF cell mito stress test kit (103015-100, Seahorse Bioscience) on a XF¢96 extracellular flux
analyzer (Seahorse Bioscience). The assay buffer was supplemented with either 10 mM malate / 10
mM pyruvate or 20 mM succinate / 2 uM rotenone, respectively, to assess complex | or complex Il
activity. The amount of ADP used was 4 mM and ATP production was estimated by subtracting ADP-

induced OCR values from Oligomycin-induced OCR values.

Statistical analysis

Data are presented as means + SEM. The unpaired 2-tailed Student’s t test was used to determine
differences between groups. Significance was set at p < 0.05 and significant differences between the
genotypes (CTRL CHOW vs. mKO CHOW and CTRL LCHF vs. mKO LCHF) were marked with an asterisks
(*) while significant differences between the conditions (CTRL CHOW vs. CTRL LCHF and mKO CHOW

vs. mKO LCHF) were marked with a hashtag (#).
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RESULTS

PGC-1a mKO mice fail to increase oxygen consumption on a LCHF diet

PGC-1a mKO and control mice were fed a normal chow-diet or a LCHF diet for 12 weeks. Both LCHF-
fed control and PGC-1a mKO mice showed a reduction in body weight after 1 week compared to the
chow-fed cohorts (Fig. 1A). After 12 weeks, only the LCHF-fed control mice were significantly lighter
than their chow-fed counterparts (Fig. 1A). At the end of the 12 weeks of LCHF diet feeding, control
and PGC-1a mKO mice displayed a significant increase in fat mass (Fig. 1B) as well as reduced lean mass
(Fig. 1C) compared to the chow-fed cohorts. This was further reflected in the relative decrease in heart
weight (Fig. 1D) in LCHF-fed compared to chow-fed mice. LCHF diet feeding resulted in reduced food
intake by weight (Fig. 1E), but importantly not by caloric content (Fig. 1F). LCHF-fed mice showed a
significant decrease in respiratory exchange ratio (RER) compared to chow-fed mice (Fig. 1G), which
reflected the high fat content of the LCHF diet. Interestingly, LCHF diet feeding increased the oxygen
consumption rate (VO;) only in control mice, whereas PGC-1a mKO mice displayed no increase with
LCHF diet feeding (Fig. 1H). LCHF-fed PGC-la mKO mice also showed a significantly reduced
ambulatory activity compared to LCHF-fed control mice (Fig. 1I). These findings indicate that PGC-1a

mKO mice exhibit a blunted adaptation to long-term LCHF diet feeding.

PGC-1a mKO mice show a reduced induction of genes encoding proteins involved in fatty acid
metabolism in skeletal muscle

LCHF diets affect both glucose and cholesterol metabolism (6, 7,9, 12, 30, 37). In our study, LCHF diet
feeding led to reduced circulating glucose levels and increased muscle glycogen content in control and
PGC-1a mKO mice (Fig. 2A and 2B) compared to the chow-fed counterparts. Circulating cholesterol
levels were increased in both genotypes (Fig. 2C). However, blood cholesterol was significantly lower
in LCHF-fed PGC-1a mKO mice compared to LCHF-fed control mice (Fig. 2C). Circulating non-esterified
fatty acids (NEFA) were not different between the groups (Fig. 2D). In line with previous studies (15,

17), significantly increased circulating levels of aspartate transaminase (ASAT) and alanine
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transaminase (ALAT) were observed in LCHF-fed control and PGC-1a mKO mice (Fig. 2E and 2F),
indicative of liver stress caused by LCHF diet feeding. Furthermore, LCHF diet feeding elevated
circulating B-hydroxybutyrate (B-OHB) levels in both cohorts, even though PGC-1a mKO mice depicted
a significant hyperketonemia in comparison to control mice (Fig. 2G), similar to our previous
observations (33). Next, we assessed the impact of LCHF diet feeding on metabolic pathways in skeletal
muscle of control and PGC-1a mKO mice. In line with the reduced circulating glucose levels with LCHF
diet feeding, there was a significant reduction in the expression of genes involved in glucose uptake
(glucose transporter 4, Glut4) and glycolysis (hexokinase 2, Hk2; muscle phosphofructokinase, Pfkm;
pyruvate kinase muscle 1, Pkm1) in skeletal muscle from LCHF-fed control and PGC-1a mKO mice (Fig.
2H). Surprisingly, the transcription of ketolytic genes (3-hydroxybutyrate dehydrogenase type 1, Bdh1
and succinyl-CoA:3-ketoacid-coenzyme A transferase 1, Oxct1) was significantly reduced upon LCHF
diet feeding (Fig. 21). In stark contrast, protein levels of OXCT1 and acetyl-CoA acetyltransferase 1
(ACAT1) were significantly increased (Fig. 2J and 2K). The transcript levels of Glut4, Pfkm,
monocarboxylat-transporter 1 Mct1, Bdh1, Oxct1 and Acat1 (Fig. 2H and 21) were lower in PGC-1a mKO
mice, even when compared to LCHF-fed control animals. The increased levels of pyruvate
dehydrogenase lipoamide kinase isozyme 4 (Pdk4) with LCHF diet feeding (Fig. 2L) and various genes
encoding proteins involved in fatty acid uptake (cluster of differentiation 36, Cd36) and oxidation
(carnitine palmitoyltransferase 1b, Cptlb; acyl-CoA dehydrogenase long chain, Acadl; acyl-CoA
dehydrogenase very long chain, Acadvl) indicate a substrate shift towards fatty acid metabolism in
control mice (Fig. 2M). Importantly, the induction of these genes was blunted in PGC-1a mKO mice
(Fig. 2M). Interestingly, despite the central role of PGC-1a and peroxisome proliferator-activated
receptor a (PPARa) for the transcriptional control of fatty acid metabolism in skeletal muscle (35), gene
expression of both of these regulators was reduced in muscle with LCHF diet feeding (Fig. 2N).
Furthermore, the expression levels of PGC-1B, PPARS and estrogen-related receptor a (ERRa) were
not changed upon LCHF diet feeding but transcript levels of PPARS and ERRa were significantly reduced

in PGC-1a mKO mice (Fig. 2N).
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LCHF diet feeding leads to impaired exercise performance specifically in PGCla mKO mice

Since LCHF-fed PGC-1a mKO mice showed a blunted induction of fatty acid metabolism in skeletal
muscle, we were interested if this would affect exercise performance and substrate utilization during
endurance exercise. In line with previous findings (16), PGC-1la mKO mice displayed reduced
endurance exercise performance compared to control mice (Fig. 3A). LCHF diet feeding did not affect
the endurance capacity of control mice (Fig. 3A). Strikingly however, this diet specifically impaired the
exercise performance of PGC-1a mKO mice (Fig. 3A). This phenotype was not associated with any
impairment in the ability of PGC-1a mKO mice to increase circulating glucose levels with exercise (Fig.
3B). Moreover, while PGC-1a mKO mice showed elevated blood lactate levels upon exhaustion, as
previously published (32), this effect was comparable between chow-fed and LCHF-fed PGC-1a mKO
mice (Fig. 3C). In closed treadmills, LCHF-fed mice displayed elevated oxygen consumption during the
exercise compared to chow-fed mice (Fig. 3D). Control mice were able to maintain this elevated oxygen
consumption during the entire exercise period, except for the last time point of measurement (Fig.
3D). In contrast, VO, levels rapidly dropped in PGC-1a mKO animals as exercise intensity increased (Fig.
3D). Similarly, PGC-1a mKO animals could not maintain the low RER observed in LCHF-fed control mice,
and displayed an earlier shift to carbohydrate metabolism indicated by the sharp increase in RER (Fig.
3E). These differences were however diet-independent since chow-fed mKO mice also performed
significantly worse than their control littermates. Collectively, these findings suggest that LCHF-fed
PGC-1a mKO mice have difficulties to keep up with the increased energy demand in endurance
exercise and are unable to properly cope with the metabolic changes elicited by LCHF feeding, in

particular in exercise.

LCHF diet feeding does not lead to increased mitochondrial biogenesis or ATP levels in skeletal muscle
Ketogenic diet feeding has been proposed to increase mitochondrial biogenesis and ATP levels in the
context of neurological diseases (8). Thus, to test whether LCHF diet feeding also leads to an induction
of mitochondrial biogenesis in skeletal muscle, we measured the levels of mitochondrial gene

expression (mitochondrial succinate dehydrogenase iron-sulfur subunit, Sdhb; citrate synthase, Cs;
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mitochondrial cytochrome b-c1 complex subunit 2, Ugcrc2) as well as mitochondrial proteins (ATP
synthase 5 alpha, ATP5A; UQCRC2; mitochondrial NADH dehydrogenase 1 beta subcomplex subunit 8,
NDUFBS8) (Fig. 4A and B). As expected, PGC-1la mKO mice exhibited reduced mitochondrial gene
expression and protein content (22, 23). However, in contrast to studies in neurological tissues (8),
LCHF diet feeding did not lead to increased mitochondrial transcript or protein levels in skeletal muscle
(Fig. 4A and B). Furthermore, mitochondria isolated from Quadriceps muscles of LCHF-fed mice showed
a drop in ADP-induced complex | respiration and concomitant complex | ATP production (Fig. 4 C and

D) while complex Il respiration was not affected by LCHF diet feeding (Fig. 4E and 4F).
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DISCUSSION

Besides physical activity, dietary interventions are a mainstay of prevention and therapy of many
diseases. LCHF diets have been increasingly studied in the past decades due to their therapeutic
potential, not only in the treatment of epilepsy and other brain-related disorders, but also other
pathologies that are associated with peripheral organs (27). Endogenous ketone body levels are in part
controlled by hepatic ketogenesis. Dietary ketosis is however largely determined by ketone body
metabolism in brain, heart and skeletal muscle. Of these three main consumers, only skeletal muscle
can be directly and voluntarily affected and indeed, training can reduce post-exercise ketosis (1).
Moreover, we have previously demonstrated that muscle PGC-1a can modulate systemic ketosis in
numerous acute physiological and pathophysiological contexts (33). Here, we show that muscle PGC-
la likewise contributes to the local and systemic adaptations of long term LCHF diet feeding. In
particular, LCHF diet-induced oxygen consumption was severely blunted in PGC-1a mKO mice. Even
more dramatic, LCHF-fed PGC-1a mKO mice displayed a marked impairment in running performance
already at moderate exercise intensities and the initial increased oxygen consumption rate quickly
dropped to the same level as of chow-fed PGC-1a mKO mice. In contrast, LCHF-fed control mice were
able to run the same amount of time as their chow-fed counterparts despite their reduced lean mass
assuming that the efficiency of consuming energy from fats is higher upon LCHF diet feeding as
suggested by the study of Paoli et al. (25). The analysis of skeletal muscle samples revealed that
transcript levels of genes involved in fatty acid uptake and oxidation were elevated in LCHF-fed control
mice, while the upregulation of these genes in PGC-1a mKO animals was blunted. It is conceivable that
the difference in oxygen consumption rates between LCHF-fed PGC-1a mKO and control mice is in part
due to this reduced induction of the respective genes in skeletal muscle in PGC-1a mKO animals. Thus,
PGC-1a seems to participate in the LCHF diet-controlled metabolic switch from glucose to ketone body
and fatty acid utilization. Furthermore, the decrease in activity levels in LCHF-fed mKO mice could also
contribute to the reduced oxygen consumption. Thus, muscle PGC-1a might thereby influence whole

body metabolism in LCHF diet feeding.
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Given the important role of PGC-1a in systemic ketone body metabolism (33) and exercise (28), these
findings raise questions about the compatibility of LCHF diets and training. Studies so far have been
inconclusive whether LCHF diets improve or hinder training adaptations (24). For example, in the
recent study of Zajac et al. (38), VO2max and the lactate threshold were significantly increased in off-
road cyclists treated with a LCHF diet. In competitive gymnasts, LCHF diets do not negatively impact
explosive and strength performance only when an adequate amount of protein is provided (26). Thus,
administration of LCHF diets might differ in endurance compared to resistance training since LCHF diet
feeding induces a “fasting-like” state that could hinder the buildup of muscle mass. The inherent
problems of the LCHF diet could be circumvented by direct administration of ketone bodies, e.g. in the
form of transesterified B-OHB precursor metabolites without the massive acid/salt load associated
with intake of B-OHB in acid or salt form (11). The nutritional ketosis elicited by such metabolites
promoted an improvement in endurance performance in cyclists even in the presence of normal
muscle glycogen, elevated insulin levels or co-administrated carbohydrates (11).

The “Atkins diet”, a particular form of LCHF diet, has popularized LCHF interventions for weight loss
(3). However, despite the widespread use of the Atkins and related diets, the molecular mechanisms
and potential detrimental effects are still largely unknown. Indeed, in our study, LCHF diet fed mice
displayed some negative effects on whole body metabolism. Even though LCHF diet feeding led to an
initial weight loss after one week of treatment, which has also been shown in other rodent studies (5,
17, 18), the difference in body weight after 12 weeks of LCHF diet feeding was only minor. Second,
LCHF fed mice displayed an increase in fat mass and a concomitant decrease in lean mass (10, 36).
Even more alarmingly, LCHF-fed animals showed increased circulating levels of cholesterol, ASAT and
ALAT indicative of dyslipidemia and a certain degree of liver stress in line with other studies in mice
and humans (13, 21, 31, 39). In fact, long term administration of LCHF diets in rodents in most cases
leads to the development of hepatic steatosis and non-alcoholic fatty liver disease (29). Thus, even
though the effect of such diets on hepatic lipid levels in humans is less clear, caution is advised in
particular in patients with non-alcoholic fatty liver disease (2). It is possible that administration of

transesterified ketone body precursor metabolites could act therapeutically without the potential side-
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effects of a LCHF diet (11). Furthermore, while the reason for the reduced cholesterol levels in LCHF
fed mKO compared to CTRL mice is unclear, this change might be a consequence of the
hyperketonemia in mKO animals. Thus, our previous (33) and present findings would suggest that
physical activity, and thereby elevation of muscle PGC-1q, is an important adjuvant intervention to
manage the pathological consequences of ketosis.

In the brain, the therapeutic effect of LCHF diets on seizures and other pathologies have been linked
to increased mitochondrial biogenesis or ATP levels (8). Surprisingly, even though the elevated oxygen
consumption and the lower RER values of LCHF-fed mice indicate an overall increase in oxidative
metabolism, we did not find any change in mitochondrial gene expression and protein levels in skeletal
muscle. Intriguingly, ATP production in isolated mitochondria from LCHF-fed mice was even lower than
in chow-fed mice. Thus, the observed increase in oxidative metabolism upon LCHF diet feeding is most
likely due to the availability of energy substrates, which are mainly ketone bodies and other kind of
fats. Furthermore, these data indicate that LCHF diet feeding predominantly acts on fatty acid
oxidation rather than on mitochondrial biogenesis or ATP production in skeletal muscle. Moreover, a
recent study in mitochondrial myopathy patients showed short-term adverse and long-term beneficial
effects of LCHF diet feeding on skeletal muscle health. Acute treatment of patients with a modified
Atkins diet resulted in muscle damage, especially in ragged-red fibers, indicating that nutrition can
modify mitochondrial disease progression (1). Surprisingly, in the 2.5 years follow up study patients
showed improvements in muscle strength suggesting that the initial fiber degeneration promoted
subsequent fiber regeneration resulting in increased muscle force. Thus, care must be taken when
administering LCHF diets to patients with mitochondrial-associated diseases and in evaluating
responses to short-term treatment.

Taken together, our results clearly demonstrate that PGC-1a in skeletal muscle is essential for
maintaining sufficient energy levels during prolonged muscle contractions, especially when
carbohydrate availability is low, with important implications for whole body metabolism and energy
homeostasis. Finally, it is important to note that even though a LCHF diet induces beneficial health

effects by increasing systemic oxidative metabolism, such interventions also exert potentially

15



344

345

346

347

348

349

detrimental effects, including increasing total blood cholesterol levels, a known risk factor for
cardiovascular diseases, or impaired liver function. Therefore, future studies should aim at elucidating
the potential of non-LCHF diet-based interventions to modulate ketone body levels such as nutritional
ketosis. Alternatively, physiological, e.g. by adjuvant physical activity, or pharmacological modulation

of muscle PGC-1a should be considered to mitigate the unwanted side effects of such interventions.
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FIGURE LEGENDS

Figure 1. LCHF diet feeding increases fat mass and oxygen consumption while lowering the respiratory
exchange ratio.

A) Body weight curve of mice with an initial weight of 28 g fed a chow or a LCHF diet for 1 or 12 weeks
(n=13-16). B) Fat mass in percent of total body weight measured by EchoMRI in mice fed a chow or
LCHF diet for 12 weeks (n=7-8). C) Lean mass in percent of total body weight measured by EchoMRI in
mice fed a chow or LCHF diet for 12 weeks (n=7-8). D) Relative heart weight of mice fed a chow or LCHF
diet for 12 weeks (n=7-8). E) Average food intake measured over a 48 h period in mice fed a chow or
LCHF diet for 8 weeks (n=6-8). F-1) Average calorie intake (F), respiratory exchange ratio (RER) (G),
oxygen consumption rate (H) and total ambulatory activity (1) measured by indirect calorimetry over a
48 h period in mice fed a chow or LCHF diet for 8 weeks (n=7-8). Error bars represent SEM, and
significant differences between chow-fed CTRL and mKO mice and LCHF-fed CTRL and mKO mice (p <
0.05), respectively, are indicated by an asterisk (*). Significant differences between chow and LCHF-

fed CTRL and chow and LCHF-fed mKO mice (p < 0.05), respectively, are indicated by a hashtag (#).

Figure 2. LCHF-fed mice show a PGC-1a dependent switch from glucose to fatty acid oxidation in
skeletal muscle.

A) Plasma glucose levels of mice fed a chow or LCHF diet for 12 weeks (n=7-8). B) Relative glycogen
levels in Gastrocnemius muscle of mice fed a chow or LCHF diet for 12 weeks (n=6-8). C-G) Plasma total
cholesterol (C), non-esterified fatty acids (NEFA) (D), ASAT (E), ALAT (F) and B-hydroxybutyrate (B-
OHB) (G) levels of mice fed a chow or LCHF diet for 12 weeks (n=7-9). H-I) Gene expression in
Gastrocnemius muscle relative to 18S of genes involved in glucose metabolism (H) and ketolysis (1)
(n=6-8). J-K) Representative immunoblots (J) and protein levels of OXCT1 and ACAT1 (K) in
Gastrocnemius muscle relative to eukaryotic elongation factor 2 (eEF2) (n=6). L-N) Gene expression in
Gastrocnemius muscle relative to 18S of PDK4 (L) and genes involved in fatty acid uptake and oxidation

(M) and transcriptional regulation (N) (n=6-8). Error bars represent SEM, and significant differences
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between chow-fed CTRL and mKO mice and LCHF-fed CTRL and mKO mice (p < 0.05), respectively, are
indicated by an asterisk (*). Significant differences between chow and LCHF-fed CTRL and chow and

LCHF-fed mKO mice (p < 0.05), respectively, are indicated by a hashtag (#).

Figure 3. PGC-1a in skeletal muscle is essential to maintain adequate energy levels during exercise upon
LCHF diet feeding.

A) Endurance exercise test of mice fed a chow or LCHF diet for 10 weeks (n=7-8). B-C) Blood glucose
(B) and lactate (C) levels before and after exhaustive endurance exercise test of mice fed a chow or
LCHF diet for 10 weeks (n=7-8). D-E) Average oxygen consumption rate and respiratory exchange ratio
(RER) (E) measured by indirect calorimetry in a closed treadmill of mice fed a chow or LCHF diet for 11
weeks and corresponding bar graphs (n=6-8). Error bars represent SEM, and significant differences
between chow-fed CTRL and mKO mice and LCHF-fed CTRL and mKO mice (p < 0.05), respectively, are
indicated by an asterisk (*). Significant differences between chow and LCHF-fed CTRL and chow and

LCHF-fed mKO mice (p < 0.05), respectively, are indicated by a hashtag (#).

Figure 4. LCHF diet feeding does not affect mitochondrial biogenesis and lowers ATP production in
skeletal muscle.

A) Gene expression in Gastrocnemius muscle relative to 18S of genes involved in mitochondrial
homeostasis (n=6-8). B) Protein levels of different mitochondrial chain complexes in Gastrocnemius
muscle relative to eukaryotic elongation factor 2 (eEF2) and representative immunoblots (n=6). C-D)
Complex | induced oxygen consumption rate (C) and estimated ATP production (D) of isolated
mitochondria from Quadriceps muscle (n=4-6). E-F) Complex Il induced oxygen consumption rate (E)
and estimated ATP production (F) of isolated mitochondria from Quadriceps muscle (n=4-6). Error bars
represent SEM, and significant differences between chow-fed CTRL and mKO mice and LCHF-fed CTRL
and mKO mice (p < 0.05), respectively, are indicated by an asterisk (*). Significant differences between
chow and LCHF-fed CTRL and chow and LCHF-fed mKO mice (p < 0.05), respectively, are indicated by a

hashtag (#).
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Table 1. gPCR primer list.

Gene Name Forward primer Reverse primer

18S AGTCCCTGCCCTTTGTACACA CGATCCGAGGGCCTCACTA
Acadl CCAGCTAATGCCTTACTTGGAGA GCAATTAAGAGCCTTTCCTGTGG
Acadvl GTAGCCTCCATCCGAAGCTC CAGGCCCCCATTACTGATCC
Acatl GTGAAGGAAGTCTACATGGGCA TGTGGTGCATGGAGTGGAAATA
Bdh1l TTTGCTGGCTGTTTGATGAAGG TTGAGCTGGATGGTTCTCAGTC
CD36 GGCAAAGAACAGCAGCAAAAT TGGCTAGATAACGAACTCTGTATGTGT
Cptlb ATCATGTATCGCCGCAAACT CCATCTGGTAGGAGCACATGG
Cs CCCAGGATACGGTCATGCA GCAAACTCTCGCTGACAGGAA
ERRa ACTGCAGAGTGTGTGGATGG GCCCCCTCTTCATCTAGGAC

Glut 4 GATGAGAAACGGAAGTTGGAGAGA | GCACCACTGCGATGATCAGA
HKII AAAACCAAGTGCAGAAGGTTGAC GAACCGCCTAGAAATCTCCAGAA
Mctl TGCAACGACCAGTGAAGTATCA ACAACCACCAGCGATCATTACT
Oxctl CCCATACCCACTGAAAGACGAA CTGGAGAAGAAAGAGGCTCCTG
Pdk4 AAA ATTTCCAGGCCAACCAA CGAAGAGCATGTGGTGAAGGT
Pfkm GGGGATCACCAATCTGTGTGT ATCATTCAGCAAGTCGCTCCA
PGC-1a AGCCGTGACCACTGACAACGAG GCTGCATGGTTCTGAGTGCTAAG
PGC-18 CCATGCTGTTGATGTTCCAC GACGACTGACAGCACTTGGA
Pkm1 CATTATCGTGCTCACCAAGTCTG GATTTCGAGTCACGGCAATGATA
PPARa ACAAGGCCTCAGGGTACCA GCCGAAAGAAGCCCTTACAG
PPARS GCAAGCCCTTCAGTGACATCA CCAGCGCATTGAACTTGACA
Sdhb TGACGTCAGGAGCCAAAATGG CCTCGACAGGCCTGAAACTG
Uqgcrc2 CCCATCTTGCTTTGCTGTCTG AATAAAATCTCGAGAAGGACCCG
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