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Summary

Silicon is the most important semiconducting material in the microelectronics industry.
The determination of the structure of silicon clusters is an important task since current
trends of the semiconductor industry have led to a dramatic decrease of the device fea-
tures. The properties of silicon clusters are peculiar and differ strongly with size. Since
direct determination of the structure of clusters is not possible, Si clusters have been
extensively studied using a combination of computational simulation and experimental
techniques such as ion mobility measurements, polarizability measurements, Raman or IR
spectroscopy. Nevertheless, agreement about the structure of the most promising global
minimum candidate has been found only for silicon clusters Si, with n < 7. Though
existing global optimization methods were successful in correctly predicting the presence
of structural motifs such as Sig, Si; and Si;y subunits in low energy isomers of silicon
clusters with more than 10 atoms, they were not always able to predict structures that
would reproduce all the experimentally observed properties.

In this dissertation, we present a new global optimization method which we shall call the
dual minima hopping method (DMHM). The method was implemented in collaboration
with Stefan Goedecker. The DMHM allows us to find the global minimum of the potential
energy surface (PES) within density functional theory (DFT) for systems for which a less
accurate calculation of the PES is possible. The DMHM does not involve thermodynamics
and can rapidly find the ground state configuration within DFT by performing a system-
atic search. It is based on the recently developed minima hopping method (MHM). The
DMHM couples a fast approximate method such as force field or tight binding scheme
with the slow but accurate DFT method. The DMHM is very efficient since it requires
only an affordable number of DFT geometry optimizations for reasonable configurations
which were obtained by the geometry optimization with a fast method and for which the
DFT programs converge without problems.

We apply the new method to silicon clusters Si,, in the range 7 < n < 19 by choosing a
tight-binding scheme as fast approximate method and find a number of new low energy
isomers within DFT for Siy3, Sijg, Sij7, Si;g and Sijg. We challenge the unique ground
state structure for certain Si clusters Si, with n > 13 by performing DFT calculations
using the DMHM and by comparing the DFT results with the Quantum Monte Carlo
(QMC) calculations done by Richard Hennig. We show on the basis of the DFT calcula-
tions which are done using the PBE exchange-correlation functional that the lowest ten
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isomers coexist within a tiny energy interval. In particular, for Si;3 the ten lowest pure
isotope-free isomers coexist within less than 10 mHa. Besides, we find more than 150
different pure isotope-free low energy isomers for Si;5. The presence of the ?°Si isotope
increases this number even further. We observe that the low-lying isomers for silicon
clusters Si, in the range 13 < n < 19 can be both prolate, oblate and spherical. For
some clusters the DF'T and QMC energy differences are so small that entropy effects
can change the energetic ordering. In particular, pure isotope-free configurations with
rotational symmetry are disfavored by the entropy effects as compared to non-symmetric
pure isotope-free configurations. Symmetric configurations containing one 2°Si isotope are
disfavored by the entropy effects as compared to non-symmetric configurations containing
one 2°Si isotope. From these observations we conclude that for silicon clusters Si, in the
range 13 < n < 19 a mixture of several configurations with different shapes is to be
expected at room temperature, and that interpretation of any experimental data should
therefore be handled with great care.
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Chapter 1

Introduction

The determination of the structure of Si clusters is an important task since Si clusters
may find applications in the rapidly developing field of nanotechnology. Silicon is the
second most abundant element after oxygen in the Earth’s crust, making up 25.7% of
it by mass. It has atomic number 14 and was first identified by Antoine Lavoisier in
1787. It occurs in nature mainly in minerals consisting of practically pure silicon dioxide
SiO, in different crystalline forms. Silicon is a semiconductor with a band gap of 1.09
eV. The conductivity of silicon can be varied by doping. Crystalline silicon has melting
temperature of 1687 K. Silicon valence shell has 4 electrons and the configuration 3s?3p?.
The stable isotopes of silicon are 28Si, 2°Si and 3°Si. The predominant isotope 28Si has
abundance of ~92.2 %, the isotope 2°Si has abundance of ~4.6 %, and the isotope 3°Si has
abundance of ~3.0 % [1]. The miniaturization trends of the semiconductor industry have
decreased the device features to ~150 nm.With Si-Si distance of around 2.4 Angstroem,
the roughly estimated number of Si atoms aligned in a linear chain would be ~600. The
device features approach thus the size of silicon clusters. Silicon clusters take interme-
diate place between single Si atoms and small Si molecules on the one hand and bulk
matter, i.e. crystalline diamond structure, on the other hand. Their properties are often
peculiar and different from those of their constituent parts and from those of bulklike
macroscopic pieces of matter. In particular, their properties differ dramatically with size.
There is an ongoing debate about the size at which the most favorable low energy Si clus-
ters adopt the diamond structure. Yu et al. [2] have found indications that the transition
to crystalline structures occurs at around 400 atoms. Si clusters are produced with laser
vaporization source from a supersaturated vapor of the material. The determination of
the structure of silicon clusters is a difficult task. Standard experimental techniques such
as X ray diffraction, NMR or STM are not applicable to clusters. The main source of
experimental information, ion mobility measurements [3], provides only crude information
about the shape of the cluster. Computational simulation is therefore necessary in order
to determine the geometries of the experimentally observed clusters. From the theoretical
point of view the ground state structure is determined by the global minimum of the
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2 1. Introduction

Born-Oppenheimer potential energy surface (PES). According to the Boltzmann distri-
bution the global minimum structure will dominate in an ensemble of configurations if the
temperature is low enough. Finding the global minimum of a high dimensional function
is a difficult task and requires a systematic global optimization algorithm. Nevertheless,
even best algorithms fail to guarantee that the global minimum will be found. Another
problem is that calculating the Born-Oppenheimer surface with high precision is a very
demanding task and usually requires some kind of approximation. Density functional
theory (DFT) is one of the mostly used and computationally affordable approximations
to calculate the energy of atomic clusters. A number of different global optimization
algorithms has been applied to Si clusters and there was a general agreement about the
lowest energy candidate structures for Si clusters consisting of up to 19 atoms. New global
minimum candidates were recently proposed by Hartke [4] and Zeng [5] for silicon clus-
ters Si,, in the range 11 < n < 19. This shows that present global minimum algorithms
are still not capable to predict the global minimum within a given exchange-correlation
functional with high likelihood. Besides, different exchange-correlation functionals may
change the energy order [6]. The mostly used global minimum algorithms are genetic
algorithms [7], [8], [9], the basin hopping method [10], [11], simulated annealing [12], [13]
and the big-bang method [14]. A.Tekin and B.Hartke [15] have calculated energies for
the lowest energy structures of silicon clusters Si, with n < 29 using DFT/B3LYP and
LMP2 levels of theory with sufficiently large basis sets and have shown that the energy
order of the low-lying isomers changes when employing LMP2 instead of DFT/B3LYP
level of theory. They have concluded from their calculations that higher level of theory
is needed in order to decide which of the proposed candidates is the true global min-
imum. Though new low-lying isomers have been permanently proposed, disagreement
between experimentally observed and calculated polarizabilities and dissociation energies
for silicon clusters Si,, with n < 19 could not be resolved. The overall agreement between
theoretically calculated and experimentally observed ion mobilities is either not a proof of
successful global minimum search since ion mobilities give only crude information about
the shape of the cluster.

The disagreement between different researchers about the global minimum candidates for
silicon clusters Si, in the range 7 < n < 19 was the motivation for this doctoral thesis.
As we shall see later in this work, already for Sij3 cluster at least 10 low-lying isomers lie
within the DFT/PBE energy interval of 10 mHa. Searching for the global minimum of
silicon clusters Si,,, most researchers have adopted an approach where one first performs a
systematic search with an algorithm which allows a fast but inaccurate calculation of the
potential energy surface (PES) to obtain low-lying isomers which are global minimum can-
didate structures. Which of the candidate structures is lowest in energy is subsequently
determined in a second step by DFT calculations. Other researchers have coupled system-
atic search algorithms with DFT methods, but their algorithms were biased or required
too many DF'T calculations to be feasible within finite amount of time. In this PhD thesis
we present a new method based on the minima hopping method [16] (MHM), which we
will refer to as the dual minima hopping method (DMHM). The method allows to find the
global minimum of the potential energy surface (PES) within density functional theory



for systems for which a fast but less precise evaluation of the PES is possible. We apply
the method to silicon clusters Si, with less than 20 atoms. Even though these systems
have already been extensively studied, we find new global minimum candidates for Si;3,
Si;g and Sijg as well as new low-lying isomers for Siy3, Sig, Sij7 and Sipg.

When investigating Si clusters, the range 13 < n < 19 is particularly interesting because
the isotopes ?8Si and ?Si have an abundance of ~92% [1] and ~5% [1] respectively. On
average, one of 18 Si atoms will be an isotope 2*Si. Pure isotope-free configurations con-
sisting only of ?8Si isotopes will be present in an ensemble of configurations of silicon
clusters with up to 19 atoms: most clusters in the range 13 < n < 19 will contain no
2Si isotope, one 2°Si isotope or two 2°Si isotopes. Symmetric configurations containing
one ?°Si isotope and isotope-free configurations with rotational symmetry will be closer
investigated in this thesis. Since rotational degrees of freedom are excited already at very
low temperatures, and the symmetry is not destroyed due to vibrational-rotational cou-
pling and centrifugal forces in the temperature range up to the melting point of clusters,
symmetric configurations will be entropically disfavored at room temperatures as we shall
show. Both isotope presence effects and rotational entropy contributions can change the
energy order of silicon clusters at room temperature.

In Chapter 2 we give an overview over experimental studies of silicon clusters performed
so far. These studies encompass ion mobility measurements (IMM), dissociation studies,
chemical reactivity studies, ionization potential studies, photoelectron spectroscopy stud-
ies and polarizability measurements. In Chapter 3 we briefly present the fundamentals
of the density functional theory (DFT). In Chapter 4 we give an overview over the basic
global optimization algorithms that were used so far in the global minimum studies of
silicon clusters. In chapter 5 we present the main theoretical studies of Si clusters with
up to 45 atoms. The heart of this PhD thesis are Chapters 6 and 7. In Chapter 6 we
present in detail the dual minima hopping method (DMHM) and its implementation for Si
clusters on the basis of the tight-binding scheme developed by T.Lenosky [17]. In Chapter
7 we study the coexistence of low-lying isomers for Si,, clusters in the range 7 < n < 19.
In particular, we investigate entropy effects on the energy order. In the conclusion we
summarize the results of our investigations and make suggestions for future work.






Chapter 2

Experimental studies of silicon
clusters

The standard experimental techniques such as NMR for studying molecules or X ray
diffraction for studying periodic systems are not applicable to clusters. Available experi-
mental techniques give only indirect information about the structure of a cluster so that
the exact positions of the atoms forming the cluster remain unknown. For this reason
a combination of theoretical predictions and experimental techniques must be used in
order to determine the cluster structures. Besides, the interpretation of experimental
measurements must be handled with care. When comparing theoretical predictions with
experiment, one should know the exact preparation conditions of the experimentally stud-
ied clusters and take into account entropy effects since as we shall see later in Chapter
7 it is not necessarily the global minimum structure of the Born-Oppenheimer potential
energy surface that dominates in an ensemble of clusters at finite temperatures. Up to
now, experimental studies combined with the predictions of simulations succeeded only in
elucidating the geometries of small Si clusters with less than 8 atoms. For larger clusters,
there is still no agreement between experimentally observed properties and those calcu-
lated for the presumable global minimum candidates obtained by simulation. According to
experimental studies, Si, clusters in the size range 20 < n < 30 undergo a structural tran-
sition from prolate to spherical. The most important experimental techniques carried out
for Si clusters encompass ion mobility measurements, dissociation studies, polarizability
measurements, chemical reactivity experiments, ionization potential measurements, pho-
toelectron spectroscopy, Knudsen mass spectrometry, calorimetric measurements, Raman
and IR spectroscopy. We present in this chapter the main experimental studies of Si
clusters and discuss briefly the theoretical approaches which were used to interpret the
experimental results.
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2.1 Ion Mobility Measurements

Ion mobility measurements (IMM), which can be performed only for charged clusters, are
considered today as one of the best techniques to provide information about the cluster
structure [18]. The mobility of a gas phase ion determines how rapidly it moves through
a buffer gas under the influence of an electric field. The mobility of an ion depends on
its average collision cross section with the buffer gas and thus on the geometry of the
ion. A spherical structure will have a larger mobility than a non-spherical structure thus
allowing to separate spherical from non-spherical isomers. The structural information
obtained from IMM provides only information about the outer shape of the ion, but
not about its inner structure, since inner atoms are shielded by the outer atoms and
therefore do not participate in collisions with the buffer gas. Structural assignments for
unknown species studied in the ion mobility experiments become possible by comparison
of the measured mobilities with mobilities calculated for candidate geometries. The high-
resolution configuration [19] for performing ion mobility experiments consists of four main
regions: (1) the source, where the clusters are produced; (2) the ion gate, which connects
the source to the drift tube and prevents neutral species from entering the drift tube; (3)
the drift tube and (4) the mass spectrometer and the ion detector. The source is a laser
vaporization source with a near static buffer gas. The buffer gas in the source is around
500 Torr. Clusters are produced by laser vaporization of a target of the material to be
studied. Subsequently, cluster ions are guided from the target rod towards the entrance
of the ion gate by a shaped electric field. By varying the voltage on the rod, one can
adjust the residence time of clusters in the source and vary the cluster size distribution.
By reversing the voltages it is possible to extract either anions or cations. The function
of the ion gate is to allow ions to pass from the source into the drift tube while preventing
neutral species from entering the drift tube. This is accomplished by a uniform electric
field to carry the ions through the ion gate and a counterflow of buffer gas to prevent
neutral species from passing through. A uniform electric field is generated along the
axis of the drift tube. At the end of the drift tube the ions are carried by the buffer
gas through a small hole into the vacuum chamber. Using this arrangement one can
perform measurements in the temperature range from -25 to +100 °C. After exiting the
drift tube, the ions are accelerated and focused by a set of electrostatic lenses. The ions
are directed through a 0.5-cm-diam. aperture into a chamber that houses a quadrupole
mass spectrometer and an ion detector. At the end of the quadrupole, ions are detected
by an off-axis collision dynode and dual microchannel plates. Drift time distributions are
recorded by measuring the arrival time distribution at the detector, with a start pulse
provided by the vaporization laser. Ion mobility measurements were successfully applied
to study the structure of Si, clusters [20], [21], [19], [3], [22] and have provided strong
evidence for prolate to spherical transition in the size range 20 < n < 30 [20]. The
high-resolution ion mobility experiments [19] performed by Hudgins et al. [3] have shown
that starting with Sij; several low-lying isomers can be resolved at room temperature.
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2.2 Dissociation studies

Jarrold and Bower [23] have performed collision-induced dissociation studies of silicon
cluster ions with argon. The collision energy was chosen low enough in order to pre-
vent excited electronic states and to favor the dissociation on the ground-state potential
energy surface via the lowest energy dissociation channel. They have observed that for
clusters with n < 15 the dominant products are Si§ and Sif, whereas for larger clus-
ters the dissociation took place by loss of the Sif, ion. The results obtained in these
studies were similar to those obtained in the photodissociation studies by Smalley [24].
Photodissociation involves excitation to an excited electronic state, so that the observed
similarity in product distribution with collision-induced dissociation indicates that the
excitation is followed during the dissociation by the relaxation to the electronic ground
state. Jarrold and Honea [25] have studied multi-collision dissociations of silicon cluster
ions containing up to 70 atoms. The ions in the drift tube undergo many collisions with
the collision gas, and each collision converts a fraction of the kinetic energy of the ion
into internal energy. Because of the averaging that occurs in the multicollision excitation
process the resulting energy distribution is narrow. Si, clusters with 19 < n < 35 have
been observed dissociating mainly by loss of Sijy species, larger clusters dissociated by
Sig-unit loss. Dissociation energies have been estimated from the experimental results.
Shvartsburg, Jarrold et al. [26] have modeled the dissociation of Si, neutrals and cations
in the range 2 < n < 26. They have calculated dissociation energies for different fragmen-
tation pathways using the gradient-corrected Perdew-Wang-Becke 88 (PWB) functional
and have compared the dissociation energies of lowest energy pathways with the exper-
imental values [25]. The computed dissociation energies were in good agreement with
experiment, though discrepancies for Si;3 and Sijg were observed.

2.3 Polarizability studies

The static polarizabilities of Si, clusters with 9 < n < 120 have been experimentally
investigated in dependence on cluster size by R.Schéfer et al. [27]. They have observed
that the polarizability per atom as a function of cluster size varies irregularly around
the bulk limit of 3.71 A%. The largest polarizability was observed for Si;g. The clusters
are produced by a pulsed laser vaporization cluster source. The clusters leave the source
through a nozzle and form a molecular beam. The deflections are measured for each
cluster size using a collimated ionization laser beam which scans the cluster beam. We
obtain thus size selective cluster beam profiles by detecting the ionized clusters with a
mass spectrometer for each scanning position.

Several researchers [28, 29, 30, 31] have calculated the polarizabilities within density func-
tional theory of the most promising global minimum candidates of silicon clusters. Jackson
et al. [28] have calculated static polarizabilities of Si, clusters with n = 10,13, 20, 21 us-
ing the LDA approximation. As compared to the experimental results of R.Schéfer, only
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a partial agreement was observed. Vasiliev et al. [29] have calculated polarizabilities of
small Si,, clusters with 3 < n < 10 using higher-order finite-difference pseudopotential
plane-wave technique. They have observed that the computed polarizabilities per atom
tend to decrease with increasing cluster size and approach the bulk limit from above. In
order to compare their results with the experimental data, they have taken into account
an additional contribution from the dipole rotating in external electric field. Nevertheless,
they couldn’t reproduce the experimental polarizabilities of R.Schéfer. Bazterra et al. [30]
have calculated polarizabilities of Si,, clusters with 3 < n < 13 using the hybrid functional
B3PW091 [32], [33]. Except for Sijg, their polarizabilities for Sig-Si;3 were larger than those
of R.Schéafer. Since they have got similar values for the polarizabilities as Jackson et al.,
they have concluded from the discrepancies that the experimental values are likely to be
incorrect. Recently, C.Pouchan et al. [31] have performed polarizability calculations for
Siz-Sijg clusters using the LDA/VWN (local density approximation/Vosko-Wilk-Nusair),
BLYP and B3LYP exchange correlation functionals. Their polarizabilities are similar to
those obtained by I.Vasiliev and V.Bazterra. C.Pouchan et al. have also studied the
relationship between the polarizability and the HOMO-LUMO gap. According to simple
perturbation theory using the one-electron wave functions, the value of polarizability can
be calculated according to

i =2 [(klwD* /(B — Ex) (2.1)

L,k

where 1 and k stand for the unoccupied (or antibonding) and the occupied (or bonding)
orbitals, respectively. The matrix element corresponds to the size of the transition dipole
moment. In the first approximation one can say that larger polarizabilities correlate with
smaller HOMO-LUMO gaps since it contributes most significantly to «;; in the equation
2.1. C.Pouchan et al. have found in their studies that the polarizability of silicon clusters
is not directly related to the size of the HOMO-LUMO gap, but to the size of the energy
gap between symmetry-compatible bonding and antibonding molecular orbitals. To sum-
marize, neither of the theoretical calculations of polarizabilities [28], [29], [30], [31] did
succeed in reproducing the experimental data of R. Schafer. These discrepancies indicate
that either the experimentally studied structures or the theoretically studied isomers of
silicon clusters are not the true global minima of the Born-Oppenheimer potential energy
surface.

2.4 Chemical reactivity studies

J.L.Elkind et al. [34] have studied chemical reactivity of silicon clusters towards ammonia
(NH3) and have found that silicon clusters with 21, 25, 33, 39 and 45 atoms appeared to be
inert. L.Anderson, S.Maruyama and R.Smalley [35], [36] have studied chemical reactivity
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of silicon cluster ions towards ethylene (CoH4) and have found that silicon cluster ions
with 39 and 45 atoms are particularly unreactive. From these studies it appeared that
chemical reactivity has strong variations as a function of cluster size. Recently, R.L.Zhou
and B.C.Pan have performed simulations [37] combining a tight-binding approach and
LDA calculations, and have proposed a global minimum candidate structure for the Siys
cluster which is also a candidate for the lowest reactivity candidate structure. They have
argued that isomers showing low reactivity are those with a small number of dangling
bonds in the outer cage of the isomer. Such isomers are those with a small number
of threefold-coordinated Si atoms which have one dangling bond and are very active
and a large number of fivefold-coordinated Si atoms and fourfold-coordinated Si atoms.
However, this theoretical work does not explain why low chemical reactivity was observed
experimentally for silicon clusters with 39 and 45 atoms. The results of M.Jarrold et
al. [38], [39] differ from those of Smalley. M.Jarrold et al. have studied the chemical
reactivity of Sii clusters in the range 3 < n < 50 towards ethylen and have found that
there appears nothing to be unique about Sijy and Sij;. The studies [39] which they
have performed for the Si} clusters in the range 11 < n < 50 suggested the presence
of structural isomers for virtually all clusters. The presence of isomers became apparent
from studies of reaction kinetics since structural isomers react at significantly different
rates. The measurements of chemical reactivity towards ethylene have indicated that the
reactions with C,H, are more sensitive to the cluster structure than the reactions with
NH; and involve specific localized sites on the cluster. M.Jarrold et al. have also studied
chemical reactivity towards oxygen [40] and towards water [41] of Si} clusters ions with
10 < n < 65. They have observed large variations in the reactivity of the smaller clusters
and have found that Sif;, Sif; and Sij; are particularly inert. The variations in reactivity
are rapidly damped with increasing cluster size and for clusters with 40 < n < 65 the
reactivity is nearly independent of size.

2.5 Ionization potential studies

Experimental ionization potential (IP) measurements [42], [43] based on the photoion-
ization method have been performed for Si, clusters in the range 2 < n < 200. One
can possibly distinguish the theoretically predicted low-lying isomers by comparing the
calculated ionization potentials for these isomers with the experimentally observed val-
ues. Trevor et al. [42] have concluded from the photoionization mass spectrum (PMS)
of silicon clusters that the IPs of Si;_7 and Si;q are found to be grater than 7.87 eV while
Sigo-Sitgp have IPs between 4.99 and 6.42 eV. Besides, Sigtn are found to be dominant
photofragments from the larger silicon clusters. K.Fuke et al. [43] have measured the IPs
of Si,, clusters in the interval 4 < n < 200 and have identified major maxima at n = 10 and
20. They have observed a large gap in IPs between n = 20 and 22 and have ascribed it to
the structural transition in this size range. Jarrold et al. [44] have performed a systematic
ground state geometry search and have calculated the IPs for the best global minimum
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candidates. The calculated IPs reproduced the experimentally observed size-dependent
trends.

2.6 Photoelectron spectroscopy

Photoelectron spectroscopy is a powerful tool for studies of atomic clusters since it probes
both the geometry and the electronic structure. In photoelectron spectroscopy the anion
is photoexcited above the detachment threshold and the energy of the released electrons
is measured. The two characteristic values which one obtains from the photoelectron
spectrum are the threshold value which indicates the adiabatic electron affinity (AEA)
and the maximum of detachment efficiency energy which is the vertical detachment energy
(VDE). The vertical detachment energy is the energy needed to remove an electron from
the HOMO. In metal clusters the HOMO-LUMO gap decreases with increasing cluster
size rendering the clusters metallic. Miiller et al. [45] have measured the photoelectron
spectra (PES) for silicon cluster anions Si; with n < 20. Besides, they have modeled the
PES for a number of low-energy isomers using density functional theory. The simulated
PES gave an excellent agreement with the experiment. Miiller et al. have calculated
the HOMO-LUMO gap for Si, neutrals and have found that the band gap does not
decrease with increasing n as it would be the case for metallic species. O.Cheshnovsky
et al. [46] performed ultraviolett photoelectron spectroscopy (UPS) measurements on the
negatively charged silicon clusters Si, with n < 12. N.Binggeli et al. [47] have calculated
PES spectra of small Si,, with n < 7 and have found a good agreement between theoretical
results and the experimental data [46]. By comparing the theoretical and the experimental
spectra, they were able to distinguish between the two low-energy isomers of Sig. Recently,
G.Meloni et al. [48] have obtained PES for silicon cluster anions Si, with 4 < n < 34.
Their data has shown trends which are consistent with the structural transformation from
prolate to spherical in the range 20 < n < 30, though they have observed a signal from
the prolate structure even for Sig.

2.7 Other experimental studies

R.Schmude and Q.Ran [49], [50] have investigated the thermodynamic properties of Siy,
Siz and Sis molecules using Knudsen mass spectrometry which is a technique for studying
the equilibrium between condensed and vapor phases. From their measurements they
have calculated the atomization and formation enthalpies of the investigated clusters.
T.Bachels et al. [51] have calorimetrically determined the binding energies per atom of
neutral silicon clusters in the range N = 65 to N = 890. The measurements of the binding
energies were performed within a molecular beam experiment, in which the released heat
during the deposition of Si clusters on a Si surface was measured with a pyroelectric thin
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film calorimeter. The measured binding energies indicated the existence of two different
classes of cluster isomers: one with spherical-like geometries characterized by binding
energies proportional to N™1/3 and the other showing no dependence on the cluster size
in the investigated size range. Thus, the prolate to spherical transition already observed
in ion mobility measurements [20] was confirmed by the measurements of the binding
energies. E.Honea et al. [52] have obtained Raman spectra of Sis, Sig and Si; clusters
and have concluded from these spectra that Sis is a planar rhombus, Sig a distorted
octahedron and Si; a pentagonal bipyramid. S.Li et al. [53] have obtained the IR spectra
of silicon clusters. K.Jackson et al. [54] have calculated Raman- and IR~active frequencies
and intensities for several silicon clusters using the local density approximation (LDA).
For the smaller clusters Si, with 3 < n < 8 their results were in good agreement with
experimental measurements.






Chapter 3

The fundamentals of density
functional theory

Density functional theory (DFT) is presently the most successful and the most widely
used approach to compute the electronic structure of matter. Whereas for small systems
methods of contemporary quantum chemistry such as restricted and unrestricted Hartree-
Fock models, configuration interaction and many-body perturbation methods provide
predictions of properties of both excited and ground states of molecules with a high
accuracy, these methods become computationally too expensive for large systems. Density
functional theory provides in its original formulation an effective approach based on the
knowledge of the electron density to calculate the ground state properties of a system.
The applicability of DFT ranges from atoms and molecules to solids. DFT predicts
correctly a great variety of properties such as molecular geometries, ionization energies,
vibrational frequencies and polarizabilities. In the course of time the original DFT has
been generalized to deal with more complex problems such as spin polarized systems,
relativistic electrons or time-dependent phenomena.

3.1 The molecular many-electron Schrodinger equa-
tion

The basic task of solid state physics and quantum chemistry is the solution of the time-
independent non-relativistic Schrodinger equation

HU, (&), %5, ...,ZN, By, Ro, ..., Rnt) = EiV;(Z1, &, ..., Zn, Ry, Ra, ..., Ru). (3.1)

H denotes the Hamilton operator in atomic units for a system consisting of M nuclei and
N electrons:

13
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Here, the indices A and B run over the M nuclei, while i and j run over the N electrons.
The first two terms describe the kinetic energy of the electrons and nuclei. The other three
terms represent the attractive electrostatic interaction between the nuclei and the electrons
and repulsive potential due to the electron-electron and nucleus-nucleus interactions. The
Born-Oppenheimer approximation states that due to their masses the nuclei move much
slower than the electrons and that therefore we can consider the electrons as moving in
the filed of fixed nuclei. The nuclear kinetic energy can be neglected and the potential
energy of the nuclei is a constant. The electronic Hamiltonian is given by

=T+ Vye + Voo (3.3)

fa= -3y Vi-3 3 2y 3y

i=1 A= 1 i=1j>¢ U
and the corresponding electronic Schrodinger equation for fixed R 4p is given by

IA{elec\Ilelec = Eelec\Ijelec- (34)

The total energy FEj, is then the sum of E,.. and the constant nuclear repulsion term
Enucl:

M M ZAZB
Etot = Eelec + Enucl with Enucl = Z . (35)
A=1B>A Rap
3.2 The variational principle for the ground state
When a system is in the state ¥, the expectation value of the energy is given by
<UHIT > | - .
B[] = S22 i <\1rH\1r>:/qf*H\11d*. 3.6
9= g vith <l i (36)

The variational principle states that the energy computed from a guessed W is an upper
bound to the true ground-state energy Ey. Full minimization of the functional E[W¥] with
respect to all allowed N-electrons wave functions will give the true ground state ¥, and
energy E[W¥o| = Ep, that is
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Ey = ming E[¥] = ming < \I’|T + Ve + Vee|\1’ > . (3.7)

For a system of N electrons and given nuclear potential V,; (which replaces the potential
Vne), the variational principle defines a procedure to determine the ground-state wave-
function ¥y, the ground-state energy Ey|[N, Ves|, and other properties of interest. In
other words, the ground state energy is a functional of the number of electrons N and the
nuclear potential V,.;:

Ey = E[N, Vi) (3.8)

3.3 The Hartree-Fock approximation

Suppose that the ground state function ¥, is approximated as an antisymmetrized product
of N orthonormal spin orbitals ;(Z), each a product of a spatial orbital ¢(7) and a spin
function o(s) = a(s) or S(s), the Slater determinant

\IIO ~ \IJHF = — : . . (39)

The Hartree-Fock approximation is the method whereby the orthogonal orbitals 1); are
found that minimize the energy for this determinant form of W:

The expectation value of the Hamiltonian operator with Uy is given by

. N 1 N

i=1 ij=1

Here

i = [ w;‘(f)[—%VQ Vo (8] (2) dE (3.12)
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defines the contribution due to the kinetic energy and the electron-nucleus attraction,
whereas

Ty = [ [ (@091 @) - (@) @)z (3.13)

are called Coulomb integrals, and

Ky = [ [61@003(@) - i@)v; @) ddz, (3.14)

are called exchange integrals. The integrals are real, and J;; > K;; > 0. We have the
property J; = K;;. The variational freedom in the expression of the energy is in the
choice of the orbitals. The minimization of the energy functional with the normalization
conditions [} (Z)y;(Z)dZ = é;; leads to the Hartree-Fock differential equations

fibi = €, i=1,2, ..., N. (3.15)

These IV equations are eigenvalue equations, where the Lagrangian multipliers ¢; are the

eigenvalues of the operator f . The Fock operator f is an effective one-electron operator
defined as

» 1o, &7, ,
f= _§V’ — Z a + Vgr(i). (3.16)
A=1"1?

The first two terms are the kinetic energy and the potential energy due to the electron-
nucleus attraction. Vyp(7) is the Hartree-Fock potential, the average repulsive potential
experienced by the i-th electron due to the remaining N — 1 electrons, and it is given by

N
Var(#1) = Y (J;(31) - K;(3)) - (3.17)
J
In this equation

) = [ 103(@0) P, (3.18)

is the Coulomb operator which represents the potential that an electron at position Z;
experiences due to the average charge distribution of another electron in spin orbital ;.
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The second term is the exchange contribution to the HF potential. It has no classical
analog and is defined through its effect when operating on a spin orbital:

A

Ry (@) = | w;(fg)éwi(@w;(fl)d@. (3.19)

The HF potential is non-local and it depends on the spin orbitals. Thus, the HF equations
must be solved self-consistently. Koopman’s theorem provides a physical interpretation
of the orbital energies: it states that the orbital energy ¢; is an approximation of minus
the ionization energy associated with the removal of an electron from the orbital 1, i.e.
&~ Ey — EY | = —IE(i).

3.4 The electron density

The electron density is the central quantity in DF'T. It is defined as the integral over the
spin coordinates of all electrons and over all but one of the spatial variables (¥ = 7, s):

p() = N/---/|\I!(i’1,§:'2,---,fN) 2ds,dz, - - - diy. (3.20)

p(7)d7 determines the probability of finding any of the N electrons within volume element
dr. p(7) is a non-negative function of only 3 spatial variables which vanishes at infinity
and integrates to the total number of electrons:

p(F = 00) =0 | / p(F)d7 = N (3.21)

p(7) is an observable and can be measured experimentally, e.g. by X-ray diffraction. At
any position of an atom, the gradient of p(7) has a discontinuity and there is a cusp:

]imrm_;() [VT + QZA] ﬁ(’F) = 0, (322)

where Z is the nuclear charge and p(7) is the spherical average of p(7). The electron
density p(7) decays exponentially for large distances from all nuclei:

p(7) ~ exp [—2\/ﬁ|77|] ; (3.23)

where I is the exact ionization energy.
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3.5 The first Hohenberg-Kohn theorem

1.Hohenberg-Kohn theorem: The external potential V.. (7) is (to within a constant) a

unique functional of p(7); since, in turn V. (7) fixes H, the full many particle ground
state is a unique functional of p(7).

Interpretation: The first Hohenberg-Kohn theorem demonstrates that the electron density
uniquely determines the Hamiltonian operator and thus all the properties of the system.

! (7) differing
by more than a constant, each giving the same p(7) for its ground state, we would have
two Hamiltonians H and H’ whose ground-state densities were the same although the
normalized wave functions ¥ and ¥’ would be different. Taking W' as a trial wave function
for the H problem, we get

Proof: Let us assume that there were two external potentials V. (7) and V!

By < (V|HV) = (V|H'V) + (V|H - H'|V) = E, +/p ) Vaae(7) — V2 (7)] dF,
(3.24)

where Ey and Ej are the ground-state energies for H and H', respectively. Similarly,
taking ¥ as a trial function for the H' problem, we get

By (WA W) = (O[H9) + (U[H ~ HW) = By + [ p(7) [Viea(7) ~ Vel ] 7. (3.25)

Adding the two equations, we would obtain Ej + Ey < Ej + Ej, which is a contradiction,
and so two different external potentials V.. (7) cannot give the same p(7) for their ground
state. So, p(7) determines N and V. (7) and hence all the properties of the ground state,
for example the kinetic energy T'[p], the potential energy V'[p], and the total energy E|p].
Now, we can write the total energy as

Elp] = Ene[p] + T[p] + Eee[p] = / p(7)Vive(M)dT + Frx|p] (3.26)
with

FHK[p] = T[p] + Eee. (327)

The explicit form of the functional Fy g is the major challenge of density functional theory.
If it were known the Schrédinger equation could be solved exactly. Fpx[p] contains the
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functional for the kinetic energy T[p] and that for the electron-electron interaction, Fee|[p].
The explicit form of both these functionals is unknown. However, from the latter we can
extract at least the classical part J[p],

1 p(r1)p(e) .
E =3 I Enone = Epone . 3.28
wli =5 [ [ PR 4 Buont = T1p] 4 Buanal (3.28)

E,ona 1s the non-classical contribution to the electron-electron interaction consisting of
self-interaction correction, exchange and Coulomb correlation terms. It is the major task
of the DFT to find the correct form of the functionals T'[p] and E,,nqlp]-

3.6 The second Hohenberg-Kohn theorem

2.Hohenberg-Kohn theorem:

Frxl[p], the functional that delivers the ground state energy of the system, delivers the
lowest energy if and only if the input density is the true ground state density.

Interpretation:

This is nothing but a reformulation of the variational principle:

By = Elp] < E[p] = T[3] + Enelp] + Eeel)- (3.29)

Proof: The proof of this equation makes use of the variational principle established for
wave functions. We recall that with the 1.Hohenberg-Kohn theorem any trial density p

defines its own Hamiltonian H and hence its own wave function W. This wave function
can now be taken as the trial wave function for the Hamiltonian generated from the true
external potential V_,;. Thus,

(UH8) = T3]+ Eeelpl + [ 57V = EI5) > Eo = Elp] = (Wl H|Wo) . (3.30)

3.7 The Kohn-Sham equations

We have seen that the ground state energy of a system can be written as

Fy = min, (F[p] n / p(F)VNedF> (3.31)
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where the universal functional F[p] contains the contributions of the kinetic energy, the
classical Coulomb interaction and the non-classical portion:

Flp] =Tlp] + Jp] + Enonalp] (3.32)

Only J[p] is known. The main problem is to find the expressions for T[p| and E,,nq|p]-
Kohn and Sham suggested to calculate the exact kinetic energy of a non-interacting
reference system with the same density as the real, interacting one

Ty = —5 S (BIV2I) ps() = S5 (7, 5) P = ol (3.39)

where the v); are the orbitals of the non-interacting system. Of course, T is not equal to
the true kinetic energy of the system. Kohn and Sham accounted for that by introducing
the separation of the functional F'[p| according to

Flp] = Ts[p] + J[p] + Exclp], (3.34)

where the Ex¢ given by

Exc = (Tp] — Tslp]) + (Eeelp] — Jp]). (3.35)

is the so-called exchange-correlation energy. The exchange and correlation energy is the
functional that contains everything that is unknown. The question which arises now is
how can we define a potential Vs such that is provides us with a Slater determinant which
is characterized by the same density as our real system. We rewrite now the expression
for the energy of the interacting system as

Elp] = Ts[p] + J[p] + Exclp] + Enelp] (3.36)

or

E[] = Ts[o] + % [/ %ﬁ%)dad@ + Exclil+ [ Vaep@di  (3.37)

The only term which is unknown is Ex¢. The equations which minimize this energy
expression under the constraint < 1);[1; >= d;; are called the Kohn-Sham equations:
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1 7 M 7z 1
(——W + l/ il 2)df'2 + Vxo(™) =Y —AD Y = (——V2 + VS(F1)> Vi = by (3.38)
2 T12 A T1A 2
with
V) = [ 2 g, 4 Vo) - S 24 (3.39)
12 2 A
The exchange-correlation potential Vx¢ is defined as the derivative of Ex¢ with
respect to p:
VXC’ = 5EXC/5P (340)

3.8 The exchange-correlation functionals

The local density approximation (LDA) is the simplest exchange-correlation functional
approximation. At the center of the model is the idea of an uniform electron gas. The
electrons move in a positive background charge distribution so that the total charge is
zero and the system is neutral. Within the LDA assumption Ex¢c can be written as

X240 = [ pPexclp(d)dr (3.41)

exc(p(7)) is the exchange-correlation energy per particle of an uniform electron gas of
density p(7). In the expression above the exchange-correlation energy per particle is
weighted with the probability p(7) to find an electron at this position. One can show that
exc can be written as the sum of exchange and correlation parts:

exc(p) = ex(p) +ec(p) (3.42)

where

ex(p) = —% <3p(77)>% . (3.43)
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An expression for the correlation part ec(p) has been proposed by Vosko, Wilk, and
Nusair(VWN) [55].

For open-shell molecules the local spin density approximation (LSDA) gives better results
than LDA. Whereas in the LDA, electrons with opposite spins paired with each other
have the same spatial Kohn-Sham orbital, LSDA allows such electrons to have different
spatial Kohn-Sham orbitals. The generalization of density-functional theory that allows
different orbitals for electrons with different spins is called spin-density functional theory.
In spin-DFT, one deals separately with the electron density p®(7) of the spin-« electrons
and the density p?(7) of the spin-f3 electrons, so that the exchange-correlation functional
Exc becomes a functional of these two quantities:

Exc = Exc[p®, p°]. (3.44)

For systems with all electrons paired, spin-DFT will reduce to ordinary DFT.

In the generalized gradient approximation (GGA) we use not only information about the
density p(7) at a particular point 7, but additionally the information about the gradient
of the charge density. In the GGA approximation Ex¢c can be written as

ESG [pas p5] = / F(pa(7), ps(7), V pa(F), V ps (7)) dr. (3.45)

A hybrid exchange-correlation functional mixes together the Hartree-Fock exchange term
with gradient-corrected exchange and correlation terms. One of the most popular hybrid
functionals is the BBLYP hybrid functional [56].

3.9 Performing Kohn-Sham density-functional calcu-
lations
The Kohn-Sham equations 3.38 can be written in a more compact form as
FE5; = ey (3.46)

with

5 1 ) -
fKS = —§V2 + [/ p7(“122) dT‘Q + ch(T'l) —_ Z — . (347)
A
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Solving the Kohn-Sham equations, the orbitals v; are usually expanded as

L
wi = Z CriXpu- (348)
p=1
Inserting 3.48 into 3.47 we obtain
" L L
fKS(Fl) Z criXv(T1) = € Z CuiXw(T1)- (3.49)
v=1 v=1

Multiplying both sides of this equation with an arbitrary basis function , and integrating
over space we get

L L
> Cui/Xu(Fl)fKS(Fl)XV(FI)dFI =€) Cui/Xu(Fl)Xu(Fl)dFI for 1 <i< L. (3.50)
v=1

v=1

The integrals on both sides of this equation define the Kohn-Sham matrix

Fpb = /XH(Fl)fAKS(Fl)XV(Fl)dFI (3.51)

and the overlap matrix

S = / X (7)) X0 (7). (3.52)

Equations 3.50 can be thus written in the more compact form

FESC = SCe. (3.53)

The individual elements of the Kohn-Sham matrix can be written as

FKS _ — _1 2 l é p(FQ)d—' — — — 4
o = | Xu(m) 2V > — + 7o + Vxco(71) | xu(71)dr. (3.54)
A

T12

The first two terms can be combined to one-electron integrals
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L (1 Mz L
hy = /Xu(rl) <—§V2 — Z —A> X, (71)dr.

LAY
For the third term we express the charge density according to

N L L

p(r) = Z |¢’z(7:‘)|2 = Z Z Zcmcuixu(F)xu(f’).

(3.55)

(3.56)

The expansion coefficients are usually collected in the density matrix P with elements

N
Py = Zcmcvi-
i

The Coulomb contribution in Eq. 3.54 can be expressed as

1

L L
S = XA:ZPAa//Xu(Fl)Xu(Fl)EXA(%)XU(@)dﬂdF%

The exchange-correlation part is represented by

VO = /Xu(Fl)VXC(Fl)Xu(Fl)dFL

3.10 Basis functions

3.10.1 Plane waves (PW)

(3.57)

(3.58)

(3.59)

Plane waves are periodic and independent of atomic positions, i.e. they are delocalized.
They are a natural choice in periodic system codes such as CPMD. A plane wave (PW)

orbital can be written as

X" = cpexp(ik - r)
k

(3.60)

In order to achieve the desired accuracy when using a finite PW basis set, one must choose

a cutoff k,,,, which is large enough.
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3.10.2 Slater-type orbitals (STO)

Slater-type orbitals (STO) seem to be the most natural choice for basis functions since
they resemble the exact eigenfunctions of the hydrogen atom. A STO centered at an atom
of the system under consideration is given by

X1 = Nr"™ ' exp[—Br]Y,™ (6, ¢). (3.61)

N is here the normalization factor, n is the principal quantum number, 3 is the orbital
exponent and Y, are spherical harmonics functions. The problem with STOs is however
that the estimation of the many-center integrals is computationally too demanding. That’s
why the usage of STOs is limited. A minimal basis set consists of one STO for each inner-
shell and valence-shell atomic orbital of each atom. A double-zeta (DZ) basis set is
obtained by replacing each STO of a minimal basis set by two STOs that differ in their
orbital exponents.

3.10.3 Gaussian-type orbitals (GTO)

To speed up the calculations, one can use Gaussian-type orbitals (GTO). They are given
by

X0 = Na'y? 2¥ exp[—ar?], (3.62)

where N is a normalization factor and « represents the orbital exponent. L =i+ j+ k is
used to classify the GTOs as s-type(L=0) Gaussians, p-type(L=1) Gaussians, etc. Instead
of using the individual Gaussian functions as basis functions, it is more common to use
the so-called contracted Gaussian-type functions (CGTF), which are linear combinations
of primitive Gaussian functions.






Chapter 4

Global Optimization Methods

Finding the global minimum of a high dimensional function is one of the most difficult
mathematical problems. In physics, the basic challenge often consists in finding a config-
uration with the lowest energy, i.e. one has to minimize the energy E as a function of the
M coordinates of the atoms F(Ry, Ry, ..., Ry). Finding the configuration with the lowest
energy is essential since it is dominant in the ensemble of configurations if the temperature
is chosen low enough. We present in this chapter the mostly used algorithms for global
optimization of the Born-Oppenheimer energy surface of clusters.

4.1 Overview

Finding the global minimum of the potential energy surface (PES) of a complex system is
a central problem in physics, chemistry and biology. The global minimum gives the ground
state configuration. At low enough temperature the system will be found in this global
minimum structure assuming that this structure is kinetically accessible. For a periodic
system the global minimum gives the crystalline ground state structure, for non-periodic
systems it determines the geometric ground state configuration of molecules. With regard
to proteins the ground state is called the native state, and the theoretical determination
of this native state is one of the major challenges of modern biology. Finding the ground
state of large systems is computationally very expensive and has become possible only
recently. The fundamental reason why finding the global minimum is so expensive is
that the number of local minima increases presumably exponentially with respect to
the number of atoms in the system. Indeed, Wille and Vennik demonstrated that the
problem of finding the global minimum of the PES of a cluster is NP-hard, id est the
configurational complexity of this optimization increases more than polynomially with
cluster size. A complete sampling of all these minima would be simply impossible for
large clusters. At the beginning of a simulation the system is located in a region around

27
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some local minimum, called basin of this local minimum. The union of several neighboring
basins is called a super-basin. If one can reach from any point of a super-basin the lowest
local minimum of this super-basin without crossing barriers that are very high compared
to the average energy difference between the local minima, the super-basin is called a
funnel (see Fig. 4.1). In a funnel landscape the local minima which are close to the
global minimum are also low in energy. Realistic landscapes are multi-funnel landscapes
and consist of many funnels.

energy (arb. .

configurational coordinate (arb. u.)

Figure 4.1: A funnel of the potential energy landscape.

Short-range potentials give rise to more local minima and to a rougher PES than soft long-
range potentials. The search by global optimization can be unbiased when the starting
configuration is randomly chosen, or seeded when a set of good structures is used to
begin the optimization procedure. Seeded global minimum searches can be faster because
they use some knowledge about the system under study, but they can also miss the
true global minimum if it differs very much from the seed structure and thus lies in
a different funnel. If one wants to compare the efficiency of different algorithms, one
should perform unbiased searches. During the simulation one has to travel through many
intermediate local minimum basins and funnels and to overcome the barriers separating
the different local minima and funnels in order to reach the global minimum. The mostly
used algorithms for finding the global minimum are based on thermodynamic principles,
i.e. they use in some way the Boltzmann distribution
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Ni _ giexp (—Ei/kgT)
N ¥, g5exp (—=E;/kpT) ’

(4.1)

where N; is the number of molecules at equilibrium temperature 7" in a state i which
has energy F; and degeneracy g¢;, N is the total number of molecules in the system
and kg is the Boltzmann constant. The Boltzmann distribution implies that for a non-
degenerate case the probability of finding a state 1 with the energy F; and the probability
of finding a state 2 with the energy F, at a given temperature T differ by the Boltzmann-
factor exp(—(Ey — E1)/kgT). The thermodynamic methods are usually incorporated
into standard Monte Carlo technique based on the Metropolis algorithm (see Appendix
A) when performing random moves or include molecular dynamics. In contrast to the
thermodynamical methods, the non-thermodynamical methods such as genetic algorithms
mimic the Darwinistic evolution.

4.2 Thermodynamic methods

4.2.1 Simulated annealing

Simulated annealing is based on thermodynamics and the underlying Boltzmann distribu-
tion, but takes into account the kinetic aspects. Though at a sufficiently low temperature
the system should be in the ground state with the energy ¢, because the probabilities
of finding the system in other states with the energies ¢; are vanishingly small due to
the Boltzmann weight exp(—/3(¢; — €)) with 5 = 1/kgT, in practice the system will be
trapped in some local minimum because at low temperature it can not overcome barriers
that it has to cross in order to get into other minima. The problem can be alleviated
by starting a Markov process at a high temperature and then decreasing the tempera-
ture gradually during the simulation until the system gets trapped in the ground state.
This approach guarantees that the system has enough kinetic energy at the beginning
to cross barriers before being trapped in the ground state. The gradual decrease of the
temperature is the characteristic of simulated annealing. The two essential ingredients
that characterize the simulated annealing scheme are the type of trial moves that are
used and which determine the trial step probability matrix w as well as the schedule for
reducing the temperature. The simplest implementation of simulated annealing is based
on molecular dynamics. Using molecular dynamics the system propagates according to
the Newton’s equations of motion and one does not have to come up with a prescription
for the trial moves. Molecular dynamics based simulated annealing is thus imitating much
faster what is happening in nature very slowly during a crystallization process. While the
system is slowly cooling down, the atoms move according to Newton’s law and finally may
find the global minimum configuration which is the crystal structure. As in any global
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optimization algorithm there is however no guarantee that the global minimum will be
obtained at the end of the run.

4.2.2 Basin hopping

The basin hopping method ( [10], [11]) is a canonical Monte Carlo simulation performed at
constant T on the transformed PES. A basin of a local minimum is a region of attraction
of this local minimum. This means that all steepest descent minimization steps that
are started within the basin and which are chosen small enough will end up in this local
minimum. Basin hopping is a Monte Carlo method on a modified potential energy surface.
In an ordinary Monte Carlo simulation the Boltzmann factor exp(—(Epnew — Estrt)/ksT)
of the Metropolis step contains the energies F,., and Fg,; of the new configuration X,,.,,
and of the starting configuration X, which are characterized by the atomic positions
Ry, R,, ..., Ry. In the basin hopping method E,.,, and Ey;,.; have different meanings: they
are the energies of the local minima of the basins of X,,.,, and X;;. The hops within the
basin hopping method are thus performed on a modified or transformed potential which
is constant within the basin.

energy (ar. u)

configurational coordinate (arb. u.)

Figure 4.2: The transformed potential energy surface of the basin hopping method.

The basin hopping method offers the advantage that the barriers separating different
minima can be overcome much more easily during the simulation. In an ordinary Monte
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Carlo simulation the Boltzmann factor exp(—(Epew — Fsirt)/ksT) can become very small
when one tries to jump into another basin since the energy differences can be much
larger than on the transformed potential energy surface of the basin hopping method.
As a consequence jumping from one basin into another is a rather rare event in ordinary
Monte Carlo simulations. Hence it can take a very long time until one finally falls into
the global minimum. The calculation of the transformed potential using a local geometry
optimization is performed each time a new configuration is encountered. The energy of the
local minimum found in this way is then the energy which is assigned to the configuration
X. The trial steps that bring us from one configuration to the next are in the simplest
case just random displacements of the atoms. For small random displacements one will
remain for a long time in the same basin. Since the energies do not change, all these
moves are accepted in the Metropolis step. On the other hand, if one chooses very large
random displacements the algorithm becomes similar to a random search. Such a random
search is generally less efficient because it ignores the fact that if one has already found
a good local minimum, it is likely that other even better ones are close by. A too large
step size gives therefore a low acceptance probability in the Metropolis step. The step
size of the random displacement is therefore usually adjusted such that half of all new
configurations are accepted. There is one free parameter in the basin hopping method,
namely the temperature 7'. Though the basin hopping method is applied to a canonical
ensemble NVT where the temperature T is kept constant, T can be lowered successively
during a simulation. Basin hopping can thus be used within a simulated annealing scheme,
replacing the molecular dynamics. The Boltzmann-distribution guarantees us that at a
sufficiently low temperature only the basin of the global minimum will be populated.
But again thermodynamics can not tell us how long it will take until the thermodynamic
equilibrium distribution is reached and hence how long it will take to find the global
minimum.

4.3 Non-thermodynamic methods

4.3.1 Genetic algorithms

The use of genetic algorithms in cluster optimization was pioneered by Hartke [7]. The
basic idea of a genetic algorithm ( see for example [57]) is to follow the biological process
of evolution, i.e. to mimic the Darwinistic principle of the survival of the fittest. The
basic quantity in a genetic algorithm is an initial population of configurations, which is
called the initial gene pool. Numerically each gene is a binary string, i.e. an integer array
with each element containing 1 or 0. We can express any variable r; € [0,1] as

- . - w ..
n:%Jr%JF%JF...:Zy_? , (4.2)
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where y;; is a decimal integer equal to either 0 or 1. We can truncate the binary string at
a selected number m, whose value depends on how accurately do we want to approximate
r;. Then we can write

T~ ; % (4.3)

The reverse of the encoding process, id est the transformation of a binary string to a
decimal number r;, is straightforward. The initial population of the gene pool is typically
created randomly. There are two issues that need to be addressed during the initialization
of the gene pool. The first is the size of the population. If the population is too small,
it will require more time to sample the entire possible configuration space, but if the
population is too large, it takes more time to create a new generation each time. The
second issue concerns the quality of the initial gene pool. If we would create all the
configurations randomly, the quality of the initial gene pool would be low. Typically
one first creates a number of random configurations, and then picks the best of them as
ingredients of the initial gene pool. Very often, several populations are evolved in parallel,
and configurations are exchanged between them from time to time.

The basic three operations performed in each generation are

1) mutation,
2) crossover and
3) selection.

A mutation consists of a random change of some bits of a gene, i.e. of a flip of one or
several bits of a gene. The key element of a genetic algorithm is the concept of gene
crossover. After having selected two parents genes from the parent pool, we cut each gene
of the two parents at a selected point, and then join the right segment of one parent to
the left segment of the other, and thus get two offsprings. An example is presented below:

11011][00010 father gene
1010011111 mother gene
1101111111 1.child gene
10100[/00010 2.child gene

Gene crossing makes sense only if segments of a gene determine some functionalities. After
having performed the operations of mutations and crossovers on a population follows the
final selection or survival step. The fitness of each gene ¢ in a population that may consist
of parents and children generated by both mutations and crossovers is measured by its
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fitness f; which in a given physical problem could be for instance the negative of the
energy of a configuration. The average fitness of our population < f > of N individuals
is given by

1 N
< f>= Nizzlfi. (4.4)

The survival rate of gene i is proportional to f;/ < f >. Repeating systematically the
processes of mutation, crossovers and selection gives fitter and fitter populations, and
thus increases the chance that finally a population might contain the best gene, which
corresponds in the mathematical language to the global maximum or minimum.

4.4 Recent developments

Recent developments when using genetic algorithms include similarity checking among
cluster structures in order to keep the diversity of the population so that different fun-
nels of the PES can be inspected as the genetic optimization goes on. Cheng [58] has
proposed an effective cluster similarity checking method using the connectivity table.
Configurations in different funnels of the PES differ strongly in their connectivity ta-
bles. N.Mousseau and G.T.Barkema presented 1998 [59], [60] the activation-relaxation
technique (ART). An event in ART is defined as a move from a local energy minimum
to another nearby minimum following a two-step process: the activation during which a
configuration is pushed from a local minimum to a nearby saddle point and the relaxation
that brings the configuration from this saddle point to a new local minimum. The ART
technique is similar to the eigenvector-following method presented by Doye and Wales
[61].






Chapter 5

Global minimum studies of silicon
clusters

A large number of global minimum studies based on different algorithms has been per-
formed for silicon clusters Si,, with n < 45 over the last 15 years. It is a well established
fact that the PES of a condensed matter system can be calculated with good accuracy
within DFT today, though finding the correct exchange-correlation functional remains
difficult. Nevertheless, DF'T methods have not been used up to now as a standard tool di-
rectly implemented in algorithms that attempt to determine the ground state of complex
systems because most algorithms for the determination of the global minimum require a
very large number of evaluations of the PES. Since the number of local minima of the PES
of clusters scales exponentially with the number of atoms n, and each evaluation requires
a full electronic structure calculation, these algorithms are computationally too demand-
ing within the full DFT framework for silicon clusters with more than a dozen atoms.
One can restrict the search of the global minimum on a subspace of the DFT-PES by
using the information about the system which is studied, i.e. by performing a constrained
search. In a constrained search one fixes some atomic positions or imposes some structural
motifs, but experience shows that the global minimum is often missed in this way. A sys-
tematic search for the global minimum is possible with computationally less demanding
approximations such as tight binding schemes and force fields. The PES of tight binding
schemes and force fields differs significantly from the DFT-PES and the true PES of the
system, so that the obtained global minimum candidates within these approximations are
in general not the global minima within DFT. In summary, with present methods one has
either the choice of using methods with a limited power of predictability or of doing a
constrained search for the global minimum. To overcome this dilemma several researchers
have adopted an approach where one first effectuates a systematic search with a method
that allows for a fast but inaccurate calculation of the PES to obtain low-lying isomers
which are global minimum candidate structures. Which of the candidate structures is
lowest in energy is determined in a second step by DFT calculations. Other researchers
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have combined systematic search algorithms with DF'T methods, but their algorithms
required too many DFT calculations to be computationally feasible if one wants to find
the global minimum.

5.1 Overview

K.Raghavachari et al. [62], [63], [64], [65] have studied the structures of Si, clusters with
2 < n < 10 using ab initio molecular-orbital calculations. The geometries have been
optimized using Hartee-Fock (HF) level of theory and Mgller-Plesset perturbation the-
ory of fourth order. The calculations have shown that clusters containing 4,6,7 and
10 atoms are particularly stable, which is consistent with experimental observations.
K.M.Ho et al. [8] have obtained low energy structures of silicon clusters Si, in the range
12 < n < 26 by means of a genetic algorithm [66]. Their calculations have predicted
the near-spherical cage structures to become the most stable for n > 19. Using the
non-orthogonal density-functional tight-binding scheme (DFTB) which was proposed by
Th.Frauenheim [67], A.Sieck et al. [68] have obtained low energy structures of silicon clus-
ters Si, with 9 < n < 14 and have calculated their cohesive energies and HOMO-LUMO
gaps. Besides, they have calculated IR and Raman spectra for the lowest energy configu-
rations. Using simulated annealing, A.Sieck et al. [13] have addressed the shape transition
by investigating Si, clusters with 25, 29 and 35 atoms within the DF'TB approach. They
have found that whereas for energetically low-lying neutral silicon clusters with 25 atoms
both non-spherical and spherical structures coexist, for clusters containing 29 and 35
atoms, the low energy isomers have a spherical shape. I.Rata, A.Shvartsburg et al. [9]
have presented the single-parent evolution algorithm, which is a Monte Carlo like tech-
nique containing elements of a genetic algorithm. However, whereas in a standard genetic
algorithm one starts with a population containing multiple parents, which are needed to
perform crossover operations, the single-parent evolution algorithm involves only a single
parent. Starting with some arbitrary structure, diversification operations which preserve
favorable attributes are applied, and the lowest energy structure evolves in accordance
with a fitness criterion. At the heart of this method are the two operations called piece
reflection and piece rotation. After each of these transformations, a newly formed cluster
is relaxed to the nearest local minimum, which is then defined as the offspring cluster. In
accordance with the Metropolis acceptance prescription, a lower energy offspring always
replaces the parent structure, while an offspring with a higher energy replaces the parent
structure with a Boltzmann probability based on the energy difference between the par-
ent and the offspring structures. Similar to the standard genetic algorithm described in
the last chapter, the single-parent evolution algorithm involves a mutation operation, in
which an offspring is accepted regardless of its energy. Piece reflection and piece rotation
are then applied alternately in the course of the evolution of the algorithm. In order not
to miss the global minimum, a new mutation cycle is started from a different part of the
configuration space if the energy of the cluster does not decrease over a fixed number of
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generations. The search is ended when new mutation cycles fail to decrease the energy
of the cluster. Using the single-parent evolution algorithm, I.Rata et al. [9] have found
a number of new low energy isomers of Si, clusters in the range 13 < n < 23 that can
be considered as promising global minimum candidates. Recently, K.A.Jackson et al. [14]
have systematically studied the prolate-to-spherical shape transition of Si,, clusters in the
range 20 < n < 27 using the DF'TB scheme and a new “big bang” optimization method.
The essence of the “big bang” optimization method is to create random configurations of
n atoms and to relax them to a local minimum using the DF'TB scheme and a standard
gradient-based algorithm. Millions of such minima are generated for each n by starting
from different random geometries thus allowing all possible shapes to emerge. For each
cluster size, 200-400 of the best DF'T'B local minima are selected for investigation by
DFT. K.Jackson et al. [14] have suggested in their study that whereas for Si, clusters
with n < 19 the low energy structures consisting of extremely stable Sig octahedron and
Sig tricapped trigonal prism (TTP) [8] subunits assume the prolate form, the low energy
structures for silicon clusters with n > 20 assume the minimum-surface spherical shapes.
J.Grossmann et al. [69], [70] have performed QMC calculations for Si, clusters in the
range 2 < n < 20. J.Jeong et al. [71] have performed LDA calculations for Si, clus-
ters in the range 9 < n < 14 and QMC calculations for several low energy Sij3 isomers.
Réthlisberger et al. [12] have used simulated annealing within DFT to find structural
motifs of the medium-sized silicon clusters. They have obtained their final lowest energy
geometries for Siygs by an iterative annealing process involving symmetry constraints on the
candidate structures and a subsequent extensive relaxation free of symmetry constraints.
Recently, A.Tekin and B.Hartke [4] have obtained new global minimum candidates for
Siyy, Siys, Siyg and Sigs clusters. Yoo and Zeng [72] were the first researchers to conduct
systematic search for the global minimum on the DFT-PES. They have combined basin-
hopping (BH) with DFT and have performed a systematic BH search within DFT for
silicon clusters Si,, with 12 < n < 16. By this means they have found a new global min-
imum candidate structure for Si;g. For larger clusters they have performed constrained
search and have found new global minimum candidates for Sij;, Sijg and Sige. How-
ever, though the same lowest-energy structure of Sij;g could be obtained with systematic
DFT-BH regardless of the initial structure within less than 5000 Monte Carlo trials, the
systematic DFT-BH has started to show dependence on the initial structure starting from
Si;7z. A systematic DFT-BH is therefore computationally too demanding to be feasible
for larger cluster within acceptable amount of time.






Chapter 6

The Dual Minima Hopping Method

We present a new method, which is based on the minima hopping method (MHM) [16]
and which we shall refer to as the dual minima hopping method (DMHM). This method
allows us to find the global minimum of the potential energy surface (PES) within density
functional theory (DFT) for systems where a fast but less accurate calculation of the
PES is possible. This method is not based on thermodynamics and can rapidly find
the ground state configuration of clusters and other complex systems with present day
computer power by performing a systematic search. We apply the new method to silicon
clusters Si, in the range 16 < n < 19. Even though these systems have already been
extensively studied by other methods, we find new global minimum candidates within
PBE for Sijg and Sijg as well as new low-lying isomers for Siig, Si;; and Siyg.

6.1 The Bell-Evans-Polanyi principle

The Bell-Evans-Polanyi (BEP) principle comes from chemistry and states that highly
exothermic chemical reactions have a low activation energy. According to the BEP prin-
ciple, within a series of closely related reactions one can sometimes observe a linear relation
between the energy of activation E, and the enthalpy of reaction AH,:

E, = A+ BAH,. (6.1)

Marcus theory even states that the dependence of the activation energy on the enthalpy
is parabolic. The fundamental assumption of Marcus theory is that the potential energy
landscape along the reaction path can be approximated by two parabolas centered at the
two local minima. The BEP principle is demonstrated in Fig.6.1. In the context of global
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Figure 6.1: The illustration of the BEP principle in the context of Marcus theory. Higher lying parabolas
correspond both to higher activation energies and higher energies of the new local minimum.

minimum search on the Born-Oppenheimer surface the BEP principle implies that one is
more likely to find a low energy local minimum by crossing from the current basin into a
new basin over a low energy barrier than over a high energy barrier. It is especially true
in the context of global optimization as compared to a single chemical reaction or a single
hop from one basin into another because it has to hold only in an average sense and not
for each individual barrier crossing. However, it should be pointed out that whereas the
BEP principle is a statement about the true physical transition state, it means something
different in the context of global optimization where one usually crosses energy barriers in
the molecular dynamics escape step which are much higher than those of the exact physical
transition state. We will therefore refer to it as molecular dynamics BEP, or abbreviated
MDBEP. The high kinetic energies in the molecular dynamics escape step are necessary
in order to prevent the system from being trapped in the initial local minimum since it is
not easy to find the exact transition state.
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6.2 The shortcomings of existing global optimization
methods

Except for genetic algorithms, the predominantly used global optimization methods are
based on thermodynamics. Thermodynamic methods such as simulated annealing or
basin hopping aim to achieve the Boltzmann distribution. However, it is very difficult to
estimate the number of steps which is needed in order to find the global minimum when
using thermodynamic methods since the same regions of configurational space will be
visited several times. It is possible that the method will jump back and forth between two
configurations for a very long time. In a multifunnel landscape the system can be easily
trapped in a wrong funnel and the global minimum will be missed in this way. The choice
of temperature or temperature scheme is of crucial importance for the performance of the
thermodynamic methods and can’t be known a priori. Besides, thermodynamic principles
do not take into account the MDBEP principle. They are consequently of limited value.
Genetic algorithms can be very powerful and have been indeed successfully applied to
silicon clusters. Unfortunately, they allow only a constrained search since they cover
only a subspace of the total configurational space and prefer in general some structural
motifs, which are only slightly modified by the mutation and crossover operations. An
unconstrained non-thermodynamic systematic search method which avoids revisiting of
old configurations would be very helpful in this context. The problem of repeated visits
of configurations has already been addressed by some researchers. One idea that was
proposed is flooding [73], [74]. The principle of flooding is that in basins that were already
visited during the simulation, the potential is lifted and it is less likely that a configuration
in the same region of configuration space will be accepted in a future Monte Carlo step.
Another version of flooding [75] is done not in the high dimensional configurational space,
but in a low dimensional space spanned by suitably defined parameters of the system. The
problem with flooding is that it is difficult to determine the boundaries of the basin which
should be flooded. Another problem with flooding is that the flooding of presumable
transition basins between different funnels may significantly deteriorate the performance
of the algorithm.

6.3 The minima hopping method (MHM)

Recently, Stefan Goedecker has proposed a novel method, the Minima Hopping Method
(MHM) [16]. It avoids revisiting of old configurations, is not based on flooding and takes
into account the MDBEP principle. The MHM algorithm has a double loop structure: in
the inner loop one attempts to escape from the current local minimum, in the outer loop
one accepts or rejects new local minima found by successful escape attempts. A history
list keeps track of all minima found. Introducing a history list makes the simulation
non-Markovian. A feedback mechanism uses information from this history list to make
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more vigorous escape attempts when the algorithm is revisiting previously found minima
thereby preventing the algorithm from getting trapped in an incorrect minimum. The
escape step is done by a short molecular dynamics simulation that starts from the current
minimum followed by a geometry relaxation. The geometry relaxation is done by a com-
bination of steepest descent and conjugate gradient methods. The atoms get a randomly
created Maxwell-Boltzmann velocity distribution such that their kinetic energy is equal
to Eginetic. The molecular dynamics escape step is then performed for a microcanonical
ensemble (N,V,Eg;,). The system with the kinetic energy Ejineric has sufficient energy
to cross over a barrier of height less than Ej;,ei. relative to the energy of the current
local minimum. The kinetic energy is reduced during the molecular dynamics simulation
by the height of the interatomic potential E,,. The molecular dynamics simulation is
stopped as soon as the potential energy has crossed mdmin maxima along the trajectory.
Subsequently, the geometry relaxation starts. If Egipenic is small, one will usually fall back
into the current minimum, if it is big, one will land in most cases in a different minimum.
However, due to the MDBEP principle, escapes with large Eg;petic Will in general lead
to high-lying local minima, whereas the preference in an escape step should be given to
energetically low-lying configurations. The MHM algorithm is shown below.

The minima hopping method (MHM) algorithm:

initialize a current minimum M, rent’
ESCAPE TRIAL PART

MDstart: start a MD trajectory with kinetic energy E;,qi;ic from current
minimum *M_,;;ens’
Once potential energy reaches another minimum along the
trajectory, stop MD and optimize geometry to find the closest
local minimum ‘M’
if ("M’ equals "M yrren:’) then
Erinetic = Ekinetic*ﬁl (/Bl > 1)
goto MDstart
else if ("M’ equals a minimum visited previously) then
Erinetic = Ekinetic*BQ (62 > 1)
else if ("M’ equals a new minimum ) then
Erinetic = Ekinetic*ﬂS (53 < 1)
endif

DOWNWARD PREFERENCE PART

if( energY(,M,) - energy(,Mcu'r'rent,) < Ediff ) then
accept new minimum: "M, ren;’ = "M’
add M y,ren:’ to history list
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Euips = Baipp*on (1 < 1)
else if rejected

Euigy = Bair*an (a2 > 1)
endif

goto MDstart

Three cases can be distinguished after a molecular dynamics escape step with subsequent
geometry relaxation. In the first case the geometry relaxation will lead back to the initial
local minimum that was used as the starting point. The kinetic energy Ejinetic is then
increased by a factor 5; and a new molecular dynamics trajectory is started. By choosing
By very close to 1 and by increasing the kinetic energy Eg;pnetic Only slightly, one can take
into account the MDBEP principle. In the second case the geometry relaxation leads
to a local minimum that has already been visited during the simulation and has already
been added to the history list after it was accepted in the outer acceptance/rejection loop.
Subsequently, the kinetic energy Eg;,cic is increased by a factor 8. The kinetic energy
Eginetic 18 increased in the first two cases in order to enable a crossing into a new unexplored
region of the configurational space and to enable a successful molecular dynamics escape
step. In the third case the geometry relaxation leads to a new local minimum. This is
the most desirable case since exploration of new configurations may lead to the global
minimum. The kinetic energy Egineric 1S decreased in such a case by a multiplication with
the factor factor 3 which is smaller than 1. This prevents the system from exploding
before the configurational space has been thoroughly explored, and guarantees that the
configurational space around the new local minimum will be first explored with a kinetic
energy Epiuerie which is not too large. Keeping track of all the visited local minima of
the PES of silicon clusters requires some identification criterion. In the context of force
field or tight binding calculations, the identification of clusters is an easy task, since the
energy of a local minimum configuration can be determined with very high accuracy in
this context. It is therefore enough simply to store the energy of each new configuration
that is accepted in order to be able to identify it later.

The acceptance/rejection of the new local minimum is done by simple thresholding. A
configuration is accepted if the energy of a new local minimum with energy E, .., rises by
less than Eg;¢ as compared to the current energy E.,,,. o; and oy determine how rapidly
Egify is increased or decreased in the case that a new configuration is rejected respectively
accepted. Half of the moves is accepted and half of the moves is rejected if ai; and a4 are
chosen such that ;s = 1. After the system has explored low energy regions of the PES,
it starts to explore higher energy regions. This is due to the fact that Egsese is increased
each time whenever a known configuration is revisited. Once Eg;nerie becomes very large,
the simulation should be stopped because otherwise the system will explode.
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6.4 The verification of the MDBEP principle with
the MHM method

Using the MHM method, we have verified the MDBEP principle for 3 different systems:
Lennard-Jones cluster of 38 atoms, Lenosky force field Si33 cluster and Lenosky tight
binding Si20 cluster. The results are presented in Fig. 6.2, Fig. 6.3 and Fig. 6.4. For each
system we have first chosen a sequence of kinetic energies in some reasonable interval,
each of these kinetic energies is a data point in the corresponding Figures. For each fixed
kinetic energy we have performed 100 runs using the MHM method in order to get good
statistics and have then calculated the average number of local minima visited before
the global minimum was found. As one can see in Fig. 6.2, Fig. 6.3 and Fig. 6.4, one
finds the global minimum much faster when Eg;, is small. This observation is an indirect
confirmation of the MDBEP principle.
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Figure 6.2: The MDBEP principle for the Lennard-Jones cluster of 38 atoms

6.5 The Dual Minima Hopping Method (DMHM)

In the ordinary version of the MHM [16] the forces for the MD and for the geometry op-
timization part are done with the same method. Fast methods such as force field or tight
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Figure 6.3: The MDBEP principle for the Lenosky force field Si33 cluster

binding methods have to be used to limit the computing time to an acceptable length. In
the method presented in this dissertation two different methods are combined: a slow but
accurate method and a fast but less accurate method. The fast method is used for the
MD part and for the first few steps of the geometry optimization. The accurate method
is then used for the final geometry optimization and the evaluation of the energy of the
relaxed structure. In this way the search for the global minimum is reduced to a relatively
small number of geometry optimizations with the accurate and expensive method plus
a much larger number of force evaluations with the fast method. Henceforth, we shall
refer to this modified minima hopping algorithm, that combines the two methods for the
calculation of the forces, as the dual minima hopping method (DMHM).

The fact that the input configuration for the geometry optimization with the accurate
method is a configuration that was prerelaxed with the fast method is important for the
stability of the entire algorithm if the accurate method is a DFT method. DFT programs
do typically not converge if the input configuration is far from any physically reason-
able configuration. The prerelaxation with the fast method excludes the possibility that
a physically unreasonable state is used as an input configuration. From the previous
considerations it might seem advantageous to do a full prerelaxation, i.e. to use a local
minimum of the fast method as the input for the geometry optimization with the accurate
method. If the fast method is a reasonable approximation then a local minimum found
by it will often be close to a local minimum of the accurate method.
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Figure 6.4: The MDBEP principle for the Lenosky tight binding Si20 cluster

Unfortunately, in general there is no one-to-one correspondence between minima obtained
from the two methods. Therefore, some local minima obtained using the accurate method
are inaccessible from the starting configurations provided by the fast method. For this
reason only a small number of steps should be done in the prerelaxation with the fast
method. In this way the ensemble of the starting configurations for the geometry opti-
mization with the accurate method comprises a considerable part of the configurational
space (and not only the ensemble of all the minima of the fast method) and one can reach
virtually any minimum of the accurate method. The MDBEP principle is essential for
the success of the MHM as has been shown in [16]. The correlation between the barrier
height and the energy of the minimum ‘behind’ the barrier certainly deteriorates if one
is combining two different methods. This implies more local minima will be visited, on
average, with the DMHM before the global minimum is found than with the ordinary
MHM. In order to explore the influence of this reduced correlation we did systematic
tests with a 38 atom Lennard-Jones (LJ) cluster. This is a system for which the global
minimum is hard to find since it is contained in a small secondary funnel [76], [11], [77]
but the computing time is small since the potential can be evaluated very rapidly. As
the accurate method we used the LJ potential. As the ‘fast’ method we used a truncated
polynomial approximation of the LJ potential as shown in Fig. 6.5. As expected, the
number of local minima that are visited on average before the global minimum is found
increases from 380 to 530, nevertheless, the number of force evaluations needed with the
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Figure 6.5: The truncated polynomial approximation of the LJ potential and the exact LJ potential.

‘expensive’ exact LJ method is reduced by a factor of 5.

To demonstrate that the DMHM can indeed find the global ground state geometry of
real clusters, we have applied it to silicon clusters. Numerous groups are involved in the
search of the ground state of silicon clusters and there are at least 50 theoretical papers
on this subject [12], [72], [5], [8], [78], [79], [80], [81], [82], [9], [14], [4], [83], [84]. Ap-
plying DMHM to silicon clusters we were able to find all of the known structures [79],
[80], [81], [82] in the range Sis-Sijg and we even found lower energy structures for Siyg
and Sig in spite of the fact that silicon clusters up to 19 atoms in size have already
been extensively studied. The new global minimum structures within CPMD/PBE (see
below) Sijg, and Sijg, as well as the new low-lying isomers Siygp, Siize, Siiz and Sijg, are
shown in Fig. 7.2. The structure Sijg, contains the TTP-Sig-subunit [85] and is compact
in contrary to the structure Sijg reported by X.C.Zeng [5]. The structure Si;g, consists of
a T'TP-Sig-subunit and a Sijg-subunit. The low-lying isomer Siyg, is compact and highly
symmetric. The low-lying isomer Sij7, consists of a TTP-Sig-subunit and a Sig-subunit.
The low-lying isomer Si;7, consists of two equal 7-blocks, which are rotated against each
other, and a triangle as a cleaving block. The low-lying isomer Siyg, is prolate and con-
sists of two TTP-Sig-subunits which are rotated against each other. In contrast to the
previous works, the new configurations as well as the putative global minimum structures
reported previously were found by the DMHM automatically after having visited only a
few hundred local minima. As the fast method we have used the Lenosky tight binding
scheme for silicon [17]. As the accurate method we have tested three different DFT codes:
all-electron DMOL code [87], [88], pseudopotential based CPMD code [89] and pseudopo-
tential based Quickstep code [90]. Unfortunately, the DMOL and CPMD codes were to
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Figure 6.6: New low energy geometries Siiga, Siigp, Sit7a, Si17p, Si1ge and Sijg, found in this work
with DMHM and the putative global minimum structures Siig [5], Si17 [8], Siis [8] and Sitg [9] reported
previously and reproduced by the DMHM. The new geometries will be posted on the Cambridge Cluster
Database [86].

slow in order to be implemented in the DMHM. The accurate method as implemented in
the DMHM is therefore the Quickstep code [90]. After having performed the DMHM with
Quickstep using a relatively small Gaussian basis set and the local density approximation
(LDA), we have calculated accurate final energies and zero-point energies with the CPMD
program [89] using the PBE functional [91], a high accuracy pseudo-potential [92], large
super-cells (24 A) and a sufficient plane wave cutoff (28 Rydberg). The results for Sijg,,
Sitgp, Sii7a, Siize, Siige and Sijg, as compared to Siyg, Sijz, Sijg and Sig (see Fig. 7.2)
are presented in Table 6.1. A comparison to the new low-lying isomers (not presented
here) Sij; and Siyjg found by Zeng et al. in [5] should also be made. The isomer Si;z,
is lower by 0.16 eV, the isomer Siy7, is lower by 0.06 eV within CPMD/PBE than the
low-lying Siy; isomer reported by X.C.Zeng [5]. The Sij; structure reported by Ho et
al. in [8] is however 0.09 eV lower than our isomer Siy7,. The isomer Sijg, is lower by
0.28 eV than the low-lying Siyg isomer reported by X.C.Zeng [5]. In contrast to other
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Cluster Silﬁa Si16b Si17a Si17b Silga Silga
PBE -0.15 0.02 0.08 0.20 0.24 -0.08
PBE(Z) -0.16 0.01 0.09 0.23 0.19 -0.09

Table 6.1: The energy differences in eV without and with zero-point energy correction between the new
low energy geometries Siige, Si1gp, Sit7a, Si17s, Si1ge and Sijg, found in this work with DMHM and the
putative global minimum structures Sijg [5], Siz7 [8], Siis [8] and Siig [9] reported previously using the
PBE exchange-correlation functional as implemented in CPMD.

exchange correlation functionals, the PBE functional [91] was not fitted to any chemical
systems with simple bond structures and is expected to give the most accurate description
of the complex bonding patterns found in silicon clusters. The term ‘accurate’ must be
handled with caution however, since DFT is only an approximation and, as a matter of
fact, the energetic ordering may change if one uses different functionals [82]. Among the
various force fields and tight binding schemes that exist, we have tested systematically
the Lenosky force field [93] and the Lenosky tight binding scheme [17]. The correlation
between Lenosky force field energies and density functional energies for various configu-
rations of a Sig; cluster is very bad as one can see in Fig. 6.7. The Lenosky tight binding
scheme [17] gave a very good agreement with the DFT energies. It can predict the DFT
energies with an error of roughly 1 eV as shown in Fig. 6.8. Fig. 6.8 also shows why
the common approach of first finding candidate structures by doing a systematic search
with a cheap method and then checking by an accurate method which of the candidate
structures gives the global minimum is problematic except for very small systems. For
a 25 atom silicon cluster the number of geometric configurations within 1 eV above the
ground state is of the order of 10* states, for a 33 atom cluster it is already of the order of
10° states and it increases exponentially with system size. It is therefore virtually impos-
sible to check which out of these 10* to 10° configurations is the global minimum within
DFT. Besides, because of the absence of the one-to-one correspondence between the local
minima of the fast method and of the accurate method, it is not guaranteed that any of
the minima of the fast method will lead to the global minimum of the accurate method
upon relaxation.

The identification of the previously visited minima is an essential ingredient of the MHM.
In the context of the ordinary MHM the energy can be used to identify configurations
since it is possible to calculate the energy with many significant digits both for force fields
and tight binding schemes. With DFT programs this is not any more possible because
of the presence of numerical noise. For this reason we have used in addition to the DFT
energy all inter-atomic distances. Two DFT minima are considered to be identical if all
their inter-atomic distances ordered by magnitude agree to within a certain tolerance.
Another possibility of identifying the DFT cluster geometries when using a tight binding
scheme as fast method is the back relaxation from the DF'T geometry to the tight binding
(TB) geometry and the subsequent identification based only on the TB energy, just as in
the ordinary MHM.
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Figure 6.7: The correlation between force field and density functional energies for various configurations
of a Siys cluster. The scattering shows that force field energies do not correlate with density functional
energies: larger force field energies correspond to smaller density functional energies and vice versa.

6.6 Summary

We have presented a method that allows one to find the global minimum of the DFT po-
tential energy surface within acceptable computer time for moderately complex systems.
The method is efficient for the following reasons. First, it requires only DFT calculations
for configurations where DF'T programs typically converge without problems. It does not,
for instance, require DFT calculations for configurations generated by random displace-
ments from a previous configuration. Second, the MHM is highly efficient in the sense
that the number of minima visited before the ground state is found is small. Even though
the DMHM is not quite as good from this perspective it is still efficient if the fast method
used for the MD part is qualitatively correct. Third, most of the force evaluations are
done with the fast method and the total effort for finding the global minimum is equal to
the effort of doing only a computationally affordable number of geometry optimizations
with the accurate method.
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Figure 6.8: The correlation between tight binding and density functional energies for various configura-
tions of a Sips cluster. If the correlation was perfect all the points would lie on the diagonal. Instead
the scattering shows that the tight binding energies can predict the energy differences between various
cluster configurations only with an error of about 1 eV.






Chapter 7

Coexistence of low-lying isomers for
medium-sized Si clusters

We challenge the existence of a unique geometric ground state structure for certain Si
clusters by performing DFT calculations. We show on the basis of the DFT calculations
that for Si clusters with up to 19 atoms the lowest ten isomers coexist within a tiny
energy interval. Only Quantum Monte Carlo (QMC) calculations can thus provide reliable
energies for the best global minimum candidates. On the basis of the QMC calculations
performed for a number of clusters by Richard Hennig we conclude that for some clusters
the energy differences are so small that entropy effects can change the energetic ordering of
the configurations. In particular, configurations with rotational symmetry consisting only
of 28Si isotopes and symmetric configurations containing one 2°Si isotope are disfavored
by these effects. Comparisons with experiment are thus difficult since a mixture of several
configurations is to be expected at thermal equilibrium.

7.1 Introduction

The determination of the structure of clusters is a difficult task since the main source of
experimental information, ion mobility measurements [94], gives only crude information
about the overall shape of a cluster. The exact atomic positions of all the atoms forming
the cluster remain unknown. For this reason computational simulation is an interesting
alternative to the experimental approach, which has been widely used for silicon clusters.
From the theoretical point of view the ground state structure of a solid state system is
determined by the global minimum of the Born-Oppenheimer potential energy surface
(PES). Finding the global minimum using computational simulation requires global opti-
mization algorithms. Two problems arise in this context. First, most global optimization
algorithms give no guarantee for finding the global minimum within a finite amount of

93
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computer time. Second, the Born-Oppenheimer PES has to be calculated with very high
precision.

Concerning the first point there is now a large amount of agreement between different
methods for medium-sized clusters containing up to 19 atoms [81], [82]. Genetic algo-
rithms [7], [8], [9], the big-bang method [14], the basin hopping method [95], [96], [5]
and the minima hopping method [16] give typically similar or even identical results. The
discrepancies are rather due to the different exchange-correlation functionals that were
used in different investigations [6].

The existence of a well defined ground state structure is generally taken to be granted
for silicon clusters. Silicon clusters are however very different from bulk silicon where the
second lowest configuration (a fourfold coordinated defect [97]) is 2.4 €V higher than the
crystalline ground state. Clusters are frustrated systems, where most of the atoms can not
adopt their favorite fourfold coordination [98]. This can lead to small energy differences
between different configurations. The significant deviations of the clusters bond lengths
from the crystalline bond lengths shown in Fig.7.1 illustrate this frustration.
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Figure 7.1: The bond length distribution averaged over various low-lying Sil7-configurations. The six
vertical lines indicate the 1st to 6th nearest neighbor distances in the crystal.
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7.2 Configurational energies of the 10 lowest lying
isomers

In our research work work we did not only search for the ground state configuration of
silicon clusters with up to 19 atoms, but for a large number of low energy configura-
tions. This is possible with the dual minima hopping method (DMHM) [99], which has
the property that it explores higher and higher energy configurations after having found
the global minimum. We have applied the DMHM using the QUICKSTEP code with
LDA as exchange correlation functional to silicon clusters Si, in the range 7 < n < 19.
In this size range we have found and stored between 15 different low energy isomers for
Siz and more than 10000 different isomers for Si;g. Since the LDA exchange correlation
functional is not reliable, we have subsequently performed geometry relaxation for the
lowest 50 LDA/QUICKSTEP configurations using the DMOL code and PBE exchange
correlation functional. Though the DMOL code offers the advantage of having fast ge-
ometry optimizer, its output energies differ slightly from those of CPMD and Gaussian
as we shall see later. For this reason we have performed in the final step a wavefunction
optimization for the PBE/DMOL geometries using the CPMD code with PBE exchange
correlation functional. The energies of the 10 lowest PBE/CPMD configurations of sil-
icon clusters containing 7 to 19 atoms that were obtained in this way are presented in
Table 7.1, the geometries of the corresponding configurations are presented in Appendix
D. The energy difference between the global minimum and the second lowest minimum
is 0.8 mHa for Siy1, 0.9 mHa for Siy3, 2.1 mHa for Siy4, 3.1 mHa for Si;; and 3.2 mHa
for Sijg. Fig. 7.2 shows the first major result of our investigation, the energies of the 10
lowest configurations of silicon clusters within PBE containing 7 to 19 atoms, graphically.
Apparently, with larger cluster size the energy interval for the 10 lowest configurations
decreases strongly. For both Sij3 and Si;7 the 10 lowest configurations are in an interval
of roughly 10 mHa. Since room temperature corresponds to ~1mHa, entropy effects can
and actually will play an important role for certain clusters.

7.3 The choice of the basis set

In order to be able to compare the PBE energies when using 3 different codes, DMOL,
CPMD and Gaussian, we must first choose for each code an appropriate basis which
should be large enough. We have taken structures that were obtained by R. Hennig
through symmetrization using the Gaussian code from the structures that we have ob-
tained with DMHM and for these symmetrized structures we have performed wavefunction
optimization. When using the DMOL code we have chosen the extended basis set since it
is considered as the most reliable. When using the Gaussian code, we have tested 6-311G,
6-311G(2d) and cc-pVTZ as basis set. In Table 7.2 we present the results. As one can
see, when using 6-311G(2d) and cc-pVTZ we obtain results which differ by less than 1.6
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Cluster | 10th | 9th |8th |7th |6th |5th |4th | 3rd |2nd | 1st
Siz 96.0 | 83.7 | 814 777 | 719 |582 |37.1 |36.5 |29.8 |0.0
Sig 30.1 | 281 | 221 | 215 (199 |16.2 |15.8 153 |15.2 |0.0
Sig 39.0 |32.0 | 276 |25.7 |24.7 |233 |21.2 |15.8 |13.2 |0.0
Sio 54.1 | 39.5 |36.8 |30.7 |29.1 | 274 |21.2 |18.6 |6.9 0.0
Siig 19.7 | 184 |16.7 | 16.1 |15.1 | 149 |12.3 |10.2 | 0.8 0.0
Sio 278 | 27.8 | 275 | 274 | 273 | 255 |250 |239 |156 |0.0
Siis 9.2 7.7 6.2 5.1 4.5 4.2 3.0 1.2 0.9 0.0
Siig 154 (143 | 124 | 11.7 | 8.3 6.8 5.7 2.2 2.1 0.0
Sigs 194 | 186 | 146 | 142 | 139 |11.2 | 11.0 | 11.0 | 4.2 0.0
Sig 10.5 | 10.1 | 9.6 8.9 8.5 6.3 6.2 5.6 2.2 0.0
Siiz 9.6 8.8 8.5 8.2 7.7 7.6 7.5 6.4 3.1 0.0
Siig 186 (173 |16.7 | 164 |16.1 | 9.8 9.5 9.5 8.8 0.0
Sitg 145 (143 | 142 | 134 | 9.6 8.9 7.0 5.6 3.2 0.0

Table 7.1: The PBE energies in mHa for the lowest 10 configurations for Si clusters Si,, in the size range
7 <n < 19. The PBE global minimum (1st lowest) energy was chosen as reference energy and set to 0.

mHa. In contrast, 6-311G is clearly insufficient to provide reliable results. For further
calculations with Gaussian we will therefore use 6-311G(2d). When using CPMD, we have
tested the parameter sets cell/cutoff 24 A /28 Rydberg and cell/cutoff 30 A/35 Rydberg.
The discrepancies between the two parameter sets are less than 0.2 mHa as one can see
in Table 7.3. In order to obtain high accuracy, we will use cell/cutoff 30 A/ 35 Rydberg
for further CPMD calculations.

7.4 The PBE, BSLYP and QMC results for selected
clusters

Even though the PBE exchange-correlation functional is considered to be among the most
accurate ones, its accuracy is clearly insufficient to determine unambiguously the energetic
ordering of the configurations. For this reason R. Hennig has performed together with
C. Umrigar for a number of symmetrized structures the most accurate electronic structure
calculations that are feasible, namely Quantum Monte Carlo (QMC) simulations. The
QMC calculations were performed using the CHAMP code developed by Umrigar and
Filippi. The 1s, 2s and 2p electrons of Si were eliminated using a relativistic Hartree-
Fock pseudopotential [100]. A Slater-Jastrow type wave function was used as the trial
wave function. The orbitals of the Slater determinant were taken from a DFT calculation
with the GAMESS [101] code using the B3LYP functional. The parameters of the Jas-
trow function describing electron-electron, electron-nuclear and electron-electron-nuclear
correlations were optimized in variational Monte Carlo using energy minimization [102].
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Cluster Gaussian / 6-311G Gaussian / 6-311G(2d) | Gaussian / cc-pVTZ
Siige 3.9 -3.7 -3.7

Siiep -10.2 1.4 1.2

Sii7a 11.3 2.7 4.1

Siize 2.5 8.4 8.5

Siys, 1.7 10.2 11.8

Siige 21.6 -1.9 -1.3

Table 7.2: The energy differences in mHa without zero-point energy correction between the new low energy
geometries Sijgq, Sii6p, Si17a, Si17s, Si1ge and Sijg, found with DMHM and the putative global minimum
structures Sijg, Sii7, Siig and Sijg using the PBE exchange-correlation functional as implemented in
GAUSSIAN. The structures were first symmetrized and relaxed with B3LYP/6-311G(2d)/GAUSSIAN
by R. Hennig and subsequently these symmetrized structures were taken as input structures for the
wavefunction optimization with
1) PBE/GAUSSIAN, all-electron, basis set 6-311G

2) PBE/GAUSSIAN, all-electron, basis set 6-311G(2d)
3) PBE/GAUSSIAN,; all-electron, basis set cc-pVTZ

Cluster CPMD / 24A-28 Ryd. CPMD / 30A-35 Ryd.
Sii6a -5.9 -6.0

St 0.8 0.9

Si17q 2.7 2.6

Siizs 8.3 8.4

Si1gq 10.2 10.0

Si1gq -4.0 4.2

Table 7.3: The energy differences in mHa without zero-point energy correction between the new low energy
geometries Sijgq, Si16p, Si174, Si17p, Si18e and Sijg, found with DMHM and the putative global minimum
structures Sijg, Sij7, Sizg and Sijg using the PBE exchange-correlation functional as implemented in
CPMD, DMOL and GAUSSIAN. The structures were first symmetrized and relaxed with B3LYP/6-
311G(2d)/GAUSSIAN by R. Hennig and subsequently these symmetrized structures were taken as input
structures for the wavefunction optimization with

1) PBE/CPMD, relativistic Goedecker-pseudopotential, plane waves, cell/cutoff: 24 A/28 Rydberg.

2) PBE/CPMD, relativistic Goedecker-pseudopotential, plane waves, cell/cutoff: 30 A/35 Rydberg.
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Figure 7.2: The dependence of the PBE energy interval for the lowest 10 configurations on the cluster
size.

Diffusion Monte Carlo method calculated the final energies, which are presented in Ta-
ble I. The corresponding configurations are shown in Fig. 7.3. Monte Carlo simulations
have error bars of the order of 1lmHa which is just enough to discriminate the different
energies. Even though the Monte Carlo results change the energetic ordering of the PBE
results, the central feature remains. Different configurations have energies that are nearly
identical. Table 7.4 also shows that the various high quality basis sets used by differ-
ent electronic structure programs give slightly different answers that might change the
energetic ordering. The new low-lying structures Siigq, Sitgp, Sii7a, Sii7p, Si1ge and Sijg,
which were found with DMHM and the reference structures Siyg [5], Siy7 [8], Sis [8] and
Sijg [9] were already presented in [99]. The structure Si;3 was found by Ho [8], the
rotationally symmetric Sijzq structure was recently proposed by B.Hartke [4], Sijz; by
Réthlisberger [103] and Sij3, by J.Jeong et al. [104]. Using DMHM [99] we have found
new low-lying structures Siis,, Siizs, Siize and Sijze.. Apparently, from the QMC results
in Table 7.4 we can conclude that the Si;34 and Sii3, configurations can be considered as
the lowest energy structures. The new Siy3, structure found with DMHM contains the
stable Sig subunit [105]. From Table 7.4 and Fig.D.13 one can also see when comparing
the QMC results for Sils/Silﬁa, Silg/Silga and Silga/Silg), that the structures 8116, Silg and
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Cluster B3LYP/ PBE/ PBE/ PBE/ DMC
GAUS. DMOL CPMD GAUS.

Sizs 0.0 0.0 0.0 0.0 0.0

Siise 117 6.3 7.1 5.3 3.3+£1.0
Si1 14 0.5 13.2 11.5 5.7£1.0
S 8.6 47 31 3.1 6.4%£1.0
S 6.7 2.9 0.9 0.6 B.7E11
Siize 3.6 3.9 41 42 6.1£1.0
Siys, 12 7.0 85 8.0 10.6£1.0
Siiz 6.3 0.8 2.6 2.3 0.0£1.1
Sitg 0.0 0.0 0.0 0.0 0.0

Siige 24.0 0.2 6.0 3.7 9.9+1.4
Si1ep 0.5 0.9 0.9 1.4 83114
Siy7 0.0 0.0 0.0 0.0 0.0

Siize 74 8.4 2.6 2.7 6.3+1.5
Siiz 10.2 11.6 8.4 84 13.241.7
Siig 0.0 0.0 0.0 0.0 0.0

Siise 31.3 17.1 10.0 10.2 23.9+1.6
Sitg 0.0 0.0 0.0 0.0 0.0

S 15.4 1.0 4.2 1.9 21 £1.7

Table 7.4: The energy differences in mHa between the low energy geometries Siyzq, Siizp, Siize, Si13d,
81136, Sil3f, Si16a, Siwb, Sil7a, Sil7b, Silga, Silga and the reference structures 8113, Sil(;, Si17, Sils and
Sijg, that were proposed in earlier publications as density functional global minimum structures. For the
Gaussian [106] calculations the 6-311G(2d) basis set was used and for the DMol3 version 2005 [87], [88]
calculations the extended basis set. The CPMD [89] calculations used an accurate pseudopotential [92]
with a 35 Rydberg plane wave cutoff and a 30 A simulation cell.

Sii3, containing a Sig subunit are energetically favored within QMC over structures Siyg,,
Siyg, and Siy3 that contain a tricapped trigonal prism (TTP) subunit.

7.5 Temperature effects on the energy order

7.5.1 Overview

After having discussed the limitations of computational approaches in determining the
total energy of silicon clusters with the necessary accuracy let us discuss the physical
effects that can change the energetic ordering. For the Sii3, Sijz, and Siyjzq clusters we
have zero point energies of 24.0, 25.0 and 24.5 mHa. For the Sijg and Sije, We have zero
point energies of 38.8 and 38.0 mHa. So the differences of the zero point energies are all of
the order of mHa and are thus not negligible, but do not change the energetic ordering for
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the clusters we studied. In order to study the entropy effects we calculated the rotational
and vibrational free energies based on the harmonic frequencies obtained from density
functional (PBE) calculations [107].

The total free energy can be written as

Ef =FE, — kT In Gtot = E, - kT ln[QtranSQvibQMt] ) (71)

where grans, Quiv and ¢, are the translational, the vibrational and the rotational partition
functions respectively. The translational partition function depends only on the mass M of
the molecule and does not depend on its geometry. For this reason it was not considered.
The total free energy can thus be written as

Ef = Ee - kBT ln[qmbqrot] = Ee + Evib + Erot (72)

with

E, being the electronic total energy obtained from DFT or QMC,
E,is = —kgT Inq,; being the vibrational free energy and
E..t = —kgT In g, being the rotational free energy.

The partition function is defined as a sum of exponential terms involving all possible
quantum energy states:

all states

g= ) " (7.3)

i

7.5.2 Molecular vibrations

Molecular vibrations can be described in the lowest approximation by a harmonic oscil-
lator. The energy of a diatomic molecule with an internuclear distance R is given by
1d*E 1
ER)~ Ey+ -——(R— Ry)* = k(R — Ry)* 7.4
(R) 0+2dR2( 0) 2( 0) (7.4)
with Ry being the equilibrium distance. The energy levels obtained from the Schrédinger
equation for a one-dimensional harmonic oscillator representing a system of two atoms
are given by
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1
Epib — (n + i)hV (75)
with
1 |k

where p is the reduced mass, v the vibrational frequency and n a quantum number with
0 < n < oo. The vibrational partition function for a diatomic system can be written
according to the Eq.7.3 as

hv

o0 [ee] T o%knT
_ 7(n+l) hv - hv _ nhv . e B
Guip = § e 2/kpT — ¢ 2kBT § e kBT — — - (7‘7)
n=0 n=0 1—e *B7T

For a polyatomic molecule the force constant k is replaced by the Hessian matrix, which
is a 3N x 3N matrix with the second derivatives of the energy with respect to the atomic
coordinates as entries. By a transformation to a new coordinate system called vibrational
normal modes this matrix can be brought to a diagonal form. Of 3N degrees of freedom 3
describe pure translations, another 3 describe rotations and 3N-6 are left for vibrations.
Taking into account Eq.7.7 the vibrational partition function for a polyatomic system can
be written as

hv;

3N—6 67 2kgT

Quib = H Ry - (7.8)

i=1 1 —e kBT

7.5.3 Molecular rotations

As for rotations, it can be assumed in the lowest approximation that the centrifugal forces
which are experienced by the nuclei of a rotating molecule are small, and that rotations do
not alter the geometry of the molecule. Centrifugal corrections and vibrational-rotational
couplings are usually of the order of a few % and can be neglected up to temperatures of
~1000 K. The spacing between the rotational energy levels is much smaller than kg7 at
room temperatures so that the sum in Eq.7.3 can be replaced by an integral. One obtains
for the rotational partition function the expression

T (8n2ksT\ %
Qrot = % (TQB> Y I 1515. (7-9)
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The symmetry index o is the order of the rotational subgroup in the molecular point
group (for example it is 2 for H,O and it is 3 for NH3). I, I, I3 are the moments of
inertia, i.e. the eigenvalues of the moment of inertia tensor. They can be calculated using
the principal axes transformation, which is described in detail in Appendix 2.

7.5.4 Impact of entropy effects on Si clusters

We have first calculated the sum of the rotational and vibrational free energies E;, + E, ot
using equations 7.8 and 7.9 for a number of configurations. If one compares the sum of
the rotational and vibrational free energies E,;; + E,., for non-symmetric configurations,
one typically finds differences of about 0.5 mHa at room temperature and about 1 mHa
close to the melting point of the clusters [108]. This might change the energetic order-
ing, but we did not find a case where it actually does. When comparing non-symmetric
configurations the difference in E,; + E,, can be neglected in most cases. The situation
is different if one compares a symmetric with a non-symmetric configuration.

Silicon occurs in nature mainly as 22Si or 2°Si isotope. The predominant isotope for silicon
28Si (abundance ~92 % [1]) has mass 28 and no nuclear spin, the ?°Si isotope (abundance
~5 % [1]) has mass 29 and nuclear spin 1/2. When studying configurations with rota-
tional symmetry, we will consider pure clusters consisting only of 2Si atoms since the
presence of a 2°Si atom would destroy the rotational symmetry. One can easily estimate
from the abundances of the isotopes that ~34 % of Si;3 clusters will be pure clusters.
Such clusters could be also produced from pure 2Si probe. For a pure cluster with ro-
tational symmetry, the order of the rotational subgroup enters into the formula for the
rotational free energy. This leads to a weaker decrease of the free energy for symmetric
configurations compared to non-symmetric configurations and favors thus non-symmetric
structures. In Fig. 7.4 we present the free energy curves for the structures Si;3, and Sijzq
as a function of temperature with the Sij3 free energy chosen as reference energy. The
band structure for Sii3, and Sij3g is due to the statistical errors in QMC with respect
to the structure Sij;3. For the symmetric Sij3, configuration the order of the rotational
subgroup is 3, for Siy34 it is 2 and for Siy3 it is 1. This leads to a reversal of the energetic
ordering of the structures Si;3 and Sij3, in the interval between 250 and 650 K as shown
in the Fig. 7.4. Because of the entropy effect the Si;3 configuration which is the highest at
zero temperature even becomes the lowest at temperatures above 1000 K. At room tem-
perature the Sij3, and Sij3; bands are separated by an energy gap in the range between
~1.2mHa and ~5.5mHa. This corresponds to a Boltzmann weight in the range between
0.7% and 30%. These considerations are valid if one considers clusters consisting only of
28Si atoms. Things change if one takes into account the presence of a 2?Si isotope which
destroys the rotational symmetry and makes the considerations above inapplicable. One
can estimate from the abundances of the isotopes that ~24 % of Si;3 clusters will contain
one 2°Si isotope. If one 28Si atom with nuclear spin 0 is replaced by a ?°Si isotope which
has spin 1/2, the nuclear wave-function is a doublet and additional degeneracy comes from
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the fact that the isotope can replace any of the atoms. For a non-symmetric cluster with
N atoms the degeneracy is thus 2N. For a symmetric cluster that has several equivalent
atoms the degeneracy is however reduced. In the case of the Sij3, structure there are for
instance only 5 non-equivalent sites, Sijzq has 6 and Si;3 has 9. The nuclear entropy thus
favors Si;3 over Sijzq by —kT ln(%) which is ~ 0.4 mHa at room temperature. In addition,
the vibrational and rotational entropy contributions are slightly changed by the presence
of an isotope leading to an effect of the same order of magnitude.

7.6 Configurational density of states

Up to now we have concentrated on the 10 lowest structures. Considering higher lying
configurations, the energetic spacing between configurations decreases even further. This
can be inferred from the fact the the configurational density of states, defined as the
number of configurations per energy interval, increases strongly. Fig.7.5 illustrates this
behavior for the Siy; cluster. The density of states was calculated on the basis of the
results obtained with DMHM using the QUICKSTEP code and LDA exchange-correlation
functional. We have explored regions with up to 100 mHa above the global minimum.
However, we have chosen a cutoff of 35 mHa above the global minimum in Fig.7.5, since
due to the drastic increase of the configurational density higher energy regions could not
be explored thoroughly enough. What makes the DMHM effective when searching for
the global minimum is the thorough exploration of the energy regions slightly above the
global minimum.

7.7 Coexistence of clusters with different coordina-
tion numbers

On the basis of the Fig.7.1 we have calculated coordination numbers of various low-lying
Siy7 configurations. We have chosen a soft cutoff between 3.0 and 3.2 Angstroem (5.7
and 6.0 a.u.) for the first nearest neighbor, i.e. only Si atoms with a distance smaller
than 3.2 Angstroem (6.0 a.u.) are considered as first nearest neighbors. The results are
presented in Fig.7.6. Apparently, the preference for high-coordination numbers for low
energy configurations is rather weak.
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7.8 Summary

We have shown that there exists a large number of configurations for certain silicon clusters
that are energetically extremely close to the ground state. This feature was observed for
Sii;3 and Sijg and it will presumably be even more important for larger cluster sizes that
were not studied in this work. As a consequence, entropy effects that are usually neglected
can change the energetic ordering of the lowest configurations. Entropy is in particular
disfavoring symmetric clusters Si,, in the range 13 < n < 19 which contain in most cases
no 2°Si isotope or one ?°Si isotope. Larger clusters will on average contain more than one
26 isotope and the symmetry related effects discussed above do not exist. However, for
larger clusters the 10 lowest configurations can be expected to lie within a tinier interval.
Entropy effects not related to symmetry considerations might thus easily change the
energy order of clusters with more than 19 atoms. Even if there is no reordering, different
structures can be so close in free energy that a mixture of two or more configurations will
be found at thermal equilibrium. As a consequence measured properties of clusters can
be some average of the properties of several low-lying isomers.
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Figure 7.3: Symmetrized geometries of low-lying Siy3, Siig, Siz7, Sizg and Sijg isomers.



66 7. Coexistence of low-lying isomers for medium-sized Si clusters

0 200 400 600 800 1000
T (K)

Figure 7.4: The sum of the electronic (QMC, with errors), vibrational (including zero point) and rota-
tional free energy contributions for Sij3, (upper band) and Siy34 (lower band) configurations as a function
of temperature with the Sij3 (set to 0, solid line) free energy chosen as reference energy.

40 T T T T T T
35 -
2 a0l L
= o
< o
5 25 — 1 | | | | —
2 I
= o
8 20r I
'S e
& 15[ —
= e
g e
= 10r AR
ST o T
L —T1 i ! i o b
0 N NS S (R SN N SN NN SN SRS SN SN S
0 5 10 15 20 25 30 35

The relative LDA energy (mHa)
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Chapter 8

Conclusion

The DMHM has been proved to be a powerful global optimization algorithm which can
rapidly find the global minimum of complex systems within DFT provided that there
exists a fast method that can evaluate the potential energy surface less accurately. The
memory feedback prevents the algorithm from being trapped in a wrong funnel which
does not contain the global minimum and favors search in new unexploited regions of
the configurational space. The possibility of adjustment of the parameters 3;, 5, and (3
as well as of the parameters a; and s makes the DMHM very flexible and can tailor it
to the needs of the specific physical problem. In particular, by setting (; very close to
1, the DMHM can effectively take into account the MDBEP principle if there is a good
correlation between the barrier heights of the maxima along the MD trajectory using the
fast method and those of true transition states. The choice of a large value for mdmin
allows to exploit regions of the configurational space that are far from the current local
minimum. Having applied the DMHM to silicon clusters Si,, in the range 7 < n < 19 we
have found virtually all global minima candidates that were reported previously in the
literature and have discovered new low energy isomers for Sis, Sijg, Sij7, Sijg and Sijg.
We have found that the 10 lowest configurations for silicon clusters Si, in the range
13 < n < 19 coexist within a tiny energy interval. Besides, the number of possible isomers
as well as the configurational density of states is much higher for this size range than
previously estimated, motivating to set the notion of medium-sized silicon cluster already
at 13 atoms. The present DFT exchange-correlation functionals and DFT programs
are not capable of reliably predicting which of the global minimum candidates is the
energetically lowest since even with high-quality basis sets different DFT programs deliver
different results within the same exchange-correlation functional. Only QMC calculations
can provide reliable statements about the energy ordering of low energy isomers.

The rotational symmetry and the presence of isotopes play a major role in establishing
the energy order for low energy silicon cluster isomers in the range 13 < n < 19 due to the
entropy effects. Pure isotope-free configurations with rotational symmetry and symmetric
configurations containing one isotope ?*Si are disfavored by the entropy effects. From these
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observations we have concluded that for silicon clusters Si, in the range 13 <n < 19 a
mixture of several isomers according to the Boltzmann distribution is to be expected. The
notion of a well defined ground state hardly makes sense in this context and interpretation
of any experimental data should therefore be handled with care.

For silicon clusters containing more than 19 atoms the symmetry considerations are not
applicable since isotope-free clusters are not likely to occur in this size range and many
clusters will contain more than one isotope. However, the major result of our studies
that the 10 lowest lying isomers coexist within a tiny energy interval can be extended
to larger clusters. Experimentally, the presence of several peaks starting with Sif; in
the drift time distributions of silicon cluster cations Si} obtained in high-resolution ion
mobility measurements by Hudgins et al. [3] confirms the coexistence of several isomers
for medium-sized silicon clusters at room temperature. Elucidation of entropy effects
remains an interesting task for researchers who are involved in the study of medium-sized
silicon clusters. In particular, entropy effects will have influence on the size range of
the experimentally observed non-spherical to spherical transition of medium-sized silicon
clusters with more than 19 atoms.



Appendix A

The Metropolis algorithm

The Metropolis algorithm is the standard method to generate random points with a
certain distribution in high dimensional spaces. Since the high dimensional random points
correspond generally in physics to the configuration of some system we will use the word
configuration rather than random point and we will denote such a configuration by X.
The vast majority of the total configurational space of a many particle system corresponds
to unphysical configurations where for instance two atoms are very close to each other.
Because of the nucleus-nucleus repulsive potential this results in extremely high energies
which contribute virtually nothing to a Boltzmann distribution at room temperature.
Importance sampling, id est creating distributions that sample only the low energy part
of the configurational space is therefore essential. The Metropolis algorithm is based on a
Markov chain. In a Markov chain the next configuration X' is obtained from the present
configuration X by a certain move that is characterized by a transition probability 7'(X' «+
X). The probability Py (X1, Xy, ..., Xn) of finding a certain sequence of configurations is
therefore given by

PN(Xl,XQ, ,XN) = T(XN — XNfl)T(Xg — XQ)T(XQ — Xl)Pl(Xl) . (Al)

where the transition probabilities are normalized

Y T(X'+ X)=1 (A.2)

and where P;(X) is an arbitrary probability distribution. In contrast, for a truly random
sequence this probability would be given by
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Pr(X1, Xo, ..., Xy) = P(X1) Py (X)... P (Xy) - (A.3)

For Markov processes it is convenient to introduce the notion of a walker. Instead of saying
that one configuration is obtained form another we will say that the walker goes from one
configuration to another. The notion of a walker gives a more intuitive description of a
Markov process. The simplest example of a Markov process is a random walk on a 2-
dimensional square lattice. Each node represents a configuration. At any step the walker
can jump to any of its 4 nearest neighbors, id est T'(X' + X) = i. Let us now introduce
the function P(X,t) which gives the probability of finding a walker at configuration X at

Markovian step t. The probability P(X, ¢+ 1) is then given by
P(X,t) + ;T(X « X"\P(X',t) — ;T(X’ « X)P(X,1) . (A.4)
At equilibrium P(X,t+1)=P(X,t)=P(X) and hence
;T(X<—X’)P(X’,t):;T(XW—X)P(X,t) : (A.5)

This equation is satisfied under the condition of detailed balance:

T(X + X')P(X',t) = T(X' + X)P(X,1) . (A.6)

Ensemble averages can be assumed to be equal to time averages for an ergodic system.
Observing the movement of one walker, we can numerically calculate time averages. Since
the distribution of walkers P(X,t) tends to P(X) provided that the detailed balance con-
ditions are satisfied, we can write

S P(X,1) . (A7)

The transition probability in a Markov process consists of two parts, a trial step proba-
bility wx x» and an acceptance probability Ax x::



T(XI — X) = (AJXI,XAXI7X. (A8)

The trial step probability wx x+ has to be symmetric, id est wx’ x = wx x’, and so the
detailed balance condition in Eq. A.6 gives:

Axx _ P(X)
Ay x  P(XY)

(A.9)

The Metropolis acceptance prescription accepts a trial step if the probability of the new
configuration X' is larger than that of the old configuration X and accepts it with a
probability %g(—)l in the opposite case:

1 if P(X')> P(X)

Ay x = noo
XX {f;,(();)) if P(X') < P(X)

This choice obviously satisfies Eq. A.9. Accepting with a certain probability is done
in the following way numerically. A random number, equally distributed in the interval
[0:1] is generated by calling a random number generator. If this random number is less
than 1;(())((’)) the step is accepted, otherwise it is rejected. The trial step probabilities
do not enter into the Metropolis acceptance criterion in Eq. A.10. Nevertheless they
play an important role. First, they have obviously to be chosen in such a way that any
configuration of the system can be reached. Second, their choice determines how fast the
equilibrium distribution P(X) is reached. With a bad choice, it may well turn out that
the equilibrium distribution can not be reached within the available computer time.







Appendix B

The principal axes transformation

The inertia tensor for a molecule consisting of N atoms with masses m; and coordinates
Zi, Vi, 2; 1S given by a symmetric matrix:

SN miyi 4z - XN miTy — N mimiz;
I= — YN miziy; Lomi(a} +27) =T mayiz : (B.1)
— 2 mitizi =S mayiz i mi(zd + )

By choosing a suitable coordinate transformation « this symmetric matrix can be diagonalized:

pi 0 O
Ip=ala™=| 0 p, 0 |. (B.2)
0 0 ps

The coordinates 7; = (x;, y;, 2;) are transformed according to:

7 — a7 (B.3)

The eigenvalues p; < py < p3 are called the principal moments of inertia and the eigen-
vectors are called the principal axes of inertia. One can distinguish 3 cases depending on
the shape of the structure:

1) p1 = pa < p3 : oblate structure ( example: pancake );
2) p1 & py & p3 : spherical ( example: sphere );
3) p1 < p2 & p3 : prolate structure ( example: cylinder ).
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One can also subdivide the structures in two classes:

1) ps/p1 =~ 1 : spherical;
2) p3/p1 > 1 : non-spherical.

Transforming the coordinates of a cluster into the principal axes system and calculating
the principal moments of inertia p;, p» and ps allows thus to characterize the shape of
the cluster by a set of numbers. The principal axes transformation is also important
if one wants to compare the DFT energies of different clusters that were obtained by a
periodic systems DFT code, since varying the orientation of the cluster within the box may
slightly change its DF'T energy due to the interaction with the periodic images. Besides,
transforming the cluster into the principal axes system enables its effective visualization
and makes it easier to compare its geometry to other geometries when dealing with an
ensemble of clusters.



Appendix C

Rotational and vibrational

temperatures of Sij3, Sij3, and Sijyy

The rotational and vibrational temperatures are commonly used to simplify the calcu-
lation of the partition functions. The rotational temperatures are calculated according

to

2
0, = _
8m2pikp

(C.1)

with p; (1 <4 < 3) being the principal moments of inertia. The vibrational temperatures

are calculated according to

67 = hl//kB

We present the calculated results for Siisz, Sii3, and Sij34 below.

Rotational temperatures in K:

Si;3 - 0.020 0.014 0.012
Siyz,  0.020 0.012  0.012
Sijzg  0.018 0.015 0.012

Vibrational temperatures (purified) in K:

Si131

7

(C.2)



234.052
288.750
340.066
361.851
390.429
425.119
478.994
502.537
554.668
619.387
700.003

Si13a:

263.121
278.052
328.344
379.834
391.311
423.778
518.116
568.761
609.573
633.069
710.621

Sllgdl

260.204
319.389
330.057
358.040
381.273
405.720
460.795
928.956
999.120
611.310
703.520

275.396
288.883
341.547
379.097
408.954
449.236
491.597
913.568
581.785
647.464
714.263

264.063
312.865
332.023
383.317
400.663
427.320
526.224
582.542
622.777
640.045
724.804

281.897
321.980
341.734
359.881
393.182
438.088
500.877
570.802
606.919
649.076
703.965

278.859
310.071
360.880
382.395
414.670
453.587
497.030
534.672
589.697
652.310
724.775

275.391
324.419
373.195
385.512
414.628
494.934
558.734
998.035
623.866
676.496
767.046

312.719
329.264
351.407
371.279
395.024
456.022
517.593
584.240
609.757
686.988
712.834



Appendix D

The geometries of the 10 lowest
energy clusters in the size range
from Si; to Sijg
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Figure D.1: Geometries of the 10 lowest Si; isomers.
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Figure D.2: Geometries of the 10 lowest Sig isomers.
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Figure D.3: Geometries of the 10 lowest Sig isomers.
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Figure D.4: Geometries of the 10 lowest Sij¢ isomers.
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Figure D.5: Geometries of the 10 lowest Sij; isomers.
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Figure D.6: Geometries of the 10 lowest Sij» isomers.
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Figure D.7: Geometries of the 10 lowest Si;3 isomers.
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Figure D.8: Geometries of the 10 lowest Sij4 isomers.
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Figure D.9: Geometries of the 10 lowest Siy5 isomers.
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Figure D.10: Geometries of the 10 lowest Si;g isomers.

i

3rd

6th

9th



1st 2nd 3rd
4th 5th 6th
7th 8th 9th

10th

Figure D.11: Geometries of the 10 lowest Si;7 isomers.



1st 2nd 3rd

4th 5th 6th

9th

Figure D.12: Geometries of the 10 lowest Si;g isomers.
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