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Chapter 1

Introduction

Moser-Trudinger inequalities arise naturally in the study of the critical case of the well
known Sobolev embeddings, which are one of the most useful tools in analysis as they
play a crucial role in the study of existence, regularity and uniqueness of solutions to
partial differential equations of different nature. In this Chapter we will introduce the

reader to the topic and we will discuss the main results contained in this thesis.

1.1 The Moser-Trudinger inequality

Let Q C R™, n > 2, be a bounded domain. If p < n then

sup lu|?dx < 400 (1.1.1)
ueWy (), Vullf g, <17 €2

if and only if 1 < ¢q < p*, where p* = 2B, Here HVUH’EP(Q) = Jo|Vul|Pdz is the

Dirichlet norm of w. Shortly, we write
Wol’p(ﬂ) C LY(Q) 1<qg<p".

If we now consider the limiting case p = n, we have that every polynomial growth is

allowed, in the sense that (1.1.1) holds for any ¢ > 1. Namely, for any ¢ > 1 we have
W, ™ (Q) © LYQ).

As p — n, formally, p* ~ oo and one would expect functions in VVO1 ™ to be bounded. It
is a well known fact, though, that this is not the case. Indeed denote by |-| the standard

Euclidean norm in R™ and define uv: R® — R
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log |log |z]| for 0 < |z| <1
0 elsewhere.

Let now £ C R™ be a domain that contains the unit ball centered at the origin. It is
easy to check that u € Woln(Q) Clearly though, u ¢ L>°(Q). It is then natural to look
for the maximal growth function g: R — R™ such that

sup / g(u) dx < 4o0.
wEWy " (), V| <17 2

The first result in this direction is due to Yudovich [53], Pohozaev [84], and Trudinger
[98], who proved independently that functions in VVO1 "™(€Q) enjoy a uniform exponential-
type integrability property. They showed that there exist constants 8§ > 0 and C' > 0,

depending only on the dimension n, such that

sup / A gz < C)Q). (1.1.2)
weW, ™ (Q), |Vl ) <17

Their proofs rely on the same idea of developing the exponential function in power series.
However, this does not produce the optimal exponent 5. Few years later J. Moser [74]
solved this problem using a symmetrization argument and proved a sharp version of
(1.1.2), which is now called Moser-Trudinger inequality.

Theorem 1.1. Let Q2 C R™ be a domain with finite measure, n > 2 and w,—1 the volume
1

of the unit sphere in R™. Then there exist constants C = C(n) > 0 and 3, := nw,'~;
such that
sup / Anlul™ g < €19 (1.1.3)
UEWol’n(Q), (IVullgn o)<l Q

Moreover, the constant 5y, is sharp in the sense that

sup / A dr = 400 (1.1.4)
u€Wy ™ (), [Vl n 0y <1/ 9

for B> f,.

We remark that the supremum in (1.1.3) becomes infinite as soon as we slightly modify

the integrand, namely

sup / Fu)e® ™ de = 400 (1.1.5)
UEW&’R(Q),”V“”Ln(Q)Sl Q

for any measurable function f: Rt — R such that limy_, f(t) = oco. This can be
proved, for instance, using the same test functions defined in [74]. In [2] Adams, exploit-

ing Riesz potentials, extended Moser’s result to higher order Sobolev spaces Wéc P(Q),
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k>1,p=1%.

The same result holds if we consider a smooth closed surface. Namely, if (3, g) is a

smooth, closed Riemannian surface and

"o {ueH1<z> : /VudegéL /udvﬁ@}v
) ¥

Fontana [41] proved that

sup/ e4ﬂu2dvg < 400 (1.1.6)
ueH JX
and
sup/ 66“2dvg = +oo (1.1.7)
ucH J X

for any 8 > 4m. Sharp Moser-Trudinger inequalities appear naturally when studying
the classical problem of prescribing the Gaussian curvature of a compact Riemannian
surface. Given a smooth closed surface (X, g) and a function K € C*°(X) one would like
to investigate whether there exists a metric g, conformal to g, that has K as Gaussian
curvature. We recall that a metric g is conformal to g if there exists a smooth function

u so that g = e"g, that is if and only if u solves
1 u

fiAgu:Ke - Ky, (1.1.8)

where K, and A, are the Gaussian curvature and the Laplace-Beltrami operator of

(X, g) respectively.

Let us denote the Euler characteristic of ¥ by x(X) and recall the Gauss-Bonnet theorem

/ Kydvg =2mx(%).
by

It is not difficult to see that, if we suppose x(X) # 0 and K, constant, then (1.1.8) is

equivalent to
Ke* 1
—Au=p|+—7——— ], 1.1.9
g4 p(fZKe“dvg |E|> ( )

where p = 47x(X) and |X| is the measure of ¥. Equation (1.1.9) is known as Liouville
equation. One can exploit the variational structure of the problem and look for solutions

to equation (1.1.9) as critical points of the associated energy functional

1 1
Jp(u) = 2/2 |Vul? dv, + |—§’ Eualvg — plog <]Z\/EK€U dvg> . (1.1.10)

Looking at the form of .J,, it becomes clear how results like Moser-Trudinger inequalities
turn out to be game changers when one tries to apply direct minimization methods to
solve problems of this type. For a general compact surface ¥, Kazdan and Warner ([54])
gave necessary and sufficient conditions on the sign of K when x(X) = 0, and some

necessary condition in the case x(¥) < 0. In [75] Moser improved these results and
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considered the case x(X) > 0, that is (X, g) = (52, g.), where g is the standard metric
on S2. He proved that, for an even function f, the only necessary condition for (1.1.8) to
be solvable with K = f, is for f to be positive somewhere. For functions with antipodal
symmetry, the critical exponent in Theorem 1.1 can be improved, namely inequality
(1.1.3) holds up to S = 8x. In particular, Theorem 1.1 implies that Jg, is bounded from

below and that J, is coercive on the space

Hy := {u c HY(X): /Eudvg = 0}

for p < 8m. Hence, using direct minimization, Moser proved existence of solutions of
(1.1.8). If this simmetry assumption is dropped, minimization techniques are not strong
enough and one needs to assume some nondegeneracy of the critical points of K and
use, for instance, a min-max scheme or a curvature flow approach, see [21], [20], [93]. To
prove existence results in the case p > 8w, improved Moser-Trudinger inequalities and

non-trivial variational and topological methods are required, see [35], [36], [66], [94].

A more general problem concerns the study of compact surfaces with conical singulari-
ties. We recall that, given a finite number of points p1,...,pm € 2, a smooth metric g
on X\{p1,...,pm} is said to have conical singularities of order aq,...,am, in p1,...,pm
if g = hg with g smooth metric on ¥ and h € C1(X\{p1,...,pm}) is a positive function
satisfying

h(z) ~ d(z,p;)** with  «; > —1 near p; i=1,...,m, (1.1.11)

where d represents the Riemann distance on ¥. In other words, g is a metric of the form

e"g where g is a smooth metric on X, and u € C*°(X \ {p1,...,pm}) satisfies
|u(z) + 2a;logd(z,p;))| < C  mnearp;, i=1,...,m.

A metric of this form has Gaussian curvature K if and only if the function u is a

distributional solution to the singular Gaussian curvature equation

m
— Agu=2Ke" — 2K, — 47y iy, (1.1.12)
=1

see for instance [10]. Define

p =4 (X(Z) + Z ai> )
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Similarly to the case without singularities, if p # 0 and K|, is constant, equation (1.1.12)

is equivalent to the singular Liouville equation

Ke*
—Aju = _— 4 i 1.1.13
gt p(fzKeuddUg ‘E’> WZ@ < e ‘E’> ( )

Finding solutions to (1.1.13) is equivalent to proving existence of critical points of the

singular Moser-Trudinger functional

sin, 1 u
TS = /|Vu|2dvg+ B udvg plog(|2|/he dvg),

where h € CYE\{p1,...,pm}) is as in (1.1.11). Inspired by what Moser did for J,,
Troyanov tried to minimize J5"™ (see [97], [27]) by finding a sharp version of the Moser-
Trudinger inequality for metrics with conical singularities. In particular, he proved that
J5™ is bounded from below on H'(X), coercive on Hy if p < 8m(1 4+ @) and it is

bounded from below if p = 87(1 + &), where @ = min < 0, 1in.i<n a; ¢. In the first case
<i<m

the coercivity of J5™ yields existence of minimum points. As for the regular case, to
treat the case p > 8m(1 + @) different approaches are needed (see e.g. [36], [66], [23],

[24], [25], [26]).

It is worth to mention that, even though usually we look at (1.1.9) and (1.1.13) in the
context of Riemannian Geometry, they also have been widely studied in mathematical
physics. Indeed they appear in the description of Abelian vortices in Chern-Simmons-
Higgs theory and have applications in fluid dynamics, as well as in Superconductivity
and Electroweak theory (see [73], [99], [95], [45]). If we denote by G the Green’s function
of (¥, 9), i.e. the solution of

-A,G(z,") =6, onX
fz z,y dv!}( ) Oa

the change of variable v — u + 47 )" | a;G(x, p;) reduces equation (1.1.13) to

he" 1
—Au = _— 1.1.14
gu=>r (fz he* dv, |E\> ’ ( )

which is nothing but equation (1.1.9) with K replaced by the singular weight
h(z) = Ke 47 2iz1 G,
Several generalizations and applications of the Moser-Trudinger inequality have ap-

peared in the course of the last decades. This thesis covers two problems related to
Theorem 1.1.
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1.2 Existence of extremal functions

In the first part of this work, we will focus our attention to the case n = 2 and set
H(Q) = WOLQ(Q), where 2 C R? is open and bounded. In this setting the sharp

exponent for the Moser-Trudinger inequality is § = 47 and, according to Theorem 1.1,

we have
sup / e dy < 400, (1.2.1)
weH(Q), [ |Vul2de<1/Q
and
sup / e dx = +o00 (1.2.2)
ueH(Q), [ Vul2ds<1/Q
for g > 4m.

The first issue that we will address is the existence of extremal functions for (1.2.1).
While there is no function realizing equality for the critical Sobolev embedding, one
can prove that the supremum in (1.2.1) is always attained. This was proved in [19]
by Carleson and Chang for the unit disk D C R% and by Flucher ([40]) for arbitrary
bounded domains (see also [91] and [62], [67]).

The proof of these results is based on a concentration-compactness alternative stated by

P. L. Lions ([63]): for a sequence uy € Hg(Q) such that |Vug||2(q) = 1 one has, up to

2 2
/ e dy — / e
Q Q

where u is the weak limit of ug, or uy concentrates in a point = € €, that is

subsequences, either

\Vul|?dz — &, and ug — 0. (1.2.3)

The key step in [19] consists in proving that if a sequence of radially symmetric functions
ug € H} (D) concentrates at 0, then

lim sup/ Al dy < (1 +e). (1.2.4)
k—oo JD

Since for the unit disk the supremum in (1.2.1) is strictly greater than 7(1+ e), one can
exclude concentration for maximizing sequences by means of (1.2.4) and therefore prove
existence of extremal functions for (1.2.1). In [40] Flucher observed that concentration at
arbitrary points of a general domain €2 can always be reduced, through properly defined
rearrangements, to concentration of radially symmetric functions on the unit disk. In
particular, he proved that if u € Hg(Q) satisfies ||Vug|l2 = 1 and (1.2.3), then
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limsup/ ek dy < weltimAal@) 4 12]. (1.2.5)
Q

k—o0

where Aq(x) is the Robin function of €2, that is the trace of the regular part of the Green

function of €. He also proved

sup / 647Tu2dx > 71_61+47r maxg Ag + |Q‘,
weHJ(Q), [, [Vu|2dz<1 JQ

which implies the existence of extremals for (1.2.1) on €2. This method turns out to work

also when considering the problem on a closed smooth Riemannian manifold (X, g). In

this case, again by excluding concentration for maximizing sequences, Li [57] (see also

[59], [58]) was able to prove existence of extremal functions for (1.1.6).

Here we are interested in Moser-Trudinger type inequalities in the presence of singular
potentials. The model for this problem is given by the singular metric |z|?*|dz|? on a
bounded domain 2 C R? containing the origin. In [5] Adimurthi and Sandeep observed
that for any o € (—1,0],

sup / ]x\20‘64”(1+0‘)“2da: < 00, (1.2.6)
u€HL(Q), [q |Vu|?dz<1 /Q

and

sup / \x|2aeﬁu2dx = +o0 (1.2.7)
ueH(Q), [, [Vul2dz<1 JQ

for any > 47 (1+ «). Exploiting the ideas of Flucher, existence of extremals for (1.2.6)
has recently been proved in [32] and [31].

In the case a # 0, applying the strategy in [19], one can again exclude concentration for
maximizing sequences using the following estimate, which can be obtained from (1.2.4)

using a simple change of variables (see [5], [31]).
Theorem 1.2. Let uy € H}(D) be such that [}, |Vug|?*dz <1 and up — 0 in H§(D),

then for any o € (—1,0] we have

limsup/ ‘$|204647r(1+a)uidx < 7T(1 + e)
D

_. 1.2.8
k—o0 T l+ta ( )

In the first part of this thesis we will give a simplified version of the argument in [19]
and show that (1.2.4) (and therefore (1.2.8)) can be deduced from Onofri’s inequality
for the unit disk:

Proposition 1.3 (See [80], [12]). For any u € H(D) we have

1 1
log | — Udy | < —— 2dx + 1. 1.2.9
og(ﬂ/De x)_167r/D\Vu] T -+ ( )
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The analysis can be pushed further and Theorem 1.2 can be used to prove existence of
extremals for several generalized versions of (1.2.1). Let Q C R? be open and bounded.
In [4] Adimurthi and Druet proved that

2 2
sup /647ru (1+)\Hul|L2(Q))d1’< +00, (1210)
u€HL(Q), [q |Vu|?dz<1/Q

for any A < A(Q2), where A\(Q?) is the first eigenvalue of —A with respect to Dirichlet

boundary conditions. This bound on A is sharp, that is

2 2
sup / e47ru (1+>\(Q)||U||L2(Q))dx = 0. (1.2.11)
u€HY (), [q, |Vu|?de<1 JQ

Existence of extremal functions for sufficiently small A for this improved inequality has
been proved in [64] and [101]. Similar results hold for compact surfaces on the space H.

We refer to [96], [102] and references therein for further improved inequalities.

We will focus on Adimurthi-Druet type inequalities on compact surfaces with conical
singularities. Given a smooth closed Riemannian surface (¥, g), and a finite number of

points p1,...,pm € X, we will consider functionals of the form

Egyi\bvq(u) — / he’BUQ(1+)\Hu||%q(2’g>)dvg, (1212)
' bY
where \,8 > 0, ¢ > 1, and h € CY(Z\{p1,...,pm}) is a positive function satisfying
(1.1.11). The functional (1.2.12) naturally appears in the analysis of Moser-Trudinger
embeddings for the singular surface (3,9) (see [97]). If m = 0 and h = 1, the family

Eg’i"q corresponds to the one studied in [64]. In particular, one has

sup By < 400 = A < A(%,9), (1.2.13)
UEH ’
where 2
\%
Ag(2, g) = inf 7“&‘ ufdvy

ueH HUH%q(z,g) .

As it happens for (1.2.6), if h has singularities (i.e. a € (—1,0]), the critical exponent
becomes smaller. More precisely, in [97] Troyanov (see also [27]) proved that if & is a

positive function satisfying (1.1.11), then

sup Eg’%q < 400 = B <4n(l1+ @), (1.2.14)
ucH ’

where @ = min {0, r<n1<n az}. Here we combine (1.2.13) and (1.2.14) to obtain the

1<i<m

following singular version of (1.2.13).

Theorem 1.4. Let (3, g) be a smooth, closed, surface. If h € CH(X\{p1,...,pm}) is a
positive function satisfying (1.1.11), then for any B € [0,4n(1+@)] and X € [0, A4(X, g))
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we have

sup B2 (u) < 400, (1.2.15)
u€H ’

The supremum is attained if B < 4w(1 + @), or if B = 4w (1 + @) and X is sufficiently
small. Moreover

sup Egzq(u) = +o0
ucH ’

for B>4n(1+@), or B =4n(1+ @) and A > Ay(2, g).

Note that we do not treat the case § = 47(1 + @) and A = A\y(X,g) (see Remark 2.5).
It is worth to remark that in Theorem 1.4 it is possible to replace || - ||rs(x,g), A¢(2; 9),
and H with H ’ HL‘I(E,gh)a )‘q(zvgh)v and

Hy, = {u c H&(E) : / |Vghu’2dvgh <1, / U dvgh = 0},
» P

where g, := hg. In particular, we can extend the Adimurthi-Druet inequality to compact

surfaces with conical singularities.

Theorem 1.5. Let (X, g) be a closed surface with conical singularities of order ay, . ..,y >
—1in pi,...,pm € X. Then for any 0 < X < \y(X, g) we have

sup/ 6471'(1-‘,-5)11,2(1+>\Hu||%q(z’g))dvg < +oo.
ueH JX
The supremum is attained for B < 4w(1+@), or for f = 4n(1+@) and sufficiently small

A. Moreover

2 14\ 2
sup/ eﬂu 1+ ||uHLq(z,g))d,Ug — Too,
ueH J X

if B>4n(l4+@), or B=4n(1+@) and A > \y(X, g).

The proof of Theorem 1.4 follows the ideas in [19] and [40] and makes use of Lion’s
concentration-compactness alternative discussed above. To exclude concentration of
maximizing sequences a careful blow-up analysis is required. Indeed we shall see how,
after a suitable scaling, our sequence converges to a solution of a (possibly singular)
Liouville-type equation on R? (see Proposition 2.14). The behaviour of this sequence
depends on the nature of the blow-up point p € . A key step in this analysis is a
classification result for solutions to the singular Liouville equation on R? (see Section
2.2).
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1.3 Moser-Trudinger inequalities in dimension one

In the second part of this thesis we tackle a different problem related to Moser-Trudinger
inequalities. We will investigate fractional analogues of (1.1.3) and their sharpness, re-
stricting ourselves to the one dimensional case. In particular, using variational tech-
niques in the setting of Bessel-potential spaces, we will discuss the existence of critical
points of a functional associated to (1.1.3). We will also present some results on a recent

generalization of (1.1.3) on Sobolev-Slobodeckij spaces (see [81]).

Let us recall some basic notions on fractional Sobolev spaces. Consider the space of
functions Lg(R) defined by

Ls(R) = {u €L} (R): /Rwda: < oo} : (1.3.1)

14+ |x|1+25

for s € (0,1). For a function u € Lg(R) we define (—A)%u as a tempered distribution as

follows:

(—A)’u, @) = /Ru(—A)Sgod:U, p €S, (1.3.2)

where S denotes the Schwartz space of rapidly decreasing smooth functions and for

p €S we set
(=A% = F (- [*9).

Here the Fourier transform is defined by

Notice that the convergence of the integral in (1.3.2) follows from the fact that for ¢ € S

one has
[(=A)p(z)| < C(1+ [ T29) 71

For s € (0,1) and p € [1, co] we define the Bessel-potential space
H*P(R) := {u € LP(R): (~A)3u ¢ LP(R)} : (1.3.3)
and its subspace
HP(I):={ue L’P(R) :u=0in R\ I, (—A)2u € LP(R)}, (1.3.4)

where I € R is a bounded interval. Both spaces are endowed with the norm

el ey 2= Nl + 1~ ) Bl (1.3.5)

The first result that we shall present is a fractional version of Theorem 1.1.
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p
p—1

ap = % {2 cos (;;) r (;)F I'(z) = /0%o Lt dt. (1.3.6)

Then for any interval I € R and o < oy, we have

Theorem 1.6. For any p € (1,+00) set p’ = and

sup (ealu‘p/ - 1) dx = Cpl|1], (1.3.7)
we BB (1), |(~8) Pl py <t
and o = «y, is the largest constant for which (1.3.7) holds. In fact for any function
h :[0,00) — [0,00) with
lim h(t) = oo (1.3.8)

t—00
we have
sup h(u) (eo‘pwpl - 1) dx = oo. (1.3.9)
W€ AP (1), |(~2) Full o<1

To understand the main issues in the proof of Theorem 1.6 we recall the following

analogue of (1.3.7)

sup /e%"l" de = CylI|, I.(z):=|z7~".  (1.3.10)
“:Cpl% *fsupp(F)CL | fll ey <L VT P

Inequality (1.3.10) is well-known (also in higher dimension, see e.g. [100, Theorem 3.1]),

since it follows easily from Theorem 2 in [2], up to choosing ¢, so that

1

cp(—A)?2

bS]

I =6, (1.3.11)

3=

as we shall see in Section 3.2 (compare to Lemma 3.4).

In (1.3.10) one requires that the support of f = (—A)ﬁu is bounded; following Adams
1
[2] one would be tempted to write u = I1 % (—A) 2w and apply (1.3.10), but the support
p

1
of (—A)2ru is in general not bounded, when u is compactly supported.
In order to circumvent this issue, we rely on a Green representation formula of the form

1

ue) = [ 61 )BT ulmdy

and show that |G 1 (z,y)| < Ii(x —y) for x # y. This might follow from the explicit
2p P
formula of G(z,y), which is known on an interval, see e.g. [14] and [18], but we prefer

to follow a more self-contained path, only using the maximum principle.

More delicate is the proof of (1.3.9). We will construct functions u supported in I with
1
(—=A)2ru = f for some prescribed function f € LP(I) suitably concentrated. Then with
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~ 1 1
a barrier argument we will show that u € H»*(I), i.e. (—A)?wu € LP(R). This is not
1 1
obvious because (—A)2r is a non-local operator and even if u = 0 in ¢, (—A)2ru does

not vanish outside I, and a priori it could even concentrate on OI.

Remark 1.1. An alternative approach to (1.3.9) uses the Riesz potential and a cut-
off function 1, as done in [71] following a suggestion of A. Schikorra. This works in
every dimension and for arbitrary powers of —A, but it is less efficient in the sense that
the ||(=A)*Y||Lr is not sufficiently small, and (1.3.9) (or its higher-order analog) can
be proven only for functions h such that limy_o(t P h(t)) = co. On the other hand,
the approach used here to prove (1.3.9) for every h satisfying (1.3.8) does not work for
higher-order operators, since for instance if for Q € R* we take u € WOI’Z(Q) solving
Au = f € L3(Q), then we do not have in general u € W2%(R%).

Remark 1.2. Notice that in (1.3.7), instead of the standard H#P-norm defined in
1
(1.3.5), we are using the smaller norm ||ul|* := |[(—=A)2>ul[1»(1), which turns out to be

equivalent to the full norm HUHH%”’(R) on ﬁ%’p(l) (see [44]).

A subcritical version of (1.3.7) in Theorem 1.6 has been recently proved by A. Iannizzotto

and M. Squassina [48, Cor. 2.4] in the case p = 2. Namely they were able to show that

2
sup e dx < CylI|, for a <.
-1 1
weA 22D |[(~A) Tul| 25y <17

For further generalization of Theorem 1.6, we refer for instance to [71], [46].

When replacing a bounded interval I by R, an estimate of the form (1.3.7) cannot
hold, for instance because of the scaling of (1.3.7), or simply because the quantity
I (—A)%UH »(r) Vanishes on constants. This suggests that, in order to have an inequality
on R, one should use the full Sobolev norm including the LP-norm of u (see Remark
1.2). This was done by Bernhard Ruf [88] in the case of H%?(R?). We shall adapt his
technique to the case H %’2(1[%).

Theorem 1.7. We have

sup / (e”“Q - 1) dx < oo, (1.3.12)
R

1
weHZ?R), [luf 1, <1
H22(R)

where HuHH%Q is defined in (1.3.5). Moreover, for any function h : [0,00) — [0, 00)

o (R)
satisfying
lim (t2h(t)) = oo (1.3.13)

t—o00

we have

sup / h(u) (e”“Q - 1) dx = oo. (1.3.14)
uEH%’Q(R), [lull 1 <1’/R
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In particular the constant w in (1.3.12) is sharp.

The issue of dealing with a nonlocal operator naturally leads to some open questions.
A main ingredient in the proof of (1.3.12) is a fractional Pélya-Szeg6 inequality which
seems to be known only in the L? setting, being based mainly on Fourier transform

techniques.

Open question 1. Does an LP-version of Theorem 1.7 hold, i.e. can we replace H2?
1
with H»* in (1.3.12)?

The reason for requiring (1.3.13) in Theorem 1.7 (contrary to Theorem 1.6, where (1.3.8)
suffices) is that the test functions for (1.3.14) will be constructed using a cut-off proce-
dure, and due to the nonlocal nature of the H %’2—norm, giving a precise estimate for the

norm of such test functions is difficult.

Open question 2. In analogy with Theorem 1.6, does (1.3.14) hold for every h satis-
fying (1.3.8)7

A positive answer to this question has been recently provided by Hyder ([47][Theorem
1.2)).

The usual approach to fractional Moser-Trudinger inequalities is via Bessel potential
spaces H®P (see Section 3.2). Here, we focus our attention on the case (in general
different from the one of Bessel potential spaces) of Sobolev Slobodeckij spaces (see
definitions below), which has been recently proposed, together with some open questions,
by Parini and Ruf. In [81] they considered 2 C R™ to be a bounded and open domain,
n > 2 and sp = n. They were able to prove the existence of 8, > 0 such that the
corresponding version of inequality (1.1.3) is satisfied for any 5 € (0, 8s) (see also [83]).
Even though the result is not sharp, in the sense that the value of the optimal exponent

is not yet known, an explicit upper bound for the optimal exponent 8* is given.

As a first step, we extend the results in [81] to the case n = 1. For any s € (0,1) and
p > 1, the Sobolev-Slobodeckij space W*P(R) is defined as

WP(R) := {u € LP(R): [u]ysrm) < +00}

where [u]ysp(r) is the Gagliardo seminorm defined by

— |<|>|<>l> (13,15

We will often write [-] := [-]ys»r). The space W*P(R) is a Banach space with respect

to the norm

=

([ullwsr ) = (IIUIIZP(R) + [u]ﬁys,p(R)) (1.3.16)
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Let I be an open interval in R. We define the space WP (I) as the closure of C$°(I) with
respect to the norm ||ulys»(r). An equivalent definition for W P(I) can be obtained

taking the completion of C§°(I) with respect to the seminorm [u]yys»(r) (see [17, Remark
2.5)).

With a mild adaptation of the techniques used in [81], we are able to prove that their

result holds also in dimension one.

Theorem 1.8. Let s € (0,1) and p > 1 be such that sp = 1. There exists B, = B«(s) >0
such that for all B € [0, Bs) it holds

_1
sup /65“15 dr < oo. (1.3.17)
weWs P (1), [u)yys.pr) <1 /1

S

Moreover, there exists 3* = $*(s) := s ° such that the supremum in (1.3.17) is infinite
for any f € (8%, +00).

It is worth to remark that, as already pointed out in [81], the exponent ,8*(%) is equal
to 272 and it coincides, up to a normalization constant, with the optimal exponent 7

determined in [50] in the setting of Bessel potential spaces (cfr. Theorem 1.6).

We move now to the case I = R, pushing further the analysis of [81]. As we already
commented above for Theorem 1.7, an inequality of the form (1.3.17) cannot hold if we
don’t consider the full W*P(R)-norm, i.e. we take into account also the term ||ul|zr (),

(see also [50], [46] for the case of Bessel potential spaces). We define

[p—2] ik

Ot) =" — ) o (1.3.18)
k=0

where [p — 2] is the smallest integer greater than, or equal to p — 2.

Theorem 1.9. Let s € (0,1) and p > 1 be such that sp = 1. There exists B, = B(s) >0
such that for all B € [0, Bs) it holds

swp [ (T de < (1349
ueWsP(R),[|ullws.p@<1/R

Moreover the supremum in (1.3.17) is infinite for any § € (B*,+00), where B* is as in
Theorem 1.8

As we shall see, Theorem 1.8 and 1.9 are sharp in the sense of (1.1.5). Indeed one of

the open questions in [81] was whether an inequality of the type

_1
sup /f(\u|)e'3“|15 dxr < 400,
<1J1

uEWS’p(I),[u}Wos,p(I),
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where f: RT — R* is such that f(¢) — oo as t — oo holds true for the same exponents
of the standard Moser-Trudinger inequality (see [46],[50]). For n = 1 we prove the

following

Theorem 1.10. Let I C R be a bounded interval, s € (0,1) and p > 1 such that sp = 1.
We have

1
sup /f(\u!)eﬁ*'“” dz = o0, (1.3.20)
weWg (1), [ulws.p @) <171
sup / F(juD)®(57 u| 7 ) dz = oo, (1.3.21)
u€Ws=P(R),[lullwspry<1/R

where f: [0,00) — [0,00) is any Borel measurable function such that limy_, 4 f(t) = 0.

1.4 Critical points for the fractional Moser-Trudinger in-

equality

As an application of Theorem 1.6, we investigate the existence of critical points of
functionals associated to inequality (1.3.7) in the case p = 2. The results that we are
going to present were first proven by Adimurthi [3] in dimension n > 2 with (—A)%
replaced by the n-Laplacian.

Denote
~ 1 1
H o= 032D, s = 1(~A)sul 2ga). (14.1)

By Remark 1.2 this norm is equivalent to the full H22norm on E[%’Q(I).
This also follows from the following Poincaré-type inequality (see e.g. [89, Lemma 6)):

1 1 ~ 1
||U||%2(]) < T(I)H(—A)‘lu”%g(R) for u € HQ’Z(I), (1.4.2)

where A; > 0 is the first eigenvalue of (—A)% on fI%’Q(I) (see Lemma 3.2, Section 3.3).

Since we often integrate by parts and (—A)®u is not in general supported in I even if

u € C°(I), it is more natural to consider the slightly weaker inequality

sup / (e%“2 - 1) dx = C|1|, (1.4.3)
I

ueH, HuH%SQW

where we use the slightly different norm given in (1.4.1). The reason for using the
constant 3 instead of B, = m in the exponential and having [lu||?, < 27 instead of
|ul|% <1 is mostly cosmetic, and becomes more apparent when studying the blow-up
behaviour of critical points of functionals associated to (1.4.3) (see (1.4.5) below, and
compare to [65] and [70]).
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We want to investigate the existence of solutions of the non-local equation

2

(—A)%u:)\ue%“ inl, w=0inR\I (1.4.4)

Theorem 1.11. Let I C R be a bounded interval and X\i(I) denote the first eigenvalue
of (—A)% on H = ﬁ%’z(I). Then for every A € (0,\1(I)) Problem (1.4.4) has at least
one positive solution u € H in the sense of (1.4.6). When A > A\ (I) or A < 0 Problem

(1.4.4) has no non-trivial non-negative solutions.

Equation (1.4.4) is the equation satisfied by critical points of the functional F : My — R,

where

E(u) = / (e%"2 - 1) dv, My ={ue H:|u|} = A},
I

A > 0 is given, A is a Lagrange multiplier.

Since with the variational interpretation of (1.4.4) that we discussed it is not possible
to prescribe A, we will follow the approach of Adimurthi and see solutions of (1.4.4) as

critical points of the functional
1
JiH R, J(0)= Sl - )\/ (c5 1) a. (1.4.5)
I
We can compute the derivative of .J

(J'(u),v) = %J(u + tv)

1,2
= (u,v)g — )\/uve2“ dz,
t=0 I

for any u,v € H, where

1

(0, 0) 1 1= /R(—A)iu(—mwdx.

In particular we have that if w € H and J'(u) = 0, then u is a weak solution of Problem
(1.4.4) in the sense that

(u,v)g = )\/uve§“2d:n, for all v € H. (1.4.6)
I

That this Hilbert-space definition of (1.4.4) is equivalent to the definition in sense of
tempered distributions given by (1.3.2) is discussed in the introduction of [65].

To find critical points of J we will follow a method of Nehari, as done by Adimurthi [3].

In the two papers, [76], [77] Nehari introduced a method which turned out to be very
useful in critical point theory. Consider X a real Banach space and F € C'(X,R) a

functional. The Frechet derivative of F' at u is an element of the dual space X*. Suppose
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that u # 0 is a critical point of F, i.e. F'(u) =0 and define
N :={ue X\ {0}: (F'(u),u) =0}.

Then naturally 4 € N and we see how N is as a natural constraint for the problem of
finding nontrivial critical points of F'. Set now

c:= ungfVF(u)

Under appropriate conditions on F' one hopes that c is attained at some ug € N and
that wug is a critical point of F. More generally, u € X is a nontrivial critical point of F'
if and only if w € N and w is critical for the restriction of F' to N. In view of this one

can apply critical point theory on N to find critical points of F'.

It becomes now clear that an important point is to understand whether J satisfies the

Palais-Smale condition or not. We will prove the following:

Proposition 1.12. The functional J satisfies the Palais-Smale condition at any level

c € (—o0,m), i.e. any sequence (uy) with
J(ug) = c € (—oo,m), |[J (up)llgr =0 ask— oo (1.4.7)
admits a subsequence strongly converging in H.

To prove Theorem 1.11 one constructs a sequence (uy) which is almost of Palais-Smale
type for J, in the sense that J(ug) — ¢ for some ¢ € R and (J'(ug),ur) = 0. It is
crucial to show that & < 7 and this will follow from (1.3.9) with p = 2 and h(t) = |t|*.
Interestingly, in the general case s > 1, n > 2, p = 2, the analog of (1.3.9) is known
only when s is integer or when h satisfies lim; o0 (t ' h(t)) = oo (see [71] and Remark
1.1 above).

Let us briefly discuss the blow-up behaviour of solutions to (1.4.4). Extending previous
works in even dimension (see e.g. [6], [37], [70], [86]) A. Maalaoui, L. Martinazzi and A.

Schikorra [65] studied the blow-up of sequences of solutions to the equation
(=A)zu = Auez”  in Q € R"

with suitable Dirichlet-type boundary conditions when n is odd. The moving plane
technique for the fractional Laplacian (see [13]) implies that a non-negative solution
to (1.4.4) is symmetric and monotone decreasing from the center of I. Then it is not

difficult to check that in dimension one Theorem 1.5 and Proposition 2.8 of [65] yield:

Theorem 1.13. Fix I = (—R,R) € R and let (uy) C H = fI%’Q(I) be a sequence of

non-negative solutions to

(—A)%uk = Mowgez  in 1, (1.4.8)
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in the sense of (1.4.6). Let my, := supy uy and assume that
A := limsup |lug||3 < oc.
k—o0
Then up to extracting a subsequence we have that either

(i) up — Uoo in Cf (I)NCO(I) for every £ > 0, where us € CL (I)NCO(I)NH solves

loc loc

Uso = )\oouooe%“go in I, (1.4.9)

[NIE

(=4)

for some Ao € (0, A1(1)), or

(I'\ {0}) where us is a solution to

(1.4.9). Moreover, setting . such that )\krkm%e%m% and

(ii) up — U weakly in H and strongly in C}

loc
2
i) = mi(ug(ryz) — i) +log2, o) = log <1+W) (1.4.10)

one has M — Mo i Cl, (R) for every £ >0 and A > |Juco || + 27.

The function 7 appearing in (1.4.10) solves the equation
(—A)%noo =€’ inR,

which has been recently interpreted in terms of holomorphic immersions of a disk (or
the half-plane) by F. Da Lio, L. Martinazzi and T. Riviere [33].

Theorem 1.13 should be compared with the two dimensional case, where the analogous
equation —Au = Aue¥” on the unit disk has a more precise blow-up behaviour, see e.g.
[8], [6], [37], [67].

The content of this thesis is part of various research papers. Chapter 2 refers to the
topics in the joint work with Gabriele Mancini [51]. Chapter 3 describes the results
obtained in [49] and, jointly with Ali Maalaoui and Luca Martinazzi, in [50].
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Chapter 2

Extremal functions for singular

Moser-Trudinger embeddings

In this Chapter we will discuss the existence of extremal functions for singular Moser-
Trudinger embeddings. In Section 2.1 we propose a simple proof of Theorem 1.2 and
discuss some Onofri-type inequalities. In particular, we will show how to deduce (1.2.9)
from the standard Onofri inquality on S? and discuss its extensions to singular disks. In
Section 2.2 we provide a complete and self-contained proof of a useful classification result
for solutions to the singular Liouville equation, which will be crucial in our analysis. The
rest of the Chapter is devoted to the proof of Theorem 1.4. In section 2.3 we will state
some useful lemmas and prove existence of extremals for Eg;\Lq in the subcritical case,
that is when 8 < 47(1 4+ @). In Section 2.4 we will deal with the blow-up analysis for
maximizing sequences for the critical case 8 = 47 (1 + @) and we will prove an estimate
similar to (1.2.5), which implies the finiteness of the supremum in (1.2.15). Finally, in
Section 2.5 we will exploit a properly defined family of test functions and complete the

proof of Theorem 1.4.

2.1 A Carleson-Chang type estimate via Onofri’s inequal-
ity

We show how Theorem 1.2 can be proved directly by means of (1.2.9), which we shall

prove at the end of this section.

Throughout this chapter we will consider the space

H:= {u € Hy(D) : / \Vul?dz < 1}
D

25
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and, for any a € (—1,0], the functional

Eq(u) :—/ |x]2ae4”(1+°‘)“2dx.
D

By (1.2.6) we have supy E, < +o00. For any § > 0, we will denote with Dy the disk

with radius § centered at 0.

Remark 2.1. With a trivial change of variables, one immediately gets that if § > 0 and
u € H}(Ds) are such that Ip, |Vul?dz < 1, then

/ |x’2ae47r(l+o¢)u2dx < 52(1-&-04) sup E,.
Ds H

In order to control the values of the Moser-Trudinger functional on a small scale, we will

need the following scaled version of (1.2.9) (cfr. Lemma 1 in [19]).

Corollary 2.1. For any 6,7 > 0 and ¢ € R we have
C2T
/ e dr < mel T Ter 62
Ds
for any uw € H}(Ds) such that fD5 |Vul?dz < 7.

As in the original proof in [19], we will first assume o = 0 and work with radially

symmetric functions. For this reason we introduce the spaces
H&md(D) = {ue H}(D) : wu is radially symmetric and decreasing} .
and

Hyqa = H N Hy,0q(D).

Functions in H,..q4 satisfy the following useful decay estimate.

Lemma 2.1. For any u € H,qq, we have

u(x)? < —% (1 - /D

\Vu]2dy> log |z|, V z € D\{0}.

||
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Proof. We bound

1 1 % 1
()] < / |u’<t>|dts</| tu’<t>2dt> (~log|a)’?

z|

< (/ |vu,2dy) (~ log )
T \/D\Dyy|

1
Vor
) 2
< o= (1_/17 |Vu|2dy> (—log |z[)=.

=
[

N|—=

||

O]

On a sufficiently small scale, it is possible to control Ey using only Corollary 2.1, Lemma
2.1, and Remark 2.1.

Lemma 2.2. Take uy € Hyqq and o € (0,1). If 6 — 0 and

/ |Vug|?de — 0, (2.1.1)
Ds,
then
lim sup / AR 4 < Te.
D

k—o0 5k

Proof. Take vy, := uy, — ug(dx) € H}(Ds,) and set 75 := fDa |V |2dz = st |Vuy|?dz.
k k
If 7, = 0, then uy, = ux(d;) in Ds, and, using Lemma 2.1, we find

/ e dy = 776,%64”“’“(5’“)2 <7 < me.
Ds,,
Thus, w.l.o.g. we can assume 7, > 0 for every & € N. By Holder’s inequality and

Remark 2.1 we have

J

e4ﬂ'u%dx — 647Tuk(5k)2 / e4ﬂvi+8ﬁuk(5k)vkdx

Ds,

, o E Tk 8mu (g vy, e
S 647Tuk(5k) / e Tkdr / e -7y dx (212)
D D5k

[

2 Tk 8muy (01 )vg 1=k
H D

Sk

5k

8mu (0)

T > We find

Applying Corollary 2.1 with 7 = 74,5 = 0, and ¢ =

2

8muy (01 )vE 1+477Uk(5k) -

/ e % dx < dPme G E
ng
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Thus from (2.1.2) it follows

J

A2 2 Tk 1—r 4wu2(5ky+§fﬁﬁﬁﬂﬁzjk
e ™kdr < i [sup Ep | (me)  TRe F a=7k)
5, H
47Tuk(6)2

Tk
=67 (sup E0> (me)! " e T
H

Lemma 2.1 yields
ug (55,)2
5,36471— e <,

therefore

J

Since 7, — 0, we obtain the conclusion by taking the lim sup as k — oo on both sides. [J

Tk
AR dyy < <sup E0> (me)t ™
H

5k

In order to prove Theorem 1.2 on H,,q for a = 0, it is sufficient to show that, if u; — 0,

there exists a sequence J; satisfying the hypotheses of Lemma 2.2 and such that

/ (emi _ 1) dz — 0. (2.1.3)
D\D;,

Note that, by dominated convergence theorem, (2.1.3) holds if there exists f € L'(D)
such that
ek < f (2.1.4)

in D\Ds,. In the next lemma we will chose a function f € L'(D) with critical growth
near 0 (i.e. f(r) ~ —5+5—) and define &}, so that (2.1.4) is satisfied.

= Jal?log? [z

Lemma 2.3. Toke up € H,qq such that

sup ug — 0 Vre(0,1). (2.1.5)
D\D,

Then there exists a sequence 0y € (0,1) such that

1. 5k — 0.
2. Tp = fD& |Vug|?dz — 0.
k

4dru?
3. fD\Dsk e rdy — .

Proof. We consider the function

(2.1.6)



2.1. A Carleson-Chang type estimate via Onofri’s inequality 29

Note that f € L'(D) and

inf f=e2. 2.1.7
(10I,11)f e (2.1.7)

Let us fix 75, € (0, ) such that va |Vug|*dz < 7. We define
k:

0p = inf {r €(0,1) : i@ < f(z) forr <|z| < 1} €1[0,1).

and
0 >0

Op 1= -
v, if o = 0.

By definition we have
e™i < f  in D\Dj,

thus 3 follows by dominated convergence Theorem. To conclude the proof it suffices to

prove that, if k, * +o0 is chosen so that 05, = gke for any ¢, then

Elirgo (5]% — élirgo Ty = 0. (2.1.8)
For such k; one has
647T“ke(5ke)2 = f((;ke) (219)

In particular using (2.1.7) we obtain
e, (91,)% F(0k,) > 2> 1,

which, together with (2.1.5), yields dy, 2800. Finally, Lemma 2.1 and (2.1.9) imply

—27g,
1 Z (Si(l_Tk£)€4TrUke(5k£)2 — k’g2 7
¢ log 5/%
so that 7y, 200 (otherwise the limit of the RHS would be +00). O

Combining Lemma 2.2 and Lemma 2.3 we immediately get (1.2.4) for radially symmetric

functions:

Proposition 2.2. Let uy € Hyqq and o € (—1,+00]. If

sup ur — 0,
D\D

for any r € (0,1), then
) m(l+e)
limsup Fq(ug) < ——=.
mnp Ealue) < 77

Proof. If a = 0, the proof follows directly applying Lemma 2.3 and Lemma 2.2.
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If a # 0, consider
1
ve(@) = (1+ ) 2ug(|z| ).

We have
/|Vvk|2d:z:/ |V |* dz
D D

and hence v, € H,,q. Moreover we compute

/ ‘x|2a6(1+a)ui dr — 1 / 64771)% dz,
D 14+« D

and the claim follows at once from the case o = 0.

O

To pass from Proposition 2.2 to Theorem 1.2 we will use symmetric rearrangements.
We recall that given a measurable function u : R? — [0, +00), the symmetric decreasing
rearrangement of u is the unique right-continuous radially symmetric and decreasing
function u* : R? — [0, +-00) such that

{u>t = [{u* >t}| Vit>o.

Among the properties of u* we recall:

1. If u € LP(R?), then u* € LP(R?) and ||u., = ||ul[,-

(D) and

rad

2. If u € HY(D), then u* € H&
/ |Vu*|?de < / |Vu|?da. (2.1.10)
D D
3. If u,v: R? — [0, 4+00), then

/]1%2 u*(z)v*(z)dx 2/ u(z)v(z)de. (2.1.11)

]RQ

In particular, if u € H}(D) and a <0,
/ 2> da > / |lz[**e"da. (2.1.12)
D D

Note that (2.1.12) does not hold if v > 0. We refer to [56] for a more detailed introduction

to symmetric rearrangements

Proof of Theorem 1.2. Take uj, € H such that uy — 0 and let uj be its symmetric

decreasing rearrangement. Then uj € H,qq and, since ||uj|l2 = |Jugl]2 — 0, we have
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supp\ p, U — 0 for any r > 0. Thus, from (2.1.12) and Proposition 2.2 we get

1
limsup F, (ux) < limsup E, (uy) < M.
k—o0 k—o00 1+«

Later on we will need the following local version of Theorem 1.2.

Corollary 2.3. Fiz § >0, a € (—1,0] and take uy, € H}(Djs) such that fDa |Vuy |2 dz <
1 and up, — 0 in Hé(D(;). For any choice of sequences 6 — 0, z € Q such that
Ds, (zr) C D5 we have

lim sup/ |x]2ae47r(1+a)“idm < 7€ 5204e),
k—oo JDs, (zk) I+o

Proof. Let us define uy(z) := ug(dz). Note that uy € H and it satisfies the hypotheses
of Theorem 1.2. Hence

thup/ |x’201(e47rui — )dx—(SQ (1+a) hmsup/ |.,L.‘204 47ruk o )d.ﬁU
Ds

k—o0 k—o0

< 52(14—04)7
1+«

Thus we get

lim sup/ \x|2ae4“(1+a)“idx = lim sup/ || 2 (64”(”0‘)“% - 1) dx
Dy, (k) Dy, (k)

k—o0 k—o0

< / |x|2a(e47rui o 1)d(1§'
Ds

< 52(1+Q)L
- 1+a

O]

We remark that, thanks to Theorem 1.2, in order to prove existence of extremal functions

for E, with a € (—1,0], it is enough to prove that

(1 +e)

Ey >
W7 1ta

Y

as we shall now show (see [19], [32]).

Proposition 2.4. For any a € (—1,0] there exists a function u, € H such that

E,(uq) = sup E,. (2.1.13)
H

Proof. We start showing that
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m(1+e)
Ey > ——. 2.1.14
SUp Eo > == (2.1.14)
Let us consider the family of functions
1og(1+<\€i\>2<1+a>>+Ls
(@)= {7 T (T S0
— log |x| Yvee < |z < 1.
2mc,
where v, = |log 5|1+% and c., L. will be chosen later. Io order to have u. € Hg(D) we
require
1+ 72(1+a)
4r(1 4 a)c? — L. = log (2(;@) —2(1+a)loge (2.1.15)
Ve

By direct computations

2(1+
[ Vs = e (log(1 4 2204) e
in(1+ a)c? : 14720

and

1
2 —
/[)\D’Yss ‘vua‘ dx a _27'('02 10g(€’y€)7

£

so that

1 1+ ,y2(1+o<) ,Y2(l+a)
2 _ _ —
/D Vuel'dr = T o ( ) 14w 20T e)lese ).

In particular u. € H if we choose

2(1+a) 2(1+a)
1+
47(1+ a)c? = log 2711&) S— sy — 21+ a)loge. (2.1.16)
Ve I+
From (2.1.15) and (2.1.16) we have
2(14+a)
2 —2(14a
Le=—1 ey = ~1H OGP, (2.1.17)

+ e

and
2rc? = |loge|(1 + 0:(1)). (2.1.18)
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To compute F,(u:) we observe first that in D,_.

o1\ 2(1+a) 2
log (1 + (%) > + L.
2_2|q_ 2

5 >c
Ar(1+ a)ct

= Ce

1 |$| 2(14c) L
A — 1 = . —
G 21(1+ o) log ( * ( £ > 21(1+ «)

Thus, using also (2.1.15) and (2.1.17),

log (1 + (“;)2(1+a)> + L

21(1 4 a)c?

1—

2(1+ —
/ ’x‘2a647r(1+a)ugdx > me2(lte) ’YE( “ 6477(1“1’0()0?72[/5 _ me be — e +O(772(1+a)
D... T o lta g a20F) l+a 14+« c
Finally, since e*™(1+)u > 1 4 47 (1 + a)u? and
(1+ a)/ |z|**log? |2z|dx > & > 0,
D Ye€
using (2.1.18) we get
1
/ ‘x’2a€47r(1+a)u§dw > / ‘x’2adx+ ( +2a) / ‘w‘Zoa 10g2 |z|dz
D\D5.. D\Ds.. s Dree
T 1)
0] 2(14c)
0 26
e+ Ty (1 0e(1) + O((2ee 1)
Therefore
7T(1 + 6) 25 2(1 _
BE(uz) > 1 1)) +0 (1H0)y 4 Oy 2+,
(1) 2 T B (1 0.(1) + 0((ue)149) £ 00204

Since 7. = | log E‘H% one has
|log & (7:¢)* ) = |loge*e*1+) = 0.(1)

and

| log ey 217 = |loge| ™! = 0.(1)

so that, for sufficiently small ¢,

Now we conclude the proof showing that for any o € (—1,0] there exists a function

uo € H satisfying (2.1.13). Let uy € H be a maximizing sequence for E,. Up to
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subsequences, we may assume u; — u. If u =0, then by Theorem 1.2 we would have

m(l+e)
1+a

)

sup B, = lim E,(ug) <
H k—o0
which contradicts (2.1.14). Thus u # 0. Since

limsup ||V (u, — )l =1~ [|Vull2 <7 <1,

—00

by (1.2.6) we find
4ms(14a)
/ |z|?“e T ) gy <C
D

for some s > 1. If we take 1 < p < %, then

puj = plug — u)® + pu® + 2pu(u — u) < = (up — u)? + C, pu’

2=

so that

2 dr(lt+a) )2 2
/ |l,|2a647rp(1+a)ukdx < / |CC‘2a€ p (ur—u) oCrrt® g
D D

1
4ms(14a) B ’
< (/ |$|2"‘67w (uk—u)2dx> </ |x|2a65 CPY7EU2d‘/L') <0
D D

Applying Vitali’s convergence Theorem to the measure |x|*“dz we find

@ |

E,(ur) = Eq(u),

which concludes the proof. O

Onofri-type inequalities for disks
We shall now prove Proposition 1.3 and discuss how to get singular Onofri-type inequal-

ities for the unit disk.

Let (3, g) be a smooth closed Riemannian surface. As a consequence of (1.7) one gets

1 u—u 1
log (‘E’/Ee d’l)g> < W/Z‘Vgu|2dvg—1—0(27g)_ (2.1'19)

While it is well known that the coeflicient 16% is sharp, the optimal value of C'(X,g)
is harder to determine. For the special case of the standard Euclidean sphere (S2, go),
Onofri ([80]) proved that C(S2%,g0) = 0 and gave a complete characterization of the

extremal functions for (2.1.19).
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Proposition 2.5 ([80]). For any u € H*(S?) we have

1 o 1
log (47r /32 e dvgo) < 167r/52 |V ot dvg,,

with equality holding if and only if e“go is a metric on S% with positive constant Gaussian
curvature, or, equivalently, u = log | det dp|+ ¢ with ¢ € R and ¢ : S* — S? a conformal
diffeomorphism of S2.

As we shall see, Proposition 1.3 is easily proved by means of the stereographic projection.

Proof. Let us fix Euclidean coordinates (1, x9, x3) on S? C R? and denote N := (0,0, 1)
and S = (0,0,—1) the north and the south pole. Let us consider the stereographic
projection 7 : S2\{N} — R?

m(x) == , .
1—1‘3 1—1‘3

It is well known that 7 is a conformal diffeomorphism and

(771)" go = e*|dx|?, (2.1.20)
where A
() = log () 21.21
=Ry -
satisfies

— Aug = 2™ on R%. (2.1.22)

Given r > 0, let D, := {x € R? : |z| < r} be the disk of radius r and S? = 7= (D,.).
We consider the map T, : H}(D,) — H'(S?), defined by

u(m(z)) — uo(m(z)) on S

Tou(z) ==
—2log (IETQ) on S2\S2.

Using (2.1.20) we find

/ el dug, 2/ efrdug, :/ eTT“(”l(y))e"Ody:/ @ dy. (2.1.23)
s2 52 Dy .

Moreover, by (2.1.22),

/ \VTul2dvg, :/ |Vu2dx2/ Vug - Vu dy+/ |Vuo|*dy
52 D, D, D,

= / \Vu|?dy — 4/ ueuody+/ |Vuo|*dy
D, D, Dr.
r S2 D'r DT

r
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With a direct computation it is easy to check that

2
/ |Vug|?dy = 167 (log(l +72) — r >
Dy

1472
and

/ upe“’dy = 8mlog2 — 8w + o(1),

T

where o(1) — 0 as r — 4o00. Thus we get

/ VT ul? dvg, + 4/ Trudvg, = / |Vul|*dy + 167 (log(1 + r?) + 1 — 2log 2 + o(1)) .
S2 S2 D,

(2.1.24)

Using (2.1.23), (2.1.24), and Proposition 2.5, we can conclude

1 1
log (/ e“dy) <log </ eTT“dUg())
T D, S2

< — 16 </ VT ul*dvg, —1-2/ Tudvgo> + 2log 2 (2.1.25)
T

1

< Ton . \Vul|?dy +log(1 +72) + 1 + o(1).

Now, if u € Hg(D), we can apply (2.1.25) to u,(y) = u(¥) and, since

1
/ e'dr = — et W) dy and / |Vu|*dx :/ |Vu,|*dy,
D ™ JD, D D,

1 u
log <7T/D d:z:) < Ton / |Vu|?dz + 1+ o(1).

As r — 0o we get the conclusion. O

we find

As in [5], starting from (1.2.9) we can use a simple change of variables to obtain singular

Onofri-type inequalities for the unit disk.

Proposition 2.6. Let —1 < a < 0. Then for any u € H}(D) we have

1

(D), (2.1.26) holds true for any

Moreover, if we restrict ourselves to the space HO1

a € (—1,400].

;rad

Proof. As we did in the proof of Proposition 2.2, for u € H& (D) we consider the

;rad

function v(z) = u(]a:\lfa), which is again in H&md(D). The second claim follows at

once applying (1.2.9) to v. As for the first claim, if & < 0 we can use symmetric
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rearrangements to remove the symmetry assumption, as we did in the proof of Theorem
1.2.

Since

/|33|2°“d:v= A
D 1+«

Proposition 2.6 can be written in a simpler form in terms of the singular metric g, =

|z [*|dz[.

Corollary 2.7. Ifu € H}(D) and -1 < a <0 (ora >0 and u € H} . ,(D)), we have

;rad

1 1
1 “d < - - 24 1
Og(ma/pe ”9a> = 16#(1+a)/D\WI Vga + 1,

where |D|, = ﬁ 18 the measure of D with respect to gq.

We stress that the constant 1 appearing in Proposition 2.6 is sharp.

Proposition 2.8. For any —1 < a < 0 we have

1 1
inf —— 2dr —1 2a0u e | = —1.
weH(D) 16w<1+a>/D‘V“’ ! Og(\Dra/D“””‘ ‘ ”““)

Moreover, if we restrict ourselves to the space H& rad(D), the conclusion above holds true

for any a € (—1,400).

Proof. Let us denote

1 1
Eo(u) = ———— dz —1 *etdug ) .
(u) 167r(1—|—a)/Dvu| T og<|D|a/D]x| e vg>
e—0

It is sufficient to exhibit a family of functions u. € Hy (D) such that E,(u.) — —1.

Take . 30 400 such that e+, 20 0, and define

2(14a)
—2log (1 + (%) > + L. for |z| < e
ue () =

—4(1 + «a) log |z for vee < |z <1,

where the quantity

2(1+a)
1
L. :=2log (%) —4(14+ o) loge
7

g
is chosen so that u. € Hj (D). Simple computations show that

1

2
e e— V der = —-1-2 1+0[ lo + 1
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and
e 52(1+a)%2(1+a)eL57T T 1
/D|55‘ e'edr = (1+ 2(14a) + 1+ a (( £)2(1+a) - 1)
a)(1 4z ) Ve
7T€—2(1+o¢)
= (1+40.(1)).
(L4 o.(1)
Thus
Eo(us) — —1.

O]

To conclude we remark that Propositions 2.6 and 2.8 can also be deduced directly using
the singular versions of Proposition 2.5 proved in [68], [69]. We also point out that,
as we did for the Carleson-Chang type estimates, one can have a singular version of
the Onofri inequality (1.2.9) (see Proposition 2.6). In particular, one can deduce the

following generalized version of Corollary 2.1.

Corollary 2.9. Fiz 0,7 >0, c€ R, and a € (—1,0]. We have

2

14— 2(1+a)
e ' 16n(l+a) §

/ ‘$|2aecu dr < ’

Ds 1 + «

for any u € H}(Ds) such that st |Vul?dz < 7.

2.2 Classification of solutions to the singular Liouville equa-

tion

In this section we will deal with a singular version of the well known Liouville equation.

More precisely, we consider @ > —1 and study some qualitative properties of solutions
of

—Au = |z|?*@e* on R?,
(2.2.1)
O = 5= [po [2]**e" dz < co.

We would like to thank Prof. Gabriella Tarantello who, after reading the results in this
section, pointed us to [42], where Theorem 2.10 is proved in a more general setting.

Problems of this type come from different areas of mathematics and physics ([11], [51],
[55], [68], [79])-



2.2. Classification of solutions to the singular Liouville equation 39

The existence and the qualitative properties of solutions to Problem (2.2.1) have been
studied in different settings (see for example [9], [28], [29], [30], [72], [78] and the refer-

ences therein).

If @« = 0 all the solutions to Problem (2.2.1) have been classified and are known to
be radially symmetric (see [28]). The case @ > 0 has a richer structure. Indeed a
symmetry result can be recovered using the method of moving planes [28]. This can
be done only if ©® > 2, u behaves logaritmically at infinity and o < 0 (this is true for
more general potentials, see [29] for a reference). Notice that the assumption on u here
it is not restrictive (cfr. [29]). In fact any solution to Problem (2.2.1) has a logarithmic

behaviour at infinity, namely we have

u(x) = —Olog |z| + O(1) (2.2.2)

and in particular it holds

O =4(a+1). (2.2.3)

Condition (2.2.3) can be seen as a Kazdan-Warner type condition and it is crucial, for
instance, in classification type results as the one proposed in [85] or to perform a fine

blow up analysis when singular potentials are involved [51], [68].

In view of the results stated in [29], Prajapat and Tarantello [85] exploit the necessity

of condition (2.2.3) to classify the solutions of

—Au = |z[*%e* on R
(2.2.4)
O =4(a+1),

where o« > —1. Namely they showed that any solution of (2.2.4) is radially symmetric

for a ¢ N, while there are no radially symmetric solutions for « € N, a > 1 (see [22]).

Remark 2.2. Notice that for a € (—1,0) the condition © = 4(1+«) in Problem (2.2.4)
is an assumption and does not follow from the result in [29]. The validity of condition

(2.2.3) for any a > —1 will play a crucial role later in Section 2.4.

Here we consider Problem (2.2.1) for any o > —1 and give a unified proof, consistent

with the one proposed in [29], of the asymptotic behaviour (2.2.2) and condition (2.2.3).

Theorem 2.10. Let o« > —1 and let u be a solution to

—Au = |z|*e on R?
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with )
0= / |z|2%e" dx < oo.
27 R2

Then we have

u(x) = —Olog|a] + O(L),

with © > 2(1 + o). Moreover it holds

O =41+ «a).

Proof of Theorem 2.10

We begin proving two premilinar lemmas that will be used later in the proof. In what
follows Br(z) will denote the ball of radius R centered at = (the dependence on x will
often be omitted if z = 0) and C' will denote a generic constant that can change from

line to line.

Lemma 2.4. Let a > —1 and u be a solution to Problem (2.2.1). Then for any x € R?

][ utdy — 0,
Br(z)

we have

as R — oo.

Proof. Fix x € R? and consider a > 0. We trivially bound

][ utdy < ][ e dy
Br(z) Br(x)

C

< 7 ) lyl**e“dy — 0 as R — +oo0.

Consider now a € (—1,0). With u* < e*, multiplying and dividing by |y|** we get

][ utdy < ][ e’ dy
Br(z) Br(z)
C(R+ |1L‘|)_2a/ 2
< y|=“e" dy
R? Bpr(z) v

C(R+ =)~

< o

where we used that for y € Br(z) we have |y| < R + |z| and that [p, [z[**¢" dz < co.
The claim follows letting R — oo since o € (—1,0). O

Lemma 2.5. Let f € L>°(B;). Consider o > —1 and let and u be a solution to

— Au=|z|**f in By. (2.2.5)
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There exist C > 0 such that

(1) |Vu(z)| < Claot! if o< —
(i) [Vu(z)| < —Clog|z| if = —3,
(iit) [Vu(z)] < C if > —3.

Proof. Consider @ to be a solution to

It is clear that the difference v — w is harmonic and hence C°°(Bj). Therefore it is
enough to prove our statement for . First observe that h := |z|?*f € LP(B;) for some
p > 1 and standard elliptic estimates imply that for a > —% we have u € C'(B;) and
(7i7) follows. To prove (i) and (ii) we will make use of a Green representation formula.

We write

=/ Gz, y) |yl f(y) dy
By

It follows immediately with |VG(z,y)| < C‘x 5 that
Vi) <l [ Ay
B |z =yl

With |z|t = y we get

2c 2«
t
|y’ dy _ |x‘2a+1 | | dt.
|z —y| |77 — ¢l
B |T—Y B g

]

Let us define the sets A; := {]ﬁ —y| < %}, Ay = {|y| <2} and A3 := {2 <y < %}
We have

|2a
/{y|< } ||x| dy

1 _
< oo / dy+2/ ly|* dy+2/ ly[* >~ dy
A1 “xl y| AQ Ag

< c+2/ 2 dy.
Az

If now o < % we have

/ 2 tdy < C.
Az
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On the other hand if a = —% we compute

1
[ oty = 2mtog o < (- o).
As 2|z|

O
We will mainly follow the proof in [29]. As a first step we will prove the following
proposition.

Proposition 2.11. Let u be a solution to (2.2.1) and consider o > —1. We have

u(x) L e,
log |z|

uniformly as |z| — oco.

Define the function v as follows

1
v(z) = o /R2 log <|x|y|y\> |y 2@et ™) dy. (2.2.6)

Lemma 2.6. Let u be a solution to Problem (2.2.1) and v as in (2.2.6). Then for

|x| > 4 we have

v(xz) > —Olog |z| + C. (2.2.7)

Proof. Fix x € R? such that |z| > 4. Decompose R? = A; U Ay U By, where By = Bs(0),
A = Bm/z(a:), Ay = R?\ (A1 U By). Let y € A;. Notice that A1, A, By are disjoint

sets. An easy application of the triangular inequality leads to

/ log —YL_jy20¢t a4y > 0. (2.2.8)
A lz=yl

Let us now consider y € Ag. Since |y|, |z| > 2 it holds

/ log i ly|>*e* dy > —log|x|/ ly|2*e™ dy. (2.2.9)
Az |z -yl As

As for y € By we have that log |z — y| < log|z| + C. Note that |y|>** € L(By) for
a > —1. With u € L (R?) we can bound

loc

Y|
/ log ly* e dy
Bo |iU - ?J|

> [ toglullyPeet dy —toglal [ lyPeedy (2.2.10)
B2 Bs

—C | |y*e“dy > —loglz| [ |y[**e“dy+ C.
BQ BQ
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Combining (2.2.8), (2.2.9) and (2.2.10) we get

1
o)z o [ g et ay
AaUBs> ’

27 x —y|
1
> doglal [ JyPeetay+C
27 AoUBo
> —0Olog x| + C,
proving our claim. O

Lemma 2.7. Let u be a solution to (2.2.1) and v defined as in (2.2.6). Then u =v+C.

Proof. Define w := u — v. It is straightforward that Aw = 0. We will prove that w is
constant. Consider z € R? and fix some R > 0. Since w is harmonic in R?, thanks to

the mean value theorem we have

C
wiz)l < & lw(y)| dy.
Br(z)

It follows that (see [38, Theorem 7, pg. 29]) for a reference)

C C C
Du@l <G wldys-5f  wd L wt)dy,
Br(x) Br(x) Br(z)
where in the last inequality we used that w = w™ + w™ and |w| = w™ — w™, hence

|w| = 2w™ — w. Again the mean value theorem implies that

c C
R JBg(z)

as R — oo for any fixed z. Moreover with our definition of w, Lemma 2.6 and Lemma

2.4, we have

C . C C C
CF o wtmay< S zﬁ@@+f log |y dy + & 0,
R /() R /() R /() R

as R — oo, proving that Dw — 0 as R — oo.

Lemma 2.8. Let u be a solution to (2.2.1) and consider © as in (2.2.1). We have

0 >2(1+a).
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Proof. Fix R > 0. Since u solves (2.2.1), using Lemma 2.6 we bound

C> |z|?@e" da > / |z|?“e" dx
R? R2\BR(0)

= / |z|?%evtC dz > C |2[227© dz.
R2\BR(0) R2\BR(0)

Hence © > 2(a + 1). O

Lemma 2.9. For every p € (1,00) there exists C = C(p, ) > 0 such that for |z| large
|| 2P / P W dy < C.
Bi(x)
Proof. First we observe that for any ¢ > 0 there exists K > 0 such that for |z| > K

S 1 1
v(z) < | —— +¢ ) log|z +/ lo ( > 2apudy, 2.2.11
)< (~gpve)loslel e o [ o (i Jwleea @2

The proof of (2.2.11) is very similar to the proof of (2.11) in [61, Lemma 2.4], and it
will be omitted here. We shall rewrite (2.2.11) as

1 1
< (-0+¢)l — [ log|i—— )X 2agud > K.
(@) < (-0 4 oglel + 5 [ o8 (21 ) Nty ol >

We set
Hf”R = Hf”LHB%) and f(y) = ‘y’2a€u(y).

Notice that ||f||r < 6 for large R since f € L'(R?). From Jensen’s inequality follows for
|x| > max{R + 2, K'}

- 1 f)
'@ < PO+ gy / s f log( >Xx ——dy
= iy 218 oy ) X<t
_ 1 f()
< |zt @+5)/ exp (p f 10g< >xx_ ) e dy
|z| 5 5 I flR gl X<t ) T
=l fllr
= |z[P(-©+9) / ( 1 >2 f(y) dy+/ f(y) dy
Bi() \|T — 1f1lr BenBi (@) 1fIIr

o= |1l
< |x|p(—@+6) / ( 1 > : f(y) dy +1].
- Bix) \|T =¥l I fllr
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Again for |zg| > max{R + 2, K} we get

P
1 =1 fllr F(y)
ePv(®) qpe < Olz p(—®+a)/ / ( > (2, Y) 1w Sy +1 | dx
/31(960) | 0| Bi(z0) Bi(x) ’JJ - y’ ( ){I vi<i} HfHR
P
1 = Iflr f(y)
<Clz p(_®+6)/ / < > X(2,y) 1z =L dy+1]dx
| 0| Bi(z0) Ba(zo) ‘.%' - y‘ ( ){l vi<i} HfHR

- f(y) 1 2 flr
< ClagPo1 / / X(Z, Y) {la—y| <1y dx dy + C
’ By (o) ”fHR Bi(zo) |x — y\ {lz—yl<1}

< Clao[P(-0+9),

Since u = v + C thanks to Lemma 2.7, for |z¢| > max{R + 2, K}, one has

$0|2pa/ ePu W) gy < C|x0|2p0‘/ eP*W) dy
By (z0) Bi(zo)

< Clag|P-OFEF2),

From Lemma 2.8 we get that p(—O + ¢ + 2a) < 0 for any p € (1,400) and the claim
follows. O

Lemma 2.10. We have
v(z) < (=0 +¢)log|z| + C

for |x| large.

Proof. The result will follow from (2.2.11) once we get a control on the second term in
the RHS of (2.2.11), which could be really big. With Holder’s inequality we have for

€ (1,400)
1 1 2c eldy < 2pa U ] 1 1 P\
og (| vl y < y| e’ dy og
Bi(x) |z — y| 31 (@) Bi(x) lz —y

1

P

o[ wmma)
Bi(z)

where p’ satisfies 1/p+ 1/p’ = 1. Lemma 2.9 gives the boundedness of the last term in
(2.2.12), concluding the proof.

S =

(2.2.12)

O]

Proof of Proposition 2.11. Since u = C 4 v, thanks to Lemma 2.6 and Lemma 2.10, we
bound
—Ologlz|+ C < C+v< (-0 +¢)logl|z| + C.



46 2. Extremal functions for singular Moser-Trudinger embeddings

Therefore we get the thesis as |z| — oo. O

To prove Theorem 2.10 it remains to compute the exact value of ©, which is the content

of the next proposition.

Proposition 2.12. Let u be a solution of (2.2.1) and © defined as in (2.2.1). We have

O =41+ «).

The proof will follow from the next lemmas. Define
o(x) = u(z) + O log|z| (2.2.13)
Flx) = ¢ <|;|2> . (2.2.14)
Lemma 2.11. Let ¢ be as in (2.2.14). We have
p(x) = o(|log |z[])
as |x| — 0.

Proof. Using (2.2.14) and |ﬁ] = ‘i we compute

x|

T

() L w(Fr)
= T - _ - 0.
log ’l“ |x’ 10g‘.’L‘| log £

|=[?

Thanks to Proposition 2.11, as |x| — 0 we get the thesis. O

Lemma 2.12. Let a > —1 and consider u a solution to (2.2.1). We have
u(zr) = —Olog|z| + O(1).

Proof. Observe that using (2.2.13), (2.2.14) and (2.2.1) we get that ¢ satisfies

— Ap(z) = || 1720 eP(@) in R\ {0}. (2.2.15)

Moreover from Lemma 2.8 we have that © —4 — 2o > —2 and in particular that for any
€ > 0 there exists R > 0 such that

elog|o] < 3() < —clogle|  in B(0).
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Therefore e? < |2/~ in Bg(0). By choosing ¢ such that © — 4 — 2o — ¢ > —2 we get
there exists p > 1 so that

— AP = |z|97472%? € LP(BR(0)). (2.2.16)
Let now n be such that
~A =2/ in Bg(0),
n=0 on dBR(0).
Standard elliptic estimates and (2.2.16) imply that n € C°(Bg(0)).
A direct application of the Removable Singularity Theorem to ® :=n — ¢ yelds
o] < C in Bg(0), (2.2.17)

— AP = |¢]O17 2% in R2. (2.2.18)

It follows from (2.2.14) that ¢ is bounded for |z| > & and hence that u = —© log |z| +
O(1) for |z| > %, concluding the proof. O

From (2.2.17) and (2.2.18) we have that ¢ solves, for some small R > 0, an equation of
the form
— Ap = |x|*5f in Br(0),

where s > —1 and f € L*°(Bg(0)). Thanks to Lemma 2.5 we have that there exists
v € [0,1) such that in Br(0) it holds

[Vo(z)| < C(—log |a]) || . (2.2.19)
We will see how this implies estimates for V.
Lemma 2.13. Let v € [0,1). We have
Vil < Cloglal) [« in R*\ Br(0).
Proof. 1t is immediate to check that it holds

p(x) =9 (&) :

With a direct computation and (2.2.19) applied to @ (i> we get

|=[?



48 2. Extremal functions for singular Moser-Trudinger embeddings

Ve (i

‘V(p(l’)’ = |$’2

|
) < C (log [a) |27,

We are in position now to prove Proposition 2.12.

Proof of Proposition 2.12. Multiplying the equation in (2.2.1) by - Vu and integrating
by parts on Br := Br(0) we get

1
/ Vul*z - vdo — @Vu -z do
2 8BR aBR al/
= / |z|?“e%s - vdr — 2(a + 1) / |22t da (2.2.20)
9Bg By

=L +1,=13+ I4.
We compute each integral separately. Using (2.2.13) and Lemma 2.13 we get

1
I = / |Vul?z-vdo = =R |Vu|? do
2 JoBg 2 Jopg

= 10? —2% - Ve zdo+o(1)
R

=710%+0o(1),

where o(1) — 0 as R — oco. With a similar computation we get also

Iy = 2107 + o(1).

As for I3, using Theorem 2.12 and Lemma 2.8 we have

13 — / R2a+16u dO' — R2a+1/ e—@logR-‘rO(l) do_
8BR 6BR

= O(R**H179) = o(1).
At last, from (2.2.1) it is immediate that
I, = —4(1 + 04)7T@,

and the thesis follows at once.
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2.3 Extremal functions on compact surfaces: notations

and preliminaries

Let (X,g) be a smooth closed Riemannian surface. We will fix p1,...,p, € ¥ and
consider a positive function h € C1(X\{p1,...,pm}) satisfying (1.1.11). More precisely,
denoting by d the Riemannian distance on (X, g) and by B, the corresponding metric

ball, we will assume that for some § > 0,

h .
m S C_l,'_(B(g(pZ)) = {f € Cl(Bg(pZ)) : f > 0} fori=1,...,m. (231)
9 17
In order to distinguish the singular points p1, ..., p.;, from the regular ones, we introduce

a singularity index function

a; ifx=p;
a(r) = (2.3.2)

0 zeX\{p1,.-,Pm}-

Clearly condition (2.3.1) implies that the limit

K(p) := lim i)

a=p d(g, p)2e®) (235)

exists and it is strictly positive for any p € ¥. We will study functionals of the form
(1.2.12) on the space

M= {ueHl(E) : /VU|2dvg§1’ /“dvg—o}'
» P

To simplify the notation we set

a:=min <0, min «;
1<i<m

and

B :=4nr(1l+ @).

Given s > 1, the symbols || - ||s, L*(X) will denote the standard L®*—norm and L®—space

on X with respect to the metric g. Since we will deal with the singular metric g, = gh

fulleni= [ ful'dog, = [ 1 lulde,
% by

L*(%,gn) :={u: X — R Borel-measurable, [julls; < 4+00}.

we will also consider

and
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In this section we will prove the existence of an extremal function for Eg’z’q for the

subcritical case 8 < B. We begin by stating some well known but useful results.
Lemma 2.1. If u € H'(X), then eV’ € L3(X)N L5(X2, gn), for any s > 1.

Proof. Thanks to (2.3.1) we have h € L"(X) for some r > 1, hence it is sufficient to

prove that ¢** € L*(%) for any s > 1. Moreover, since

2 —u)2 )t su2 _7)2 2472
eSU :es(u u)*+2s(u—u)u+su < e?s(u ) eru

I

without loss of generality we can assume @ = (0. Take ¢ > 0 such that 2se < 47 and a
function v € C!(X) satisfying ||[V4(v — u)||3 < € and [, v dvg = 0. By (1.7), we have

w2
€252 ||y 4 || TVelz ||y < +o00. (2.3.4)
Note that
esu2 < es(u—v)2628uv. (235)

By (2.3.4), we have es(uv)? ¢ L?(X) and, since v € L™ (%),
u2

p25uv < eseiuv«u”geC(e,s,HVu||2)v2 c L2(2)‘

Hence, using (2.3.5) and Holder’s inequality, we get e*** € L}(X). O

Lemma 2.2. If ui, € H and uj, — u # 0 weakly in H(X), then
sup / hepB“%dvg < 400
k Jo

1
1=[[Vull3

forany 1 <p<

Proof. Observe that
PP < pBlur—u)? 2pBuku, (2.3.6)

Since

1 . 1
= > 1-[|Vul3 > |Vug [3- [ Vull3 = [V(u—u)l3+o(1) = limsup | V(u—u)|3 < -,
b k—o00 b

pB(u—u)? ine L + 1 — ;
/N s >~ . 7
by (1.2.14) we get ||e |s,n < C for some s > 1. Taking ¢ + 5; = 1 and using

Lemma 2.1, we have

u2 €Cs,a,pu2 c LI(Z,gh) N ||e2pEUkUHS/7h < C.

Thus from (2.3.6) we get ||e?Puk |, < C. N
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Existence of extremals for 3 < B is a simple consequence of Lemma 2.2 and Vitali’s

convergence Theorem.

Lemma 2.3. For any B € (0,5), A € [0, (X, 9)), ¢ > 1, we have
sup Eg’i‘b’q < 400,
H b

and the supremum is attained.

Proof. Let up, € H be a maximizing sequence for Eg’;\b’q, and assume up — u weakly
in H'(X). We claim that Bur (IHAulg) jg uniformly bounded in LP(X,g,) for some
p > 1. In particular, by Vitali’s convergence theorem we get Egzq(uk) — Eg;\lq(u)
with Eg’ﬁ’q(u) < 4o00. Hence Eg’z’q(u) = supy Egiz’q(u), proving the conclusion.

If w =0, then
B+ Nuwllz) = 8 < B,

and the claim is proved taking 1 < p < g and using (1.2.14). If u # 0, since

(L= IVall3) (1 + Muelg) < 1= [Vul3 + Aullg + o(1) < 1= (Ag(2) = V)]ullg +o(1) <1,

1
we can find p > 1 such that limsupp(1 + )\||uk||g) < ————5, and the claim follows
k00 1= [[Vul)3

from Lemma 2.2. O

The behaviour of extremal functions as 5 — S will be studied in Section 2.4. As for now

we can study the convergence of the suprema.

Lemma 2.4. As 3 7 B we have
sup Eg’27q — sup Eg’i‘l’q.
H ’ H ’
Proof. Clearly, since 8 < 3, we have

lim sup sup Eg’;\L’q < sup Eg’i‘;q.
s/ M H

On the other hand, by monotone convergence theorem we have

lim inf sup B2 > lim inf EZM(v) = EE”\’q(v) VoveH,
378 H >.h 38 >.h 3.h
which gives

lim inf sup Eg’

n 72’q > sup Eg?‘lq
B/ B8 H H
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We conclude this section with some Remarks concerning isothermal coordinates and
Green’s functions. We recall that, given any point p € 3, we can always find a small

neighborhood €2 of p and a local chart

Y :Q — Ds, C R?, (2.3.7)
such that
Y(p) =0 (2.3.8)
and
(¥~ 1) g = efldz|?, (2.3.9)
where
e C™®Ds,) and  ¢(0)=0. (2.3.10)

For any § < §y we will denote Q5 := ¢~ (Ds). More generally, if D,(z) C Ds,, we
define Q,(v~1(x)) := ¥~ (D,(x)). We stress that (2.3.3) and (2.3.9) also imply

(") gn = 22DV (2)e?|da]?, (2.3.11)

with
0<VeC’Ds) and  V(0)= K(p). (2.3.12)

For any p € 3, we denote G])D‘ the solution of

1
—0gGy =0, + AN|GlIZ7 UGGy — = (1 + A\GMQ/E |G;|q2c;;dvg>

=]
/ Gpdvg = 0.
by

In local coordinates satisfying (2.3.7)-(2.3.12), we have

(2.3.13)

Gy (2)) = —%logm + AN 4 g(a), (2.3.14)

with & € C'(Ds,) and £(z) = O(|z|). Observe that G is the standard Green’s function
for —A,.

Lemma 2.5. Fizp € X. As A — 0, we have G;‘ — Gg in L3(X) for any 0 < s < 400,
and AI),‘ — Ag.

A

Proof. Let us denote ¢y := 5]

||G;))\||(21q/2 |G|97 %G dv,. Observe that

—Ag(Gy — G9) = N|GYIZGT2G) — e
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Since
Aj[2— Ag—2 A
e zce2ay|

A
= 1G,
q—1

by elliptic estimates we find

1G5 = Gyl < Gy = Gyl 22y o < CAIIGlg- (2.3.15)

()

In particular
IG3 g < IG3llq + 1G3 = Golly < IGpllq + ClIGp = Gylle < IGllq + CAIG g,
hence for sufficiently small A\ we have
1G3llq < ClIGpllq-
Thus by (2.3.15), as A — 0 we find
|Gy — Gpllsc — 0.

In particular, Gz))\ — Gg in L® for any s > 1. Since AI); - Ag = (Gz)?\ - Gg)(p), we also get
Ay — A O

Lemma 2.6. Fiz p € ¥ and let (2,7) be a local chart satisfying (2.3.7)-(2.3.12). As

6 — 0 we have

1
/ VG 2dug = — - log s + AX + N|GAI2 + O(6]log ).
E\Qé 2
Proof. Integrating by parts we have

VG dv, = — AG Gdv, — G —Ldo,. 2.3.16
/2\95‘ pl v mo; 0 Jagg T Ov Y (2310

For the first term, using the definition of GI),‘, we get

1
— AG) G, = \||GD 2q/ G’\qdv—<+c> G dv
N\ g-p Tp“lg H p”q E\Q[;| p| g ‘E| A SO P g (2317)
= MGz + o(1).

For the second term we use (2.3.14) to find

)\aGZ); 1 A
4
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2.4 Blow-up analysis for the critical exponent

In this section we will study the critical case 8 = j.

Let us fix ¢ > 1, € [0,\,(2, 9)) and take a sequence B B ( B < B for any k € N).

d

To simplify the notation we will set Ej := Eg’“;;\ . By Lemma 2.3, for any k£ we can

take a function uy € H such that

Ek(uk) = Sup Ek. (2.4.1)
H

Up to subsequences, we can always assume that

up — g in HY(%) (2.4.2)
and
up —ug in L°(X) Vs>1. (2.4.3)
Lemma 2.7. If ug # 0, then
Ex(ug) = Egy(ug) < +oc. (2.4.4)

In particular

sup Eg’i‘l’q < +o0,
H b
and ug is an extremal function.

Proof. If ug # 0, we can argue as in Lemma 2.3 to find p > 1 such that eBrui (Al 1)
is uniformly bounded in LP(X, gj,). Vitali’s convergence Theorem yields (2.4.4). Lemma
2.4 implies

s;1{p Eg;\lq = Egzz’q(uo) < +o0.

O

Thus it is sufficient to study the case ug = 0, which we will assume for the rest of this
section. In the same spirit of Theorem 1.2 and (1.2.5), we will prove the following sharp

upper bound for Ej(ug).
Proposition 2.13. If ug = 0, we have

e

lim sup Fy(ug) < K(p)C’BA’A’ + [Zlgs

< — m
k—oo 1+ @ pex, a(p)=a
where Ay is defined as in (2.3.14) and S|y, = [ h dvg.

Remark 2.3. We remark that the quantity

max K (p)e”“'p
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is well defined. Indeed, if @ < 0 the set of points such that a(p) = @ is finite. On the
other hand, if @ = 0, we have that K = h on X\ {p1,...,pm} ={p € £: a(p) = a}, and

heP4% is a continuous function on 3 with zeros at the points p1,...,DPm-

In particular, Lemma 2.7 and Proposition 2.18 give a proof of an Adimurthi-Druet type
inequality, namely B

sup Eg’i‘;q < +o00.

H b

The rest of this section is devoted to the proof of Proposition 2.13.

Lemma 2.8. Let uy, € H be a sequence such that (2.4.1)-(2.4.3) hold. Then ||Vug|j2 =1
and there exists s > 1 such that u, € HNW?25(X) for any k. Moreover, there exist
v >0, A\ >0, and ¢ € R such that

— Agug = yeh(z)upe’ "t + si(), (2.4.5)
where
b := Br(1 + )\Hung), (2.4.6)
s = e llullg ™ gl g — e, (2.4.7)
with .
C = ] (’Yk/ upe kmdvgh +)\kHukH2 q/ g 7™ 2ukdvg> (2.4.8)

In particular, since we are assuming ug = 0, we have

lim sup v, < 400, fyk/ h uze“idfug — 1, (2.4.9)
n %
b — B, (2.4.10)
Ae = A, (2.4.11)
cx — 0, HSkH% — 0, (2.4.12)
phe

as k — +oo.

Proof. The maximality of uy clearly implies ||Vug|l2 = 1. One can apply Langrange

multipliers theorem to verify that wuy satisfies
2 — —
— Agug = vibph(@)ure®™ s + Mg B i | ugel|2 ™9 ug 9> uy, — e, (2.4.13)

where by, is defined as in (2.4.6), up == [x h uZePUi dug,

1

C ‘= ‘Z’

<fyk/ hukeb’““kdvg—I—)\Vkﬁk,ukﬂukHQ q/ |2y |92y, dvg> (2.4.14)
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and v, € R. We define vy, := vibg, A\, := Avg Sk, and sg(x) 1= )\k||uk||g_q|uk|q_2uk —CL
so that (2.4.5)-(2.4.8) are satisfied. Observe also that

HHUkH(?‘qlchHu;gHﬁT = [|ug]lg, (2.4.15)

hence s, € Lq%l(E). Choosing sp > 1 such that h € L*(X), we can employ Lemma
2.1 and standard elliptic regularity arguments to obtain u, € W25(2) for any 1 < s <

min{so, ;45 }.

We shall now prove (2.4.9)-(2.4.12). Since ug = 0, (2.4.10) follows from (2.4.3). Multi-
plying (2.4.13) by ux and integrating on X, we get

) ABrllur|?
L= v, + AvgBrpurl|uklly = viebrpr (1 + T) = V(1 + o(1)),

from which we get the second part of (2.4.9). As a consequence we also have

B a, (2.4.16)

Ak = AUkBrpr = MYk pik b

Now we prove lim sup y; < 400 or, equivalently, liminf py > 0. For any ¢t > 0, we have
k—o0 k—o00

1 1
Ej(ug) < 2/ h uiebk“idvgﬂ—/ heb’““idvg < 2/ hu%eb’““idvg+|2|gh+o(1),
{fue|>1) {lue|<t) /s

from which

k—o0 k—o0

liminf y5, = lim inf/Z h u%ebk“idvg > t? <Sl;[p Eg;\Lq — 2’%) > 0.

It remains to prove that ¢y — 0 which, with (2.4.15), completes the proof of (2.4.12).

For any ¢t > 0
1 1
fyk/ h\uk\eb’““idvg < Tk huzebk“idvg—i—’yk/ h!ukleb’““idvg = L()—Fo(l).
D b >t {lux|<t} t
Since t can be taken arbitrarily large we find
’Yk/ hukeb’““zdvg — 0. (2.4.17)
by
Finally,
1
[ ]Q‘UkW_Qdevg < lug g% =0, (2.4.18)

which, combined with (2.4.8), (2.4.16), and (2.4.17), yields ¢, — 0. O
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By Lemma 2.8 we know that u;, € C%(2), thus we can take a sequence pj, such that
My 1= max luk| = uk(pk), (2.4.19)

where the last equality holds up to changing the sign of uy. Clearly, if sup;, mj < 400, we
would have Fj(uy) — [X|g,, which contradicts Lemma 2.4. Thus, up to subsequences,
we will assume

my — +00 and Dk — D- (2.4.20)

Lemma 2.9. Let Q C X be an open subset such that

limsup ||Vugl[2¢0) < 1.
k—+o00

Then
[uglLse () < C.

Proof. Fix Q € Q. Take a cut-off function ¢ € C§°(Q) suchthat 0 <¢{<land {=11in
Q) where Q € @ € Q. Since

/ \Vup)? dvg = / V262 do, + 2/ upEVuy - VEdvg + / IVE[Pui do,
b Q Q Q
<(1+e) [ [VuPedu, + C. [ [Vt v,
Q Q
and € can be taken arbitrarily small, we find

lim sup HV(ka)H%?(E) <L

k—oo

Thus, applying (1.2.14) to v := W(E?i% we find
Heﬁu?ﬂ“”“k”?) <C (2.4.21)
LSO(legh) o

for some sg > 1. From (2.4.12) and (2.4.21), —Ayuy, is uniformly bounded in L*(£Y)
for any s < min{so, L5} If we take another cut-off function R C°(€Y) such that
¢ =1 in Q, applying elliptic estimates to ug in ' we find supg Eup < C, and hence
supg ur < C. OJ

From Lemma 2.9 one can deduce that |Vug|? — &, that is u; concentrates at p. Intu-
itively, it is natural to expect that concentration for maximizing sequences happens in
the regions in which h is larger. We will show that p must be a minimum point of the
singularity index « defined in (2.3.2). This will clarify the difference between the cases
a < 0 and @ = 0: in the former, the blow-up point p will be one of the singular points
Pl,---,Pm, while in the latter p € ¥\{p1,...,pm} (cfr. Remark 2.4 and Proposition

2.15). The next step consists in studying the behaviour of u; around p. Arguing as in
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[57], we will prove that a suitable scaling of uj converges to a solution of a (possibly

singular) Liouville-type equation on R? (see Proposition 2.14).

Again, we consider a local chart (£2,1) satisfying (2.3.7)-(2.3.12). From now on we will

denote xy, := 1(py) and

vp =ug oy,

Define t;, and 5 so that

tz(1+a(p))7km%€bkmi — 17
fi|xk]2a(p)’ykmzebkmi =1.

Lemma 2.10. For any 8 < 3 we have

ti(lJra(P))mzeBmi -0, ﬁg‘mk‘Qa(p)mieﬁm% 0
as k — +oo. In particular, for any s > 0 we have
lim tymj, =0 lim #pmj = 0.
k—+00 KTk ’ k——4o0 k'

Moreover, as k — 400, we have

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

Proof. Since the result can be proven both for ¢, and ¢;, with the same argument, we

will prove it here only for ¢;. By (2.4.9), (2.4.10), and (2.4.23)

e(ﬁfbk)mi
Tk
S/Ehuzeﬁuidvg(l—l—o(l)).

ti(l%‘(p))m%eﬁmz = = (B=br)mj, / huieb’““idvg(l +0(1))
by

-/ —
Take s = % (i.e. 1/s+B/B=1) and so > 1 such that h € L*0(X). Then

— B 1
2 2 S
/EhUieﬁ"”“dvg < J[udllsnlle® s I, < ClIhllsluillss, = O-

Finally, to prove (75), it is enough to observe that from (2.4.23) and (2.4.24) one com-

putes

bl _ (lasl )00
fk tr '

We define now
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t if‘x—’“'—>+ooask:—>+oo,
P tk (2.4.26)

tp  otherwise,
and the function
Nk (x) = my (vg(z + rpz) — my) , (2.4.27)

which is defined in Ds, .

"k

Proposition 2.14. Up to subsequences, ni — no in Cp (R?) N H} _(R?). Moreover,
(i) if % — 400 as k — +oo the function 1y solves

— Ang = V(0)e2Pm0, (2.4.28)
V(0)e? dg = 1; (2.4.29)

RQ

(13) if % — T the function ny solves
— Ao = |z + 2@V (0)e2Pm0, (2.4.30)
/ |z + Z2@V(0)e2P0 dy = 1. (2.4.31)

RQ

Proof. If % — +00 as k — 400, then r, = £} and it follows that 7, as in (2.4.27)

satisfies

—An, = mkr,%e“"(””km) (%’5% + Tkﬂl'|2a(p)V(:L‘k + rkx)ebk”zvk(xk +rpx) + sg(zk + rkzz;))

_ e@(mk-l-?’k?ﬁ) (

Otherwise we have that r; = t; and, up to subsequences, % — T as k — +oo. In this

T - 2a(p)

M\ b (2’7”:7%2) 2
Tzl @m V(eg +rpz) (14 o) k) 4+ mprisk(xg +rx) | .

k

case, 1 satisfies

—Any = myrie? @) (’Yk: |y, + i 2PV (g, 4 rga) e oy (2 + ) + gy + Tkx)>

Th 2a(p)

2
b (2 .+"—’“)
— e‘P(:EkJery) ( +x V($k + Tkx) <1 + 7Ik2> e k\ <Mk mi + mkrisk(l’k + rm:)) '

mi

Tk
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Fix L > 0. Observe that from Lemma 2.10 and (2.4.12), we have
2 - = q_% _a_
/ |mprisg(xy + rpx)|at de =m) )] |sg(z)| =T dx
Dy, Dpry, (zk) (2.4.32)

gt e
< m;g17 T]37 ||5/€||Zii1 _>07

2
as k — +o00. Since 2n + % < 0 and |ng| < 2m2, in both case (i) and (ii) we can find
k
s > 1 such that
| = AngllLs(p,) < C.

Moreover 7;(0) = 0, thus we can exploit Sobolev’s embeddings Theorems and Harnack’s
inequality to find a uniform bound for ny, in C%%(D %) Hence, with a diagonal argument,
we find a subsequence of ny such that 7, — no in H} _(R?) N CP_(R?). Moreover ng
solves (2.4.28) or (2.4.30), depending on our choice of rg. It remains to prove (2.4.29)

and (2.4.31) respectively. In order to do this, we observe that in case ()
2
1=-— /E Agupuy dvg = Vg /Z h uzebkuk dvg + )‘k”ukHZ
> / h uieb’““i dvg + o(1) (2.4.33)
QL'rk (pk)
= V(0) / 280 o 4 o(1).
Dr,

In particular it holds (see for instance [28])

3 1
lim V(0) / P dy = > 1, (2.4.34)
L—+o00 Dy, 1 +

o]

where the last inequality follows from the fact that @ < 0. Hence with (2.4.33) we obtain

(2.4.29). Similarly, in case (ii) we have
1= —/ Agupuy dvg > V(O)/ |z —|—§|2a(p)e2@7O dz 4 o(1). (2.4.35)
b Dy,
On the other hand (cfr. [85])

3 1
lim V(O)/ |z + z|22P) 200 gy = l@ > 1, (2.4.36)
L—+oo Dy, 1 + o

where now the last inequality follows from the minimality of @. Therefore (2.4.31) is

proven. O

Remark 2.4. From the proof of Proposition 2.1/ it follows that if & < 0 then by (2.4.33)
and (2.4.34) we have that only case (ii) is possible. Moreover from (2.4.35) and (2.4.36)

we get a(p) = @, that is p must be one of the singular points p1,...,Pm.
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We stress that Proposition 2.14 gives us information on the nature of the point p only in
the case @ < 0. To have a deeper understanding of the case @ = 0 and a more complete
analysis of the blow-up behaviour of uy near the point p we will need few more steps (see
Proposition 2.15).

Lemma 2.11. We have

. . . bru? — 1.
(1) Hmyp o0 limg oo fQLTk ™ Yrmyhugel U dv, = 1;
(i) lim lim /. hu2ebri duy = 1;
L—+o00 k—+o00 QL% (pi) Yehug, g — L
bru? 1 1
he’ Uk dUg = hmsupk_H_oo m

(zm) limy, o0 limy 4 o0 fQer (Pr)

Proof. Both (i) and (ii) follow easily from Proposition 2.14. We are left with the proof
of (iii).

By Proposition 2.14, for any L > 0 we have

lim ’ykmz/ heb’““idvg =1+4o05(1),
QL'r‘k (Pk)

k—+o0

where or,(1) — 0 as L — co. Hence

1
lim sup 5= (1+ oL(l))limsup/ hebku%dvg,
k—oo Yk k=00 S QL (5)
and we can conclude the proof letting I — +oc. O

Following [57], for any A > 1 we define

A . mi
ug = min{ug, — }.
k { k> A }
Lemma 2.12. For any A > 1 we have
. A 1
limsup [ |Vuj |“dvy = —.
k—o0 b A

Proof. Integrating by parts, we have

lim inf/ |Vui|2dv, = lim inf/ Vuj - Vugdv, = lim inf —/ Agupui dv,.
» k—o0 » »

k—o0 k—4o00

Fix now L > 0. By Proposition 2.14, for sufficiently large k, we get Qr,, (pr) € {ur >
Tk}, Hence, using (2.4.5) and (2.4.7), we find

—/ Agup ujh dvg = 'yk/ hukebkuiuf dvg +o(1) > QLA / h el dvg + o(1).
5 ) A Qrry, (P1)
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Passing to the limit as k, L — 400 we obtain

k—o0 k——+o0

1
lim inf/ Vil |? dvg = hm inf — / Aguku? dvg > i (2.4.37)
%

where the last inequality follows from Lemma 2.11. Similarly

+
—/ Aguy, <uk — %) dvg > fyk/ h ukeb’““i (uk — %) dvg + o(1),
b Qer(pk)
and, again from Lemma 2.11, we get
hmlnf/ |V (u +]2d > A1 (2.4.38)
Clearly uy = uft + (up — Z)F and [, Vujl - V(uy, — ) dog = 0, thus
+
1= / |Vug|? dv, = / IVui|? du, +/ % (uk - %) 2 dv,,
b by b
and from (2.4.37) and (2.4.38) we find
1 mi A—-1
li A2y, = — 1 —~ —) dvg = ——.
k;rzz/gwk' dvg =7 an kgzz/ Vwe= ) Pdvy =4
0

With Lemma 2.12 we have a first rough version of Proposition 2.13.

Lemma 2.13.

limsup Fi(ux) < lim  lim helr dvg + |X|g, -

k—00 L—400 k—+o00 QL% (pr)

Proof. For any A > 1 we have

Ex(ug) = / he¥ Uk du, + / N heb ) dy,.
{we=5} {wes}

y (2.4.9),
2

A2 A
/ hekui dvg < 2/ hu%eb"‘“z dvg = ——(1+o(1)).
{ue>"k} mp Js Ve,

For the last integral we apply Lemma 2.12. Since limsup;,_, . [|[Vui |3 < § < 1, (1.2.14)
implies that eb+(4)” is uniformly bounded in L*(X, gp) for some s > 1. Thus, by Vitali’s

/{ <mk}heb’“(“?)2dvg < /Ehebk(“?)deg — |X]g,-
up<—4*

Theorem
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Therefore we proved

A2
lim sup Fj(uy) < lim sup 5+ X|g,-
k—o0 k—oo  VEMY

As A — 1 we get the conclusion, thanks to Lemma 2.11.

Lemma 2.14. We have
Yemgh ukebk“i — 6p

weakly as measures as k — +o0.

Proof. Take ¢ € C°(X). For L >0, A > 1, we have

'ykmk/ h ukebk”ifdvg = 'ykmk/ hukeb’““ifdvg
= QL’I'k(pk)

+ ’Ykmk/ hukeb’““ifdvg
{ue>"E N\, (P5)

+ ’ykmk/ hukebkuiﬁdvg
{ur<TE}

= I+ IR+ I}

We have

I} = %mk/ huge i (€ — £(p)) dug + ’Ykmk/ huge k€ (p) dv,.
Qr,, (Pr) QL (Pr)

Since [|§ = &(P)l| Lo (L, () — 0 @s k — +oo, thanks to Lemma 2.11, we have
Tk

lim lim I} = &(p).

L—o00 k—o00

Similarly, using (2.4.9),

17| < mk/ e (€| dug
{ur>ZE N, (Pr)

<A 'ykhu%eb’““i |€|dvg
{ur>"E N, (Pr)

< Aligllzeos) <1 - / ( )’ykhu%ebk“idvg + 0(1)) .
Lry Pk

Therefore, from Lemma 2.11,

lim lim I = 0.
L—o00 k—o00

For the last integral, by Lemma 2.12 and (1.2.14), there exist s > 1,C > 0 such that

/ he* P dy, < C.
%
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Thus
2 a 2
I}| < %mk\lélloo/zh!w!ebk(“’“) dvg < Yeml|€lloollurlls €7 o = vemio(1).

By (éit) in Lemma 2.11 and Lemma 2.13 we get that yxmj; — 0 and hence we find
|I3| — 0, which gives the conclusion. O
Let now Gﬁ be the Green’s function defined in (2.3.13). Using Lemma 2.14 we obtain:
Lemma 2.15. For any s > 1, we have mypui, — G in C (S\{p})NHL (S\{p})NL* ().
Proof. First we observe that |myu||q is uniformly bounded. If not we could consider
the sequence wy, := HuuTkllq’ which satisfies

U S
k ebkui + k

[kl ]l

—Agwi = Yih

Arguing as in Lemma 2.14, one can prove that ||yxhmyuge?¥i|; < C and hence it

follows , ]
[khuge® 1 [lyphmguge® |y

[l lq B lmrurllq

— 0,

as k — +oo. Moreover it is easy to check, with (2.4.7) and (2.4.8), that
skl < Cllukllg,

and we have a uniform bound for —Ajwy, in L' (¥). Therefore wy, is uniformly bounded
in Whs(%), for any 1 < s < 2 (see [92] for a reference on open sets in R?). The weak

limit w of wy will satisfy

/ Vw -V dv, = )\/ [w|? 2w dvg,
b b

for any ¢ € C*(X) such that Js ¢ dvg = 0. But, since A < A\y(X, g), this implies w = 0,

which contradicts ||wg||q = 1. Hence ||myugll; < C.

This implies that —Ag(myuy) is uniformly bounded in L'(X) and, as before, myuy is
uniformly bounded in W1#(X) for any s € (1,2). By Lemma 2.14 we have myuy — Gg

weakly in W1#(X) for any s € (1,2), and strongly in L" for any r > 1.
From Lemma 2.9 we get |[Vug|* — &, and uy, is uniformly bounded in LS, (3\{p}). This

implies the boundedness of —Ag(myu) in L .(X\{p}) for some s > 1, which gives a

loc
uniform bound for myuy in W/ZQOCS(E\{])}) Then, by elliptic estimates, we get myur — G,

in H,.(S\{p}) N CR(E\{p})- O

As we did in the proof of Theorem 1.2, in the next Proposition we will use an Onofri-type

inequality (Corollary 2.9) to control the energy on a small scale.
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65
Proposition 2.15. We have a(p) = @ and for any L > 0
K 1+EA/\
limsup/ heb’““idvg < 7r(m—eiz"
k—oo JQu,, (ox) I+
Proof. Let us observe that
/ |l,’2a(p)€bkv,% dr — / |$|2(a(p)—a)+2aebkvz dx
Dp, Dpr
Lry, (Th) L (Th) (2.4.39)
< (er)2(a(p)fa) |x‘266bkvi dr.
Der (xk)
Fix § > 0 and set 7, = [, |Vug2do, = Jps |Vug|?dy. Observe that, by Lemma 2.15,
m2(1 —7) = / VG 2dug + o(1), (2.4.40)
$\Qs

and

milluell2 = |GlI2 + o(1). (2.4.41)

Since by Lemma 2.6 we have

1
/ VG 2dvy = —=—log 6 + O(1) °= o0, (2.4.42)
T\ Qs 27

for ¢ sufficiently small, we obtain

1 1 A 1
8
1

1
=1- VGy|2dvy — M|Go |2 — ) <1
- (/m' 2o, = MGIZ ) +o (-

k
(2.4.43)

We denote dy, := supyp, v and wy, := (vy—dy)* € H§(D;). Applying Holder’s inequality
we have

— 2 2 — 2
/ |$‘2a€bkvkd£€ — ebkdk / ‘$|2a6bkwk+2bkdkwkdx
Dy, (zk) Dp,, (zr)

2

w

2 7o (LA [[7) 26wy 175 (1A [luk [17)
: o N o 2y
< bkl / |1:]2aeﬁk ™ da / |$’2a61—7k(1+/\”uk\|q) )
Der (a:k) Der (Ik)

(2.4.44)
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Observe that, for ¥ — +o0o, we have that f/”—% — 0 uniformly on Ds\Dy/, for any
Wi

0 < & < 4. Thus, applying Corollary 2.3 to the function T with 0 = Lry, we find

w? B
lim sup/ \x|2aeﬁk?lidx < T s204a), (2.4.45)
k—oo J Dy, (x1) 1+«
Using Corollary 2.9 we find
2bpwydy 2bpwydy
/ ‘x‘Zaelqk(quukng) < / ]xPEel*Tk(l“”"k“g)dx
DL'rk(zk) Ds
b2 d2 7y,
< A T Yo s20+a)
o 1+«
bpd2 7y, (1A [lug 12)
14 bt kg
_me A (Tt A fJug|12)2 52043
- 1+«
Combining this with (2.4.39), (2.4.44), and (2.4.45), we find
2(1+@) B by dj,
limsup/ |x]2"(p)ebk”1% dx < Leé 704 lim sup (er)Q(O‘(p)_a) e 1=k Akl |
(2.4.46)
Using (2.4.43) and Lemma 2.15,
) A2
lim b - Alsupop, Gy) = H(5).  (2447)
— 5 : . 4.
k—oo 1 Tk<1 + /\Huqu> (f2\95 WG;}’deg _ AHG?HS)
Notice that by Lemma 2.6 and (2.3.14)
H(5) = —2(1+a)logd + BA) + os(1). (2.4.48)
With (2.4.46) and (2.4.47) we obtain
lim sup/ hel U dvg = lim sup/ V(x)]w]%‘(p)ebk”id:u
k%+00 Qer (pk) k—o0 Der (Z‘k) (2449)

K 2(1+@)
< KW H®) i sup (Lry)?
1+« k—400

(a(p)-a)

If a(p) > @ we would have (er)2(a(p)*a) — 0 as k — +o0o. This would imply, using
Lemma 2.13, that

lim sup Ey(ur) < [2g,]
k—+00

which is a contradiction since uy is a maximizing sequence. Hence, it must be a(p) = a.
Therefore, combining (2.4.47), (2.4.48), and (2.4.49), we get
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2(14+@) 1+BA%+o0s(1)
lim sup/ hebk“i dvy < MeH(d) _ K(p)me PO _
Qer(pk)

ko0 1+a 1+a

O]

Proof of Proposition 2.13. The proof follows at once from Lemma 2.13 and Proposition
2.15. O

2.5 Test functions and existence of extremals

By Proposition 2.13, in order to prove existence of extremals for Eg’z’q, it suffices to

show that the value
e

K(p)eP4% + |n
T e (p)e”® + |X]g,

is exceeded. In this section we will show that this is indeed the case if A is small enough.

Proposition 2.16. There exists A\g > 0 such that

e A

3 B,A.q BA
sup F > max K e’r + |2
p >k 1+ @ pes, ) (p) ’ |gm

for any 0 < X\ < Ap.

Proof. Let p € ¥ be such that a(p) = @ and

K(p)eBAZA’ = max K(q)eEAé.
gex, al(q)=a

In local coordinates (€2,) satisfying (2.3.7)-(2.3.12), we define

) 204
1og(1+(—“"(s 1) >+La

Ce — e, r € Qe
o A_
we(z) := Gpcsnaé z ey \Q e (2.5.1)
G/\
_pP

x € E\Qg%e

Ce

and
We

I 2IGE

where ¢, L. will be chosen later, 7. = |log 5|1+%, ¢ is defined as in (2.3.14), and 7. €
C§°(Q2y.2) is a cut-off function such that . = 1 in Q.. and || V|| () = O(5%). In

Yee
order to have u. € H'(X) we choose L. so that

Ue 1=

— 1+ %Z(Ha) ol
Bc2 — L. = log e | T 5‘41)3\ —2(1+a)loge. (2.5.2)
Ye
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Observe that
1 = _
/Q |Vwe | dv, = 52 <log(1 + 42043y — 14+ 0(] loge| 2)) : (2.5.3)

Ye€ £

Since ¢ € CY(Dg,) and &(x) = O(|z|), we have

/ VP dvy = | V[ doy
92%6\9%6 92%5\9%5
+ / |VEn? dvg + 2/ neEVn. - VEdu,
927€€\Q’Ysé‘ QZ’YEE\Q’YSE
= O0((1:2)%).

Similarly
/ VG;‘ -V (n:€)dvy = O(~ee).
92755\9%6

By Lemma 2.6 we have

c?/ |V, |*dv, = / \VG;‘|2 + O(v:¢)
E\Qyee 2\ e
= 5 loges + A) + G2 + Olrellogree) .
Observe that v.¢log(y.€) = o(| loge|~2). Therefore we get
/E \Vwe [*dv, = 5162 (—1 —2(1+@)loge —i—BA;} + Ex\HGgHz + O(] loge\_Q)) .
=

If we chose ¢, so that

B =—1-2(1+a) loge—l—BAI’}—i—O(HogE]_z), (2.5.4)
then u. — u. € H. Note also that (2.5.2) and (2.5.4) yield

L. = -1+ 0(|loge|™2), (2.5.5)

and
2rc2 = |loge| + O(1). (2.5.6)

Since 0 < we < O(ce) in Q_¢, we get

/ wedvy = O(cz(7:)%) = o(| loge|?).
Q

Ye€
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Moreover
G}\
/ we dvg = / —L£ dvg — / Uif dvg
I\Qy.e S\Qyee Ce Qoyee\ Qe Ce
_0 <(%6)2! 10g(%6)!> L0 ((%6)3>
Ce Ce
= o(|loge| %),
therefore
W. = o(|loge|™?) = o(c ). (2.5.7)

From (2.5.4), (2.5.5), and (2.5.7), it follows that in €, .

2(1+a)
(we —w.)? > Be? — 2L, — 2log <1 + <W)(w)‘> ) +o(c2?).

=

3

We have

QN

2w, — w2 > (/\Q

where the last inequality follows from (2.5.1) and Bernoulli’s inequality, after splitting

A — A _
|Gp — cWe|? dUg) > ||Gp||?, + o(c; 2)7

2vee

the integral on regions where |G1’>| > |c.we| and |G§‘| < |ewe|. Therefore we find

1 ( Awe —w5H2> . L+23Gyll7 +olcs?)
TN VNI 2
1+EHGPHC1 1+é”Gqu (1+C%HG£H§) (2.5.8)
NGl
—1-_"1"prl¢ —4y.
ol

Hence

204@)\  A\2|| )[4
Bl (1A uo—|2) > Be—2L.—21log (1 + (1) )—””q’”%(c;?).

2
€ c?

It follows that

_ Fa2)GA (14
Be2—ar.— P 00la 4 o)

£

dx

B(uc—7 Ue—T rog €
/Q heﬂ(us )2 (14+A|lue a||3)dvg 2/ |ZL“2 (V(O)—FO(’)/E&))

Dy.e <1 N (§)2<1+a>>2

_ aV (022D ga PG (e

(1+a@)(1 + 205D E 100

2043) g2_op  PNIGNG , 2
o WV(O)gi B = 2L, 75% + ( e )(1 + O(C;4))
(1+a@)
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Using (2.5.4) and (2.5.5) we find
B2 —2L. = —2(1 +@)loge + 1+ BAS +0(ch),
so that

By - V (O)GHBA; BG4 _
hePue—u)? (A ue—ue|3) — TV V) 7 (0 P2 11pllg ). (259
/Q ‘ ' (1+a) c Fele) (259

Ye€

Finally, with (2.5.7) and (2.5.8), we observe that
/ P =T (UM e e 1) gy,
§]\S22755

> [ hduy B A -l [ b - de,
S\ Qoee I\ Q2vce

_ . )\2 G)\| 4
> [Xlg, + O((%g)Z(Ha)) + 8 (1 - Hc4p ’q + 0(054) /Z\Q h(we — @€)2d7’g
27vee

€
BIGH .2 _
= iz, + Al | ooy

£

(2.5.10)

Hence, from (2.3.12), (2.5.9), and (2.5.10), it follows that

- _ 2 1+BAD N 2| G |4
B, — o TK(®) 11754 B A K (p)e 7 NGl 9
E27hq(u€_u€) > 1+a e +8 p+|2‘gh+é ”Gp”LQ(Z,gh) - 1+a —i—O(C5 )
By Lemma 2.5, we know that
BAX
TK (p)e' P N2|Gy 5
(HGSHL%E,%) - = | 2 1Glesen >0

as A = 0. Thus, for sufficiently small A, we get the conclusion. ]

To finish the proof of Theorem 1.4 we have to treat the case A > A\;(2, g). We will use

a family of test functions similar to the one used in [64].

Lemma 2.16. If 3> (3, or 8= and A > \,(Z, g), we have

sup Eg’i;’q = +00.
H k)

Proof. Take p € ¥ such that a(p) = @ and consider a local chart (£2,1)) satisfying
(2.3.7)-(2.3.12). Let us define v, : Ds, — [0, 400),

1 \/log%o x| <e

Ve(T) 1= —= log 20
()= o | s e < || < b,
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and u.: X — [0, +00),
ve((x)) x€Q
0 x € X\Q.

ue(x) ==

It is simple to verify that

/ Ve |*dv, = / |V 2dx = 1,
¥ Ds

0

which implies u. — u. € H. By direct computation one has

a.-=0 <<log i)2> . (2.5.11)

(e — )% = %log (‘?) +0(1).

Hence in €,

Thus, if 8 > B, we have

_ C _

Eg’;‘L’q(ug —Ug) > E%?l’q(us —Ue) > / heﬁ("s_“5)2dvg > ﬂ/ |z|*¥da
€ g2m 5

_ Cr £2(14a)—

B ~ B=8
= — 27 :Cg 27 —)—{—OO’
1+«

as € — 0. For the case 8 = 3 and A > \,(%,g), we take a function uy € H'(X) such
that
Vo3 = Ag(2, 9)[luoll;

Js uo dvg =0 (2.5.12)

luoll = 1.

This function ug will also satisfy
—Aup = \ 2=q 10197240 —
g0 = Aglluollg™ ol uo — ¢,

where \
=4 ||u0\|2_‘1/ |u0|q_2u0 dv,.
DI I

Let us take t.,r. — 0 such that

Cc

log2 Te

t?|log | — 400, e +00, and (2.5.13)
€

t2| log e|

We define
We 1= UeNe + teUg, (2.5.14)
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where 7. € C§°(Q2,,) is a cut-off function such that n. = 1in Q,_, 0 < n. < 1, and
|Vn:| = O(rZ1). Tt is straightforward that

w. = O(|loge|2). (2.5.15)

Observe that
Vel = [ 19w Bv, + 19wl + 2% | Vuo- uen.)dv,
Using the definition of wu., 7., and (2.5.13), we find
/ ]Vn€|2ugdvg = 0(7'52)/ ugdvg =0 (] loge| ! log? 7"5) = o(t?),
z Q2 \Qrg

and

/ UeNe Ve - Veduy
p)

< O(ral)/ |Vuelusdvg = O(|log || loges]*l) = o(tz).
Qor \Qre

Thus
IV (e |3 = /E Ve Prdu, + o(t2) < 1+ o(t2).

Moreover (2.5.12) gives ||Vugl|3 = A\, and

/ Vug - V(uene)dvg )\q/(|uoq2u0 — O)Nucdvg| = O(l)/ usdvg = O(| logd*%) = o(te).
b)) 2 P

Hence we have
HVweH% <1+ /\qtg + O(tz)-

Furthermore, by dominated convergence we have

w a
lwe —We |2 > ¢2 (/Z\ lug — f |qdvg> = t2[|uo||? + o(t2) = t2 + o(t2).
27, €

€

Thus we get

1 | we —@e\lz
e B T N N O R W e N A
Vel < Vel 0= At ot

Finally, using (2.5.15), in . we find

T @) (ws — e )? wg—weg B
O <1+A”HW€H§”> = (201 + @) loge + O(1)) (1+ (A = Ag)i2 + o(s2))

= —2(1+@)loge + (A — A\)t2|loge| + O(1),
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so that
_ W — W 4 (14@) (we —we)? (1+)\ llwel2 )
ol < 2 6) > / he  Vwel3 19uei3 ) o,
TN Vwell2 ) Ja.
S 082(1+a)6()\)\q)t§|10g5+0(1)/ P dy
[
— ce(A2g)t2|loge| +00,
as € — 0. O

Remark 2.5. If there exists a point p € X such that a(p) =@ and ug(p) # 0, then one
can argue as in [64] to prove

sup Eg’;\l’q = +00
H b
also for A = A\g(X, go). This is always true if & = 0.

The proof of Theorem 1.5 is very similar to the one of Theorem 1.4, hence it will not be

discussed here.

We conclude this Chapter by observing that, as in [57], [102] and [64], our techniques
can be adapted with minor modifications to treat the case of compact surfaces with

boundary, which we state here without proof, as it is very similar to that of Theorem
1.4.

Theorem 2.17. Let (X, g) be a smooth, compact, Riemannian surface with boundary. If
Pl Pm € X\OX and h € CH(X\{p1,...,pm}) satisfies (1.1.11), then V B € [0, 47w (1 +
@)] and X €[0,)(%,9)) we have

A
sup Eg:h’q(u) < +00.
u€H (D), [y [Vul2dvg<1

The supremum is attained if < 4w(1 + @), or if p = 4w (1 + @) and X is sufficiently

small. Furthermore if § > 4w(1 4+ @), or f =4n(1+ @) and A > N\¢(X, g), we have

B,A,q —
sup By (u) = +oo.
ueu€HJ (X), [5 [Vul2dvg<1

In particular, if ¥ = € is the closure of a bounded domain in R?, Theorem 2.17 gives

the following generalization of the results in [40], [4], [31].

Corollary 2.18. Let Q C R? be a bounded domain. For any choice of V. € C*(Q),
V>0 a,...,00, >—1, 1,...,29 € Q, ¢ >1 and X € [0,1;(2)), the supremum

m
2 )
sup / V(z) H |z — xi‘zaie4w(1+a)u <1+)\HuHLq<Q>)dx
w€HL (), [, |Vul2de<1JQ pale

is finite. Moreover, it is attained if \ is sufficiently small.






Chapter 3

Fractional Moser-Trudinger type

inequalities in dimension one

This chapter is organized as follows. In Section 3.1 we recall some definitions and
useful results on fractional Sobolev spaces and fractional Laplace operators. In Section
3.2 we investigate fractional analogues of Theorem 1.1. In particular, we shall prove
Theorem 1.6, Theorem 1.7, Theorem 1.8, Theorem 1.9 and Theorem 1.10. To conclude,
in Section 3.3 we discuss the existence of critical points of the functional associated to

(1.2.2), proving Proposition 1.12 and Theorem 1.11.

3.1 Sobolev spaces of fractional order

In this section we introduce some relevant fractional function spaces. We will discuss
some results that we be useful in the next sections. We refer to [87], [34], [90], [39] for

a more detailed discussion on the topics presented here.
We define

WP (R) := {u € LP(R): [u]ﬁvw(R) = /R ; dedy < oo}, (3.1.1)

and we will denote by I an interval such that I € R. Throughout this Chapter we will

also use the following notation:

~ 1 1
H:=H2*(I), |lullg = [[(=A)5ul 2,

where ﬁ%’2(1) is defined as in (1.3.4) for a bounded interval I € R.

Proposition 3.1. Fors € (0,1) we have, [u]ys2®) < 00 if and only if (~A)2u € L*(R),
and in this case
[U]WSQ(R) = Cs”(—A)%UHH(R),
75
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where [ulys2w) is as in (3.1.1) and Cs depends only on s. In particular H*2(R) =
W*2(R).

Proof. See e.g. Proposition 3.6 in [34]. O

Define the bilinear form

(u, v) / / y)(vlz) - ”(y))dxdy, for u,v € H*2(R),

|£C— |1+25

where the double integral is well defined thanks to Holder’s inequality and Proposition
3.1.

The following simple and well-known existence result proves useful. A proof can be

found (in a more general setting) in [39].

Theorem 3.2. Given s € (0,1), f € L*>(I) and g : R — R such that

) — 2
/I/]R dedy < o0, (3.1.2)

there exists a unique function u € I:IS’Q(I) + g solving the problem
Bs(u,v) = / fvdz  for every v e H**(I). (3.1.3)
R
Moreover such u satisfies (—A)%u = %f i I in the sense of distributions, i.e.
s CS o]
u(—A)’pdr = > fedx  for every ¢ € C°(I), (3.1.4)
R R
where Cy is the constant in Proposition 3.6.

The following version of the maximum principle is a special case of Theorem 4.1 in [39].

Proposition 3.3. Let u € H>%(I) + g solve (3.1.3) for some f € L*(I) with f >0 and
g satisfying (3.1.2) and g > 0 in I¢. Then u > 0.

Proof. From Proposition 3.1 it easily follows ™ := min {u, 0} € H%2(I). Then according
0 (3.1.3) we have

o2 B = [ [ 1000 >—u+<)—u-<y>><u-<x>—u-<y>>dxdy

|ZL‘ _ |1+2s
- ut(@)u (y)
= dxdy — 2/ / ————dzxdy
/R/R Iffyll”s rJr |z —y[?
where we used that uTu~ = 0. Since the second term in the last equality is non-negative,

it follows at once that v~ = 0, hence u > 0. [
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Proposition 3.4. Let u € H*2(I) be as in Theorem 3.2 (with g = 0), where we further
assume f € L*(I). Then

[u(@)| < C|[f|| oo (r)(dist(z, O1))*
for every x € I. In particular u is bounded in I and continuous at OI.

Proof. This proof is inspired from [87], where a much stronger result is proven, i.e.

u/(dist(-,01))* € C*(I) for some o > 0.

To prove the proposition we assume that I = (—1,1) and recall that

—|z|?)* for x € (—
1mm:={<1 2?)* for z € (~1,1)

0 for x| > 1

belongs to H*2(I) and solves (—A)*w = ~, for a positive constant 7,, in the sense of
Theorem 3.2, i.e. (3.1.3) holds with u = w and f = ~, (see e.g. [43]). Then

C(CAPw _ (“AVu _ (-A)w
s N HfHLOO(I) N Vs
and Proposition 3.3 gives at once
B HfHLoo(I)w cu< Hf||L<>o(1)w I
Vs Vs
We conclude noticing that 0 < w(z) < 2°(dist(x, 0I))*. O

The following density result is known for an arbitrary domain in R™. On the other hand,
its proof is quite complex in such a generality, hence we provide a short elementary proof

which fits the case of an interval.

Lemma 3.1. Fors € (0,1) and p € [1,00) the sets C2°(I) (I € R is a bounded interval)
is dense in H*P(I).

Proof. Without loss of generality we consider I = (—1,1). Given u € H*?(I) and X > 1,
set uy () := u(Az). We claim that uy — u in H*?(I) as A — 1. Indeed

[Jux = uHI]){SJ)(R) = Jlu- UAlep(R) + N fx = f”ip(R)a

where f = (—=A)zu and fy(z) := f(A\z). Since f € LP(R) it follows that ||[A°fy —
fllzp@) — 0 as A — 1, since this is obviously true for f € CY(R) with compact support,
and for a general f € LP(R) it can be proven by approximation in the following standard

way. Given € > 0 choose f. € C°(R) with compact support and || f- — fllzrr)y < €. Then
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by the Minkowski inequality

A fx = flloew) < XA = N ferllom) + I fex — felloe@) + 1 fe — fllrw)
_1
<eXNTP HIN for — fellrm) + e,

and it suffices to let A — 1 and ¢ — 0. Similarly |ju — u,\H’ip(R) —0as A — 1.

Now given 0 > 0 fix A > 1 such that [[uy — ul|gs»@®) < ¢ and let p be a mollifying
kernel, i.e. a smooth non-negative function supported in I with | ;pdr = 1. Also set
pe(x) :=e!
sufficiently small we have that p. * uy € C°(I). To conclude the proof notice that

p(e71x). Then noticing that wuy is supported in [-A"1, A7 € I, for ¢ > 0

pe *uy — uy in HSP(I) as € — 0,

since
(=) (pe % ux) = po # (—~A)3uy — (—A)5uy in LP(R) as & — 0,

and use the Minkowski inequality to conclude that p. * uy — u in H¥P(I) as ¢ — 0 and
Al O

Proposition 3.5. Let I € R be a bounded interval and s € (0,1). Let u € Lg(R) satisfy
(=A)u >0 in I (ie (u,(—A)5p) >0 for every ¢ € C(I) with ¢ >0), w >0 in I€
and

lim inf u(z) > 0. (3.1.5)

z—0Il

Then uw > 0 in I. More precisely, either u > 0 in I, or u =0 in R.

Proof. This is a special case of Proposition 2.17 in [90]. O

Remark 3.1. The statement of Proposition 2.17 in [90] is slightly different, since it
assumes u to be lower-semicontinuous in I. On the other hand, lower semicontinuity
inside I already follows from [90, Prop. 2.15]. What really matters is condition (3.1.5).
That an assumption of this kind (possibly weaker) is needed follows for instance from
the example of Lemma 3.2.4 in [1].

The following way of computing the fractional Laplacian of a sufficiently regular function

is often used.

Proposition 3.6. For an open interval J C R, let s € (0, %) and u € Ls(R) N C%*(J)
for some o € (2s,1], or s € [3,1) and u € Ly(R) N CY*(J) for some o € (2s — 1,1] .
Then ((—A)*u)|; € CO(J) and

u(z) — u(y) : u(z) — u(y)
—A)Y’u(zx) = CSP.V./ —————dy := (s lim ————dy
( ) ( ) R |1’ - y|1+23 €0 JR\[z—c,2+¢] |ZL‘ - y‘1+28
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for every x € J. This means that
x
((=A)°u, ) = Cs / /R |-i—) |1+(28)dydx for every ¢ € C°(J).

Proof. See e.g. [90, Prop. 2.4] O

Lemma 3.2. Let ¢ € H = ﬁ%’2(1) be an eigenfunction corresponding to the first
eigenvalue \1(I) of (—A)% on I. Then o1 > 0 a.e. on I or p; <0 a.e. on I and the

corresponding eigenspace has dimension 1.

Proof. Recall that the first eigenvalue A;(I) can be characterised by minimizing the

following functional

Jully,
F =
() = 1o

that is,

M) = uenf}l\r{lo} F(u).

On the other hand using Proposition 3.1 we get that for any u € H

ity = [ [ O gy > [ [ gy =y, 1

hence, F(|u|) < F(u), and F(u) = F(|u|) if and only if u is non-negative or non-positive.

Therefore if F(p1) = A1, then ¢; does not change sign. Moreover Theorem A.1 in [16]
gives us 1 > 0 or 1 < 0 almost everywhere in I. Any other eigenfunction corresponding
to A1 must also have fixed sign, hence it cannot be orthogonal to 1, therefore it is a

multiple of . O

Lemma 3.3. Consider a sequence (fy) C L*(I) with fy — f a.e. and with
/ frdz = o(1), (3.1.7)
{fk>L}
with o(1) — 0 as L — oo uniformly with respect to k. Then fi, — f in L'(I).

Proof. From the dominated convergence theorem
min{ fr, L} — min{f, L} in L'(1),

and the convergence of fi to f in L' follows at once from (3.1.7) and the triangle

inequality. O
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3.2 Fractional Moser-Trudinger type inequalities

1
We begin this section by recalling Remark 1.2. As it points out, the |lul[* := [[(=A) 2 u| z» (1)
~ 1
norm is equivalent to the full norm HuHH 1y O1 H?»P(I). This fact does not appear

(R)
to be obvious, but one can prove it as follows. By Theorem 7.1 in [44] the operator
1,1

), =

T :uws (—A)%u)|; is Fredholm from H»P(I) (= H2 *’(I) in the notation of [44])
into LP(I). Moreover T is injective by Lemma 3.5 below. This implies that

~ 1

HUHH%”’(R) < C\Tullpo(ry = Cllull*, for every u € H»"(I).

Proof of Theorem 1.2.2 By a simple scaling argument it suffices to prove (1.3.7) for

a given interval, say I = (—1,1).

Lemma 3.4. For s € (0,3) the fundamental solution of (—A)® on R is

1
~ 2cos(sm)[(2s)|z|1 28"

Fy(x)
i.e. (—A)*Fg =0y in the sense of tempered distributions.

Proof. This follows easily e.g. from Theorem 5.9 in [60]. O

Lemma 3.5. Fiz s € (0, %) For any x € I = (—1,1) let g, € C*°(R) be any function
with g,(y) = Fs(x —y) for y € I°. Then there exists Hy(x,-) € H**(I) + g, unique

solution to

A H (2, ) =0 inl
(—A)*H(@,) =0 in (3.2.1)
Hq(z,-) = g in R\ I
and the function
Gs(2,y) = Fs(z —y) — Hs(z,y),  (v,y) €I xR
is the Green function of (—A)® on I, i.e. for x € I it satisfies
—A)? s\&y ) = Og m I
(—A)*Gs(z,-) =0z in (3.2.9)
G(z,y) =0 fory e R\ I
Moreover
0 < Gs(x,y) < Fs(x—vy) fory#azel. (3.2.3)
Finally, for any function v € H*?(I) (p € [1,00)) we have
u(zx) = /Gs(x,y)(—A)Su(y)dy, for a.e. x €1, (3.2.4)
I

where the right-hand side is well defined for a.e. x € I thanks to (3.2.3) and Fubini’s

theorem.
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Remark 3.2. The first equations in (3.2.1) above and in (3.2.2) below are intended in

the sense of distribution, compare to (1.3.2).

Proof. The existence and non-negativity of Hs(z,-) for every = € I follow from Theorem
3.2 and Proposition 3.3. The next claim, namely (3.2.2), follows at once from Lemma
3.4 and (3.2.1).

We show now that G(x,y) > 0 for every (z,y) € I x I. We claim that

lim Hs(z,y) = Hs(z,£1) = Fs(x F 1), (3.2.5)
y—+1

hence G4(z,y) — 0 as y — 0I, and by Silvestre’s maximum principle, Proposition 3.5
below, we also have Gs(z,-) > 0 for every « € I, hence also (3.2.3) follows. For the proof
of (3.2.5) notice that
Hy(x,") = Hy(x,") — g € H**(I)
satifies ~
(=A)*Hs(z,) = =(=A)°g, in [
{ﬁs(x,-)_o in R\ I

and ((—A)%gy)|r € L*°(I) by Proposition 3.6 (we are using that g, € C*°(R)), hence

Proposition 3.4 gives Hs(z,y) — 0 as y — JI, and (3.2.5) follows at once.

To prove (3.2.4), let us start considering u € C2°(I). Then, according to (3.2.2), we have
@) = o) = (A Gule).0) = [ Gula)(=A) uly)dy
Given now u € H*P?(I), let (ug)ren C C°(I) converge to u in H**?(I), i.e.
up = u, (—=A)°u — (=A)*u  in LP(R), hence in L*(I),
see Lemma 3.1. Then
= [ alaarumiy =D [ 66 A s,
the convergence on the right following from (3.2.3) and Fubini’s theorem:

J

dzx

/I G, ) (=) ug(y) — (=) u(y)] dy
< / / Fu(w = ) [(~A)ue(y) — (~A)*u(y)| dedy

< sup I Esl (=) I(=A) ug — (=A)°ul| g1y — 0
)

as k — oo. Since the convergence in L' implies the a.e. convergence (up to a subse-
quence), (3.2.4) follows. O
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Proof of Theorem 1.2.2. Set s = %. From Lemma 3.5 we get

p—1

0<(20) 7 Gu(z,y) <Ti(z—y)=|z—y|r ",

1
P

where Gy is the Green’s function of the interval I defined in Lemma 3.5. Choosing
1
f= |(—A)ﬂu|‘l and using (3.2.3) and (3.2.4), we bound

p—1

(20,) 7 lula)] < (0y)' 7 [ Gulr)f0)ay < 1y f1a)
and (1.3.7) follows at once from (1.3.10).

It remains to show (1.3.9). The proof is based on the construction of suitable test

functions and it is split into steps.

Step 1. Definition of the test functions. We fix 7 > 1 and set

-7

1 -1
F)=fr() = ol Pxog nopyy 7= 5 (3.2.6)

Notice that

< |&
—

2 [z
112 = o [

Now let u = u, € H*2(I) solve

(2r)p—1°

(oo,
in the sense of Theorem 3.2.
Step 2. Proving that u € FIQS’p(I). According to Proposition 3.4 u satisfies
lu(z)| < Cfllp= (1 —|z])® forz el (3.2.8)

We want to prove that (—A)%u € LP(R). Since by Proposition 3.6

s —U
(*A) U(IE) = CS . |:L'—y(|y13’23dy’ for |l“ > 1

and u is bounded, we see immediately that

C

‘CL‘|1+287

[(—A)u(z)| < for |z| > 2,

hence

[(—=A) ul| La(r\[—2,2)) < 00 for every g € [1,00). (3.2.9)
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Now we claim that

(1) = [[(=A)*ull La(-2,2\[-1,1)) < 0, ¢ =max{p,2}. (3.2.10)

Again using Proposition 3.6, (3.2.8) and translating, we have

1
b —uydy 1" 1 [P ydy
0= ([ sl e ) e
1) ([—2,2]\[—1,1] _1 |y — w2 “1lJo (y—a)tts

and using the Minkowski inequality

</Al qdiﬁ); </A2 </A1 |F(:L‘,y)]qd:u>;dy,

2 0 dr : 2 gy
1)< C/o Y (/_1 (y — w)(l”s)q) W=c 0y

since 1 + s — % < 1. This proves (3.2.10).

¢ \a
dm),

F(x,y)dy
Az

we get

< 00,

To conclude that (—A)®*u € LP(R) it remains to show that (—A)*u does not concentrate

on 0I = {—1,1}, in the sense that the distribution defined by
R e B e L
R I ¢ Jr |z =yt
= (Th, ) = (Ta, ) = (T3, ) for o € C°(R)
vanishes. Notice that (T, ¢) = 0 for ¢ € C°(R\ 9I), since T1 = (—A)*u, while
(Ty,0) = (=A)°u, ), (T3,90) =0 for o € CZ(I)
by (3.2.7), and
(To,0) =0, (Ts,9) = ((=4)%u, ) for p € CZ(I°)

by Proposition 3.6, and for ¢ € C2°(R\ 0I) we can split ¢ = 1 + @2 with ¢ € C°(I)
and g € C°(I€). In particular supp(T') C 91.

It is easy to see that T} is a distribution of order at most 1, i.e.

/R w(—A) pdz

< Cllgllerry,  for every ¢ € C°(R)

(use for instance Proposition 3.6), and that T» and T3 are distributions of order zero,
i.e.
(Ti, )| < Cllellpocw) fori=2,3.
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Since supp(T’) C 01 it follows from Schwartz’s theorem (see e.g. [15, Sec. 6.1.5]) that
T = ad_1 + 861 + @Dé_1 + BDé;, for some a, 8, @, 3 € R,
whete (Dbyg, 9) = —(6ay, ¢/) = —¢/(20) for ¢ € C2(R).
In order to show that & = 0, take ¢ € C>°(R) with
supp(p) C (=1,1),  ¢'(0) =1, ¢(0) =0,

and rescale it by setting for ¢)(—1+ 2) = Ap(A~tz) for A > 0. Since Th and T3 have

order 0 it follows
T, o) < CA—0as A — 0, fori=23.

As for T1, using Proposition 3.6 we get

T _
< 1790)\> :/ U(ZE)/ SOA(Iy—ZZded:L,
Cs (Baa(~1))¢ Ba(-1) |7 — ¥l
ox()
+ / w(x) / ) e
Bax(~1) (Bar(~1))e |7 — Y128

+/ u(m)/ £Alz) = ealy) _ﬁr’\;y) dydzx
Bax(-1) Bax(-1) |z =yl

= (I) + (II) + (II1).

Since [[oa [l g ) = CpA and u € L>®(R), one easily bounds |(I)| + [(IT)| — 0 as A = 0,
and using that supg @) | = supg |¢'| we get

/
(ITT)| < / u(z) %@dydx < O3 / lu(z)|dz =0 as A — 0.
Box(=1) Bya(=1) |z =y Bax(=1)
Since for A € (0,1) we have (T,¢) = —a, by letting A — 0 it follows that & = 0.

Similarly one can prove that ﬁN =0.

We now claim that «, 8 = 0. Considering
w(z) :=u(r) — aFs(x + 1) — BFs(x — 1),
and recalling that (—A)®*Fg = dp, one obtains that
(=AYt =T —ad_y — 6 = To + T3 € L*(R),

hence with Proposition 3.1

- < N12
u(x) —u(y ~ - —A)u 00
/R R||§U )_y|1-(|rZ?s|d$dy = [U]ZW%J(R) Cll(-A) UH%Q(R) < 00,
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and this gives a contradiction if o # 0 or 5 # 0 since the integral on the left-hand side

does not converge in these cases.

Then T' = 0, i.e. (—A)%u =: T} = Ty + T3 and from (3.2.7), (3.2.9) and (3.2.10) we
conclude that (—A)%u € LP(R), hence u € H*P(I), as wished.

Step 3: Conclusion. Recalling that (—A)*u = f in I, from (3.2.4) we have for z € I

u(r) = /I Gs(z,y) f(y)dy
- 1"_1/,, ldy_/r<|y<§ Hy(z,y)f(y)dy  (3.2.11)

1 1
27(20p) 7 i<y |~y v lylr
=:up(x) + ua(x),
where Hg(z,y) is as in Lemma 3.5.
We now want a lower bound for w in the interval [—r,r]. We fix 0 < < r and estimate

1
1 E dy - dy
U1(w)—p—1</ 111+/ — 1 1 1)
27(20p) ® (y—=2) ryr =5 Jy—a| Pyl

r(y 3
1
2 dy

1 d 3 dy
p=1 —+
21(20p) 7 \Jr Y Jr YT

1 1+ 2z
= ——— |27 +1log =
27‘(20@) p + r
1 _
=——5 +0(7 .

(2ap) »

Y

Then

as 7 — oco. We now set
p—1

wy = (21)F uy € HrP(I),

so that ||(=A)%w-|[zs(r) = 1, we compute

/eapwfw’dx > /T (O gy > 2re” _ l,
1 - ¢ ¢

and using that inf|_,,)w, — 00 as 7 — 0o, we conclude

/
. p
lim [ h(w,)e®™ 1" dz = oo,
T—00
I
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whenever h satisfies lim;_, o h(t) = co. O

A few consequences of Theorem 1.2.2

Lemma 3.6. Let u € H. Then ufeP"” € LY(I) for every p,q > 0.

Proof. Since |u|? < C(g)e”, it is enough to prove the case ¢ = 0. Given £ > 0 (to be
fixed later), by Lemma 3.1 there exists v € C2°(I) such that

v —u|% <e.
Using
u? < (v —u)? + 2vu

we bound
P’ < eplv=u)? g2puu. (3.2.12)

Using the inequality |ab| < (a® 4 b%) we have

1,2 2,2 U )2
2P < e Il i)

and for ¢ small enough the right-hand side is bounded in L?(I) thanks to Theorem
1.2.2. Still by Theorem 1.2.2 we have eP(v=%)* € L?(I) if € > 0 is small enough, hence
going back to (3.2.12) and using that v € L>°(I) is now fixed, we conclude with Holder’s
inequality that e?*” € L1(I). O

Lemma 3.7. For any q,p € (1,+00) the functional

Eqp:H—=R, Ejp(u):= / |u’q€pu2dl‘
1

18 continuous.

Proof. Consider a sequence u; — u in H. By Lemma 3.6 (up to changing the exponents)
we have that the sequence fj, := |uy|%eP% is bounded in L2(I). Indeed, it is enough to
write ug = (ur — u) + u and use the same estimates as in (3.2.12) with u instead of v
and uy, instead of u. We now claim that fr — f in L'(I). Indeed up to a subsequence

ur — u a.e., hence f, — f = \u|qe”“2 a.e.

Then considering that since fj is bounded in L?(I) we have

1
/ fkdacg/ f,?dxgg—ﬂ) as L — +o0,
{fr>L} L Jipesry L

the claim follows at once from Lemma 3.3. OJ

Lemma 3.8. The functional J : H — R defined in (1.4.5) is of class C°.
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Proof. This follows easily from Lemma 3.7, since the first term on the right-hand side of
(1.4.5) is simply 3||u/|3;, and the derivatives of the second term are continuous thanks to
Lemma 3.7. The details, at least to prove that J € C'(H), are essentially as in the proof
of Lemma 2.1 of [91]. The higher-order differentials are handled in the same way since
they have a similar form, with the non-linear term ezt just multiplied by polynomial

terms. ]

The following lemma is a fractional analog of a well-known result of P-L. Lions [63].

Lemma 3.9. Consider a sequence (uy) C H with ||ug||lg = 1 and up, — u weakly in
H, but not strongly (so that |ullg < 1). Then if u # 0, €™ is bounded in LP for
L<p<p:=1-ulf)

Proof. We split

up = u? — 2u(u —ug) + (u—up)?

Then vy := eTUR = VU, 1Vk,2, Where v = emlul® ¢ LP(I) for all p > 1 by Lemma 3.6,

—27mu(u—ug) W(U—Uk)Q.

V1 =€ and vy 2 =€

Notice now that from
P
—2pru(u —ug) <7 (2u2 +e(u— uk)2> ,
3

we get from Lemma 3.6 and Theorem 1.2.2 that v, € LY(I) for all ¢ > 1if e > 0 is
small enough (depending on ¢). But again from Theorem 1.2.2 vy is bounded in LP([)
for all p < p since

lug =l =1 = 2(up,w) + JullF = 1 = [ull
Therefore by Holder’s inequality we have that v is bounded in LP(I) for all p < p. O

Proof of Theorem 1.7

For a measurable function u we set |u|* : R — R4 to be its non-increasing symmetric
rearrangement, whose definition we shall now recall. For a measurable set A C R, we
define

A" = (—]Al/2,]4]/2).

The set A* is symmetric (with respect to 0) and |A*| = |A|. For a non-negative measur-
able function f, such that

Hz eR: f(z) >t} <oco foreveryt >0,

we define the symmetric non-increasing rearrangement of f by

() = /0 NtveRs iy ().
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Notice that f* is even, i.e. f*(x) = f*(—=z) and non-increasing (on [0, 00)).

We will state here the two properties that we shall use in the proof of Theorem 1.7. The

following one is proven e.g. in [60, Section 3.3].

Proposition 3.7. Given a measurable function F' : R — R and a non-negative non-

decreasing function f : R — R it holds

[ Fpie = [ F(ras

The following Pdlya-Szeg6 type inequality can be found e.g. in [52] (Inequality (3.6)) or
[82].

Theorem 3.8. Let u € H**(R) for 0 < s < 1. Then

/\ ] ]2dx</\ Youldz.

Now given u € H%’Z(]R), from Proposition 3.7 we get

/R (e = 1) e = /R (e = 1) do, il 22 = Jullze,

and according to Theorem 3.13

T T / (=AYl Pdz < 022z, / (~A)buPdz = u)?

H32(R) 22(R)’

Therefore in the rest of the proof of (1.3.12) we may assume that u € H%Q(R) is even,
non-increasing on [0, c0), and HuHH%’Q(R) <1.

We write

[ n)an= [ (e =a)ars (o= 1)as =0

where I = (—1/2,1/2). We start by bounding (I). By monotone convergence

(I)= e
> )%

Since u is even and non-increasing, for x # 0 we have

o _ Il
< 3.2.13
2\x|/ . ST (3:2.13)
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hence for k£ > 2 we bound

> q lull 75
/ udr < 21—19”““%13(1[{)/1 ol = 2B
Ic 1 T

It follows that o
. U o (7[|ull7.
Z/c” PELEDY Kk — 1)
k=2 k=2

Thus, since [|u|p2r) < 1 we estimate

o (wlulae)

2
(I)SWHUHLQ(R) 1+ZW SC

k=1

We shall now bound (I7). We define the function v : R — R as follows

v(z) =

{ u(e) —u(}) if 2] <

0 if x| >

N[ D=

Then with (3.2.13) and the estimate 2a < a? + 1, we find

u® < v+ 20u(3) + u(3)?
<0+ 20l ey + ulZagey
<o+ ullla ) + 14 lulZa g

< (14 ulam) +2

Now, recalling that u is decreasing we have for x € I = [—%, %]

(@) —v)? [ (@) —uy))? (u(z) — u(
R Y A T A

(z—y) (z—y)
(u(z) — u(y))?
= /R (x —y)? Ay

(3.2.14)

Notice that the last integral converges for a.e. x € I thanks to Proposition 3.1 and

Fubini’s theorem. Similarly for z € I¢

(v(x) —v(@)? , [ (u(z) —u(y))?
[ [,

(z —y)? (z —y)
(u(z) — u(y))?
= /1 (x —y)? Ay
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Integrating with respect to x we obtain

-2 ol = 5 [ [
<@l L

ﬂ%)wwm

(v))
2 dydx

)2
dydx

H\/&\_z
:t@@

where C; is as in Proposition 3.1 below. Thus, since ||u||g < 1,

1 1
I(=A)5vllz2g) < I(=A)3ullfz < 1= lullzag)-

Therefore, if we set w = v, /1 + HuH%Q(R), we have

1
(=2 Tw]|2ag < ( + 72 g ) (1 - ||UH%2(R)> <1

hence, using the Moser-Trudinger inequality on the interval I = (—1/2,1/2) (Theorem

1.2.2), one has
/em“gdaz <C,
I

2 2
/e’”‘ da;§62”/e”w dr < C,
I I

which completes the proof of (1.3.12).

and using (3.2.14)

It remains to prove (1.3.14). Given 7 > 2 consider the function

1 1 1
d:i=—, r:=—.

f=rf= mX{xeR:r<\x|<5}a - T

Notice that ||f||L2(R (27)~L. Fix a smooth even function 1 : R — [0, 1] with ¢ = 1 in
[—3, 3] and supp(¢)) C (—1,1). For = € R we set

u(x) = ¢ (x)(F1 * f)(@),

where Fi (x) = (27r]ac\)_% is as in Lemma 3.4. Clearly v = 0 in R\ I, and u is non-

negative and even everywhere.

In the rest of the proof s = %. Notice that (—A)*(Fs * f) = f. This follows easily from
Lemma 3.4 and the properties of the Fourier transform, see e.g. [60, Corollary 5.10].

Then we compute

(=A)u=f+ (=A)’[(¢ = D)(Fe* f)] = f + v, (3.2.15)
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and set g(z,y) = (¢ — 1)(z) Fs(x —y). Notice that g is smooth in R x (—3, ). We write
@) = (-8)° [ gle.o)F)dy
R
= / (—=A2)°g(2,y) f(y)dy,
{r<lyl<s}

where we used Proposition 3.6 and Fubini’s theorem. With Jensen’s inequality

2
v =
[vll72m) /R

—r 2 —A)*g(x,y)|? da
=2 )/{r<|y<6}f(y) /IRK Ba)gleu)l" dedy (3.2.16)

< 201l s / (~A)g(e, ) do
yEr

/ (—A)g(e,9) f(y)dy| da
{r<ly|<d}

<Cc@rhH =02,

where we used that

sup / (= As) g, )P da < oc.

lyl€lr,d] /R

This in turn can be seen noticing that (—A,)%g(z,y) is smooth, hence bounded on

[—R, R] x [r,d] for every R, and for |z| large and r < |y| < §, using Proposition 3.6

Aoy C/ (¢<>—1)Fs<z—y>dz

x|1+2s

y)
— (=AY Fy(z —
—o, [ OB i ayR-y)
= O(|z|7*7%%) uniformly for |y| < %,

where we also used that (—A)*Fs = 0 away from the origin, see Lemma 3.4. Actually,

with the same estimates we get

/ o < 206 — )20 / (—An)g(a,y) da
6 (z,y) E[ 65]2
< €O f|22qg) = O ).

Therefore, using Holder’s inequality and that supp(f) C [, §] we get

6
1
(_A)SUH%2(R) =132 + loll32 + 2/ fodx = o O(r7?), asT—oo. (3.2.17)
_s

We now estimate u. For 0 < x < r, with the change of variable §§ = \/g we have



92 3. Fractional Moser-Trudinger type inequalities in dimension one

1
ule) = 27\/5/ ( oy \/(y+w)y) W

1 \f 1 1 -
- - + — dy
LN (\/y21 \/y2+1>
= 1ﬁ log(\/ﬁw)‘ﬁHog(\/Ww)‘ﬁ
TV 2T Vi Vi
1

\/77+O( Y,

with |7O(771)| < C as 7 — oo with C independent of z € [0, 7].

Similarly for r < z < § we write

1

u(z) <

ZW/\/T/W]

. /\}\/174-1055 WP =1+ )q

- - 1% g <i> Lo )] ,

< oo. Here |O(1)| < C as 7 — oo with C independent of x € (,9).

) 1 dg
since fo\/iv

When 6 < & < 1 similar to the previous computation, and recalling that 0 < <1,

7)< 1 /5 2 /f dij 2 Lag o)
Corven e J(w—y)y  TV2r )T 192 V21 o /1 -3
with |[7O(771)] < C as 7 — oo with C independent of z € (0,1). Thus
u(x):m%—O( o) forO<z<r
u(z) < —=log ( )+O0(r!) forr<az<é (3.2.18)
u(z) = O(T_l) ford <z < 1.

Of course the same bounds hold for x < 0 since u is even.

We now want to estimate Hu||%2(R). We have

/OT widr =7 (;ﬂ + 0(7—1)> =0(r72).

For z € [r,d] we have from (3.2.18)

u(z)? < % (log2 <i> +log (i) + 1) < i—g <log2 <i> + 1) .



3.2. Fractional Moser-Trudinger type inequalities 93

Then, since

g § J J ’
/ log? () de =z <log2 <> + 2log <> + 2) <25 =0(r7Y),
, x x x .,
we bound 5
/ wlde = O(173).
Finally, still using (3.2.18),
1
/ ulde = O(172).
0
Also considering (3.2.17), we conclude
1
2 _ 2 _ —2 2 _ —2
||u||L2(R) = 2”””[2([0,1]) = O(T ), HUHH%J(R) = Z =+ O(T ) (3219)

Setting w; := ulu| 7} , . »and using (3.2.18) and (3.2.19), we conclude
H22(R)

/T |w7]2 (eﬂw3 _ 1) dx > /T (T—'_Wo(l)> <67+O(1) _ 1) dz > ’I”TC(’?T _ é,

—r -
therefore
2 T 2
lim [ A(w;) (em”f - 1) dx > / h(w;) (e”wf - 1) dxr — o0
T—00 R —r
as T — oo, for any h satisfying (1.3.13). O

A fractional Moser-Trudinger inequality in Sobolev-Slobodeckij spaces

We start by proving the validity of the Moser-Trudinger inequality (1.3.17). The result
for n > 2 is proved in [81] and the proof in the one dimensional case, which we report

here for the sake of completeness, follows by a mild adaptation of the techniques in [81].
Proof of Theorem 1.8

Thanks to [83, Theorem 9.1], using Sobolev embeddings and Hélder’s inequality we have
that there exists a constant C' > 0 independent of u such that for any u € W (I)

lull o) < Clulwsrm)q'™* (3.2.20)

for any ¢ > 1. For [u]yspr) < 1 we write

5'“‘ﬁd—oo gr 15d<001 ¢ kk 3.2.21
/e x_z/fk!’“ r= 2w (3:2.21)

1 k=0
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where in the last inequality we used (3.2.20). Thanks to Stirling’s formula

k! = Vork (i)k (1 + O(;)) (3.2.22)

the series in (3.2.21) converges for small 5 and we recover a bound (uniform w.r.t. u)

1
/eﬁIUP‘S de,
I

As a direct consequence of (1.3.17), using the density of C2°(I) in W (I), we have the
following corollary (see [81, Proposition 3.2]).

for

yielding (1.3.17).

Corollary 3.9. Ifu € Wg’p(I), for every B > 0 it holds

/ 6|u|f dr < 00.
I

We now give a useful result on the Gagliardo seminorm of radially symmetric functions

(see [81, Proposition 4.3]), which will turn out to be useful later on.

Proposition 3.10. Let u € W*P(R) be radially symmetric and let sp = 1. Then

’u /+OO/+OO 1:2_{_3/2
s d dy =4 P " _drd
el // Ifﬂ—yl2 r Ul oy
(3.2.23)

Proof. The proof will follow from a direct computation. We split

[ [ sty ,,
/M/M “ |z_u\2 S N e
/+OO/ St d“/ /mu |:c—y|2)| o dy-

Using a straightforward change of variable and the symmetry of u, we obtain the claim.
O

To give an upper bound for the optimal exponent 3 such that the supremum in (1.3.17)
is finite for 8 € [0, B), we define the family of functions
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|log et = if |[z] <e
ue(z) = q {8kl ife<|z]<1 (3.2.24)
0 if |z] > 1.

Notice that the restrictions of u. to I belong to WP (I).

Proposition 3.11. Let sp =1 and (u:) C Wos’p(l) be the family of functions defined in
(3.2.24). Then

e—0

i [ue]fy oy = 75 2= 8T(p+ 1 Z o 21<; (3.2.25)
k:0

Proof. We will follow the proof in [81]. Define

p
// |“€’ “”;y)‘ dz dy. (3.2.26)
T -y

Using Proposition 3.10 and (3.2.24) we see that I(¢) can be decomposed as

I(e) = Ii(e) + Ix(e) + I3(e) + 14(e),

where

11(6

8 /1/5 1.2_‘_y2
= logx — logelP——— da dy,
)= Tiogel Je Jo | M=

Ir(e) = //|logm—logy\p v dz dy,
|10g5\ (22 )

—+o00
<>—8|1oge|“/ / “y 3 dady,

+oo
I(e) / / ]10gm|p dz dy.
|10g€! )
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With an integration by parts, it is easy to check that lim._, [;(¢) = 0 for i = 1, 3,4. As

for I5(e), integrating by parts after a change of variables we have

1
4 y 2 +1
L) = —— {1 logzfP————d
2(5) |10g€|{0gy (/6 |0g1:’ (ZL‘2—1)2 l‘)}
Y
1
4 1 1, z+1
+ / O8Y 1og Lp ¥ T
\logal € Yy Y (%_1)
Yy

/logy p <§>2+1 d
|log5|

y=1

y=e

A direct computation for the first term gives

1
4 { </ 2® +1
—— < logy llogx\p_zdx)}
log : @=1)

1 2
1
:4/ |logx\p7+dx,
1 (2 —1)?

y=1

y=¢

which converges to

as € — 0. Moreover, since

1 L

1 1 +1

/ Ogy\logf]priQdy<+oo
0 vy (L

D

the second term in the sum converges to 0 as € — 0.

<

After setting % = z, for the last term in the sum we have

/ loB Y1 (5) +1 i
|log6| <(€)2_1>2
Y

2 +1
= 1 7(1
|1ogs| ;) llogal' o —1>2 g

22 +1 1 2?2 +1
—4/ log z|P dr — / logz|PT' ———_dx
, o8 ‘( R g [, o 1y

which converges to

1 2 1 +o0 2 1
/ |logx|pL dr = / ]10ga:|pL2 dr
0 (2% = 1) 1 (x? = 1)
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as € — 0. Summing up, we have

] L) =8 [ gL g 3.2.97
El_r)r(l)[uE]Ws,p(R) = 2(e) = . | log x| m Z- (3.2.27)

Integrating by parts we obtain

—+o00 2 —+o00 —1
x®+1 | log z|P
log 2P ———_ dg = 19840 4
t[ |%ﬂ(ﬂ—U2x pl -1

' logt|P!
zpﬁl_ﬂﬁ,

where we set ¢ = % Recall now

2k 1,2k ( )
= E 1 p= dx 2.2
kzox 7 / | log 2] (1+2k) 8 8)

where I'(+) is the Euler Gamma function. Thanks to (3.2.28) we write

! [logt|P~ 1 1,2k - 1
/0 -2 Z/ |log t|P~1t** dt = T'(p) kzo e (3.2.29)
proving (3.2.25). O

The upper bound for the optimal exponent follows directly from Proposition 3.11.

S

Proposition 3.12. Let sp = 1. There exists 3* := v4 ° such that

sup /I B'“Dﬁ dx = +o0  for f € (B*,4+00).

UGWS’p(I)y[U}W‘S;P(R)SI

Proof. Let u. be the family of functions in WP (I) defined in (3.2. 24) Thanks to
Proposition 3.11 we have that [uc]ysp®) — (73)11? as e — 0. Fix 3 > v, . For ¢ small
enough, there exists b > 0 such that Su.|” e >b> 1. If we set v, := [Z—i] we have

1 [ 1 £
/em”f'l_s dr > / Pl ™= gy > / e bloge gy — 2.170 4 4
I —e e

as € — 0, since b > 1. O

Proof of Theorem 1.9

We shall adapt a technique by Ruf [88] to our setting.
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For a measurable function u we set |u|* : R — R4 to be its non-increasing symmetric

rearrangement, as it is defined in Section 3.2.

The following Pdlya-Szegd type inequality can be found e.g. in [7, Theorem 9.2].

Theorem 3.13. Let 0 < s <1 and u € W5P(R). Then

[lul"T (R) < [uly (R).

Now given u € W*P(R), from Proposition 3.7 we get

1 0y 1 *
/R B(B(Jul) =) do = /R S(B(|ul) =) dr, NIl = fullzr,
and according to Theorem 3.13

H’u’*Hevsﬁp(R) = H’u‘*Hip(R) + H“’*]I;[/s,p(ng) < HUHIEP(R) + [uwvs,p(ﬁg) = \|UH€VS,p(R)-

Therefore in the rest of the proof of (1.3.19) we may assume that u € W*P(R) is even,
non-increasing on [0, 00), and |lulysp@) < 1. We will use a technique by Ruf [88] (see
also [50]) and write

[ @) ds

R

= [ @) do+ [ @(a(1u)T) do
= (1) + (11),

where I = (—rp,79), with r9 > 0 to be chosen. Notice that since u is even and non-
increasing, for x # 0 and p > 1, we have

1 ||
@ < == [ ju)Pdy <!

— ||

ullzy
. 3.2.30

We start by bounding (I). We observe that for ro >> 1, we have |u(z)| < 1 on I¢ and
hence

plp—1]
lu| P~ < |ul’ on If

since p[;’%lﬂ > p. For k > p—1 we bound

pk k

: B, \7T a7 (- 1)
[ uryras < [ (Tl )T i -
c re \ 2lz| 251 (k+1—p)

Hence



3.2. Fractional Moser-Trudinger type inequalities

99

Z /|u|p T dx

k=[p—1]

kp
ﬁ[pfl] / p[p—1] ‘u|p71
=———= [ |u| »T dz+ E e
[p—1]! ot k!

o k(11,12 \ooT
CB,p)lullf, +ro(p—1) > cal (i) i
k=[p] K!(k +1—p)(2rp)?T

k
1
< CB Pz +Ckz[:1<2rop 1) HET1p)

As for (II), define v € W;P(I) as follows

o(z) = u(z) —u(rg) lz| <rg
0 |z| > ro.

Let z € I. We compute using the monotonicity of «

:E2+y2

/0 o(a) o) o < /0 () — )l (3~ Sy

Let x € I¢. We have

o] ’ $2+y2
[ @) = ot g

- / o) = ) e

p THY
< . lu(z) — u(y)] (22 — y2)2

Combining (3.2.31), (3.2.32) and integrating in z, we get

[v]” < [ul”.

(3.2.31)

(3.2.32)

(3.2.33)
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Using the definition of v and the inequality (a+b)° < a+ 0271 (a”"1b+b7) for a,b > 0

and o > 1, we have

1 1 1 s s 1

27 (vT=su(rg) + u(re) =)

1—s

20 A T (3.2.34)

—_
+

[lullp

+
2s—1
< pi=s 1 79 p
=7 ( Jr197’0(1—3)”qu
( + C(’I“()).

2s—1

1—s

pro(1 — s) )
This implies

2s—1

1—s
2 1—s o
WH“H%) + G4 (ro)

u(x) <wv(x) (1 +

= w(x) + CT(rg).

From (3.2.33) and the definition of w, we get

1—s

2s5—1

p_ » 2 1-s u »
[ = ] <1+m(1_8)|r I;
. (3.2.35)

2s—1

2175 s
< (T =1ulp) | 14+ ——]u|
> ( Hqu) ( +p7“0(1 — S)HUHP>

Consider now the function f(t) = (1 —t)(1+7¢)°, where 7 := pfozl_js) and o =122 >0
We compute

f't)y=0Q+7) " (rt(—o — 1) + 70 — 1) (3.2.36)
which vanishes for ¢ = —% < 0 and ty = TT(gjri) We choose now rg > 2% so that

ts < 0. This implies that f is decreasing in (0,1) and since f(0) = 1 we have that
f(t) < 1fort e (0,1), which implies

[wlP < 1. (3.2.37)

We can apply now Proposition 1.8 on the interval I = (—rg, ) to get that there exists
Bs« > 0 such that

/eﬁ*wp' dr < C (3.2.38)
1
and using (3.2.34) we get
1 1
/eﬁ*“ﬁ dr < C/eﬁ*“’ﬁ dz < C, (3.2.39)
I I

concluding the proof of (1.3.19).
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To prove the second part of the claim one can argue as in the previous section, using
the sequence of functions wu. defined in (3.2.24) and taking into account that now the

norm we are working with is the full W#%P-norm. Indeed we have

_ | log x| 1
fuclly = [ wlde= [ (ogep)y et [ AL ds = O(fiogel )
L R : |x\§s( ) e<|z|<1 |10g5’8p
(3.2.40)
Hence from (3.2.25), it follows that
ig% ||u€||€vs,p(R) = Ys- (3241)

Choose M > 0 large enough so that

Then one has

1 1
/ P <"}/§ Uge l—s) dx Z / B <’Y§ Ue 1—s> dx
R [[wellwsr(r) ue>M [[uellwsr ()

. (3.2.42)

€ (,Ys Ug ) I=s
/ e s luellyys.p(r) da.
—

V
| =

-2
for £ small enough. Now, thanks to (3.2.41), one can argue as in the proof of Proposition
3.12 to conclude the proof of Theorem 1.9.

Proof of Theorem 1.10

We will start by proving (1.3.20) since the proof of (1.3.21) will follow adapting the

reasoning of the previous section.

Let u. be as in (3.2.24). To prove (1.3.20) it is enough to show that there exists a
constant ¢ > 0 such that
€ lg*( Ug
/ e [ue]
—&

Indeed, u. — +oo uniformly for |z| < € as ¢ — 0 and we have

| ‘ - &€ IB*(‘“&|)1—S
s [ D ez gy [ DT

UGWO p(] [u WS p(R)<1 |CE‘ € —€

>mdx25.

From Proposition 3.11, it follows that

| (3.2.43)
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and in particular

) +0o0 x2 +1
ilg%[ua]p = 8/1 | log x’pm dx = 7s.

We compute

lim log ~ ([1]? — 7,) = 8 lim log ~ +OQ|1 P i S (3.2.44)
lim log — ([ue 7s) =8limlog = [ ogx @2 =1) x = 0. 2.
Then we can write
[uc]? Lo
<1+ (Clog-) (3.2.45)
Vs €
and in particular, recalling
. t 1
lim —t=- ,
t%+oo(1+%)1 S 1—s

we have

1

€ =5 |[ue|) T—s € Vs ﬁ 1i5
/e% ([%1) dgg_/ e([ua) luel =2 1o

—& —€

log %

> /6 ¢ (+CUos =) TS g0 (3.2.46)

log%
1 1 1
— 266(1+C(10g E)il)lis — 67175

as € — 0. Therefore )
S

I—s I—s
/e ° ([“E]> dx > 6 (3.2.47)
I

for some ¢ > 0, proving (1.3.20). We shall now prove (1.3.21). From (3.2.40) and (3.2.44)

it follows that

el - 1+ 0(|loge| ™) (3.2.48)
S Wer®) o 0 . 2.

S

Now using (3.2.42) and arguing as in (3.2.46) and (3.2.47), we conclude the proof.

3.3 Palais-Smale condition and critical points

In this section we will prove Theorem 1.11. As we already pointed out the main idea
of the proof is to construct a sequence (ug) which is almost of Palais-Smale type for
J. Then a modified version of Proposition 1.12 is used, namely Lemma 3.10 below. In
order to do so, it is crucial to show that ¢ < 7 (Lemma 3.13 below) and this will follow
from (1.3.9) with p = 2 and h(t) = |t|>.

Proof of Proposition 1.12
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For the proof of Proposition 1.12 we will closely follow [3]. Set

Qu) 1= J(u) — £ (J'(w) u) = A/[ ((“22 - 1) T 1) da. (3.3.1)

Remark 3.3. Notice that the integrand on the right-hand side of (3.3.1) is strictly

convex and has a minimum at u = 0; in particular
0=Q(0) < Q(u) for everyu e H\ {0}. (3.3.2)

Furthermore by Lemma 1.2.3 the functional Q is continuous on H and by convexity Q

1s also weakly lower semi-continuous.

Let us also notice that

)\/u26§“2 dxr = )\/ u2er® dx + )\/ w2z dx
I {lul<4} {lul>4}

<C+ )\/ wer™ dz < C + CQ(u)
{lu>4(}
and hence we have

)\/uzeéugd:r < C(14+Q(u)) forevery u € H. (3.3.3)
I

We consider a Palais-Smale sequence (ug)r>0 with J(ug) — ¢. From (1.4.7) we get
(J'(up), up) = o(1)|Jugllm  as k — oo,

and
Q(ug) = J(ug) — %(J’(uk), ug) = c+o(1) + o(1)||uk|| - (3.3.4)

Then with (3.3.3) we have
A/uieéu%d.@ <CA+ Juglla),
I
hence, using that Q(ug) >0

A/ (6% B 1) de < C(1+ ||u|lm),
I

so that .
J(uy) > §||Uk||12q = C(1 + [Jukllm)-

This and the boundedness of (J(ug))r>0 yield that the sequence (ug)g>o is bounded
in H, hence we can extracts a weakly converging subsequence ux — @ in H. By the
compactness of the embedding H — L? (see e.g. [34, Theorem 7.1], which we can
apply thanks to [34, Proposition 3.6], see Proposition 3.1), up to extracting a further
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subsequence we can assume that ui — @ almost everywhere. To complete the proof of
the theorem it remains to show that, up to extracting a further subsequence, up — @

strongly in H.

By Remark 3.3 we have
1
0 < Q(u) < liminf Q(ug) = liminf (J(uk) - (J’(uk),uk)> =c (3.3.5)
k—oo k—o0 2

Thus necessarily ¢ > 0. In other words the Palais-Smale condition is vacantly true when

¢ < 0 because no sequence can satisfy (1.4.7).
Clearly (3.3.5) implies Q(u) — Q(@) = 0. We now claim that
uze%“i — aPer™ in LMI) for 0<p< 2. (3.3.6)

Indeed, up to extracting a further subsequence, from (3.3.3) and (3.3.5) we get

1 1,2 1
upe%“%dx < / uieiukdx =0 <> ,
/{|uk>L} g L2 J{juyl>1} L2-p

and (3.3.6) follows from Lemma 3.3.

Let us now consider the case ¢ = 0. Since Q(@) = 0, hence @ = 0, with (3.3.6) we get

1 2 _ 1 luQ — = lﬂQ — =
klg{)lOHUkHH —leglolo <J(uk)+)\/I (62 k 1) dac) 2)\/1 (62 1) dx =0,
(3.3.7)

so that u; — 0 is H and the Palais-Smale condition holds in the case ¢ = 0 as well.

The last case is when ¢ € (0, 7). We will need the following result which is analogue to
Lemma 3.3 in [3].

Lemma 3.10. Consider a bounded sequence (uy) C H such that uy converges weakly

and almost everywhere to a function w € H. Further assume that:

1. there exists ¢ € (0, 7] such that J(u) — c;
2. |lull3; = X [; w2ez dx;
3. supy, [; uie%“idm < 00;

4. either u £ 0 orc <.

Then

. 1,2 1,2
lim [ uie2Vdr = [ u’e2 du.
k—o0 I I
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Proof. We assume u # 0 (if v = 0 and ¢ < 7 the existence of € > 0 in (3.3.8) below is
obvious). We then have @Q(u) > 0. On the other hand from assumption 2 we get

A 1,2
I = 3l + Q) 5 [ ¥t do > Q) > 0.

We also know from the weak convergence of ug to v in H, the weakly lower semicontinuity
of the norm and (3.3.6) that

J(u) < lim J(ug) = ¢,

k—o0

where the inequality is strict, unless ux — u strongly in H (in which case the proof is

complete). Then one can choose € > 0 so that

1+2£< 1
7T c—J(u)

(3.3.8)

Notice now that if we set 5 = A [; (65“2 - 1) dz, then

Jug||7 = 2¢+ 28.

lim
k—o00
Then multiplying (3.3.8) by 3||ux||% we have for k large enough

1+4+¢
2

142 ¢+ ullZ \ 7"
2 < ji= 1 < ———=(1- ) .
luller < P 27 ki}H;OHUkHH c—J(u) 2(c+pB)

By Lemma 3.9 applied to v := we get that the sequence eP™% is bounded in

— Uk

e T Tuklla?
14+e) 2 . .

LY(I), hence e 2 “k is bounded in L!.

Now we have that

<o 1)/ elgsu%dg;
{lug|>K}
with o(1) — 0 as K — oo, and we conclude with Lemma 3.3. O
We now claim
lall = A/a285ﬂ2dx. (3.3.9)
I

First we show that @ £ 0. So for the sake of contradiction, we assume that @ = 0. By
Lemma 3.10

. 1,2
lim [ uje2“kdr = 0.
k—o0 I
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Therefore, also using (3.3.6), we obtain limy_,~ Q(ux) = 0. It follows that
1
0<c= lim J(ug) = lim (Q(uk) + <J/(Uk)7uk>> =0,
k—oo k—oo 2

contradiction, hence @ # 0.

Fix now ¢ € C§°(I)NH. We have (J'(ug), ) — 0 as k — oo, since (ug) is a Palais-Smale

sequence. But, by weak convergence we have that

(ug, 0)g — (T, 0)H

Now (3.3.6) implies

/lwukeéuidx — /Icpﬂeéﬁzdx, for every ¢ € Cg°(I).

Thus we have
(U, o) = )\/gpﬂeéazdx.
I

By density and the fact that iiez® € LP for all p > 1, we have that
~ ~ / ~2 1~ 2
(G, 0)g = A [ a“e2"

hence (3.3.9) is proven. Therefore, we are under the assumptions of Lemma 3.10, which

yields

a7 < Tim inf [Jug 7
—00

= 2lim inf [J(uk) + )\/ (e%ui — 1> dac]
k—oo I

1
= 2liminf [A/u%eéuidij (J'(uk),uw} (3.3.10)
—)\/u 2™ dr
I
= ||al%-

By Hilbert space theory the convergence of the norms implies that u; — @ strongly in

H, and the Palais-Smale condition is proven.
Proof of Theorem 1.11

We start by proving the last claim of Theorem 1.11.

Proposition 3.14. Let u be a non-negative non-trivial solution to (1.4.4) for some
A€eR. Then 0 < X < M\ ({).
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Proof. Let ¢1 > 0 be as in Lemma 3.2. Then using ¢; as a test function in (1.4.4)
(compare to (1.4.6)) yields

Al(I)/ugold:U: )\/ugpleéluzdx > )\/ugoldm.
I I I
Hence A < A\;. Using u as test function in (1.4.4) gives at once A > 0. O

The rest of the section is devoted to the proof of the existence part of Theorem 1.11.
Define the Nehari manifold

N(J):={ue H\{0}; (J'(u),u) =0} .
Since, according to (3.3.1)-(3.3.2), J(u) = Q(u) > 0 for u € N(J), we have

J):= inf J(u)>0.
W= AN T =

Lemma 3.11. We have a(J) > 0.

Proof. Assume that a(J) = 0, then there exists a sequence (ur) C N(J) such that
J(ug) =Q(ug) -0 as k — oo,

From (3.3.3) we infer

sup/uieéuidm < 00, (3.3.11)
k>0J1

which, again using the fact that uy € N(J), implies that ||ug| z is bounded. Thus, up to
extracting a subsequence, we have that u; weakly converges to a function u € H. From

the weak lower semicontinuity of () we then get
0 < Q(u) < liminf Q(uz) = 0,
k—o00

thus J(u) = Q(u) = 0 and (3.3.2) implies v = 0. On the other hand, we have from
(3.3.7) with @ replaced by u (which holds with the same proof thanks to (3.3.11))

lim [Jug]|% = 2 lim {J(uk) + )\/ (e%“i - 1) dx} —0, (3.3.12)
k—o0 k—o0 I

therefore we have strong convergence of uy to 0.

—%— and up to a subsequence we assume v, — v weakly in H and
lurll

almost everywhere, we have

Now, if we let vy, =

1=|wl% = leIQOA/Ieé“zv,%dx = )\/Iv2d33 <A /Iv2d:c <1, (3.3.13)
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where the third equality is justified as follows: From the Sobolev imbedding vy — v in all
LP(I) for every p € [1,00), while from (3.3.12) and Theorem 1.2.2 we have that for every
q € [1,00) the sequence (e%“i) is bounded in L9(I), hence from Holder’s inequality
we have the desired limit. The last inequality in (3.3.13) follows from the Poincaré

inequality, see (1.4.2).
Clearly (3.3.13) is a contradiction, hence a(.J) > 0. O

Lemma 3.12. For every u € H \ {0} there exists a unique t = t(u) > 0 such that
tu € N(J). Moreover, if

Julfy < [ ueias, (3.3.14)

then t(u) <1 and t(u) =1 if and only if u € N(J).

Proof. Fix u € H \ {0} and for ¢ € (0,00) define the function
)= (k= x [ web™a )

which can also be written as

£t) = 12 (nun%q =y u%zx) S fa (o 1

Notice that tu € N(J) if and only if f(¢) = 0.

From the inequality

we infer )
f(t) <t? ||u|]%1—)\/u2dm - t4)\/u4da¢,
I 2 I
hence
tlg—noof(t) -
Now notice that the function t — (e%t2“2 — 1) is monotone increasing on (0,00), and

by Lemma 3.6 we have (65“2 — 1) € LP(I) for all p € [1,00), so that
u? (eéu2 = 1) c LY(I).
Then by the dominated convergence theorem we get

%iH(l) u? (e%t2“2 — 1) dz = 0.
—0Jr

So one has

ft) =+t <||u|]%1 - )\/u2d:c> +o(t?) ast— 0.
I



3.3. Palais-Smale condition and critical points 109

Hence, f(t) > 0 for ¢ small, since for A < A\;(I)

l|ul|3 — )\/Iqux >0

(compare the proof of Lemma 3.2). Therefore there exists ¢ = t(u) such that f(t) =0,

i.e. tu € N(J). The uniqueness of such ¢ follows noticing that the function
t— /uQe;ﬁ“zd:ﬂ
I

is increasing. Keeping this in mind, if we assume (3.3.14), then f(1) < 0, hence f(¢) <0
for all t > 1. This implies at once that t(u) < 1 and t(u) = 1if and only if u € N(J). O

Lemma 3.13. We have a(J) < .

Proof. Take w € H such that |[w||z =1 and let t = t(w) be given as in Lemma 3.12 so

that tw € N(J). Then
2, t
a(J) < J(tw) < Sllwla = 3

Now using the monotonicity of ¢ — [; w2e3 "’ 4y we have

2 2
)\/w2€a(J)w2d$ < )\/w2€§t2w2dx — t HwHH - 1.
1 1

+2
Thus
sup )\/w2e“(‘7)w2dx <1,
[wla=1 /I
and Theorem 1.2.2 implies that a(J) < 7. O

Lemma 3.14. Let u € N(J) be such that J'(u) # 0, then J(u) > a(J).

Proof. We choose h € H such that (J'(u),h) = 1, and for « € R we consider the path
ot(a) = au — th, t € R. Remember that by Lemma 3.8 J € C*(H). By the chain rule

d /
£J(0't(a)) = —(J'(0¢()), h),

therefore, if we set t =0, a = 1 we find

4 Jon(a) — (), h) = —1.

dt t=0,a=1

Hence there exist § > 0 and £ > 0 such that for a € [1 —¢,1+¢] and ¢ € (0, ]

J(0y(a)) < J(oo(a)) = J(auw). (3.3.15)
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Now we consider the function f defined by
(@) = lor(@)fy = A [ oula)ei @ da,
I
which is continuous with respect to ¢ and o by Lemma 1.2.3. Notice that since u € N(J)

fﬂ(a) — a2/u2 (e%u? . G%QQUQ) dx
I

and fo(1) = 0. Since the function o u2(e%“2 - 6%0‘2“2) is decreasing, by continuity we
can find 1 € (0,¢) and 01 € (0,0) such that

we have

fi(1—e1) >0, fi(1+e1)<0 fortel0,d]

Then if we fix t € (0,d1] we can find oy € [1 —e1,1 + &;] such that fi(ay) = 0, i.e.
oi(ay) € N(J), and from (3.3.15) we get

a(J) < J(o(ay)) < J(oqu).

Since

= J(aw) = fole),

and fo(a) > 0 for a < 1 and fo(a) < 0 for a > 1, we get
J(ou) < J(u) for a € R,

and we conclude that
a(J) < J(o(aw)) < J(ogu) < J(u).

Proof of Theorem 1.11 (completed). To complete the proof it is enough to show the
existence of ug € N(J) such that J(up) = a(J). We consider then a minimizing sequence
(ug) C N(J).

We assume that uj changes sign. Then since ug € N(J) we have
Ilunl Iy < unly =X [ ubedan =2 [ jugesinfa,
I I

where we used (3.1.6), hence by Lemma 3.12 there exists t; = t(|ug|) < 1 such that
tr|uk| € N(J), whence

J(telug)) = Q(trlur]) < Q(lurl) = Q(ur) = J(u),
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where the inequality in the middle depends on the monotonicity of (). Hence up to
replacing uy with tx|ug| we can assume that the minimizing sequence (still denoted by

(ug)) is made of non-negative functions.
Since J(ug) = Q(ux) < C we infer from (3.3.3)
/uieéu%dx <C
I

and for uy € N(J) we get
lurlla < C.

Thus up to a subsequence up weakly converges to a function uy € H, and up to a

subsequence the convergence is also almost everywhere.

We claim that ug # 0. Indeed if uy = 0, then from (3.3.6), we have that (e%“i — 1) —0
in L'(I). Thus

lim [jug|/% =2 lim [J(uk) + )\/ (e%“i — 1) dl‘] = 2a(J).
k—o0 k—o00 I

Then according to Theorem 1.2.2, since a(J) < m we have that e3Y is bounded in LP
for some p > 1, hence weakly converging in LP(I) to e2%. From the compactness of the
Sobolev embeddings (see [34, Theorem 7.1], which can be applied thanks to Proposition

3.1), up to a subsequence uz — u? strongly in Lp/(I ), hence

. 1,2 1,2
lim [ vw?e2%dr = [ ule2%dx =0
k 0 )
k—oo I I

and with Lemma 3.11 and (3.3.1) one gets

0<a(J)= lim J(ug) = kli_}m Q(ug) =0,

k—o00
which is a contradiction.

Next we claim that
luoll?; < )\/u%e?‘gda:.
I

So we assume by contradiction that this is not the case, i.e.
1
luoll?; > )\/u%w“gdx.
I

Then from Lemma 3.10, Lemma 3.13 and the weak convergence, we have that

luoll3; < lim in [lug |}, = nmmm/uge;uzdm _ A/uge;ugd%
k—o0 k—o0 I I

again leading to a contradiction.
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From Lemma 3.12, we have that there exists 0 < ¢ < 1 such that tug € N(J). Taking

Remark 3.3 into account we get
a(7) < J(tuo) = Qtuo) < Q(uo) < liminf Qug) = a(y).
—00

It follows that ¢ = 1, since otherwise the second inequality above would be strict. Then
ug € N(J) and J(up) = a(J). By Lemma 3.14 we have J'(ug) = 0 O
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