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Preface	
	

The	 following	 dissertation	 was	 written	 by	 the	 author.	 The	 “Introduction”	 is	 based	 on	 an	

extended	version	of	a	review	manuscript	in	preparation	(Sprenger,	Winkler,	2017	expected).	

The	“Results”	section	consists	of	two	published	manuscripts	and	additional	preliminary	data.	

In	the	co-first-authorship	publication	(Ozcelik,	Sprenger	et	al.,	2016)	the	author	significantly	

contributed	to	experiments,	analysis,	and	writing	process.	In	the	second	co-author	publication	

(Skachokova	,	Sprenger	et	al.,	2015)	the	author	contributed	to	some	analysis	and	final	writing.	

The	additional	data	section	is	the	result	of	own	work.	
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Abstract	
	

The	 microtubule-associated	 protein	 tau	 and	 its	 pathological	 modification	 constitute	 the	

central	 pathology	 of	 various	 human	 neurodegenerative	 diseases,	 including	 Alzheimer’s	

disease	 (AD),	 collectively	 termed	 ‘tauopathies’.	 Abundant	 hyperphosphorylation	 and	

aggregation	 of	 tau	 is	 a	 disease-defining	 hallmark,	 yet	 the	 underlying	 pathogenic	 and	

pathophysiological	 processes	 have	 remained	 only	 partly	 understood.	 In	 addition,	 protein	

fragmentation	 is	 a	 frequently	 observed	 phenomenon	 in	 the	 course	 of	 various	

neurodegenerative	 diseases;	 however,	 the	 contribution	 of	 tau	 fragmentation	 to	 the	

pathogenesis	of	tauopathies	is	still	a	matter	of	debate.	

In	our	novel	 inducible	mouse	model,	co-expression	of	truncated	and	full-length	human	tau	

provokes	 axonal	 transport	 failure,	 mitochondrial	 mislocalization,	 disruption	 of	 the	 Golgi	

apparatus	and	dysregulation	of	synaptic	proteins	associated	with	extensive	nerve	cell	loss	and	

a	severe	neurological	phenotype	as	early	as	3	weeks	of	age.	Of	note,	this	was	paralleled	only	

by	 the	 formation	 of	 soluble	 oligomeric	 tau	 species,	 and	 no	 insoluble	 filamentous	 tau	

aggregates;	therewith,	identifying	oligomeric	tau	species	as	toxic	key	players	in	tau	pathology.	

Despite	continuous	full-length	tau	expression,	mice	recovered	from	the	neurotoxic	insult	once	

truncated	 tau	 expression	was	 halted.	 The	 induction	of	 drastic	 but	 reversible	 neurotoxicity	

highlights	 the	 neurotoxic	 potential	 of	 tau	 fragments	 as	 pathogenic	 mediators	 in	

neurodegenerative	disorders.	

The	present	work	implicates	the	complexity	of	protein	fragmentation	and	oligomerization	and	

their	neurotoxic	impact	in	the	context	of	tauopathies	and	aims	for	a	better	understanding	of	

the	cellular	mechanisms	underlying	tau	toxicity.	
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1 Introduction	

	
	

1.1 Chapter	1	

Tau	protein	and	neurodegeneration	
	
	

1.1.1 Neurodegeneration		
	

In	 human	 beings,	 neurodegenerative	 diseases	 are	 commonly	 characterized	 by	 progressive	

dysfunction	and	decease	of	neurons	associated	with	pathological	deposits	of	altered	proteins	

in	the	brain	as	well	as	in	peripheral	organs.	In	patients	with	neurological	disorders,	the	clinical	

manifestations	caused	by	malfunction	of	individual	gene	expression	products	correlate	with	

the	affected	brain	 regions,	 linking	a	particular	disease-type	 to	 its	predominant	phenotype.	

Unique	 pathological	 conformers	 or	 misfolded	 proteins	 with	 modified	 native	 physiological	

properties	 are	 integral	 parts	 and	 the	 core	 concept	 of	 diverse	 human	 ’proteinopathies’;	

nevertheless,	 the	 understanding	 of	 the	 cellular	 and	 molecular	 bases	 underlying	 the	

pathogenesis	of	neurodegenerative	diseases	gradually	widened	over	the	years,	yet	being	far	

from	fully	disclosed.	

	

The	 pathological	 conformation	 and	 subsequent	 aggregation	 of	 proteins	 is	 not	 solely	

responsible	 for	 neuronal	 degeneration,	 rather	 a	 complex	 network	 of	 molecular	 events	

ultimately	leading	to	progressive	neuronal	dysfunction	and	death.	For	instance,	the	ubiquitine	
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proteasome	 system	 (UPS)	 and	 autophagy-lysosomal	 pathways,	 as	major	mechanisms	 for	

degradation	 of	 numerous	 proteins,	 have	 been	 found	 to	 be	 relevant	 for	 the	 genesis	 and	

progression	of	several	neurodegenerative	diseases	(Keller	et	al.,	2000;	Nixon,	2007;	reviewed	

in	Oddo,	2008;	Pickford	et	al.,	2008).	Indeed,	various	aggregated	proteins	as	well	as	induction	

of	 proteasome	 inhibitors	 have	 been	 shown	 to	 interfere	 with	 the	 highly	 regulated	 cell	

physiology	by	 impairing	UPS	function	(Bence	et	al.,	2001;	David	et	al.,	2002;	Gregori	et	al.,	

1995;	Keck	et	al.,	2003;	Lee	et	al.,	2010;	Snyder	et	al.,	2003;	Tseng	et	al.,	2007).	In	contrast	to	

their	 ability	 of	 non-aggregated	 and	 soluble	 unfolded	 protein	 degradation,	 oligomeric	 or	

aggregated	 species	 are	 rather	 inaccessible	 to	 the	 catalytic	 core	 of	 the	 UPS;	 an	 efficient	

autophagy-lysosomal	machinery	 is	needed	to	degrade	aggregation-prone	proteins,	 thereby	

preventing	neuropathological	processes	(Anglade	et	al.,	1997;	Boland	et	al.,	2008;	Qin	et	al.,	

2003).	 In	 addition,	 stimulation	of	 autophagy	has	been	 shown	 to	 reduce	 the	 generation	of	

pathological	protein	inclusions	in	nerve	cells	(Ozcelik	et	al.,	2013;	Schaeffer	et	al.,	2012;	Wang	

et	al.,	2009b).	

Aside	 further	 neurodegenerative	 disease-causing	 processes	 such	 as	 glutamate-induced	

exocytoxic	 insults	 (Marchetti	 et	 al.,	 2004)	 or	 neuroinflammatory	 processes	 (Harry	 et	 al.,	

2000),	 another	 event	 detrimental	 to	 neuronal	 homeostasis	 is	 mitochondrial	 injury	 by	

neurodegeneration-associated	proteins;	mitochondrial	dysfunction,	i.e.	in	terms	of	impaired	

mitochondrial	 trafficking	 inside	neurons	 (Rui	et	al.,	2010;	Rui	et	al.,	2006)	or	alterations	 in	

mitochondrial	dynamics	 (Wang	et	al.,	2009a),	 is	crucially	 linked	to	oxidative	and	nitrosativ	

stress	 (Cho	 et	 al.,	 2009;	 Hirai	 et	 al.,	 2001;	 Lustbader	 et	 al.,	 2004),	 contributing	 to	

neuropathological	processes.	

	

1.1.2 Protein	fragmentation	and	neurodegeneration		

	

Protein	 fragmentation	 is	 a	 frequently	 observed	 phenomenon	 in	 the	 course	 of	 various	

neurodegenerative	processes.	Indeed,	small,	aggregation	prone	cleaved	proteins	are	integral	

parts	of	a	plethora	of	disorders	including	Alzheimer’s	diseases	(AD);	familial	British	and	Danish	

dementia	(FBD,	FDD);	Parkinson’s	diseases	(PD);	TDP-43	related	disorders;	and	in	other	triplet	

expansion	disorders	such	as	Huntington	disease	(HD)	and	spinocerebellar-ataxias	(SCAs).	The	

initiation	of	fragmentation	remains	mostly	elusive;	mutations	represent	the	cause	of	altered	
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cleavage	 in	 some	 hereditary	 variants	 of	 neurodegenerative	 diseases	 such	 as	 presenilin	

mutations	in	AD	or	the	frame	shift	mutations	in	FBD;	by	contrast,	in	most	sporadic	forms	the	

cause	for	increased	or	aberrant	fragmentation	is	simply	not	known.		

However,	the	contribution	of	protein	fragmentation	to	the	pathogenesis	of	proteinopathies	is	

not	 always	 evident	 and	 the	 neurotoxic	 potential	 of	 cleavage	 products	 is	 still	 a	 matter	 of	

debate.	Cleavage	occurs	at	multiple	sites	of	single	large	proteins	with	researchers	consider	the	

question	 of	 a	 causal	 relationship	 between	 protein	 fragmentation	 and	 disease,	 or	whether	

fragmentation	 just	 being	 an	 epiphenomenon.	 Protein	 aggregates	 in	 neurodegenerative	

disorders	may	either	consist	of	(I)	fragments	alone	derived	from	larger	precursor	proteins:	as	

in	 case	 of	 amyloid-β	 (Aβ)	 in	 AD	 or	 amyloid-Bri	 (ABri)	 in	 FBD	 (Vidal	 et	 al.,	 1999);	 or	 they	

comprise	(II)	full-length	and	fragmented	proteins	in	parallel:	as	in	case	of	α-synuclein	(α-Syn)	

in	PD	(Dufty	et	al.,	2007;	Liu	et	al.,	2005)	or	in	TDP-43	related	disorders	(Neumann	et	al.,	2006;	

Zhang	et	al.,	2009b).	

Neurodegeneration-associated	proteins	can	be	substrate	to	a	plethora	of	proteolytic	enzymes	

including	members	of	the	α-,	β-,	and	!-secretase	families	as	well	as	cysteine	proteases.	Aside	

thrombin	 (Arai	 et	 al.,	 2005),	 cathepsins	 (Kenessey	 et	 al.,	 1997)	 and	 puromycin-sensitive	

aminopeptidase	(PSA)	(Sengupta	et	al.,	2006),	members	of	the	caspase	and	calpain	family	are	

the	most	 prominent	 enzymes	 involved	 in	 tau	protein	 cleavage	 and	 therefore	 of	 particular	

interest	in	the	present	work.	

	

1.1.3 Caspases	and	calpains	and	neurodegeneration	

	

Caspases	are	intracellular	cysteine-aspartatic-specific	proteases	that	cleave	their	substrates	

at	 specific	 sites.	 First	 expressed	 as	 latent	 zymogens,	 these	 pro-caspases	 get	 post-

translationally	activated	that	either	can	lead	to	the	inactivation	of	the	substrate	or	to	a	toxic	

gain	of	function	in	the	form	of	active	protein	fragments	in	the	proteolytic	process.	Aside	other	

non-apoptotic	and	pro-inflammatory	members,	apoptotic	caspases	can	be	subdivided	into	(I)	

initiator	caspases	(caspases-2,	8,	9	and	10)	that,	in	response	to	a	stimulus,	direct	the	signal	to	

(II)	 executioner	 caspases	 (caspases-3,	 6,	 and	 7)	 (Pop	 and	 Salvesen,	 2009).	 These	 caspase	

candidates	 are	 associated	 with	 programmed	 apoptotic	 cell	 death	 in	 various	

neurodegenerative	 disorders	 including	 AD,	 HD,	 and	 PD.	 Also,	 calpains	 are	 intracellular	
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calcium-activated	 (papain-like)	 neutral	 proteases	 and	 have	 been	 implicated	 in	 the	

pathogenesis	of	neurodegenerative	diseases	such	as	AD	or	PD;	although	their	calcium-induced	

apoptotic	role	is	less	characterized	compared	to	that	of	apoptotic	caspases.	

Multiple	neurodegeneration-related	proteins	are	substrate	to	caspase-	and	calpain-mediated	

cleavage.	 Indeed,	 caspases-3	 (Metcalfe	 et	 al.,	 2012),	 caspase-6,	 and	 calpains	 are	 the	main	

enzymes	involved	in	tau	protein	fragmentation,	with	the	Asp421	being	the	most	prominent	

caspase	cleavage	site	(for	review	see	Avila,	2010;	Fasulo	et	al.,	2005;	Guillozet-Bongaarts	et	

al.,	 2005;	 Guo	 et	 al.,	 2004)	 (Figure	 1.1).	 Furthermore,	 site-directed	 mutagenesis	 at	 two	

caspase-7	cleavage	sites	of	neurotoxic	ataxin-7	protein	in	Spinocerebellar	ataxia	type	7	(SCA7)	

polyglutamine	(polyQ)	disorder	results	 in	a	non-cleavable	form	of	polyQ-expanded	ataxin-7	

displaying	attenuated	neuronal	death,	aggregate	formation,	and	transcriptional	interference	

(Young	et	al.,	2007).	Of	note,	caspase-3	and	caspase-6	have	been	implicated	in	cytoskeletal	

disintegration	through	actin	and	tubulin	cleavage	ultimately	leading	to	axonal	degeneration	

in	vitro	and	in	vivo	(Sokolowski	et	al.,	2014).	Aside,	calpain	activation	has	been	demonstrated	

to	 play	 a	 crucial	 role	 in	 Aβ-triggered	 pathological	 cascade	 in	 AD	 (Higuchi	 et	 al.,	 2012).	

Moreover,	N-terminal	calpain	cleaved	ataxin-3	fragment	has	been	shown	to	provoke	altered	

behavioural	and	motor	phenotype	associated	with	pathological	protein	inclusions	and	nerve	

cell	death	in	vivo	(Hubener	et	al.,	2011).	

 

	

Figure	1.1	Proteolytic	processing	of	tau.	Caspase	and	calpains	are	the	main	proteases	involved	in	tau	protein	
cleavage.	 Truncation	of	 tau	 at	 distinct	 proteolytic	 cleavage	 sites	 can	 either	 lead	 to	 preservation	of	 neuronal	
structure	and/or	function,	and/or	exacerbation	of	tau	toxicity.	(Chesser	et	al.,	2013)	
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1.1.4 Neurodegenerative	disease-associated	proteins	

	

A	wide	variety	of	cellular	and	molecular	events	can	be	ascribed	to	the	individual	pathological	

profile	 of	 a	 vast	 number	 of	 neurodegenerative	 diseases.	 However,	 pathologically	 altered	

proteins	 including	 their	 characteristic	 structure	 and	 morphology	 remain	 to	 be	 the	 most	

prominent	entity.	Proteins	that	undergo	fragmentation	in	parallel	to	pathological	aggregation	

are	 not	 only	 found	 in	 neurodegenerative	 proteopathies,	 but	 also	 in	 systemic	 amyloidosis.		

Proteinopathies	with	associated	protein	fragmentation	include:	

 
(I) The	microtubule-associated	protein	tau	that	is	encoded	by	a	gene	(MAPT)	located	

on	chromosome	17	(Weingarten	et	al.,	1975);	

(II) The	 amyloid-beta	 peptide	 (Aβ)	 that	 is	 encoded	 by	 a	 gene	 (APP)	 located	 in	

chromosome	21	(Alzheimer,	1906,	1907;	Kang	et	al.,	1987;	Tanzi	et	al.,	1987);		

(III) The	amyloid-Bri	(ABri)	and	amyloid-Dan	(ADan)	peptides	that	are	both	encoded	

by	a	gene	(BRI)	located	on	chromosome	13	(Vidal	et	al.,	1999;	Vidal	et	al.,	2000);	

(IV) The	neuronal	protein	alpha-synuclein	 (α-Syn)	 that	 is	encoded	by	a	gene	 (SNCA)	

located	on	chromosome	4	(Spillantini	et	al.,	1997);	

(V) Proteins	encoded	by	genes	linked	to	cytosine-adenine-guanine	(CAG)	trinucleotide	

repeats	including	huntingtin	(Htt),	ataxins	(1,	2,	3,	6,	7,	and	17),	and	atrophin-1	

(Fan	et	al.,	2014);	

(VI) Prion	protein	(PrP)	that	is	encoded	by	a	gene	(PRNP)	located	on	chromosome	20	

(Aguzzi	and	O'Connor,	2010);	

(VII) Transactive	response	(TAR)	DNA-binding	protein	43	(TDP-43)	that	is	encoded	by	a	

gene	(TARDBP)	located	on	chromosome	1	(Ou	et	al.,	1995);	

(VIII) 	And	others	including	proteins	that	belong	to	the	FET	family	including	(F)used	in	

sarcoma	protein	(FUS),	(E)wing’s	sarcoma	protein	(EWS),	(T)ATA-binding	protein-

associated	factor	15	(TAF15)	(Kwiatkowski	et	al.,	2009;	Law	et	al.,	2006);	charged	

multivescular	body	protein	2B	(CHMP2B)	(Ghazi-Noori	et	al.,	2012)	;	glycoprotein	

reelin	(D'Arcangelo	et	al.,	1997);	globular	protein	transthyretin	(TTR)	(Conceicao	

et	al.,	2016);	actin	binding	protein	gelsolin	(Chen	et	al.,	2001;	Solomon	et	al.,	2012);	

hormone	 islet	 amyloid	 peptide	 (IAPP)	 (Akter	 et	 al.,	 2016);	 and	 human	 serum	

amyloid	A	(SAA)	(Egashira	et	al.,	2011).	
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The	most	notable	neurodegeneration-associated	proteins	will	be	addressed	in	the	following	

paragraphs;	however,	the	tau	protein	and	its	role	in	tauopathies	and	the	neuropathological	

relevance	of	protein	fragmentation	will	be	of	particular	interest.	

	

1.1.5 Tau	protein	

	

Tau	 belongs	 to	 the	 natively	 unfolded	microtubule-associated	 protein	 family	 (MAP)	 and	 is	

abundant	in	the	central	and	peripheral	nervous	system.	In	the	1970s,	a	microtubule	binding	

activity	of	tau	protein	has	first	been	shown	by	Weingarten	et	al.,	who	isolated	a	heat	stable	

protein	most	abundantly	 found	 to	promote	microtubule	assembly	and	 stability	 in	 cell-free	

conditions	 (Weingarten	 et	 al.,	 1975).	 Microtubules	 are	 protein	 polymers	 and	 a	 major	

component	 of	 the	 cytoskeleton	 with	 an	 essential	 role	 in	 regulated	 motor-driven	 axonal	

transport.	 Later,	 evidence	 from	brains	of	patients	with	AD	 suggested	 that	 tau	 is	 actual	 an	

integral	part	of	the	pathology	in	neurodegenerative	disorders	(Goedert	et	al.,	1988;	Grundke-

Iqbal	et	al.,	1986;	Kondo	et	al.,	1988;	Kosik	et	al.,	1986;	Wischik	et	al.,	1988a).	Efforts	for	a	

better	 understanding	 of	 the	 physiological	 role	 and	 identity	 of	 tau	 protein	 have	 been	

intensified	since.	

	

1.1.5.1 Cellular	localization	and	domain	organization	of	tau	

	

The	tau	protein,	synthesized	and	produced	in	all	neurons,	 is	predominantly	found	in	axons	

(Binder	 et	 al.,	 1985).	 However,	 it	 also	 has	 been	 shown	 to	 be	 located	 in	 the	 dendritic	

compartment	albeit	 in	 lower	concentration	as	well	as	under	pathological	conditions	 in	 the	

somatodendritic	domain	(Ittner	et	al.,	2010).	Structurally,	tau	is	a	naturally	unfolded	protein	

that	contains	four	major	regions.	Once	tau	is	bound	to	multiple	tubulin	dimers,	the	N-terminal	

acidic	projection	region	protrudes	outward	from	the	surface	of	the	microtubule	and	in	this	

way,	 being	 able	 to	 serve	 as	 a	 spacer	 between	 the	 individual	 components	 within	 the	

microtubule	network	(Chen	et	al.,	1992;	Frappier	et	al.,	1994).	Furthermore,	it	was	found	that	

this	region	appears	to	interact	with	membrane-binding	proteins	such	as	annexin	A2	(AnxA2)	

and	 thus	 retain	 the	 tau	protein	at	 the	distal	 tip	of	neurites	 (Brandt	et	al.,	 1995;	Gauthier-
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Kemper	et	al.,	2011;	Weissmann	et	al.,	2009).	The	proline-rich	region	(PRR)	harbours	many	

phosphorylation	sites	and	contributes	to	the	microtubule-binding	affinity	of	tau	(Augustinack	

et	 al.,	 2002;	 Biernat	 et	 al.,	 1992;	 Brandt	 and	 Lee,	 1993;	Goode	et	 al.,	 1997).	Moreover,	 it	

enables	interaction	with	other	proteins	such	as	the	SH3	domain	containing	tyrosine	kinase	Fyn	

(Lee	et	al.,	1998).	The	C-terminal	region	of	tau	contains	a	microtubule	binding	domain	(MTB)	

composed	of	18-amino	acid	(aa)	tandem	repeats	separated	by	sequences	of	13-	or	14-aa	that	

encourage	tau	to	bind	to	the	microtubules	and	a	short	tail	sequence,	which	is	involved	in	the	

regulation	of	microtubule	polymerization	(Brandt	and	Lee,	1993;	Lee	et	al.,	1988;	Lee	et	al.,	

1989).	

	

1.1.5.2 Tau	isoforms	

	

The	tau	protein	is	encoded	by	a	single	gene	that	contains	a	total	of	16	exons	(Andreadis	et	al.,	

1992).	Six	 isoforms	 of	 tau	 are	 expressed	 in	 the	 adult	 human	brain	 (Goedert	 et	 al.,	 1989).	

Produced	by	complex	alternative	mRNA	splicing	of	the	MAPT	gene	located	on	chromosome	

17q21.31,	each	isoform	differs	in	its	specific	representation	as	such	in	the	presence	or	absence	

of	 both,	 amino-terminal	 inserts	 (0N,	 1N,	 2N)	 and	 carboxy-terminal	 microtubule-binding	

repeat	domains	(3R,	4R).	Thus,	splicing	of	the	neuron-specific	tau	transcript	at	two	29-	or	58-

aa	inserts	and	one	31-aa	repeat	domain	encoded	by	exons	2,	3	and	10,	respectively,	results	in	

a	set	of	proteins	with	the	range	from	352-aa	in	length	for	3R0N,	381	for	3R1N	and	410	for	

3R2N	to	383-aa	in	length	for	4R0N,	412	for	4R1N	and	441	for	4R2N	(Figure	1.2).	
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Figure	1.2	Schematic	representation	of	the	human	TAU	gene,	TAU	mRNA,	and	the	six	tau	protein	isoforms.	Six	
isoforms	are	generated	through	alternative	splicing	in	the	adult	human	brain.	(Adapted	from	Buee	et	al.,	2000)	

	

1.1.5.3 Tau	function	

	

Tau,	as	a	natively	unfolded	protein,	lacks	a	well-defined	secondary	or	tertiary	structure	that	

allows	the	protein	to	interact	with	a	variety	of	partners	in	the	environment	of	a	cell	(Schweers	

et	 al.,	 1994).	 The	 main	 physiological	 function	 of	 tau	 is	 stabilization	 of	 the	 microtubule	

network	 by	promoting	 the	polymerization	of	 tubulin	and	 thus	 the	maintenance	of	normal	

axonal	transport	(Bohm	et	al.,	1990;	Brandt	and	Lee,	1993;	Cleveland	et	al.,	1977;	Shahani	and	

Brandt,	 2002;	Weingarten	 et	 al.,	 1975).	 As	 a	main	 cytoskeleton	 component,	microtubules	

contribute	to	morphogenesis,	division	and	intracellular	trafficking	in	the	cell	(Mitchison	and	

Kirschner,	1984).		
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At	any	given	moment,	about	80%	of	tau	is	in	direct	interaction	with	microtubules	(Weissmann	

et	al.,	2009).	Tau	binding	to	microtubules	is	regulated	by	a	delicate	equilibrium	of	kinases	and	

phosphatases	and	both,	over-stabilization	by	tau	or	detached	tau	from	the	microtubule	can	

impair	cell	viability	(Bramblett	et	al.,	1993;	Panda	et	al.,	2003;	Thies	and	Mandelkow,	2007;	

Wang	et	al.,	2007).	

In	fact,	neuronal	function	is	critically	dependent	on	an	intact	microtubule	network.	Specific	

cellular	 compartments	 such	as	 the	pre-	and	post-synaptic	 cell	 structures	have	high	energy	

requirements	and	accumulated	waste	products	to	manage;	therefore,	cellular	motors	of	the	

kinesin	and	dynein	superfamily	utilize	energy	derived	from	ATP	hydrolysis	to	transport	cargo-

filled	vesicles	over	long	distances	on	microtubule	tracks	in	the	axon	(De	Vos	et	al.,	2008).	In	

this	 way,	 mitochondria	 (Hollenbeck	 and	 Saxton,	 2005),	 lysosomes	 (Harada	 et	 al.,	 1998),	

peroxisomes		(Wali	et	al.,	2016)	and	various	other	organelles	can	be	localized	to	distinct	areas	

in	the	neuronal	realm	in	order	to	accomplish	their	very	own	function.	The	tight	binding	of	tau	

alters	 the	 intracellular	 traffic	 as	 well	 as	 ensures	 the	 dynamic	 instability	 of	 microtubules	

(Mitchison	 and	 Kirschner,	 1984;	 Trinczek	 et	 al.,	 1995).	 The	 latter	 is	 distinguished	 by	 their	

capability	 to	 switch	 between	 slow	 growth	 and	 rapid	 shrinking	 during	microtubule	 growth	

(Binder	 et	 al.,	 1985;	 Mitchison	 and	 Kirschner,	 1984).	 Aside	 from	 its	 predominant	

neurophysiological	 activity	 –	 binding	 to	 microtubule	 –	 numerous	 functions	 have	 been	

attributed	to	tau.	Among	them,	modulation	of	biochemical	cascades,	such	that	tau	can	act	as	

a	 protein	 scaffold	 (Brandt	 et	 al.,	 1995;	 Ittner	 et	 al.,	 2010;	 Reynolds	 et	 al.,	 2008)	 or	 direct	

enzyme	inhibitor	(Perez	et	al.,	2009).	In	parallel,	tau	appears	to	interact	with	nucleic	acids	as	

well	as	mitochondria	(Jancsik	et	al.,	1989;	Kampers	et	al.,	1996;	Loomis	et	al.,	1990;	Sultan	et	

al.,	2011);	suggesting	a	role	as	a	multifunctional	communication	instrument	within	the	cell.		

 

1.1.5.4 Post-translational	modifications	of	tau	

	

In	physiological	conditions	and	untypically	for	most	cytosolic	proteins,	tau	resists	a	compact	

folded	structure;	the	entire	tau	molecule	is	considered	to	be	intrinsically	disordered	and	its	

function	 is	 tightly	 regulated	 by	 a	 host	 of	 post-translational	 modification	 such	 as	

phosphorylation	(Grundke-Iqbal	et	al.,	1986),	acetylation	(Cohen	et	al.,	2011),	glycosylation	

(Gong	et	al.,	2005),	glycation	(Ledesma	et	al.,	1994),	sumoylation	(Dorval	and	Fraser,	2006),	
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ubiquitination	(Mori	et	al.,	1987),	nitration	(Reynolds	et	al.,	2006),	and	truncation	(Gamblin	et	

al.,	 2003;	 Wischik	 et	 al.,	 1988b).	 The	 contribution	 of	 various	 cellular	 mechanisms	 to	 tau	

pathogenesis	are	not	known	and	it	has	yet	remained	unclear,	which	modification	is	crucial	for	

the	development	of	tauopathies.	

The	individual	post-translational	modifications	of	tau	can	only	be	outlined	in	the	present	work;	

however,	 tau	phosphorylation	 (I)	 and	 tau	 truncation	 (II)	will	 be	 discussed	 in	 detail	 in	 the	

following	paragraph.	

 

1.1.5.4.1 Tau	phosphorylation	

 

Tau	phosphorylation	occurs	 in	both	pathological	and	physiological	conditions.	 It	was	found	

that	 isolated	 tau	 molecules	 from	 healthy	 human	 brains	 contained	 roughly	 two	 moles	 of	

phosphate	 per	mole	 of	 tau,	whereas	 tau	 proteins	 associated	with	 paired	 helical	 filaments	

(PHFs)	of	patients	with	AD	contained	six	to	eight	moles	of	phosphate	per	mole	of	tau	(Ksiezak-

Reding	et	al.,	1992).	

Given	the	loose	disordered	character	of	tau,	many	known	potential	phosphorylation	sites	are	

sensitive	 to	 numerous	 protein	 kinases	 and	 phosphatases;	 indeed,	 these	 phosphorylatable	

domains	consist	of	80	serine	and	threonine	residues	and	five	tyrosine	residues	are	key	players	

in	the	regulation	of	the	microtubule	binding	activity	of	tau	(Figure	1.3).	The	most	prominent	

candidate	kinases	for	tau	phosphorylation	include	proline-directed	kinases	glycogen	synthase	

kinase	3	(GSK3),	cyclin-dependent	protein	kinase	(cdk5),	the	p38	mitogen-activated	protein	

kinase	(MAPK);	or	c-Jun	N-terminal	kinases	(JNK)	 families,	as	well	as	other	stress	activated	

kinases,	such	as	cdc2;	and	non-proline-directed	kinases	such	as	protein	kinase	A	(PKA),	protein	

kinase	C	(PKC),	calmodulin	(CaM)	kinase	II,	microtubule-affinity	regulating	kinase	(MARK),	and	

casein	kinase	II	(CKII)	(Correas	et	al.,	1992).	

Aside	from	kinases,	various	phosphatases	(PP)	have	been	identified	to	dephosphorylate	tau	

protein	(Sergeant	et	al.,	2005).	It	has	been	shown	that	PP1,	PP2A	and	PP2B,	predominantly	

dephosphorylate	 tau	 in	 vitro	 (Wang	et	al.,	 1995;	Yamamoto	et	al.,	 1988);	moreover,	PP2A	

expression	and	activity	was	found	to	be	reduced	in	the	brains	of	AD	patients,	suggesting	that	

dephosphorylation	 defects	 play	 a	 vital	 role	 in	 the	 pathological	 cascade	 in	 tau	 mediated	

neurodegenerative	disorders	(Gong	et	al.,	1993).	
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Indeed,	abnormal	tau	phosphorylation	is	considered	as	an	early	event	in	the	pathology	of	tau	

(Bramblett	et	al.,	1993).	As	mentioned	above,	the	adult	human	brain	tau	harbours	more	than	

80	 potential	 phosphorylation	 sites	 and	 a	 disequilibrium	 in	 candidate	 protein	 kinase	 and	

phosphatase	 activity	 results	 in	 tau	 hyperphosphorylation	 with	 subsequently	 increased	

amount	of	tau	detached	from	microtubule.	

 

	 	

Figure	1.3	Dysregulation	of	axonal	transport.	Destabilization	of	microtubules	by	decreased	kinase	activity	results	
in	hyperphoshorylated	and	aggregated	tau.	Subsequent	disintegration	of	the	microtubule	tracks	leads	to	kinesin-
mediated	anterograde	and	dynein-mediated	retrograde	axonal	transport	dysfunction.	(Adapted	from	De	Vos	et	
al.,	2008)		

	

1.1.5.4.2 Tau	truncation	

 

Phosphorylation	is	typically	regarded	as	one	of	the	most	relevant	modification	responsible	for	

changes	of	tau	protein.	Alternatively,	proteolytic	processing	of	tau	by	a	variety	of	endogenous	
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proteases	has	been	postulated	to	be	 involved	 in	 the	pathological	cascade	 in	 tau	mediated	

neurodegenerative	disorders	(Gamblin	et	al.,	2003;	Rissman	et	al.,	2004).	

Tau	protein	exhibit	a	physiological	random	coil	structure;	however,	it	is	able	to	assemble	into	

ordered	filamentous	aggregates	by	the	formation	of	β-sheet	structural	elements	(von	Bergen	

et	 al.,	 2005).	 Given	 that	 the	 aggregation	 of	 tau	 correlates	with	 its	 propensity	 for	 β-sheet	

structure,	an	altered	shape	of	tau	protein	by	proteolytic	fragmentation	potentially	affect	its	

aggregation	 capacity.	 The	 architecture	 of	 paired	 helical	 and	 straight	 filaments	 of	 AD	 is	

predominantly	 defined	 by	 all	 six	 full-length	 isoforms	 of	 tau	 (Goedert	 et	 al.,	 1992);	

nevertheless,	studies	on	tau	aggregation	had	revealed	that	truncated	forms	of	tau	are,	in	fact,	

present	in	the	core	of	PHFs	(Gamblin	et	al.,	2003;	Mena	et	al.,	1996;	Rissman	et	al.,	2004).	

Likewise,	fragmented	tau	has	been	reported	to	facilitate	and	promote	faster	polymerization	

into	fibrils,	in	this	way,	highlight	a	greater	aggregation	propensity	compared	to	full-length	tau	

(Abraha	et	al.,	2000).	

In	Alzheimer’s	disease,	 tau	 truncation	was	 found	 to	be	an	early	event	and	appears	before	

neurofibrillary	 tangle	 (NFT)	 formation	 albeit	 after	 hyperphophorylation	 of	 tau	 (Guillozet-

Bongaarts	et	al.,	2005;	Mondragon-Rodriguez	et	al.,	2008;	Rohn	et	al.,	2002;	Saito	et	al.,	2010).	

Various	 types	 of	 tau	 fragmentation	 have	 been	 reported	 in	 cells	 and	 brain	 tissue;	 cysteine	

proteases	 such	as	caspases	and	calpains	have	been	 implicated	 in	proteolysis	of	 tau	during	

apoptosis	 (Canu	et	 al.,	 1998).	 In	 vitro	 and	 in	 vivo	experiments	predicted	multiple	putative	

cleavage	 sites	 of	 tau	 at	 both,	 its	 C-terminal	 as	well	 as	 N-terminal	 domain	 by	 a	 variety	 of	

caspases	(Delobel	et	al.,	2008;	Gamblin	et	al.,	2003;	Guillozet-Bongaarts	et	al.,	2005;	Horowitz	

et	al.,	2004).	However,	not	all	proteolytic	cleavage	sites	can	be	assigned	to	a	distinct	protease:	

C-terminal	truncated	tau	at	glutamic	acid391	(E391)	is	linked	to	clinical	dementia	yet	catalyzed	

by	an	unknown	proteolytic	enzyme	(Basurto-Islas	et	al.,	2008;	Novak	et	al.,	1993).	

However,	presently	the	most	studied,	caspases	cleave	tau	preferentially	at	aspartatic	acid421	

(D421);	both,	caspase	3	and	caspase	6	have	been	found	to	be	involved	in	this	cleavage	at	the	

C-terminal	 domain	 of	 tau	 (Guo	 et	 al.,	 2004;	 Rissman	 et	 al.,	 2004;	 Zhang	 et	 al.,	 2009a).	

Moreover,	 accumulation	 of	 caspase-cleaved	 C-terminal	 fragments	 have	 been	 reported	 to	

correlate	with	the	progression	in	AD	and	in	vivo	mouse	models	of	tauopathy	(Basurto-Islas	et	

al.,	2008;	Cente	et	al.,	2006;	de	Calignon	et	al.,	2010;	Delobel	et	al.,	2008;	Guillozet-Bongaarts	

et	al.,	2005).	
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1.1.6 Tauopathies	

	

The	 term	 “Tauopathy”	 summarizes	 a	 heterogeneous	 group	 of	 disorders	 with	

hyperphosphorylated,	insoluble,	filamentous	tau	protein	inclusions	in	neurons	and	glial	cells	

(Spillantini	and	Goedert,	2013)	(Figure	1.4).	These	human	neurodegenerative	diseases	are	in	

most	 cases	 sporadic,	 and	 clinically	 characterized	 by	 dementia,	 often	 associated	 with	

movement	 impairment.	 Most	 frequent	 tauopathies	 include	 AD	 (see	 paragraph	 1.2.2.1),	

Progressive	 supranuclear	palsy	 (PSP)	 (Steele	et	al.,	 1964),	Corticobasal	degeneration	 (CBD)	

(Rebeiz	et	al.,	1968),	Pick’s	disease	(PiD)	(Constantinidis	et	al.,	1974),	Argyrophilic	grain	disease	

(AgD)	 (Braak	 and	 Braak,	 1989),	 and	 Frontotemporal	 dementia	 and	 parkinsonism	 linked	 to	

chromosome	17	(FTDP-17T)	(Wilhelmsen	et	al.,	1994).	

		

	

Figure	1.4	Different	types	of	tau	immunoreactivity	 in	tauopathies.	Hyperphosphorylated	tau,	AD	(A);	gallyas	
positive	globose	tangle,	AD	(B);	gallyas	positive	tufted	astrocyte,	PSP	(C);	hyperphosphorylated	tau	in	astrocytic	
plaques,	 CBD	 (D);	 hyperphosphorylated	 tau	 from	 pick	 bodies,	 PiD	 (E);	 hyperphosphorylated	 tau,	 AgD	 (F).	
(Adapted	from	Neumann	et	al.,	2009)	
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1.1.7 Prion-like	seeding	in	neurodegenerative	proteinopathies	

	

Prion-like	 seeding	or	 transmission	 is	a	general	mechanism	observed	 in	neurodegeneration	

proteinopathies	including	Creutzfeldt-Jakob	disease	(CjD),	kuru,	and	scrapie.	In	this	process	

involved	are	misfolded	and	aggregated	proteins	that	potentially	act	as	infectious	agents	by	

structurally	corrupting	other	proteins,	and	thus	trigger	their	pathogenic	aggregation	(Jucker	

and	Walker,	2013).	Various	neurodegeneration-associated	proteins	including	Aβ,	tau,	α-Syn,	

and	TDP-43	 are	 increasingly	emerging	as	 considerable	 candidates	with	potential	 prion-like	

properties	(Figure	1.5).	In	case	of	potential	Aβ	seeding,	this	is	reflected	in	studies	on	mouse	

models,	 where	 brain	 tissues	 from	 AD	 patients	 of	 APP	 transgenic	 mice	 can	 indeed	 seed	

amyloidosis	in	vivo,	indicating	a	prion-like	behavior	of	pathologic	Aβ	(Kane	et	al.,	2000;	Meyer-

Luehmann	et	al.,	2006).	Moreover,	 inoculation	of	brain	homogenates	derived	from	human	

tauopathy	patients	and	NFTs	bearing	P301S	tau	transgenic	mice	into	wild-type	tau	expressing	

ALZ17	host	mice	demonstrated	a	prion-like	spreading	potential	of	 insoluble	tau	aggregates	

(Clavaguera	et	al.,	2013;	Clavaguera	et	al.,	2009).	

	

1.1.7.1 CSF	Aβ	

	

Previously	it	has	been	shown	that	small	and	soluble	Aβ	species	found	in	the	brain	of	APP23	

transgenic	mice	exhibit	prion-like	behaviour	(Langer	et	al.,	2011).	Given	that	Aβ	is	also	present	

in	 the	 cerebrospinal	 fluid	 (CSF),	 CSF	 biomarkers	 constitute	 a	 valuable	 tool	 for	 early	 AD	

diagnosis	(Cummings,	2004;	McKhann	et	al.,	2011);	current	CSF	analysis,	though,	suffers	from	

measurements	variabilities	(Scheltens	et	al.,	2016).	Studies	on	post-mortem	CSF	have	been	

demonstrated	that	Aβ42	levels	inversely	correlate	with	cortical	plaque	deposition	(Tapiola	et	

al.,	2009).	Further,	in	parallel	to	the	progression	of	senile	plaques,	Aβ40	and	Aβ42	levels	in	the	

CSF	appear	to	decrease	with	age	(Maia	et	al.,	2013).	However,	the	potency	of	human	CSF	for	

amyloid	aggregation	induction	in	mouse	models	of	dementia	remains	elusive.	
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Figure	 1.5	 Spreading	 of	 neurodegeneration-associated	 proteins.	 Progressive	 prion-like	 propagation	 and	
spreading	of	Aβ	(A),	tau	(B),	α-Syn	(C),	and	TDP-43	(D)	based	on	brain	autopsy	studies	of	human	disease	patients.	
(Adapted	from	Jucker	and	Walker,	2013)	
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1.2 Chapter	2:	

Protein	fragmentation	in	neurodegenerative	disorders	
	
	

Frederik	Sprenger,	David	T.	Winkler	

Review	in	preparation 

 
	
1.2.1 Neurodegenerative	disorders		

	

The	 majority	 of	 neurodegenerative	 disorders	 is	 associated	 with	 pathological	 protein	

aggregation.	The	term	“proteinopathies”	has	therefore	been	established	for	these	diseases.	

The	mechanisms	underlying	protein	aggregation	 in	proteinopathies	has	 in	many	cases	only	

been	 partially	 understood.	 Different	 factors	 may	 eventually	 lead	 to	 pathological	 protein	

aggregation.	First	of	all,	an	 increased	aggregation	propensity	of	a	given	protein	can	 induce	

pathological	 folding	 and	 aggregation.	 Proteins	 can	 be	 rendered	 aggregation	 prone	 by	

patholocigal	 mutations,	 e.g.	 in	 the	 case	 of	 hereditary	 forms	 of	 proteinopathies,	 or	 by	

truncation.	In	sporadic	diseases,	factors	i.e.	decreased	protein	clearance,	e.g.	by	autophagy	

disruption,	 are	 furthermore	 suspected	 to	 be	 underlying	 the	 aggregation	 process.	 These	

processes	 involve	 protein	 cleavage	 and	 may	 thereby	 not	 only	 be	 beneficial	 by	 removing	

misfolding	proteins,	but	also	 indirectly	 contribute	 to	 render	 the	aggregation	propensity	by	

cutting	proteins	into	small	peptides	with	seed-like	character.	In	most	cases,	the	aggregating	

proteins	 are	 rather	 small,	 often	 derived	 of	 a	 precursor	 protein.	 All	 this	 points	 towards	 a	

unifying	 characteristic	 of	 protein	 cleavage	 as	 a	 key	 factor	 leading	 to	 aggregation	 prone	

fragments.	 Such	 fragments	 often	 possess	 an	 inherently	 higher	 aggregation	 propensity	

compared	to	their	primary	full-length	protein	of	which	they	are	derived.	

 
Protein	cleavage	is	a	widely	observed	process	in	neurodegenerative	disorders.	Based	on	the	

specific	neurodegeneration-associated	proteins	 and	 their	modifications	 leading	 to	disease-

typical	hallmarks	at	the	neuropathological	level,	various	neurodegenerative	diseases	can	be	

linked	to	one	another	and	assigned	to	the	following	terms:	
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(I) Tauopathy;	 including	 Alzheimer’s	 disease	 (AD),	 frontotemporal	 dementia	 and	

parkinsonism	 linked	 to	 chromosome	 17	 (FTDP-17T),	 progressive	 supranuclear	

palsy	(PSP),	cortocobasal	degeneration	(CBD),	and	argyrophilic	grain	disease	(AGD);	

Pick	disiease	(PiD),	and	globular	glial	tauopathy	(GGT)	(Fasulo	et	al.,	2005;	Ferreira	

and	Bigio,	2011;	Guo	et	al.,	2004;	Park	et	al.,	2007;	Zhang	et	al.,	2009a)	(see	also	

paragraph	1.1.6.);	

(II) Heriditary	 amyloidoses/Cerebral	 amyloid	 angiopathy	 (CAA);	 including	 AD	 and	

familial	CAA	related	to	Aβ	variants	such	as	familial	British	(FBD)	and	Danish	(FDD)	

dementias;	gelsolin;	and	transthyterin	(Chen	et	al.,	2001;	De	Strooper	et	al.,	1999;	

Ihse	et	al.,	2013;	Vidal	et	al.,	1999;	Vidal	et	al.,	2000);	

(III) α-Synucleinopathy;	including	Parkinson	disease	(PD),	dementia	with	Lewy	bodies	

(DLB),	and	multiple	system	atrophy	(MSA)	(Dufty	et	al.,	2007;	Kessler	et	al.,	2003;	

Mishizen-Eberz	et	al.,	2005);	

(IV) Trinucleotide	repeat	expansion	disorder	(TRD);	including	Huntingtin	disease	(HD),	

and	spinocerebellar-ataxia-1,	2,	3,	6,	7,	17	(SCA3	and	SCA7)	(Graham	et	al.,	2006;	

Hubener	et	al.,	2011;	Mookerjee	et	al.,	2009;	Wellington	et	al.,	2002);	

(V) Prion	disease;	 including	Creutzfeldt-Jakob	disease	(CjD)	(Altmeppen	et	al.,	2012;	

Notari	et	al.,	2008);	

(VI) TDP-43	proteinopathy;	TDP-43	related	disorders	 including	 frontotemporal	 lobar	

degeneration	(FTDP-TDP)	(Arai	et	al.,	2010;	Igaz	et	al.,	2009;	Nonaka	et	al.,	2009);	

(VII) FUS/FET	proteinopathy;	 including	basophilic	inclusion	body	disease	(BIBD)	(Kent	

et	al.,	2014;	Rademakers	and	Rovelet-Lecrux,	2009).	

	
Aggregates	of	aberrant	modified	proteins	may	either	consist	of	mainly	fragmented	precursor	

protein	 remnants,	 or	 contain	 co-aggregated	 full-length	 proteins	 and	 cleaved	 fragments	 in	

parallel.	 Cleavage	 derived	 species	 of	 the	most	 notable	 entities	 and	 their	 potential	 role	 in	

neurodegeneration	 will	 be	 addressed	 separately	 in	 the	 following	 paragraphs;	 a	 detailed	

discussion,	 though,	 of	 other	 individual	 protein	 modifications	 is	 beyond	 the	 scope	 of	 the	

present	work.	
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1.2.2 Protein	fragmentation	in	AD:	Aβ	

 

1.2.2.1 Alzheimer’s	disease	(AD)	

	

In	2015,	the	worldwide	prevalence	of	dementia	was	estimated	to	be	46.8	million	(Prince	et	

al.,	2015).	This	number	is	forecast	to	double	every	20	years,	reaching	over	130	million	affected	

people	 in	 2050.	Over	90%	of	 all	AD	 cases	occur	 sporadically;	 foremost	 among	others,	 age	

constitutes	the	main	risk	factor	for	dementia	(Blennow	et	al.,	2006);	in	addition,	the	frequency	

of	the	apolipoprotein	E4	(ApoE4)	allele,	a	major	genetic	risk	factor,	on	chromosome	19	in	late-

onset	AD	(LOAD)	patients	has	been	shown	to	be	significantly	 increased	(Strittmatter	et	al.,	

1993).	In	contrast,	about	5	to	10%	are	familial	cases	(FAD)	and	results	in	aggressive	early-onset	

progression	 of	 AD	 (EOAD)	 (Tanzi,	 1999).	Mutations	 in	 genes	 coding	 for	 amyloid	 precursor	

protein	 (APP;	 located	 on	 chromosome	21;	 presenilin	 1	 (PS1;	 located	 on	 chromosome	14),	

presenilin	2	(PS2;	located	on	chromosome	1)	have	been	reported	in	FAD	(Goate	et	al.,	1991;	

Sherrington	et	al.,	1995).	

Alzheimer’s	 disease	 is	 a	 most	 probably	 heterogeneous	 neurodegenerative	 disorder.	 It	 is	

clinically	 characterized	by	 progressive	 cognitive	 decline,	 typically	 delineated	by	 short-term	

and	long-term	memory	impairment,	as	well	as	loss	of	social	abilities	including	symptoms	like	

confusion,	irritability,	aggression	and	language	breakdown	(Tabert	et	al.,	2005;	Waldemar	et	

al.,	2007);	in	parallel,	patients	are	affected	by	muscular	deterioration	and	motor	disabilities	

(Scarmeas	et	al.,	2004).	Furthermore,	AD	 is	neuropathologically	defined	by	extracellular	β-

amyloid	 (Aβ;	 see	 paragraph	 1.2.2.2)	 plaques,	 vascular	 Aβ	 deposits	 (cerebral	 amyloid	

angiopathy;	CAA;	see	paragraph	1.2.3.)	and	intracellular	aggregates	of	tau	protein	(NFTs;	see	

paragraph	1.1.6)	(Alzheimer,	1906,	1907)	(Figure	1.6).	

Massive	 neuronal	 and	 dendritic	 loss	 is	 the	 primary	 cause	 of	 cortical	 atrophy	 during	 the	

progression	of	AD.	Atrophic	changes	results	in	cortical	thinning	and	enlargement	of	the	lateral	

cerebral	 ventricles.	 Reduced	 neuronal	 numbers	 in	 a	 variety	 of	 brain	 regions	 such	 as	 the	

temporal,	 parietal	 and	 enthorhinal	 cortex	 (Gomez-Isla	 et	 al.,	 1997),	 the	CA1	 region	of	 the	

hippocampus	 (West	 et	 al.,	 1994)	 and	 amygdala	 (Vereecken	 et	 al.,	 1994)	 have	 been	

documented;	however,	the	cause	of	neuron	death	is	disputable.	

In	fact,	the	pathogenic	mechanisms	are	poorly	understood,	with	some	studies	suggest	that	
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intraneuronal	and/or	oligomeric	Aβ-peptides	act	as	key	mediators	of	neurotoxicity	and	cell	

death	(Bayer	and	Wirths,	2010;	Larson	and	Lesne,	2012).	However,	pathological	tau	protein	

increasingly	gained	attention	in	the	pathogenesis	of	tauopathies	including	AD.	Other	studies	

provide	 evidence	 of	 an	 intimate	 coherence	 between	 neuron	 loss	 and	 the	 appearance	 of	

neurofibrillary	tangles	(Cras	et	al.,	1995;	Gomez-Isla	et	al.,	1997);	indeed,	in	contrast	to	the	

degree	of	Aβ	pathology	in	form	of	senile	plaques,	the	extent	of	tau	pathology	has	been	shown	

to	correlate	best	with	the	clinical	state	of	AD	(Arriagada	et	al.,	1992;	Giannakopoulos	et	al.,	

2007;	Landau	et	al.,	2016;	Ossenkoppele	et	al.,	2016).	

	

 
 
Figure	 1.6	 The	 pathological	 hallmarks	 of	 AD.	 Senile	 Aβ	 plaque	 (A),	 cerebrovascular	 amyloid	 (B),	 and	
neurofibrillary	tangles	(C).	(A	and	B	adapted	from	Castellani	et	al.,	2010)	

	

1.2.2.2 Aβ	

	

Amyloid-beta	(Aβ)	is	generated	from	the	amyloid	precursor	protein	(APP)	(Kang	et	al.,	1987;	

Tanzi	 et	 al.,	 1987),	 which	 is	 a	 single	 transmembrane	 glycoprotein	 consisting	 of	 an	

exocytoplasmic	 domain	 and	 a	 short	 cytoplasmic	 tail.	 This	 large	 precursor	 protein	 is	

sequentially	 processed	 releasing	 distinct	 secreted	 derivatives	 into	 vesicle	 lumens	 and	 the	

extracellular	space.	As	summarized	in	Figure	1.7,	APP	is	proteolytic	processed	via	(I)	the	non-

amyloidogenic	pathway;	or	(II)	the	amyloidogenic	pathway	(Selkoe,	2001b);	of	note,	the	latter	

is	crucial	for	Aβ	liberation	and	thus	of	neuropathological	relevance.	
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(I) The	non-amyloidogenic	pathway	

This	 processing	 prevents	 an	 accumulation	 of	 Aβ	 peptides	 by	 demolishing	 the	 complete	

amyloid	 sequence.	 APP	 is	 sequentially	 cleaved	 by	 α-and	 !-secretases	 to	 release	 a	 smaller	

fragment	(p3),	that	has	no	neuropathological	recognized	role.	The	α-site	cleavage	of	APP	by	

adamalysin	 protease	 (ADAM)	 cuts	 12-aa	 at	 the	 N-terminal	 single	 transmembrane	 domain	

(Roberts	 et	 al.,	 1994);	 consequently,	 a	 C-terminally	 truncated	 form	of	 soluble	 ectodomain	

fragment	 (α-sAPP)	 is	 released	 from	 the	 membrane.	 The	 remaining	 83-residue	 C-terminal	

fragment	(C83;	CTFα)	in	the	membrane	is	further	processed	by	!-secretases	which	then	leads	

to	the	release	of	the	short	extracellular	p3	fragment	(Selkoe,	2001b)	and	the	APP	intracellular	

domain	(AICD)	(Zhang	et	al.,	2011).	

	

(II) The	amyloidogenic	pathway	

Aβ	 protein	 is	 liberated	 by	 sequential	 proteolytic	 processing	 of	 APP	 involving	 β-and	 !-

secretases.	 Initially,	proteolytic	 cleavage	occurs	16-aa	 residues	 to	 the	N-terminal	of	 the	α-

cleavage	site	by	the	β-site	APP	cleaving	enzyme	1	(BACE1)	(Hussain	et	al.,	1999;	Sinha	et	al.,	

1999;	Vassar	et	al.,	1999),	generating	a	soluble	amino	terminal	APP	derivate	(β-sAPP)	and	a	

membrane-associated	 99-residue	 C-terminal	 (C99,	 CTFβ).	 Further,	 !-secretase	 activity	 at	

different	 intramembranous	CTFβ	sites	generates	Aβ	species	of	varying	 length	between	35-	

and	43-aa.	Foremost	among	them	are	peptides	of	Aβ40	or	Aβ42	aa	in	lengths,	that	are,	together	

with	 the	AICD,	most	 abundantly	 produced	 (Citron	 et	 al.,	 1995;	Haass	 et	 al.,	 1994;	 Selkoe,	

2001a;	Tang,	2009).	The	!-secretase	is	a	highly	hydrophobic	catalytic	enzyme	and	composed	

of	distinct	components:	presenilin	proteins	(PS1	or	PS2),	nicastrin,	anterior	pharynx	defective	

1	 (APH1)	and	presenilin	enhancer	2	 (PEN-2).	Aside	of	being	 involved	 in	APP	processing,	!-

secretase	 cleaves	 further	 substrates,	 such	 as	 Notch,	 cadherins,	 CD44	 and	 neuregulin	 (De	

Strooper	and	Annaert,	2010).	
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Figure	1.7	Schematic	representation	of	APP	processing.	 In	non-amyloidogenic	processing,	APP	is	sequentially	
cleaved	by	α-secretase	and	!-secretases	 to	 release	the	p3	 fragment.	 In	amyloidogenic	processing,	sequential	
cleavage	by	β-and	!-secretases	releases	the	Aβ	peptide.	(Thathiah	and	De	Strooper,	2011)	
	

1.2.3 Protein	fragmentation	in	familial	CAA:	ABri	and	ADan	

	

1.2.3.1 Cerebral	amyloid	angiopathies:	familial	British	and	Danish	dementia		

	

Cerebral	amyloid	angiopathy	(CAA)	summarizes	entities	with	deposition	of	amyloid	within	the	

walls	of	blood	vessel	of	the	CNS	(Ghiso	et	al.,	2001;	Mandybur,	1986);	it	occurs	as	sporadic	

and/or	familial	disease	forms	with	various	proteins	involved	including	APP	in	AD,	amyloid-Bri	

precursor	 protein	 (ABriPP)	 in	 familial	 British	 dementia	 (FBD),	 and	 amyloid-Dan	 precursor	

protein	(ADanPP)	in	familial	Danish	dementia	(FDD)	(Rensink	et	al.,	2003;	Revesz	et	al.,	1999;	

Revesz	et	al.,	2002).	
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FBD	and	FDD	are	 late-onset	diseases	and	 clinically	 characterized	by	progressive	dementia,	

spastic	tetraparesis,	and	cerebellar	ataxia	(Mead	et	al.,	2000;	Stromgren	et	al.,	1970);	with	

neuropathological	hallmarks	similar	to	those	in	AD	including	severe	CAA,	neuroinflammation,	

and	 neurofibrillary	 tangle	 formation	 (Coomaraswamy	 et	 al.,	 2010;	 Revesz	 et	 al.,	 2002;	

Rostagno	and	Ghiso,	2008).	

	

1.2.3.2 ABri	and	ADan	

	

Mutation	in	the	integral	membrane	protein	BRI2	leads	to	accumulation	of	highly	soluble	ABri	

and	ADan	peptides.	BRI2	is	a	type-II	single-spanning	trans-membrane	precursor	protein	of	266-

aa	in	length.	A	missense	mutation	or	decamer	duplication	mutation	produces	a	frame-shift	in	

the	BRI	gene	sequence	are	generating	two	larger,	277-residue	precursor	proteins	ABriPP	and	

ADanPP,	respectively	(Vidal	et	al.,	1999;	Vidal	et	al.,	2000).	

The	immature	BRI2	precursor	protein	is	cleaved	in	a	multi-step	proteolytic	process	resulting	in	

distinct	 intermediate-	 and	 end-products:	 (I)	 several	 proteases	 such	 as	 furin	 and	 other	

subtilisin/kexin-like	proprotein	convertases	(PPCs)	 leads	to	the	secretion	of	a	23-residue	C-

terminal	peptide	(Bri2-23)	(Kim	et	al.,	1999).	(II)	the	remaining	membrane	bound	mature	BRI2	

protein	is	further	processed	by	α-secretases	ADAM10	releasing	the	BRICHOS	domain	to	the	

extracellular	space	(Martin	et	al.,	2008).	(III)	finally,	an	N-terminal	fragment	(NTF)	undergoes	

proteolytic	cleavage	by	signal	peptide	peptidase-like	2	(SPPL2)	resulting	in	a	small	extracellular	

BRI2-C-terminal	peptide	and	in	parallel	to	an	intracellular	domain	(ICD)	(Martin	et	al.,	2008).	

Notably,	 instead	 of	 Bri2-23,	 proteolytic	 processing	 of	 ABriPP	 or	 ADanPP	 by	 PPCs	 leads	 to	

liberation	of	highly	soluble	34-residue	C-terminal	peptides	ABri	and	ADan,	respectively	(Figure	

1.8).	

Unlike	the	shorter	wild-type	peptide	Bri,	cleaved	ABri	showed	an	increased	propensity	in	the	

formation	of	toxic	oligomers	through	inter-molecule	disulfide	bonds	 in	vitro	(Cantlon	et	al.,	

2015;	 El-Agnaf	 et	 al.,	 2001).	Overexpression	of	 different	 amyloid	 peptides	 in	 the	 retina	of	

Drosophila	demonstrated	that	ADan	appears	to	be	more	toxic	compared	to	e.g.	Aβ42	peptides	

(Marcora	et	al.,	2014).	The	two	amyloidogenic	peptides,	ABri	and	ADan,	which	do	not	occur	in	

nature	 in	the	absence	of	 the	disease	causing	changes	 in	the	respective	precursor	proteins,	

demonstrate	 that	 the	 de	 novo	 creation	 of	 short	 peptides	 is	 sufficient	 to	 induce	 amyloid	
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formation	 and	 associated	 neurodegeneration.	 ABri	 and	 ADan	 therefore	 serve	 as	 principal	

models	 for	 an	upstream	 role	of	protein	 cleavage	 in	neurodegeneration.	 In	 addition	 to	 the	

induction	of	amyloid	deposits,	these	novel	peptides	also	induce	downstream	tau	pathology	in	

FBD	and	FDD	(Del	Campo	et	al.,	2015).	In	murine	models,	co-expression	of	soluble	ADan	and	

P301S	tau	exacerbates	tau	toxicity	associated	synaptic	dysfunction,	and	results	in	increased	

soluble	hyperphosphorylated	and	insoluble	aggregated	tau	species	as	well	as	tau	truncation	

at	Asp421	(Coomaraswamy	et	al.,	2010;	Garringer	et	al.,	2013).		

	

	

	

Figure	1.8	Schematic	representation	of	BRI2	processing.	(Cantlon	et	al.,	2015)	

 

1.2.4 Protein	fragmentation	in	PD:	α-synuclein	

 

1.2.4.1 Parkinson’s	disease	(PD)	

 
Parkinson’s	 disease	 (PD)	 is	 characterized	 by	 tremors	 and	 locomotion	 abnormalities	 and	

constitutes	 the	 most	 frequent	 movement	 disorder	 among	 α-synucleinopathies	 including	

dementia	with	 Lewy	 body	 (DLB)	 and	Multiple	 System	Atrophy	 (MSA).	 PD	 is	 pathologically	

defined	 by	 the	 presence	 of	 aberrant	α-synuclein	 (α-Syn)	 in	 intracellular	 deposits	 of	 Lewy	

bodies	 (LB)	 and	 Lewy	 neurites	 (LN)	 and	 by	 neuronal	 degeneration	 in	 the	 substantia	 nigra	

(Forno,	1996;	reviewed	in	Tofaris	and	Spillantini,	2005).	
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1.2.4.2 α-synuclein	

	

Proteolytic	processing	of	α-synuclein	is	thought	to	be	considerably	relevant	for	the	formation	

of	fibrillogenic	protein	inclusions	and	neurotoxicity	(Dufty	et	al.,	2007)	(Figure	1.9);	 indeed,	

truncated	α-synuclein	species	have	been	found	 in	brains	PD	and	DLB	patients	 (Baba	et	al.,	

1998;	Liu	et	al.,	2005).	In	fact,	C-terminally	truncated	α-Syn	has	been	found	to	increase	the	

aggregation	propensity	of	full-length	α-Syn,	resulting	in	enhanced	neurotoxicity	in	vivo	and	in	

vitro	(Giasson	et	al.,	2002;	Kanda	et	al.,	2000;	Li	et	al.,	2005).	It	also	has	been	demonstrated	

that	 C-terminal	 truncated	 α-Syn	 aggregates	 more	 rapidly	 compared	 to	 its	 full-length	

counterpart;	moreover,	truncated	α-Syn	species	exhibit	seeding	potential	of	full-length	α-Syn	

aggregation	 in	 vitro	 (Murray	 et	 al.,	 2003).	 Of	 note,	 manganese	 (Mn),	 a	 cofactor	 for	

homeostatic	and	trophic	enzymes	in	the	CNS,	has	been	shown	to	induce	cleavage	of	α-Syn	

protein	in	vitro	and	provoke	toxic	α-Syn	oligomers,	ultimately	leading	to	neuronal	injury	(Xu	

et	al.,	2015).	Aside,	matrix	metalloproteinases	(MMPs)	generating	aggregation-enhancing	α-

Syn	fragments	in	vitro	are	believed	to	be	also	relevant	for	PD	pathogenesis	in	vivo	(Levin	et	al.,	

2009).	Further,	N-terminal	truncation	of	α-Syn	protein	prevents	β-sheet	and	fibril	formation	

(Kessler	 et	 al.,	 2003).	 Also,	 in	 transgenic	 mice	 overexpressing	 a	 calpain-specific	 inhibitor,	

reduced	proteolytic	cleavage	of	α-Syn	protein	lead	to	a	decrease	of	α-Syn-positive	aggregates	

and	astrogliosis;	indicating	a	crucial	role	of	truncated	α-Syn	species,	but	also	of	calpains	in	the	

pathogenesis	of	PD	(Diepenbroek	et	al.,	2014).	

	

	

Figure	1.9	Schematic	 representation	of	α-Syn	protein	processing.	 (Adapted	 from	Emanuele	and	Chieregatti,	
2015)	
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1.2.5 Protein	fragmentation	in	TRD:	Htt,	ataxin,	and	atrophin	

	

1.2.5.1 Huntington’s	disease	(HD)	
	

Huntington’s	 disease	 (HD)	 is	 a	 late-onset,	 autosomal	 dominant,	 and	 progressive	

neurodegenerative	disorder	caused	by	a	CAG	trinucleotide	repeats	expansion	in	the	coding	

region	 of	 the	 huntingtin	 (htt)	 gene,	which	 encodes	 an	 polyglutamine	 (polyQ)	 stretch	 that	

alters	the	function	of	the	htt	protein;	indeed,	the	mutant	htt	possibly	affects	cellular	processes	

including	mitochondrial	dysfunction	and	vesicle	transport	failure	(Browne,	2008).	In	addition,	

polyQ	 induced	 conformational	 change	makes	 the	htt	 protein	more	aggregation-prone	and	

cause	inclusions	in	the	cytoplasm,	dendrites	and	axon	terminals	of	neurons	(Fan	et	al.,	2014).	

Interestingly,	it	has	been	shown	that	wild-type	huntingtin	can	diminish	the	neurotoxicity	of	

mutant	huntingtin	(Leavitt	et	al.,	2001;	Leavitt	et	al.,	2006;	Zhang	et	al.,	2003)	and	also	act	as	

an	autophagy	scaffold	(Rui	et	al.,	2015).		

The	 clinical	 picture	 of	 HD	 includes	 psychiatric	 features	 and	 dementia;	 progressive	 chorea	

development	and	other	movement	abnormalities.	In	parallel,	severe	degeneration	occurs	in	

the	striatal	medium-sized	spiny	neurons,	and	subsequently	in	the	deep	layers	of	the	cortex	

(Novak	and	Tabrizi,	2011;	Vonsattel	and	DiFiglia,	1998).	

 

1.2.5.2 htt	
	

The	correlation	between	huntingtin	length	and	neurotoxicity	is	poorly	understood;	however,	

htt	fragments	have	been	found	in	the	brains	of	HD	patients,	as	well	as	in	transgenic	mouse	

models	of	HD	(Kim	et	al.,	2001;	Wellington	et	al.,	2002).	Indeed,	proteolytic	cleavage	of	mutant	

htt	by	caspases,	calpains	and	other	proteases	such	as	MMPs	(Miller	et	al.,	2010)	release	an	

aggregation-prone	polyQ	 tract	 containing	N-terminal	 fragment,	 and	ultimately	 leading	 to	

intracellular	inclusions	and	neuronal	dysfunction	(Wellington	et	al.,	2000)	(Figure	1.10);	as	well	

as	 to	 impaired	mitochondrial	 trafficking,	preceding	the	 formation	of	aggregates	 (Orr	et	al.,	

2008).	 Further,	mouse	models	 transgenic	 for	 truncated	 forms	of	htt	have	 shown	a	 rapidly	

progressive	and	lethal	phenotype	(Mangiarini	et	al.,	1996;	Schilling	et	al.,	1999);	in	contrast,	

mice	expressing	full-length	mutant	constructs	exhibit	only	a	mild	pathological	phenotype	(Van	

Raamsdonk	et	al.,	2005).	
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1.2.5.3 Other	polyglutamine	diseases	

	

Other	 trinuleotide	 repeat	 expansion	 disorders,	 including	 various	 forms	 of	 Spinocerebellar	

ataxia	 (SCA	 types	1,	2,	3,	6,	7,	 and	17)	and	Dentatorubral-pallidoluysian	atrophy	 (DRPLA)	

share	common	properties	of	HD,	albeit	being	 less	 frequent;	mutations	 in	polyQ	expansion	

alters	the	normal	function	of	ataxin	proteins	(Margolis	and	Ross,	2001;	Palhan	et	al.,	2005)	

and	 the	 transcription	 co-regulator	 atrophin-1	 (Sato	 et	 al.,	 2009),	 respectively,	 leading	 to	

intranuclear	aggregation	in	cerebellar	Purkinje	cells	and	cortical	neurons	(Rolfs	et	al.,	2003).	

Among	 the	 other	 types,	 an	 important	 neuropathological	 role	 of	 ataxin	 cleavage	 has	 been	

shown	in	a	Drosophila	model	of	SCA3	and	for	SCA7	 in	vitro	and	 in	vivo.	Specifically,	polyQ-

containing	 fragments	 derived	 from	 caspase-dependent	 cleavage	 of	 ataxin-3	 have	 been	

demonstrated	to	induce	neurotoxicity,	thus	contribute	to	SCA3	disease	progression	(Jung	et	

al.,	2009)		In	addition,	it	has	been	shown	that	toxic	polyQ-containing	fragments	generated	by	

caspase-7	 mediated	 N-terminal	 cleavage	 of	 ataxin-7	 are	 subject	 to	 regulated	 clearance	

mechanisms;	 however,	 distinct	 post-translational	 modifications	 such	 as	

acetylation/deacetylation	appear	 to	modulate	 fragment	stability/clearance,	and	 thus	being	

crucial	for	mediating	polyQ-fragment	induced	toxicity.	(Mookerjee	et	al.,	2009).	

	

	
	
Figure	1.10	Schematic	representation	of	htt	protein	processing.	(Adapted	from	Ross	and	Tabrizi,	2011)	
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1.2.6 Protein	fragmentation	in	Prion	diseases:	PrPC	and	PrPSc	

 

1.2.6.1 Prion	diseases	

	

Prion	diseases	are	a	group	of	neurodegenerative	disorders	that	may	occur	sporadically,	but	

also	 manifest	 familial	 and,	 infectious	 forms.	 In	 human	 beings,	 prion	 diseases	 such	 as	

Creutzfeldt-Jakob	disease	(CjD)	and	kuru	are	clinically	characterized	by	progressive	dementia	

and	motor	dysfunction	(Prusiner,	1991).	

Prions	 are	 infectious,	 pathogenic	 proteins	 that,	 in	 contrast	 to	 viruses,	 are	 encoded	 by	 a	

chromosomal	 gene	 (PRNP)	 and	 are	 devoid	 of	 nucleic	 acid;	 they	 are	 crucially	 linked	 to	 the	

conversion	 of	 the	 physiological	 cellular	 prion	 protein	 (PrPC),	 a	 membrane-associated	

extracellular	glycoprotein	anchored	by	glycosylphosphatidylinositol	(GPI),	into	the	abnormal,	

self-propagating	‘scrapie’	prion	isoform	(PrPSc)	(Prusiner	et	al.,	1998).	The	post-translational	

modification	 from	a	 structural	 α-helical	 sheet	 to	 insoluble	 β-sheet	 structures	 results	 in	 an	

increased	 aggregation	 propensity	 of	 PrPSc;	 ultimately,	 polymerizing	 into	 amyloidogenic	

deposits	and	encouraging	prion	propagation	(DeArmond	et	al.,	1985).	

	

1.2.6.2 Prion	protein	

	

Biologically	 active	 fragments	 derived	 from	 proteolytic	 processing	 are	 thought	 to	 have	

implications	in	the	course	of	prion	diseases.	PrPC	is	subject	to	diverse	proteolytic	events	under	

physiological	conditions:	(I)	α-cleavage	within	the	neurotoxic	domain	produces	soluble	N1-	

and	a	membrane	bound	C1-fragment;	(II)	β-cleavage	gives	rise	to	a	N2-	and	C2-fragment;	and	

(III)	 shedding	 close	 to	 the	 plasma	 membrane	 releases	 almost	 full-length	 PrPC	 into	 the	

extracellular	space	(reviewed	in	Altmeppen	et	al.,	2012)	(Figure	1.11).	

Given	that	the	neurotoxic	domain	of	PrPC	is	essential	for	the	abnormal	conversion	to	the	PrPSc	

isoform,	α-cleavage	and	the	resulting	inactivation	of	this	structural	part	is	assumed	to	be	a	

protective	mechanism	as	to	prion	propagation	(Lewis	et	al.,	2009;	Turnbaugh	et	al.,	2012).	In	

addition,	α-cleaved	C1-fragment	has	been	 linked	 to	apoptotic	 caspase-3	activation	 in	 vitro	

(Sunyach	et	al.,	2007).	Of	note,	the	cleavage	derived	N1-fragment	has	been	demonstrated	to	

be	neuroprotective	in	vitro	and	in	vivo	(Guillot-Sestier	et	al.,	2009).	
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The	 role	 of	 PrPC	 shedding	 by	 a	 desintegrin	 and	 metalloproteinase	 10	 (ADAM10)	 in	

neurodegenerative	diseases	remain	unclear.	However,	there	is	evidence	that	shedding	of	not	

only	PrPC,	but	also	of	already	misfolded	PrPSc	leads	to	accumulation	of	anchorless	PrPSc;	thus,	

encouraging	neurotoxic	spreading	 in	the	brain	(Chesebro	et	al.,	2005;	Rogers	et	al.,	1993).	

Notably,	shedded	PrPSc	in	the	cerebrospinal	fluid	(CSF)	is	also	thought	to	enhance	pathological	

transmission	(Tagliavini	et	al.,	1992).	

N-terminally	truncated	PrP	species	has	been	found	to	co-localized	with	full-length	forms	in	

infectious	PrPSc	aggregates	in	mouse	brains	(Pan	et	al.,	2005).	Indeed,	various	truncated	forms	

of	full-length	PrPSc	has	been	shown	to	be	involved	in	prion	diseases:	the	most	common	PrPSc	

fragment	 PrP27-30	 (Parchi	 et	 al.,	 1996);	 PrP7-8	 truncated	 forms	 in	 Gerstmann-Sträussler-

Scheinker	(GSS)	diseases	(Parchi	et	al.,	1998);	PrP16-17	truncated	species	in	scrapie-infected	

animals	(Caughey	et	al.,	1998);	or	PrP-CTF12/13	in	sporadic	CjD	(Zou	et	al.,	2003).	Aside,	it	is	

thought	that	non-fibrillar	PrP	oligomers	have	implications	in	the	process	of	prion	diseases.	

However,	N-terminal	truncated	PrP	lead	to	non-specific	aggregates,	but	failed	to	form	toxic	

oligomeric	species	 in	vitro	and	 in	vivo;	 indicating	that	the	structural	N-terminus	plays	a	key	

role	in	the	infectious	and	neurotoxic	process	(Trevitt	et	al.,	2014).	Moreover,	transgenic	mice	

expressing	 a	 truncated	 form	 of	 mutant	 PrP	 lacking	 a	 short	 N-terminal	 segment	 of	 9-aa	

displayed	a	neurotoxic	phenotype	(Westergard	et	al.,	2011).	
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Figure	1.11	Schematic	representation	of	PrP	processing.	(Adapted	from	Altmeppen	et	al.,	2012)	

	

1.2.7 Protein	fragmentation	in	FTLD	and	ALS:	TDP-43	

 

1.2.7.1 TDP-43	proteinopathies	

	

TDP-43	proteinopathies	 including	 sporadic	 and	 familial	 frontotemporal	 lobar	degeneration	

(FTLD)	(Arai	et	al.,	2006)	and	amyotrophic	lateral	sclerosis	(ALS)	(Neumann	et	al.,	2006)	are	a	

group	of	 neurodegenerative	disorder	 caused	by	pathological	 neuritic	 inclusions	 containing	

transactive	response	(TAR)	DNA-binding	protein	43.	Aside	AD,	FTLD	is	the	most	common	form	

of	progressive	dementia	in	human	beings	under	the	age	of	65	years	(Neary	et	al.,	1998).	ALS,	

however,	 is	 the	 most	 common	 cause	 of	 motor	 neuron	 degeneration	 accompanied	 by	

progressive	muscle	wasting.	Moreover,	FTLD	patients	may	also	develop	ALS;	and	vice	versa	

(Murphy	et	al.,	2007).	Aside,	mutation	in	the	progranulin	gene	(PGRN)	are	thought	to	cause	

familial	form	of	FTLD	(Ghidoni	et	al.,	2008).	
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1.2.7.2 TDP-43	

	

Physiologically,	TDP-43	is	thought	to	play	a	role	in	the	regulation	of	various	cellular	processes	

including	 alternate	 splicing,	 transcription,	 apoptosis,	 microRNA	 biogenesis,	 and	 mRNA	

transport	and	stability	(reviewed	in	Buratti	and	Baralle,	2008;	Ou	et	al.,	1995).	Human	TDP-43	

is	 a	 414-aa	 nuclear	 protein,	 ubiquitously	 expressed	 and	 highly	 conserved;	 structurally,	 it	

harbors	 two	 RNA-recognition	 motifs	 (RRM1;	 RRM2)	 and	 a	 protein-protein	 interaction	

mediating	 C-terminal	 glycine-rich	 region	 (Wang	 et	 al.,	 2004).	 Furthermore,	 the	 TDP-43	

molecule	exhibit	three	potential	caspase-3	cleavage	sites	(Zhang	et	al.,	2007).	

Both,	hyperphosphorylated	and	ubiquitinated	full-length	and	N-terminally	truncated	TDP-43	

are	 the	major	 component	 of	neuritic	 inclusions	 in	 brain	 tissue	 of	 FTLD	 and	 ALS	 patients.	

Caspase	 3/7-mediated	 proteolytic	 cleavage	 at	 Asp89	 and	 Asp220	 of	 wild-type	 TDP-43	

generates	a	35-kDa	(CTF35)	and	a	25-kDa	C-terminal	 fragment	 (CTF25)	 respectively	 (Figure	

1.12);	 moreover,	 different	 cleavage	 sites	 at	 Arg208,	 Asp219,	 and	 Asp247	 of	 CTF25	 were	

further	 identified	(Igaz	et	al.,	2009;	Neumann	et	al.,	2006;	Nonaka	et	al.,	2009).	Moreover,	

each	individual	TDP-43	CTF	has	been	shown	to	possess	distinct	molecular	properties	including	

intracellular	distribution	and	phosphorylation	status,	contributing	to	the	pathogenic	diversity	

of	TDP-43	proteinopathies	(Furukawa	et	al.,	2011).	

So	far,	accumulation	of	truncated	species	might	mediate	toxicity,	or	is	simply	a	consequence	

in	the	course	of	neurodegeneration;	in	any	case,	the	pathological	role	of	TDP-43	fragments	

remains	 elusive.	 However,	 several	 studies	 implicate	 a	 neurotoxic	 relevance	 of	 TDP-43	

fragmentation.	 Indeed,	 expression	of	caspase-cleaved	CTF25	 fragment	 in	human	cell	 lines	

lead	 to	cell	death	accompanied	by	 the	 formation	of	 toxic	 insoluble	aggregates;	aside,	 this	

fragment	did	not	interact	with	full-length	nuclear	TDP-43	or	affect	its	function,	thus,	indicating	

a	toxic	gain-of-function	(Zhang	et	al.,	2009b).	Furthermore,	this	fragment	showed	an	increased	

hyperphosphorylation	 propensity	 at	 sites	 not	 required	 for	 neurotoxic	 inclusion	 formation	

compared	to	full-length	TDP-43.	In	contrast,	another	study	demonstrated	that	TDP-43	CTFs	

provoke	both,	first,	the	formation	of	aberrant	phosphorylated	and	ubiquitinated	aggregates,	

and	 second,	 the	 incorporation	 of	 newly	 synthesized	 endogenous	 full-lengths	 species	 into	

these	cytoplasmic	inclusions	(Nonaka	et	al.,	2009).	Interestingly,	given	that	regulation	of	exon	

splicing	is	a	defined	function	of	TDP-43,	aberrant	splicing	has	been	demonstrated	in	cultured	
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cells	expressing	TDP-43	CTFs	cleaved	at	Arg208;	 thus,	 strengthened	the	pathogenic	 role	of	

TDP-43	fragments	in	FTLD	and	ALS	(Igaz	et	al.,	2009).	

However,	there	is	also	evidence	of	fragmentation-mediated	clearance	of	full-length	TDP-43:	

the	 activation	 of	 endoplasmatic	 reticulum	 (ER)	 membrane-bound	 caspase-4	 cleavage	

diminishes	ER	stress	caused	by	abundant	accumulation	of	TDP-43;	subsequent	activation	of	

the	 downstream	 caspase-3/7	 pathway	 ultimately	 results	 in	 reduced	 full-length	 TDP-43	

cytotoxicity	and	necrotic	cell	death	(Li	et	al.,	2015).	

	

	

Figure	1.12	Schematic	representation	of	TDP-43	domain	processing.	(Adapted	from	Chiang	2016)	
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We	have	outlined	above	several	examples	of	proteinopathies,	where	protein	cleaveage	results	

in	 aggregation	 prone	 fragments,	 pointing	 towards	 a	 general	 pathogenic	 role	 of	 protein	

fragmentation	 in	 neurodegenerative	 diseases.	 This	 can’t	 be	 said	 without	 mentioning	 the	

ongoing	debate	on	the	toxicity	of	aggregates	in	proteinopathies.		

There	exist	two	opposing	views	on	amyloid	lesions	in	most	neurodegenerative	diseases:	high	

molecular,	fibrillary	aggregates	can	either	be	considered	as	inert	intracellular	garbage	or,	as	

specifically	 toxic	 entities.	 In	 most	 proteinopathies,	 the	 current	 evidence	 points	 towards	

considerable	neurotoxicity	of	early,	non-fibrillary	oligomeric	aggregates	(Berger	et	al.,	2007;	

Gerson	et	al.,	2014;	Patterson	et	al.,	2011;	Usenovic	et	al.,	2015).	This	concept	of	oligomer	

toxicity	 in	 neurodegenerative	 disorders	 is	 compatible	 with	 a	 primary	 pathogenic	 role	 of	

protein	fragments	that	induce	the	aggregation	of	proteins	into	oligomeric	species.	We	have	

recently	reported	such	a	toxicity	inducing	effect	of	a	tau	fragment	in	tau	transgenic	mouse	

models	(Ozcelik	et	al.,	2016),	providing	experimental	support	of	this	hypothesis.		
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2 Aims	of	the	work	

	
	
	
Attributable	to	the	increase	in	life	expectancy,	the	prevalence	of	tauopathies	including	AD	is	

continually	 growing	with	 underlying	 pathological	mechanisms	 partly	 unknown.	 Given	 that	

current	therapeutic	treatments	are	limited	to	symptomatic	approaches,	global	society	is	faced	

with	enormous	socioeconomic	challenges.	

	

Yet,	neurodegenerative	disease	research	highlighted	various	aspects	of	the	pathogenesis	of	

tauopathies	such	as	protein	fragmentation	and	spreading.	

	

Protein	 fragmentation	 is	 increasingly	emerging	as	an	 integral	event	 in	 the	pathogenesis	of	

neurodegenerative	diseases.	Numerous	in	vitro	and	in	vivo	studies	have	addressed	whether	

cleavage	of	disease-associated	proteins	is	sufficient	to	exacerbate	an	ongoing	disease	process.	

Indeed,	 the	 relevance	 of	 protein	 fragmentation	 has	 been	 highlighted	 in	 the	 course	 of	 a	

plethora	 of	 proteinopathies	 with	 an	 emphasis	 on	 the	 neurotoxic	 potential	 of	 protein	

fragments	 (Altmeppen	 et	 al.,	 2012;	 Furukawa	 et	 al.,	 2011;	 Masters	 and	 Selkoe,	 2012;	

Mookerjee	et	al.,	2009;	Vidal	et	al.,	1999;	Wellington	et	al.,	2000).	As	for	tau	protein,	truncated	

forms	have	been	shown	to	facilitate	tau	aggregation;	and	thus,	appear	to	possess	an	increased	

neurotoxic	potential	compared	to	full-length	tau	species	(Abraha	et	al.,	2000).		In	tauopathies,	

the	dynamics	of	various	neurotoxic	tau	species	is	still	a	matter	of	debate.	To	date,	 it	 is	not	

known	which	tau	species	is	the	most	toxic	and	how	the	toxicity	is	mediated	(Goedert,	2015).	

However,	 hyperphosphorylated	 and	 aggregated	 tau	 species	 are	 considered	 as	 the	

fundamental	neurodegenerative	components	in	tauopathies	(Spillantini	and	Goedert,	2013).	
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Directly	determining	the	pathological	function	of	distinct	tau	species	and	cellular	mechanisms	

underlying	tau	toxicity,	in	vivo,	remains	challenging.	Numerous	tau	transgenic	mouse	models	

have	been	created	to	explain	changes	in	the	regulation	of	tau	metabolism	(Duyckaerts	et	al.,	

2008).	 Accordingly,	 we	 generated	 multiple	 transgenic	 mouse	 lines	 in	 order	 to	 study	 the	

relevance	of	tau	fragmentation	for	the	neurodegenerative	process	in	tauopathies.	These	mice	

either	express	a	truncated	tau	sequence	(3R	Δtau151–421)	alone	or	in	combination	with	wild-

type	(0N3R	or	2N4R)	or	mutant	(0N4R)	full-length	tau	isoforms.	Of	note,	animal	models	that	

express	wild-type	 full-length	 forms	of	 tau	generally	stay	devoid	of	 insoluble	 tau	 inclusions,	

whereas	models	that	overexpress	mutated	full-length	tau	exhibit	NFTs	(Allen	et	al.,	2002;	Gotz	

et	al.,	1995).	

 

Aside	 tau	protein,	 the	aggregation	of	Aβ	species	generated	by	proteolytic	cleavage	of	APP	

constitutes	a	key	pathological	hallmark	of	AD.	Lately,	a	prion-like	role	of	mouse	brain	derived	

Aβ	 species	 has	 been	 demonstrated	 (Langer	 et	 al.,	 2011);	 thus	 indicating	 that	 Aβ	 species	

present	in	the	CSF	may	exhibit	similar	seed-like	properties	in	vivo.	

	

Within	 this	 framework,	 we	 sought,	 to	 longitudinally	 analyze	 the	 effects	 of	 a	 human	 tau	

fragment	in	a	murine	model	and	specifically	its	potential	interaction	with	human	full-length	

tau,	and	in	parallel,	to	analyze	potential	seed-potent	CSF	derived	Aβ	species	in	vivo.	
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Supplemental	Information	

Supplementary	Information	accompanies	the	paper	on	the	Molecular	Psychiatry	website	

(http://www.nature.com/mp)	

	

Supplementary	Videos:		

	

Video	S1		

A	3-week-old	P301SxTAU62on	double	transgenic	mouse	 is	shown.	Note	the	paralysis	of	 the	

hindlimbs,	while	the	mouse	is	still	capable	of	moving	by	using	the	forelimbs.		

	

Video	S2		

Video	of	a	5-month-old	homozygous	P301S	mouse.	Homozygous	P301S	mice	develop	overt	

motor	 impairments	starting	at	ages	of	3-4	months.	This	mouse	 is	walking	slowly,	however,	

there	is	no	severe	hindlimb	palsy	occurring	in	P301S	mice	up	to	ages	of	5	months.		

	

Video	S3	

The	same	P301SxTAU62on-off	mouse	seen	in	Video	S1	is	shown,	but	now	38	days	after	Dtau	

expression	has	been	stopped	by	withdrawal	of	doxycycline.	The	hindlimb	palsy	is	significantly	

improved	and	the	mouse	is	again	walking	almost	normally.		

	

Video	S4		

A	3-week-old	ALZ17xTAU62on	double	transgenic	mouse	 is	shown.	Note	the	paralysis	of	 the	

hind	limbs,	while	the	mouse	is	still	capable	of	moving	by	using	the	forelimbs.		

	

Video	S5		

A	recovered	ALZ17xTAU62on-off	mouse	 is	shown	one	month	after	Dtau	expression	has	been	

stopped	by	withdrawal	of	doxycycline.	

	

Video	S6		

Paralyzed	ALZ31xTAU62on	mouse	aged	three	weeks.	
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Video	S7	

12-month-old	P301SxALZ31	mouse.	Note	the	normal	grid	climbing	capability	of	this	double	

transgenic	mouse.		

	

Video	S8	

4-month-old	ALZ17SxALZ31	mouse.	Note	the	normal	grid	climbing	capability	of	this	double	

transgenic	mouse.		
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Supplementary	Table	and	Figures:	

	

Table	S1	

	

 
 
(a-c)	 Overview	 on	 the	 transgenic	 and	 co-transgenic	mouse	 lines	 used	 for	 the	 present	 studies.	 Tau	 isoforms	
expressed	are	shown.	Dark	grey	boxes	indicate	the	tau	repeat	domains	(3R	or	4R	isoforms),	and	light	grey	boxes	
N-terminal	inserts	(e.g.	ALZ17	�	2N4R).		
The	 tau	 cDNA	 constructs	 are	 either	 driven	 by	 a	 standard	 Thy1.2	minigene	 (Thy1.2)	 or	 by	 a	modified	 Thy1.2	
minigene	 that	 contains	 a	 tetracycline	 controlled	 transcriptional	 silencer	 element	 (Thy1.2-tTS)	 in	 case	 of	 the	
TAU62	mouse.	 (a)	 shows	 the	 tau	 isoforms	expressed	 in	 single-transgenic	 lines.	 (b)	 shows	 the	 tau	 forms	of	3	
mouse	lines	co-expressing	full-length	tau	with	Dtau.	(c)	depicts	2	mouse	lines	co-expressing	different	full-length	
tau	isoforms.		
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Figure	S1		
 

 
 
TAU62	mice	develop	a	slowly	progressive	motor	phenotype.	
Motor	fitness	was	assessed	on	a	vertical	mesh	grid.	Time	spent	on	the	grid	progressively	declined	in	TAU62	mice,	
while	B6	controls	were	unimpaired	at	12	months	and	showed	a	mild	decline	at	18	months	of	age.	
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Figure	S2		
 

 
 
 
(a)	Extensive	hyperphosphorylation	of	tau	was	seen	in	the	brainstem	of	old	homozygous	P301S	mice	by	staining	
with	antibodies	targeting	late	phospho-epitopes.	Multiple	tau	tangles	and	granular	aggregates	were	detectable	
in	these	mice	by	Gallyas	silver	stain.	The	scale	bar	in	a	corresponds	to	50	µm.	(b)	Western	blotting	under	non-
reducing	conditions	revealed	high-molecular	tau	species	in	paralyzed	P301SxTAU62on	mice	(lanes	6&7);	similar	
tau	species	were	seen	in	aged	tangle	bearing	homozygous	P301S	mice	(lane	5).	When	tau	expression	was	halted,	
no	more	high-molecular	tau	forms	were	detectable	in	P301SxTAU62on-off	mice	(lane	3;	Western	blot	performed	
with	anti-tau	antibody	HT7).	(c)	Staining	with	the	RD3	antibody	targeting	Asp421	shows	the	presence	of	Dtau	in	
the	 high	molecular	 weight	 tau	 species.	 (d)	 Sarkosyl-extraction	 detects	 only	 soluble	 tau	 species	 in	 paralyzed	
P301SxTAU62on	 mice	 (“sol”:	 sarkosyl-soluble	 tau;	 “insol”:	 sarkosyl-insoluble	 fraction).	 (e-g)	Dtau	 was	 widely	
expressed	 in	 the	 spinal	 cord	 of	 P301SxTAU62on	 mice	 (e)	 and	 phosphorylated	 at	 the	 AT8	 epitope	 (f).	 Upon	
cessation	 of	 Dtau	 expression,	Dtau-	 and	 AT8-positive	 tau	 was	 no	 longer	 detectable	 (g).	 The	 scale	 bar	 in	 e	
corresponds	to	100	µm	in	e-g.	
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Figure	S3	
 

 

(a-m)	P301SxTAU62	mice	exhibit	signs	of	Golgi	disruption,	protein	missorting	and	mitochondrial	clustering.	These	
signs	are	reversible	upon	cessation	of	Dtau	expression.	Immunohistochemistry	using	antibodies	against	MG160	
(a-f),	 synaptophysin	 (g-i),	 VAMP2	 (k-m),	 and	 cytochrome	C	oxidase	 (COX)	 (n-p),	 in	 the	hippocampus	of	 non-
transgenic	mice	(B6),	3-week-old	paralyzed	mice	(P301SxTAU62on)	and	recovered	mice	6	weeks	after	cessation	
of	Dtau	expression	(P301SxTAU62on-off).	The	scale	bar	in	a	corresponds	to	19	µm	in	d-f,	63	µm	in	a-c	and	g-i,	and	
400	µm	 in	 k-m.	 The	 scale	 bar	 in	 n	 corresponds	 to	 30	µm	 for	 n-p.	 Arrows	 in	 (e)	 indicate	 fragmented	 Golgi	
structures.		
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Figure	S4	
 

 
 
(a-c)	Young	TAU62	mice	exhibit	normal	sciatic	nerves	(Masson’s	trichrom	stain	(a);	para-Phenylenediamine	(b);	
immunohistochemistry	 using	 2f11	 antibody	 (c).	 The	 scale	 bar	 in	 c	 corresponds	 to	 30	 µm	 in	 a-c.	 (d-g)	 M.	
gastrocnemius	stained	for	ATPase	(pH	4.2).	Dark	type	1	fibres	(1)	and	light	type	2	fibres	(2).	The	scale	bar	in	g	
corresponds	 to	 50	µm	 (for	d-g).	 P301S:	 heterozygous	mice	 transgenic	 for	 human	mutant	 P301S	 tau,	 aged	 3	
weeks;	TAU62:	heterozygous	mice	expressing	3R	tau151-421,	aged	3	weeks;	P301SxTAU62

on:	paralyzed	mice,	aged	
3	weeks;	P301SxTAU62on-off:	recovered	mice,	6	weeks	after	cessation	of	the	expression	of	Dtau.		
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Figure	S5	
 

 
 
(a-i)	Co-expression	of	3R	wild-type	tau	and	Dtau	(ALZ31xTAU62	mice)	causes	paralysis	and	neuropathy,	which	
are	not	reversed	upon	cessation	of	Dtau	expression.	(a)	Paralyzed	(aged	3	weeks)	and	non-recovered	(3	weeks	
after	cessation	of	Dtau	expression)	ALZ31xTAU62	mice	 (see	also	video	S6).	 (b)	Absence	of	 recovery	of	motor	
function	as	assessed	by	a	grid-test	of	ALZ31xTAU62	mice	following	the	removal	of	doxycycline	between	14	and	
16	days	(blue	line;	triangles	indicate	the	times	of	euthanasia,	n=6).	Motor	function	of	heterozygous	ALZ31	mice	
(green	 line,	n=7).	 (c)	Western	blot	with	HT7	of	brainstem	tissue	 from	non-transgenic	mice	 (B6),	TAU62	mice,	
ALZ31	mice	and	ALZ31xTAU62	mice.	Actin	staining	was	used	as	the	loading	control.	(d-i)	Histological	analysis	of	
paralyzed	ALZ31xTAU62	mice	aged	3	weeks,	using	AT8	(d),	AT100	(e),	NF200	(f),	Holmes-Luxol	(HL)	(g),	Masson’s	
trichrome	(h),	and	Hematoxylin-eosin	(HE)	staining	(i).	The	arrow	in	(g)	points	to	a	spheroid.	The	scale	bar	in	d	
corresponds	to	200	µm	in	d	and	e;	100	µm	in	f;	33	µm	in	g;	50	µm	in	h,	i.		
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Figure	S6	
 

 
 
(a,b)	Robust	expression	of	the	two	full-length	tau	isoforms	in	P301SxALZ31	(a)	and	ALZ17xALZ31	(b)	co-transgenic	
mice.	For	comparison,	expression	of	mice	co-transgenic	for	Dtau	with	full-length	tau,	as	well	as	the	respective	
single	transgenic	mice	is	shown.	Western	blots	run	under	reducing	conditions	using	HT7	antibody.		
  



Results	
	
	

 66 

Supplemental	Experimental	Procedures	
 
Antibodies	used	for	immunohistochemistry	(IHC)	and	Western	blotting	(WB)	
(species	is	mouse,	unless	indicated	otherwise):		
 
 
Antibody	 Target	 Dilution	 Source	
HT7	 human	tau	

aa	159-163	
WB	1:4000	
IHC	1:800	

Pierce,	Rockford,	IL		
#MN1000	

BR134	 human	tau	 WB	1:1000	 (Goedert	et	al.,	1989)	

Tau-C3	 Tau	cleaved	at	
residue	Asp421		

WB	1:1000	
IHC	1:1000	

Santa	Cruz	Biotechnology,	Inc,	Dallas,	TX		
#sc-32240	

AT8	 Tau	
pSer202/Thr205	

WB	1:1000	
IHC	1:800	

Pierce,	Rockford,	IL	#MN1020	

AT100	 Tau	
pThr212/Ser214	

WB	1:1000	
IHC	1:500	

Pierce,	Rockford,	IL	#MN1060	

PHF-1	 Tau	
pSer396/404	

WB	1:2000	
IHC	1:1000	

Peter	Davies,	Albert	Einstein	College	of	
Medecine,	Bronx,	NY	

MC1	 Tau	
aa	5-15,	312-322		

IHC	1:100	 Peter	Davies,	Albert	Einstein	College	of	
Medecine,	Bronx,	NY	

2F11	 neurofilament	(NF)	
NF-L,	NF-H	(70kD)	

IHC	1:800	 Dako,	Glostrup,	DK		
#M0762	

NF200	 neurofilament	(200kD)	 IHC	1:100	 (Probst	et	al.,	2000)	
GFAP	 glial	fibrillary	acidic	

protein	
IHC	1:500	 Thermo	Fisher	Scientific	Inc.,	Kalamazoo,	

MI						
#MS-1407-R7	

Synaptophysin	 synaptophysin	 IHC	1:1000	 Millipore	Corporation,	Billerica,	MA	
#MAB5258	

MG160	(rabbit)	 Golgi	apparatus	 IHC	1:1000	 Nicholas	Gonatas,	Pathology	and	
Laboratory	Medicine,	University	of	
Pennsylvania,	PA	

VAMP2/Synaptobrevin	
2	(rabbit)	

transport	vesicles	 IHC	1:1000	 Synaptic	system,	Goettingen,	Germany		
#	104	202	

GAPDH	(6C5)	 GAPDH	 WB	1:1000	 Santa	Cruz	Biotechnology,	Santa	Cruz,	CA,	
#32233	

ß-actin	 actin	 WB	1:5000	 Sigma-Aldrich,	Saint	Louis,	MO	#A5316	
Cox	subunit	1a	 mitochondrial	

staining	
IHC	1:200	 Abcam	plc,	Cambridge,	UK		

#ab14705	
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3.2 Preliminary	data	
 

Protective	 effect	 of	 early	 tau	 burden	 on	 late	 neurotoxic	
distress	 level	 –	 Mechanisms	 underlying	 tauopathy	 and	
consequences	for	future	therapies	
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Protective	effect	of	early	tau	burden	on	late	neurotoxic	distress	level	–	Mechanisms	

underlying	delayed	tauopathy	and	consequences	for	future	therapies		

	

Preliminary	results	

	

We	have	recently	provided	evidence	that	assembly	of	filamentous	tau	aggregates	is	not	solely	

responsible	for	the	characteristic	tau	toxicity	in	neurodegenerative	disorders.	We	could	show	

that	both,	co-expression	of	full-length	P301S	mutant,	as	well	as	full-length	wildtype	tau	with	

Δtau151-421	results	in	a	high	in	vivo	neurotoxicity	associated	with	the	formation	of	soluble	high	

molecular	 weight	 tau	 oligomers,	 extensive	 nerve	 cell	 dysfunction	 and	 severe	motor	 palsy	

albeit	in	absence	of	insoluble	tau	aggregates	or	tangles	(Ozcelik	et	al.,	2016).	

Given	that	our	P301SxTAU62on-off	mice	were	exposed	to	drastic	neurotoxic	stress	during	early	

postnatal	life,	we	asked	whether	this	event	has	any	possible	impact	on	tau	pathology	later	in	

life,	even	after	the	expression	of	truncated	tau	is	halted.	Initially,	we	hypothesized	that	the	

observed	prevalent	oligomeric	tau	species	might	act	as	a	form	of	toxic	seed	for	more	drastic	

tau	 pathology	 in	 later	 stages,	 ultimately	 manifesting	 in	 earlier	 tau	 tangle	 formation.	

Interestingly,	 compared	 to	 their	 heterozygous	 P301S	 tau	 transgenic	 littermates	 that	 have	

never	been	paralyzed,	recovered	P301SxTAU62on-off	mice	that,	in	contrast,	experienced	early	

neurotoxicity	 tau	 burden	 however	 exhibit	 a	 better	 motor	 phenotype	 associated	 with	

considerably	less	tau	protein	levels	and	an	overall	attenuated	tau	pathology.	

	

3.2.1 Delayed	motor	phenotype	in	aged	P301SxTAU62on-off	mice	after	recovery	

of	severe	neurotoxicity	

	

To	monitor	the	behavioural	phenotype	in	P301SxTAU62on-off	mice	after	cessation	of	Δtau151-421	

but	continuous	full-length	P301S	tau	expression,	we	performed	a	battery	of	motor	function	

tests	at	ages	of	12	to	16	months.	Given	that	the	pathological	hind	limb	posture	is	normalized	

in	recovered	P301SxTAU62on-off	mice	(Ozcelik	et	al,	2016,	Figure	3.1	a),	we	chose	to	repeat	the	

tail	suspension	test:	14-month-old	heterozygous	P301S	transgenic	littermates	showed	already	

first	 signs	of	 hind	 limb	 clasping	 that	 aggravated	 at	 16	months	of	 age,	while	 the	hind	 limb	

spreading	of	P301SxTAU62on-off	mice	stayed	almost	normal	up	to	16	months	of	age	(Figure	3.1	
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b	and	c).	Indeed,	compared	to	their	heterozygous	P301S	littermates,	P301SxTAU62on-off	mice	

maintain	a	significantly	better	motor	strength,	coordination	and	balance	at	14	months	of	age	

that	is	still	pronounced,	but	non-significant	at	the	age	of	16	months	(Figure	3.1	d	and	e).	Of	

note,	both	transgenic	lines	showed	comparable	performances	on	the	grid	and	rotarod	at	the	

age	 of	 12	months,	 as	well	 as	 no	 differences	 in	 sex-specific	 bodyweight	were	 found	 at	 16	

months	of	age	(Figure	3.1	d,	e	and	f).	
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Figure	3.1.	Formerly	paralyzed	P301SxTAU62on-off	mice	develop	a	significant	delayed	motor	phenotype.	 In	
contrast	 to	 their	 heterozygous	 P301S	 transgenic	 littermates,	 P301SxTAU62on-off	 mice	 exhibit	 a	 better	 grid	
reflex,	motor	strength	and	motor	coordination	at	ages	of	12,	14,	and	16	months.	(a-c)	Pathological	hind	limb	
spreading	was	assessed	by	a	tail	suspension	test.	(a)	Paralyzed	P301SxTAU62on	mice	at	age	of	3	weeks	exhibit	
pathological	 hind	 limb	 posture.	 3	 weeks	 after	 cessation	 of	 Δtau151-421	 expression,	 P301SxTAU62

on-off	 mice	
recover	from	their	palsy,	albeit	continuative	expression	of	P301S	mutant	tau	(for	details	see	Ozcelik	et	al	2016).	
(b	and	c)	Less	visible	upon	P301SxTAU62on-off	mice,	pathological	hind	limb	spreading	manifested	predominantly	
in	heterozygous	P301S	transgenic	 littermates	at	14	to	16	months	of	age.	 (d-f)	Based	on	the	grid	(d,	P301S	
heterozygous:	12	months,	n=15;	14	months,	n=21;	16	months,	n=21;	P301SxTAU62on-off:	12	months,	n=5;	14	
months,	n=11;	16	months,	n=13;	non-transgenic	B6:	12	months,	n=5;	14	months,	n=13;	16	months,	n=12	)	and	
rotarod	(e,	P301S	heterozygous:	12	months,	n=15;	14	months,	n=25;	16	months,	n=21;	P301SxTAU62on-off:	12	
months,	n=5;	14	months,	n=14;	16	months,	n=13;	non-transgenic	B6:	12	months,	n=5;	14	months,	n=13;	16	
months,	n=12	)	performance	test,	P301SxTAU62on-off	mice	exhibit	significantly	better	motor	fitness	at	ages	of	
14	 to	 16	 months,	 compared	 to	 heterozygous	 P301S	 transgenic	 littermates.	 (f)	 Sex-sorted	 body	 weight	
monitoring	at	16	months	of	age	(P301S	heterozygous:	male,	n=6;	female,	n=17;	P301SxTAU62on-off:	male,	n=5;	
female,	n=6).	Data	represents	the	mean	and	s.d.	of	indicated	animals	per	group.	***P<0.001.	
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3.2.2 Reduced	tau	pathology	in	aged	P301SxTAU62on-off	mice	after	recovery	of	

severe	neurotoxicity	

	

In	order	to	elucidate	whether	the	considerably	delayed	motor	phenotype	in	P301SxTAU62on-

off	mice	was	associated	with	a	varying	degree	of	severity	of	tau	pathology,	we	screened	brain	

sections	 of	 both,	 16-months-old	 P301SxTAU62on-off	 mice	 and	 their	 heterozygous	 P301S	

littermates,	for	the	presence	of	certain	tau	species.	Indeed,	we	could	show	that	neurofibrillary	

tangles	paralleled	the	previously	observed	impaired	motor	phenotype	in	heterozygous	P301S	

littermates;	specifically,	Gallyas	Braak	Silver	staining	showed	massive	tau	tangle	formation	in	

the	 brainstem	 of	 heterozygous	 P301S	 mutant	 littermates,	 whereas	 formerly	 paralyzed	

P301SxTAU62on-off	mice	remained	almost	devoid	of	fibrillary	tau	inclusions	(Figure	3.2	a,	b	and	

e).	

	

	

	

Furthermore,	 in	 line	with	 these	 histopathological	 findings,	 anti-tau	 antibody	 AT8	 revealed	

attenuated	 tau	 hyperphosphorylation	 in	 P301SxTAU62on-off	 mice	 when	 compared	 to	 their	

Figure	3.2.	Formerly	paralyzed	P301SxTAU62on-off	mice	reveal	significant	less	tau	pathology.	Compared	to	their	
heterozygous	P301S	littermates,	P301SxTAU62on-off	mice	that	underwent	severe,	early	tau	stress	remain	almost	
devoid	 of	 tau	 tangle	 pathology	 in	 the	 brainstem	 and	 exhibit	 attenuated	 tau	 hyperphosphorylation.	 (a	 -	 d)	
Histological	 analysis	 of	 16-month-old	 P301SxTAU62on-off	 mice	 (b	 and	 d)	 and	 heterozygous	 P301S	 transgenic	
littermates	(a	and	c)	using	Gallyas–Braak	silver	(a	and	b)	and	anti-tau	antibody	AT8	(c	and	d).	The	scale	bar	in	(d)	
corresponds	to	500	μm	in	(a	and	b)	and	200	μm	in	(c	and	d).	Quantification	of	Gallyas	positive	tau	tangles	in	the	
brainstem	of	P301S	heterozygous	(n=10)	and	P301SxTAU62on-off	(n=10)	mice.	***P<0.001.	
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heterozygous	P301S	littermates	(Figure	3.2	c	and	d).	Though, tau	protein	is	most	expressed	in	

the	brainstem	area	under	the	control	of	neuron-specific	Thy1.2-promoter	element, we	also	

found	significant	less	tau	pathology	in	the	cervical	spinal	cord	(Supplemental	Figure	S3.1	c-d)	

and	the	forebrain	area	(Supplemental	Figure	S3.1	d-f)	of	P301SxTAU62on-off;	as	opposed	to	this,	

no	significant	difference	in	filamentous	tau	formation	could	be	detected	in	the	hippocampal	

area	(Supplemental	Figure	S3.1	g-i).	

Further,	only	heterozygous	P301S	littermates	showed	hyperphosphorylation	of	late	epitopes	

in	the	brainstem,	visualized	by	anti-tau	AT100	antibody,	consistent	with	the	presence	of	tau	

filaments	 (Supplemental	Figure	S3.2	a	and	c);	of	note,	Δtau151-421	was	not	expressed	 in	the	

brainstem	of	either	the	transgenic	mouse	lines	(Supplemental	Figure	S3.2	b	and	d).	

	

3.2.3 Reduced	tau	protein	levels	in	aged	P301SxTAU62on-off	mice	after	recovery	

of	severe	neurotoxicity	

	

Given	the	obtained	data	so	far	available	we	considered	that	changes	in	tau	protein	expression	

levels	 correspond	 to	 the	 present	 histopathological	 phenotypes	 in	 formerly	 paralyzed	

P301SxTAU62on-off	mice	and	their	heterozygous	P301S	mutant	littermates.	Through	Western	

Blot	 analysis,	we	 confirmed,	 as	expected,	 a	 significant	 reduction	 in	both	 the	 total	 tau	and	

sarkosyl-soluble	 tau	expression	 level	 in	P301SxTAU62on-off	mice	 (Figure	3.3	a-d);	notably,	 in	

heterozygous	 P301S	 littermates,	 the	 marked	 histopathological	 tau	 tangle	 pathology	 is	

reflected	 in	 a	 significant	 increase	 of	 the	 sarkosyl-insoluble	 tau	 fraction	 expression	 levels	

(Figure	3.3	a	and	b,	stars).	
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Figure	3.3.	Formerly	paralyzed	P301SxTAU62on-off	mice	reveal	significant	less	total,	 insoluble	and	soluble	tau	
protein	levels.	(a-d)	Western	blotting	with	human-specific	anti-tau	antibody	HT7	of	brainstem	tissue	from	P301S	
homozygous	(lane	1),	non-transgenic	B6	(lane	2),	P301S	heterozygous	(lanes	3-7)	and	P301SxTAU62on-off	(lanes	8-
12)	mice	 (a	 and	 c);	 GAPDH	 staining	 was	 used	 for	 protein	 normalization	 (b	 and	d).	 At	 the	 age	 of	 16	months,	
significantly	 increased	 total	 tau	 protein	 levels	 were	 detected	 in	 heterozygous	 P301S	 transgenic	 littermates;	
associated	with	elevated	insoluble	tau	fraction	levels	(a	and	b,	stars).	(c	and	d)	Sarkosyl-extraction	detects	only	
soluble	tau	species	that	were	found	to	be	significantly	attenuated	in	P301SxTAU62on-off	mice.	Data	represents	the	
mean	and	s.d.	of	5	animals	per	group.	*P<0.05	and	***P<0.001.	
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3.2.4 Supplemental	material	
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Figure	S	3.1.	Formerly	paralyzed	P301SxTAU62on-off	mice	reveal	significant	less	tau	pathology	in	the	cervical	
spinal	cord	and	forebrain	area.	(a-i)	Histological	analysis	of	16-month-old	P301SxTAU62on-off	mice	(b,	e,	and	h)	
and	heterozygous	P301S	transgenic	littermates	(a,	d	and	c)	using	Gallyas–Braak	silver	stain	of	the	cervical	spinal	
cord	(a-c),	forebrain	(d-f)	and	hippocampal	area	(g-i).	Dotted	squares	indicate	area	of	magnification	in	the	lower-
right	 corner	 (a,	b,	d	 and	e).	 The	 scale	bar	 in	 (h)	 corresponds	 to	500	μm	 in	 (a,	b,	d,	e,	 g	and	 h).	 (c,	 f	 and	 i)	
Quantification	of	Gallyas	positive	tau	tangles	in	the	cervical	spinal	cord	(c),	forebrain	(f)	and	hippocampus	(i)	of	
P301S	heterozygous	(n=10)	and	P301SxTAU62on-off	(n=10)	mice.	ns=non-significant,	**P<0.01	and	***P<0.001.	
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Figure	S	3.2.	(a	and	b)	 Immunohistochemistry	with	anti-tau	antibodies	targeting	 late	phospho-epitopes	and	
Dtau.	After	cessation	of	Dtau	expression,	extensive	hyperphosphorylation	of	AT100-positive	tau	was	only	seen	
in	the	brainstem	of	heterozygous	P301S	littermates	(a),	but	not	in	P301SxTAU62on-off	mice	(b).	In	the	brainstem	
of	both	transgenic	lines,	no	C3-positive	Dtau	could	be	detected	at	the	age	of	16	months	(a	and	b).	The	scale	bar	
in	(d)	corresponds	to	100	μm	in	(a	and	d).	
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Amyloid-beta	 in	 the	 cerebrospinal	 fluid	 of	 APP	 transgenic	
mice	does	not	show	prion-like	properties	
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Supplementary	Information		
	
1.1. ELISA	

Abeta	40	and	sAPP	levels	were	measured	using	Human	6E10	and	APPalpha/sAPPbeta	Kits	
respectively,	both	from	Meso	Scale	Discovery,	according	to	the	manufacturer’s	instructions.	
	
1.2. Mice	

Genotype	 Seed	 Seed	donor	
age,	mo	

Seeding	
time,	mo	

App23	 tg	CSF	 18	 14	
App23	 tg	CSF	 24	 14	
App23	 tg	CSF	 24	 14	
App23	 tg	CSF	 24	 14	
App23	 tg	CSF	 18	 21	
App23	 tg	CSF	 18	 21	
App23	 tg	CSF	 24	 21	
App23	 tg	CSF	 24	 21	
App23	 tg	CSF	 24	 21	
App23	 wt	CSF	 3	 21	
App23	 wt	CSF	 24	 21	
App23	 wt	CSF	 24	 21	
App23	 FB	 24	 20	
App23	 FB	 24	 20	
C57BL6	 tg	CSF	 24	 21	
C57BL6	 tg	CSF	 18	 21	
C57BL6	 tg	CSF	 18	 21	

App23	
conc.	 tg	
CSF	

24	 11	

App23	
conc.	 wt	
CSF	

24	 11	

App23	
conc.	 tg	
CSF	

24	 20	

 
Table	 S1.	 Table	 of	 all	 mice	 used	 for	 quantitative	 analysis	 in	 the	 study.	 Abbreviations	 used:	 tg=transgenic,	
wt=wild	type,	FB=forebrain	homogenate,	conc.=concentrated.	
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Supplementary	results	
	
1.1. ELISA	

Sample	 Aβ40,	pg/μl	CSF	 sAPPα,	pg/μl	CSF	 sAPPβ,	pg/μl	CSF	
APP23	CSF	 4.2	 92	 121	
Concentrated	APP23	CSF	 92.6	 2594	 3659	

 
Table	S2.	ELISA	table	of	results.	
	

1.2. Quantification	of	Aβ	pathology	comparing	injected	vs	non-injected	hippocampus	

Genotype	 Treatment	
group	

Seeding	
time,	mo	 N	

Lower	
ratio	 GMR	 Upper	

ratio	 P	value	

APP23	 tg	CSF	 14	 4	 0.77	 0.94	 1.15	 0.56	

APP23	 tg	CSF	 21	 5	 0.79	 0.91	 1.05	 0.19	

APP23	 wt	CSF	 21	 3	 0.65	 0.81	 1.01	 0.06	

APP23	 FB	 20	 2	 0.41	 0.54	 0.70	 0.00***	

C57BL6	 tg	CSF	 21	 3	 0.00	 0.00	 0.00	 NA	

APP23	
conc.	 tg	
CSF	

11	 1	 0.59	 0.88	 1.30	 0.52	

APP23	
conc.	 wt	
CSF	

11	 1	 0.72	 1.10	 1.67	 0.66	

APP23	
conc.	 tg	
CSF	

20	 1	 0.61	 0.92	 1.40	 0.70	

 
Table	S3.	Geometric	mean	ratios	(GMR)	of	amyloid-β	ratios	comparing	non-injected	vs	injected	hippocampus.	
N	 indicates	 the	 number	 of	 mice	 used;	 tg=transgenic,	 wt=wild	 type,	 FB=forebrain	 homogenate,	
conc.=concentrated;	***	indicates	p<0.001.	
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4 Discussion	

	
	
	
	
Alzheimer’s	 disease	 represents	 the	 most	 prevalent	 form	 of	 a	 major	 subclass	 of	 various	

neurodegenerative	diseases:	the	tauopathies.	In	Switzerland	alone,	over	100’000	people	are	

estimated	to	suffer	from	dementia	including	AD;	and	this	number	is	expected	to	triple	by	2050	

(Blankman	et.al,	 2012).	 To	date,	 the	 lack	of	 therapeutic	 treatments	 limits	pharmacological	

therapies	 to	 symptomatic	 interventions	 and	 given	 that	 millions	 of	 people	 have	 been	

diagnosed	 worldwide,	 AD	 constitutes	 a	 crucial	 source	 of	 social	 and	 economic	 problems	

(Scheltens	et	al.,	2016).	

The	disease	spectrum	in	patients	with	neurodegenerative	disorders	including	AD	extends	from	

genetic	 alterations	 to	 protein	 modifications	 and	 altered	 inner	 life	 of	 a	 cell	 in	 affected	

anatomical	 regions	 through	 to	 clinical	 manifestations.	 Years	 of	 research	 has	 led	 to	 the	

discovery	 of	 a	 plethora	 of	 proteins	 being	 crucial	 in	 the	 course	 of	 neurodegenerative	

syndromes;	but	ever	since	researchers	are	puzzled	by	pieces	of	the	big	picture.	The	cleavage	

of	 larger,	 neurodegeneration-associated	 proteins	 into	 smaller,	 potentially	 neurotoxic	

fragments	has	been	subject	of	numerous	studies;	 indeed,	academic	research	suggests	that	

fragmentation	and	other	substantial	events	leading	to	neuronal	dysfunction	at	the	same	time	

have	led	many	people	to	suffer	from	variety	of	neurodegenerative	diseases	such	as	AD	and	

other	 tauopathies,	 PD,	 HD,	 or	 CjD.	 However,	 the	 relevance	 of	 protein	 fragmentation	 in	

neurodegeneration	is	still	under	debate.	

	



Discussion	
	
	

   85 

In	human	 tauopathies,	 the	distinct	molecular	 and	 cellular	mechanisms	 contributing	 to	 the	

pathogenesis	and	progression	of	tauopathies	remain	still	opaque.	Precisely,	 the	 initiator	of	

neurotoxic	events	and	how	neurotoxicity	 is	mediated	 is	not	known	 in	detail.	Aside	 the	Aβ	

peptide	 and	 its	 pathological	 role	 in	 AD,	 the	 closer	 correlation	 between	 tau	 and	 disease	

progression	arouse	attention	and	promoted	tau-focused	research.	Thus,	the	development	of	

transgenic	 mouse	 models	 allowed	 to	 investigate	 core	 aspects	 of	 the	 pathogenesis	 of	

tauopathies	 by	 modeling	 particular	 disease	 steps	 in	 vivo;	 ultimately	 aiming	 for	 a	 better	

understanding	 of	 the	 neuropathological	 mechanisms	 behind	 the	 complex	 nature	 of	

neurodegenerative	processes.	

	

The	pursuit	of	neurotoxic	tau	species	

 

The	 neuropathological	 identity	 of	 AD	 falls	 into	 two	 broad	 categories:	 extracellular	 senile	

plaques	composed	of	 the	APP	cleavage	product	Aβ	and	 filamentous	 tau	 inclusions	derived	

from	accumulation	of	modified	tau	species.	

Tau	plays	a	central	role	in	multiple	neurodegenerative	disorders;	however,	its	contribution	to	

the	onset	and	progression	of	AD	is	still	a	matter	of	debate.	But	as	tau	gene	mutation	in	FTDP-

17T	(Hutton	et	al.,	1998;	Poorkaj	et	al.,	1998;	Spillantini	et	al.,	1998)	paved	the	way	for	in	vivo	

expression	 of	mutant	 human	 tau	 protein,	 transgenic	mouse	models	 were	 generated	 that	

exhibit	 distinct	 aspects	 of	 tau	 pathology	 such	 as	 age-related	 filamentous	 tau	 deposits,	

neuronal	degeneration	and	axonal	transport	dysfunction	(Gotz	et	al.,	2004).	

The	 formation	 of	 tau	 aggregates	 is	 depending	 on	 the	 conformational	 switch	 to	 β-sheet	

structure;	indeed,	point	mutations	but	also	various	post-translational	modifications	including	

phosphorylation,	acetylation,	glycosylation,	ubiquitination,	and	truncation	structurally	alter	

tau	and	thus	favour	its	accumulation.	While	aberrant	aggregation	and	hyperphosphorylation	

of	tau	are	proposed	to	be	the	pivotal	neurotoxic	elements	in	human	tauopathies,	the	most	

toxic	species	and	how	toxicity	is	mediated	is	of	ongoing	debate	(Braak	and	Del	Tredici,	2011;	

Coleman	and	Yao,	2003;	Goedert,	2015;	Terry	et	al.,	1991).	

	

Notably,	proteolytic	cleavage	of	tau	has	been	shown	to	be	an	early	event	in	the	pathological	

cascade	with	considerable	impact	on	tau	toxicity;	indeed,	fragmentation	of	tau	occurs	before	
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toxic	tangle	formation	and	facilitate	and	promote	tau	aggregation	compared	to	full-length	tau	

species	 (Abraha	 et	 al.,	 2000;	 Berger	 et	 al.,	 2007;	 Cowan	 et	 al.,	 2010).	 Various	 proteases	

including	caspase	3,	caspase	6	and	calpains	have	been	identified	to	cleave	full-length	tau	into	

fragments	 which	 accumulation	 correlates	 with	 the	 progression	 of	 AD;	 notably,	 D421	

constitutes	the	most	prominent	caspase	cleavage	site	 in	all	 forms	of	 tauopathies	 (Basurto-

Islas	et	al.,	2008;	Fasulo	et	al.,	2005;	Guillozet-Bongaarts	et	al.,	2005;	Guo	et	al.,	2004).	

	

Within	this	framework,	we	have	established	an	inducible	mouse	line	(TAU62)	overexpressing	

a	 short,	 human	 3R	 tau151–421	 fragment	 (Δtau)	 that	 develop	 a	 mildly	 progressive	 motor	

phenotype	with	ataxia	at	about	18	months	of	age.	Interestingly,	TAU62	mice	did	not	develop	

filamentous	 tau	 inclusions	 but	 exhibited	 neuron	 specific	 pretangle	 pathology	 in	 form	 of	

abnormally	phosphorylated	tau;	this	is	in	line	with	findings	in	other	tau	fragment	expressing	

mouse	models	 (McMillan	et	al.,	2011),	but	contradicts	 the	predominant	neuropathological	

phenotype	defined	by	cortical	insoluble	tau	filaments	in	rat	models	overexpressing	truncated	

tau	(Filipcik	et	al.,	2012).	However,	the	observed	mild	neurotoxicity	was	comparable	to	that	

seen	 in	mice	 expressing	 full-length	 wild-type	 forms	 of	 tau	 (Probst	 et	 al.,	 2000,	 2N4R	 tau	

transgenic	ALZ17	mice;	0N3R	tau	transgenic	ALZ31).	

	

In	the	course	of	the	present	work,	I	have	focused	on	the	drastic,	but	reversible	neurotoxicity	

in	our	own	novel	mouse	model	 co-expressing	 truncated	and	 full-length	 tau	 (Ozcelik	et	 al.,	

2016).	 In	 line	with	 this,	we	 set	 out	 to	 complete	 the	 neuropathological	 characterization	 of	

several	 transgenic	 mouse	 models	 that	 recapitulate	 different	 aspects	 of	 AD	 to	 study	 the	

neurodegenerative	relevance	of	tau	fragmentation	and	oligomerization	in	vivo.	

	

Truncated	tau	induces	severe	neurotoxicity	in	presence	of	full-length	forms	of	tau		

	

In	AD,	PHFs	are	composed	of	not	only	full-length	tau	species	but	also	truncated	forms	of	tau	

(Gamblin	et	al.,	2003;	Goedert	et	al.,	1992;	Mena	et	al.,	1996;	Rissman	et	al.,	2004;	Wischik	et	

al.,	1988b).	We	have	approached	this	neuropathological	condition	with	co-expression	of	Δtau	

and	different	full-length	forms	of	tau	in	vivo.	
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First,	we	 generated	double	 transgenic	 P301SxTAU62on	mice	 co-expressing	Δtau	 and	P301S	

mutant	 0N4R	 tau.	 Aside,	 full-length	 tau	 expressing	 human	 mutant	 P301S	 heterozygous	

transgenic	mice	develop	insoluble	tau	filaments	and	paralysis	around	12	months	of	age	(Allen	

et	al.,	 2002).	 Strikingly,	our	P301SxTAU62on	 exhibited	extensive	nerve	 cell	 dysfunction	and	

severe	motor	palsy	already	by	the	age	of	3	weeks;	consistently,	in	spinal	cord	neurons,	axonal	

transport	disruption	was	associated	with	accumulation	of	neurofilament	and	axonal	spheroids	

formation;	furthermore,	peripheral	nerves	showed	signs	of	Wallerian	degeneration	with	fiber	

loss	and	myelin	debris	followed	by	drastic	neurogenic	muscle	atrophy.	It	is	interesting	to	note	

that	despite	massive	functional	and	structural	defects,	only	oligomeric	tau	and	no	formation	

of	insoluble	tau	aggregates	or	tangles	could	have	been	detected;	in	fact,	the	presence	of	toxic	

tau	oligomers	alone	is	a	strong	hint	that	the	neurotoxic	cascade	leading	to	neurodegeneration	

might	not	depend	on	filamentous	tau	inclusions.	

Remarkably,	the	pronounced	drastic	neurotoxicity	in	P301SxTAU62on	mice	was	phenotypically	

and	pathohistologically	reversible:	despite	continuous	expression	of	full-	length	P301S	tau,	we	

could	 confirm	 the	 reversibility	 of	 Δtau	 induced	 neuronal	 dysfunction	 in	 severely	 affected	

P301SxTAU62on	 mice.	 When	 only	 Δtau	 expression	 was	 halted,	 former	 paralyzed	

P301SxTAU62on-off	 mice	 rapidly	 regained	 full	 motor	 control	 and	 re-established	 nerve	 fiber	

function	 and	 restored	 muscle	 fiber	 atrophy	 was	 observed.	 Moreover,	 the	 functional	 and	

structural	recovery	was	paralleled	by	the	disappearance	of	oligomeric	tau	species.	

Second,	given	the	artificial	nature	of	P301S	mutant	tau,	we	aimed	for	an	 in	vivo	analysis	of	

Δtau	 in	presence	of	 full-length	wild-type	tau.	 Indeed,	we	could	 reproduce	the	pronounced	

reversible	 neurotoxicity	 in	 double	 transgenic	 ALZ17xTAU62on	mice	 co-expressing	 Δtau	 and	

full-length	wild-type	2N4R	tau.	

Third,	we	analyzed	TAU62xALZ31on	mice	expressing	3R	Δtau	and	the	shortest	form	of	wild-

type	 human	 0N3R	 tau;	 however,	 these	 mice	 exhibited	 the	 most	 pronounced	 neurotoxic	

phenotype	that	was	not	reversible	when	Δtau	expression	was	ceased.	A	possible	explanation	

is	that	functional	and	structural	recovery	would	require	the	presence	of	mixed	3R/4R	ratio	of	

tau	oligomeric	species.	

Of	 note,	 co-expression	 of	 only	 full-length	 tau	 species	 was	 not	 sufficient	 to	 induce	 severe	

neurotoxicity:	 both,	 P301SxALZ31	 and	 ALZ17xALZ31	 double	 transgenic	 mice	 only	 exhibit	

pretangle	tau	pathology	and	did	not	display	paralysis.	
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Overall,	these	findings	highlight	two	essential	aspects	of	tauopathies:	tau	fragmentation	and	

oligomerization.	 In	 accordance	 with	 previous	 findings,	 we	 could	 highlight	 a	 neurotoxic	

potential	of	tau	fragments	as	pathogenic	mediators	in	tauopathies.	Indeed,	recent	work	has	

shown	that	truncation	of	tau	not	only	facilitates	tau	assembly	into	filaments	(Abraha	et	al.,	

2000;	Mocanu	et	al.,	2008;	Sydow	et	al.,	2011),	but	also	exacerbates	the	toxicity	of	full-length	

tau	(Fasulo	et	al.,	2005).	In	parallel,	we	identified	oligomeric	forms	of	tau	as	a	key	neurotoxic	

species	 contributing	 to	 the	 neurodegenerative	 process	 in	 tauopathies;	 in	 fact,	 tau	 toxicity	

precedes	the	formation	of	 insoluble	aggregates	 in	our	mouse	model	and	thus	 fibrillary	tau	

formation	 appears	 to	 be	 not	 required	 for	 tau	 toxicity,	 similar	 to	 findings	 in	 other	

proteinopathies	 (Eisenberg	 and	 Jucker,	 2012).	 Indeed,	 this	 confirms	 the	 recognized	

importance	of	soluble	oligomeric	tau	species	for	the	pathogenesis	of	tauopathies	(Lasagna-

Reeves	et	al.,	2010;	Spires-Jones	et	al.,	2011;	Spires-Jones	et	al.,	2009).		

	

Targeting	truncated	tau	species	

	

The	neurotoxic	potential	 of	 protein	 fragments	 in	 the	 course	of	 various	neurodegenerative	

disorders	 remains	 to	 be	 established	 in	 detail.	 However,	 neurodegeneration-associated	

proteins	 are	 substrate	 to	 various	 proteolytic	 enzymes	 that	 cleave	 designated	 proteins	 at	

individually	different	sites	(Figure	4.1).	The	neurotoxic	effect	of	protein	fragments	has	been	

shown	i.e.	for	the	intramebranous	located	APP	(Selkoe,	2001a),	the	transmembranous	located	

BRI2	 (Rostagno	and	Ghiso,	 2008;	Vidal	 et	 al.,	 1999;	Vidal	 et	 al.,	 2000),	 intracellular	 and/or	

extracellular	cleaved	α-Syn	(Dufty	et	al.,	2007;	Kim	et	al.,	2012;	Mishizen-Eberz	et	al.,	2005)	,	

intracellular	cleaved	htt	(Graham	et	al.,	2006;	Waldron-Roby	et	al.,	2012;	Wellington	et	al.,	

2002)	 and	 ataxins	 (Guyenet	 et	 al.,	 2015;	 Hubener	 et	 al.,	 2013;	 Mookerjee	 et	 al.,	 2009),	

membrane	anchored	PrP	(Altmeppen	et	al.,	2012;	Trevitt	et	al.,	2014),	and	nuclear	TDP-43	

(Furukawa	 et	 al.,	 2011;	 Nonaka	 et	 al.,	 2009).	 Across	 the	 different	 neurodegenerative	

disorders,	major	enzymes	involved	in	the	proteolytic	processes	are	caspases	and	calpains;	in	

particular,	 tau	 protein	 is	 cleaved	 by	 caspases-3/6	 (Fasulo	 et	 al.,	 2005;	 Guo	 et	 al.,	 2004;	

Metcalfe	et	al.,	2012)	and	calpains	(Ferreira	and	Bigio,	2011;	Higuchi	et	al.,	2012;	Park	et	al.,	

2007).	



Discussion	
	
	

   89 

In	light	of	this,	inhibition	of	caspases	and	calpains	cleavage	emerged	as	a	potential	target	to	

prevent	 disease	 pathology	 and	might	 be	 a	 promising	 therapeutic	 strategy	 considering	 the	

observed	 neurotoxicity	 in	 our	mouse	model.	 Indeed,	 calpain-specific	 inhibitors	 have	 been	

shown	to	attenuate	AD-like	pathology	in	3xTgAD	mice	(Medeiros	et	al.,	2012);	further	reduce	

ataxin	 cleavage	 (Haacke	 et	 al.,	 2007)	 and	 attenuate	 α-Syn	 induced	 synaptic	 impairments	

(Diepenbroek	et	al.,	2014).	In	addition,	caspase	inhibition	has	also	been	shown	to	mitigate	α-

Syn	pathology	(Bassil	et	al.,	2016).	

	

Nevertheless,	there	is	also	evidence	that	cleavage	of	neurodegeneration-associated	protein	

species	may	constitute	a	regular	cellular	process	(Li	et	al.,	2005).	For	instance,	N-terminally	

truncated	α-Syn	species	are	present	in	cases	with	or	without	Lewy	pathology	and	correlating	

with	the	total	amount	of	α-Syn	(Muntane	et	al.,	2012).	

	

 
Figure	4.1	Overview	of	 the	 cellular	 location	of	neurodegeneration-associated	proteins	 and	 their	 individual	
cleavage	sites.		
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Targeting	toxic	oligomeric	tau	species	

	

The	 spectrum	of	 neurotoxic	 potentials	 of	 tau	 species	 is	 still	 under	 debate.	Oligomeric	 tau	

formation	occurs	early	in	the	progression	of		AD	pathology	(Patterson	et	al.,	2011).	In	AD,	late	

insoluble	tau	aggregates	are	believed	to	contribute	to	nerve	cell	death	and	closely	correlate	

with	cognitive	decline	(Arriagada	et	al.,	1992;	Gomez-Isla	et	al.,	1997).	In	contrast,	the	toxicity	

of	 oligomeric	 tau	 has	 been	 shown	 to	 correlate	 better	with	 neuronal	 dysfunction	 than	 the	

extent	of	filamentous	tau	(Berger	et	al.,	2007).	

	

Our	data	provide	evidence	that	soluble	oligomeric	tau	species	play	a	key	role	in	the	neurotoxic	

cascade	of	 tau	pathology	 leading	 to	neuronal	 loss	 (Blair	et	al.,	2013;	Brunden	et	al.,	2008;	

Gerson	 and	 Kayed,	 2013;	 Gerson	 et	 al.,	 2014;	 Usenovic	 et	 al.,	 2015).	 Indeed,	 progressive	

neuronal	 degeneration	 in	 absence	 of	 tau	 filament	 formation	 was	 reported	 not	 only	 in	

tauopathy	mouse	models	 (Oddo	 et	 al.,	 2003;	 Spires	 et	 al.,	 2006;	 Sydow	 and	Mandelkow,	

2010),	 but	 also	 in	 tau	 transgenic	 drosophila	models	 (Cowan	et	 al.,	 2010;	Wittmann	 et	 al.,	

2001).	Aside,	oligomeric	protein	species	have	been	implicated	in	the	pathogenesis	of	various	

neurodegenerative	diseases:	 in	brains	of	AD	patients,	 oligomeric	Aβ	peptides	 appeared	 to	

participate	in	the	neurotoxic	cascade	even	before	the	onset	of	symptoms	(Lesne	et	al.,	2013);	

moreover,	 toxic	 extracellular	 α-Syn	 oligomers	 have	 been	 shown	 to	 favour	 prion-like	

propagation	in	PD	in	vitro	(Danzer	et	al.,	2011);	further,	doperminergic	loss	in	the	substantia	

nigra	caused	by	α-Syn	oligomer	formation	rather	than	amyloid	fibrils	in	vivo	highlighted	the	

toxicity	of	soluble	oligomers	(Winner	et	al.,	2011);	notably,	oligomeric	Aβ	and	α-Syn	species	

were	postulated	to	be	competent	to	provoke	neurotoxic	tau	oligomerization	(Lasagna-Reeves	

et	al.,	2010);	in	addition,	toxic	oligomers	forms	of	PrP	have	been	suggested	to	mediate	the	

infectious	process	in	prion	diseases	(Silveira	et	al.,	2005).	

	

Oligomeric	 tau	 species	 are	 considerably	 interesting	 as	 a	 potential	 immune	 target.	 The	

observed	severe	neurotoxicity	associated	with	abundant	tau	oligomer	formation	suggests	our	

mouse	 model	 of	 special	 relevance	 for	 this	 type	 of	 pharmacological	 treatment.	 Indeed,	 a	

growing	body	of	evidence	supports	the	strategy	of	diminishing	tau	pathology	with	therapeutic	

antibodies.	Studies	on	active	immunization	using	phospho-tau	peptides	has	been	shown	to	
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mitigate	 tau	 aggregation	 in	 P301L	 transgenic	mice	 (Asuni	 et	 al.,	 2007).	Moreover,	 passive	

immunization	 approaches	 with	 anti-tau	 directed	 monoclonal	 antibodies	 were	 shown	 to	

reduce	 tau	pathology,	when	administrated	prior	 to	 the	disease	onset	 (Boutajangout	et	al.,	

2011;	Chai	et	al.,	2011).	However,	the	rapid	onset	of	tau	toxicity	in	our	mouse	model	favours	

it	 greatly	 for	 immunotherapeutic	 approaches	 and	 investigating	 clearance	 mechanisms	 of	

pathological	tau	protein	in	vivo.	

	

Targeting	the	axonal	transport	system	and	oligomeric	tau	induced	neurotoxicity	

	

Here	we	report	that	 fragmented	tau	exacerbates	the	toxicity	of	 full-length	tau	 in	vivo.	Our	

mouse	model	exhibit	pronounced	drastic,	but	remarkably,	reversible	toxic	effect	of	oligomeric	

tau	 species	 associated	 with	 extensive	 neuronal	 dysfunction	 and	 a	 severe	 neurological	

phenotype.	 In	 P301SxTAU62on	 mice,	 apparent	 mitochondrial	 dislocation	 and	 clumping,	

disruption	 of	 the	 Golgi	 network	 and	 missorting	 of	 synaptic	 proteins	 strongly	 suggests	 a	

widespread	disruption	of	the	cellular	transport	system	(Kopeikina	et	al.,	2011;	Liazoghli	et	al.,	

2005).	 Interestingly,	 comparable	 perinuclear	 mitochondrial	 clumping	 associated	 with	 the	

presence	 of	 only	 soluble	 tau	 species	was	 reflected	 in	 studies	 on	 rTg4510	 transgenic	mice	

(Kopeikina	et	al.,	2011).	Fragmentation	of	the	Golgi	apparatus	(GA)	disturbs	the	central	sorting	

machinery	for	all	newly	synthesized	proteins	destined	for	fast	axonal	transport	and	is	believed	

to	 be	 an	 early	 event	 in	 various	 neurodegenerative	 disorders	 (Gonatas	 et	 al.,	 2006;	

Hammerschlag	et	al.,	1982;	Liazoghli	et	al.,	2005).	In	AD,	given	that	the	GA	was	found	to	be	

fragmented	upon	cdk5	dysregulation,	this	process	appears	to	directly	precede	cell	death	(Sun	

et	al.,	2008).	Of	note,	overexpression	of	α-Syn	has	been	shown	to	cause	Golgi	fragmentation	

and	block	ER-Golgi	trafficking	in	vitro	and	in	vivo	(Cooper	et	al.,	2006;	Winslow	et	al.,	2010).	

However,	somatic	accumulation	of	synaptophysin	in	the	hippocampus	of	P301SxTAU62on	mice	

and	 degradation	 of	 VAMP2,	 a	 binding	 partner	 of	 synaptophysin,	 indicate	 congested	 Golgi	

pathways	 and	 synaptic	 transmission	 disturbances	 (Nakashiba	 et	 al.,	 2008;	 Pennuto	 et	 al.,	

2003).	

	

In	accordance	with	our	findings,	damage	to	the	axonal	transport	system	have	been	described	

in	multiple	neurodegenerative	disorders	including	AD	(Kopeikina	et	al.,	2011),	ALS	(De	Vos	et	
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al.,	2007),	PD	(Saha	et	al.,	2004),	and	HD	(Chang	et	al.,	2006).	Further,	in	AD,	Aβ	was	reported	

to	interfere	with	mitochondrial	transport	in	cultured	hippocampal	neurons	(Rui	et	al.,	2006).	

In	tauopathies,	over-expression	of	the	shortest	tau	isoform	has	been	shown	to	impair	axonal	

transport	in	vivo;	in	addition,	this	was	paralleled	with	insoluble	tau	inclusions	(Ishihara	et	al.,	

1999).	In	contrast,	soluble	tau	species	were	sufficient	to	induce	disruption	of	the	microtubule	

cytoskeleton	in	drosophila	(Cowan	et	al.,	2010).	

	

In	physiological	conditions,	tau	is	tightly	associated	with	microtubules	and	critically	involved	

in	 the	 dynamically	 assembly	 and	 stability	 of	 this	 cytoskeleton	 component;	 and	 thus,	

instrumental	 for	 viability	 of	 the	 intracellular	 transport	 system	 (Kosik,	 1993).	 However,	

modifications	of	tau	are	likely	responsible	for	the	dysregulation	of	the	microtubule	network.	

There	are	two	possible	explanations	for	the	disruption	of	polarized	microtubule	tracks:	one	

source	 of	 interference	 might	 constitute	 abnormal	 high	 levels	 of	 tau	 and	 its	 concomitant	

excessive	 binding	 to	 microtubules	 results	 in	 the	 detachment	 of	 kinesin;	 thus,	 ultimately	

prevents	anterograde	transport	of	individual	cargoes	(Baas	and	Qiang,	2005;	Dixit	et	al.,	2008;	

Dubey	et	al.,	2008).	 In	this	case,	hyperphosphorylation	and	subsequent	dissociation	of	tau,	

typically	responsible	for	the	destabilization	of	microtubules	in	the	first	place,	might	be	even	

of	 benefit	 for	 the	microtubule	 network	 operability.	Of	 note,	 co-expression	 of	 various	 full-

lengths	forms	of	tau	in	our	P301SxALZ31	and	ALZ17xALZ31	revealed	comparable	levels	of	tau	

hyperphosphorylation,	 without	 a	 pronounced	 motor	 phenotype;	 thus,	 tau	

hyperphosphorylation	appear	not	 to	 correlate	directly	with	nerve	 cell	 death	 in	our	mouse	

models	and	strengthen	the	possibility	that	abnormal	phosphorylation	might	not	be	a	primary	

pathoglogical	event.		

	

Microtubule	network	disruption	is	a	major	pathogenic	event	in	the	evolution	of	tauopathies.	

Our	 findings	 in	P301SxTAU62on	mice	 suggest	 that,	 initiated	by	Δtau	overexpression,	 highly	

toxic	oligomeric	tau	species	interfere	with	microtubule	assembly	and	stabilization,	ultimately	

contribute	to	axonal	transport	disruption;	however,	the	underlying	mechanisms	remain	to	be	

established	in	detail.	A	possible	approach	to	dissect	the	process	of	axonal	transport	disruption	

would	be	to	assess	various	potent	microtubule	stabilizing	compounds	such	as	epothilone	D	
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and	paclitaxel	that	have	been	shown	to	partly	rescue	tau	induced	axonal	transport	dysfunction	

(Ballatore	et	al.,	2012;	Barten	et	al.,	2012;	Brunden	et	al.,	2012;	Das	and	Miller,	2012).	

Another	approach	would	be	to	target	tau	oligomeric	formation	directly	through	aggregation	

inhibitors	 including	 methylene	 blue	 (MB)	 (Violet	 et	 al.,	 2015;	 Wischik	 et	 al.,	 1996)	 and	

curcumin	(Ma	et	al.,	2013).	However,	while	MB	has	been	shown	to	block	tau	protein	assembly	

through	the	repeat	domain	and	being	competent	to	reverse	early	tau	aggregation,	however,	

it	failed	to	remove	robust	tangle	pathology	in	the	rTG4510	mouse	model	of	tauopathy	(Spires-

Jones	et	al.,	2014).	In	addition,	a	reduction	of	Aβ	levels	and	improved	cognitive	deficits	upon	

MB	treatment	was	reported	(Medina	et	al.,	2011).	

	

Protective	effects	of	early	tau	burden	on	late	neurotoxic	distress	level	

	

This	work	originates	from	our	most	recent	published	observation	that	overexpression	of	Δtau	

in	presence	of	full-length	tau	causes	drastic,	but	reversible	neurotoxicity	in	vivo	(Ozcelik	et	al.,	

2016).	Based	on	our	 results,	we	 set	out	 to	 investigate	 the	 long-term	consequences	of	 the	

extensive	neurotoxic	stress	during	early	postnatal	life	in	formerly	paralyzed	P301SxTAU62on-

off	mice.	Remarkably,	we	found	that	these	mice	exhibit	a	less	pronounced	motor	phenotype	

at	14	 to	16	months	of	age	compared	to	 their	heterozygous	P301S	 littermates	 that	did	not	

experience	compelling	neurotoxicity	early	in	life.	This	is	paralleled	by	significant	reduced	tau	

pathology	 in	 aged	 P301SxTAU62on-off	 mice:	 the	 histopathological	 phenotype	 of	 formerly	

paralyzed	mice	showed	mitigated	tau	hyperphosphorylation	and	almost	no	signs	of	insoluble	

tau	 inclusions.	 In	 line	with	 these	 findings,	 significant	 less	 total,	 insoluble,	 and	 soluble	 tau	

protein	levels	could	be	detected.	

Our	observations	advocate	a	late	preventive	effect	of	early	Δtau	induced	neurotoxicity	and	

raises	the	possibility	of	diverse	sources,	alone	or	 in	combination,	being	responsible	for	the	

underlying	 delayed	 tau	 pathology	 in	 P301SxTAU62on-off	 mice.	 As	 aforementioned,	 various	

active	 immunization	attempts	using	recombinant	tau	peptides	have	been	shown	to	reduce	

tau	 pathology	 in	 various	 tau	 transgenic	mouse	models	 (Asuni	 et	 al.,	 2007;	 Bi	 et	 al.,	 2011;	

Boutajangout	et	al.,	2010).	A	possible	scenario	is	that	the	excessive	toxic	tau	oligomerization	

in	young	P301SxTAU62on-off	mice	would	trigger	an	autoimmune	reaction	in	the	form	of	arising	

anti-tau	antibodies.	Alternatively,	other	clearance	machineries	may	be	involved	in	removing	
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oligomeric	or	hyperphosphorylated	tau	from	the	cell.	For	instance,	cytosolic	proteases	such	

as	 puromycin	 sensitive	 aminopeptidase	 (PSA)	 were	 observed	 to	 attenuate	 tau	 levels	 and	

motor	deficits	in	various	models	of	tauopathy	including	Drosophila	(Karsten	et	al.,	2006)	and	

mice	(Kudo	et	al.,	2011).	Considering	this,	PSA	might	regulate	tau	degradation	in	two	ways:	

directly	via	proteolytic	degradation	of	tau	as	reported	in	other	in	vitro	studies	(Sengupta	et	al.,	

2006),	or	indirectly	by	inducing	autophagy	(Menzies	et	al.,	2010);	specifically,	the	inhibition	of	

PSA	has	led	to	increased	levels	of	toxic	polyQ-containing	htt	and	ataxin-3	fragments	as	well	as	

mutant	α-Syn	associated	with	a	decrease	in	autophagosome	formation.	Indeed,	the	protective	

effects	 of	 early	 tau	 stress	 in	 P301SxTAU62on-off	mice	 could	 point	 towards	 the	 induction	 of	

autophagic	pathways	 in	general.	The	 removal	of	aggregation-prone	proteins	 through	basal	

autophagy	has	been	shown	to	be	of	importance	for	cell	survival;	indeed,	the	consensus	in	the	

field	 is	 that	 impairment	of	 the	autophagy	process	and	subsequent	 loss	of	a	cytoprotective	

function	of	autophagy	leads	to	neurodegeneration	(Hara	et	al.,	2006;	Komatsu	et	al.,	2006).	

Protein	clearance	systems	and	autophagy	dysfunction	in	AD	have	been	subject	to	numerous	

studies	(Nixon,	2013;	Nixon	et	al.,	2005;	Piras	et	al.,	2016);	specifically,	the	reduction	of	Beclin1	

expression	has	been	shown	to	increase	Aβ	pathology	and	disrupt	in	the	autophagy	flux	in	vivo	

(Pickford	et	al.,	2008).	In	PD,	α-Syn	overexpression	causes	mislocalization	of	the	autophagy	

protein	 Atg9,	 which	 controls	 the	 formation	 of	 phagophore	 in	 the	 process	 of	 autophagy,	

through	Rab1a	inhibition;	however,	Rab1a	overexpression	has	been	shown	to	reverse	α-Syn	

induced	autophagy	impairment	(Winslow	et	al.,	2010).	In	addition,	stimulation	of	insulin	and	

insulin-like	growth	 factor	1	 signaling	 cascades	 results	 in	 increased	autophagic	 clearance	of	

toxic	 huntingtin	 aggregates	 (Yamamoto	 et	 al.,	 2006).	 Furthermore,	 mTORC1-independent	

activation	of	autophagy	by	trehalose	and	 inhibition	of	 the	mTORC1	pathway	by	rapamycin	

haven	been	shown	to	promote	the	clearance	of	mutant	huntingtin	and	α-Syn	in	vitro	(Sarkar	

et	al.,	2007).	In	line	with	these	findings,	our	group	could	previously	show	that	treatment	with	

these	autophagy-inducing	agents	results	in	delayed	progression	of	tau	pathology	and	signs	of	

a	 restored	 autophagic	 flux	 associated	 with	 reduced	 accumulation	 of	 autophagy	 related	

proteins	p62	and	LC3	in	P301S	mutant	mice	(Ozcelik	et	al.,	2013;	Schaeffer	et	al.,	2012).	Of	

note,	 microtubule-associated	 protein	 1	 light	 chain	 3	 protein	 (LC3)	 is	 required	 in	 the	

autophagosome	formation	process	(Mizushima	and	Komatsu,	2011);	and	p62	is	an	ubiquitin-

LC3-binding	 protein	 that	 links	 various	 substrates	 including	 protein	 aggregates	 to	 the	
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autophagosome-lysosome	 degradation	 machinery	 (Kim	 et	 al.,	 2008).	 However,	 we	 lack	 a	

complete	understanding	of	the	autophagy	machinery	in	our	mouse	models	at	this	time	point;	

thus,	it	would	be	interesting	to	investigate	a	potential	autophagic,	rectifying	response	to	Δtau	

induced	severe	neurotoxicity	associated	with	the	formation	of	toxic	tau	oligomers.	For	this,	

experiments	with	autophagy	inducing	agents	including	rapamycin	would	yield	new	insight	into	

the	 degradation	 process	 of	 toxic	 tau	 species	 and	 the	 potential	 late	 preventive,	

neuroprotective	effect	of	early	tau	stress	 in	aged	P301SxTAU62on-off	mice.	 In	particular,	the	

assessment	of	autophagic	markers	including	LC3,	p62,	and	Beclin1	would	allow	to	analyze	and	

define	a	clearer	picture	of	the	autophagy	flux	phenomenon.	

	

Mouse	CSF	derived	Aβ	species	do	not	induce	prion-like	amyloidogenic	propagation	

in	APP23	transgenic	host	mice	

	

This	work	extends	recent	published	findings	reported	on	brain	and	CSF	derived	Aβ	seeding	

(Fritschi	 et	 al.,	 2014).	 Here	 we	 set	 out	 to	 inoculate	 forebrain	 homogenate	 or	 CSF	 in	 the	

hippocampus	of	APP23	transgenic	mice,	and	analyse	the	seeding	effect	of	Aβ	in	the	CSF	and	

brain.	Consistent	with	this	previous	report,	we	found	that	Aβ	species	in	brain	homogenates	

harbours	 seed-like	 potential,	 whereas	 CSF	 derived	 Aβ	 species	 lack	 prion-like	 propagation	

activity	(Skachokova	et	al.,	2015).	Indeed,	APP23	transgenic	mice	seeded	with	brain	derived	

Aβ	for	20	months	exhibited	and	increased	plaque-load	in	the	hippocampus;	in	contrast,	in	the	

same	experimental	set-up,	CSF	derived	Aβ	did	not	result	in	a	change	in	plaque-load.	A	possible	

explanation	might	constitute	the	absence	or	structural	difference	of	seed-potent	Aβ	species	

in	 the	 CSF.	 Whereas	 small	 and	 soluble	 Aβ	 species	 derived	 from	 APP23	 mice	 have	 been	

demonstrated	to	be	highly	seed-potent	(Langer	et	al.,	2011),	these	Aβ	species	appear	not	to	

be	present	in	the	CSF;	possibly	due	to	downregulated	transport	to	the	CSF	compartment,	or	

upregulated	 degradation	 within	 the	 CSF	 compartment.	 Further,	 N-terminal	 truncated	 Aβ	

species	have	been	found	largely	in	the	brain,	but	less	in	the	CSF	of	AD	patients	(Langer	et	al.,	

2011).	However,	if	its	structural	diversity	affects	the	seeding	potential	of	Aβ	remains	elusive.	

In	addition,	analysis	of	the	selective	Aβ	transport	and	potential	co-factors	involved	might	be	

needed	to	explain	the	lack	of	seed-potent	Aβ	species	in	AD	CSF.	
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Conclusion	and	perspectives	

	

Our	data	show	that	truncated	tau,	when	co-expressed	with	full-length	forms	of	tau,	results	in	

drastic,	but	reversible	early	tau	stress.	We	further	have	 identified	soluble	tau	oligomers	as	

toxic	key	species,	rather	than	insoluble	tau	aggregates,	in	the	neuropathological	cascade	of	

tauopathies.	 This	 information	 is	 in	 line	 with	 the	 neurotoxic	 potential	 of	 protein	 cleavage	

products	 and	 oligomeric	 species	 observed	 in	 diverse	 neurodegenerative	 disorders	 and	

strengthens	the	idea	that	truncated	tau	indeed	contributes	to	the	pathogenesis	of	tauopathies	

(Hanger	and	Wray,	2010;	Ross	and	Poirier,	2004).	

	

In	 fact,	 our	mouse	model	 offers	 a	 remarkable	 setting	 to	 asses	 therapeutic	 strategies	 and	

elucidate	further	the	pathomechanisms	leading	to	tauopathy.	For	instance,	modulation	of	tau	

fragmentation	and	associated	 formation	of	oligomeric	 tau	species	may	potentially	prevent	

neurodegenerative	processes;	ultimately,	being	of	crucial	relevance	for	the	development	of	

novel	therapeutic	approaches.	

	

We	further	show	that	CSF	derived	Aβ	species	is	not	competent	enough	to	induce	prion-like	

propagation.	 Instead,	 an	 interesting	 issue	 emerged	 from	 our	 work	 is	 that	 abundant	 toxic	

oligomeric	tau	species	present	in	our	mouse	model	might	actually	exhibit	prion-like	potential.	

This	hypothesis	raises	the	possibility	to	better	understand	prion-like	processes	in	tauopathies	

and	needs	to	be	corroborated	by	further	experiments.	

	

In	 conclusion,	 our	work	 underlines	 the	 role	 of	 fragmented	 tau	 and	 soluble	 oligomeric	 tau	

aggregation	in	the	neurodegenerative	process	of	tauopathies.	
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5 Materials	and	Methods	

	
	

	

5.1 Animals	
 

All	transgenic	mice	were	heterozygous	for	the	transgenes	of	interest,	unless	specifically	

mentioned	otherwise.	The	number	of	mice	used	was	minimized	according	to	the	Swiss	

regulation	 on	 Animal	 Experimentation.	 All	 animal	 experiments	 were	 conducted	 in	

accordance	with	the	Swiss	guidelines	for	animal	care	and	approved	by	the	 local	 legal	

authorities.	

	

5.1.1 Housing	of	transgenic	mice	

	

Female	mice	were	group-housed	with	a	maximum	of	five	individuals	per	cage.	Male	mice	

were	housed	individually	as	to	avoid	aggressive	 interactions.	Free	access	to	food	and	

water	was	provided	and	animals	were	kept	on	a	12	hour/12	hour	inverted	light	cycle.	

	

5.1.2 TAU62	mice	

	

Inducible	 and	 neuron-specific	 3R	 tau151–421	 (Δtau)	 expressing	 TAU62	 mice	 were	

generated	 by	 co-injection	 of	 two	 Thy	 1.2	 minigene-based	 constructs	 into	 C57BL/6J	

oocytes.	The	Thy	1.2	tTS	construct	was	obtained	by	replacing	exon	2	of	the	murine	Thy	
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1.2	promoter	by	a	tetracycline	controlled	transcriptional	silencer	element	(tTS).	The	Thy	

1.2-TRE-Δtau	 construct	 contained	 a	 tetracycline	 responsive	 element	 (TRE)	 �800bp	

upstream	of	the	human	wild-type	Δtau	cDNA	encoding	amino	acids	151	to	421	of	a	3-

repeat	domain	spanning	human	wild-type	tau	fragment	(0N3R	tau151-421).	A	total	of	six	

positive	 transgenic	 founder	 TAU62	 mice	 (C57BL/6J-TgN(tTS-Thy1-Δtau151-421)	 were	

identified	and	the	inducible	expression	of	human	Δtau	was	assessed	by	western	blot	and	

immunohistochemistry.	 The	 Lines	 62-2	 and	 62-48	 expressed	 comparable	 and	 robust	

Δtau	(‘on’)	and	stopped	expression	following	the	removal	of	doxycycline	(‘on-off’).	Most	

experiments	were	performed	using	 the	TAU62/48	 line,	abbreviated	TAU62.	TAU62/2	

mice	were	used	to	rule	out	an	insertion	site	effect.	

 

5.1.3 P301S	mice	

	

The	 production	 of	 P301S	 mutant	 0N4R	 tau	 transgenic	 mice	 (C57BL/6J-TgN	 (Thy1	

hTauP301S))	has	been	previously	described	(Allen	et	al.,	2002).	Mice	were	generated	by	

subcloning	P301S	mutated	cDNA	encoding	the	shortest	human	four-repeat	tau	isoform	

(383	amino	acids	 isoforms	of	human	 tau)	 into	 a	murine	Thy	1.2	 genomic	expression	

vector	using	XhoI	restriction	site.	Transgenic	mice	were	generated	by	microinjection	into	

pronuclei	of	(C57BL/6J	x	CBA/ca)	F1	generation.	PCR	analysis	was	performed	to	identify	

the	 founders,	 which	 then	 were	 interbred	 with	 C57BL/6J	 mice.	 Homozygous	 and	

heterozygous	P301S	mice	were	selected	according	to	specific	experiment.	

 

5.1.4 ALZ17	mice	

	

The	production	of	full-length	wild-type	2N4R	tau	transgenic	ALZ17	mice	(C57BL/6J-TgN	

(Thy1hTau)17)	has	been	previously	described	(Probst	et	al.,	2000).	Mice	were	generated	

by	subcloning	cDNA	encoding	the	longest	human	tau	isoform	into	the	XhoI	restriction	

site	of	 the	murine	Thy	1.2	minigene.	After	microinjection	 into	pronuclei	of	B6D2F1	x	

B6D2F1	embryos,	the	founders	were	analyzed	by	PCR	and	then	interbred	with	C57BL/6J	

mice.	
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5.1.5 ALZ31	mice	

	

For	the	generation	of	ALZ31	wild-type	human	0N3R	tau	transgenic	mice	(C57BL/6J-TgN	

(Thy1hTau)31),	 0N3R	 human	 tau	 complementary	 DNA	 was	 cloned	 into	 the	 neuron-

specific	Thy	1.2	promoter	element	and	injected	into	C57BL/6J	oocytes.	

	

5.1.6 P301SxTAU62	mice	

	

P301SxTAU62	double	transgenic	mice	co-express	a	tau151-421	fragment	(Δtau)	with	full-

length	mutant	P301S	(0N4R)	tau	as	 long	as	500	mg	kg−1	doxycycline	was	provided	ad	

libitum.	

	

5.1.7 ALZ17xTAU62	mice	

	

ALZ17xTAU62	double	transgenic	mice	co-express	a	tau151-421	fragment	(Δtau)	with	full-

length	wildtype	(2N4R)	tau	as	long	as	500	mg	kg−1	doxycycline	was	provided	ad	libitum.	

	

5.1.8 ALZ31xTAU62	mice	

	

ALZ31xTAU62	double	transgenic	mice	co-express	a	tau151-421	fragment	(Δtau)	with	full-

length	wildtype	(0N3R)	tau	as	long	as	500	mg	kg−1	doxycycline	was	provided	ad	libitum.	

	

5.1.9 P301SxALZ31	mice	

	

P301SxALZ31	double	transgenic	mice	have	been	obtained	by	crossing	full-length	mutant	

P301S	(0N4R)	tau	with	full-length	wildtype	(0N3R)	tau	expressing	mice.	
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5.1.10 ALZ17xALZ31	mice	

	

ALZ17xALZ31	 double	 transgenic	 mice	 have	 been	 obtained	 by	 crossing	 full-length	

wildtype	(2N4R)	tau	with	full-length	wildtype	(0N3R)	tau	expressing	mice.	

	

5.1.11 APP23	mice	

	

APP23	mice	overexpress	the	human	full-length	APP	gene	(751-aa	isoform)	harbouring	

the	Swedish	double	mutation	at	positions	670/671	(KM->NL),	under	control	of	the	Thy	

1.2	promoter.	The	APP751	cDNA	was	inserted	into	the	blunt-ended	XhoI	restriction	site	

of	 the	murine	 Thy	 1.2	minigene	 that	 was	microinjected	 into	 C57BL/6J	 oocytes.	 The	

founders	were	analyzed	by	PCR	and	then	interbred	with	C57BL/6J	mice.	

	

5.2 DNA	isolation	and	genotyping	
	

Genomic	DNA	isolated	from	toe	biopsies	was	used	to	identify	and	analyze	the	transgene	

inheritance	 of	 the	 respective	 mouse	 line.	 Biopsies	 were	 incubated	 in	 lysis	 buffer	

containing	0.1	mg/ml	Proteinase	K	 (Macherey-Nagel,	Germany)	 incubated	over	night	

(O/N	at	55	°C	and	600	rpm	in	Eppendorf	Thermomixer	comfort	shaker.	The	solution	was	

centrifuged	(13000rpm,	5	min)	and	750	μl	of	the	supernatant	was	mixed	with	750	μl	

isopropanol	by	inverting	the	tubes.		The	solution	was	centrifuged	(13000	rpm,	10	min),	

the	supernatant	was	discarded	and	the	pellet	was	washed	with	200	μl	of	75%	ethanol	

(EtOH).	After	 the	solution	was	centrifuged	again	 (13000	rpm,	10	min),	 the	remaining	

DNA	pellet	was	dried	on	Eppendorf	Thermomixer	comfort	shaker	(55°C,	5-10	min)	and	

dissolved	 in	 250	μl	 dH2O	 (50°C,	 1h).	DNA	 samples	were	 kept	 at	 4°C	 until	 analysis	 of	

transgene	inheritance	by	PCR. 

 
Reagent	 Concentration		 Supplier	
Tris	 100	mM	(pH	8.0)	 Biomol	#	08003	
EDTA	 5	mM		 Fluka	BioChemika	#	03690	
NaCl	 200	mM	 Merck	#	1.06404.10	000	
SDS	 0.20%	 Bio	Rad	#	161	0301	

Table	5.1:	Lysis	buffer	composition	
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PCR	 conditions	were	 determined	 independently	 for	 each	 transgenes	 of	 interest	 and	

each	individual	PCR	program	was	run	on	a	PTC100	machine	(MJ	Research,	Canada).	PCR	

products	were	run	on	1.5%	agarose	gels	at	150V	for	90	min.		

	

Reagent	 Volume	
Forward	primer	(10	pmol/μl)	 2	μl	
Reverse	primer	(10	pmol/μl)	 2	μl	
TopTaq	Master	mix	(Qiagen,	Germany)	 12.5	μl	
Sterile	H2O	 6.5	μl	
DNA	 2	μl	

Table	5.2:	PCR	mixture	

	
 
Temperature	 Time	 Cycles	
95°C	 2	min	 1	
95°C	 1	min	

30	60°C	 1	min	
72°C	 2	min	
72°C	 10	min	 1	
4°C	 ∞	

Table	5.3:	TAUF151	PCR	program	

 
 
Temperature	 Time	 Cycles	
95°C	 4	min	 1	
95°C	 1	min	

30	60°C	 1	min	
72°C	 3	min	
72°C	 10	min	 1	
4°C	 ∞	

Table	5.4:	P301S	PCR	program	
	

	
Temperature	 Time	 Cycles	
95°C	 10	min	 1	
95°C	 20	s	

30	54°C	 15	s	
72°C	 1	min	
72°C	 10	min	 1	
4°C	 ∞	

Table	5.5:	P301SxALZ31	PCR	program	
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Temperature	 Time	 Cycles	
94°C	 2	min	 1	
94°C	 45	s	 1	
60°C	 1	min	

35	72°C	 45	s	
94°C	 45	s	
72°C	 5	min	 1	
4°C	 ∞	

Table	5.6:	APP23	PCR	program	

	

Primers	used	for	genotyping	were	designed	individually	for	transgene	of	interest.	
	
PCR	program	 Forward	primer	 Reverse	primer	
TAUF151	 GTG	GAT	CTC	AAG	CCC	TCA	AG	 GGC	GAC	TTG	GGT	GGA	GTA	
P301S	 GGT	TTT	TGC	TGG	AAT	CCT	GG	 GGA	GTT	CGA	AGT	GAT	GGA	AG	
ALZ31xP301S	 CCT	CTC	CCG	TCC	TCG	CCT	CTG	

TCG	
AAG	ACA	GAC	CAC	GGG	GCG	GAG	
ATC	

APP23	 CCG	ATG	GGT	AGT	GAA	GCA	
ATG	GTT	

GAA	TTC	CGA	CAT	GAC	TCA	GG	

Table	5.7:	Designed	primer	sequences	(5’	-	3’)	

 
	

5.3 Histology	and	immunohistochemistry	
	

Mice	were	anesthetized	with	a	mixture	of	100	mg	kg−1	ketamine	(Ketalar®,	Pfizer)	and	

10	mg	 kg−1	 xylazine	 (Rompun®	 2%,	 Bayer)	 intraperitoneally	 and	 after	 deep	 sleeping,	

mice	were	injected	by	100	mg	kg−1	sodium	pentobarbital	(Pentothal®	0.5g,	Ospedalia	

AG)	and	transcardially	perfused	with	0.01M	cold	phosphate-buffered	saline	(PBS).	

	

5.3.1 Tissue	 preparation	 and	 processing:	 Brain,	 Spinal	 cord	 and	 Sciatic	

nerve	

	

After	 perfusion,	 the	 spinal	 cord,	 sciatic	 nerve	 and	 the	 brain	 were	 quickly	 removed,	

immersion	fixed	in	4%	paraformaldehyde	O/N,	and	embedded	in	paraffin.	Brains	were	

cut	either	sagittally	(4–20	μm	transverse	serial	sections)	or	in	coronal	plane	anterior	to	

the	 hippocampus	 (4–20	 μm	 transverse	 serial	 sections	 starting	 at	 -2	 Bregma	 to	 -3	

Bregma,	as	defined	by	the	Mouse	Brain	Atlas	by	G.	Paxinos	and	K.	Franklin)	by	a	sliding	
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microtome	(Leica	SM2000R,	Leica,	Germany).	Paraffin	sections	were	transferred	on	a	

floating	bath	(60°C),	mounted	on	histological	slides	(Leica	IP	S,	Leica,	Germany)	and	dried	

O/N	at	37	°C	before	further	usage.	Paraffin	sections	were	deparaffinised	in	Xylol	(20	min;	

from	Biosystems,	Switzerland),	rehydrated	in	100%	EtOH	(3	min),	96%	EtOH	(2x3	min)	

and	70%	EtOH	(2x3	min),	followed	by	washing	in	PBS.	In	order	to	mask	antigenic	sites,	

antigen	retrieval	was	performed	in	Citric	acid	buffer	pH	6.0	(Pro	Taps®)	for	30	min	at	90	

°C.	After	blocking	in	2.5%	normal	horse	serum	(Vector	Laboratories)	for	30	min	at	room	

temperature	(RT),	sections	were	incubated	with	primary	antibody	diluted	in	PBS	O/N	at	

4°C.	The	next	day,	the	sections	were	washed	 in	Tris/PBS	solution	(3x5	min)	and	then	

incubated	 with	 ImmPRESTM	 Reagent	 peroxidase	 for	 anti-mouse	 antibody	 (Vector	

Laboratories,	 USA)	 for	 1h	 at	 RT.	 After	 the	 incubation,	 sections	 were	 washed	 with	

Tris/PBS	 (3x5	 min)	 and	 developed	 by	 using	 chromogen	 ImmPACTTM	 NovaREDTM	

Peroxidase	substrate	kit	(Vector	Laboratories,	USA).	The	developing	time	was	controlled	

under	a	microscope	and	sections	washed	with	H2O	to	stop	the	reaction.	Additionally,	

slides	were	then	counterstained	with	hematoxyline	(J.T.	Baker).	Finally,	sections	were	

rehydrated	in	70%	EtOH	(1	min),	96%	and	100%	EtOH	(each	2x1	min)	and	kept	in	xylol,	

before	using	Pertex®	mounting	medium	(Biosystems,	Switzerland).	Pictures	of	section	

were	 taken	using	 an	Olympus	DP73	 (Olympus,	USA)	microscope.	 The	 content	 of	 the	

original	images	was	not	neglected	by	changes	of	processed	images.	

	

5.3.2 Hematoxylin	and	Eosin	Staining	

	

After	deparaffinising	and	rehydration,	sections	were	rinsed	in	cold	tap	water	and	stained	

in	hematoxylin	for	5-8	min.	After	washing	in	cold	tap	water	and	decolorizing	shortly	in	

alcohol-HCl,	the	slides	were	washed	again	in	cold	tap	water	and	kept	in	warm	water	until	

blue	colour	appears.	Then,	sections	were	immersed	in	1%	erythrosine	B	solution	(RAL	

diagnosis)	for	2-3	min,	washed	again	shortly	in	cold	tap	water,	followed	by	dehydration	

in	EtOH	(70%,	96%	and	100%)	and	mounting	as	previously	described.	
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5.3.3 Gallyas	silver	staining	

	

Sections	were	silver-impregnated	by	a	previously	described	method	(Braak	et	al.,	1988;	

Gallyas,	1971).	After	deparaffinization	and	rehydration	the	sections	were	incubated	in	

3%	Periodic	Acid	(Sigma-Aldrich,	USA)	for	30	min	at	RT.	Slides	then	were	washed	in	dH2O	

(2	 min)	 and	 incubated	 in	 1%	 Alkaline	 Silver	 solution	 (1M	 sodium	 hydroxide;	 0.6M	

potassium	iodide;	1%	silver	nitrate	solution;	all	from	Merck,	Germany),	for	10	min	at	RT.	

After	 incubation	 in	 ABC	 solution	 and	 simultaneous	monitoring	 of	 the	 reaction	 time,	

sections	were	 treated	with	0.5%	Acetic	Acid	 (Merck,	Germany)	 to	block	 the	 reaction	

during	30	min	in	RT.	Treated	slides	were	washed	in	dH2O	and	incubated	in	5%	Sodium	

thiosulfate	(Merck,	Germany)	for	5	min	at	RT.	Then,	slides	were	washed	in	cold	tap	water	

and	nuclei	stained	(hematoxylin	eosin	staining),	followed	by	dehydration	in	EtOH	(70%,	

96%	and	100%)	and	mounting	as	previously	described.	

 
	
Solution	 Composition	 Concentration	 Supplier	

A	 Sodium	Carbonate	Anhydride	 0.5	M	 Merck,	Germany	

B	
Ammonium	nitrate	 24	mM	 Merck,	Germany	
Silver	Nitrate	 0.01	M	 Merck,	Germany	
Tungstosilicic	Acid	Hydrate	 3.5	mM	 Sigma-Aldrich,	USA	

C	

Ammonium	nitrate	 24	mM	 Merck,	Germany	
Silver	Nitrate	 0.01	M	 Merck,	Germany	
Tungstosilicic	Acid	Hydrate	 3.5	mM	 Sigma-Aldrich,	USA	
Formalin	Solution	 0,26%	 Merck,	Germany	

Table	5.8:	ABC	solution	
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5.3.4 Holmes	Silver	Nitrate-Luxol	Fast	Blue	staining	

	
Reagents	 Concentration	 Supplier	

Impregnation	
solution	

	

Boric	acid	 1,24%	 Merck,	Germany	
Dinatriumtetraborat	
(Borax)	

1,90%	 Merck,	Germany	

Silver	nitrate	 1%	 Merck,	Germany	
Pyridin	solution	 10%	 J.T.Baker	

Reduction	
solution	

	

Sodium	sulfite	 0.8M	 Merck,	Germany	
Hydrochinon	 90mM	 Merck,	Germany	
Gold	chloride	 0,25%	 Sigma-Aldrich,	USA	
Acid	oxalic	 2%	 Merck,	Germany	
Sodium	thiosulfate	 5%	 Merck,	Germany	

Luxol	Fast	
Blue	solution	

	

Luxol	fast	blue	 24	mM	 Medite	

Ethanol	 0.01	M	 Pharmacy	USB	
Acetic	acid	 3.5	mM	 Merck,	Germany	

Table	5.9:	Holmes	Silver	Nitrate-Luxol	Fast	Blue	staining	solutions	

	

Sections	were	deparaffinised	and	rehydrated	as	previously	described	and	placed	in	20%	

Silver	nitrate	solution	(Merck,	Germany),	for	90	min	in	the	dark	at	RT.	Slides	then	were	

washed	 in	dH2O	 (3x)	and	 incubated	 in	 impregnation	 solution	at	37°C	O/N.	Next	day,	

sections	 were	 placed	 onto	 filter	 paper	 to	 remove	 superfluous	 fluid	 and	 transferred	

directly	in	reduction	solution	for	10	min.	The	sections	were	then	washed	in	tap	water	(5	

min)	and	placed	in	dH2O.	After,	the	sections	were	moved	in	0.25%	Gold	chloride	solution	

(5	min)	and	then	rinsed	 in	dH2O	(10	min).	Washed	slides	were	 incubated	 in	2%	Acid	

oxalic	(10	min)	and	the	reaction	were	stopped	by	rinsing	the	sections	in	dH2O.	Slides	

were	then	placed	in	5%	sodium	thiosulfate	solution	for	5	min	and	rinsed	in	tap	water	

before	placing	the	slides	briefly	in	70%	(1x)	and	96%	EtOH	(2x).	Next,	the	sections	were	

incubated	for	2	hours	at	60°C	in	Luxol	fast	blue	solution	and	briefly	washed	in	96%	EtOH	

(2x)	 to	 remove	 excess	 stain,	 then	 placed	 in	 running	 cold	 tap	 water	 for	 5	 min	 and	

transferred	 into	 dH2O.	 Slides	 then	 were	 placed	 in	 0.1%	 Lithium	 carbonate	 for	 few	

seconds	and	distained	in	70%	EtOH	before	to	be	washed	in	dH2O.	Finally,	the	slides	were	

immersed	 in	 Cresyl	 violet	 solution	 (10	min;	 at	 RT)	 and	washed	 in	 96%	 EtOH	 (2x)	 to	

remove	excess	stain	and	then	in	100%	EtOH	(2x)	before	to	place	in	xylol	and	apply	Pertex	

mounting	medium.	
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5.3.5 Masson	Trichrome	staining	(Sciatic	nerve)	

	
Reagents	 Concentration	 Supplier	

Weigert's	Iron	
Hematoxylin	
solution	I	
	

Solution	I	 Hematoxyline	 33	mM	 Merck,	
Germany	

Ethanol	 96%	 Pharmacy	USB	

Ferric	chloride	
solution	
	

Solution	II	 Iron	(III)	
chloride	

32	mM	 Merck,	
Germany	

Acid-HCl	 25%	 Merck,	
Germany	

Acid	fuchsin	
Ponceau	

Solution	I	 Fuchsin	acid	 17	mM	 Merck,	
Germany	

Acetic	acid	 1%	 Merck,	
Germany	

Solution	II	 Ponceau	 23	mM	 Chroma,	
Germany	

Acetic	acid	 1%	 Merck,	
Germany	

Aniline	blue	solution	
	

Aniline	blue	 34	mM	 Chroma,	
Germany	

Acetic	acid	 2,5%	 Merck,	
Germany	

Table	5.10:	Masson	Trichrome	staining	solutions	

 
 
The	sections	were	deparaffinised	and	incubated	in	Weigert’s	Iron	Hematoxylin	solution	

(1	min)	and	washed	 in	running	cold	water	followed	by	warm	water	(5-10	min).	Next,	

slides	were	placed	in	Acid	fuchsin	Ponceau	solution	(5	min),	followed	by	washing	in	tap	

water.	The	sections	were	then	incubated	in	1%	Acid	Phosphomolibdic	(Merck,	Germany)	

for	5	min	and	Aniline	blue	solution	was	added	directly	on	the	slides	for	3	min	(without	

discarding	the	1%	Acid	Phosphomolibdic)	under	shaking.	Then,	the	sections	were	rinsed	

three-five	times	 in	dH2O	and	transferred	 in	1%	acetic	acid	 (5	sec).	Finally,	 the	rinsed	

slides	were	dehydrated	in	absolute	EtOH	(2x),	then	in	xylol,	and	coverslipped.	

 

5.3.6 Muscles	preparation	

	

After	 perfusion,	 gastrocnemius	 (GC),	 soleus	 (Sol),	 tibialis	 anterior	 (TA)	 and	 extensor	

digitorum	 longus	 (EDL)	 were	 removed	 and	 snap	 frozen	 in	 liquid	 nitrogen	 cooled	

isopentane.	Muscles	were	embedded	on	a	cork	disc	on	O.C.TTM	compound	(Tissue-Tek®	
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SakuraTM,	USA)	and	stored	at	-80°C.	Coronal	cryosections	(10-12	μm)	were	cut	with	a	

cryostat	(HydraxC,	Histocom	AG,	Switzerland)	maintained	at	-	20°C.	

 

5.3.7 Myosin-ATPase	(Adenosintriphosphatase)	staining	(pH4.2)	

	

Reagents	 Concentration	 Supplier	
Veronalacetate	
buffer	(stock	
solution)	
	

Sodium	acetate	
	

0.1M	 Merck,	Germany	

Sodium	
barbiturate	
(Veronal)	
	

0.1M	 Sigma-Aldrich,	USA		

ATP	pH	4.2	
solution	
	

Veronalacetate	
buffer	pH	4.2	

0.1M	 Sigma-Aldrich,	USA		

HCl	 0.1M	 	
Veronal	Ca	
buffer	(stock	
solution)	
	

Sodium	
barbiturate	
(Veronal)	
	

0.1M	 Sigma-Aldrich,	USA		

CaCl2	
	

0.03M	
	

Merck,	Germany	

Veronal	Ca	ATP	
pH	9.4	solution	
	

Adenosin-5-
triphosphate	
disodium	(ATP)	
	

4.5mM	
	

Fluka	#	02060	
	

Cobalt	chloride	
	

2%	
	

Merck,	Germany	

HCl	 0.1M	 	

NaOH	 1M	 Merck,	Germany	

Ammonium	sulfide	solution	
	

21%	
	

Sigma-Aldrich,	USA		

Table	5.11:	Myosin-ATPase	staining	solutions	
	

	

Frozen	sections	of	O.C.T	embedded	samples	were	equilibrated	O/N	at	-20°C,	and	then	

placed	into	the	cryostat	for	minimum	20	minutes.	The	samples	were	mounted	on	the	

cryostat	with	O.C.T	and	10	μm	sections	were	cut	and	collected	on	warm	slides	at	RT.	

Before	to	proceed	the	staining,	the	sections	must	be	dry	at	 least	1h	at	RT.	The	slides	

were	transferred	in	ATP	pH	4.2	solution	(10	min;	RT)	and	placed	shortly	for	washing	in	

Veronal-Ca	pH	9.4	buffer.	Next,	the	sections	were	incubated	in	Veronal-Ca-	ATP	pH	9.4	

solution	(45	min	at	RT).	The	slides	were	then	washed	in	tap	water	(2x)	and	moved	in	
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dH2O	before	transferring	in	2%	Cobalt	Chloride	for	5	min.	After	washing	in	tap	water	

(3x),	the	sections	were	placed	in	Ammoniumsulfide	solution	(14	sec)	and	rinsed	before	

to	 be	 rehydrated	 in	 ascending	 EtOH	 (1x	 in	 70%,	 2x	 in	 96%	 and	 2x	 in	 100%)	 and	

transferred	in	xylol	and	apply	Pertex	mounting	medium.	

	

5.3.8 Semithin	sections	(Sciatic	nerve)	

	

Sciatic	nerves	were	dissected	and	fixed	for	at	least	2h	in	2.5%	of	Glutaraldehyde	at	RT,	

followed	 by	washing	 samples	 in	 10	mM	 PBS	O/N.	 The	 tissues	were	 reduced	 in	 1	%	

Osmium	 tetroxide	 (Oxkem	 Limited	 10x1g)	 for	 2h	 at	 RT.	 After	 a	 dehydration	 step	 in	

histological	grade	EtOH	(70%,	80%,	90%	and	2x100%)	for	20	min	each	and	2x	in	Acetone	

for	30	min,	the	tissue	was	incubated,	first,	in	Acetone-Durcupan	(1:1)	solution	for	60	min	

and,	second,	in	Acetone-Durcupane	(1:3)	O/N	at	4°C.	Then,	the	tissues	were	mounted	in	

Durcupan	resin,	containing	150ml	of	Durcupan	A	(Fluka),	150	ml	of	Durcupan	B	(Fluka),	

3.1	ml	of	Durcupan	C	(Fluka),	4	ml	of	Durcupan	D	(Fluka),	and	cooked	at	60°C	for	2-3	

days,	before	processed	for	light	microscopy.	Semithin	sections	were	cut	(1.5	μm)	using	

a	glass	trip	that	was	equipped	with	a	Reichert-Jung	apparatus.	

 

5.3.9 Para-Phenylendiamine	(Sciatic	nerve)	

	

Ultrathin	cryosections	on	the	slides	were	dried	on	a	warm	plate	before	incubated	in	1%	

p-Phenylenediamine	(Sigma-Aldrich,	USA)	solution	for	2-3h.	The	slides	then	were	rinsed	

6-10	times	in	dH2O	and	dried	at	RT.	

	

5.3.10 Electron	microscopy	

	

Mice	were	anesthetized	as	previously	desrcibed.	After	transcardially	perfusion	with	PBS	

for	2-4	min,	animals	were	perfused	further	with	a	fixative	solution	composed	of	with	2%	

paraformaldehyde,	2%	glutaraldehyde	and	10	mM	PBS	(pH	7.4)	for	1h.	Brains	and	spinal	

cords	were	removed	and	postfixed	for	1	h,	followed	by	rinsing	of	the	tissues	in	10	mM	

PBS.	
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The	tissues	were	reduced	in	1	%	Osmium	tetroxide	and	1.5%	Potassium	Ferrocyanide	

for	40	min;	after,	the	tissues	were	transferred	in	1%	Osmiumtetroxid	for	40	min.	The	

tissues	 were	 dehydrated	 as	 previously	 described	 and	 embedded	 in	 Epon.	 During	

dehydration,	 the	 sections	were	 treated	with	 1%	 uranyl	 acetate	 in	 70%	 EtOH	 for	 1h.	

Ultrathin	 sections	 from	 selected	 areas	were	 cut	with	 a	microtome	 (Ultracut	 E;	 Leica	

Microsystems	GmbH,	Wetzlar,	Germany),	collected	on	single-shot	grids,	stained	in	6%	

uranyl	acetate	for	1h.	Sections	were	examined	and	photographed	with	a	Morgagni	FEI	

80kV	electron	microscope	(FEI	Company,	Eindhoven,	The	Netherlands).	

	

5.4 Sarkosyl	extraction	

	

Reagent	 Concentration	 Supplier	
Tris	 25	mM	(pH	7.4)	 Biomol	
NaCl	 150	mM	 Merck,	Germany	
EDTA	 1	mM	 Fluka	BioChemika	
EGTA	 1	mM	 Sigma-Aldrich,	USA	
Sodium	pyrophosphate	 5	mM	 Sigma-Aldrich,	USA	
PhosSTOP®,	 Phosphatase	 inhibitor	 cocktail	
tablet	

1	tablet	 Roche,	Switzerland	

Sodium	fluoride	 30	mM	 Merck,	Germany	
Complete	 Mini,	 Protease	 inhibitor	 cocktail	
tablets	

1	tablet	 Roche,	Switzerland	

Phenylmethyl	sulfonyl	fluoride	(PMSF)	 1	mM	 Sigma-Aldrich,	USA	
Leupeptine	 10	μg/ml	 Sigma-Aldrich,	USA	
Aprotinine	 10	μg/ml	 Sigma-Aldrich,	USA	
Pepstatine	 10	μg/ml	 Sigma-Aldrich,	USA	

Table	5.12:	Extraction	buffer	
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Reagent	 Concentration	 Supplier	

Tris	 10	mM	(pH	7.4)	 Biomol	

NaCl	 800	mM	 Merck,	Germany	

Sucrose	 10%	 Fluka	BioChemika	

EGTA	 1	mM	 Sigma-Aldrich,	USA	

Phenylmethyl	sulfonyl	fluoride	(PMSF)	 1	mM	 Sigma-Aldrich,	USA	

Leupeptine	 10	μg/ml	 Sigma-Aldrich,	USA	

Aprotinine	 10	μg/ml	 Sigma-Aldrich,	USA	

Pepstatine	 10	μg/ml	 Sigma-Aldrich,	USA	

Table	5.13:	A68	buffer	

	

Phosphatase	and	protease	inhibitor	cocktail	tablets	were	freshly	added	to	each	buffer.	

	

Sarkosyl	 extraction	 was	 performed	 as	 described	 previously	 (Delobel	 et	 al.,	 2008).	

Following	PBS	perfusion,	one	half	of	the	mouse	brain	was	dissected	into	forebrain	and	

brainstem	and	frozen	in	liquid	nitrogen	or	on	dry	ice.	Brain	tissue	was	homogenized	in	

cold	Extraction	buffer	1:3	(w/v)	by	using	Ultraturrax	T8	(IKA	 labortechnik)	and	briefly	

sonicated	(Bandelin	SONOPULS,	90	

%	power,	10	%	cycle,	10	sec	pulses).	The	samples	were	centrifuged	at	4	000g	(5	000	rpm)	

for	15	min	and	10%	of	the	supernatant	(=	total	tau)	was	collected	and	aliquoted.	Then,	

samples	 were	 further	 centrifuged	 at	 80	 000g	 (28	 000	 rpm)	 for	 15	 min	 by	 using	

ultracentrifuge	 (Beckman	 Coulter,	 OptimaTM	 L-70K	 Ultracentrifuge)	 by	 using	 SW55Ti	

rotor	(Beckman	Coulter).	The	supernatant	(=	soluble	tau)	was	collected	and	aliquoted.	

The	remaining	pellets	were	homogenized	in	A68	buffer	1:3	(w/v)	and	centrifuged	at	4	

000	g	(5	000	rpm)	for	20	min	and	1%	of	sarkosyl	(N-laurylsarcosine,	Sigma-Aldrich,	USA)	

added	 for	 1h30	 at	 37	 °C	 in	 thermoshaker	 (Eppendorf	 Thermomixer	 comfort	 shaker)	

under	shaking	(max	rpm).	The	samples	were	further	centrifuged	at	80	000g	(28	000rpm)	

for	30	min	and	the	pellets	was	resuspended	in	150	μl	g−1	of	50	mM	Tris-HCl,	pH	7.4	and	

aliquoted	(=	sarkosyl	insoluble	tau).	
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5.5 Western	Blot	
	

Reagent	 Concentration	 Supplier	
Tris	 20	mM	(pH	7.5)	 Biomol	
NaCl	 137	mM	 Merck,	Germany	
Complete	 Mini,	 Protease	 inhibitor	 cocktail	
tablets	

1	tablet	 Roche,	Switzerland	

Table	5.14:	TBS-Complete	buffer	

	

Reagent	 Reduced	sample	
(μl)	

Non-reduced	sample	
(μl)	

Sample	 x	 x	
NuPAGE®	LDS	Sample	Buffer	(4X)	 5	 x	
NuPAGE®	Reducing	Agent	(10X)	 2	 —	
Deionized	Water	 x	 x	
Total	Volume	 20	 20	

Table	5.15:	Reduced	and	non-reduced	sample	preparation	

 

Following	PBS	perfusion,	one	half	of	the	mouse	brain	was	dissected	into	forebrain	and	

brainstem	and	frozen	in	liquid	nitrogen	or	on	dry	ice.	The	brain	tissue	was	homogenized	

in	1:10	volume	of	TBS-Complete	buffer	by	using	Ultraturrax	T8	(IKA	labortechnik)	and	

briefly	 sonicated	 (Bandelin	 SONOPULS,	 90	%	 power,	 10	%	 cycle,	 10	 sec	 pulses).	 The	

samples	were	spun	down	at	4	000	g	(5	000	rpm)	for	30	min	and	the	supernatant	was	

collected	and	aliquoted.	Western	blots	were	performed	either	under	reducing	or	non-

reducing	conditions	(see	Table	5.15).	Following	appropriate	preparation,	samples	were	

heated	for	5	min	at	95°C	and	shortly	spin	down	and	loaded	onto	a	7%	NuPAGE®	Tris-

acetate	 gel.	 Gels	 were	 run	 first	 at	 100V	 for	 30	min,	 then	 subsequently	 at	 120V	 for	

additional	60	min.	After	the	removal	of	gels	from	the	cassette	and	activation	of	PVDF	

membrane	 (Amersham	Biosciences)	 for	 first,	 30	 sec	 in	methanol	 and	 then,	 5	min	 in	

transfer	buffer,	samples	were	transferred	on	the	PVDF	membrane	at	30V	for	2h	by	using	

the	XCell	IITM	Blot	Module.	Next,	Unspecific	binding	epitopes	were	blocked	with	5%	non-

fat	 milk	 in	 PBS-T	 (0.01M	 PBS	 pH	 7.4;	 0.05	 %	 Tween-20)	 for	 1h	 at	 RT,	 followed	 by	

incubation	with	primary	antibody	O/N	at	4°C	on	a	shaker.	After	washing	with	PBS-T	(3x5	

min)	at	RT,	the	membrane	was	incubated	with	horseradish	peroxidase	(HRP)-conjugated	

anti-mouse	or	-rabbit	secondary	antibody	for	1h	at	RT.	Then,	the	membrane	was	washed	

again	 in	PBS-T	 (3x5	min)	 at	RT	 and	detected	by	electrochemiluminescence	 (ECL)	 (GE	

Healthcare,	 USA).	 Western	 blot	 was	 performed	 with	 the	 NuPAGE®	 System	 from	

Invitrogen.		
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5.6 Antibodies	

	

Antibody	 Target	 Dilution	 Source	
HT7	 human	tau	

aa	159-163	
WB	1:4000	
IHC	1:800	

Pierce,	Rockford,	IL		
#MN1000	

BR134	 human	tau	 WB	1:1000	 (Goedert	et	al.,	1989)	

Tau-C3	 Tau	cleaved	at	
residue	Asp421		

WB	1:1000	
IHC	1:1000	

Santa	Cruz	Biotechnology,	Inc,	Dallas,	
TX		
#sc-32240	

AT8	 Tau	
pSer202/Thr205	

WB	1:1000	
IHC	1:800	

Pierce,	Rockford,	IL	#MN1020	

AT100	 Tau	
pThr212/Ser214	

WB	1:1000	
IHC	1:500	

Pierce,	Rockford,	IL	#MN1060	

PHF-1	 Tau	
pSer396/404	

WB	1:2000	
IHC	1:1000	

Peter	Davies,	Albert	Einstein	College	
of	Medecine,	Bronx,	NY	

MC1	 Tau	
aa	5-15,	312-322		

IHC	1:100	 Peter	Davies,	Albert	Einstein	College	
of	Medecine,	Bronx,	NY	

2F11	 neurofilament	(NF)	
NF-L,	NF-H	(70kD)	

IHC	1:800	 Dako,	Glostrup,	DK	#M0762	

NF200	 neurofilament	(200kD)	 IHC	1:100	 (Probst	et	al.,	2000)	

GFAP	 glial	fibrillary	acidic	
protein	

IHC	1:500	 Thermo	Fisher	Scientific	Inc.,	
Kalamazoo,	MI	#MS-1407-R7	

Synaptophysin	 synaptophysin	 IHC	1:1000	 Millipore	Corporation,	Billerica,	MA	
#MAB5258	

MG160	(rabbit)	 Golgi	apparatus	 IHC	1:1000	 Nicholas	Gonatas,	Pathology	and	
Laboratory	Medicine,	University	of	
Pennsylvania,	PA	

VAMP2/Synaptobrevin	
2	(rabbit)	

transport	vesicles	 IHC	1:1000	 Synaptic	system,	Goettingen,	
Germany		
#	104	202	

GAPDH	(6C5)	 GAPDH	 WB	1:1000	 Santa	Cruz	Biotechnology,	Santa	Cruz,	
CA,	#32233	

ß-actin	 actin	 WB	1:5000	 Sigma-Aldrich,	Saint	Louis,	MO	
#A5316	

Cox	subunit	1a	 mitochondrial	
staining	

IHC	1:200	 Abcam	plc,	Cambridge,	UK		
#ab14705	

RD3,	clone	8E6/C11	 Human	tau,	
recognize	3R,	
residue	209-224	

WB	
1:4000;	
IHC	1:3000	

Millipore	Corporation,	Billerica,	MA	
#05-803	

RD4,	clone1E1/A6	 Human	tau	and	
mouse,	recognize	
4R,	aa	275-291	

WB	
1:4000;	
IHC	1:100	

Millipore	Corporation,	Billerica,	MA	
#05-804	

T49	 Specific	for	rodent	
tau	

WB	1:10	
000	

Virginia	Lee,	CNDR,	University	of	
Pennsylvania	School	of	Medicine,	
Philadelphia,	PA	

Table	 5.16:	 Antibodies	 used	 for	 immunohistochemistry	 (IHC)	 and	 Western	 blotting	 (WB).	 Species	 is	
mouse,	unless	indicated	otherwise)	
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5.7 Behavioral	assessment	

	

5.7.1 Grid-test	

	

Grid	 reflex	 and	motor	 strength	of	mice	was	 assessed	by	 the	 grid	 test.	Animals	were	

placed	on	a	vertical	mesh	grid	and	the	 latency	to	 fall	off	 from	the	grid	was	recorded	

during	a	maximum	time	of	180	sec.	Each	mouse	was	tested	3	times	with	at	least	a	5	min	

rest	interval	in	between	trails.	An	average	score	per	day	was	made.	

	

5.7.2 Rotarod	test	

	

The	motor	coordination	and	balance	of	mice	were	assessed	using	the	Panlab	Harvard	

Rotarod.	The	Rotarod	starts	at	a	speed	of	4	rpm	and	accelerates	consistently	with	1	rpm	

every	3	sec.	The	testing	phase	consisted	of	4	consecutive	days.	With	each	animal,	an	

acclimation	 period	 consisting	 of	 3	 sessions	 with	 a	 rest	 interval	 of	 at	 least	 5	 min	 in	

between	trails	was	performed.	Subsequently,	mice	were	tested	for	3	consecutive	days	

with	3	trials	each	day	and	a	rest	interval	of	5	min	minimum	and	the	mean	latency	to	fall	

was	documented.		

 

5.7.3 Object	recognition	test	

 

Short	term	memory	was	assessed	by	the	object	recognition	test.	Animals	were	placed	in	

a	squared	open	field	box	(48	×	48	×	40	cm)	under	dim	light	conditions.	Mice	were	allowed	

to	freely	explore	the	box	during	a	habituation	phase	over	3	consecutive	days	for	15	min,	

until	no	signs	of	stress	were	present.	During	a	training	phase	over	2	days,	two	identical	

objects	were	introduced	at	diagonal	corners	of	the	field	for	training	sessions	of	10	min	

duration.	The	training	was	halted	when	the	mice	had	closely	explored	the	objects	for	20	

sec,	for	a	maximum	training	duration	of	10	min	(Leger	et	al.,	2013)).	In	the	test	phase,	

the	animals’	short-term	memory	was	tested	by	replacing	one	of	the	familiar	objects	with	
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a	novel	one,	and	the	time	spent	exploring	each	object	during	a	period	of	6	min	was	video	

recorded.	Video	scoring	VLC	video	player,	VideoLAN,	France)	was	done	by	a	researcher	

blind	to	the	genotype,	and	as	exploration	criteria	nose	sniffing/touching	of	the	object	at	

2	cm	or	less	distance	(Leger	et	al.,	2013))	were	used.	For	both	training	and	test	phases,	

10	cm	high	objects	composed	of	the	same	material	were	used,	and	the	position	of	the	

novel	and	familiar	objects	were	randomized	across	groups.	

 
	

5.8 Statistics	

	

All	 statistical	 analysis	was	performed	using	one-way	analysis	of	 variance	 followed	by	

Bonferroni’s	 multiple	 comparison	 test	 and	 Student’s	 t-tests	 with	 GraphPad	 Prism	

Software	Version	5.0a	(GraphPad	Software,	La	Jolla,	CA,	USA).	P-values	are	established	

and	 outlined	 as	 follows:	 *P<0.05,	 **P<0.01	 and	 ***P<0.001.	 The	mean	 and	 s.d.	 are	

indicated.	
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7 Abbreviations	

	
	
α-Syn	
aa		
Aβ	
ABri	
ABriPP	
ADAM	
ADAM10	
ADan	
ADanPP	
AD		
AgD	
AICD	
ALS	
AnxA2	
APH1	
ApoE4	
APP		
Asp		
ATP	
BRI2	
C-terminal		
CAA	
CAG		
CaM	
CBD		
cdk;cdc	
CHMP2B	
CjD	
CK	
CNS	
CSF	
CTF	

α-synuclein	
amino	acids	
amyloid	beta	
amyloid-Bri	
amyloid-Bri	precursor	
adamalysin	protease	
a	desintegrin	and	metalloproteinase	10	
amyloid-Dan	
amyloid-Dan	precursor	
Alzheimer’s	disease	
argyrophilic	grain	disease	
APP	intracellular	domain	
amyotrophic	lateral	sclerosis	
annexin	A2	
anterior	pharynx	defective	1	
apolipoprotein	E4	
amyloid	precursor	protein	
aspartic	acid	
adenosine	triphosphate	
BRICHOS	domain	containing	2B	
carboxy	terminal	
cerebral	amyloid	angiopathy	
cytosine-adenine-guanine	trinucleotide	repeats		
calmodulin	
corticobasal	degeneration		
cyclin-dependent	kinase	
charged	multivescular	body	protein	2B	
Creutzfeldt-Jakob	disease	
casein	kinase	
central	nervous	system	
cerebrospinal	fluid	
C-terminal	fragment	
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DLB	
DNA		
DRPLA	
E391	
ECL		
EOAD	
ER	
g	
GA		
GGT	
GPI	
GSK3	
GSS	
FAD	
FBD	
FDD	
FTD	
FTLD	
FTDP-17T	
GSK3	
h	
HD	
htt		
IAPP	
IHC			
JNK	
kDa	
LB	
LN	
LOAD	
MAPK	
MAPT	
MARK	
mRNA	
MSA	
MTB	
µm	
mm		
mM	
MMP	
Mn	
N-terminal	
NTF	
nm	
nmol		
NFT		
PBS		
PCR		

dementia	with	Lewy	bodies	
deoxyribonucleic	acid	
Dentatorubral-pallidoluysian	atrophy	
C-terminal	truncated	tau	at	Glutamic	Acid391	
enhanced	chemiluminescence	
early-onset	AD	
endoplasmatic	reticulum	
gram	
golgi	apparatus	
globular	glial	tauopathy	
glycosylphosphatidylinositol	
glycogen	synthase	kinase	3	
Gerstmann-Sträussler-Scheinker	diseases	
familial	AD	
familial	British	dementia	
familial	Danish	dementia	
frontotemporal	dementia	
frontotemporal	lobar	degeneration	
FTD	and	parkinsonism	linked	to	chromosome	17	
glycogen	synthase	kinase	3	
hour	
Huntington	disease	
huntingtin	
hormone	islet	amyloid	peptide	
immunohistochemistry	
c-Jun	N-terminal	kinase	
kilo	daltons	
Lewy	bodies	
Lewy	neurites	
late-onset	AD	
microtubule	associated	protein	kinase	
microtubule	associated	protein	tau	
microtubule-affinity	regulating	kinase	
messenger	ribunucleic	acid	
multiple	system	atrophy	
microtubule	binding	domain	
micrometer(s)	
millimeter(s)	
milli	molar	
matrix	metalloproteinase	
manganese	
amino	terminal	
amino	terminal	fragment	
nanometer(s)	
nanomolar	
neurofibrillary	tangle	
phosphate	buffered	saline	
polymerase	chain	reaction	
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PCs	
PD	
PEN-2	
PGRN	
PHF	
PiD	
PK	
PolyQ	
PP	
PRNP	
PrPC		
PrPSc	
PRR	
PS1/2	
PSA	
PSP	
RRM	
sAPP	
SAA	
SCA	
SH3	
SPPL2	
TARDBP	
TDP-43	
TRD	
TTR	
UPS	
tTs		
VAMP2	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
	
	

proprotein	convertases	
Parkinson’s	disease	
presenilin	enhancer	2	
progranulin	
paired	helical	filaments	
Pick’s	disease	
protein	kinase	
Polyglutamine	disease	
phosphatase	
PRioN	Protein	
cellular	prion	protein 
scrapie	prion	protein	
pronline-rich	region	
presenilin	1	and	2	
puromycin-sensitive	aminopeptidase	
progressive	supranuclear	palsy	
RNA-recognition	motifs	
soluble	ectodomain	of	APP	
serum	amyloid	A	
spinocerebellar-ataxia	
SCR	Homology-3	
signal	peptide	peptidase-like	2	
transactive	response	DNA	binding	protein	
transactive	response	DNA	binding	protein	43	kDA	
Trinucleotide	repeat	expansion	disorder	
Globular	protein	transthyretin	
ubiquitine	proteasome	system	
tetracycline	controlled	transcriptional	silencer	element	
vesicle	associated	membrane	protein	

 


