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Chapter 1

Introduction

In this dissertation we study higher order (local and non-local) partial differential equa-
tions (PDEs). These equations naturally arise in the study of differential geometry,
calculus of variations, functional analysis and various mathematical inequalities. In gen-
eral they are of critical type which makes them more interesting from the point of view
of PDEs.

We mainly focus on the prescribed Q-curvature equation

(−∆)
n
2 u = Qenu in Ω ⊆ Rn (1.1)

where n is a positive integer and Ω is a domain in Rn. We also study the Adams-Moser-
Trudinger equation

(−∆)
n
2 u = λuebu

2
in Ω ⊆ Rn, (1.2)

which appears in the study of critical points to a Adams-Moser-Trudinger functional.
Below we describe them briefly.

1.1 Prescribing Q-curvature problem

Let (M2, g) be a 2 dimensional smooth Riemannian manifold and let gu := e2ug be
a conformal metric where u is a smooth function on M2. Then the Laplace-Beltrami
operator transform according to the rule (conformal covariance)

∆g = e2u∆gu . (1.3)

A famous and old problem in differential geometry is the following: Given a smooth
functionK on (M2, g), does there exist a conformal metric gu such thatK is the Gaussian
curvature of gu?

This problem is equivalent to solving

−∆gu+Kg = Ke2u in M2, (1.4)

where Kg is the Gaussian curvature of g.

1



1. Introduction 2

The above equation (1.4) relates the Gaussian curvatures of the metrics g and gu = e2ug.
Moreover, if M2 is closed then integrating (1.4) on M2 we obtain∫

M2

Kgdvg =

∫
M2

Kdvgu , gu := e2ug, (1.5)

and hence the total Gaussian curvature is invariant under conformal transformations. In
fact, the total Gaussian curvature is exactly 2πχ(M2), which is the well-known Gauss-
Bonnet theorem, where χ(M2) is the Euler characteristic of M2.

On a 2m dimensional Riemannian manifold (M2m, g), higher order curvatures Q2m
g and

higher order operators P 2m
g were introduced in [8, 29]. The curvature Q2m

g and the
operator P 2m

g are known as Q-curvature and Paneitz operator (or GJMS operator) re-
spectively. An interesting fact about the operator P 2m

g is that it is conformally covariant,
that is (analogous to (1.3))

P 2m
g = e2muP 2m

gu , gu := e2ug.

The curvature function Q2m
gu (Q-curvature of gu) satisfies

P 2m
g u+Q2m

g = Q2m
gu e

2mu, (1.6)

which is a higher dimensional analog of (1.4). When M2m is closed, integrating (1.6)
and using that the operator P 2m

g is in divergence form, one obtains∫
M2m

Q2m
g dvg =

∫
M2m

Q2m
gu dvgu .

That means the total Q-curvature is invariant under conformal transformations.

In dimension 4 an explicit expression of Q4
g and P 4

g was obtained by Branson-Orsted
[10], Paneitz [62]:

Q4
g :=

1

6
(R2

g − 3|Ricg|2 −∆gRg),

P 4
g := (−∆g)

2 − div(
2

3
Rgg − 2Ricg)d,

where Rg and Ricg are the scaler and Ricci curvatures of g respectively, and d is the
differential.

Although an explicit formulas for the Q-curvature and Paneitz operator is not known
in general manifold, we know them on the Euclidean space Rn and on the round sphere
Sn. For instance we have Png = (−∆)

n
2 , Qng ≡ 0 on Rn (with g = |dx|2), and on (Sn, g)

(g is the round metric)

Png =


∏n−2

2
k=0 (−∆g + k(n− k − 1)) if n is even(
−∆g +

(
n−1

2

)2) 1
2 ∏n−3

2
k=0 (−∆g + k(n− k − 1)) if n is odd,

and Qng ≡ (n− 1)!.

We consider Eq. (1.6) when the manifold M2m is the Euclidean space R2m. Then (1.6)
reduces to

(−∆)mu = Qe2mu in R2m. (1.7)
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The above equation (1.7) with m = 1 (Q ≡ const > 0) is the well-known Liouville
equation. It was shown by Liouville [47] that any solution u to (1.7) with m = 1 and
Q ≡ 1 can be given by

u(ξ, ζ) = log

(
2|f ′(z)|

1 + |f(z)|2

)
, z = ξ + iζ ∈ C,

for some meromorphic function f on C such that |f ′| 6= 0 at all regular points. For
example, the classical solution (of the Liouville equation) namely (see [13])

u1(x) = log

(
2

1 + |x|2

)
, x ∈ R2,

can be obtained from

f(z) = z, f(z) =
z + 1

z − 1
and f(z) =

eiθ

z
, θ ∈ R.

Another explicit solution (depending on one variable only)

u2(x, y) = log

(
1

coshx

)
, (x, y) ∈ R2,

can be obtained from

f(z) = ez, f(z) = tan(− iz
2

) and f(z) = tanh(z).

Observe that the conformal metric g1 := e2u1 |dx|2 has finite volume, that is∫
R2

dvg1 =

∫
R2

e2u1dx <∞,

whereas g2 := e2u2 |dx|2 has infinite volume. An interesting point is that the finite
volume condition characterizes the solution u1. More precisely, if u is a solution to (1.7)
(in dimension 2, Q ≡ 1) such that the metric gu := e2u|dx|2 has finite volume, then up
to a translation and dilation we have u = u1.

The geometric meaning of the equation (1.7) also leads us to find solutions of the form u1.
Indeed, any smooth solution of (1.7) corresponds to a conformal metric gu := e2u|dx|2
on R2m such that Q-curvature of gu is Q. Since the round metric of the sphere S2m

has the constant Q-curvature (2m− 1)!, pulling back the round metric on R2m via the
stereographic projection, one can obtain a solution

u(x) = log

(
2

1 + |x|2

)
, x ∈ R2m,

to (1.7) with Q ≡ (2m − 1)!. In fact, by translation and dilation, one has a family of
solutions, namely

uλ,x0(x) = log

(
2λ

1 + λ2|x− x0|2

)
, λ > 0, x0 ∈ R2m.

These solutions are known by spherical solution.
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Now we consider odd dimensional analogous equation to (1.7), namely

(−∆)
n
2 u = Qenu in Rn. (1.8)

We also assume that the total Q-curvature of the conformal metric gu := e2u|dx|2 is
finite, that is ∫

Rn
Qenudx =: κ ∈ (−∞,∞). (1.9)

A simple application of maximum principle shows that (see [21, 52]) there exists no
solution to (1.8)-(1.9) for n = 1, 2 and Q ≡ −1.

In the following chapters (Chapters 2,3,4 and 5) we address the following three questions:

(i) What are the solutions to (1.8)-(1.9)?

(ii) How do they behave at infinity?

(iii) What are the possible values of κ?

1.2 Adams-Moser-Trudinger type inequalities

Let Ω be a bounded domain in Rn with smooth boundary. The Sobolev embedding
theorem states that the space W k,p

0 (Ω) continuously embeds into Lq(Ω) for all 1 ≤ q ≤
np

n−kp if kp < n and into Cm,α(Ω) if kp > n where m is an integer such that k−m−α = n
p

and α ∈ (0, 1). However, it is not true that W k,p
0 (Ω) ⊂ L∞(Ω) for kp = n. In the

borderline case, as shown by Trudinger [76], W 1,n
0 (Ω) embeds into an Orlicz space and

in fact

sup
u∈W 1,n

0 (Ω), ‖∇u‖Ln(Ω)≤1

∫
Ω
eα|u|

n
n−1

dx <∞,

for some α > 0. This leads to a natural question: is there a function F : R → [0,∞)
with “optimal growth” such that

sup
u∈W 1,n

0 (Ω), ‖∇u‖Ln(Ω)≤1

∫
Ω
F (u)dx <∞? (1.10)

In a famous work Moser [61] found an optimal function F (t) = Fn(t) := eαnt
n
n−1

which

satisfies (1.10), where αn := n|Sn−1|
1

n−1 . In fact, if F satisfies

F (t) = f(t)Fn(t), lim
t→∞

f(t) =∞,

then the supremum in (1.10) is infinite. Adams [2] generalized this result for higher
order derivatives. More precisely, if k is a positive integer less than n, then

sup
u∈Ckc (Ω), ‖∇ku‖

L
n
k (Ω)

≤1

∫
Ω
F (u)dx <∞, (1.11)
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for

F (t) = Fk,n(t) := eαk,nt
n

n−k
,

where

αk,n =
n

|Sn−1|


[
π
n
2 2kΓ( k+1

2 )
Γ(n−k+1

2 )

] n
n−k

, if k is odd,[
π
n
2 2kΓ( k2 )
Γ(n−k2 )

] n
n−k

, if k is even,

and

∇k :=

{
∇∆

k−1
2 if k is odd

∆
k
2 if k is even.

Moreover, the supremum in (1.11) is infinite if F satisfies

F (t) = f(t)Fk,n(t), lim
t→∞

f(t) =∞.

Notice that if F is monotone increasing then the supremum in (1.11) is equivalent to

sup

u∈W
k, n
k

0 (Ω), ‖∇ku‖
L
n
k (Ω)

=1

∫
Ω
F (u)dx. (1.12)

In the particular case n = 2k and F (t) = ebt
2

(b > 0), if the supremum in (1.12) is

attained by some u ∈W
n
2
,2

0 (Ω), then u satisfies

(−∆)
n
2 u = λuebu

2
in Ω, (1.13)

for some λ > 0.

We study (in Chapter 7) the sharpness of some fractional Adams-Moser-Trudinger type
inequalities. As an application, for every λ ∈ (0, λ1), we prove the existence of solutions
to (1.13) with Dirichlet boundary condition, where λ1 is the first eigenvalue of (−∆)

n
2

on Ω.

1.3 Structure of the chapters

In Chapter 2 we classify all solutions to (1.8)-(1.9) with Q ≡ const > 0 in terms of their
behavior at infinity for every n ≥ 3 odd. Then we develop some criteria to characterize
the spherical solutions. This result is very crucial in studying blow-up analysis.

In Chapter 3 we prove the existence of solutions with prescribed volume (equivalently,
total Q-curvature) and asymptotic behavior to (1.8)-(1.9) with Q ≡ const 6= 0 in even
dimension n ≥ 4. In the negative case we can prescribe any κ ∈ (−∞, 0), but in the
positive case only in (0,Λ1) (Λ1 is a dimensional constant). This will be done by a
Schauder fixed point argument, and blow-up analysis.
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The main difference between the positive and negative cases is that if (uk) is a sequence
of solutions to

(−∆)muk = Qke
2muk in BR ⊂ R2m,

∫
BR

e2mukdx ≤ C,
∫
BR

|∆uk|dx ≤ C,

for some Qk → Q∞ in C0
loc(BR), such that

max
x∈B̄R

2

uk(x) = u(xk)→∞, xk → x∞,

then Q∞(x∞) > 0 and for any ε > 0 (small)

lim
k→∞

∫
Bε(x∞)

Qke
2mukdx ≥ Λ1.

Thus one rules out a possible blow-up easily if Qk ≤ 0. On the other hand, if Qk > 0,
to rule out a possible blow-up we require that

lim sup
k→∞

∫
BR

Qke
2mukdx < Λ1.

In Chapter 4 we extend the results of Chapter 3 to odd dimension using a variational
approach. We find the solutions as critical points of some energy functional. Again, we
need to assume that κ ∈ (0,Λ1) in the case when Q is a positive constant and κ could
be anything in (−∞, 0) in the negative case. This restriction κ < Λ1 (in the positive
case) plays an important role in showing that the functional is coercive.

In Chapter 5 we address the following problem: what are the possible values of κ (as
defined in (1.9))? We prove that for every n ≥ 5 and for every κ ∈ (0,∞) there exists a
solution to (1.8)-(1.9) with Q ≡ const > 0 (in fact Q can be a non-constant function).
Our approach is again based on a Schauder fixed point argument, however, this time we
need a delicate blow-up analysis as we are allowing κ ≥ Λ1. The main idea is that one
can recover compactness (for a sequence of radial solutions) on a bounded domain by
prescribing “boundary value at infinity”, that is, by prescribing asymptotic behavior.
More precisely, if (ψk) is a sequence of radial solutions to

ψk(x) =
1

γn

∫
Rn

log

(
1

|x− y|

)
e−|y|

4
enψk(y)dy +

1

2n
|∆ψk(0)|(|x|2 − |x|4) + ck,

where ck ∈ R is a normalization constant such that∫
Rn
e−|y|

4
enψk(y)dy = κ,

then the sequence (ψk) is precompact.

Our approach explains why n = 5 is the first dimension in which large total Q-curvature
(equivalently, large volume) appears. Moreover, when Q is non constant and decays fast
enough at infinity, this approach works also in lower dimension n = 3, 4.
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In Chapter 6 we study (1.7) on a domain in R2m. We construct blowing-up sequences
of solutions (uk) to the prescribed Q-curvature problem

(−∆)muk = Qke
2muk in Ω,

∫
Ω
e2mukdx ≤ C, ‖Qk‖L∞(Ω) ≤ C, (1.14)

where Ω ⊂ R2m is an open domain and m ≥ 2. For a given ϕ ∈ C∞(Ω) satisfying

∆mϕ = 0 in Ω, ϕ ≤ 0, ϕ 6≡ 0, Sϕ := {x ∈ Ω : ϕ(x) = 0} 6= ∅,

and given Qk (uniformly bounded) we prove the existence of solutions (uk) to (1.14)
such that uk → ∞ locally uniformly on Sϕ and uk → −∞ locally uniformly on Ω \ Sϕ.
In addition to this, (under certain conditions on Qk) we can also prescribe the total
Q-curvature of the metric e2muk |dx|2 in (0, Λ1

2 ).

In Chapter 7 we study (1.13) for every odd integer n ≥ 1. We prove the existence of
solution for λ ∈ (0, λ1) by minimizing a suitable energy functional.

Since any non-trivial (weak) solution to (1.13) belongs to the Nehari manifold S, that is

S :=

{
u ∈ H̃

n
2
,2(Ω) \ {0} : ‖u‖2 = λ

∫
Ω
u2ebu

2
dx

}
,

we look for a minimizer of the energy functional J on S, where

H̃
n
2
,2(Ω) :=

{
u ∈ L2(Ω) : u ≡ 0 on Rn \ Ω, (−∆)

n
4 u ∈ L2(Rn)

}
.

The main difficulty in the variational approach is the lack of compactness, more precisely
the global Plais-Smale condition does not hold. However, the Palais-Smale condition still
holds on (−∞, c0) for some c0 > 0. Therefore, in order to recover the compactness, it is
sufficient to show that for a minimizing sequence (uk) ⊂ S one has limk→∞ J(uk) < c0.
It turns out that the constant c0 is related with the best constant in Adams’ inequality
(it also depends on b), and in fact, a sharp Adams type inequality in a fractional settings
yields that limk→∞ J(uk) < c0.

The content of the Chapters 2, 3, 4, 5, 6 and 7 corresponds to the papers [32], [37], [33],
[34], [36] and [35] respectively.





Chapter 2

Classification of solutions to a fractional
Liouville equation in Rn

In this chapter we study the nonlocal equation

(−∆)
n
2 u = (n− 1)!enu in Rn,

∫
Rn
enudx <∞,

which arises in the conformal geometry. Inspired by the previous work of Lin and
Martinazzi in even dimension and Jin-Maalaoui-Martinazzi-Xiong in dimension three
we classify all solutions to the above equation in terms of their behavior at infinity.

2.1 Introduction to the problem and the main theorems

We consider the equation

(−∆)
n
2 u = (n− 1)!enu in Rn. (2.1)

Here we assume that

V :=

∫
Rn
enudx <∞, (2.2)

and we shall see both the left and right-hand side of (2.1) as tempered distributions. In
order to define the left-hand side of (2.1) as a tempered distribution, one possibility is

to follow the approach of [40], i.e. we see the operator (−∆)
n
2 as (−∆)

n
2 := (−∆)

1
2 ◦

(−∆)
n−1

2 for n ≥ 1 odd integer with the convention that (−∆)0 is the identity, where

(−∆)
1
2 is defined as follows. First for s > 0 consider the space

Ls(Rn) :=

{
v ∈ L1

loc(Rn) :

∫
Rn

|v(x)|
1 + |x|n+2s

dx <∞
}
. (2.3)

Then for v ∈ Ls(Rn) we define (−∆)sv as the tempered distribution defined by

〈(−∆)sv, ϕ〉 :=

∫
Rn
v(−∆)sϕdx for every ϕ ∈ S(Rn), (2.4)

9



2. Classification of solutions to a fractional Liouville equation in Rn 10

where

S(Rn) :=

{
u ∈ C∞(Rn) : sup

x∈Rn
|x|N |Dαu(x)| <∞ for all N ∈ N and α ∈ Nn

}
is the Schwartz space, and

̂(−∆)sϕ(ξ) = |ξ|2sϕ̂(ξ), for ϕ ∈ S(Rn).

Here the normalized Fourier transform is defined by

F(f)(ξ) := f̂(ξ) :=
1

(2π)n/2

∫
Rn
f(x)e−ix·ξdx, f ∈ L1(Rn).

Notice that the integral in (2.4) converges thanks to Proposition 2.2.1 below.

Then a possible definition of the equation

(−∆)
n
2 u = f in Rn (2.5)

is the following:

Definition 2.1.1. Given f ∈ S ′(Rn), we say that u is a solution of (2.5) if

u ∈Wn−1,1
loc (Rn), ∆

n−1
2 u ∈ L 1

2
(Rn),

and ∫
Rn

(−∆)
n−1

2 u(x)(−∆)
1
2ϕ(x)dx = 〈f, ϕ〉, for every ϕ ∈ S(Rn). (2.6)

While Definition 2.1.1 is general enough for our purposes, requiring a priori that a
solution to (2.1) belongs to Wn−1,1

loc (Rn) might sound unnecessarily restrictive. In fact
it is possible to relax Definition 2.1.1 as follows.

Definition 2.1.2. Given f ∈ S ′(Rn), a function u ∈ Ln
2
(Rn) is a solution of (2.5) if∫

Rn
u(x)(−∆)

n
2 ϕ(x)dx = 〈f, ϕ〉, for every ϕ ∈ S(Rn). (2.7)

Notice again that the integral in (2.6) and (2.7) are converging by Proposition 2.2.1
below.

As we shall see, a function u solving (2.1)-(2.2) in the sense of Definition 2.1.2 also
solves (2.1) in the sense of Definition 2.1.1, and conversely, see Proposition 2.2.6 below.
Therefore, from now on a solution of (2.1)-(2.2) will be intended in the sense of Definition
2.1.1. In fact it turns out that such solutions enjoy even more regularity:

Theorem 2.1.1. Let u be a solution of (2.1)-(2.2) (in the sense of Definition 2.1.1 or
2.1.2). Then u is smooth.

Geometrically any solution u of (2.1)-(2.2) corresponds to a conformal metric gu :=
e2u|dx|2 on Rn (|dx|2 is the Euclidean metric on Rn) such that the Q-curvature of gu
is constant (n − 1)!. Moreover the volume and the total Q-curvature of the metric gu
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are V =
∫
Rn e

nudx < ∞ and κ =
∫
Rn(n − 1)!enudx < ∞ respectively. When n = 1 a

geometric interpretation of (2.1) in terms of holomorphic immersion of D2 into C was
given in [21, Theorem 1.3]. If u is a solution of (2.1) then for any constant c, ũ := u− c
satisfies

(−∆)
n
2 ũ = (n− 1)!encenũ in Rn.

This shows that we could take any arbitrary positive constant instead of (n − 1)! in
(2.1), but we restrict ourselves to the fixed constant (n− 1)! because it is the constant
Q-curvature of the round sphere Sn.

Now we shall address the following question: What are the solutions to (2.1) and in
particular how do they behave at infinity?

It is well known that the equation (2.1) possesses the following explicit solution

u(x) = log

(
2

1 + |x|2

)
,

obtained by pulling back the round metric on Sn via the stereographic projection. By
translating and rescaling this function u one can produce a class of solutions, namely

uλ,x0(x) := log

(
2λ

1 + λ2|x− x0|2

)
,

for every λ > 0 and x0 ∈ Rn. Any such uλ,x0 is called spherical solution. Chen-Li
[19] showed that these are the only solutions in dimension two but in higher dimension
non-spherical solutions do exist as shown by Chang-Chen [15]. Lin [45] for n = 4 and
Martinazzi [56] for n ≥ 4 even classified all solutions of (2.1)-(2.2) and they proved:

Theorem A ([45], [56]). Let n ≥ 4 be an even integer. If u solves (2.1)-(2.2), then u
has the asymptotic behavior

u(x) = −α log(|x|)− P (x) + C + o(1), o(1)→ 0 as |x| → ∞,

where α = 2V
|S2m| and P is a polynomial of degree at most 2m − 2 bounded from below.

Moreover, P is constant if and only if u is spherical. When m = 2 one has V ∈ (0, |S4|]
and V = |S4| if and only if u is spherical.

When n is odd things are more complex as the operator (−∆)
n
2 is nonlocal. In a recent

work Jin-Maalaoui-Martinazzi-Xiong have proven the following theorem in dimension
three:

Theorem B ([40]). Let u be a smooth solution of (2.1)-(2.2) with n = 3. Then u has
the asymptotic behavior given by

u(x) = −P (x)− α log |x|+ o(log |x|),

where P is a polynomial of degree 0 or 2 bounded from below, α ∈ (0, 2] and α = 2 if
and only if degree(P ) = 0.

The restriction to dimension 3 in Theorem B dramatically simplifies the proof, since in
this case one can easily show that ∆u < 0 (Lemma 17 in [40]) and use the classical
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maximum principle, or Harnack’s inequality. This argument is essentially the same as
in Lin’s previous work [45], both cases resting on the formula

−∆u(x) = cn

∫
Rn

enu(y)

|x− y|2
dy + a, for some a ≥ 0,

which holds for n = 3, 4. When n ≥ 4 the constant a should be replaced by a polynomial
of degree n−4 for n even and n−3 for n odd, whose sign one cannot control. In spite of
this Martinazzi [56] was able to handle the even-dimensional case using explicit Green
representation formulas and divergence theorems (see in particular Lemmas 12 and 13
in [56]) that are not available for fractional powers of the Laplacian. This makes the
generalization of Theorem B to odd dimension n ≥ 5, namely our following Theorem
2.1.2 particularly challenging.

In order to state it we define

v(x) :=
(n− 1)!

γn

∫
Rn

log

(
1 + |y|
|x− y|

)
enu(y)dy, γn :=

(n− 1)!

2
|Sn|, (2.8)

where u is a smooth solution of (2.1)-(2.2). Then we have

Theorem 2.1.2. Let n ≥ 3 be any odd integer and let u be a smooth solution of (2.1)-
(2.2). Then

u = v + P,

where P is a polynomial of degree at most n− 1 bounded from above, v is given by (2.8)
and it satisfies

v(x) = −α log |x|+ o(log |x|), as |x| → ∞,

where α = 2V
|Sn| . Moreover

lim
|x|→∞

Dβv(x) = 0 for every multi-index β ∈ Nn with 0 < |β| ≤ n− 1.

As a corollary of Theorem 2.1.2 one can obtain necessary and sufficient conditions under
which any solution of (2.1)-(2.2) is spherical, in analogy with [45, 56]. More precisely
we have the following theorem.

Theorem 2.1.3. Let u be a smooth solution of (2.1)-(2.2). Then the following are
equivalent:

(i) u is a spherical solution.

(ii) deg(P ) = 0, where P is the polynomial given by Theorem 2.1.2.

(iii) u(x) = o(|x|2) as |x| → ∞.

(iv) lim|x|→∞∆ju(x) = 0 for j = 1, 2, ..., n−1
2 .

(v) lim inf |x|→∞ Rgu > −∞, where Rgu is the scalar curvature of gu.

(vi) π∗gu can be extended to a Riemannian metric on Sn, where π is the stereographic
projection.
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Moreover, if u is not a spherical solution then there exists a j with 1 ≤ j ≤ n−1
2 and a

constant c < 0 such that

lim
|x|→∞

∆ju(x) = c. (2.9)

Due to the equivalence of Definitions 2.1.1 and 2.1.2 (Proposition 2.2.6), Theorems 2.1.2
and 2.1.3 have numerous applications. For instance, Theorems 2.1.2 and 2.1.3 have
been used in [48] under Definition 2.1.2, whereas in Chapter 5 under Definition 2.1.1.
More generally we expect Theorems 2.1.2 and 2.1.3 to play the same central role that
Theorem A had in the study of problems of prescribed Q-curvature (see e.g. [24], [53])
or the Adams-Moser-Trudinger embeddings (see e.g. [58]), this time in odd dimension
and in the non-local context, the idea being that after a blow-up procedure one naturally
ends up with solutions of (2.1)-(2.2), whose classification is then crucial.

In dimension 3 and 4 if u is a smooth solution of (2.1)-(2.2) then V ∈ (0, |Sn|] (see [45],
[40]), but V could be any positive number in dimension n ≥ 5 (see Chapter 5).

We also mention that using different techniques Da Lio-Martinazzi-Rivière [21] have
discussed the case in one dimension, proving that all solutions are spherical (see also
[20] for yet a different proof, avoiding the moving-plane technique).

2.2 Equivalence of definitions

Proposition 2.2.1. For any s > 0 and ϕ ∈ S(Rn) we have

|(−∆)sϕ(x)| ≤ C

|x|n+2s
,

where (−∆)sϕ := (−∆)σ ◦ (−∆)kϕ, where σ ∈ [0, 1), k ∈ N and s = k + σ.

In order to prove Proposition 2.2.1 let us introduce the spaces

Sk(Rn) : = {ϕ ∈ S(Rn) : Dαϕ̂(0) = 0, for |α| ≤ k}

=

{
ϕ ∈ S(Rn) :

∫
Rn
yαϕ(y)dy = 0, for |α| ≤ k

}
, k = 0, 1, 2, . . .

S−1(Rn) : = S(Rn)

Proposition 2.2.1 easily follows from the remark that ∆kϕ ∈ S2k−1(Rn) for k ∈ N and
ϕ ∈ S(Rn), and from Lemma 2.2.2 below.

Lemma 2.2.2. Let ϕ ∈ Sk(Rn) and σ ∈ (0, 1). Then

|(−∆)σϕ(x)| ≤ C

|x|n+2σ+k+1
, x ∈ Rn.

Proof. Since (−∆)σϕ ∈ C∞(Rn) for ϕ ∈ S(Rn), it suffices to prove the lemma for large
x. For a fixed x ∈ Rn we split Rn into

A1 := B |x|
2

and A2 := Rn \B |x|
2

.
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Then using (2.28) we have

|(−∆)σϕ(x)| ≤ 1

2
Cn,σ (I1 + I2) ,

where

Ii :=

∣∣∣∣∫
Ai

ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)

|y|n+2σ
dy

∣∣∣∣ i = 1, 2.

Noticing that on A1

|ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)| ≤ ‖D2ϕ‖L∞(B |x|
2

(x))|y|2,

we get

I1 ≤ ‖D2ϕ‖L∞(B |x|
2

(x))

∫
A1

dy

|y|n−2+2σ
≤ C‖D2ϕ‖L∞(B |x|

2

(x))|x|2−2σ.

On the other hand

I2 ≤ 2|ϕ(x)|
∫
A2

dy

|y|n+2σ
+ 2

∣∣∣∣∫
A2

ϕ(x− y)

|y|n+2σ
dy

∣∣∣∣
≤ 2

∣∣∣∣∫
A2

ϕ(x− y)

|y|n+2σ
dy

∣∣∣∣+ C|ϕ(x)||x|−2σ

=: 2I3 + C|ϕ(x)||x|−2σ.

Changing the variable y 7→ x− y we have

I3 =

∣∣∣∣∣
∫
|x−y|> |x|

2

ϕ(y)

|x− y|n+2σ
dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x−y|> |x|

2
,|y|> |x|

2

ϕ(y)

|x− y|n+2σ
dy

∣∣∣∣∣+

∣∣∣∣∣
∫
|y|< |x|

2

ϕ(y)

|x− y|n+2σ
dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|y|< |x|

2

ϕ(y)

|x− y|n+2σ
dy

∣∣∣∣∣+ C‖ϕ‖L∞(A2)|x|−2σ

=: I4 + C‖ϕ‖L∞(A2)|x|−2σ.

Finally, to bound I4 we use the fact that ϕ ∈ Sk. Setting f(x) = 1
|x|n+2σ and using

∑
|α|≤k

Dαf(x)

α!

∫
Rn
yαϕ(y)dy = 0, x 6= 0,
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we obtain∫
|y|< |x|

2

ϕ(y)

|x− y|n+2σ
dy

=

∫
B |x|

2

ϕ(y)

|x− y|n+2σ
dy −

∑
|α|≤k

Dαf(x)

α!

∫
B |x|

2

yαϕ(y)dy −
∑
|α|≤k

Dαf(x)

α!

∫
Bc|x|

2

yαϕ(y)dy

=

∫
B |x|

2

ϕ(y)

f(x− y)−
∑
|α|≤k

yα
Dαf(x)

α!

 dy −
∑
|α|≤k

Dαf(x)

α!

∫
Bc|x|

2

yαϕ(y)dy

=

∫
B |x|

2

ϕ(y)
∑
|β|=k+1

yβRβ(ξy)dy −
∑
|α|≤k

Dαf(x)

α!

∫
Bc|x|

2

yαϕ(y)dy,

where Rβ(ξy) satisfies

f(x− y) =
∑
|α|≤k

yα
Dαf(x)

α!
+

∑
|β|=k+1

yβRβ(ξy), |y| < |x|
2
, ξy ∈ B |x|

2

(x),

and

|Rβ(ξy)| ≤ C max
|α|=k+1

max
z∈B |x|

2

(x)
|Dαf(z)| ≤ C

|x|n+2σ+k+1
.

Therefore,

I4 ≤
∑
|β|=k+1

∫
|y|< |x|

2

|ϕ(y)||y||β||Rβ(ξy)|dy +
∑
|α|≤k

|Dαf(x)|
α!

∫
A2

|y||α||ϕ(y)|dy

≤ C

|x|n+2σ+k+1

∫
Rn
|ϕ(y)||y|k+1dy + ‖

√
|ϕ|‖L∞(A2)

∑
|α|≤k

|Dαf(x)|
α!

∫
Rn
|y||α|

√
|ϕ(y)|dy.

We conclude the proof.

Lemma 2.2.3. Let f ∈ L1(Rn). We set

ṽ(x) =
1

γn

∫
Rn

log

(
1 + |y|
|x− y|

)
f(y)dy, x ∈ Rn. (2.10)

Then

(i) ṽ ∈Wn−1,1
loc (Rn) and

Dαṽ =
1

γn

∫
Rn
Dα
x log

(
1 + |y|
|x− y|

)
f(y)dy, 0 ≤ |α| ≤ n− 1.

(ii) Dαṽ ∈ L 1
2
(Rn) for every multi-index α ∈ Nn with 0 ≤ |α| ≤ n− 1.

(iii) For every ϕ ∈ S(Rn)∫
Rn
ṽ(x)(−∆)

n
2 ϕ(x)dx =

∫
Rn

(−∆)
n−1

2 ṽ(x)(−∆)
1
2ϕ(x)dx =

∫
Rn
ϕ(x)f(x)dx,

that is ṽ solves (2.5) in the sense of Definition 2.1.1 and 2.1.2.
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Proof. Proof of (i) is trivial.

To prove (ii) first we consider 0 < |α| ≤ n− 1 and we estimate∫
Rn

|Dαṽ(x)|
1 + |x|n+1

dx

≤ C
∫
Rn
|f(y)|

(∫
Rn

1

(1 + |x|n+1)|x− y||α|
dx

)
dy

= C

∫
Rn
|f(y)|

(∫
B1(y)

dx

(1 + |x|n+1)|x− y||α|
+

∫
Rn\B1(y)

dx

(1 + |x|n+1)|x− y||α|

)
dy

≤ C
∫
Rn
|f(y)|

(∫
B1(y)

dx

|x− y||α|
+

∫
Rn\B1(y)

dx

(1 + |x|n+1)

)
dy

<∞.

The case when α = 0 follows from∫
Rn

|ṽ(x)|
1 + |x|n+1

dx ≤ 1

γn

∫
Rn

1

1 + |x|n+1

(∫
Rn

∣∣∣∣log
1 + |y|
|x− y|

∣∣∣∣ |f(y)|dy
)
dx

=
1

γn

∫
Rn
|f(y)|

∫
Bc1(y)

∣∣∣log 1+|y|
|x−y|

∣∣∣
1 + |x|n+1

dx+

∫
B1(y)

∣∣∣log 1+|y|
|x−y|

∣∣∣
1 + |x|n+1

dx

 dy

≤ 1

γn

∫
Rn
|f(y)|

(∫
Bc1(y)

log(2 + |x|)
1 + |x|n+1

dx+

∫
B1(y)

(
log(2 + |x|)
1 + |x|n+1

+ |log |x− y|| dx
))

dy

=
1

γn

∫
Rn
|f(y)|

(∫
Rn

log(2 + |x|)
1 + |x|n+1

dx+ ‖ log(·)‖L1(B1)

)
dy

<∞,

where in the first inequality we used

1

1 + |x|
≤ 1 + |y|
|x− y|

≤ 2 + |x|, 1 + |y| ≤ 2 + |x| for |x− y| ≥ 1.

(iii) follows from integration by parts and Lemma 2.5.1.

Lemma 2.2.4. Let u be a solution of (2.5) with f ∈ L1(Rn) in the sense of Definition
2.1.2. Let ṽ be given by (2.10). Then p := u− ṽ is a polynomial of degree at most n− 1.

Proof. Let us consider a function ψ ∈ C∞c (Rn \ {0}). We set

ϕ := F−1

(
ψ̄

|ξ|n

)
∈ S(Rn), ψ̄(x) := ψ(−x), x ∈ Rn.

Now the growth assumption to u in Definition 2.1.2 implies that u is a tempered dis-
tribution and at the same time the function v is also a tempered distribution thanks to
Lemma 2.2.3. Therefore p ∈ Ln

2
(Rn) and p̂ ∈ S ′(Rn). Indeed,

〈p̂, ψ〉 =

∫
Rn
pψ̂dx =

∫
Rn
p(x)(−∆)

n
2 ϕ(x)dx = 0,

where the last equality follows from the Definition 2.1.2 and Lemma 2.2.3.
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Thus p̂ is a tempered distribution with support p̂ ⊆ {0} which implies that p is a
polynomial and combining with p ∈ Ln

2
(Rn) we conclude that degree of p is at most

n− 1.

Lemma 2.2.5. Let u be a solution of (2.5) with f ∈ L1(Rn) in the sense of Definition
2.1.1 and let ṽ be given by (2.10). If u also satisfies∫

BR

u+dx = o(R2n) or

∫
BR

u−dx = o(R2n) as R→∞, (2.11)

then p := u− ṽ is a polynomial of degree at most n− 1.

Proof. We have ∆
n−1

2 p ∈ L 1
2
(Rn) and it satisfies∫

Rn
(−∆)

n−1
2 p(−∆)

1
2ϕdx = 0, for every ϕ ∈ S(Rn), (2.12)

thanks to Lemma 2.2.3. Moreover, by Schauder’s estimate (see e.g. [40, Proposition
22]) for some α > 0

‖(−∆)
n−1

2 p‖C0,α(B1) ≤ C‖(−∆)
n−1

2 p‖L 1
2

(Rn).

Adapting the arguments in [40, Lemma 15] one can get that (−∆)
n−1

2 p is constant in

Rn and hence (−∆)
n+1

2 p = 0 in Rn. Noticing that ṽ ∈ Ln
2
(Rn) we conclude the proof

by Lemma 2.5.6 below.

Proposition 2.2.6. Let f ∈ L1(Rn). Then the following are equivalent:

(i) u is a solution of (2.5) in the sense of Definition 2.1.2.

(ii) u is a solution of (2.5) in the sense of Definition 2.1.1 and u satisfies (2.11).

In particular, Definition 2.1.1 and Definition 2.1.2 are equivalent for the solutions of
(2.1)-(2.2).

Proof. If p is a polynomial of degree at most n− 1 then p ∈ Ln
2
(Rn) and∫

Rn
p(−∆)

n
2 ϕdx =

∫
Rn
p(−∆)

n−1
2 (−∆)

1
2ϕdx = Cp

∫
Rn

(−∆)
1
2ϕdx = 0, ϕ ∈ S(Rn),

where Cp := (−∆)
n−1

2 p is a constant and the second equality follows from integration by
parts (which can be justified thanks to Lemma 2.2.2). Now the equivalence of (i) and (ii)
follows immediately from Lemmas 2.2.3, 2.2.4 and 2.2.5. To conclude the proposition
notice that the condition (2.2) implies∫

BR

u+dx =
1

n

∫
BR

nu+dx ≤ 1

n

∫
BR

enudx ≤ V

n
.
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2.3 Regularity results

Proof of Theorem 2.1.1 First we write (n−1)!enu = f1 +f2 where f1 ∈ L1(Rn)∩L∞(Rn)
and f2 ∈ L1(Rn). Let us define the functions

ui(x) :=
1

γn

∫
Rn

log

(
1 + |y|
|x− y|

)
fi(y)dy, x ∈ Rn, i = 1, 2.

Then we have that u1 ∈ Cn−1(Rn) and u2 ∈ Wn−1,1
loc (Rn). Indeed, for p ∈

(
0, γn
‖f2‖

)
using Jensen’s inequality∫

BR

enp|u2|dx =

∫
BR

exp

(∫
Rn

np‖f2‖
γn

log

(
1 + |y|
|x− y|

)
f2(y)

‖f2‖
dy

)
dx

≤
∫
BR

∫
Rn

exp

(
np‖f2‖
γn

log

(
1 + |y|
|x− y|

))
|f2(y)|
‖f2‖

dydx

=
1

‖f2‖

∫
Rn
|f2(y)|

∫
BR

(
1 + |y|
|x− y|

)np‖f2‖
γn

dxdy

≤ C(n, p, ‖f2‖, R), (2.13)

where ‖· ‖ denotes the L1(Rn) norm. Moreover, by Lemma 2.2.3 (with ṽ = ui and
f = fi) we have∫

Rn
(−∆)

n−1
2 ui(−∆)

1
2ϕdx =

∫
Rn
fiϕdx, for every ϕ ∈ S.

We set
u3 := u− u1 − u2.

We claim that the function u3 is smooth in Rn whenever u is a solution of (2.1)-(2.2)
in the sense of Definition 2.1.1 or 2.1.2. Then taking (2.13) into account we have enu ∈
Lploc(R

n) for every p < ∞ and hence f2 ∈ Lploc(R
n) . Therefore, for every x ∈ BR by

Hölder’s inequality

|u2(x)| ≤ C
∫
|y|<2R

∣∣∣∣log

(
1 + |y|
|x− y|

)∣∣∣∣ |f2(y)|dy + C

∫
|y|≥2R

∣∣∣∣log

(
1 + |y|
|x− y|

)∣∣∣∣ |f2(y)|dy

≤ C
(
log(1 + 2R)‖f2‖L1(B2R) + ‖ log(· )‖L2(B3R)‖f2‖L2(B2R)

)
+ C log(3R)‖f2‖L1(Bc2R),

and for every 0 < |α| ≤ n− 1 again by Hölder’s inequality

|Dαu2(x)| ≤ C
∫
|y|<2R

1

|x− y||α|
|f2(y)|dy + C

∫
|y|≥2R

1

|x− y||α|
|f2(y)|dy

≤ C‖|(· )|−|α|‖Lp(B3R)‖f2‖Lp′ (B2R) + CR−|α|‖f2‖L1(Bc2R),

where p ∈ (1, n
n−1). Thus u2 ∈ Wn−1,∞

loc (Rn) and by Sobolev embeddings we have

u2 ∈ Cn−2(Rn), which implies that u = u1 + u2 + u3 ∈ Cn−2(Rn). Now to prove
u ∈ C∞(Rn) we proceed by induction.
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Set ũ = u1 + u2. Then for 0 < |α| ≤ n− 1

Dαũ(x) =
(n− 1)!

γn

∫
Rn
Dα
x log

(
1 + |y|
|x− y|

)
enu(y)dy =:

∫
Rn
Kα(x− y)enu(y)dy, x ∈ Rn.

Notice that the function Kα is smooth in Rn \ {0} and it also satisfies the estimate

|DβKα(x)| ≤ Cα

|x||α|+|β|
, β ∈ Nn, x ∈ Rn \ {0}.

We rewrite the function Dαũ(x) as

Dαũ(x) =

∫
Rn
η(x− y)Kα(x− y)enu(y)dy +

∫
Rn

(1− η(x− y))Kα(x− y)enu(y)dy

=

∫
Rn
η(x− y)Kα(x− y)enu(y)dy +

∫
Rn

(1− η(y))Kα(y)enu(x−y)dy,

where η ∈ C∞(Rn) satisfies

η(x) =

{
0 if |x| ≤ 1
1 if |x| ≥ 2.

If we assume u ∈ Ck(Rn) for some integer k ≥ 1 then observing that ηKα ∈ C∞(Rn),
Dβ(ηKα) ∈ L∞(Rn) and 1− η is compactly supported, one has for |β| ≤ k

Dα+βũ(x) =

∫
Rn
Dβ
x(η(x− y)Kα(x− y))eny(y)dy +

∫
Rn

(1− η(y))Kα(y)Dβ
xe
nu(x−y)dy.

Thus u ∈ Ck+n−1(Rn) thanks to the claim that u3 ∈ C∞(Rn), which proves our induc-
tion argument.

It remains to show that u3 ∈ C∞(Rn) whenever u is a solution of (2.1)-(2.2) in the sense
of Definition 2.1.1 or 2.1.2.

In the case of Definition 2.1.2 from Lemma 2.2.4 we have that u3 is a polynomial of degree
at most n− 1 and hence it is smooth. On the other hand, if we consider Definition 2.1.1

then by Lemma 2.2.3 we get ∆
n−1

2 u3 ∈ L 1
2
(Rn) and it also satisfies (2.12) with p = u3.

Therefore, by [71, Proposition 2.22] we have ∆
n−1

2 u3 ∈ C∞(Rn) which implies that
u3 ∈ C∞(Rn).

�

2.4 Classification of solutions

2.4.1 A fractional version of a lemma of Brézis and Merle

Theorem 2.4.2 below is a fractional version of a lemma of Brézis and Merle [12, Theorem
1], compare also [21, Theorem 5.1], which we shall later need in the proof of Lemma
2.4.8. Although, in our case Theorem 2.4.2 will be used in a smooth setting, here we
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shall prove it with more generality because of its independent interest. Before stating
the theorem we need the following definition, partially inspired by [1, Section 3.3].

Definition 2.4.1. Let Ω be a smooth bounded domain in Rn. Assume f ∈ L1(Ω) and
gj ∈ L1(∂Ω) for j = 0, 1, ..., n−3

2 . We say that w ∈ L 1
2
(Rn) is a solution of{

(−∆)
n−1

2 (−∆)
1
2w = f inΩ

(−∆)j(−∆)
1
2w = gj on ∂Ω, j = 0, 1, ..., n−3

2

(2.14)

if w satisfies ∫
d(x,∂Ω)<2,x∈Ωc

|w(x)|√
δ(x)

dx <∞, (2.15)

and there exists a function W ∈ L1(Ω) such that (−∆)
1
2w = W in Ω, i.e.∫

Rn
w(−∆)

1
2ϕdx =

∫
Ω
Wϕdx for every ϕ ∈ T1, (2.16)

and the function W satisfies{
(−∆)

n−1
2 W = f inΩ

(−∆)jW = gj on ∂Ω, j = 0, 1, ..., n−3
2 ,

(2.17)

i.e.

∫
Ω
W (−∆)

n−1
2 ϕdx =

∫
Ω
fϕdx−

n−3
2∑
j=0

∫
∂Ω
gj
∂

∂ν
(−∆)

n−3
2
−jϕdσ for every ϕ ∈ T2,

where the spaces of test functions T1 and T2 are defined by

T1 :=

{
ϕ ∈ C∞(Ω) ∩ C

1
2 (Rn) :

{
(−∆)

1
2ϕ = ψ in Ω

ϕ = 0 on Ωc for some ψ ∈ C∞c (Ω),

}
,

and

T2 :=

{
ϕ ∈ Cn−1(Ω) : ∆jϕ = 0 on ∂Ω, j = 0, 1, . . . ,

n− 3

2

}
.

Notice that the left hand side of (2.16) is well-defined thanks to the assumption (2.15)
and Lemma 2.4.4 below.

Lemma 2.4.1 (Maximum Principle). Let w be a solution of (2.14) with f, gj ≥ 0 in
the sense of Definition 2.4.1. If w ≥ 0 on Ωc then w ≥ 0 in Ω.

Proof. First notice that the conditions f ≥ 0, gj ≥ 0 implies that W ≥ 0 in Ω, where
W ∈ L1(Ω) is a solution of (2.17). Now consider a test function ψ ∈ C∞c (Ω) such that

ψ ≥ 0 in Ω. Let ϕ ∈ T1 be the solution of (−∆)
1
2ϕ = ψ in Ω. Then by classical maximum

principle one has ϕ ≥ 0 in Ω. Since the constant Cn, 1
2
> 0 in Proposition 2.5.2 we get

(−∆)
1
2ϕ(x) < 0 for x ∈ Rn \ Ω,
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and from (2.16)∫
Ω
wψdx =

∫
Ω
w(−∆)

1
2ϕdx =

∫
Ω
Wϕdx−

∫
Ωc
w(−∆)

1
2ϕdx ≥ 0,

which completes the proof.

Theorem 2.4.2. Let f ∈ L1(BR). Let u ∈ L1(BR) be a solution of (2.14) (in the sense
of Definition 2.4.1) with gj = 0 for j = 0, 1, ..., n−3

2 and u = 0 on Bc
R. Then for any

p ∈
(

0, γn
‖f‖L1(BR)

)
∫
BR

enp|u|dx ≤ C(p,R).

Proof. We set

W (x) =

∫
BR

Ψ(x− y)|f(y)|dy x ∈ Rn,

where

Ψ(x) :=
Γ(1

2)

n2n−2|B1|Γ(n2 )
(
n−3

2

)
!

1

|x|
,

is a fundamental solution of (−∆)
n−1

2 in Rn (see [26, Section 2.6]). Then W ∈ L1(BR)
satisfies {

(−∆)
n−1

2 W = |f | inBR
(−∆)jW ≥ 0 on ∂BR, j = 0, 1, ..., n−3

2 ,

and by maximum principle W ≥ |W | in BR, where W ∈ L1(BR) is a solution of (2.17).
Let us define

u(x) := Φ ∗ (WχBR)(x) =
(n−3

2 )!

2π
n+1

2

∫
Rn

1

|x− y|n−1
W (y)χBR(y)dy, x ∈ Rn,

where Φ is given in Lemma 2.5.1 below. Noticing

1

γn
= |Sn−1|

Γ(1
2)

n2n−2|B1|Γ(n2 )
(
n−3

2

)
!

(n−3
2 )!

2π
n+1

2

,

in view of Lemma 2.4.3 below one has

|u(x)| ≤ C +
1

γn

∫
|y|<R

|f(y)|| log |x− y||dy, x ∈ Rn,

which yields
u ∈ Lqloc(R

n) ∩ L∞(Rn \BR+δ), q ∈ [1,∞), δ > 0.

Moreover, for every ϕ ∈ S(Rn)∫
BR

Wϕdx =

∫
Rn
u(−∆)

1
2ϕdx =

∫
BR

u(−∆)
1
2ϕdx+

∫
BcR

u(−∆)
1
2ϕdx, (2.18)

thanks to Lemma 2.5.1 below.



2. Classification of solutions to a fractional Liouville equation in Rn 22

We claim that (2.18) holds for ϕ ∈ T1. Then for any ϕ ∈ T1 with ϕ ≥ 0∫
BR

(u± u)(−∆)
1
2ϕdx =

∫
BR

(W ±W )︸ ︷︷ ︸
≥0

ϕdx−
∫
BcR

u (−∆)
1
2ϕ︸ ︷︷ ︸

≤0

dx ≥ 0,

and by maximum principle one has u ≥ |u| in BR and the theorem follows at once.

To prove the claim we consider a mollifying sequence ϕk := ϕ ∗ ρk, where ρk(x) =
knρ(kx). Then (see [1, Section A])

(−∆)
1
2ϕk(x) = ϕ ∗ (−∆)

1
2 ρk(x) x ∈ Rn,

and

(−∆)
1
2ϕk(x) = ρk ∗ (−∆)

1
2ϕ(x), dist(x, ∂BR) >

1

k
. (2.19)

Then the uniform convergence of ϕk to ϕ imply∫
BR

Wϕkdx
k→∞−−−→

∫
BR

Wϕdx.

Using the uniform convergence of (−∆)
1
2ϕk to (−∆)

1
2ϕ on the compact sets in BR and

the fact that supp(−∆)
1
2ϕ|BR ⊆ BR we get∫
BR

u(−∆)
1
2ϕkdx

k→∞−−−→
∫
BR

u(−∆)
1
2ϕdx.

It remains to verify that∫
BcR

u(−∆)
1
2ϕkdx

k→∞−−−→
∫
BcR

u(−∆)
1
2ϕdx,

which follows immediately from

(−∆)
1
2ϕk

k→∞−−−→ (−∆)
1
2ϕ in Lq(BR+1 \BR), for some q > 1, (2.20)

and

(−∆)
1
2ϕk

k→∞−−−→ (−∆)
1
2ϕ in L1(Bc

R+1). (2.21)

With the help of Lemma 2.4.4 below and (2.19) one can get (2.21). To conclude

(2.20) first notice that (−∆)
1
2ϕk converges to (−∆)

1
2ϕ point-wise and that (−∆)

1
2ϕ ∈

Lq(BR+1 \ BR) for any q ∈ [1, 2) thanks to Lemma 2.4.4 below. By [44, Theorem 1.9
(Missing term in Fatou’s lemma)] it is sufficient to show that for some q > 1∫

R<|x|<R+1
|(−∆)

1
2ϕk(x)|qdx ≤

∫
R<|x|<R+1

|(−∆)
1
2ϕ(x)|qdx+ o(1),

where o(1)→ 0 as k →∞. Now using the estimate (see for instance [1, Section A])

|(−∆)
1
2 ρk(x)| ≤ Ckn+1 x ∈ Rn,
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and fixing t and q such that

2n

2n+ 1
< t < 1, 1 < q < min

{
1 + nt

t+ nt
,
2nt+ t+ 2

2n+ 2

}
,

we bound∫
R<|x|<R+1

|(−∆)
1
2ϕk(x)|qdx

=

∫
R<|x|<R+ 1

k

|(−∆)
1
2ϕk(x)|qdx+

∫
R+ 1

k
<|x|<R+1

|(−∆)
1
2ϕk(x)|qdx

=

∫
R<|x|<R+ 1

k

|ϕ ∗ (−∆)
1
2 ρk(x)|qdx+

∫
R+ 1

k
<|x|<R+1

|ρk ∗ (−∆)
1
2ϕ(x)|qdx

≤ ‖ϕ‖q−1
L1

∫
R<|x|<R+ 1

k

∫
Rn
|(−∆)

1
2 ρk(y)|q|ϕ(x− y)|dydx

+

∫
R+ 1

k
<|x|<R+1

∫
Rn
|(−∆)

1
2ϕ(y)|qρk(x− y)dydx

=

∫
R<|y|<R+1+ 1

k

|(−∆)
1
2ϕ(y)|qdy

+ ‖ϕ‖q−1
L1

∫
R<|x|<R+ 1

k

∫
|y|> 1

kt

|(−∆)
1
2 ρk(y)|q|ϕ(x− y)|dydx

+ ‖ϕ‖q−1
L1

∫
R<|x|<R+ 1

k

∫
|x−y|<R,|y|< 1

kt

|(−∆)
1
2 ρk(y)|q|ϕ(x− y)|dydx

≤
∫
R<|y|<R+1+ 1

k

|(−∆)
1
2ϕ(y)|q + C‖ϕ‖q−1

L1 kt(q+nq−n)−1 + C‖ϕ‖q−1
L1 kq(n+1)−nt− t

2
−1

=

∫
R<|y|<R+1

|(−∆)
1
2ϕ(y)|q + o(1),

where in the last inequality we have used (for the second term)∫
|x|> 1

kt

|(−∆)
1
2 ρk(x)|qdx =

∫
|x|> 1

kt

∣∣∣∣C1/2P.V.

∫
Rn

ρk(x)− ρk(y)

|x− y|n+1
dy

∣∣∣∣q dx
≤ C

∫
|x|> 1

kt

∫
|y|<1

ρ(y)q

|x− y
k |nq+q

dydx

≤ C
∫
|y|<1

∫
|x|> 1

kt

1

|x|nq+q
dxdy

≤ Ckt(q+nq−n).

Lemma 2.4.3. Let Ω be a domain in Rn. Let p and q be two positive real numbers.
Then ∫

Ω

dy

|x− y|n+p
≤ |S

n−1|
p

1

δ(x)p
, if δ(x) := dist(x,Ω) > 0,

and ∫
Ω

dz

|x− z|p|y − z|q
≤ Cn,p,q
|x− y|p+q−n

, if p+ q > n, p < n, q < n, x 6= y,
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where the constant Cn,p,q is given by (an explicit formula can be found in [44, Section
5.10])

Cn,p,q =

∫
Rn

dz

|z|p|e1 − z|q
.

In addition if we also assume that the domain Ω is bounded then∫
Ω

dy

|x− y|n
≤ |Ω|+ |Sn−1|| log δ(x)| if δ(x) > 0,

and∫
Ω

dz

|x− z|p|y − z|q
≤ C + |Sn−1| |log(|x− y|)| , if p+ q = n, p < n, q < n, x 6= y.

Proof. Let us denote the set {y − x : y ∈ Ω} by Ω − x. Using a change of variable
z 7→ z − x and setting w = y − x we have∫

Ω

dz

|x− z|p|y − z|q
=

∫
Ω−x

dz

|z|p|w − z|q
=: I.

If p+ q > n then changing the variable z 7→ |w|z one has

I =
1

|w|p+q−n

∫
1
|w| (Ω−x)

dz

|z|p| w|w| − z|q
≤ 1

|w|p+q−n

∫
Rn

dz

|z|p| w|w| − z|q
=

Cn,p,q
|w|p+q−n

.

In the case when p+ q = n, we split the domain Ω− x into two disjoint domains:

Ω1 := (Ω− x) ∩B1, Ω2 = (Ω− x) ∩Bc
1.

Then

I =

2∑
i=1

Ii, Ii :=

∫
Ωi

dz

|z|p|w − z|q
.

Since Ω2 is bounded and q < n, we have

I2 ≤
∫

Ω2

dz

|w − z|q
≤ C.

Now using
1

| w|w| − z|
≤ 1

|z|

(
1 +

2

|z|

)
for |z| ≥ 2,

and
(1 + x)q ≤ 1 + Cqx for x ∈ (0, 1),
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we bound

I1 ≤
∫
B1

dz

|z|p|w − z|q
=

∫
|z|≤ 1

|w|

dz

|z|p| w|w| − z|q

≤
∫
|z|≤2

dz

|z|p| w|w| − z|q︸ ︷︷ ︸
≤C

+

∫
2<|z|≤ 1

|w|

1

|z|n

(
1 +

2

|z|

)q
dz

≤
∫

2<|z|≤ 1
|w|

1

|z|n

(
1 +

C

|z|

)
dz

≤ C + |Sn−1|| log |w||.

Finally, we conclude the lemma by showing that for x ∈ Rn \ Ω∫
Ω

dy

|x− y|n+p
≤
∫
|z|>δ(x)

dy

|z|n+p
=
|Sn−1|
p

1

δ(x)p
, p > 0,

and∫
Ω

dy

|x− y|n
≤ |Ω|+

∫
Ω∩B1(x)

dy

|x− y|n
≤ |Ω|+

∫
δ(x)<|z|<1

dy

|z|n
= |Ω|+ |Sn−1|| log δ(x)|.

Lemma 2.4.4. Let Ω be a bounded domain in Rn. Let ϕ ∈ Ck,σ(Rn) for some nonneg-
ative integer k and 0 ≤ σ ≤ 1 be such that ϕ = 0 on Rn \Ω. Then for 0 < s < 1 and for
x ∈ Rn \ Ω

|(−∆)sϕ(x)| ≤ C


min{max{1, δ(x)−2s+k+σ}, δ(x)−n−2s} if k + σ 6= 2s

min{| log δ(x)|, δ(x)−n−2s} if k + σ = 2s,

where δ(x) := dist(x,Ω).

Proof. We claim that

|ϕ(y)| ≤ C|x− y|k+σ, x ∈ Rn \ Ω, y ∈ Ω,

which can be verified using the Taylor’s expansion

ϕ(y) =
∑
|α|≤k−1

1

α!
Dαϕ(x)︸ ︷︷ ︸

=0

(y− x)α +
∑
|β|=k

|β|
β!

(y− x)β
∫ 1

0
(1− t)|β|−1Dβϕ(x+ t(y− x))dt,

and

|Dβϕ(x+ t(y − x))| = |Dβϕ(x+ t(y − x))−Dβϕ(x)| ≤ C|t(x− y)|σ ≤ C|x− y|σ.

Therefore, by Proposition 2.5.2

|(−∆)sϕ(x)| =
∣∣∣∣Cn,s ∫

Ω

ϕ(y)

|x− y|n+2s
dy

∣∣∣∣ ≤ C ∫
Ω

dy

|x− y|n+2s−k−σ , x ∈ Rn \ Ω,
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and

|(−∆)sϕ(x)| ≤ C
∫

Ω

|ϕ(y)|
|x− y|n+2s

dy ≤ C
∫

Ω

|ϕ(y)|
δ(x)n+2s

dy ≤ C

δ(x)n+2s
, x ∈ Rn \ Ω.

Now the proof follows at once from Lemma 2.4.3.

2.4.2 Asymptotic behavior of solutions

First we study the asymptotic behavior of v defined in (2.8).

Lemma 2.4.5. Let u be a smooth solution of (2.1)-(2.2) and let v be given by (2.8).
Then there exists a constant C > 0 such that

v(x) ≥ −α log |x| − C, |x| ≥ 4.

Proof. The proof follows as in the proof of [45, Lemma 2.1].

A consequence of the above lemma is the following Proposition, compare Lemmas 2.2.4,
2.2.5.

Proposition 2.4.6. Let u be a smooth solution of (2.1)-(2.2) in the sense of Definition
2.1.1 or 2.1.2 and let v be defined by (2.8). Then the function

P (x) := u(x)− v(x), x ∈ Rn,

is a polynomial of degree at most n− 1 and P is bounded above.

Proof. Since (2.2) implies (2.11), by Lemmas 2.2.4 and 2.2.5 we have that P is a poly-
nomial of degree at most n− 1. On the other hand, using Lemma 2.4.5 one can get that
P is bounded above (the proof is very similar to [56, Lemma 11]).

Lemma 2.4.7. Let n ≥ 3 be an odd integer and let u be a smooth solution of (2.1)-(2.2)
and v be given by (2.8). Then

(i) v ∈ C∞(Rn) and Dαv ∈ L 1
2
(Rn) for every multi-index α ∈ Nn with 0 ≤ |α| ≤ n−1.

(ii) There exists a constants C > 0 such that∫
∂B4(x)

|(−∆)j(−∆)
1
2 v(y)|dσ(y) ≤ C for every x ∈ Rn, j = 0, 1, 2, ...,

n− 3

2
.

(iii) v is a pointwise solution of

(−∆)
1
2 (−∆)

n−1
2 v = (n− 1)!enu in Rn.

(iv) v solves (2.14) with f = (n−1)!enu and gj = (−∆)j(−∆)
1
2 v for j = 0, 1, 2, . . . , n−3

2 .
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Proof. We divide the proof into several steps.

Step 1. From Proposition 2.4.6 we have the smoothness of v and by Lemma 2.2.3 we get
Dαv ∈ L 1

2
(Rn) for every multi-index α ∈ Nn with 0 ≤ |α| ≤ n− 1.

Step 2. In this step we use (i) to prove (ii). In fact by Lemmas 2.5.3, 2.5.4, below we
have ∫

∂B4(x)
|(−∆)j(−∆)

1
2 v(y)|dσ(y) =

∫
∂B4(x)

|(−∆)
1
2 (−∆)jv(z)|dσ(z)

≤ C
∫
∂B4(x)

∫
Rn

enu(y)

|y − z|2j+1
dydσ(z)

= C

∫
Rn
enu(y)

∫
∂B4(x)

1

|y − z|2j+1
dσ(z)dy

≤ C.

Step 3. We claim that for g ∈ C∞(Rn) ∩ L 1
2
(Rn)∫

Rn
(−∆)

1
2 gϕdx =

∫
Rn
g(−∆)

1
2ϕdx for every ϕ ∈ C∞c (Rn).

To prove the claim we consider a approximating sequence

gk(x) := g(x)ψ(
x

k
), ψ ∈ C∞(Rn), ψ(x) =

{
1 if |x| < 1
0 if |x| > 2.

Then gk ∈ S(Rn) and hence∫
Rn

(−∆)
1
2 gkϕdx =

∫
Rn
gk(−∆)

1
2ϕdx.

Now the claim follows from the locally uniform convergence of (−∆)
1
2 gk to (−∆)

1
2 g and

the L 1
2
(Rn) convergence of gk to g.

Step 4. Using Step 3 with g = (−∆)
n−1

2 v we have∫
Rn

(−∆)
1
2 (−∆)

n−1
2 vϕdx =

∫
Rn

(−∆)
n−1

2 v(−∆)
1
2ϕdx = (n− 1)!

∫
Rn
enuϕdx,

for every ϕ ∈ C∞c (Rn), which implies (iii).

To complete (iv) it suffices to show that W := (−∆)
1
2 v ∈ C∞(Rn) and it satisfies

(2.15)-(2.17) with w = v.

The smoothness of v implies W ∈ C∞(Rn) and (2.15). Moreover, using integration by
parts (see [1, Proposition 1.2.1]) one can get (2.16).

One must notice that the function u in [1, Proposition 1.2.1] is in C1+ε(Ω) ∩ L∞(Rn)
but still we can use it since our function v ∈ C∞(Rn) ∩ L 1

2
(Rn).

Finally, we prove (2.17) by showing that W is a classical solution of (2.17). Since W
is smooth in Rn clearly it satisfies the boundary conditions. Using step 3 (with g = v)
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and Lemma 2.2.3 (with f = (n− 1)!enu) we have for every ϕ ∈ C∞c (Ω)∫
Ω

(−∆)
n−1

2 Wϕdx =

∫
Ω
W (−∆)

n−1
2 ϕdx =

∫
Rn

(−∆)
1
2 v(−∆)

n−1
2 ϕdx

=

∫
Rn
v(−∆)

1
2 (−∆)

n−1
2 ϕdx = (n− 1)!

∫
Rn
enuϕdx,

that is
(−∆)

n−1
2 W = (n− 1)!enu in Ω.

The following lemma is the crucial part in the proof of Theorem 2.1.2.

Lemma 2.4.8. Let u be a smooth solution of (2.1)-(2.2) and v be given by (2.8). Then
for any ε > 0 there exists R > 0 such that for |x| > R

v(x) ≤ (−α+ ε) log |x|.

Proof. Step 1. For any ε > 0 there exists a R > 0 such that for |x| ≥ R

v(x) ≤ (−α+
ε

2
) log |x| − (n− 1)!

2

∫
B1(x)

log |x− y|enu(y)dy. (2.22)

The proof of (2.22) is very similar to the proof of [45, Lemma 2.4 ]. As a consequence
of (2.22) using Jensen’s inequality we have the following estimate

‖v+‖Lp(Rn) ≤ |α−
ε

2
|‖ log |· |‖Lp(B1) +

(n− 1)!

2
‖enu‖L1(Rn)‖ log |· |‖Lp(B1), 1 ≤ p <∞.

(2.23)

Step 2. We claim that there exists p > 1 and C > 0 independent of x0 such that
‖enu‖Lp(B1(x0)) ≤ C. Then using Hölder inequality one can bound the second term on
the right hand side of (2.22) uniformly in x and that completes the proof of the lemma.

To prove the claim, first notice that it is sufficient to consider x0 ∈ Rn \BR for any fixed
R > 0. We choose R > 0 large enough such that

(n− 1)!‖enu‖L1(BcR−1) <
γn
2
.

Let w ∈ C0(Rn) be the solution of
(−∆)

n−1
2 (−∆)

1
2w = (n− 1)!enu inB4(x0) ⊂ Rn

(−∆)j(−∆)
1
2w = 0 on ∂B4(x0), for j = 0, 1, ..., n−3

2
w = 0 onRn \B4(x0),

in the sense of Definition 2.4.1. Since u is smooth by Schauder’s estimates and bootstrap
argument we have W = (−∆)

1
2w ∈ C∞(B4(x0)) which solves (2.14) with f = (n−1)!enu

and gj = (−∆)j(−∆)
1
2 v for every j = 0, 1, 2, . . . , n−3

2 . Then using Green’s representation

formula (see [14, Theorem 3]) one can get w ∈ C0(Rn) (in fact w ∈ C
1
2 (Rn), see [68]),
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which is the pointwise continuous unique solution of{
(−∆)

1
2w = W in B4(x0)

w = 0 on B4(x0)c.

Moreover, w satisfies (2.16) thanks to [1, Proposition 3.3.3].

We set h = v − w. Then we have that h ∈ C0(Rn), (−∆)
1
2h ∈ C∞(B4(x0)) and

(−∆)
n−1

2 (−∆)
1
2h = 0 inB4(x0)

(−∆)j(−∆)
1
2h = (−∆)j(−∆)

1
2 v on ∂B4(x0), j = 0, 1, ..., n−3

2
h = v onRn \B4(x0),

(2.24)

thanks to Lemma 2.4.7. Indeed, by Lemma 2.4.9 below there exists a constant C > 0
independent of the choice of x0 ∈ Rn such that

h(x) ≤ C for every x ∈ B1(x0).

Hence by Proposition 2.4.6

u = v + P ≤ C + h+ w ≤ C + w,

and by Theorem 2.4.2 we have the proof.

A simple consequence of Lemma 2.4.8 is that

lim
|x|→∞

u(x) = −∞, (2.25)

thanks to Proposition 2.4.6. Using (2.25) one can show that

lim
|x|→∞

Dβv(x) = 0 for every β ∈ Nn with 0 < |β| < n− 1 .

Now the proof of Theorem 2.1.2 follows at once from Lemmas 2.4.5, 2.4.8 and Proposition
2.4.6.

Lemma 2.4.9. Let h ∈ C0(Rn) be given by (2.24). Then there exists a constant C > 0
(independent of x0) such that

h(x) ≤ C, for every x ∈ B1(x0).

Proof. Let us write h = h1 + h2 where h1, h2 ∈ C0(Rn) be such that{
(−∆)

1
2h1 = (−∆)

1
2h inB4(x0)

h1 = 0 onB4(x0)c,

and {
(−∆)

1
2h2 = 0 inB4(x0)

h2 = h = v onB4(x0)c.

Let h3 ∈ C0(Rn) be such that{
(−∆)

1
2h3 = 0 inB4(x0)

h3 = v+ onB4(x0)c.
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Then by maximum principle
h2 ≤ h3 on Rn.

Without loss of generality we can assume that x0 = 0. Then the Poisson formula gives
(see [14, Theorem 1])

h3(x) =

∫
|y|>4

P (x, y)v+(y)dy, x ∈ B4,

where

P (x, y) = Cn

(
16− |x|2

|y|2 − 16

) 1
2 1

|x− y|n
.

Now for x ∈ B2 by Hölder’s inequality we get

|h3(x)| ≤ C
∫
|y|>4

(
1

|y|2 − 16

) 1
2 1

|y|n
v+(y)dy

≤ C

(∫
|y|>4

v+(y)3dy

) 1
3
(∫
|y|>4

1

(|y|2 − 16)
3
4

1

|y|
3n
2

dy

) 2
3

≤ C‖v+‖L3(Rn) ≤ C,

where the last inequality follows from (2.23). By Lemma 2.4.10 below we have

h ≤ C, for every x ∈ B1(x0),

where C being independent of x0.

Lemma 2.4.10. Let h ∈ C0(Rn) solves (2.24). Let h1 ∈ C0(Rn) be the solution of{
(−∆)

1
2h1 = (−∆)

1
2h inB4(x0)

h1 = 0 onB4(x0)c.

Then there exists a constant C = C(n) such that

‖h1‖L∞(B1(x0)) ≤ C.

Proof. We assume that x0 = 0. Using Green’s representation formula (see [14, Theorem
3]) the solution is given by

h1(x) =

∫
B4

G2(x, y)(−∆)
1
2h(y)dy, x ∈ B4,

where

G2(x, y) = Cn|x− y|1−n
∫ r0(x,y)

0

r
1
2
−1

(1 + r)
n
2

dr, r0(x, y) =
(16− |x|2)(16− |y|2)

|x− y|2
.

Since
r−

1
2

(1 + r)
n
2

∈ L1((0,∞)),

we have
|G2(x, y)| ≤ C|x− y|1−n.
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For |z| ≤ 1 using (2.24), Lemma 2.4.7 and Lemma 2.5.5 below we bound

|h1(z)| ≤
∫
B4

|G2(z, y)||(−∆)
1
2h(y)|dy

≤

n−3
2∑
i=0

∫
B4

|G2(z, y)|
∫
∂B4

∣∣∣(−∆)i(−∆)
1
2 v(x)

∣∣∣ ∣∣∣∣ ∂∂ν ((−∆)
n−3

2
−iG(y, x)

)∣∣∣∣ dσ(x)dy

≤ C

n−3
2∑
i=0

∫
B4

|z − y|1−n
∫
∂B4

∣∣∣(−∆)i(−∆)
1
2 v(x)

∣∣∣ |x− y|1+2i−n dσ(x)dy

= C

n−3
2∑
i=0

∫
|x|=4

∣∣∣(−∆)i(−∆)
1
2 v(x)

∣∣∣ ∫
|y|<4

|z − y|1−n |x− y|1+2i−n dydσ(x)

≤ C

n−3
2∑
i=0

∫
|x|=4

∣∣∣(−∆)i(−∆)
1
2 v(x)

∣∣∣ dσ(x)

≤ C.

2.4.3 Characterization of spherical solution

Proof of Theorem 2.1.3 One can verify easily that (i) ⇒ (ii)-(vi). On the other hand,
by Theorem 2.1.2 (ii) -(iv) are equivalent. Moreover, (ii)⇒ (i) thanks to [78, Theorem
4.1]. To show that (v)⇒ (i) and (vi)⇒ (i) one can follow the arguments in [56].

Finally to prove (2.9) we use [56, Theorem 6 and Lemma 3]. Since the polynomial P is
bounded from above, deg(P ) must be even and let it be 2k. Then ∆kP = C0 on Rn and
∆k+1P = 0 on Rn. By [56, Lemma 3] we have

k∑
i=0

ciR
2i∆iP (0) =

1

|BR|

∫
BR

P (x)dx ≤ sup
Rn

P ≤ C, for every R > 0,

where the constants c′is are positive and hence C0 = ∆kP (0) ≤ 0. We claim that C0 < 0.
Otherwise, by Theorem 2.1.2 and [56, Theorem 6] one gets deg(P ) ≤ 2k − 2, which is a
contradiction. �

2.5 Some useful lemmas

Lemma 2.5.1 (Fundamental solution). For n ≥ 3 odd integer the function

Φ(x) :=
(n−3

2 )!

2π
n+1

2

1

|x|n−1
=

1

γn
(−∆)

n−1
2 log

1

|x|
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is a fundamental solution of (−∆)
1
2 in Rn in the sense that for all f ∈ L1(Rn) we have

Φ ∗ f ∈ L 1
2
(Rn) and for all ϕ ∈ S(Rn)∫

Rn
(−∆)

1
2 (Φ ∗ f)ϕdx :=

∫
Rn

(Φ ∗ f)(−∆)
1
2ϕdx =

∫
Rn
fϕdx. (2.26)

Proof. To show Φ ∗ f ∈ L 1
2
(Rn) we bound∫

Rn

|Φ ∗ f(x)|
1 + |x|n+1

dx ≤ C
∫
Rn

1

1 + |x|n+1

(∫
Rn

1

|x− y|n−1
|f(y)|dy

)
dx

= C

∫
Rn
|f(y)|

(∫
Rn

1

1 + |x|n+1

1

|x− y|n−1
dx

)
dy

≤ C
∫
Rn
|f(y)|

(∫
B1

dx

|x|n−1
+

∫
Rn

dx

1 + |x|n+1

)
dy

≤ C‖f‖L1(Rn). (2.27)

If f ∈ C∞c (Rn) then (2.26) is true by [44, Theorem 5.9 ]. For the general case f ∈ L1(Rn)
choose fk ∈ C∞c (Rn) such that fk → f in L1(Rn). Then using (2.27) with f ≡ fk − f
one has∫

Rn
|Φ ∗ (fk − f)||(−∆)

1
2ϕ|dx ≤ C

∫
Rn

|Φ ∗ (fk − f)(x)|
1 + |x|n+1

dx ≤ C‖fk − f‖L1(Rn) → 0,

that is ∫
Rn

(Φ ∗ fk)(−∆)
1
2ϕdx→

∫
Rn

(Φ ∗ f)(−∆)
1
2ϕdx.

Now the proof follows from∫
Rn

(Φ ∗ fk)(−∆)
1
2ϕdx =

∫
Rn
fkϕdx→

∫
Rn
fϕdx.

Combining [71, Proposition 2.4] and [22, Lemma 3.2] we state the following proposition:

Proposition 2.5.2. Let Ω be an open set in Rn. Let u ∈ C2σ+ε(Ω) ∩ Lσ(Rn) for some
σ ∈ (0, 1) and ε > 0. Then (−∆)σu is continuous in Ω and for every x ∈ Ω we have

(−∆)σu(x) = Cn,σP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy

= −1

2
Cn,σP.V.

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2σ
dy, (2.28)

where C2σ+ε(Ω) := C0,2σ+ε(Ω) for 2σ+ε ≤ 1 and C2σ+ε(Ω) = C1,2σ+ε−1(Ω) for 2σ+ε >
1 and the constant Cn,σ is given by

Cn,σ :=

(∫
Rn

1− cosx1

|x|n+2σ
dx

)−1

.

The advantage of (2.28) is that the integral is not singular at the origin for a C2 function.
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Lemma 2.5.3. Let ` be a nonnegative integer. Let v be a smooth function on Rn such
that Dαv ∈ L 1

2
(Rn) for every multi-index α with |α| ≤ `. Then

(−∆)
1
2Dαv(x) = Dα(−∆)

1
2 v(x), for every x ∈ Rn, |α| ≤ `.

Proof. It suffices to show the case for |α| = 1. Let ϕ ∈ C∞c (B2) be such that ϕ = 1 on
B1 and 0 ≤ ϕ ≤ 1. Let us define vk(x) := ϕ(xk )v(x). Then we have

(−∆)
1
2Dαvk(x) = Dα(−∆)

1
2 vk(x). (2.29)

We claim that

(−∆)
1
2Dαvk

k→∞−−−→ (−∆)
1
2Dαv in C0

loc(Rn), |α| = 0, 1.

To prove our claim first we fix a R > 0. Then for x ∈ BR and k ≥ R+ 1 we get∣∣∣(−∆)
1
2Dαvk(x)− (−∆)

1
2Dαv(x)

∣∣∣
= Cn, 1

2

∣∣∣∣P.V. ∫
Rn

Dαvk(x)−Dαvk(y)−Dαv(x) +Dαv(y)

|x− y|n+1
dy

∣∣∣∣
≤ Cn, 1

2

∫
|y|>k

2|Dαv(y)|+ |α|k−1|(Dαϕ)( yk )||v(y)|
|x− y|n+1

dy

k→∞−−−→ 0.

Thus {Dα(−∆)
1
2 vk} = {(−∆)

1
2Dαvk} and {(−∆)

1
2 vk} are Cauchy sequences in C0

loc(Rn)
and consequently

Dα(−∆)
1
2 vk(x)

k→∞−−−→ Dα(−∆)
1
2 v(x),

and together with (2.29) complete the proof.

Lemma 2.5.4. We set

f0(x) := log |x|, fj(x) :=
1

|x|j
for j = 1, 2, . . . , n− 1.

Then for 0 < σ < 1 we have

(−∆)σfj(x) =
1

|x|j+2σ
(−∆)σfj(e1), for |x| > 0 and 0 ≤ j ≤ n− 1.

Proof. Since fj ∈ C∞(Rn \ {0}) ∩ L 1
2
(Rn) using (2.28) we get

(−∆)σfj(x) = (−∆)σfj(|x|e1) = cnP.V.

∫
Rn

fj(|x|e1)− fj(y)

||x|e1 − y|n+2σ dy

=
1

|x|j+2σ
cnP.V.

∫
Rn

fj(e1)− fj(y)

|e1 − y|n+2σ
dy

=
1

|x|j+2σ
(−∆)σfj(e1),

where in the first equality we used that the function (−∆)σfj is radially symmetric.
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Lemma 2.5.5. Let h ∈ Cn−1(B̄r) be such that{
(−∆)

n−1
2 h = 0 inBr

(−∆)jh = fj on ∂Br, j = 0, 1, ..., n−3
2 .

(2.30)

Then for every x ∈ Br

h(x) = −

n−3
2∑
i=0

∫
∂Br

fi(y)
∂

∂ν

(
(−∆)

n−3
2
−iG(x, y)

)
dσ(y),

and

|h(x)| ≤ C

n−3
2∑
i=0

∫
∂Br

|fi(y)| 1

|x− y|n−1−2i
dσ(y), (2.31)

where G is the Green’s function corresponding to the problem (2.30).

Proof. Using integration by parts we have

0 =

∫
Br

G(x, y)(−∆)
n−1

2 h(y)dy

=

n−3
2∑
i=0

∫
∂Br

(−∆)ih(y)
∂

∂ν

(
(−∆)

n−3
2
−iG(x, y)

)
dσ(y) +

∫
Br

(−∆)
n−1

2 G(x, y)h(y)dy

= h(x) +

n−3
2∑
i=0

∫
∂Br

fi(y)
∂

∂ν

(
(−∆)

n−3
2
−iG(x, y)

)
dσ(y)

To get (2.31) we only need to show that∣∣∣∣ ∂∂yi (−∆)jG(x, y)

∣∣∣∣ ≤ 1

|x− y|2+2j
, x, y ∈ Br, 0 ≤ j ≤ n− 3

2
.

In order to do that we use the following representation formula of G given by (see e.g.
[30])

G(x, y) =

∫
Br

· · ·
∫
Br︸ ︷︷ ︸

n−3
2

times

G1(x, z1)G1(z1, z2) . . . G1(zn−3
2
, y)dz1dz2 . . . dzn−3

2
, x, y ∈ Br,

where

G1(x, y) =
1

n(n− 2)|B1|

(
1

|x− y|n−2
− rn−2

||x|(y − r2x
|x|2 )|n−2

)
x, y ∈ Br,

is the Green’s function for Laplacian on Br. Then for 0 ≤ j ≤ n−3
2

(−∆)jG(x, y) =

∫
Br

· · ·
∫
Br︸ ︷︷ ︸

n−3−2j
2

times

G1(x, z1)G1(z1, z2) . . . G1(zn−3−2j
2

, y)dz1dz2 . . . dzn−3−2j
2

,
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and

∂

∂yi
(−∆)jG(x, y) =

∫
Br

· · ·
∫
Br︸ ︷︷ ︸

n−3−2j
2

times

G1(x, z1)G1(z1, z2) . . .
∂

∂yi
G1(zn−3−2j

2
, y)dz1 . . . dzn−3−2j

2
.

A repeated use of Lemma 2.4.3 and the estimate

0 < G1(x, y) ≤ C

|x− y|n−2
and

∣∣∣∣ ∂∂xiG1(x, y)

∣∣∣∣ ≤ C

|x− y|n−1
x, y ∈ Br,

gives∣∣∣∣ ∂∂yi (−∆)jG(x, y)

∣∣∣∣ ≤ C ∫
Br

1

|x− z|3+2j

1

|y − z|n−1
dz ≤ C 1

|x− y|2+2j
, 0 ≤ j ≤ n− 3

2
.

The following lemma is a variant of [56, Theorem 6].

Lemma 2.5.6. Let v ∈ Ln
2
(Rn) and let h = u− v be n+1

2 -harmonic in Rn, that is

∆
n+1

2 h = 0, in Rn.

If u satisfies (2.11) then h is a polynomial of degree at most n− 1.

Proof. First notice that the condition v ∈ Ln
2
(Rn) implies that∫

BR

|v|dx = o(R2n) as R→∞.

For a fixed x ∈ Rn by [56, Proposition 4] we have for α ∈ Nn with |α| = n

|Dαh(x)| ≤ C

R2n

∫
BR(x)

|h(y)|dy ≤ C

R2n

∫
B2R

|h(y)|dy, as R→∞.

Now using (2.11)∫
BR

h+dx ≤
∫
BR

(u+ + |v|)dx = o(R2n) or

∫
BR

h−dx ≤
∫
BR

(u− + |v|)dx = o(R2n).

On the other hand, Pizzetti’s formula (see e.g. [56, Lemma 3]) implies that∫
BR

hdx = O(R2n−1), as R→∞.

Therefore,

|Dαh(x)| ≤ C

R2n
min

{∫
B2R

(2h+ − h)dy,

∫
B2R

(2h− + h)dy

}
=

1

R2n

(
O(R2n−1) + o(R2n)

)
R→∞−−−−→ 0,
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and hence h is a polynomial of degree at most n− 1.



Chapter 3

Conformal metrics on R2m with
prescribed volume and asymptotic
behavior

We study the solutions u ∈ C∞(R2m) of the problem

(−∆)mu = Q̄e2mu, where Q̄ = ±(2m− 1)!, V :=

∫
R2m

e2mudx <∞,

particularly when m > 1. Extending previous works of Chang-Chen, and Wei-Ye, we
show that both the value V and the asymptotic behavior of u(x) as |x| → ∞ can be
simultaneously prescribed, under certain restrictions. When Q̄ = (2m − 1)! we need to
assume V < |S2m|, but surprisingly for Q̄ = −(2m − 1)! the volume V can be chosen
arbitrarily.

3.1 Introduction and statement of the main theorems

We consider the equation

(−∆)mu = (2m− 1)!e2mu in R2m, (3.1)

where u ∈ C∞(R2m) and satisfies

V :=

∫
R2m

e2mudx <∞. (3.2)

The assumption that u ∈ C∞(R2m) is not restrictive, since any weak solution u ∈
L1

loc(R2m) of (3.1) with right-hand side in L1
loc(R2m) is smooth, see e.g. [56, Corollary

8] (see also Theorem 2.1.1).

We recall that for m ≥ 2 Chang-Chen [15] showed the existence of (non-spherical)
solutions to (3.1)-(3.2) for every V ∈ (0, |S2m|). From the classifiction result (Theorem
A) these solutions have the asymptotic behavior given by

u(x) = −α log(|x|)− P (x) + C + o(1), o(1)→ 0 as |x| → ∞, (3.3)

37
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where α = 2V
|S2m| and P is a polynomial of degree at most 2m− 2 bounded from below.

Wei-Ye [77] complemented the result of Lin by showing, among other things:

Theorem C ([77]). For any V ∈ (0, |S4|) and P (x) =
∑4

j=1 ajx
2
j with aj > 0, for

m = 2 Problem (3.1)-(3.2) has a solution with asymptotic expansion (3.3) for some
C ∈ R.

The first result which we prove here is an extension of the result of Wei-Ye to the case
m > 2. We will prove the existence of solutions to (3.1)-(3.2) having the asymptotic
behavior (3.3) where P will be any given polynomial of degree at most 2m−2 satisfying

lim
|x|→∞

x · ∇P (x) =∞, (3.4)

while α > 0 is determined by V ∈ (0, |S2m|). More precisely, define

Pm :=
{
P polynomial in R2m : degP ≤ 2m− 2, (3.4) holds

}
.

It is worth noticing that (3.4) is equivalent to the apparently stronger condition

lim inf
|x|→∞

P (x)

|x|a
> 0 and lim inf

|x|→∞

x · ∇P (x)

|x|a
> 0, for some a > 0. (3.5)

Indeed (3.4) implies the second inequality of (3.5) by a subtle result of E. Gorin (see
[28, Theorem 3.1]), and the second inequality in (3.5) implies the first one, since one can
write

P (x) =

∫ |x|
0

d

dr
P

(
r
x

|x|

)
dr + P (0).

However, the first condition in (3.5), that is

lim
|x|→∞

P (x) =∞, (3.6)

does not imply (3.4) when degP ≥ 4, see Proposition 3.5.4. A simple example of
polynomial belonging to Pm is

P (x) =

2m∑
j=1

ajx
2ij
j + p(x),

where aj > 0, ij ∈ {1, 2, . . . ,m − 1} for 1 ≤ j ≤ 2m, and p is a polynomial of degree
at most 2 min{ij} − 1, but in general Pm contains polynomials whose higher degree
monomials do not split in such a simple way.

Theorem 3.1.1. For any integer m ≥ 2, given P ∈ Pm and V ∈ (0, |S2m|), there exists
a solution of (3.1)-(3.2) having the asymptotic behavior (3.3) with α = 2V

|S2m| .

The restriction V < |S2m| in Theorem 3.1.1 is necessary when m = 2 because of the
result of Lin (Theorem A). However, for m ≥ 3 there are solutions to (3.1)-(3.2) with
V arbitrarily large (see Chapter 5). The crucial step in which we need V to be smaller
than |S2m| is Theorem 3.4.2 below, a compactness result which follows form the blow-up
analysis of sequences of prescribed Q-curvature in open domains of R2m (Theorem 3.4.1)
proven by Martinazzi, and inspired by previous works of Brézis-Merle [12] and Robert
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[65]. This compactness is used to prove the a priori bounds necessary to run the fixed
point argument of [77], which we closely follow.

From the work of Brézis-Merle we also borrow a simple but fundamental critical estimate,
whose generalization is Lemma 3.5.2, which is used in Lemma 3.3.6.

As we shall now show, things go differently when the prescribed Q-curvature is negative.
Consider the equation

(−∆)mu = −(2m− 1)!e2mu in R2m, (3.7)

whose solutions give rise to metrics gu = e2u|dx|2 of Q-curvature −(2m − 1)! in R2m.
One can easily verify that under the assumption (3.2) Eq. (3.7) has no solutions when
m = 1, see e.g. [52, Proposition 6]. On the other hand, when m ≥ 2 we have:

Theorem D ([52]). For every m ≥ 2 there is some V > 0 such that Problem (3.7)-(3.2)
has a radially symmetric solution. Every solution to (3.7)-(3.2) (a priori not necessarily
radially symmetric) has the asymptotic behavior given by (3.3) where α = − 2V

|S2m| and

P is a non-constant polynomial of degree at most 2m− 2 bounded from below.

Notice that, contrary to Chang-Chen’s result [15], the existence part of Theorem D
does not allow to prescribe V . Moreover its proof is based on an ODE argument which
only produces radially symmetric solutions. It is then natural to address the following
question: For which values of V and which polynomials P does Problem (3.7)-(3.2) have
a solution with asymptotic behavior (3.3) (with α = − 2V

|S2m|)? In analogy with Theorem

3.1.1 we will show:

Theorem 3.1.2. For any integer m ≥ 2, given P ∈ Pm and V > 0, there exists a
solution of (3.7)-(3.2) having the asymptotic behavior (3.3) for α = − 2V

|S2m| .

The remarkable fact which allows for large values of V in Theorem 3.1.2 (but not in
Theorem 3.1.1) is that, as shown in [55], when the Q-curvature is negative, compactness
is obtained even for large volumes, compare Theorems 3.4.1 and 3.4.2 below. This in
turn depends on Theorem D above, and in particular on the fact that the polynomial
in the expansion (3.3) of a solution to (3.7)-(3.2) is necessarily non-constant.

About the assumption that P ∈ Pm in Theorems 3.1.1 and 3.1.2, we do not claim nor
believe that it is optimal, but it is technically convenient in the crucial Lemma 3.3.5
below, where it is needed in (3.21). Since a solution to (3.1)-(3.2) or (3.7)-(3.2) must
satisfy (3.3) for α = ± 2V

|S2m| , a necessary condition on P and V is∫
R2m\B1

e−2m(P (x)+α log |x|)dx <∞, (3.8)

but it is unknown whether this condition is also sufficient to guarantee the existence of
a solution to (3.1)-(3.2) or (3.7)-(3.2) with asymptotic expansion (3.3), at least in the
negative case, or for V < |S2m| in the positive case.
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3.2 Strategy of the proof

Fix u0 ∈ C∞(R2m) such that u0(x) = log |x| for |x| ≥ 1. Integration by parts yields∫
R2m

(−∆)mu0dx = −γ2m,

where γ2m is defined by

(−∆)m log
1

|x|
= γ2mδ0 in R2m, i.e. γ2m =

(2m− 1)!

2
|S2m|. (3.9)

Let V , α = ± 2V
|S2m| and P ∈ Pm be given as in Theorem 3.1.1 or 3.1.2. We would like to

find a solution to (3.1) or (3.7) of the form

u = −αu0 − P + v + C, (3.10)

for a suitable choice of C ∈ R and of a smooth function v(x) = o(1) as |x| → ∞. Define

K =
αγ2m

V
e−2mP−2mαu0 = sign(α)(2m− 1)!e−2mP−2mαu0 , (3.11)

and notice that (3.4) implies
|K(x)| ≤ C1e

−C2|x|a (3.12)

for some C1, C2 > 0.

Now if we assume (3.2), then the constant C in (3.10) is determined by the function v.
Indeed (3.2) implies

V =

∫
R2m

e2mudx =
e2mC

(2m− 1)!

∫
R2m

|K|e2mvdx,

hence C = cv, where

cv := − 1

2m
log

(
1

(2m− 1)!V

∫
R2m

|K|e2mvdx

)
= − 1

2m
log

(
1

αγ2m

∫
R2m

Ke2mvdx

)
.

(3.13)
An easy computation shows that u given by (3.10) satisfies

(−∆)mu = sign(α)(2m− 1)!e2mu

and (3.2) if and only if C = cv and

(−∆)mv = Ke2m(v+cv) + α(−∆)mu0. (3.14)

Then we will use a fixed point method in the spirit of [77] to find a solution v to (3.14)
in the Banach space

C0(R2m) :=

{
f ∈ C0(R2m) : lim

|x|→∞
f(x) = 0

}
, ‖f‖C0 := sup

R2m

|f |,

and of course v will also be smooth by elliptic estimates. In order to run the fixed-point
argument we use the following weighted Sobolev spaces.
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Definition 3.2.1. For k ∈ N, δ ∈ R and p ≥ 1 we set Mp
k,δ(R

2m) to be the completion

of C∞c (R2m) in the norm

‖f‖Mp
k,δ

:=
∑
|β|≤k

‖(1 + |x|2)
(δ+|β|)

2 Dβf‖Lp(R2m).

We also set Lpδ(R
2m) := Mp

0,δ(R
2m). Finally we set

Γpδ(R
2m) :=

{
f ∈ Lp2m+δ(R

2m) :

∫
R2m

fdx = 0

}
,

whenever δp > −2m, so that Lp2m+δ(R
2m) ⊂ L1(R2m) and the above integral is well

defined.

Lemma 3.2.1. Fix p ≥ 1 and δ > −2m
p . For v ∈ C0(R2m) and cv as in (3.13) we have

S(v) := Ke2m(v+cv) + α(−∆)mu0 ∈ Γpδ(R
2m),

and the map S : C0(R2m)→ Γpδ(R
2m) is continuous.

Proof. This follows easily from (3.12) and dominated convergence.

Lemma 3.2.2 (Theorem 5 in [60]). For 1 < p < ∞ and δ ∈
(
−2m

p ,−
2m
p + 1

)
, the

operator (−∆)m is an isomorphism from Mp
2m,δ(R

2m) to Γpδ(R
2m).

We postpond the proof of the following lemma until the end of this chapter.

Lemma 3.2.3. For δ > −2m
p , p ≥ 1, the embedding E : Mp

2m,δ(R
2m) ↪→ C0(R2m) is

compact.

Fix p ∈ (1,∞) and δ ∈
(
−2m

p ,−
2m
p + 1

)
. Then by Lemma 3.2.1, Lemma 3.2.2 and

Lemma 3.2.3, one can define a compact map

T := E ◦ ((−∆)m)−1 ◦ S : C0(R2m)→ C0(R2m) (3.15)

given by Tv = v̄ where v̄ is the only solution to

(−∆)mv̄ = Ke2m(v+cv) + α(−∆)mu0,

and compactness follows from the continuity of S and ((−∆)m)−1 and the compactness
of E.

If v is a fixed point of T , then it solves (3.14) and u = v + cv − P − αu0 is a solution
of (3.1) or (3.7) (depending on the sign of K in (3.11)) and (3.2), with asymptotic
expansion (3.3). Then in order to prove Theorems 3.1.1 and 3.1.2 it remains to prove
that T has a fixed point, and we shall do that using the following fixed-point theorem.

Lemma 3.2.4 (Theorem 11.3 in [27]). Let T be a compact mapping of a Banach space
X into itself, and suppose that there exists a constant M such that

‖x‖X < M

for all x ∈ X and t ∈ (0, 1] satisfying tTx = x. Then T has a fixed point.
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In order to apply Lemma 3.2.4 to the operator T defined in (3.15) we will prove in
Section 3.3 the following a priori bound, which completes the proof of Theorems 3.1.1
and 3.1.2.

Proposition 3.2.5. For any 0 < t ≤ 1 and v ∈ C0(R2m) with tTv = v we have

‖v‖C0(R2m) ≤M, (3.16)

where M is independent of v and t.

3.3 A priori estimates and proof of Proposition 3.2.5

Throughout this section let t ∈ (0, 1] and v ∈ C0(R2m) be fixed and satisfy tTv = v,
that is

(−∆)mv = t(Ke2m(v+cv) + α(−∆)mu0),

where cv is as in (3.13). Also define

w̄ := v + cv +
log t

2m
. (3.17)

Lemma 3.3.1. We have

v(x) = − t

γ2m

∫
R2m

log(|x− y|)K(y)e2m(v(y)+cv)dy + tαu0(x). (3.18)

Proof. Let ṽ(x) be defined as the right-hand side of (3.18). Then for |x| ≥ 1, using
(3.13) we write

ṽ(x) =
t

γ2m

∫
R2m

K(y)e2m(v(y)+cv)(log |x| − log |x− y|)dy

We first show that
lim
|x|→∞

ṽ(x) = 0. (3.19)

Let R > 1 be fixed. Then for |x| > 2R, we split

ṽ(x) =
5∑
i=1

Ii, Ii :=
t

γ2m

∫
Ai

K(y)e2m(v(y)+cv) log

(
|x|
|x− y|

)
dy,

where

A1 := BR(0)

A2 := B1(x)

A3 := B|x|/2(x) \B1(x)

A4 := (B2|x|(x) \B|x|/2(x)) \BR(0)

A5 := R2m \B2|x|(x),

and we will show that Ii → 0 as |x| → ∞ for 1 ≤ i ≤ 5.
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For i = 1, since lim|x|→∞ log
(
|x|
|x−y|

)
= 0 uniformly with respect to y ∈ BR(0), from the

dominated convergence theorem we get

|I1| ≤ C
∫
BR(0)

|K(y)|
∣∣∣∣log

(
|x|
|x− y|

)∣∣∣∣ dy → 0 as |x| → ∞.

From (3.12) we also have

|I2| ≤ C
∫
B1(x)

|K(y)| (log |x|+ | log |x− y||) dy

≤ C‖K‖L∞(B1(x))

(
log |x|+ ‖ log | · |‖L1(B1(0))

)
→ 0, as |x| → ∞.

Since (3.12) yields K log(| · |) ∈ L1(R2m), we infer with the dominated convergence
theorem

|I3| ≤ C
∫
{1≤|x−y|<|x|/2}

|K(y)| (log |x|+ log(|x|/2)) dy

≤ C
∫
{1≤|x−y|<|x|/2}

|K(y)| (log |2y|+ log(|y|)) dy

→ 0, as |x| → ∞.

Using that 1
2 <

|x|
|x−y| < 2 on A4 and that K ∈ L1(R2m) we find that for every ε > 0 it

is possible to choose R so large that

|I4| ≤ C
∫
A4

|K(y)|
∣∣∣∣log

(
|x|
|x− y|

)∣∣∣∣ dy ≤ C ∫
A4

|K|dy ≤ C
∫
R2m\BR(0)

|K|dy ≤ ε.

Finally, again using that K log(| · |) ∈ L1(R2m) with the dominated convergence theorem
we get

|I5| ≤ C
∫
{|x−y|>2|x|}

|K(y)|(log |x|+ log |x− y|)dy

≤ C
∫
{|x−y|>2|x|}

|K(y)|(log |y|+ log |2y|)dy

→ 0, as |x| → ∞.

Since ε can be chosen arbitrarily small, (3.19) is proven. Since v ∈ C0(R2m), and
∆mṽ = ∆mv, the difference w := v − ṽ satisfies

∆mw = 0 in R2m, lim
|x|→∞

w(x) = 0.

Then by the Liouville theorem for polyharmonic functions (see e.g. Theorem 5 in [56])
w is a polynomial, and since it vanishes at infinity, it must be identically zero, i.e.
v ≡ ṽ.

Using Lemma 3.3.1 one can prove the following decay estimate for the derivatives of v
at infinity.
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Lemma 3.3.2. For 1 ≤ ` ≤ 2m− 1 we have

lim
|x|→∞

|x|`∇`v(x) = lim
|x|→∞

|x|`∇`w̄(x) = 0.

Proof. Notice that ∇v = ∇w̄, so it is enough to work with v.

Using (3.18) for |x| > 1 one can compute

∇`v(x) =
1

γ2m

∫
R2m

K(y)e2mw̄(y)
(
∇` log(|x|)−∇` log(|x− y|)

)
dy.

Fix ε > 0 and R1 > 1 such that∫
R2m\BR1

|K|e2mw̄dy < ε.

For |x| > 2R1, we split R2m into three disjoint domains:

A1 := BR1(0), A2 := B|x|/2(x), A3 := R2m \ (A1 ∪A2).

Then

|x|`∇`v(x) =
1

γ2m

3∑
i=1

Ii, Ii := |x|`
∫
Ai

K(y)e2mw̄(y)
(
∇` log(|x|)−∇` log(|x− y|)

)
dy.

Since R1 is fixed, for |x| large enough we have by the mean-value theorem∣∣∣∇` log(|x|)−∇` log(|x− y|)
∣∣∣ ≤ |y| sup

B|y|(x)

∣∣∣∇`+1 log(|z|)
∣∣∣ ≤ C

|x|`+1
for y ∈ A1,

hence with (3.13) we get

|I1| ≤
C

|x|

∫
A1

|K|e2mw̄dy ≤ C

|x|
|α|γ2m → 0, as |x| → ∞.

Since K goes to zero rapidly at infinity, w̄ is bounded, and |x − y| ≤ |x|/2 on A2, we
have

|I2| ≤ C‖K‖L∞(A2)‖e2mw̄‖L∞ |x|`
∫
A2

(
1

|x|`
+

1

|x− y|`

)
dy

≤ C‖K‖L∞(A2)‖e2mw̄‖L∞ |x|2m

→ 0, as |x| → ∞.

On A3 we have |x− y| ≥ |x|/2, which implies |x|`
|x−y|` ≤ 2`. Hence

|I3| ≤ C(1 + 2`)

∫
A3

|K|e2mw̄dy < Cε.

Since ε is arbitrarily small, the proof is complete.

Lemma 3.3.3. The function w̄ given by (3.17) is locally uniformly upper bounded, i.e.
for every R > 0 there exists C = C(R) such that w̄ ≤ C in BR.
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Proof. Since u0 is a fixed function and locally bounded, it is enough to prove that
w := w̄ − tαu0 is locally uniformly upper bounded. Now

(−∆)mw = tKe2m(v+cv) = Qe2mw, Q := Ke2mtαu0 .

We bound∫
BR

e2mwdx = t

∫
BR

e2m(v+cv)−2mtαu0dx ≤ C(R)

∫
BR

|K|e2m(v+cv)dx ≤ C(R)|α|γ2m,

where we used (3.13) and that |K| is positive and continuous.

In addition in the case when Q > 0 we have∫
BR

Qe2mwdx ≤
∫
BR

Ke2m(v+cv)dx < αγ2m < (2m− 1)!|S2m|.

Moreover, Lemma 3.3.1 gives

∆w(x) = − t

γ2m

∫
R2m

2m− 2

|x− y|2
K(y)e2m(v(y)+cv)dy

and with Fubini’s theorem we get∫
BR

|∆w(x)|dx =
t

γ2m
(2m− 2)

∫
R2m

|K(y)|e2m(v(y)+cv)

(∫
BR

dx

|x− y|2

)
dy

≤ C
∫
R2m

|K(y)|e2m(v(y)+cv)

(∫
BR(y)

dx

|x− y|2

)
dy

≤ CR2m−2.

Therefore Theorem 3.4.2 implies that there exists C = C(R) > 0 (independent of w)
such that

sup
BR/2

w ≤ C.

A consequence of the local uniform upper bounds of w̄ is the following local uniform
bound for the derivatives of v:

Lemma 3.3.4. For every R > 0 there exists a constant C = C(R) > 0 independent of
v and t such that for 1 ≤ ` ≤ 2m− 1 we have

sup
BR

|∇`v| ≤ C.

Proof. Let x ∈ BR. Then from (3.18) and Lemma 3.3.3, we have

|∇`(v − tαu0)| ≤ C
∫
R2m

|K(y)|e2mw̄(y) 1

|x− y|`
dy

≤ C‖K‖L∞‖e2mw̄‖L∞(B2R)

∫
B2R

1

|x− y|`
dy +

C

R`

∫
R2m\B2R

|K|e2mw̄dy

≤ C(R),
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where the last integral is bounded using (3.13). Since u0 is smooth, α is fixed and
t ∈ (0, 1], the lemma follows.

Now to prove uniform upper bounds for w̄ outside a fixed compact set, first we will need
the following result, which relies on a Pohozaev-type identity.

Lemma 3.3.5. For given ε > 0, there exists R0 = R0(ε) > 0 only depending on K (and
not on v or t) such that ∫

R2m\BR0

|K|e2mw̄dx < ε.

Proof. Taking R→∞ in Lemma 3.5.1 and noticing that the first term on the right-hand
side of (3.27) vanishes thanks to (3.12) and last two terms vanish thanks to Lemma 3.3.2,
we find∫

R2m

(x· ∇K)e2mw̄dx+ 2m

∫
R2m

Ke2mw̄dx− 2mtα

∫
B1

(x· ∇v)(−∆)mu0dx = 0. (3.20)

Thanks to (3.5) we can find C1 > 0 and R1 ≥ 1 such that

x· ∇|K(x)| = −2m (x · ∇P (x) + α) |K(x)| ≤ − 1

C1
|x|a|K(x)| for |x| ≥ R1. (3.21)

Then for some R ≥ R1 to be fixed later we bound

1

C1
Ra
∫
R2m\BR

|K|e2mw̄dx ≤ 1

C1

∫
R2m\BR

|x|a|K(x)|e2mw̄dx

≤ −
∫
R2m\BR

x · ∇|K(x)|e2mw̄dx

= 2m

∫
R2m

|K|e2mw̄dx+

∫
BR

(x· ∇|K(x)|)e2mw̄dx

− 2mt|α|
∫
B1

(x· ∇v(x))(−∆)mu0dx

=: (I) + (II) + (III),

(3.22)

where in the equality on the third line we used (3.20). Now using (3.13) and (3.17), we
compute (I) = 2mt|α|γ2m, and using Lemma 3.3.4 we bound

(I) + (II) + (III) ≤ C1 +

∫
BR

(x· ∇|K(x)|)e2mw̄dx

≤ C1 +

∫
Ω

(x· ∇|K(x)|)e2mw̄dx

where
Ω :=

{
x ∈ R2m : x · ∇P (x) + α < 0

}
.

From (3.21) we infer that Ω ⊂ BR1 . Then with Lemma 3.3.3 we find

(I) + (II) + (III) ≤ C1 + sup
x∈BR1

(|x · ∇K(x)|)
∫
BR1

e2mw̄dx ≤ C2 = C2(R1),
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where C2 does not depend on t or v. To complete the proof it suffices to take R0 = R
so large that

Ra

C1
≥ C2

ε
.

To prove uniform upper bound of w̄ on the complement of a compact set, we use the
Kelvin transform. For R > 1 define

ξR(x) := w̄

(
Rx

|x|2

)
, 0 < |x| ≤ 1. (3.23)

Lemma 3.3.6. There exists ε > 0 sufficiently small such that if R0 = R0(ε) > 1 is
as in Lemma 3.3.5, then ξ(x) := ξR0(x) is uniformly upper bounded on B1, i.e. w̄ is
uniformly upper bounded in R2m \BR0.

Proof. Using (3.30) for n = 2m and k = m and recalling that

(−∆)mw̄ = Ke2mw̄ in R2m \B1,

we have

(−∆)mξ(x) =
R2m

0

|x|4m
((−∆)mw̄)

(
R0x

|x|2

)
=

(
R0

|x|2

)2m

K

(
R0x

|x|2

)
e2mξ(x)

=: f(x).

Then with the change of variable y = R0x
|x|2 and Lemma 3.3.5 we obtain for R0 = R0(ε)

large enough (and ε > 0 to be fixed later)∫
B1

f(x)dx < ε.

We write ξ̄ := ξ1 + ξ2, where{
(−∆)mξ1 = f in B1

(−∆)kξ1 = 0 on ∂B1 for k = 0, 1, 2, ..,m− 1

and 
(−∆)mξ2 = 0 in B1

(−∆)kξ2 = (−∆)kξ on ∂B1 for k = 1, 2, ..,m− 1
ξ2 = ξ+ := max{ξ, 0} on ∂B1.

Iteratively using the maximum principle it is easy to see that

ξ ≤ ξ̄ in B1. (3.24)

Now fix ε > 0 small enough (and consequently R0 = R0(ε) > 0 large enough) so that by
Lemma 3.5.2 below, there exists p > 1 such that e2mξ1 is bounded in Lp(B1). As usual
this bound, as well as ε, R0 are independent of t and v.
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Since |∆kξ2| is uniformly bounded on ∂B1 for k = 0, 1, 2, ...,m− 1 by Lemma 3.3.4 and
w̄+ is uniformly bounded on ∂BR0 by Lemma 3.3.3, so that ξ+ is uniformly bounded
on ∂B1, by the maximum principle we get uniform bounds of ξ2 in B1. Hence, noticing
that

R2m
0

|x|4m
K

(
R0x

|x|2

)
≤ C for x ∈ B1

by (3.12), and using (3.24), we can bound

‖f‖Lp(B1) ≤ C‖e2mξ‖Lp(B1)

≤ C‖e2mξ̄‖Lp(B1)

≤ C‖e2mξ1‖Lp(B1)‖e2mξ2‖L∞(B1)

≤ C.

Consequently by elliptic estimates and Sobolev embedding there exists a constant C > 0
(independent of v and t) such that

‖ξ1‖L∞(B1) ≤ C ′‖ξ1‖W 2m,p(B1) ≤ C,

and therefore
ξ ≤ ξ̄ ≤ |ξ1|+ |ξ2| ≤ C in B1,

with C not depending on v and t.

By Lemma 3.2.2 and (3.12), we have

1

C
‖v‖Mp

2m,δ
≤ ‖(−∆)mv‖Lp2m+δ

= ‖Ke2mw̄ + tα(−∆)mu0‖Lp2m+δ

≤ ‖K‖Lp2m+δ
‖e2mw̄‖L∞ + α‖(−∆)mu0‖Lp2m+δ

≤ C‖e2mw̄‖L∞ + C,

with C independent of t and v, and together with Lemma 3.3.3 and Lemma 3.3.6 we
obtain

‖v‖Mp
2m,δ
≤ C,

where C is independent of v and t. Now Proposition 3.2.5 follows at once from the
continuity of the embedding Mp

2m,δ(R
2m) ↪→ C0(R2m) (see Lemma 3.2.3).

Remark. An alternative way of getting uniform bounds on ‖v‖C0 is to get uniform
upper bounds of w̄ and use them in (3.18).

3.4 Local uniform upper bounds for the equation (−∆)mu =
Ke2mu

Here we state a slightly simplified version of Theorem 1 from [55] which we will use to
prove the uniform upper bound of Theorem 3.4.2 below. This theorem was originally
proved by Robert [65] in dimension 4 and under the assumption Vk > 0, and is a delicate
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counterpart to the blow-up analysis initiated by Brézis-Merle [12] in dimension 2. The
crucial fact which we shall use is that in order to lose compactness V0 must be positive
somewhere and ‖Vke2muk‖L1 must approach or go above Λ1 := (2m− 1)!|S2m|.

Theorem 3.4.1 ([55]). Let Ω ⊆ R2m be a connected set. Let (uk) ⊂ C2m
loc (Ω) be such

that

(−∆)muk = Vke
2muk in Ω

where Vk → V0 in C0
loc(Ω) and, for some C1, C2 > 0,∫

Ω
e2mukdx ≤ C1,

∫
Ω
|∆uk|dx ≤ C2.

Then one of the following is true:

(i) up to a subsequence uk → u0 in C2m−1
loc (Ω) for some u0 ∈ C2m(Ω), or

(ii) there is a finite (possibly empty) set S = {x(1), ...., x(I)} ⊂ Ω such that V0(x(i)) > 0
for 1 ≤ i ≤ I, and up to a subsequence uk → −∞ locally uniformly in Ω \ S, and

Vke
2mukdx ⇀

I∑
i=1

αiδx(i)

in the sense of measures in Ω, where

αi = LiΛ1 for some Li ∈ N \ {0}, Λ1 := (2m− 1)!|S2m|.

In particular, in case (ii) for any open set Ω0 b Ω with S ⊂ Ω0 we have∫
Ω0

Vke
2muk → LΛ1 for some L ∈ N, and L = 0⇔ S = ∅. (3.25)

Theorem 3.4.2. Let u ∈ C2m(BR) solve

(−∆)mu = Ke2mu in BR

for a function K ∈ C0(BR) and assume that for given C1, C2 > 0 one has

(a)
∫
BR

e2mudx ≤ C1,

(b)
∫
BR
|∆u|dx ≤ C2,

(c1) either
∫
BR

Ke2mudx ≤ Λ for some Λ < (2m− 1)!|S2m|, or

(c2) K ≤ 0 in BR.

Then

sup
BR/2

u ≤ C

where C only depends on R, C1, C2, Λ (in case (c1) holds and not (c2)) and K.
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Proof. Assume that there is a sequence of functions un ∈ C2m(BR) and a sequence of
points xn ∈ BR/2 such that un satisfies the conditions (a), (b), and (c1) or (c2), and
assume that

lim
n→∞

un(xn) =∞. (3.26)

Then we can apply Theorem 3.4.1 with Vk = K for every k, and because of (3.26), we
clearly are in case (ii) of the theorem. Assume that S 6= ∅. Then K > 0 on S, hence
condition (c2) does not hold. On the other hand condition (c1) contradicts (3.25). Then
S = ∅, hence uk → −∞ uniformly in BR/2, contradicting (3.26).

3.5 Some useful lemmas

Lemma 3.5.1 (Pohozaev-type identity). Consider K ∈ C1(BR) for some R > 1, and
let u0 ∈ C2m(R2m) be such that supp(∆mu0) ⊆ B1. Let w̄ ∈ C2m(BR) be a solution of

(−∆)mw̄ = Ke2mw̄ + tα(−∆)mu0.

Then we have∫
BR

(x· ∇K)e2mw̄dx+ 2m

∫
BR

Ke2mw̄dx− 2mtα

∫
B1

(x· ∇w̄)(−∆)mu0dx

= R

∫
∂BR

Ke2mw̄dσ −mR
∫
∂BR

|∆
m
2 w̄|2dσ − 2m

∫
∂BR

fdσ, (3.27)

where,

f(x) :=
m−1∑
j=0

(−1)m+j x

R
·
(

∆j/2(x· ∇w̄)∆(2m−1−j)/2w̄
)

on ∂BR,

and for k odd ∆k/2 := ∇∆(k−1)/2.

Proof. Integrating by parts we find

2m

∫
BR

(1 + x· ∇w̄)Ke2mw̄dx =

∫
BR

K div(xe2mw̄)dx

= −
∫
BR

(x· ∇K)e2mw̄dx+R

∫
∂BR

Ke2mw̄dσ.

Now∫
BR

(x· ∇w̄)Ke2mw̄dx =

∫
BR

(x· ∇w̄)(−∆)mw̄dx− tα
∫
B1

(x· ∇w̄)(−∆)mu0dx, (3.28)

and integrating by parts m times the first term on the right-hand side of (3.28) we find∫
BR

(x· ∇w̄)(−∆)mw̄dx =

∫
BR

∆
m
2 (x· ∇w̄)∆

m
2 w̄dx+

∫
∂BR

fdσ =: I (3.29)

Using

∆
m
2 (x· ∇w̄)∆

m
2 w̄ =

1

2
div(x|∆

m
2 w̄|2)
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(see e.g. [57, Lemma 14] for a simple proof) and using the divergence theorem we obtain

I =
1

2

∫
∂BR

R|∆
m
2 w̄|2dσ +

∫
∂BR

fdσ,

and putting together the above equations we conclude.

The proof of the following lemma can be found in [56, Theorem 7]. It extends to arbitrary
dimension Theorem 1 of [12].

Lemma 3.5.2. Let f ∈ L1(BR) and let v solve{
(−∆)mv = f in BR ⊂ R2m,
∆kv = 0 on ∂BR for k = 0, 1, . . . ,m− 1.

Then, for any p ∈
(

0, γ2m

‖f‖L1(BR)

)
, we have e2mp|v| ∈ L1(BR) and

∫
BR

e2mp|v|dx ≤ C(p)R2m,

where γ2m is definde by (3.9).

Lemma 3.5.3. Given u ∈ C∞(Rn), define ũ(x) := u
(
x
|x|2
)

for x ∈ Rn \ {0}. Then for

any k ∈ N we have

∆k

(
1

|x|n−2k
ũ(x)

)
=

1

|x|n+2k
(∆ku)

(
x

|x|2

)
, x ∈ Rn \ {0}. (3.30)

Proof. We shall prove the lemma by induction on k ∈ N. Notice that for k = 0 (3.30) is
trivial.

For a smooth function f and g(x) := |x|2, we have the formula

∆k+1(fg) = g∆k+1f + 2(k + 1)(n+ 2k)∆kf + 4(k + 1)x· ∇(∆kf),

which can be easily proven by induction on k ∈ N. Choosing

f(x) =
ũ(x)

|x|n−2k

and assuming that (3.30) is true for a given k ∈ N, we compute

∆k+1

(
ũ(x)

|x|n−2(k+1)

)
= ∆k+1(fg)

= g∆(∆kf) + 2(k + 1)(n+ 2k)∆kf + 4(k + 1)x· ∇(∆kf)

= |x|2∆

(
1

|x|n+2k
(∆ku)

(
x

|x|2

))
+ 2(k + 1)(n+ 2k)

1

|x|n+2k
(∆ku)

(
x

|x|2

)
+ 4(k + 1)x· ∇

(
1

|x|n+2k
(∆ku)

(
x

|x|2

))
=

1

|x|n+2(k+1)
(∆k+1u)

(
x

|x|2

)
,
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hence completing the induction.

Proposition 3.5.4. For n ≥ 2 there exists a polynomial P of degree 4 in Rn satisfying
(3.6) but not (3.4).

Proof. In R2 consider P (x) = P (x1, x2) = x2
1 + x4

2 − βx1x
2
2, with 0 < β < 2. Then

P (x) ≥ x2
1 + x4

2 − β
(
x2

1

2
+
x4

2

2

)
=

(
1− β

2

)
(x2

1 + x4
2),

so that P satisfies (3.6). Moreover

x · ∇P (x) = 2x2
1 + 4x4

2 − 3βx1x
2
2.

Choosing x = (ax2
2, x2) we obtain

(ax2
2, x2) · ∇P (ax2

2, x2) = x4
2(2a2 − 3βa+ 4).

Then, since for β >
√

24
3 the polynomial 2a2 − 3βa+ 4 has positive discriminant, fixing

β ∈
(√

24
3 , 2
)

and a such that 2a2 − 3βa+ 4 < 0 we see that

lim inf
|x|→∞

x · ∇P (x) ≤ lim
|x2|→∞

(ax2
2, x2) · ∇P (ax2

2, x2) = −∞.

This proves the proposition for n = 2. For n > 2 it suffices to consider

P̃ (x1, x2, . . . , xn) = P (x1, x2) +

n∑
j=3

x2
j ,

where P is as before.

We end this chapter by giving a proof of Lemma 3.2.3.

Proof of Lemma 3.2.3 For any R ≥ 1 set

AR := {x ∈ R2m : R < |x| < 2R}, A := A1 = {x ∈ R2m : 1 < |x| < 2}.

Given f ∈W 2m,p(AR), define

f̃(x) := f(Rx), for x ∈ A.

For |β| ≤ 2m, we have∫
A
|Dβ f̃(x)|pdx = Rp|β|

∫
A
|(Dβf)(Rx)|pdx

= Rp|β|−2m

∫
AR

|Dβf(x)|pdx.

From the embedding W 2m,p(A) ↪→ C0(A) there exists a constant S > 0, such that

‖u‖C0(A) ≤ S‖u‖W 2m,p(A), for all u ∈W 2m,p(A).
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Hence

‖f‖C0(AR) = ‖f̃‖C0(A)

≤ S‖f̃‖W 2m,p(A)

= S
∑
|β|≤2m

‖Dβ f̃‖Lp(A)

= S
∑
|β|≤2m

R|β|−2m/p‖Dβf‖Lp(AR)

≤ CS
∑
|β|≤2m

R−2m/p−δ‖(1 + |x|2)
δ+|β|

2 Dβf‖Lp(AR)

≤ CSR−γ‖f‖Mp
2m,δ

, γ = 2m/p+ δ > 0.

(3.31)

Since R ≥ 1 is arbitrary, and on B2 we have

‖f‖C0(B2) ≤ S′‖f‖W 2m,p(B2) ≤ CS′‖f‖Mp
2m,δ

, (3.32)

we conclude that Mp
2m,δ(R

2m) ⊂ C0(R2m), and actually

sup
n∈N
‖fn‖Mp

2m,δ
<∞ ⇒ lim

R→∞
sup
n∈N
‖fn‖C0(AR) = 0. (3.33)

By (3.31) and (3.32), on any compact set Ω b R2m the sequence ‖fn‖W 2m,p(Ω) is bounded
and from the compact embedding W 2m,p(Ω) ↪→ C0(Ω), we can extract a subsequence
converging in C0(Ω). Then up to choosing Ω = Bn and extracting a diagonal subse-
quence we have fn → f locally uniformly for a continuous function f , and actually
f ∈ C0(R2m) and the convergence is globally uniform thanks to (3.33). �





Chapter 4

Existence of solutions to a fractional
Liouville equation in Rn

In this chapter we study the existence of solutions to the problem

(−∆)
n
2 u = Qenu in Rn, V :=

∫
Rn
enudx <∞,

where Q = (n− 1)! or Q = −(n− 1)!. We show that to a certain extent the asymptotic
behavior of u and the constant V can be prescribed simultaneously. Furthermore if
Q = −(n− 1)! then V can be chosen to be any positive number. This is in contrast to
the case n = 3, Q = 2, where Jin-Maalaoui-Martinazzi-Xiong showed that necessarily
V ≤ |S3|, and to the case n = 4, Q = 6, where Lin showed that V ≤ |S4|.

4.1 Introduction and the main results

We consider the equation

(−∆)
n
2 u = (n− 1)!enu in Rn, (4.1)

where n ≥ 1 and

V :=

∫
Rn
enudx <∞. (4.2)

For the definition of the nonlocal operator (−∆)
n
2 we refer to Chapter 2.

We recall that (Theorem C and Theorem 3.1.1) in even dimension n ≥ 4, for a given
V ∈ (0, |Sn|) and a given polynomial P such that degree(P ) ≤ n− 2 and

x· ∇P (x)→∞ as |x| → ∞, (4.3)

there exists a solution u to (4.1)-(4.2) having the asymptotic behavior

u(x) = −P (x)− α log |x|+ C + o(1), (4.4)

where α := 2V
|Sn| , and o(1)→ 0 as |x| → ∞.

55
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When n is odd things are more complex as the operator (−∆)
n
2 is nonlocal. In a recent

work Jin-Maalaoui-Martinazzi-Xiong [40] have proven:

Theorem E ([40]). For every V ∈ (0, |S3|) there exists at least one smooth solution to
(4.1)-(4.2) with n = 3.

Extending the results of [15, 40, 77] and Theorem 3.1.1 to arbitrary odd dimension
n ≥ 3 we prove the following theorem about the existence of solutions to (4.1)-(4.2)
with prescribed asymptotic behavior:

Theorem 4.1.1. Let n ≥ 3 be an odd integer. For any given V ∈ (0, |Sn|) and any
given polynomial P of degree at most n− 1 such that

P (x)→∞ as |x| → ∞, (4.5)

there exists u ∈ C∞(Rn)∩Ln
2
(Rn) solution to (4.1)-(4.2) having the asymptotic behavior

given in (4.4) with α = 2V
|Sn| .

Notice that, contrary to the result of Theorem E, in Theorem 4.1.1 we can now prescribe
both the asymptotic behaviour and the volume, similar to Theorem 3.1.1, but in fact
in more generality, since the condition (4.3) has been replaced by the weaker condition
(4.5). Actually with minor modifications one can prove that the condition (4.5) also
suffices in even dimension. On the other hand we do not expect this assumption to be
optimal, compare to Theorem A and Theorem 2.1.2.

We remark that the condition 0 < V < |Sn| is necessary for the existence of non-spherical
solution to (4.1)-(4.2) in dimension 3 and 4 as shown in [40] and [45] respectively, but
in higher dimension solutions do exist for every V > 0 (see Chapter 5).

The condition n ≥ 3 in Theorem 4.1.1 is necessary, since for n = 1 any solution of
(4.1)-(4.2) is spherical, see Da Lio-Martinazzi-Rivière [21].

Now we shall discuss the case when the Q-curvature is negative. We consider the equa-
tion

(−∆)
n
2 u = −(n− 1)!enu in Rn. (4.6)

In even dimension n ≥ 4 for any V > 0 and any given polynomial P of degree at most
n − 2 satisfying (4.3), the existence of solutions to (4.6)-(4.2) having the asymptotic
behavior given by (4.4) with α = − 2V

|Sn| has been shown in Theorem 3.1.2. As in the
positive case, we shall extend this existence result to arbitrary odd dimension n ≥ 3,
again replacing condition (4.3) with the weaker condition (4.5).

Theorem 4.1.2. Let n ≥ 3 be an odd integer. For any given V > 0 and any given
polynomial P of degree at most n− 1 satisfying (4.5) there exists u ∈ C∞(Rn)∩Ln

2
(Rn)

solution to (4.6)-(4.2) having the asymptotic behavior given in (4.4) with α = − 2V
|Sn| .

4.2 Existence results

The proof of Theorems 4.1.1 and 4.1.2 rest on the following theorem:



57

Theorem 4.2.1. Let w0(x) = log 2
1+|x|2 and let π : Sn \ {N} → Rn be the stereographic

projection and N = (0, . . . , 0, 1) ∈ Sn be the North pole. Take any number α ∈ (−∞, 0)∪
(0, 2) and consider two functions K,ϕ ∈ C∞(Rn) such that∫

Rn
ϕdx = γn :=

(n− 1)!

2
|Sn|, (4.7)

αK > 0 everywhere in Rn and whenever α < 0 then |K| > δe−δ|x|
p

for some δ > 0,
0 < p < n. If both of Ke−nw0 and ϕe−nw0 can be extended as C2n+1 function on Sn via
the stereographic projection π then the problem

(−∆)
n
2w = Ken(w+cw) − αϕ in Rn, cw := − 1

n
log

(
1

αγn

∫
Rn
Kenwdx

)
, (4.8)

has at least one solution w ∈ C∞(Rn) ∩ Ln
2
(Rn) so that lim|x|→∞w(x) ∈ R.

Now the proof of Theorem 4.1.1 and Theorem 4.1.2 follows at once by taking

u := −P + αu0 + w + cw,

where u0 ∈ C∞(Rn) is given by Lemma 4.2.2 with k = 2n + 3, w is the solution in
Theorem 4.2.1 with ϕ = (−∆)

n
2 u0 which satisfies (4.7) thanks to Lemma 4.2.3, and

K := sign(α)(n − 1)!e−nP+nαu0 . Notice that Ke−nw0 can be extended smoothly on Sn

via the stereographic projection π where as ϕe−nw0 can be extended as a C2n+1 function.

Lemma 4.2.2. For every positive integer k there exists u0 ∈ C∞(Rn) such that

u0(x) = log
1

|x|
for |x| ≥ 1 and |Dα(−∆)

n
2 u0(x)| ≤ C

|x|2n+k+|α| for x 6= 0, (4.9)

for any multi-index α ∈ Nn.

Proof. Inductively we define

vj(x) =

∫ x1

0
vj−1((t, x̄))dt, for x = (x1, x̄) ∈ R× Rn−1, j = 1, 2, . . . , k,

where

v0(x) = log
1

|x|
.

Let χ ∈ C∞(Rn) be such that

χ(x) =

{
0 for |x| ≤ 1

2
1 for |x| ≥ 1.

We claim that u0 := ∂k

∂xk1
(χvk) satisfies (4.9). It is easy to see that u0(x) = log 1

|x| for

|x| ≥ 1. By Lemma 2.5.1 1
γn

(−∆)
n−1

2
∂k

∂xk1
vk is a fundamental solution of (−∆)

1
2 on Rn

and hence for x 6= 0, (−∆)
1
2 (−∆)

n−1
2

∂k

∂xk1
vk(x) = 0. For |x| > 2 using integration by
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parts we compute

(−∆)
n
2 u0(x) = (−∆)

1
2 (−∆)

n−1
2

∂k

∂xk1
(χvk − vk)(x)

= Cn

∫
|y|<1

(−∆)
n−1

2
∂k

∂yk1
(χvk − vk)(y)

|x− y|n+1
dy

= Cn

∫
|y|<1

(χvk − vk) (y)
∂k

∂yk1
(−∆)

n−1
2

(
1

|x− y|n+1

)
dy,

and

Dα(−∆)
n
2 u0(x) = Cn

∫
|y|<1

(χ(y)vk(y)− vk(y))Dα
x

∂k

∂yk1
(−∆)

n−1
2

(
1

|x− y|n+1

)
dy.

Hence

|Dα(−∆)
n
2 u0(x)| ≤ C

‖vk‖L1(B1)

|x|2n+k+|α| .

Lemma 4.2.3. Let u0 ∈ C∞(Rn) be as given by Lemma 4.2.2 for a given k ∈ N. Then
u0 satisfies (4.7), that is, ∫

Rn
(−∆)

n
2 u0(x)dx = γn.

Proof. Let η ∈ C∞(Rn) be such that

η(x) =

{
1 if |x| ≤ 1
0 if |x| ≥ 2.

We set ηk(x) = η(xk ). Then noticing that (−∆)
n
2 u0 ∈ L1(Rn) one has∫

Rn
(−∆)

n
2 u0(x)dx = lim

k→∞

∫
Rn

(−∆)
n
2 u0(x)ηk(x)dx

= lim
k→∞

∫
B1

(
u0(x)− log

1

|x|

)
(−∆)

n
2 ηk(x)dx+ γn

= γn,

where in the second equality we used the fact that 1
γn

log 1
|x| is a fundamental solu-

tion of (−∆)
n
2 and the third equality follows from the locally uniform convergence of

(−∆)
n
2 ηk → 0.

It remains to prove Theorem 4.2.1. In order to do that we recall the definition of Hn(Sn).

Definition 4.2.1. Let n ≥ 3 be an odd integer. Let {Y m
l ∈ C∞(Sn) : 1 ≤ m ≤

Nl, l = 0, 1, 2, . . . } be an orthonormal basis of L2(Sn) where Y m
l is an eigenfunction of

the Laplace-Beltrami operator −∆g0 (g0 denotes the round metric on Sn) corresponding
to the eigenvalue λl = l(l+ n− 2) and Nl is the multiplicity of λl (see [72, p. 68]). The
space Hn(Sn) is defined by

Hn(Sn) =
{
u ∈ L2(Sn) : ‖u‖Ḣn(Sn) <∞

}
,
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where for any

u =

∞∑
l=0

Nl∑
m=1

uml Y
m
l

we set

‖u‖2
Ḣn(Sn)

:=

∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) n−3

2∏
k=0

(λl + k(n− k − 1))2(uml )2.

Notice that the norm ‖u‖2
Ḣn(Sn)

is equivalent to the simpler norm

‖u‖2 :=

∞∑
l=0

Nl∑
m=1

λnl (uml )2,

but has the advantage of taking the form

‖u‖Ḣn(Sn) = ‖Png0
u‖L2(Sn),

where for n odd the Paneitz operator Png0
can be defined on Hn(Sn) by (see for instance

[16] and the refferences there in)

Png0
u =

∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) 1

2
n−3

2∏
k=0

(λl + k(n− k − 1))uml Y
m
l .

Since the operator Png0
is positive we can define its square root, namely

(Png0
)

1
2u :=

∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) 1

4
n−3

2∏
k=0

(λl + k(n− k − 1))
1
2uml Y

m
l , u ∈ H

n
2 (Sn),

where the space H
n
2 (Sn) is defined by

H
n
2 (Sn) :=

u ∈ L2(Sn) :
∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) 1

2

×

n−3
2∏

k=0

(λl + k(n− k − 1))(uml )2 <∞

 ,

endowed with the norm

‖u‖2
H
n
2 (Sn)

:= ‖u‖2L2(Sn) + ‖u‖2
Ḣ
n
2 (Sn)

:= ‖u‖2L2(Sn) + ‖(Png0
)

1
2u‖2L2(Sn).

Definition 4.2.2. Let f ∈ H−
n
2 (Sn) be the dual of H

n
2 (Sn). A function u ∈ H

n
2 (Sn)

is said to be a weak solution of
Png0

u = f,
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if ∫
Sn

(Png0
)

1
2u(Png0

)
1
2ϕdV0 = 〈f, ϕ〉, for every ϕ ∈ H

n
2 (Sn). (4.10)

The following estimate of Beckner is crucial in the proof of Theorem 4.2.1.

Theorem 4.2.4 ([7]). For every u ∈ H
n
2 (Sn) one has

log

(
1

|Sn|

∫
Sn
eu−udV0

)
≤ 1

2|Sn|n!

∫
Sn
|(Png0

)
1
2u|2dV0, u :=

1

|Sn|

∫
Sn
udV0.

Proof of Theorem 4.2.1. Let K̃ = K ◦ π, ϕ1 = ϕe−nw0 and ϕ̃1 = ϕ1 ◦ π. Define the
functional J on H

n
2 (Sn) by

J(w) :=

∫
Sn

(
1

2
|(Png0

)
1
2w|2 + αϕ̃1w

)
dV0 −

αγn
n

log

(∫
Sn
|K̃|enwe−nw0◦πdV0

)
.

Using Theorem 4.2.4 we bound

log

(∫
Sn
|K̃|enwe−nw0◦πdV0

)
= log

(
1

|Sn|

∫
Sn
enw−nw|K̃|e−nw0◦πdV0

)
+ nw + C

≤ log

(
1

|Sn|

∫
Sn
enw−nwdV0

)
+ log

(
‖K̃e−nw0◦π‖L∞

)
+ nw + C

≤ n2

2|Sn|n!

∫
Sn
|(Png0

)
1
2w|2dV0 + nw + C. (4.11)

Since for any c ∈ R J(w + c) = J(c) we can assume w = 0. Then from (4.11) we have

J(w) ≥ min

{
1

2
,

(
1

2
− αγn

n

n2

2|Sn|n!︸ ︷︷ ︸
=(2−α)/4

)}
‖w‖2

Ḣ
n
2
− ε‖w‖2

Ḣ
n
2
− 1

ε
‖ϕ̃1‖2L2 − C,

where 0 < ε < 1
2 is sufficiently small so that 2−α

4 − ε > 0 and for α < 0 using |K| >
δe−δ|x|

p
one has

log

(∫
Sn
|K̃|enwe−nw0◦πdV0

)
≥ 1

|Sn|

∫
Sn

log
(
|K̃|e−nw0◦π

)
dV0 + nw + log |Sn| ≥ −C.

Thus a minimizing sequence {wk} of J with wk = 0 is bounded in Ḣ
n
2 (Sn). With the

help of Poincaré’s inequality

‖w − w‖L2(Sn) ≤ ‖(Png0
)

1
2w‖L2(Sn), for every w ∈ H

n
2 (Sn),

which easily follows from the definition of ‖(Png0
)

1
2w‖L2(Sn), we conclude that the se-

quence {wk} is bounded in H
n
2 (Sn). Then up to a subsequence wk converges weakly

to u for some u ∈ H
n
2 (Sn). From the compactness of the map v 7→ ev from H

n
2 (Sn)

to Lp(Sn) for any p ∈ [1,∞) (for a simple proof see [40, Proposition 7] which holds in
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higher dimension as well) we have (up to a subsequence)

lim
k→∞

log

(∫
Sn
|K̃|enwke−nw0◦πdV0

)
= log

(∫
Sn
|K̃|enue−nw0◦πdV0

)
.

Moreover from the weak convergence of wk to u we have

lim
k→∞

∫
Sn
ϕ̃1wkdV0 =

∫
Sn
ϕ̃1udV0 and ‖u‖

H
n
2 (Sn)

≤ lim inf
k→∞

‖wk‖H n
2 (Sn)

,

and from the compact embedding H
n
2 (Sn) ↪→ L2(Sn) we get

lim
k→∞

‖wk‖L2(Sn) = ‖u‖L2(Sn).

Thus ‖(Png0
)

1
2u‖L2(Sn) ≤ lim infk→∞ ‖(Png0

)
1
2wk‖L2(Sn) which implies that u is a mini-

mizer of J and hence u is a weak solution of (in the sense of Definition 4.2.2)

Png0
u+ αϕ̃1 =

αγn∫
Sn K̃e

nue−nw0dV0

K̃e−nw0◦πenu =: C0K̃e
−nw0◦πenu.

Since ϕ̃1 ∈ C2n+1(Sn) and K̃e−nw0◦π ∈ C∞(Sn) we have

Png0
u = C0K̃e

−nw0◦πenu − αϕ̃1 ∈ L2(Sn),

and by Lemma 4.2.5 below u ∈ Hn(Sn) and a repeated use of Lemma 4.2.6 gives
u ∈ C2n+1(Sn).

We set w := u◦π−1 and wk := uk◦π−1 where uk ∈ C∞(Sn) be such that uk
C2n+1(Sn)−−−−−−−→ u.

It is easy to see that (−∆)
n
2wk

C0(Rn)−−−−→ (−∆)
n
2w and Png0

uk
C0(Sn)−−−−→ Png0

u which easily
follows from

Png0
uk

Hn+1(Sn)−−−−−−→ Png0
u and Hn+1(Sn) ↪→ C0(Sn).

Now using the following identity of T. Branson [9]

(−∆)
n
2 (v ◦ π−1) = enw0(Png0

v) ◦ π−1 for every v ∈ C∞(Sn),

we get

(−∆)
n
2w = (−∆)

n
2 (u ◦ π−1) = enw0

(
C0K̃e

−nw0◦πenu − αϕ̃1

)
◦ π−1

= C0Ke
nw − αϕ = Ken(w+cw) − αϕ.

Since (−∆)
n
2w ∈ L 1

2
(Rn) ∩ C2n+1(Rn) we have

(−∆)
n+1

2 w = (−∆)
1
2 (−∆)

n
2w ∈ C2n(Rn),

and by bootstrap argument we conclude that w ∈ C∞(Rn). �

The following lemma is probably known. Since we could not find a precise refference for
this, we give a proof.
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Lemma 4.2.5. Let f ∈ L2(Sn). Let u ∈ H
n
2 (Sn) be a weak solution (in the sense of

Definition 4.2.2) of
Png0

u = f on Sn.

Then u ∈ Hn(Sn).

Proof. Let

u =
∞∑
l=0

Nl∑
m=1

uml Y
m
l and f =

∞∑
l=0

Nl∑
m=1

fml Y
m
l .

Taking the test function ϕ = Y m
l in (4.10) we get

fml =

∫
Sn

(Png0
)

1
2u(Png0

)
1
2ϕdV0 =

(
λl +

(
n− 1

2

)2
) 1

2
n−3

2∏
k=0

(λl + k(n− k − 1))uml .

Hence

‖Png0
u‖L2(Sn) =

∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) n−3

2∏
k=0

(λl + k(n− k − 1))2(uml )2

=

∞∑
l=0

Nl∑
m=1

(fml )2 <∞,

and we conclude the proof.

Lemma 4.2.6. Let u ∈ Hs(Sn) and f ∈ Hs−n+t(Sn) for some s ≥ n and t ≥ 0. If u
solves

Png0
u = f on Sn,

then u ∈ Hs+t(Sn).

Proof. Let

u =
∞∑
l=0

Nl∑
m=1

uml Y
m
l ,

and

(−∆g0)
s−n

2 f =: h =
∞∑
i=0

Ni∑
j=1

hjiY
j
i ,

where for any r > 0

(−∆g0)rv =

∞∑
l=0

Nl∑
m=1

vml λ
r
l Y

m
l for v =

∞∑
l=0

Nl∑
m=1

vml Y
m
l ∈ H2r(Sn).

Then

(−∆g0)
s−n

2 Png0
u = h on Sn. (4.12)
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Multiplying both sides of (4.12) by Y i
j and integrating on Sn one has

(
λj +

(
n− 1

2

)2
) 1

2
n−3

2∏
k=0

(λj + k(n− k − 1))λ
s−n

2
j uij = hij .

Since h ∈ Ht(Sn) we have

∞∑
l=0

Nl∑
m=1

(
λl +

(
n− 1

2

)2
) n−3

2∏
k=0

(λl + k(n− k − 1))2λs−nl λtl(u
m
l )2 <∞,

and hence u ∈ Hs+t(Sn).





Chapter 5

Conformal metrics on Rn with arbitrary
total Q-curvature

We study the existence of solution to the problem

(−∆)
n
2 u = Qenu in Rn, κ :=

∫
Rn
Qenudx <∞,

where Q ≥ 0, κ ∈ (0,∞) and n ≥ 3. Using ODE techniques Martinazzi for n = 6 and
Huang-Ye for n = 4m+ 2 proved the existence of a solution to the above problem with
Q ≡ const > 0 and for every κ ∈ (0,∞). We extend these results in every dimension
n ≥ 5, thus completely answering the problem opened by Martinazzi. Our approach
also extends to the case in which Q is non-constant, and under some decay assumptions
on Q we can also treat the cases n = 3 and 4.

5.1 Introduction and statement of the main theorems

For a function Q ∈ C0(Rn) we consider the problem

(−∆)
n
2 u = Qenu in Rn, κ :=

∫
Rn
Qenudx <∞, (5.1)

where for n odd the non-local operator (−∆)
n
2 is defined in Definition 2.1.1.

Recall that solutions to (5.1) have been classified in terms of their asymptotic behavior
at infinity. More precisely we have the following:

Theorem F ([19, 21, 32, 40, 45, 56, 78]). Let n ≥ 1. Let u be a solution of

(−∆)
n
2 u = (n− 1)!enu in Rn, κ := (n− 1)!

∫
Rn
enudx <∞. (5.2)

Then

u(x) =
(n− 1)!

γn

∫
Rn

log

(
|y|
|x− y|

)
enu(y)dy + P (x)

= −2κ

Λ1
log |x|+ P (x) + o(log |x|), as |x| → ∞, (5.3)

65
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where γn := (n−1)!
2 |Sn|, Λ1 := 2γn, o(log |x|)/ log |x| → 0 as |x| → ∞, P is a polynomial

of degree at most n− 1 and P is bounded from above. If n ∈ {3, 4} then κ ∈ (0,Λ1] and
κ = Λ1 if and only if u is a spherical solution, that is,

u(x) = uλ,x0(x) := log
2λ

1 + λ2|x− x0|2
, (5.4)

for some x0 ∈ Rn and λ > 0. Moreover u is spherical if and only if P is constant (which
is always the case when n ∈ {1, 2}).

We recall that under the assumptions

deg(P ) ≤ n− 1, P (x)
|x|→∞−−−−→ −∞ and κ ∈ (0,Λ1),

a converse to Theorem F has been proven in dimension 4 by Wei-Ye [77] and extended
in Chapters 3 and 4 for n ≥ 3.

Although the assumption κ ∈ (0,Λ1] is a necessary condition for the existence of a
solution to (5.2) for n = 3, 4, it is possible to have a solution for κ > Λ1 arbitrarily large
in higher dimension as shown by Martinazzi [51] for n = 6. Huang-Ye [31] extended
Martinazzi’s result in arbitrary even dimension n of the form n = 4m + 2 for some
m ≥ 1, proving that for every κ ∈ (0,∞) there exists a solution to (5.2). The case
n = 4m remained open.

The ideas in [31, 51] are based upon ODE theory. One considers only radial solutions
so that the equation in (5.2) becomes an ODE, and the result is obtained by choosing
suitable initial conditions and letting one of the parameters go to +∞ (or−∞). However,
this technique does not work if the dimension n is a multiple of 4, and things get even
worse in odd dimension since (−∆)

n
2 is nonlocal and ODE techniques cannot be used.

In this chapter we extend the works of [31, 51] and completely solve the cases left open,
namely we prove that when n ≥ 5 Problem (5.2) has a solution for every κ ∈ (0,∞). In
fact we do not need to assume that Q is constant, but only that it is radially symmetric
with growth at infinity suitably controlled, or not even radially symmetric. Moreover,
we are able to prescribe the asymptotic behavior of the solution u (as in (5.3)) up to
a polynomial of degree 4 which cannot be prescribed and in particular it cannot be
required to vanish when κ ≥ Λ1. This in turn, together with Theorem F, is consistent
with the requirement n ≥ 5, because only when n ≥ 5 the asymptotic expansion of u at
infinity admits polynomials of degree 4.

We prove the following two theorems.

Theorem 5.1.1. Let n ≥ 5 be an integer. Let P be a polynomial on Rn with degree at
most n− 1. Let Q ∈ C0(Rn) be such that Q(0) > 0, Q ≥ 0, QenP is radially symmetric
and

sup
x∈Rn

Q(x)enP (x) <∞.

Then for every κ > 0 there exists a solution u to (5.1) such that

u(x) = −2κ

Λ1
log |x|+ P (x) + c1|x|2 − c2|x|4 + C + o(1), as |x| → ∞,
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for some c1, c2 > 0 and C ∈ R. In fact, there exists a radially symmetric function v on
Rn and a constant cv such that

v(x) = −2κ

Λ1
log |x|+ 1

2n
∆v(0)(|x|4 − |x|2) + o(1), as |x| → ∞,

and
u = P + v + cv − |x|4, x ∈ Rn.

Taking Q = (n− 1)! and P = 0 in Theorem 5.1.1 one has the following corollary.

Corollary 5.1.2. Let n ≥ 5. Let κ ∈ (0,∞). Then there exists a radially symmetric
solution u to (5.2) such that

u(x) = −2κ

Λ1
log |x|+ c1|x|2 − c2|x|4 + C + o(1), as |x| → ∞,

for some c1, c2 > 0 and C ∈ R.

Notice that the polynomial part of the solution u in Theorem 5.1.1 is not exactly the
prescribed polynomial P (compare Theorems 3.1.1, 4.1.1). In general, without perturb-
ing the polynomial part, it is not possible to find a solution for κ ≥ Λ1. For example, if
P is non-increasing and non-constant then there is no solution u to (5.2) with κ ≥ Λ1

such that u has the asymptotic behavior (5.3) (see Lemma 5.3.6 below). This justifies
the term c1|x|2 in Theorem 5.1.1. Then the additional term −c2|x|4 is also necessary to
avoid that u(x) ≥ c1

2 |x|
2 for |x| large, which would contrast with the condition κ < ∞,

at least if Q does not decay fast enough at infinity. In the latter case, the term −c2|x|4
can be avoided, and one obtains an existence result also in dimensions 3 and 4.

Theorem 5.1.3. Let n ≥ 3. Let Q ∈ C0
rad(Rn) be such that Q ≥ 0, Q(0) > 0 and∫

Rn
Q(x)eλ|x|

2
dx <∞, for every λ > 0,

∫
B1(x)

Q(y)

|x− y|n−1
dy

|x|→∞−−−−→ 0.

Then for every κ > 0 there exists a radially symmetric solution u to (5.1).

The decay assumption on Q in Theorem 5.1.3 is sharp in the sense that if Qeλ|x|
2 6∈

L1(Rn) for some λ > 0, then Problem (5.1) might not have a solution for every κ > 0.
For instance, if Q = e−λ|x|

2
for some λ > 0, then (5.1) with n = 3, 4 and κ > Λ1 has no

solution (see Lemma 5.3.5 below).

The proof of Theorem 5.1.1 is based on the Schauder fixed point theorem, and the main
difficulty is to show that the “approximate solutions” are pre-compact (see in particular
Lemma 5.2.2). We will do that using blow-up analysis (see for instance [4, 53, 66]).
In general, if κ ≥ Λ1 one can expect blow-up, but we will construct our approximate
solutions carefully in a way that this does not happen. For instance in [77] (see also
Chapter 3) one looks for solutions of the form u = P + v + cv where v satisfies the
integral equation

v(x) =
1

γn

∫
Rn

log

(
1

|x− y|

)
Q(y)enP (y)en(v(y)+cv)dy,
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and cv is a constant such that ∫
Rn
Qen(P+v+cv)dx = κ.

With such a choice we would not be able to rule out blow-up. Instead, by looking for
solutions of the form

u = P + v + Pv + cv

where a posteriori Pv = −|x|4, v satisfies

v(x) =
1

γn

∫
Rn

log

(
1

|x− y|

)
Q(y)en(P (y)+Pv(y)+v(y)+cv)dy+

1

2n
(|x|2−|x|4)|∆v(0)|, (5.5)

and cv is again a normalization constant, one can prove that the integral equation (5.5)
enjoys sufficient compactness, essentially due to the term 1

2n |x|
2|∆v(0)| on the right-

hand side. Indeed a sequence of (approximate) solutions vk blowing-up (for simplicity)
at the origin, up to rescaling, leads to a sequence (ηk) of functions satisfying for every
R > 0 ∫

BR

|∆ηk − ck|dx ≤ CRn−2 + o(1)Rn+2, o(1)
k→∞−−−→ 0, ck > 0,

and converging to η∞ solving (for simplicity here we ignore some cases)

(−∆)
n
2 η∞ = enη∞ in Rn,

∫
Rn
enη∞dx <∞,

and ∫
BR

|∆η∞ − c∞|dx ≤ CRn−2, c∞ ≥ 0, (5.6)

where c∞ = 0 corresponds to ∆η∞(0) = 0 (see Sub-case 1.1 in Lemma 5.2.2 with xk = 0).
The estimate on ‖∆η∞‖L1(BR) in (5.6) shows that the polynomial part P∞ of η∞ (as
in (5.3)) has degree at most 2, and hence ∆P∞ ≤ 0 as P∞ is bounded from above.
Therefore, c∞ = 0 = ∆P∞, P∞ is constant and in particular η∞ is a spherical solution
by Theorem F, that is, η∞ = uλ,x0 for some λ > 0 and x0 ∈ Rn, where uλ,x0 is given by
(5.4). This leads to a contradiction as ∆η∞(0) = 0 and ∆uλ,x0 < 0 in Rn.

In this chapter we focus only on the case Q ≥ 0 because the negative case is relatively
well understood. For instance by a simple application of maximum principle one can
show that Problem (5.1) has no solution with Q ≡ const < 0, n = 2 and κ > −∞, but
when Q is non-constant, solutions do exist, as shown by Chanillo-Kiessling in [17] under
suitable assumptions. Martinazzi [52] proved that in higher even dimension n = 2m ≥ 4
Problem (5.1) with Q ≡ const < 0 has solutions for some κ, and it has been shown in
Theorems 3.1.2 and 4.1.2 that actually for every κ ∈ (−∞, 0) and Q negative constant
(5.1) has a solution.

5.2 The case n ≥ 5

We consider the space

X :=
{
v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞

}
,
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where

‖v‖X := sup
x∈Rn

∑
|α|≤3

(1 + |x|)|α|−4|Dαv(x)|+
∑

3<|α|≤n−1

|Dαv(x)|

 .

For v ∈ X we set

Av := max

{
0, sup
|x|≥10

v(x)− v(0)

|x|4

}
, Pv(x) := −|x|4 −Av|x|4.

Then
v(x) + Pv(x) ≤ v(0)− |x|4, for |x| ≥ 10.

Let cv be the constant determined by∫
Rn
Ken(v+cv)dx = κ, K := QenP enPv ,

where the functions Q and P satisfy the hypotheses in Theorem 5.1.1. Since Q > 0 in
a neighborhood of the origin, by a dilation argument we can assume that Q > 0 on B3.
More precisely, if u is a solution to (5.1) then for any λ > 0, uλ(x) := u(λx) + log λ
is also a solution to (5.1) with Q replaced by Qλ, where Qλ(x) := Q(λx). Now for a
suitable choice of λ > 0 one has Qλ > 0 on B3.

Then u = P + Pv + v + cv satisfies

(−∆)
n
2 u = Qenu, κ =

∫
Rn
Qenudx,

if and only if v satisfies
(−∆)

n
2 v = Ken(v+cv).

We define an operator T : X → X given by T (v) = v̄, where

v̄(x) =
1

γn

∫
Rn

log

(
1

|x− y|

)
K(y)en(v(y)+cv)dy +

1

2n
(|x|2 − |x|4)|∆v(0)|.

Lemma 5.2.1. Let v solve tT (v) = v for some 0 < t ≤ 1. Then

v(x) =
t

γn

∫
Rn

log

(
1

|x− y|

)
K(y)en(v(y)+cv)dy +

t

2n
(|x|2 − |x|4)|∆v(0)|, (5.7)

∆v(0) < 0, and v(x)→ −∞ as |x| → ∞. Moreover,

sup
x∈Bc1

v(x) = v(1) = inf
x∈B1

v(x),

and in particular Av = 0.

Proof. Since v satisfies tT (v) = v, (5.7) follows from the definition of T . Differentiating
under the integral sign and observing that ∆ log 1

|·−y| < 0, from (5.7) one gets

∆v(x) <
t

2n
|∆v(0)|∆(|x|2 − |x|4), x ∈ Rn. (5.8)
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Taking x = 0 in (5.8) we obtain ∆v(0) < t|∆v(0)|, which implies that ∆v(0) < 0. Notice
that the function

w(x) := v(x) +
t

2n
|∆v(0)|(|x|4 − |x|2)

is monotone decreasing as ∆w < 0. This follows from (5.8) and the integral representa-
tion of radially symmetric functions given by

f(ξ)− f(ξ̄) =

∫ ξ

ξ̄

1

ωn−1rn−1

∫
Br

∆f(x)dxdr, 0 ≤ ξ̄ < ξ, ωn−1 := |Sn−1|. (5.9)

The monotonicity of w implies that supx∈Bc1 v(x) = v(1) = infx∈B1 v(x), and hence
Av = 0. Finally, together with |∆v(0)| > 0, we conclude that lim|x|→∞ v(x) = −∞ as
lim|x|→∞w(x) ≤ w(1).

Lemma 5.2.2. Let (v, t) ∈ X × (0, 1] satisfy v = tT (v). Then there exists C > 0
(independent of v and t) such that

sup
B 1

8

w ≤ C, w := v + cv +
1

n
log t.

Proof. Let us assume by contradiction that the conclusion of the lemma is false. Then
there exists a sequence wk = vk + cvk + 1

n log tk such that maxB̄ 1
8

wk =: wk(θk)→∞.

If θk is a point of local maxima of wk then we set xk = θk. Otherwise, we can choose
xk ∈ B 1

4
such that xk is a point of local maxima of wk and wk(xk) ≥ wk(x) for every

x ∈ B|xk|. This follows from the fact that

inf
B 1

4
\B 1

8

wk 6→ ∞,

which is a consequence of∫
Rn
Kenwkdx = tkκ ≤ κ, K > 0 on B3.

We set µk := e−wk(xk). We distinguish the following cases.

Case 1 Up to a subsequence tkµ
2
k|∆vk(0)| → c0 ∈ [0,∞).

We set
ηk(x) := vk(xk + µkx)− vk(xk) = wk(xk + µkx)− wk(xk).

Notice that by (5.7) we have for some dimensional constant C1

∆ηk(x) = µ2
k∆vk(xk + µkx)

= C1
µ2
k

γn

∫
Rn

K(y)enwk(y)

|xk + µkx− y|2
dy + tkµ

2
k

(
1− 4(n+ 2)

2n
|xk + µkx|2

)
|∆vk(0)|,



71

so that ∫
BR

∣∣∣∣∆ηk(x)− tkµ2
k|∆vk(0)|

(
1− 2(n+ 2)

n
|xk|2

)∣∣∣∣ dx
≤ C1

γn

∫
Rn
K(y)enwk(y)

∫
BR

µ2
kdx

|xk + µkx− y|2
dy

+ Ctkµ
2
k|∆vk(0)|

∫
BR

(µk|xk·x|+ µ2
k|x|2)dx

≤ C1

γn
tkκ

∫
BR

1

|x|2
dx+ Ctkµ

2
k|∆vk(0)|

∫
BR

(µk|x|+ µ2
k|x|2)dx

≤ CκtkRn−2 + Ctkµ
2
k|∆vk(0)|

(
µkR

n+1 + µ2
kR

n+2
)
. (5.10)

The function ηk satisfies

(−∆)
n
2 ηk(x) = K(xk + µkx)enηk(x) in Rn, ηk(0) = 0.

Moreover, ηk ≤ C(R) on BR. This follows easily if |xk| ≤ 1
9 as in that case ηk ≤ 0 on BR

for k ≥ k0(R). On the other hand, for 1
9 < |xk| ≤

1
4 one can use Lemma 5.2.4 (below).

Therefore, by Lemma 5.4.4 (and Lemmas 5.2.6, 5.2.7 if n is odd), up to a subsequence,
ηk → η in Cn−1

loc (Rn) where η satisfies

(−∆)
n
2 η = K(x∞)enη in Rn, K(x∞)

∫
Rn
enηdx ≤ t∞κ <∞, K(x∞) > 0,

where (up to a subsequence) tk → t∞ and xk → x∞. Notice that t∞ ∈ (0, 1], x∞ ∈ B̄ 1
4

and for every R > 0, by (5.10)∫
BR

|∆η − c0c1| dx ≤ CRn−2, c1 =: 1− 2(n+ 2)

n
|x∞|2 > 0. (5.11)

Hence by Theorem F we have

η(x) = P0(x)− α log |x|+ o(log |x|), as |x| → ∞,

where P0 is a polynomial of degree at most n− 1, P0 is bounded from above and α is a
positive constant. In fact, by (5.11)∫

BR

|∆P0(x)− c0c1|dx ≤ CRn−2, for every R > 0.

Since c0, c1 ≥ 0, it follows that P0 is constant. This implies that η is a spherical solution
and in particular ∆η < 0 on Rn, and therefore, again by (5.11), we have c0 = 0.

We consider the following sub-cases.

Sub-case 1.1 There exists M > 0 such that |xk|µk
≤M .

We set yk := −xk
µk

. Then (up to a subsequence) yk → y∞ ∈ BM+1. Therefore,

∆η(y∞) = lim
k→∞

∆ηk(yk) = lim
k→∞

µ2
k∆vk(0) =

c0

t∞
= 0,

a contradiction as ∆η < 0 on Rn.
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Sub-case 1.2 Up to a subsequence |xk|µk
→∞.

For any N ∈ N we can choose ξ1,k, . . . , ξN,k ∈ Rn such that |ξi,k| = |xk| for all
i = 1, . . . , N and the balls B2µk(ξi,k)’s are disjoint for k large enough. Since vk’s are
radially symmetric, the functions ηi,k := vk(ξi,k +µkx)− vk(ξi,k)→ ηi = η in Cn−1

loc (Rn).
Therefore,

lim
k→∞

∫
B1

en(vk+cvk )dx ≥ N lim
k→∞

∫
Bµk (ξ1,k)

en(vk+cvk )dx = N
1

t∞

∫
B1

enηdx.

This contradicts to the fact that∫
B1

Ken(vk+cvk )dx ≤ κ, K > 0 on B3.

Case 2 Up to a subsequence tkµ
2
k|∆vk(0)| → ∞.

We choose ρk > 0 such that tkρ
2
kµ

2
k|∆vk(0)| = 1. We set

ψk(x) = vk(xk + ρkµkx)− vk(xk).

Then one can get (similar to (5.10))∫
BR

∣∣∣∣∆ψk(x)−
(

1− 2(n+ 2)

n
|xk|2

)∣∣∣∣ dx
≤ C1

∫
Rn
K(y)enwk(y)

∫
BR

ρ2
kµ

2
k

|xk + µkρkx− y|2
dxdy + C2µkρk

∫
BR

(|x|+ µkρk|x|2)dx

k→∞−−−→ 0,

thanks to Lemma 5.2.5 (below). Moreover, together with Lemma 5.2.4, ψk satisfies

(−∆)
n
2 ψk = o(1) in BR, ψk(0) = 0, ψk ≤ C(R) on BR.

Hence, by Lemma 5.4.4 (and Lemma 5.2.6 if n is odd), up to a subsequence ψk → ψ in
Cn−1
loc (Rn). Then ψ must satisfy∫

B1

|∆ψ − c0|dx = 0, c0 := 1− 2(n+ 2)

n
|x∞|2 > 0,

where (up to a subsequence) xk → x∞ ∈ B̄ 1
4
. This shows that ∆ψ(0) = c0 > 0, which

is a contradiction as

∆ψ(0) = lim
k→∞

∆ψk(0) = lim
k→∞

ρ2
kµ

2
k∆vk(xk) ≤ 0.

Here, ∆vk(xk) ≤ 0 follows from the fact that xk is a point of local maxima of vk.

A consequence of the local uniform upper bounds of w are the following global uniform
upper bounds:
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Lemma 5.2.3. There exists a constant C > 0 such that for all (v, t) ∈ X × (0, 1] with
v = tT (v) we have |∆v(0)| ≤ C and

v(x) + cv +
1

n
log t ≤ C, on Rn.

Proof. By Lemma 5.2.2 we have

sup
B 1

8

w := sup
B 1

8

(
v + cv +

1

n
log t

)
≤ C.

Differentiating under the integral sign from (5.7), and recalling that ∆v(0) < 0, we
obtain

|∆v(0)| ≤ C
∫
B 1

8

1

|y|2
K(y)enw(y)dy + C

∫
Bc1

8

1

|y|2
K(y)enw(y)dy

≤ C sup
B 1

8

K

∫
B 1

8

1

|y|2
dy + C

∫
Bc1

8

Kenwdy

≤ C(κ,K).

By (5.8) we get
∆v(x) ≤ t|∆v(0)| ≤ C, x ∈ Rn,

and hence, together with (5.9)

v(x) = v(0) +

∫ |x|
0

1

ωn−1rn−1

∫
Br

∆v(y)dydr ≤ v(0) + C|x|2 ≤ C + v(0), x ∈ B2.

The lemma follows from Lemmas 5.2.1 and 5.2.2.

Proof of Theorem 5.1.1 Let v ∈ X be a solution of v = tT (v) for some 0 < t ≤ 1. Then
Av = 0 and |∆v(0)| ≤ C, thanks to Lemmas 5.2.1 and 5.2.3. Hence, for 0 ≤ |β| ≤ n− 1

|Dβv(x)| ≤ C
∫
Rn

∣∣∣∣Dβ log

(
1

|x− y|

)∣∣∣∣K(y)en(v(y)+cv+ 1
n

log t)dy + C|Dβ(|x|2 − |x|4)|

≤ C
∫
Rn

∣∣∣∣Dβ log

(
1

|x− y|

)∣∣∣∣ e−|y|4dy + C|Dβ(|x|2 − |x|4)|,

where in the second inequality we have used that

v(x) + cv +
1

n
log t ≤ C, C is independent of v and t,

which follows from Lemma 5.2.3. Now as in Lemma 5.2.8 one can show that

‖v‖X ≤M,

and therefore, by Lemma 3.2.4, the operator T has a fixed point (say) v. Then

u = P + v + cv − |x|4,



5. Conformal metrics on Rn with arbitrary total Q-curvature 74

is a solution to the Problem (5.1) and u has the asymptotic behavior given by

u(x) = P (x)− 2κ

Λ1
log |x|+ 1

2n
∆v(0)(|x|4 − |x|2)− |x|4 + cv + o(1), as |x| → ∞.

This completes the proof of Theorem 5.1.1. �

Now we give a proof of the technical lemmas used in the proof of Lemma 5.2.2.

Lemma 5.2.4. Let ε > 0. Let (vk, tk) ∈ X × (0, 1] satisfy (5.7) or (5.14) for all k ∈ N.
Let xk ∈ B1 \Bε be a point of maxima of vk on B̄|xk| and v′k(xk) = 0. Then

vk(xk + x)− vk(xk) ≤ C(n, ε)|x|2tk|∆vk(0)|, x ∈ B1.

Proof. If |xk + x| ≤ |xk| then vk(xk + x) − vk(xk) ≤ 0 as vk(xk) ≥ vk(y) for every
y ∈ B|xk|. For |xk| < |xk + x|, setting a = a(k, x) := xk + x, and together with (5.9) we
obtain

vk(xk + x)− vk(xk) =

∫ |a|
|xk|

1

ωn−1rn−1

∫
Br\B|xk|

∆vk(x)dxdr

≤
∫ |a|
|xk|

1

ωn−1rn−1

∫
B|a|\B|xk|

tk|∆vk(0)|dxdρ

≤ C(n)tk|∆vk(0)|(|B|a|| − |B|xk||)
(

1

|xk|n−2
− 1

|a|n−2

)
≤ C(n, ε)tk|x|2|∆vk(0)|,

where in the first equality we have used that

0 = v′k(xk) =
1

ωn−1|xk|n−1

∫
B|xk|

∆vkdx.

Hence we have the lemma.

Lemma 5.2.5. Let (vk, tk) ∈ X × (0, 1] satisfy (5.7) for all k ∈ N. Let xk ∈ B1 be a
point of maxima of vk on B̄|xk| and v′k(xk) = 0. We set wk = vk + cvk + 1

n log tk and

µk = e−wk(xk). Let ρk > 0 be such that tkρ
2
kµ

2
k|∆vk(0)| ≤ C and ρkµk → 0. Then for

any R0 > 0

lim
k→∞

∫
Rn
K(y)enwk(y)

∫
BR0

ρ2
kµ

2
k

|xk + ρkµkx− y|2
dxdy =: lim

k→∞
Ik = 0.

Proof. In order to prove the lemma we fix R > 0 (large). We split BR0 into

A1(R, y) := {x ∈ BR0 : |xk + ρkµkx− y| > Rρkµk}, A2(R, y) := BR0 \A1(R, y).

Then we can write Ik = I1,k + I2,k, where

Ii,k :=

∫
Rn
K(y)enwk(y)

∫
Ai(R,y)

ρ2
kµ

2
k

|xk + ρkµkx− y|2
dxdy, i = 1, 2.
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Changing the variable y 7→ xk + ρkµky and by Fubini’s theorem one gets

I2,k = ρnk

∫
BR0

∫
Rn
K(xk + ρkµky)enηk(y) 1

|x− y|2
χ|x−y|≤Rdydx

≤ ρnk
∫
BR0

∫
BR+R0

K(xk + ρkµky)enηk(y) 1

|x− y|2
dydx

≤ C(n, ε)

(
sup

BR+R0+1

Kenηk

)
(R+R0)nRn−2

0 ρnk ,

where ηk(y) := wk(xk +ρkµky)−wk(xk). If xk → 0 then ηk ≤ 0 on BR+R0+1 for k large.
Otherwise, for k large ρkµky ∈ B1 for every y ∈ BR+R0+1 and hence, by Lemma 5.2.4

ηk(y) = vk(xk + ρkµky)− vk(xk) ≤ C|ρkµky|2tk|∆vk(0)| ≤ C(R,R0).

Therefore,
lim
k→∞

I2,k = 0.

Using the definition of cv we bound

I1,k ≤
|BR0 |
R2

∫
Rn
K(y)enwk(y)dy ≤ C(n, κ,R0)

1

R2
.

Since R > 0 is arbitrary, we conclude the lemma.

We need the following two lemmas only for n odd.

Lemma 5.2.6. Let n ≥ 5. Let v be given by (5.7). For any r > 0 and ξ ∈ Rn we set

w(x) = v(rx+ ξ), x ∈ Rn.

Then there exists C > 0 (independent of v, t, r, ξ) such that for every multi-index α ∈ Nn
with |α| = n − 1 we have ‖Dαw‖L 1

2
(Rn) ≤ Ct(1 + r4|∆v(0)|). Moreover, for any ε > 0

there exists R > 0 (independent of r, ξ and t) such that∫
BcR

|Dαw(x)|
1 + |x|n+1

dx < εt(1 + r4|∆v(0)|), |α| = n− 1.

Proof. Differentiating under the integral sign we obtain

|Dαw(x)| ≤ Ct
∫
Rn

rn−1

|rx+ ξ − y|n−1
f(y)dy + Ctr4|∆v(0)|, f(y) := K(y)en(v(y)+cv).

If n > 5 then the above inequality is true without the term Ctr4|∆v(0)|. Using a change
of variable y 7→ ξ + ry, we get∫

Ω

|Dαw(x)|
1 + |x|n+1

dx

≤ Ctrn
∫
Rn
f(ξ + ry)

∫
Ω

1

|x− y|n−1

1

1 + |x|n+1
dxdy + Ctr4|∆v(0)|

∫
Ω

dx

1 + |x|n+1
.

The lemma follows by taking Ω = Rn or Bc
R.
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Lemma 5.2.7. Let ηk → η in Cn−1
loc (Rn). We assume that for every ε > 0 there exists

R > 0 such that ∫
BcR

|∆
n−1

2 ηk(x)|
1 + |x|n+1

dx < ε, for k = 1, 2, . . . . (5.12)

We further assume that

(−∆)
n
2 ηk = K(xk + µkx)enηk in Rn,

∫
Rn
|K(xk + µkx)|enηk(x)dx ≤ C,

where xk → x∞, µk → 0, K is a continuous function and K(x∞) > 0. Then enη ∈
L1(Rn) and η satisfies

(−∆)
n
2 η = K(x∞)enη in Rn.

Proof. First notice that ∆
n−1

2 ηk → ∆
n−1

2 η in L 1
2
(Rn), thanks to (5.12) and the conver-

gence ηk → η in Cn−1
loc (Rn).

We claim that η satisfies (−∆)
n
2 η = K(x∞)enη in Rn in the sense of distribution.

In order to prove the claim we let ϕ ∈ C∞c (Rn). Then

lim
k→∞

∫
Rn
K(xk + µkx)enηk(x)ϕ(x)dx =

∫
Rn
K(x∞)enη(x)ϕ(x)dx,

and

lim
k→∞

∫
Rn

(−∆)
n−1

2 ηk(−∆)
1
2ϕdx =

∫
Rn

(−∆)
n−1

2 η(−∆)
1
2ϕdx.

We conclude the claim.

To complete the lemma first notice that enη ∈ L1(Rn), which follows from the fact that
for any R > 0∫

BR

enηdx = lim
k→∞

∫
BR

enηkdx = lim
k→∞

∫
BR

K(xk + µkx)

K(x∞)
enηk(x)dx ≤ C

K(x∞)
.

We fix a function ψ ∈ C∞c (B2) such that ψ = 1 on B1. For ϕ ∈ S(Rn) we set ϕk(x) =
ϕ(x)ψ(xk ). The lemma follows by taking k →∞, thanks to the previous claim.

Lemma 5.2.8. The operator T : X → X is compact.

Proof. Let vk be a bounded sequence in X. Then (up to a subsequence) {vk(0)},
{∆vk(0)}, {Avk} and {cvk} are convergent sequences. Therefore, |∆vk(0)|(|x|2 − |x|4)
converges to some function in X. To conclude the lemma, it is sufficient to show that
up to a subsequence {fk} converges in X, where fk is defined by

fk(x) =

∫
Rn

log

(
1

|x− y|

)
Q(y)enP (y)enPvk (y)en(vk(y)+cvk )dy.



77

Differentiating under the integral sign one gets

|Dβfk(x)| ≤ C
∫
Rn

1

|x− y||β|
Q(y)enP (y)enPvk (y)en(vk(y)+cvk )dy, 0 < |β| ≤ n− 1

≤ C
∫
Rn

1

|x− y||β|
e−|y|

4
dy

≤ C,

where the second inequality follows from the uniform bounds

|vk(0)| ≤ C, |cvk | ≤ C, Qe
nP ≤ C, and vk(x) + Pvk(x) ≤ vk(0)− |x|4. (5.13)

Indeed, for 0 < |β| ≤ n− 1

lim
R→∞

sup
k

sup
x∈BcR

|Dβfk(x)| = 0,

and for every 0 < s < 1 we have ‖Dn−1fk‖C0,s(BR) ≤ C(R, s). Finally, using (5.13) we
bound

|fk(x)| ≤ C
∫
Rn
| log |x− y||e−|y|4dy ≤ C log(2 + |x|).

Thus, by Ascoli’s theorem, up to a subsequence, fk → f in Cn−1
loc (Rn) for some f ∈

Cn−1(Rn), and the global uniform estimates of fk and Dβfk would imply that fk → f
in X.

5.3 The case n ≥ 3

We consider the space

X :=
{
v ∈ Cn−1(Rn) : v is radially symmetric, ‖v‖X <∞

}
,

where

‖v‖X := sup
x∈Rn

∑
|α|≤1

(1 + |x|)|α|−2|Dαv(x)|+
∑

1<|α|≤n−1

|Dαv(x)|

 .

For v ∈ X, let cv be the constant determined by∫
Rn
Qen(v+cv)dy = κ,

where Q satisfies the hypothesis in Theorem 5.1.3. Again by dilation argument we can
assume that Q > 0 on B3.

We define an operator T : X → X given by T (v) = v̄, where

v̄(x) =
1

γn

∫
Rn

log

(
1

|x− y|

)
Q(y)en(v(y)+cv)dy +

1

2n
|∆v(0)||x|2.

As in Lemma 5.2.8 one can show that the operator T is compact.

The proofs of the following two lemmas are similar to those of Lemmas 5.2.1 and 5.2.5
respectively.
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Lemma 5.3.1. Let v solve tT (v) = v for some 0 < t ≤ 1. Then ∆v(0) < 0, and

v(x) =
t

γn

∫
Rn

log

(
1

|x− y|

)
Q(y)en(v(y)+cv)dy +

t

2n
|∆v(0)||x|2. (5.14)

Lemma 5.3.2. Let (vk, tk) ∈ X × (0, 1] satisfy (5.14) for all k ∈ N. Let xk ∈ B1 be a
point of maxima of vk on B̄|xk| and v′k(xk) = 0. We set wk = vk + cvk + 1

n log tk and

µk = e−wk(xk). Let ρk > 0 be such that ρ2
ktkµ

2
k|∆vk(0)| ≤ C and ρkµk → 0. Then for

any R0 > 0

lim
k→∞

∫
Rn
Q(y)enwk(y)

∫
BR0

ρ2
kµ

2
k

|xk + ρkµkx− y|2
dxdy = 0.

Now we prove similar local uniform upper bounds to those in Lemma 5.2.2.

Lemma 5.3.3. Let (v, t) ∈ X × (0, 1] satisfy (5.14). Then there exists C > 0 (indepen-
dent of v and t) such that

sup
B 1

8

w ≤ C, w := v + cv +
1

n
log t.

Proof. The proof is very similar to that of Lemma 5.2.2. Here we briefly sketch it.

We assume by contradiction that the conclusion of the lemma is false. Then there exists
a sequence of (vk, tk) and a sequence of points xk in B 1

4
such that

wk(xk)→∞, wk ≤ wk(xk) on B|xk|, xk is a point of local maxima of vk.

We set µk := e−wk(xk) and we distinguish following cases.

Case 1 Up to a subsequence tkµ
2
k|∆vk(0)| → c0 ∈ [0,∞).

We set ηk(x) := vk(xk + µkx)− vk(xk). Then we have∫
BR

|∆ηk − tkµ2
k|∆vk(0)||dx ≤ CtkRn−2.

Now one can proceed exactly as in Case 1 in Lemma 5.2.2.

Case 2 Up to a subsequence tkµ
2
k|∆vk(0)| → ∞.

We set ψk(x) = vk(xk + ρkµkx)− vk(xk) where ρk is determined by tkρ
2
kµ

2
k|∆vk(0)| = 1.

Then by Lemma 5.3.2 ∫
BR

|∆ψk − 1|dx = o(1), as k →∞.

Similar to Case 2 in Lemma 5.2.2 one can get a contradiction.

With the help of Lemma 5.3.3 we prove

Lemma 5.3.4. There exists a constant M > 0 such that for all (v, t) ∈ X × (0, 1]
satisfying (5.14) we have ‖v‖ ≤M .
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Proof. Let (v, t) ∈ X × (0, 1] satisfy (5.14). We set w := v + cv + 1
n log t.

First we show that |∆v(0)| ≤ C for some C > 0 independent of v and t. Indeed,
differentiating under the integral sign, from (5.14), and together with Lemma 5.3.3, we
get

|∆v(0)|(1 + t) ≤ C
∫
Rn

1

|y|2
Q(y)enw(y)dy

= C

∫
B 1

8

1

|y|2
Q(y)enw(y)dy + C

∫
Bc1

8

1

|y|2
Q(y)enw(y)dy

≤ C
∫
B 1

8

1

|y|2
Q(y)dy + Cκ

≤ C.

Hence |∆v(0)| ≤ C.

We define a function ξ(x) := v(x) − t
2n |∆v(0)||x|2. Then ξ is monotone decreasing on

(0,∞), which follows from the fact that ∆ξ ≤ 0. Therefore,

w(x) = ξ(x) + cv +
1

n
log t+

t

2n
|∆v(0)||x|2

≤ ξ(1

8
) + cv +

1

n
log t+

t

2n
|∆v(0)||x|2

≤ w(
1

8
) +

t

2n
|∆v(0)||x|2.

Hence, w(x) ≤ λ(1 + |x|2) on Rn for some λ > 0 independent of v and t. Using this in
(5.14) one can show that

|v(x)| ≤ C log(2 + |x|) + C|x|2,

and differentiating under the integral sign, from (5.14)

|Dβv(x)| ≤ C
∫
Rn

1

|x− y||β|
Q(y)eλ(1+|y|2)dy + C|Dβ|x|2|, 0 < |β| ≤ n− 1.

The lemma follows easily.

Proof of Theorem 5.1.3 By Schauder fixed point theorem (see Lemma 3.2.4), the operator
T has a fixed point, thanks to Lemma 5.3.4. Let v be a fixed point of T . Then u = v+cv
is a solution of (5.1).

This finishes the proof of Theorem 5.1.3. �

Now we prove the non existence results stated in the introduction of this chapter.

Lemma 5.3.5. Let n ∈ {3, 4}. If Q(x) = e−λ|x|
2

for some λ > 0 then there is no
solution to (5.1) with κ > Λ1. If Q ∈ C1

rad(Rn) is of the form Q = eξ and it satisfies

Q′ ≤ 0, |x· ∇Q(x)| ≤ C, ξ(x)

|x|2
|x|→∞−−−−→ 0,

then there is no radially symmetric solution to (5.1) with κ > Λ1.
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Proof. First we consider the case when Q = e−λ|x|
2
. Let u be a solution to (5.1) with

Q = e−λ|x|
2
. Then the function w(x) := u− λ

n |x|
2 satisfies

(−∆)
n
2w = enw, κ =

∫
Rn
Qenudx =

∫
Rn
enwdx <∞.

It follows from [40, 45] that κ ≤ Λ1.

In order to prove the lemma for Q = eξ, we assume by contradiction that there is a
solution u to (5.1) with κ > Λ1. We set

v(x) :=
1

γn

∫
Rn

log

(
|y|
|x− y|

)
Q(y)enu(y)dy, h := u− v.

Then v(x) = − 2κ
Λ1

log |x| + o(log |x|) as |x| → ∞. Notice that h is radially symmetric

and (−∆)
n
2 h = 0 on Rn. Therefore, h(x) = c1 + c2|x|2 for some c1, c2 ∈ R. This follows

easily if n = 4. For n = 3, first notice that ∆h ∈ L 1
2
(R3). Hence, by [40, Lemma 15]

∆h ≡ const. Now radial symmetry of h implies that h(x) = c1 + c2|x|2.

From a Pohozaev type identity in [78, Theorem 2.1] we get

κ

γn

(
κ

γn
− 2

)
=

1

γn

∫
Rn

(x· ∇K(x)) env(x)dx, K := Qenh. (5.15)

Since κ > Λ1 = 2γn, from (5.15) we deduce that x· ∇K(x) > 0 for some x ∈ Rn. Using
that Qenu ∈ L1(Rn) and that ξ(x) = o(|x|2) at infinity, one has c2 ≤ 0. Therefore,
x· ∇K(x) ≤ 0 in Rn, a contradiction.

The proof of the following lemma is similar to that of Lemma 5.3.5.

Lemma 5.3.6. Let κ ≥ Λ1. Let P be a non-constant and non-increasing radially
symmetric polynomial of degree at most n − 1. Then there is no solution u to (5.2)
(with n ≥ 3) such that u has the asymptotic behavior given by

u(x) = −2κ

Λ1
log |x|+ P (x) + o(log |x|), as |x| → ∞.

5.4 Some useful results

The following identity (5.16) is due to Pizzetti [63]. A simple proof of (5.16) and (5.17)
can be found in [56, Lemma 3] and [56, Proposition 4] respectively.

Lemma 5.4.1 ([56, 63]). Let ∆mh = 0 in B4R ⊂ Rn. For any x ∈ BR and 0 < r <
R− |x| we have

1

|Br|

∫
Br(x)

h(z)dz =
m−1∑
i=0

cir
2i∆ih(x), (5.16)

where
c0 = 1, ci = c(i, n) > 0, for i ≥ 1.
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Moreover, for every k ≥ 0 there exists C = C(k,R) > 0 such that

‖h‖Ck(BR) ≤ C‖h‖L1(B4R). (5.17)

Lemma 5.4.2 (Proposition 22 in [40]). Let u ∈ Lσ(Rn) for some σ ∈ (0, 1) and
(−∆)σu = 0 in B2R. Then for every k ∈ N

‖∇ku‖C0(BR) ≤ C(n, σ, k)
1

Rk

(
R2σ

∫
Rn\B2R

|u(x)|
|x|n+2σ

dx+
‖u‖L1(B2R)

Rn

)

where α ∈ (0, 1) and k is a nonnegative integer.

Lemma 5.4.3 (Proposition 1.1 in [68]). Let σ ∈ (0, 1). Let u be a solution of{
(−∆)σu = f in BR
u = 0 in Bc

R

Then
‖u‖Cσ(Rn) ≤ C(R, σ)‖f‖L∞(BR).

Lemma 5.4.4. Let R > 0 and BR ⊂ Rn. Let uk ∈ Cn−1,α(Rn) for some α ∈ (1
2 , 1) be

such that

uk(0) = 0, ‖u+
k ‖L∞(BR) ≤ C, ‖(−∆)

n
2 uk‖L∞(BR) ≤ C,

∫
BR

|∆uk|dx ≤ C.

If n is an odd integer, we also assume that ‖∆
n−1

2 uk‖L 1
2

(Rn) ≤ C. Then (up to a

subsequence) uk → u in Cn−1(BR
8

).

Proof. First we prove the lemma for n even.

We write uk = wk + hk where{
(−∆)

n
2wk = (−∆)

n
2 uk in BR

∆jwk = 0, on ∂BR, j = 0, 1, . . . , n−2
2 .

Then by standard elliptic estimates, wk’s are uniformly bounded in Cn−1,β(BR). There-
fore,

|hk(0)| ≤ C, ‖h+
k ‖L∞(BR) ≤ C,

∫
BR

|∆hk|dx ≤ C.

Since hk’s are n
2 -harmonic, ∆hk’s are (n2 − 1)-harmonic in BR, and by (5.17) we obtain

‖∆hk‖Cn(BR
4

) ≤ C‖∆hk‖L1(BR) ≤ C.

Using the identity (5.16) we bound

1

|BR|

∫
BR(0)

h−k (z)dz =
1

|BR|

∫
BR(0)

h+
k (z)dz − 1

|BR|

∫
BR(0)

hk(z)dz

=
1

|BR|

∫
BR(0)

h+
k (z)dz − hk(0)−

n
2
−1∑
i=1

ciR
2i∆ihk(0)

≤ C,
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and hence ∫
BR

|hk(z)|dz =

∫
BR

h+
k (z)dz +

∫
BR

h−k (z)dz ≤ C.

Again by (5.17) we obtain

‖hk‖Cn(BR
4

) ≤ C‖hk‖L1(BR) ≤ C.

Thus, uk’s are uniformly bounded in Cn−1,β(BR
4

) and (up to a subsequence) uk → u in

Cn−1(BR
4

) for some u ∈ Cn−1(BR
4

).

It remains to prove the lemma for n odd.

If n is odd then n−1
2 is an integer. We split ∆

n−1
2 uk = wk + hk where{

(−∆)
1
2wk = (−∆)

1
2 ∆

n−1
2 uk in BR

wk = 0 on Bc
R.

Then by Lemmas 5.4.2 and 5.4.3 one has ‖∆
n−1

2 uk‖
C

1
2 (BR

2
)
≤ C. Now one can proceed

as in the case of even integer.



Chapter 6

Large blow-up sets for the prescribed
Q-curvature equation

Let m ≥ 2 be an integer. For any open domain Ω ⊂ R2m, non-positive function ϕ ∈
C∞(Ω) such that ∆mϕ ≡ 0, and bounded sequence (Qk) ⊂ L∞(Ω) we prove the existence
of a sequence of functions (uk) ⊂ C2m−1(Ω) solving the Liouville equation of order 2m

(−∆)muk = Qke
2muk in Ω, lim sup

k→∞

∫
Ω
e2mukdx <∞,

and blowing-up exactly on the set Sϕ := {x ∈ Ω : ϕ(x) = 0}, i.e.

lim
k→∞

uk(x) = +∞ for x ∈ Sϕ and lim
k→∞

uk(x) = −∞ for x ∈ Ω \ Sϕ,

thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this
result to the boundary of Ω and to the case Ω = R2m.

6.1 Introduction and main results

In several nonlinear elliptic problems of second order and “critical type”, sequences of
solutions are not always compact, as they can blow-up at finitely many points, see e.g
[5], [11], [12], [23], [70], [73], [74]. For instance, as shown by Brézis-Merle in [12]:

Theorem G ([12]). Given a sequence (uk)k∈N of solutions to the Liouville equation

−∆uk = Qke
2uk in Ω ⊂ R2, (6.1)

with ‖Qk‖L∞ ≤ C and ‖e2uk‖L1 ≤ C for some C independent of k, there exists a finite
(possibly empty) set S1 =

{
x(1), . . . , x(I)

}
⊂ Ω such that, up to extracting a subsequence

one of the following alternatives holds:

(i) (uk) is bounded in C1,α
loc (Ω \ S1).

(ii) uk → −∞ locally uniformly in Ω \ S1.

A similar behaviour is also found on manifolds, or in higher order and higher dimensional
problems, see e.g. [50], [75], or even in 1-dimensional situations involving the operator

83
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(−∆)
1
2 , see [20], [21]. Now consider the problem

(−∆)muk = Qke
2muk in Ω ⊂ R2m (6.2)

lim sup
k→∞

∫
Ω
e2muk dx <∞, lim sup

k→∞
‖Qk‖L∞(Ω) <∞. (6.3)

Since blow-up at finitely many points appears in many problems with various critical
nonlinearities and also of higher order, one might suspect that this is a general feature
also holding for (6.2). On the other hand Adimurthi, Robert and Struwe [4] found an
example of solutions to (6.2)-(6.3) for m = 2 that blow-up on a hyperplane, and showed
in general that the blow-up set of a sequence (uk) of solutions to (6.2)-(6.3) can be of
Hausdorff dimension 3. This was generalized to the case of arbitrary m in [53]. More
precisely for a finite set S1 ⊂ Ω ⊂ R2m let us introduce

K(Ω, S1) := {ϕ ∈ C∞(Ω \ S1) : ϕ ≤ 0, ϕ 6≡ 0, ∆mϕ ≡ 0} , (6.4)

and for a function ϕ ∈ K(Ω, S1) set

Sϕ := {x ∈ Ω \ S1 : ϕ(x) = 0} . (6.5)

Theorem H ([4, 53]). Let (uk) be a sequence of solutions to (6.2)-(6.3) for some m ≥ 1.
Then the set

S1 :=

{
x ∈ Ω : lim

r↓0
lim sup
k→∞

∫
Br(x)

|Qk|e2mukdy ≥ Λ1

2

}
, Λ1 := (2m− 1)!|S2m|

is finite (possibly empty) and up to a subsequence either

(i) (uk) is bounded in C2m−1,α
loc (Ω \ S1), or

(ii) there exists a function ϕ ∈ K(Ω, S1) and a sequence βk → ∞ as k → +∞ such
that

uk
βk
→ ϕ locally uniformly in Ω \ S1.

In particular uk → −∞ locally uniformly in Ω \ (Sϕ ∪ S1).

Notice that Theorem H contains Theorem G since when m = 1 we have Sϕ = ∅ for every
ϕ ∈ K(Ω, S1) by the maximum principle. In fact the more complex blow-up behaviour
of (6.2) when m > 1 can be seen as a consequence of the size of K(Ω, S1). A way
of recovering a finite blow-up behaviour for (6.2)-(6.3) was given by Robert [65] when
m = 2 and generalized by Martinazzi [55] when m ≥ 3, by additionally assuming

‖∆uk‖L1(Br(x)) ≤ C on some ball Br(x) ⊂ Ω,

which is sufficient to control the “polyharmonic part” of uk.

The first result that we will prove shows that the condition given in [4] and [53] on the
set Sϕ above is sharp, at least when S1 = ∅. In fact we shall consider a slightly stronger
result, by defining

S∗ϕ := Sϕ ∪
{
x ∈ ∂Ω : lim

Ω3y→x
ϕ(y) = 0

}
, (6.6)
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namely we add to Sϕ the points on ∂Ω where ϕ can be continuously extended to 0. Then
we have

Theorem 6.1.1. Let Ω ⊂ R2m, m ≥ 2, be an open (connected) domain and let (Qk) ⊂
L∞(Ω) be bounded. Then for every ϕ ∈ K(Ω, ∅) there exists a sequence (uk) of solutions
to (6.2) with ∫

Ω
e2muk dx→ 0, (6.7)

such that as k →∞

uk → −∞ loc. unif. in Ω \ Sϕ, uk → +∞ loc. unif. on S∗ϕ, (6.8)

where Sϕ and S∗ϕ are as in (6.5) and (6.6). The same result holds if m = 1 and Ω is
smoothly bounded.

The proof of Theorem 6.1.1 is based on a Schauder’s fixed-point argument. The case
when Ω is smoothly bounded is very elementary, as one looks for solutions of the form

uk = ckϕ+ k + vk, ck →∞,

where vk is a small correction term.

The general case is a priori more rigid. For instance in the case m = 1, when Qk ≡ 1
there are few solutions to (6.2)-(6.3) when Ω = R2 (see [19]) and many more when Ω
is bounded (see [18]). To treat the general case we will borrow ideas from [77] (see
also Chapter 3) and suitably prescribe the asymptotic behavior of uk at infinity. More
precisely we will look for solutions of the form

uk = ckϕ+ k − αk log(1 + |x|2)− β|x|2 + vk,

for some ck → ∞, αk → 0, β > 0, and a function vk → 0 uniformly. If ϕ(x) → −∞
sufficiently fast as |x| → ∞, or when Ω is bounded, one can choose β = 0, but the case
Ω = R2m, ϕ(x1, . . . , x2m) = −x2

1 shows that β in general must be positive when

lim inf
x∈Ω,|x|→∞

ϕ(x) > −∞,

otherwise the condition (6.3) might fail to be satisfied.

The simplicity of the proof of Theorem 6.1.1 comes at the cost of not being able to
prescribe the total Q-curvature of the metric guk := e2uk |dx|2, which will necessarily go
to zero, together with the volume of guk . Resting on variational methods from Chapter
4, going back to [15], we can extend Theorem 6.1.1 to the case in which we prescribe
both the blow-up set Sϕ and the total curvature of the metrics guk . This time, though,
we will have to restrict to non-negative functions Qk.

Theorem 6.1.2. Let 0 < Λ < Λ1/2, Ω ⊂ R2m open, m ≥ 2, ϕ ∈ K(Ω, ∅), and let Sϕ be
as in (6.5). Let further Qk be functions for which there exists x0 ∈ S∗ϕ such that

lim inf
k→+∞

∫
Bε(x0)∩Ω

Qk dx > 0, for every ε > 0, 0 ≤ Qk ≤ b <∞. (6.9)
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Then there exists a sequence (uk)k∈N of solutions to (6.2) with∫
Ω
Qke

2mukdx = Λ, (6.10)

such that (6.8) holds.

The integral assumption in (6.9) is crucial. In fact, for every ϕ ∈ K(Ω, ∅) there are
functions Qk satisfying 0 ≤ Qk ≤ b < ∞, such that for any Λ > 0 there exists no
sequence (uk) of solution to (6.2) satisfying (6.8) and (6.10) (see Proposition 6.3.3).

As we shall see, Theorems 6.1.1 and 6.1.2 give several examples of solutions blowing-up
on the boundary, already in dimension 2.

Corollary 6.1.3. Let Ω ⊂ R2m with m ≥ 1 be a bounded domain with smooth boundary
and let Γ ⊂ ∂Ω be a proper closed subset. Let (Qk) be as in Theorem 6.1.1. Then we
can find solutions uk : Ω→ R to (6.2) such that the conclusions of Theorem 6.1.1 holds
with S∗ϕ = Γ for some ϕ ∈ K(Ω, ∅). If m ≥ 2 and (Qk) additionally satisfies (6.9) for
some x0 ∈ Γ, then we can prescribe (6.10) instead of (6.7).

In the radially symmetric case we can prescribe any Λ ∈ (0,∞).

Theorem 6.1.4. Let Ω = BR2 \ BR1 ⊂ R2m and ϕ ∈ K(Ω, ∅) be radially symmetric.
Let Λ > 0 and let (Qk) be radially symmetric satisfying (6.9). Then there exists a
sequence of radially symmetric solutions (uk) to (6.2) such that (6.8) and (6.10) hold.
For Ω = BR the same conclusion holds if in addition we have ∆ϕ(0) > 0 and Qk → 1
in L∞(Bδ(0)) for some δ > 0.

It was open whether there exists a sequence (uk) of solutions to (6.2)-(6.3) on some
domain Ω in R2m with 2 open regions Ω0,Ω1 ⊂ Ω such that

‖∆uk‖L1(Ω0) = O(1), ‖∆uk‖L1(Ω1) →∞.

We will prove that this is actually possible.

Theorem 6.1.5. On Ω = B2 ⊂ R2m for any Λ ∈ (0,Λ1) we can find a sequence (uk) of
solutions to (6.2)-(6.3) with Qk ≡ 1 such that∫

B2

e2mukdx = Λ, (6.11)

and ∫
B1

|∆uk|dx ≤ C,
∫
B2

(∆uk)
−dx

k→∞−−−→∞. (6.12)

6.2 Blow-up with vanishing volume

In order to clarify the simple idea behind the proof we start considering the easier case
when Ω is bounded and has regular boundary. The proof in the general case is more
complex and only works when m ≥ 2 (easy counterexamples can be found when m = 1,
Ω = R2, Qk ≡ 1, using the classification result from [19]).
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6.2.1 Case Ω smoothly bounded

In this case we can assume m ≥ 1. The proof will be based on an application of a
fixed-point argument. Consider the Banach space

X := C0(Ω̄), ‖v‖X = max
x∈Ω̄
|v(x)|.

For each k ∈ N choose ck ≥ k2 such that

‖e2mckϕ‖L2(Ω) ≤ e−3mk.

For k ∈ N consider the operator Tk : X → X defined by T (v) = v̄ where v̄ is the unique
solution of {

(−∆)mv̄ = Qke
2m(k+ckϕ+v) in Ω

v̄ = ∆v̄ = · · · = ∆m−1v̄ = 0 on ∂Ω.

From elliptic estimates, the Sobolev embedding and Ascoli-Arzelà’s theorem it follows
that Tk is compact. Moreover, for every v ∈ X we have

‖v̄‖X ≤ C1‖∆mv̄‖L2(Ω) ≤ C2Me2mk‖e2mv‖X‖e2mckϕ‖L2(Ω), ‖Qk‖L∞ ≤M.

This shows that

‖Tk(v)‖X ≤ C3e
2mke−3mk, for ‖v‖X ≤ 1, C3 := C2M. (6.13)

Therefore Tk(B̄1) ⊂ B̄ 1
2

for k large enough (here Br is a ball in X), and hence Tk has

a fixed point in X. We denote it by vk. Notice that ‖vk‖X ≤ Ce−mk → 0 as k → ∞.
Moreover, by Hölder’s inequality,∫

Ω
e2mke2mckϕe2mvkdx ≤ e2mk

√
|Ω|‖e2mckϕ‖L2(Ω)

k→∞−−−→ 0.

We set
uk := vk + k + ckϕ.

Then uk satisfies

(−∆)muk = Vke
2muk in Ω,

∫
Ω
e2mukdx

k→∞−−−→ 0.

Moreover
inf
x∈S∗ϕ

uk = o(1) + k
k→∞−−−→∞.

Finally, for any compact subset K b Ω \ Sϕ, using that ck ≥ k2, we obtain

max
x∈K

uk = o(1) + k + ck max
x∈K

ϕ ≤ k − εk2 k→∞−−−→ −∞,

where ε > 0 is such that maxx∈K ϕ < −ε. This completes the proof.
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6.2.2 General case

In the general case we need to assume m ≥ 2. We will use many ideas from [77] (see
also Chapter 3). Let ϕ ∈ K(Ω, ∅). Fix u0 ∈ C∞(R2m), u0 > 0, such that u0(x) = log |x|
for |x| ≥ 2, and notice that integration by parts yields∫

R2m

(−∆)mu0 dx = −γ2m, (6.14)

where γ2m is defined by

(−∆)m log
1

|x|
= γ2mδ0 in R2m, i.e. γ2m =

Λ1

2
. (6.15)

We will construct a sequence (uk)k∈N of solutions to (6.2)-(6.7) of the form

uk = −β|x|2 + ckϕ− αku0 + k + vk, in Ω, (6.16)

for some β ≥ 0 and vk ∈ C2m−1(R2m) such that as k →∞

sup
Ω
|vk| → 0, ck →∞, αk → 0.

In general β > 0 is an arbitrary fixed constant, but if ϕ satisfies∫
Ω
e2mϕ|x|2s dx <∞, for some s > 0, (6.17)

then we can take β = 0 as well. If there exists s > 0 such that (6.17) holds then we set
q = s, otherwise we take β > 0 and set q = 1.

We consider

X := C0(R2m) :=

{
v ∈ C0(R2m) : lim

|x|→∞
v(x) = 0

}
, ‖v‖X = sup

x∈R2m

|v(x)|.

For c ∈ R we set

Fk,c =

{
Qke

2mke−2mβ|x|2e2mcϕ in Ω
0 in R2m \ Ω.

Let ε1 ∈ (0, q
8m) (to be fixed later). We fix p > 1 and δ ∈ (−2m

p ,
2m
p + 1) such that

p(2m+ δ) < q
4 . For each k ∈ N we choose ck ≥ k2 so that∫

R2m

|Fk,ck(x)|(M + |x|)qdx ≤ ε1e
−ke−2m, (6.18)

‖Fk(M + |x|)
q
4 ‖Lp2m+δ

≤ ε1e
−k, Fk := Fk,ck , (6.19)∫

Ω
e2m(ckϕ+k)(M + |x|)q dx ≤ e−k, (6.20)

where q is as above, M > 0 is such that eu0 ≤M on B2 and the spcae Lp2m+δ is defined
in Definition 3.2.1. For each k ∈ N, define a continuous function Ik on X × (− q

2m ,
q

2m)
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given by

Ik(v, α) =
1

γ2m

∫
R2m

Fke
−2mαu0e2mvdx.

If Ik(v, 0) > 0 then

lim
α→0+

Ik(v, α)

α
=∞, Ik(v, ε1e

−k)

ε1e−k
≤ 1, ‖v‖X ≤ 1,

and hence there exists α ∈ (0, ε1e
−k] such that Ik(v, α) = α. Notice that

sup
α∈[− q

4m
,0]

|Ik(v, α)| ≤ e−kε1, for ‖v‖X ≤ 1.

Thus, if Ik(v, 0) < 0 then

lim
α→0−

Ik(v, α)

α
=∞, |Ik(v,−ε1e

−k)|
ε1e−k

≤ 1, ‖v‖X ≤ 1,

and hence there exists α ∈ [−ε1e
−k, 0) such that Ik(v, α) = α. For ‖v‖X ≤ 1 we define

αk,v :=


inf{α > 0 : α = Ik(v, α)} if Ik(v, 0) > 0
sup{α < 0 : α = Ik(v, α)} if Ik(v, 0) < 0
0 if Ik(v, 0) = 0.

From the continuity of Ik it follows that αk,v = Ik(v, αk,v).

Lemma 6.2.1. There exists ε0 > 0 such that for every ε ∈ (0, ε0) and for every v ∈ B1

if

Ik(v, αv) = αv for some |αv| <
q

4m
,

then for every w ∈ Bε2(v) ∩B1 there exists αw ∈ (αv − ε, αv + ε) such that

Ik(w,αw) = αw.

Moreover, the map v 7→ αk,v is continuous on B1.

Proof. Let R > 0 be such that Rq = 1
ε2

. With this particular choice of R we have∫
BcR

|Fk| (1 + |x|)q dx ≤ Cε2.
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Now for |αv − α|(2m logR)2 < 1
2 we have

1

γ2m

∫
BR

Fke
−2mαu0e2mw dx

=
1

γ2m

∫
BR

Fke
−2mαvu0e2mve2m(w−v)e2m(αv−α)u0 dx

=
1

γ2m

∫
BR

Fke
−2mαvu0e2mv (1 + 2m(αv − α)u0 +O (αv − α))

(
1 +O(ε2)

)
dx

= Ik(v, αv) +
2m(αv − α)

γ2m
(1 +O(ε2))

∫
BR

Fke
−2mαvu0e2mvu0 dx

+O (αv − α)

∫
BR

Fke
−2mαvu0e2mv dx+O(ε2)

=: Ik(v, αv) +
2m(αv − α)

γ2m
(1 +O(ε2))J1 +O (αv − α) J2 +O(ε2).

Using (6.18) we get

|J1| ≤ e2m

∫
BR

|Fk|e−2mαvu0u0 dx ≤ e2m

∫
BR

|Fk|(M + |x|)
q
2u0 dx

≤ C(q)e2m

∫
BR

|Fk|(M + |x|)q dx ≤ C(q)ε1,

and J2 = O(ε1). Let α = αv + ρ, with |ρ| ≤ 1
2(2m logR)2 . Then

Ik(w,αv + ρ)− (αv + ρ) = ρ+O(ε2) + ρO(ε1).

We fix ε0 > 0 and ε1 > 0 such that for every ε ∈ (0, ε0) we have |O(ε2)| ≤ ε
4 and

|O(ε1)| ≤ 1
4 . Then we can choose ρ̄ ∈ (−ε, ε) such that

|ρ̄| ≤ 1

2(2m logR)2
, ρ̄+O(ε2) + ρ̄O(ε1) = 0,

concluding the first part of the lemma.

Now we prove the continuity of the map v 7→ αk,v from B1 to R.

For vn → v ∈ B1 it follows that (at least) for large n, |αk,vn | <
q

4m and |αk,v| < q
4m .

First we consider the case αk,v = 0. Then for any ε > 0 one has Ik(vn, αvn) = αvn for
some αvn ∈ (−ε, ε) where ‖v−vn‖X < ε2. This follows from the first part of the lemma.
Since |αk,vn | ≤ |αvn |, we have the continuity.

Now we consider αk,v > 0 (negative case is similar). Then Ik(v, 0) > 0, and hence
αk,vn ≥ 0 for large n. We set α∞ := limn→∞ αk,vn (this limit exists at least for a
subsequence). From the continuity of the map Ik it follows that Ik(v, α∞) = α∞. Since
α∞ ≥ 0 and Ik(v, 0) > 0, we must have α∞ > 0. From the definition of αk,v we deduce
that αk,v ≤ α∞. We fix ε ∈ (0,

αk,v
2 ). Then by the first part of the lemma there exists

αvn ∈ (αk,v − ε, αk,v + ε) such that Ik(vn, αvn) = αvn for every ‖v − vn‖X < ε2. Since
αk,vn ≤ αvn and αk,vn → α∞, we have for n large

αk,v ≤ α∞ ≤ αk,vn + ε ≤ αvn + ε ≤ αk,v + 2ε.

We conclude the lemma.
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Proof of Theorem 6.1.1 We define Tk : B1 ⊂ X → X, v 7→ v̄, where

v̄(x) :=
1

γ2m

∫
R2m

log

(
1

|x− y|

)
Fk(y)e−2mαk,vu0+2mv(y) dy + αk,vu0,

that is v̄ solves
(−∆)mv̄ = Fke

−2mαk,vu0+2mv + αk,v(−∆)mu0.

Notice that arguing as in Lemma 3.3.1 one gets v̄ ∈ X. Using (6.14) and our choice of
αk,v we have ∫

R2m

(−∆)mv̄ dx = 0.

With our choice of δ and p we have v̄ ∈ Mp
2m,δ(R

2m), where the space Mp
2m,δ(R

2m) is

defined in Definition 3.2.1. For v ∈ B̄1 ⊂ X we bound with Lemma 3.2.2, Lemma 3.2.3
and (6.19)

‖Tk(v)‖X ≤ C1‖Tk(v)‖Mp
2m,δ
≤ C1‖(−∆)mv̄‖Γpδ ,

≤ C1‖e−2mαk,vu0Fk‖Lp2m+δ
+ C1|αk,v|‖(−∆)mu0‖Lp2m+δ

k→∞−−−→ 0.

Therefore, for ε1 small enough, ‖Tk(v)‖X ≤ 1
2 and there exists a fixed point vk for every

k. Hence, thanks to (6.20), the sequence

uk(x) = −β|x|2 − αk,vku0(x) + ckϕ(x) + k + vk(x), x ∈ Ω,

is a sequence of solutions with the stated properties. �

6.3 Blow-up with prescribed total Q-curvature

A slightly different version of the following proposition appears in Theorem 4.2.1. For
the sake of completeness we give a sketch of the proof.

Proposition 6.3.1. Let w0(x) = log 2
1+|x|2 and consider two functions K, f : R2m → R

such that
K ≥ 0, K 6≡ 0, Ke−2mw0 ∈ L∞(R2m)

and

fe−2mw0 ∈ L∞(R2m), Λ :=

∫
R2m

fdx ∈ (0,Λ1).

Then there exists a function w ∈ C2m−1(R2m) and a constant cw such that

(−∆)mw = Ke2m(w+cw) − f in Rn,
∫
R2m

Ke2m(w+cw)dx = Λ, (6.21)

and lim|x|→∞w(x) ∈ R. Moreover, if f is of the form f = (−∆)mg for some g ∈
C2m(R2m) with g(x) = O(log |x|) at infinity, then w satisfies

w(x) =
1

γ2m

∫
R2m

log

(
1 + |y|
|x− y|

)
K(y)e2m(w(y)+cw)dy − g(x) + C,

for some C ∈ R.
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Proof. Let π be the stereographic projection from S2m to R2m. We define the functional
J on Hm(S2m) given by

J(u) =

∫
S2m

(
1

2
|(P 2mu)

1
2 |2 + f̃1u

)
dV0 −

Λ

2m
log

(∫
S2m

K̃e−2mw0◦πe2mudV0

)
,

where f1 := fe−2mw0 , f̃1 := f1 ◦π, K̃ := K ◦π and P 2m is the Paneitz operator of order
2m with respect to the standard metric on S2m. Then there exists u ∈ H2m(S2m) such
that

P 2mu =
ΛK̃e−2mw0◦πe2mu∫

S2m K̃e−2mw0◦πe2mudV0

− f̃1 =: C0K̃e
−2mw0◦πe2mu − f̃1.

Notice that P 2mu ∈ L∞(S2m), thanks to the embedding H2m(S2m) ↪→ C0(S2m), and
hence u ∈ C2m−1(S2m).

We set w = u◦π−1. Then w ∈ C2m−1(R2m) and lim|x|→∞w(x) ∈ R. Using the following
identity of Branson (see [9])

(−∆)m(v ◦ π−1) = e2mw0(P 2mv) ◦ π−1, for every v ∈ C∞(S2m),

and by an approximation argument, we have that

(−∆)mw = C0Ke
2mw − f =: Ke2m(w+cw) − f, in R2m.

Now we set

w̃(x) :=
1

γ2m

∫
R2m

log

(
1 + |y|
|x− y|

)
K(y)e2m(w(y)+cw)dy − g(x).

Then ∆m(w − w̃) = 0 in R2m and (w − w̃)(x) = O(log |x|) at infinity. Therefore,
w = w̃ + C for some C ∈ R.

This finishes the proof of the proposition.

Proof of Theorem 6.1.2 Let ϕ ∈ K(Ω, ∅) and let u0 ∈ C∞(R2m) be such that u0 =
− log |x| on Bc

1. We set f = 2Λ
Λ1

(−∆)mu0. For each k ∈ N we set

K = Kk := Qke
2m(−β|x|2+kϕ+αu0), α :=

2Λ

Λ1
, β > 0,

and we extend Kk by 0 outside Ω. Then by Proposition 6.3.1 there exists a sequence of
functions (wk) satisfying

wk(x) =
1

γ2m

∫
R2m

log

(
1 + |y|
|x− y|

)
Kk(y)e2m(wk(y)+cwk )dy − 2Λ

Λ1
u0 + ak,

for some ak ∈ R. We set

uk(x) := wk + cwk − β|x|
2 + kϕ(x) +

2Λ

Λ1
u0(x), x ∈ Ω ∪ S∗ϕ.

Then uk satisfies

uk(x) =
1

γ2m

∫
Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy − β|x|2 + kϕ(x) + ck
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and also (6.10), where ck := ak + cwk . We conclude the proof with Lemma 6.3.2. �

Lemma 6.3.2. Let Ω be a domain in R2m. Let ϕ and Qk be as in Theorem 6.1.2. Let
(uk) be a sequence of solutions to

uk(x) =
1

γ2m

∫
Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy − β|x|2 + kϕ(x) + ck, x ∈ Ω ∪ S∗ϕ,

for some β > 0. Assume that ∫
Ω
Qke

2muk(y)dy = Λ <
Λ1

2
.

Then ck →∞, ck = o(k) and

Ik(x) :=
1

γ2m

∫
Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy, x ∈ R2m,

is locally uniformly bounded from above on Ω \ Sϕ, and locally uniformly bounded from
below on R2m. In particular, uk →∞ on S∗ϕ and uk → −∞ locally uniformly on Ω \Sϕ.

Proof. For any fixed R > 0 and x ∈ BR we bound

Ik(x) =

∫
B2R∩Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy +

∫
Bc2R∩Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy

≥ −C(R) +

∫
Bc2R∩Ω

log

(
1

2
+

1

2|y|

)
Qke

2muk(y)dy

≥ −C(R).

Since Λ < Λ1
2 , using Jensens inequality we obtain for some p < 2m

e2muk(x) ≤ e2mcke−2mβ|x|2+2mkϕ(x)

∫
R2m

(
1 + |y|
|x− y|

)p
Qk(y)e2muk(y)dy.

Using that ∫
Ω

(
1 + |y|
|x− y|

)p
e−2mβ|x|2+2mkϕ(x)dx

k→∞−−−→ 0,

and together with Fubini theorem, one has∫
Ω
Qk(x)e2muk(x)dx = e2mcko(1), as k →∞.

Now Λ > 0 implies that ck →∞.

We assume by contradiction that ck 6= o(k). Then for some ε > 0 we have ck
k ≥ 2ε for

k large. Let x0 ∈ S∗ϕ be such that (6.9) holds. Let δ > 0 be such that ϕ(x) > −ε for
x ∈ Bδ(x0) ∩ Ω. Therefore

uk(x) ≥ −C − kε+ ck ≥ −C + kε, x ∈ Bδ(x0) ∩ Ω,

and hence ∫
Ω
Qke

2mukdx ≥ e−C+kε

∫
Bδ(x0)

Qkdx
k→∞−−−→∞,
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a contradiction.

Now we prove that Ik is locally uniformly bounded from above on Ω\Sϕ. For Ω̃ b Ω\Sϕ
we have

kϕ+ ck → −∞ uniformly on Ω̃.

Using Jensens inequality one can show that ‖e2muk‖Lp(Ω1) ≤ C for some p > 1, where

Ω̃ b Ω1 b Ω \ Sϕ. For x ∈ Ω̃ we obtain by Hölder inequality

Ik(x) =
1

γ2m

∫
Ωc1∩Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy

+
1

γ2m

∫
Ω1∩Ω

log

(
1 + |y|
|x− y|

)
Qke

2muk(y)dy

≤ C + C‖ log |x−· |‖Lp′ (Ω1)‖e
2muk‖Lp(Ω1)

≤ C.

The remaining part of the lemma follows immediately.

Proof of Corollary 6.1.3. Let g ∈ C∞(∂Ω) be such that g ≤ 0, g 6≡ 0 on ∂Ω and g = 0
on Γ. Let ϕ be the solution to

(−∆)mϕ = 0 in Ω,

(−∆)jϕ = 0 on ∂Ω, j = 1, . . . ,m− 1

ϕ = g on ∂Ω.

Then by maximum principle ϕ < 0 in Ω and hence S∗ϕ = Γ. Then the conclusion follows
by Theorem 6.1.1 and 6.1.2. �

Proposition 6.3.3. Let Ω be a domain in R2m. Let ϕ ∈ K(Ω, ∅). Let Ω̃ b Ω \ Sϕ be
an open set. Let Qk be such that Qk ≡ 0 on Ω̃c and Qk ≡ 1 on Ω̃. Then for any Λ > 0
there exists no sequence (uk) of solutions to (6.2) satisfying (6.8) and (6.10).

Proof. We assume by contradiction that the statement of the proposition is not true.
Then there exists a sequence of solutions (uk) to (6.2) satisfying (6.8) and (6.10) for
some Λ > 0. Therefore, by (6.8), uk → −∞ uniformly in Ω̃ and hence

Λ =

∫
Ω
Qke

2mukdx =

∫
Ω̃
e2mukdx

k→∞−−−→ 0,

a contradiction.

Proof of Theorem 6.1.5 Let m ≥ 2. We set

ϕk(r, θ) := rk cos(kθ), 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

We extend ϕk on B2 ⊂ R2m as a function of only two variables, that is, ϕk(x) := ϕk(r, θ)
for x ∈ B2, where (r, θ) is the polar coordinate of Π(x) and Π : R2m → R2 is the
projection map. Then ϕk is a harmonic function on B2. Let Φk be the solution to the
equation {

−∆Φk = ϕk in B2,
Φk = 0 on ∂B2.
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We fix 0 < Λ < Λ1. Then by Proposition 6.3.1 there exists a sequence of solutions (wk)
to (6.21) with

f :=
2Λ

Λ1
(−∆)mu0, Kk :=

{
e

2m(Φk+ 2Λ
Λ1
u0)

on B2

0 on Bc
2,

where u0 ∈ C∞(R2m) with u0 = − log |x| on Bc
1. Then

uk := wk + cwk + Φk +
2Λ

Λ1
u0

satisfies (6.11) and uk is given by

uk(x) =
1

γ2m

∫
B2

log

(
1 + |y|
|x− y|

)
e2muk(y)dy + Φk(x) + ck,

for some ck ∈ R. Moreover,
∆uk = −ϕk + ek,

where

|ek(x)| ≤ C
∫
B2

e2muk(y)

|x− y|2
dy.

Integrating, using Fubini’s theorem and (6.11) we obtain ‖ek‖L1(B2) ≤ C. Then (6.12)
follows at once from the definition of ϕk. �

6.4 Radially symmetric solutions

6.4.1 On an annulus

Let Ω = BR2 \BR1 be an annulus. Let X = C0
rad(Ω̄). We fix Λ ∈ (0,∞). For k ∈ N and

v ∈ X we choose cv = c(v, k) ∈ R so that∫
Ω
Qke

2m(v+cv)dx = Λ.

Let ϕ ∈ K(Ω, ∅) be radially symmetric. For k ∈ N we define an operator Tk : X → X,
v 7→ v̄ where

v̄ := ṽ + kϕ(x), ṽ(x) =

∫
Ω
G(x, y)Qk(y)e2m(v(y)+cv)dy,

and G is the Green function of (−∆)m on Ω with the Navier boundary conditions.

Lemma 6.4.1. Let k ∈ N be fixed. Let (v, t) ∈ X × (0, 1] satisfies v = tTk(v). Then
there exists M > 0 such that ‖v‖X ≤M for all such (v, t).

Proof. We have

v(x) = t

∫
Ω
G(x, y)Qk(y)e2m(v(y)+cv)dy + tkϕ(x) ≥ −C(k) in Ω.
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Hence from the definition of cv we get

Λ =

∫
Ω
Qke

2m(v+cv) dx ≥ e2m(−C(k)+cv)

∫
Ω
Qk dx > ae2m(−C(k)+cv)

hence cv ≤ C(k). Define the cone C as the set

C := {x ∈ Ω: |x̄| ≤ ρx1} , with x = (x1, x̄) ∈ R× R2m−1, (6.22)

for some ρ > 0 to be fixed later. For some finite M = M(ρ) we can write Ω as a union
of (not necessarily disjoint) cones {Ci}Mi=1 such that for each such cone Ci we have

(i) Ci is congruent to C,

(ii)
∫
N(Ci)Qk(y)e2m(v(y)+cv)dy ≤ Λ1

4 , N(Ci) := ∪Ci∩Cj 6=∅Cj

and we fix ρ such that (ii) holds. Notice that for some δ > 0 we have dist(Ci, N(Ci)c) ≥ δ
for i = 1, . . . ,M . Therefore, for x ∈ C1

v(x) ≤ t
∫
N(C1)

G(x, y)Qk(y)e2m(v(y)+cv)dy + tkϕ(x) + C(δ),

and together with Jensen’s inequality, for some p > 1 we get∫
Ω
ep2m(v+cv)dx ≤M

∫
C1
ep2m(v+cv)dx ≤ C.

Since ϕ is radially symmetric and polyharmonic we have ϕ ∈ C2m(Ω̄), and therefore by
elliptic estimates and Sobolev embeddings

‖v − tkϕ‖X ≤ C‖v − tkϕ‖W 2m,p(Ω) ≤ C‖(−∆)mv‖Lp(Ω) ≤ C,

concluding the proof.

A consequence of Lemma 6.4.1 is that for every k ∈ N, the operator Tk has a fixed point
vk ∈ X. We set uk = vk + cvk . Then

uk(x) =

∫
Ω
G(x, y)Qke

2muk(y)dy + kϕ(x) + cvk ,

∫
Ω
Qke

2muk(y)dx = Λ. (6.23)

We claim that cvk →∞.

Again writing Ω as a union of cones and using Jensen’s inequality we obtain∫
Ω
e2mukdx ≤ Ce2mcvk

∫
Ω
e2muk(y)dy

∫
Ω

e2mkϕ(x)

|x− y|p
dx,

for some p < 2m. Hence, if cvk ≤ C, then∫
Ω
Qke

2mukdx ≤ Cb
∫

Ω
e2muk(y)dy

∫
Ω

e2mkϕ(x)

|x− y|p
dx

k→∞−−−→ 0,

a contradiction. Thus cvk →∞, and hence uk →∞ on S∗ϕ.
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It remains to show that uk → −∞ in C0
loc(Ω \ Sϕ). Arguing as in Lemma 6.3.2 we

conclude the proof. �

6.4.2 On a ball

We consider

X = C2
rad(B̄R), ‖v‖X := max

B̄R
(|v(x)|+ |v′(x)|+ |v′′(x)|).

Let Λ > 0. We fix k ∈ N. For v ∈ X define cv ∈ R given by∫
Ω
Qke

2m(v+cv)dx = Λ.

We define Tk : X → X given by v 7→ v̄ where

v̄(x) =
1

γ2m

∫
Ω

log

(
1

|x− y|

)
Qk(y)e2m(v(y)+cv)dy +

(
k +
|∆v(0)|
2∆ϕ(0)

)
ϕ(x).

Arguing as in Lemma 5.2.2 one can show that the operator Tk has a fixed point, say vk.
We set uk = vk + cvk . Then

uk(x) =
1

γ2m

∫
Ω

log

(
1

|x− y|

)
Qk(y)e2muk(y)dy +

(
k +
|∆vk(0)|
2∆ϕ(0)

)
ϕ(x) + cvk ,

and ∫
Ω
Qke

2mukdx = Λ.

Again as in Lemma 5.2.2 one can show that there exists C > 0 such that uk ≤ C on
Bε for some ε > 0. Using this, and as in the annulus domain case, one can show that
cvk → ∞. Thus uk(x) → ∞ for every x ∈ S∗ϕ. Finally, similar to the annulus domain
case, it follows that uk → −∞ locally uniformly in Ω \ Sϕ. �





Chapter 7

A fractional Adams-Moser-Trudinger
inequality and its application

We improve the sharpness of some fractional Moser-Trudinger type inequalities, par-
ticularly those studied by Lam-Lu and Martinazzi. As an application, improving upon
works of Adimurthi and Lakkis, we prove the existence of weak solutions to the problem

(−∆)
n
2 u = λuebu

2
in Ω, 0 < λ < λ1, b > 0,

with Dirichlet boundary condition, for any domain Ω in Rn with finite measure. Here
λ1 is the first eigenvalue of (−∆)

n
2 on Ω.

7.1 Introduction and statement of the main theorems

Let n ≥ 2 and let Ω be a bounded domain in Rn. The Sobolev embedding theorem
states that W k,p

0 (Ω) ⊂ Lq(Ω) for 1 ≤ q ≤ np
n−kp and kp < n. However, it is not true

that W k,p
0 (Ω) ⊂ L∞(Ω) for kp = n. In the borderline case, as shown by Yudovich [79],

Pohozaev [64] and Trudinger [76], W 1,n
0 (Ω) embeds into an Orlicz space and in fact

sup
u∈W 1,n

0 (Ω), ‖∇u‖Ln(Ω)≤1

∫
Ω
eα|u|

n
n−1

dx <∞, (7.1)

for some α > 0. Moser [61] found the best constant α in the inequality (7.1), obtaining
the so called Moser-Trudinger inequality:

sup
u∈W 1,n

0 (Ω), ‖∇u‖Ln(Ω)≤1

1

|Ω|

∫
Ω
eαn|u|

n
n−1

dx <∞, αn = n|Sn−1|
1

n−1 . (7.2)

The constant αn in (7.2) is the best constant in the sense that for any α > αn, the
supremum in (7.1) is infinite. A generalized version of Moser-Trudinger inequality is the
following theorem of Adams [2]:

Theorem I ([2]). If k is a positive integer less than n, then there is a constant C =
C(k, n) such that

sup
u∈Ckc (Ω), ‖∇ku‖

L
n
k (Ω)

≤1

∫
Ω
eα|u|

n
n−k

dx ≤ C|Ω|,

99
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where

α = α(k, n) =
n

|Sn−1|


[
π
n
2 2kΓ( k+1

2 )
Γ(n−k+1

2 )

] n
n−k

, k = odd,[
π
n
2 2kΓ( k2 )
Γ(n−k2 )

] n
n−k

, k = even,

and ∇k := ∇∆
k−1

2 for k odd and ∇k = ∆
k
2 for k even. Moreover the constant α is sharp

in the sense that

sup
u∈Ckc (Ω), ‖∇ku‖

L
n
k (Ω)

≤1

∫
Ω
f(|u|)eα|u|

n
n−k

dx =∞, (7.3)

for any f : [0,∞)→ [0,∞) with limt→∞ f(t) =∞.1

In a recent work Martinazzi [54] has studied the Adams inequality in a fractional setting.
In order to state its result first we recall that for u ∈ Ls(Rn) one can define (−∆)su as a
tempered distribution (see Section 2.1). Now for an open set Ω ⊆ Rn (possibly Ω = Rn),
s > 0 and 1 ≤ p ≤ ∞ we define the fractional Sobolev space H̃s,p(Ω) by

H̃s,p(Ω) :=
{
u ∈ Lp(Ω) : u = 0 on Rn \ Ω, (−∆)

s
2u ∈ Lp(Rn)

}
.

Theorem J ([54]). For any open set Ω ⊂ Rn with finite measure and for any p ∈ (1, ∞)
we have

sup

u∈H̃
n
p ,p(Ω), ‖(−∆)

n
2p u‖Lp(Ω)≤1

∫
Ω
eαn,p|u|

p′
dx ≤ Cn,p|Ω|,

where the constant αn,p is given by

αn,p =
n

|Sn−1|

(
Γ( n2p)2

n
p π

n
2

Γ(np−n2p )

)p′
. (7.4)

Moreover, the constant αn,p is sharp in the sense that we cannot replace it with any
larger one without making the above supremum infinite.

Notice that condition (7.3) in Theorem I is sharper than only requiring that the constant
α in the exponential is sharp, as done in Theorem J. In fact Martinazzi asked whether
it is true that

sup

u∈H̃
n
p ,p(Ω), ‖(−∆)

n
2p u‖Lp(Ω)≤1

∫
Ω
f(|u|)eαn,p|u|p

′
dx =∞, (7.5)

for any f : [0,∞)→ [0,∞) with

lim
t→∞

f(t) =∞, f is Borel measurable, (7.6)

and αn,p is given by (7.4).

The point here is that Adams constructs smooth and compactly supported test func-
tions similar to the standard Moser functions (constant in a small ball, and decaying

1Identity (7.3) is proven in [2], although not explicitly stated.
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logarithmically on an annulus), and then he estimates their H
k,n
k

0 -norms in a very pre-
cise way. This becomes much more delicate when k is not integer because instead of
computing partial derivatives, one has to estimate the norms of fractional Laplacians
(the term ‖(−∆)

n
2pu‖Lp(Ω) in (7.5)). This is indeed done in [54], but the test functions

introduced by Martinazzi are not efficient enough to prove (7.5). As we shall see this
has consequences for applications to PDEs.

We shall prove that the answer to Martinazzi’s question is positive, indeed in a slightly
stronger form, namely the supremum in (7.5) is infinite even if we consider the full

H
n
p
,p

-norm on the whole space. More precisely we have:

Theorem 7.1.1. Let Ω be an open set in Rn with finite measure and let f : [0,∞) →
[0,∞) satisfy (7.6). Then

sup

u∈H̃
n
p ,p(Ω), ‖u‖p

Lp(Ω)
+‖(−∆)

n
2p u‖p

Lp(Rn)
≤1

∫
Ω
f(|u|)eαn,p|u|p

′
dx =∞, 1 < p <∞,

where the constant αn,p is given by (7.4).

The main difficulty in the proof of Theorem 7.1.1 is to construct test and cut-off functions
in a way that their fractional Laplacians of suitable orders can be estimated precisely.
This will be done in section 7.2.

Here we mention that using a Green’s representation formula, Iula-Maalaoui-Martinazzi
[39] proved a particular case of Theorem 7.1.1 in one dimension. Their proof, though,

does not extend to spaces H̃
n
p
,p

(Ω) when n
p > 1 because the function constructed using

the Green representation formula do not enjoy enough smoothness at the boundary.
Trying to solve this with a smooth cut-off function at the boundary allows to prove (7.5)
only when f grows fast enough at infinity (for instance f(t) ≥ ta for some a > p′).

Now we move to Moser-Trudinger type inequalities on domains with infinite measure.
In this direction we refer to [43, 59, 69] and the references there in. For our purpose,
here we only state the work of Lam-Lu [43].

Theorem K ([43]). Let p ∈ (1,∞) and τ > 0. Then for every domain Ω ⊂ Rn with
finite measure, there exists C = C(n, p, τ) > 0 such that

sup

u∈H
n
p ,p(Rn), ‖(τI−∆)

n
2p u‖Lp(Rn)≤1

∫
Ω
eαn,p|u|

p′
dx ≤ C(|Ω|+ 1),

and

sup

u∈H
n
p ,p(Rn), ‖(τI−∆)

n
2p u‖Lp(Rn)≤1

∫
Rn

Φ(αn,p|u|p
′
)dx <∞,

where αn,p is given by (7.4) and

Φ(t) := et −
jp−2∑
j=0

tj

j!
, jp := min{j ∈ N : j ≥ p}.

Furthermore, the constant αn,p is sharp in the above inequalities, i.e., if αn,p is replaced
by any α > αn,p, then the supremums are infinite.
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In the spirit of Theorem 7.1.1 we prove a stronger version of the sharpness of the constant
in Theorem K, in the sense that, even without increasing the constant αn,p we can make
the two supremums in Theorem K infinite by multiplying the exponential by a function
f going to infinity arbitrarily slow. Moreover it is sufficient to consider functions with
compact support.

Theorem 7.1.2. Let Ω ⊂ Rn be a domain with finite measure and let f : [0,∞)→ [0,∞)
satisfy (7.6). Then for any τ > 0 and for any p ∈ (1,∞) we have (with the notations as
in Theorem K)

sup

u∈H̃
n
p ,p(Ω), ‖(τI−∆)

n
2p u‖Lp(Rn)≤1

∫
Ω
f(|u|)eαn,p|u|p

′
dx =∞,

and

sup

u∈H̃
n
p ,p(Ω), ‖(τI−∆)

n
2p u‖Lp(Rn)≤1

∫
Ω
f(|u|)Φ(αn,p|u|p

′
)dx =∞.

As an application of Theorem 7.1.1 (in the case p = 2 and f(t) = t2, compare to
(7.18)) we prove the existence of (weak) solution to a semilinear elliptic equation with
exponential nonlinearity. In order to state the theorem first we need the following
definition.

Definition 7.1.1. Let Ω be an open set in Rn with finite measure. Let f ∈ Lp(Ω) for
some p ∈ (1,∞). We say that u is a weak solution of

(−∆)
n
2 u = f in Ω,

if u ∈ H̃
n
2
,2(Ω) satisfies∫

Rn
(−∆)

n
4 u(−∆)

n
4 vdx =

∫
Ω
fvdx for every v ∈ H̃

n
2
,2(Ω).

Theorem 7.1.3. Let Ω be an open set in Rn with finite measure. Let 0 < λ < λ1 and
b > 0. Then there exists a nontrivial weak solution to the problem

(−∆)
n
2 u = λuebu

2
in Ω. (7.7)

Due to the fact that the embedding H̃
n
2
,2(Ω) ↪→ L2(Ω) is compact for any open set Ω

with finite measure (see Lemma 7.4.7), we do not need any regularity assumption or
boundedness assumption on the domain Ω.

The equation (7.7) has been well studied by several authors in even and odd dimensions,
with emphasis both on existence and compactness properties see e.g. [5, 23, 38, 41, 48–
50, 58, 67, 75]. For instance, Lakkis [41], extending a work of Adimurthi [3], proved
the existence of solution to (7.7) in any even dimension. In [42], Lam-Lu have studied
equation 7.7 in even dimension with more general right hand side, namely, equation
of the form (−∆)

n
2 u = f(x, u), where the function f may not satisfy the Ambrosetti-

Rabinowitz condition.

In a recent work Iannizzotto-Squassina [38] have proven existence of nontrivial weak
solution of (7.7) with Ω = (0, 1) under an assumption, which turns out to be satisfied
thanks to our Theorem 7.1.1, applied with p = 2 (see Lemma 7.3.5).
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Finally, we mention that in a recent work Bao-Lam-Lu [6] have studied the existence of
positive solutions to a polyharmonic equation on the whole space R2m, more precisely

(I −∆)mu = f(x, u), in R2m, m ≥ 1,

where the function f has critical growth at infinity. Moreover, under certain assumptions
on f , they also discussed radial symmetry and regularity of solutions.

7.2 Moser type functions

We construct Moser type functions as follows:

First we fix two smooth functions η and ϕ such that 0 ≤ η, ϕ ≤ 1,

η ∈ C∞c ((−1, 1)), η = 1 on (−3

4
,
3

4
),

and
ϕ ∈ C∞c ((−2, 2)), ϕ = 1, on (−1, 1).

For ε > 0, we set

ψε(t) =

{
1− ϕε(t) if 0 ≤ t ≤ 1

2
η(t) if t ≥ 1

2 ,

and

vε(x) =

(
log

1

ε

)− 1
p
(

log

(
1

ε

)
ϕε(|x|) + log

(
1

|x|

)
ψε(|x|)

)
x ∈ Rn,

where

ϕε(t) = ϕ(
t

ε
).

Our aim is to show that the supremums (in Theorems 7.1.1 and 7.1.2) taken over the
functions {vε}ε>0 (up to a proper normalization) are infinite.

The following proposition is crucial in the proof of Theorem 7.1.1.

Proposition 7.2.1. Let

uε(x) := |Sn−1|−
1
p 2

n
p′ π

n
2 Γ(

n

2p′
)

1

Γ( n2p)γn
vε(x).

Then for 1 < p <∞ there exists a constant C > 0 such that

‖(−∆)
n
2puε‖Lp(Rn) ≤

(
1 + C

(
log

1

ε

)−1
) 1

p

.

Proof. Since the proof of above proposition is quite trivial if n
2p is an integer, from now

on we only consider the case when n
2p is not an integer.
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From Lemmas 7.2.2 and 7.2.4 we have

‖(−∆)
n
2puε‖pLp(B3ε∪Bc2) ≤ C

(
log

1

ε

)−1

.

In order to estimate (−∆)σvε on the domain {x : 3ε < |x| < 2} we consider the function

Rε(x) = vε(x)−
(

log
1

ε

)− 1
p

log
1

|x|
=: fε(x) + gε(x) x ∈ Rn,

where

fε(x) : =

{
vε(x)−

(
log 1

ε

)− 1
p log 1

|x| if |x| < 2ε

0 if |x| ≥ 2ε,

=

(
log

1

ε

)− 1
p
(

log
1

ε
− log

1

|x|

)
ϕε(|x|)

and

gε(x) : =

{
vε(x)−

(
log 1

ε

)− 1
p log 1

|x| if |x| > 1
2

0 if |x| ≤ 1
2

=

(
log

1

ε

)− 1
p

(η(|x|)− 1) log
1

|x|
.

It is easy to see that for any σ > 0

sup
x∈Rn

|(−∆)σgε(x)| ≤ C
(

log
1

ε

)− 1
p

. (7.8)

With the help of Lemma 7.4.8 and the triangle inequality we bound

|(−∆)
n
2puε(x)| = 1

|Sn−1|
1
pβn, n

2p

∣∣∣∣∣(−∆)
n
2pRε(x) +

(
log

1

ε

)− 1
p

(−∆)
n
2p log

1

|x|

∣∣∣∣∣
≤ C|(−∆)

n
2pRε(x)|+

(
log

1

ε

)− 1
p 1

|Sn−1|
1
p

1

|x|
n
p

.

Using the elementary inequality

(a+ b)q ≤ aq + Cq(b
q + aq−1b), 1 ≤ q <∞, a ≥ 0, b ≥ 0,
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we get ∫
3ε<|x|<2

|(−∆)
n
2puε(x)|pdx

≤
∫

3ε<|x|<2

(
log

1

ε

)−1 1

|Sn−1|
1

|x|n
dx+ C

∫
3ε<|x|<2

|(−∆)
n
2pRε(x)|pdx

+ C

(
log

1

ε

)− 1
p′
∫

3ε<|x|<2

1

|x|
n
p′
|(−∆)

n
2pRε(x)|dx

≤ 1 + C

(
log

1

ε

)−1

+ C

(
log

1

ε

)− 1
p′
∫

3ε<|x|<2

1

|x|
n
p′
|(−∆)

n
2pRε(x)|dx,

where the last inequality follows from Lemma 7.2.3. Using the pointwise estimate in
Lemma 7.2.3 and (7.8) one can show that∫

3ε<|x|<2

1

|x|
n
p′
|(−∆)

n
2pRε(x)|dx ≤ C

(
log

1

ε

)− 1
p

,

which completes the proof.

Lemma 7.2.2. Let p ∈ (1,∞). Then there exists a constant C = C(n, p, σ) > 0 such
that

|(−∆)σvε(x)| ≤ C
(

log
1

ε

)− 1
p

ε−2σ for |x| ≤ 3ε, 0 < σ <
n

2
.

Moreover,

‖(−∆)
n
2p vε‖pLp(B3ε)

≤ C
(

log
1

ε

)−1

.

Proof. We claim that for every nonzero multi-index α ∈ Nn there exists C = C(n, α) > 0
such that

|Dαvε(x)| ≤ C
(

log
1

ε

)− 1
p

ε−|α|, x ∈ Rn. (7.9)

In order to prove (7.9), we use that η ∈ C∞c ((−1, 1)) and

vε(x) =


(
log 1

ε

) 1
p′ if |x| ≤ ε(

log 1
ε

)− 1
p log

(
1
|x|

)
η(|x|) if |x| ≥ 1

2 .
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Therefore, the estimate in (7.9) holds for x ∈ Bε∪Bc
1
2

. For x ∈ B 1
2
\Bε and for a nonzero

multi-index α ∈ Nn, we have for some constants Cα,β(
log

1

ε

) 1
p

Dαvε(x) = Dαϕε(|x|) log
1

ε
+Dαψε(|x|) log

1

|x|

+
∑

0<β≤α
Cα,βD

β

(
log

1

|x|

)
Dα−βψε(|x|)

= Dαϕε(|x|) log
|x|
ε
−
∑

0<β≤α
Cα,βD

β (log |x|)Dα−βψε(|x|),

where in the second equality we used that Dαψε(|x|) = −Dαϕε(|x|), which follows from
the fact that ϕε+ψε = 1 on B 1

2
. Moreover, from the definition of ϕ and ϕε we have that

|Dαϕε(|x|)| ≤

{
Cε−|α| if x ∈ B2ε \Bε
0 if x ∈ Bc

2ε ∪Bε.

Therefore,

|Dαϕε(|x|)|
∣∣∣∣log

1

ε
− log

1

|x|

∣∣∣∣ ≤ Cε−|α|.
It is easy to see that for 0 < β ≤ α∣∣∣Dβ log(|x|)

∣∣∣ ∣∣∣Dα−βψε(|x|)
∣∣∣ ≤ C(α, β)|x|−|β|ε−|α−β| ≤ C(α, β)ε−|α|, for x ∈ B 1

2
\Bε.

This completes the proof of (7.9).

In the case when σ is not an integer then we write σ = m+ s where 0 < s < 1 and m is
a nonnegative integer. Then for |x| ≤ 3ε we have (see Proposition 2.5.2)

(−∆)σvε(x) = C(n, s)

∫
Rn

(−∆)mvε(x+ y) + (−∆)mvε(x− y)− 2(−∆)mvε(x)

|y|n+2s
dy.

Splitting Rn into

A1 = {x : |x| ≤ 2ε} , A2 =

{
x : 2ε < |x| ≤ 1

4

}
and A3 =

{
x : |x| > 1

4

}
,

we have

(−∆)σvε(x) = C(n, s)

3∑
i=1

Ii,

where

Ii :=

∫
Ai

(−∆)mvε(x+ y) + (−∆)mvε(x− y)− 2(−∆)mvε(x)

|y|n+2s
dy.

For y ∈ A1, using (7.9) we have

|∆mvε(x+ y) + ∆mvε(x− y)− 2∆mvε(x)| ≤ |y|2‖D2∆mvε‖L∞

≤ C|y|2ε−2m−2

(
log

1

ε

)− 1
p

,
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and hence

|I1| ≤ Cε−2m−2

(
log

1

ε

)− 1
p
∫
A1

dy

|y|n+2s−2
≤ C

(
log

1

ε

)− 1
p

ε−2σ.

For m ≥ 1, again by (7.9)

|∆mvε(x+ y)−∆mvε(x)| ≤ C
(

log
1

ε

)− 1
p

ε−2m.

Therefore,

|I2 + I3| ≤ C
(

log
1

ε

)− 1
p

ε−2m

∫
|y|>ε

dy

|y|n+2s
≤ C

(
log

1

ε

)− 1
p

ε−2σ.

Since on A2 |x+ y| ≤ 3ε+ 1
4 <

1
2 , one has(

log
1

ε

) 1
p

|vε(x+ y)− vε(x)|

=

∣∣∣∣log

(
1

ε

)
(ϕε(|x+ y|) + ψε(|x+ y|)− ϕε(|x|)− ψε(|x|))

+ log

(
ε

|x+ y|

)
ψε(|x+ y|)− log

(
ε

|x|

)
ψε(|x|)

∣∣∣∣
=

∣∣∣∣log

(
ε

|x+ y|

)
ψε(|x+ y|)− log

(
ε

|x|

)
ψε(|x|)

∣∣∣∣
≤ C +

∣∣∣∣log

(
ε

|x+ y|

)
ψε(|x+ y|)

∣∣∣∣ .
Hence, for m = 0, changing the variable y 7→ εz

|I2| ≤ C
(

log
1

ε

)− 1
p

ε−2s + C

(
log

1

ε

)− 1
p
∫
ε<|y|< 1

4

∣∣∣log
(

ε
|x+y|

)
ψε(|x+ y|)

∣∣∣
|y|n+2s

dy

≤ C
(

log
1

ε

)− 1
p

ε−2s + C

(
log

1

ε

)− 1
p

ε−2s

∫
|z|>1

∣∣log |xε + z|
∣∣ψε(ε|xε + z|)
|z|n+2s

dz

≤ C
(

log
1

ε

)− 1
p

ε−2s + C

(
log

1

ε

)− 1
p

ε−2s

∫
|z|>1

log (3 + |z|)
|z|n+2s

dz

≤ C
(

log
1

ε

)− 1
p

ε−2s.

Finally, for m = 0, using that |vε| ≤ C
(
log 1

ε

)− 1
p on Bc

1
8

, we bound

|I3| ≤ C
(

log
1

ε

)− 1
p
∫
|y|≥ 1

4

dy

|y|n+2s
≤ C

(
log

1

ε

)− 1
p

.

The lemma follows immediately.



7. A fractional Adams-Moser-Trudinger inequality and its application 108

Lemma 7.2.3. For |x| ≥ 3ε we have

|(−∆)σfε(x)| ≤ C 1

|x|2σ

(
log

1

ε

)− 1
p


(
ε
|x|

)n
if 0 < σ < 1(

ε
|x|

)n−2m
if 1 < σ = m+ s < n

2 ,

where m is a positive integer and 0 < s < 1. In particular

‖(−∆)
n
2pRε‖Lp(B2\B3ε) ≤ C

(
log

1

ε

)− 1
p

.

Proof. Notice that for every nonzero multi-index α ∈ Nn we have

|Dαfε(x)| ≤ C
(

log
1

ε

)− 1
p


1
|x||α| if |x| < ε

1
ε|α|

if ε < |x| ≤ 2ε

0 if |x| ≥ 2ε.

First we consider 0 < σ < 1. Using that |ϕε| ≤ 1, changing the variable y 7→ εy and by
Hölder inequality we obtain

|(−∆)σfε(x)| = C

∣∣∣∣∫
Rn

fε(x)− fε(y)

|x− y|n+2σ
dy

∣∣∣∣
= C

(
log

1

ε

)− 1
p

∣∣∣∣∣∣
∫
|y|<2ε

(
log 1

ε − log 1
|y|

)
ϕε(|y|)

|x− y|n+2σ
dy

∣∣∣∣∣∣
≤ Cεn

(
log

1

ε

)− 1
p

(∫
|y|<2

dy

|x− εy|np+2pσ

) 1
p
(∫
|y|<2

|log |y||p
′
dy

) 1
p′

≤ Cεn
(

log
1

ε

)− 1
p

(
|x|n

εn
1

|x|np+2pσ

∫
|y|< 2ε

|x|

dy

| x|x| − y|np+2pσ

) 1
p

,

≤ C 1

|x|2σ

(
ε

|x|

)n(
log

1

ε

)− 1
p

,

where in the second last inequality we have used a change of variable y 7→ |x|
ε y and the

last inequality follows from the uniform bound

1

| x|x| − y|np+2pσ
≤ C for every |x| ≥ 3ε, |y| ≤ 2ε

|x|
. (7.10)
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For σ > 1, changing the variable y 7→ |x|y and by (7.10) we have

|(−∆)σfε(x)| = C

∣∣∣∣∫
Rn

∆mfε(x)−∆mfε(y)

|x− y|n+2s
dy

∣∣∣∣
= C

∣∣∣∣∣
∫
|y|<2ε

∆mfε(y)

|x− y|n+2s
dy

∣∣∣∣∣
≤ C

(
log

1

ε

)− 1
p
∫
|y|<2ε

1

|y|2m
1

|x− y|n+2s
dy

≤ C 1

|x|2σ

(
ε

|x|

)n−2m(
log

1

ε

)− 1
p

.

We conclude the lemma by (7.8).

Lemma 7.2.4. For 0 < σ < n
2 there exists a constant C = C(n, σ) such that

|(−∆)σvε(x)| ≤ C
(

log
1

ε

)− 1
p 1

|x|n+2σ
for every x ∈ Bc

2.

Moreover,

‖(−∆)
n
2p vε‖pLp(Bc2) ≤ C

(
log

1

ε

)−1

.

Proof. If 0 < σ < 1 then

|(−∆)σvε(x)| = C

∫
|y|<1

vε(y)

|x− y|n+2σ
dy, |x| > 2 (7.11)

≤ C 1

|x|n+2σ

∫
|y|<1

vε(y)dy

≤ C
(

log
1

ε

)− 1
p 1

|x|n+2σ

∫
|y|<1

(log |y|+ log 2) dy

≤ C
(

log
1

ε

)− 1
p 1

|x|n+2σ
.

Since the integral in the right hand side of (7.11) is a proper integral, differentiating
under the integral sign one can prove the lemma in a similar way.

Proof of Theorem 7.1.1 Without loss of generality we can assume that B1 ⊆ Ω. Let uε
be defined as in Proposition 7.2.1. We set

ūε(x) =
uε(x)(

‖uε‖pLp(Ω) + ‖(−∆)
n
2puε‖pLp(Rn)

) 1
p

, x ∈ Rn.

Then ūε ∈ H̃
n
p
,p

(Ω) and ‖ū‖pLp(Ω) + ‖(−∆)
n
2p ū‖pLp(Rn) = 1. We claim that there exists a

constant δ > 0 such that

lim sup
ε→0

∫
Bε

exp
(
αn,p|ūε|p

′
)
dx =: lim sup

ε→0
Iε ≥ δ. (7.12)
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Noticing that (restriction of ūε on Bε is a constant function)

lim
ε→0

inf
x∈Bε

ūε(x) =∞,

and by (7.6), we obtain

sup

u∈H̃
n
p ,p(Ω), ‖u‖p

Lp(Ω)
+‖(−∆)

n
2p u‖p

Lp(Rn)
≤1

∫
Ω
f(|u|)eαn,p|u|p

′
dx

≥ lim sup
ε→0

∫
Ω
f(|ūε|)eαn,p|ūε|

p′
dx

≥ lim sup
ε→0

∫
Bε

f(|ūε|)eαn,p|ūε|
p′
dx

≥ lim sup
ε→0

(
Iε inf
x∈Bε

f(|ūε(x)|)
)

≥ δ lim sup
ε→0

inf
x∈Bε

f(|ūε(x)|)

=∞.

To prove (7.12) we choose ε = e−k. Noticing that

lim
k→∞

−k + k

(
1 +

C

k

)− p′
p

= −Cp
′

p
, ‖uε‖pLp(Rn) ≤ C

(
log

1

ε

)−1

,

and using Proposition 7.2.1 we have

Iε ≥ |B1|εne
n log 1

ε

(
1+C(log 1

ε)
−1

)− p′p
= |B1|e−kn+kn(1+C

k )
− p
′
p ≥ δ,

for some δ > 0. �

In order to prove Theorem 7.1.2, first we prove the following proposition which gives a
similar type of estimate as in Proposition 7.2.1.

Proposition 7.2.5. Let τ > 0 and 1 < p < ∞. Then there exists a constant C > 0
such that

‖(τI −∆)
n
2puε‖Lp(Rn) ≤

(
1 + C

(
log

1

ε

)−1
) 1

p

.

Proof. We set
wε(x) = (τI −∆)

n
2puε(x)− (−∆)

n
2puε(x).

We observe that there exists C = C(p) > 0 such that

h(t) = (1 + t)p − 1− C(tp + tp−1 + t
1
2 ) < 0, for every t > 0, 1 ≤ p <∞,

which follows from the fact that h(0) = 0 and h′(t) < 0 for every t > 0. Therefore, there
holds

(a+ b)p ≤ ap + Cp(b
p + abp−1 + b

1
2ap−

1
2 ), a ≥ 0, b ≥ 0, 1 ≤ p <∞,
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for some constant Cp > 0 and using this inequality we bound∫
Rn
|(τI −∆)

n
2puε(x)|pdx

=

∫
Rn
|wε(x) + (−∆)

n
2puε(x)|pdx

≤
∫
Rn
|(−∆)

n
2puε(x)|p + C

∫
Rn
|wε(x)|pdx+ C

∫
Rn
|(−∆)

n
2puε(x)||wε(x)|p−1dx

+ C

∫
Rn
|(−∆)

n
2puε(x)|p−

1
2 |wε(x)|

1
2dx

=: I1 + I2 + I3 + I4.

From Proposition 7.2.1 we have

I1 ≤ 1 + C

(
log

1

ε

)−1

.

To estimate I2, I3 and I4 we will use pointwise estimates on (−∆)σuε, (−∆)σwε and Lp

estimates on (−∆)σwε. For 0 < σ < n
2 combining Lemmas 7.2.2 - 7.2.4, 7.4.8, and (7.8)

we get

|(−∆)σuε(x)| ≤ C
(

log
1

ε

)− 1
p


ε−2σ if |x| < 3ε
|x|−2σ if 3ε < |x| < 2
|x|−n−2σ if |x| > 2.

(7.13)

With the help of (7.13) one can verify that

‖(−∆)σuε‖Lp(Rn) ≤ C(n, p, σ)

(
log

1

ε

)− 1
p

, 1 ≤ p <∞, 0 ≤ σ < n

2p
, (7.14)

and together with Lemma 7.4.2

I2 ≤ C
(

log
1

ε

)−1

.

We conclude the proposition by showing that∫
Rn
|wε|q|(−∆)

n
2p vε|p−qdx ≤ C(n, p, q)

(
log

1

ε

)−1

, 0 < q <
p2

p+ 1
. (7.15)

It follows from Lemma 7.4.1 that

|wε(x)| ≤ C
(

log
1

ε

)− 1
p

, x ∈ Rn,
n

2p
< 1,

and for n
2p > 1

|wε(x)| ≤ C
(

log
1

ε

)− 1
p


ε
−n
p

+2
if |x| < 3ε

|x|−
n
p

+2
if 3ε < |x| < 2

1 if |x| > 2,

thanks to (7.13) and (7.14).



7. A fractional Adams-Moser-Trudinger inequality and its application 112

Splitting Rn into

A1 = {x : |x| ≤ 2} and A2 = {x : |x| > 2} ,

we have∫
Rn
|wε|q|(−∆)

n
2p vε|p−qdx =

2∑
i=1

Ji, Ji :=

∫
Ai

|wε|q|(−∆)
n
2p vε|p−qdx, i = 1, 2.

Using (7.13) one can show that J1 ≤ C
(
log 1

ε

)−1
and together with q < p2

p+1 one has

J2 ≤ C
(
log 1

ε

)−1
, which gives (7.15).

Proof of Theorem 7.1.2 Here also we can assume that B1 ⊆ Ω. We choose M > 0 large
enough such that

Φ(αn,pt
p′) ≥ 1

2
eαn,pt

p′
, t ≥M.

We set
ūε =

uε

‖(τI −∆)
n
2puε‖Lp(Rn)

.

Then we have ∫
Rn
f(|ūε|)Φ

(
αn,p|ūε|p

′
)
dx

≥
∫
uε≥M

f(|ūε|)Φ
(
αn,p|ūε|p

′
)
dx

≥ 1

2

∫
Bε

f(|ūε|)eαn,p|ūε|
p′
dx,

for ε > 0 small enough. Now the proof follows as in Theorem 7.1.1, thanks to Proposition
7.2.5. �

Remark: From the point of view of conductor capacity estimate (see e.g. [2, p. 393],
[42, p. 2193]), it would be interesting to know whether

‖(−∆)
n
2puε‖Lp(Rn) ≥ 1, and ‖(τI −∆)

n
2puε‖Lp(Rn) ≥ 1,

or not. Here we recall that the “original” Moser functions (see [61]), that is

u(ε, x) :=
1√
2π


0 for x ∈ R2 \B1

1/
√

log(1/ε) log(1/|x|) for x ∈ B1 \Bε√
log(1/ε) for x ∈ Bε,

satisfy ‖∇u(ε, · )‖L2(B1) = 1.

Lemma 7.2.6. Let uε be as in Proposition 7.2.1. Then there exists a constant C =
C(n, p, τ, ϕ, η) > 0 such that

‖(−∆)
n
2puε‖pLp(B1) ≥ 1− C

(
log

1

ε

)−1

, ‖(τI −∆)
n
2puε‖pLp(B1) ≥ 1− C

(
log

1

ε

)−1

.

Moreover, if n
2p is an integer, then ‖(−∆)

n
2puε‖Lp(B1) > 1.
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Proof. Using the inequality

||a| − |b||p ≥ |a|p − p|a|p−1|b|, p ≥ 1, a, b ∈ R,

we obtain∫
3ε<|x|<1

|(−∆)
n
2puε|pdx

≥
∫

3ε<|x|<1

(
log

1

ε

)−1 1

|Sn−1|
1

|x|n
dx− C

(
log

1

ε

)− 1
p′
∫

3ε<|x|<1

1

|x|
n
p′
|(−∆)

n
2pRε|dx,

and ∫
3ε<|x|<1

|(τI −∆)
n
2puε|pdx

≥
∫

3ε<|x|<1
|(−∆)

n
2puε|pdx− C

∫
3ε<|x|<1

|(−∆)
n
2puε|p−1|wε|dx,

where Rε and wε are defined in the proof of Proposition 7.2.1 and 7.2.5 respectively.

First part of the lemma follows as in Proposition 7.2.1 and 7.2.5.

We choose r < 1 so that uε ∈ C∞c (Br). If n
2p is an integer, then the support of ∆

n
2puε is

a subset of Br \Bε. Therefore, by Hölder inequality

uε(0) = Kn,p

∫
ε<|x|<r

(−∆)
n
2puε(x)

1

|x|
n
p′
dx

≤ Kn,p|Sn−1|
1
p′ ‖(−∆)

n
2puε‖Lp(B1)

(
log

1

ε
+ log r

) 1
p′

< Kn,p|Sn−1|
1
p′ ‖(−∆)

n
2puε‖Lp(B1)

(
log

1

ε

) 1
p′

,

where the first identity follows from the fact that the function

Kn,p
1

|x|
n
p′

:= 2
−n
p π−

n
2

Γ( n
2p′ )

Γ( n2p)

1

|x|
n
p′
,

is a fundamental solution of the operator (−∆)
n
2p . Since

uε(0) = |Sn−1|−
1
p 2

n
p′ π

n
2 Γ(

n

2p′
)

1

Γ( n2p)γn

(
log

1

ε

) 1
p′

= Kn,p|Sn−1|
1
p′

(
log

1

ε

) 1
p′

,

we have ‖(−∆)
n
2puε‖Lp(B1) > 1.
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7.3 Variational arguments

Throughout this section we use the notation ‖u‖ = ‖(−∆)
n
4 u‖L2(Rn), H = H̃

n
2
,2(Ω) and

α0 = αn,2.

To prove Theorem 7.1.3 we follow the approach in [3, 41]. First we prove that λ1 > 0,
which makes the statement of Theorem 7.1.3 meaningful.

Lemma 7.3.1. Let Ω be an open set in Rn with finite measure. Then λ1 > 0 and there
exists a function u ∈ H such that

‖u‖L2(Ω) = 1, and ‖u‖2 = λ1.

Proof. We recall that

λ1 = inf
{
‖u‖2 : u ∈ H, ‖u‖L2(Ω) = 1

}
.

Let {uk}∞k=1 ⊂ H be a sequence such that

lim
k→∞

‖uk‖2 = λ1, ‖uk‖L2(Ω) = 1 for every k.

Then up to a subsequence

uk ⇀ u0 in H, uk → u0 in L2(Ω),

where the latter one follows from the compact embedding H ↪→ L2(Ω) (see Lemma
7.4.7). Therefore,

λ1 ≤ ‖u0‖2 ≤ lim inf
k→∞

‖uk‖2 = λ1, ‖u0‖L2(Ω) = 1.

Let us now define the functional

J(u) =
1

2
‖u‖2 −

∫
Ω
G(u)dx, u ∈ H,

where

G(t) =

∫ t

0
g(r)dr, g(r) := λrebr

2
, 0 < λ < λ1, b > 0.

Then J is C2 and the Fréchet derivative of J is given by

DJ(u)(v) =

∫
Rn

(−∆)
n
4 u(−∆)

n
4 vdx−

∫
Ω
g(u)vdx, v ∈ H.

We also define

F (u) = DJ(u)(u) = ‖u‖2 −
∫

Ω
g(u)udx, I(u) = J(u)− 1

2
F (u),

S = {u ∈ H : u 6= 0, F (u) = 0} .

Observe that if u ∈ H is a nontrivial weak solution of (7.7) then u ∈ S.
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With the above notations we have:

Lemma 7.3.2. The set S is closed in the norm topology and

0 < s2 <
α0

b
, s :=

√
2 inf
u∈S

J(u).

Proof. Since F is continuous (actually F is C1 as J is C2), it is enough to show that 0 is
an isolated point of S. If not, then there exists a sequence {uk} ⊂ S such that ‖uk‖ → 0
as k →∞. We set vk = uk

‖uk‖ . From the compactness of the embedding H ↪→ Lq(Ω) for

any 1 ≤ q < ∞, we can assume that (up to a subsequence) vk ⇀ v in H and vk → v
almost everywhere in Ω. By Lemma 7.3.4 we get

1 = λ

∫
Ω
ebu

2
kv2
kdx

k→∞−−−→ λ

∫
Ω
v2dx ≤ λ 1

λ1
‖v‖2 < 1,

which is a contradiction. Hence S is closed.

Since,

f(t) :=

(
t2 − 1

b

)
ebt

2
+

1

b
> 0, for t > 0, b > 0,

which follows from f(0) = 0 and f ′(t) > 0 for t > 0, we have

I(u) =
λ

2

∫
Ω

((
u2 − 1

b

)
ebu

2
+

1

b

)
dx > 0, if u ∈ H \ {0}, (7.16)

and in particular J(u) = I(u) > 0 for u ∈ S.

If possible, we assume that s = 0. Then there exists a sequence {uk} ⊂ S such that
J(uk)→ 0 as k →∞. Moreover,

‖uk‖2 = λ

∫
Ω
u2
ke
bu2
kdx = λ

∫
u2
k>

2
b

u2
ke
bu2
kdx+ λ

∫
u2
k≤

2
b

u2
ke
bu2
kdx

≤ 4
λ

2

∫
u2
k>

2
b

((
u2
k −

1

b

)
ebu

2
k +

1

b

)
dx+ λ

∫
u2
k≤

2
b

u2
ke
bu2
kdx

≤ 4J(uk) + λ

∫
u2
k≤

2
b

u2
ke
bu2
kdx, (7.17)

and hence uk is bounded in H. Then up to a subsequence uk → u, a.e. in Ω and uk ⇀ u.
Using Fatou lemma and ii) in Lemma 7.3.4 we obtain

I(u) =
λ

2

∫
Ω

((
u2 − 1

b

)
ebu

2
+

1

b

)
dx ≤ lim inf

k→∞
I(uk) = lim inf

k→∞
J(uk) = 0,

and hence u = 0, thanks to (7.16). It follows from (7.17) that uk → 0 in H which is a
contradiction as S is closed.

We prove now s2 < α0b
−1. First we fix u ∈ H with ‖u‖ = 1. We consider the function

Fu(t) := F (tu) = ‖tu‖2 − λ
∫

Ω
t2u2ebt

2u2
dx, t ≥ 0.
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Then

Fu(t) ≥ t2
(
λ1

∫
Ω
u2dx− λ

∫
Ω
u2ebt

2u2
dx

)
> 0,

for t > 0 sufficiently small and limt→∞ Fu(t) = −∞. Hence, the continuity of Fu implies
that there exists tu > 0 such that Fu(tu) = 0, that is, tuu ∈ S. Thus

s2

2
≤ J(tuu) ≤ 1

2
‖tuu‖2 =

1

2
t2u.

Again using that tuu ∈ S we have∫
Ω
u2ebs

2u2
dx ≤ 1

λt2u
λ

∫
Ω

(tuu)2eb(tuu)2
dx =

1

λt2u
‖tuu‖2 =

1

λ
,

which implies that

sup
‖u‖≤1, u∈H

∫
Ω
u2ebs

2u2
dx <∞, (7.18)

and by Theorem 7.1.1 we deduce that s2 < α0b
−1.

Lemma 7.3.3. Let u ∈ S be a minimizer of J on S. Then DJ(u) = 0.

Proof. We fix a function v ∈ H \ {0} and consider the function

Fu,v(γ, t) := F (γu+ tv), γ > 0, t ∈ R.

Differentiating Fu,v with respect to γ and using that F (u) = 0, we get

∂Fu,v
∂γ

(1, 0) = −2bλ

∫
Rn
u4ebu

2
dx < 0.

Hence, by implicit function theorem, there exists δ > 0 such that we can write γ = γ(t)
as a C1 function of t on the interval (−δ, δ) which satisfies

γ(0) = 1, Fu,v(γ(t), t) = 0, for every t ∈ (−δ, δ).

Moreover, choosing δ > 0 smaller if necessary, we have γ(t)u + tv ∈ S for every t ∈
(−δ, δ). We write

DJ(u)(v) = lim
t→0

J(u+ tv)− J(u)

t

= lim
t→0

(
J(γ(t)u+ tv)− J(u)

t
− J(γ(t)u+ tv)− J(u+ tv)

t

)
.

Since J is C1, a first order expansion of J yields

J(γ(t)u+ tv)− J(u+ tv) = J((u+ tv) + (γ(t)− 1)u)− J(u+ tv)

= DJ(u+ tv)((γ(t)− 1)u) + o ((γ(t)− 1)‖u‖)
= (γ(t)− 1)DJ(u+ tv)(u) + (γ(t)− 1)‖u‖o(1).

Therefore, using that F (u) = 0,

lim
t→0

J(γ(t)u+ tv)− J(u+ tv)

t
= γ′(0)DJ(u)(u) = 0.



117

On the other hand, since u is a minimizer of J on S and γ(t)u+ tv ∈ S,

J(γ(t)u+ tv)− J(u)

t
=

{
≥ 0 if t ≥ 0
≤ 0 if t ≤ 0,

implies that (since it exists)

lim
t→0

J(γ(t)u+ tv)− J(u)

t
= 0.

This shows that DJ(u)(v) = 0 for every v ∈ H, i.e., DJ(u) = 0.

Proof of Theorem 7.1.3 Let {uk} be a sequence in S such that limk→∞ J(uk) → s2

2 .
Then by (7.17) uk is a bounded sequence in H and consequently, up to a subsequence

uk ⇀ u, uk → u, a.e. in Ω, ` := lim
k→∞

‖uk‖,

for some u ∈ H. First we claim that u 6= 0.

Assuming u = 0, by ii) in Lemma 7.3.4 we get

lim
k→∞

‖uk‖2 = lim
k→∞

2

(
J(uk) +

λ

2b

∫
Ω

(ebu
2
k − 1)dx

)
= s2 <

α0

b
,

and hence by i) in Lemma 7.3.4

lim
k→∞

‖uk‖2 = lim
k→∞

λ

∫
Ω
u2
ke
bu2
kdx = 0,

a contradiction as S is closed.

We claim that ` = ‖u‖. Then uk → u in H and applying Lemmas 7.3.2 and 7.3.3 we
have Theorem 7.1.3.

If the claim is false then necessarily we shall have ` > ‖u‖.

One has

lim
k→∞

‖uk‖2 = lim
k→∞

2

(
J(uk) +

λ

2b

∫
Ω

(ebu
2
k − 1)dx

)
= 2

(
s2

2
+
λ

2b

∫
Ω

(ebu
2 − 1)dx,

)
= s2 − 2J(u) + ‖u‖2.

We divide the proof in two cases, namely J(u) ≤ 0 and J(u) > 0.

Case 1. We consider that J(u) ≤ 0. Since u 6= 0,

‖u‖2 ≤ λ

b

∫
Ω

(ebu
2 − 1)dx < λ

∫
Ω
u2ebu

2
dx,

where the second inequality follows from (7.16). It is easy to see that we can choose
0 < t0 < 1 such that

‖t0u‖2 = λ

∫
Ω

(t0u)2eb(t0u)2
dx,
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that means t0u ∈ S. Using that I(tu) is strictly monotone increasing in t, which follows
from the expression in (7.16), we obtain

s2

2
≤ J(t0u) = I(t0u) < I(u) ≤ lim inf

k→∞
J(uk) =

s2

2
,

a contradiction.

Case 2. Here we assume that J(u) > 0. Then

`2 = lim
k→∞

‖uk‖2 = s2 − 2J(u) + ‖u‖2 < s2 + ‖u‖2 < α0

b
+ ‖u‖2. (7.19)

Taking vk = uk
‖uk‖ we see that (up to a subsequence)

vk ⇀ v :=
u

`
, vk → v, a.e. in Ω,

and by Lemma 7.4.5, for every p < (1− ‖v‖2)−1

sup
k∈N

∫
Ω
epα0v2

kdx <∞.

Taking (7.19) into account we have

0 < `2 − ‖u‖2 = s2 − 2J(u) <
α0

b
,

and therefore, we can choose ε0 > 0 such that

1 + ε0 =
α0

b

1

`2 − ‖u‖2
, i.e., `2(1 + ε0) =

α0

b

(
1− ‖u‖

2

`2

)−1

.

For k large enough such that ‖uk‖2 ≤ `2(1+ ε0
2 ) holds, we observe that b‖uk‖2 ≤ p0α0 for

some 1 < p0 < (1− ‖v‖2)−1. Thus, for some p1 > 1, p2 > 1 with p1p2p0 < (1− ‖v‖2)−1

we obtain

sup
k∈N

∫
Ω

(
u2
ke
bu2
k

)p1

dx ≤ sup
k∈N
‖u2p1

k ‖Lp′2 (Ω)
‖ep1p0α0v2

k‖Lp2 (Ω) <∞,

and together with Lemma 7.4.9

lim
k→∞

∫
Ω
u2
ke
bu2
kdx =

∫
Ω
u2ebu

2
dx.

Indeed,

‖u‖2 < `2 = lim
k→∞

‖uk‖2 = λ lim
k→∞

∫
Ω
u2
ke
bu2
kdx = λ

∫
Ω
u2ebu

2
dx,

and we can now proceed as in Case 1. �

Lemma 7.3.4. Let uk, vk ∈ H such that uk ⇀ u in H, uk → u, a.e. in Ω, vk ⇀ v in H
and vk → v, a.e. in Ω. Then

i) If

lim sup
k→∞

‖uk‖2 <
α0

b
,
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then for every integer ` ≥ 1

lim
k→∞

∫
Ω
ebu

2
kv`kdx =

∫
Ω
ebu

2
v`dx.

ii) If

lim sup
k→∞

∫
Ω
u2
ke
bu2
kdx <∞,

then

lim
k→∞

∫
Ω
ebu

2
kdx =

∫
Ω
ebu

2
dx.

Proof. We prove the lemma with the help of Lemma 7.4.9.

We choose p > 1 such that for k large enough p‖uk‖2 < α0
b holds and together with

Theorem J we have

sup
k∈N

∫
Ω
epbu

2
kdx <∞.

Since the embedding H̃
n
2
,2(Ω) ↪→ Lq(Ω) is compact (see Lemma 7.4.7) for every 1 ≤ q <

∞, we have
vqk → vq in L1(Ω).

Indeed,
sup
k∈N
‖ebu2

kv`k‖Lp(Ω) ≤ ‖v`k‖Lp′ (Ω)‖e
bu2
k‖Lp(Ω) <∞,

and we conclude i).

Now ii) follows from ∫
u2
k>M

ebu
2
kdx ≤ 1

M

∫
u2
k>M

u2
ke
bu2
kdx ≤ C

M
,

which implies that the function fk := ebu
2
k satisfies the condition ii) in Lemma 7.4.9.

In the following lemma we prove that the assumption H ′(v) in [38] is true under certain
conditions.

Lemma 7.3.5. Let α0 > 0. Let f(t) = eα0t2h(t) satisfies H(i)− (iii) in [38]. Let h ≥ 0

on [0,∞) and h(−t) = −h(t). Let sf(st)
t be a monotone increasing function with respect

to t on (0,∞), s 6= 0. If limt→∞ h(t)t = ∞ then there exists u ∈ H̃
1
2
,2((0, 1)) such that√

2π‖(−∆)
1
4u‖L2(R) = 1 and

sup
t>0

Φ(tu) := sup
t>0

(
t2

4π
−
∫ 1

0
F (tu)dx

)
<

ω

2α0
,

where

F (t) =

∫ t

0
f(s)ds,

and ω is as in [38].
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Proof. For a given M > 0 we can choose u ∈ H̃
1
2
,2((0, 1)) such that

∫ 1

0
f

√2π2

α0
u

udx > M,
√

2π‖(−∆)
1
4u‖L2(R) = 1,

thanks to Theorem 7.1.1. Differentiating with respect to t one has

Φ′(tu) = t

(
1

2π
−
∫ 1

0

f(tu)

t
udx

)
.

Hence, for t ≥
√

2π2

α0
=: t0 and 2πM > t0

Φ′(tu) ≤ t
(

1

2π
−
∫ 1

0

f(t0u)

t0
udx

)
< 0.

Thus Φ′(tu) ≤ 0 on (t0 − ε,∞) for some ε > 0 and therefore,

sup
t>0

Φ(tu) = sup
t∈(0, t0−ε)

Φ(tu) ≤ sup
t∈(0, t0−ε)

t2

4π
<

π

2α0
.

Since ω = π, thanks to Theorem J, we conclude the lemma.

7.4 Some useful results

Lemma 7.4.1 (Pointwise estimate). Let s > 0 and not an integer. Let m be the smallest
integer greater than s. Then for any τ > 0

|(τI −∆)su(x)− (−∆)su(x)| ≤ C
m−1∑
j=1

|(−∆)s−ju(x)|+C‖(−∆)σu‖L1(Rn), u ∈ S(Rn),

where σ ∈
(
max{n2 −m+ s, 0}, n2

)
, the constant C depends only on n, s, σ, τ and for

m = 1 the above sum can be interpreted as zero.

Proof. We set f(t) = ts on R+. By Taylor’s expansion we have

f(t+ τ) = f(t) + τf ′(t) + · · ·+ τm−1

(m− 1)!
fm−1(t) +

τm

m!
fm(ξt), for some t < ξt < t+ τ.

In particular

(τ + t2)s = t2s + c1t
2s−2 + c2t

2s−4 + · · ·+ cm−1t
2s−2m+2 + E(t),

where the function E satisfies the estimate

|E(t)| ≤ C(1 + t)2s−2m, t > 0.
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Therefore, for u ∈ S(Rn)

F((τI −∆)su)(ξ) = (τ + |ξ|2)sû

=
(
|ξ|2s + c1|ξ|2s−2 + · · ·+ cm−1|ξ|2s−2m+2 + E(|ξ|)

)
û

=
m−1∑
j=0

cj |ξ|2s−2j û+ E(|ξ|)û(ξ)

=
m−1∑
j=0

cjF((−∆)s−ju) + E(|ξ|)û(ξ),

and hence

(τI −∆)su(x) =

m−1∑
j=0

cj(−∆)s−ju(x) + F−1(Eû)(x).

To estimate the term F−1(Eû) (uniformly in x) in terms of L1(Rn) norm of (fractional)
derivative of u, we observe that

|E(|ξ|)û(ξ)| =
∣∣∣∣E(|ξ|) 1

|ξ|2σ
̂(−∆)σu(ξ)

∣∣∣∣
≤ C

|ξ|2σ(1 + |ξ|2)m−s

∣∣∣ ̂(−∆)σu(ξ)
∣∣∣

≤ C

|ξ|2σ(1 + |ξ|2)m−s
‖(−∆)σu‖L1(Rn).

Thus ∣∣F−1(Eû)(x)
∣∣ ≤ C‖Eû‖L1(Rn) ≤ C‖(−∆)σu‖L1(Rn),

and we complete the proof.

Lemma 7.4.2 (Lp Estimate). Let s > 0 be a noninteger. Let τ > 0 be any fixed number.
Then for p ∈ (1, ∞) there exists C = C(n, s, p, τ) > 0 such that

‖(τI −∆)su− (−∆)su‖Lp(Rn) ≤ C

{
‖u‖Lp(Rn) if s < 1

‖u+ (−∆)s−1u‖Lp(Rn) if s > 1.

Proof. We have

F((τI −∆)su)(ξ)−F((−∆)su)(ξ) =
(
(τ + |ξ|2)s − |ξ|2s

)
û(ξ)

=


(
(τ + |ξ|2)s − |ξ|2s

)
û(ξ) if s < 1

(τ+|ξ|2)s−|ξ|2s
1+|ξ|2s−2 (1 + |ξ|2s−2)û(ξ) if s > 1

=:

{
m(ξ)û(ξ) if s < 1

m(ξ)F
(
u+ (−∆)s−1u

)
(ξ) if s > 1.

Now the proof follows from the Hormander multiplier theorem (see [72, p. 96]).

The following lemma appears already in [25, p. 46], but for the sake of completeness we
give a proof.
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Lemma 7.4.3 (Equivalence of norms). Let σ > 0. Then for p ∈ (1,∞) there exists a
constant C > 0 such that for every u ∈ S(Rn)

1

C

(
‖u‖Lp(Rn) + ‖(−∆)σu‖Lp(Rn)

)
≤ ‖(I −∆)σu‖Lp(Rn)

≤ C
(
‖u‖Lp(Rn) + ‖(−∆)σu‖Lp(Rn)

)
.

Proof. We set

Gσ(x) =
1

(4π)
σ
2

1

Γ(σ2 )

∫ ∞
0

e−π
|x|2
t e−

t
4π t

−n+σ
2

dt

t
,

which is the Bessel potential of order σ (see [72, p. 130]). Then∫
Rn
Gσ(x)dx = 1, Ĝσ(x) =

1

(2π)
n
2

1

(1 + |x|2)
σ
2

.

Setting f = (I − ∆)σu we can write u = G2σ ∗ f and by Young’s inequality one has
‖u‖Lp(Rn) ≤ ‖f‖Lp(Rn). Again writing u = G2σ ∗ f and taking Fourier transform we
obtain

F((−∆)σu) = |ξ|2σû = |ξ|2σ 1

(1 + |ξ|2)σ
f̂ =: m(ξ)f̂ ,

and by Hormander multiplier theorem we get ‖(−∆)σu‖Lp(Rn) ≤ C‖f‖Lp(Rn). Thus,

‖u‖Lp(Rn) + ‖(−∆)σu‖Lp(Rn) ≤ C‖(I −∆)σu‖Lp(Rn).

To conclude the lemma, it is sufficient to show that

‖(−∆)su‖Lp(Rn) ≤ C(n, s, σ, p)(‖u‖Lp(Rn) + ‖(−∆)σu‖Lp(Rn)), 0 < s < σ, (7.20)

thanks to Lemma 7.4.2.

In order to prove (7.20) we fix a function ϕ ∈ C∞c (B2) such that ϕ = 1 on B1. Then

F((−∆)su) = |ξ|2sû = |ξ|2sϕû+ |ξ|2s(1− ϕ)û = m1(ξ)û+m2(ξ)F((−∆)σu),

where m1(ξ) = |ξ|2sϕ(ξ), m2(ξ) = |ξ|2s−2σ(1 − ϕ(ξ)) are multipliers and we conclude
(7.20) by Hormander multiplier theorem.

Lemma 7.4.4 (Embedding to an Orlicz space). Let Ω be an open set with finite measure.
Then for every u ∈ H̃

n
2
,2(Ω) ∫

Ω
eu

2
dx <∞.

Proof. We set f = (−∆)
n
4 u. By [54, Proposition 8] we have

u(x) =

∫
Ω
G(x, y)f(y)dy, 0 ≤ G(x, y) ≤ Cn

|x− y|
n
2

,

where G is a Greens function.

We choose M > 0 large enough such that ‖f̃‖L2Cn < α0, where f̃ = f − fχ{|f |≤M}.
Then

|u(x)| ≤ C(M) + CnIn
2
f̃(x), In

2
f̃(x) :=

∫
Ω

|f̃(y)|
|x− y|

n
2

dy,
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and by [2, Theorem 2] we conclude the proof.

As a consequence of the above lemma one can prove a higher dimensional generalization
of Lions lemma [46] (for a simple proof see e.g. [38, Lemma 2.6]), namely

Lemma 7.4.5 (Lions). Let uk be a sequence in H̃
n
2
,2(Ω) such that

uk ⇀ u in H̃
n
2
,2(Ω), 0 < ‖(−∆)

n
4 u‖L2(Rn) < 1, ‖(−∆)

n
4 uk‖L2(Rn) = 1.

Then for every 0 < p <
(

1− ‖(−∆)
n
4 u‖2L2(Rn)

)−1
, the sequence {eα0puk}∞1 is bounded

in L1(Ω).

Lemma 7.4.6 (Poincaré inequality). Let Ω be an open set with finite measure. Then
there exists a constant C > 0 such that

‖u‖L2(Ω) ≤ C‖(−∆)
s
2u‖L2(Rn), for every u ∈ H̃s,2(Ω).

Proof. We have

|û(ξ)| ≤ 1

(2π)
n
2

‖u‖L1(Ω) ≤
1

(2π)
n
2

|Ω|
1
2 ‖u‖L2(Ω),

and hence

‖u‖2L2(Ω) =

∫
Rn
|û|2dξ =

∫
|ξ|<δ
|û|2dξ +

∫
|ξ|≥δ
|û|2dξ

≤ 1

(2π)n
|Ω|‖u‖2L2(Ω)|B1|δn + δ−2s

∫
|ξ|≥δ
|ξ|2s|û|2dξ

≤ 1

(2π)n
|Ω||B1|δn‖u‖2L2(Ω) + δ−2s

∫
Rn
|F((−∆)

s
2u)(ξ)|2dξ.

Choosing δ > 0 so that 1
(2π)n |Ω||B1|δn = 1

2 we complete the proof.

Lemma 7.4.7 (Compact embedding). Let Ω be an open set in Rn with finite measure.
Then the embedding H̃s,2(Ω) ↪→ H̃r,2(Ω) is compact for any 0 ≤ r < s (with the notation
H̃0,2(Ω) = L2(Ω)). Moreover, H̃

n
2
,2(Ω) ↪→ Lp(Ω) is compact for any p ∈ [1,∞).

Proof. We prove the lemma in few steps.

Step 1 The embedding H̃s,2(Ω) ↪→ H̃r,2(Ω) is continuous for any 0 ≤ r < s.

With the notation ∆0u = u we see that

‖(−∆)
r
2u‖2L2(Rn) =

∫
Rn
|ξ|2r|û|2dξ =

∫
|ξ|≤1

|ξ|2r|û|2dξ +

∫
|ξ|>1

|ξ|2r|û|2dξ

≤
∫
|ξ|≤1

|û|2dξ +

∫
|ξ|>1

|ξ|2s|û|2dξ ≤ ‖u‖2L2(Ω) + ‖(−∆)
s
2u‖2L2(Rn),

which is Step 1, thanks to Lemma 7.4.6

Step 2 For a given s > 0 and a given ε > 0 there exists R > 0 such that

‖u‖L2(Ω∩BcR) ≤ ε‖u‖H̃s,2(Ω), for every u ∈ H̃s,2(Ω).
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To prove Step 2 it is sufficient to consider 0 < s < 1, thanks to Step 1.

We fix ϕ ∈ C∞c (B2) such that ϕ = 1 on B1 and 0 ≤ ϕ ≤ 1. Setting ϕr(x) = ϕ(xr ) we get

‖(1− ϕr)u‖2L2(Rn) = ‖F((1− ϕr)u)‖2L2(Rn)

=

∫
|ξ|<R1

|F((1− ϕr)u)|2dξ +

∫
|ξ|≥R1

|F((1− ϕr)u)|2dξ

≤ 1

(2π)n
|BR1 |

(∫
Rn
|(1− ϕr)u|dx

)2

+R−2s
1

∫
|ξ|≥R1

|ξ|2s|F((1− ϕr)u)|2dξ

=: I1 + I2.

Using that supp (1− ϕr)u ⊂ Ω ∩Bc
r and by Hölder inequality we bound

I1 ≤
1

(2π)n
|BR1 ||Ω ∩Bc

r|
∫

Ω∩Bcr
|(1− ϕr)u|2dx ≤

1

(2π)n
|BR1 ||Ω ∩Bc

r|‖u‖2L2(Ω).

From [22, Proposition 3.4] we have∫
Rn
|ξ|2s|û|2dξ = C(n, s)

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy,

and hence

I2 ≤ R−2s
1

∫
Rn
|ξ|2s|F((1− ϕr)u)|2dξ

= C0R
−2s
1

∫
Rn×Rn

((1− ϕr(x))u(x)− (1− ϕr(y))u(y))2

|x− y|n+2s
dxdy

= C0R
−2s
1

∫
Rn×Rn

((1− ϕr(x))(u(x)− u(y))− u(y)(ϕr(x)− ϕr(y)))2

|x− y|n+2s
dxdy

≤ 2C0R
−2s
1

∫
Rn×Rn

(
(1− ϕr(x))2(u(x)− u(y))2

|x− y|n+2s
+
u2(y)(ϕr(x)− ϕr(y))2

|x− y|n+2s

)
dxdy

≤ 2C0R
−2s
1

(∫
Rn×Rn

(u(x)− u(y))2

|x− y|n+2s
dxdy +

∫
Rn
u2(y)

∫
Rn

(ϕr(x)− ϕr(y))2

|x− y|n+2s
dxdy

)
≤ C1R

−2s
1 (‖(−∆)su|‖2L2(Rn) + ‖u‖2L2(Ω)),

where in the last inequality we have used that∫
Rn

(ϕr(x)− ϕr(y))2

|x− y|n+2s
dx ≤ C, y ∈ Rn, r ≥ 1.

Thus we have Step 2 by choosing R so that |BR1 ||Ω ∩Bc
R| <

ε
2 where C1R

−2s
1 = ε

2 .

Step 3 The embedding H̃s,2(Ω) ↪→ L2(Ω) is compact for any 0 < s < 1.

Let us consider a bounded sequence {uk}∞k=1 in H̃s,2(Ω). Let ϕ, ϕ` be as in Step 2 (here
` ∈ N). Then for a fixed ` the sequence {ϕ`uk}∞k=1 is bounded in H̃s,2(Ω) (the proof is
very similar to the estimate of I2 in Step 2).

Since the embedding H̃s,2(Br) ↪→ L2(Br) is compact (see e.g. [22, Theorem 7.1]), there
exists a subsequence {u1

k}∞k=1 such that ϕ1u
1
k → u1 in L2(B2). Inductively we will have

ϕ`u
`
k → u` in L2(B2`) where {u`+1

k }
∞
k=1 is a subsequence of {u`k}∞k=1 for ` ≥ 1. Moreover,
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we have u`+1 = u` on B`. Setting u = lim`→∞ u
` it follows that ukk converges to u in

L2(Ω), thanks to Step 2.

Step 4 The embedding H̃s,2(Ω) ↪→ H̃r,2(Ω) is compact for any 0 ≤ r < s.

Since the composition of two compact operators is compact, we can assume that s−r < 1.

Let {uk}∞k=1 be a bounded sequence in H̃s,2(Ω). Setting vk = (−∆)
r
2uk we see that

{vk}∞k=1 is a a bounded sequence in H̃s−r,2(Ω). Then by Step 3 (up to a subsequence) vk
converges to some v in L2(Ω) which is equivalent to saying that (up to a subsequence)
uk converges to some u in H̃r,2(Ω).

Finally, compactness of the embedding H̃
n
2
,2(Ω) ↪→ Lp(Ω) follows from the compactness

of H̃
n
2
,2(Ω) ↪→ L2(Ω), Theorem J and Lemma 7.4.9.

Lemma 7.4.8 (Exact constant). We set

f(x) = log
1

|x|
, x ∈ Rn.

Then

(−∆)σf(x) = γn22σ−nπ−
n
2

Γ(σ)

Γ(n−2σ
2 )

1

|x|2σ
, 0 < σ <

n

2
,

where Γ is the gamma function and γn = (n−1)!
2 |Sn|.

Proof. From Lemma 2.5.4 we have

(−∆)σf(x) = (−∆)σf(e1)
1

|x|2σ
.

To compute the value of (−∆)σf(e1) we use the fact that 1
γn

log 1
|x| is a fundamental

solution of (−∆)
n
2 (see for instance Lemma 2.5.1), that is∫

Rn
log

1

|x|
(−∆)

n
2 ϕ(x)dx = γnϕ(0), ϕ ∈ S(Rn).

Using integration by parts, which can be verified, we obtain

γnϕ(0) =

∫
Rn
f(x)(−∆)

n
2 ϕ(x)dx

=

∫
Rn

(−∆)σf(x)(−∆)
n
2
−σϕ(x)dx

=

∫
Rn

(−∆)σf(e1)

|x|2σ
(
|ξ|n−2σϕ̂

)∨
(x)dx

= (−∆)σf(e1)

∫
Rn

(
1

|x|2σ

)∨
(ξ)
(
|ξ|n−2σϕ̂

)
dξ

= (−∆)σf(e1)2n−2σ−n
2

Γ(n−2σ
2 )

Γ(2σ
2 )

∫
Rn

1

|ξ|n−2σ

(
|ξ|n−2σϕ̂

)
dξ

= (−∆)σf(e1)2n−2σ−n
2

Γ(n−2σ
2 )

Γ(2σ
2 )

(2π)
n
2 ϕ(0),
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where in the 4th equality we have used that

F
(

1

|x|n−α

)
= 2α−

n
2

Γ
(
α
2

)
Γ
(
n−α

2

) 1

|x|α
, 0 < α < n, (7.21)

in the sense of tempered distribution. Since in our case F is the normalized Fourier
transform, the constant in the right hand side of (7.21) appears slightly different from
[44, Section 5.9].

Hence we have the lemma.

The following lemma is the Vitali’s convergence theorem.

Lemma 7.4.9 (Vitali’s convergence theorem). Let Ω be a measure space with finite
measure µ, that is, µ(Ω) <∞. Let fk be a sequence of measurable function on Ω be such
that

i) fk
k→∞−−−→ f almost everywhere in Ω.

ii) For ε > 0 there exists δ > 0 such that∫
Ω̃
|fk|dµ < ε for every Ω̃ ⊂ Ω with µ(Ω̃) < δ.

Or,

ii′) There exists p > 1 such that

sup
k∈N

∫
Ω
|fk|pdµ <∞.

Then fk → f in L1(Ω).
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[11] H. Brézis, J. M. Coron: Convergence of solutions of H-systems or how to blow
bubbles, Arch. Rat. Mech. Anal. 89 (1985) 21-56.
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