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Chapter 1

Introduction

In this dissertation we study higher order (local and non-local) partial differential equa-
tions (PDEs). These equations naturally arise in the study of differential geometry,
calculus of variations, functional analysis and various mathematical inequalities. In gen-
eral they are of critical type which makes them more interesting from the point of view
of PDEs.

We mainly focus on the prescribed Q-curvature equation
(=A)2u=Qe™ in QCR" (1.1)

where n is a positive integer and {2 is a domain in R". We also study the Adams-Moser-
Trudinger equation ,
(=A)2u = due?™  in Q C R, (1.2)

which appears in the study of critical points to a Adams-Moser-Trudinger functional.
Below we describe them briefly.

1.1 Prescribing ()-curvature problem

Let (M2, g) be a 2 dimensional smooth Riemannian manifold and let g, := e*g be
a conformal metric where u is a smooth function on M?2. Then the Laplace-Beltrami
operator transform according to the rule (conformal covariance)

A, = A, (1.3)
A famous and old problem in differential geometry is the following: Given a smooth

function K on (M?, g), does there exist a conformal metric g, such that K is the Gaussian
curvature of g,?

This problem is equivalent to solving
—Agu+ Ky =Ke* in M?, (1.4)

where K is the Gaussian curvature of g.
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The above equation (1.4) relates the Gaussian curvatures of the metrics g and g, = e?g.
Moreover, if M? is closed then integrating (1.4) on M? we obtain

/ Kgdvg:/ Kdvg,, gu:=¢*"g, (1.5)
M? M?

and hence the total Gaussian curvature is invariant under conformal transformations. In
fact, the total Gaussian curvature is exactly 27x(M?), which is the well-known Gauss-
Bonnet theorem, where y(M?) is the Euler characteristic of M?2.

On a 2m dimensional Riemannian manifold (M?™, g), higher order curvatures ng and
higher order operators Pgm were introduced in [8, 29]. The curvature ng and the
operator P;m are known as @Q-curvature and Paneitz operator (or GJMS operator) re-
spectively. An interesting fact about the operator Png is that it is conformally covariant,
that is (analogous to (1.3))

2m __ 2mu p2m — L2u
Py =PI, gy = e

The curvature function Q?JT (Q-curvature of g,,) satisfies

P2my 1 Q2m = Q2mem, (1.6)

which is a higher dimensional analog of (1.4). When M?™ is closed, integrating (1.6)
and using that the operator P;m is in divergence form, one obtains

2m _ 2m
L Qg dvy = L qu dvg, .
m m

That means the total ()-curvature is invariant under conformal transformations.

In dimension 4 an explicit expression of Q;l and Pg4 was obtained by Branson-Orsted
[10], Paneitz [62]:
1 .
Q= 6(Rg — 3|Ricy|* — AyRy),
2
Py = (=Ag)? - div(5 Ryg — 2Ricy)d,

where R, and Ric, are the scaler and Ricci curvatures of g respectively, and d is the
differential.

Although an explicit formulas for the Q-curvature and Paneitz operator is not known
in general manifold, we know them on the Euclidean space R™ and on the round sphere

n

S™. For instance we have P}’ = (—A)z, Q7 =0 on R" (with g = |dz|?), and on (S, g)
(g is the round metric)

n—2
Hkio (=Ay+k(n—k-1)) if n is even

Py = 2\ 2 152
(_Ag +("5) ) [1.20(=Ag + k(n -k —1)) if n is odd,

9
and Qf = (n — 1)L

We consider Eq. (1.6) when the manifold M?™ is the Euclidean space R?™. Then (1.6)
reduces to
(=A)"u = Qe*™  in R*™. (1.7)



The above equation (1.7) with m = 1 (Q = const > 0) is the well-known Liouville
equation. It was shown by Liouville [47] that any solution u to (1.7) with m = 1 and
@ =1 can be given by

e, =tog (AHENS). =gricec,

for some meromorphic function f on C such that |f'| # 0 at all regular points. For
example, the classical solution (of the Liouville equation) namely (see [13])

2 2
ul(a:)ZIOg <1_+_$|2>, .'EER y
can be obtained from
1 0
e =z [ =T and fe) =S, deR

Another explicit solution (depending on one variable only)

uz(z,y) = log <Coshx

). @aer
can be obtained from
f(z)=¢€* f(z)= tan(—%z) and f(z) = tanh(z).

Observe that the conformal metric g1 := €?“!|dz|? has finite volume, that is

/ dvg, :/ e*dx < oo,
R2 R2

whereas go := €2“2|dz|? has infinite volume. An interesting point is that the finite
volume condition characterizes the solution u;. More precisely, if u is a solution to (1.7)
(in dimension 2, @ = 1) such that the metric g, := €2%|dz|? has finite volume, then up
to a translation and dilation we have u = wu;.

The geometric meaning of the equation (1.7) also leads us to find solutions of the form u;.
Indeed, any smooth solution of (1.7) corresponds to a conformal metric g, = e**|dz|?
on R?™ such that Q-curvature of g, is Q. Since the round metric of the sphere S2™
has the constant Q-curvature (2m — 1)!, pulling back the round metric on R*™ via the
stereographic projection, one can obtain a solution

2
1+ |z|?

u(z) = log ( ) , xeR™,
to (1.7) with @ = (2m — 1)!. In fact, by translation and dilation, one has a family of

solutions, namely

2\

U\ o (7) = log <1+>\2|$3002> . A>0, 20 € R*™,

These solutions are known by spherical solution.
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Now we consider odd dimensional analogous equation to (1.7), namely

(=A)Zu = Qe™ in R". (1.8)
We also assume that the total Q-curvature of the conformal metric g, := e*%|dx|? is
finite, that is
Qe™dr =: k € (—00, 00). (1.9)
R

A simple application of maximum principle shows that (see [21, 52]) there exists no
solution to (1.8)-(1.9) for n =1,2 and @ = —1.

In the following chapters (Chapters 2,3,4 and 5) we address the following three questions:

(i) What are the solutions to (1.8)-(1.9)7
(ii) How do they behave at infinity?

(iii) What are the possible values of k7

1.2 Adams-Moser-Trudinger type inequalities

Let ©Q be a bounded domain in R™ with smooth boundary. The Sobolev embedding
theorem states that the space Wf P(Q) continuously embeds into L4(2) for all 1 < g <
n

nf’;cp if kp < n and into C"™*(2) if kp > n where m is an integer such that k—m—a = 2

and a € (0,1). However, it is not true that Wéc’p(Q) C L*(Q) for kp = n. In the
borderline case, as shown by Trudinger [76], VVO1 () embeds into an Orlicz space and
in fact

anT
sup / e dr < oo,
wEWg ™ (@), IVl 1 0y <172

for some a > 0. This leads to a natural question: is there a function F' : R — [0, c0)
with “optimal growth” such that

sup / F(u)dr < oo? (1.10)
“GW&’W(Q%”V“HLn(Q)Sl Q

In a famous work Moser [61] found an optimal function F(t) = F,(t) := e**" " which
1
satisfies (1.10), where a,, := n|S"~!|7=1. In fact, if F satisfies

F(t) = f(OF(0), Jim f(2) = o0,

then the supremum in (1.10) is infinite. Adams [2] generalized this result for higher
order derivatives. More precisely, if k is a positive integer less than n, then

sup / F(u)dx < oo, (1.11)
u€C () IVFull g o, SV



for
F(t) = Fin(t) := et ",
where . L
i [’m] " i ks odd,
R CTT R N =
[ () ] , if k£ is even,
and

— VAT if ks odd
' A> if k£ is even.

Moreover, the supremum in (1.11) is infinite if F satisfies

F() = F(OFint). Jim f(t) = ox.

Notice that if F' is monotone increasing then the supremum in (1.11) is equivalent to

sup /F(u)dx (1.12)
ueWy (@), 74l y =1 ¢

In the particular case n = 2k and F(t) = €* (b > 0), if the supremum in (1.12) is
attained by some u € W05’2(Q), then u satisfies

(=A)2u = Aue®™ in Q, (1.13)
for some A > 0.

We study (in Chapter 7) the sharpness of some fractional Adams-Moser-Trudinger type
inequalities. As an application, for every A € (0, A1), we prove the existence of solutions
to (1.13) with Dirichlet boundary condition, where ); is the first eigenvalue of (—A)Zz
on €.

1.3 Structure of the chapters

In Chapter 2 we classify all solutions to (1.8)-(1.9) with = const > 0 in terms of their
behavior at infinity for every n > 3 odd. Then we develop some criteria to characterize
the spherical solutions. This result is very crucial in studying blow-up analysis.

In Chapter 3 we prove the existence of solutions with prescribed volume (equivalently,
total Q-curvature) and asymptotic behavior to (1.8)-(1.9) with @ = const # 0 in even
dimension n > 4. In the negative case we can prescribe any k € (—o0,0), but in the
positive case only in (0,A;) (A; is a dimensional constant). This will be done by a
Schauder fixed point argument, and blow-up analysis.
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The main difference between the positive and negative cases is that if (uy) is a sequence
of solutions to

(—A)"uy, = Qpe*™* in By C R*™, / Mk dy < C, |Aug|dz < C,
BR BR

for some Q; = Qoo in Cp) (Bg), such that

max ug(x) = u(xg) = 00, Tk — Too,
T€BR
2

then Qoo(Zoo) > 0 and for any € > 0 (small)

lim Qre®™ dr > A;.
k—o00 Be(zoo)

Thus one rules out a possible blow-up easily if Q@ < 0. On the other hand, if Q; > 0,
to rule out a possible blow-up we require that

lim sup Qre’™dr < Ay.
k—o0 BR

In Chapter 4 we extend the results of Chapter 3 to odd dimension using a variational
approach. We find the solutions as critical points of some energy functional. Again, we
need to assume that £ € (0, A7) in the case when @ is a positive constant and x could
be anything in (—o0,0) in the negative case. This restriction k < A; (in the positive
case) plays an important role in showing that the functional is coercive.

In Chapter 5 we address the following problem: what are the possible values of x (as
defined in (1.9))? We prove that for every n > 5 and for every x € (0, 00) there exists a
solution to (1.8)-(1.9) with @ = const > 0 (in fact  can be a non-constant function).
Our approach is again based on a Schauder fixed point argument, however, this time we
need a delicate blow-up analysis as we are allowing x > A;. The main idea is that one
can recover compactness (for a sequence of radial solutions) on a bounded domain by
prescribing “boundary value at infinity”, that is, by prescribing asymptotic behavior.
More precisely, if (¢r) is a sequence of radial solutions to

1 1 4 1
i (z) = / log < ) P em/”“(y)dy—}— —|AYL(0)|(|z]? = |z|*) + e,
@ == tox( AU O)[(2f? — [z
where ¢ € R is a normalization constant such that

/ I m b ) gy — g

then the sequence () is precompact.

Our approach explains why n = 5 is the first dimension in which large total Q-curvature
(equivalently, large volume) appears. Moreover, when @) is non constant and decays fast
enough at infinity, this approach works also in lower dimension n = 3, 4.



In Chapter 6 we study (1.7) on a domain in R*™. We construct blowing-up sequences
of solutions (uy) to the prescribed @-curvature problem

where 0 C R?™ is an open domain and m > 2. For a given ¢ € C™ () satisfying
AMp=0 inQ, ¢<0, ¢#0, S,:={zecQ:¢(x)=0}+#0,

and given Q) (uniformly bounded) we prove the existence of solutions (uy) to (1.14)
such that uy, — oo locally uniformly on S, and u, — —oo locally uniformly on €2\ S,.
In addition to this, (under certain conditions on @) we can also prescribe the total

Q-curvature of the metric e?™*|dx|? in (0, %)

In Chapter 7 we study (1.13) for every odd integer n > 1. We prove the existence of
solution for A € (0, A1) by minimizing a suitable energy functional.

Since any non-trivial (weak) solution to (1.13) belongs to the Nehari manifold S, that is

5o fue B\ (O JulP = A [ e asf
Q
we look for a minimizer of the energy functional J on S, where
H52(Q) = {u e L3(Q) :u=0on R*\ Q, (-A)fue L*R")}.

The main difficulty in the variational approach is the lack of compactness, more precisely
the global Plais-Smale condition does not hold. However, the Palais-Smale condition still
holds on (—o0, ¢g) for some ¢y > 0. Therefore, in order to recover the compactness, it is
sufficient to show that for a minimizing sequence (uy) C S one has limy_, oo J(ug) < co.
It turns out that the constant ¢g is related with the best constant in Adams’ inequality
(it also depends on b), and in fact, a sharp Adams type inequality in a fractional settings
yields that limy o J(ug) < co.

The content of the Chapters 2, 3, 4, 5, 6 and 7 corresponds to the papers [32], [37], [33],
[34], [36] and [35] respectively.






Chapter 2

Classification of solutions to a fractional
Liouville equation in R"

In this chapter we study the nonlocal equation
(=A)2u = (n—1)le™ in R", / e"dr < oo,

which arises in the conformal geometry. Inspired by the previous work of Lin and
Martinazzi in even dimension and Jin-Maalaoui-Martinazzi-Xiong in dimension three
we classify all solutions to the above equation in terms of their behavior at infinity.

2.1 Introduction to the problem and the main theorems

We consider the equation
(=A)2u = (n—1)!e™ in R (2.1)
Here we assume that

V= / e"dr < oo, (2.2)

and we shall see both the left and right-hand side of (2.1) as tempered distributions. In
order to define the left-hand side of (2.1) as a tempered distribution, one possibility is

to follow the approach of [40], i.e. we see the operator (—A)z as (—A)z := (—A)% o
(—A)nTil for n > 1 odd integer with the convention that (—A)° is the identity, where

—A)? is defined as follows. First for s > (0 consider the space
(-4) D
Ls(R™) := v e L, (RY) :/ _ @] dr < ooyp. (2.3)
o ge 1+ |z|?+2s

Then for v € Lg(R™) we define (—A)®v as the tempered distribution defined by

((—A)%v,p) := v(—=A) pdx for every ¢ € S(R"), (2.4)
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where

S(R") := {u € C®(R") : sup |z|V|D%(z)| < oo for all N € N and « € Nn}
T€R™

is the Schwartz space, and

(—A)%p() = [E[*°¢(€), for p € S(R™).
Here the normalized Fourier transform is defined by

1

@7 Jo (x)e ®4de, fe LY(R").

FE) = f(&) =

Notice that the integral in (2.4) converges thanks to Proposition 2.2.1 below.

Then a possible definition of the equation
(-=A)zu=f inR" (2.5)
is the following:

Definition 2.1.1. Given f € S8'(R"™), we say that u is a solution of (2.5) if

we WBHRY), AT ue L (R"),

loc

and

/n(—A)Tu(a:)(—A)%np(a:)dx = (f,p), forevery ¢ € S(R"). (2.6)

While Definition 2.1.1 is general enough for our purposes, requiring a priori that a
solution to (2.1) belongs to I/VIZC_I’I(R”) might sound unnecessarily restrictive. In fact
it is possible to relax Definition 2.1.1 as follows.

Definition 2.1.2. Given f € §'(R"), a function u € L2 (R") is a solution of (2.5) if

/n w(x)(=A)2p(x)dx = (f, ), for every ¢ € S(R™). (2.7)

Notice again that the integral in (2.6) and (2.7) are converging by Proposition 2.2.1
below.

As we shall see, a function u solving (2.1)-(2.2) in the sense of Definition 2.1.2 also
solves (2.1) in the sense of Definition 2.1.1, and conversely, see Proposition 2.2.6 below.
Therefore, from now on a solution of (2.1)-(2.2) will be intended in the sense of Definition
2.1.1. In fact it turns out that such solutions enjoy even more regularity:

Theorem 2.1.1. Let u be a solution of (2.1)-(2.2) (in the sense of Definition 2.1.1 or
2.1.2). Then u is smooth.

Geometrically any solution u of (2.1)-(2.2) corresponds to a conformal metric g, :=
e?|dz|? on R™ (|dz|? is the Euclidean metric on R") such that the Q-curvature of g,
is constant (n — 1)!. Moreover the volume and the total @Q-curvature of the metric g,



11

are V = [p, e™dr < oo and k = [, (n — 1)le"dz < oo respectively. When n =1 a
geometric interpretation of (2.1) in terms of holomorphic immersion of D? into C was
given in [21, Theorem 1.3]. If u is a solution of (2.1) then for any constant ¢, @ :=u — ¢

satisfies i
(—=A)2a = (n—1)le™e™ in R".

This shows that we could take any arbitrary positive constant instead of (n — 1)! in
(2.1), but we restrict ourselves to the fixed constant (n — 1)! because it is the constant
@Q-curvature of the round sphere S™.

Now we shall address the following question: What are the solutions to (2.1) and in
particular how do they behave at infinity?

It is well known that the equation (2.1) possesses the following explicit solution

o) =tog (73 ).

obtained by pulling back the round metric on S™ via the stereographic projection. By
translating and rescaling this function u one can produce a class of solutions, namely

2\
’LL)\@O(CIZ') = log () s

14+ A2|z — x0|?

for every A > 0 and xp € R™. Any such w4, is called spherical solution. Chen-Li
[19] showed that these are the only solutions in dimension two but in higher dimension
non-spherical solutions do exist as shown by Chang-Chen [15]. Lin [45] for n = 4 and
Martinazzi [56] for n > 4 even classified all solutions of (2.1)-(2.2) and they proved:

Theorem A ([45], [56]). Let n > 4 be an even integer. If u solves (2.1)-(2.2), then u
has the asymptotic behavior

u(z) = —alog(|z]) — P(x) + C+o(1), o(l) =0 as |z| = oo,

where o = % and P is a polynomial of degree at most 2m — 2 bounded from below.

Moreover, P is constant if and only if u is spherical. When m = 2 one has V € (0,]5%|]
and V = |S* if and only if u is spherical.

When 7 is odd things are more complex as the operator (—A)% is nonlocal. In a recent
work Jin-Maalaoui-Martinazzi-Xiong have proven the following theorem in dimension
three:

Theorem B ([40]). Let u be a smooth solution of (2.1)-(2.2) with n = 3. Then u has
the asymptotic behavior given by

u(x) = —P(x) — alog |z| + oflog [z,

where P is a polynomial of degree 0 or 2 bounded from below, o € (0,2] and o = 2 if
and only if degree(P) = 0.

The restriction to dimension 3 in Theorem B dramatically simplifies the proof, since in
this case one can easily show that Au < 0 (Lemma 17 in [40]) and use the classical
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maximum principle, or Harnack’s inequality. This argument is essentially the same as
in Lin’s previous work [45], both cases resting on the formula

nu(y)
—Au(z) = cn/ c 5dy + a, for some a > 0,
R7 \x - y!

which holds for n = 3,4. When n > 4 the constant a should be replaced by a polynomial
of degree n — 4 for n even and n — 3 for n odd, whose sign one cannot control. In spite of
this Martinazzi [56] was able to handle the even-dimensional case using explicit Green
representation formulas and divergence theorems (see in particular Lemmas 12 and 13
in [56]) that are not available for fractional powers of the Laplacian. This makes the
generalization of Theorem B to odd dimension n > 5, namely our following Theorem
2.1.2 particularly challenging.

In order to state it we define
—1)! 1 —1)!
o) = B /. o (Hy'> ey, = B Dion (2
Yn n |z — y| 2
where u is a smooth solution of (2.1)-(2.2). Then we have

Theorem 2.1.2. Let n > 3 be any odd integer and let u be a smooth solution of (2.1)-

(2.2). Then
u=uv-+ P,

where P is a polynomial of degree at most n — 1 bounded from above, v is given by (2.8)
and it satisfies
v(xz) = —alog|z| + o(log |x|), as|z| — oo,

where o = % Moreover

lim DPv(x) =0 for every multi-index f € N* with 0 < || <n — 1.

|z| =00

As a corollary of Theorem 2.1.2 one can obtain necessary and sufficient conditions under
which any solution of (2.1)-(2.2) is spherical, in analogy with [45, 56]. More precisely
we have the following theorem.

Theorem 2.1.3. Let u be a smooth solution of (2.1)-(2.2). Then the following are
equivalent:

(i) w is a spherical solution.

(ii) deg(P) =0, where P is the polynomial given by Theorem 2.1.2.

(iii) u(z) = o(|x|?) as |z| — oo.

(iv) lim|y o0 ANu(z) =0 forj=1,2,..., "Tfl

(v) liminf ;o Ry, > —00, where Ry, is the scalar curvature of g.

(vi) T gy can be extended to a Riemannian metric on S™, where m is the stereographic
projection.
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Moreover, if u is not a spherical solution then there exists a j with 1 < j < ”Tfl and a
constant ¢ < 0 such that

lim Alu(z) = c. (2.9)

|x|—o00

Due to the equivalence of Definitions 2.1.1 and 2.1.2 (Proposition 2.2.6), Theorems 2.1.2
and 2.1.3 have numerous applications. For instance, Theorems 2.1.2 and 2.1.3 have
been used in [48] under Definition 2.1.2, whereas in Chapter 5 under Definition 2.1.1.
More generally we expect Theorems 2.1.2 and 2.1.3 to play the same central role that
Theorem A had in the study of problems of prescribed @-curvature (see e.g. [24], [53])
or the Adams-Moser-Trudinger embeddings (see e.g. [58]), this time in odd dimension
and in the non-local context, the idea being that after a blow-up procedure one naturally
ends up with solutions of (2.1)-(2.2), whose classification is then crucial.

In dimension 3 and 4 if u is a smooth solution of (2.1)-(2.2) then V' € (0,|S™|] (see [45],
[40]), but V' could be any positive number in dimension n > 5 (see Chapter 5).

We also mention that using different techniques Da Lio-Martinazzi-Riviere [21] have
discussed the case in one dimension, proving that all solutions are spherical (see also
[20] for yet a different proof, avoiding the moving-plane technique).

2.2 Equivalence of definitions

Proposition 2.2.1. For any s > 0 and ¢ € S(R™) we have

s C
() (@) < e

where (—A)*p := (=A)? o (=A)*p, where 0 € [0,1), k € N and s = k + 0.

In order to prove Proposition 2.2.1 let us introduce the spaces
Su(R™) : = {p € S(R™) : D"¢(0) = 0, for |a] < k}
= {go e S(R"): /nyo‘go(y)dy =0, for |a| < k}, k=0,1,2,...
S_1(R") : = S(R™)

Proposition 2.2.1 easily follows from the remark that AFy € Sop_1(R™) for k € N and
¢ € S(R"), and from Lemma 2.2.2 below.

Lemma 2.2.2. Let ¢ € S(R") and o € (0,1). Then
A (e < C n
I(=4) SD(CCH_W’ z € R™

Proof. Since (—A)%p € C*°(R") for ¢ € S(R™), it suffices to prove the lemma for large
z. For a fixed x € R™ we split R" into

2

A1 ::Bm andAg ::Rn\Bm.
2
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Then using (2.28) we have

(~AY (@) < 5o (i + 1),

where

I; =

i=1,2.

o +y) +e(r—y) — 2¢0()
/Az ’y|n+20' dy

Noticing that on Ay
[o(@ +y) + oz —y) = 20(2)| < [ D*0ll LB, @)Yl
lzl

we get,

dy 9%
I < ||D280||L°°(B‘$‘ (z))/ Th—91%5 < C||D2@||L°°(B‘x|(x))‘x|2 2.
Al |y| 2

Iz1
oz —y) ‘
/A2 |y|t2e

o(r —y) ’ —2
——=dy| + C|p(x)||z
/A i (@)l

On the other hand

dy
Iy < 2|o(z / —7 49
2 < 2[p(x)] o Ty

<2

=: 23 + C]cp(m)Hx]*QU.

Changing the variable y — = — y we have

o(y)
)

|m—y|>% |$ - y|n+2o

< / ) — / W) g,
o—yl> 2L jy|> 12 |2 =y i<l [z =yl

o(y) o

< T —dy| + Cl|@| oo (ay) |7

/y|<g |l‘ _ y|n+2cr ( 2)

=: Iy + C|lp|| oo ag) l2] 7>

Finally, to bound I4 we use the fact that ¢ € Si. Setting f(z) = W and using

> Daoa(x) /Rn Yy o(y)dy =0, x#0,

lal<k
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we obtain

o(y)
—=dy
/|y<; |(lZ _ y|n+20

:/B Ix—(pz(/llj’z%’dy_ 2 Da&f!(x)/jg y ey — 3 Daf(x)/B y*ely)dy

a! c
Lzl la| <K lzl la|<k lz|
D f(x Do f(x .
=/ o) [ fe—n)-D v a,( ) dy— a,( )/ Y o(y)dy
Blal la|<k ' lajl<k Il
D%f(x
=/ e(y) Y. y'Rs(&)dy— ) a,( )/C y*o(y)dy,
Bla |8l=k+1 aj<k Izl
where Rg(&y) satisfies
= PO S rse), i< g e B )
|| <k |8|=k+1
and o
R <C D~ _—
‘ ﬁ(&y)‘ | Ilnak)jrl zegl‘a‘x( ‘ f )‘ — ’x|n+20—+k+1
Therefore,
< > [ ol irsiay - 35 PR [ ety
\ﬁl k+1 || <k
[D*f ()| f | o
< Wﬁkﬂ/ @)yl dy + V]l oo () Z || VieWw)ldy.
|| <K
We conclude the proof. O

Lemma 2.2.3. Let f € L'(R"). We set

oo 1 1+ |yl n
o(x) = %/Rn log <\$—y\> fly)dy, zeR". (2.10)

Then

(i) o € W'-"H(R™) and

1 1
D% =— [ Dglo ( +“")J‘"(y)dy, 0<|a|<n-1
Tn JRn |x—y|

(ii) D*0 € Li(R™) for every multi-index o € N™ with 0 < |of < n — 1.
2

(iit) For every ¢ € S(R™)

| a8t = [ (-8)Fa@)-a) s = [ @)@

n

that is © solves (2.5) in the sense of Definition 2.1.1 and 2.1.2.
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Proof. Proof of (i) is trivial.

To prove (i7) first we consider 0 < |a| < n — 1 and we estimate
[
<¢ [l [, o)
d d
=C . TN </Bl(y> QT s R BN ey o M) w

dx dx
<c| Ify / +/ ) dy
g 0! < Biw) [T =yl Jrm\By ) (1+[2[" )

< 0.

The case when o = 0 follows from

[0()] 1 1
e < — ntl
Rn 1 + |$|n n JRn 1 + |.I| R
1+
1 ‘IOg [z—y| ‘log |z—y]
== e [ e [ ) gy
Yn JRn B$(y) 1+ ’.’L“TH—I Bi(y) 1+ ]x\”"‘l

1 log(2 + |x|) log(2 + |x|)
< — fly / d:z—i—/ ——————= + |log|x —y||dx | | dy
Yn Jrn | ( )| ( Be(y) 1+ ’x|n+1 Bi(y) 14+ |x|n+1 | ’ H

1 log(2 + |z|)
=0 Jen |f(y)] (/Rn de+ [ log() L1 (my) ) dy

< 00,

where in the first inequality we used

1 S1—i—|y\
L+ z] = |z —y

<2+ |z|, 1+ |yl <2+ |z| for |z —y| > 1.

(7i7) follows from integration by parts and Lemma 2.5.1. O

Lemma 2.2.4. Let u be a solution of (2.5) with f € L*(R™) in the sense of Definition
2.1.2. Let v be given by (2.10). Then p := u— 1 is a polynomial of degree at most n — 1.

Proof. Let us consider a function ¢ € C°(R™ \ {0}). We set

(Y "), ¥(z):=(—x), r €R"
pi= 7 () €S, B = v(-a), s R

Now the growth assumption to w in Definition 2.1.2 implies that u is a tempered dis-
tribution and at the same time the function v is also a tempered distribution thanks to
Lemma 2.2.3. Therefore p € Lx(R") and p € S'(R"). Indeed,

.00 = [ pide= [ pa)(-8)Ep@)ds =0,

where the last equality follows from the Definition 2.1.2 and Lemma 2.2.3.
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Thus p is a tempered distribution with support p C {0} which implies that p is a
polynomial and combining with p € L%(Rn) we conclude that degree of p is at most
n—1. O

Lemma 2.2.5. Let u be a solution of (2.5) with f € L*(R™) in the sense of Definition
2.1.1 and let © be given by (2.10). If u also satisfies

/ utdx = o(R*™) or / u~dz = o(R*) as R — oo, (2.11)
BR BR

then p :=u — v is a polynomial of degree at most n — 1.

Proof. We have An%lp € L%(R”) and it satisfies

/ (—A)%p(—A)%@dx =0, forevery p € S(R"), (2.12)

thanks to Lemma 2.2.3. Moreover, by Schauder’s estimate (see e.g. [40, Proposition
22]) for some a > 0

ne1 ne1
[(=A) 2 pllcoaip,) < CIl(—A) 2 pHL%(Rn)-

Adapting the arguments in [40, Lemma 15] one can get that (—A)anlp is constant in
R™ and hence (—A)nTHp = 0 in R". Noticing that o € Lz (R") we conclude the proof
by Lemma 2.5.6 below. 0

Proposition 2.2.6. Let f € L'(R"). Then the following are equivalent:

(i) u is a solution of (2.5) in the sense of Definition 2.1.2.

(i1) w is a solution of (2.5) in the sense of Definition 2.1.1 and u satisfies (2.11).
In particular, Definition 2.1.1 and Definition 2.1.2 are equivalent for the solutions of
(2.1)-(2.2).
Proof. If p is a polynomial of degree at most n — 1 then p € Lg(R”) and

n—1

| petyiede= [ p-a)F (-a)ipds =, [ (-a)pds=0, peSE),

where C), := (—A)HT_1 p is a constant and the second equality follows from integration by
parts (which can be justified thanks to Lemma 2.2.2). Now the equivalence of (¢) and (#7)
follows immediately from Lemmas 2.2.3, 2.2.4 and 2.2.5. To conclude the proposition
notice that the condition (2.2) implies

1 1 \%4
/ uTde = / nutdx < / edr < —.
Br N JBg N JBgr n
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2.3 Regularity results

Proof of Theorem 2.1.1 First we write (n—1)!e™ = fi + fo where f; € LY(R")NL>®(R")
and fo € LY(R"). Let us define the functions

1 1
ui(x) = 7/R log <|$+ |y\|> fily)dy, xeR", i=1,2.

Then we have that uy € C" }(R") and us € W], LLR"). Indeed, for p € (0, H%H)
using Jensen’s inequality

orplual g, ox np|| f2| o <1+!y|>f2(y) > .

/BR e / p(/ v B\l TRl ) ¢
// (p!sz g<1+!y\>>|f2(y)!dydw
s e w—y)) Tfl

1 14 ’ ‘ pr2II
Y
=i Lewl [ ()T e
[1f2]l /n Br \|7 =Yl
where ||-|| denotes the L!'(R™) norm. Moreover, by Lemma 2.2.3 (with & = u; and

f = fi) we have

/ (—A)%ui(—A)%@dx = / fipdx, for every ¢ € S.
n R’VL

We set
U3 ‘= U — Uy — uUg.

We claim that the function us is smooth in R™ whenever u is a solution of (2.1)-(2.2)
in the sense of Definition 2.1.1 or 2.1.2. Then taking (2.13) into account we have ™ €
LP (R™) for every p < oo and hence fo € L? (R™) . Therefore, for every x € B by

loc loc
Hoélder’s inequality
1+ |y
log<|x | |>‘|f2 )|dy

ug(z)] < C

log(lﬂy')’\fz Ndy +C

|z

lyl<2R ly|>2R
< C (log(1+ 2R)| fall £ (Byp) + 1108( ) 22(Bam) I f2ll 22(Bar) )
+ Clog(3R)|| f2llL1(mg )

and for every 0 < |a] < n — 1 again by Holder’s inequality

|D%ug(x)| < C \a||f2( y)ldy +C ‘a||f2( y)ldy
lyl<2R |1‘—y| ly>2R Ix—yl

< OO (Bym) 1 f2ll Lo 3,y + CR foll o1 85

R)’

where p € (1,-"g). Thus uy € W/ZZ;LOO(R”) and by Sobolev embeddings we have
ug € C"2(R"), Wh1ch implies that v = u; + ug + uz € C" 2(R"). Now to prove
u € C*°(R™) we proceed by induction.
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Set @ = u; + ug. Then for 0 < |a| <n-—1

(n—1)!
Tn R

L+ |yl
|z — g

D%u(x) = D¢ log < ) W) gy =: Ko(z —y)e™Wdy, = eR".
R

Notice that the function K, is smooth in R™ \ {0} and it also satisfies the estimate

COé n n
|D5Ka(95)’§m7 BeN", zeR"\{0}.

We rewrite the function Du(x) as

Doie) = [ nle— y)Kale — e @y + [ (1= nfa ) Kae — ) Dy

n

= /n n(z —y)Ka(z — y)enu(y)dy + / (1- U(y))Ka(y)enu(g”_y)dy,

n

where n € C*°(R") satisfies
(z) = 0 if|z| <1
M=V 1 i o] > 2.
If we assume u € C¥(R") for some integer k > 1 then observing that nK, € C®(R"),
DA(nK,) € L®(R") and 1 — 7 is compactly supported, one has for |8 < k
DY) = | DJ(n(z — y)Kale —y))e™Wdy + / (1= n(y) Kaly) D™V dy.
R n

Thus u € C*~1(R") thanks to the claim that uz € C*°(R"), which proves our induc-
tion argument.

It remains to show that uz € C°°(R™) whenever u is a solution of (2.1)-(2.2) in the sense
of Definition 2.1.1 or 2.1.2.

In the case of Definition 2.1.2 from Lemma 2.2.4 we have that u3 is a polynomial of degree
at most n — 1 and hence it is smooth. On the other hand, if we consider Definition 2.1.1
n—1
then by Lemma 2.2.3 we get A"z ug € L1(R") and it also satisfies (2.12) with p = us.
2

Therefore, by [71, Proposition 2.22] we have AnT_lug € C*°(R™) which implies that
ug € C (Rn)

0

2.4 Classification of solutions

2.4.1 A fractional version of a lemma of Brézis and Merle

Theorem 2.4.2 below is a fractional version of a lemma of Brézis and Merle [12, Theorem
1], compare also [21, Theorem 5.1, which we shall later need in the proof of Lemma
2.4.8. Although, in our case Theorem 2.4.2 will be used in a smooth setting, here we
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shall prove it with more generality because of its independent interest. Before stating
the theorem we need the following definition, partially inspired by [1, Section 3.3].

Definition 2.4.1. Let  be a smooth bounded domain in R™. Assume f € L'(2) and
gj € LY(0Q) for j =0,1,..., %53. We say that w € L1(R") is a solution of
2

(
(—A)J(—A)%w =g; ondQ,j=0,1,.., %52

{ (A" (~Aw=f inQ (2.14)

if w satisfies

[ ()] |
d(z,00)<2,z€Qc \/0(x)

x < 00, (2.15)

and there exists a function W € L'(£2) such that (—A)%w =W in Q, ie.

/ w(—A)%wdx = / Wedz  for every ¢ € T1, (2.16)
n Q
and the function W satisfies

n—1 .
(-A)yzW=f inQ 73 (2.17)
(=AW = g; ondf), j=0,1,.., %52,

i.e.

n—3

2
/W(—A)n2lgod:1;:/f<pd:1:—§ / gjg(—A)ng?’*jgoda for every ¢ € Ty,
Q Q = Joa OV

where the spaces of test functions 77 and T5 are defined by

(—A %gc):l/J in Q

Ty = {weC"O(Q)ﬂcé(R”)i{ S@:()) on Q°

for some ¢ € C°(Q), } )

and

Ty = {<p€C’"l(Q):Ajgo—Oon(‘?Q,j—0,1,...,n;3}.

Notice that the left hand side of (2.16) is well-defined thanks to the assumption (2.15)
and Lemma 2.4.4 below.

Lemma 2.4.1 (Maximum Principle). Let w be a solution of (2.14) with f,g; > 0 in
the sense of Definition 2.4.1. If w > 0 on Q¢ then w > 0 in €.

Proof. First notice that the conditions f > 0, g; > 0 implies that W > 0 in €2, where
W € L'(Q) is a solution of (2.17). Now consider a test function 1 € C°(£) such that

1 > 01in Q. Let ¢ € T be the solution of (—A)%w =) in 2. Then by classical maximum
principle one has ¢ > 0 in €. Since the constant C,, 1> 0 in Proposition 2.5.2 we get

N

(—A)2p(x) <0 forx € R™\ Q,



21

and from (2.16)

/wwdmz/w(—A)éapdxz/Wgodm—/ w(—A)%godeO,
Q Q Q ¢

which completes the proof. O

Theorem 2.4.2. Let f € LY(Bg). Letu € LY(B ) e a solution of (2.14) (in the sense
of Definition 2.4.1) with g; = 0 for j = 0,1,. 7T and u = 0 on Bg. Then for any

pE

’ ”fHLl(BR)

/ e"?luldz < C(p, R).
Br

Proof. We set
W)= [ wa-yliwly er”

where
I( 1

)
n22|B[0(3) (%5%)! fal

N[

U(z):=

is a fundamental solution of (—A)nT_l in R™ (see [26, Section 2.6]). Then W € L'(Bg)
satisfies

(~8) W =
(=AW >0 ondBg, j =0,1,..., %52,

and by maximum principle W > |[W| in Bg, where W € L'(Bg) is a solution of (2.17).
Let us define

_ n=3)| 1
) = @5 (Wam)e) =y [ W)y, € R

Tn n2n— 2\Blyr(g) (22) 9 Tt
in view of Lemma 2.4.3 below one has
_ 1
a@ <+ [ |7@lllogle - ylldy. @€
In Jly|<R

which yields
u e L?OC(R”) NL¥([R"\ Brys), ¢q€[1l,00),0 >0.

Moreover, for every ¢ € S(R™)

Wng$:/ u(—A)éngx:/ u(—A)égodx—i—/ U(—A)%godfv, (2.18)
Br n Br f{

thanks to Lemma 2.5.1 below.
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We claim that (2.18) holds for ¢ € T1. Then for any ¢ € 71 with ¢ >0

/(uiu)(—A)égod:c:/ (WiW)cpda:—/ a(—A)2pdr >0,
Bpgr Bp ~——~— B ~——

and by maximum principle one has @ > |u| in Br and the theorem follows at once.

To prove the claim we consider a mollifying sequence ¢y := ¢ * pg, where pg(x) =
E™p(kx). Then (see [1, Section A])

(—A)2pp(z) = ¢ * (~A)Zpp(z) z €R™,
and

(~A)Zpp(x) = pi* (~A)2p(x), dist(z,0Br) > ;. (2.19)

El e

Then the uniform convergence of ¢y to ¢ imply

/ Wordz koo, Wdz.
BR BR

Using the uniform convergence of (—A)%gok to (—A)%cp on the compact sets in B and

the fact that supp(—A)%g0|BR C Bp we get

/ ﬁ(—A)%gokdx hroo, ﬁ(—A)%godw.
Br Br

It remains to verify that

/ ﬂ(—A)%gokd:L‘ koo, ﬂ(—A)%godx,
B

c c
R BR

which follows immediately from

(—A)2gp, 2% (“A)2¢ in LY(Bpgy1 \ Bg), for some ¢ > 1, (2.20)
and
(—A)zpp 7% (—A)2p in LY(Bf). (2.21)

With the help of Lemma 2.4.4 below and (2.19) one can get (2.21). To conclude
(2.20) first notice that (—A)%gok converges to (—A)%cp point-wise and that (—A)%go €
LY(Bpy1 \ Bg) for any ¢ € [1,2) thanks to Lemma 2.4.4 below. By [44, Theorem 1.9
(Missing term in Fatou’s lemma)] it is sufficient to show that for some ¢ > 1

/ (—A) S () 2 < / (—A) 3 ip()|9de + o(1),
R<|z|<R+1 R<|z|<R+1

where o(1) — 0 as k — co. Now using the estimate (see for instance [1, Section A])

[(=A)2pp(z)| < CK™ 2z e R™,
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and fixing ¢ and ¢ such that

2n
2n+1

<t <1, 1<q<min{

14+nt 2nt+t+2
t+nt’ 2n+2 ’

we bound

/ (—A) Sy (a)|9da
R<|z|<R+1
=/ (—A)ig <x>rqda:+/ (—A) Sy (a) 2
R<|z|<R++% R+ <|z|<R+1
1 1
- / o % (—A)3 py ()] da + / o+ (—A)} () 9dx
R<|z|<R+% R+3 <|z|<R+1
_ 1
< Jlollr / / (= A)E ()] (z — y)|dyda
R<|z|<R++ JR®
1
4 / / (=AY (y)|*pn (e — y)dyda
Rt1<|z|<R+1 JR"
1
-/ (&) (p)ldy
R<|y|<R+1+4%
el / / b o)l — y)|dyda
R<|ac|<R+k [y %
_ 1
gl / / (=AY () [ ol — y)|dyda
R<|m|<R+% |x—y|<R,\y|<%

< / (=A)2 (|7 + Clpl|% Kiatram=1 4 Og||7 ! palrtD-ni=5-1
R<|y|<R+1+%

- / (—A) ()] + o(1),
R<|y|<R+1

where in the last inequality we have used (for the second term)

. q
[ st = [ eyev [ A8, g,
o> jal> 2 no |z =yl
q
SC/ / %d?/dt’”
jal> 2 Jlyl<1 |~”C* glnata

< C’/ / dxdy
i<t Jjol> & |$|nq+q

< Ck?t q+ng—n)

O

Lemma 2.4.3. Let Q be a domain in R™. Let p and q be two positive real numbers.
Then

dy i . .
< , if 6(x) :=dist(xz,2) >0
/Q |z — y["tP p 6(x)P Folz) @)

and

dz Cnpag :
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where the constant C, p 4 is given by (an explicit formula can be found in [{4, Section

5.10))
c B dz
n,p,q — - |Z|p|€1 _ z‘q'

In addition if we also assume that the domain € is bounded then

d
/ — < 10| + |5 | log d(x)] if 6(x) > O,
Q ’«73 - y!
and

dz )
/ <415 fog(z —yl)l, i p+a=np<nqg<n zty.
|z —zPly — 2|7

Proof. Let us denote the set {y —x : y € Q} by Q — z. Using a change of variable
z +— z —x and setting w = y — x we have

/ dz _/ dz .
alr—zPly =217 Jo_glzfPlw—z "

If p 4+ g > n then changing the variable z — |w|z one has

I'= 1/ dz < 1 / dz _ Chpg
T wlpten J 1 g g 2Pl = 2]e T wlPten Jg. ’z‘ph%l “ T e

|w| m
In the case when p + ¢ = n, we split the domain 2 — = into two disjoint domains:
Qliz(ﬂ—l‘)ﬂBl, QQZ(Q—Qj‘)ﬂBf

Then
2

dz
I = L, I := O
2tk /Q |2[P|lw — 2|7

i=1

Since €25 is bounded and ¢ < n, we have

IQS/ LSC’.
0, lw— 2|7

1 1 2
w<(1+\z|> for |z| > 2,

Now using

and
(1+2)?7<14Cqz forz e (0,1),
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we bound

dz dz
I]_ S _— —
o PR — 21~ Jpye o TePIE — 2

Sy
< _ — z
<2 [Pl =217 Jacpsi< 1217 ]

<c

o )
2<|z\< ’Z‘ |2|

<CH+|S" 1Hlog|wH.

Finally, we conclude the lemma by showing that for z € R\ Q

dy / dy Ei .t
W < = . p>0,
/Q |z —y["*P 7 sy [2MTP p  O(x)P

and

d d d
/ v_ sm|+/ v s|ﬂr+/ W _ 1)+ 1571 10g 5(2)).
olz—yl onBi(z) 1T — ¥ §(z)<|z|<1 |2]

O

Lemma 2.4.4. Let Q be a bounded domain in R™. Let o € C*7(R™) for some nonneg-
ative integer k and 0 < o <1 be such that ¢ =0 on R"\ Q. Then for 0 < s <1 and for
reR"\Q

min{max{1,§(z) "2k} §(z) ™25} ifk+ o #2s

[(=4)p(z)| <C
min{|log (z)|, 6(x) 2%} if k+0=2s,

where () := dist(z, ).
Proof. We claim that

lp(y)| < Claz —y|Ft7, 2eR"\Q,y€eQ,

which can be verified using the Taylor’s expansion

B 1 6] )8 "1 plei-1ps _
)= 3 w0+ X D= [ =0 Dopta+ tly—a)ar

lal<k—1 " 3 |Bl=F
and
IDPp(z +t(y — )| = [DPp(x + t(y — 2)) — DPp(z)| < Clt(z — y)|” < Clz —y|°.

Therefore, by Proposition 2.5.2

[(=2)%p(2)] =

v(y) dy 5
n,s/st_Wdy‘ <C o |x—y|”+23*k7‘7’ xeR"\ Q,
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and
s el C I
Care@izc [ Wy <o [ i< ot ser\a
Now the proof follows at once from Lemma 2.4.3. O

2.4.2 Asymptotic behavior of solutions

First we study the asymptotic behavior of v defined in (2.8).

Lemma 2.4.5. Let u be a smooth solution of (2.1)-(2.2) and let v be given by (2.8).
Then there exists a constant C > 0 such that

v(z) = —aloglz| = C, x| > 4.
Proof. The proof follows as in the proof of [45, Lemma 2.1]. O
A consequence of the above lemma is the following Proposition, compare Lemmas 2.2.4,

2.2.5.

Proposition 2.4.6. Let u be a smooth solution of (2.1)-(2.2) in the sense of Definition
2.1.1 or 2.1.2 and let v be defined by (2.8). Then the function

P(z) :==u(zx) —v(z), x€R",

is a polynomial of degree at most n — 1 and P is bounded above.

Proof. Since (2.2) implies (2.11), by Lemmas 2.2.4 and 2.2.5 we have that P is a poly-
nomial of degree at most n — 1. On the other hand, using Lemma 2.4.5 one can get that
P is bounded above (the proof is very similar to [56, Lemma 11]). O

Lemma 2.4.7. Let n > 3 be an odd integer and let u be a smooth solution of (2.1)-(2.2)
and v be given by (2.8). Then
(i) v e C®R"™) and D € L1 (R"™) for every multi-index o € N with 0 < o] < n—1.
2
(i) There exists a constants C > 0 such that

n—3
5

/ (=AY (=AY s u(y)|do(y) < C for every x € R™, j = 0,1,2, .,
OBy (x)

(iii) v is a pointwise solution of
(—=A)2(=A)"T v = (n—1)le™ inR™

(iv) v solves (2.14) with f = (n—1)!e™ and g; = (—A)/ (-A )%v forj=0,1,2,..., 23
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Proof. We divide the proof into several steps.

Step 1. From Proposition 2.4.6 we have the smoothness of v and by Lemma 2.2.3 we get
D% € L1 (R") for every multi-index o € N* with 0 < |a| <n — 1.
2

Step 2. In this step we use (i) to prove (ii). In fact by Lemmas 2.5.3, 2.5.4, below we
have

[ AP Ealdn) = [ |-k -APue) o ()
OBa4(x) OBa4(x)

enu(y)
< C’/ / ———dydo(z
834 n |y - Z|2j+1 ( )

1
- v) / . _do(2)d
e 2)dy
Rn oBa(z) [y — 2711 (=)

Step 3. We claim that for g € C*°(R") N L

[

To prove the claim we consider a approximating sequence

(R™)

SIS

SIS

gpdr = / g(—A)%godx for every ¢ € C2°(R"™).

_

if |[z] <1

gr(z) = g(w)w(%), e CFRY), Pa)= { if 2] > 2.

@)

Then g € S(R™) and hence
/ (—A)2grpds = / gr(—A)2 pda.

Now the claim follows from the locally uniform convergence of (—A)% gk to (—A)% g and
the L1 (R™) convergence of g to g.
2

Step 4. Using Step 3 with g = (—A)%v we have

|2

for every ¢ € C2°(R"™), which implies (#3i).

[NIES

(—A)%dex = / (—A)%v(—A)%wdw =(n— 1)!/ e"odr,

n

To complete (iv) it suffices to show that W := (— A)%v € C>®(R") and it satisfies
(2.15)-(2.17) with w = v.

The smoothness of v implies W € C*°(R"™) and (2.15). Moreover, using integration by
parts (see [1, Proposition 1.2.1]) one can get (2.16).

One must notice that the function u in [1, Proposition 1.2.1] is in C'*¢(Q) N L= (R")
but still we can use it since our function v € C*°(R™) N L1 (R™).
2

Finally, we prove (2.17) by showing that W is a classical solution of (2.17). Since W
is smooth in R™ clearly it satisfies the boundary conditions. Using step 3 (with g = v)
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and Lemma 2.2.3 (with f = (n — 1)!e™) we have for every ¢ € C°(Q2)
/(—A)7121Wg0d33 = / W(—A)nTilcpdx = / (—A)%v(—A)nTilcpdx
Q Q n

:/nv(_A)é<_A)T<pdx:<n—1)!/ Mpd,

n

that is

The following lemma is the crucial part in the proof of Theorem 2.1.2.

Lemma 2.4.8. Let u be a smooth solution of (2.1)-(2.2) and v be given by (2.8). Then
for any € > 0 there exists R > 0 such that for |x| > R

v(z) < (—a+e¢)log |x|.

Proof. Step 1. For any € > 0 there exists a R > 0 such that for |z| > R

(n—1)!
2

v(z) < (—a+ E) log |z| — / log |z — yle™ ™ dy. (2.22)
2 Bi()

The proof of (2.22) is very similar to the proof of [45, Lemma 2.4 |. As a consequence

of (2.22) using Jensen’s inequality we have the following estimate

(n—1)!
2

le™ Il L@yl Tog | [lr(By), 1 < p < o0
(2.23)

€
[0 e ny < lo =S llog - [lle(sy) +

Step 2. We claim that there exists p > 1 and C > 0 independent of xy such that
€™ Lp (B, (20)) < C. Then using Holder inequality one can bound the second term on
the right hand side of (2.22) uniformly in z and that completes the proof of the lemma.

To prove the claim, first notice that it is sufficient to consider xzy € R™\ Bp for any fixed
R > 0. We choose R > 0 large enough such that

nu Tn
(n = Dlle™ s ) < 5
Let w € C°(R™) be the solution of
(—=A)"7 (=A)2w = (n — 1)le™ in By(zo) C R”
(—A)j(—A)%wzo on dBy(xg), forj :0,1,...,”7_3
w=0 onR™\ By(zo),

in the sense of Definition 2.4.1.1 Since w is smooth by Schauder’s estimates and bootstrap
argument we have W = (—=A)2w € C°°(By(z¢)) which solves (2.14) with f = (n—1)le™

and g; = (—A)J(—A)%v forevery j =0,1,2,..., ”T_?) Then using Green’s representation
formula (see [14, Theorem 3]) one can get w € C°(R™) (in fact w € C%(R”), see [68]),
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which is the pointwise continuous unique solution of

fA)%w =W  in Ba(zo)
w=0 on B4(.’130)C.

Moreover, w satisfies (2.16) thanks to [1, Proposition 3.3.3].

We set h = v — w. Then we have that h € CO(R"), (—A)%h € C*°(B4(xp)) and

(—A)"Z (~A)2h =0 in By(zo)
(—A)Y (=A)zh = (=AY (=A)2v ondBy(xo), j = 0,1,..., %52 (2.24)
h=wv OTLR”\B4($0),

thanks to Lemma 2.4.7. Indeed, by Lemma 2.4.9 below there exists a constant C' > 0
independent of the choice of 2y € R™ such that

h(z) < C for every x € Bi(xo).
Hence by Proposition 2.4.6
u=v+P<C+h+w<C+w,

and by Theorem 2.4.2 we have the proof. O

A simple consequence of Lemma 2.4.8 is that

lim u(x) = —o0, (2.25)

|z| =00
thanks to Proposition 2.4.6. Using (2.25) one can show that

lim DPv(z) = 0 for every B € N" with 0 < [8] <n —1.

|| =00

Now the proof of Theorem 2.1.2 follows at once from Lemmas 2.4.5, 2.4.8 and Proposition
2.4.6.

Lemma 2.4.9. Let h € C°(R"™) be given by (2.24). Then there exists a constant C > 0
(independent of xo) such that

h(z) < C, for every x € Bi(xp).

Proof. Let us write h = hq + ho where hy, hy € CO(R"™) be such that

(=A)2hy = (—=A)2h in By(zo)
hi1 =0 on By(x0)¢,
and

(—=A)2hy =0 in By(zo)
hy=h=v on By(zo)°.

Let hg € CY(R™) be such that

(—=A)zhs =0 in By(zo)
hg = o™ on By(xp)©.
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Then by maximum principle
ho < hz on R™.

Without loss of generality we can assume that xg = 0. Then the Poisson formula gives
(see [14, Theorem 1))

muﬁzj' P(a,y)ot(y)dy, =€ By,
ly|>4

where

1
16—yx\2>2 1
P(z,y —C’n< .
=S\ yr=16) fo—yr

Now for x € Bs by Holder’s inequality we get

1
1 2 1
hy(z)| < C () —ot(y)dy
ha(e)] wia \|yl> =16/ [y )

2

! Y
<C (/ v+(y)3dy> (/ 3 3n dy)
ly|>4 >4 (Jy|> —16)1 |y| 2

< Cllvt |l psrny < C,

where the last inequality follows from (2.23). By Lemma 2.4.10 below we have
h < C, for every x € By(xp),

where C being independent of xg. O

Lemma 2.4.10. Let h € C°(R") solves (2.24). Let hy € C°(R™) be the solution of

(—=A)2hy = (=A)2h in By(zo)
hi =0 on By(xo)°.

Then there exists a constant C = C(n) such that
1Pl oo (81 (@0)) < C-

Proof. We assume that o = 0. Using Green’s representation formula (see [14, Theorem
3]) the solution is given by

hi(x) = | Ga(w,y)(~A)zh(y)dy, x € By,
By
where
rln) it (16— [«[*)(16 — [y]*)
G ) = Cn - l_n/ 7nd ) ) = .
oy) = Cnle ] TR =P
Since )
r—2
— el 0,00)),
e € V(@)
we have

Ga(z,y)| < Clz —y["



31

For |z| <1 using (2.24), Lemma 2.4.7 and Lemma 2.5.5 below we bound

ha(2)] < / Gz, 9)[[(~A) Eh(y)ldy

B4
3

< /!ngy\/
2

= ((=2)" 7 G(y.2)) | do(x)dy

ey / eyt / Ly mtom) ey oty
:Cg /|m|_4\<—A>i<—A% )| /yl<4|z—y1“|x g dydo(a)
<cy /|m|_4 [(~8) (=) bo(a)| doa)

<C.

2.4.3 Characterization of spherical solution

Proof of Theorem 2.1.3 One can verify easily that (i) = (i7)-(vi). On the other hand,
by Theorem 2.1.2 (i) -(iv) are equivalent. Moreover, (i7) = (i) thanks to [78, Theorem
4.1]. To show that (v) = (¢) and (vi) = (i) one can follow the arguments in [56].

Finally to prove (2.9) we use [56, Theorem 6 and Lemma 3]. Since the polynomial P is
bounded from above, deg(P) must be even and let it be 2k. Then A*P = Cy on R and
AF1P =0 on R™. By [56, Lemma 3] we have
k - 1
ZciRzzAZP(O) = — P(z)dx <sup P < C, for every R > 0,
e |Br| JB, R

where the constants c;s are positive and hence Cyp = A¥P(0) < 0. We claim that Cy < 0.
Otherwise, by Theorem 2.1.2 and [56, Theorem 6] one gets deg(P) < 2k — 2, which is a
contradiction. O

2.5 Some useful lemmas

Lemma 2.5.1 (Fundamental solution). For n > 3 odd integer the function

Y P G L SR NN W
= g B

—_
—_
:3
|
—
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is a fundamental solution of (—A)% in R™ in the sense that for all f € LY(R™) we have
Oxfe L%(Rn) and for all ¢ € S(R™)

/n(—A)%(@*f)gpdx - /Rn(@*f)(—mégodx: [ fea. (2.26)

Proof. To show @ * f € L%(R”) we bound

|© = f ()| / 1 / 1
———dx <
/Rn 1+ ‘$|n+1dx <C ge L4 |21 \gn |2 — g7 T [f(y)ldy | dz
1 1
=C dz | d
o T </R T+ 2/ o =y x) v

dx dx
cof (] [
Rn | ( )| Bl ‘./L'|n71 Rn 1 + |$|”+1
< Clfllrwny- (2.27)

If f € C°(R™) then (2.26) is true by [44, Theorem 5.9 |. For the general case f € L'(R")
choose fi € C°(R") such that fp — f in L'(R"™). Then using (2.27) with f = fi — f
one has

@ (fr — [)(@)]

R” ]. + |x‘”+1

N

L 1# (= Pll-a)elde < © do < O i~ flliran) = 0.

that is

[ @es-miods = [ @x-a)te

Now the proof follows from

| @ iayigdn= [ fipds— [ fode

O]

Combining [71, Proposition 2.4] and [22, Lemma 3.2] we state the following proposition:

Proposition 2.5.2. Let Q be an open set in R™. Let u € C*?7¢(Q) N L, (R™) for some
€ (0,1) and € > 0. Then (—A)%u is continuous in 2 and for every x €  we have

(=A)u(z) = Cp, P.V. /R ) Wdy

1 u(z +vy) +ulx —y) — 2u(z)
=——C,,PV. dy, 2.2
20 ’ /n |y|m+2e Y (2.28)

where C?7+€(Q) 1= CY271¢(Q) for 20 +¢ < 1 and C?°+¢(Q) = CL27 <= 1(Q) for 20 +¢ >
1 and the constant C,, » is given by

1 —cosx; -t
oo ([ Tte)

The advantage of (2.28) is that the integral is not singular at the origin for a C function.
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Lemma 2.5.3. Let ¢ be a nonnegative integer. Let v be a smooth function on R™ such
that D% € L1 (R") for every multi-index o with || < £. Then
2

(—A)%D%(x) = Da(—A)%v(x), for every x € R", |a| < /.

Proof. Tt suffices to show the case for |a| = 1. Let ¢ € C°(B3) be such that ¢ =1 on
By and 0 < ¢ < 1. Let us define vy (z) := ¢(%)v(r). Then we have

(—=A)2 D%y (z) = D*(—A)2 vy (). (2.29)
We claim that
(—A)2 D%y, E2%% (“A)2D% in CP_(R™), |a|=0,1.
To prove our claim first we fix a R > 0. Then for z € Bgr and k£ > R+ 1 we get

[(~2)2Du (@) - (~A)2 D% ()

_c . lpv. D%y (x) — Dy (y) — DY (x) + Dav(y)dy
"2 R™ |z — y[n
2| D> k(Do) (%
<c, [D%(y)| + |af ISH @)(k)llv(y)ldy
2 Jlyl>k |z =yl
Thus {D*(—A)2v;} = {(=A)2 D%y} and {(—A)2wv;} are Cauchy sequences in C?_(R™)
and consequently
D(=A)2u(w) £ D (=) 0(x),
and together with (2.29) complete the proof. O

Lemma 2.5.4. We set
1 .
fo(z) :==loglz|, fi(z):= e forj=1,2,...,n—1.
Then for 0 < o < 1 we have

(—A)7 fi(x) = Wi%(—ﬁ)gfj(el), for|z| >0 and0<j<n-—1.

Proof. Since f; € C*°(R™\ {0}) N L1(R™) using (2.28) we get

1
2

(CAY () = (~AY fy(laler) = eupve [ D2lE) = 1i0),
R ||z]er —yl
v filer) — fj(y)dy

T T Lo TJer — gt

- $|}+2U<—A>"fj<e1>7

where in the first equality we used that the function (—A)? f; is radially symmetric. O
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Lemma 2.5.5. Let h € C"1(B,) be such that

n—1
(=A)z h=0 inB, 9
: .30
{ (=AY h = f; onﬁBr,j:O,l,...,"Tf?’. ( )
Then for every x € B,
n—3
< 0
hw) = =3 [ hlo) g, ()G wy) doty)
and
z 1
7)< C / fily) | —————do(y), 2.31
)| ; 8BT! ( )"l__y’n_l_gl () (2.31)
where G is the Green’s function corresponding to the problem (2.30).
Proof. Using integration by parts we have
n—1
0=/ G(z,y)(=8) > h(y)dy
8 n-3_; n-1
- Z / oo (257G dot) + [ (-8)F Gl y)hlw)iy
0B Yaw B

r

Z 0 n3
9+ /8 g, (2

To get (2.31) we only need to show that

(2.9)) do(y)

1 3
_m, waBr,0<3<T

e (CAVG(a)| <

In order to do that we use the following representation formula of G given by (see e.g.
[30])

G(x,y):/ : Gl(.’E,Zl)Gl(Zl,ZQ)...Gl(ZnT—?,,y)d21d22...dZnT—3, z,y € By,

”;3 times
where
1 1 2
G1(:c,y): 9 xayer
n(n = 2)[Bif \ & —y["2 " lz|(y — £28)|-2 '
is the Green’s function for Laplacian on B,.. Then for 0 < j < %3

(—A)jG(az,y):/ 5 Gl(l‘,Zl)Gl(Zl,ZQ)...Gl(Zn—:;—Zj,y)dedZQ...dZn—?;—2j,

# times
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and

0 (=AY G(z,y) = / - / Gi(x,z1)G1(z1,22) - .. 0 Gi(zn-3-2,y)dz1 ... dzn-3-2;.
9y B. /B, Ayi 2 2

N—_——

# times

A repeated use of Lemma 2.4.3 and the estimate

d C
< —— and B,,
0 < Gi(z,y) < PR an ‘&rlG (z, y)’ PR x,y €
gives
0 , 1 1 1 n—3
-A)YG <C . dz2<C——%—, 0<j<——.
AV G| <€ [ e < O 0 <7

The following lemma is a variant of [56, Theorem 6].
Lemma 2.5.6. Let v € Lz(R") and let h =u — v be 24 _harmonic in R", that is

n+1

A2 h=0, inR"

If u satisfies (2.11) then h is a polynomial of degree at most n — 1.
Proof. First notice that the condition v € L%(R”) implies that
/ |v|dz = o(R*") as R — oo.
Br
For a fixed x € R™ by [56, Proposition 4] we have for « € N” with |a| =n

C
D° . / y)ldy < / h)ldy, s R - oo,
= R r fp

Now using (2.11)

/ htdr < / (ut + |v])dz = o(R*™) or / h™dx < / (u™ + |v|)dz = o(R*™).
Br Br Br Br

On the other hand, Pizzetti’s formula (see e.g. [56, Lemma 3]) implies that
/ hdx = O(R*™1), as R — ooc.
Br

Therefore,

|DYh(z)| < % min {/ (2nT — h)dy,/ (2h™ + h)dy}
R Bar Bar

— % (O(Ranl) + O(RQn))
R—oo

0,
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and hence h is a polynomial of degree at most n — 1.



Chapter 3

Conformal metrics on R*" with
prescribed volume and asymptotic
behavior

We study the solutions u € C*°(R?™) of the problem
(—=A)™u = Qe*™*, where Q = £(2m —1)!, V := / My < oo,
R2m

particularly when m > 1. Extending previous works of Chang-Chen, and Wei-Ye, we
show that both the value V' and the asymptotic behavior of u(z) as |z| — oo can be
simultaneously prescribed, under certain restrictions. When Q = (2m — 1)! we need to
assume V < |S?™| but surprisingly for Q@ = —(2m — 1)! the volume V' can be chosen
arbitrarily.

3.1 Introduction and statement of the main theorems

We consider the equation
(=A)™u = (2m — 1)1e*™ in R*™, (3.1)

where u € C°°(R?™) and satisfies

V= / XM dy < oo. (3.2)
R2m

The assumption that u € C*°(R?"™) is not restrictive, since any weak solution u €
Ll (R*™) of (3.1) with right-hand side in L{ (R?*™) is smooth, see e.g. [56, Corollary
8] (see also Theorem 2.1.1).

We recall that for m > 2 Chang-Chen [15] showed the existence of (non-spherical)
solutions to (3.1)-(3.2) for every V € (0,]S?™|). From the classifiction result (Theorem
A) these solutions have the asymptotic behavior given by

u(z) = —alog(|z]) — P(z) + C +o(1), o(l) = 0 as |z] — oo, (3.3)

37
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where a = % and P is a polynomial of degree at most 2m — 2 bounded from below.

Wei-Ye [77] complemented the result of Lin by showing, among other things:

Theorem C ([77]). For any V € (0,|S*|) and P(x) = Z?:l aja:? with a; > 0, for

m = 2 Problem (3.1)-(3.2) has a solution with asymptotic expansion (3.3) for some
CeR.

The first result which we prove here is an extension of the result of Wei-Ye to the case
m > 2. We will prove the existence of solutions to (3.1)-(3.2) having the asymptotic
behavior (3.3) where P will be any given polynomial of degree at most 2m — 2 satisfying

lim z-VP(x) = oo, (3.4)

|z|—o00
while o > 0 is determined by V € (0, |S?™|). More precisely, define
Ppm := { P polynomial in R?™ : deg P < 2m — 2, (3.4) holds} .

It is worth noticing that (3.4) is equivalent to the apparently stronger condition

lim inf P(z) >0 and liminfLP(aj)

EEEIE 2|00 |z|®

>0, for some a > 0. (3.5)

Indeed (3.4) implies the second inequality of (3.5) by a subtle result of E. Gorin (see
[28, Theorem 3.1]), and the second inequality in (3.5) implies the first one, since one can

write o]
T d T
P = —P|r— P(0).
(2) /0 - (rm)dr—i- (0)

However, the first condition in (3.5), that is

lim P(z) = oo, (3.6)

|z|—o00

does not imply (3.4) when deg P > 4, see Proposition 3.5.4. A simple example of
polynomial belonging to P,, is

2m
P(z) =Y ajzi" +p(x),
j=1

where a; > 0, i; € {1,2,...,m — 1} for 1 < j < 2m, and p is a polynomial of degree
at most 2min{i;} — 1, but in general P,, contains polynomials whose higher degree
monomials do not split in such a simple way.

Theorem 3.1.1. For any integer m > 2, given P € Py, and V € (0,]5%™|), there exists

a solution of (3.1)-(3.2) having the asymptotic behavior (3.3) with o = wgg—‘fn‘

The restriction V' < |S?™| in Theorem 3.1.1 is necessary when m = 2 because of the
result of Lin (Theorem A). However, for m > 3 there are solutions to (3.1)-(3.2) with
V arbitrarily large (see Chapter 5). The crucial step in which we need V' to be smaller
than |S?™| is Theorem 3.4.2 below, a compactness result which follows form the blow-up
analysis of sequences of prescribed Q-curvature in open domains of R?™ (Theorem 3.4.1)
proven by Martinazzi, and inspired by previous works of Brézis-Merle [12] and Robert
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[65]. This compactness is used to prove the a priori bounds necessary to run the fixed
point argument of [77], which we closely follow.

From the work of Brézis-Merle we also borrow a simple but fundamental critical estimate,
whose generalization is Lemma 3.5.2, which is used in Lemma 3.3.6.

As we shall now show, things go differently when the prescribed Q-curvature is negative.
Consider the equation

(=A)™u = —(2m — 1)1e*™* in R?™, (3.7)

whose solutions give rise to metrics g, = e**|dz|? of Q-curvature —(2m — 1)! in R?™.
One can easily verify that under the assumption (3.2) Eq. (3.7) has no solutions when
m =1, see e.g. [52, Proposition 6]. On the other hand, when m > 2 we have:

Theorem D ([52]). For every m > 2 there is some V > 0 such that Problem (3.7)-(3.2)
has a radially symmetric solution. Every solution to (3.7)-(3.2) (a priori not necessarily
2V

radially symmetric) has the asymptotic behavior given by (3.3) where o = — 5T and

P is a mon-constant polynomial of degree at most 2m — 2 bounded from below.

Notice that, contrary to Chang-Chen’s result [15], the existence part of Theorem D
does not allow to prescribe V. Moreover its proof is based on an ODE argument which
only produces radially symmetric solutions. It is then natural to address the following
question: For which values of V' and which polynomials P does Problem (3.7)-(3.2) have
a solution with asymptotic behavior (3.3) (with o = —‘SQT‘;')? In analogy with Theorem
3.1.1 we will show:

Theorem 3.1.2. For any integer m > 2, given P € Py, and V > 0, there exists a

solution of (3.7)-(3.2) having the asymptotic behavior (3.3) for a = —%.

The remarkable fact which allows for large values of V' in Theorem 3.1.2 (but not in
Theorem 3.1.1) is that, as shown in [55], when the Q-curvature is negative, compactness
is obtained even for large volumes, compare Theorems 3.4.1 and 3.4.2 below. This in
turn depends on Theorem D above, and in particular on the fact that the polynomial
in the expansion (3.3) of a solution to (3.7)-(3.2) is necessarily non-constant.

About the assumption that P € P,, in Theorems 3.1.1 and 3.1.2, we do not claim nor
believe that it is optimal, but it is technically convenient in the crucial Lemma 3.3.5
below, where it is needed in (3.21). Since a solution to (3.1)-(3.2) or (3.7)-(3.2) must
satisfy (3.3) for o = i%, a necessary condition on P and V' is

/ 672m(P(l“)+a10g‘9C|)dx < 00, (38)
RQm\Bl

but it is unknown whether this condition is also sufficient to guarantee the existence of
a solution to (3.1)-(3.2) or (3.7)-(3.2) with asymptotic expansion (3.3), at least in the
negative case, or for V < |S?™| in the positive case.
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3.2 Strategy of the proof

Fix ug € C*°(R?*™) such that ug(x) = log|z| for |z| > 1. Integration by parts yields

/2 (_A>mu0dx = —72m,;
R m

where 7o, is defined by

(2m — 1)

1 !
(—=A)™log — = Yo,nd0 in R*™, ie. v, = 5 |52m. (3.9)

|z

Let V,a= i% and P € P, be given as in Theorem 3.1.1 or 3.1.2. We would like to
find a solution to (3.1) or (3.7) of the form

u=—aug—P+v+C, (3.10)

for a suitable choice of C' € R and of a smooth function v(z) = o(1) as |z| — co. Define

K = L‘yim e~ 2mbP—2mauo _ sign(a)(2m — 1)!e*2mP*2ma“0, (3.11)
and notice that (3.4) implies
|K ()| < Cre~ 2l (3.12)

for some Cq,Cy > 0.

Now if we assume (3.2), then the constant C' in (3.10) is determined by the function v.
Indeed (3.2) implies

2mC
e
V= M dy =

|/ K |2 dz,
R2m (2m ].) R2m

hence C' = ¢,, where

1 1 1 1
=——log | ————— Kl|e*™dx | = ——1 Ke?™dx ) .
v om o <(2m -V /RQm [Kle x) om o <orygm R2m c x)

An easy computation shows that u given by (3.10) satisfies (3.13)
(—A)™u = sign(a)(2m — 1)le*™
and (3.2) if and only if C' = ¢, and
(—A)"0 = Ke?+e) 4 a(=A)up. (3.14)

Then we will use a fixed point method in the spirit of [77] to find a solution v to (3.14)
in the Banach space

Co(R2™) := {f € CO(R™) : lim f(x) = 0} A flley = sup |£1;

and of course v will also be smooth by elliptic estimates. In order to run the fixed-point
argument we use the following weighted Sobolev spaces.
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Definition 3.2.1. For k € N, 6 € R and p > 1 we set M? ;(R*™) to be the completion
of C2°(R?>™) in the norm

(6+18D
1l o= 32 N+ [2) 2 DP fll ggam,
|BI<k

We also set LE(R*™) := M} ;(R*™). Finally we set

fdx:()},

2m

I2(R*™) = {f €L S(R¥™): /R

whenever op > —2m, so that Lf s(R?™) C L'(R?™) and the above integral is well
defined.

Lemma 3.2.1. Fixp>1 and 6 > —277”. For v € Co(R*™) and ¢, as in (3.13) we have
S(v) := Ke?™vFen) 4 o(—A)muy € TE(R*™),

and the map S : Co(R*™) — T'E(R*™) is continuous.

Proof. This follows easily from (3.12) and dominated convergence. O

Lemma 3.2.2 (Theorem 5 in [60]). For 1 < p < oo and § € (—Q—m —2m +1), the

p’ P
operator (—A)™ is an isomorphism from M5 = (R*™) to TY(R*™).

We postpond the proof of the following lemma until the end of this chapter.

Lemma 3.2.3. For § > —27”"”, p > 1, the embedding E : Mé’m’(s(RZm) < Co(R?™) is
compact.

p’ P
Lemma 3.2.3, one can define a compact map

Fix p € (1,00) and ¢ € (—Qﬂ .1 —I—l). Then by Lemma 3.2.1, Lemma 3.2.2 and

T:=Eo((—A)")"1 o8 : Co(R*™) — Co(R*™) (3.15)
given by Tv = v where v is the only solution to
(—A)™5 = Ke2mvhes) 1 o(—A)maq,

and compactness follows from the continuity of S and ((—A)™)~! and the compactness
of E.

If v is a fixed point of T', then it solves (3.14) and u = v + ¢, — P — auy is a solution
of (3.1) or (3.7) (depending on the sign of K in (3.11)) and (3.2), with asymptotic
expansion (3.3). Then in order to prove Theorems 3.1.1 and 3.1.2 it remains to prove
that T has a fixed point, and we shall do that using the following fixed-point theorem.

Lemma 3.2.4 (Theorem 11.3 in [27]). Let T be a compact mapping of a Banach space
X into itself, and suppose that there exists a constant M such that

lellx < M

for allx € X and t € (0,1] satisfying tTx = x. Then T has a fized point.
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In order to apply Lemma 3.2.4 to the operator T' defined in (3.15) we will prove in
Section 3.3 the following a priori bound, which completes the proof of Theorems 3.1.1
and 3.1.2.

Proposition 3.2.5. For any 0 <t <1 and v € Co(R?*™) with tTv = v we have
0]l (r2my < M, (3.16)

where M is independent of v and t.

3.3 A priori estimates and proof of Proposition 3.2.5

Throughout this section let t € (0,1] and v € Co(R?™) be fixed and satisfy tTv = v,
that is
(=A™ = t(KeP™He) 4 a(—A) ™),

where ¢, is as in (3.13). Also define

logt
D= =2 3.17
W= v+ o (3.17)
Lemma 3.3.1. We have
t
va) == [ Jogle — s K@) "Wy +taug(a). (318)

Proof. Let o(z) be defined as the right-hand side of (3.18). Then for |z| > 1, using
(3.13) we write

o(r) = — K (y)e*™ v Wte) (log |z| — log |z — y|)dy
'72771 RQm
We first show that
lim o(x)=0. (3.19)

|z|—o00

Let R > 1 be fixed. Then for |z| > 2R, we split

. t ||
o)=Y L, Ii:=— [ K(y)e?mtWte)og <> dy,
« ; Yam J 4, ) |z —yl
where
A, := Bg(0)
A2 = Bl (1’)

&

i= Bjy|j2(2) \ Bi(z)
Ay = (Byjg|(2) \ Blz)j2()) \ Br(0)
As :=R*"\ By, (2),

and we will show that I; — 0 as |x| — oo for 1 <14 <5.
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||
lz—yl
dominated convergence theorem we get

For i =1, since lim|;| o log ( ) = 0 uniformly with respect to y € Bg(0), from the

L] <C |K (y)| |log <m>'dy—>0 as |z| = oo.
Br(0) |z =yl
From (3.12) we also have
Ll <C K (y)| (log [z] + |log | — yl|) dy

Bi(x)
< C|IK|| oo (B, (2)) (log || + [1Tog | - || L1(5,(0)))
— 0, as|z|— oc.

Since (3.12) yields Klog(] - |) € L'(R*™), we infer with the dominated convergence
theorem

13| < C/ [ K (y)| (log |z[ + log(|x|/2)) dy
{1<la—y|<o|/2}

<C [ K (y)] (log [2y| +log(ly])) dy
{1<la—y|<o|/2}

— 0, as|z|— oco.

Using that 3 < 2l < 2 on A4 and that K € L' (R?™) we find that for every e > 0 it

lz—yl
is possible to choose R so large that

log<‘i|)‘dy§(}'/ |K|dy < C |K|dy < e.
lz — 9] A4 R2m\ By (0)

Finally, again using that K log(|-|) € L*(R*™) with the dominated convergence theorem
we get

\m$cAwmm

[Is| < C | K (y)|(log |z] + log [ — y[)dy
{le—y|>2/z[}

sc/ 1K ()| (log |y] + log [2y])dy
{lz—y|>2|z|}
— 0, as|z| — .

Since e can be chosen arbitrarily small, (3.19) is proven. Since v € Cp(R?™), and
A™y = A™v, the difference w := v — ¥ satisfies

A™p =0 in R?™, lim w(z) =0.
|z|—o00

Then by the Liouville theorem for polyharmonic functions (see e.g. Theorem 5 in [56])
w is a polynomial, and since it vanishes at infinity, it must be identically zero, i.e.
v = 9. O

Using Lemma 3.3.1 one can prove the following decay estimate for the derivatives of v
at infinity.
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Lemma 3.3.2. For1 </ <2m —1 we have
lim |z/'Vi(z) = lim |z|*V'%(z) = 0.
Proof. Notice that Vv = Vw, so it is enough to work with v.
Using (3.18) for |z| > 1 one can compute
1 _
Vio@) = — [ K(y)e*™™® (V' log(ja]) - V' og(le — yI)) dy
’)/Qm R2m
Fix ¢ > 0 and R > 1 such that
/ |K|e?™Pdy < e.
R2m\BR1
For |x| > 2Ry, we split R?™ into three disjoint domains:
Ay := Bp, (0), Ag:= B|x‘/2($), Ag = R2™ \ (A1 U As).
Then
Vo) = S0 e el [ Ko (Viog(ja)) - Vlog(le ) dy
" em i=1 As

Since Rj is fixed, for |z| large enough we have by the mean-value theorem

V' log(Jz) ~ V*1og(lw — )| < Iyl sup
Bjy| (=)

v log(J2])| < T

hence with (3.13) we get

C . C
|| < H/ |K|e*™Pdy < —|alyam — 0, as |z| = oo.
X Aq

]

for y € Ay,

Since K goes to zero rapidly at infinity, w is bounded, and |z — y| < |z|/2 on Aj, we

have
1
L] < C|| K| 2D || f o — | d
1 < O Nmian I i lol [ (4 )
< O|IK || oo () 1™ || oo™
— 0, as |z| — oo.
On A3 we have |z — y| > |z|/2, which implies J2° ;- < 2¢. Hence
lz—yl

I3 < C(1+ 25)/ |K|e*™dy < Ce.
Az

Since € is arbitrarily small, the proof is complete.

O

Lemma 3.3.3. The function w given by (3.17) is locally uniformly upper bounded, i.e.

for every R > 0 there exists C' = C(R) such that w < C in Bg.
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Proof. Since ug is a fixed function and locally bounded, it is enough to prove that
w = w — tawg is locally uniformly upper bounded. Now

(_A)m,w _ tK€2m(v+cv) _ Q€2mw’ Q= Kethocuo'
We bound

/ eQmwdl, _ t/ e?m(v—l—%)—?mtocuodx < C(R) / |K|62m(v+cv)d$ < C(R)|Oéh/2m,
Br Br Br

where we used (3.13) and that | K| is positive and continuous.

In addition in the case when Q) > 0 we have

Qe*™dy < Ke?™VFe) dy < aryam < (2m — 1)1]52™).
Bgr Bgr

Moreover, Lemma 3.3.1 gives

t 2m — 2
A = — K (y)e2mw(y)+eo) g
w(z) o /Rm P (y)e Y

and with Fubini’s theorem we get

t dx
[, 1du@ir = -em=2) [ 1K) =

S e
R2m Br(y) |z — |

Therefore Theorem 3.4.2 implies that there exists C = C(R) > 0 (independent of w)
such that

sup w < C.

Br2

O]

A consequence of the local uniform upper bounds of w is the following local uniform
bound for the derivatives of v:

Lemma 3.3.4. For every R > 0 there exists a constant C = C(R) > 0 independent of
v and t such that for 1 < £ < 2m — 1 we have

sup |V < C.

R
Proof. Let x € Bg. Then from (3.18) and Lemma 3.3.3, we have

i} 1
Vi —t <C K (y)|e2m®®) d
[V (v — taup)| < Rm! (y)le P

_ 1 C _
< C|K || ||€2™]] oo / —d +/ K|e2™0q
| K| o || | oo (Bar) ool V+ o RQW\BMI \ Y

2

< C(R),
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where the last integral is bounded using (3.13). Since wug is smooth, « is fixed and
t € (0,1], the lemma follows. O

Now to prove uniform upper bounds for w outside a fixed compact set, first we will need
the following result, which relies on a Pohozaev-type identity.

Lemma 3.3.5. For given € > 0, there exists Ry = Ro(g) > 0 only depending on K (and

not on v ort) such that
/ |K[e*™Pdy < e.
R2m\BR0

Proof. Taking R — oo in Lemma 3.5.1 and noticing that the first term on the right-hand
side of (3.27) vanishes thanks to (3.12) and last two terms vanish thanks to Lemma 3.3.2,
we find

/ (z- VK)e*™Pdz + 2m Ke*™0dy — 2mta/ (z- Vu)(—A)Mupdx = 0. (3.20)
R2m R2m B1

Thanks to (3.5) we can find C1 > 0 and R; > 1 such that
1
z-V|K(x)] = —2m (z - VP(z) + a) | K (z)| < —6]30\“|K(x)] for |z] > Ry.  (3.21)
1

Then for some R > R; to be fixed later we bound

1 _ 1 _
L pa / K|y < - / 2] K ()2
Cl R27m\ Bg Cl R2m\Bg

< —/ z - V|K(z)|e*™Pdx
R2m\BR

—om [ K| d + / (2 VK (2)))e2mTdy  (322)

R2m Br
— 2mt|a / (z- Vo(x))(—=A) " uodz
By
=:(I)+ (II) + (I11),
where in the equality on the third line we used (3.20). Now using (3.13) and (3.17), we
compute (I) = 2mt|a|y2m, and using Lemma 3.3.4 we bound
(I)+(II)+ (III) <4 +/ (z- V|K (2)])e*™ dx
Br
<y +/(m-V|K(:v)|)e2mi’dw
Q
where
Q:={zeR*:2-VP(z)+a<0}.
From (3.21) we infer that 2 C Bg,. Then with Lemma 3.3.3 we find

(D) +(ID+ (IIT) < C1 + sup (lz- VK(2)]) /B 2Ty < Oy = Co(Ry),

xEBRl
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where (5 does not depend on ¢ or v. To complete the proof it suffices to take Ry = R
so large that
R (s
Ci — ¢
O

To prove uniform upper bound of w on the complement of a compact set, we use the
Kelvin transform. For R > 1 define

r(z) =@ (R”g) . 0< |2 <1 (3.23)

22

Lemma 3.3.6. There exists ¢ > 0 sufficiently small such that if Ry = Ro(e) > 1 is
as in Lemma 3.3.5, then &(x) := &g, (x) is uniformly upper bounded on By, i.e. w is
uniformly upper bounded in R*™\ Bg,.

Proof. Using (3.30) for n = 2m and k = m and recalling that

(=A)™p = Ke*™®  in R*™\ By,

we have
R2m Royx
A m — 0 A m,— it
(-8)"ele) = o (-ayma) ()
2m
(B N\ e (Bor Y e
|z[? |=[?
=: f(z).
Then with the change of variable y = %;’3 and Lemma 3.3.5 we obtain for Ry = Ry(¢)

large enough (and € > 0 to be fixed later)
f(z)dz < e.
By

We write € := & + &, where

(—A)mfl = f in Bl
{ (=A)¢ =0 on 0By for k=0,1,2,..,m—1
and
(—A)m§2 =0 in B1
(—A)k& = (-A)k¢  ondB fork=1,2,..,m—1
& =¢T i=max{¢,0} on 0B.

Iteratively using the mazimum principle it is easy to see that
¢ <€in By. (3.24)
Now fix € > 0 small enough (and consequently Ry = Ry(g) > 0 large enough) so that by

Lemma 3.5.2 below, there exists p > 1 such that ™% is bounded in LP(B;). As usual
this bound, as well as €, Ry are independent of ¢ and v.
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Since |A*&| is uniformly bounded on 9By for k = 0,1,2,...,m — 1 by Lemma 3.3.4 and
w™ is uniformly bounded on dBpg, by Lemma 3.3.3, so that £ is uniformly bounded
on OB, by the maximum principle we get uniform bounds of & in B;. Hence, noticing
that )
Rg™ R
0 K(,O;) <C forxe B
x

by (3.12), and using (3.24), we can bound

|x‘4m

1 fllLe By < Clle*™ | Loy
< Clle*™ | Locay)
< Cle*™ | Lo €™ | e (8y)

<C.

Consequently by elliptic estimates and Sobolev embedding there exists a constant C' > 0
(independent of v and t) such that

H§1”L°°(Bl) < C/“§1”W2W’P(Bl) <C,

and therefore )
E<E< &Gl + | <C in By,

with C not depending on v and t. O

By Lemma 3.2.2 and (3.12), we have

1
Dol , < I-A7"0lg,
= ||K€2mw + ta(_A)mUOHLngré
<Kl 1™ + all(—A) uollzy

< Clle*™ L~ + €,

with C independent of ¢t and v, and together with Lemma 3.3.3 and Lemma 3.3.6 we
obtain
lollug, . <C.

where C' is independent of v and t. Now Proposition 3.2.5 follows at once from the
continuity of the embedding M} = (R*™) < C;(R*™) (see Lemma 3.2.3).

Remark. An alternative way of getting uniform bounds on ||v||c, is to get uniform
upper bounds of w and use them in (3.18).

3.4 Local uniform upper bounds for the equation (—A)"u =
K62mu

Here we state a slightly simplified version of Theorem 1 from [55] which we will use to
prove the uniform upper bound of Theorem 3.4.2 below. This theorem was originally
proved by Robert [65] in dimension 4 and under the assumption Vi > 0, and is a delicate
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counterpart to the blow-up analysis initiated by Brézis-Merle [12] in dimension 2. The
crucial fact which we shall use is that in order to lose compactness V{; must be positive
somewhere and ||Vj,e?™ || ;1 must approach or go above Ay := (2m — 1)!|$%™|.

Theorem 3.4.1 ([55]). Let Q@ C R?™ be a connected set. Let (ur) C CEZ™(Q) be such
that

(—=A) "y, = Vie2™% in Q)

where Vi, — Vj in Cl%c(Q) and, for some Cy,Cs > 0,

/ Mk dy < (Y, / |Aug|dz < Cs.
Q Q

Then one of the following is true:

1) up to a subsequence ur — ug in C?= Q) for some ug € C*™(Q), or
loc

(i) there is a finite (possibly empty) set S = {zM, ..., 2D} C Q such that Vo(z®) > 0
for 1 <i <1, and up to a subsequence uy — —oo locally uniformly in Q\ S, and

I
Vk62mukdl‘ — E aiéz(i)
i=1
in the sense of measures in ), where

a; = LiAy for some L; € N\ {0}, A;:= (2m —1)!|5%™|.

In particular, in case (ii) for any open set Qy € Q with S C Qy we have

Vie?™ — LAy for some LEN, and L =0+ S = (). (3.25)
Qo

Theorem 3.4.2. Let u € C?*™(Bg) solve
(=A)™u = Ke™ in Bg

for a function K € C°(Bgr) and assume that for given C1,Cs > 0 one has

(@) [, e?Midy < O,
(b) fBR |Auldr < Co,
(c1) either fBR Ke*™udy < A for some A < (2m — 1)!|S?™|, or

(CQ) KSO inBR.

Then

sup u < C
Br/2

where C' only depends on R, C1, Co, A (in case (c1) holds and not (c2)) and K.
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Proof. Assume that there is a sequence of functions u, € C?™(Bg) and a sequence of
points x,, € Bp/y such that u, satisfies the conditions (a), (b), and (c1) or (cz), and
assume that

lim wup,(zy,) = oc. (3.26)

n—oo

Then we can apply Theorem 3.4.1 with V;, = K for every k, and because of (3.26), we
clearly are in case (ii) of the theorem. Assume that S # (). Then K > 0 on S, hence
condition (c2) does not hold. On the other hand condition (¢1) contradicts (3.25). Then
S = (), hence uj, — —oo uniformly in Bp/, contradicting (3.26). O

3.5 Some useful lemmas

Lemma 3.5.1 (Pohozaev-type identity). Consider K € C'(Bg) for some R > 1, and
let ug € C*™(R?*™) be such that supp(A™ug) C By. Let w € C?*™(BR) be a solution of

(—A)"w = Ke*™ + ta(—A)™ug.
Then we have

/ (z- VK)e*™Pdz + 2m Ke*™ dg — 2mta/ (z- Vw)(—A)"updx
BR BR Bl

=R Ke*™Pdo — mR / A% w[2do — 2m fdo, (3.27)
aBR 8BR 6BR

where,

[ary

m

f(z) = Z(—l)mﬂ%- (Aj/Q(x-Vw)A(Qm_l_j)/2w> on OBR,
=0

1=

and for k odd AF/?2 .= VAGK-1/2,
Proof. Integrating by parts we find

2m (1+ 2 Vo)Ke*™Pdg = K div(ze*™®)dz
Br Br

= —/ (z- VK)e*™Pdz + R/ Ke*™ (g,
Br OBRr

Now

x-Vw 62771117 r = - Vo) (—=AY™odr — ta 2 Vo) (=AY undx .
/BR(V)K d /BR(V)(A) d t/Bl(V)(A) odz, (3.28)

and integrating by parts m times the first term on the right-hand side of (3.28) we find

/ (z- Vw)(—A)"wdx = A% (- Vo)A 2 wdr + fdo=:1 (3.29)
Br Br OBg

Using

m m
2 2

A% (2 Vi) A w:%div(xm%m?)
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(see e.g. [57, Lemma 14] for a simple proof) and using the divergence theorem we obtain

1 m
I= / R|Azw\2da+/ fdo,
2 JoBg 0Bg
and putting together the above equations we conclude. O

The proof of the following lemma can be found in [56, Theorem 7]. It extends to arbitrary
dimension Theorem 1 of [12].

Lemma 3.5.2. Let f € L'(Bg) and let v solve

(=A)™w = f in Br C R*™,
AFy =0 on OBR fork=0,1,...,m—1.

Then, for any p € (O, Wﬁ), we have 2PVl ¢ LY(Bg) and
R

/ 2PVl g < C(p)R*™,
Br

where Yo, is definde by (3.9).
Lemma 3.5.3. Given u € C*°(R"), define u(z) := u(%s) for x € R"\ {0}. Then for

z|?

any k € N we have
Ak 1 ~ 1 Ak £ n
Wu(l’) = W( u) ek z € R"\ {0}. (3.30)

Proof. We shall prove the lemma by induction on & € N. Notice that for £ = 0 (3.30) is
trivial.

For a smooth function f and g(x) := |z|?, we have the formula
AFTH(fg) = gAML f 4+ 2(k 4 1) (n + 2k) AR [ + 4(k + D)2 V(A f),

which can be easily proven by induction on k£ € N. Choosing

flz) = m

and assuming that (3.30) is true for a given k € N, we compute
k+1 ()
A (|m|n2(k+l))

=AM (fg)
= gA(AFf) + 20k + 1) (n + 2k)AF f + 4(k + 1)z V(AFf)

~ aPA (W}kau) (‘;"2 > Lok +1)(n+ 2]{:)Wl+%(Aku) <|;”2>

_ 1 k1 T
T a2 (A% ) <|a:|2) ;
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hence completing the induction. O

Proposition 3.5.4. For n > 2 there exists a polynomial P of degree 4 in R™ satisfying
(3.6) but not (3.4).

Proof. In R? consider P(z) = P(z1,72) = 22 + x5 — Br123, with 0 < 8 < 2. Then
2 4
Ple)>a?+a8— B (L 4+2) = -7 (z] + 23),
2 2 2
so that P satisfies (3.6). Moreover
_ 9.2 4 2
x - VP(z) = 227 + 4x5 — 3[x125.
Choosing = = (ax3,z2) we obtain

(ax, z3) - VP(ax3, x0) = x3(2a% — 38a + 4).

Then, since for § > \/5% the polynomial 2a% — 38a + 4 has positive discriminant, fixing
XS (\/5%, 2) and a such that 2a® — 38a + 4 < 0 we see that

liminfz - VP(z) < lim (ax3,x2) - VP(ax3, x9) = —o0.
|z|—o00 |x2|—00

This proves the proposition for n = 2. For n > 2 it suffices to consider

n
P(z1,29,...,2,) = P(x1,22) + Zx?,
=3
where P is as before. O

We end this chapter by giving a proof of Lemma 3.2.3.
Proof of Lemma 3.2.3 For any R > 1 set

Ap:={z € R*™:R< |z| < 2R}, A:=A ={2zcR¥™:1<|z| <2}
Given f € W?™P(AR), define

f(z):= f(Rz), forxze A.

For |5| < 2m, we have
/ D? f(x)Pdz = R / \(DP f)(Ra) Pde
A A
— RplBl=2m DB Pdz.
/A 1D )P

From the embedding W2™P(A) < C°(A) there exists a constant S > 0, such that

lullcogay < Sllullwamnay for all u € W2™P(A).
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Hence

Ifllcocan) = I1fllcocay
< S fllwemr(ay

=5 Z ID” fll 1o (a)

|B1<2m

=8 Y REEPIDf 1o
|8|<2m

—om/p— 5+|8l
<CS Y RPN+ 1a) T D flliacan

18]<2m
<SOSR fllmg, ,» v =2m/p+5>0.

Since R > 1 is arbitrary, and on By we have
[ fllcomy) < SN f llwema(py) < CS/HfHM;’m,éa
we conclude that M3 = (R?™) C Cp(R?™), and actually

< = i =0.
sup | fullarg, , < o A sup |l fulleoar)

(3.31)

(3.32)

(3.33)

By (3.31) and (3.32), on any compact set 2 € R?™ the sequence | fallwr2m.p () is bounded
and from the compact embedding W?2™P(Q2) — CY(£2), we can extract a subsequence
converging in C°(Q2). Then up to choosing Q = B,, and extracting a diagonal subse-
quence we have f, — f locally uniformly for a continuous function f, and actually

f € Co(R?™) and the convergence is globally uniform thanks to (3.33).

O






Chapter 4

Existence of solutions to a fractional
Liouville equation in R"

In this chapter we study the existence of solutions to the problem

(—A)%u =Qe™ InR" V.= e"dr < o0,
R

where Q = (n —1)! or @ = —(n — 1)!I. We show that to a certain extent the asymptotic
behavior of u and the constant V' can be prescribed simultaneously. Furthermore if
@ = —(n —1)! then V can be chosen to be any positive number. This is in contrast to
the case n = 3, Q = 2, where Jin-Maalaoui-Martinazzi-Xiong showed that necessarily
V < |83|, and to the case n = 4, Q = 6, where Lin showed that V < |S%|.

4.1 Introduction and the main results

We consider the equation
(—A)su=(n—1)le™ inR", (4.1)

where n > 1 and

V= e"dr < oo. (4.2)
Rn”

For the definition of the nonlocal operator (—A)2 we refer to Chapter 2.

We recall that (Theorem C and Theorem 3.1.1) in even dimension n > 4, for a given
V € (0,]S™|) and a given polynomial P such that degree(P) < mn — 2 and

z-VP(z) = o0 as |z| — oo, (4.3)
there exists a solution u to (4.1)-(4.2) having the asymptotic behavior
u(z) = —P(z) — alog|z| + C + o(1), (4.4)

where a := |257Z|’ and o(1) — 0 as || — oc.

55
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When n is odd things are more complex as the operator (—A)% is nonlocal. In a recent
work Jin-Maalaoui-Martinazzi-Xiong [40] have proven:

Theorem E ([40]). For every V € (0,|S3|) there exists at least one smooth solution to
(4.1)-(4.2) with n = 3.

Extending the results of [15, 40, 77] and Theorem 3.1.1 to arbitrary odd dimension
n > 3 we prove the following theorem about the existence of solutions to (4.1)-(4.2)
with prescribed asymptotic behavior:

Theorem 4.1.1. Let n > 3 be an odd integer. For any given V € (0,|S™|) and any
given polynomial P of degree at most n — 1 such that

P(z) - 00 as |x| — oo, (4.5)

there exists u € C(R")N Lz (R™) solution to (4.1)-(4.2) having the asymptotic behavior

given in (4.4) with a = %

Notice that, contrary to the result of Theorem E, in Theorem 4.1.1 we can now prescribe
both the asymptotic behaviour and the volume, similar to Theorem 3.1.1, but in fact
in more generality, since the condition (4.3) has been replaced by the weaker condition
(4.5). Actually with minor modifications one can prove that the condition (4.5) also
suffices in even dimension. On the other hand we do not expect this assumption to be
optimal, compare to Theorem A and Theorem 2.1.2.

We remark that the condition 0 < V' < |S"| is necessary for the existence of non-spherical
solution to (4.1)-(4.2) in dimension 3 and 4 as shown in [40] and [45] respectively, but
in higher dimension solutions do exist for every V' > 0 (see Chapter 5).

The condition n > 3 in Theorem 4.1.1 is necessary, since for n = 1 any solution of
(4.1)-(4.2) is spherical, see Da Lio-Martinazzi-Riviere [21].

Now we shall discuss the case when the Q)-curvature is negative. We consider the equa-
tion

(-A)2u=—(n—1le™ inR™ (4.6)

In even dimension n > 4 for any V' > 0 and any given polynomial P of degree at most
n — 2 satisfying (4.3), the existence of solutions to (4.6)-(4.2) having the asymptotic
behavior given by (4.4) with a = —% has been shown in Theorem 3.1.2. As in the
positive case, we shall extend this existence result to arbitrary odd dimension n > 3,
again replacing condition (4.3) with the weaker condition (4.5).

Theorem 4.1.2. Let n > 3 be an odd integer. For any given V > 0 and any given

polynomial P of degree at most n— 1 satisfying (4.5) there exists u € C*°(R™) OL%(R”)

solution to (4.6)-(4.2) having the asymptotic behavior given in (4.4) with o = —%.

4.2 Existence results

The proof of Theorems 4.1.1 and 4.1.2 rest on the following theorem:



o7

Theorem 4.2.1. Let wy(z) = log ﬁ and let m: S" \ {N} — R" be the stereographic

projection and N = (0,...,0,1) € S™ be the North pole. Take any number o € (—o0,0)U
(0,2) and consider two functions K, p € C*°(R"™) such that

- 1!
[ o == s, (4.7

_5‘I|P

aK > 0 everywhere in R™ and whenever a < 0 then |K| > de for some § > 0,
0 <p<n. If both of Ke™™ and @e™ ™ can be extended as C*" 1 function on S™ via
the stereographic projection m then the problem

n 1 1
(=A)zw = Ke"™WHew) — g in R, ¢, = —— log ( Ke"wdx> ) (4.8)

n AYn JRn

has at least one solution w € C*(R™) N Lz (R"™) so that limy,| o w(z) € R.

Now the proof of Theorem 4.1.1 and Theorem 4.1.2 follows at once by taking
u:=—P + aug + w + ¢y,

where ug € C*°(R"™) is given by Lemma 4.2.2 with k& = 2n + 3, w is the solution in
Theorem 4.2.1 with ¢ = (—A)2uy which satisfies (4.7) thanks to Lemma 4.2.3, and
K := sign(a)(n — 1)le~F*+nauo Notice that Ke ™0 can be extended smoothly on S™
via the stereographic projection 7 where as pe™™"0 can be extended as a C?"*! function.

Lemma 4.2.2. For every positive integer k there exists ug € C*°(R™) such that

uo(x) = log|i| for |z| > 1 and |DY(—A)zug(x)] < |$|2n€k+|a forx #0, (4.9)

for any multi-index o € N™,

Proof. Inductively we define
1
vj(x) :/ vi_1((t,%))dt, for x = (v1,7) ER xR j=1,2,... k,
0

where

vo(x) = log ]

Let x € C*°(R™) be such that

We claim that ug := %(Xvk) satisfies (4.9). It is easy to see that ug(z) = Iogﬁ for
1

|z] > 1. By Lemma 2.5.1 %(—A)ngl %vk is a fundamental solution of (—A)% on R"
n 1

and hence for x # 0, (—A)%(—A) ngl%vk(a:) = 0. For |z| > 2 using integration by
1
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parts we compute

n 1 n1 OF
(=8)Fun(a) = (=8)H(=4)"F Fo (e — ) (@)
(=A)"% 2 (xor = vn)(y)
= Cn /y|<1 |z — y|" ! dy

ak n—1 1
o[ o Zes® (b Y
‘y|<1(Xk k)(y)ay,f( ) g )

and
D (—=A)3ug(x) = Cn/ (x(@)vr(y) — v(y)) Dgai(_m%l (1> o
lyl<1 Ay o =yl
Hence
|D*(—A) 2 ug(z)| < Cwm'

O]

Lemma 4.2.3. Let uyp € C*°(R") be as given by Lemma 4.2.2 for a given k € N. Then
ug satisfies (4.7), that is,

/ (=A)2ug(x)dz = .
Proof. Let n € C*°(R™) be such that
(z) = 1 if 2| <1
TE=Z 0 if o] > 2.

We set ny,(z) = n(%). Then noticing that (=A)2ug € L'(R™) one has

o3

/ (=) 3 ug(z)dz = lim (=A) 2 ug () (z)dx
n —0 JRn

w3

= lim (uo(x) —log |i) (=A)zn(x)dx + vy,

k—oo B1 |

= fYﬂ?

Tn
tion of (—A)% and the third equality follows from the locally uniform convergence of

(=A)zn — 0. O

where in the second equality we used the fact that ilogﬁl‘ is a fundamental solu-

It remains to prove Theorem 4.2.1. In order to do that we recall the definition of H™(S™).

Definition 4.2.1. Let n > 3 be an odd integer. Let {Y" € C®(S") : 1 < m <
N, 1=0,1,2,...} be an orthonormal basis of L?(S™) where Y;™ is an eigenfunction of
the Laplace-Beltrami operator —Ay; (go denotes the round metric on S™) corresponding
to the eigenvalue \; = [(Il +n — 2) and NV, is the multiplicity of A; (see [72, p. 68]). The
space H™(S™) is defined by

H™(S™) = {u € L(S™) : [[ull gu(sny < oo} :
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where for any
oo N;
=3 S
=0 m=1
we set

) ) T[T+ k(o — k= 1)) ().

k=0

co N
gy = 30 (m(

=0 m=1

Notice that the norm ||u||% n(sn) is equivalent to the simpler norm

oo N;

lal® =7 > A (u™)?,

=0 m=1

but has the advantage of taking the form

[l grn(smy = 1 Pgoull 2y,

where for n odd the Paneitz operator P! can be defined on H"(S™) by (see for instance

[16] and the refferences there in)
1

co N . 3 "5
p;m—ZZ(x,Jr(” 1)) ]}'[(](Al+k(n—k—1)) T E

=0 m=1

Since the operator P! is positive we can define its square root, namely

n—3

1

oo N; 2\ 4 2
-1 n
(w(n )) TL00 + Kk~ )by, we HE (™),

(P")% > 2 k=0

=0 m=1

H?z(S™) is defined by

H5(S™) = ue L2(S™) igl: <A1+(”_1> >

where the space

=0 m=1
n—3
2
< JT O +k(n— k= 1)) < oo b,
k=0

endowed with the norm

= Hu”m(sn) +II( go)QuHLz(Sn)'

Definition 4.2.2. Let f € H™2(S") be the dual of Hz(S™). A function u € Hz (S™)
is said to be a weak solution of
Plu=f,
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if
/ (P;))%U(Pg%)%god% = (f,p), forevery ¢ € H%(Sn). (4.10)

The following estimate of Beckner is crucial in the proof of Theorem 4.2.1.

Theorem 4.2.4 ([7]). For every u € Hz(S™) one has
1 = 1 1 1
log | = AV ) € = P yaul2dVy, W= o dvp.
ot (5 o 08) < g [, o e, o= g

Proof of Theorem 4.2.1. Let K = K om, ¢ = we ™0 and $; = ¢ o 7. Define the
functional .J on Hz(S™) by

1 n o — o7
J(w) = /S (2](]3;:));10\2 + acﬁlw) dVp — % log (/n | K |eme=mwo dVO> .

Using Theorem 4.2.4 we bound

log (/ ]K’\e”we"wooﬂd‘/g>

1 .
= log "M K e dVy | + nw + C
5™ Jgn

1 _ -
< log <|5n| . e”w_”deo> + log (\|Ke—nwo°7f||m) +nw+C

2

n nyi 2 _

Since for any ¢ € R J(w + ¢) = J(c) we can assume w = 0. Then from (4.11) we have

. 1 1 Qn TL2 2 2 L. 2
J(w) 2 min {27 <2 " Tn 257! ) }HwHHg —ellwll%y - g||901\|L2 g

—(2—a)/4

where 0 < ¢ < 3 is sufficiently small so that 232 — ¢ > 0 and for o < 0 using |K| >
se17” one has

~ 1 -
log (/ |K|e”w6_"w0°”dV0) > 7|S"] / log (]K|e_"w0°”> dVp + nw + log |S™| > —C.
Sn Sn

Thus a minimizing sequence {wy} of J with @ = 0 is bounded in H2 (S™). With the
help of Poincaré’s inequality

lw — | 2sny < (P2) 2wl 2gsm),  for every w € HE(S™),
which easily follows from the definition of ||(P97f))%w|] £2(sn), we conclude that the se-
quence {wg} is bounded in H %(S”). Then up to a subsequence wy, converges weakly

to u for some u € H2(S™). From the compactness of the map v — eV from Hz(S™)
to LP(S™) for any p € [1,00) (for a simple proof see [40, Proposition 7] which holds in
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higher dimension as well) we have (up to a subsequence)

lim log </ |I~(|e"w’“e_”w0°”dvo> = log </ |f(\e””e_m”°°7rdV0> .
k—o0 Sn n

Moreover from the weak convergence of wy to u we have

lim 951wde0:/ prudVy and  ||ul| <hm1nf||wk|]

and from the compact embedding Hz (S™) < L2(S5™) we get

klggo w2 (sny = llullL2(sm)-

Thus ||(P, )2u||L2(S’n) < liminfy o ||(P, )2wk||L2(Sn) which implies that u is a mini-
mizer of J and hence u is a weak solutlon of (in the sense of Definition 4.2.2)

- ary _ _
Pg’zu + apy = L Ke nwoement —. Oy Ke™ "o,

Jon K K ente—nwo JV
Since g1 € C2H1(S™) and Ke "w0°T ¢ C'°°(S™) we have
Pyu = CoKe ™0 _ o1 € L2(S™),
and by Lemma 4.2.5 below u € H™(S™) and a repeated use of Lemma 4.2.6 gives
u € CPntl(gn),

2n+1 Sn
We set w := uor ™! and wy, := upon~! where up, € C(S™) be such that uy 4—(—)+

It is easy to see that (—A)Zwy, m (—=A)zw and Pyug M Py u which easily

follows from
n Hn+1(5 ) n n+1 mn 0 n
Puk—>PgouandH (S™) — C¥(S™).

Now using the following identity of T. Branson [9]
(=A)z(vor ) =m0 (Ppv)yom™!  for every v € C*(S™),

we get

|3

(=A)zw = (—A) 2 (uor ') = ™0 (C’oke*m"oo”e"“ - acﬁl) om !

= CoKe™ — ap = Ke™WHew) _ g,

Since (—A)zw € L1 (R") N C?"*1(R") we have

N

n+1

(=) w=(-A)7(-A)%w € C*"(R"),

N|=

and by bootstrap argument we conclude that w € C*°(R"). O

The following lemma is probably known. Since we could not find a precise refference for
this, we give a proof.
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Lemma 4.2.5. Let f € L*(S"). Let u € H2(S™) be a weak solution (in the sense of
Definition 4.2.2) of
Pyu=f onS"

Then uw € H™(S™).

Proof. Let
o N oo N
) SUCANE T 5 ¥ a7
=0 m=1 =0 m=1

Taking the test function ¢ = Y™ in (4.10) we get

n—3

_ 2 % 2
f;n:/n<p;;>éu(p;;)%<pd%: </\1+ (”2 1) > [T+ k(=& —1)um.

k=0
Hence
o N n—1\2 =
HPg’;‘)uHLz(Sn) = Z Z ()\l + < 5 > ) H(/\l +k(n—k— 1))2(%”)2
=0 m=1 k=0
oo N;
- Z(flm)z < 09,
=0 m=1
and we conclude the proof. O

Lemma 4.2.6. Let u € H*(S™) and f € HS " T(S™) for some s > n and t > 0. If u
solves

n . mn
Pyru=f onS"

then u € H*TY(S™).

Proof. Let
oo N
=3
=0 m=1
and

oo N;
(<) Z f=h =23 hlY},

i=0 j=1
where for any r > 0
co N oo IV
(Ag)v=>_ > Wf'NY" forv=> > o"¥Y" € H"(S").
=0 m=1 1=0 m=1

Then

s—n

(—~Ago) T Plu=h on S (4.12)
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Multiplying both sides of (4.12) by in and integrating on S™ one has

w

n_1\2 3 e }
()\j + < 5 ) > (A +Ek(n—k— 1)))\j2 u; = h;-.
k=0

Since h € HY(S™) we have

n—3

co N; n—1 2\ 2
3 (Al () ) TL O+ K & — DA M) < oo
=0 m=1 k=0

and hence u € H*TH(S™).






Chapter 5

Conformal metrics on R" with arbitrary
total ()-curvature

We study the existence of solution to the problem

(-A)2u=Qe™ inR", k:= Qe"dx < oo,
R

where @Q > 0, k € (0,00) and n > 3. Using ODE techniques Martinazzi for n = 6 and
Huang-Ye for n = 4m + 2 proved the existence of a solution to the above problem with
Q@ = const > 0 and for every k € (0,00). We extend these results in every dimension
n > 5, thus completely answering the problem opened by Martinazzi. Our approach
also extends to the case in which () is non-constant, and under some decay assumptions
on () we can also treat the cases n = 3 and 4.

5.1 Introduction and statement of the main theorems

For a function @ € C°(R"™) we consider the problem

(—A)2u=Qe™ inR", k:= Qe™dx < oo, (5.1)
]Rn

where for n odd the non-local operator (—A)?z is defined in Definition 2.1.1.

Recall that solutions to (5.1) have been classified in terms of their asymptotic behavior
at infinity. More precisely we have the following;:

Theorem F ([19, 21, 32, 40, 45, 56, 78]). Let n > 1. Let u be a solution of
(=A)zu=(n—1De™ inR", k:=(n— 1)!/ e"dr < oo. (5.2)

Then

u(az):(n_l)!/nlog< y )e”“(y)derP(x)

Tn |33 - y|
2
=~ logla| + P(2) + olog z]), as || - oo, (5:3)
1

65
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where 7y, 1= @\S”L Ay :=2v,, o(log |z|)/log |x| — 0 as |x| — oo, P is a polynomial

of degree at most n — 1 and P is bounded from above. If n € {3,4} then k € (0,A1] and
k = A1 if and only if u is a spherical solution, that is,

2\

—_—— 5.4
14+ A2z — z0/|?’ (54)

w(x) = Uy 5 () = log

for some g € R™ and A > 0. Moreover u is spherical if and only if P is constant (which
is always the case when n € {1,2}).

We recall that under the assumptions

|z| =00
)

deg(P)<n—1, P(x —oo and k € (0,A1),
a converse to Theorem F has been proven in dimension 4 by Wei-Ye [77] and extended
in Chapters 3 and 4 for n > 3.

Although the assumption x € (0,A;] is a necessary condition for the existence of a
solution to (5.2) for n = 3, 4, it is possible to have a solution for k > A; arbitrarily large
in higher dimension as shown by Martinazzi [51] for n = 6. Huang-Ye [31] extended
Martinazzi’s result in arbitrary even dimension n of the form n = 4m + 2 for some
m > 1, proving that for every k € (0,00) there exists a solution to (5.2). The case
n = 4m remained open.

The ideas in [31, 51] are based upon ODE theory. One considers only radial solutions
so that the equation in (5.2) becomes an ODE, and the result is obtained by choosing
suitable initial conditions and letting one of the parameters go to +oo (or —oc). However,
this technique does not work if the dimension n is a multiple of 4, and things get even
worse in odd dimension since (—A)z is nonlocal and ODE techniques cannot be used.

In this chapter we extend the works of [31, 51] and completely solve the cases left open,
namely we prove that when n > 5 Problem (5.2) has a solution for every x € (0,00). In
fact we do not need to assume that ) is constant, but only that it is radially symmetric
with growth at infinity suitably controlled, or not even radially symmetric. Moreover,
we are able to prescribe the asymptotic behavior of the solution u (as in (5.3)) up to
a polynomial of degree 4 which cannot be prescribed and in particular it cannot be
required to vanish when x > Aj. This in turn, together with Theorem F, is consistent
with the requirement n > 5, because only when n > 5 the asymptotic expansion of u at
infinity admits polynomials of degree 4.

We prove the following two theorems.

Theorem 5.1.1. Let n > 5 be an integer. Let P be a polynomial on R™ with degree at
most n — 1. Let Q € C°(R™) be such that Q(0) >0, Q > 0, Qe™ is radially symmetric
and

sup Q(2)e"’® < .

zeR™

Then for every k > 0 there exists a solution u to (5.1) such that

e

2K
(x) = —A—log lz| + P(z) + c1]z? — eolz|* + C 4+ 0(1), as |z| = oo,
1
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for some c1,c0 > 0 and C' € R. In fact, there exists a radially symmetric function v on
R™ and a constant c, such that
2K 1 4 9
v(z) = —=log|z| + S~ Av(0)(|z]" — [z]) + o(1), as [z] — oo,
A1 2n
and
u=P+4+v+c,—|z[t, zeR™

Taking @ = (n — 1)! and P = 0 in Theorem 5.1.1 one has the following corollary.

Corollary 5.1.2. Let n > 5. Let k € (0,00). Then there exists a radially symmetric
solution u to (5.2) such that

2K

n log |z| + c1|z|* — ealz|* + C + 0(1), as |z| = oo,
1

u(x) =
for some c1,¢c0 > 0 and C € R.

Notice that the polynomial part of the solution v in Theorem 5.1.1 is not exactly the
prescribed polynomial P (compare Theorems 3.1.1, 4.1.1). In general, without perturb-
ing the polynomial part, it is not possible to find a solution for k > A;. For example, if
P is non-increasing and non-constant then there is no solution u to (5.2) with k > A;
such that u has the asymptotic behavior (5.3) (see Lemma 5.3.6 below). This justifies
the term c;|x|? in Theorem 5.1.1. Then the additional term —cp|x|* is also necessary to
avoid that u(z) > $|x|? for |z| large, which would contrast with the condition x < oo,
at least if Q) does not decay fast enough at infinity. In the latter case, the term —ca|z|?
can be avoided, and one obtains an existence result also in dimensions 3 and 4.

Theorem 5.1.3. Let n > 3. Let Q € C° ,(R™) be such that Q >0, Q(0) > 0 and

(@) |7 =yt

Q(m)e)‘|x|2dx < o0, for every A >0, /
R B
Then for every k > 0 there exists a radially symmetric solution u to (5.1).

The decay assumption on @) in Theorem 5.1.3 is sharp in the sense that if Qe/\mQ o4
LY(R™) for some A > 0, then Problem (5.1) might not have a solution for every x > 0.
For instance, if Q = e~ M2* for some A > 0, then (5.1) with n = 3,4 and x > A; has no
solution (see Lemma 5.3.5 below).

The proof of Theorem 5.1.1 is based on the Schauder fixed point theorem, and the main
difficulty is to show that the “approximate solutions” are pre-compact (see in particular
Lemma 5.2.2). We will do that using blow-up analysis (see for instance [4, 53, 66]).
In general, if kK > A; one can expect blow-up, but we will construct our approximate
solutions carefully in a way that this does not happen. For instance in [77] (see also
Chapter 3) one looks for solutions of the form v = P + v + ¢, where v satisfies the
integral equation

1 1
'L)(;p) = / log < ) Q(y)enp(y)en(v(y)"rcv)dy,
T Jen |z —yl
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and ¢, is a constant such that
Qe”(P+”+C”)d:v = K.
Rn

With such a choice we would not be able to rule out blow-up. Instead, by looking for
solutions of the form
u=P+v+P,+c,

where a posteriori P, = —|z|*, v satisfies

1 1 1
vie)=— [ lo e PWHP)tv)ten) gyt = (122~ |2|*)|Av(0)], (5.5
@)= [ e () aw) v (Pl Av(0)], (5.5)

and ¢, is again a normalization constant, one can prove that the integral equation (5.5)
enjoys sufficient compactness, essentially due to the term 5-|z|?|Av(0)| on the right-
hand side. Indeed a sequence of (approximate) solutions vy blowing-up (for simplicity)
at the origin, up to rescaling, leads to a sequence (1) of functions satisfying for every
R>0

k—o00

|Any, — cplde < CR"2 +0(1)R™™2,  0o(1) =250, ¢ >0,

Br

and converging to 7. solving (for simplicity here we ignore some cases)
(—=A)2ne = €™~ in R, / e dr < oo,

and
| 1t ends < orR ez (5.6)
Br

where ¢ = 0 corresponds to Ane.(0) = 0 (see Sub-case 1.1 in Lemma 5.2.2 with 3, = 0).
The estimate on ||Anel|z1(p,) in (5.6) shows that the polynomial part Pe of 7 (as
in (5.3)) has degree at most 2, and hence AP, < 0 as Py is bounded from above.
Therefore, coo = 0 = APy, Py is constant and in particular 7. is a spherical solution
by Theorem F, that is, 7o = u) 4, for some A > 0 and g € R", where u) ,, is given by
(5.4). This leads to a contradiction as A7 (0) = 0 and Auy 5, < 0 in R".

In this chapter we focus only on the case @) > 0 because the negative case is relatively
well understood. For instance by a simple application of maximum principle one can
show that Problem (5.1) has no solution with @ = const < 0, n =2 and £ > —o0, but
when @ is non-constant, solutions do exist, as shown by Chanillo-Kiessling in [17] under
suitable assumptions. Martinazzi [52] proved that in higher even dimension n = 2m > 4
Problem (5.1) with @) = const < 0 has solutions for some x, and it has been shown in
Theorems 3.1.2 and 4.1.2 that actually for every xk € (—o0,0) and @ negative constant
(5.1) has a solution.

5.2 The casen > 5

We consider the space

X:={ve C"Y(R™) : v is radially symmetric, |[v]|x < oo},
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where
lwllx = sup | Y A+ [z D% @)+ > [D(x)|
TER™\ |al<3 3<|al<n—1
For v € X we set

Ay = maxd 0, sup D ZHO - p gt
|| >10 2|

Then
v(x) 4+ Py(z) < v(0) — |z|*, for |z| > 10.
Let ¢, be the constant determined by
Ke'vtelde = g, K = QePentr,
Rn

where the functions ) and P satisfy the hypotheses in Theorem 5.1.1. Since @ > 0 in
a neighborhood of the origin, by a dilation argument we can assume that @ > 0 on Bs.
More precisely, if u is a solution to (5.1) then for any A > 0, uy(z) := u(Az) + log A
is also a solution to (5.1) with @ replaced by @y, where Q(z) := Q(Az). Now for a
suitable choice of A > 0 one has @ > 0 on Bjs.

Then v = P + P, + v + ¢, satisfies

(—A)%u =Qe™, k= Qe™dzx,
R"
if and only if v satisfies
(—A)zv = Ke™vten),

We define an operator 7' : X — X given by T'(v) = v, where

1 1 1
= _ n(v(y)+co) 2 _ 1,14
o) = - [ tog () K)ol ~ olD]A0(0)

Lemma 5.2.1. Let v solve tT(v) = v for some 0 <t < 1. Then

t 1 t
v(z) = — lo K(y)e"vWted gy + (122 — |2|*) | Av(0 , 5.7
@ =2 [ eg (1) KW vt (e~ MO, (57
Av(0) <0, and v(z) - —o0 as |x| — co. Moreover,

sup v(z) =v(1) = inf v(x),
zer reB1

and in particular A, = 0.

Proof. Since v satisfies tT'(v) = v, (5.7) follows from the definition of T". Differentiating
under the integral sign and observing that A log ﬁ < 0, from (5.7) one gets

Av(x) < %|Av(0)|A(|x|2 —|z|Y), zeR™ (5.8)
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Taking x = 0 in (5.8) we obtain Av(0) < ¢|Av(0)|, which implies that Av(0) < 0. Notice
that the function ;
w(@) = v(z) + 5| Av(0)|(a[* — [2]?)

is monotone decreasing as Aw < 0. This follows from (5.8) and the integral representa-
tion of radially symmetric functions given by

1

Tn—l

Af(x)dzdr, 0<E<E wp:=[S"Y. (5.9
B

B 13
16 — 1) = /£

Wn—1

The monotonicity of w implies that sup,epe v(z) = v(1) = infzep, v(x), and hence
Ay, = 0. Finally, together with [Av(0)| > 0, we conclude that lim|y_,. v(2) = —00 as
lim, o0 w(z) < w(1). O

Lemma 5.2.2. Let (v,t) € X x (0,1] satisfy v = tT'(v). Then there exists C > 0
(independent of v and t) such that

1
supw < C, w:=v+c,+ —logt.
B1 n

8

Proof. Let us assume by contradiction that the conclusion of the lemma is false. Then
there exists a sequence wy, = vy + ¢y, + %log t), such that maxg, wy =: wg(0r) — co.
8

If 8, is a point of local maxima of w;, then we set xp = 6. Otherwise, we can choose

xp € Bi such that zj is a point of local maxima of wy and wg(x) > wg(x) for every
4

x € Bj;,|- This follows from the fact that

inf w4 oo,
B1\B1
1 8

which is a consequence of

Ke™kdy =t <k, K >0 on Bs.
]R"l
We set py, := e~ k(#k) We distinguish the following cases.
Case 1 Up to a subsequence ;3| Avg(0)| = co € [0, 00).

We set
() = vi(xg + ppx) — vi(r) = wi(xg + ppr) — wi(zr).

Notice that by (5.7) we have for some dimensional constant C

Ang(z) = ppAvg(vg + )

2 K (y)emwr W) 4in+2
= 01/%/ (v) sdy + tep, (1 _dnt2) )|$k + uk$|2> |Av(0)],
Y Jre |2k + ik =yl 2n
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so that
2(n+2
[ Jame - wiano (1- 22 ) o
Br n
2
< ﬁ K(y)enwk(y)/ dex Sdy
Yn Jre Bg T + prr —y|

4 Oty | A (0)] / (olew- 2] + 12 |zf?)de
Br

C 1
< Pt [ et Ctudlan)] [ (el + il
Tn Br |$| Bpr

< CrtR"2 + Oty | Avg (0)] (ue R™ + i R™12) . (5.10)
The function 7 satisfies

(=A)2 () = K (zg, + ppx)e™ @) in R™, n(0) = 0.

Moreover, n; < C(R) on Bg. This follows easily if |z;| < § as in that case n; < 0 on Bp
for k > ko(R). On the other hand, for % < |zy| < % one can use Lemma 5.2.4 (below).
Therefore, by Lemma 5.4.4 (and Lemmas 5.2.6, 5.2.7 if n is odd), up to a subsequence,
nk — 1 in C"1(R™) where 7 satisfies

loc
(=A)2n = K(200)e™  in R, K(xoo)/ e"dr < took < 00, K(2o0) >0,

where (up to a subsequence) ¢, — too and T — Too. Notice that to € (0,1], oo € B
and for every R > 0, by (5.10)

1
1

2(n+2)

/ |An — coer|de < CR™2, ¢p =11 — |Zoo|? > 0. (5.11)
Br

Hence by Theorem F we have
n(x) = Po(z) — aloga| + o(log|z]), as [z] = oo,

where Py is a polynomial of degree at most n — 1, Py is bounded from above and « is a
positive constant. In fact, by (5.11)

/ |APy(x) — coer|de < CR™2,  for every R > 0.
Bgr

Since g, c1 > 0, it follows that Py is constant. This implies that 7 is a spherical solution
and in particular An < 0 on R", and therefore, again by (5.11), we have ¢y = 0.

We consider the following sub-cases.

Sub-case 1.1 There exists M > 0 such that ‘z—:' < M.

We set yy, := —%. Then (up to a subsequence) yx — Yoo € Basry1. Therefore,
: . Co
An(Yoo) = klggo Ani(yx) = Iclggo M%Avk(o) == 0,
o0

a contradiction as An < 0 on R™.
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Sub-case 1.2 Up to a subsequence % — 00.
For any N € N we can choose & p,...,én g, € R™ such that || = |z for all
i =1,...,N and the balls By, (& )’s are disjoint for k large enough. Since vy’s are

radially symmetric, the functions ;5 1= vi (& + ) —vk(§x) = 1 = 1 in Cﬁ)zl(]R").
Therefore,

lim e"Wrten) dy > N lim ek ten) gy — Ni e"dzx.
k—oo B k—o0 Buk(fl,k) too B

This contradicts to the fact that

Ke™Mveten) g < Kk, K >0 on Bs.
By

Case 2 Up to a subsequence 53| Avg(0)] — oco.
We choose py > 0 such that tp2p2|Avg(0)] = 1. We set

Yr(x) = vp(xg + prpwe) — vi(o).

Then one can get (similar to (5.10))

2(n+ 2
/ Ay(x) — (1 — 7( )]a;k]2> dx
Br n
(v) P%M% 2

<Cp | K(y)e™rY / dxdy+02ukpk/ x| + pgpr|r|”)dx

Rn ) Bp 1Tk + ke — yl? BR(’ | =
k—o0
— 0,

thanks to Lemma 5.2.5 (below). Moreover, together with Lemma 5.2.4, 1, satisfies
(=A)5¢p =o(1) in Br, 4(0)=0, v <C(R) on Bg.

Hence, by Lemma 5.4.4 (and Lemma 5.2.6 if n is odd), up to a subsequence ¢y — ¢ in
C™Y(R™). Then 1) must satisfy

loc

2(n+2)

/ AY— coldz =0, cpi=1— 2 > 0,
B1

where (up to a subsequence) x; — o, € B1. This shows that A (0) = cp > 0, which

1.
1
is a contradiction as

A(0) = lim Agpy(0) = lim ppif Avi(wy) < 0.

k—o0

Here, Avg(zy) < 0 follows from the fact that xj is a point of local maxima of . O

A consequence of the local uniform upper bounds of w are the following global uniform
upper bounds:
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Lemma 5.2.3. There exists a constant C' > 0 such that for all (v,t) € X x (0,1] with
v =1tT(v) we have |[Av(0)| < C and

1
v(z)+ e+ —logt <C, onR"™
n

Proof. By Lemma 5.2.2 we have

1
supw :=sup | v+ ¢, + —logt | < C.
By By n

8 8

Differentiating under the integral sign from (5.7), and recalling that Av(0) < 0, we
obtain

1 1
[Av(0)] < C ﬁK(y)enw(y)dy +C —QK(y)e"w(y)dy
B3 |y BS |y
8 8
1
< CsupK Tody+C Ke™dy
By B Y BS
8 8 g
< C(k, K).

By (5.8) we get
Av(z) < t|Av(0)| < C, x eR",

and hence, together with (5.9)

1

— Av(y)dydr < v(0) + Clz|> < C 4+ v(0), 2z € By.
Wp—1T B,

||
v(x) = v(0) +/0

The lemma follows from Lemmas 5.2.1 and 5.2.2. O

Proof of Theorem 5.1.1 Let v € X be a solution of v = tT'(v) for some 0 < ¢ < 1. Then
A, =0 and |Av(0)| < C, thanks to Lemmas 5.2.1 and 5.2.3. Hence, for 0 < || <n —1

|Dﬁv(x)| <C
Rn

1 1
D¥log ()| e ers o0y 1 D21 ~ ol

1
Dﬁl"g(m—m)

where in the second inequality we have used that

<C e~ dy + C|DP (|2 — [2[*)],

R

v(x) + ¢y + %logt < (C, C is independent of v and ¢,
which follows from Lemma 5.2.3. Now as in Lemma 5.2.8 one can show that
[vllx < M,
and therefore, by Lemma 3.2.4, the operator T" has a fixed point (say) v. Then

u=P+v+c,—|z[*
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is a solution to the Problem (5.1) and w has the asymptotic behavior given by

2K 1
u(x) = P(z) — A—log |x| + %AU(O)(|I‘|4 — |x\2) — |x]4 +cy+o(1), as|z| — 0.
1
This completes the proof of Theorem 5.1.1. O

Now we give a proof of the technical lemmas used in the proof of Lemma 5.2.2.

Lemma 5.2.4. Let e > 0. Let (vg,tx) € X x (0,1] satisfy (5.7) or (5.14) for all k € N.
Let xy, € By \ Be be a point of mazima of vi on By, | and v (zx) = 0. Then

vp(zp + ) — vg(z) < C(n, e)|z*te|Avk(0)|, =z € By.

Proof. 1f |z, + x| < |zg| then vg(zk + ) — vi(zr) < 0 as vg(xg) > vi(y) for every
Y € By, |- For |zp| < |xg + 2], setting a = a(k, x) := z + x, and together with (5.9) we
obtain

|al 1
vg(xp + ) — vp(z)) = / n—l/ Avg(x)dzdr
|s,| Wn—1T Br\Bz, |

|al 1
< / wr”_l/ ti| Avg(0)|dzdp
|zg| “n—1 Bja\Blzy|

< Cal Ao O 1Bial = B (1553~ s )

‘l‘k‘n_2
< C(n, e)tg|z?| Av(0)],

where in the first equality we have used that

1

- Avidz.
wnalzel Jp,

0= v(ak) =

Hence we have the lemma. ]

Lemma 5.2.5. Let (vg,tx) € X x (0,1] satisfy (5.7) for all k € N. Let x € By be a
point of mazxima of vy on B‘xk‘ and vj(zg) = 0. We set wy, = v + ¢y, + %logtk and
k= e @) Let p > 0 be such that teprips| Avg(0)] < C and prpgx — 0. Then for
any Ry >0

2,2
lim K (y)emor) / Ptk sdrdy =: lim [ = 0.
k—oo Jrn B, ‘.T,'k + PRl — y’ k—o0

Proof. In order to prove the lemma we fix R > 0 (large). We split Bg, into

A1(R,y) :={x € Br, : 7% + prpwr — y| > Rprpr},  A2(R,y) := Br, \ A1(R,y).

Then we can write I, = Iy j, + I3, where

PRty
Ly = K(y)eWk(y>/ kk sdady, i=1,2.
Rn Ai(Ry) \wk + PEHET — y|
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Changing the variable y — xj + prpury and by Fubini’s theorem one gets

Ly = py / K (zk + prpry)e™™®) 5 X|z—y|< RAYdT
Bry Jrn |z — \

<p / / K (zp + prpy)e"™ W) ——— dydz
Bry Y Br+r, |z — ZJ\

< C(n,e) ( sup Ke"”’“) (R+ Ro)"Ry~?p},

BRryRry+1

where n(y) := wi(xr + prpry) — wi(zx). If zp — 0 then np < 0 on Brypg,+1 for k large.
Otherwise, for k large prury € By for every y € Brir,+1 and hence, by Lemma 5.2.4

ne(y) = vi(2n + prpwy) — vi(wr) < Clppiry*tr] Avg(0)| < O(R, Ry).

Therefore,
lim IQ k= 0.
k—oo

Using the definition of ¢, we bound

|Br,| 1
D S [ K@ Oy < Clnr, o) .
Since R > 0 is arbitrary, we conclude the lemma. O

We need the following two lemmas only for n odd.

Lemma 5.2.6. Let n > 5. Let v be given by (5.7). For any r > 0 and §{ € R™ we set
w(z) =v(re+¢§), z=eR"™
Then there exists C > 0 (independent of v, t,r, &) such that for every multi-index o € N™
with |a| = n — 1 we have | D*w| 1, ®ny < Ct(1 4 r*|Av(0)]). Moreover, for any e >0
2
there exists R > 0 (independent of r, & and t) such that
[ D%w(z)| 4
/BC I trds < et + Y AvO)). o] =n -1
R
Proof. Differentiating under the integral sign we obtain
n—1

D%w(z SC’t/ "
R A

(y)dy + Ctr*|Av(0)],  f(y) == K(y)e"?@Hter),

If n > 5 then the above inequality is true without the term Ctr4|Av(0)|. Using a change
of variable y — & 4+ ry, we get

| DYw(x)|
1= T\ g
fy i

< Ctr™ f(E+ry) /
Rn ]x

dx

4

A .
y[" g ‘nﬂd:cdy—i-Ctr] U(0)|/Ql—|—]x\”+1

The lemma, follows by taking €2 = R" or B%. O
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Lemma 5.2.7. Let n — 1 in C’lrézl(R”). We assume that for every e > 0 there exists
R > 0 such that

n—1
|A "z () _
L de<€, fOTk—l,Q,.... (512)

c
R

We further assume that
(—A) 2y = K (2p + ppz)e™  in R™, / | K (2 + prr) "™ P dz < C,

where T — Too, p — 0, K is a continuous function and K(r~) > 0. Then " €
LY(R™) and n satisfies
(—A)zn = K(rs)e™ in R™

Proof. First notice that AT Nk — Angln in Li(R™), thanks to (5.12) and the conver-
2
gence 7, — 1 in C1"H(R™).

loc

We claim that 7 satisfies (—A)2n = K ()€™ in R" in the sense of distribution.

In order to prove the claim we let ¢ € C2°(R"). Then

lim K (2, 4 prz)e™ @ o(z)de = K (#00)e™®) o(z)d,
k—oo Jrn R™

and
i [ ()T m-A) e = [ (8)"F n(-2)bpda,

k—o0 Rn n

We conclude the claim.

To complete the lemma first notice that €™ € L'(R™), which follows from the fact that
for any R > 0

K
/ e"dr — lim ek dr — lim Mennk @) dg < ]
Br k—o0 Br k—o0 Br K(xoo) K(LEOO)

We fix a function ¢ € C2°(Bs) such that ¢» = 1 on B;y. For ¢ € S(R"™) we set pp(z) =
@(z)¥(%). The lemma follows by taking k — oo, thanks to the previous claim. O

Lemma 5.2.8. The operator T : X — X is compact.

Proof. Let v, be a bounded sequence in X. Then (up to a subsequence) {vi(0)},
{Av(0)}, {A,,} and {e,, } are convergent sequences. Therefore, |Avg(0)|(|z|* — |=|*)
converges to some function in X. To conclude the lemma, it is sufficient to show that
up to a subsequence {fi} converges in X, where fj is defined by

1
fr(x) = / log <\x — y\) Q(y)enP(y)enPUk (y)en(vk(y)—f—cvk)dy'
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Differentiating under the integral sign one gets

1
DR@ISC [ Qe Wm0y, o< <1
<C —lyl* 4
= g gt
<C,

where the second inequality follows from the uniform bounds
|0k (0)] < C, [ey,| < C, Qe™ < C, and vy (a) + Py, (x) < v(0) — || (5.13)
Indeed, for 0 < |5| <n —1

lim sup sup |D°fi(z)| =0,
R—oo | zeBs,

and for every 0 < s < 1 we have ||[D""! fy||co.s(p,) < C(R,s). Finally, using (5.13) we
bound

ful@)] < C / llog |z — yle " dy < Clog(2 + |«).
R’I’l

Thus, by Ascoli’s theorem, up to a subsequence, fr — f in C"_l(]R”) for some f €

loc

C" 1(R™), and the global uniform estimates of f, and D?f; would imply that f, — f
in X. O

5.3 The case n > 3

We consider the space
X := {v e C" HR") : v is radially symmetric, [[v] x < o0},

where
ollx = sup | > (1+[a)) 2D ()| + Y |D(a)|
2€R™ \ |y<1 1<|al<n—1
For v € X, let ¢, be the constant determined by
Qe"teldy =,
R

where () satisfies the hypothesis in Theorem 5.1.3. Again by dilation argument we can
assume that @) > 0 on Bjs.

We define an operator T': X — X given by T'(v) = v, where

; 1/ ( 1 ) () +en) gy 4 L 2
v(x) = — lo Qy)e™"\W T dy + —|Av(0)||z|*.
(z) ol LA (y) Y+ 5 -1Av(0)]|2]

As in Lemma 5.2.8 one can show that the operator T is compact.

The proofs of the following two lemmas are similar to those of Lemmas 5.2.1 and 5.2.5
respectively.
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Lemma 5.3.1. Let v solve tT'(v) = v for some 0 <t <1. Then Av(0) <0, and

t 1 t
- n(v(y)+ey) - 2
v(x) o /n log (|m — y|> Qy)e dy + 2n\Av(0)Haz| . (5.14)

Lemma 5.3.2. Let (v, t;) € X x (0,1] satisfy (5.14) for all k € N. Let x}, € By be a
point of maxima of vy on Bm‘ and v (xz) = 0. We set wy, = vg + ¢y, + %logtk and
wr = e @) Let p > 0 be such that pitipi| Avg(0)] < C and pgpuy — 0. Then for
any Ry >0

Pl
lim Q(y)e™* ) / kT k sdxdy = 0.
k—oo JRn Br, |zk + prpke — yl

Now we prove similar local uniform upper bounds to those in Lemma 5.2.2.

Lemma 5.3.3. Let (v,t) € X x (0,1] satisfy (5.14). Then there exists C > 0 (indepen-
dent of v and t) such that

1
supw < C, w:=v+c, + —logt.
B n

8

Proof. The proof is very similar to that of Lemma 5.2.2. Here we briefly sketch it.

We assume by contradiction that the conclusion of the lemma is false. Then there exists
a sequence of (v, tx) and a sequence of points xy, in B 1 such that

wy(7g) = 00,  wg < wi(wg) on By, 1wk is a point of local maxima of vy.

We set uy, := e~ “¢(@r) and we distinguish following cases.
Case 1 Up to a subsequence ;3| Avg(0)| = co € [0, 00).

We set ng(x) := vk (g + prpr) — vg(xg). Then we have
/ Ang — tsi2 | Avg(0)[da < CtyRP2.
Br

Now one can proceed exactly as in Case 1 in Lemma 5.2.2.
Case 2 Up to a subsequence tgu2|Avg(0)] — oco.

We set ¢y () = vg (2 + prpua) — vi(zy) where py, is determined by tgpfu2|Avg(0)] = 1.
Then by Lemma 5.3.2

/ |Avp — 1|dx = o(1), as k — oo.
Br
Similar to Case 2 in Lemma 5.2.2 one can get a contradiction. O

With the help of Lemma 5.3.3 we prove

Lemma 5.3.4. There exists a constant M > 0 such that for all (v,t) € X x (0,1]
satisfying (5.14) we have |Jv|| < M.
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Proof. Let (v,t) € X x (0,1] satisfy (5.14). We set w := v + ¢, + 1 logt.

First we show that |Av(0)] < C for some C' > 0 independent of v and ¢. Indeed,
differentiating under the integral sign, from (5.14), and together with Lemma 5.3.3, we
get

1

[Av(0)|(1+1) <C |2Q(y)6”“’(y)dy

Rn !y

1 1
= C/ TRy e"“’(y)derC/ —=Q(y)e™ Wy
By ly|? ) BY ly|? )
8

1
SC/ —5Q(y)dy + Ck
By ly|? )
<C.

Hence |Av(0)] < C.

We define a function £(x) := v(z) — 5 |Av(0)|[z|*>. Then ¢ is monotone decreasing on
(0, 00), which follows from the fact that A < 0. Therefore,

1 t
— L+ =1 —|A 2
w(z) = €£(2) + ¢ + logt + o - |Av(0)]|2]

1 1 t
<E(2) + ot —logt + | Av(0)]|af?

1 t
< w(g) + 5 |Av(0) 2

Hence, w(z) < A(1 + |x|?) on R™ for some A > 0 independent of v and t. Using this in
(5.14) one can show that

[v(x)] < Clog(2 + |a]) + Claf?,

and differentiating under the integral sign, from (5.14)

1

]Dﬁv(x)] <C _
Rn |7 — yUBI

Q) Wdy + C1D el 0 < |5l <n 1.
The lemma follows easily. O

Proof of Theorem 5.1.3 By Schauder fixed point theorem (see Lemma 3.2.4), the operator
T has a fixed point, thanks to Lemma 5.3.4. Let v be a fixed point of T'. Then u = v+¢,
is a solution of (5.1).

This finishes the proof of Theorem 5.1.3. g
Now we prove the non existence results stated in the introduction of this chapter.

Lemma 5.3.5. Let n € {3,4}. If Q(z) = e M for some A > 0 then there is no
solution to (5.1) with k > Ay. If Q € CL_,(R™) is of the form Q = e* and it satisfies

Q' <0, |-VQ@)| <C, ﬁﬂo

then there is no radially symmetric solution to (5.1) with kK > A;.
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Proof. First we consider the case when Q = e **. Let u be a solution to (5.1) with
Q = e~ 1>, Then the function w(z) := u — %|ac|2 satisfies

(=A)zw =™, k= Qe"dr = / e"dx < oo.
RT’L n

It follows from [40, 45] that k < A;.

In order to prove the lemma for Q = e, we assume by contradiction that there is a
solution w to (5.1) with K > A;. We set

v(z) : ! /n log < ’g| > Q)™ Wdy, h:=u—wv.

_'YnIR

Then v(z) = —i—’:log|zx| + o(log |z|) as |x| — oco. Notice that h is radially symmetric

and (—A)2h = 0 on R™. Therefore, h(z) = ¢; + ca|z|? for some ¢;,co € R. This follows
easily if n = 4. For n = 3, first notice that Ah € L1 (R?). Hence, by [40, Lemma 15]
2

Ah = const. Now radial symmetry of h implies that h(x) = ¢1 + co|x|?.
From a Pohozaev type identity in [78, Theorem 2.1] we get

Y K

; /
— | —=2)=— 2 VK(2)) e ®dz, K :=Qe™. 5.15
Tn (')’n ) Tn R"( () ( )

Since k > A; = 2v,, from (5.15) we deduce that x- VK (z) > 0 for some = € R". Using
that Qe™ € L'(R") and that £(x) = o(|z|?) at infinity, one has c; < 0. Therefore,
z-VK(x) <0 in R", a contradiction. O

The proof of the following lemma is similar to that of Lemma 5.3.5.

Lemma 5.3.6. Let k > Ay. Let P be a non-constant and non-increasing radially
symmetric polynomial of degree at most n — 1. Then there is no solution u to (5.2)
(with n > 3) such that u has the asymptotic behavior given by

2K

A log |z| + P(x) + o(log |x|), as |z| — oo.
1

u(x) =

5.4 Some useful results

The following identity (5.16) is due to Pizzetti [63]. A simple proof of (5.16) and (5.17)
can be found in [56, Lemma 3] and [56, Proposition 4] respectively.

Lemma 5.4.1 ([56, 63]). Let A™h =0 in Byr C R™. For any x € Bg and 0 < r <
R — |z| we have

1
|Br| JB, ()

m—1
h(z)dz = Z cir® ATh(z), (5.16)
=0

where
co=1, ¢ =c(i,n)>0, fori>1.
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Moreover, for every k > 0 there exists C = C(k, R) > 0 such that

1hller Ry < ClIbl L1 (Byg)- (5.17)

Lemma 5.4.2 (Proposition 22 in [40]). Let u € L,(R"™) for some o € (0,1) and
(=A)°u =0 in Bog. Then for every k € N

1 lu(z)] 1wl 1By )
k < C(n,0,k)— R%/ d =
IV¥ulleosy) < Clns ouk) 2 ( R\ By [2["F2 TR

where a € (0,1) and k is a nonnegative integer.

Lemma 5.4.3 (Proposition 1.1 in [68]). Let o € (0,1). Let u be a solution of

{ (=A)u=f inBg

u=0 in B}

Then
[ulloo ®ny < C(R, )| fllLo(Bg)-

Lemma 5.4.4. Let R > 0 and Bg C R". Let uj, € C"~V*(R") for some a € (3,1) be
such that

() =0, [ lomm <€ D) Fuslmay <€, [ JAudr<c
R

If n is an odd integer, we also assume that "A%Uk||L1(Rn) < C. Then (up to a
2

subsequence) up, — u in C" 1 (Br).
8

Proof. First we prove the lemma for n even.
We write up, = wy + hy, where

(=A)2wyp = (=A)2wy  in Bg
Ay, =0, on 0BR, j:O,l,...,”sz.

Then by standard elliptic estimates, wy’s are uniformly bounded in C"~1#(Bg). There-
fore,

O] <C, o <€, [ [Alulde < C.
Br
Since hy’s are §-harmonic, Ahy’s are (4 — 1)-harmonic in Bg, and by (5.17) we obtain

HAhk”C"(B%) < CllAhgllpi By < C.

Using the identity (5.16) we bound

1 1 1
—_— h, (2)dz = —— hi(2)dz — —— hi(2)dz
|Br| JBR0) " IBr| JBR0) " |Br| JBR(0)
g
1 2 o
=— hi(2)dz — hi(0) — ) ¢;R%A%hy(0)
1BR| JBp0) ;

<C,
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and hence

/ |hi(2)|dz = / hi(z)dz —l—/ hy (z)dz < C.
Br Br Br
Again by (5.17) we obtain

Iillcns ) < Cllhwlis, < C.

Thus, ug’s are uniformly bounded in C"~ %4 (B
C"Y(Br) for some u € C"1(Br).
4 4

) and (up to a subsequence) u; — w in

~lm

It remains to prove the lemma for n odd.
If n is odd then %‘1 is an integer. We split A%uk = wy, + hy where

n—1

(—A)2wy = (~A)2A"T w;,  in Bg
wi =0 on Bf.

Then by Lemmas 5.4.2 and 5.4.3 one has HAnglukHC%(B ) < C. Now one can proceed
R
2

as in the case of even integer. O



Chapter 6

Large blow-up sets for the prescribed
()-curvature equation

Let m > 2 be an integer. For any open domain © C R?™, non-positive function ¢ €
C*>°(Q) such that A™p = 0, and bounded sequence (Qr) C L () we prove the existence
of a sequence of functions (uy) C C?™~1(Q) solving the Liouville equation of order 2m

(=A)™uy, = Qpe*™* in Q, lim sup/ e2MUk dg < o0,
Q

k—o0

and blowing-up exactly on the set S, := {z € Q: ¢p(z) =0}, ie.

lim uy(x) = oo for x € S, and  lim uy(x) = —oo for z € 2\ S,
k—o0 k—o00

thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend this
result to the boundary of € and to the case Q = R?™.

6.1 Introduction and main results

In several nonlinear elliptic problems of second order and “critical type”, sequences of
solutions are not always compact, as they can blow-up at finitely many points, see e.g
[5], [11], [12], [23], [70], [73], [74]. For instance, as shown by Brézis-Merle in [12]:

Theorem G ([12]). Given a sequence (u)ren of solutions to the Liouville equation
— Aug = Qre®™  in Q C R?, (6.1)

with ||Qkl|ze < C and ||e2%|| ;1 < C for some C independent of k, there exists a finite
(possibly empty) set S1 = {a;(l), el x(l)} C Q such that, up to extracting a subsequence
one of the following alternatives holds:

(7) (uk) is bounded in C’llo’g(Q \ S1).

(17) ur — —oo locally uniformly in Q\ Si.
A similar behaviour is also found on manifolds, or in higher order and higher dimensional
problems, see e.g. [50], [75], or even in 1-dimensional situations involving the operator

83
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(—A)%, see [20], [21]. Now consider the problem

(=A)™uy, = Qe in Q C R*™ (6.2)
lim Sup/ e?MUk g < o0, limsup Qx| oo () < 00 (6.3)
k—oo JQ k—ro0

Since blow-up at finitely many points appears in many problems with various critical
nonlinearities and also of higher order, one might suspect that this is a general feature
also holding for (6.2). On the other hand Adimurthi, Robert and Struwe [4] found an
example of solutions to (6.2)-(6.3) for m = 2 that blow-up on a hyperplane, and showed
in general that the blow-up set of a sequence (uy) of solutions to (6.2)-(6.3) can be of
Hausdorff dimension 3. This was generalized to the case of arbitrary m in [53]. More
precisely for a finite set S; C 2 C R?*™ let us introduce

and for a function ¢ € (£, 51) set
Sy :={r € Q\ S :¢(x)=0}. (6.5)

Theorem H ([4, 53]). Let (uy) be a sequence of solutions to (6.2)-(6.3) for some m > 1.
Then the set

A
S :=Lze0: limlimsup/ |Qk|e2m”kdy > -1 , A i=(2m— 1)!|S2m|
0 koo By (x) 2

is finite (possibly empty) and up to a subsequence either

(7) (ug) is bounded in C’E)T_I’Q(Q \ S1), or

(17) there exists a function ¢ € K(£2,S51) and a sequence B — oo as k — 400 such
that u
B—k — @ locally uniformly in Q\ S.
k

In particular u, — —oo locally uniformly in Q\ (S, U St).

Notice that Theorem H contains Theorem G since when m = 1 we have S, = () for every
v € K(2,51) by the maximum principle. In fact the more complex blow-up behaviour
of (6.2) when m > 1 can be seen as a consequence of the size of (2,51). A way
of recovering a finite blow-up behaviour for (6.2)-(6.3) was given by Robert [65] when
m = 2 and generalized by Martinazzi [55] when m > 3, by additionally assuming

|Augl|L1(B,(2)) < C  on some ball B,.(x) C €,
which is sufficient to control the “polyharmonic part” of wug.

The first result that we will prove shows that the condition given in [4] and [53] on the
set S, above is sharp, at least when S; = (). In fact we shall consider a slightly stronger
result, by defining

S5 =S, U {x € 0N : ngrgx o(y) = 0} ) (6.6)
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namely we add to S, the points on 9€2 where ¢ can be continuously extended to 0. Then
we have

Theorem 6.1.1. Let Q C R>™, m > 2, be an open (connected) domain and let (Qy) C
L>(Q) be bounded. Then for every ¢ € K(Q, () there exists a sequence (uy) of solutions
to (6.2) with

/ 2k dg: — 0, (6.7)
Q
such that as k — oo

up — —oo loc. unif. in Q\ Sy, uk — +o00 loc. unif. on SZ, (6.8)

where S, and Sy are as in (6.5) and (6.6). The same result holds if m = 1 and § is
smoothly bounded.

The proof of Theorem 6.1.1 is based on a Schauder’s fixed-point argument. The case
when 2 is smoothly bounded is very elementary, as one looks for solutions of the form

up = cpp +k+vg, cp— oo,
where vy, is a small correction term.

The general case is a priori more rigid. For instance in the case m = 1, when Q = 1
there are few solutions to (6.2)-(6.3) when Q = R? (see [19]) and many more when
is bounded (see [18]). To treat the general case we will borrow ideas from [77] (see
also Chapter 3) and suitably prescribe the asymptotic behavior of wj at infinity. More
precisely we will look for solutions of the form

uy, = cpp + k — aglog(1 + [z)?) — Blz|* + v,

for some ¢ — o0, a, — 0, § > 0, and a function vy — 0 uniformly. If p(x) - —oc0
sufficiently fast as |x| — oo, or when € is bounded, one can choose 5 = 0, but the case
Q=R>" @(x1,...,72,) = —7 shows that 3 in general must be positive when

liminf ¢(x) > —o0,

z€Q,|z| =00
otherwise the condition (6.3) might fail to be satisfied.

The simplicity of the proof of Theorem 6.1.1 comes at the cost of not being able to
prescribe the total Q-curvature of the metric g,, := €?“*|dz|?, which will necessarily go
to zero, together with the volume of g,,. Resting on variational methods from Chapter
4, going back to [15], we can extend Theorem 6.1.1 to the case in which we prescribe
both the blow-up set S, and the total curvature of the metrics g,,. This time, though,
we will have to restrict to non-negative functions Q.

Theorem 6.1.2. Let 0 < A < A1/2, Q C R*™ open, m > 2, ¢ € K(Q,0), and let S, be
as in (6.5). Let further Q. be functions for which there exists xo € Sy, such that

k—+4o00

lim inf/ Qrdxr >0, foreverye>0, 0<Qr<b<o0. (6.9)
BE(:B())OQ
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Then there exists a sequence (uk)gen of solutions to (6.2) with

/ Qre*™ dx = A, (6.10)
Q

such that (6.8) holds.

The integral assumption in (6.9) is crucial. In fact, for every ¢ € K(,0) there are
functions Q) satisfying 0 < @ < b < oo, such that for any A > 0 there exists no
sequence (uy) of solution to (6.2) satisfying (6.8) and (6.10) (see Proposition 6.3.3).

As we shall see, Theorems 6.1.1 and 6.1.2 give several examples of solutions blowing-up
on the boundary, already in dimension 2.

Corollary 6.1.3. Let Q C R*™ with m > 1 be a bounded domain with smooth boundary
and let T' C OQ be a proper closed subset. Let (Qy) be as in Theorem 6.1.1. Then we
can find solutions uy :  — R to (6.2) such that the conclusions of Theorem 6.1.1 holds
with S3, =T for some ¢ € K(Q,0). If m > 2 and (Qx) additionally satisfies (6.9) for
some xg € I', then we can prescribe (6.10) instead of (6.7).

In the radially symmetric case we can prescribe any A € (0, 00).

Theorem 6.1.4. Let Q = By, \ Br, C R*™ and ¢ € K(,0) be radially symmetric.
Let A > 0 and let (Qr) be radially symmetric satisfying (6.9). Then there exists a
sequence of radially symmetric solutions (uy) to (6.2) such that (6.8) and (6.10) hold.
For Q@ = Bpr the same conclusion holds if in addition we have Ap(0) > 0 and Qr — 1
in L*°(Bs(0)) for some d > 0.

It was open whether there exists a sequence (ug) of solutions to (6.2)-(6.3) on some
domain © in R?™ with 2 open regions Qg, ; C  such that

[Aug|[L1(ae) = O1), [[AukllL1(q,) — .
We will prove that this is actually possible.

Theorem 6.1.5. On Q) = By C R*™ for any A € (0, A1) we can find a sequence (uy,) of
solutions to (6.2)-(6.3) with Qi = 1 such that

/ XMk g = A, (6.11)
Bs

and

/ |Aug|de < C, (Aug) dx L NN (6.12)
B1 Bs

6.2 Blow-up with vanishing volume

In order to clarify the simple idea behind the proof we start considering the easier case
when €2 is bounded and has regular boundary. The proof in the general case is more
complex and only works when m > 2 (easy counterexamples can be found when m = 1,
Q) =R?% Qi = 1, using the classification result from [19]).
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6.2.1 Case () smoothly bounded

In this case we can assume m > 1. The proof will be based on an application of a
fixed-point argument. Consider the Banach space

X = C'@),  [ollx = maxo(a)].

T

For each k € N choose ¢;, > k? such that
€27k | 2y < €757,

For k € N consider the operator Ty, : X — X defined by T'(v) = v where v is the unique

solution of
(~A)mp = Qe2nlkteety)  in Q)
=A0=---=A""15=0  on 0N0.

From elliptic estimates, the Sobolev embedding and Ascoli-Arzela’s theorem it follows
that T} is compact. Moreover, for every v € X we have

1] x < CLlIA™D|| 2y < CoMe™™ (2™ || x €™ | 12y, |QullLoe < M.
This shows that
| T5(v)||x < C3e®ke™3m  for |ju]|x <1, C3:=CyM. (6.13)

Therefore T},(B;) C B 1 for k large enough (here B, is a ball in X'), and hence T}, has

a fixed point in X. We denote it by vj,. Notice that ||vg]|x < Ce™™* — 0 as k — oo.
Moreover, by Holder’s inequality,

/ e2mk€2mckg@62mvkd$ < eka /‘Q|H62kaLPHL2(Q) lH—oo> 0.
Q

We set
ug = vk + k + cgip.

Then w; satisfies
(—A)™uy, = Vie?™  in Q, / e2muk gy K20 .
Q

Moreover

inf up =o0(1)+k Ll NN
zESY

Finally, for any compact subset K € Q\ S, using that ¢, > k2, we obtain

maxuy, = o(1) + k + ¢y max ¢ < k — ek? Lt NS
zeK zeK

where € > 0 is such that max;ecx ¢ < —e. This completes the proof.



6. Large blow-up sets for the prescribed Q-curvature equation 88

6.2.2 General case

In the general case we need to assume m > 2. We will use many ideas from [77] (see
also Chapter 3). Let ¢ € K(,0). Fix ug € C®(R?™), ug > 0, such that ug(x) = log |z|
for |z| > 2, and notice that integration by parts yields

/RQ (—A)™ug dz = —72m, (6.14)

where 7o, is defined by

Ay

1
(—=A)™log — = Yamdo in R¥™ ie. yo, = 5 (6.15)

||

We will construct a sequence (ug)ren of solutions to (6.2)-(6.7) of the form
up = —B\x!Q—i—ck(p—akuo—i—k—i—vk, in Q, (6.16)
for some 8 > 0 and vj, € C?*™~1(R?*™) such that as k — oo

sup |[vg| = 0, ¢ — 00, ap — 0.
Q
In general § > 0 is an arbitrary fixed constant, but if ¢ satisfies
/ e*™?|z|?* da < 0o, for some s > 0, (6.17)
Q

then we can take 5 = 0 as well. If there exists s > 0 such that (6.17) holds then we set
q = s, otherwise we take 8 > 0 and set ¢ = 1.

We consider

X := Cy(R™) := {v e COR*™): lim v(z) = O} . vllx = sup |v(z)].

|z|—o00 zeR2m
For ¢ € R we set

le2mk€—2mﬁ|z\262mc<p in Q
Fk,c = 0

in R?2™\ Q.

Let €1 € (0,g%) (to be fixed later). We fix p > 1 and 0 € (—27"‘, 277" + 1) such that
p(2m + 6) < 4. For each k € N we choose ¢ > k* so that

Lo e @101 + fal)ds < 17, (6.18)
RQm
[ Fr(M + ’w‘)%HLgmM <ere ¥, Fypi=Fig, (6.19)
[ e Bar palrae < o, (6.20)
Q

where ¢ is as above, M > 0 is such that e*° < M on Bs and the spcae L§m+5 is defined

in Definition 3.2.1. For each k € N, define a continuous function I}, on X x (-5, L)
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given by
1
Iy(v,a) = — Fj,e~2mauo g2mv .
’}/Qm R2m
If It(v,0) > 0 then
I I -k
tim 00 o DA T) oy <,
a—0t o g1e”

and hence there exists a € (0,e1e7¥] such that Iy(v, @) = a. Notice that

sup | I(v,@)| < e ey, for ||v]|x < 1.
agl—4L-.0]

Thus, if I;(v,0) < 0 then

I Ip(v, —e1e7F
i @) _ o Helv el <,
a—0— o €1€e

and hence there exists a € [—e1e*,0) such that It(v,a) = a. For ||v||x <1 we define

inf{a > 0:a = I(v,a)} if It (v,0) >0
gy =14 sup{fa <0:a=I(v,a)} if I(v,0) <0

0 if T;,(v, 0) = 0.
From the continuity of Ij, it follows that oy, = I (v, o).
Lemma 6.2.1. There exists g > 0 such that for every e € (0,&¢) and for every v € By
if

I(v,ap) =, for some |ay| < ﬁ,
then for every w € Be2(v) N By there exists auy € (any — €, + €) such that
I (w, any) = auy.

Moreover, the map v = oy, ,, is continuous on Bi.
Proof. Let R > 0 be such that R? = 8% With this particular choice of R we have

/ |Fy| (14 |z])? dz < Ce2.
BC

R
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Now for |a,, — af(2mlog R)? < § we have

1 _
er 2maog e2mw dr

72777« BR
1

_ er—Zmozvuo e2mv e?m(w—v) €2m(au—a)uo dr

7277’1 BR

1
= Fre Mmoo g2 (1 4 29m(a, — a)ug + O (e — @) (1 + O(e?)) dx
2m JBgr

2m(oy, — a)

= Ix(v,an) + (1+ 0(52))/ Fle™2mavuo o2mvy, o dg;

’727” BR

+ 0 (ay — ) / Fle2mavuog2mv g 1 O(e?)
Br

2m(ay — «)

=: I(v,ay) + (14+0(*)J1 + O (v — @) Jo + O(£%).

Y2m

Using (6.18) we get

| J1] < ezm/ | File M 0y do < ezm/ |Fel (M + |2]) 2 ug dav
Br Br

< C’(q)e2m/ Fl(M + [2])7 dz < C(g)en,

Br

and Jo = O(e1). Let a = ay, + p, with |p| < . Then

1
2(2mlog R)?
In(w, ay + p) = (aw + p) = p+ O(%) + pO(e1).

We fix g9 > 0 and &1 > 0 such that for every ¢ € (0,g9) we have |O(¢?)| < £ and
|O(e1)| < 1. Then we can choose p € (—¢,¢) such that

_ 1 _ _
pl < Wv p+ 0(52) +pO(e1) = 0,

concluding the first part of the lemma.
Now we prove the continuity of the map v — ay, from B; to R.

For v, — v € By it follows that (at least) for large n, |ag.,| < 7% and |ag.| < 7%.
First we consider the case oy, = 0. Then for any € > 0 one has Ij(vy, o, ) = o, for
some av,, € (—¢,¢) where ||v—vy,||x < €2 This follows from the first part of the lemma.

Since |a,p, | < |ow, |, we have the continuity.

Now we consider ag, > 0 (negative case is similar). Then I;(v,0) > 0, and hence
Qpp, > 0 for large n. We set aoo = limp—y00 ik, (this limit exists at least for a
subsequence). From the continuity of the map I}, it follows that I;(v, as) = @ao. Since
Qoo > 0 and Ij(v,0) > 0, we must have a > 0. From the definition of oy, we deduce
that ag, < as. We fix € € (0, a’;’”). Then by the first part of the lemma there exists
Qy, € (py — €, a4 + €) such that Iy (v,, o, ) = ay, for every |[v — v, x < e2. Since
Uk, < O, and ag,,, — Qso, We have for n large

(077 < Qe < Ak, + € <y, +e< i 2e.

We conclude the lemma. O
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Proof of Theorem 6.1.1 We define T}, : By C X — X, v+ v, where

1 1
o) = log < ) Fly)e=2mansmot2me) gy | oy o,
Y2m JR2m |Z’ - y‘

that is v solves
(—A)"5 = Fe™ 2Mkouot2me 4oy (—A) Mg,

Notice that arguing as in Lemma 3.3.1 one gets v € X. Using (6.14) and our choice of

Q. wWe have
/ (—A)"5 dz = 0.
R2m

With our choice of § and p we have v € MY (R?™), where the space M} = (R*™) is
defined in Definition 3.2.1. For v € By C X we bound with Lemma 3.2.2, Lemma 3.2.3
and (6.19)

1Ts(0)lx < CillTh(0)llag, , < Cill(=A)"]|re,
< Cufle™mk 0 Byl p + Ctlao|l[(=2) ol g

2m—+46
k—o0

0.

Therefore, for €1 small enough, [|T;(v)||x < % and there exists a fixed point v, for every
k. Hence, thanks to (6.20), the sequence

up(z) = —B|2* — ag,uo(®) + crp(z) + k + v (x), = €Q,

is a sequence of solutions with the stated properties. O

6.3 Blow-up with prescribed total ()-curvature

A slightly different version of the following proposition appears in Theorem 4.2.1. For
the sake of completeness we give a sketch of the proof.

Proposition 6.3.1. Let wy(z) = log ﬁ and consider two functions K, f : R?™ — R
such that

K>0, K#0, Ke 2™ ¢ [*(R*™)
and

fe—Qmwo c LOO(R2m)’ A = - fdﬂf S (0, Al)

Then there exists a function w € C*™~1(R?*™) and a constant c,, such that
(—A)™w = Ke?™wtew) _ ¢ i R™, KePmwteo) gy — A, (6.21)
R2m

and limp, oo w(z) € R. Moreover, if f is of the form f = (=A)™g for some g €
C?™(R?™) with g(x) = O(log|z|) at infinity, then w satisfies

wie) = l%<1+m)K@kmm@““@ﬂ@+C,
Yom Jr2m |z — y]

for some C € R.
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Proof. Let m be the stereographic projection from $?™ to R?™. We define the functional
J on H™(S?™) given by

1 = A N
J(u) = / <|(P2mu)§!2 + f1U> dVy — — log < Ke_Qm“’OO“ezm“dVO) ,
SQm 2 2m SQm

where f := fe2mwo f .= fionm, K := K o and P?™ is the Paneitz operator of order
2m with respect to the standard metric on S?™. Then there exists u € H?™(S?™) such

that - )
A K e—2mwoor o2mu 5 . _
PQmu — e 5 _ fl = C()Ke 2mwoo7r62mu _ fl'
Jgm K e=2muwoom2mugy

Notice that P?™u € L*°(S5%™), thanks to the embedding H?*™(S?™) — C°(5?™), and
hence u € C?m=1(§%m),

We set w = wor L. Then w € C*™~1(R?™) and lim, o w(z) € R. Using the following
identity of Branson (see [9])

(—A)™(vort) = e2mwo(pP2my) o rL for every v € C°°(5%™),
and by an approximation argument, we have that

(—A)"w = CoKe?™ — f =: KePmwten) _ f in R?™,

Now we set

~ 1 1+ |y!> 2m(w(
w(x) = — lo K (y)e2mw@tew) gy g(2).
(2) ro g<|x_y| (y) y—g(z)

Then A™(w — @) = 0 in R?™ and (w — w)(z) = O(log|z|) at infinity. Therefore,
w = w + C for some C € R.

This finishes the proof of the proposition. O

Proof of Theorem 6.1.2 Let ¢ € K(2,0) and let ug € C°°(R?™) be such that uy =
—log|z| on Bf. We set f = %(—A)muo. For each k € N we set

K = Kj, i= Qpe?m(Pleltherane) - .2 200 55 0,

and we extend K by 0 outside 2. Then by Proposition 6.3.1 there exists a sequence of
functions (wy) satisfying

1 1+ . . 2A
wy () = o e log <‘$ —‘331') Ky (y)e?m st ten) dy — Aotk

for some a; € R. We set

2A
ug(z) == wg + oy, — Bl + k() + A—uo(a:), r€QUS,.
1

Then w;, satisfies

1 1+ m
) = = [rog (D) Qe - plaf + kpt) +
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and also (6.10), where ¢ := ay, + ¢y, We conclude the proof with Lemma 6.3.2. O

Lemma 6.3.2. Let Q be a domain in R*™. Let ¢ and Qi be as in Theorem 6.1.2. Let
(ug) be a sequence of solutions to

1 14|y
o) =5 fos (5
m

) Qre®™ Wdy — Blz|? + ko(z) + ¢, =€ QU S5
for some B > 0. Assume that

/ Qre2mue gy — A < M1

Q 2

Then ¢, — o0, ¢, = o(k) and

1 1
Ix(z) == P Qlog <\$+|z|) Qre®™ Wy 2 e R?™,

is locally uniformly bounded from above on 2\ Sy, and locally uniformly bounded from
below on R?™. In particular, uy, — oo on Sy, and u, — —oo locally uniformly on Q\S,.

Proof. For any fixed R > 0 and « € Br we bound

1 1
K= [ g (L) gy o [ g (LEI) g camtng
ByrNQ |z -yl BSpnQ |z —y|

1 1
> —C(R) +/ log (2 + 2|y|> Qre”™xWdy

BS,NQ

> —C(R).

Since A < %, using Jensens inequality we obtain for some p < 2m

1 p
(F2) Quwermsay,
|z —y|

€2muk(w) < 62m6k6—2m5|x|2+2mk<p(x)/
R2m

Using that

p
/ (Hl?ﬂ) e=2mBlal*+2mkp(@) g, koo
o \lz -yl

and together with Fubini theorem, one has
/ Qr(x)e®™ @) gy = 2o o(1), as k — oco.
Q

Now A > 0 implies that ¢ — oo.

We assume by contradiction that ¢ # o(k). Then for some ¢ > 0 we have % > 2¢ for
k large. Let zo € S, be such that (6.9) holds. Let § > 0 be such that ¢(x) > —¢ for
x € Bs(xo) N Q. Therefore

ug(r) > —C —ke+cp, > —C + ke, x € Bs(zo) N,

and hence
_ k
/ Qre®™dr > e CH“E/ Qrdr =22 o0,
Q Bs(zo)



6. Large blow-up sets for the prescribed Q-curvature equation 94

a contradiction.

Now we prove that I, is locally uniformly bounded from above on \ S,. For Qe Q\ S,
we have 3
ky + ¢ — —oo uniformly on €.

Using Jensens inequality one can show that [|e*™"*|| 15,y < C for some p > 1, where
Qe e \ Sy. For z € Q) we obtain by Hélder inequality

1 1
L) =— [ log < * ‘y’) Quem )y
T2m JQsnQ |z -yl

1 1
+— log < + ’y|> Qk€2muk(y)dy
Q21NQ

Y2m lz —yl
< O+ Ol logle— [l Lo o, 1€¥™* || Lo (02
<C.
The remaining part of the lemma follows immediately. O

Proof of Corollary 6.1.3. Let g € C°*°(0S2) be such that g < 0, g # 0 on 92 and g = 0
on I'. Let ¢ be the solution to

—~~

A)"p =0 in €,
AYp=0 ondQ, j=1,...,m-1
=g on 0f).

AS)

Then by maximum principle ¢ < 0 in § and hence S; = I'. Then the conclusion follows
by Theorem 6.1.1 and 6.1.2. ]

Proposition 6.3.3. Let Q be a domain in R~2m. Let o € K(2,0). Let Qe\S, be
an open set. Let Qp be such that Qr =0 on Q° and Qr =1 on Q. Then for any A > 0
there exists no sequence (uy) of solutions to (6.2) satisfying (6.8) and (6.10).

Proof. We assume by contradiction that the statement of the proposition is not true.
Then there exists a sequence of solutions (uy) to (6.2) satisfying (6.8) and (6.10) for
some A > 0. Therefore, by (6.8), up — —oo uniformly in ©Q and hence

A= / Qre? ™ dy = / e2mun gy K200, 0,
Q

Q

a contradiction. O

Proof of Theorem 6.1.5 Let m > 2. We set
or(r,0) :=r"cos(kf), 0<r<2 0<6<2m

We extend ¢y on By C R?™ as a function of only two variables, that is, ¢ () := @r(r, )
for x € Bs, where (r,0) is the polar coordinate of II(z) and II : R*"™ — R? is the
projection map. Then ¢y, is a harmonic function on Bs. Let ®; be the solution to the
equation

~AD, =, in By,
P, =0 on 0Bs.
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We fix 0 < A < Aj. Then by Proposition 6.3.1 there exists a sequence of solutions (wy)
to (6.21) with

2A 2m (P g+ 2R )
fi=—(=A)"ug, Kj:= { (6) M on By

A on B,
where ug € C°(R?™) with ug = —log|z| on Bf. Then
2A
Uk = Wk + Cyy, + b, + AfU()
1

satisfies (6.11) and wy, is given by

1 1+
ug(x) = o | log <\x —|Zy/"> 2 W) dy + &y () + cx,
m 2

for some ¢; € R. Moreover,
Auy = —¢, + e,

where
e2muk(y)

——dy.
By \93 - yP

ex(@)] < C
Integrating, using Fubini’s theorem and (6.11) we obtain |ex| z1(p,) < C. Then (6.12)

follows at once from the definition of . O

6.4 Radially symmetric solutions

6.4.1 On an annulus

Let Q = Bpg, \ Bg, be an annulus. Let X = C? ,(Q). We fix A € (0,00). For k € N and
v € X we choose ¢, = ¢(v, k) € R so that

/ Qre?™vted) gy = A.
Q

Let ¢ € K(Q,0) be radially symmetric. For k € N we define an operator Ty, : X — X,
v — U where

b= 04 kolz), O(z) = / Gz, 9)Quly)m W e dy,
Q

and G is the Green function of (—A)™ on Q with the Navier boundary conditions.

Lemma 6.4.1. Let k € N be fized. Let (v,t) € X x (0,1] satisfies v = tTy(v). Then
there exists M > 0 such that ||v||x < M for all such (v,t).

Proof. We have

v(z) = t/QG(x,y)Qk(y)eQm(“(y)“”)dy +tho(z) > —C(k) in Q.
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Hence from the definition of ¢, we get
A= / Que®rer) dy > m=Cre) / Qudz > ae?m(-ClE)+e)
@ Q

hence ¢, < C(k). Define the cone C as the set
C:={recQ: |z <pr1}, witha=(1,7) R xR (6.22)

for some p > 0 to be fixed later. For some finite M = M (p) we can write § as a union
of (not necessarily disjoint) cones {C;}}, such that for each such cone C; we have

(7) C; is congruent to C,
(i) [, Qry)emWreldy < 5L N(Ci) = Ugnc, 20C;

and we fix p such that (i#¢) holds. Notice that for some § > 0 we have dist(C;, N(C;)¢) > 6
fori=1,..., M. Therefore, for x € C;

v(z) < t/ G(z,y)Qu(y)e?m Wt dy + tho(x) + C(5),
N(C1)

and together with Jensen’s inequality, for some p > 1 we get

/ eP2m(vted) go < M| eP2mvten) gp < O
Q G

Since ¢ is radially symmetric and polyharmonic we have ¢ € C?™(Q), and therefore by
elliptic estimates and Sobolev embeddings

[v—thelx < Cllv —the|wemp) < Cll(=A)"v| p@0) < C,

concluding the proof. O

A consequence of Lemma 6.4.1 is that for every k € N, the operator T} has a fixed point
v € X. We set uy, = v + ¢y,. Then

up(z) = /QG(CL’, y)leQm“’“(y)dy + kp(z) + cy,, /Qlezm“"‘(y)d:U =A. (6.23)

We claim that ¢,, — oo.

Again writing {2 as a union of cones and using Jensen’s inequality we obtain
2mkp(x)

/ XMk gy < Ce®Mev / e2mun(v) gy, / eid%

Q Q o lz—yP

for some p < 2m. Hence, if ¢,, < C, then

2mkp(x)
/ Qpe2™dz < Cb / e2mur(¥) gy, / ¢ dz F=%2 0,
Q Q Q

|z —y|P

a contradiction. Thus ¢,, — 0o, and hence uy — co on S



97

It remains to show that u;, — —oo in CJ (2\ S,). Arguing as in Lemma 6.3.2 we
conclude the proof. O

6.4.2 On a ball

We consider

X = Clua(Br), |vllx = max(Ju(@)] + [v'(2)] + [o" (2)]).

R

Let A > 0. We fix k € N. For v € X define ¢, € R given by

/ Qre?™vted) gy = A.
Q

We define T}, : X — X given by v — ¥ where

A
o) = 1o f1os (G ) Qe iy (ko 50 ot

Arguing as in Lemma 5.2.2 one can show that the operator T} has a fixed point, say vy.
We set up = v + ¢,,. Then

> Qk(y)eQm”k(y)dy + (k + m> o(x) + ¢y,

= o

_'VQm Q ’l'*y’

and

/ Qre®™ W dg: = A.
Q

Again as in Lemma 5.2.2 one can show that there exists C' > 0 such that up < C on
B for some € > 0. Using this, and as in the annulus domain case, one can show that
Cy, — 00. Thus ug(z) — oo for every x € S7. Finally, similar to the annulus domain
case, it follows that uy — —oo locally uniformly in €\ S,. g






Chapter 7

A fractional Adams-Moser-Trudinger
inequality and its application

We improve the sharpness of some fractional Moser-Trudinger type inequalities, par-
ticularly those studied by Lam-Lu and Martinazzi. As an application, improving upon
works of Adimurthi and Lakkis, we prove the existence of weak solutions to the problem

(—A)su = ue®™ inQ, 0<A<A;, b>0,

with Dirichlet boundary condition, for any domain 2 in R™ with finite measure. Here
A1 is the first eigenvalue of (—A)z on €.

7.1 Introduction and statement of the main theorems

Let n > 2 and let 2 be a bounded domain in R™. The Sobolev embedding theorem
states that Wg’p(Q) C Li(Q) for 1 < ¢ < ;25 and kp < n. However, it is not true
that W(;{’p(Q) C L*>®(Q) for kp = n. In the borderline case, as shown by Yudovich [79],
Pohozaev [64] and Trudinger [76], W(} "(€) embeds into an Orlicz space and in fact

alT
sup / e dr < oo, (7.1)
wEWy ™ (), IVl 1 (o) <172

for some o > 0. Moser [61] found the best constant « in the inequality (7.1), obtaining
the so called Moser-Trudinger inequality:

1 ey 1
sup Q/ ean‘u‘ 1 dx < 00, ay = TL|S”_1|”£1 . (72)
weW, ™ (), IVl n () <1 2 Ja

The constant «,, in (7.2) is the best constant in the sense that for any a > a,, the
supremum in (7.1) is infinite. A generalized version of Moser-Trudinger inequality is the
following theorem of Adams [2]:

Theorem I ([2]). If k is a positive integer less than n, then there is a constant C' =
C(k,n) such that

ek
sup /e“'”'" dx < CQ|,
ueCk(Q),||Vku|]| n <1JQ
Lk (Q

99
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where

and V¥ = VAT for k odd and V* = A% for k even. Moreover the constant o is sharp
in the sense that

v, / f (e da = oo, (7.3)
ueCﬁ(Q),Hvku”L%(mgl @

for any f :[0,00) — [0,00) with lim;_, f(t) = co.!

In a recent work Martinazzi [54] has studied the Adams inequality in a fractional setting.
In order to state its result first we recall that for u € Ls(R™) one can define (—A)%u as a
tempered distribution (see Section 2.1). Now for an open set 2 C R" (possibly 2 = R"),
s>0and 1 <p < oo we define the fractional Sobolev space H*?() by

H57(Q) == {u €IP(Q):u=00onR"\ Q, (~A)uc LP(R")} .

Theorem J ([54]). For any open set Q@ C R™ with finite measure and for any p € (1, 0o)
we have

/
P
sup eonell” gz < €, 10,
[P 75 Q
u€H P (Q), |(-A) 2P ullLp)<1

where the constant o, is given by

/

n n p
I'(5)2p72
Onp = s (5)2 . (7.4)

Moreover, the constant o, is sharp in the sense that we cannot replace it with any
larger one without making the above supremum infinite.

Notice that condition (7.3) in Theorem I is sharper than only requiring that the constant
« in the exponential is sharp, as done in Theorem J. In fact Martinazzi asked whether
it is true that

sup F(lu]) et e do = oo, (7.5)
weH (), ])(=28) 5 ull ooy <17
for any f:[0,00) — [0, 00) with
lim f(t) = oo, f is Borel measurable, (7.6)

t—o00
and oy, is given by (7.4).

The point here is that Adams constructs smooth and compactly supported test func-
tions similar to the standard Moser functions (constant in a small ball, and decaying

Tdentity (7.3) is proven in [2], although not explicitly stated.
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logarithmically on an annulus), and then he estimates their H(If ¥ _norms in a very pre-
cise way. This becomes much more delicate when k is not integer because instead of
computing partiall derivatives, one has to estimate the norms of fractional Laplacians
(the term [|(=A)2rul|zp(q) in (7.5)). This is indeed done in [54], but the test functions
introduced by Martinazzi are not efficient enough to prove (7.5). As we shall see this
has consequences for applications to PDEs.

We shall prove that the answer to Martinazzi’s question is positive, indeed in a slightly
stronger form, namely the supremum in (7.5) is infinite even if we consider the full

n .
H»’-norm on the whole space. More precisely we have:

Theorem 7.1.1. Let Q be an open set in R™ with finite measure and let f : [0,00) —
[0,00) satisfy (7.6). Then

sup /f|u] 0‘""'“' dx—oo, 1<p<oo,

n

_n
€H? (), lull} p ) HI(=2) 2P ull] p gny <1

where the constant o,y is given by (7.4).

The main difficulty in the proof of Theorem 7.1.1 is to construct test and cut-off functions
in a way that their fractional Laplacians of suitable orders can be estimated precisely.
This will be done in section 7.2.

Here we mention that using a Green’s representation formula, Iula-Maalaoui-Martinazzi
[39] proved a particular case of Theorem 7.1.1 in one dimension. Their proof, though,
does not extend to spaces H P (©2) when 2 > 1 because the function constructed using
the Green representation formula do not enjoy enough smoothness at the boundary.
Trying to solve this with a smooth cut-off function at the boundary allows to prove (7.5)
only when f grows fast enough at infinity (for instance f(t) > t* for some a > p’).

Now we move to Moser-Trudinger type inequalities on domains with infinite measure.
In this direction we refer to [43, 59, 69] and the references there in. For our purpose,
here we only state the work of Lam-Lu [43].

Theorem K ([43]). Let p € (1,00) and 7 > 0. Then for every domain Q@ C R™ with
finite measure, there exists C = C(n,p,7) > 0 such that

sup / ecnell” do < C(1Q) + 1),
weH B P(R), |[(11-A) 2 ul| pp (gny <1 7 &
and
sup <I>(o<n,p|u|p/)da: < 00,

n
2

w€H PP (R"), ||(TI—A) 2P ul| p(gn) <1

where o,y is given by (7.4) and
Jp—2 4

O(t) =€ — Z ik Jp:=min{j € N:j > p}.
i=0 7

Furthermore, the constant cu,, is sharp in the above inequalities, i.e., if o, p is replaced
by any o > ay, p, then the supremums are infinite.
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In the spirit of Theorem 7.1.1 we prove a stronger version of the sharpness of the constant
in Theorem K, in the sense that, even without increasing the constant v, , we can make
the two supremums in Theorem K infinite by multiplying the exponential by a function
f going to infinity arbitrarily slow. Moreover it is sufficient to consider functions with
compact support.

Theorem 7.1.2. Let Q) C R™ be a domain with finite measure and let f : [0, 00) — [0, 00)
satisfy (7.6). Then for any 7 > 0 and for any p € (1,00) we have (with the notations as
in Theorem K)

/
p
sup f(|u|)ea””’|“‘ dx = oo,
~ ﬂ’ n (9]
ueH PP (Q), |(T1-A) 2 ul| Lp@ny <1

and
ulPYdz = oo.

s | s,
weH PP (Q), [[(rI—A) 2 | 1o ey <1 7

As an application of Theorem 7.1.1 (in the case p = 2 and f(t) = t2, compare to
(7.18)) we prove the existence of (weak) solution to a semilinear elliptic equation with
exponential nonlinearity. In order to state the theorem first we need the following
definition.

Definition 7.1.1. Let €2 be an open set in R™ with finite measure. Let f € LP(Q) for
some p € (1,00). We say that u is a weak solution of

(-A)2u=f in Q,
if u e H2%(Q) satisfies
/ (=A)iu(=A)Tvde = / fudz  for every v € H2%(1).
n Q

Theorem 7.1.3. Let 2 be an open set in R™ with finite measure. Let 0 < X\ < A1 and
b > 0. Then there exists a nontrivial weak solution to the problem

(=A)zu = Aue?™ in Q. (7.7)

Due to the fact that the embedding H22(Q) < L2(Q) is compact for any open set Q
with finite measure (see Lemma 7.4.7), we do not need any regularity assumption or
boundedness assumption on the domain §2.

The equation (7.7) has been well studied by several authors in even and odd dimensions,
with emphasis both on existence and compactness properties see e.g. [5, 23, 38, 41, 48—
50, 58, 67, 75]. For instance, Lakkis [41], extending a work of Adimurthi [3], proved
the existence of solution to (7.7) in any even dimension. In [42], Lam-Lu have studied
equation 7.7 in even dimension with more general right hand side, namely, equation
of the form (—A)2u = f(x,u), where the function f may not satisfy the Ambrosetti-
Rabinowitz condition.

In a recent work Iannizzotto-Squassina [38] have proven existence of nontrivial weak
solution of (7.7) with © = (0,1) under an assumption, which turns out to be satisfied
thanks to our Theorem 7.1.1, applied with p = 2 (see Lemma 7.3.5).
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Finally, we mention that in a recent work Bao-Lam-Lu [6] have studied the existence of
positive solutions to a polyharmonic equation on the whole space R?™, more precisely

(I—A)"u= f(x,u), inR*™ m>1,

where the function f has critical growth at infinity. Moreover, under certain assumptions
on f, they also discussed radial symmetry and regularity of solutions.

7.2 Moser type functions

We construct Moser type functions as follows:

First we fix two smooth functions n and ¢ such that 0 <7, ¢ <1,

. B 33
n € C(c ((_171))7 n= 1 on (_4a 4)7

and

For € > 0, we set

Ve(t) = { ?17(;)%(15) ii?; ;S 1
and
ve(x) = <log i)_; <log (i) @e(|z|) + log (é,) %(!x)) r € R™,
where N @(é).

Our aim is to show that the supremums (in Theorems 7.1.1 and 7.1.2) taken over the
functions {v.}e~o (up to a proper normalization) are infinite.

The following proposition is crucial in the proof of Theorem 7.1.1.

Proposition 7.2.1. Let

_1 n opn n
u(z) = S T r 2 ra N (— ) —

Then for 1 < p < oo there exists a constant C > 0 such that

n T\
-8By < (140 (1062) ).

Proof. Since the proof of above proposition is quite trivial if % is an integer, from now

on we only consider the case when 2"—p is not an integer.
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From Lemmas 7.2.2 and 7.2.4 we have

n 1\ !
800y < € (1087)

In order to estimate (—A)?v, on the domain {x : 3¢ < |z| < 2} we consider the function

1
1\ » 1
Re(z) = ve(x) — <10g g) logm =: fe(x) + g-(x) x€R",
where
_1
folz) = ve@) = (log 2) Plog gy il fa] < 2¢
0 if || > 2¢,
1
1\ » 1 1
= <log ) <log — —log ) oe(|z))
€ € |z|
and
_1 '
gela) s = { ve@) = (log 2) P log gy if fa] > 5
0 if | < 4
1
1\ » 1
= | log - —1)log —.
(1062) ot — 1108
It is easy to see that for any o > 0
1 _1
sup |(~A)7g-(x)| < C <1og ) | )
TER” €

With the help of Lemma 7.4.8 and the triangle inequality we bound

1 1\ » n 1
R.(z) + <log 5> (—A)2r log |$|‘

= —1
’Sn71|pﬁn,%

Sk

|(—A) % ue(z)

(=4)

SC\(—A>%RE(x)|+(1og1> ro b b

€ |Sn71|%‘gj|%.
Using the elementary inequality

(a+b)?<a?+ Cy(b?+a? '), 1<g<oo,a>0,b>0,
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we get

/ (—A) B () Pde
3e<|z|<2

-1
< / <10g 1) %%dm—i—C |(=A)2r Ro(x)|Pdx
3e<|z|<2 |Sm=1 |z

€ 3e<|z|<2

1
1\ 7 1 n
+C<log6> / —(—A)% R.(z)|da
3

e<lz|<2 |z|?

1 -4 .
Sl—l—C(logi) +C’<log1> / L (—A)S R.(2)|da,
3

n
€ e<|x|<2 ‘1”1”/

where the last inequality follows from Lemma 7.2.3. Using the pointwise estimate in
Lemma 7.2.3 and (7.8) one can show that

n

/3 L (cAYVB R.(2))de < © (log i>_; ,

n
e<|a|<2 |z|?’

which completes the proof. O

Lemma 7.2.2. Let p € (1,00). Then there ezists a constant C = C(n,p,o) > 0 such
that

1

1
[(=A)ve(z)| < C <log 5) Te7 for|z[ <3:,0< 0 <

n
B .

Moreover,

n

1 -1
(=)ol < C (mgg) .

Proof. We claim that for every nonzero multi-index o € N” there exists C' = C'(n,«a) > 0
such that

1
| D% (z)] < C (log €> ’ el zeR™ (7.9)
In order to prove (7.9), we use that n € C°((—1,1)) and

(log%)%’ if |[z| <e

_1
(log 1) " 10g () n(lal) ~ if 2l = 3.
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Therefore, the estimate in (7.9) holds for z € B, UBC For z € B1 \ B and for a nonzero

multi-index o € N”, we have for some constants C’a B

1\»r 1 1
(10 2) " D*0ute) = D*pullal g L + Dl o

Y CopD? <1og, |)Da 54 (al)

0<B<La
|z

@ T a—
= D%.((al)log 2 — 37 Cas D (ogel) D™ P (Ja]),
0< <L

where in the second equality we used that D*.(|x|) = —D%p.(|z|), which follows from
the fact that ¢ +. = 1 on Bi. Moreover, from the definition of ¢ and ¢. we have that
2

Ce7lelif z € By, \ B.

D% x| <
D% m_{o if 2 € BS. U B..

Therefore,

| D% pe(|])]

1 1
log — — log‘ < el
€ ||
It is easy to see that for 0 < § < «
| D7 10g((al)| |D*Pue(ja])| < Cla B)lal e < C(a, BT, for w € By \ Be.
2

This completes the proof of (7.9).

In the case when o is not an integer then we write 0 = m + s where 0 < s < 1 and m is
a nonnegative integer. Then for |z| < 3 we have (see Proposition 2.5.2)

(~8)"0:(w 4 9) + (~A)"vx(w = 9) = A=A) " ()
MR

(—A) v () = C(n,s)/ dy.

n

Splitting R™ into

Ay =A{z : |z| < 2}, Agz{x:2€<|x|§i} andA3:{$:|x|>i},

we have

where

[ A () + (A) vz — y) — 2(=A)ve(x)
= /A [y[+2e w

For y € Ay, using (7.9) we have

A" (2 +y) + AMve(z — y) — 20" ve(2)| < Jy[*| DA™ v L

1
b
< Cly[Pem? (log€> "
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and hence
1\ d 1\ "7
—om—2 P Yy P 2o
|Il‘ SCE: <10g€) /AlWMSC(lOgg) e .
For m > 1, again by (7.9)

~
A" v (2 + y) — A" (2)] < C <log 5) " emm,

Therefore,

1 1
1y » _ dy 1\ » _,
Ir + I3 §C’<log) 52m/ §C<log) e 4.
2+ 5 : o T :

Since on Ay |z 4+ y| < 3e+ 1 < 1, one has

<log i) : ve(z 4+ y) — ve(2)]

= tog (1) to-tia+ o+ o +41) = el — wlla)

+ngmim>¢Aw+yD ng|>w4uD
:kg<mjy0w4m+yb bg<|)w4mn
o (5 ) e+ ).

Hence, for m = 0, changing the variable y — ez

<C+

1

bS]

_l r log ( 757 ) Ye(lz +wl)
|I?’§C(10g1> p6_2s+0<10g1) / ’ <| +y|> € ‘d
¢ e<lyl<}

|y|t2s

Y

1
1\ » 1
<C log e 240 (log=] " 523/ log B+ 1)),
€ |z|>1 |Z’n+25

1
Finally, for m = 0, using that |v:| < C (log %)75 on BS, we bound
8

1
1\ » dy 1\
”“SCQ%5> APIM“%‘CO% )

The lemma follows immediately.

RS

1
-2 L, [log |Z + z|| e (e] £ + 2])
log — > S+C<log ) € S/|Z|>1 = o[ Es £ dz
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Lemma 7.2.3. For |z| > 3¢ we have

n
1 I\~ (ﬁ) fo<o<1
[(—A) fo(2)] < C|$|2U <10g 5) 9m
(I%I) ifl<o=m+s<73,
where m is a positive integer and 0 < s < 1. In particular

1
P

n 1
(-85 Rl < € (108 )

Proof. Notice that for every nonzero multi-index a € N we have

Nl T\lla\ if |z] <e
P
|IDfe(z)| < C <log 8) T fe<z| <2
0 if |z| > 2e.

First we consider 0 < o < 1. Using that |p.| < 1, changing the variable y — ey and by
Holder inequality we obtain

fe(@) — fe(y) dy‘

ge |T—y|nt2o

1\ 7 (logi — log ﬁ) we(lyl)
=C (log ) / dy
ly|<2e

€ |z — y[r+2e

(=A) fe(z)| =C

1
ol

1 1
1\ » dy P / P
<o (o) ([ ) ([ sl ay
€ <2 |7 — ey[Pt2pe lyl<2
1
A A A dy v
< Ce log - on | |np+2pcr 2 |L _ |np+2pcr )
€ e |y\<ﬁ |z Y

<ot (Y (1002 _%
= o) \%®2)
]

where in the second last inequality we have used a change of variable y — 'y and the
last inequality follows from the uniform bound

1 2¢e

& =y = C forevery o] > 3¢, |yl < o (7.10)
T
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For o > 1, changing the variable y — |z|y and by (7.10) we have
/ A" fe(x) — A" fe(y) dy‘

|z — g2

AM
/ L)
ly|<2e ’.’L‘ - y’
1
1\ » 1 1
<C (log > / dy
€ ly|<2e ‘y|2m ’x - y|n+23

n—2m —
|z[7 \ || €

We conclude the lemma by (7.8). O

[(=A)7 fe(x)| = C

=C

S

Lemma 7.2.4. For 0 < o < § there exists a constant C = C(n, o) such that

_1
P 1
‘x|n+20

(A v()] < © (1og 1)

for every x € BS.

Moreover,

n 1!
-8Bl < © (108 2)
Proof. 1f 0 < 0 < 1 then

o Vel\Y
aye@=c [ Hx_j‘,}%dy, 2] > 2 (7.11)
yI<

1
<o / ve(y)dy
2|20 Jiyc1

1
1\ » 1
< C'|log- —_— 1 log2)d
<c(os2) i [ Goml+log2)ay

1
1\ » 1
<c(oeg) e

Since the integral in the right hand side of (7.11) is a proper integral, differentiating
under the integral sign one can prove the lemma in a similar way. O

Proof of Theorem 7.1.1 Without loss of generality we can assume that By C ). Let w,
be defined as in Proposition 7.2.1. We set

(1) = ue () , rER"

1
(el + (=23 Tt )

Then @. € H»?(Q) and [[a]}, g + |(~A) %%, 5. = 1. We claim that there exists a
constant 6 > 0 such that

lim sup/ exp <an,p\ﬂ5\p/) dr =:limsup I, > 6. (7.12)

e—0 - e—0
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Noticing that (restriction of @, on B is a constant function)

lim inf @.(z) = oo,

e—0 z€B:
and by (7.6), we obtain
sup / F(lupenel de
W€D (), [l p g HI(=2) TPl oy <17

> lim sup / Fla]) el g
Q

e—0

_ /
> limsup | f(|ae|)e® % da
e—0 B.

> timsup (1. g f(1n.(2))

e—0 zEB.

> 0limsup inf f(|ue(z)])

e—=0 %E€B:

= OQ.

To prove (7.12) we choose ¢ = e~*. Noticing that

/

. AN P 1\ !
kli)n;O —k + k 1 + E = —057 ||UEHLP Rn) ~ C log g s

and using Proposition 7.2.1 we have

=[S

.U\

_1 B
I.> ‘Bl|8n€nlog%(1+0(log%) ) _ \Bl‘e_k"+k”(1+%) P > 5

)

for some 6§ > 0. O

In order to prove Theorem 7.1.2, first we prove the following proposition which gives a
similar type of estimate as in Proposition 7.2.1.

Proposition 7.2.5. Let 7 > 0 and 1 < p < oco. Then there exists a constant C' > 0

such that )
" 1\ h\?
17T = A) e oy < 1+o<1og€> |

we(w) = (71 = A)3rug(a) = (~A)
We observe that there exists C' = C(p) > 0 such that

Proof. We set

S

ue ().

h(t)=(1+t)p—1—C(tp+tp71+t%)<O, for every t >0, 1<p< o0,

which follows from the fact that h(0) = 0 and A/(t) < 0 for every ¢ > 0. Therefore, there
holds

(a—l—b)pSap—l—Cp(bp—l—abp_l—l—b%ap_%), a>0,b6>0,1<p< o0,
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for some constant C), > 0 and using this inequality we bound
[ 16T = 8 uc(a)ps
— [ Jue@) + (&) (o) P
< [ eaBu@r 0 [ ju@pde ¢ [ (-a)Fu@lepd

+C | (=2) ()P 2w (w) | 2da
R

=01+ Is + I3 + 4.

From Proposition 7.2.1 we have

N\l
IlSl—l—C’(logé_) )

To estimate I, I3 and I4 we will use pointwise estimates on (—A)%u., (—A)%w, and LP
estimates on (—A)%w.. For 0 < o < § combining Lemmas 7.2.2 - 7.2.4, 7.4.8, and (7.8)
we get

1\ 2 g2 if |z] < 3e
[(—A)uc(x)| < C <log 5) || =20 if 3e < |z| < 2 (7.13)

|z|~"=20 if |z| > 2.
With the help of (7.13) one can verify that

1
[(=A)uel| Loy < C(n,p,0) <log 5) ' , 1<p<oo,0<0o< %, (7.14)

1\ L
I, <C <log€> .

We conclude the proposition by showing that

and together with Lemma 7.4.2

2

n 1\
/R” lwe|9|(=A) 2 v [P~ %dz < C(n, p, q) <log€> , 0<g< pﬁ— T (7.15)

It follows from Lemma 7.4.1 that

1 ~» n
|lwe(z)] < C | log — , TeR" — <1,
€ 2p
and for % > 1
1\ -3 et if |z| < 3e
lwe ()] < C (log 5) |7 if 3e < 2| < 2
1 if || > 2,

thanks to (7.13) and (7.14).
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Splitting R™ into
Ay ={z:|z| <2} and Ay ={z:|z| > 2},

we have
n 2 n
/ w1 (~ Ao tde =3 ::/ 0o |7)(— A) o, i = 1,2,
R i=1 Ai

Using (7.13) one can show that J; < C (log %)_1 and together with ¢ < 1%21 one has
Jo < C (log %)_1, which gives (7.15). O

Proof of Theorem 7.1.2 Here also we can assume that By C 2. We choose M > 0 large
enough such that

1 /
D (ap pt? ) > 5e‘lwt" , t>M.

We set
_ Ue

(71 — A) 2w || gy

Then we have

[ #ae (anplal) do

Rn

> [ 5 (anglat”) de
ue>M
1 7

> 5 [ flacherno e aa,
2 JB.

for € > 0 small enough. Now the proof follows as in Theorem 7.1.1, thanks to Proposition
7.2.5. =

Remark: From the point of view of conductor capacity estimate (see e.g. [2, p. 393],
[42, p. 2193]), it would be interesting to know whether

I(=4)

or not. Here we recall that the “original” Moser functions (see [61]), that is

E

M

Pue|pp@ey > 1, and [[(71 — A)2uc||pgny > 1,

for x € R2\ By

0
1
u(e,z) == —=—=1¢ 1/4/log(1/¢)log(1/|x|) for z € By \ B:
var log(1/e) for x € Bi,

satisfy ||[Vu(e, )2, = 1-

Lemma 7.2.6. Let u. be as in Proposition 7.2.1. Then there exists a constant C' =
C(n,p,7,¢,n) > 0 such that

n 1\ n 1\
=8Pl 21 (0 1) T = 0Bl 2 1= s

Moreover, if 55 is an integer, then H(_A)%U5HLP(BI) > 1.
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Proof. Using the inequality
llal = ([P > [al” = plalP~'[b], p=>1,a,b€R,

we obtain

R CNE A
3e<|z|<1

1
NNt 11 1\ ¥ 1 l
2/ <10g> n_lndff—0<10g> ,,/ = |(—A) % Re|dz,
3e<|z|<1 € ‘S | ’1“ € 3e<|z|<1 |1;|p’

and

/ (] — A u|Pda

3e<|z|<1

= / (~A)Fu.Pdr — C [(—A)F P . |da,
3e<|z|<1 3e<|z|<1

where R, and w, are defined in the proof of Proposition 7.2.1 and 7.2.5 respectively.
First part of the lemma follows as in Proposition 7.2.1 and 7.2.5.

We choose r < 1 so that u. € C°(B,). If % is an integer, then the support of A%u6 is
a subset of B, \ B.. Therefore, by Holder inequality

1

ue(0) = Knp (—A) 2 uc(z)

n
e<|z|<r |;p|p’

dx

|~

P

1 n 1
< Kn,p’Snil‘p/ [(=A) 2pu€HLP(Bl) <log o + 10g7">

7

n—1|~ = 1y\»
< Kl ST (= A) P e Loy (log = )

where the first identity follows from the fact that the function

n

1
n— _1 non 1 1\7#
us(0) = |S" w20 7r2F(ng,)m <1Og5>
1 1
i LY

we have [[(—=A) % ugl| po(z,) > 1. O
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7.3 Variational arguments
Throughout this section we use the notation ||u|| = H<_A)%UHL2(RW,), H = H2?(Q) and
Qg = Q2.

To prove Theorem 7.1.3 we follow the approach in [3, 41]. First we prove that A\; > 0,
which makes the statement of Theorem 7.1.3 meaningful.

Lemma 7.3.1. Let € be an open set in R™ with finite measure. Then A\ > 0 and there
exists a function uw € H such that

lullz2() =1, and [l = At

Proof. We recall that
A\ = inf {|jul|® : v € H, |ull L2() =1}
Let {ux}32, C H be a sequence such that
kli)ngo urll® = A1, |ukllL2(q) = 1 for every k.
Then up to a subsequence
up — up in H, wuy, — ug in L2(Q),

where the latter one follows from the compact embedding H < L?*(Q) (see Lemma
7.4.7). Therefore,

)\1 < ||UOH2 < lim inf ||’U,]€||2 = )\1, ||UOHL2(Q) =1.
k—o0

Let us now define the functional
1
T = 3lulP - [ Gds, we .
Q

where

t
QUZ/QMW,MM:JWW,O<A<Mw>Q
0

Then J is C? and the Fréchet derivative of J is given by

n

DJ(u)(v) = /H(A)zlu(A)Zvdx - /Qg(u)vdx, v e H.
We also define
F(u) = D)) = ulP = [ g(wudz, 1) = I - 3F(w).

S={ueH:u#0,F(u)=0}.

Observe that if u € H is a nontrivial weak solution of (7.7) then u € S.
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With the above notations we have:

Lemma 7.3.2. The set S is closed in the norm topology and

2 @ o :
0<s”< R /2ir€1gJ(u).

Proof. Since F is continuous (actually F is C! as J is C?), it is enough to show that 0 is
an isolated point of S. If not, then there exists a sequence {u} C S such that ||ug| — 0
as k — oco. We set vy, = HZ—:” From the compactness of the embedding H — L%(Q2) for

any 1 < ¢ < oo, we can assume that (up to a subsequence) vy — v in H and vy, — v
almost everywhere in 2. By Lemma 7.3.4 we get

1
1= )\/ eb“ivzdaz Je—roo, )\/ vide < )\—HUHQ <1,
Q Q A1

which is a contradiction. Hence S is closed.

Since,

1 1
flt) = (t2b>ebt2+b>0, fort >0, b> 0,

which follows from f(0) =0 and f’(¢) > 0 for ¢ > 0, we have

I(u) = ;/Q <<u2 - 2) o 2) do >0, if u e H\ {0}, (7.16)

and in particular J(u) = I(u) > 0 for u € S.

If possible, we assume that s = 0. Then there exists a sequence {u;} C S such that
J(ug) — 0 as k — oco. Moreover,

2 2 2
u|® = /\/ uzetdr = /\/ uj e da + )\/ up e da
Q uZ>2 u

; i<t
A 1 1
<4-— / up — ~ i + = ) dr + )\/ u%eb“zdx
2 Ju2s2 b b w2<2
kb k—=1b
< 4J(ux) + )\/ uiebuid:ﬁ, (7.17)
w<i

and hence uy, is bounded in H. Then up to a subsequence uy — u, a.e. in Q and up — u.
Using Fatou lemma and ¢7) in Lemma 7.3.4 we obtain

A 1 1
I(u) = / u? — =) e+ ) de < liminf I(uy) = liminf J(uy) = 0,
2 Ja b b k

—00 k—o0

and hence u = 0, thanks to (7.16). It follows from (7.17) that ux — 0 in H which is a
contradiction as S is closed.

We prove now s? < agb~!. First we fix u € H with |lu| = 1. We consider the function

Fu(t) := F(tu) = ||tul)® — )\/ 202t gy > 0.
Q
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Fu(t) > t* <)\1 / uldr — )\/ u2ebt2“2da:> > 0,
Q Q

for ¢t > 0 sufficiently small and lim;_,~, F,(t) = —oc. Hence, the continuity of F;, implies
that there exists ¢, > 0 such that F,(t,) = 0, that is, t,u € S. Thus

Then

5° 9 1,
5 < J(tuu) < *HtuU” itu'

Again using that t,u € S we have

2 bs?u? 1 2 b(tyu)? _ 1 2_1
/Qu e d:rg)\tz)\/g(tuu) ebl )dw—)\—t%HtuuH =7

u

which implies that

sup / u2e?* " dy < oo, (7.18)
lull<1,ueH JQ
and by Theorem 7.1.1 we deduce that s? < apb™". O

Lemma 7.3.3. Let u € S be a minimizer of J on S. Then DJ(u) =

Proof. We fix a function v € H \ {0} and consider the function
Fup(v,t) = Fyu+tv), v>0,teR.

Differentiating F, , with respect to v and using that F'(u) = 0, we get

OF 0
677 (1,0) = —2bA ule? dx < 0.
Rn»

Hence, by implicit function theorem, there exists § > 0 such that we can write v = ()
as a C! function of ¢ on the interval (—d, §) which satisfies

v(0) =1, Fuu(v(t),t) =0, for every t € (=6, 9).

Moreover, choosing § > 0 smaller if necessary, we have y(t)u + tv € S for every t €
(=0, §). We write

J(u+tv) — J(u)

DJ(u)(v) = lim

t—0 t
— lim (J(’y(t)u +tv) —J(w)  JyBu+tv) = J(u+ tv))
t—0 t t .

Since J is C', a first order expansion of J yields

J(y(t)u + tv) — J(u+tv) = J((u+tv) + (7(t) — Du) — J(u + tv)
= DJ(u+to)((v(t) = Du) + o ((y(t) = D)]ul])
= (v(t) = 1)DJ (u+ tv)(u) + (v(£) — 1) [[ullo(1).

Therefore, using that F(u) =0,

%Lr% J(y(Hu+tv) — J(u+tv) +(0)DJ () () = 0.
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On the other hand, since v is a minimizer of J on S and v(t)u + tv € 5,

JyBu+tv)—Ju) [ >0 ift>0
¢ 1 <0 ift<o,

implies that (since it exists)

J(y(t)u + tv) — J(u)

lim =0.
t—0 t
This shows that DJ(u)(v) = 0 for every v € H, i.e., DJ(u) = 0. O

Proof of Theorem 7.1.3 Let {uy} be a sequence in S such that limy_, J(ug) — %
Then by (7.17) wuy is a bounded sequence in H and consequently, up to a subsequence

Up — u, U —> U, a.e.in Q,  £:= lm |Jug,
k—o00
for some u € H. First we claim that u # 0.
Assuming u = 0, by i) in Lemma 7.3.4 we get
lim |Jug|? = lim 2 J(ug) + )\/(ebui —1)dz | =s* < 2o
k—o00 k—o00 2b QO b’
and hence by 4) in Lemma 7.3.4
lim [ugl|? = lim )\/ uzeb“ida: =0,
k—o00 k—oo Q

a contradiction as S is closed.

We claim that ¢ = ||u||. Then u; — w in H and applying Lemmas 7.3.2 and 7.3.3 we
have Theorem 7.1.3.

If the claim is false then necessarily we shall have ¢ > |ju]|.

One has
lim |Jug|? = lim 2 ( J(uz) + A/(ebui —1)dz
k—o00 k k—o0 k 2b Q

s2 A 2
=2( =+ [ (™ —1)d
(2 +3 Q(e ) m,)
=52 — 2J(u) + ||lul?

We divide the proof in two cases, namely J(u) < 0 and J(u) > 0.

Case 1. We consider that J(u) < 0. Since u # 0,

A
[l < b/(eb”2 —1)dz < )\/ u?e?™ da,
Q Q

where the second inequality follows from (7.16). It is easy to see that we can choose
0 < tg < 1 such that

ol =2 [ (b
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that means tou € S. Using that I(tu) is strictly monotone increasing in ¢, which follows
from the expression in (7.16), we obtain

2 2

> < J(tou) = I(tou) < I(u) < lignian(uk) = %,
— 00

2
a contradiction.

Case 2. Here we assume that J(u) > 0. Then

2 = lim [Jug])? = 5% — 27 (w) + [[u)® < 52+ |Jull? < 22 + [|ul|2. (7.19)
k—o00 b
Taking vy, = ”Z—:” we see that (up to a subsequence)
u .
Vp — U= 7 v — v, a.e. in §Q,
and by Lemma 7.4.5, for every p < (1 — |lv[|?)~!
sup/ ePOO% g < oo,
keN JQ
Taking (7.19) into account we have
0<% |ul? = s — 2J(u) < %
and therefore, we can choose €y > 0 such that
l+eo= @ 1 ie., 2(1+¢e) = 20y - o -
b 02— )2 7 b 2 ’

For k large enough such that |Juy||? < ¢2(1+ %) holds, we observe that b||ux||* < pocag for
some 1 < pg < (1 —||v||?)~t. Thus, for some p; > 1, ps > 1 with p1papy < (1 — |Jv]|?)~!
we obtain

2\ P1 2 2
sup/ (uieb“k) dz < sup Hukpl||Lp/2(Q)||€p1pOakaHLP2(Q) < 00,
keN JQ keN

and together with Lemma 7.4.9

. 2 2
lim u2eedr = | u?e”™ dz.
k
Q Q

k—o0
Indeed,
. . 2 2
ul> < 2 = lim |Jug)|® =\ lim [ wiede =\ [ w?e” du,
k—o0 k—oo J Q
and we can now proceed as in Case 1. O

Lemma 7.3.4. Let ug, v, € H such thatup — u in H, up — u, a.e. in Q, vy v in H
and vy, — v, a.e. in Q. Then

i) If
Q
lim sup [Jug]|* < =2,
k—00 b



119

then for every integer £ > 1

. 2 2
lim [ e"kvide = [ e v'de.
k—oo J Q

i) If

X 2
lim sup / u%eb“kdx < 00,
Q

k—o00
then
. 2 2
lim Ui dy = / e da.
9 Q

k—o0

Proof. We prove the lemma with the help of Lemma 7.4.9.

We choose p > 1 such that for k large enough p|lugl|* < 4 holds and together with
Theorem J we have

2
Sup/ PPk dr < oo.
keN JQ

Since the embedding H22(Q) < LI(R) is compact (see Lemma 7.4.7) for every 1 < ¢ <
00, we have
vl = v?in LY(Q).

Indeed,
2 2
21111\)1 ||€bu’“vl€||LP(Q) < HviHLp/(Q)Heb“kHLP(Q) < 00,
€

and we conclude 17).

Now ii) follows from

2 1 2 C
/ Ui dy < / u%eb“kdx < —,
uz>M M uz>M M

which implies that the function fi := ebui satisfies the condition i1) in Lemma 7.4.9. [

In the following lemma we prove that the assumption H'(v) in [38] is true under certain
conditions.

Lemma 7.3.5. Let ag > 0. Let f(t) = e®h(t) satisfies H(i) — (iii) in [38]. Let h >0
on [0,00) and h(—t) = —h(t). Let s@ be a monotone increasing function with respect
tot on (0,00), s # 0. If lim_,o h(t)t = oo then there exists u € ﬁ%’Q((O, 1)) such that
V2 (=A)iul 2y = 1 and

t>0 t>0 (&%)

t2 ! w
sup @(tu) := sup <47r —/0 F(tu)dm) < o

where
F(t) = /0 f(s)ds,

and w is as in [38].
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Proof. For a given M > 0 we can choose u € fI%’Q((O, 1)) such that

1 2
/ f ﬁu udz > M, V27 |(~A)5ul| 2@ = 1,
0 0

thanks to Theorem 7.1.1. Differentiating with respect to ¢ one has

P (tu) = ( f (tu) )

Hence, for ¢t > \/% =:tg and 27 M > tg

@(tu)<t<27r /fto ><0

Thus @' (tu) < 0 on (tgp — €, 00) for some ¢ > 0 and therefore,

£2
supP(tu) = sup P(tu) < sup — < -
>0 t€(0, to—e) te(0,tg—c) 4™ 200
Since w = m, thanks to Theorem J, we conclude the lemma. ]

7.4 Some useful results

Lemma 7.4.1 (Pointwise estimate). Let s > 0 and not an integer. Let m be the smallest
integer greater than s. Then for any T > 0

(7] = A)*u(z) = (=A) Z @)+ Cl(=A)7ullpr@n), we SR,

where o € (max{g —m+ s,0}, %), the constant C' depends only on n, s, o, 7 and for
m =1 the above sum can be interpreted as zero.

Proof. We set f(t) =t° on RT. By Taylor’s expansion we have

Tm—l

ft+1)=fO)+7f )+ + mf””‘*l(t) + %fm(gt), for some t < & <t+T.

In particular
(T +12)° =% 4+ e t> 2 p et 4 4 T2 L B,
where the function E satisfies the estimate

|E(t)] < C(1+t)*72™  t>0.
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Therefore, for u € S(R")

F((TI = A)*u)(€) = (1 + [¢[*)*a
= (|67 + el 72+ epat €T B(ED) @

m—1
= ¢leF¥a+ E(lg)a)
7=0
m—1 )
= 3 G F(—A)Y ) + B(e)a(¢),
7=0
and hence .
(1T = AYu(z) = > ¢(-=A)Tu(z) + F(Ed)(z).
j=0

To estimate the term F~1(E4) (uniformly in x) in terms of L!(R™) norm of (fractional)
derivative of u, we observe that

BUEDOE)] = [ B(6) s (CATut)|
C —_—
—A)°
< g s O
c .
< |£|20.(1+ |€’2)m75||(_A) uHLl(Rn)'
Thus
| F~H(Ba)(2)] < O|| Bl @ny < Cl(=A)7ul| L@y,
and we complete the proof. ]

Lemma 7.4.2 (L? Estimate). Let s > 0 be a noninteger. Let T > 0 be any fized number.
Then for p € (1, co) there exists C = C(n,s,p,7) > 0 such that
|l Lo (mr) if s <1

(T = A~ () ull oy < € { |
=) [|u + <_A)871UHLP(RH) if s > 1.

Proof. We have

F((rl = Ayu)(&) = F((=A)u)(€) = ((r + | — |g[*) a(€)
- { (7 + l&l2)* = [¢[>*) a(e) ifs <1

T 2\s__|¢|2s s— R .
BT (1 4 g2 2)aE) i s> 1

{ m(&)a(§) if s<1
m(&)F (u+ (—A) 1) (&) ifs>1.

Now the proof follows from the Hormander multiplier theorem (see [72, p. 96]). O

The following lemma appears already in [25, p. 46], but for the sake of completeness we
give a proof.
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Lemma 7.4.3 (Equivalence of norms). Let ¢ > 0. Then for p € (1,00) there exists a
constant C > 0 such that for every u € S(R™)

1

ol (llull Lo ny + (=) 7ull Lo @ny) < (T = A)7ull Lo rn)

< C (Iullpe®ny + 1(=A)7ul| Lo rn)) -

Proof. We set

o T 2 —n—+o
Go(x) = 1 - 710 / e et TS dt
(4m)2 T'(3) Jo

which is the Bessel potential of order o (see [72, p. 130]). Then

N 1 1
Go(x)dr =1, G,(x)= 7 5 -
S e

Setting f = (I — A)?u we can write u = Gos * f and by Young’s inequality one has
lull Le@ny < [|fllLe@ny- Again writing u = G, * f and taking Fourier transform we
obtain

F((=A)7u) = [¢*7a = |£]* f=m(©f,

-
(1 +1¢2)”

and by Hormander multiplier theorem we get [|(—A)%ul|rp@n) < C||f|Lp(rn). Thus,
[ull 2oy + 11(=2) 7l orny < CII = A)7ull Lo (gn)-
To conclude the lemma, it is sufficient to show that
1(=A)°ullprny < Clny 5,0, p)([ull Lo@ny + [1(=A)7ullLr@n)), 0<s <o, (7.20)
thanks to Lemma 7.4.2.
In order to prove (7.20) we fix a function ¢ € C2°(Bz) such that ¢ =1 on By. Then
F((=A)u) = g0 = [¢[*pa+ € (1 — )a = mi ()i + ma(€) F((—A)7u),

where m1(€) = [£]250(€), ma(€) = [£]>727(1 — p(&)) are multipliers and we conclude
(7.20) by Hormander multiplier theorem. O

Lemma 7.4.4 (Emb~edding to an Orlicz space). Let € be an open set with finite measure.
Then for every u € H22(Q)
/ e dg < co.
Q

Proof. We set f = (—A)%u. By [54, Proposition 8] we have

C,
/Gmy ydy, 0<G(x,y) < —,
[z —y|2
where G is a Greens function.

We choose M > 0 large enough such that | f||2Cp < ag, where f = f — Ixqp<an-

Then -
ol

u(z)] < C(M) + Cls f(z), Izf(x):= i
Qlr—yl|2
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and by [2, Theorem 2] we conclude the proof. O

As a consequence of the above lemma one can prove a higher dimensional generalization
of Lions lemma [46] (for a simple proof see e.g. [38, Lemma 2.6]), namely

Lemma 7.4.5 (Lions). Let uy, be a sequence in H22(Q) such that

wp —uwin H22(Q), 0< |\(—A)%u||L2(Rn) <1, ||(—A)%uk||L2(Rn) =1.

n —1
Then for every 0 < p < (1 — H(—A)ZUH%Q(R")> , the sequence {e®P"*}7° is bounded
in LY(Q).

Lemma 7.4.6 (Poincaré inequality). Let £ be an open set with finite measure. Then
there exists a constant C' > 0 such that

[ullz2e) < CH(_A)%U”LQ(R”)a for every u € H**(92).

Proof. We have
()] <

1
o T Q2 [|ull 20,

(2m)

Ll <
— 1 >~
(2m)3 " E®
and hence

oy = [ JaPds= [ Japac+ [ japas
Rm |§]<6 |&]>d

1

@)

1 s
S B )+ 572 [ IF(=A) Ry P

<

ey Bale™ + 572 | Jeflafde
€1>6

<

—

Choosing § > 0 so that ﬁ|§2||31|5” = 1 we complete the proof. O

Lemma 7.4.7 (Compaet embedging). Let Q be an open set in R™ with finite measure.
Then the embedding H*2(Q) ‘—>~HT’2(Q) is compact for any 0 < r < s (with the notation
HO2(Q) = L*(Q)). Moreover, H2*(Q) — LP(Q) is compact for any p € [1,00).

Proof. We prove the lemma in few steps.
Step 1 The embedding H*2(Q) < H"2(Q) is continuous for any 0 < r < s.

With the notation A% = u we see that

I-8)sulRan = [ lePlade = [ jePialac+ [ lePlaras
R ¢1<1 l€1>1
< [ tade+ [ (ePlade < ulag + 1 (-A) bl
[€1<1 l€]>1
which is Step 1, thanks to Lemma 7.4.6

Step 2 For a given s > 0 and a given € > 0 there exists R > 0 such that

[ullz2(@nBs) < EHuHﬁSg(Q), for every u € H>?(Q).
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To prove Step 2 it is sufficient to consider 0 < s < 1, thanks to Step 1.
We fix ¢ € C2°(Ba) such that ¢ =1 on By and 0 < ¢ < 1. Setting ¢, (z) = () we get
11 = er)ullFogay = IF((1 = @r)u)ll72gn)

- / F((1L — pr)u) 2de + / F((1 — o)) e
[§]< Ry

|€]>R1
1 2 —zS S
<L |Bg ( / \(1—¢r>u\dx) PR PIE(L - e
(2m) R |€|>Ry
=11 + 5.

Using that supp (1 — ¢r)u C QN BE and by Hélder inequality we bound

1
I, < ——|Bg, ||Q N B¢ 1— 2dx <
S Bl B [ J0 = e <

From [22, Proposition 3.4] we have

: ()P
| tetaag = o) [ B8 g,

B< R [ 6P - pou) g

— or(@)u(x) — (1 — @r(y)u(y))?
—omr [ ool O p)t,,

— CyR;* /Rn N (1 = pr(2)) (u(2) — uly)) — u(y)(er(z) = or(y)))*

| — y[rt2e

1
W\B& 120 Byl [[ul 720

and hence

dxdy

|33 _y|n+2s + |$ _y|n+2s

< 2CoR;* /
R” xR"”

2 2
o Rrxgn (T — Y|t Y n ) no |z —ylntRs Y
< O R (1A ul o + lulZa)):

<<1 — (@) (u(@) —u@)? | w2 () - wr<y>>2> dady

where in the last inequality we have used that

/ (SOT( ) (PT( )) dZL‘<C yGRn,TZL

|.%' _ |n+2s

Thus we have Step 2 by choosing R so that |Bg, || N B| < § where C1 R 2 — 5

Step 3 The embedding H*2(Q) < L?(Q) is compact for any 0 < s < 1.

Let us consider a bounded sequence {uy}2 | in H*2(Q). Let ¢, ¢y be as in Step 2 (here
¢ € N). Then for a fixed ¢ the sequence {ppuy}3 | is bounded in H*%() (the proof is
very similar to the estimate of Iy in Step 2).

Since the embedding H*?(B,) — L*(B,) is compact (see e.g. [22, Theorem 7.1]), there
exists a Subsequence {up }2, such that pru) — u! in L?(Bs). Inductively we will have
peul, — u® in L?(Byy) where {u“l}k:l is a subsequence of {uf}% | for £ > 1. Moreover,
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we have u‘t! = uf on By. Setting u = limy_,o u! it follows that u’,g converges to u in

L?(Q), thanks to Step 2.

Step 4 The embedding H*2(Q) — H™?() is compact for any 0 < r < s.
Since the composition of two compact operators is compact, we can assume that s—r < 1.

Let {uz}3°, be a bounded sequence in H*2(Q). Setting vy = (—A)zuy we see that
{v}22, is a a bounded sequence in H*~"2(Q). Then by Step 3 (up to a subsequence) v,
converges to some v in L?(2) which is equivalent to saying that (up to a subsequence)
uy, converges to some u in H"2(€).

Finally, compactness of the embedding H32(Q) — LP(Q) follows from the compactness
of H22(Q2) < L*(R2), Theorem J and Lemma 7.4.9. O

Lemma 7.4.8 (Exact constant). We set
1 n
f(z) =log—, x€R"
|z]
Then

n I'(0) 1

(A f(2) = 7,22 "1 2 0<o<

D(22) [ 3

where ' is the gamma function and v, = @b’”]

Proof. From Lemma 2.5.4 we have

N
’1"20.

(=A)7f(x) = (=A)7 f(e1)

To compute the value of (—A)?f(e;) we use the fact that — log rz] is a fundamental

solution of (—A)z (see for instance Lemma 2.5.1), that is

[ 1o @_A)z@(x)dx —p0), ¢ € SRY).

Using integration by parts, which can be verified, we obtain

Mme(0) = [ fla)(=A)2p(z)dx

- /Rn(—A)"f(x)(—A)g‘%(ﬂc)df
_ [ carse

|$’20'

(1€"273)" (x)d

= arie) [ (o) © (e ae

|.’L"2U

n—=20
= (=A)7f(en)2"” 2“’5”@) / " |§|n1_20 (gl"~*7) de
2 T(%529)

= (8 flen2 L e

|3

©(0),
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where in the 4th equality we have used that

f( ! >:2a’z‘r(2)1 0<a<n, (7.21)

e (252 laf

in the sense of tempered distribution. Since in our case F is the normalized Fourier
transform, the constant in the right hand side of (7.21) appears slightly different from
[44, Section 5.9].

Hence we have the lemma. ]

The following lemma is the Vitali’s convergence theorem.

Lemma 7.4.9 (Vitali’s convergence theorem). Let 2 be a measure space with finite
measure j, that is, u() < co. Let fi be a sequence of measurable function on 2 be such
that

i) fr ko, f almost everywhere in Q.

i1) For e > 0 there exists 6 > 0 such that

/ \fildp < e for every Q C Q with u() < 4.
Q

Or,
it") There exists p > 1 such that

sup [ |fifd < .
keN JQ

Then fi, — f in LY(Q).
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