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Abstract

Skeletal muscle is not only one of the largest, but also one of the most dynamic organs. For example,
plasticity elicited by endurance or resistance exercise entail complex transcriptional programs that are
still poorly understood. Various signaling pathways are engaged in the contracting muscle fiber and
collectively culminate in the modulation of the activity of numerous transcription factors and
coregulators. Since exercise confers many benefits for the prevention and treatment of a wide variety
of pathologies, pharmacological activation of signaling pathways and transcription factors is an
attractive avenue to elicit therapeutic effects. Members of the nuclear receptor superfamily are of
particular interest due to the presence of well-defined DNA- and ligand-binding domains. In this
review, we summarize the current understanding of the involvement of nuclear receptors in muscle
biology and exercise adaptation.
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1. Introduction

Skeletal muscle is the largest organ in our body, accounts for ~40% of body mass, contains
approximately 50-75% of all body proteins, and takes up about 85% of glucose upon insulin stimulation
(Frontera and Ochala 2015). Moreover, even though skeletal muscle only contributes ~30% to energy
expenditure at rest, 90% of the 20 fold peak increase in energy expenditure during physical activity can
be attributed to muscle. Accordingly, skeletal muscle is one of the main sites of metabolism of glucose,
fatty acids, ketone bodies and lactate. The energy generated in this process is used for contraction and
hence the generation of force, including that which is required to maintain posture and breathing. In
addition, skeletal muscle function is instrumental to maintain body temperature, and is one of the
main storage sites for glucose (in the form of glycogen), lipids (as neutral triglyceride lipid droplets)
and amino acids. With the detection of myokines, muscle has also been defined as endocrine organ
exerting auto-, para- and endocrine effects (Schnyder and Handschin 2015). Finally, skeletal muscle
can contribute to the detoxification of predominantly endogenous metabolites, such as L-kynurenine
or excessive ketone bodies (Svensson et al. 2016).

To be able to cope with these diverse functions, skeletal muscle is one of the most dynamic tissues.
Upon different stimuli, massive adaptations are initiated and, if the respective stimuli persist,
maintained chronically. Most strikingly, biochemical, metabolic and contractile properties are
modulated by physical activity. Many different signaling pathways are activated during and after
exercise bouts and collectively result in the regulation of a complex transcriptional program (Egan and
Zierath 2013; Kupr and Handschin 2015; Hoppeler 2016) that varies between endurance and resistance
exercise resulting in distinct and specific outcomes (Hawley et al. 2014; Camera et al. 2016; Qaisar et
al. 2016). Importantly, these two types of exercise not only improve muscle endurance and strength,
respectively, but also confer beneficial effects for the prevention and treatment of many different
pathologies (Handschin and Spiegelman 2008; Booth et al. 2012; Pedersen and Saltin 2015).

Even though the epidemiological association of a sedentary life-style with the increased risk for many
chronic diseases is clear, and inversely, the benefits of exercise have been demonstrated (Pedersen
and Saltin 2015), the incidence of most of these pathologies is on the rise world-wide. Exercise
interventions often fail due to lack of adherence and compliance. Moreover, subgroups of patients
exist with exercise intolerance, defined either as the inability to train or as a detrimental outcome of
physical activity. It is therefore intriguing to speculate that a better knowledge of the complex
molecular mechanisms that underlie exercise adaptations in skeletal muscle could be leveraged to
design so-called “exercise mimetics”, pharmacological interventions that elicit exercise-like effects
(Handschin 2016). Of the transcription factors (TFs) that have been described in skeletal muscle
plasticity, those belonging to the superfamily of nuclear hormone receptors (NRs) are of particular
interest in this regard. NRs are the largest family of TFs in metazoans (Escriva et al. 2004; Bookout et
al. 2006). With few exceptions, all of the NRs are characterized by a highly conserved domain structure
(Fig. 1A) (Germain et al. 2006). An amino-terminal A/B domain, often with an intrinsic transcriptional
activation function (AF-1), is followed by a DNA-binding domain C that entails a zinc finger-based DNA
binding domain. A hinge region D then links to the ligand-binding and dimerization domain E/F, of
which helix 12 includes the activation function 2 (AF-2). The NR superfamily includes the classic steroid
hormone receptors, “orphan” receptors with no known endogenous ligand, and “adopted” NRs for
which endogenous ligands have been identified. All of the NRs with functional DNA-binding domains
are recruited to either individual or direct, inverted or everted repeats of canonical nucleotide
hexamer half-sites with variable spacing (Fig. 1B). While most of the steroid hormone receptors bind
as homodimers, other NRs can also be recruited to target sites as monomers or as heterodimers with
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the common binding partners retinoid X receptors o, B or y (RXRa/B/y, official nomenclature
NR2B1/2/3, see (Auwerx et al. 1999)). Type | NRs reside in the cytoplasm and translocate into the
nucleus upon ligand binding and activation. Type Il NRs are found in the nucleus, heterodimerize with
RXRs, often sit on response elements and then exchange corepressors for coactivators when activated
by ligands. Similarly, the Type lll and Type IV NRs are retained in the nucleus and bind to DNA-response
elements as homodimers to hexamer repeats (Type Ill) or as monomers or dimers, but only to a single
hexamer half site (Type 1V). NR ligands include hormones, lipids, steroids, retinoids, xenobiotics and
synthetic compounds. Accordingly, many NRs sense the energy or the dietary status of a cell and
regulate metabolism and energy expenditure (Pardee et al. 2011). Not surprisingly, various NRs have
thus also been implicated in the regulation of myogenesis, skeletal muscle function and plasticity. In
this review, these nuclear receptors and important cofactors are highlighted and their role in exercise-
induced muscle adaptations as well as their potential as drug targets is discussed.
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2. The NR superfamily and its role in exercise-induced skeletal muscle adaptation

A surprisingly high proportion of NRs in mice, 35 out of 49, demonstrates detectable gene expression
in skeletal muscle (Table 1) (Bookout et al. 2006). However, a potential role in skeletal muscle function
and exercise adaptation has been studied for only a subset of those (Fig. 2). Current knowledge and
recent updates about these nuclear receptors is summarized in the following paragraphs (Table 2).
Further information and primary literature can be found in additional excellent review articles on this
topic, e.g. (Smith and Muscat 2005; Fan et al. 2011; Fan et al. 2013; Fan and Evans 2015; Mizunoya
2015).

2.1.1 Subfamily 1, Group A: Thyroid hormone receptors (TR) — Type Il

Hypo- and hyperthyroidism have profound effects on whole body metabolism. The effect of thyroid
hormone is mediated by two receptors, TRa (NR1A1) and TRP (NR1A2). In skeletal muscle,
hypothyroidism promotes a shift towards slow, oxidative and injection of thyroid hormone to fast,
glycolytic muscle fibers, respectively (Smith and Muscat 2005; Mizunoya 2015). In loss-of-function
studies, knockout of TRa, but not of TR, was likewise associated with an increase in oxidative muscle
fibers (Yu et al. 2000). Interestingly however, concomitant ablation of both TRs exacerbated the switch
from type Il to type | fibers, indicating that TRP might boost the action of TRa in skeletal muscle. TRa
is furthermore induced by contraction in skeletal muscle leading to a modulation of carbohydrate and
lipid metabolism (Lima et al. 2009). At least some of the effects of low levels of thyroid hormone on
tricarboxylic acid (TCA) cycle activity and mitochondrial oxidative phosphorylation (OXPHQOS) in skeletal
muscle could be meditated by activation of the peroxisome proliferator-activated receptor y
coactivator-la (PGC-1a) (Irrcher et al. 2003), a master regulator of mitochondrial function and
oxidative metabolism, potentially in a fiber type-specific manner (Bahi et al. 2005).

2.1.2. Subfamily 1, Group C: Peroxisome proliferator-activated receptors (PPAR) — Type I

In mammals, three PPARs, PPARa (NR1C1), PPARB/S (NR1C2) and PPARy (NR1C3) have been identified,
all of which are expressed in skeletal muscle and have been implicated in regulating lipid metabolism.
The PPARs heterodimerize with RXRs and bind to PPAR-response elements consisting of a core of a
direct repeat of two hexamer half sites with a spacing of 1 nucleotide (DR-1) in promoter and enhancer
regions of their target genes.

PPARa, activated by free fatty acids and fibrate drugs, strongly controls fatty acid oxidation, TCA cycle
activity and mitochondrial OXPHOS. Interestingly however, muscle lipid metabolism is only slightly
altered in PPARa knockout animals, implying a functional compensation by PPARB/S, which shares
many common target genes with PPARa (Muoio et al. 2002). Accordingly, muscle-specific
overexpression of either of these PPARs results in elevated oxidative metabolism of fatty acids (Luquet
et al. 2003; Finck et al. 2005). However, unexpectedly and diametrically opposite to PPARB/S, muscle-
specific PPARa transgenic mice are susceptible to the development of insulin resistance, have a
reduced endurance capacity and depict an oxidative to glycolytic fiber type switch (Gan et al. 2013).
Inversely, more oxidative fibers are detected in muscle-specific PPARa knockout animals (Gan et al.
2013). This negative cross-talk between PPARa and PPARB/6 is mediated by the miRNAs miR-208b and
miR-499, which boost oxidative and repress glycolytic fiber determination (Gan et al. 2013).

The transcription of PPARB/S is induced by acute and chronic endurance exercise and subsequently
promotes a glycolytic to oxidative fiber type switch linked to higher OXPHOS activity, reduced fat mass
and improved glucose tolerance (Fan and Evans 2015). Muscle-specific overexpression of PPARB/&
(Gan et al. 2011) or of PPARB/6 fused to the strong VP16 transcriptional activation domain (Wang et
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al. 2004) accordingly enhances endurance exercise performance. Similarly, administration of the
synthetic PPARB/S ligand GW501516 improves oxidative metabolism and enhances the effect of
endurance exercise training (Narkar et al. 2008). In contrast, skeletal muscle-specific ablation of the
PPARB/S gene results in a shift towards glycolytic fibers, reduced fatty acid catabolism and OXPHOS
activity, decreased exercise performance as well as exacerbated insulin resistance, glucose intolerance
and obesity when fed a high fat diet (Schuler et al. 2006). Interestingly, PPARB/& controls the
expression of PGC-1a and thereby enhances its own activity by boosting transcriptional coactivation
(Schuler et al. 2006). Thus, as a downstream effector of PPARB/S, PGC-1a exerts potent effects on
endurance exercise adaptations even in the absence of PPARB/S in skeletal muscle (Pérez-Schindler et
al. 2014).

Of the three PPARs, PPARYy depicts the lowest expression in skeletal muscle. Nevertheless, a role in the
control of muscle metabolism was implied by observations in muscle-specific PPARy knockout mice
that develop adiposity and at least a mild insulin resistance under high fat diet (Hevener et al. 2003;
Norris et al. 2003). Animals with a muscle-specific transgenic overexpression of a modified PPARy
(harboring a mutation in the inhibitory phosphorylation site Ser86 and a C-terminal fusion to the CR1
region of the adenovirus Ela gene that strongly promotes transcriptional activity) are protected
against diet-induced insulin resistance and glucose intolerance, secrete elevated levels of adiponectin
from muscle and exhibit a switch towards more oxidative fibers, similar to PPARB/S (Amin et al. 2010).

2.1.3. Subfamily 1, Group D: Rev-Erb — Type IV

Rev-Erba (NR1D1) and Rev-ErbB (NR1D2) are nuclear receptors with a dual role regulating the circadian
clock and cellular metabolism (Cho et al. 2012). Upon binding of heme, the endogenous ligand of these
NRs (Yin et al. 2007), the Rev-Erbs recruit corepressors such as the nuclear receptor corepressor 1
(NCoR1) or the histone deacetylase 3 (HDAC3) and thus transcriptionally repress target genes. Gain-
and loss-of-function studies of muscle Rev-Erba revealed a prominent involvement in the regulation
of mitochondrial biogenesis, mitophagy, promotion of a slow fiber type, and ultimately, higher
endurance capacity (Woldt et al. 2013). Mechanistically, muscle-specific ablation of the Rev-Erba gene
was associated with reduced activity of the AMP-dependent protein kinase (AMPK)-Sirtuin 1 (SIRT1)-
PGC-1a signaling axis (Woldt et al. 2013). Accordingly, mice treated with the Rev-Erba agonist SR9009
exhibit increased activation of these factors (Woldt et al. 2013). A contribution of Rev-ErbB to the
control of lipid uptake has been postulated (Ramakrishnan et al. 2005). However, in contrast to the
well-established role of Rev-Erba in the control of oxidative muscle function, the function of Rev-Erbf3
in skeletal muscle remains poorly understood.

2.1.4. Subfamily 1, Group F: Retinoid-related orphan receptors (ROR) — Type IV

The transcriptional activity of the RORs is negatively affected by the Rev-Erb receptors, at least in the
control of the circadian clock. However, in regard to skeletal muscle function, RORa (NR1F1) elicits
changes that are in part similar to those described for Rev-Erba, in particular in the regulation of lipid
metabolism (Fitzsimmons et al. 2012). In addition, RORa also affects muscle lipogenesis, cholesterol
efflux, insulin sensitivity and glucose uptake. Mechanistically, these observations have been linked to
a modulation of protein kinase B (PKB/Akt) and AMPK signaling coupled to a change in PGC-1a gene
expression (Fitzsimmons et al. 2012). RORy (NR1F3) is also highly expressed in skeletal muscle, but the
function is less clear. Overexpression studies in muscle have linked RORy to the regulation of genes
involved in lipid and carbohydrate metabolism, and possibly muscle mass through the induction of the
myostatin gene (Raichur et al. 2010). However, the physiological relevance of these observations is
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unknown. Moreover, since RORy induces RORa and Rev-Erba, it is not clear whether these effects are
direct or indirect (Raichur et al. 2010).

2.1.5. Subfamily 1, Group H: Liver X receptor (LXR) — Type Il

LXRa (NR1H3) and LXRB (NR1H2) have potent effects on cholesterol efflux in various tissues and cell
types. Both receptors have been linked to anabolic pathways in skeletal muscle, including glycogen
buildup and lipogenesis (Archer et al. 2014). Long-term treatment of mice with the synthetic LXR
agonist T0901317 elevated lipogenesis and reverse cholesterol transport in wild-type and in LXRa, but
to a lesser extent in LXRB knockout animals, indicating that LXRB might constitute the more relevant
LXR variant in skeletal muscle (Hessvik et al. 2010). The anabolic function of the LXRs indicate that
these receptors are involved in regeneration processes between exercise bouts to replenish
intramuscular glycogen and lipid stores, e.g. when coactivated by PGC-1a (Summermatter et al. 2010).

2.1.6. Subfamily 1, Group I: Vitamin D receptor (VDR) — Type Il

The VDR (NR1I1) is involved in regulating mineral metabolism. In humans, polymorphisms of the VDR
gene are associated with aberrations in muscle strength (Pojednic and Ceglia 2014). In mice, VDR gene
ablation results in muscle fiber atrophy, motor deficits, decreased locomotive activity after exercise
and reduced neuromuscular maintenance (Girgis et al. 2014; Sakai et al. 2015). Endogenous VDR gene
expression is induced after resistance training in rats (Makanae et al. 2015). Combined with studies
using vitamin D administration in human patients, a positive role of the VDR in the control of muscle
mass, fiber hypertrophy and anabolic capacity can be predicted (Pojednic and Ceglia 2014).

2.2.1. Subfamily 2, Group B: Retinoid X receptors (RXR) — Type Il

In addition to their ability to homodimerize, the RXR family members RXRa (NR2B1), RXRB (NR2B2)
and RXRy (NR2B3) are obligate heterodimerization partners for a number of NRs and thus play a unique
role in modulating and integrating the function of these different receptors (Perez et al. 2012; Evans
and Mangelsdorf 2014). While RXRB is ubiquitously expressed, RXRa and RXRy levels are enriched in
some tissues, including skeletal muscle. Global RXRy knockout animals have a leaner phenotype after
a high fat diet feeding, which is most likely attributed to an upregulation of lipoprotein lipase in skeletal
muscle (Haugen et al. 2004). However, little is known about the specific functions of all three RXRs in
skeletal muscle. Intriguingly, NR/RXR heterodimers are classified as “permissive” and “non-
permissive”. Permissive RXR heterodimers include the interactions with PPARs or LXRs and thus are
activated by either RXR or PPAR/LXR ligands. In contrast, TR and VDR interact with RXR in a non-
permissive manner and therefore are not activated by 9-cis retinoic acid or other RXR ligands (Perez et
al. 2012). Activation of RXRs in skeletal muscle would thus be expected to be linked to increased action

of permissive, but not of non-permissive NR heterodimerization partners.

2.3.1. Subfamily 3, Groups A and C: Estrogen receptor (ER), Androgen receptor (AR), Glucocorticoid
receptor (GR) — Type |

Estrogens have primarily been linked to reduced inflammation and enhanced regeneration of skeletal
muscle in ovariectomized rodents or postmenopausal women (Lowe et al. 2010; Diel 2014). In addition,
it is now clear that estrogens also improve muscle mass and strength, even though it is disputed
whether increased quantity or quality of muscle is the driver of these changes. Both ERs, ERa (NR3A1)
and ERP (NR3A2), are expressed in skeletal muscle, are induced by exercise (Wiik et al. 2005) and
thought to contribute to the effects of estrogen in this tissue. Intriguingly, at least some of the effects
of estrogen, e.g. activation of AMPK, might be mediated by non-genomic signaling pathways and
thereby reinforce the receptor-dependent adaptations (Oosthuyse and Bosch 2012).
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Male sex hormones elicit potent anabolic effects on skeletal muscle tissue, but also enhance muscle
regeneration (O'Connell and Wu 2014). Most of these effects are mediated by activation of the AR
(NR3C4), in particular the strong boost in muscle protein synthesis. Accordingly, muscle hypertrophy
elicited by resistance training is attenuated by AR blockage (Inoue et al. 1994). Regulation of AR levels
after resistance exercise seems to depend on a complex control of contractile and nutritional cues, and
can vary between different fiber types (Gonzalez et al. 2016). Similarly, the contradicting results of
physiological testosterone fluctuations and muscle hypertrophy in different human studies imply a
more complex interaction between androgens, growth hormone and insulin-like growth factor 1 (IGF1)
in this context (Gonzalez et al. 2016). However, the anabolic effect of superphysiological
concentrations of testosterone consistently includes an improvement of muscle mass due to
hypertrophy of type | and type Il fibers as well as muscle strength and power while fatigability and
muscle quality, defined as ratio between muscle strength to size, are less affected in humans
(O'Connell and Wu 2014). The central role for the AR to regulate muscle development, mass, strength
and fatigue-resistance was confirmed by experiments in male AR knockout mice (MacLean et al. 2008).
Somewhat contradictory, a different AR knockout mouse model depicted a shift from oxidative
towards glycolytic muscle fibers, thereby also linking the AR to the maintenance of slow-twitch,
oxidative fibers (Altuwaijri et al. 2004).

In contrast to the positive effects of ERs and the AR on muscle mass and function, the GR (NR3C1) has
been associated with atrophy of primarily type Il muscle fibers (Kuo et al. 2013; Schakman et al. 2013).
Cortisol, the ligand of the GR, is a stress hormone released during exercise, starvation or sepsis that
contributes to the metabolic remodeling in various tissues (Kraemer and Ratamess 2005). In skeletal
muscle, one effect of cortisol is the stimulation of protein breakdown and the inhibition of protein
synthesis (Schakman et al. 2013). While short term elevation of cortisol is a normal response to acute
exercise bouts, chronic elevation can be an indicator of overtraining or training-induced stress. The
ratio between testosterone and cortisol has been proposed to correlate with the anabolic and
catabolic state of skeletal muscle, respectively, even though this interpretation is debated (Kraemer
and Ratamess 2005). The GR is upregulated by physical activity, most notably by eccentric resistance
exercise bouts, but this induction is attenuated by chronic training, as is the rise in circulating cortisol.
In line, a reduction in muscle mass is a common side effect in patients treated with corticosteroids.
However, paradoxically, Duchenne muscular dystrophy patients profit from administration of
glucocorticoids. Even though the mechanisms behind this therapeutic effect is unclear, anti-
inflammatory properties, upregulation of utrophin, normalization of intramyocellular calcium
homeostasis and stabilization of the muscle fiber membrane have been proposed to contribute to the
positive outcome of glucocorticoid treatment in Duchenne patients (Matthews et al. 2016).

2.3.2. Subfamily 3, Group B: Estrogen-related receptors (ERR) — Type IV

ERRa (NR3B1), ERRB (NR3B2) and ERRy (NR3B3) are all substantially expressed in tissues with a high
energetic demand, e.g. skeletal muscle (Fan and Evans 2015). Muscle-specific ERRa knockout animals
exhibit an impaired muscle regeneration capacity, compromised antioxidant response, reduced
oxidative capacity and angiogenesis (LaBarge et al. 2014). Moreover, these mice have a blunted
response to high fat diet and exercise, including impaired exercise tolerance and muscle fitness
(LaBarge et al. 2014; Perry et al. 2014; Huss et al. 2015). ERRa gene expression is induced by physical
activity in animals and humans, and this receptor then coordinates the expression of genes involved in
lipid uptake, metabolism and mitochondrial OXPHOS (Huss et al. 2015). Even though cholesterol has
been recently postulated as endogenous ERRa ligand (Wei et al. 2016), the transcriptional activity of
all three ERRs is thought to be mainly driven by coregulator binding. In the case of ERRa, the
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coactivator PGC-1a seems of particular relevance for the regulation of target genes in skeletal muscle
(Mootha et al. 2004). In fact, the genomic context of regulatory elements in target gene enhancers and
promoters might dynamically determine the interaction and activity of these two proteins (Salatino et
al. 2016).

ERRa and ERRy have a considerable overlap in binding sites and accordingly regulate similar metabolic
genes (Fan and Evans 2015). Nevertheless, differences in the regulation of the TCA cycle and the
inability of ERRa to compensate for the loss of ERRy in null mice highlight the specific roles for these
two receptors (Eichner and Giguere 2011). Like ERRa, ERRy is induced by exercise. Skeletal muscle-
specific overexpression of ERRy alone or when fused to VP16 leads to a switch to oxidative fiber types,
induces mitochondrial biogenesis and angiogenesis, collectively resulting in an improved endurance
capacity (Rangwala et al. 2010; Narkar et al. 2011). Many of these effects can also be elicited by
treatment with the ERRy-specific synthetic activator GSK4716 (Rangwala et al. 2010). Inversely, a
reduced exercise capacity was observed in ERRy muscle-specific knockouts (Gan et al. 2013).

ERRP is the least characterized receptor of this group and despite high expression in skeletal muscle,
regulation and function are largely unexplored. A partial redundancy between ERRB and ERRy in regard
to the maintenance of type | fibers in mixed muscle beds has been proposed (Gan et al. 2013), but
mechanistic aspects and a comprehensive analysis remain elusive.

2.4.1. Subfamily 4, Group A: Neuron-derived clone 77/Nerve growth factor IB (Nur77), neuron-
derived orphan receptor 1 (Norl) — Type IV

All three mammalian members of this group of NRs, Nur77 (NR4A1), nuclear receptor related 1 protein
(Nurrl, NR4A2) and Norl (NR4A3) are induced by a single bout of exhaustive endurance exercise in
human skeletal muscle (Mahoney et al. 2005), however little is known about the role of Nurrl in this
tissue. Nur77 is predominantly expressed in glycolytic muscle fibers and was first postulated to be
involved in the control of glucose metabolism (Chao et al. 2007). Later findings surprisingly implied an
involvement of Nur77 in the regulation of oxidative metabolism and accordingly, muscle specific
overexpression of Nur77 results in an increase in the proportion of oxidative muscle fibers and
mitochondrial DNA content with a concomitant shift from glucose utilization to fatty acid oxidation
and improved fatigue resistance (Chao et al. 2012). Recently however, Nur77 activity was associated
with muscle growth, most likely controlled by activation of the IGF1-Akt-mammalian target of
rapamycin (mTOR) signaling axis leading to the upregulation of a hypertrophic gene program and a
attenuation of the expression of the pro-atrophic myostatin as well as the E3 ubiquitin ligases MAFbx
and MuRF1 (Tontonoz et al. 2015). However, while skeletal muscle-specific Nur77 mice do not depict
increased muscle mass despite fiber hypertrophy, animals with a specific gene ablation of Nur77 in
skeletal muscle exhibit reduced myofiber size and muscle mass (Tontonoz et al. 2015).

Like Nur77, Norl is also induced by acute exercise and B2-adrenergic signaling, however both in
glycolytic and oxidative muscle fibers (Fan et al. 2013). Skeletal muscle-specific overexpression of Norl
in mice results in an oxidative, high endurance phenotype with increased mitochondrial number and
DNA, elevated myoglobin, enhanced ATP production and PGC-1a gene expression (Pearen et al. 2013).
Intriguingly, a shift from type | and IIb towards type lla and lIx muscle fibers is observed in these animals
(Mizunoya 2015). These fatigue-resistant Norl transgenic animals also exhibit improved autophagy
after endurance exercise, leading to better clearing of debris in the tissue (Goode et al. 2016).
Unexpectedly, Norl overexpression was recently also linked to muscle hypertrophy and increased
vascularization in skeletal muscle via activation of the mTOR signaling pathway (Goode et al. 2016).
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2.5. NR coregulators

The transcriptional activity of NRs is affected by recruitment of coactivator and corepressor proteins,
which can occur in a ligand-dependent and —independent manner. In skeletal muscle, several
coregulators have been identified that modulate metabolic and contractile properties at least in part
by binding to the NRs described in this review. Most prominently, muscle-specific overexpression of
PGC-1a and the related PGC-1p are sufficient to promote a fiber type switch towards type I/lla and llx,
respectively, even though it is not clear whether the latter occurs under physiological conditions (Eisele
and Handschin 2014). Of these two coactivators, only PGC-1a levels and activity are clearly associated
with physical activity (Lin et al. 2002; Kupr and Handschin 2015), and gain- and loss-of-function in
skeletal muscle result in improved and impaired endurance capacity, respectively (Lin et al. 2002;
Handschin et al. 2007). Recently, the PGC-1a4 isoform was identified to promote a hypertrophic
response in skeletal muscle (Ruas et al. 2012) in contrast to the PGC-1al, -1a2 and -1a3 isoforms that
have been linked to an endurance program (Martinez-Redondo et al. 2015). The expression of the
corepressor NCoR1 is higher in inactive skeletal muscle, and NCoR1 competes with PGC-1a for binding
to ERRa (Pérez-Schindler et al. 2012). Accordingly, muscle-specific NCoR1 knockout mice recapitulate
many of the metabolic adaptations that are also observed in PGC-1a transgenic animals (Pérez-
Schindler et al. 2012). Similarly, overexpression and knockout of the corepressor receptor-interacting
protein 140 (RIP140) results in decreased and elevated numbers of oxidative muscle fibers,
respectively (Seth et al. 2007). This complex, still poorly understood regulatory network of coactivator
and corepressor proteins is thus intricately linked to NR action in skeletal muscle plasticity (Schnyder
et al. 2016).

2.6. “Exercise mimetics”

Several pharmacological agents have already been proposed to act as “exercise mimetics”, including
three that activate NRs: SR9009 (Rev-Erba), GSK4716 (ERRy) and GW501516 (PPARB/6) (Handschin
2016). With well-defined and conserved ligand-binding domains, it is conceivable that other NRs could
also be targeted to take advantage of their function in skeletal muscle. Importantly however, for none
of currently proposed “exercise mimetics”, efficacy and safety has been tested in humans to date. The
alarming use of some of these compounds as performance-enhancing drugs in athletes with a
subsequent ban by the World Anti-Doping Agency underlines the need for a better understanding of
the mechanisms, side effects, toxicity and dosage (Wall et al. 2016). The summary of NRs and
coregulators in this review should further illustrate the regulatory complexity of skeletal muscle
plasticity, which is vastly expanded by non-NR transcription factors and signaling pathways (Hoppeler
2016). Despite the results in animal models with a higher endurance capacity, the expected effects of
pharmacological modulation of one NR in skeletal muscle are difficult to reconcile with the myriad of
muscular and non-muscular adaptations elicited by bona fide physical activity (Booth and Laye 2009).

2.7. Open questions

Of the 35 NRs expressed in mouse skeletal muscle, we have discussed here 26 with a potential role in
exercise adaptation and skeletal muscle plasticity. A majority of these promote an oxidative, high
endurance phenotype (Fig. 2). The signaling networks and transcriptional hierarchies between these
receptors are however not clear. Moreover, it is unknown whether the high number of NRs with
seemingly overlapping function is a sign of transcriptional redundancy or represents specific regulation
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of highly specialized adaptations. An oxidative phenotype can for example be achieved by a
downregulation of type | and llb fibers in the case of Norl or by the more classic shift from type llb and
lIx towards Ila and | as seen in overexpression studies with PPARB/S or ERRy. Furthermore, the
alternating classification of Nur77 and Norl as pro-oxidative and pro-glycolytic NRs highlight a
potential discrepancy between the results obtained in different experimental contexts, e.g. cultured
muscle cells compared to the constitutive transgenic elevation in skeletal muscle in vivo. These
somewhat contradictory results in regard to the effects on glucose and lipid oxidation as well as
glycolytic and oxidative fiber promotion, respectively, will therefore have to be clarified in future
studies. Furthermore, whether the effects of Nur77 and Norl on muscle mass are primarily mediated
by altered myogenesis or represent a bona fide modulation of atrophy and hypertrophy in
regeneration and exercise in adult muscle remains to be shown. Similarly, the extensive study of
anabolic steroids emerged with a consensus of increased muscle hypertrophy in humans.
Nevertheless, results obtained in some, but not all AR knockout mouse models imply a role for the AR
in promoting an oxidative, high endurance phenotype. Similarly, the effect of genetic ablation of the
TRs on fiber type distribution might appear contradictory vis-a-vis the mitochondrial boost elicited by
short term treatment with thyroid hormone. These and other examples demonstrate that the choice
of model and the way of treatment might significantly alter the outcome. Therefore, caution should
be used for the extrapolation of results from cell culture, non-conditional knockouts and transgenic
animals to the physiological role of NRs in skeletal muscle in humans.
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3. Concluding remarks

Endurance and resistance exercise confer many beneficial health effects, which substantially lower the
risk for many chronic diseases and are a therapeutic pillar for a number of different pathologies. Even
though the molecular mechanisms of muscle plasticity are still poorly understood, NRs are attractive
drug targets to take advantage of some of the therapeutic effects of exercise. The ever increasing
prevalence of chronic diseases, age-related afflictions and pathologies associated with exercise
intolerance indicate that even partial “exercise mimetics” might confer a significant relieve for patients
and overburdened health care systems. However, at the moment, it is not clear whether such drugs
exist and if so, whether they can be effectively and safely used in patients. Therefore, physical activity
and diet should stay at the forefront of disease prevention and treatment wherever possible (Booth et
al. 2012; Pedersen and Saltin 2015) until better pharmacological interventions targeted at improving
muscle function are available.
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Figure Legends

Fig. 1. Structure and DNA-binding sites of NRs. A, Schematic representation of the different NR
domains. B, Arrangements of DNA-binding sites of NRs. (X), indicates a spacer of #n arbitrary
nucleotides X between the hexamer half-sites. The repeats are accordingly designated as DR-n, IR-n or
ER-n, e.g. DR-1 for a direct repeat with a spacer of one nucleotide.

Fig. 2. Regulation of endurance and resistance exercise adaptations in skeletal muscle by NRs and
coregulators. For some NRs, including RORy, Nur77, Norl or AR, a role in both the promotion of an
oxidative and a glycolytic muscle phenotype has been proposed in different experimental models.
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641 Table 1. Human and mouse nuclear receptors.

NR and | NR nomenclature Trivial name Muscle expression
group (mus musculus)”
1A NR1A1 TRa H
NR1A2 TRB L
1B NR1B1 RARa H
NR1B2 RARB I
NR1B3 RARy I
1C NR1C1 PPARa I
NR1C2 PPARB/& I
NR1C3 PPARy I
1D NR1D1 REVERBa H
NR1D2 REVERBS I
1F NR1F1 RORa H
NR1F2 RORPB L
NR1F3 RORy H
1H NR1H2 LXRPB I
NR1H3 LXRa H
NR1H4 FXRa nd
NR1H5* FXRB* nd
1 NR111 VDR L
NR1I2 PXR nd
NR1I3 CAR nd
2A NR2A1 HNF4a nd
NR2A2 HNF4y nd
2B NR2B1 RXRa H
NR2B2 RXRpB H
NR2B3 RXRy H
2C NR2C1 TR2 L
NR2C2 TR4 I
2E NR2E1 TLX nd
NR2E3 PNR nd
2F NR2F1 COUP-TFI L
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NR2F2 COUP-TFII I
NR2F6 EAR2 I*
3A NR3A1 ERa I
NR3A2 ERB nd
3B NR3B1 ERRa H
NR3B2 ERRPB I
NR3B3 ERRy I
3C NR3C1 GR H
NR3C2 MR I
NR3C3 PR nd
NR3C4 AR H
4A NR4A1 NUR77 H
NR4A2 NURR1 I
NR4A3 NOR1 H
5A NR5A1 SF1 nd
NR5A2 LRH1 nd
6A NR6A1 GCNF1 L
0B NROB1 DAX1 nd
NROB2 SHP nd

Footnotes: *NR gene expression in mouse muscle according to (Bookout et al. 2006). *FXRB is a
pseudogene in the human genome. #The expression of NR2F6/Ear2 was not reported in (Bookout et
al. 2006) and muscle expression confirmed using BioGPS and GeneCards. Legend: H, high expression;
I, intermediate expression; L, low expression; nd, not detected. NRs highlighted by grey shading were
discussed in this review.
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Table 2. Muscle phenotype of gain- and loss-of-function models for selected NRs.

NR Trivial Loss-of- Muscle Gain-of- | Muscle Endogenous and
nomenclatu | name function | phenotype | function | phenotype pharmacological
re model model modulators
(examples)
NR1A1 TRa KO oxidative pharmac | mitochondri | thyroid hormone
fibers ol al
biogenesis
NR1C1 PPARa mKO oxidative mTG glycolytic fibrate drugs,
fibers fibers, fatty acids
reduced
endurance
NR1C2 PPARB/S | mKO glycolytic mTG oxidative GW501516, fatty
fibers fibers, acids
improved
endurance
NR1C3 PPARy mKO glucose mTG oxidative Thiazolidinedion
intolerance fibers es, fatty acids
and insulin
resistance
NR1D1 REVERBa | mKO reduced mTG oxidative SR9009
endurance fibers,
exercise improved
performanc endurance
e
NR1F1 RORa KO atrophy mTG oxidative
fibers, lipid
metabolism
NR1F3 RORy KO atrophy mTG lipid and
carbohydrat
e
metabolism
NR1H2 LXRB KO impaired T0901317,
glycogen oxysterols
buildup
and
lipogenesis
NR1H3 LXRa KO impaired T0901317,
glycogen oxysterols
buildup
and
lipogenesis
NR1l1 VDR KO atrophy, vitamin D3
NMJ
disruption
NR2B3 RXRy KO lipolysis 9-cis retinoic acid
NR3A1 ERa mKO muscle pharmac | hypertrophy | estradiol
weakness ol
NR3B1 ERRa mKO glycolytic,
reduced
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endurance
exercise
tolerance
and
regeneratio
n

NR3B3 ERRy mKO reduced mTG oxidative GSK4716
endurance fibers,
exercise improved
capacity endurance

NR3C1 GR mKO regulation pharmac | atrophy glucocorticoids
of protein ol
metabolis
m and
prevention
of atrophy

NR3C4 AR mKO shift from pharmac | hypertrophy | testosterone
slow to fast | ol
fibers

NR4A1 NUR77 mKO atrophy mTG hypertrophy
, glucose
utilization
vs. oxidative
metabolism
*

NR4A2 NURR1 mTG oxidative
phenotype
vs. glycolytic
fibers, high
endurance,
hypertrophy
*

NR4A3 NOR1 mTG oxidative
phenotype
vs. glycolytic
fibers, high
endurance,
hypertrophy
*

Footnotes: *conflicting data from different studies. Legend: KO, global knockout; mKO, muscle-specific

knockout; mTG, muscle-specific transgenic; pharmacol, pharmacological modulation.
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