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3. Summary 
 

The immune system of a mammalian organism consists of two major players, the innate and 

adaptive immune system. While the innate system is used as a first line of defence based on fixed 

recognition patterns, the adaptive immune system has the capabilities to develop highly specific 

ways to recognize different pathogens and malignant cells. The main players of the adaptive 

immune system are B and T lymphocytes. While the major responsibility of a B cell is the 

production of antibodies, T cells act in a helping (CD4+ helper cells), regulatory (CD4+ 

regulatory) or killing (CD8+ cytotoxic) manner. The recognition of antigens by T cells is mediated 

by the T Cell Receptor (TCR), which needs to be modulated and rearranged during T cell 

development in the thymus. The passage of cells, then called thymocytes, through the thymus is a 

highly specified and controlled process in which around 95% of thymocytes die. Their death is 

linked to signals mediated by the TCR, as a thymocyte egressing from the thymus needs to (i) be 

able to detect and react to foreign antigens while (ii) not reacting upon encountering self-antigens 

as this could result in auto-immunity. However, thymocytes which have a functional TCR and are 

either CD4 or CD8 single-positive, have not fully matured yet. They need to modulate various 

surface expression markers including CD62L, CD69 or CD24, to ensure that they will also be 

able to egress from the thymus and perform their function in peripheral secondary lymphoid 

organs such as the spleen and lymph nodes. These modulations take place during the late stages 

of thymocyte development and also during a transition phase after thymic egress. Those recent 

thymic emigrant (RTE) cells are a functionally and phenotypically distinct T cell subset, which 

shows reduced activation but an increased capacity to populate the T cell niche in the organism. 

As the development from thymocytes to mature naive T cells (MNT) is a complex process, there 

are various studies published on defective thymocyte or T cell maturation. Interestingly, most of 

the studies show survival deficits in other cell types as well. Coronin 1 appears to be responsible 

for survival only in the peripheral T cell population, but not in other cells of the immune system. 

This WD-repeat domain protein has originally been identified as being important for the 

intracellular survival of mycobacteria in macrophages. Subsequent studies using gene modified 

mice lacking coronin 1 have revealed no major roles in other immune cells with the exception of 

MNT survival. Coronin 1, however, is not only expressed in immune cells, it has a weak 

expression in excitatory neurons, where it has been shown to be needed for the production of the 

second messenger cyclic AMP (cAMP). While the cAMP pathway has not been linked to 

peripheral T cell survival, it has been shown to be involved in thymocyte apoptosis and to be 

needed for the full activation of a T cell by TCR stimuli. In addition, coronin 1 increases cAMP 
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production in neurons, coronin 1-deficient cells T cells however show increased levels of cAMP. 

This increase is not only seen in peripheral T cells but also in CD4 and CD8 single-positive 

thymocytes. Interestingly, the bulk of increased cAMP stems from conventional CD4+ cells in 

the coronin 1-deficient animals. However, closer examination revealed that membranes from 

coronin 1-deficient T cells still show reduced production of cAMP, similar to the phenotype seen 

in neurons, whereas the increased cAMP production is due to the lack of phosphodiesterases 

present in T cells lacking coronin 1. 

This study confirms previous findings that coronin 1 is dispensable for the development of 

thymocytes using a defined set of surface markers known to be involved in the transition from 

late stage thymocytes to RTE. Additionally, there no defect was found in the survival of coronin 

1-deficient RTE cells in vivo. As T cells are known to behave differently under T cell depleted 

conditions, newborn animals were used as early development is the only physiological healthy 

state in which animals are considered to be lymphodepleted. Interestingly, the data suggests a 

coronin 1-dependent switch after two weeks of age, with T cells numbers steadily increasing in 

wild-type mice situation but not in coronin 1-deficient animals. To assess if the peripheral lack of 

T cells was due to the inability of these cells to transduce survival signals, thymocytes in the last 

stage before egress were sorted and cultured in vitro. Similar to wild-type cells, the coronin 1-

deficient thymocytes were capable of surviving on signals mediated via cell-cell contact with 

antigen-presenting cells such as dendritic cells (DCs) or by cytokines such as interleukin-7 (IL-7).  

Taken together, this study shows a spatial and phenotypical elucidation of T cell development 

upon the deletion of coronin 1 over the first month of mouse life. Additionally it shows that 

coronin 1 is only needed for the survival of MNT cells but not of cells in earlier stages, as the 

earlier stages are (i) not decreased in numbers in vivo and (ii) are capable of survival by known 

pro-survival mechanisms.  
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5. Introduction 

5.1. Overview of T cell development 
 

The human body is continuously exposed to microorganisms. Not all of these microorganisms 

are detrimental to the health of the host organism; some even share a symbiotic relationship. 

However, the human body needs a mechanism to defend against infectious microorganisms. This 

role is taken over by the immune system, which by itself rests on two major pillars. The first line 

of defence is the innate immune system, consisting of cells which recognize signals upon an 

infection. Detection of signals is mediated by pattern recognition receptors (reviewed in (1)), 

which are further subdivided into pathogen-associated molecular pattern receptors (PAMP) or 

damage-associated molecular pattern receptors (DAMP). As the name suggests, the former as 

associated with an exogenous pathogen, such as bacteria or fungi whereas the second one is a 

response to endogenous signals such as cell damage. Upon recognition of a non-host molecule, 

the innate immune system mounts a response, initiated by specific receptors for defined sets of 

pathogen-associated molecular patterns such as parts of the bacterial cell wall (e.g. 

lipopolysaccharides) or the remains of nucleic acids from a virus called toll-like receptors 

(reviewed in (2)). The second component of the immune system is the adaptive immune system. 

 

Fig 1: Life cycle of the two major players in the adaptive immune system, namely B and T cells. Both cell 

types originate in the bone marrow but their organ of differentiation differs. While B cells remain in the 

bone marrow, T cells migrate to the thymus for further maturation steps until both cell types then circulate 

through blood and secondary lymphoid organs. 
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As the name suggests, the main difference is the ability to adapt to different pathogens. The 

adaptive immune system consists mainly of B and T lymphocytes. Both cell lineages originate in 

the bone marrow as a common lymphoid progenitor cell, with B cells undergoing maturation 

steps in the bone marrow and the final maturation step in secondary lymphoid organs such as 

spleen or lymph nodes. T cell progenitors on the other hand, migrate from the bone marrow to 

the thymus, where they undergo a defined set of maturation steps (Fig 1). The mature thymocytes 

egress from the thymus to migrate to secondary lymphoid organs where they undergo further 

maturation steps into different T cell subsets. 

 

 Thymocyte maturation 5.1.1.
 

T cell progenitors originate in the bone marrow as common lymphoid progenitor cells and 

migrate to the thymus. There they undergo four distinct maturation stages (Fig 2), named after 

the expression of CD4 and CD8 surface molecules (4, 5). During these four stages (double 

negative, double positive and CD4 or CD8 single positive stage) the cells rearrange their T cell 

receptor (TCR) and complete 

two selection processes (6, 7). 

The two selection processes, 

negative and positive 

selection, are needed to 

ensure that the mature T cells 

egressing from the thymus are 

(i) capable of mounting an 

immune response based on 

TCR stimulus and (ii) do 

not mount immune responses 

against self-antigens, which 

could result in autoimmunity 

(8, 9). The maturation and 

survival of thymocytes is 

linked to their stimulation via 

TCR,  depending on the 

 

Fig 2: Development of thymocytes. Precursor cells enter the thymus and 

undergo a defined cascade of maturation steps from double negative 

cells to cells expressing either CD4 or CD8 molecules on the surface. 

Around 95% of thymocytes do not survive their maturation and either 

die by neglect or are actively killed (from (3)). 
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signal strength mediated the cells survive, are killed or die by neglect (10). As can be seen in Fig 4, 

semi-mature (SM) cells are single-positive for CD4 or CD8, but are still susceptible to apoptosis, 

mainly mediated by TNF. Additionally, cells in the SM stage are behaving differently upon TCR 

stimulus: while mature thymocytes and peripheral T cells will respond with proliferation, the cells 

in the SM stage will die upon TCR engagement (11).  

 

5.1.1.1. Rearrangement of the TCR 
 

During the generation of T cells, the organism cannot anticipate which antigen the T cell will 

need to recognize. In fact, it’s likely that the immune system might not even have encountered 

the antigen yet. To ensure that any antigen possible is covered by the immune system, the TCR 

locus is subjected to rearrangement procedures during the thymocyte double positive stage. Both 

 and  chains of the TCR consist of a Variable (V) and a Constant (C) region. While  chains 

consist of VJ arrangements, the  chain has a full set of VDJ segments. Fig 3 shows the genetic 

concept behind the different rearrangements.  and  gene segments are localized on two 

different gene loci. The gene undergoes somatic recombination (this mechanism has been 

elucidated by S. Tonegawa (12) and results in a DNA strand with VJ and C segments for the  

chain; the  chain is made up from a strand with VDJ and C segments, resulting in roughly 

2.5x107 possible combinations. The recombination depends highly on a specific pair on enzymes 

encoded by the recombination-activating genes (RAG), resulting in RAG1 and RAG2 (13). These 

two proteins are highly expressed during the TCR rearrangement and deletion of either leads to 

mice developing no T or B cells (as B cells depend on the same rearrangement mechanism for 

survival).  
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As this is a random process, the possibility exists to generate a T cell which would detect an 

endogenous self-molecule and therefore lead to an autoimmune disease. To avoid autoimmunity, 

cells undergo a negative selection step during the transition of double positive to single positive 

thymocytes and then migrate to the corticomedullary junction for exit. On this journey, 

thymocytes pass by special thymic endothelial cells, which present host-antigens (i.e. antigens 

which belong to the host and are presented on any cell in the body). If a thymocyte is triggered 

during this process, its migration is slowed down and the cell actively goes into apoptosis. This 

mechanism is mainly based on the pro-apoptotic BH3-only protein Bim, with animals lacking the 

expression of this protein showing severe autoimmune phenotypes (reviewed in (10)). 

  

 

Fig 3: Schematic of the T cell receptor rearrangement. TCR  and  

gene segments are joined by somatic recombination during thymocyte 

development. This results in every T cell having a different 

constellation of V, D and J segments and therefore leads to a wide 

possible coverage to detect antigens (from (14)). 
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5.1.1.2. Single positive thymocytes 
 

During the last maturation stages from SM into the final mature 2 (M2) subset of thymocytes, the 

cells up- and down-regulate specific surface markers and transcription factors. It has been shown 

that thymocytes that have passed the double positive stage are still not responding fully to 

peripheral signals via the TCR. While mature thymocytes and peripheral T cells respond to a 

stimulus via TCR by proliferation, SM thymocytes go into apoptosis (11). It therefore became 

clear that thymocytes have not completed their maturation once they have passed the double 

positive stage. Thereafter they upregulate certain molecules (e.g. Qa2, MHC-I, CD62L or S1P1) 

and downregulate others (e.g. CD69, CD24, CCR9) (4, 15–17) to achieve a further mature state.  

However, identification and isolation of this early T cell subset remained a challenge (described in 

further detail in 5.1.2.1), but one elegant solution was provided by Nussenzweig in 1999 and 

adapted by Fink et al. (18, 19). By taking advantage of the specific expression pattern of the RAG 

genes, they generated mice which produce GFP under the control of RAG2 regulatory elements. 

This leads to the expression of GFP before positive selection and the degradation of the GFP 

molecule can be used as a molecular clock to assess the age of a cell (19). With the help of this 

model system, Hogquist et al. could validate a list of several surface markers, which are 

differentially expressed during thymocyte maturation (Fig 4 and Table 1). The validation of the 

specific surface markers for, not only RTE, but also very late stages of thymocytes now allows for 

a better temporal resolution on thymocyte and early T cell development. 
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Fig 4 and Table 1: Development from mature thymocytes to mature naive T cells (adapted from Hogquist 

et al, 2015). As cells progress through positive and negative selection, they migrate from the cortex into the 

medulla. During this journey, they acquire proliferation competence, protection from death receptor 

signalling and, once egressed from the thymus, cytokine production and protection from complement. 

These are tightly regulated processes in which the cells need to up- or downregulate a specific set of 

proteins including surface markers or transcription factors. DP Double-Positive, SM Semi-Mature, RTE 

Recent Thymic Emigrants, MNT Mature Naïve T cells.  


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5.1.1.3. Important proteins in single-positive thymocyte maturation and thymic egress 
 

During thymocyte maturation, the cell needs to be protected from death receptor signalling via 

TNF. This has been shown to be mainly mediated by the transcription machinery surrounding 

the NFB protein complex (reviewed in (20)). In the stages of M1 or M2, this axis is mediated by 

the protein kinase TAK1 (21). Therefore, mice having a CD4-CRE knock-out of TAK1 kinase 

lack the maturation of thymocytes into the M1 or M2 stages. The single positive thymocytes 

which are present in the animals lacking TAK1 are therefore susceptible to apoptosis induced by 

TNF. Additionally, upon activation of NFB in thymocytes, the cells start to express an anti-

apoptotic molecule called c-FLIP. Mice which lack this specific protein show a blockage at the 

step of SM to M1 stage during thymocyte development (22).  

Beside the protection from death signals, mature thymocytes also acquire surface markers needed 

for finding their niche once they egress into the bloodstream. The main driving factor for this is 

the transcription factor Krüppel-Like Factor 2 (KLF2), which is expressed at the late M1 stage 

(23). Once this factor is activated, it subsequently induces the expression of two surface markers 

needed for thymocyte egress, CD62L and S1P1 (24). While CD62L (or L-Selectin) belongs to the 

family of selectins, the sphingosine-1-phosphate receptor 1 (S1P1) is a G-protein coupled 

receptor. S1P1 is used in lymphoid cells for the thymic egress (25), but also has been postulated 

to be involved in the suppression of the innate immune system. Outside of the immune system it 

is involved in vasculogenesis, which is also the reason why S1P1 knock-out animals die during 

development. CD62L is needed by T cells to home into secondary lymphoid organs (SLO). The 

lack of either of these proteins leads to the accumulation of single positive thymocytes in the 

cortical region of the thymus. While CD62L and S1P1 are upregulated during thymocyte 

maturation, other proteins are downregulated. It has been shown that cells upregulate CD69 

during thymocyte selection processes, but its expression acts inhibitory on the expression of 

S1P1 (26, 27). Interestingly, animals deficient for CD69 show normal peripheral T lymphocyte 

numbers (28). Additionally, the chemokine receptor CCR7 is needed for normal egress of 

thymocytes (29), as it mediates the migration of cells from cortex to medulla (16). It has been 

postulated that the egress of thymocytes is a chemokine gradient dependent progress, where cells 

migrate within 4 days of becoming single positive from cortex to medulla and then to the 

corticomedullary junction site (30). While the start of this migration progress is CCR7 dependent, 

later stages depend on the GPCR receptor S1P1, which has a high concentration of its ligand in 

the bloodstream (31, 32).  
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Another important protein for thymocyte and T cell development is Ubc13. This E2 ubiquitin-

conjugating enzyme is expressed in immune cells and knock-out mice show defect in B-cell 

receptor, TLR/IL1-R and CD40 activated signalling cascades. A knock-out of the Ubc13 protein 

using a Lck_CRE system has revealed a role of Ubc13 in thymocyte development and peripheral 

T cell survival (33). NFB signalling is only partially affected, interestingly also phosphorylation 

of TAK1 was abolished. Despite this, thymocyte numbers are comparable to wild-type. However, 

thymocytes show defective proliferation upon CD3/CD28 or PMA/Ionophore stimulation. 

Similar to coronin 1-deficient animals (discussed in following chapters), the animals have a severe 

defect in the survival of peripheral T cells. 

As thymocyte development is a complex cascade of different signals, these are only examples and 

a more complete list of different proteins involved in thymocyte maturation and egress has been 

recently reviewed by Hogquist et al (34). 

 

 Identification and functional capacity of recent thymic emigrants 5.1.2.
 

5.1.2.1. Means of identification and isolation of recent thymic emigrants 
 

The murine thymus is an organ whose function was originally discovered by Jacques Miller 

around 1960. Over the years a lot of research has been done to investigate the capabilities of the 

thymus to produce T cells, including studies on the timeframe for an average T cell to mature 

from bone marrow to thymus. The timeframe has been set around 3 weeks in mice from bone 

marrow to thymic egress, with roughly 1x106 cells/day egressing (35, 36). Only mid 80s it became 

clear that there is post-thymic maturation and that an egressed thymocyte is functionally and 

phenotypically different from a MNT cell (31, 37) and the cells were coined recent thymic 

emigrants (RTE). This first identification was done by injection of the fluorescent dye FITC 

directly into the thymus and subsequent analysis of labelled cells by flow cytometry. This is a 

fairly stressful procedure for the mice as it requires surgery. Additionally, it also labels any cell 

which recirculates from the periphery into the thymus and thus not exclusively RTEs. Another 

method to identify RTEs has been established for human samples and then introduced into the 

murine system. It depends on the TCR rearrangement procedure (see Fig 3). The somatic 

recombination used during this important step of thymocyte maturation results in non-replicative 

DNA segments (Fig 5), so called T cell receptor excision circles (TREC). These episomal DNA 
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circles are then diluted with every cell division As RTEs have just left the thymus and have not 

undergone many cell divisions, they contain a higher number of excision circles and TREC 

molecules can be measured by qPCR. One culprit in this identification process is the fact that 

cells cannot be used for further studies, as the detection method depends on the isolation of 

genomic DNA. 

More recently another system 

used for identification of 

different thymocyte stages 

has been developed. The 

RAG2p-GFP mice, originally 

used to track the RAG 

expression in B cells (18), 

have been adapted to be used 

to study RTEs ((38) and 

mentioned in section 0). This 

allows for phenotypical and, 

more importantly, functional 

assessment of RTE cells as 

cells can be easily sorted by 

FACS.  

 

5.1.2.2. Function of recent thymic emigrants 
 

In terms of population dynamic, RTEs are inferior at populating the T cell niche compared to 

MNT when used in competitive adoptive transfer experiments (i.e. injection of MNT and RTEs), 

but better than MNTs when injected separately (39). RTEs have higher expression of CD24, 

which could explain their better potential as this surface markers has been shown to be key for 

homoeostatic proliferation (40). Additionally, in a physiological healthy organism, RTEs and 

MNTs should not encounter the possibility of competing for repopulation of the T cell niche. 

After thymic egress, RTEs downregulate certain surface markers, including CD24 and upregulate 

others such as Qa2 or CD45RB. Additionally, cells upregulate proteins that are involved in 

protecting cells from attacks by the complement system. This has been shown using mice with a 

 

Fig 5: The generation of T Cell Receptor Excision Circles (TREC). The 

somatic recombination of TCR gene loci to produce different DNA 

segments for TCR  and  chains, results in signal-joint (sj) and 

coding-joint (cj) TRECs, which remain as non-replicated episomal 

DNA fragments and are diluted over time by cell division (from (14)). 
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CD4-CRE driven knock-out of the NFB Activating Protein (NKAP). While these mice have a 

normal development of thymocytes and  thymocyte egress, the resulting RTEs do not mature 

into MNTs (41). This maturation defect has been shown to be due to the defective expression of 

the complement decay-accelerating factor CD55, which prevents the formation of the membrane 

attack complex (42). Functionally RTEs have been shown to express lower levels of IL-7 

receptor (43) and higher expression of TCR-CD3 complexes. RTEs also produce less interleukin-

2 (IL-2) when adoptively transferred (44). The IL-2 production is comparable to the production 

by MNTs one week after the transfer, indicating that the injected cells undergo maturation steps 

in the periphery. Additionally studies have shown RTEs to be enriched for IL-4 producers for at 

least three days after they have egressed from the thymus (45), on the other hand, RTEs isolated 

and stimulated in vitro without the addition of cytokines produce less IL-4, IL-2 and interferon- 

(IFN-) (38, 46). In the same assays, the RTE cells also show reduced proliferation compared to 

mature counterparts. Overall, RTEs are a defined subset which is needed for the population of 

the T cell niche, but also for continuing replenishment. 

 

5.1.2.3. Maturation of recent thymic emigrants to mature naïve T cells 
 

What exactly drives the maturation of RTE to MNT cells and how their survival is exactly 

regulated is currently not fully understood. Thus far the only proven factor to be needed is the 

requirement of cells to enter secondary lymphoid organs, as restraining the cells in the 

bloodstream by blocking VLA4 (very late antigen 4) and CD62L leads to no further maturation 

of RTEs (47). The second known requirement is an intact compartment of dendritic cells (DC), 

as it is mandatory for the maturation of RTEs to MNTs (48).  In terms of survival, the 

interaction between TCR and major histocompatibility complex is a major factor for MNT cells 

(49), but is discussed for RTEs (50). The second major player in peripheral T cell survival, IL-7 

(51), has recently been linked to an increase in the pro-survival molecule Bcl-2 in RTEs (43), 

suggesting a possible RTE survival mechanism. The exact survival dependencies of RTEs and 

how they differ from the survival needs of a MNT cell are therefore not yet fully elucidated and 

remain a topic of discussion. 
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5.2.  The development of the immune system in mice 
 

In the murine embryo, the bulk of haematopoiesis happens in the fetal liver. While there are 

hematopoietic stem cells (HSC) present in a rodent fetus, they do not undergo steps for lineage 

differentiation until embryonic day 10 (E10) (52, 53) and, at least in terms of B cell lineage, no 

mature lymphocytes are present until E18 (54). The thymus, as the main precursor organ for 

mature T lymphocytes, is formed around E10 in mice, with T cell precursor cells populating the 

developing thymus from E11 on (52). As thymocyte development takes around 12 days in the 

thymus, this would result in mature T lymphocytes egressing into the bloodstream of newborn 

animals within 3 days of birth (see Fig 6 for scheme). At E17, the primary hematopoietic tissue 

switches from the fetal liver to the bone marrow and by the time of birth (after 21 days of 

gestation), the liver has no hematopoietic properties anymore and all hematopoietic cells originate 

from the bone marrow. As this is a continuous process, it results in a chimeric hematopoietic 

system in newborn and young mice, with some cells having originated from pre-natal (hepatic) 

and others from post-natal  (bone marrow) HSCs (55, 56). In terms of egress capacity, as soon as 

T cells originate from the thymus, the egress rates are comparable between newborn and adult 

animals (35). 

 

Fig 6: Schematic of T cell development during embryonic and post-natal stages based on literature 

reviewed in (57, 58). In the embryo, the fetal liver is the main hematopoietic organ, until this role is 

transferred to the bone marrow by E17. The thymus as the main T cell producing organ is developed by 

E11 and populated by progenitor cells. Due to the roughly two week timeframe for thymocyte maturation, 

recent thymic emigrants in the first two weeks after birth are of fetal liver origin. By P14, animals start to 

eat solid food and show the first T cells which have originated via the adult-like BM  Thymus axis. 
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 Differences in newborn and adult T cells 5.2.1.
 

Until the mid-90s, newborn rodents were considered immunologically immature, with their T 

cells not being able to mount immune responses in the same manner as cells obtained from adult 

animals do (reviewed in (57)). However, this idea stems from experiments analysing the 

production of IL-2 and for the proliferation potential of T cells. This concept was questioned 

with the increased knowledge on different T cell populations, namely the T helper type 1 (Th1) 

and type 2 cells (Th2). It became clear that the lack of IL-2 production from neonatal T cells was 

due to a bias for the Th2 lineage (59). Additionally, stimulation of neonatal T cells via the TCR 

results, in contrast to adult cells, not in proliferation but in apoptosis (60). Also, the neonatal T 

cells show reduced production of IL-2 and IFN-, both markers for Th1 lineage, and increased 

production of IL-4, marker for Th2 lineage (61). Taken together, this indicated that the idea of 

immature immune responses of neonatal T cells was actually more an experimental problem and 

that not enough was known about the system to assess functional maturity. Indeed in 1996, three 

papers showed that T cells obtained from neonatal animals (up to 7 days after birth) are capable 

of mounting adult immune responses, but only when triggered with “correct” stimulations. It 

became clear that neonatal mice can mount mature cytotoxic T lymphocyte responses, shown by 

injection of mature male dendritic cells into female neonates (62). Additionally, when considering 

the bias to Th2 responses, neonates injected with antigen under Th1 promoting conditions 

responded with a Th1 polarized adult like response (63). The third paper proving adult like 

immune responses in neonates used reduced doses of virus. While an adult level dose would 

result in Th2 cell response and no protection from the disease, neonates responded with adult-

like Th1 and Th2 responses resulting in a protective cytotoxic T lymphocyte response to dosage 

adapted for their smaller size (64).  

Thus, while neonatal T cells can mount an adult immune response, it does not happen very often. 

One emerging hypothesis is that, as newborn animals encounter an immense amount of new and 

unseen antigens, the developing organism would be in a continuous inflammatory stage. This 

would not only deplete resources which the organism needs to develop itself, but also could 

damage the developing organs (reviewed in (57)). While there are still questions to be answered, it 
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became clear that the developing immune system is under tight regulation to ensure growth and 

development of the animal while keeping it safe from potentially life-threating infections.  

 

 

5.2.1.1. T cell population kinetics in newborn animals 
 

Many studies have analysed the function of neonatal T cells and their differences, but studies on 

developmental kinetics are rare (reviewed in (65)). It has been shown that the T cell niche is filled 

in waves, with the cells from the first two weeks originating from the fetal HSCs and being 

functionally different from the second wave (66). This study has been done by grafting thymi of 

newborn animals in adult mice, therefore additionally altering the environment that the egressed 

T cells encounter. Other studies used a more physiological approach by assessing in vivo data on 

splenocytes after injection with antigen presenting cells  (62). This study reports around 1.5x10^6 

peripheral T cells on day 1 in uninjected conditions, with the number rising to 20x10^6 within 

the next two days. The authors also report a slowing down of this massive increase in peripheral 

T cell numbers during the first three days to roughly doubling their numbers every week. As 

expected, all cells present in a newborn animal would be considered RTEs, with the number of 

RTEs declining around 2 weeks (19). In terms of the function of these neonatal cells, most 

knowledge has been gained using in vitro assays and assessing their cytokine production, apoptosis 

or proliferation (61, 66–69). However, one recent study has used more modern immunological 

methods combining flow cytometry and TCR transgenic mice (70). These authors found that 

stimulation of neonates and adult animals in a transgenic background, where the TCR can be 

triggered with a specific peptide, cells of neonates and adults proliferate equally. In the same 

study, when wild-type mice are injected with CD3 antibodies or the TCR stimulus is mimicked by 

PMA/ionomycin stimulation, the proliferation is higher in adult animals (reviewed in (57)). This 

goes along the lines of newborn animals needing a powerful stimulus to mount adult like 

responses. Additionally, the same study has shown proliferation rates for T cells, with neonatal T 

cells showing faster cell cycle progression. This difference vanishes with age, with T cells 

obtained from animals above 3 weeks of age having the same entry into cell cycle as adults (71). 

The most recent study on the differences of neonatal RTEs and their adult counterparts comes 

from Opiela et al. (72). There, authors have used the RAG2p-GFP system to compare neonatal 7 

days old RTEs to RTEs from adult animals and show differences in the surface expression of 
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known RTE markers such as Qa2 and CD24 but also CD28. Additionally, they could show that 

when looking only at the RTE population, neonatal cells produce more IL-2 and Th1/2 effector 

cytokines. The most striking difference for survival is the different response of neonatal RTEs to 

IL-7. While an adult cell takes around 6 hours to downregulate the IL-7 receptor after 

stimulation, this occurs in neonatal RTEs after only 30 minutes. This goes in line with an 

increased level of the downstream target pSTAT5. It has been shown that IL-7 is a limiting factor 

in the repletion of T cells (73) and that this cytokine is mainly produced by stromal cells (74). 

Given the fact that adult RTEs do not respond with proliferation upon IL-7 production (75) and 

that neonates have higher levels of IL-7 (76), this would suggest a role for IL-7 in the 

homoeostatic proliferation during the lymphodepleted stages of animal development. This is 

further strengthened by data from human samples, showing an increase in IL-7 upon 

lymphodepletion (77) and that cord blood derived CD4 cells proliferate upon stimulation with 

IL-7 but not cells obtained from peripheral blood samples (78). Taken together, RTEs from 

newborn and adult animals are functionally different, but RTEs from newborn animals can be 

pushed to show adult-like features. It is however unclear if the differences are due to the RTEs of 

newborns being from hepatic origin or because of differences in the thymic microenvironment 

during development. 
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5.3. Coronin Protein Family 

 Discovery of Coronins 5.3.1.
 

Coronin A was originally identified in the slime mold Dictyostelium discoideum as a molecule co-

eluting with an actin/myosin complex (79). Taken together with the report that coronin deletion 

resulted in impaired particle uptake, chemotaxis and cytokinesis it was concluded that coronin is 

an actin-binding and modulating molecule (80).  

With the onset of gene sequencing, it became clear that this protein is not restricted to D. 

discoideum. It has now been shown that the coronins constitute a protein family occurring 

throughout the eukaryotic kingdom, with 723 coronin molecules so far identified in 358 species 

(82). In mammals, the protein family consists of seven members, which are characterised by a 

WD-containing repeat domain followed by a unique domain (UD) (see Fig 7). In terms of 

structure, the WD-repeat domains and their flanking with -sheets form a seven bladed  

propeller (83, 84). The UD domain is of variable length and serves as a linker for the C-terminal 

coiled-coil domain (84). However, there is also coronin 7, a tandem version of coronin, lacking 

the coiled coil domain, but having two WD and UD fused together. In terms of expression 

 

Fig 7: Classification and schematic of the coronin protein family (from (81)) 
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patterns, coronin 2, 3 and 4 appear to be ubiquitously expressed while the other members are 

specifically expressed in different tissues (our unpublished data and (85)). 

 

 The coronin 1 protein 5.3.2.

5.3.2.1. Structure and function 
 

Coronin 1, localising to the plasma membrane in a cholesterol dependent manner (86), has 

originally been identified in our laboratory as a factor actively recruited by mycobacteria (87, 88). 

Coronin 1 recruitment to the phagosome leads to an increased survival of phagocytosed 

mycobacteria in macrophages. This recruitment depends on the trimerization of coronin 1 (89) 

and phosphorylation by CDK5 (90). Once mycobacteria are internalized, phagosome-lysosome 

fusion is blocked, as long as coronin 1 is present on the membrane of the phagosome. This is 

only observed with living mycobacteria and has been shown to be dependent on calcineurin (88, 

91). With coronin 1 being expressed mainly in cells of the immune system and excitatory 

neurons, most studies focused on the role of coronin 1 in cells of the immune system. For the 

majority of immune cells, coronin 1 is dispensable for their function or survival. No differences 

could be seen in the dendritic cell compartment (92) or neutrophil function (93). The same holds 

true for natural killer cells (94). B cells have no survival deficit and are capable of generating 

immune responses in vivo regardless of coronin 1 expression status. The only difference can be 

seen in IgM mediated Ca2+ response, which is reduced upon the deletion of coronin 1 (95). This 

is also seen in T cells where the lack of coronin 1 has been shown to result in a diminished Ca2+ 

mobilization and inositol-1,4,5-trisphosphate generation upon TCR triggering (96), that has been 

linked to the severe T cell lymphocytopenia observed in  coronin 1-deficient animals (96–100). 

The reduced Ca2+ results in an impaired activation of the Ca2+ dependent phosphatase 

calcineurin, which is itself responsible for the dephosphorylation of the Nucleated Factor of 

Activated T cells (NFAT) (see Fig 8). This transcription factor has been shown to be not only 

involved in the activation of T cells but also in their regulation and survival (reviewed in (101)).   
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As peripheral T cells depend on tonic TCR:MHC stimulus for survival (102, 103), it has been 

suggested that the impaired survival of coronin 1 deficient T cells is due to their limited response 

to TCR mediated stimuli. It needs to be noted, however, that coronin 1-deficient animals with a 

transgenic TCR show similar response in terms of proliferation to TCR stimulus as wild-type 

animals (97) and our unpublished observations). This could indicate that a strong enough trigger 

would still be able to yield a response and that the TCR signalling is not completely defective but 

dampened. Additionally, while coronin 1 has been postulated as an actin-modulating protein, the 

migration and homeostasis of T cells has been shown to be independent of any coronin 1-

dependent actin modulation (104) and intracellular Ca2+ stores are not affected by actin 

modulation (105).  

 

 

Fig 8: Coronin 1 dependent T cell survival. The lack of coronin 1 leads to reduced levels of Ins(1,4,5)P3 and 

subsequent reduced levels of intracellular Ca2+. This results, via the Ca2+ dependent phosphatase 

Calcineurin, to a reduced activation of NFAT and therefore reduced transcription of pro-survival genes 

(from (81)). 
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5.3.2.2. Coronin 1 in thymocyte development and thymic egress 
 

During thymocyte development, the cells rearrange their TCR and only if signalling via TCR is 

functioning, the cells survive (10). If coronin 1-deficient T cells show dampened TCR responses, 

one would expect coronin 1 deletion to influence thymocyte survival as well. While the 

expression of coronin 1 is present in all immune cells, its expression pattern is not uniform. In 

fact, thymocytes show a differential activation of the coronin 1 promoter activity and protein 

expression during their maturation steps (this study and (106)). While a DN thymocyte does 

express coronin 1, the expression increases with maturation and only SP thymocytes express 

similar levels of coronin 1 compared to peripheral T cells. Interestingly, while peripheral T cells 

show reduced Ca2+ mobilization upon TCR stimulus, this phenotype is not seen in DP 

thymocytes (our unpublished observations), further indicating that the influence of coronin 1 on 

TCR signalling is only present  after TCR rearrangements are completed. Therefore, coronin 1 

would only be fully expressed by the time thymocytes go through negative selection and are 

sieved out for any self-recognition. This process itself is either not-impaired in coronin 1-

deficient animals, maybe due to strong enough signals coming through the TCR, or the 

peripheral survival deficit results in too few T cells to actually develop an autoimmune disease, as 

coronin 1-deficient animals show no induction of EAE (107) or lupus (98).  

In terms of thymocyte populations, the literature for coronin 1-deficient animals is diverse. 

Coronin 1 has been linked to a thymic egress phenotype in one specific study, characterising a 

mouse harbouring a point mutation of coronin 1 (Ptcd). Expression of the mutant coronin 1 

protein leads to an increased inhibition of the Arp2/3 actin regulator complex. In terms of 

thymus population, the study shows equal numbers of DP cells but an increase in SP CD4 and 

CD8 cells (99). Additionally, the Ptcd mutants show impaired thymocyte migration to a S1P1 or 

CCL21 gradient, which has also been shown in coronin 1-deficient thymocytes (104). Both 

receptors (S1P1 and CCR7) have been shown to be expressed in normal levels in coronin 1-

deficient thymocytes ((97, 99) and this study). While CCL21 is a shared ligand for CCR7, it has 

been shown that it is not important for thymocyte migration (29), whereas S1P1 is needed for 

correct thymocyte maturation and egress (25). The observed in vitro migratory phenotype could 

explain the accumulation of single-positive thymocytes in the Ptcd mutant. However, the same 

study also characterises a coronin 1-deficient animal from an ENU mutagenesis screen, which 

showed no accumulation of single positive thymocytes, but, similar to published literature from 

gene edited animals, a reduction in peripheral T lymphocytes. While studies have suggested an 



  Coronin 1 in T cell signalling and development 

 
29/119 

 

involvement of F-actin for coronin 1-dependent T cell survival, the Ptcd mutant actually shows a 

stronger phalloidin staining in comparison to the wild-type, failing to show a simple correlation. 

Additionally no difference in apoptosis between wild-type and Ptcd mutant animals could be 

found. However, studies have reported an increase in cell death in in vitro studied thymocytes of 

coronin 1-deficient animals (both from ENU mutagenesis as well as gene edited animals (99, 

104). In contrast to Shiow et al. describing an accumulation, others have shown a reduction in 

single positive thymocytes, but only CD8 positive ones with no differences in any other 

thymocyte population (97). However, the original publication for the coronin 1 knock-out mouse 

also shows a slight reduction of single positive CD4 thymocytes when the data is analysed for the 

late stage markers CD69 and CD62L, displaying roughly half the percentage for late stage 

thymocytes (97). Additionally, it has been reported that intrathymic injection of FITC leads to 

less peripheral FITC+ cells in coronin 1-deficient animals. As they do not report an accumulation 

of FITC+ cells in the thymus, this would indicate normal thymic egress but followed by death 

upon cells entering the bloodstream. The last study showing coronin 1 involvement in thymocyte 

development reports again a different picture. In this case, the reduction of late stage thymocytes 

is not due to an egress phenotype but due to an accumulation of double positive cells (108). The 

same study also describes a differential expression of certain late stage surface markers for 

thymocytes such as CD24, CD69 and TCR, which can partially be explained by the reduction of 

overall SP cells. It is however striking that this specific knock-out mouse is the only one showing 

an accumulation of cells during thymocyte maturation. One intriguing observation is the single-

positive CD8 cells displaying increased levels of pJNK1/2 and reduced levels of p-IB upon 

stimulation with CD3/CD28. As the NFB pathway is involved in thymocyte maturation and 

survival, the increase in double-positive thymocytes could be due to a defect in thymocyte 

maturation.  

Taken together, the data on thymic egress in coronin 1-deficient or coronin 1-mutated animals is 

contradictory. What is however clear from the several studies with different mouse models but 

also in human patients is the importance of coronin 1 in peripheral T cell survival.  
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5.4. GPCR signalling and its downstream messenger cAMP 

 Seven transmembrane or G protein-coupled receptors 5.4.1.

5.4.1.1. General mechanism and structure 
 

The receptor family consists of seven transmembrane domains, with the C-terminal end linked to 

heterotrimeric G-protein complex. This complex consists of three different subunits, namely G, 

G and G. While G and  are similar for all G-protein coupled receptors, the G subunit 

comes in different forms (110, 111). Depending on the different G isoform, the second 

messenger is either cAMP (for G-s or G-i subunits) or Ca2+ and subsequent activation of 

Phospholipase C (G-q or G-12/13).  Once a ligand binds to the extracellular domain of a 

GPCR, the activated receptor acts as a guanine nucleotide exchange factor and swaps the GDP 

bound to the G complex to a GTP. This leads to the disassociation of the G subunit from 

the  complex and the G subunit is free to provide downstream signalling (Fig 9). In case of 

 

Fig 9: Simplified schematic of G-protein coupled receptor activation. Ligand-bound GPCR acts as a 

guanine nucleotide exchange factor and therefore exchange GDP to GTP at the G complex. The now 

GTP-bound G subunit disassociates from the  G-proteins and provides downstream signalling until 

GTP is hydrolysed back to GDP and the G protein can associate again with the  complex (from (109)) 
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the G-s (stimulatory) subunit, the downstream signal is the activation of the adenylate cyclase 

(AC) enzyme and subsequent increase in cAMP production. G-i (inhibitory) subunit leads to 

either the inhibition of the adenylate cyclase or the activation of phosphodiesterases, resulting in 

a reduced production or increased degradation of cAMP respectively (112).   

 

5.4.1.2. The structural homology of coronin 1 to G-protein subunit  
 

In unstimulated conditions, the G-s subunit is linked to the  complex via salt bridges. 

Interestingly, the G subunit is a WD-repeat domain containing protein (113) with structural 

similarities to coronin 1 (83). Recently, coronin 1 has been linked to cAMP production in 

neurons, where it is needed to ensure sufficient cAMP production for the correct formation of 

long term memory (114). In addition to this, coronin 1 was associated with G-s in a stimulus-

dependent manner. Therefore, with in coronin 1-deficient neurons, the production of cAMP is 

reduced, where fibroblasts with exogenous expression of coronin 1 show higher levels of cAMP 

production. As the association is only seen with the stimulatory subunit, but not with the 

inhibitory, the coronin 1 – G-s association was more closely studied. Indeed, shown by surface 

plasma resonance, the association of coronin 1 with the G-s subunit depends on the same salt 

bridges as the G-s and G interaction (Pieters J, Steinmetz M and BosedasGupta S, 

unpublished observations). This would indicate the existence of a coronin 1-dependent shuttling 

mechanism of the GTP bound G-s subunit and a role of coronin 1 in the production of cAMP. 

 

 Generation and downstream signalling of cAMP in T cells and thymocytes 5.4.2.
 

cAMP was the first second messenger identified which exerts an intracellular function upon the 

stimulation by an extracellular ligand (115). As the GPCR-cAMP signalling cascade is 

ubiquitously used in all cell types, it is also present in T cells. There it is responsible for the 

downstream signalling of different ligand stimulations such as prostaglandins (116), histamines 

(117) and -adrenergic agonists (118). As in other cell types, the cAMP is produced by ACs, 

which exist in 10 different isoforms (119), In case of T cells, AC 3, 6 and 9 are expressed at low 

levels whereas AC 7 is expressed in higher levels (120). Indeed, AC 7 has an impact on T cell 

mediated antibody responses and the deletion of the protein leads to an impairment in the 
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generation of memory T cells (120). While the other three isoforms are expressed at lower levels, 

AC 3 and 6 are localized to cholesterol rich membrane sections (121, 122), possibly close to the 

localization of coronin 1 (86). To reduce the levels of intracellular cAMP, cells express specific 

enzymes which degrade cAMP to AMP (123), the family of phosphodiesterases (PDE). While 

over 100 different enzymatic variants have been identified and classified into eleven families 

(124), the main PDEs in T cells are PDE 1-5, 7 and 8. It has been shown that of the seven PDEs 

expressed, PDE 4 is the major cAMP degradation enzyme in T cells (125, 126). In T cells, the 

main downstream effector of cAMP is the protein kinase A (PKA). This serine/threonine kinase 

consists of two catalytic subunits linked to one regulatory unit. As soon as two cAMP molecules 

bind, the catalytic subunits are released and phosphorylate downstream targets (127). While there 

are different PKA subunits, namely four regulatory and three catalytic ones, the major form 

present in T cells is the type I PKA isoform (around 80%), the remaining part is type II PKA 

(128). The deletion of type II PKA has no major phenotype, while in contrast mice lacking type I 

do not survive embryonic development (129, 130). An inducible anti-sense system for type I 

PKA has however revealed a role in tumour development, with animals developing lymphomas 

with age (131).   

 

5.4.2.1. The effect of cAMP on T cell function 
 

T cells can be activated by different signals with the physiological most relevant one being the 

presentation of an antigen, which is subsequently detected by the TCR. The antigen binding leads 

to the release of Ca2+ from intracellular stores (see Fig 8 for scheme) but also to the production 

of cAMP, possibly due to an increase in cyclooxygenase 2 (COX2) and subsequent prostaglandin 

production (132). The engagement of CD3/TCR depends on the protein kinase Lck but does not 

lead to a full activation of the T cell. It needs co-stimulatory molecules, mainly either CD28 or 

IL-2 (133). As depicted in Fig 10, an increase in cAMP due to extracellular stimulation by e.g. 

prostaglandins, leads to activation of PKA type I linked to A kinase anchoring proteins (AKAP) 

(134). After the subsequent recruitment of phosphoproteins associated with glycosphingolipid–

enriched membrane domains (Cbp/PAG), the tyrosine protein kinase Csk is kept close to its Src 

family member Lck. As Lck is needed for full activation of a T cell, its phosphorylation at Tyr505 

by Csk keeps it in an inactive state (135). It has been proposed that the recruitment of co-

stimulatory molecules such as CD28, leads to a recruitment of PDE4 and -arrestins to the 

plasma membrane, resulting in a decrease of cAMP at the plasma membrane (reviewed in (136). 
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Reduced cAMP levels would lower the inhibition of Lck by Csk allowing full activation of the T 

cell receptor and its downstream signalling mechanisms such as NFAT activation and cytokine 

release. Overall, cAMP plays an important regulatory and modulatory role in T cells and is the 

most potent and acute inhibitor of T cell activation. Additionally, as TCR activation itself already 

leads to cAMP production, the co-stimulatory molecules need to be tightly regulated to ensure T 

cell activation at the right time and strength. As already mentioned, the main degradation of 

cAMP is due to PDEs and indeed the blockage of PDEs to dampen  TCR signals in pathological 

setting is being elucidated (137).  

  

 

Fig 10: Model of TCR and cAMP interaction. The increase of cAMP upon stimulation with prostaglandin 2 

leads to an inhibitory function on the Lck kinase, which is needed for TCR activation (from (136)). 

TCR T cell receptor, Lck lymphocyte-specific protein tyrosine kinase, Csk C-terminal SRC kinase, 

Cbp/PAG glycosphingolipid-enriched membrane domain, AKAP A kinase anchoring proteins, PKA 

protein kinase A, PGE2 prostaglandin E2. 
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5.4.2.2. The effect of prostaglandin on thymocytes and T cells 
 

Prostaglandins are produced from an arachidonic acid precursor by a process dependent on the 

expression of COX1 and COX2. While COX1 is constitutively expressed and is considered to be 

used for the “household” production of prostaglandins, COX2 is inducible and has been linked 

to pro-inflammatory processes and also cancer development. The cyclooxygenases produce 

prostaglandin G2 and the intermediate form prostaglandin H2. This form is then used by specific 

synthases to produce different prostaglandins (e.g. PGE2, PGI2 …). PGE2 is synthesized by the 

PGE2 synthase which exists as one cytosolic and two membrane-bound forms, with only the 

PGE2 synthase I form being inducible. In terms of an effect on the immune system, PGE2 has 

been shown to possess pro- but also anti-inflammatory activities (reviewed in (138, 139). Surface 

receptor expression for any of the four PGE2 receptors in thymocytes is unclear, but all four 

prostaglandin E2 receptors (EP 1-4) are expressed in hematopoietic stem cells (140). In T cells 

the two receptors that result in an increase of cAMP (EP2 and EP4) are expressed (141) whereas 

the other two (EP1 and EP3) are not expressed (142).  

cAMP is an important player in the development and maturation of thymocytes and is 

differentially regulated (143). Additionally the molecule has been shown to be involved in pro-

survival but also pro-apoptotic processes (144). As the majority of thymocytes die during their 

developmental process, studies have linked cAMP signalling to thymocyte development and 

survival, which has revealed that the artificial increase of cAMP in vitro leads to a developmental 

block in fetal thymic organ culture (145). It is however unclear if this blockage would occur in vivo 

as well, as the treatment of mice with prostaglandin E2 (PGE2) leads to increased induction of 

apoptosis in  thymocytes (146). While prostanoids are expressed and found in thymocytes (147), 

it is unclear whether PGE2 is physiologically important for thymocyte maturation as no thymus 

oriented studies have been performed in genetically modified animals. It has however been 

shown that cAMP-mediated apoptosis can be abrogated by blocking TNF, the main effector for 

DP thymocyte apoptosis (148). Additionally, cAMP has not only been shown to be involved in 

thymocyte maturation but also in the adhesion of thymocyte in a stage-specific manner, with late 

stage thymocytes being less dependent on cAMP (149).  

In mature T cells, PGE2 has been shown to have a suppressive effect on T cell activation. While 

this has been reported over 50 years ago, only later studies have found a major link between 

PGE2, cAMP and the blockage of IL-2 dependent gene expression (150, 151). These 

observations have been further strengthened by the revelation that an increase in cAMP leads to 
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the dampening of Ca2+ dependent responses, such as the ones triggered by CD3/TCR 

engagement (152). Additionally it has been proposed that increased cAMP can influence the 

activity of ion channels, resulting in increased potassium concentration and subsequent 

impairment in G protein-mediated signalling (153). Overall, the suppressive effects of 

prostaglandin have been linked to the inhibition of NFB (154) and calcineurin-dependent 

pathways (155). Another effect of PGE2 on T cells is lineage dependent., as PGE2 treatment 

inhibits Th1 effector cytokines but not Th2 cytokines (156). PGE2 also is involved in the 

production of regulatory T cells, which are capable of providing a tolerogenic environment (157, 

158). 

The pro-inflammatory effects of PGE2 are less studied, but interestingly it seems that while 

PGE2 can have suppressive effects, it acts different when used in micro molar quantities. Using 

memory T cells, Napolitani et al have shown that PGE2 treatment leads to an enrichment of IL-

17 producing cells and inhibits the production of IFN- (159). While not a direct effect of PGE2 

on T cells, DCs cultured in the presence of PGE2 can influence T cells to differentiate into the 

Th1 helper subtype (160). This is due to the induction of expression of surface markers such as 

CD70, which facilitates T cell/T cell interaction and therefore could act in a pro-inflammatory 

manner (161). 
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6. Aims of the Study 
 

This study describes the importance of coronin 1 in the production of the second messenger 

cAMP, which is known to be a major player in all cell types. As coronin 1 has been shown to be 

important for the production of cAMP in neurons, the relation between coronin 1 and cAMP in 

cells of T cell lineage was further studied. During these experiments, it became clear that there is 

a need for pin-pointing the exact time point at which T cell survival becomes dependent on the 

expression of coronin 1. To this end the effect of coronin 1 deletion on different thymocytes and 

T cell subsets in adult and newborn animals was analysed and put in the developmental context 

of T cell maturation. 

Additionally, the appendix of this study focuses on the potential of coronin 1 to interact with 

other proteins and thereby forming a supra-molecular activation complex needed for correct and 

efficient signal transmission within the cell. This has been studied in cells stimulated with 

isoproterenol and subsequently analysed by biochemical methods such as size-exclusion 

chromatography and co-immunoprecipitation. Additionally, as the localization of a protein is of 

importance for correct function, the coronin 1 protein has been mutated to study which domains 

are of importance for its proper localization to the plasma membrane. As both of these 

approaches have had their own difficulties, these projects were put on hiatus and the data 

presented here is considered to be preliminary. 
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7. Material and Methods 

7.1. Materials 

 Detergents, GPCR agonists and Inhibitors 7.1.1.
 

Name Producer Cat # 

Ro 20-1724 Tocris 415 

Clonidine Tocris 690 

Cilostamide Tocris 915 

Immepip Tocris 932 

Zardaverine Tocris 1046 

Rolipram Tocris 1349 

Milrinone Tocris 1504 

Iloprost Tocris 2038 

Prostaglandin E2 Tocris 2296 

IBMX Tocris 2845 

TCS 2510 Tocris 4069 

NP-40 Fluka 74385 

Protease/Phosphatase Inhibitors 100x Pierce 78440 

Thesit Sigma 88315 

Roche Complete Tablets Roche 11836153001 

ATP Sigma A2383 

BSA EquiTech Bio BAC62 

Carbamyl-beta- methycholine chloride 
(Bethanechol chloride) 

Sigma C5259 

DTT Sigma D0632 

Digitonin Sigma D141 

Na-b-D-maltoside Sigma D4641 

EGTA Sigma E3889 

EDTA Sigma E6758 

Forskolin Sigma F6886 

HEPES Sigma H3375 

Dopamine Sigma H8502 

Isoproterenol Sigma I6504 

Melatonin Sigma M5250 

N-octyl-glucopyranoside Sigma  O8001 

Sodium Orthovanadate Sigma S6508 

Sodium Fluoride Sigma S7290 

Tris Sigma T1503 
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 Cytokines 7.1.2.
 

Name Producer Cat # 

GM-CSF Biolegend 576306 

IL-4 Biolegend 574306 

IL-2 Biolegend 575406 

IL-7 Biolegend 577806 

 

 Antibody List 7.1.3.
 

Name Antigen Specificity Clone Isotype Company Ref. No 

CD3 LEAF CD3ε 

chain 

 

Mouse 145-

2C11 

Armenian 

Hamster 

IgG 

BioLegend 100314 

CD3-biotin 100304 

CD3-PE 100308 

CD3-PE/Cy7 100320 

CD3-Pacific Blue 100334 

CD3-Alexa Fluor 700 100216 

CD3-Alexa Fluor 488 100321 

CD4-Brillinat Violet 

510 

CD4 

(L3T4) 

Mouse RM4-5 Rat IgG2a BioLegend 100559 

CD4-Pacific Blue 100531 

CD4-PE/Cy7 100528 

CD4-PE 100512 

CD4-PerCP 100538 

CD4-APC 100516 

CD8-APC CD8a 

(Ly-2) 

mouse 53-6.7 Rat IgG2a BioLegend 100712 

CD8-Pacific Blue 100725 
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CD8-Brilliant Violet 

510 

100751 

CD8-Alexa Fluor 700 100730 

CD8-PE 100708 

CD19-APC CD19 mouse 6D5 Rat IgG2a BioLegend 115512 

CD19-PE/Cy7 CD19 mouse 6D5 Rat IgG2a BioLegend 115520 

CD24-Brilliant Violet 

421 

CD24 mouse M1/69 Rat IgG2b BioLegend 101826 

CD25-biotin CD25 

(IL-2Rα 

chain 

p55) 

mouse PC61 Rat IgG1 BioLegend 102004 

CD25-PE/Cy7 102016 

CD62L-PerCP CD62L 

(L-

selectin) 

mouse MEL14 Rat IgG2a BioLegend 104430 

CD62L-PerCp/Cy5.5 104432 

CD69-PE/Cy7 CD69 

(Very 

Early 

Activatio

n 

Antigen) 

mouse H1.2F3 Armenian 

Hamster 

IgG1 

BioLegend 104512 

CD127-PE IL-7Ra mouse A7R34 Rat, IgG2a BioLegend 135010 

Gr1-PerCP/Cy5.5 Ly-6G 

and Ly-

6C 

mouse RB6-

6C6 

Rat IgG2b BioLegend 108428 

TER119-biotin TER-

119/eryt

hrocytes 

mouse TER-

119 

Rat, 

IgG2b 

BioLegend 116204 

Qa-2-Alexa Fluor 647 H2-Qa2 mouse 695H1-

9-9 

Mouse, 

IgG2a 

BioLegend 121708 

Live/dead APC/Cy7 reaction 

with free 

cellular 

amines 

- - - Life 

technologies 

L10119 

S1P1 Peptide 

T4-H28 

Mouse 713412 Rat IgG2a R&D MAB708

9 

CCR7-PE CCR7 Mouse 4B12 Rat IgG2a Biolegend 120105 

Anti-rat IgG2a-biotin Mixed 

rat IgGs 

Mouse MRG2a-

83 

Mouse 

IgG 

Biolegend 497504 



  Coronin 1 in T cell signalling and development 

 
40/119 

 

Rat IgG (blocking) - - - - Sigma I4131 

Streptavidin-PE     Biolegend 405204 

Streptavidin-APC     Biolegend 405207 

 

 Buffer compositions 7.1.4.
 

Equilibration Buffer for Size Exclusion Column: 20 mM HEPES pH 7.5, 20 mM KCl, 2 mM 

MgCl2, 1 mM CaCl2, 0.2% N-octyl-glucopyranoside 

Lysis Buffer for Size Exclusion experiments: Equilibration buffer supplemented with 0.2% 

Digitonin, 0.3% Thesit and 0.3% NP-40 

HBSS++: Hanks balanced salt solution supplemented with 1.5 mM MgCl2 and 1 mM CaCl2 

Co-immunoprecipitation Buffer: 25 mM HEPES pH 7.5, 20 mM KCl, 2 mM MgCl2, 1 mM 

CaCl2, 0.2% Digitonin, 0.2% Na-b-D-maltoside, 0.3% Thesis, 0.3% NP-40 

Homogenization Buffer: 10 mM Triethanolamine (Fluka #90279), 10 mM Acetic Acid (Sigma 

#A6283), 1 mM EDTA (Sigma E6758), 0.25 M Sucrose (Sigma #S0389) supplemented with 

Roche Complete Protease Inhibitor Tablets and 50 µM NaF and 5 µM Na3VO4 (based on (86, 

162)) 

Ammonium-Chloride-Potassium (ACK) buffer: 155 mM NH4Cl, 10 mM KHCO2, 1 mM 

EDTA, pH 7.4 

Complete media for dendritic cells: RPMI 1640 (Sigma-Aldrich, # R8758) media containing 

10% FCS (PAA clone, The Cell Culture Company, #A15-101) heat inactivated (30’ 55°C), 2 mM 

L-glutamine, 10 μM -mercaptoethanol (Sigma-Aldrich, #M7522) and 10 ng/ml GM-CSF 

(Recombinant Mouse GM-CSF CF, Biolegend, #576306) 

Complete media for thymocytes: RPMI 1640 (Sigma-Aldrich, #R8758) supplemented with 

10% FSC (PAA clone, The Cell Culture Company, #A15-101), 500 μg/ml Pen-Strep (Gibco, 

#15140-122), 1% NEAA (Non-essential Amino Acid Solution, Sigma-Aldrich, #M7145), 50 μM 

β-mercaptoethanol (Sigma-Aldrich, #M7522), 1 μM Na-Pyruvate (Sodium Pyruvate, Sigma-

Aldrich, #S8636) 
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FACS buffer: PBS, 2% FCS, 5 mM EDTA 

PBS: 10 mM NaCl, 50 mM HNa2PO4
+-12H20, pH 8 

D-PBS: PBS supplemented with 0.9 mM CaCl2 and 0.5 mM MgCl2 

Resuspension buffer: 75 mM Tris pH 7.4, 12,5 mM MgCl2, 1 mM EDTA supplemented with 

protease/phosphatase inhibitors (ThermoFisher HALT cocktail #78420) 

Adenylate Cyclase Buffer: 25 mM Tris pH 7.4, 5 mM MgCl2, 1 mM EGTA, 1 mM DTT, 0.1 

mg/ml BSA, 5 µM ATP 

Lämmli Buffer: 10% SDS, 20% glycerol, 500 mM DTT, 300 mM Tris/Hcl pH 6.8, 0.015% 

bromphenol blue 

RPMI 1640 without phenol red (Life Technologies, #11835) 

Transfer  buffer for western blot: 50 mM Tris, 32 mM Glycerin, 0.04% SDS plus 10% MeOH 
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7.2. Methods 
 

 Animals and cells 7.2.1.
 

All animals were bred according to cantonal ethic and husbandry standards at the animal facility 

of the Biozentrum Basel. Coronin 1-deficient animals have been described earlier (96, 163). Ly5.1 

mice were obtained from the Swiss Immunological Mutant Mouse Repository and bred in-house. 

If not otherwise indicated, mice were used between 6-8 weeks of age and adult mice were age and 

sex-matched.  

Animals were sacrificed by high percentage CO2 and organs removed. Single cell suspensions 

were prepared by mashing organs through a polyamide mesh (150 µm, SEFAR NITEX #03-150-

38) with a plunger. 

Mel Juso cells expressing coronin 1 have been described (88), Jurkat cells were obtained from 

ATCC (Clone E61, ATCC TIB 152) and CRISPR-Cas9 knock-outs generated and validated by 

Saumya Mazumder. 

 

 Genotyping 7.2.2.
 

Toes of animals were cut and digested o.n. in digestion buffer (100 mM Tris-HCl pH 8.5, 5 mM 

EDTA, 0.2% SDS, 200 mM NaCl supplemented with 100 µg/ml Proteinase K).  

 

GFP-negative Coronin 1-deficient animals: 

PCR (1’ 95°C, 30’’ 55°C, 40’’ 72°C with 35 cycles) with following primers:  

Coro1aLoxSA1: 5’-GAGACAGGACTCTCTTTG-3’, 

Coro1aLoxLA1: 5’-GTCCTCAGTAGCTGACTG-3’,  

Coro1aLoxMA1: 5’-TAGCAGAAAACCCCAAGC-3’ 

(WT MA1/LA1: 140 bp, floxed MA1/LA1: 250 bp, KO SA1/LA1 400 bp) 
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GFP-positive Coronin 1-deficient animals 

PCR (1’ 95°C, 45’’ 56°C, 50’’ 72°C with 35 cycles) with following primers: 

WTCor1: 5'-CTGTTGTAGGGGCTGATGGT-3' 

WTCor2: 5'-CACTGGCCTCACAGATCAGA-3' 

KOCor1: 5'-CTTCATGTGGTCGGGGTAG-3' 

(WT 392 bp, het 329 bp and 478 bp, KO 478 bp) 

 

 Size exclusion chromatography 7.2.3.
 

Mel Juso cells expressing Coronin 1 were cultured on 15 cm petri dishes in DMEM media 

supplemented with 10% FCS. 2 hours before assay, cells were washed 3x with HBSS++ and 

incubated in 10 ml HBSS++ at 37°C 5% CO2. Cells were stimulated with 10 µM Isoproterenol in 

HBSS++ for 10’ 37°C, briefly washed with ice cold HBSS++ and fixed in 1% PFA for 10’ on RT. 

Cells were subsequently lysed in size exclusion lysis buffer, filtered by 0.2 µm membranes and 

loaded onto an Superose 6 column. Column was equilibrated on the day of the experiment with 

equilibration buffer and calibrated by running a protein standard (Biorad #1611901). Column 

was washed for at least one column volume (~40 ml) between runs and the general protocol 

consisted of 0.5 ml/min with a maximum pressure of 1.5 mPa with a fraction size of 1 or 0.5 ml.  

Fractions were precipitated by addition of 100% TCA (Sigma T6399) (1/5th of total volume, i.e. 

final concentration of 20% TCA) for 30’ on ice and sedimented at 15’ 21.000g 4°C. Pellets were 

washed with acetone twice, air dried at 95°C and resuspended in PBS for 30’ on ice. After 

resuspension, 5x SDS Laemmli Buffer was added, samples boiled for 10’ 95°C and loaded onto 

10% SDS-PAGE Gels (80V 20’ then 110V). 

 

 Western blotting 7.2.4.
 

Protein levels were determined by BCA in 96-well flat bottom plates with gamma-globulin (1 

µg/ml) used as a standard. Protein transfer was performed with a semi-dry transfer system on 
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nitrocellulose membranes (Biorad Transblot, 20V 45’). Transfer efficiency was assessed by 

ponceau staining and membranes blocked by incubation for 1 hour on RT in 5% low-fat dry milk 

in PBS supplemented with 0.2% Tween. All blotting was performed in PBS-T. Antibodies for 

western blots were diluted in PBS-T with 0.02% sodium azide and washing steps between and 

after antibody addition were performed for 5’ 3x. Anti-Actin used 1:10000 (Millipore, MAB1501), 

anti-STAT6 and pSTAT6 1:1000 (from CST PhosphoStat antibody sampler kit #9914), anti-

coronin 1 is made in-house (rabbit #321, 14th bleed) used 1:5000. Secondary HRP-conjugated 

antibodies are all from southern biotech and were used 1:5000 and incubated for 1 hr on RT. 

Visualization of immunoblots was performed with chemo luminescent pico substrate (Thermo 

Scientific #34080) either on films (for size exclusion and co-IP experiments; Fuji Super RX-N 

#47410 19289) or with a digital imager (blots for IL-4 stimulation; Vilber Louromat Fusion FX 

with Fusion Capture Advanced FX7 software). 

 

 Immunofluorescence 7.2.5.
 

IF staining for HEK were performed on 10-well slides (Thermo Fisher #ER208BCE24) with 

5000 cells seeded the day before analysis. For Jurkat cells, cells slides were coated with 20 µl of 1 

mg/ml Poly-L-Lysine for 1 hr 37°C, washed and 20.000 cells seeded for at least 1 hour before 

experiment. Cells were fixed using methanol (4’ at -20°C), briefly dried and rehydrated in D-PBS. 

For phalloidin staining, fixation was performed with 3% PFA for 15’ RT and cells permeabilized 

by 0.1% Triton-X. Blocking was performed using D-PBS supplemented with 5% FCS. Staining 

was performed for 20’ RT in the dark using anti-coronin 1 (in-house, same as for western blots) 

1:500 in PBS-T with 2% FCS. Subsequently slides were washed 3x with D-PBS and secondary 

antibody conjugated to fluorochrome was used 1:200 for 20’ RT. Slides were washed again, 

briefly dried and fixed using VectaShield mounting media (Vectorlabs #H1000). Coverslips were 

fixed using commercially available household nail polish.  

 

 Generation of deltaN10 Cor1 constructs 7.2.6.
 

Coronin 1 was isolated from pCB6 vector by restriction enzyme digest for Sac1 and BamH1. 

Resulting fragment was amplified using specific primers for the C-terminal HA Tag and for 

deletion of the first 30 base pairs. 
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Fwd primer: CGCCACGTGTTTGGACAGCCA 

Rev primer: CGGGAATTCCTATGCGTAGTCTGGTA 

Resulting amplicon was subsequently cloned back into the pCB6 vector using Gibson Assembly 

provided by NEB using the following primers: 

Fwd primer: gtctatataagcagagctcATGCGCCACGTGTTTGGA 

Rev primer: gatccagggatgccacccgggatccTAGAGTCGACCTGCAGG 

Resulting constructs were transfected into competent bacteria, bacterial colonies picked; plasmids 

isolated using miniprep kit from Macherey Nagel and sent to sequencing (MicroSynth) for 

validation. Tranfection of plasmids was performed by Calcium-Phosphate transfection of HEK 

cells. 

 

 Determination of cAMP levels 7.2.7.
 

Stimulation of cells for cAMP levels was performed in phenol-red free RPMI media 

supplemented with 2 mM L-Glutamine. Jurkat cells were washed 2x and starved as 1x106 cells/ml 

for 2 hours at 37°C before experiments. No starvation was performed for primary T cells or 

thymocytes. For cAMP analysis, cells were spun down (5’ 300g) and resuspended in the 

concentration needed to achieve 15.000 (Jurkat cells and coronin 1-deficient primary T cells) or 

30.000 (wild-type primary T cells and wild-type/coronin 1-deficient thymocytes) cells per well 

measured. Measurements were performed using the HTRF cAMP assay kit (#62AM5PEB Cisbio 

Bioassays) using the provided protocol with stimulation and lysis done in 1.5 ml eppendorf tubes, 

10 µl of lysed cells distributed into 384-well plates (Greiner BioOne #781075) and 10 µl of 

cryptate/lysis buffer solution added. Plates were incubated for at least 1 hour but not more than 

4 hours in the dark before measuring on a Tecan F500 machine. Analysis of data is performed by 

building a ratio of D2 and CC signal, subtracting the background ratio and fitting values onto a 

sigmoidal standard curve. 
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 Membrane isolation 7.2.8.
 

Jurkat cells were spun down and washed with Homogenization Buffer and resuspended in HB. 

Cells were homogenized using a 27G needle and homogenization was assessed under a 

microscope with trypan blue. Homogenate was then spun down for 10’ at 1000g 4°C and post-

nuclei supernatant transferred to fresh ultracentrifuge 1.5 ml tube (Beckmann #357448) followed 

by another centrifugation for 30’ at 100.000g. Resulting membrane pellet was carefully 

resuspended with a 21G needle in resuspension buffer. Protein concentrations were assessed by 

BCA and equal µg of membranes were spun down for 15’ at 21.000g. Resulting pellet was 

resuspended in adenylate cyclase buffer and 2 µg of membrane was assessed for cAMP 

production. 

 

 T cell isolation 7.2.9.
 

Spleens from either wild-type or coronin 1-deficient animals were harvested in PBS 

supplemented with 2% FCS and 2mM EDTA, and then smashed through a grid of stainless steel. 

Cell debris was removed by quick spin (500rpm, 10s). The cell numbers were counted and cells 

were sorted for total T cells or CD4+ using negative selection T cell or CD4+ T Cell Enrichment 

Kit, respectively (EasySep, StemCell technologies, Ref. No 19751 and 19752). Cells were sorted 

following the protocol from corresponding selection kit. Cells were counted using Neubauer 

chamber and dead cells were excluded using trypan blue. 

 

 FACS staining 7.2.10.
 

S1P1 antibody from R&D Systems (MAB7086), Life/Dead Marker from ThermoFisher 

(#L10120).All other antibodies from Biolegend coupled to different fluorochromes. FACS 

acquisition was done on a BD Fortessa with Diva software (v10) and analysed using FlowJo v10 

(TreeStar Software). Anti-CD3 (145-2C11), CD4 (RM4-5), CD8 (53.6-7), CD24 (M1/69), 

CD45.1 Ly5.1 (A20), CD62L (MEL-14), CD127 IL7R (A7R34), Qa2 (695H1-9-9), Ter-119 

(Ter119). In general cells were counted with a Neubauer Chamber in PBS and 1.5x106 cells 

stained in 96-well U-bottom plates. Antibody solution was prepared in PBS supplemented with 
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2% FCS and EDTA. Cells were incubated for 30’ on ice, all antibodies used 1:100. Life/Dead 

Marker used 1:1000. For S1P1 receptor staining, the AB was used 1:10 and no EDTA was added 

to the staining buffers. Following 30’ on ice, cells were incubated with biotinylated 1:100 anti-

ratIgG2a (MRG2a-83) for 30’ on ice. After blocking with 1:100 rat-IgG (Sigma I8015) for 10’, the 

remaining antibody cocktail was added plus Streptavidin coupled to either APC or PE. After 

staining cells were centrifuged (300g, 5’ 4°C), resuspended in 200 µl buffer, transferred to 

polystyrene tubes and measured within 2 hours. 

 

 FACS sort 7.2.11.
 

For sorting of thymocyte populations, single cell suspensions were prepared and stained for CD3, 

CD4, CD8 and Life/Dead and sorted (see Supplemental Figure 5). Sorting of different T cell 

populations was performed by isolating CD4+ splenic T cells using the EasySep total T cell 

isolation kit from StemCell (#19851). Resulting T cells were then stained for CD4, CD8 and 

CD25 and processed for sorting (see Supplemental Figure 4).  

For sorting of late stage thymocytes, CD8 predepletion was prepared based on negative selection 

protocols from StemCell Technology. Thymocytes were prepared as described, counted and 

resuspended as 100x10^6/ml in PBS/2% FCS. Cell suspension kept in either 4 ml polystyrene 

tubes or 13 ml round bottom tubes as recommended by StemCell. Cells were then incubated with 

biotinylated antibodies for CD8 and Ter119 (12.5 µg/ml)and rat sera (50 µl/ml, from StemCell 

negative isolation kits #19852). After 10’ on RT 75 µl/ml EasySep Streptavidin RapidSpheres 

50001 (#19860) were added for 3’ RT. Solution was then filled up to 2.5 or 5 ml depending on 

tube size and put on magnet for 3’ RT. Supernatant was then poured off into fresh tubes, spun 

down, counted and stained for CD3, CD4, CD8, CD69, CD62L and Life/Dead (see 

Supplemental Figure 6).  

All FACS sorts were performed on a BD Aria III at the Biozentrum FACS core facility (Janine 

Zankl) and purity was always >98%. After sort, cells were spun down for 10’ 4°C 350g and 

resuspended either directly in TriReagent, in corresponding media in a concentration of 0.75x106 

cells/ml (for late stage thymocyte survival) or in RPMI supplemented with 2 mM L-Glutamine 

(for thymocyte stimulation assays). 
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 Quantitative RT-PCR 7.2.12.
 

Cells were resuspended in 400 µl TriReagent and stored on -80°C. Samples were processed 

through RNA isolation based on manufacturer’s instructions (Zymo Research Direct-Zol RNA 

Isolation Kit #R2073) and then 250 ng transcribed into cDNA (ThermoFisher #4368814). For 

each reaction 10 ng of cDNA was used, reaction were performed in triplicates on MicroAmp 96-

well reaction plates (ThermoFisher #N8010560). Amplicon detection was based on SYBR Green 

reaction mix for thymic egress markers (ThermoFisher #4367659) and on TaqMan technology 

for PDE4QA5 gene expression measurement (Mm01147143_m1) using Hprt1 as reference gene 

(Mm01545399_m1). PCR was performed on an Applied Biosystem machine (StepOne Plus) 

using StepOne v2.2 software. Analysis of results was done via Ct method. Primers were 

synthesized by MicroSynth (Balgach, Switzerland). 

 

Primer Sequences: 

NKAP 

Forward: 5'-GCGTATCCCAAGAAGAGGTG-3', 

Reverse: 5'-GAAGTCGAACAGCCTCCATT-3' 

Foxp1 

Forward: 5'-CAGCCACGAAAGAAACAGAAG -3',  

Reverse 5'-GGTCCTGGTCACCTGATTATA -3' 

KLF2  

Forward 5’-ATGGCGCTCAGCGAGCCTAT-3’,  

Reverse: 5’-AGCAGCTCTGTTCCCAGGCT-3’ 

GAPDH 

Forward: 5’-GAGCCAAACGGGTCATCATC-3’,  

Reverse: 5’-GAGGGGCCATCCACAGTCTT-3’ 
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 TREC analysis 7.2.13.
 

Genomic DNA was isolated from single cell suspensions by digestion of 10x10^6/cells in 10 mM 

Tris-HCl pH 7.4 supplemented with 100 µg/ml Proteinase K for 1 hour on 56°C and 1200 rpm 

(based on (164)). Digests were boiled to 95°C for 10’ and 5 µl per sample assessed. Primer for 

C57BL/6 mouse sjTREC analysis were based on (165) and DNA input was normalized by using 

a probe for Tfrc (Thermofisher #4458366). Data is presented as Ct values. 

 

 Cell Culture and survival assays 7.2.14.
 

For preparation of dendritic cells, bone marrow of Ly5.1 mice was flushed out from femur and 

tibia with a 24G syringe. Bone marrow was then frozen in 10% DMSO/90% FCS (PAA 

LowEndotoxin FCS #A15102 Lot# A10209-2936) and used for several rounds of dendritic cell 

preparations. For dendritic cell preparation 6x106 cells were seeded into a 10cm petri dish (Falcon 

#351029) in 8 ml RPMI1640 with 10% FCS, 1 mM Sodium Pyruvate (Sigma, #S8636), Non-

essential amino acids (Sigma, #M7145), 100u/ml Penicillin 100 µg/ml Streptomycin (Sigma 

#4333), 2 mM L-Glutamine (Gibco #25030) and 10 µM -Mercaptoethanol (Sigma, M7522). 

Media was supplemented with 10 ng/ml GM-CSF (Biolegend, #576302). Cells were kept for 7 

days, with 2 ml of media and fresh cytokines added every second day. For dendritic cell 

supernatant, cells were harvested on day 6, washed once in thymocyte media and cultured in 

thymocyte media without cytokines for 24 hours before the experiment. For co-culture 

experiments, dendritic cells were assessed on the experimental day by microscopy for general 

morphology and 100.000 cells preseeded into 96-well U-bottom plates (Falcon #351177) or 

transwell plates (Corning HTS Transwell 3 µm #3385). 

For thymocyte survival assays, cells were adjusted to 0.75x106 cells and 100 µl added per well. 

Media formulation was RPMI1640, 10% FCS (PAA FCS #A15101 Lot# A10109-1886), 1 mM 

Sodium Pyruvate, NEAA, PenStrep, 2 mM L-Glutamine and 50 µM -Mercaptoethanol (same as 

above). In general, media was replenished after 2 days of culture by careful removal of 75 µl 

media and re-adding the same amount. Culture volume was 200 µl in normal cultures, for 

transwell cultures 250 µl were used to ensure proper diffusion between compartments. For 

dendritic cell supernatant experiments, the supernatant from the day of seeding was filtered (0.2 

µm) and 100 µl of supernatant was added to each well. The supernatant was stored on 4°C for 
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media replenishment on day 2. Cytokines (interleukin 2 #575402 and interleukin-7 #577802, 

both Biolegend) were added as 20 ng/ml. On the day of survival assessment, cells were 

sedimented (10’ 4°C 350g) and stained for L/D marker and Ly5.1. 

For bulk thymocyte survival assays, single cell suspensions from thymi were prepared and 100 µl 

were seeded in 96-well flat bottom plates to have 100.000 thymocytes per well. Media alone (100 

µl) or supplemented with 20 ng/ml of cytokines (IL-2 or IL-7) was added in 2x concentration. 

Viability measurements were performed as described for late stage thymocyte survival assays. 

 

 Statistics and software 7.2.15.
 

General calculations were performed in Microsoft Excel 2007. Graphs and statistical tests were 

performed in GraphPad Prism Software 5.00. FACS analysis was done with FlowJo V10 

(TreeStar software).  
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8. Results 

8.1. Involvement of coronin 1 in cAMP signalling in cells of the T cell 

lineage 

 Coronin 1-dependent cAMP modulation in primary T cells and T cell lines 8.1.1.

8.1.1.1. Coronin 1 deletion increases cAMP levels in T cells 
 

Coronin 1 has been shown to be important for the generation of cAMP in neurons. Additionally, 

fibroblasts transfected to express exogenous coronin 1, have an increased ability to generate 

cAMP (114). To study if the impairment in peripheral T cell survival of coronin 1-deficient 

animals is linked to differences in cAMP levels, total T cells from wild-type and coronin 1-

deficient animals were used. T cells were isolated by making single cell suspensions of spleen and 

subsequently negatively selected using the EasySep T cell isolation kit. The cells were then either 

used unstimulated or stimulated with the adenylate cyclase activator Forskolin and their cAMP 

content measured by a homogenous time-resolved fluorescence (HTRF) assay. As can be seen in 

Fig 11 A, cells with a coronin 1-deficient background showed around four times higher levels of 

cAMP in their unstimulated state. Once the cells were stimulated, the cAMP content increases. In 

the wild-type situation this resulted in an increase of around 10 fold, whereas the coronin 1-

deficient T cells only increase their cAMP content by ~6 fold. Nevertheless, wild-type cells 

generated less cAMP in total compared to their coronin 1-deficient counterparts.  

The cAMP level in cells is modulated by two mechanisms, one is the production via ACs, and the 

other one is the degradation of cAMP to 5-AMP by phosphodiesterases (PDE). To assess the 

involvement of PDEs in the observed cAMP modulation upon coronin 1 deletion, T cells were 

pre-incubated with the PDE 4 inhibitor Rolipram for 30’ before stimulation. Panel B of Fig 11 

shows the fold induction of cAMP production in the presence of Rolipram after stimulation with 

Forskolin. While wild-type cells show an increase of cAMP production when the cAMP 

degrading enzyme PDE is blocked, coronin 1-deficient T cells do not display this increase in 

cAMP content. In summary, the deletion of coronin 1 leads to increased production of cAMP in 

primary murine T cells and the data suggests an involvement of the cAMP degradation pathway. 
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For further biochemical analysis of a cAMP in T cells deficient for coronin 1, a CRISPR/Cas9 

knock-out of coronin 1 was established in the human Jurkat T cell line. Interestingly, the 

generation of this cell lines was not as straight forward as expected with many clones dying 

during the selection procedure (observations from Saumya Mazumder) and not all clones 

showing a cAMP phenotype similar to primary murine T cells (Supplemental Figure 1). 

Nevertheless, a cell line deficient for coronin 1 was successfully generated. Stimulating the 

coronin 1-deficient Jurkat cells with Forskolin resolves a similar increase in the generation of 

cAMP, as seen in the primary cells (compare Fig 11 C with A), indicating that the Jurkat cell line 

undergoes similar or the same modifications of the cAMP pathway upon a lack of coronin 1 

expression.  

 

Fig 11: cAMP measurements in primary mouse T cells and the human Jurkat T cell line. (A) steady state 

levels of total T cells or stimulated with 100 µM FSK  (B) T cells stimulated with 100 µM FSK with or 

without pre-incubation with 100 µM Rolipram for 30’ at 37°C. Bars are depicted as x-fold to the 

unstimulated control values. (C) Wild-type or coronin 1-deficient Jurkat T cells stimulated with different 

concentrations of FSK. (D) Jurkat T cells stimulated with 10 µM FSK with or without Rolipram pre-

incubation. (E) Membranes of Jurkat T cells stimulated with FSK. All stimulation steps were done for 10’ at 

37°C. (F) Jurkat T cells pre-incubated with 4 µM Latrunculin B for 1 hour on 37°C and assessed for cAMP 

production upon stimulation with different concentrations of PGE2 * p=<0.05, ** p<0.005, *** p<0.0005. 

Unpaired two-tailed students t-test. Graphs show pooled data from at least 3 (A-D) or 2 (E) independent 

experiments for A-D. cAMP measurements in cells with depolymerized actin only done once. 
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8.1.1.2. Increased levels of cAMP in T cells are due to decreased cAMP degradation not due to 
increased production 

 

The blockage of PDEs in wild-type of coronin 1-deficient Jurkat cells leads to an increase in 

general cAMP content, with both genotypes producing roughly double the amount of cAMP. 

This is different in comparison with primary T cells, where the blockage of PDEs does not lead 

to an increase in cAMP production. Also not present is the increased steady state levels of cAMP 

when cells are assessed without any stimulation. As coronin 1 has been postulated to be involved 

in the arrangement of the actin cytoskeleton, cells were also assessed under actin depolymerising 

conditions. Therefore, the actin cytoskeleton was depolymerized by the addition of 4 µM 

Latrunculin B for 1 hour. Both, wild-type and coronin 1-deficient Jurkat T cells showed reduced 

levels of cAMP production after treatment with Latrunculin B. However, the coronin 1-deficient 

cell line still produced more cAMP than its wild-type counterpart (Fig 11 F), which suggests no 

involvement of the actin cytoskeleton in the increased cAMP production of coronin 1-deficient T 

cells. To assess if the involvement of PDE could explain the increase of cAMP in coronin 1-

deficient T cells, the production of cAMP in membranes was studied. For this, Jurkat cells were 

starved, homogenized and separated into cytosol and membrane fractions by high-speed 

centrifugation. Resulting membranes were assessed for their cAMP production upon FSK 

stimulation. Similar to what is known from a coronin 1-deficient background in neurons; the 

membranes of coronin 1-deficient T cells produce less cAMP than wild-type membranes (Fig 11 

E). 
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Fig 12: PDE4 protein and gene expression in T cells and thymocytes. Immunoblots for PDE4 expression in 

(A) Thymocytes or splenocytes (B) thymocytes or negatively isolated T cells. (C) pooled data from 

quantitative RT-PCR for PDE4A5 gene expression from 3 individual wild-type or coronin 1-deficient 

negatively isolated T cells. Threshold for altered gene expression status was set at 2 fold change. (D) data 

from RNAseq (3 biological replicates) for CD4+CD25- wild-type or coronin 1-deficient T cells showing the 

different PDE isoforms detected.  
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Normal cAMP production at membranes suggested an impairment in the degradation of cAMPas 

the reason for the observed high levels of cAMP. To analyse this, T cells were assessed for their 

PDE4 expression status. Either total splenocytes and thymocytes or isolated T cells and 

thymocytes were lysed and assessed by western blot (Fig 12). In T cells, the most abundant and 

important isoform is PDE4A5, with a weight of 114 kD. However, the antibody detects various 

isoforms of PDE4. As can be seen in Fig 12 A, the band presumably corresponding to PDE4A5 

showed a decrease in protein expression in splenocytes lacking coronin 1 expression. This is not 

observed in the samples obtained from thymi of the two genotypes. One need to note though 

that the samples loaded in the blot are from total thymus lysate, which consists to 80% of 

double-positive thymocytes. With T cells isolated from splenocytes, the difference is more 

noticeable, only showing one band present in the blot, presumably representing PDE4A5, 

although it cannot be excluded to be the isoform 6 of PDE4A. To assess if T cells deregulate 

PDE4 expression on a transcriptional basis, total T cells were harvested and mRNA isolated. The 

subsequent quantitative RT-PCR for PDE4A5 showed a slight increase in expression in coronin 

1-deficient T cells (Fig 12 C). Additionally, conventional CD4+CD25- T cells were assessed by 

RNAseq (by Rajesh Jayachandran). Fig 12 D shows these data for all PDE isoform detected in 

the assay. This dataset shows the same slight increase of PDE4 in T cells, but also for other PDE 

isoforms. It is possible that the PDE isoforms are slightly up regulated in coronin 1-deficient T 

cells to account for the reduction in PDE4 protein levels. Also, while using different PDE 

inhibitors in wild-type cells would result in different levels of cAMP, the blockage of PDEs in 

coronin 1-deficient cells would lead to the same increase upon stimulation with PGE2 (Fig 13).  

In summary, the data suggests an enhancing role for coronin 1 in the production of cAMP in T 

cells as in neurons, with an impaired production upon coronin 1 deletion. The increase in cAMP 

levels observed in the coronin 1-deficient T cells is based on a lack of degradation of the cAMP 

by PDEs, since PDE4 protein levels are reduced. The fact that gene expression of PDEs does 

not seem to be affected upon coronin 1 deletion but protein levels are reduced, suggests a post-

translational modulation of PDE4 expression in coronin 1-deficient T cells. It remains unclear 

when exactly the cells start to modulate their cAMP levels when coronin 1 is lacking, but based 

on the data obtained by peripheral T cells, only those cells which do modulate PDE4 expression 

are capable of surviving in the periphery. 
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Fig 13: Blockage of PDEs in Jurkat cells. Wild-type or coronin 1-deficient Jurkat T cells were incubated 

with 50 µM of Ro 20-1724, Cilostamide, Rolipram, Zardaverine or Milrinone or 100 µM IBMX for 30’ 37°C 

and stimulated with 10 µM PGE2 or Forskolin for 15’ on RT. Data from one representative experiment 

shown. 



  Coronin 1 in T cell signalling and development 

 
57/119 

 

8.1.1.3. Coronin 1-dependent cAMP modulation is only present in stimuli linked to an 
increase of cAMP 

 

Coronin 1 in neurons has been shown to be associated with the stimulatory subunit of the G 

protein. G-s is needed to induce the generation of cAMP from ATP by ACs. To assess a 

potential role of coronin 1 in the activation of ACs via the G-s pathway in T cells, Jurkat and 

primary T cells were stimulated with prostaglandin pathway stimulators. PGE2 activates all 

prostanoid receptors of the EP subtype and leads to an increase in cAMP in T cells and 

significantly more cAMP is generated in coronin 1-deficient cells (Fig 14). TCS2510 is a derivate, 

which only stimulates the EP4 receptor, linked to G-s. This results in the generation of cAMP 

in Jurkat cells with an increased response in the absence of coronin 1. Primary T cells fail to 

respond which could be due to the lack of surface expression of the corresponding receptor. 

Interestingly, the stimulation of Jurkat and primary T cells with Iloprost leads to the production 

of cAMP in coronin 1-deficient T cells, but not in wild-type cells (Fig 14). The small molecule 

Iloprost has its highest affinity with the receptor subtypes EP1 and EP3 (based on Ki values 

provided by manufacturer). Neither of these should lead to the production of cAMP as EP1 is 

associated with the q-subunit, involved in Ca2+ signalling and EP3 with the inhibitory subunit, 

blocking ACs. Iloprost has been shown to bind G-s mediated receptors in higher 

 

Fig 14: primary T cells or Jurkat T cells stimulated with different concentrations of indicated agonists. All 

stimulations were done for 10’ at 37°C. Error Bars indicate SD. N=3 for primary T cell stimulation and 

PGE2 stimulation of Jurkat cells. TCS2510 and Iloprost in Jurkat cells n=1. 
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concentrations, but with wild-type cells showing zero stimulation, this effect does not explain the 

production of cAMP in the coronin 1-deficient cells. As the concept of G-protein coupled 

receptor signalling is widespread, the cells were also assessed for other receptor subtypes linked 

to the inhibitory or q-subunit of G. As can be seen in Fig 15, none of these agonists resulted in 

differential modulation of cAMP between cells with a wild-type or coronin 1-deficient 

background. In summary, the increased generation of cAMP in T cells can also be seen with 

stimuli dependent on G-s, however, there is no evidence that coronin 1 interferes with 

signalling via the other two G subunits. 

 

 

  

 

Fig 15: Jurkat T cells stimulated with different concentrations of indicated agonists, All stimulations were 

done for 10’ at 37°C. Error Bars indicate SD from 2 independent experiments.   
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8.1.1.4. Majority of increased cAMP levels in coronin 1-deficient T cells comes from 
conventional CD4+CD25- T cells 

 

T cells can be differentiated via surface marker expression and function into specific T cell 

subsets. While some of the T cells act in a cytotoxic manner, others support other cell types in 

their roles by modulating the immune response. To assess whether all T cells show the difference 

in their potential to generate cAMP, the T cells were separated into different populations. 

Stimulation of total T cells with PGE2 results in an increase in cAMP content in wild-type and in 

coronin 1-deficient cells (Fig 16 A).  In T cells separated for the surface markers CD4 and CD8 

and stimulated with a gradient of PGE2, CD4+ coronin 1-deficient cells respond with a 

significant accumulation of cAMP upon stimulus, while wild-type CD4+ T cells only produce low 

amounts. CD8+ cells respond in a similar manner, however the amount of cAMP produced is 

lower, only resulting in about a tenth of the cAMP produced by CD4+ cells (Fig 16 B). It is 

known that the levels of cAMP differ between different T cell subtypes (166), with regulatory T 

cells having elevated levels of cAMP in comparison to conventional CD4+ cells and CD8+ cells. 

To assess if the difference in cAMP is subset-specific or equal among the different populations 

(see Supplemental Figure 6 for details), T cells were isolated via negative selection and 

subsequently sorted for their CD8 and CD4/CD25 status. This allowed for the differentiation 

into regulatory (CD4+CD25+), conventional (CD4-CD25-) and CD8+ T cells. In contrast to wild-

type situations, the bulk of cAMP present in coronin 1-deficient T cells is not from the regulatory 

T cells, but from the conventional CD4+ cells (Fig 16 C). With conventional CD4+ cells 

producing the majority of the increased cAMP seen in coronin 1-deficient T cells, one could 

speculate that the increased cAMP content dampens the necessary survival signals depending on 

TCR:MHC interaction. 
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Fig 16: total or sorted T cells stimulated with PGE2. (A) T cells were negatively selected and stimulated 

with 25 µM PGE2. (B) CD4 or CD8 cells were negatively selected and stimulated with different 

concentrations of PGE2. All stimulations were performed for 10’ at 37°C. (C) total T cells were isolated 

from spleen and subsequently sorted by flow cytometry into different populations. Steady levels were 

assessed for the resulting T cell populations. * p<0.05, **p<0.005. Unpaired two-tailed students t-test. 

Error Bars indicate SD from 3 independent experiments for (A) and (C) and two independent experiments 

for (B). 
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8.2. Dependency of thymocytes on coronin 1 expression 

 Coronin 1-dependent cAMP production in thymocytes 8.2.1.

8.2.1.1. Single positive thymocytes lacking coronin 1 expression show increased cAMP 
production  

 

The thymus is the main organ for T cell maturation. It is populated during early life and involutes 

with age. Coronin 1-deficient animals, while showing a massive peripheral T cell 

lymphocytopenia, do not show a thymic phenotype in terms of thymic subpopulations (see 

section 8.4.1). The knock-out animals used in this study represent a constitutive knock-out and 

the coronin 1 promoter increases in activity during thymocyte development. To assess if 

thymocytes show a similar cAMP phenotype observed in peripheral T cells, the thymi of wild-

type and coronin 1-deficient animals were sorted for their expression status of CD4 and CD8 

(see Supplemental Figure 5 for details). In terms of steady state cAMP levels, single positive 

thymocytes have lower levels than peripheral T cells (compare Fig 17 A with Fig 11 A). There is 

also no significant difference in the steady state cAMP levels of wild-type and coronin 1-deficient 

thymocytes, regardless of their CD4/CD8 expression status. Interestingly, the increased 

generation of cAMP is observed in the single positive thymocytes, with CD4+ thymocytes having 

around 2 fold increased generation of cAMP upon stimulation with FSK. While CD8+ 

thymocytes do show a statistical significant difference, it is not as striking as in CD4+ cells. When 

stimulated with PGE2, double negative cells produce high levels of cAMP regardless of coronin 

1 expression. The production of cAMP upon PGE2 stimulation is different in single positive 

thymocytes. While CD4+ thymocytes produce low amounts of cAMP upon PGE2 stimulation, 

the CD8+ cells show increased levels of cAMP upon stimulation with PGE2 (Fig 17 C). This is in 

stark contrast to peripheral T cells, where stimulation with PGE2 leads to a massive increase in 

cAMP in CD4+ cells but only a slight increase in CD8+ cells, which is possibly explained by 

differential surface expression of PGE2 receptors. Interestingly, coronin 1-dependent elevation 

of cAMP levels is observed in the thymocyte subpopulations (single-positive) showing the 

highest coronin 1 expression levels. Taken together, the data shows a correlation between the 

expression pattern of coronin 1 and the differential production of cAMP upon stimulus in wild-

type and coronin 1-deficient thymocytes.   
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Fig 17: Assessment of cAMP production in sorted thymocytes stimulated with PGE2. (A) thymocytes 

sorted for expression status of CD4/CD8 and subsequently assessed for cAMP at steady state or stimulated 

with 10 µM FSK or PGE2. (B) cAMP production in thymocytes sorted for CD4 or CD8 status upon 

stimulation with different PGE2 concentrations. (C) Representative MFI measurements in thymocytes 

expressing GFP under the coronin 1 promoter. All stimulations done for 10’ at 37°C. * p<0.05. Unpaired 

two-tailed students t-test. Error Bars indicate SD from pooled data of 3 (A) or 2 (B) independent 

experiments.  
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 Survival of coronin 1-deficient thymocytes 8.2.2.

8.2.2.1. Changes in survival of thymocytes upon modulation of cAMP is comparable regardless 
of coronin 1 expression status  

 

Thymocytes from coronin 1-deficient animals show increased cAMP production, but no 

physiological survival phenotype. To study if thymocyte survival is dependent on cAMP 

signalling or if the stimulatory environment of the thymus overcomes any impairment on 

survival, the cells were studied in vitro. Additionally, the cAMP content was modulated by either 

(i) blocking cAMP degradation with Rolipram, (ii) increasing cAMP production by either direct 

(FSK) or indirect (PGE2) adenylate cyclase activation or (iii) by competing with endogenous 

cAMP (8-Br-cAMP). For this, thymi were prepared as single cell suspensions, cultured in the 

presence of cAMP modulating agents and their viability assessed by flow cytometry. As expected, 

thymocytes do not survive in culture for extended periods of time, with only around 60% of 

wild-type thymocytes viable after day 1. This is further reduced to around 25% on day 2. 

However, the coronin 1-deficient thymocytes, while not statistically significant, appear to die 

faster than the wild-type cells. Modulation of cAMP by inhibiting degradation by PDE4 or 

increasing cAMP actively by stimulation leads to the death of thymocytes, regardless of their 

coronin 1 expression status (Fig 18). In contrast to the other agents, 8-Br-cAMP does not 

modulate the cAMP content itself, it competes with endogenous cAMP for the downstream 

signalling via the PKA/CREB pathway. The competition did not interfere with thymocyte 

viability at all, showing a similar survival pattern as the untreated control samples. In summary, 

modulation of cAMP by either inhibiting degradation or by inducing the production leads to the 

death of total thymocytes which leaves any interpretation on the effect of coronin 1 deletion to 

be difficult.  
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Additionally, cells were incubated with cytokines known to be involved during thymocyte 

development (IL-7) but also peripheral T cell survival (IL-2 and IL-7) and their viability assessed. 

As seen in Fig 19, one hour incubation does not lead to thymocyte death, after around 6 hours of 

incubation time; the cells slowly start to show reduced viability. While thymocytes obtained from 

coronin 1-deficient animals seem to have a slightly lower overall viability, the trend is the same 

and any difference is not significant. In terms of cytokine treatment, the cells also respond 

 

Fig 18: Survival of total thymocytes in vitro. Single cell suspensions from thymi of wild-type or coronin 1-

deficient animals were cultured with indicated conditions and time. Viability was assessed by flow 

cytometry. Graphs show pooled data from at least three independent experiments. 
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equally, with thymocytes from coronin 1-deficient and wild-type animals showing a viability of 

around 25% after 2 days. 

 

  

 

Fig 19: short term survival of total thymocytes. Single cell suspensions from thymi of wild-type or coronin 

1-deficient animals were cultured with indicated conditions and time. Cell viability was assessed by flow 

cytometry. Graphs show pooled data from at least three independent experiments. 
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8.3. Survival of coronin 1-deficient thymocytes 

 Coronin 1-deficiency has no impact on cytokine induced late stage thymocyte survival 8.3.1.
 

As the bulk of thymocytes are double-positive, showing lower expression of coronin 1 than 

peripheral T cells and later stages of thymocytes, only thymocytes about to exit the thymus were 

used for the follow up studies. To achieve this, single cell suspension of thymocytes were first 

depleted with an antibody for CD8+ and magnetic beads. This results in only double-negative and 

CD4 single positive cells remaining. The resulting cells were then stained for surface markers 

known to be modulated during the last stages of thymocyte maturation. By selecting only cells 

which have downregulated CD69 and also have acquired the expression of CD62L, the resulting 

cells are (i) proliferation competent and (ii) protected from death receptor signalling (see 

Supplementary Figure 6 for scheme). This represents a physiologically unimpaired population, in 

terms of survival, of cells as close to peripheral T cells as possible in a coronin 1-deficient 

background. Similar to the experiment performed in total thymocytes, the cells were then 

cultured in media alone or in the presence of the pro-survival cytokines IL-2 and/or IL-7. When 

provided with IL-2 and IL-7 both wild-type and coronin 1-deficient thymocytes survive equally 

(Fig 20 A). The IL-7 receptor is known to be upregulated during thymocyte maturation. 

Interestingly, the assessment of its surface expression for CD62L+CD69- thymocytes was equal in 

wild-type and coronin 1-deficient thymocytes. However, the late thymocyte population which is 

the only one found to be reduced in coronin 1-deficient animals, also shows higher expression of 

the IL-7 receptor (Fig 20 B). Culturing the thymocytes in a single-cytokine system reveals that the 

rescue is not due to IL-2 (Fig 20 C) but mainly due to the presence of IL-7 (Fig 20 D). This is in 

line with recent thymic emigrants depending on IL-7 for their survival and IL-2 needed for later 

stages (167). Therefore, the severe T cell lymphocytopenia seen in coronin-1 deficient animals is 

not due to their inability to convey the survival signals provided by IL-7.  
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 Wild-type but not coronin 1-deficient late stage thymocytes can be rescued by addition of 8.3.2.
IL-4 

 

Interestingly, one cytokine, IL-4, that is not needed for T cell survival but for subsequent steps in 

T cell maturation showed different survival responses in coronin 1-deficient thymocytes 

compared to wild-type cells. IL-4 is known to be important for the generation of a specific subset 

of T cells, namely Th2. While wild-type thymocytes survive better in the presence of IL-4, the 

cells lacking coronin 1 do not respond to this survival signal and die (Fig 20). 

 

Fig 20: (A, C, D and E) Thymocytes cultured in media alone or in the presence of 20 ng/ml of indicated 

cytokines. Data from at least 3 individual experiments. (B) surface expression of IL-7a on Late Stage 

Thymocytes and thymocytes gated for CD62L/Qa2 expression status. Data from 6 animals in 2 

independent experiments. Unpaired students t-test, two-tailed, * p<0.01 ** p<0.001. 
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To assess if the defect in IL-4 induced survival of thymocytes would be due to the inability of 

coronin 1-deficient cells to phosphorylate the downstream target STAT6, either splenocytes (Fig 

21 A) or splenic CD4+ cells (Fig 21 B) were cultured in the presence of 20 ng/ml IL-4 and 

assessed for downstream signals. Both cell types show phosphorylation of STAT6 upon 

treatment with 20 ng/ml IL-4 for 24 hours. The assessment of splenocytes for proteins involved 

in NFB signalling displayed no difference between genotypes, which could also be due to the 

mixed population of cells masking any T cell specific phenotype. However, this is only an 

indication that coronin 1-deficient cells can be triggered by IL-4 and the lack of survival of sorted 

coronin 1-deficient thymocytes upon IL-4 stimulus would require further studies.  

 

 

Fig 21: IL-4 induced phosphorylation of STAT6. Splenocytes (A) or isolated splenic CD4+ cells (B) of wild-

type or coronin 1-deficient animals were stimulated with 20 ng/ml IL-4 for 24 hours and assessed by 

immunoblot. Each experiment is only performed once. 
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 Survival signals mediated by dendritic cells rescue both wild-type and coronin 1-deficient 8.3.3.
late stage thymocytes 

  
As the thymocytes have not shown a difference in the survival when cultured with IL-7, sorted 

thymocytes were also cultured in medium or in the presence of bone marrow-derived dendritic 

cells, which are known to offer stimuli needed for peripheral T cell survival (168). As shown in 

Fig 22 B, both wild-type and coronin 1-deficient late stage thymocytes do not survive in culture 

when not receiving any additional survival signals. In co-culture with immature dendritic cells 

however, both wild-type as well as coronin 1-deficient thymocytes survive over the period of five 

days (Fig 22 B). To assess if this survival is due to factors secreted by DCs, thymocytes were 

either cultured in filtered supernatant of DCs or in a transwell co-culture system. Under both 

conditions, the thymocytes failed to survive, suggesting a requirement for direct cell-cell contact 

(compare Fig 22 B to C) for late stage thymocyte survival. 
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Fig 22: In vitro survival of thymocytes sorted for CD3+CD4+CD62L+CD69-. (A) Gating strategy for viability 

measurements. Top panels show wild-type (left side) and coronin 1-deficient (right side) samples without 

(top) or with dendritic cells (bottom). (B) Thymocytes cultured in media alone or in the presence of 100.000 

immature dendritic cells for up to 5 days. (C) Thymocytes cultured in media alone, with 0.2 µm filtered 24 

hr supernatant of immature dendritic cells (SN) or in a 3.0 µm transwell system with 100.000 immature 

dendritic cells. For panel C cell counts were normalised to the untreated media control of day 1. 

Concentration of thymocytes is 75.000 cells/well in all experiments. Media was replenished after 2 days in 

culture; data represents mean from at least 3 independent experiments. Error Bars indicate SD. 
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8.4. Thymocyte development in wild-type and coronin 1-deficient animals 

 Major Thymocyte populations and TCR maturation are comparable in wild-type and 8.4.1.
coronin 1-deficient animals 

 

Coronin 1-deficient animals have been reported to show a severe lack of peripheral T cells but 

whether or not coronin 1 is important for the development and maturation of thymocytes is 

unclear (96, 97). Additionally, previous experiments have shown the thymocytes produced by 

coronin 1-deficient animals to have equal survival capabilities when cultured with known pro-

survival stimuli. To assess which population of T cell lineage would be the first showing a 

phenotype upon coronin 1 deletion, thymi of wild-type or coronin 1-deficient animals were 

isolated and single cell suspensions were prepared. Subsequently, the cells were stained for CD3, 

CD4 and CD8 and viable cells were assessed by flow cytometry. No difference in the percentages 

of double negative, double positive or single positive cells could be found in the thymus of wild-

type versus coronin 1-deficient animals (Fig 23 A). 

As TCR rearrangements occur during the double positive stages of thymocyte development, the 

TCR usage was analysed by flow cytometry. Total T cells were isolated via negative selection 

from the thymus of wild-type or coronin 1-deficient animals. The resulting cells were then 

stained for CD3, CD4 and CD8 and additionally with antibodies detecting specific mouse V T 

cells receptor isoforms.  For analysis, CD3+CD4+ cells were identified by flow cytometry 

followed by the analysis of the presence of specific V T cell receptor isoforms. No difference 

was observed in CD3+CD4+ thymocytes concerning their TCR repertoire (Fig 23 B). Together 

with the normal percentages of thymic populations, this indicates that coronin 1 is dispensable 

for thymocyte maturation up to the single positive stage. 
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Fig 23: Analysis of thymocytes populations, TCR usage and late stage thymocyte surface markers (CD62L, 

CD24, Qa2) CD3+CD4+cells from wild-type and coronin 1-deficient mice. Thymi were mashed into single 

cell suspensions and stained for corresponding markers. (A) Analysis into thymic populations, double 

negative DN, double positive DP, single positive CD4 or CD8 (>3 independent experiments) (B) Usage of 

mouse V chains for assessment of TCR repertoire (SD of 2 independent experiments) (C) Representative 

gating strategy for CD3+CD4+ thymocytes and (D) splenocytes, numbers indicate percentage of CD3+CD4+ 

cells. (E+F) Percentages and total numbers for indicated populations in thymi or spleen of wild-type and 

coronin 1-deficient animals of 6-8 weeks of age. (n=4 and 6 for CD62L/Qa2 and CD62L/CD24 expression 

respectively from at least 3 independent experiments. Unpaired students t-test, two-tailed, * p<0.01, ** 

p<0.001, *** p<0.0001. Error Bars indicate SD 
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 Equal numbers of ready to egress thymocytes are found in wild-type and coronin 1-8.4.2.
deficient animals 

 

Following maturation, thymocytes exist in the thymus as late stage thymocytes before they egress 

out of the thymus as RTEs. To assess a possible role for coronin 1 at later developmental stages, 

the levels of cell surface markers that define this cell population, in particular CD62L, Qa2 and 

CD24 (34) were assessed. Thymocytes exiting the thymus upregulate CD62L and Qa2 while 

downregulating the expression of CD24. This allows the differentiation into thymocytes 

preparing to egress (CD62L+CD24mid/CD62L+Qa2-) and thymocytes ready to egress (CD62L-

CD24-/CD62L+Qa2+) (Fig 23 C for gating strategy). In peripheral organs such as the spleen, the 

same gates can be used to identify cells which have either just egressed 

(CD62L+CD24mid/CD62L+Qa2-) or have already established themselves in the peripheral T cell 

pool (CD62L+CD24-/CD62L+Qa2+) (Fig 23 D). Analysis of surface expression for 

CD62L/CD24 in CD4+ thymocytes revealed no difference in total numbers of thymocytes ready 

to egress and also not in the numbers of T cells which recently egressed (Fig 23 E). The same 

analysis performed for the surface expression of CD62L and Qa2, which both need to be 

upregulated for thymic egress, reveals again no difference in total numbers of recently egressed T 

cells. While there is a small but significant difference in CD62L/Qa2 double positive thymocyte 

numbers, this loses its significance when displayed as percentage of cells (Fig 23 F). The most 

striking and consistent difference is, as expected from previous observations (96, 99, 100, 108), 

visible in the mature stages of naïve T cells, where coronin 1-deficient animals show a clear 

reduction in numbers and percentages (Fig 23 E+F). Together this data suggest that coronin 1 is 

dispensable for thymocyte survival and development. 

 

 Expression of proteins needed for thymocyte and recent thymic emigrant maturation  8.4.3.
 

Thymocytes, which are about to egress, upregulate not only CD62L but also downregulate 

expression of CD69. Therefore cells positive for CD62L have downregulated CD69 and are 

considered late stage thymocytes. As coronin 1-deficient animals show no thymic egress 

phenotype (i.e. accumulation of single positive thymocytes, see Fig 23A, E and F), the gene 

expression of proteins known to be important for thymic egress, but also for pro-survival signals 
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and homing/migration signals in thymocytes and RTEs were assessed (Fig 24A). Therefore, 

thymocytes were sorted for the M2 stage (i.e. CD62L+CD69-, see Supplementary Figure 6), as 

described for the survival studies. Subsequently mRNA was isolated and the gene expression 

assessed by qPCR. The krüppel-like factor 2 (KLF2), which is upstream of CD62L, was found to 

be expressed equally in wild-type and coronin 1-deficient thymocytes sorted for CD62L+Cd69- 

expression. Secondly, another important transcription factor, not only for thymic egress but also 

for the generation of naïve mature T cells, is the Forkhead Box Protein 1 (Foxp1). Mice deficient 

for this factor develop an activated phenotype, shown by increased CD44 positive cells in the 

thymus, resulting in increased apoptosis. However, this is not the case in coronin 1-deficient 

animals as the thymocytes have no increased CD44 expression (data no shown) and also the gene 

expression of Foxp1 is unchanged. Furthermore the expression of the transcriptional repressor 

NFB activation protein (NKAP) was analysed. NKAP is mandatory for the maturation of T 

cells, as lack of this repressor leads to functionally immature RTEs. In line with the fact that no 

striking reduction in late stage thymocyte numbers can be seen, NKAP expression is not 

significantly modulated upon the lack of coronin 1 protein. To assess the expression of CCR7, 

the chemokine receptor needed for successful migration from the medulla to the cortical region 

of the thymus, single cell suspension from thymi were measure by flow cytometry. In line with 

previous data (97), no differences in surface expression could be found between wild-type and 

coronin 1-deficient thymocytes (Fig 24).  
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Fig 24: Analysis of markers important for thymocyte egress and maturation in animals from wild-type or 

coronin 1-deficient background. (A) quantitative RT-PCR for NKAP, Foxp1, KLF2 and GAPDH in 

thymocytes sorted for CD62L and CD69 expression. Shown is the xfold change in gene expression in KO 

compared to wild-type cells. Data is normalized to GAPDH expression and acquired in triplicates from 

RNA samples obtained in three independent experiments. >2 fold change considered significant (B) 

CCR7 expression on CD3+CD4+ thymocytes based on FACS analysis.  Data from n=7 animals in 2 

independent experiments (C) TREC analysis for thymocytes and splenocytes (n=3) (D) Surface 

expression of S1P1 on thymocytes (n=3). Error Bars indicate SD 
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To further analyse a requirement for coronin 1 in TCR rearrangement that could possibly result 

in differences in T cell population in the two genotypes, T Cell Receptor Excision Circles 

(TREC) were analysed. These TRECs originate during TCR rearrangement in the thymus, were 

small circular episomal DNA circles are produced, and persist in T cells, where they are diluted 

with every division and can therefore be used as a proxy to assess the age of a peripheral T cell. 

Therefore TRECs can be used to assess successful thymocyte maturation and egress(165).  To 

measure the levels of TREC molecules, genomic DNA of thymocytes and splenocytes was 

isolated and a qPCR performed. The levels of TREC were comparable in wild type and coronin 

1-deficient animals consistent with the similar T cell receptor repertoire in wild type and coronin 

1-deficient mice (Fig 24 C). This also holds true for the TREC levels in splenocytes of both 

genotypes, further indicating a normal RTE compartment in coronin 1-deficient animals.  

For the main migration marker in thymocytes egress, the receptor for S1P, literature (99) has 

suggested no difference in surface expression, but a functional deficit in migration. The surface 

expression of this receptor was therefore assessed by flow cytometry in whole thymocytes. While 

our data does not show an increase in any late stage thymocyte population, suggesting an in vivo 

migration defect, the surface expression of S1P1 differs between wild-type and coronin 1-

deficient thymocytes gates for CD62L and Qa2 (Fig 24 C). While wild-type animals possess 

double the percentage of CD62L, Qa2, S1P1 triple positive cells in comparison to coronin 1-

deficient animals, the expression of S1P1 on cells gates for CD62L and CD24 expression is equal. 

If this would hint at sequential events of surface molecule expression during the last steps of 

thymocyte egress remains elusive.  

Taken together, the late stage thymocytes of coronin 1-deficient animals show no migratory in 

vivo defect and are capable of modulating surface markers and transcription markers needed for 

thymic egress and maturation. 
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8.5. Establishment of the peripheral T cell pool in neonatal wild-type and 

coronin 1-deficient mice 

 The coronin 1-dependent survival of peripheral T cells is age dependent 8.5.1.
 

As the T cells of coronin 1-deficient animals might have accumulated unknown compensatory 

mechanism to cope with the deletion, newborn animals were studied to see if their RTE and 

MNT population would reflect the data for adult animals. Therefore the T cell population during 

the first three weeks of age in wild-type and coronin 1-deficient littermates was assessed. During 

the first two weeks after birth, in wild type and coronin 1-deficient mice peripheral CD3+CD4+ T 

cell numbers were found to raise to similar numbers (2x106, see Fig 25 A). While in wild type 

mice T cell numbers steadily increased to ~12x106, absence of coronin 1 T cell numbers resulted 

in low numbers around ~2x106. In contrast to this, thymocyte populations were found to be 

equal (Fig 25 A). Additionally no difference in total cellularity of spleen and thymus of the 

animals could be found (Fig 25 B). 

The majority of T cells in the periphery of newborn animals are RTEs, therefore a subset analysis 

of peripheral T cells in newborn animals was performed, using the same staining as for the adults. 

Similar to what was observed in total peripheral T cells, only later T cell stages (CD62L+Qa2+) 

showed differences visible after d19, with RTE (CD62L+Qa2-) being comparable. Wild-type 

animals have a higher percentage of later stages of T cells in comparison to coronin 1-deficient 

animals (Fig 25 C). It is possible that the difference only visible after two weeks is due to a lack of 

expression of coronin 1 during this timeframe. To account for this possibility, we used 

splenocytes and thymocytes from mice which express GFP under the coronin 1 promoter. Fig 26 

A shows a representative histogram from CD3+ splenocytes and total thymocytes of these mice, 

showing equal activity of the coronin 1 promoter during development.  
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As shown in Fig 26B, the assessment of TREC in splenocytes of wild-type and coronin 1-

deficient newborn animals (d12) showed no difference, further indicating that the peripheral T 

cell pool in both genotypes is comparable (Fig 26 C). 

Similar to what has been observed in the thymocytes of adult animals, the expression pattern of 

S1P1 is different in coronin 1-deficient cells. While the assessment of S1P1 expression in cells 

 

Fig 25: Presence and subset analysis of peripheral T cells and thymocytes in animals a different ages. (A) 

total numbers of CD3+CD4+ splenocytes (left) or thymocytes (right) (B) total cellularity for spleen and 

thymus (C) subset analysis of CD62L/Qa2 expression. Unpaired two-tailed students t-test. * p < 0.01, ** p 

< 0.001 *** p < 0.0001. Each dot represents one animal, data obtained from wild-type and coronin 1-

deficient littermates. 
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gated for CD62L and CD24 status is comparable between genotypes, only about half of the cells 

are triple-positive for CD62L, Qa2 and S1P1. Additionally, in contrast to the adult thymocytes, 

the cells from animals of d10 show high expression of S1P1 on Qa2 negative cells, which is not 

visible in their adult counterparts.  

Taken together, this suggests that survival of recent thymic emigrants is independent of coronin 

1. Additionally, coronin 1-deficient thymocytes are capable of successful in vivo thymus egress 

comparable to the wild-type situation. Therefore the data points the exact time at which cells of 

T cell lineage become dependent on the expression of coronin 1 at the stage of MNTs, with the 

thymic and RTE compartment being unimpaired.  

  

 

Fig 26: (A) representative histogram for CD3+ splenocytes (left) or thymocytes (right) from animals of 

different ages expressing GFP under the coronin 1 promoter. (B) Analysis of mTREC in splenocytes and 

thymocytes of d12 old littermates (n=2). (C) surface expression of S1P1 on thymocytes (n=3). Error Bars 

indicate SD. 
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9. Discussion 
 

9.1.  Cyclic AMP in coronin 1-deficient cells of T cell lineage 

 Cyclic AMP levels are increased in coronin 1-deficient T cells 9.1.1.
 

Neurons expressing coronin 1, and fibroblast, with exogenous expression of coronin 1, show 

increased levels of cAMP compared to coronin 1-deficient neurons or non-transfected fibroblasts 

(114). The strongest expression of coronin 1 is visible in cells of the immune system, but no 

survival deficit is seen in any other immune cells except for peripheral T cells. Interestingly, when 

T cells are assessed for their cAMP levels, they show an increase in cAMP levels upon the 

deletion of coronin 1. This phenotype is already present in single positive thymocytes, so it is 

possible that T cells need finely regulated cAMP levels to achieve maturity, but this regulation is 

dependent on coronin 1.  

Coronin 1 is expressed in all cells of the hematopoietic system and in excitatory neurons (106, 

114). The expression pattern is however not equal among hematopoietic cells 

(http://haemosphere.org/expression/show?geneId=ENSMUSG00000030707). In T cells, 

coronin 1 levels increase with maturation, namely at stage of single positive thymocytes. 

Additionally, T cells are the only lymphocyte population with survival impairment upon coronin 

1-deletion. Coronin 1, when expressed in fibroblasts, increases the levels of cAMP. In neurons, 

when deleted, the cAMP levels are reduced, which leads to impairment in the formation of long 

term memory. As cAMP is an important secondary messenger (169) and changes in cAMP have 

been linked to thymocyte and T cell survival and function (146, 170), the T cell survival 

phenotype upon coronin 1 deletion could be linked to cAMP. Thorough analysis of the cAMP 

pathway in coronin 1-deficient T cells has revealed two important facts (this study and 

Jayachandran et al. in prep). First, coronin 1 has a similar mode of action in neurons and T cells, 

with the lack of coronin 1 resulting in reduced production of cAMP. Second, the increase in 

overall cAMP levels is due to modulation of downstream signalling in the cAMP pathway, namely 

the modulation of the degradation enzyme PDE4. The reduction of PDE4 is likely to be a post-

transcriptional modulation, as gene expression analysis of PDE4A5 shows no differential 

regulation. It is however possible that the band seen is a different isoform of PDE4A, as this 

enzyme family has a variety of isoforms, closely homologous to each other. One possibility would 

be PDE4 Isoform 6, which has recently been upgrade from a predicted isoform to a proven 

http://haemosphere.org/expression/show?geneId=ENSMUSG00000030707


  Coronin 1 in T cell signalling and development 

 
81/119 

 

isoform based on the NCBI database. Additionally, no PDE4 related proteins have been found 

to be modulated in an RNAseq screen in T cells sorted for conventional and regulatory CD4+ 

cells (data from Rajesh Jayachandran). 

Interestingly, while coronin 1 has been shown to be a direct interactor of G-s, the G-protein 

responsible for the activation of the AC, increased cAMP in coronin 1-deficient animals is also 

seen by direct activation of the AC by Forskolin. Assuming that the difference in cAMP is only 

due to reduction in degrading enzymes, it is unclear why the lack of coronin 1 would lead to 

reduced levels of cAMP upon direct activation of ACs in isolated membranes. While the 

interaction of coronin 1 and G-s has been shown to be activation dependent, it stands to reason 

that coronin 1 does affect AC activity by a so far unknown mechanism. As the combination of 

G-s and Forskolin has been shown to have a synergistic effect on the AC activity (171) one 

possibility could be just a stochastic mechanism. In a wild-type situation, coronin 1, G-proteins 

and AC are localized in the plasma membrane, with coronin 1 interacting with free G-s. 

Potentially, coronin 1 leaves ACs in more activated state, increasing the cAMP production.  

 

 Increased cAMP stems from conventional coronin 1-deficient CD4+ T-cells 9.1.2.
 

Coronin 1-deficiency leads to a distortion in T cell populations, with less naïve T cells and, 

percentage-wise, more cells of a regulatory subtype. Recent experiments in our laboratory have 

revealed that coronin 1-deficient T cells have the ability to provide a tolerogenic environment. 

This results in the lack of host versus graft disease, with the animals not rejecting tissue grafts 

(manuscript by Jayachandran et al. and thesis from Aleksandra Gumienny 2016). In a wild-type 

situation, tolerogenic environments are provided by regulatory T cells, but in a coronin 1-

deficient situation this is not exclusively mediated by regulatory T cells but rather by conventional 

T cells. It is known, that regulatory T cells have higher basal levels of cAMP (166). Sorting 

peripheral T cells into CD8+ cells or conventional and regulatory CD4+ cells revealed the 

surprising fact that the increased cAMP levels are not due to increased regulatory T cell numbers. 

It is mainly due to the conventional T cells, which show around 5 fold higher levels of cAMP 

than their wild-type counterparts. Stimulation by PGE2 of CD4+ and CD8+ splenic T cells shows 

an increased production of cAMP in both populations. However, the production of cAMP is 

higher in CD4+ cells, which could be due to differential expression of PGE2 surface expression 

in these cells. It is unclear why the coronin 1-deficiency would result in T cells down regulating 
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PDEs to increase their cAMP content, presumably as a compensatory mechanism. However, it 

has been shown that increased levels of cAMP dampen the TCR response, with increased levels 

of PDE4 being recruited to membranes to assure efficient TCR activation (172, 173). This 

indicates that cAMP needs to be fine-tuned for the survival and maturation of T cells, which 

could be the role of coronin 1. One could speculate that with the lack of coronin 1, the cells end 

up compensating to achieve sufficient levels of cAMP. This subsequently results in (i) providing a 

cAMP dependent tolerogenic environment and (ii) having survival impairment due to dampening 

of TCR signals. The dampened TCR signal leads to the normal tonic TCR stimulus, provided by 

the peripheral lymphoid organs, not being strong enough for survival. 
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9.2.  T cell subsets in coronin 1-deficient animals and their survival 

capabilities 

 Coronin 1-deficient late stage thymocytes are capable to survive on peripheral survival 9.2.1.
signals 

 

Total thymocytes of coronin 1-deficient animals were shown to be less viable when cultured 

without any stimulation, however in vivo the thymus consists to 80% of double positive cells, 

which could skew the analysis. While cells in the thymus depend on TCR signalling for their 

maturation steps, and mature naïve T cells depend on tonic TCR stimuli for survival, the survival 

and maturation of RTEs does not depend on TCR signals (50). However, it has been shown that 

RTEs produce higher levels of the pro-survival protein Bcl-2 upon IL-7 signalling (174, 175). As 

coronin 1-deficient T cell in the periphery are highly compromised, a system with the last non-

compromised cell subset was used, namely the latest stage of thymocytes (M2). These cells are 

proliferation competent and resistant to death receptor signalling of the thymic 

microenvironment. Interestingly, these late stage thymocytes show comparable survival 

capabilities to their wild-type counterpart. In line with literature, the cells survive similar to T cells 

in a co-culture system and the survival is dependent on cell-cell contact (168). While the cells 

used in this assay would physiologically not depend on the survival signals presented by antigen-

presenting cells, it stands to reason that a mature naïve T cell originating from one of these cells 

would be capable of surviving via TCR:MHC signalling if the signal is strong enough. As it has 

been shown that the downstream TCR signalling of coronin 1-deficient T cells is dampened (96), 

possibly also due to increased cAMP levels in these cells, the tonic stimuli provided in secondary 

lymphoid organs might not be enough for the cells to survive. On the other hand, T cells with a 

transgenic TCR, specific for parts of the ovalbumin peptide, proliferate upon stimulus regardless 

of coronin 1 expression status (97), although they show the same reduction in Ca2+ signalling as 

coronin 1-deficient T cells with wild-type TCR (our unpublished observations). An explanation 

for this discrepancy is so-far elusive; the only potential explanation would be different signals 

being responsible for homeostasis and proliferation of T cells. 
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Next to tonic TCR:MHC interaction, the second important factor for peripheral T cell survival 

and maturation are cytokines, with the two most important ones for survival being IL-2 and IL-7 

(167, 176). While IL-2 is important for more mature stages of T cells and to uphold self-tolerance 

(177), IL-7 is not only needed for the survival of peripheral T cell but also for the maturation of 

thymocytes (178). Thymocytes, when cultured in high concentrations of IL-2 and IL-7 survive 

equally regardless of coronin 1 expression. Not only do the cells survive, they also proliferate 

equally. Given that the same cells will not survive on IL-2 but on IL-7, the late stage thymocytes 

of wild-type and coronin 1-deficient animals respond equally to cytokine mediated survival. This 

would further indicate that these cells are per-se capable of understanding survival signals 

provided by different environments. Interestingly, when the late stage thymocytes are treated 

with a cytokine, which is not necessarily needed for survival but for maturation, the response 

differs. While thymocytes expressing coronin 1 can survive when cultured in the presence of IL-

4, the thymocytes lacking the expression of coronin 1 do not. This would be in line with total T 

cells of coronin 1-deficient background showing increased production of IFN-, which is being 

produced by T-helper type 1 cells. In contrast to this, IL-4 is produced in a positive feedback 

loop by T-helper type 2 cells.  However, the lack of survival of peripheral T cells in a coronin 1-

deficient animal cannot be due to the lack of response to IL-4, as the IL-4 knock-out animals 

show no defect in peripheral T cell survival (179). It is therefore unclear what the physiological 

role would be in terms of IL-4 and coronin 1 and the potential involvement of coronin 1 in the 

IL-4 pathway remains to be addressed.  
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 Identification and Measurement of distinct T cell subsets 9.2.2.
 

T cells from coronin 1-deficient mice show a massive reduction in numbers, regardless of specific 

subtype. However, this difference is pronounced the most in the compartment of mature naive T 

cells, with more mature T cells still showing a subtler difference. Additionally, several labs have 

published contradicting data on the percentages of thymocyte subtypes. Data on thymocytes 

range from no difference in any thymocyte subsets (96, 100), no reduction in CD4+ cells but in 

CD8+ single positive cells (97), an accumulation of double positive cells with subsequent 

reduction in both single positive cell subtypes (108) to accumulation of late stage thymocytes 

resembling a classic thymic egress phenotype (99). When assessed for surface markers known to 

be important in the late stages of 

thymocytes and being modulated upon 

the maturation of recent thymic 

emigrants to mature naive T cells, no 

difference was observed in terms of 

numbers and percentages up to the stage 

of recent thymic emigrants. In contrast 

to mature naive T cells, which depend 

on the tonic MHC:TCR interaction for 

survival, recent thymic emigrants have 

been shown to only depend on this 

interaction for shaping the TCR 

repertoire but not for maturation or 

survival (50). It is, as of now, unclear 

which exact signals drive RTE 

maturation, but the cells do need to 

home into secondary lymphoid organs 

for their maturation (47). As coronin 1-

deficient animals do have mature T cells 

which have undergone post-thymic 

maturation steps and additionally show 

no reduction in KLF2 gene expression 

or CD62L surface expression, the cells 

should theoretically be able to efficiently 

 

Fig 27: Schematic on T cell homeostasis in mice. Wild-type 

and coronin 1-deficient thymocytes egress into the 

bloodstream and then migrate into secondary peripheral 

lymphoid organs. The recent thymic emigrants further 

mature into mature naïve T cells. At this stage, coronin 1-

deficient T cells have a survival deficit and only a small set 

of peripheral T cells manage to survive. 
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enter secondary lymphoid organs. However, there have been studies showing a deficit in 

migration against certain ligands in coronin 1-deficient cells (99, 104). In summary, coronin 1-

deficient animals (i) have normal thymocyte and recent thymic emigrant levels, (ii) have a severe 

reduction in the stage of mature naive T cells and (iii) show normal expression of migration 

markers, but do show deficiencies in migration. This could indicate that the thymocyte egress and 

the circulation of recent thymic emigrants is normal, which is also consistent with normal levels 

of TREC in the periphery of coronin 1-deficient animals, but that these cells have a problem with 

maturation and therefore die off as soon as they depend on survival signals for mature naive T 

cells (Fig 27). This would be in line with literature showing a defect in Ca2+ signalling upon 

stimulation of the T cell receptor in coronin 1-deficient T cells (96). 

 

 T cell development in newborn and adult mice 9.2.3.
 

In a normal functioning organism, the majority of T cells come out of the thymus and 

proliferation in the periphery is scarce. In other conditions, such as lymphocytopenia, T cells are 

known to proliferate as the normal thymic output cannot produce enough cells in a short period 

of time. This proliferation is coined homeostatic proliferation and is dependent on the expression 

of CD24 (40). However, there is one physiological occurrence when organisms are functioning 

normally but are considered lymphodepleted. During mouse development, the T cell niche is 

gradually filled by RTEs with the peak of thymic egress at around 6 weeks of age (19). 

Interestingly, the survival of coronin 1-deficient T cells in the periphery is age dependent. Early 

ages show equal numbers of peripheral CD4+ T cells, but after around 2 weeks of age, the wild-

type T cells increase in numbers, whereas the coronin 1-deficient cells plateau. This could be due 

to the fact that recent thymic emigrants have a survival span or roughly 2 weeks, after this the 

cells mature further. This would also fit with subset analysis of the cells, showing a decrease in 

cells which are low on Qa2 but high on CD62L (being RTEs) and with comparable TREC 

measurements. However, it is known that T cells of newborn animals have functional differences 

in comparison with cells obtained from an adult animal (58). Especially RTEs of newborns have 

been shown to respond differently to various pro-survival signals (72). It is therefore unclear if 

the equal number of peripheral T cells is due to all cells being recent thymic emigrants and 

therefore not depending on coronin 1 for their survival, or if the only reason is that newborn 

animals offer a more stimulating environment for cells to survive than adult animals. 
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11. Appendix  
 

11.1. Biochemical elucidation and localization of coronin 1 

 Possible formation of a supra-molecular complex including coronin 1 11.1.1.
 

Previous preliminary data from our lab (by Somdeb BoseDasGupta) has shown the possibility of 

coronin 1 being part of supra-molecular complex, dependent on stimulation of cells by 

isoproterenol, a ligand for the -adrenergic receptor. For the analysis, the melanoma cell line 

MelJuso was transformed to stably express coronin 1. Coronin 1 expressing cells were then 

grown to confluence and starved for 2 hours in HBSS containing Mg2+ and Ca2+. The cells were 

subsequently stimulated by 10 µM isoproterenol for 10’ at 37°C followed by fixation with 1% 

paraformaldehyde. Cells were then lysed in a buffer containing 0.2% digitonin, to extract coronin 

1 from the membranes and fractionated into either 1 ml (Fig 28 A) or 500 µl (Fig 28 B) fractions 

by a Superose 6 column using a HEPES based buffer (20 mM pH 7.5) containing 20 mM KCl, 2 

mM MgCl2, 1 mM CaCl2  and 0.2% N-octyl-glucopyranoside. Resulting fractions were 

precipitated by TCA and loaded onto 10% SDS Page gels and analysed by immunoblotting. 

While coronin 1 should have a size of around 51 kD, with the possibility to form a trimer 

structure around 150 kD (84), the blots show coronin 1 signal also in higher molecular weight 

fractions. In Panel A Isoproterenol stimulated fractions showed a shift into higher molecular 

fractions, but this also holds true for the actin signal. In Panel B, this shift is less visible with 

coronin 1 present in high molecular fractions, but only stimulated samples showing coronin 1 in 

the highest fractions. Additionally, the gels show two different elution profiles, with Panel B 

zoomed in on the high molecular weights. It needs to be noted, that the loading of the gels is not 

equal and any change in protein levels could therefore be due to unequal protein levels present. 
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Fig 28: Fractionation of MelJuso cells. Cells were stimulated with 10 µM Isoproterenol for 10’ on 37°C, lysed 

and fractionated by a S6 size exclusion column. Resulting fractions were loaded on SDS PAGE and 

analysed by immunoblotting for the presence of coronin 1 in higher molecular fractions. (A) and (B) are 

two representative experiments, showing the low reproducibility between experiments. 
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 Elucidation of coronin 1 interaction partners by co-immunoprecipitation   11.1.2.
 

Coronin 1 has been shown to be involved in the production of cAMP due to its association with 

G-s. In neurons, this has been linked to the formation of long-term memories and coronin 1-

deficiency results in insufficient levels of cAMP produced (114). Therefore, the neuroblastoma 

cell line N1E115 was used, as neurons show a low expression pattern of coronin 1. To analyse 

interactions, N1E115 cells were starved for 2 hours in HBSS supplemented with Mg2+ and 

Ca2+ and stimulated with 10 µM isoproterenol. The cells were then lysed in a detergent based 

buffer containing 0.1% digitonin without any fixation procedure. Cell lysates were then incubated 

with an antibody against mouse coronin 1 for 2 hours at 4°C and antibody-protein complexes 

extracted by incubation with magnetic Protein G dynabeads for 1 hr at 4°C. After washing, beads 

were solubilised in Laemmli Buffer and boiled for 10’ at 95°C. The resulting solution was then 

loaded on a 10% SDS PAGE Gel and immunoblotted for coronin 1 (Fig 29). To assess correct 

stimulation and precipitation, the samples were also probed for G-S. While coronin 1 is present 

in input and equally in the 

immunoprecipitated samples, it is not 

present in the flow-through. G-s is found 

in input and flow-through, indicating not 

all available G-s is bound by coronin 1. 

For the co-immunoprecipitation, only the 

samples stimulated with isoproterenol 

show G-s binding with coronin 1, with 

no signal present in unstimulated samples. 

Taken together, it shows that the co-

immunoprecipitation for coronin 1 shows 

a consistent association with G-s and the 

identification of any other pulled-down 

proteins by mass spectrometry would be 

the next step. 

 

 

  

 

Fig 29: Stimulus dependent association of coronin 1 with 

G-S. Neuroblastoma N1E115 cells were stimulated for 10’ 

37°C with 10 µM Isoproterenol and lysates 

immunoprecipitated with anti-Coronin 1. Bound 

complexes were isolated with magnetic Protein G 

dynabeads and resulting lysate loaded onto SDS PAGE 

and assessed by immunoblot.  Shown is a representative 

blot of 3. 
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 Dependency of coronin 1 membrane association on N-terminal regions 11.1.3.
 

Coronin 1 has been shown to be mainly localized to the membrane and kept there by association 

with cholesterol (86). Therefore, buffers used to assess coronin 1 expression in a cell contain 

digitonin to sequester cholesterol and extract the membrane associated coronin 1. As Gatfield et 

al. have shown that the C-terminal regions of coronin 1 are not needed for its localization at the 

cell membrane but for the trimerization (84). To assess if the N-terminal part of coronin 1 would 

be important for its localization, cells expressing a mutated version of coronin 1, lacking the first 

ten amino acids, were analysed. This mutation results in all the amino acids up to the beginning 

of the first  propeller being deleted and therefore should leave the overall tertiary structure of 

coronin 1 intact (see Fig 30 A for scheme). C-terminal HA-tagged versions of wild-type coronin 1 

(Cor1-HA) or coronin 1 lacking the first ten amino acids (N10-Cor1-HA) were expressed in 

HEK cells and assessed by immunofluorescence and western blotting. As expected wild-type 

coronin 1 was localized at the membrane. The deletion of the first 10 amino acids resulted in a 

loss of membrane association, showing instead a diffuse cytoplasm localized pattern (Fig 30 B). 

However, less cells show expression of the N10 version in comparison to the wild-type version. 

This could explain the lack of coronin 1 visible in cells lysed with RIPA buffer and assessed by 

immunoblotting (Fig 30 C and D).  
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Fig 30: Localization of coronin 1 in transfected HEK cells. (A) Scheme of protein modification. 

Representative immunofluorescence of HEK cells transfected with either wild-type coronin 1 or a mutated 

version with a deletion of the first 10 amino acids  in 63x magnification (A) or 20x (B). (C) Representative 

immunoblot for coronin 1 in HEK cells expressing wild-type or N10 mutant. 
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11.1. Discussion on stimulation dependent complex formation and 

coronin 1 localization 
 

As this part of the project has been followed up for the first one and a half years, but has never 

yielded any interpretable and usable results, the discussion is more focussed on providing 

possible experiments to follow up than discussing the data itself. 

 

 Complex isolation by size exclusion column and co-immunoprecipitation 11.1.1.
 

In line with preliminary data obtained by previous labmembers, the fractionation of cells 

expressing coronin 1 with a size exclusion column showed a shift of fractions containing coronin 

1 upon stimulation. However, the method was not very reproducible, with sometimes displaying 

a shift, but not other times and often with different sizes. Additionally, the step of TCA 

precipitation was often only partially successful with samples sometimes having to be solubilised 

in 8M urea. In combination these slight changes from experiment to experiment introduced a 

high variation. Additionally, using transfected cells leads to an abundant expression of coronin 1, 

possibly resulted in false positive results. In general, loading of whole cell lysate on size exclusion 

columns, while covering a wide range of possible protein formations, is a method prone to 

variations. Using a cell line with endogenous expression of coronin 1 and an antibody based co-

immunoprecipitation approach gave more reproducible results to build upon. As a first approach, 

the beads obtained by co-immunoprecipitation could be used to load a SDS PAGE gels and 

subsequently assess the gel for any additional bands not matching either the size of coronin 1, 

G-S or antibody heavy/light chains. This has not been seen by a ponceau stain, but a more 

sensitive approach such a silver stain could show additional bands. Therefore, beads obtained by 

co-IP could be used for mass spec analysis using an on-bead digestion procedure. The mass 

spectrometry analysis should then show coronin 1 and G-s as positive control with potentially 

additional proteins coming up. 
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 Localization of coronin 1 11.1.2.
 

The data obtained with the deltaN10 mutant of coronin 1 suggests that the membrane 

association is dependent on these first amino acids. A mutated version of coronin 1 with a single 

point mutation at amino acid 26 has been shown to have an actin phenotype, with the 

immunofluorescence pictures showing similar diffused pattern in the cytoplasm (180) with 

functional deficiencies. This amino acid 26 is already part of the first -sheet, which could 

indicate that a malformation of coronin 1 is the reason for these phenotypes. While there is no 

evidence that deletion of the first 10 amino acids leads to proper formation of the seven-bladed 

propeller, further study would be warranted to assess a potential interference of deltaN10 

coronin 1 with the actin cytoskeleton.  

The first issue to be solved with the mutant would be however to establish an equal expression 

pattern, to make sure any differences are not due to differential transfection of the plasmid. This 

can then be followed up by further assessment of the actin cytoskeleton, preferably to be done in 

a cell which would usually have an endogenous coronin 1 expression, such as a coronin 1 knock-

out of an immune cell or a cell of neural origin. Any influence of differential transfection of cells 

could then be circumvented by establishing a stable transfection. First experiments would need to 

cover any influence of the mutated coronin 1 protein on the actin cytoskeleton, possibly by 

assessing other proteins localization and F-actin polymerization and organization. Additionally 

further point mutations can be made to isolate the amino acid necessary for coronin 1 membrane 

association. As coronin 1 has been shown to be involved in cAMP signalling in neurons, 

signalling defects could be assessed by measuring intracellular cAMP levels. This would allow for 

studying the dependency of coronin 1 localization on its function.   
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11.2. Abbreviations 
 

8-Br-cAMP 8-bromo-cyclic Adenosine monophosphate 

AC Adenylate Cyclase 

AKAP A-kinase anchoring protein 

AMP Adenosine monophosphate 

Arp2/3 Actin-related protein 2/3 

Bcl-2 B cell lymphoma 2 

BH3 Bcl-2 homology domain 3 

Bim Bcl-2 interacting mediator of cell death 

CaCl2 Calcium chloride 

cAMP Cyclic Adenosine monophosphate 

CCL21 CC-chemokine ligand 21 

CCR7 CC chemokine receptor 7 

CCR9 CC chemokine receptor 9 

CD24 Cluster of differentiation 24, heat-stable antigen (HAS)  

CD40 Cluster of differentiation 40 

CD45RB Protein Tyrosine Phosphatase, receptor type, c (PTPRC) 

CD55/DAF Decay accelarating factor 

CD62L Cluster of differentiation 62L, L-selectin 

CDK5 Cyclin dependent kinase 5 

c-FLIP FLICE-like inhibitory protein 

COX1/2 Cyclooxygenase 1/2 

CRE Cre recombinase 

CREB cAMP response element binding protein 

CRISPR/Cas9 Clustered regularly interspaced short palindromic repeats 

Csk C-src tyrosine kinase 

CTL Cytotoxic T Lymphocyte 

DAMP Damage associated molecular pattern 

DC Dendritic cells 

DN Double negative 

DNA Desocyribonucleic acid 

DP Double positive 
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EAE Experimental autoimmune encephalomyelitis 

FACS Fluorescence activated cell sorting 

FITC Fluorescein isothiocyanate 

FSK Forskolin 

GDP Guanosine Diphosphate 

GFP Green fluorescent protein 

GM-CSF Granulocyte-macrophage colony stimulating factor 

GPCR G protein-coupled receptor 

GTP Guanosine triphosphate 

HSC Hematopoietic stem cells 

HTRF Homologous time resolved fluorescence 

IFN Interferon 

IgM Immunoglobulin M 

IB Inhibitor of b 

IL Interleukin 

JNK Junk kinase 

KCl Potassium Chloride 

KLF2 Krüppel like factor 2 

Lck Lymphocyte-specific protein tyrosine kinase 

LN Lymph node 

LST Late stage thymocyte 

M1 Mature 1 stage of thymocytes 

M2 Mature 2 stage of thymocytes 

MgCl2 Magnesium Chloride 

MHC Major histocompatibility complex 

MNT Mature naïve T cells 

NFAT Nucleated factor of activated T cells 

NFB Nuclear factor kappa-light-chain-enhancer of B cells 

NKAP NFB activating protein 

PAMP Pathogen-associated molecular pattern 

PDE Phosphodiesterases 

PGE2 Prostaglandin E2 

PKA Protein kinase A 



  Coronin 1 in T cell signalling and development 

 
109/119 

 

PMA Phorbol 12-myristate 13-acetate 

Qa2 Qa lymphocyte antigen 2 

qPCR Quantitative polymerase chain reaction 

RAG Recombinating-activating gene 

RPMI Roswell Park Memorial Institute Medium 

RTE Recent thymic emigrants 

S1P1 Sphingosine-1-phsophate-1 receptor 

SLO Secondary lymphoid organs 

SM Semi-Mature thymocytes 

SP Single Positive 

STAT Signal Transducer and Activator of Transcription 

TAK1 Transforming growth factor beta-activated kinase 1 

TCR T cell receptor 

Th1/2 T helper cells type 1, type 2 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TREC T cell receptor excision circles 

Ubc13 E2 Ubiquitin-conjugating protein 13 

UD Unique Domain 

VLA4 Very late antigen 4 

WD Tryptophan-aspartic acid repeat domain 
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11.5. Supplemental Figures 
 

  

 

Supplemental Fig 1: cAMP measurements of CRISPR/Cas9 generated coronin 1-deficient clones for the 

human T cell line Jurkat and SupT1. cAMP levels were assessed as for Jurkat cells used in Fig 11) 
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Supplemental Fig 2: Human Jurkat T cells were incubated with 4 µM Latrunculin B for 1 hr at 37°C, fixed 

with 1% PFA, permeabilized by 0.1% Triton X for 5’ RT. Cells were stained for Cor1 (1:500) and actin 

visualized by phalloidin (1:40). Upon treatment with Latrunculin B, the localization of coronin 1 does not 

change, but actin staining turns from a cortical ring to a diffuse pattern. 
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Supplemental Fig 3: T cells obtained for Fig 16 C were seeded into 96-well plates at 100.000 cells/well and 

cultured for 2 days in the presence of CD3/CD28. Subsequently cells were assessed for their cAMP content, 

viability was only assessed by visual inspection of cells with trypan blue (n=2). 
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Supplemental Fig 4: Sorting protocol for conventional and regulatory CD4+ as well as CD8+ cells. 
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Supplemental Fig 5: Sorting protocol for sort of thymocytes into major subpopulations (DN, DP, CD4 and 

CD8) 
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Supplemental Fig 6: Sorting protocol for obtaining late stage thymocytes. 
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