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Abstract

In this thesis we discuss how computers can automatically interpret images
of human faces. The applications of face image analysis systems range from
image description, face analysis, interpretation, human-computer interaction,
forensics to image manipulation. The analysis of faces in unconstrained scenes
is a challenging task. Faces appear in images in a high variety of shape and
texture and factors influencing the image formation process like illumination,
3D pose and the scene itself. A face is only a component of a scene and can
be occluded by glasses or various other objects in front of the face.

We propose an attribute-based image description framework for the anal-
ysis of unconstrained face images. The core of the framework are copula
Morphable Models to jointly model facial shape, color and attributes in a
generative statistical way. A set of model parameters for a face image directly
holds facial attributes as image description. We estimate the model param-
eters for a new image in an Analysis-by-Synthesis setting. In this process,
we include a semantic segmentation of the target image into semantic regions
to be targeted by their associated models. Different models compete to ex-
plain the image pixels. We focus on face image analysis and use a face, a
beard and a non-face model to explain different parts of input images. This
semantic Morphable Model framework leads to better face explanation since
only pixels belonging to the face have to be explained by the face model. We
include occlusions or beards as semantic regions and model them as separated
classes in the implemented application of the proposed framework. A main
cornerstone for the Analysis-by-Synthesis process is illumination estimation.
Illumination dominates facial appearance and varies strongly in natural im-
ages. We explicitly estimate the illumination condition robust to occlusions
and outliers.

This thesis combines copula Morphable Models, semantic model adapta-
tion, image segmentation and robust illumination estimation which are nec-
essary to build the overall semantic Morphable Model framework.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Scene understanding is the guiding principle of computer vision. To fully
understand what we see or what is in a photograph, every single visible com-
ponent and their interactions have to be parsed and described. Such analysis
is performed using visual cues and prior knowledge. In this thesis, we focus on
the analysis of photographs of faces in unconstrained scenes. To understand
and interpret a face in a scene, we search for a description of the face and its
setting, in our case, we search for a parametrized one. Faces not only vary in
shape and texture but those variations are also coupled to attributes like sex
or age. A parametrized face description should capture those facial charac-
teristics and should also hold a human-understandable face description based
on attributes. As part of a scene, a face is a 3 dimensional object and this
property should be accounted. The position and pose can vary to all extents
and parts of the face can be (self-)occluded. The illumination condition plays
a major role in the image formation process and dominates facial appearance.
To fully interpret a face in a scene we need to be aware of all those factors.
We follow an Analysis-by-Synthesis approach to analyze face images. We
use a 3D Morphable Model (3DMM, [Blanz and Vetter, 1999]) which is a
parameterized face model. The model is generative and can synthesize face
images for a set of parameters. In the analysis process, we infer the pa-
rameters given a new unseen image (target). The model parameters provide
a model based image description. We propose an extension of the classical
3DMM where this parametric description directly leads to an attribute-based
face description. The idea of Analysis-by-Synthesis is to use computer graph-
ics to produce parametrized renderings of a face similar to the target image.
This inverse-rendering process is ill-posed since pixel appearance could be
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Figure 1.1: Human faces can be subdivided in semantic parts. The division
itself is diverse and can be more or less detailed - the eye for example can be
seen as one semantic region or refined further into sclera, iris and pupil. We
propose semantic Morphable Models to provide a framework to use separate
models to analyze and synthesize different semantic regions. The result of
model adaptation to a target image is then a set of parameters for all involved
models, as well as an image segmentation into semantic regions.

explained by various effects. The analysis procedure therefore builds on a
generative parametric model as a strong prior for facial appearance. The
search space over all poses, illumination conditions, facial shapes and tex-
tures is immense. Inferring those parameters from a 2D image is a highly
non-convex task and can not be solved by simple optimization algorithms. For
model adaptation, this work builds on the recently proposed 3DMM adapta-
tion framework ([Schénborn et al., 2016]). We infer the posterior distribution
of parameters for an observed target image. The framework is fully proba-
bilistic and therefore able to include uncertain information e.g. feature point
detections.

We extend the 3DMM adaptation framework to semantic Morphable Mod-
els. A face consists of multiple parts which are all complex in appearance itself.
The key idea is to parse the face in an image and segment it into parts which
are explained by separate models. The ideal case would be specific models
for all regions of the face as depicted in Figure 1.1. Our analysis framework
aims at 2D image analysis and therefore the semantic Morphable Model can
be combined of different models generating 2D images. Different models com-
pete to explain each pixel of a target image. The 3DMM is in the center of the
proposed framework and enriched by additional models to explain a complete



CHAPTER 1. INTRODUCTION

image. The main goal of using semantics is to improve the quality of the face
model adaptation by relieving it from pixels which are out of the scope of the
face model or which are not modeled at the desired degree of detail. Beards
for example are not represented in our 3DMM - in an Analysis-by-Synthesis
setting it is e.g. not helpful to compare the cheek with a beard. In the eye
region we have similar challenges with eye gaze or eye closing which are not
modeled by the 3DMM - comparing a closed eye with an open one is again
not suitable. The additional models are more specific for a certain face region.
Specific and local models for facial regions are coupled by the strong shape
prior of the 3DMM, leading to a coarse-to-fine model adaptation strategy.

The semantic Morphable Model framework is open to various specific mod-
els for face and non-face regions. The presented framework segments the
target image into face, beard and occlusion/background regions as the first
implementation of a semantic Morphable Model (see Figure 1.2). Those addi-
tional models aim to overcome common limitations of the classical approach.

A main drawback of classical 3DMM adaptation is the lack of robustness
against occlusions, they strongly mislead the model adaptation process. Oc-
clusions are caused by various objects between the camera and the face (see
Figure 1.3). Those objects hide parts of the face. The semantic framework
models occlusions separately and excludes affected regions from the face model
explanation.

Facial hair, like beards, are another limitation of current 3DMM adapta-
tion. They are not contained in the training data and therefore the model can
not properly adapt to them. Extending the training data to cover beards is
not trivial: scanning and modeling beards is a challenge on its own. We model
the beard region separately to overcome this limitation. Beards are itself very
complex and can be modeled in different degrees of detail ([Beeler et al., 2012;
Echevarria et al., 2014]). We do not aim to model each hair since this degree
of detail is not available in most images. The main focus of our work is the
analysis of the face, therefore we decided to use a less complex beard model
compared to the face model. Beards can be grouped into different categories
from full beards to mustaches. We propose a prototype-based shape prior to
handle different beard types.

We compare two different beard appearance models. The first is a color-
based appearance model estimated on the target image and estimated during
the analysis procedure.

The second is a detection-based model incorporating discriminative meth-
ods to locate the beard region. We use strong prior knowledge for the location
of the beard - the beard model is coupled to the location of the face model.
The coupling of the beard to the face model is valuable in two ways: to posi-
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Figure 1.2: Semantic Morphable Models Overview: The target image is seg-
mented into semantic regions which are explained by separate parametric
models. The model inference of model parameters § and semantic segmenta-
tion label z is performed simultaneously in an Analysis-by-Synthesis manner.
The parameter inference is based on the synthetic image generated by all
involved models and based on the semantic segmentation. The final set of
model parameters and segmentation (fit) holds the model-based image inter-

pretation.
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Figure 1.3: Occlusions by various objects appear frequently in real world face
images. Occlusions range from face-related objects like glasses and unrelated
objects like microphones or tools. When analyzing face images, occlusions
should be kept out of the analysis procedure. Beards are also not included
in 3DMMs and must be modeled separately or as occlusions. The images are
from the LFW database ([Huang et al., 2007]).



tion the face correctly behind the occluding beard and to guide the position
of the beard by the face model.

Different models compete to explain every pixel in the target image. Face
pixels are explained by the face model, beard pixels by the beard model and
occluding or background pixels by a general color model. The used models are
of different complexity and level of detail. We are interested mainly in the face
region and therefore use a detailed and parametrized generative model. The
beard model is a medium complexity model which is only based on a simple
shape and appearance prior. For occlusion and background, we use a very
simple color model which is suitable to explain the region but does not hold
much information for image description. Taking the semantics into account
leads to a better model explanation and allows us to use more specific models
for regions of the face. The result of the proposed semantic Morphable Model
adaptation is a segmentation of the target image and the posterior distribution
of model parameters.

Optimally, the segmentation can rely on a set of good face model parame-
ters and the face model adaptation can be performed with a perfect segmen-
tation. Both are not known at the beginning of the inference process and
can not be derived directly by bottom-up methods. Since the segmentation
influences the adaptation - and vice-versa - it would be optimal to infer them
simultaneously. However, simultaneous inference of the parameters and the
segmentation is infeasible. Therefore we propose an EM-like algorithm for
semantic model adaptation which provides a good trade-off between accuracy
and computational complexity.

A major challenge for the inference and segmentation is illumination. Fa-
cial appearance is dominated by the illumination condition (see Figure 1.4).
Illumination can strongly guide and mislead the model adaptation. This be-
comes especially crucial under occlusion - effects from complex illumination
conditions can easily be confoundedare in with occlusions. We propose a
robust illumination estimation technique which leads to a reasonable illumi-
nation condition as well as to a first guess of the present occlusions. Robust
illumination estimation can be applied to a wide range of unconstrained face
images. We estimated the illumination condition on 15’000 images of the
Annotated Facial Landmarks in the Wild (AFLW) ([Kostinger et al., 2011])
face database. This database contains face images taken in various settings
and under various in and outdoor illumination settings. From this dataset we
derive the first illumination prior estimated from real world images.

The 3DMM consists of a separate statistical model for shape and color.
The shape and color parameters of a 3DMM hold the face interpretation, but
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Figure 1.4: Illumination dominates facial appearance. We indicate the RMS-
distance in color space of different renderings to a target rendering (a). We
rendered the same target under new illumination conditions (b-d), compared
to other changes (e-g). We present a frontal illumination (b), an illumination
from the side (¢) and a real world illumination (d). For comparison, we
rendered the original face (a) under the original illumination conditions with
strong changes in pose (e), shape (f) and texture (g). All those changes
(e-g) are influencing the distance to the target image less than changes in
illumination (b-d). The shown RMS distances caused by illumination are on
average 50% higher than those caused by varying other parameters.



1.1. CONTRIBUTION

this is not interpretable for humans. Shape, color and attributes are often
modeled separately because they are not scaled in the same range and live
in different spaces. Copulas allow us to decouple the marginal distributions
from the dependency structure. This decoupling leads also to scale-invariant
analysis of the dependency structure which enables us to learn a combined
shape, color and attribute model and even integrate continuous and noncon-
tinuous attributes in the statistics. By combining shape, color and attributes,
the resulting model can encode correlations between different modalities and
gets more specific to faces. We propose to use a copula Morphable Model to
integrate attributes for description directly into the statistical model.

The goal of our full analysis framework (see Figure 1.2) is an image descrip-
tion. Whilst classical SDMM parameters do not hold a human-understandable
image description, the copula extension leads to an integrated and understand-
able description by attributes. We perform attribute based description of
single face images as a straightforward application of the proposed occlusion-
aware and semantic copula Morphable Model adaptation framework.

The software implementation is based on the Statismo ([Liithi et al.,
2012]), Scalismo® and Scalismo-Faces ? software frameworks.

1.1 Contribution

e We introduce semantic Morphable Models which enable us to model
parts of the face separately and lead to an occlusion-aware analysis
framework.

e We present a segmentation strategy including model-based and detection-
based cues. This merges ideas from Conditional and Markov Random
Field segmentation approaches.

e We propose a robust illumination estimation method which is key for
robust model based face image analysis.

e We build an illumination prior built on real world illumination condi-
tions.

e We present copula Morphable Models which allow us to learn a combined
shape, color and attribute model and respect non-Gaussian marginal
distributions.

1Scalismo - A Scalable Image Analysis and Shape Modeling Software Framework
https://github.com/unibas-gravis/scalismo

2Scalismo-Faces - Module to work with 2D images, with a focus on face images
https://github.com/unibas-gravis/scalismo-faces
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1.2 Organization

The thesis proposes an attribute based image description framework and con-
tains three main parts: Copula Morphable Models, semantic Morphable Mod-
els and robust illumination estimation. Each part can be read, understood
and implemented separately - however, they are unified in the proposed frame-
work for face image description and each part is necessary for the proposed
attribute-based image description framework. We first summarize the related
work of the individual parts of the thesis and the overall ideas in Chapter 2.
We then introduce the copula extension of 3SDMM to build our appearance
prior for faces and include human-understandable attributes in Chapter 3.
Then the semantic and occlusion-aware model adaptation framework in Chap-
ter 4 builds the main part of this thesis. Robust illumination estimation is
introduced in Chapter 5 and is necessary to adapt the model to images un-
der unconstrained settings including occlusions. The parts are explained and
evaluated in separate chapters and the complete framework is evaluated in an
attribute description task and discussed in Chapter 6. Big parts of this thesis
were already published or submitted to international conferences or journals
([Egger et al., 2014, 2016a,b, 2017a,b,c]). The thesis is concluded by ideas to
further develop the framework in Chapter 7, some with preliminary results.
In Chapter 8 the outcome of the thesis is summarized and evaluated.






CHAPTER 2. RELATED WORK

Chapter 2

Related Work

The overall idea of semantic Morphable Models is based on several components
which are discussed in this thesis. We provide an overview of the related work
for all components our contributions enter.

2.1 Copula Morphable Models

The Eigenfaces approach ([Sirovich and Kirby, 1987], [Turk et al., 1991]) was
a first parametric model for faces. They used PCA on facial images to analyze
and synthesize faces. It performed well on images which where already aligned
and did not contain pose variations. The next step in parametric appearance
modeling for faces were Active Appearance Models ([Cootes et al., 1998]).
They add a shape component which allows to model the shape independently
from the appearance. This extension enables the model to adapt to stronger
shape variations and to a certain degree of pose variation. As soon as self-
occlusion arises those 2D methods fail. The 3DMM ([Blanz and Vetter, 1999])
uses a dense registration, extends the shape model to 3D and adds a camera
and illumination model. The 3DMM allows handling appearance indepen-
dently from pose, illumination and shape. This model can handle faces in
all pose angles and isolates facial texture from the illumination. Through 3D
modeling standard computer graphic techniques can be applied for rendering
and simulation of illumination.

The initial motivation behind 3DMMs was 3D reconstruction from 2D
images and this is still a wide field of research. The different optimization
methods range from stochastic gradient descent ([Blanz and Vetter, 1999]),
multi-feature gradient descent ([Romdhani and Vetter, 2003]), fast multi-step
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2.2. SEMANTIC MORPHABLE MODELS

model adaptation ([Aldrian and Smith, 2013]), sampling based model adap-
tation ([Schoénborn et al., 2013], cascaded regression techniques ([Zhu et al.,
2015; Huber et al., 2015]) and recently deep learning techniques ([Tewari et al.,
2017]).

Our work is based on the recent work on 3DMM adaptation ([Schénborn
et al., 2016]) which frame all the ideas and the model adaptation into a fully
probabilistic framework. The model parameter adaptation is performed with
a sampling algorithm to infer the posterior distribution of suitable model
parameters.

Color appearance and shape are modeled independently in AAMs and
3DMMs. Recently, it was demonstrated that facial shape and appearance
are correlated ([Schumacher and Blanz, 2015]) and those correlations were
investigated using Canonical Correlation Analysis on separate shape and ap-
pearance PCA models. Attributes like age, weight, height, sex are often added
to the PCA models as additional linear vectors ([Paysan et al., 2009]) or with
limitations to Gaussian marginal distributions ([Blanc et al., 2012]).

For face image analysis attributes estimation is mainly explored with dis-
criminative approaches ([Kumar et al., 2011]). Model-based approaches lack
a direct attribute-based description and therefore attributes are estimated as
post-processing steps ([Egger et al., 2014]).

The main reason to build separate models is a practical one — shape, color
and attribute values are neither in the same space, nor scaled in the same
range. Attributes are not even always continuous. Some methods approach
this issue by normalization and combine color and shape models ([Edwards
et al., 1998; Castelan et al., 2007]). With our copula Morphable Model we are
the first to build a joint attribute, shape and color model. By integrating this
additional dependency information, the model becomes more specific. How-
ever, this normalization does not allow us to include categorical attributes, is
highly sensitive to outliers and not suitable to compare those different modal-
ities.

2.2 Semantic Morphable Models

Semantic segmentation is a recognized cornerstone of computer vision. Seg-
mentation is often performed as a pre-processing step for image analysis
pipelines. Most approaches for semantic segmentation are discriminative (e.g.
[Khan et al., 2015]). The idea of having different generative models in com-
petition to explain different regions of the image is related to image parsing

12
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framework proposed by [Tu et al., 2005] and is unique for face image analysis.
In an Analysis-by-Synthesis setting segmentation is uncommon.

Whilst the 3DMM is a global model for face appearance there are ap-
proaches for hierarchical models ([Jones and Poggio, 1998; Paysan et al.,
2009]). The classical 3DMM lacks shape and textural details - this limita-
tions are overcome by specific models for specific regions of the face. There
are convincing results for model-based eye ([Bérard et al., 2016; Wood et al.,
2016)), teeth ([Wu et al., 2016]) and hair reconstruction ([Chai et al., 2016])
from single images. Such models would be excellent to be used in our semantic
Morphable Model framework.

Recently semantic segmentation was proposed for model based analysis
for 3D input data by [Maninchedda et al., 2016]. Similar to our work seg-
mentation and model adaptation is performed jointly. 3D data provides more
reliable bottom-up cues than 2D images. This allows for better segmentation
of e.g. glasses from 3D images. The semantic segmentation is also used to
improve the quality of face reconstruction. The general challenges are related
but the used depth information, which is not available in our setting, strongly
helps when searching for occlusions, beards or glasses.

For the generative analysis of 2D images [Morel-Forster, 2017] detected
hair to be excluded during the model adaptation to 2D images. This approach
does not include segmentation methods, relies on working hair detection and
is limited to two classes (face and non-face). We integrate the proposed hair
detections in our semantic Morphable Model as additional bottom-up cue to
guide the segmentation of beards.

The work of [Huang et al., 2004] is not related to faces but combines
deformable models with Markov random fields for segmentation of digits.
The beard prior proposed in our work is integrated in a similar way as they
incorporate a prior from deformable models.

The closest method to the proposed one is the image parsing framework
proposed by [Tu et al., 2005]. A similar model has recently been proposed in
the medical imaging community for atlas-based segmentation of leukoaraiosis
and strokes from MRI brain images ([Dalca et al., 2014]) and for model-based
forensic shoe-print recognition from highly cluttered images ([Kortylewski,
2017)).

Occlusion-aware Morphable Models ([Egger et al., 2016b]) are excluding
non-face pixels from the face model adaptation and represent a first step
towards Semantic Morphable Models. Although occlusions are omnipresent
in face images, most research using 3DMMs relies on occlusion-free data.
There exist only few approaches for fitting a 3DMM under occlusion.

13



2.3. ROBUST ILLUMINATION ESTIMATION

Standard robust error measures are not sufficient for generative face image
analysis. Areas like mouth or eye regions tend to be excluded from the fitting
because of their strong variability in appearance ([Romdhani and Vetter, 2003;
De Smet et al., 2006]), and robust error measures like applied in [Pierrard and
Vetter, 2007] are highly sensitive to illumination. Therefore, we explicitly aim
to cover the whole face region in the image by the face model explanation and
only exclude occlusions or outliers from the model adaptation.

[De Smet et al., 2006] learned an appearance distribution of the observed
occlusion per image. This approach focuses on large-area occlusions like sun-
glasses and scarves. However it is sensitive to appearance changes due to
illumination and cannot handle thin occlusions.

[Yildirim et al., 2017] presents a generative model including occlusions
by various objects. 3D occlusions are included in the training data. Dur-
ing inference the input image is decomposed into face and occluding object
and occlusions are excluded for face model adaptation. The performance is
comparable to human performance on a recognition task on synthetic images.

The above mentioned works on occlusion handling use a 3DMM focused on
synthetic data or databases with artificial and homogeneous, frontal illumina-
tion settings. We present a model which can handle occlusions during 3SDMM
adaptation under illumination conditions arising in “in the wild” databases.

2.3 Robust Illumination Estimation

Robust illumination estimation or inverse lighting is an important cornerstone
of our approach. Inverse lighting ([Marschner and Greenberg, 1997]) is an in-
verse rendering technique trying to reconstruct the illumination condition.
Inverse rendering is applied for scenes ([Barron and Malik, 2015]) or specific
objects. For faces, 3DMMs are the most prominent technique used in inverse
rendering settings. The recent work of [Shahlaei and Blanz, 2015] focuses
on illumination estimation and provides a detailed overview of face specific
inverse lighting techniques. The main focus of the presented methods is face
model adaptation in an Analysis-by-Synthesis setting. Those methods are
limited either to near-ambient illumination conditions ([De Smet et al., 2006;
Pierrard and Vetter, 2007]) or cannot handle occlusions ([Romdhani and Vet-
ter, 2003; Aldrian and Smith, 2013; Schénborn et al., 2016]). Even the most
recent deep learning based methods suffer from occlusions when estimating
illumination ([Tewari et al., 2017]).

Our robust illumination estimation technique handles both, occlusions and
complex illumination conditions by approximating the environment map us-

14
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ing a spherical harmonics illumination model. Few methods incorporate prior
knowledge of illumination conditions. The most sophisticated priors are mul-
tivariate normal distributions learned on spherical harmonics parameters es-
timated from data as proposed in [Schénborn et al., 2016] and [Barron and
Malik, 2015]. Those priors are less general and not available to the research
community. Our robust estimation method enables us to estimate an illumi-
nation prior from available real world face databases. This illumination prior
fills a gap for generative models.
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Chapter 3

Copula Morphable Model

Parametric Appearance Models (PAM) build the basis for most generative
image analysis methods. Objects are described in terms of pixel intensities.
In the context of faces, Active Appearance Models [Cootes et al., 1998] and
3DMMs [Blanz and Vetter, 1999] are established PAMs to model appearance
and shape. The dominant method for learning the parameters of a PAM
is Principal Component Analysis (PCA) [Jolliffe, 2002] or Probabilistic PCA
(PPCA) [Tipping and Bishop, 1999]. (P)PCA is used to describe the variance
and dependency in the data. Due to the sensitivity of (P)PCA to space and
scaling, separate models are learned for shape and appearance.

We propose a method based on copula to build joint models of shape and
color and even integrate continuous and categorical attributes. We use a semi-
parametric Gaussian copula model, where dependency and variance are mod-
eled separately. This model enables us to use arbitrary marginal distributions.
Moreover, facial color, shape and continuous or categorical attributes can be
analyzed in an unified way. Accounting for the joint dependency between all
those facial components leads to a more specific and joint face model.

Copula methods are based on Sklar’s theorem which allows the decom-
position of every continuous and multivariate distribution function into its
marginal distributions and a copula [Sklar, 1959]. A copula model provides
the decomposition of the dependency and the marginal distributions such that
the copula contains the dependency structure only. In general, separating all
marginals from the dependency structure leads to a scale invariant description
of the underlying dependency. This is desired when working with data from
different modalities, arising from different spaces. Scale invariance enables us
to learn a combined dependency structure of shape, color and attributes.
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3.1. MORPHABLE FACE MODELS

We use the observed empirical marginal distributions and keep the para-
metric dependency structure; in particular, we chose a Gaussian copula be-
cause of its inherent Gaussian latent space. PCA can then be applied in the
latent Gaussian space to learn the dependencies of the data independently
from the marginal distribution. The method is proposed and evaluated in
[Han and Liu, 2012] and is called Copula Component Analysis (COCA). Sam-
ples drawn from a COCA model follow the empirical marginal distribution of
the training data and are, more specific to the modeled object.

In the previous work on Copula Eigenfaces ([Egger et al., 2016a, 2017a]),
we focused on artifacts arising in the color model. This is due to the assump-
tion that the color intensities or, in other words, the marginals at each vertex
are Gaussian-distributed. This approximation is far from the actual observed
distribution of the training data (see Figure 3.1), and leads to unnatural ar-
tifacts in samples from the generative model. Those artifacts are removed
using COCA instead of PCA.

In this work we focus more on building a joint model incorporating shape,
color and attributes and adapt it in an image analysis task. Scale-invariance
and decoupling of the dependency structure from the marginals enable us to
include multi-modal data in a common statistical model. In an Analysis-by-
Synthesis setting, we search for model parameters reconstructing the image.
In the case of the classical SDMM there are separate shape and color param-
eters, for our copula Morphable Model, the joint model parameters directly
lead to an attribute based image description since attributes are an integrated
component of the model.

This Chapter is based on research in close collaboration with Dinu Kauf-
mann ([Egger et al., 2016a, 2017a]). Chapter 3.1 to 3.4.1 contain excerpts of
those works and summarize the relevant parts for this thesis.

3.1 Morphable Face Models

Let # € R3" describe a zero-mean vector representing 3 color channels (RGB
color space) or the 3 dimensions of a shape coordinate for n vertex points of
a 3D scan. The color channels are vectorized such that

Teotor = (1, 91,b1,72,b2,b3, ..., T, Gy )T (3.1)
and vertex points such that

Tshape = (T1,Y1, 21, T2, Y2, 23, - - - menazn)T (3:2)
respectively. The set of m face scans in dense correspondence is arranged as

the data matrix X € R3"X™ gseparately for shape and color.
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CHAPTER 3. COPULA MORPHABLE MODEL
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Figure 3.1: The result of the Kolmogorov-Smirnov Test ([Massey Jr, 1951])
to compare the empirical marginal distributions of color values from our 200
face scans with a Gaussian-reference probability distribution. We plot the
highest value of the three color channels per vertex, because the values for the
individual components are very similar. The Gaussian assumption does not
hold for the color marginals. We show two exemplary marginal distributions
in the eye and temple region. They are not only non-Gaussian but also not
similar. The critical value assumes a significance level of 1 — o = 0.05
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3.2. COPULA EXTENSION

PCA [Jolliffe, 2002] aims at diagonalizing the sample covariance ¥ =
%XXT, such that

v =L1ustu” (3.3)

where S is a diagonal matrix and U contains the transformation to the new
basis. The columns of matrix U are the eigenvectors of ¥ and the correspond-
ing eigenvalues are on the diagonal of S.

PCA is usually computed by a singular value decomposition (SVD). In case
of a rank-deficient sample covariance with rank m < 3n we cannot calculate
U~!. Therefore, SVD leads to a compressed representation with a maximum
of m — 1 dimensions. The eigenvectors in the transformation matrix U are
ordered by the magnitude of the corresponding eigenvalues.

3.2 Copula Extension

While the variance in the data captures the scattering of the values, the
covariance describes the underlying dependency structure. When computing
PCA, the principal components are guided by the variance as well as the
covariance in the data. This mingling of factors leads to results which are
sensitive to different scales and to outliers in the training set. Regions with
large variance and outliers influence the direction of the resulting principal
components in an undesired manner.

We uncouple variance and dependency structure such that PCA only cap-
tures the dependency in the data. Our approach for uncoupling is a copula
model which provides an analytical decomposition of the aforementioned fac-
tors.

Copulas ([Nelsen, 2013],[Joe, 1997]) allow us a detached analysis of the
marginals and the dependency pattern. We consider a semiparametric Gaus-
sian copula model ([Genest et al., 1995], [Tsukahara, 2005]). We keep the
Gaussian copula for describing the dependency pattern, but we allow non-
parametric marginals.

Let x € R3" describe the same zero-mean vector as used for PCA, repre-
senting 3 color channels or 3D coordinates of n vertices of a 3D scan. Sklar’s
theorem allows the decomposition of every continuous and multivariate cu-
mulative distribution function (CDF) into its marginals F;(X;),i =1,...,3n
and a copula C. The copula comprises the dependency structure, such that

F(le"' 7X37L):C(W17"'7W3n) (34)

where W; = F;(X;). W; are uniformly distributed and generated by the
probability integral transformation.

20



CHAPTER 3. COPULA MORPHABLE MODEL

For our application, we consider the Gaussian copula because of its inher-
ently implied latent space

X, =0 '(Wy), i=1,...,3n (3.5)

where @ is the standard normal CDF.

The multivariate latent space is standard normal-distributed and fully
parametrized by the sample correlation matrix Y = %X XT only. PCA is
then applied on the sample correlation in the latent space X.

The separation of dependency pattern and marginals has multiple benefits:
First, the Gaussian copula captures the dependency pattern separated from
variance of color, shape and attributes. Second, whilst PCA is distorted by
outliers, the semi-parametric copula extension solves this problem ([Han and
Liu, 2012]). Third, the nonparametric marginals maintain the non-Gaussian
nature of the color distribution and allow us to integrate attributes into the
model.

3.3 Inference

We learn the latent sample correlation matrix ¥ = %X X7 in a semi-parametric
fashion using nonparametric marginals and a parametric Gaussian copula. We
compute Wi; = Fomp,i(Tij) = Tin(if)
rij(x;;) is the rank of the data x;; within the set {z;o}. Then, ¥ is simply
the sample covariance of the normal scores

using empirical marginals Femp, s, where

- a1 [ (Tia(Tig) _ L
Ty =@ <m+1>’ i=1,....3n, j=1,...,m. (3.6)

Above equation contains the nonparametric part, since 3 is computed from
the ranks r;;(x;;) solely and contains no information about the marginal dis-
tribution of the #’s. Note, & ~ A(0,%) is standard normal distributed with
correlation matrix 3. Subsequently, an eigen-decomposition is applied on the
latent correlation matrix 3.

Generating a sample using PCA then simply requires a sample from the
model parameters

h~N(0,1I) (3.7)
which is projected to the latent space
- S
7 =U—h 3.8
5= U (39
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3.4. IMPLEMENTATION

Algorithm 3.1: Learning.
Input: Training set {X'}
Output: Projection matrices U, S
for all dimensions i do
for all samples j do

L iy = (7%(;3))

find U, S such that & =

US20T (via SVD)

1
m

Algorithm 3.2: Sampling.

Output: Random sample x

h~N(0,1)
@:U%

for all dimensions i do
L w; = q) (CEZ)

z; = Femp,i(w;)

and further projected component-wise to

Finally, the projection to the color, shape and attribute space of faces requires
the interpolated empirical marginals

i = Fomp.i(wi), i=1,...,3n. (3.10)

All necessary steps are summarized in Algorithms 3.1 and 3.2 and visualized
in Figure 3.2.

3.4 Implementation

The additional steps for using COCA can be implemented as simple pre- and
post-processing before applying PCA. Basically, the data is mapped into a
latent space where all marginals are Gaussian-distributed. The mapping is
performed in two steps. First, the data is transformed to a uniform distri-
bution by ranking the intensity values. Then it is transformed to a standard
normal distribution. On the transformed data, we perform PCA to learn the
dependency structure in the data.
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CHAPTER 3. COPULA MORPHABLE MODEL

To generate new instances from the model, all steps have to be reversed.
Figure 3.2 gives an overview of all necessary transformations. These are the
additional steps which have to be performed as pre- and post-processing for
the analysis of the data and the synthesis of new random samples. In terms
of computing resources we have to consider the following: The empirical
marginal distributions Fin, are now part of the model and have to be kept
in memory. In the learning part, the complexity of sorting the input data is
added. In the sampling part, we have to transform the data back by looking
up their values in the empirical distribution. The model needs almost double
the memory of a PCA model whilst the additional computational effort is
negligible.

The copula extension comes with low additional effort: it is easy to imple-
ment and has only slightly higher computing costs. We encourage the reader
to implement these few steps since the increased flexibility in the modeling
provides a valuable extension. We provide a MATLAB implementation to
calculate COCA in Listing 3.1 and 3.2

% calculate empirical cdf
[empCDFs, indexX] = sort (X, 2);

% transform emp. cdf to uniform
[~, rank] = sort (indexX, 2);
uniformCDFs = rank / (size(rank, 2)+1);

% transform uni. cdf to std. normal cdf
normCDFs = norminv (uniformCDFs',0,1)"';

% calculate PCA
[U,S,V] = svd(normCDFs, 'econ');

Listing 3.1: Learning

% random sample

= size (normCDFs, 2);

= random('norm' ,0 ,1 ,m ,1);
sample = U %« S / sqgrt(m) =+ h;

o3

o

% std. normal to uniform
uniformSample = normcdf (sample, 0, 1) » (m - 1) + 1;

% uniform to emp. cdf
empSample = empCDFs (sub2ind(size (empCDFs), l:size(data, 1),
round (uniformSample')))';

Listing 3.2: Sampling
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3.4. IMPLEMENTATION
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Figure 3.2: This figure shows the pre- and post-processing steps necessary to
use a Gaussian copula before calculating PCA (toy data).

3.4.1 Discrete Ordinal Marginals

The formulation of the copula framework as above works with arbitrary con-
tinuous marginals. We extend the copula model for attributes, which follow
discrete ordinal marginals. With this extension, we can even augment our
model with attributes following binary distribution, such as sex. The under-
lying generative model assumes a continuous latent space, which is identified
with the latent space X of the copula. From this space, we observe the mea-
surements via a discretization, which is related to the marginal distribution
containing discontinuities. Using the CDFs of these marginals, for inferring
the latent space as in the prev10us sections, causes problems. This is because
the CDF transformations ®~!o Femp,z X; = X; do not change the marginal
data distribution to be uniform and hence do not recover the continuous la-
tent space. Instead, these CDF transformations only change the sample space.
This leads to an invalid distribution of the copula and subsequently also of
the latent space.

In order to resolve this problem, we follow the approach of the extended
rank likelihood ([Hoff, 2007]). This provides us with an association-preserving
mapping between measurement x;; and latent observation Z;;. The essential
idea behind this approach is, that the rank relation from the observations are
preserved in the latent space.

In our case, we want to include a binary variable (sex). Note, that a binary
variable can always be considered as an ordinal variable, since the ordering
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CHAPTER 3. COPULA MORPHABLE MODEL

of the encoding does not matter. We replace the label g, with logistic
regression in a preprocessing step. Specifically, logistic regression provides us a
(continuous) score xl,, = E(Zsex|T—sex), which is the conditional expectation
over (a low rank approximation of) the remaining variables _gex. Since the
score constitutes of the conditional expectation, it relates to an approximation
of the conditional posterior distribution in the latent space. The variable can

then be treated as a continuous variable.

3.5 Combined Model

We learned a COCA model combining color, shape and attribute information
of the face (see Figure 3.3 and Figure 3.4). Shape, color and attributes are
combined by simply concatenating them:

Teoca = (xzhape, xl .., sex, age, weight, height)” (3.11)

Age, weight and height are continuous attributes and can therefore directly be
integrated by concatenation in the COCA model. We added sex as a binary
attribute and used the strategy presented in Section 3.4.1, where we replaced
the binary labels with scores, obtained by logistic regression on the covariates.

The combined model allows us to generate random samples with consis-
tent and correlated facial features. In Figure 3.5 we present how different
modalities are correlated in the first parameters. By integrating this addi-
tional dependency information, the model becomes more specific ([Edwards
et al., 1998]).

3.6 Model Adaptation

The main task we target in this thesis is the analysis of new images. We
therefore search for model parameters which can reconstruct the target image
well. The copula Morphable Model is highly related to the 3DMM. The main
difference, relevant for model adaptation, is that shape and color are modeled
jointly and therefore share a joint set of parameters. To infer the model
parameters from a new image we adapt the model adaptation framework of
[Schonborn et al., 2016] to apply it in combination with our copula Morphable
Model. The framework is very flexible and can handle the novel model with
few adaptations.

The only adaptation to deal with the joint set of parameters is in the
proposal distribution. Instead of proposing separate steps for color and shape
parameter updates, we changed the proposals to update the joint COCA

~S
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3.6. MODEL ADAPTATION

female male
1 t 21 years 25 years
S 62 kg 70 kg
172 cm 176 cm
male female
24 years 22 years
2nd 77 kg 54 kg
181 cm 166 cm
female male
3 d 22 years 23 years
r 56 kg 75 kg
165 cm 182 cm
-20 +20

Figure 3.3: We learned a common shape, color and attribute model using
COCA. We visualize the first eigenvectors with 2 standard deviations, which
show the strongest dependencies in our training data. Whilst the first param-
eter is strongly dominated by color the latter parameters are targeting shape,
color and attributes (compare Figure 3.5). Since the model is built from 100
females and 100 males, the first components are strongly connected to sex.
The small range in age is caused by the training data which mainly consists
of people with similar age.
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CHAPTER 3. COPULA MORPHABLE MODEL

male female female male

18 years 29 years 22 years 39 years
71 kg 53 kg 68 kg 75 kg
175 cm 164 cm 172 cm 180 cm

Figure 3.4: Random samples projected by a common shape, color and at-
tribute model using COCA. Our model leads to samples with consistent ap-
pearance and attributes.
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Figure 3.5: The influence of the first principal components on the different
modalities of our model is shown. The variation is shown as the RMS distance
of the normalized attributes in the covariance matrix. Whilst the first param-
eter is strongly dominated by color the later parameters are targeting shape,
color and attributes (compare Figure 3.3). We observe strong correlations
between the different modalities and attributes.
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3.7. EXPERIMENTS

Table 3.1: Random walk proposals for color, shape and COCA-parameters.
The shape and color parameter proposals correspond to the proposals in
[Schonborn et al., 2016]. In our proposal distribution, the COCA-Proposal
is designed according to the shape and color proposals and replaces them. o
is the standard deviation of the normal distribution, centered at the current
location. A designates mixture coefficients of the different scales coarse (C),
intermediate (I) and fine (F).

Parameter Mixture

oc or OF )\C A1 AF
Shape, ¢s 02 0.1 0.025|01 05 0.2
Radial Shape, ||s|| 0.2 0.2
Color, ¢c 0.2 01 0.025]01 05 0.2
Radial Color, ||gc|| 0.2 0.2
Coeffs, Gcoerfs 0.2 0.1 0.025]01 05 0.2
Radial Coeffs, ||gooerysll 0.2 0.2

parameters, see Table 3.1. There are two types of proposals, a random walk
proposal (Coefls, dooefss) and a caricature proposal multiplying the current
parameter set with a constant (Radial Coeffs, ||gooeryss||). We keep all other
components and parameters of the model adaptation process fixed to make
the results more comparable. The COCA-parameters directly map to color,
shape and attributes and generate a complete face instance.

3.7 Experiments

To build our copula Morphable Model, we use the 200 face scans with attribute
information used for building the Basel Face Model (BFM) ([Paysan et al.,
2009]). The scans are in dense correspondence and were captured under an
identical illumination setting. The specificity and generalization ability of the
resulting model was evaluated in [Egger et al., 2016a] with a focus on the color
model. We observed the specificity of the resulting model instances is higher,
the generalization ability is slightly worse (measurable but not visible), see
Figure 3.6 and 3.7. To compare the joint model against the separate model for
color and shape we perform specific tasks like 3D reconstruction and attribute
estimation.
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CHAPTER 3. COPULA MORPHABLE MODEL
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Figure 3.6: The specificity shows how close generated instances are to in-
stances in the training data. The average distance of 1000 random samples
to the training set (mean squared error per pixel and color channel) is shown.
A model is more specific if the distance of the generated samples to the train-
ing set is smaller. We observe that COCA is more specific to faces (lower is
better).
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Figure 3.7: The generalization ability shows how exactly unseen instances
can be represented by a model. The lower the error, the better a model
generalizes. As a baseline, we present the generalization ability of the average
face. We observe that PCA generalizes slightly better (lower is better).
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3.7. EXPERIMENTS

Table 3.2: Shape reconstruction error (RMSD) in mm of our copula Mor-
phable Model (COCA), a 3DMM built on the exact same data and evaluated
in the exact same setting (PCA) and the result obtained by the mean face
shape (mean-only).

Model COCA PCA mean-only
RMSD in mm 5.68 5.78  6.79

3.7.1 3D Reconstruction

The main task of 3DMMs is 3D reconstruction of a face from a 2D image.
To measure the eligibility of our copula Morphable Model for this task, we
compare it to a classical 3DMM on the BU-3DFE face database ([Yin et al.,
2006]). We render frontal images from the 100 individuals in the database
and compare the shape reconstruction performance as proposed in [Schénborn
et al., 2016]. Initialization was performed using 23 landmarks and the best
sample reconstructing the target image (out of 10’000 samples) is taken for
evaluation. We kept all 199 parameters for the model adaptation to keep
the full flexibility of the model (for PCA 199 for shape and 199 for color).
The resulting 3D reconstruction results are close to the results of the classical
3DMM, see Table 3.2.

3.7.2 Attribute Prediction

We perform an attribute prediction task on the Multi-PIE database ([Gross
et al., 2010]). The COCA-parameters directly map to color, shape and at-
tributes and generate a complete face instance. A copula Morphable Model
instance contains the attribute prediction directly for a set of model parame-
ters. We choose the task of sex prediction from a 2D target image.

The sampling method is performed in the same setting as in [Egger et al.,
2014]. We choose a histogram background model and draw 10’000 samples for
model adaptation. The initialization was performed on 9 manually annotated
landmarks and only the first 50 COCA-parameters were adapted. The exper-
iment was performed on all individuals of the first session of the Multi-PIE
database under a frontal illumination and with poses between 0° and 60° of
yaw angle.

For our experiments, we did not adapt any component of the copula Mor-
phable Model analysis framework to the Multi-PIE database whilst our pre-
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CHAPTER 3. COPULA MORPHABLE MODEL

Table 3.3: Prediction performance of sex attribute classifiers (SPP) on PCA
coefficients and on the pose-normalized representation using HOG features
and color intensities from [Egger et al., 2014] compared to the result obtained
by our copula Morphable Model. 69.9% of the individuals in the database are
male.

Model / Feature PCA HOG COCA
SPP 76.2 % 76.0% 82.5%

Table 3.4: Sex prediction performance of copula Morphable Model over dif-
ferent pose angles.

Pose 0° 15° 30° 45° 60°
Multi-PIE label 05116 140.16 130.16 080.16 090_16
SPP 82.7% 819% 83.5% 823% 8l19%

vious approach ([Egger et al., 2014]) used a part of the database for training.
In our previous work we estimated attributes based on the estimated model
parameters or the obtained pose-normalized face texture using Histogram of
Oriented Gradients features (HOG, [Dalal and Triggs, 2005]). For both, the
model parameters and HOG features we trained a classifier to predict sex.
With our copula Morphable Model we outperform both, our generative and
discriminative approaches, see Table 3.3.

We further analyzed sex prediction performance over the different pose
angles (see Table 3.4) and over different ethnic groups (see Table 3.5). Whilst
the performance does not vary over different pose angles, there are strong
differences for different ethnic groups. The data used for building the face
model has a strong bias to Caucasian faces. The observed performance for
the ethnic groups incorporated in the model is much better than for those
which are under-represented in the face scans.

The performance obtained in this setting is comparable to state of the art
discriminative techniques on “in the wild” images [Kumar et al., 2011]. Our
approach is unique when analyzing facial attributes with a fully generative
model without post-processing. The integrated modeling of attributes en-
ables us to estimate real conditional models and also include the uncertainty
in the attribute prediction. Our model does not incorporate hair or other

~S
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3.8. LIMITATIONS

Table 3.5: Sex prediction performance of copula Morphable Model itemized
by ethnic groups. The used data has a strong bias to caucasian faces and
therefore the performance is much better for them.

Ethnic Group Caucasian Asian Indian  African-American

SPP 88.7% 70.3% 85.8% 63.3%

surrounding information in the image whilst most discriminative approaches
incorporate this information as well.

3.8 Limitations

The main advantage of decoupling the marginal distributions comes with ad-
ditional flexibility. Those marginal distributions can be handled in various
ways - we chose to model them empirically. Modeling them empirically can
lead to noisy model samples, especially when building models with few train-
ing examples. For many applications, it makes sense to take assumptions on
the marginal distributions and model them parametrically. It is alternatively
possible to smoothen the empirical marginals with a kernel k£ and replace
(310) by ZT; :k(wi,Xi.), 1= 1,...,371.

Whilst specificity of the arising face model is higher, generalization drops
due to the empirical marginal distributions and especially due to the coupling
of shape and color model. Depending on the application, good generalization
is important, we e.g. receive slightly worse image reconstruction results.

For non-continuous or categorical attributes, an ordering has to be deriv-
able - if there is no natural ordering possible (like ethnic groups) an artificial
ordering has to be defined or the categories have to be mapped to binary at-
tributes. If the binary or categorical attributes are not balances in the training
data, sampling strategies as described in [Hoff, 2007] have to be applied during
model building.

The Multi-PIE database provides age annotation. We were not able to
predict the age above chance rate. Elderly people are underrepresented in the
data we built our model from, and our model based approach misses textural
details like wrinkles which are important for age estimation.
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CHAPTER 3. COPULA MORPHABLE MODEL

3.9 Conclusion

In this work, we present a first step for copula-based parametric appearance
models. Copulas itself are a huge field of research, we collect some ideas
which could be interesting for statistical modeling of faces in the future work
Section 7.2.

The main advantage we explore in this thesis is a joint model which in-
cludes facial attributes. Whilst the model parameters of the 3DMM do not di-
rectly lead to an attribute-based face description the copula Morphable Model
allows us to integrate the attributes of interest directly into the face model.
The model adaptation leads not only to a 3D reconstruction, illumination and
color estimation but also an attribute-based face description.
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CHAPTER 4. SEMANTIC MORPHABLE MODELS

Chapter 4

Semantic Morphable
Models

A face image contains different semantic regions like skin, eyes, mouth, hair,
background and various objects in the scene. Our face analysis is mainly
focused on the face region but background and especially occlusions have to
be taken into account during analysis. Ignoring the background and especially
ignoring objects occluding the face leads to wrong image interpretation results.
Not only the image, but also the face itself contains different regions. The eye
region is e.g. complex in appearance, texture and movement. Other regions in
the face, like beards are also complex in all those categories but are different
from the eye region. A face is a highly complicated object with parts which
should be aimed by highly specific models. We propose a semantic Morphable
Model framework for combining segmentation of the target image and model
adaptation. The basic idea is to segment a face image into different regions
which are explained by models specific for those regions. Local models which
are very specific for a part of the face are coupled by the 3DMM which builds
the cornerstone of semantic Morphable Models. The 3DMM is coupled to the
local models and guides them by a strong global shape and appearance prior.

We propose a very general and extensible framework together with a con-
crete implementation of a semantic Morphable Model. Our implementation
focuses on occlusion-awareness to enable 3DMM adaptation on “in the wild”
face images. In generative face image analysis, occlusions are a major chal-
lenge. Model adaptation is misled by occlusions if they are not taken into
account, see Figure 4.1. We argue to handle and segment occlusions explicitly
in the target image. Our implemented semantic Morphable Model combines

~S
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Figure 4.1: A fitting result of classical Morphable Model adaptation under
occlusion. To analyze the composition of the fit we rendered the individual
parts of 0 separately. Occluding regions tend to be explained by both, the
illumination and color coefficients.

a face, a beard and a non-face model. The target image is segmented in those
three semantic regions. The beard model is an example for a model coupled
to the face model by its location. The parameters of all those models are
adapted to the target image and simultaneously the image is semantically
segmented. The resulting framework leads to semantic model adaptation and
occlusion-awareness. During inference we rely on a strong initialization of the
segmentation which is explained in Chapter 5.
Semantic morphable models are based on six main ideas:

1. Pixels can be explained by different models. The separate models are
adapted only to pixels assigned to them. Beard and non-face pixels
arising from background or occlusions are excluded from face model
adaptation.

2. We semantically segment the target image into regions. In our case we
segment for occlusions, beards and the face. We pose segmentation as
a Markov random field (MRF) with a beard prior.

3. Models are coupled. The beard model is explicitly coupled to the face
shape and position. The coupling works bi-directionally: The face model
parameters guide the beard segmentation and the segmentation guides
face model adaptation.

4. Models can be of different complexity and this is explored in our imple-
mentation. Whilst our 3DMM is complex, the beard model modeling
shape and appearance is less complex and the non-face model is a simple
color model.
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Classical Image Model

Semantic Image Model

. Zface

. Zbeard
. Znon-face

Figure 4.2: The regions used by the likelihood model by [Schénborn et al.,
2016] (top). Each pixel belongs to the face model region F or the background
model region B. Assignment to foreground or background is based on the
face model visibility only. In the proposed framework we have the same
labels F and B but additional segmentation variables z to integrate occlusions
(bottom). We assign a label z indicating if the pixel belongs to face, beard
or non-face. Occlusions in the face model region F (in this case glasses)
can hereby be excluded from the face model adaptation. Beards are handled
explicitly and labeled separately.
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5. We perform model adaptation and segmentation at the same time using
an EM-like procedure. Model adaptation assumes a fixed segmentation
and vice-versa.

6. We robustly estimate illumination for initialization (Chapter 5). Illumi-
nation is dominating facial appearance and has to be estimated to find
occlusions.

4.1 Image Model

Our image formation model is based on the 3DMM interpreted in a Bayesian
framework by [Schénborn et al., 2016]. The aim of face model adaptation
(fitting) is to find model parameters generating a synthetic face image which
is as similar to the face in the target image as possible. A likelihood model
is used to rate parameters given a target image. The likelihood model is a
product over the pixels ¢ of the target image fl-, assuming conditional indepen-
dence between all pixel observations. In the formulation of [Schonborn et al.,
2016], pixels belong to the face model (F) or the background model (B). The
foreground and background likelihoods (£gace, b) compete to explain pixels in
the image. The full likelihood model covering all pixels ¢ in the image is

¢ (9;f) =TT tace (9;@) 1L (L-/) . (4.1)
i€F i'eB

The foreground F is defined solely by the position of the face model (see
Figure 4.2) and therefore this formulation cannot handle occlusions.

4.2 Semantic Image Model

We extend (4.1) to handle multiple models. Therefore, we introduce a random
vector z containing a random variable z; for each pixel 7, indicating the class k
it belongs to. The standard likelihood model (4.1) is extended to incorporate
different classes:

¢ (9; i z) -1 (9; 1) o (4.2)
k

%

with >, 2z =1 Vi and z;, € {0,1}.
The likelihood model is open for various models for different parts of the
image. In this work we use three classes k, namely face (2face), beard (zpeard)
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and non-face (Znon.face). In Figure 4.2 we present all different labels and
regions.

The main difference to the formulation by [Schonborn et al., 2016] is that
the face model does not have to fit all pixels in the face region. Pixels in the
image are evaluated by different likelihoods ¢, for the respective class mod-
els k. For our implementation those likelihoods are fgace, heard and Lhon-face-
They are explained in more detail in Section 4.2.2.

To select the likelihood per pixel during face model adaptation, we choose
the strongest label z for every pixel maxy P(z;;). The generative face model
with the likelihood #t,.e is adapted to pixels with the label z¢,c. only, according

0 (4.2). Beard and other non-face pixels are handled by separate likelihoods
during face model adaptation. Non-face pixels are only characterized by a low
likelihood of the face and beard model. Thus, they can be outliers, occlusions
or background pixels.

4.2.1 Segmentation

To estimate the label z for a given parameter set § we use an extension of the
classical MRF segmentation technique including a beard prior similar as in
[Huang et al., 2004], see Figure 4.4.

The MRF is formulated in the following form:

P(z\f,@)aHHgk (Q;jz')zk (zik|0) P H P(zik, Zjk)- (4.3)
ik

16”(1)

The data-term is built from the likelihoods for all classes k and over all
pixels ¢ and combined with the beard prior. The smoothness assumption
P(zi, zji;) enforces spatial contiguity of all pixels j which are neighbors n(7)
of i.

The beard prior is a prior on the labels z:

P(z|0,¢) (4.4)

The prior on the label z per pixel is defined by marginalizing over all m
prototype shapes | € {1..m} defined on the face surface (see Figure 4.3):

P(z]0) = ZP ziler, 0)P(cr). (4.5)
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Figure 4.3: The seven beard prototypes derived from k-means™™ clustering
on manual beard segmentations on the Multi-PIE database (blue labels). We
manually added a prototype for no-beard and one to handle occlusions over
the complete beard region (bottom right, red). The prototypes are defined
on the 3D face model and can be rendered to the image according to the face
model parameters 6.
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Pixels [;

Label 2;

Prior C

Figure 4.4: Graphical model of our MRF with beard prior c. We are interested
in the segmentation labels z; and observe the image pixels I;. Every label z;
at position ¢ is connected to the prior ¢ and its neighbours.

The label z is depending on the beard prior P(z|0, ¢). For the non-face and
face label we use a uniform prior. The beard prior is depending on the current
set of face model parameters 6 since the pose and shape of the face influence
position and shape of the beard in the image. We derived the prototype
from manual beard segmentations labeled on the Multi-PIE database ([Gross
et al., 2010]). We used k-means*™ clustering technique as proposed in [Arthur
and Vassilvitskii, 2007] to derive a small set of prototypes. The resulting
prototypes are shown in Figure 4.3. We manually added a prototype for
no-beard and another one to handle occlusion of the complete beard region.
Those priors vote for non-face respectively face in the beard region. Those
additional prototypes allow us to consider all possible labels in the beard
region of the face. Large occlusions in the beard region with similar color
appearance or detection responses would vote for a full beard, since the full
beard prior covers most pixels in this regions. By adding a prior covering a
bigger region than possibly covered by beard, we allow to label those regions
correctly as non-face. The additional prior for no-beard is necessary since
our prototypes are learned on male individuals with beard, which does not
reflect all male and female individuals. All prototypes are defined on the face
surface and their position in the image is depending on the current pose and
face model parameters in 6.
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4.2.2 Likelihood Models
Depending on the label z we apply different likelihood models for each pixel.

Face Likelihood

The likelihood of pixels to be explained by the face model is the following:

le <9§I~i> _ %exp <_zi2 fl — Ii(Q)HQ) ifi e F (4.6)

1h(1;,0) if i € B.

Pixels are evaluated by the face model if they are labeled as face (2face)
and are located in face region F. The rendering function I generates a face for
given parameters §. This synthesized image I(6) is compared to the observed
image I. The likelihood model for pixels in the face region F is assuming
per-pixel Gaussian noise. The likelihood ff,¢e is defined over the whole image
and therefore also in the non-face region B. For those pixels that are not
in the region of the generative face model, we use a simple color model to
compute the likelihood. We use a color histogram hy with ¢ bins estimated
on all pixels in F labeled as face (zace)-

Occlusion and Background Likelihood

For background modeling, we use a color model based on the observed image
I. An overview over the necessity of a background model and different possible
models can be found in [Schénborn et al., 2015]. The likelihood of the non-face
model to describe occluding and background pixels is the following:

Cuontuce (6 15) = b () = 5y () (4.7)

where § is the bin volume and h I~(I~Z) is the relative frequency of the ob-
served color value I; in the input image I.

We use a simple color histogram estimated on the whole image I to esti-
mate the background likelihood as proposed in [Egger et al., 2014].

4.2.3 Beard Model

For the beard model, we compare different likelihoods based on appear-
ance estimated on the target image and detection learned from a database.
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Figure 4.5: Hair detection results for one individual of the AR face database.

The appearance-based likelihood can directly be integrated into the proposed
framework. The detection has to be interpreted as a likelihood to make it fit
into the framework.

Beard Appearance Likelihood

The beard appearance likelihood is a simple histogram color model:

. 1 .
geard (97 Il) = ghbeard(li79)7 (48)
The histogram hpeqra, is estimated on the current segmentation of zpeard,
where 4 is the bin volume and hveard(L;,0) is the relative frequency of the
color value I; conditioned on the position of the beard prototype defined by
position of the face model 6.

Beard Detection Likelihood

In contrast to the beard appearance likelihood ¢, .4 we also formulate a
likelihood based on hair detection. The idea is to use bottom-up cues to derive
information of possible beard candidate positions directly from the image and
use this information during segmentation. Combining the likelihood based on
detection with appearance likelihoods of the other models merges ideas from
MRF and CRF segmentation and was so far not explored in the literature.
We show how we can combine those modalities in our probabilistic framework.

Whilst the appearance is estimated on the target image based on the

current model estimate, the likelihood based on hair detection ¢¢_, ; is derived

-~/
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from a hair classifier trained on the FERET database ([Phillips et al., 1998,
2000]). The hair classifier was proposed and trained in [Morel-Forster, 2017].
HOG ([Dalal and Triggs, 2005]) and Gabor ([Daugman, 1985]) features were
used to classify hair using random forests ([Breiman, 2001]). The detection
result yields a probability P(beard;|I;) for every pixel i. In Figure 4.5 we
present some hair detection results.

Detecting hair in a sliding window approach leads to noisy results and false
detections P. As proposed by [Morel-Forster, 2017], we assume an uncertainty
of the hair detection algorithm by incorporating a false positive (fp) and false
negative rate (fn) of 5% in the following way:

P(beardi|l~i) —p (beardi|l~i) (1= (fn+ fp)) + fn. (4.9)

The appearance likelihood fits well in a MRF, whilst a detection would
fit in a Conditional Random Field (CRF). To use the detection result, we
interpret the detection result as posterior and find an equivalent likelihood

i card’
R eara (‘99 ii)
e (0:1) loontace (0315 ) onna (0:1:)

For simplicity we are assuming a uniform prior on the different class
labels and we can therefore omit the class priors P (beard;), P (face;) and
P (non-face;) in above equation. The likelihood can be directly derived from
(4.10) by conversion:

P(beardiﬁi) - (4.10)

oy P(veardilEy) (truce (6:1) + fnontuce (6:1:) )
B eara (9, Ii) = L P(beardi\fi) . (4.11)

4.2.4 Inference

The full model consists of the likelihoods for face model adaptation shown in
(4.2) and segmentation from (4.3). Those equations depend on each other.
In the fully probabilistic setting, we would have to include the uncertainty
of the current parameter estimate ¢’ and the estimate on the segmentation
label 2’ by estimating P(z|0)P(#’) and at the same time P(0|z)P(z’). Taking
those uncertainties into account renders inference infeasible in practice. We
therefore estimate the segmentation label z assuming a given set of face model
parameters 0. And vice versa, we assume a given segmentation label z when
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adapting the face model parameters §. Both are not known in advance and
are adapted during the inference process to get a joint MAP-estimate of face
model parameters and segmentation. We use an EM-like algorithm ([Demp-
ster et al., 1977]) for alternating inference of the full model. In the expectation
step, we update the label z of the segmentation. In the maximization step, we
adapt the face model parameters 6. The choice of this procedure is motivated
by convergence analysis in Section 4.4.1. In practice, this approximative infer-
ence leads to good results. An overview of the alternating steps is illustrated
in Figure 4.6.

Face model adaptation is performed by a Markov Chain Monte Carlo
strategy ([Schénborn et al., 2016]) with our extended likelihood from (4.2).
MRF segmentation is performed using Loopy Belief Propagation with a sum
product algorithm as proposed by [Murphy et al., 1999].

The histogram-based appearance model of beards is adapted during seg-
mentation and fitting. During segmentation, the appearance is updated re-
specting the current belief on z;. During fitting, the beard appearance is also
updated due to the spatial coupling with the face model. When the shape
or camera parameters of the face model change, the beard model has to be
updated.

During segmentation, we assume fixed parameters § and during fitting we
assume given labels maxy, z;;. Since the fixed values are only an approximation
during the optimization process and fully probabilistic inference including the
real uncertainty is infeasible, we account for those uncertainties by adapting
the likelihoods. The uncertainty arises as misalignments and mislabeling, es-
pecially in important regions like the eye, nose and mouth. These regions are
often mislabeled as occlusion due to their high variability in appearance when
using other robust error measures. In the inference process, those regions are
automatically incorporated gradually by adapting the face and non-face like-
lihood to incorporate this uncertainty. To account for the uncertainty of the
face model parameters 6 during segmentation, we adapt the face model likeli-
hood for segmentation by taking neighboring pixels n into account (compare
to (4.6)):

0T = Lexp (- o i—1, (9)“2 (4.12)
face\V» f2) — N p 2 @ in . .

5 min
o< jen(i)

The small misalignment of the current state of the fit is taken into account by
the neighboring pixels j in the target image. In our case we take the minimum
over a patch of the 9 x 9 neighboring pixels direction (interpupillary distance
is ~120 pixels).
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Robust
lllumination
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Semantic Model Adaptation
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Figure 4.6: Algorithm overview: We start with an initial face model fit of our
average face with a pose estimation. Then we perform a RANSAC-like robust
illumination estimation for initialization of the segmentation label z and the
illumination setting (for more details see Chapter 5). Then our face model
and the segmentation are simultaneously adapted to the target image I. The
result is a set of face model parameters § and a segmentation into face and
non-face regions. The presented target image is from the LE'W face database

([Huang et al., 2007)).
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To account for the uncertainty of the segmentation label z for face model
adaptation, we adapt the likelihood of the non-face during face model adapta-
tion. Pixels which are masked as non-face can be explained by the face model
if it can do better (compare to (4.7)):

O e (9; I) = max (eface (9; I) b (f) )ifi c F. (4.13)
Both modifications more likely label pixels as face and this leads to con-
sider them during face model adaptation.

4.3 Initialization

Our robust illumination estimation described in Chapter 5 gives a rough es-
timate of the illumination and segmentation. However, the obtained mask
is underestimating the face region. Especially the eye, eyebrow and mouth
regions are not included in this first estimate. Those regions differ from the
skin regions of the face by their higher variance in appearance, they will be
gradually incorporated during the full model inference.

The initialization of the beard model is derived from the segmentation
obtained by robust illumination estimation. The prior is initialized by the
mean of all beard prototypes. The appearance is estimated from the pixels in
the prototype region segmented as non-face by the initial segmentation.

4.4 Experiments

For the model adaptation experiments, we perform alternating 2,000 Metropolis-
Hastings sampling steps (best sample is taken to proceed) followed by a seg-
mentation step with five iterations and repeat this procedure five times. This
amounts to a total of 10,000 samples and 25 segmentation iterations.

For the 3DMM adaptation, the 3D pose has to be initialized. In the
literature, this is performed manually ([Blanz and Vetter, 1999; Romdhani and
Vetter, 2003; Aldrian and Smith, 2013]) or by using fiducial point detections
([Schénborn et al., 2013]). For all our experiments, we use automatic fiducial
et al., 2015]. Our method is therefore fully automatic and does not need
manual input.

e
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Figure 4.7: The image-likelihood (4.2) evaluated for all accepted samples of
independent sampling runs on different target images. A segmentation step
is performed at iteration 1000 and then every 2000th iteration (indicated by
dotted line).

4.4.1 Convergence Analysis

In this Section we motivate the choice of the EM-like inference method based
on convergence analysis. Our sampling-based model adaptation framework
proposes parameter updates and verifies them according to (4.2). Those up-
dates are typically small steps which draw after a burn-in phase samples from
the posterior distribution of suitable model parameters. The segmentation
could be directly integrated as such a proposal into the model adaptation.
However, the segmentation changes the pixels which are evaluated by the dif-
ferent components of the likelihood. Applying a segmentation-step therefore
often leads to a smaller likelihood according to (4.2). In practice, the model
parameters of the corresponding models have to adapt to those new pixels.
We visualize the image-likelihood of semantic model adaptations in Figure 4.7.
It shows the jumps in the likelihood caused by segmentation.

The EM-like inference method can balance segmentation and model adap-
tation. By allowing the model parameters to adapt to the current segmenta-
tion, the model parameters can converge to the current segmentation setting.
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We choose the number of samples such that we observe this convergence. After
most E- and M-steps the image-likelihood improves over the last combination
of segmentation and model parameters.

4.4.2 Segmentation

To evaluate the segmentation performance of the proposed algorithm, we man-
ually segmented occlusions and beards in the AR face dataset ([Martinez and
Benavente, 1998]). We took a subset of images consisting of the first 10 male
and female participants appearing in both sessions. Unlike other evaluations,
we include images under illuminations from the front and the side. We se-
lected the neutral (containing glasses and beards) images from the first session
and images with sunglasses and scarves from the second session. The total
set consists of 120 images. We had to exclude five images because the fiducial
point detection (four images) or the illumination estimation (one image) failed
for them (m-009-25, w-009-25, w-002-22, w-012-24, w-012-25). For evaluation
we labeled an elliptical face region, beards and occlusions manually. Evalua-
tion was done within the elliptical face region only. Our manual annotations,
used in this evaluation, are available under http://gravis.cs.unibas.ch/
publications/2017/2017_0cclusion-aware_3D_Morphable_Models.zip.
In our previous work ([Egger et al., 2016b]), we compared our method for
occlusion-aware model adaptation to a standard technique to handle outliers,
namely a trimmed estimator including only n% of the pixels which are best
explained by the face model. In this work we present the segmentation re-
sult including beards as an additional label. We present the simple matching
coefficient (SMC) and the F1-Score for detailed analysis in Table 4.1. In our
experiments we distinguish the three image settings: neutral, sunglasses and
scarves. We include the result of the initialization to depict its contribution
and show that the fitting improves the segmentation even more. We provide a
separate evaluation of the different proposed beard likelihoods. The appear-
ance and detection based likelihood lead to similar segmentation performance.
The only outlier is the detection-based beard segmentation - the strong hair
detection on the sunglasses (compare Figure 4.5) misleads votes for strong
occlusions and select the no-beard prototype and misleads the segmentation.

4.4.3 Quality of Fit

We present qualitative results of our fitting quality on the AR face database
([Martinez and Benavente, 1998]) and the Labeled Faces in the Wild database
(LFW) ([Huang et al., 2007]). In our results in Figure 4.9, the images include

e
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Table 4.1: Comparison of segmentation performance in SMC and in brackets the F1-Scores (class|rest) for
all labels on the AR face database ([Martinez and Benavente, 1998]). We present separate results for our
initialization using robust illumination estimation (line 1-3). The evaluation of the full model is split into the
appearance likelihood ¢ . . (line 4-6) and the detection likelihood ¢Z ., (line 7-9).

4.4. EXPERIMENTS

Method Neutral Glasses Scarf
Initialization zgyce 0.78 (0.86]0.41) | 0.81 (0.83]0.77) | 0.73 (0.73]0.73)
Initialization zpeard 0.97 (-]0.99) 0.95 (-]0.98) 1.00 (-]1.00)
Initialization znen-face 0.71 (0.09]0.83) | 0.75 (0.67]0.80) | 0.69 (0.66/0.69)
Full model ¢}, 4, Ztace 0.85 (0.91]0.51) | 0.85 (0.87|0.82) | 0.84 (0.85|0.82)
Full model ¢}, 45 #beard 0.98 (0.63]0.99) | 0.96 (0.53]0.98) | 0.97 (-|0.98)
Full model ¢}, 4 #non-face 0.80 (0.89]0.15) | 0.81 (0.86]0.72) | 0.76 (0.80/0.69)
Full model ngard, Zface 0.85 (0.91]0.52) | 0.85 (0.87]0.81) | 0.86 (0.87]0.84)
Full model deard, Zbeard 0.98 (0.45]0.99) | 0.95 (0.04]/0.97) | 0.98 (-|0.99)
Full model Egeard, Znon-face 0.80 (0.88]0.14) | 0.79 (0.83]0.70) | 0.79 (0.82]0.74)
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(c) 0, init (d) 2z, old

(e) 0, old (f) z, proposed (g) 0, proposed

Figure 4.8: The benefit of explicitly modeling beards. The beards can not be
reliably excluded during illumination estimation since they can partially be
explained by illumination effects (b, ¢). We compare our results to the same
approach without modeling beards explicitly (d, e, [Egger et al., 2016b]). By
explicitly modeling beards the face model adaptation is not mislead by the
beard region (f). Through the coupling of the beard model with the face
model, the underlying face is kept at the correct position (g). The target
image (a) arises from the LFW database ([Huang et al., 2007]).
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(a) target (b) z, init (c) 0, init (d) z, full fit (e) 0, full fit

¥

Figure 4.9: (a) Target images from the AR face database (first three) [Martinez and Benavente, 1998] and the
LFW database ([Huang et al., 2007]). (b) and (c) depict our initialization arising from the robust illumination
estimation, (d) and (e) present the final results. Our final segmentation and synthesized face includes much
more information of the eye, eyebrow, nose and mouth regions than the initialization. More examples on the
previous page.
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(c) 0, init (d) z, full fit (e) 0, full fit
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Figure 4.10: Usual cases of failure: scarves can be explained by the light and color model and are therefore
mislabeled. Hands have similar color appearance and do not distort the face model adaptation but lead to a
wrong segmentation. The prototype for chin-beards is mislead by shadows under the chin which are not modeled
in our illumination model. Note that our method is not adapted to a specific kind of outlier. The first and last
target is from the AR face database ([Martinez and Benavente, 1998]), the middle one from the LFW database
([Huang et al., 2007]).
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(e)

Figure 4.11: The results at different steps in our framework including the EM-strategy. The target image from
the LFW database ([Huang et al., 2007]) is shown in (a). The result of the robust illumination estimation is
shown in (b), we observe a strong pose misalignment in the roll angle. After the first 1000 samples of our model
adaptation process the pose was adapted to the image (c) during the later model adaptation the correspondence
gets better and the beard and face region are segmented better. We present the result after 3000 samples (d)
and after the full 10°000 samples (e).
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beards, occlusions and un-occluded face images. In Figure 4.10 we also in-
clude results where our method fails. Our method detects occlusions by an
appearance prior from the face model. If occlusions can be explained by the
color or illumination model, the segmentation will be wrong. Through the
explicit modeling of beards the errors in the beard region are reduced and the
face model does not drift away anymore in this region (see Figure 4.8). For
this experiment we used the appearance based beard likelihood ¢, ;. An
additional result of the inference process is an explicit beard type estimation.
The quality of the model adaptation on the AFLW database show almost the
same performance as we obtain on data without occlusions. Interesting parts
of the face are included gradually during the fitting process, see Figure 4.11.
Our method also performs well on images without occlusions and does not
tend to exclude parts of the face.

4.5 Limitations

The presented model is a first instance of a semantic Morphable Model. The
approach is limited to the flexibility of the individual models and is complex to
adapt to images. The current implementation excludes everything which can
not be properly explained by the face model from the face model explanation.
The texture model is very coarse and the model explanation misses textural
details like wrinkles. Eye gaze is excluded in the 3DMM and most often
handled as occlusion in the face model explanation. Those textural flaws
could be eliminated by higher quality models for specific regions.

4.6 Conclusion

We proposed semantic Morphable Models and implemented a concrete in-
stance. Our model distinguishes faces from beards and non-face pixels. This
semantic segmentation of the target image leads to occlusion-awareness and
better face reconstruction under occlusions. Our implementation is a first se-
mantic Morphable Model - the idea of different models competing to explain
different semantic regions in the image is open to more specific models to
explain parts of the face. A high quality face model could be combined from
individual components like an eye model ([Bérard et al., 2016; Wood et al.,
2016)), a teeth model ([Wu et al., 2016]) and a hair model ([Chai et al., 2016]).
We presented how different models can be coupled and how appearance based
and detection based methods can be incorporated for segmentation. The spe-
cific models can be regionally coupled to the coarser face model as we have
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done for the beard model. The resulting framework is a hierarchical set of
models for a coarse to fine image explanation framework.
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Chapter 5

Robust Illumination
Estimation

Illumination is a crucial part of every image formation process. In order to
comprehend scenes from images, we need to understand the actual illumi-
nation setting. Illumination is dominating facial appearance, see Figure 1.4.
Changes in texture or shape strongly influence our perception of identity,
whilst our perception is invariant against illumination change. However, il-
lumination changes are much stronger than changes in identity measured by
standard Euclidean distance in RGB color space. Handling and estimating
illumination is crucial for generative face image analysis.

Most approaches in computer vision do not explicitly model illumination
but aim to be locally robust against illumination variations. Explicit illumi-
nation estimation is avoided because it is an ill-posed problem. The observed
appearance arises from a multiplication of albedo and illumination and al-
lows ambiguous explanations. For estimation of illumination we need prior
knowledge about the shape and albedo of the observed object. With a given
shape and albedo, illumination can be approximated directly. Uncertainty on
shape or albedo are propagated and lead to uncertainty in the resulting illu-
mination estimation. Occlusions and outliers render illumination estimation
additionally complex in the analysis of real world face images.

Ignoring occlusions strongly misleads illumination estimation as shown in
Figure 5.1. In the analysis process we search for the model instance which is
most consistent with the target image despite occlusions and outliers. Face
shape, albedo and pose also influence appearance and cannot be estimated
independently. The novelty of our estimation method is handling of occlusions

-~
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Figure 5.1: The target image (a) contains strong occlusions through sunglasses
and facial hair. Non-robust illumination estimation techniques ([Schénborn
et al., 2016]) lead to wrong illumination parameters under those occlusions.
Non-robustly estimated illumination rendered on the mean face (b) and on
a sphere with average face albedo (¢). The sphere provides a normalized
rendering of the illumination condition. The result obtained with our robust
illumination estimation technique (e) and (f). The white pixels in (d) are
pixels selected for illumination estimation by our robust approach. The target
image is from the AFLW database ([Kostinger et al., 2011]).
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like glasses or facial hair which are omnipresent in face images. We build
our algorithm on the concept of robust random sample consensus algorithms
(RANSAC, [Fischler and Bolles, 1981]). To estimate the illumination, the
algorithm needs a model to generate face images with an arbitrary parametric
illumination model. We use the mean face of the BFM, as prior of face shape
and albedo. The shape and appearance prior is rendered under a spherical
harmonics illumination model and a pinhole camera. The spherical harmonics
illumination model efficiently parametrizes an environment map and is able
to represent complex illumination conditions.

The proposed robust illumination estimation needs a rough pose estima-
tion to start from. The output of the algorithm is a set of illumination pa-
rameters and a set of pixels used for the estimation (consensus set). Both
outputs can be used for further analysis in our Analysis-by-Synthesis setting.
In our semantic Morphable Model framework, we need a robust initializa-
tion of the illumination condition. The proposed method not only provides
this initialization but also an initial label z to exclude occlusions and out-
liers from the model adaptation. Occlusions are however hard to determine
in the beginning of the face model adaptation due to the strong influence of
illumination on facial appearance. The estimated illumination is integrated
into the model adaptation process and the consensus set is used to initialize
the label z (see Chapter 4). Alternatively, the algorithm can be applied for
illumination normalization or relighting as proposed in [Shahlaei et al., 2016].

The AFLW face database provides “in the wild” photographs under di-
verse illumination settings. We estimate the illumination conditions on this
database to obtain an unprecedented prior on natural illumination conditions.
The obtained prior is made publicly available.

The proposed prior closes a gap in generative modeling and applies to a
wide range of applications. It can be integrated in probabilistic image analysis
frameworks like [Schonborn et al., 2016] or [Kulkarni et al., 2015]. Further-
more, the resulting illumination prior can improve discriminative methods
which aim to be robust against illumination. This is especially helpful for
data-greedy methods like deep learning. Those methods are already includ-
ing a 3DMM as prior for face shape and texture to augment ([Jourabloo and
Liu, 2016; Zhu et al., 2016]) or synthesize ([Richardson et al., 2016; Kulkarni
et al., 2015]) training data and could profit from using the proposed illu-
mination prior. Currently, no illumination prior learned on real world data
is available. The proposed illumination prior is an ideal companion of the
3DMM and allows the synthesis of more realistic images.
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5.1 Illumination Estimation

The main requirement for our illumination estimation method is robustness
against occlusions. The idea is to find the illumination setting which most
consistently explains the observed face in the image. On a set of points with
known albedo and shape, the illumination condition can be estimated. Un-
certain shape and albedo as well as occlusions and outliers render this task
ill-posed. Non-robust illumination techniques are misled since their observed
color is not consistent to the object to analyze. The selection of points used
for estimation shall not contain outliers or occlusions. We use an adapted
RANSAC algorithm which adapts a generative model to the target image and
is specially designed to handle outliers. We synthesize illumination conditions
estimated on randomly sampled point sets to find the illumination parameters
most consistent to the target image. The following steps of our procedure are
visualized in Figure 5.2 and written in Pseudo-Code in Algorithm 5.1.

The idea of the RANSAC algorithm is to iteratively find a set of points
which generalizes well to the observed target image. In each iteration we
randomly select a set of points on the surface, which are visible in the target
image I, and estimate the illumination parameters L, from the observed
color values of those points (step 1 and 2). The quality of the estimated
illumination is then evaluated on all available points (step 3). The full set of
points consistent with this estimation is called the consensus set. Consistency
is measured by counting the pixels of the target image which are explained
well by the current illumination setting. If the consensus set is large enough
the illumination is re-estimated on all points from the full consensus set for a
better approximation. If this illumination estimation is better than the last
best estimation according to a quality measure, it is set as the current best
estimation. At the end the algorithm holds a set of points best approximating
the observed illumination as well as a consensus set of points which can be
explained by the resulting illumination estimation.

We calculate how well a set of illumination parameters reconstructs the
target image I, to measure the quality of this estimate. We measure the color
likelihood of the rendered face under the estimated illumination parameters
I(Ly,,) at each pixel i :

~ 1 1
EL(LlwﬁIz‘) = N €Xp <_%c2 ‘

i e[ (1)

We adapted the sampling of points on the face surface (step 1) by adding
domain knowledge. There are some occlusions which often occur on faces
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like facial hair or glasses. Therefore, we include a region prior to sample
more efficiently in suitable regions which arise at face regions which have low
variance in appearance. Details on how to obtain this prior are found in
Section 5.3.

Most “in the wild” face images contain compression artifacts (e.g. from
the jpeg file format). To reduce those artifacts and noise we blur the image
in a first step with a Gaussian kernel (r = 4 pixels with an image resolution
of 512 * 512 pixels).

Algorithm 5.1: Robust Illumination Estimation.

Input: Target image I , surface normals 77, albedo a®, iterations m,
number of points for illumination estimation n, threshold ¢,
minimal size k of consensus set, rendering function I

Output: INlumination parameters L;,,, consensus set ¢

c=9
for m iterations do

1. Draw n random surface points p
2. Estimate Ly, on p, 7, a® and I (Eq. 5.2)
3. Compare I(Lyy,) to I (Eq. 4.6). Pixels consistent with Ly,
(01, (Li; I;) > t), build c.
4. if |¢| > k then

Estimate illumination on ¢
L Save c if L;,, is better than previous best

5.2 Illumination Model

The proposed algorithm is not limited to a specific illumination model. The
main requirement is, that it should be possible to estimate the illumination
from a few points with given shape, albedo and appearance. Using the spher-
ical harmonics illumination model has two main advantages. First, it is able
to render natural illumination conditions by approximating the full environ-
ment map. Second, illumination estimation from a set of points corresponds
to solving a system of linear equations.

Spherical harmonics allow an efficient representation of an environment
map with a small set of parameters L;,,, ([Ramamoorthi and Hanrahan, 2001;
Basri and Jacobs, 2003]). This leads to an expressive illumination model

-
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Input

Step 1: Step 2: Step 3: Step 4:
sample points illumination evaluate re-estimate on
estimation estimation consensus set

Result

lllumination Consensus Set
Parameters

Figure 5.2: Robust illumination estimation: Our RANSAC-like algorithm
(compare Algorithm 5.1) takes the target image and a pose estimation as
input. We added strong occlusion (white bar) for better visualization. The
algorithm iteratively samples points on the face surface (step 1). We estimate
illumination from the appearance of those points in the target image (step 2
and 5.2). The estimation is then evaluated by comparing the model color to
the target image (step 3 and 5.1). The illumination is mislead by including the
occluded regions (red points). Choosing good points (green points) leads to
a reasonable estimation. For good estimates we re-estimate the illumination
on the full consensus set. We repeat the estimation on random point sets and
choose the most consistent one as a result.
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which is able to approximate complex environment maps in a parametric
model and therefore suitable in our generative and parametric setting. The
radiance function is parametrized through real spherical harmonics basis func-
tions Y. The radiance pj per color channel ¢ and for every point j on the
surface is calculated from its albedo a;, surface normal 77; and the illumination
parameters Li,:

2 l
p5=asy Y Vi(it;) L. (5.2)

=0 m=—1

The expansion of the convolution with the Lambert reflectance kernel is
given by «y, for details, refer to [Basri and Jacobs, 2003]. We use Phong shad-
ing and interpolate the intensities at each pixel. Because the light model is
linear (5.2), the illumination expansion coefficients Lf, , are estimated directly
by solving a linear system (least squares) with given geometry, albedo and
observed radiance as described by [Zivanov et al., 2013]. The system of linear
equations is solved during the RANSAC algorithm using a set of points.

5.3 Region Prior

Facial regions differ in appearance and elicit strong variations. Whilst some
regions like the eyebrows or the beard region vary strongly between different
faces, other regions like the cheek are more constant. Also, common occlusions
through glasses or beards strongly influence facial appearance. Regions with
low appearance variation are more suitable for illumination estimation than
those showing stronger variation. We restrict the samples in the first step
of the RANSAC algorithm to the most constant regions. The regions with
strong variation are excluded from sample generation (step 1) but included in
all other steps.

We estimate texture variation on the Multi-PIE database ([Gross et al.,
2010]). Tt contains faces with glasses and beards under controlled illumination.
We select images with frontal pose (camera 051) and with frontal, almost
ambient illumination (flash 16) from the first session. With this subset we
exclude all variation in illumination and pose (which we model explicitly)
from our prior. The variation is estimated on all 330 identities. The images
are brought into correspondence to the face model surface by adapting the
BFM to each image with the approach by [Schénborn et al., 2016]. For the
first step of the illumination estimation algorithm, we use the regions of the

-
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0

Figure 5.3: We derive a region prior from the average variance of appearance
over all color channels per vertex on the face surface (on the left). Scaling
is normalized by the maximal observed variance. On the right, the mask
obtained by thresholding at half of the maximal observed variance. We use
the white regions to sample points in the first step of our algorithm. Note that
especially multi-modal regions potentially containing facial hair or glasses are
excluded.

face where the texture variation is below one half of the strongest variation.
The variation and the resulting constant region are depicted in Figure 5.3.

5.4 Illumination Prior

The idea of our illumination prior is to learn a distribution of natural illumi-
nation conditions from “in the wild” face images. There are various areas of
application for such a statistical prior. It can be directly integrated in gener-
ative approaches for image analysis or be used to synthesize training data for
discriminative approaches.

For faces, the 3DMM provides a prior distribution for shape and color
but does not contain a prior on illumination. We therefore estimate an il-
lumination prior learned on real world illumination conditions. In [Egger
et al., 2017c|, we publish the raw data of our illumination prior as well as the
estimated multivariate normal distribution of all 27 concatenated spherical
harmonic parameters Lf,  of the first three bands and color channels. The
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prior allows us to generate realistic random illumination settings from the
prior distribution.

5.5 Experiments

To evaluate the quality and robustness of the proposed illumination estima-
tion, we performed our experiments on faces with a spherical harmonics il-
lumination model. We use synthetic data to evaluate the sensitivity against
occlusion. Our algorithm assumes a given pose, we investigate the errors
introduced by this pose estimation. We exclude appearance variations by
using the mean face shape and texture. We also examine the sensitivity to
shape and texture changes. We show the performance of our method on real
world face images in a qualitative experiment. And last, we present a novel
illumination prior learned on empirical data.

We rely on the mean face of the BFM ([Paysan et al., 2009]) as face shape
and texture for all experiments. We estimate the illumination parameters on
n = 30 points (step 2). We use o = 0.043 estimated on how well the BFM
is able to explain a face image ([Schonborn et al., 2016]) and threshold the
points for the consensus set at ¢t = 20. We estimate the illumination on the
full consensus set if the consensus set contains more than x = 40% of the
surface points visible in the rendering. We stop the algorithm after m = 500
iterations.

On synthetic data, we measure how robust our algorithm is against occlu-
sions. We also investigate how robust the algorithm is against pose misalign-
ments and how much our simplified shape and texture prior influences the
result. We need ground truth albedo and illumination, since there is a lack
of a database providing this, we generate synthetic data. We use the mean
shape and texture from the BFM as object and render it under 50 random
illumination conditions. We randomly generate spherical harmonics illumi-
nation parameters L;,, according to a uniform distribution between -1 and

1.

5.5.1 Robustness against Occlusions

For the first experiment, we add synthetic random occlusion to this data. The
random occlusion is a block with a random color. For the proposed RANSAC
algorithm, those occlusions by large blocks of uniform color depict a worst-
case scenario, since they consistently vote for wrong illumination parameters.
Synthetic occlusions are positioned randomly on the face. An example of
the synthesized data is depicted in Figure 5.4. We estimate the illumination

-
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a) (b)
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(d) 0.32 (e) 0.11

(9) (h)

(j) 0.35 (k) 0.39 (0]

Figure 5.4: Two examples of our synthetic data to measure the robustness
against occlusions of our approach. The target image is shown in (a, g) and the
ground truth illumination for comparison (b, h). The ground truth occlusion
map is rendered in (c, i). The baseline illumination estimation estimated on
1000 random points is shown in (d, j). Our robust illumination estimation
result (e, k) as well as the estimated mask is shown in (f, 1). Together with
the visual result, we indicate the measured RMS-distance on the rendered
sphere in color space. In the successful case (a-f), the consensus set is perfect
and the occlusion is excluded from illumination estimation. In the failure case
(g-1), the chosen occlusion is similar in color appearance to the observed face
appearance. This leads the best consensus set to fail in explaining the correct
region of the image. The first example (a-f) is a synthesized target image with
30% of the face occluded. The second example is with 60% occlusion (g-1).
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Figure 5.5: We measured the illumination estimation error of our approach for
different degrees of occlusion. We compare randomly generated illumination
conditions with those arising from real world settings. We observe that our
algorithm is robust up to 40% of occlusion.

condition on this data using our robust illumination estimation technique to
measure the robustness. We measured the approximation error by measur-
ing RMS-distance in color space of the sphere rendered under the estimated
illumination condition and the sphere with the ground truth illumination con-
dition, as proposed by [Barron and Malik, 2015].

We cope with up to 40% of occlusion and reach a constantly good estima-
tion, see Figure 5.5. Occlusions which surpass 40%, and those which can par-
tially be explained by illumination(see Figure 5.6), are not properly estimated
by our algorithm, see Figure 5.4. The generated illumination conditions are
unnatural, therefore we also evaluated the robustness against occlusion on ob-
served real world illumination conditions (Section 5.5.4). Every measurement
is the average over 50 estimations.

5.5.2 Robustness against Pose Estimation Error

Our algorithm relies on a given pose estimation. Pose estimation is a problem
which can only be solved approximatively. We therefore show how robust our
algorithm is against small misalignments in pose. We again generate synthetic
data with random illumination parameters and manipulate the pose before we
estimate the illumination. The results are shown in Figure 5.7. We present

-
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cokd
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(d) 0.15 (e) 0.09 (f)

Figure 5.6: An example of wrong occlusion estimation. Whilst the illumina-
tion estimate is close to the ground truth, the occluded region can partially
be explained by the illumination condition and the color of the mean face.
The arrangement is the same as in Figure 5.4.

separate effects of yaw, pitch and roll angle as well as the effect of combin-
ing all three error sources. Small pose estimation errors still lead to good
illumination estimations. As expected, they grow with stronger pose devia-
tions. We have to expect errors smaller than 10 degrees from pose estimation
methods (compare [Murphy-Chutorian and Trivedi, 2009]).

5.5.3 Robustness against Shape and Texture Variation

With the mean of the BFM, we use a simple prior for shape and texture for
the proposed illumination estimation. In this experiment, we want to mea-
sure how shape and texture changes influence the illumination estimation.
We therefore modify all shape and color parameters gradually. The result
is presented in Figure 5.8. Under artificial illumination conditions we get
good estimations of the true illumination condition even for stronger changes.
For real world illumination conditions the ambiguity of color and illumina-
tion leads to wrong illumination estimates. We observe that small variations
influence the illumination estimation but do not break it.

5.5.4 Illumination Estimation “in the wild”

We applied our robust illumination estimation method on the AFLW database
([Késtinger et al., 2011]) containing 25’993 images with a high variety of pose
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Figure 5.7: We measured the illumination estimation error of our approach re-
lated to pose estimation errors. Our algorithm handles pose deviations which
arise by wrong pose estimation input. We compare the result for synthetic
random illumination conditions (a) as described and illumination conditions
from our illumination prior (b). We observe that illumination estimation on
real world illumination conditions is less sensitive to pose estimation errors.
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Figure 5.8: We measured the illumination estimation error of our approach
related to shape and texture changes. Even with the mean of the BFM as
simple appearance prior, we reasonably estimate the illumination condition.
We compare the result for synthetic random illumination conditions (a) as
described and illumination conditions from our illumination prior (b). We ob-
serve real world illumination conditions to be much more sensitive to changes
in facial texture and less sensitive to changes in shape than purely synthetic

samples.
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and illumination. The provided landmarks were used for a rough pose es-
timation following the algorithm proposed by [Schénborn et al., 2016]. The
illumination conditions are not limited to lab settings but are complex and
highly heterogeneous. We observe that small misalignments due to pose esti-
mation still lead to a reasonable illumination estimation. The affected pixels,
e.g. in the nose region, are automatically discarded by the algorithm. Both,
estimated illumination and occlusion mask arising from the consensus set
can be integrated for further image analysis as described in Chapter 4. We
present a selection of images under a variety of illumination conditions with
and without occlusions in Figure 5.10. The illumination estimation results
demonstrate robustness of our approach against occlusions like facial hair,
glasses and sunglasses in real world images.

5.5.5 Illumination Prior

To derive an illumination prior, we again chose the AFLW database in the
same experimental setting as described before. It contains a high variety of
illumination settings. We excluded gray-scale images and faces which do not
match our face model prior (strong make-up, dark skin, strong filter effects).
We manually excluded images where the estimation failed and used the re-
maining 14’348 images as training data.

The obtained illumination estimations depict an empirical illumination
distribution. We estimate a multivariate normal distribution to get a para-
metrized representation and present the first eigenmodes applying PCA in
Figure 5.11. We also generate some new unseen random illumination condi-
tions in Figure 5.12.

5.6 Limitations

The limitations of this illumination prior and the robust illumination esti-
mation are a direct consequence of the used spherical harmonics illumination
model. We did not incorporate specular highlights or effects of self-occlusion
explicitly to keep the model simple. This simplification is not critical, since
regions which are sensitive to self-occlusion or contain specular highlights are
excluded from the illumination estimation during our robust approach (see
Figure 5.10).

The main limitation of our model arises from using the mean face of the
BFM as very simple prior for facial color. Everything that can be explained
by the illumination model is explained by it using the proposed algorithm.
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(a) (b) (c) (d) (e)

Figure 5.10: A qualitative evaluation of the illumination estimation on the
AFLW database ([Kostinger et al., 2011]). We show the target image (a), pose
initialization (b), the consensus set of the RANSAC algorithm (c), the mean
face of the BFM rendered under the estimated illumination condition (d) and
our normalized representation (e). We observe that glasses, facial hair and
various other occlusions are excluded from illumination estimation. At the
same time, we see minor limitations: things that are not well explained by
our simplified illumination model, like specular highlights and cast shadows
or strong variations in facial appearance, e.g. in the mouth, eye or eyebrow
region. Affected regions do not mislead the illumination estimation but are
excluded by our robust approach. More examples on the previous page.
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Figure 5.11: The first two eigenmodes of our illumination prior. The first
parameter represents luminosity. From the second eigenmode we see that
illuminations from above are very prominent in the dataset. The illumina-

tion conditions are rendered on the mean face of the BFM and a normalized
representation.

(¢)

Figure 5.12: Random samples from our illumination prior represent real world
illumination conditions. The proposed prior represents a wide range of differ-

ent illumination conditions. The samples are rendered with the mean face of
the BFM (a) and a normalized representation (b).
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Mainly the global skin tone is therefore explained by the illumination com-
ponents and not by the color model of the face. The problem arises from
an ambiguity of color and illumination discussed in the next section. The
same limitation affects all previous 3DMM adaptation frameworks and is not
specific to our approach.

5.6.1 Color-Illumination Ambiguity

Generative face image analysis is limited by some prominent ambiguities. The
recent work of [Smith, 2016] investigates the perspective face shape ambiguity
and gives an overview over the relevant ones for the 3D reconstruction task.

We here illustrate the color-illumination ambiguity since it is strongly con-
nected to the task of illumination estimation. In an image, albedo and illumi-
nation appear as a product which makes them indistinguishable. The global
skin-tone of a face can well be explained by illumination and the near-ambient
part of illumination can be explained by color. This renders the Analysis-by-
Synthesis setting problem ill-posed. It is not possible to strictly distinguish
between both components of appearance. The arising image explanation is in
our case a mixture of illumination and color and not necessarily the correct
or even close to the correct one.

To demonstrate this ambiguity, we performed several small experiments
based on our model adaptation framework focusing on color and illumination
parameters. In a first experiment, we generate synthetic images with a fixed
spherical harmonics illumination or fixed color model components. We then
try to explain the generated image completely by the other component as
shown in Figure 5.13 and Figure 5.14. For the color parameters adaptation
we run 10’000 random color proposals to adapt to the target image and kept
the illumination ambient. For illumination estimation the color parameters
stay constant and the illumination was directly estimated from all visible
pixels.

In a second experiment, we start from a reasonable fitting result estimated
from a synthetic target image and draw model instances from the posterior of
suitable model instances changing only color and illumination parameters. To
explore the ambiguity we use decorrelated combined color and illumination
proposals as introduced by [Maggi, 2014]. The proposal first changes the
color parameters and then updates the illumination parameters optimally.
We chose the collective image likelihood for drawing real samples from the
posterior as described in [Schonborn et al., 2016]. The resulting samples in
Figure 5.15 visualize similar reconstructions of the target image with entirely
different combination of shape and texture.
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1st 2nd

-40

0.068 0.069 0.057 0.059

Figure 5.13: Color explained by illumination: The first row shows the first
two principal components of the BFM color model rendered under ambient
illumination. The second row shows the mean color of the BFM rendered
under the illumination condition best reconstructing above image. We ob-
serve the global skin-tone to be well explained by adapting the illumination
condition, whilst details like the eyebrows are not explained well. The values
under the reconstruction depict the RMS distance of the reconstruction by
illumination to the original, the values are directly comparable to Figure 1.4.
The observed instances appear similar and also the measured distances are
small.
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Figure 5.14: Tlumination explained by color: The first row shows the first
principal component and two random samples of our illumination prior de-
scribed in Section 5.5.5, as texture we used the mean color of the BEM. The
second row shows how well the color model can reconstruct the above illu-
mination conditions rendered under ambient illumination. We observe the
global color of the illumination to be well explained by the facial color model,
complex illumination as in the random samples can not be reconstructed as
nicely by the color model. The values under the reconstruction depict the
RMS distance of the reconstruction by illumination to the original, the values
are directly comparable to Figure 1.4.
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Figure 5.15: The target image in the first row (a), its color rendered under
ambient illumination (b) and its illumination rendered on the mean color of
the BFM (c). The second row shows a model instance with different color (e)
and illumination (f) parameters but very similar appearance (d). The value
under the reconstruction (d-f) depict the RMS distance of the reconstruction
to the upper images (a-c), the values are directly comparable to Figure 1.4.
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The only approach for such ambiguities is strong prior knowledge, but
even with a perfect prior multiple explanations can be equally likely. In our
case, we have the BFM as a strong prior for the facial color model and the
proposed illumination prior. The illumination prior is however estimated on
real world images using the mean color of the BFM. The illumination prior
therefore is prone to the ambiguity itself and will not resolve it. We weaken
this limitation of the prior by including only illumination conditions estimated
on skin tones near the mean skin tone of the BFM.

5.7 Conclusion

We demonstrate that a simple prior for shape and texture is sufficient to
acquire a useful estimation of illumination from a single image. We show in
qualitative and quantitative experiments, that our approach is robust against
small pose misalignments, changes in shape and texture and handles up to
40% of occlusion. The proposed occlusion-aware illumination estimation is not
limited to faces or the chosen illumination model. It can be applied on various
objects and in combination with different parametric illumination models.

We apply our algorithm on the AFLW database containing faces in a huge
variety of scenes and under arbitrary illumination conditions. The resulting
prior is highly applicable for probabilistic frameworks as well as data-greedy
algorithms like deep learning methods for augmenting or generating data un-
der unconstrained illumination conditions. Our illumination prior, from a
broad range of real world photographs, is the first, publicly available.
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Chapter 6
Application

We combine all the components presented in the previous chapters to apply
our semantic Morphable Model to an “in the wild” attribute estimation task.
The robust illumination estimation enables us to handle images under chal-
lenging illumination conditions and give a first estimation of occlusions. The
semantic model adaptation gives face model parameters and segments the im-
age into the semantic regions. The result by using a copula Morphable Model
holds a 3D face reconstruction, the semantic image segmentation as well as
an attribute based image description. An overview of the full application is
depicted in Figure 6.1.

We present intermediate and full results of the framework on a variety of
target images in Figure 6.2. We selected the images to contain various chal-
lenges for classical 3DMM adaptations. The images contain different kind of
occlusions, illumination settings and beards. We also include images without
occlusions since those should also be segmented correctly.

We use an external library for feature detection, namely the CLandmark
perfect and is integrated by taking this uncertainty into account as described
in [Schénborn et al., 2013]. We chose this library, because it is able to still
detect features even if the full face is not visible. The detector works for near-
frontal poses. The landmarks are only used for initialization. During the
semantic model adaption, they are not integrated anymore. This enables to
refine the pose and feature positions during the Analysis-by-Synthesis process.
If the feature point detection fails, it leads to a far off pose estimation and it is
hard to recover during model adaptation. For robust illumination estimation
we use the experimental setting presented in Chapter 5.5 and for the semantic
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Feature Detection

Semantic Model Adaptation
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Result: 3D Reconstruction and Face Description

: male
25 years
70 kg
178 cm

Figure 6.1: A fully automatic image analysis pipeline built from all compo-
nents proposed in this thesis. The input is a single still image containing a
face and the output is an image segmentation, a 3D reconstruction of the face
as well as an attribute-based face description.
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CHAPTER 6. APPLICATION

Morphable Model we apply the setting presented in Chapter 4.4. As face
model we use the copula Morphable Model presented in Chapter 3.7.2 to get
an attribute-based face description.

In the results presented in Figure 6.2 we observe the robust illumination
estimation to give a good starting point for model adaptation. The result
of the illumination estimation builds the initialization of the semantic model
adaptation. It tends to exclude more than only occlusions and outliers. Dur-
ing the integrated segmentation and model adaptation the segmentation is
improved, especially regions which are hard to explain by the face model.

The occlusion and background model covers all parts which can not be
explained by the face and beard models. Some of those are real occlusions
by various objects, others are facial details which are not contained in our
face model like wrinkles or eye gaze. Those facial details are missed by our
model explanation and could hold important information e.g. on the age of
the face. Make-up and specular highlights are also not part of our face and
illumination model and therefore covered by the non-face model.

The attribute estimation leads to results of different quality. Whilst the
sex estimation results are reasonable and competitive, the age estimation is
not accurate (compare Chapter 3.7.2 and Chapter 3.8). Elderly people are
underrepresented in the data the model is built on and this leads to weak age
estimation results. We assume the main cause for bad age estimation results
are textural details like wrinkles, which are missed by our model and give a
strong cue on age.

In this work we excluded facial expressions and assume neutral facial ex-
pressions. In [Egger et al., 2017b] we presented 3DMM adaptation with an
expression model under occlusion. If the expressions are not explicitly han-
dled they are excluded as outlier during model adaptation as observed in some
of the shown results.

A main limitation of our method arises from the strong dependence on
reasonable initialization. If feature point detection, pose estimation or illu-
mination estimation fails, the semantic Morphable Model adaptation can not
recover from this early wrong decision. In the proposed setting including se-
mantic segmentation it is hard to avoid those early decisions. By stronger and
more cues from detections, like bottom-up pose estimation or segmentation
cues, the framework could highly profit (more details in Chapter 7.4).
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Figure 6.2: Results of our full semantic Morphable Model image analysis framework. The target image (a),
the result of robust illumination estimation (b,c), the model parameters and segmentation after 1’000 sampling
steps (d,e) and 10’000 sampling steps (f,g,h). The images are from the Multi-PIE ([Gross et al., 2010]), AFLW
([Késtinger et al., 2011]) and mainly LEW ([Huang et al., 2007]) face databases. More examples on the previous
pages.
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CHAPTER 7. FUTURE EXTENSIONS

Chapter 7

Future Extensions

In this chapter we present ideas for future research in the field of face im-
age analysis in an Analysis-by-Synthesis setting. The collected ideas are to
overcome current limitations of state of the art research or to further investi-
gate interesting findings of this PhD thesis. The first two ideas are focusing on
modeling whilst the other two are centered in the context of model adaptation.
Additional ideas for future research directions which are directly connected
to one of the previous chapters, are mentioned in the corresponding chapter.

7.1 Texture Modeling

The 3DMM is strong in modeling facial shape but weak in modeling texture.
Texture models based on PCA or COCA miss a lot of skin details like wrin-
kles, moles or freckles. Such details are not only necessary for photo-realistic
rendering, but are also important for face analysis. Age, for example, is highly
encoded in such textural details. Whilst state of the art rendering methods
can produce astonishing facial renderings there is a lack of a parametric gen-
erative model which captures skin texture.

There are first approaches to improve the facial texture of face models for
Eigenfaces or 3DMM based textures. The approach of [Mohammed et al.,
2009] leads to photo-realistic facial portraits by a patch based approach. A
similar method was used to post-process 3DMM instances to produce high
resolution textures in [Dessein et al., 2015].

We applied a discriminative approach as post-processing after 3DMM
adaptation to improve the face analysis in [Egger et al., 2014]. Texture sen-
sitive features were used to capture the information the generative model
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7.2. COPULA MORPHABLE MODELS

misses in the image. [Pierrard and Vetter, 2007] showed unique face recogni-
tion results by solely performing recognition based on moles. This was again
performed as post-processing after 3DMM adaptation since strong correspon-
dence is necessary for this approach. To capture all the information encoded
in a face with a generative model, a parametric and detailed texture model
should be added to replace the simple PCA based model in the 3DMM.

7.2 Copula Morphable Models

Scale invariance is the main advantage of COCA over PCA for statistical
modeling of faces. Scale invariance enables us to build a joint model of shape,
color, attributes and other sources of facial data. This joint model is highly
interesting for analysis and synthesis of faces. Whilst current posterior mod-
els as proposed in [Albrecht et al., 2013] are limited to a single modality, the
copula enables posterior models over multi-modal data. We can explore pos-
terior models for all involved parts of the model - e.g. we can build posterior
models on attributes. We present posterior models for male and female faces
in Figure 7.1.

Such posterior models can be applied in various applications. For face
image analysis we could integrate knowledge on the individual or bottom-up
detections to build a posterior model. This leads to a more specific face model
for analysis. Whilst such information to build a posterior model is often not
given or hard to detect in face image analysis tasks, this feature could be
highly interesting in medical image analysis. When analyzing medical data
there is often ground truth meta-data like sex, age, size and weight available,
which could be used to build a patient-specific shape model for analysis.

Besides the posterior models, the multi-modal models allow a joint analysis
of the underlying dependency structure. Analyzing the covariance matrix
enables to investigate which parts of a face are influenced by which attributes
or which parts of the face lead to certain ascribed attributes.

7.3 Color vs. Illumination

In Section 5.6.1 we discussed the color-illumination ambiguity. The human
visual system can however distinguish between certain degrees of skin tone
and effects caused by illumination. The necessary hints are encoded in both
shape and texture. Textural cues like the reflection properties of skin are
neglected by our approach but important for skin tone estimation.
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male male

18 years 25 years
55 kg 80 kg
172 cm 197 cm

male male

18 years 14 years
70 kg 51 kg
174 cm 160 cm

female female
25 years 20 years
46 kg 59 kg
163 cm 168 cm

female female
19 years 31 years
61 kg 46 kg
169 cm 163 cm

Figure 7.1: Random samples from posterior models constrained on male (top)

respectively female (bottom).
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7.4. BOTTOM-UP CUES

One reason for this limitation arises directly from the BFM. It is built from
mainly caucasian faces with similar skin tone and therefore under-represents
other ethnic groups. Recently other face models where made publicly available
which better represent the variety of different ethnic groups ([Huber et al.,
2016] [Booth et al., 2016]).

Our work could contribute in several ways to better estimate illumination
and skin-tone. First, the copula Morphable Model allows to explore the de-
pendencies between color and shape. Second, the proposed illumination prior
fills a gap for generative modeling, necessary to overcome this limitation. And
third the semantic Morphable Model enables to include local models which
could be useful to estimate the illumination locally from the eyes ([Nishino
and Nayar, 2006]) or the sclera ([Do et al., 2006]).

7.4 Bottom-up Cues

The main limitation of our current approach on “in the wild” face images are
missing image-related cues. The proposed model is dominated by top-down
knowledge arising from the generative model. Bottom-up cues like detections
are underrepresented in the implementation of the framework. Recently new
methods like cascaded regression techniques ([Zhu et al., 2015; Huber et al.,
2015]) or deep learning methods ([Tewari et al., 2017]) were proposed for
3DMM adaptation. Our model adaptation and segmentation algorithm is
open to those techniques and could integrate them in a proposal step or into
the segmentation.

In the current framework we draw a lot of samples in a random walk
fashion following always the same proposal distribution. With strong bottom-
up cues e.g. for the pose we could restrict the proposal distribution strongly.
The proposed copula Morphable Model even enables us to integrate cues like
bottom-up attribute prediction directly into the model adaptation through
posterior models. Cascaded regression techniques or deep learning methods
could be integrated as fast-forward proposals and profit from the verification
step in the Metropolis-Hastings algorithm.

Bottom-up cues are not only helpful on the proposal side of the Metropolis-
Hastings, but also during the verification step itself. At the moment the
verification is performed using the prior from the face model and measuring
the image difference in color space. The evaluation step would profit from
additional likelihoods, e.g. to take edges and contours into account (compare
[Bas et al., 2016]).
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Besides from model adaptation, also the segmentation can profit from
bottom-up cues. For some occlusions we could train detectors, like we explored
for facial hair. Glasses for example are frequent occluders and could not only
be modeled but also detected using bottom-up detector techniques. Recently
a semantic face parsing based on deep learning was proposed and could be
integrated as a segmentation proposal ([Liu et al., 2015]). The strong prior
knowledge arising from the face model could then guide the detectors to focus
on the correct regions.
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CHAPTER 8. CONCLUSION

Chapter 8

Conclusion

In this thesis, we proposed a framework for semantic and attribute-based face
image interpretation. A face consists of different semantic regions like e.g.
eyes, eyebrows, mouth or beard. During model-based image analysis those
regions should not be confounded. Our semantic Morphable Model framework
enables us to model different facial regions separately by different and specific
models.

A lot of facial images do not fulfill model assumptions of the classical
3DMM and contain glasses, beards, make-up or various other occlusions. The
semantic Morphable Model framework enables to incorporate different models
to compete in explaining semantically connected parts of the image. This
enables to reveal the face model adaptation from regions which can not be
explained by the face. Such regions are covered by another more specific
model or a model for background or occlusions. The framework is open for
various models, our implementation is an example with a face model, a beard
model and a non-face model. We integrated segmentation of the target image
into semantic regions directly by a joint likelihood into the model adaptation
process. The segmentation, the model parameters and attributes build the
image description. The framework results in enhanced face model adaptations
for “in the wild” face images outside the scope of previous 3DMM adaptation
frameworks.

Semantic Morphable Model adaptation relies on robust illumination esti-
mation in early steps of the adaptation process. We demonstrated the strong
influence of illumination on model adaptation and illustrated the need for
reliable and robust illumination estimation. We propose to use a simple but
effective algorithm for robust illumination estimation and initialization of the
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semantic segmentation. This illumination estimation procedure was applied
to an “in the wild” face database, leading to an illumination prior which fills
a gap for generative models.

To obtain a attribute-based image-description, we built a copula Mor-
phable Model which not only covers shape and color but also includes at-
tributes. Finding the model instance for a target face directly leads to an
attribute-based face description. The attribute-based face description is more
comprehensible for humans than the description based on statistical param-
eters used by the classical 3DMM. We presented competitive results on sex
estimation from 2D images. The copula Morphable Model fits well in current
3DMM frameworks, can be implemented easily and is a powerful extension of
the underlying statistical model.

The overall framework combines all those parts and enables to analyze
“in the wild” face images and describe them in an attribute-based and hu-
man understandable way. We discussed current limitations of our proposed
implementation and suggest ideas to further develop the framework.
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Appendix A

List of Abbreviations

3DMM
AFLW
BFM
CDF
CRF
COCA
EM
FERET
HOG
LFW
MAP
MRF
MRI
PCA
PPCA
RANSAC
RMS
RMSD
SMC
SPP
SVD

3D Morphable Model

Annotated Facial Landmarks in the Wild
Basel Face Model

Cumulative Distribution Function
Conditional Random Field
Copula Component Analysis
Expectation-Maximization

Face Recognition Technology
Histogram of Oriented Gradients
Labeled Faces in the Wild
Maximum-A-Posteriori

Markov Random Field

Magnetic Resonance Imaging
Principal Components Analysis
Probabilistic Principal Components Analysis
Random Sample Consensus

Root Mean Square

Root Mean Square Distance
Simple Matching Coefficient

Sex Prediction Performance
Singular Value Decomposition
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Appendix B

Smiley Model

Computer Science consists of a lot of interesting challenges which are easy
to understand but hard to solve. Unfortunately only few reach the audi-
ence at high schools. Our motivation is to attract more students to the
university studies in Computer Science by catching their interest with sci-
entific challenges. We do not only want to astonish with nice presentations,
but also to communicate the challenges behind our research in an under-
standable manner. Therefore we condensed the problem of facial portrait
manipulation omitting all the technical details. We ended up with a statisti-
cal smiley model which is very intuitive to demonstrate the challenges when
manipulating e.g. the happiness of a smiley (see Figure B.1). The smiley
modeling tool and all the teaching material is made publicly available under
http://gravis.dmi.unibas.ch/smiley/.

happiness vector
A

' N

J-{ i — i ) =

Figure B.1: Facial image manipulation is simplified using a smiley model.
The necessary steps are the same as for manipulation of a real facial portrait
but all calculations can be performed by hand.
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