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I 

SUMMARY 

Eukaryotic chromatin can be divided into two main types: euchromatin with high levels of 

transcription and heterochromatin, where transcription is repressed. These chromatin types are 

not static, but show remarkable plasticity during development and adaptation to environmental 

cues: Heterochromatic genes can get activated, whereas euchromatic genes get repressed. This 

is orchestrated by a multitude of chromatin-modifying enzymes, which extensively modify the 

protruding histone tails of the nucleosomes, the fundamental packaging unit of DNA. Such histone 

modifications serve as binding platforms for a plethora of specific chromatin readers and show 

distinct characteristics depending on which chromatin state they belong to: Euchromatin is 

characterized by H3K36me3, H3K4me3 and H2B ubiquitination (H2Bub), whereas 

heterochromatin is hypoacetylated and carries high levels of H3K9 methylation. 

With the development of deep sequencing technologies, the perception of transcriptionally 

silent heterochromatin changed. It became clear that heterochromatin can also be transcribed, 

but that these transcripts are quickly recognized and degraded in a chromatin context-dependent 

manner. This holds true for the fission yeast Schizosaccharomyces pombe (S. pombe), the model 

organism that I used in my PhD thesis. It has very similar heterochromatic characteristics 

compared to other eukaryotes, such as H3K9me2 and heterochromatic transcription. Notably, 

heterochromatin formation in S. pombe involves the RNA interference (RNAi) pathway, which 

directs de novo heterochromatin formation in a sequence-specific manner via small interfering 

RNAs (siRNAs). Maintenance and spreading of heterochromatin across nucleosomes is achieved 

by a self-enforcing feedback loop, wherein heterochromatin is stabilized, expanded, and 

propagated in a sometimes DNA-sequence independent manner. 

Although siRNAs are necessary to maintain constitutive heterochromatin, siRNAs targeting 

a euchromatic locus do not induce heterochromatin formation. This paradox laid the foundation 

for my PhD thesis by evoking the question how euchromatic genes are protected from de novo 

heterochromatin formation by RNAi. 



Novel insights into mechanisms partitioning chromatin states 

SUMMARY 

II 

In a first study to address this question, I contributed to the discovery that the Polymerase 

II-associated factor 1 complex (Paf1C) is a main repressor of RNAi-mediated heterochromatin 

formation. In Paf1C mutant cells, silencing of the siRNA-targeted euchromatic gene occurred in 

a stochastic manner, but was maintained efficiently with and without the initial source of siRNAs; 

a truly epigenetic phenomenon. Yet, initiation of silencing was rather limited, suggesting the 

existence of additional repressive activities that may function specifically at the initiation step. 

I identified the histone acetyltransferase Mst2 to be such a repressive factor. The Mst2 

complex represses heterochromatin formation specifically at the initiation step, but does not affect 

maintenance. This is achieved by the exclusion of Mst2C from heterochromatin due to tethering 

of Mst2C to H3K36me3-marked nucleosomes, a hallmark of actively transcribed genes. This 

tethering in turn protects euchromatic genes from silencing. Further, to dissect the mechanism of 

this protection, I aimed at identifying all potential Mst2 substrates. By employing an acetylomics 

approach, I discovered that Mst2 also acetylates a specific residue of Brl1. This is exciting, 

because Brl1 is an enzyme responsible for H2B ubiquitination, a second hallmark of active 

chromatin. Acetylation of Brl1 increases H2Bub and feeds back to increased transcription activity, 

which is also marked by increased H3K4me3 levels. 

In conclusion, my work led to the discovery of a euchromatic feedback loop, which protects 

euchromatin from de novo heterochromatin formation. I am fascinated by this finding, because it 

implies that euchromatic genes can “remember” their active state and actively counteract 

heterochromatin formation. Furthermore, the interplay of euchromatic and heterochromatic 

feedback loops creates epigenetic plasticity, which allows cells to keep genes on or off in an 

almost digital manner. Since the general characteristics of heterochromatin and all identified 

factors are conserved, I propose that similar feedback loops likely partition chromatin in active 

and inactive states also in humans and may help promoting epigenetic robustness against 

environmental challenges and cancer. 
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INTRODUCTION 

This thesis deals with the fascinating mechanisms of how self-enforcing feedback loops 

partition chromatin into different states such as heterochromatin and euchromatin and how these 

states are initiated, maintained, and counteracted. To dissect these mechanisms, I used the 

fission yeast S. pombe, which contains well-conserved heterochromatic features compared to 

humans. Hence, this introduction will mostly focus on S. pombe, while highlighting a few 

mechanistically similar feedback loops in other organisms. 

 

1. Introduction to chromatin and epigenetics 

The entire genetic information of every eukaryotic organism is encoded in few simple 

molecules, the DNA. This information is essential for the organism to survive, develop and 

reproduce. Importantly, DNA is not present as a naked molecule in the cell, but occurs in a highly 

complex structure, called chromatin (see Figure 1). Chromatin is composed of DNA, which is 

wrapped around packaging proteins to form the nucleosome, and further associated proteins and 

RNAs, which regulate chromatin compaction, stability and accessibility. In order to form the 

nucleosome, 147 basepairs (bp) of DNA are wrapped around a histone octamer, which consists 

of two highly positively charged H2A, 

H2B, H3, and H4 proteins each. In other 

eukaryotes, histone H1 is an additional 

histone protein and acts as a clamp 

stabilizing the nucleosome and protecting 

the linker DNA, but is absent in S. pombe 

(Godde and Widom, 1992; Whitlock and 

Simpson, 1976). The nucleosome is the 

first and basic packaging unit that Figure 1: Schematic visualization of the nucleosome in 
S. pombe. The H1 linker histone is not shown, because it 
is absent in fission yeast. Picture adapted from Kim, 2014. 
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compacts DNA 6-7 fold and marks the first step to form higher chromatin structures and ultimately 

the chromosome. This compaction step can be visualized by electron microscopy, which revealed 

that oligonucleosomes form a “beads on a string”-like structure (Olins and Olins, 1974). 

DNA compaction serves multiple functions in the cell: 1) It allows to package the genetic 

information into a very dense, but still accessible structure to fit into the nucleus. The magnitude 

of compaction is vast. For example, the length of the entire human DNA fiber is almost 2 m, but 

fits into the nucleus with the size of 5 - 10 μm. 2) The assembly of basic histone proteins with the 

negatively charged DNA gives the structure more stability and thus protects it from mechanical 

DNA damage. 3) Nucleosomes can be better regulated in terms of accessibility of individual 

genetic information units (genes) and are thus crucial in orchestrating gene expression. 

Regulation of gene expression is achieved on several levels, such as by specific chromatin 

binding proteins, nucleosome eviction or sliding, direct modification of DNA and histones, or 

higher ordered chromatin structures (such as heterochromatin, see chapter 3). Whereas the first 

levels of gene expression rather act on a molecular level regulating individual genes, higher order 

chromatin structures can extend for kilo- to megabasepairs and can even be visualized by 

microscopy (see Figure 2). Already in the early 20th century, Emil Heitz and colleagues identified 

chromatin regions, which are differentially stained in the nucleus during interphase (Heitz, 1928). 

During this cell cycle stage, many transcriptional processes take place within chromatin, which is 

decondensed and thus only light stained. This part of chromatin is called euchromatin and is gene-

Figure 2: Electron micrograph of a human 
plasma cell nucleus. Heterochromatin 
clusters at the nuclear periphery or the 
nucleolus, whereas euchromatin resides in 
the middle of the nucleus. Picture adapted 
from Young and Heath, 2000. 
 
E:  euchromatin 
H:  heterochromatin 
Nu:  nucleolus 
Cyto:  cytoplasm 



Novel insights into mechanisms partitioning chromatin states 

INTRODUCTION 

3 

rich, transcriptionally active, and dynamic (see chapter 2). Conversely, the dark stained chromatin 

area seems to remain condensed also in interphase and is known as heterochromatin, which is 

gene-poor, rather inaccessible, and transcriptionally repressed (see chapter 3). 

Despite this literally black and white picture, the underlying mechanisms that define which 

parts of the genome are heterochromatic or euchromatic are still not well understood. The most 

straight forward model is that a sequence-specific protein binds to a gene and induces its 

activation or repression, including its neighboring regions (reviewed in Bell et al., 2011). Whereas 

this model is supported by the discovery of many transcription factors that are crucial for the 

activation of certain genes, only few DNA-binding proteins with repressive functions have been 

identified, such as Atf1 in the fission yeast S. pombe (Jia et al., 2004). Furthermore, recent 

research implies that repressed chromatin cannot be bound anymore by certain transcription 

factors, which would lead to an irreversible and potentially harmful repression (Domcke et al., 

2015). Hence, these results cannot be explained by the model that the genomic sequence is 

solely responsible for the expression landscape, but additional mechanisms must exist, which are 

not dependent on the DNA sequence directly. Such mechanisms are investigated as part of a 

major research focus, called “epigenetics”, as it deals with effects beyond the genetic information 

(Greek: epi = outside of, around). 

 

1.1. What is epigenetics? 

Several definitions exist for epigenetics. A broader, initial definition of epigenetics includes 

all phenotypes, which cannot be defined only by changes on the DNA level. Hence, changes in 

gene expression during development, differentiation and in terminally differentiated cells such as 

neurons could be called “epigenetically” regulated (Nanney, 1958). For example, epigenetics 

would be responsible for the development of a human being, because the DNA sequence mostly 

stays identical from the fertilized oocyte to the fully developed adult. 
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A more recent, and more widely accepted definition defines an epigenetic trait as a “stably 

heritable phenotype resulting from changes in a chromosome without alterations in the DNA 

sequence” (Berger et al., 2009). Therefore, all phenotypes during and after development in 

somatic cells are not truly epigenetic as they will not be inherited to the next generation, but rather 

are a consequence of differential gene expression. An even more stringent version demands the 

heritability to even persist in the absence of the initial stimulus (reviewed in Deans and Maggert, 

2015). However, this poses an important problem: How can we define a stimulus to be the initial 

stimulus? How can we be sure that the stimulus is definitely absent? If the stimulus is an 

environmental signal (such as the control of vernalization by temperature changes in plants (see 

chapter 3.4.1), Berry and Dean, 2015) this might be still possible. However, stimuli can also arise 

within the cell and it is usually unclear how many different stimuli contribute how much to the 

epigenetic phenotype. According to this very stringent definition, as long as we cannot rule out 

that not a single initial stimulus is still present and induces the heritability, we could not call 

something “epigenetic”. 

Nevertheless, few phenotypes seem epigenetic, because they affect one locus on one 

chromosome but not a second identical locus on a different chromosome, such as X chromosome 

inactivation in female cells via the long noncoding RNA Xist (Brown et al., 1991; Lyon, 1961). 

Another example is the mating type locus in S. pombe, where small RNAs and Atf1 induce 

silencing but either can be deleted afterwards without affecting the repression of the locus (see 

chapter 3.2.1.1, Jia et al., 2004). This is accomplished by self-enforcing feedback loops, which 

maintain the current state and provide some kind of memory to that locus. Such feedback loops 

are often based on directly altering chromatin function via histone and DNA modifications. 

Although their epigenetic nature (i.e. the heritability of the modifications themselves, Ptashne, 

2013) is still under debate, it is clear that these modifications have a strong impact on memory 

and gene expression due to their self-enforcing characteristics and their ability to spread along 

chromatin. 
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1.2. Histone code 

The role of histone proteins in regulating gene expression and epigenetic phenomena has 

been underappreciated for a long time, given the fact that they were identified as the core 

nucleosome particles already in 1884 by Albrecht Kossel (reviewed in Campos & Reinberg 2009). 

However, it took eighty years to discover that histone proteins are highly modified on their 

accessible N-terminal tails (and to a smaller extent the C-terminal tail), which protrude from the 

nucleosome core particle (see Figure 3, Allfrey et al., 1964). 

Such post-translational modifications (PTMs) and the amino acid sequence of histones are 

highly conserved between all eukaryotes, underlining their importance. Moreover, various histone 

variants have been identified and already few different amino acids can lead to altered 

nucleosome function or stability (reviewed in Talbert & Henikoff 2016). However, for the sake of 

brevity, only PTMs will be further discussed here. PTMs can directly affect the chromatin 

accessibility, especially PTMs on lysines because these amino acids contribute substantially to 

the overall positive charge of histones. Acetylation of these lysines neutralizes their charge and 

leads to a looser interaction of the histone with DNA, which renders chromatin more accessible 

(Allfrey et al., 1964). On the other hand, methylation of lysines slightly concentrates the positive 

charge on the lysine residue and therefore rather enhances interaction between DNA and 

histones leading to chromatin repression. 

Besides this simple electrostatic interaction, PTMs of histones serve as binding platforms 

for histone “reader” proteins, which recruit adaptor proteins to induce chromatin changes. 

Especially the histone methylation marks attract a plethora of specific methylation reader proteins 

(reviewed in Greer and Shi, 2012), whose effects exceed the minor electrostatic contributions of 

lysine methylation. Hence, methylated histone residues are nowadays known to mediate not only 

repression of chromatin, but also have activating functions depending on their position on the 

histone tails. In more detail, trimethylation of lysine 4 or 36 on histone H3 (H3K4me3 and 

H3K36me3) are hallmarks of euchromatin whereas H3K9me2/3 or H3K27me3 are specific 
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features of heterochromatin (see Figure 3). In addition, the degree of methylation can have 

different effects, i.e. mono-, di- and trimethylation of the same lysine can have very diverse 

functions. For acetylation, hypoacetylated regions are found in heterochromatin and gene bodies, 

whereas hyperacetylation usually coincides with promoters and transcription start sites. 

Besides acetylation and methylation also phosphorylation, ubiquitination and ADP-

ribosylation of histones have been reported and were shown to have important biological functions 

(Carlberg and Molnár, 2014). More recently, many more PTMs were identified with the further 

development of highly sensitive mass spectrometers, which were able to identify also low 

abundant modifications (Huang et al., 2015). A recent literature survey identified over 500 different 

modifications on more than 200 sites on histones (Zhao and Garcia, 2015). 

Figure 3: Post-translational histone modifications in S. pombe and metazoans. N- and C-terminal tails of all 
four histones are merged, harbor multiple modifications and are not in scale. Labelled are the individual 
modified amino acids and their position in the tail. Methylation sites are indicated as repressive and 
activating by a red and green ring, respectively. Only consistently identified and characterized PTMs are 
shown. Multiple PTMs that have well-known roles in other eukaryotes, but have not been identified in  
S. pombe are labelled with an asterisk (H3K27me3, H3K79me3 and ubiquitinated H2AK119). +: H2BK119 
ubiquitination in S. pombe is the equivalent to K120 in mammals and K123 in S. cerevisiae.  
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Attributing a biological function for each individual modified residue might be problematic, 

because PTMs do not always have a biological function alone, but often in combination with other 

modified histone residues. This is illustrated by H3K27me3 and H3K4me3 marks, which usually 

repress and activate chromatin, respectively (see above). However, together they mark poised 

promoters of developmental genes in embryonic stem cells (Bernstein et al., 2006). In the style 

of the genetic code, this led to the term “histone code”, where a combination of PTMs defines the 

chromatin state rather than individual PTMs alone (Strahl and Allis, 2000). 

The histone code adds another layer of complexity and thereby allows the cells to fine-tune 

their gene expression programs. This code is subject to many regulatory protein complexes, 

which either set the mark (histone “writers”) or remove it (histone “erasers”). Such protein 

complexes often contain histone “reader” domains that recognize certain PTMs and thereby give 

specificity to the whole complex. A common feature of these multiprotein complexes is that they 

can read their own mark, which sometimes enhances their own activity: Histone 

methyltransferase complexes often contain a chromodomain and acetyltransferase complexes 

usually contain a bromodomain, which specifically recognize a methylated or acetylated residue, 

respectively (Zhang et al., 2015). Hence, this writing/reading cycle leads to an enforcement and 

increased activity of enzyme complexes and constitutes a simple, but powerful feedback loop. 

Since these feedback loops can often connect to the neighboring nucleosome in close distance, 

they can spread along the chromatin fiber by writing and reading their own mark (see Figures 12, 

14 - 17 in the following chapters). 

Despite this astonishing complexity, the biological changes in histone tail mutants are often 

weak, which evoked also a critical perception of the functional importance of the histone code 

(discussed in Rando, 2012). However, with the use of laboratory-adapted model organisms only 

limited knowledge of the functionality in the natural context is available and it could well be that 

this histone code is crucial in buffering and preparing cellular systems against environmental or 

internal cues, such as damaging agents, stress, and cancer (see Discussion).  
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2. Euchromatin 

Euchromatin displays many different transcriptional activities and hence has very diverse 

characteristics. A simple classification separates euchromatin into three classes, wherein each 

class is transcribed by a different RNA polymerase: In general, RNA polymerase I, II and III each 

transcribe a specific set of genes, which are tRNA, mRNA and rRNA genes, respectively. With 

the development of deep sequencing technologies, two major findings changed the perception of 

transcription. Whole human genome sequencing revealed that coding genes make up only 1 % 

of the genome, but up to 75 - 90 % can be transcribed at sometimes low levels, suggesting that 

noncoding transcription is far more pervasive than assumed (Birney et al., 2007; Djebali et al., 

2012; Venter et al., 2001). This is conserved in S. pombe, wherein spurious transcripts have been 

detected covering 99 % of the genome, but genes make up only 50 % (Dutrow et al., 2008; 

Wilhelm et al., 2008; Wood et al., 2002). Also heterochromatic regions are transcribed, albeit the 

resulting transcripts are low abundant, suggesting either impaired transcription or quick 

degradation of the transcripts (see chapter 3, Bühler et al., 2007). In S. pombe, RNA polymerase 

II (RNAPII) is responsible for heterochromatic and widespread noncoding transcription (Kato et 

al., 2005), hence I will only focus on RNAPII-mediated transcription. 

 

2.1. Transcription by RNA polymerase II 

Transcription by RNA polymerase II is universally conserved and is a very complicated 

process within a cell. To understand how this machinery is regulated has kept research busy for 

decades and is still somewhat incomplete. For brevity, I will mostly focus on the mechanism of 

transcription in our model system S. pombe and its distantly relative budding yeast 

Saccharomyces cerevisiae (S. cerevisiae). Both model organisms have been widely used to 

investigate transcriptional processes that are mostly conserved to multicellular eukaryotes and 

sometimes even in bacteria (Allison et al., 1985). 
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Transcription can be divided into three major steps, which are all highly regulated by a 

multitude of factors: Transcription initiation, which includes the correct recruitment of RNAPII and 

associated factors; elongation, the efficient and correct transcription; and termination, resulting in 

the release of RNAPII and its finished transcript. During transcription, many additional processes 

take place co-transcriptionally, whilst the transcript is still attached to RNAPII. They mutually 

influence and regulate each other and the correct interplay is crucial in determining the fate of the 

transcript (reviewed in Bentley, 2014). These processes include capping of the RNA, (alternative) 

splicing of introns, export from the nucleus, RNA-modifications, and co-transcriptional gene 

silencing (CTGS), but only the last phenomenon will be discussed in more detail (see chapter 

3.2.2). 

 

2.1.1. Transcription initiation 

Transcription is initiated by the recognition of the core promoter, a 50 - 100 bp DNA stretch 

upstream of a gene. Various promoter regions and promoter-associated proteins have been 

identified and characterized, however the detailed mechanistic understanding is still very limited 

(Roy and Singer, 2015). The best understood example is the TATA box, a promoter element 

located 20 - 30 bp upstream of the transcription start site (TSS), which serves as binding platform 

for the general transcription factors (GTFs) (Mathis and Chambon, 1981). Specific “pioneering” 

transcription factors promote this assembly by opening up the chromatin structure and can bind 

on very distal DNA elements, such as enhancers and distal promoter elements (for a review see 

García-González et al., 2016). 

With an accessible chromatin structure, TBP (TATA-box binding protein) can bind to the TATA 

box (see Figure 4). TBP is part of the GTF TFIID, which also aids in promoter recognition 

(reviewed in Kadonaga, 2012). Subsequently, TFIIA and B bind to TFIID, stabilize it, and recruit 

RNAPII in complex with TFIIF (Imbalzano et al., 1994; Sawadogo and Roeder, 1985). All GTFs 

then assist RNAPII in TSS selection and together form the Preinitiation complex (PIC). Next, TFIIE 
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and H bind to the PIC and convert it from closed to an open formation, resulting in DNA strand 

melting and synthesis of the first few nucleotides by RNAPII (Holstege et al., 1996). Not only 

GTFs play an essential role in transcription initiation, but also Mediator, a multisubunit co-activator 

complex with crucial functions in transmitting regulatory signals to RNAPII, transcription initiation, 

pausing and elongation, chromatin remodeling and opening (reviewed in Allen and Taatjes, 2015). 

The catalytic subunit of this complex is the RNAPII subunit Rpb1, which has a long, 

unstructured C-terminal domain (CTD) consisting of heptapeptide repeats (reviewed in 

Zaborowska et al., 2016). The number of repeats vary from 26 to 52 repeat units from budding 

yeast to mammals and harbor the canonical amino acid sequence Y1S2P3T4S5P6S7 (see Figure 

4). Similar to PTMs on histones, phosphorylation of the different residues in the CTD attracts a 

multitude of different reader and effector proteins and is essential for efficient transcription and 

processing of every RNA (Nonet et al., 1987). Important for the release of RNAPII from the GTFs 

is the phosphorylation of Serine-5 (Serine-5P) and partially Serine-7 (Serine-7P) on the CTD 

(Glover-Cutter et al., 2009; Hengartner et al., 1998). This is catalyzed mainly by the TFIIH subunit 

Cdk7p (Mcs6 in S. pombe) and partially by the Mediator complex subunit Cdk8p (Srb10) 

Figure 4: Simplified model of transcription initiation. Transcription initiation starts with the binding of TBP to 
the TATA box and subsequent assembly of the supercomplex with GTFs (yellow), RNAPII and Mediator, 
which is known as the PIC. Conversion of the PIC from the closed to the open complex state leads to initial 
transcription. Cdk7p and/or Mediator subunit Cdk8p phosphorylate Serine-5 and Serine-7 of the Rpb1 CTD, 
which leads to the release of RNAPII from the GTFs and represents an early state of actively transcribing 
RNAPII. See text for more information. 
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(Akoulitchev et al., 2000). CTD phosphorylation activates the polymerase activity of Rpb1 and 

weakens the interactions of the RNAPII complex with the GTFs. This is crucial, because TFIIB 

hinders Rpb1 from transcribing more than four nucleotides (nt) long transcripts by sterical 

interference (Kostrewa et al., 2009). Loss of TFII subunits then leads to a switch from a promoter-

bound state to a promoter-proximal state at the TSS, wherein RNAPII starts transcribing longer 

transcripts of 25-50 nt (Rasmussen and Lis, 1993). This in turn stabilizes the RNAPII-DNA 

interactions and thereby represents a state of early elongation (Liu et al., 2011). 

 

2.1.2. Transcription elongation 

The mechanism of transcriptional elongation is not completely conserved between  

S. cerevisiae, S. pombe, and metazoans. Whereas S. cerevisiae shows a rather uniform RNAPII 

occupancy over genes, metazoan and S. pombe show a characteristic promoter-proximal pause 

site approximately 25 - 50 bp downstream of the TSS, which divides elongation into early 

elongation upstream and productive (late) elongation downstream of this site, respectively (Booth 

et al., 2016; Nechaev and Adelman, 2011; Steinmetz et al., 2006). An important role in 

transcriptional elongation has the Spt4/5 heterodimer, an essential complex conserved back to 

bacteria (Harris et al., 2003). Functional conservation may not be complete, because Spt4/5p in  

S. cerevisiae has so far only been characterized for acting as a stimulant for transcriptional 

elongation (Hartzog and Fu, 2013). In metazoans, Spt4/5 has both inhibitory and activating roles 

Figure 5: Model of the transition from early to productive 
elongation step. 1) Serine-5P recruits the capping 
enzyme complex, which adds the essential cap structure 
to the nascent transcript. 2 & 3) The cap complex 
interacts with Cdk9, which phosphorylates Serine-2/5 on  
Rpb1 and Spt5. In concert with Cdk9, Lsk1 is 
responsible for bulk Serine-2 phosphorylation.  
4) Phosphorylation of Spt4/5 converts it from a negative 
into a positive elongation factor and RNAPII is released 
from the pause state and starts transcribing productively. 
See text for more information. 
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depending on the phosphorylation status of Spt5 (see Figure 5, Yamada et al., 2006). Loss of the 

TFII complexes allows Spt4/5 binding to the now accessible surface of RNAPII and initially leads 

to a block of productive elongation, perhaps through direct interaction with nascent RNA 

(Martinez‐Rucobo et al., 2011). This roadblock has the function to act as a quality control 

checkpoint ensuring proper capping of the mRNA by capping enzymes, which are recruited 

directly via interaction of the capping enzymes Pct1 and Ceg1 with Serine-5P (Martinez-Rucobo 

et al., 2015; Pei et al., 2001). The capping enzymes themselves have important roles in promoting 

Cdk9, a crucial CTD kinase for the next step in transcription, the transition of  RNAPII from early 

to productive elongation (Pei et al., 2003). 

Also Serine-5P has important roles in this transition by helping to recruit Cdk9, the catalytic 

enzyme of the positive transcriptional elongation factor b (pTEFb) complex. Cdk9 is essential for 

Spt5 phosphorylation and therewith changes Spt4/5 from a negative to a positive elongation factor 

and controls the switch from early to late (productive) elongation (Yamada et al., 2006). This is 

likely due to a reduced interaction of phosphorylated Spt4/5 with capping enzymes and an 

increased interaction with the RNA polymerase II-associated factor 1 complex (Paf1C), a critical 

factor for productive elongation (Wier et al. 2013, see also chapter 2.2.1). Although Cdk9 was 

proposed to be the responsible kinase for Serine-2, the hallmark of elongating RNAPII, it rather 

phosphorylates Serine-5 in vitro (Czudnochowski et al., 2012). The current model suggests that 

the low activity of Cdk9 towards Serine-2 at the 5’-end of the gene recruits the actual Serine-2 

kinase Lsk1 (CDK12 in metazoans), which is responsible for the bulk of Serine-2P within the gene 

body in vivo during productive elongation (Viladevall et al., 2009).  

In productive elongation, Serine-2P levels constantly increase over the gene body, whereas 

Serine-5P levels start declining and the ratio of these two marks is believed to dictate binding and 

loss of elongation factors (reviewed in Kwak & Lis 2013). Many of them are histone-modifying 

complexes, ranging from general chromatin modification platforms, such as Paf1C, to specific 

histone methyl- or acetyltransferases, demethylases and deacetylases, which may provide some 
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feedback stimulus for transcribed genes (see Figure 6 and chapter 2.2). Specifically, concomitant 

phosphorylation of Serine-2 and -5 seems to specifically recruit Paf1C and Set2 (Kizer et al., 

2005; Qiu et al., 2012), but also important RNA processing factors, such as splicing or export 

factors (David et al., 2011; Harlen et al., 2016; MacKellar and Greenleaf, 2011). A different CTD 

residue, Threonine-4 is phosphorylated during elongation and proposed to regulate splicing 

together with Serine-5P (Harlen et al., 2016).  

During transcription, nucleosomes are reoccurring obstacles, which have to be correctly 

removed and reinserted. This is achieved by the actions of the FACT (Facilitates chromatin 

transcription) complex, a histone chaperone that removes and reinserts a H2A/B dimer from the 

nucleosome, thus allowing the polymerase to transcribe the DNA without displacing the remaining 

hexamer (Belotserkovskaya et al., 2003). Spt6 is a different histone chaperone and a nucleosome 

reorganizer with additional roles in gene activation and important for the recruitment of H3K36 

methyltransferase Set2 (DeGennaro et al., 2013). Spt6 acts in a different mechanism than FACT 

by directly interacting with Histone H3 (Bortvin and Winston, 1996) and is recruited behind the 

elongating polymerase by interaction with Serine-2P (Yoh et al., 2007). Other elongation factors 

Figure 6: Simplified model of productive elongation during transcription. Concomitant phosphorylation of 
Serine-2 and Serine-5 on Rpb1 or Spt5-P recruits Paf1C, which is the main platform in orchestrating 
transcription elongation. Amongst the recruited proteins are FACT and Asf1, which are histone chaperones 
important for histone reassembly. Chromatin remodeler Spt6 recognizes Serine-2P and recruits Set2, which 
also can recognize Serin-2/5p. See also text and chapter 2.2 for more information. 
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play a role in overcoming various difficulties during transcription, such as backtracking for 

proofreading of the transcript and resuming of transcription after transcriptional arrests, which is 

orchestrated by TFIIS (tfs1 in S. pombe, Kettenberger et al. 2003). 

Although crucial in fine-tuning and terminating transcriptional processes at the right place, 

phosphatases have not been elucidated in detail. Whereas Fcp1 localizes to both ends of the 

gene to direct Serine-2P dephosphorylation, Ssu72 dephosphorylates Serine-5/7P in the gene 

body (Cho et al., 2001; Schwer et al., 2015). However, much information about the regulation and 

recruitment of phosphatases during transcription is still missing. Yet, with increasing Serine-2P, 

which peaks at the end of the gene body, and diminishing Serine-5P, transcription enters its last 

stage, where the transcript and RNAPII are released. 

 

2.1.3. Transcription termination 

In late elongation, transcription termination factors bind to the CTD of RNAPII to induce 

cleavage of the nascent transcript and the eventual release of the transcription machinery (see 

Figure 7). Serine-2P plays an important role in this mechanism, because it is specifically 

recognized by two termination factors Pcf11, an important scaffold protein for the cleavage and 

polyadenylation factor (CPF), and transcription termination factor Rtt103 (Licatalosi et al., 2002; 

Lunde et al., 2010). CPF is a multisubunit complex responsible for the correct 3’-end processing 

and subsequent polyadenylation of the transcript (reviewed in Porrua & Libri 2015). Binding of 

CPF does not only require the interaction of CPF with RNAPII, but also specific sequences on the 

transcribed RNA: Once the polyadenylation signal (PAS) is transcribed and present on the 

transcript, it is recognized by other CPF subunits and stimulates the cleavage of the transcript  

15 - 30 nt downstream of the PAS by CPF subunit CPSF73 and subsequent release from RNAPII 

and polyadenylation (Ryan et al., 2004). 

Interestingly, premature binding of Pcf11 and Rtt103 to RNAPII is prevented by 

phosphorylation of Tyrosine-1 of the CTD, a recently identified mark that peaks shortly before the 
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cleavage occurs. Tyrosine-1P is similarly distributed as Serine-2P but drops shortly before the 

PAS, thus allowing CPF to bind and cleave (Mayer et al., 2012). However, this mechanism has 

been only described in S. cerevisiae so far and research on metazoans suggested a different 

function for Tyrosine-1P (reviewed in Jeronimo et al., 2016). Yet, timely recruitment of 

transcription termination is crucial in determining the length of the 3’-untranslated region (3’-UTR), 

which has extensive impact on transcript stability, localization, and translation. 

RNAPII stays associated with DNA also after the cleavage of the transcript, but the exact 

mechanism of RNAPII release is still not fully understood. Although different models exist, the so-

called “Torpedo model” has been partially elucidated (see Figure 7). In this scenario, Rtt103 

recruits the 5’ - 3’ exonuclease Xrn2 (Dhp1 in S. pombe), which then “chases” the transcribing 

RNAPII by degrading its unprotected 5’-end (Kim et al., 2004b). Other models such as the 

“reverse torpedo” model include other important complexes such as the 3’ - 5’ exosome complex, 

which is proposed to degrade 3’-unprotected transcripts after RNAPII backtracking (Lemay et al., 

2014).  

Figure 7: Transcription termination. At the end of the transcription, Serine-2P dominates over Serine-5P 
and is recognized by Pcf11. Furthermore, other signals of the polyadenylation site (PAS) and potential 
Tyrosine-1P fine-tune the activity of the CPF complex, which eventually cleaves the nascent transcript and 
adds the polyA-tail to the released transcript. The still transcribing RNAPII is then terminated by the action 
of exonucleases and/or other modulatory signals. For the “torpedo” model, 5’-3’ exonuclease Xrn2 
degrades the cleaved 5’-end of the transcript, whereas the exosome is proposed to degrade the RNA and 
release RNAPII from the 3’-end of the transcript, made available through backtracking (“reverse torpedo” 
model). See text for more information. 
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2.2. Chromatin modifying enzymes in transcription 

A plethora of chromatin modifiers is recruited to the transcribing polymerase by 

phosphorylation-specific interactions with the CTD of RNAPII or by recruiting platforms, such as 

Mediator or Paf1C. These complex, but well-coordinated recruiting mechanisms result in relatively 

distinct CTD and histone PTM patterns across the transcription unit (Figure 8, left panel). 

 

2.2.1. RNA polymerase II-associated factor 1 complex (Paf1C) 

As mentioned above, the Paf1 complex is a central platform in recruiting various histone-

modifying enzymes and well conserved throughout eukaryotes. Besides its crucial function in 

transcription, the Paf1 complex has important roles in other cellular processes, such as DNA 

repair, the cell cycle and even signaling in mammals (reviewed in Tomson & Arndt 2013). 

In S. pombe, Paf1C consists of the subunits Paf1, Cdc73, Tpr1 (Ctr9p in S. cerevisiae and 

mammals), Leo1, and possibly Prf1 (Rtf1p), which is a known member of Paf1C in S. cerevisiae, 

but not part of the complex in metazoans (reviewed in Jaehning 2010). In S. pombe, Prf1 does 

not stably associate with Paf1C, but rather acts as an individual player in regulating histone 

Figure 8: Crosstalk between histone modifications and transcription stages. Left panel: Distribution pattern 
of multiple PTMs on histones and on the Rpb1 CTD across a transcriptional unit. TSS: transcription start 
site; PAS: Polyadenylation site; TTS: Transcription termination site; ac: acetylation. Only PTMs discussed 
in this chapter and present in S. pombe are shown. Right panel: Overview of the organization and functions 
of the Paf1 complex. Since Prf1 may act as an individual player in transcriptional control, it is shown as 
separate unit. Paf1C regulates multiple steps in transcription and the CTD phosphorylation state; therefore, 
multiple effects may be indirect. See text for more information. 
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modifications (Mbogning et al., 2013). Paf1C coordinates proper transcription on multiple levels 

and hence associates with RNAPII throughout transcription (see Figure 8, right panel). This 

association is partially mediated by specific interaction of Cdc73 with the phosphorylated form of 

the CTD of RNAPII, but also with the Spt5-CTD (Qiu et al., 2012). Interaction with RNAPII also 

feeds back and enhances CTD Serine-5 phosphorylation, as deletion of Paf1C subunits affects 

Serine-5 phosphorylation levels (Mbogning et al., 2013). Furthermore, Leo1 can bind nucleic 

acids in vitro, which may stabilize Paf1C on the nascent transcript (Dermody and Buratowski, 

2010). Despite its unclear affiliation in Paf1C, Prf1/Rtf1p independently associates with RNAPII 

via its Plus3 domain (Wier et al., 2013). 

Once Paf1C is associated with RNAPII, it helps recruit important histone modifiers, amongst 

them the Set1/COMPASS complex, which trimethylates H3K4, a histone modification associated 

with the TSS (see chapter 2.2.2, Ng et al., 2003a). Supporting this interaction, deletion of Paf1C 

subunits leads to a loss of H3K4me3 and another conserved PTM, H2BK119 ubiquitination 

(H2BK120 in metazoans). Responsible for H2B ubiquitination is the histone ubiquitin ligase 

complex (HULC, see chapter 2.2.7) and the human Paf1C was shown to directly interact with a 

HULC subunit, the E3 ubiquitin ligase RNF20/40 (Brl1/2 in S. pombe, Hahn et al., 2011). 

Furthermore, Rtf1p is sufficient to promote H2B ubiquitination in vitro, likely due to direct 

stimulation of HULC subunit Rad6p (Rhp6) (Piro et al. 2012; Van Oss et al. 2016). In S. cerevisiae, 

the Paf1 complex stimulates not only H2B ubiquitination, but also affects the levels of H3K36me3 

(Chu et al., 2007). This observation however, could be an indirect effect due to reduced Serine-

2P levels in Paf1C mutants and is not conserved to S. pombe, wherein Paf1C mutants show 

unchanged H3K36me3 levels (Mbogning et al., 2013). Besides regulating histone modifications, 

Paf1C also helps recruiting transcriptional elongator complexes, such as FACT and Spt6 

(Adelman et al., 2006) and has been linked to promote 3’-end processing: In addition to the 

mentioned stimulation of Serine-2P, Paf1C directly interacts with subunits of the CPF complex in 

S. cerevisiae and human cells (Nordick et al., 2008; Rozenblatt-Rosen et al., 2009). 
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Last but not least, our group could show that Paf1C is an important repressor of de novo 

heterochromatin formation in euchromatin in S. pombe (see Results, Kowalik et al., 2015). 

Intriguingly, all Paf1C members including Prf1 were found to repress ectopic siRNA-mediated 

heterochromatin formation. Yet, the exact mechanism of this repression remains to be elucidated, 

although literature suggests that impaired transcription termination or reduced histone turnover 

may be responsible (see Aim, Kowalik et al., 2015; Sadeghi et al., 2015). 

 

2.2.2. H3K4 methyltransferase Set1/COMPASS 

Trimethylated H3K4 is a euchromatic PTM typically residing at the transcription start site of 

genes (Ng et al., 2003a; Santos-Rosa et al., 2002; Strahl et al., 1999). Whereas multiple enzymes 

can catalyze H3K4 methylation in mammals, H3K4 in yeast is methylated by the sole 

methyltransferase Set1/COMPASS complex (Roguev et al., 2001; Santos-Rosa et al., 2002). 

Serine-5 phosphorylation of RNAPII and Paf1C are both essential for the recruitment of Set1 to 

the TSS (Ng et al., 2003a). The levels of H3K4me3 are controlled by demethylases, which are 

Jmj2 and Lid2 in S. pombe, whereas in S. cerevisiae only Jhd2p has been identified so far (Huarte 

et al., 2007; Li et al., 2008; Tu et al., 2007). 

H3K4me3 is recognized by many different reader proteins, which are part of other 

multisubunit complexes with very diverse roles (reviewed in Vermeulen & Timmers 2010). 

Depending on the cell type, developmental state, or stress condition, H3K4me3 readers can 

induce transcriptional activation, remodel chromatin or lead to transcriptional repression. In order 

to ensure the specificity and to fine-tune these H3K4me3 readers, multiple ways of regulation 

evolved, ranging from different H3K4me3 affinities, effects of combinatorial PTMs within the 

histone code, to sequence-specific interactions with DNA. 

A large constituent of H3K4me3 readers are lysine acetyltransferase (KAT) complexes, 

previously named HAT (histone acetyltransferase). Due to their roles in non-histone protein 

acetylation, KAT has emerged as a new nomenclature (Allis et al., 2007). Many KATs contain a 
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H3K4me3 reader domain and are thought to acetylate the nucleosome around the TSS to 

facilitate transcription (reviewed in Zhang et al. 2015). Nevertheless, KDAC (lysine deacetylase, 

formerly known as histone deacetylase [HDAC]) complexes also have H3K4me3 recognition 

domains and a model implies the dynamic histone acetylation and deacetylation cycle in 

promoting transcription initiation (Aoyagi and Archer, 2007). 

 

2.2.3. Acetyltransferase and Deubiquitinase complex SAGA 

Due to recognition of H3K4me3, KATs get recruited to the TSS and therefore acetylated H3 

and H4 are usually associated with TSSs (Liang et al., 2004). Furthermore, KATs also interact 

with GTF subunits and are thought to act simultaneously or even upstream of PIC formation to 

open up chromatin by acetylation of histones. This is exemplified by a prominent co-activator, the 

SAGA (Spt-Ada-Gcn5-acetyltransferase) complex, which even contains proteins that were 

originally identified as TFIID subunits (Grant et al., 1998). SAGA acetylates several histone lysine 

residues, which then serve as a binding platform for the TFIID subunit Taf1 to stimulate 

transcription (Jacobson et al., 2000). Furthermore, SAGA can confer transcriptional activity in vitro 

even in the absence of TFIID, emphasizing the impact of SAGA on multiple targets in transcription 

(Wieczorek et al., 1998). 

Besides its function in histone acetylation, SAGA contains a DUB (deubiquitinase) module, 

which deubiquitinates H2BK119ub on nucleosomes and is proposed to increase Lsk1-mediated 

Serine-2 phosphorylation (Wyce et al., 2007). SAGA can deubiquitinate H2B also in the context 

of an evicted H2A/B dimer and thus it is still unknown if deubiquitination occurs in front of or in 

the wake of transcription (see also chapter 2.2.7, reviewed in Morgan & Wolberger 2017).  

Whether acetylation marks have position-specific roles was under debate for a long time, 

as some views postulated a role as a binding platform for reader proteins and others rather 

favored a simple position-independent, electrostatic effect (Dion et al., 2005; Kurdistani et al., 

2004). However, with the discovery of acetyl-lysine recognizing bromodomains, it became clear 
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that acetylation marks also serve as binding platforms for many reader proteins, thereby adding 

another regulatory layer of complexity (Dhalluin et al., 1999). Bromodomain proteins are usually 

subunits of activating enzymes such as KATs or chromatin remodelers, suggesting that KATs 

could induce a positive feedback mechanism by reading their own mark, a widespread 

phenomenon of chromatin readers. Furthermore, bromodomain proteins are of high interest for 

pharmaceutical research, because they are often misregulated in cancer and may represent good 

targets for specific inhibitors (Filippakopoulos et al., 2010; Jain, A. K. and Barton, 2016). 

 

2.2.4. H3K36 methyltransferase Set2 

Whereas H3K4me3 marks TSSs, H3K36me3 is prevalent across the gene body and 

correlates with transcription (Morris et al., 2005). Similar to Set1-mediated H3K4 trimethylation, 

H3K36me3 is deposited by a single enzyme in S. pombe, Set2 (Morris et al., 2005). During 

transcription, Set2 is recruited by recognition of a double phosphorylated CTD at Serine-2P and 

Serine-5P via its C-terminal SRI (Set2 Rpb1 interaction) domain (Kizer et al., 2005; Xiao et al., 

2003). In S. pombe, deletion of the SRI domain abolishes H3K36 trimethylation, but retains H3K36 

mono- and dimethylation (Suzuki et al., 2016). Furthermore, Paf1C, Cdk9p, and Serine-2P levels 

influence the stability of Set2p in S. cerevisiae and thus promote efficient H3K36 trimethylation 

(Fuchs et al., 2012b). H3K36 methylation levels are regulated by demethylases, such as Jhd1p 

and Rph1p in S. cerevisiae (Kim and Buratowski, 2007). In S. pombe, the homologues of Jhd1p 

and Rph1p are essential and have not been studied in detail. 

Di- or trimethylated H3K36 provides a binding platform for the major KDAC in transcription, 

the Clr6C-II complex (Rpd3S complex in S. cerevisiae and humans, see Figure 9). Importantly, 

dimethylated H3K36 is sufficient to recruit this KDAC, therefore the exact function of H3K36me3 

is still unknown (Li et al., 2009a; Suzuki et al., 2016). H3K36me-mediated recruitment of  

Clr6C-II/Rpd3S leads to deacetylation of nucleosomes (see below and Figure 9), but H3K36me3 

also impedes the recruitment of histone chaperone Asf1, which prevents the incorporation of 
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newly acetylated histones, thus enforcing the hypoacetylated state of nucleosomes in the gene 

body (Venkatesh et al., 2012). Additionally, specific chromatin remodelers such as Isw1 and Chd1 

get recruited to H3K36 methylated regions in order to ensure proper reassembly of nucleosomes 

in the wake of transcription (Smolle et al., 2012). 

2.2.5. Deacetylase complex Clr6C 

KDAC Clr6 and its budding yeast homologue Rpd3p exist in multiple complexes and contain 

a sub form that is responsible for bulk histone deacetylation in gene bodies, namely Clr6C-II and 

Rpd3S, respectively (Carrozza et al., 2005; Nakayama et al., 2003; Nicolas et al., 2007). Two 

alternative complexes, called Clr6C-I and Rpd3L, respectively, have not been characterized 

extensively, but play important roles in gene-specific promoter repression and transcriptional 

directionality (Kadosh and Struhl, 1997; Nicolas et al., 2007; Zilio et al., 2014). 

Clr6C-II and Rpd3S are recruited to chromatin via their subunits Alp13 and Eaf3p, 

respectively, which specifically recognize di- and trimethylated H3K36 (Carrozza et al., 2005; 

Nakayama et al., 2003; Nicolas et al., 2007). Both complexes then deacetylate nucleosomes, 

which is proposed to suppress spurious transcription within the gene body (see Figure 9). 

Although a clear mechanism is still missing, it seems conceivable that hypoacetylated histones 

cannot act as binding platform for the transcription initiation machinery and thus impair cryptic 

transcription initiation. Both deposition and recognition of H3K36 methylation is essential for this 

suppression, since deletion of Set2 or Alp13/Eaf3p lead to increased antisense transcription 

within the gene body (Carrozza et al., 2005; Nicolas et al., 2007). In S. cerevisiae, Rpd3S is 

Figure 9: Role of Set2 and H3K36 
methylation in transcription. CTD and Paf1C-
mediated recruitment of Set2 leads to 
methylation of K36. This mark in turn is bound 
by Clr6C-II, which deacetylates acetylated 
histone and thus protects from aberrant 
transcription initiation. See text for more 
details. 
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interacting with the Serine5-p of the transcribing polymerase, thus providing a direct link between 

deacetylation and transcription (Govind et al., 2010). 
 

2.2.6. Acetyltransferase complex Mst2C 

The Mst2 complex (Mst2C) in S. pombe was identified ten years ago as a negative regulator 

of telomere silencing (Gómez et al., 2005). Upon deletion of mst2+, subtelomeres showed 

increased silencing which was dependent on the presence of the KDAC Sir2, suggesting that 

enhanced deacetylation of telomeric regions is responsible for the observed silencing. Research 

from the Jia group also indicates a role of Mst2C in counteracting heterochromatin at the 

centromeres, which is dependent on the RNAi pathway (see Figure 10 and chapter 3.2.1.2): 

Concomitant inactivation of Mst2 and the RNAi pathway reduces this dependence, suggesting 

that removal of Mst2 bypasses the need of RNAi for heterochromatin maintenance (Reddy et al., 

2011). Other results implied a function of Mst2 in counteracting ectopic heterochromatin formation 

in euchromatin, albeit in combination with the H3K9 demethylase Epe1 and on sites that already 

harbor low levels of H3K9 methylation (Wang et al., 2015). 

Mst2 acetylates H3K14 on nucleosomes and thus acts redundantly with SAGA KAT Gcn5, 

the other H3K14 KAT in S. pombe (Wang et al., 2012). H3K14 acetylation is a hallmark of 

euchromatin, especially at TSS and concomitant deletion of Mst2 and Gcn5 results in a complete 

loss of H3K14 acetylation and renders cells more sensitive to DNA damage (Johnsson et al., 

2009; Wang et al., 2012). Nevertheless, expression profiling of cells lacking either Mst2, Gcn5, or 

both proteins do not correlate much, suggesting that Mst2 and Gcn5 have different targets in the 

cell (Wang et al., 2012). This is supported by the fact that removal of Gcn5 does not bypass the 

need for RNAi for heterochromatin maintenance (Reddy et al., 2011). Intriguingly, H3K14R 

mutants which should mimic an unacetylated form of H3K14 (similar to a gcn5Δmst2Δ) show 

multiple additional phenotypes and lose heterochromatin completely (Mellone et al., 2003). This 

suggests that this lysine residue may be subject to multiple modifications and questions if solely 

H3K14 acetylation is responsible for the observed phenotypes (see Aim). 
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Characterization of the Mst2 complex identified multiple members, which are Mst2, Pdp3, 

Nto1, Ptf1, Ptf2, Eaf6 and associating factor Tfg3 (see Figure 10, Wang et al. 2012). Nto1 and 

Ptf2 have essential functions for the acetyltransferase activity of Mst2. Eaf6, Nto1 and Tfg3 are 

homologues to the S. cerevisiae NuA3 complex, suggesting good conservation from budding 

yeast to fission yeast. Indeed, NuA3 also contains a KAT (Sas3p) responsible for H3K14 

acetylation, which acts redundantly with Gcn5p and removal of both KATs is synthetic lethal 

(Howe et al., 2001). Pdp3, Ptf1, and Ptf2 are unique to Mst2C, although a recent publication 

identified a Pdp3 homologue in S. cerevisiae to be associated as well with NuA3, thus creating a 

new form of that complex, called NuA3b (Gilbert et al., 2014). The synthetic lethality with Gcn5p 

is restricted to Sas3p but not Pdp3p, suggesting a distinct function for the NuA3b complex. The 

same publication also showed that Pdp3p recognizes specifically H3K36me3, which constitutes 

an alternative recruitment pathway to the canonical NuA3 subunit Yng1p, which binds to 

H3K4me3 (Gilbert et al., 2014; Taverna et al., 2006). Intriguingly, the Yng1p homologue is missing 

in Mst2C, suggesting a different way of Mst2C recruitment to chromatin. In addition, the Mst2C 

does not contain a bromodomain unlike other KATs, which implies that Mst2C may not be part of 

an acetylation reading/writing-based feedback loop. 

Figure 10: Function and complex composition of Mst2C. The main role of Mst2C is to prevent 
heterochromatin spreading. This inhibition is proposed to act via acetylation of H3K14, which impairs 
methylation of H3K9, a residue close by. 
The Mst2 complex consists of 6-7 members as depicted in the right panel. Tfg3 is a pleiotropic factor 
present in multiple complexes and sometimes not considered as integral part of the Mst2C. Subunits 
essential for the KAT activity of Mst2C are circled in red. Besides the catalytic MYST domain of Mst2, the 
following subunits contain functional domains: Pdp3: PWWP domain (methylated histone residue 
recognition); Nto1: PHD finger; Ptf1: Phosphatase domain. See text for more details. 
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2.2.7. H2B ubiquitination ligase complex HULC 

HULC is a conserved complex in eukaryotes and ubiquitinates H2B at lysine K119 in  

S. pombe (hereafter referred to H2Bub, conserved as H2BK123 in S. cerevisiae and H2BK120 in 

metazoans, Tanny et al. 2007). It consists of four members, Brl1 and Brl2, which are E3 ligases 

important for the specificity, Rhp6, the actual ligating E2 enzyme and Shf1 with unknown function, 

yet essential for the activity (Tanny et al., 2007). HULC is highly conserved to S. cerevisiae and 

metazoans in complex composition and function (reviewed in Fuchs & Oren 2014; Tanny 2015). 

 

Ubiquitination as a PTM is different from all other discussed modifications as it is a big 

moiety: Ubiquitin is a polypeptide of 76 amino acids and thus weighs almost as much as the actual 

histone (8.5 kDa vs 13 kDa). Polyubiquitination per se promotes degradation of the target proteins 

via the proteasome pathway, but monoubiquitination of histones has a signaling function (Bonnet 

et al., 2014). Specific monoubiquitination of H2B induces binding of adaptor proteins, alters the 

biochemical properties of the ubiquitinated histone, thus modulating higher order chromatin 

structures, and also affects the stability of ubiquitinated histones (reviewed in Fuchs and Oren, 

2014). H2B ubiquitination has been linked to many molecular processes such as DNA damage 

response, cell cycle control, chromatin segregation, and even RNA splicing and processing, which 

affect major cellular processes such as apoptosis, tumorigenesis or differentiation. For the sake 

of brevity, I will discuss only the role of H2Bub in transcription elongation. 

HULC is recruited to chromatin via different proposed interactions. In human, the Shf1 

homologue WAC interacts preferentially with Serine-2P of the RNAPII CTD, thereby linking 

H2Bub directly to transcription (Zhang and Yu, 2011). Serine-2 kinase Cdk9 directly 

phosphorylates the budding yeast Rhp6 homologue Rad6p and stimulates its activity (Wood et 

al., 2005). Also Paf1C plays important roles in recruiting and stimulating HULC, because different 

subunits have been shown to interact with HULC in S. cerevisiae and human cells (Hahn et al., 

2012; Ng et al., 2003b; Van Oss et al., 2016). In S. pombe, HULC activity is stimulated by Prf1 
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(Piro et al., 2012), which is intriguing due to the questioned role of Prf1 as Paf1C subunit. Recent 

research suggests that Prf1 is stimulatory for H2B ubiquitination, but dispensable for Paf1C 

functions and that a complex interplay including Cdk9, Spt5, Paf1C and Prf1 regulates 

transcriptional elongation (Mbogning et al., 2013; Sansó et al., 2012). 

The exact function of ubiquitinated H2B is still not completely understood and most research 

on H2Bub function was done in S. cerevisiae, which seems to differ from S. pombe and 

metazoans. Central to its function is the dependence of important PTMs on H2Bub, such as H3K4 

methylation, but also H3K79 methylation in S. cerevisiae and metazoans, a mark which is absent 

in S. pombe (Kim et al., 2005; Ng et al., 2002; Sun and Allis, 2002). This underlines the importance 

of H2Bub and puts it in the center in regulating chromatin modifications downstream of Paf1C. 

Besides that, much is still unclear, such as the stimulating role in H3K4 methylation. In vitro data 

suggests that H2Bub directly stimulates H3K4 methylation by Set1, but more detailed or structural 

studies are still missing (Racine et al., 2012). Also transcriptional elongation was proposed to be 

boosted by H2Bub via increased recruitment of Cdk9 (Sansó et al., 2012; Tanny et al., 2007). 

Since also deubiquitination of H2Bub by SAGA is promoting transcription, a model suggests that 

creating a dynamic ubiquitination/deubiquitination cycle is the actual boost in transcription 

elongation (Henry et al., 2003). Additionally, H2Bub also stimulates FACT-mediated histone 

disassembly and reassembly in the wake of transcription (Pavri et al., 2006). Indeed, H2Bub 

promotes nucleosome (re-)assembly, but at the same time prevents higher chromatin structures, 

thus creating an intermediate chromatin state (Batta et al., 2011; Debelouchina et al., 2016; Fierz 

et al., 2011). Reduced nucleosome reassembly in H2Bub mutants also leads to cryptic 

transcription, thereby linking H2Bub with H3K36me3 and histone deacetylation (Fleming et al., 

2008).  

Furthermore, H2Bub has been linked to protecting chromatin from being 

heterochromatinized, for example at the central core of centromeres, where a H2BK119R mutant 

has  increased H3K9 methylation levels (Sadeghi et al., 2014).  



Novel insights into mechanisms partitioning chromatin states 

INTRODUCTION 

26 

3. Heterochromatin 

Since the first characterization of heterochromatin ninety years ago, a vast amount of 

mechanisms, contributing factors, and pathways has been reported in many different model 

organisms. In general, one can distinguish between initiation of heterochromatin and its 

maintenance, which is ensured by the action of self-enforcing feedback loops. However, such 

feedback loops also preclude a chronological dissection of events in the initiation process (see 

Aim & Discussion). In this thesis, I will mostly focus on mechanistic insights involving histone 

modifications and the role of noncoding RNAs (ncRNAs) with special emphasis on my used model 

system S. pombe (see chapter 3.2). Unlike S. pombe and metazoans, S. cerevisiae uses a quite 

different system to establish silent chromatin. Yet, the mechanism of establishment is quite well 

understood and the counteracting functions of euchromatic marks have been partially elucidated. 

Therefore, I also quickly discuss S. cerevisiae as it provides an interesting and conceptually 

similar resource to understand the interplay between euchromatin and heterochromatin (see 

chapter 3.3). Finally, I would like to highlight the importance and conservation of heterochromatic 

feedback loops to higher organisms and therefore included a few examples from metazoans, 

which also induce heterochromatin by using ncRNAs (see chapter 3.4). 

 

3.1. General characteristics of heterochromatin 

In all eukaryotes, repressed regions are usually associated with important structural 

elements on chromosomes and tend to colocalise in the nucleus either to the nuclear periphery 

or the nucleolus (reviewed in Buhler & Gasser 2009). Heterochromatin can be divided into two 

classes: 

Constitutive heterochromatin exists in all cell types and occupies telomeres, rDNA repeats 

and the pericentromeric regions (reviewed in Becker et al., 2016). The pericentromeric regions 

are insulating the central core of the chromosome, which is important for kinetochore assembly 
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during cell division (Takahashi et al., 2000). In yeast, heterochromatin also represses the mating-

type region, which is important for proper mating-type switching (Egel, 1984).  

Fundamental to these regions are repetitive DNA sequences that have to be repressed due 

to harmful recombination events, which would lead to chromosome fusion/loss or telomere 

shortening (Allshire et al., 1995; van Steensel et al., 1998). Heterochromatin also represses 

transposons, virus-based invader elements which have the ability to transpose (or copy) their 

DNA sequence in the genome. Such transposition events would affect genome organization and 

thus be detrimental for genomic stability and faithful inheritance of chromatin states (reviewed in 

Cordaux and Batzer, 2009). 

Heterochromatin is characterized by increased chromatin compaction, which reduces the 

accessibility of transcription factors and of RNAPII (transcriptional gene silencing), but also by 

multiple co-transcriptional gene silencing mechanisms, which further lower the transcriptional 

output by degradation of transcripts (CTGS; see 3.2.2). A hallmark of constitutive heterochromatin 

in S. pombe and metazoans is H3K9me2/3, which is recognized by the heterochromatin protein 

1 (HP1) (reviewed in Grewal and Jia, 2007). HP1 proteins are conserved across most eukaryotes 

and play crucial roles in heterochromatin spreading due to their oligomerization capacity (Canzio 

et al., 2011). Furthermore, HP1 proteins recruit KDACs, which deacetylate histones and thereby 

lead to increased chromatin compaction. Methylation of DNA cytosine is another repressive mark 

associated with heterochromatin in mammals, but since DNA methylation is absent in S. pombe 

it will not be discussed in detail here (for review see Li and Zhang, 2014).  

Facultative heterochromatin is formed within euchromatin and is dynamic, as it exists only 

in certain cell types or developmental stages (Trojer and Reinberg, 2007). A major hallmark of 

facultative heterochromatin in metazoans is trimethylated H3K27. H3K27me3-mediated 

repression works via the Polycomb-repressive complexes (PRC) and is exemplified by 

inactivation of the second X chromosome in female cells, homeobox (HOX) gene cluster 

inactivation during development in mammals or repression of the important FLC locus in plants 
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(Davidovich and Cech, 2015). Facultative chromatin in metazoans can also carry H3K9 

methylation instead of H3K27me3, for example in differentiated cells such as fibroblasts (Hawkins 

et al., 2010). Similarly, H3K9me2 marks facultative heterochromatin on meiotic genes in  

S. pombe, where H3K27 methylation is absent (Cam et al., 2005). 

Much of the current understanding of how heterochromatin is formed, maintained, and 

controlled originates from an interesting observation in Drosophila melanogaster  

(D. melanogaster) by geneticist Hermann Muller in 1930. He was experimenting with X-ray 

beams, which led to rearrangements of genes in the genome, and observed that a mutagenized 

fruit fly offspring showed an unusual patterning of white and red eye units in its compound eye 

(see Figure 11 top; Muller, 1930). The responsible genetic determinant for eye color is the white+ 

gene, which leads to white eyes when mutated (Morgan, 1910). The unusual patterning of red 

and white eye units suggested that the white+ 

gene was not mutated, which would result in 

a completely white eye color. Closer 

examination of the chromosomal context 

revealed that an inversion translocated the 

white+ gene proximal to a heterochromatic 

region and led to the definition of position 

effect variegation (PEV), since the position of 

the white+ gene defines the variegating 

phenotype (reviewed in Elgin & Reuter 

2013). The expression of white+ is controlled 

by its chromatin context, more precisely by 

the distance heterochromatin spreads, which 

is a stochastic process. Once the chromatin 

context is defined, it is stably maintained 

Figure 11: Position effect variegation in D. 
melanogaster (top) and S. pombe (bottom). 
Depending on the chromatin context, the reporter gene 
is silenced (left), expressed (right), or variegating 
(middle). This phenotype has been exploited to screen 
for enhancers and suppressors of silencing. See text 
for more information. Figure adapted from Elgin and 
Reuter, 2013. 
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throughout the development of each ommatidium (single eye unit), resulting in either white or red 

ommatidia (see Figure 11 top). This phenomenon describes the first identified epigenetic 

mechanism and by now, PEV has also been described for other organisms, such as yeast, plants, 

and mammals (Allshire et al., 1994; Rakyan et al., 2002; Sandell and Zakian, 1992). In addition, 

PEV has been exploited to screen for suppressors and enhancers of variegation leading to more 

red or more white cells and led to the identification of dozens of factors, called Su(var) or E(var), 

respectively (Reuter and Wolff, 1981; Schultz, 1950). Such screens have been extensively 

performed in fruit fly, fission yeast, and even mouse and identified many players in 

heterochromatin formation, spreading, and repression (Blewitt et al., 2005; Ekwall et al., 1999, 

see Figure 11 bottom). With the recent possibility to screen human haploid cell lines, also 

unexpected players have been identified, such as the HUSH (Human Silencing Hub) complex, 

which is not conserved to D. melanogaster and therefore could be only identified in mammalian 

cell lines (Tchasovnikarova et al., 2015). 
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3.2. Heterochromatin in S. pombe 

Heterochromatin in S. pombe is similar to metazoans with the characteristic H3K9 

methylation, histone hypoacetylation, and (co-)transcriptional gene silencing involving multiple 

RNA degradation machineries. Most parts of chromatin can be transcribed in S. pombe, including 

heterochromatin (Wilhelm et al., 2008), which provides a unique opportunity to investigate 

distinguishing features of heterochromatic and euchromatic transcription. 

 

3.2.1. Formation of constitutive heterochromatin 

Constitutive heterochromatin in S. pombe covers the rDNA repeats, the telomeres, the 

pericentromeric regions and the mating type locus (MTL) with a specialized machinery in each 

locus (the rDNA repeats are not further discussed here). Characteristic for all other three loci is 

the partial involvement of the RNAi, although additional pathways contribute to the nucleation of 

heterochromatin at the telomeres and mating type locus. Fundamental for heterochromatin 

formation are multiple conserved factors: 

In a first step, H3K9 is methylated by the sole H3K9 methyltransferase Clr4, which forms 

the Clr4-Rik1-Cul4 complex (CLRC) with Rik1, Raf1, Raf2 and Cul4 (Allshire et al., 1995; Horn et 

al., 2005; Jia et al., 2005). H3K9me2/3 is bound by the HP1 homologues Swi6 and Chp2, but also 

by two other chromodomain-containing proteins Chp1 and Clr4 itself (Ekwall et al., 1995; Thon 

and Verhein-Hansen, 2000). Swi6 and Chp2 further contain a chromoshadow domain, which 

allows oligomerization and is proposed to mediate spreading of heterochromatin in combination 

with the reading/writing ability of Clr4 (Canzio et al., 2011; Sadaie et al., 2008; Zhang et al., 2008). 

Multiple KDACs are responsible for deacetylation of histones, such as Clr3, Clr6, and Sir2 to 

mediate transcriptional gene silencing (TGS) and are partially recruited by Swi6/Chp2 (Grewal et 

al., 1998; Shankaranarayana et al., 2003). A major effector complex in TGS is SHREC 

(Snf2/Hdac-containing Repressor Complex), which includes Clr1, Clr2, KDAC Clr3, and chromatin 
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remodeler Mit1. SHREC reduces access of RNAPII to chromatin and stabilizes nucleosomes 

(Aygün et al., 2013; Creamer et al., 2014; Job et al., 2016; Sugiyama et al., 2007). Nevertheless, 

RNAPII transcribes centromeric repeats also in intact heterochromatin, but transcripts are turned 

over quickly by multiple degradation mechanisms (Bühler et al., 2006, 2007; Keller et al., 2012; 

Volpe et al., 2002). This suggests that there are different modes of chromatin context-dependent 

transcription, from which heterochromatic transcription results in CTGS (see chapter 3.2.2). 

 

3.2.1.1. Telomeres and mating type locus 

Telomeres in S. pombe contain telomeric repeats, which flank the subtelomeric regions on 

chromosomes. Heterochromatin at the telomeric repeats spreads into subtelomeric regions, 

where it partially suppresses expression of subtelomeric genes (see Figure 12 left; Kanoh and 

Ishikawa, 2001). On a mechanistic level, the shelterin complex binds to the telomeric repeats via 

the subunit Taz1 and recruits SHREC and CLRC via its subunit Ccq1, which promote histone 

deacetylation and initiates H3K9 methylation (Kanoh et al., 2005; Sugiyama et al., 2007; Wang et 

al., 2016a). Adjacent to the telomeric repeats, the subtelomeric RecQ helicase genes tlh1/2+ on 

Figure 12: Heterochromatin at (sub)telomeres (left) and MTL (right). Heterochromatin at telomeres involves 
the Shelterin complex with Taz1 and Ccq1, which recruit CLRC and SHREC for H3K9me2. Swi6 binds to 
H3K9me2 and spreads across the chromosome, perhaps aided by the RNAi machinery, which is recruited 
via subtelomeric CenH-like elements. Heterochromatin at the MTL is initiated by two redundant 
mechanisms involving RNAi and Atf1/Pcr1, respectively (1). Recruited CLRC methylates H3K9 (2), which 
is bound by HP1 proteins Swi6 and Chp2, which recruit histone chaperones/Clr6C and SHREC, 
respectively (3). Red arrows indicated positive feedback loops and spreading of heterochromatin. Black 
arrows depict boundary elements at the MTL that impair further spreading. See text for more details. 
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subtelomeres IL and IIR harbor DNA sequences that are highly similar to a common repeat motif 

from the mating type region and centromeres, called CenH (Grewal and Klar, 1997). This DNA 

motif serves as binding platform for the RITS (RNA-induced transcriptional silencing) complex 

and leads to the generation of siRNAs (Cam et al., 2005). Hence, RNAi may promote 

heterochromatin formation at the CenH element and thus enforces subtelomeric silencing by 

either directly promoting CTGS or indirectly via H3K9me2-mediated recruitment of Swi6 and/or 

SHREC (Kanoh et al., 2005; Sugiyama et al., 2007). 

Nucleation of heterochromatin at the mating type locus involves the RNAi pathway and the 

ATF/CREB transcription factors Atf1/Pcr1, which both act redundantly (Jia et al., 2004). Atf1 and 

Pcr1 bind to a specific DNA sequence, called the repressor element (REIII) element, and directly 

recruit Clr3, Clr4, Clr6 and Swi6 (Ekwall et al., 1991; Jia et al., 2004; Kim et al., 2004a). H3K9me2-

dependent binding of Chp2 and Swi6 enhances silencing via the recruitment of Clr3-containing 

SHREC, whereas Swi6 also interacts with histone chaperone Asf1, which enhances nucleosome 

stability and recruits more Clr6C (Motamedi et al., 2008; Yamada et al., 2005; Yamane et al., 

2011). Whereas these complexes deacetylate histone to enforce transcriptional silencing, RNAi 

acts in cis on the repeat-like CenH element and acts redundantly to Atf1/Pcr1 in maintenance of 

heterochromatin, but is important in establishment (Jia et al., 2004). Hence, the nucleating actions 

of RNAi at CenH and of Atf1/Pcr1 at REIII are both needed for establishing a stable 

heterochromatic domain, potentially through combined CTGS via RNAi and TGS via 

Atf1/Pcr1/Clr3/Clr6 (Noma et al., 2004). 

 

3.2.1.2. Centromeric heterochromatin formation via RNAi 

Centromeric heterochromatin is different to the mating type locus and telomeres by the strict 

dependence on the RNAi machinery for initiation and maintenance (Volpe et al., 2002). Loss of 

centromeric heterochromatin disrupts normal chromosome segregation (Allshire et al., 1995). 

Contrasting to telomeres and mating type region, a defined nucleation element has not been 
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identified, but it is the particular 

centromeric sequence and the RNAi 

pathway, which are fundamental to 

initiate and maintain the silent state: 

Similar to metazoans, all three 

centromeres in S. pombe consist of 

repetitive structures, which are divided 

into the innermost repeats (imr) and 

outermost repeats (otr, see Figure 13). 

These repeats flank on both sites the 

central core (cnt) of the chromosome, which provides the binding platform for kinetochore 

assembly during mitosis and is marked by the special histone H3 variant Cnp1 (reviewed in Buhler 

and Gasser, 2009). The imr repeats are somewhat less conserved (i.e. different on all three 

chromosomes) and lead to variegating phenotypes of inserted reporter genes, whereas the otr 

repeats are highly similar in sequence, strong silencers of reporter genes and contain the dg and 

dh repeat units (Takahashi et al., 1991; Verdel and Moazed, 2005). Outside of the otr repeats lie 

the inverted repeats (IRC), which sometimes constitute a boundary by preventing the spreading 

of heterochromatin outside of the pericentromeric region (Cam et al., 2005). Furthermore, tRNA 

genes also delimit heterochromatic regions due to their transcriptional activity and recruitment of 

boundary factors (see chapter 3.2.4, Takahashi et al., 1991). 

RNAi as a silencing mechanism was first identified in the nematode Caenorhabditis elegans 

(C. elegans), where expression of double-stranded RNA (dsRNA) led to the silencing of a target 

gene (Fire 1998). Within the last twenty years, it became evident that RNAi is a conserved 

mechanism inducing gene silencing either post-transcriptionally by targeting the mRNA (post-

transcriptional gene silencing; PTGS) or co-transcriptionally (CTGS) by targeting the nascent 

transcript on chromatin (reviewed in Holoch and Moazed, 2015). RNAi-mediated mechanisms 

Figure 13: Map of S. pombe centromere I. The otr, imr, and 
IRC repeats are shown in green, red, and blue, respectively. 
otrs contain a varying number of dg/dh repeats amongst the 
three different chromosomes and are bidirectionally 
transcribed. Red bars represent tRNA genes, which often 
flank heterochromatic regions. See text for more details. 
Figure adapted from Martienssen and Moazed, 2015. 
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generally involve the processing of dsRNA by the endonuclease Dcr1 into small RNAs and their 

loading onto Argonaute protein-containing complexes, which then elicit the silencing by base-

pairing to the complementary transcript. In S. pombe, the major role of RNAi lies in CTGS and 

the establishment of heterochromatin. Although PTGS has been reported in S. pombe, it will not 

be covered here (Egan et al., 2014; Sigova et al., 2004). 

The current model of RNAi-mediated heterochromatin formation is thought to start by the 

transcription of the dg/dh repeats by RNAPII (see Figure 14, Chen et al., 2008; Kato et al., 2005). 

These transcripts are then reverse-transcribed by the RDRC (RNA-directed RNA polymerase) 

complex resulting in dsRNA (Colmenares et al., 2007; Volpe et al., 2002). RDRC and Dcr1 

interaction is stabilized by the protein Dsh1, which also localizes the whole process to the nuclear 

Figure 14: Model of RNAi-mediated heterochromatin formation. Arrows indicate the feedback loops 
involving RNAi. Additionally, RITS can oligomerize and CLRC and Swi6 can self-propagate due to their 
writer-reader function and oligomerizing capacity, respectively (not shown). See text for more details. 
Figure adapted from Holoch and Moazed, 2015a. 
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envelope (Colmenares et al., 2007; Kawakami et al., 2012). Dcr1 then cleaves these transcripts 

into 21 - 25 nt long siRNAs, which are loaded onto the Argonaute siRNA chaperone (ARC) 

complex, containing Ago1, Arb1, and Arb2 (Buker et al., 2007; Holoch and Moazed, 2015b). This 

complex transforms into the RITS complex by release of Arb1/2 and new association with Tas3 

and Chp1, before the passenger strand of the bound dsRNA is released, probably via slicer 

activity of Ago1 (Jain et al., 2016; Verdel et al., 2004). Artificially tethered RITS is sufficient to 

induce de novo heterochromatin formation and thus acts as an amplifier of heterochromatin 

assembly by multiple mechanisms (Bühler et al., 2006): 

1) The RITS complex binds directly to nascent transcripts in a transcription-rate dependent 

manner (Shimada et al., 2016), reinforcing their processing into small RNAs. 

2) RITS subunit Ago1 directly interacts with RDRC subunit Hrr1 and also recruits the CLRC 

machinery via interaction with Stc1 (Bayne et al., 2010; Motamedi et al., 2004). 

3) Chp1 recognizes H3K9me via its chromodomain and thus stabilizes RITS on heterochromatin 

(Partridge et al., 2002; Schalch et al., 2009). The chromodomain also has affinity to nucleic acids, 

which may reinforce RITS targeting to nascent RNA (Ishida et al., 2012). 

4) Tas3 can oligomerise and thus spread along nucleosomes, sustaining H3K9 methylation (Li et 

al., 2009b; Stunnenberg et al., 2015). 

Recruited CLRC then methylates H3K9 and allows subsequent binding of Swi6 to H3K9me2, 

which again recruits RDRC via Ers1 and is crucial in promoting CTGS (Hayashi et al., 2012; Keller 

et al., 2012; Rougemaille et al., 2012). 

 

3.2.2. Mechanisms of gene silencing 

KDACs induce TGS by deacetylating histone residues and thereby reduce the access of 

RNAPII or general transcription factors (see chapter 2). Important factors therein are 

Clr3/SHREC, Clr6C and Sir2. Also remodeling of nucleosomes by multiple chromatin remodelers 
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such as Mit1, Asf1/HIRA, or Spt6 facilitates higher order structures and contributes to TGS (see 

above; Kiely et al., 2011). 

Nevertheless, RNAPII occupancy on heterochromatin genes is still significantly above 

background, suggesting that TGS contributes to, but is not fully responsible for the silent state of 

heterochromatin. A model proposes that RNAPII transcribes the heterochromatic regions during 

S phase, during which heterochromatin is decompacted to allow DNA replication (Chen et al., 

2008; Kloc et al., 2008). This model attributes RNAi to function exclusively during S phase to 

reinitiate heterochromatin after replication. However, RNAPII occupancy only modestly changes 

during the cell cycle and siRNAs are generated throughout cell cycle, implying that transcription 

by RNAPII is not restricted to S phase. Furthermore, monitoring Swi6 dynamics as a readout of 

centromeric RNA production also suggests little differences throughout the cell cycle, implying 

that RNAi acts throughout the entire cell cycle (Stunnenberg et al., 2015). Hence it seems 

plausible that beside the contribution of RNAi in the degradation of heterochromatic RNAs (by 

processing them into siRNAs, (Schalch et al., 2011)), other RNA degradation pathways ensure 

the proper silencing of heterochromatin in a co-transcriptional manner, which led to the term 

CTGS (co-transcriptional gene silencing; Bühler et al., 2006). Swi6 plays a central role in CTGS, 

by recruiting multiple degradation factors by a still unknown mechanism. Amongst them is the 

Cid14-containing TRAMP complex, which mediates the degradation of nuclear aberrant 

transcripts and prevents them from being converted into siRNAs (Bühler et al., 2007, 2008). The 

current model implies that the RNA-binding activity of Swi6 evicts it from chromatin and feeds the 

bound transcript to TRAMP-mediated degradation (Keller et al., 2012). Furthermore, loss of RNA 

processing factors including the 3’-5’ exonucleases Dhp1 (Xrn2), Triman and the exosome lead 

to loss of silencing, suggesting that heterochromatic transcripts get marked for degradation 

(Chalamcharla et al., 2015; Tucker et al., 2016; Zhang et al., 2011). In addition, Triman is 

important in the generation of primal siRNAs (priRNAs). These likely arise from degradation 
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products and are loaded onto Ago1, where Triman then trims the ends to the favorable length of 

21 - 25 nt, priming them for action (Halic and Moazed, 2010; Marasovic et al., 2013). 

 

3.2.3. Facultative heterochromatin 

In general, ectopic heterochromatin formation in euchromatin has been inherently difficult 

to establish due to multiple euchromatic repression mechanisms (Iida et al., 2008; Simmer et al., 

2010). Nevertheless, heterochromatin in fission yeast has been found on meiotic genes, 

retrotransposons and environmentally regulated genes (Cam et al., 2005; Zofall et al., 2012). 

Facultative heterochromatin on retrotransposons and environmentally genes is dependent on 

RNAi or RNA elimination factors, but is highly variable and its physiological role is not clear (Lee 

et al., 2013; Yamanaka et al., 2013). Facultative heterochromatin on meiotic genes is better 

understood, but investigation of these loci is hampered by additional post-transcriptional 

degradation of meiotic transcripts by the NURS complex (Egan et al., 2014). One subunit of this 

complex is Mmi1, which specifically recognizes a certain DNA element on meiotic genes, called 

the determinant for selective removal (DSR) (Harigaya et al., 2006). Besides directing meiotic 

transcripts to the NURS complex and subsequent degradation by the exosome machinery, Mmi1 

also recruits RITS and CLRC to induce H3K9 methylation (Hiriart et al., 2012; Zofall et al., 2012). 

A recent publication linked Dhp1 to the induction of premature transcription termination and 

interaction with Mmi1 and CLRC for nucleation of heterochromatin (Chalamcharla et al., 2015).  

In summary, facultative heterochromatin in S. pombe is marked by H3K9me2 and likely 

depends on the RITS complex. This makes these loci very attractive to study to elucidate the 

interplay between hetero- and euchromatic factors. However, studying facultative 

heterochromatin is difficult, as a clear dissection is either convoluted due to the co- and 

posttranscriptional regulation of such loci or it demands inactivation of important RNA surveillance 

factors, which could lead to artefacts. Therefore an unperturbed background would be ideal to 

study heterochromatin assembly in euchromatin (see Aim and Results; Kowalik et al., 2015).  
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3.2.4. Chromatin state boundaries 

Chromatin states have to be propagated faithfully in order to maintain epigenetic 

robustness, therefore multiple boundary elements have evolved in order to protect spreading of 

heterochromatin into euchromatin and vice versa. 

 

Stable boundaries 

Stable boundaries contain a particular DNA element, which is bound by trans-acting factors 

to insulate this region. In mammals, an important insulator is CTCF, which binds a short DNA 

motif and was shown to separate active and repressive domains (Cuddapah et al., 2009). In yeast, 

the presence of tRNA genes restricts the spreading of heterochromatin around the centromere 

by recruiting TFIIIC/Sfc6, a transcription factor involved in RNAPIII transcription (Donze and 

Kamakaka, 2001; Noma et al., 2006; Scott et al., 2006). Assembly of the RNAPIII transcription 

machinery may not even be necessary, because TFIIIC brings the boundary to the nuclear 

periphery, which also demarcates a boundary element by sterically restricting heterochromatin 

spreading (Dilworth et al., 2005; Gerasimova et al., 1995). 

 

Dynamic boundaries 

Since most eukaryotes harbor multiple loci with facultative heterochromatin, the existence 

of boundaries for each individual facultative heterochromatic locus is unlikely. Hence, at these 

dynamic boundaries, a complex interplay between euchromatic and heterochromatic factors 

determines the extent of heterochromatin spreading (Wang et al., 2014). This spreading is usually 

dose-dependent, for example, HP1 levels determine the effect of PEV in D. melanogaster 

(Eissenberg et al., 1992). In S. cerevisiae, spreading of Sir2/3/4 and heterochromatin is 

counteracted by acetylation of H4K16 by Sas2 and the extent of heterochromatin depends on the 

protein ratio of Sir2p and Sas2p (Kimura et al., 2002). 
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In S. pombe, Swi6 plays a central role in guiding boundary formation at tRNA genes-free 

regions, such as the IRC1R locus, which lacks a clear boundary element. RNA-binding of Swi6 

evicts it from chromatin and thus may render the boundary sensitive to transcription (Keller et al., 

2012). Indeed, transcription of the ncRNA BORDERLINE (or a sequence-unrelated reporter) 

leads to a marked decrease of H3K9 methylation at IRC1R, which is dependent on the RNA-

binding capacity of Swi6 (Keller et al., 2013). Boundary-forming transcription of ncRNAs has also 

been recently proposed to play a role in plants, although a clear mechanism is still missing 

(Böhmdorfer et al., 2016). Furthermore, deletion of swi6+ leads to RITS-dependent spreading of 

H3K9 methylation, suggesting that Swi6 also controls RITS-mediated spreading (Stunnenberg et 

al., 2015). In addition to RNA eviction, Swi6 interacts with Epe1, an important antisilencing factor 

due to its putative H3K9 demethylase activity and recruitment of additional antisilencing proteins 

(Wang et al., 2013; Zofall and Grewal, 2006). In order to protect constitutive heterochromatic 

regions from Epe1 action, Epe1 is targeted for degradation by a heterochromatic E3 ligase 

complex Cul4-Ddb1Ctd2, which results in the accumulation of Epe1 only at the boundaries of 

heterochromatin (Braun et al., 2011). 

Similar to S. cerevisiae, acetylation of histone residues prevents spreading of 

heterochromatin. This is exemplified by the KAT Mst1, which acetylates H3K4. Acetylation H3K4 

counteracts spreading by either restricting RITS or Clr4 from binding to nucleosomes and by 

recruiting boundary factors (Wang et al., 2013; Xhemalce and Kouzarides, 2010). Recruitment of 

Mst1 was further proposed to be regulated by Paf1C, suggesting a broader role of Paf1C in 

recruiting antisilencing factors (Verrier et al., 2015). 
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3.3. Silent chromatin formation in S. cerevisiae 

The easy manipulation, fast growth and genetic advantages of yeast favored this model 

organism in investigating chromatin regulation. Yeast can grow as haploid or diploid cells and 

thus allows one to easily test mutants in complementation assays to dissect their genetic 

interactions (reviewed in Forsburg, 2001). Hence, S. cerevisiae has been widely used in 

characterizing important conserved features in eukaryotes such as DNA damage repair, 

replication, and signaling pathways, but also chromatin regulation. Although S. cerevisiae lacks 

pericentromeric heterochromatin, H3K9 methylation, and the RNAi pathway compared to higher 

eukaryotes, mechanisms of “silent” chromatin formation at telomeres, rDNA clusters, and mating 

type regions act conceptually similarly to higher eukaryotes (reviewed Gartenberg and Smith, 

2016). This basic silencing system involves only a few proteins and hence offers a great 

opportunity to dissect general mechanisms of silent chromatin. 

Silent chromatin in S. cerevisiae is characterized by rather unmodified, hypoacetylated 

histones especially lacking H4K16 acetylation and low H3K79 methylation, and the presence of 

the silencing complex, consisting of the heterotrimer Sir2p, Sir3p and Sir4p (Braunstein et al., 

1993; Hecht et al., 1996). Establishment of silent chromatin is fairly well understood: 

First, short DNA sequences of around 150 bp are bound by the specific DNA binding factors 

ORC1 (origin recognition complex) or Rap1p and/or Abf1p (Kimmerly et al., 1988). Combined 

binding of these factors then recruits the Sir2/3/4 complex, sometimes also including Sir1 as a 

bridging protein (Gardner et al., 1999). Next, the Sir2/3/4 complex spreads across chromatin with 

active deacetylation of histones by the histone deacetylase Sir2p (Braunstein et al., 1993). The 

deacetylating activity of Sir2p is coupled with the conversion of the small molecule metabolite 

NAD to a byproduct, which promotes the oligomerization of Sir3p (Liou et al., 2005; Tanny and 

Moazed, 2001). Sir3p also plays an important role by binding to nucleosomes in a H4K16Ac- and 

H3K79me3-sensitive manner (Behrouzi et al., 2016; Onishi et al., 2007), whereas Sir4p acts as 

a scaffold protein making contacts to all Sir proteins and also interacting with ORC1, Rap1p or 
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Abf1p (Moazed et al., 1997). Sir2/3/4 recruitment to the unmodified nucleosomes and 

deacetylation of adjacent nucleosome then facilitates the spreading of the Sir2/3/4 complex, which 

also aids the compaction of chromatin (Onishi et al., 2007). Spreading of Sir2/3/4 at the telomeres 

can vary from cell to cell and is interspersed with active chromatin, resulting in variegating 

expression of reporter genes and referred to as telomere position effect (TPE) following the term 

of PEV (Sandell and Zakian, 1992). 

 

3.4. Heterochromatin in metazoans 

3.4.1. RNAi-mediated repression of chromatin in plants 

A positive feedback loop involving siRNAs and gene silencing is also present in the plant 

model organism Arabidopsis thaliana (A. thaliana), resulting in DNA cytosine methylation on 

repetitive sequences (Zhang et al., 2006). Plant heterochromatin at these repetitive sequences is 

further characterized by high levels of methylated H3K9 (reviewed in Pikaard and Mittelsten 

Scheid, 2014). Unlike S. pombe and metazoans, A. thaliana has five DNA-directed RNA 

polymerases with RNAPIV and RNAPV being responsible for RNA-directed DNA methylation in 

heterochromatin (see Figure 15). Briefly, RNAPIV-produced transcripts are reverse transcribed 

by the plant RNA-dependent RNA polymerase RDR2 and processed by the Dicer-like protein 

DCL3 into 24 nt siRNAs, which are loaded onto AGO4 (Haag et al., 2012; Havecker et al., 2010). 

Figure 15: RNAi-directed DNA and 
H3K9 methylation in A. thaliana. The 
red arrows indicate the self-
enforcing feedback loop via 
generation of siRNAs and self-
enforcing action of DNA and histone 
methylation, which leads to 
spreading of these marks. See text 
for more information. Figure adapted 
from Holoch and Moazed, 2015a. 
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Loaded AGO4 then binds to the nascent transcript of RNAPV and recruits the DNA 

methyltransferase DRM2, which methylates the DNA and also leads to H3K9 methylation 

(Wierzbicki et al., 2009). The interplay between DNA and histone methylation is still not 

completely elucidated, but they mutually depend on each other: For example, the H3K9 

methyltransferase KYP recognizes methylated DNA and vice versa RNAPIV subunit SHH1 

recognizes H3K9me and thus recruits the initial RNAPIV to H3K9 methylated regions, thus 

promoting DNA methylation (Law et al., 2013). H3K9me2 is also recognized by another DNA 

methyltransferase CMT3, which is responsible for maintenance of methylated DNA, thus creating 

a stable self-enforcing loop (Du et al., 2012). 

Besides this siRNA-dependent DNA and H3K9 methylation pathway, also H3K27 

methylation marks heterochromatin, either constitutive as H3K27me1 or facultative as 

H3K27me3, and is deposited by different H3K27 methyltransferases (Naumann et al., 2005; 

Zhang et al., 2007). Unlike in most other eukaryotes, the plant homologue of HP1, LHP1 

recognizes rather H3K27me3 than H3K9me3 and thus localizes to facultative heterochromatin 

(Nakahigashi et al., 2005). The best-studied locus under the control of facultative heterochromatin 

is the FLOWERING LOCUS C (FLC), which is controlled by the PRC2 complex. FLC is a 

transcription factor that prevents flowering during warm temperatures unless plants experience a 

prolonged phase of cold temperatures. This process is called vernalization, in which the FLC 

locus gets repressed in a quantitative, temperature-dependent manner, and ensures that plants 

grow vegetatively in winter and only flower in the following spring (reviewed in Berry and Dean, 

2015). This interplay between gene expression and environmental signals makes the FLC locus 

an attractive model locus to study the dynamic epigenetic regulation of chromatin states. 

During the experience of cold temperatures, the PRC2 complex binds via VIN3 to the first 

exon of FLC, where it mediates the nucleation of H3K27me3 across only three nucleosomes (De 

Lucia et al., 2008). This short stretch of methylated H3K27me3 is crucial in switching the ON state 

to the OFF state (Angel et al., 2011). Nucleation of the first exon has been linked recently to 
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specific DNA sequences, which recruit two sequence-specific proteins VAL1/2. These proteins 

interact with LHP1, but also recognize H3K27me3, thus leading to a stabilization of the 

H3K27me3 mark and enhanced recruitment of PRC2 (Yuan et al., 2016). Once the switch to the 

OFF state is completed, PRC2 and H3K27me3 act as part of a positive feedback loop to maintain 

the OFF state of FLC until embryogenesis is reached, which results in the re-expression of FLC 

(Choi et al., 2009). 

 

3.4.2. Heterochromatin in the fruit fly D. melanogaster 

Heterochromatin in D. melanogaster is found at the centromeres and telomeres and covers 

around 30 % of the genome (Bosco et al., 2007). The spreading nature of heterochromatin and 

the epigenetic stable inheritance led to the discovery and definition of PEV (see chapter 3.1) and 

to the identification of many heterochromatin factors (reviewed in Elgin and Reuter, 2013). 

Heterochromatin is characterized by H3K9me3, which is primarily set by Su(var)3-9, the Clr4 

homologue, and bound by HP1 homologue Su(var)2-5 (James and Elgin, 1986; Schotta et al., 

2002). Su(var)3-9 and Su(var)2-5 interact directly with each other and mutually affect their 

localization (Schotta et al., 2002). Not only H3K9me3 is a hallmark of heterochromatin, but also 

H4K20me3, which is deposited by Su(var)4-20 and also essential for silencing (Schotta et al., 

2004). Deacetylation is directly localized to heterochromatin via the interaction of KDAC1 with 

Su(var)3-9 and also dephosphorylation of H3S10 and demethylation of H3K4 are essential for 

heterochromatin spreading (Czermin et al., 2001; Ebert et al., 2004; Rudolph et al., 2007). 

Facultative heterochromatin in D. melanogaster is characterized by H3K27me3 and the 

involvement of PRC. Indeed, PRC proteins were initially identified in this model organism to 

maintain the repression of the developmentally regulated HOX genes (Lewis, 1978). 

Mechanistically, the operating mode of PRC in D. melanogaster is highly similar to mammals and 

will be discussed in the next chapter. Yet, a distinguishing feature of PRC is the mode of 

recruitment, which relies on Polycomb group response elements (PREs) (Simon et al., 1993). 
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PRE is a short DNA sequence, which is recognized by multiple DNA-binding proteins such as 

PHO/PHOL (YY1 in mammals) to just name the most studied ones (Brown et al., 1998, 2003). 

These sequence-specific proteins then recruit PRC1/2 to mediate facultative heterochromatin 

assembly. 

A major function of heterochromatin in general is to repress transposons, which make up a 

large fraction of metazoan chromatin. In D. melanogaster, this repression is mediated by piRNAs, 

which are small RNAs ranging from 23 - 30 nt, as well as multiple Argonaute proteins and takes 

place in germline and somatic cells by similar mechanisms (see Figure 16, Aravin et al., 2003): 

In the germline, piRNAs are encoded as piRNA clusters in the genome and transcribed by 

RNAPII (Brennecke et al., 2007). Transcription takes place in heterochromatin and is regulated 

by the Rhino-Deadlock-Cutoff (RDC) complex, which promotes transcriptional read-through from 

neighboring genes to transcribe piRNA clusters (Mohn et al., 2014). The resulting transcripts then 

get exported to the cytoplasm and processed into piRNAs by multiple factors, involving the 

nuclease Zucchini (Pane et al., 2007). Zucchini cuts the precursor transcripts with the help of 

Argonaute proteins with different sequence biases and thus designs piRNAs to be loaded onto 

Figure 16: RNAi-mediated transposon silencing in fruit flies. RDC: Rhino-Deadlock-Cutoff complex. 
Transcripts are color-coded in the following way: dark/bright green: double-stranded piRNA cluster,  
blue: transposons. The red arrow depicts a feed-forward feedback loop. See text for more detailed 
information. 
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different Argonaute proteins, called Piwi, Ago3, and Aub (Mohn et al., 2015). Ago3 and Aub then 

direct PTGS on transposon transcripts by amplifying their effect with a “Ping-Pong” cycle. This 

cycle consists of Aub cutting the transposon transcript, which gets recognized by Ago3, which 

again cuts the piRNA precursor transcript, thus creating again more and more diverse templates 

for Aub (Brennecke et al., 2007). 

Not only PTGS is involved in controlling transposon expression in the germline, but also 

CTGS (Sienski et al., 2012). In this not fully understood pathway, piRNA-loaded Piwi plays a 

central role by interacting with the nascent transcript and recruiting the scaffold protein Arx and 

Panx (Sienski et al., 2015; Yu et al., 2015). Panx then acts as a link between the piRNA machinery 

and heterochromatin formation and can elicit ectopic heterochromatin formation when tethered to 

a reporter – similar to RITS in S. pombe. This completes the feedback loop, because RDC relies 

on methylated H3K9 to act on chromatin (Mohn et al., 2014). The exact mechanism of the 

degradation of heterochromatic transcripts is still unclear (Yang and Xi, 2017). Yet, literature 

suggests that degradation happens downstream of and dependent on H3K9me and involves the 

RNA-binding protein Maelstrom (Sienski et al., 2012). 

In somatic cells, a similar mechanism takes place, including many of the above-mentioned 

factors. Differences in the somatic mechanism compared of the gonadal one are the lack of the 

Ping-Pong amplification loop and thus the PTGS pathway. Likely, since sporadic transposon 

translocations are not inherited in somatic cells, there was no need for the evolution of such an 

additional safeguard mechanism. Furthermore, the biogenesis and processing of somatic piRNAs 

is also different. Precursor loci for piRNA show canonical euchromatic features, such as a TSS, 

H3K4 methylation and hence do not involve the RDC complex (Goriaux et al., 2014). 

 

3.4.3. Heterochromatin in mammals 

Besides general heterochromatin at pericentromeric and telomeric repeats, mammalian 

genomes also harbor a large fraction of retroviral insertions, which look repeat-like due to their 
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high copy number (reviewed in Groh and Schotta, 2017). Therefore, mammalian cells evolved 

multiple mechanisms to silence these retrotransposons by constitutive heterochromatin. 

Constitutive heterochromatin in mammals is characterized by H3K9me3; but also H4K20me3, 

special histone variants and DNA methylation contribute to the silencing (reviewed in Saksouk et 

al., 2015). Perhaps due to the increased complexity of mammals, multiple H3K9 

methyltransferases and HP1s are involved in heterochromatin formation in a locus-specific 

manner: 

Pericentromeric heterochromatin and also the inactive X chromosome contain high levels 

of H3K9me3, which are set by the homologues of Clr4, Suv39h1 and Suv39h2 (Peters et al., 

2001). On the other hand, transposon insertions are recognized by DNA sequence-specific KRAB 

zinc finger proteins, which are subsequently bound by Trim28, a key effector in transposon 

silencing. Trim28 then recruits Setdb1, a different H3K9 writer enzyme crucial for transposon 

repression, but with only minor functions on pericentromeric heterochromatin (Schultz et al., 

2002). Common to all aforementioned methyltransferases is the H3K9me-recognizing 

chromodomain, which allows them to spread along the nucleosomes perhaps in conjunction with 

the three HP1 homologues HP1α, β, and γ (Rebollo et al., 2011; Wang et al., 2016b). Current 

research on these three HP1 homologues suggests that HP1α and β are the classic 

heterochromatin proteins, whereas HP1γ rather localizes to euchromatic loci. Nevertheless, all 

HP1 isoforms have been linked to not only shape constitutive heterochromatin, but also to be 

involved in transcriptional control, alternative splicing and DNA damage (reviewed in Kwon and 

Workman, 2011; Ostapcuk et al., unpublished). 

Facultative heterochromatin in mammals requires the PRC1 and PRC2, which are 

responsible for H2AK119 ubiquitination and H3K27 methylation, respectively (see Figure 17). 

These complexes are not present in budding and fission yeast, suggesting that they evolved later. 

PRC2 acts upstream of PRC1 by trimethylation of H3K27, which then provides a binding platform 

for PRC1 leading to H2AK119ub (reviewed in Piunti and Shilatifard, 2016). Recruitment of PRC2 
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to specific sites in chromatin is still unclear in mammals, because they lack the Polycomb-

responsive element that is present in D. melanogaster. Multiple recruiting signals have been 

suggested, such as GC content, CpG islands, ncRNAs or also a feedback mechanism with PRC1 

subunits (Blackledge et al., 2014; Mendenhall et al., 2010; Riising et al., 2014). Upon methylation 

of H3K27 by PRC2 methyltransferase EZH2, the PRC2 subunit EED can bind H3K27me and 

enforces the activity of EZH2, thus creating a positive feedback loop (Margueron et al., 2009). 

H3K27me3 is also recognized by multiple chromobox-containing (CBX) subunits of the PRC1 

complex, which then ubiquitinates H2A via its E3 ligase subunit RING1A/B (Wang et al., 2004). 

A more recent model suggests that PRC1 complex recognizes CpG islands via its non-

canonical subunit KDM2B and recruits PRC2 by H2AK119ub, thereby inverting the order of PRC 

complex binding (Blackledge et al., 2014; Kalb et al., 2014). This convertibility exemplifies another 

positive feedback loop of repressive complexes (see Figure 17). 

Similar to the piRNA pathway in fruit flies, also mammals have a co-transcriptional, small 

RNA-mediated pathway, acting in the germline. In male cells, PIWI proteins MILI, MIWI and MIWI2 

seem to be crucial for proper spermatogenesis and de novo DNA methylation of retrotransposon 

elements (Aravin et al., 2006, 2008; Kuramochi-Miyagawa et al., 2008). In addition to this TGS, 

PIWI proteins also direct PTGS with the involvement of the ping-pong amplification cycle (De 

Fazio et al., 2011).  

Figure 17: PRC-mediated formation 
of facultative heterochromatin in 
mammals. Non-canonical PRC1 
gives specificity due to recognition of 
methylated CpG and provide a 
nucleation site and low H2Aub 
levels. These levels are reinforced 
by combined action of 
PRC2/canonical PRC1, which form a 
positive feedback loop, resulting in 
high levels of H3K27me3 and H2Aub 
and potential spreading (red arrows). 
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4. Aim of this thesis 

As outlined above, euchromatin and heterochromatin have very different characteristics in 

terms of function, transcriptional output, and chromatin accessibility. Research showing that most 

parts of chromatin including heterochromatin can give rise to transcripts evokes the question 

underlining the general aim of my thesis: 

 

How are heterochromatic and euchromatic loci distinguished? 
 

A possible explanation is that chromatin “remembers” in which state it is through the 

establishment of positive feedback loops. Several self-enforcing regulatory circuits that maintain 

heterochromatin have been characterized in the recent years in multiple organisms (see Figures 

12, 14 - 17). However, studying these feedback loops has not enabled us to clearly dissect the 

initiation process. In order to achieve this, I was aiming at using a naïve, non-repetitive chromatin 

context to study specifically the initiation of heterochromatin assembly. Thanks to the involvement 

of RNAi in the initiation process of heterochromatin and the possibility to target RNAi to any 

euchromatic sequence using ectopically expressed siRNAs, the model organism S. pombe 

allowed me to study heterochromatin nucleation, spreading, and its interplay with euchromatic 

marks and machineries. Prior knowledge made me focus on the Mst2 complex. The following 

specific questions I set out to address for my PhD project: 

 

• How is heterochromatin formation initiated and what is the role of transcription? 

• What prevents RNAi-mediated heterochromatin formation in euchromatin? 

• What is the function of the Mst2 complex in this prevention? Where does it localize? 

How does it prevent heterochromatin formation? 
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RESULTS 

1. Paf1C represses ectopic siRNA-mediated heterochromatin 

formation 

The entire article can be found in the appendix section. 

Summary 

Despite crucial functions of RNAi and siRNAs in establishing heterochromatin at 

pericentromeric regions in S. pombe, attempts to induce de novo heterochromatin formation by 

RNAi have been only partially successful. Although some silencing could be achieved, it was very 

inefficient, highly unstable, and dependent on the genomic locus (Iida et al., 2008; Simmer et al., 

2010), suggesting the existence of repressive mechanisms that counteract ectopic 

heterochromatin formation. Hence, our goal was to identify repressing activities in an unbiased 

ethylmethansulfonate (EMS) screen, where synthetic small-hairpin-RNAs (shRNAs) against the 

ade6+ reporter were expressed ectopically. Amazingly, all identified mutations, which allowed 

ade6+ silencing, mapped to the Paf1 complex subunits. Re-introducing these mutations into wild 

type cells confirmed this effect, resulting in H3K9 methylation on ade6+, which was dependent on 

functional RNAi pathway, CLRC and other important silencing factors. Initiation of silencing was 

stochastic, but maintained very efficiently, suggesting the stable propagation of the silent state 

once it is established. Importantly, expression of shRNAs was not further needed upon initiation 

of stable silencing and the silencing propagated stably over multiple generations, but strictly 

depended on mutated Paf1C, showing that this is a true epigenetic phenomenon. Since Paf1C 

has several functions in transcription (but also in cell cycle regulation and other important cellar 

processes), I started to dissect the mechanism of repression and showed that inefficient 

The Paf1 complex represses small-RNA-mediated epigenetic gene silencing 
Kowalik KM*, Shimada Y*, Flury V, Stadler MB, Batki J & Bühler M 

Nature. 2015 Apr; 520, 248-52. * Equal contribution 
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transcription termination seems to provide a kinetic window of opportunity for RNAi to act on the 

nascent transcript. 

My contribution 

In this study, I specifically looked at the mechanism by which Paf1C prevents RNAi-

mediated heterochromatin formation (see Figure 18). Paf1C is a main orchestrator of transcription 

with various effects on transcription (see chapter 2.2.1). Deletion of histone methyltransferases 

set1+ or set2+ did not result in silencing of the ade6+ reporter, suggesting that H3K4 and H3K36 

methylation do not play an essential role in repressing RNAi. However, when I mutated res2+ and 

ctf1+ I could observe many cells that silenced the reporter (Figure 18A). Both proteins have a role 

in RNAPII release after transcription termination, as RNAPII gets stuck on chromatin in their 

absence, but the transcript is still normally processed (Aranda and Proudfoot, 2001). 

Quantification of the silencing revealed that most cells do not stably maintain the silent state of 

the reporter and start to variegate, suggesting that an arrested RNAPII is not solely responsible 

for allowing RNAi to take effect (Figure 18B and C). This is in agreement with a model proposing 

that accumulation of nascent transcripts due to impaired transcription termination and stuck 

polymerases offers an opportunity for RNAi to bind and induce silencing.  

Figure 18: Mechanistic insight into Paf1C-mediated repression of heterochromatin formation. A, B Silencing 
assays showing that ade6+ siRNAs can initiate repression of ade6+ in transcription termination mutants, 
which renders cells growing red. Note the unstable repression in ctf1-70 and res2∆ cells. WT, wild type. C, 
Percentage of naïve cells (white originator) that establish heterochromatin within 20 – 30 mitotic divisions 
(initiation) and stability of ectopic heterochromatin in descendants thereof (maintenance). n: number of 
scored colonies. 
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2. Mst2 protects euchromatin from epigenetic silencing by 

acetylating the HULC subunit Brl1 

The entire unpublished manuscript can be found in the appendix section. 

Summary 

With the identification of Paf1C as a repressor of siRNA-mediated heterochromatin 

formation, it became possible to characterize de novo heterochromatin formation in a non-

repetitive, unbiased background. In a first step, I asked why initiation in a paf1 mutant (paf1*) 

background is still hampered. I could show that the histone acetyltransferase Mst2 is important 

for repressing initiation, but dispensable for maintenance of heterochromatin. Genome-wide Mst2 

localization studies revealed that the Mst2C is excluded from heterochromatic regions, thus 

leaving heterochromatin unperturbed once it is established. Further dissection of the localization 

determinants showed that Mst2C subunit Pdp3 anchors Mst2 in euchromatin by specific 

recognition of Set2-mediated H3K36me3. This links Mst2C to RNAPII-transcription and 

specifically to the gene body. Deletion of pdp3+ or set2+ led to an increased heterochromatin 

initiation efficiency and strongly reduced Mst2C binding to chromatin. Besides its crucial role in 

protecting euchromatic regions from RNAi-mediated heterochromatin formation, we found that 

anchoring of Mst2C to H3K36me3 also protects pericentromeric heterochromatin from the action 

of Mst2C. Deletion of pdp3+ led to a Mst2-dependent loss of silencing at those regions, suggesting 

that promiscuous binding of Mst2 to heterochromatin disrupts silencing. I could recapitulate this 

effect by artificially tethering Mst2 to a heterochromatic reporter. Tethering of active Mst2 led to a 

complete derepression of the reporter upon deletion of pdp3+ or set2+, further corroborating the 

The histone acetyltransferase Mst2 protects active chromatin from epigenetic 
silencing by acetylating the ubiquitin ligase Brl1 
Flury V, Georgescu PR, Iesmantavicius V, Shimada Y, Kuzdere T, Braun S & Bühler M 

Molecular Cell, in revision 
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role of these two factors in anchoring Mst2C to euchromatin, whereas tethering of catalytically 

dead Mst2 had no effect. 

Hence, the activating function of Mst2C depends on its acetyltransferase activity. However, 

acetylation levels of H3K14, the proposed histone substrate of Mst2C, remained unchanged upon 

deletion of mst2+. In order to find other targets of Mst2, I established and performed acetylomics, 

which for the first time identified thousands of acetylation sites in the proteome of S. pombe. 

Deletion of mst2+ changed the abundance of one acetylation site, lysine K242 on Brl1, a E3 ligase 

responsible for H2BK119 ubiquitination. By specifically mutating K242 to R or Q to mimic a 

constantly deacetylated or acetylated residue, respectively, I found that K242R mutants promoted 

initiation, whereas K242Q prevented initiation of heterochromatin, hence phenocopying the 

effects of mst2∆ cells. Addressing the underlying mechanism of this protection, I could show that 

H2BK119ub levels were reduced in K242R and stabilized in K242Q mutants, respectively. These 

changes also lead to altered H3K4me3 levels, a H2Bub-dependent histone modification, which is 

a hallmark of active transcription and thereby closes the cycle to Set2 and H3K36me3. 

In summary, we discovered a novel 

positive feedback loop that functions in 

euchromatin to protect genes from being 

silenced by siRNAs (see Figure 19). This has 

important implications in addressing 

fundamental questions, such as how 

transcriptional memory is achieved, maintained, 

and propagated. Furthermore, our results 

suggest that feedback loops partition 

euchromatin and heterochromatin and to confer 

epigenetic robustness. Because all factors are 

highly conserved, it is likely that similar feedback 

loops are widespread in eukaryotes. 

Figure 19: Schematic visualization of the 
identified euchromatic feedback loop. H3K36me3 
by Set2 recruits Mst2C, which acetylates Brl1, 
leading to higher H2Bub levels. Ubiquitinated H2B 
in turn is a hallmark for active transcription. 
Increased transcriptional activity leads to 
increased Set2 recruitment, which closes the 
feedback loop. 
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Contributions 

This work comprises my main project during my PhD and hence, I was developing and 

performing many experiments. Furthermore, this work has been done in an excellent collaboration 

with Paula Georgescu from the Braun laboratory in Munich. Whereas Paula addressed the 

important question of the functional role of Pdp3 in preventing promiscuous action of Mst2C in 

heterochromatin, I looked at the euchromatic role of Mst2C preventing de novo heterochromatin 

formation. Both of us were involved in dissecting the determinants of Mst2C localization by 

independent, complementary methods, therefore corroborating the results. Furthermore, I 

established and performed acetylomics experiments including the follow-up experiments 

concerning the novel Mst2 substrate Brl1. 



Novel insights into mechanisms partitioning chromatin states 

54 

DISCUSSION 

Given that both hetero- and euchromatic regions give rise to transcripts and are transcribed 

by the same polymerase, how are regions initially distinguished? This question has been 

inherently difficult to address due to heterochromatic feedback loops (see Introduction), which 

impede a clear dissection of events in this process. Hence, it is fundamental to dissect the 

molecular mechanisms that allow de novo heterochromatin formation. In S. pombe, this has been 

achieved by tethering heterochromatic factors to euchromatic reporters (Bühler et al., 2006; 

Buscaino et al., 2013; Gerace et al., 2010; Kagansky et al., 2009). However, testing which 

euchromatic factors counteract initiation of heterochromatin has been neglected for many years, 

but is – in my opinion – equally important to understand the interplay between hetero- and 

euchromatic factors.  

During my PhD, I addressed this important issue and contributed to the identification of 

Paf1C as a repressor of de novo heterochromatin formation (Kowalik et al., 2015). My main 

achievement was the identification of Mst2C as a specific repressor of initiation of 

heterochromatin formation, but not maintenance. This provides first insights into mechanisms that 

protect euchromatin from inactivating signals (Flury et al., in revision). Intriguingly, the mechanism 

I discovered acts via a self-enforcing feedback loop by recruiting Mst2C to transcribed, 

H3K36me3-rich genes, where Mst2C-mediated Brl1 acetylation enhances H2B ubiquitination, a 

hallmark of transcribed genes (see Results). 

In this discussion, I will first provide some more data on how de novo heterochromatin is 

initiated in the absence of Mst2 and draw a model of the molecular functions of Mst2C and Brl1 

in repressing heterochromatin. In a second part, I speculate on the physiological role of the 

identified feedback loop in S. pombe and if such a phenomenon may be conserved to other 

eukaryotes. Finally, as part of a broader conclusion of my PhD work, I will bring in my perspective 

about the relevance of such self-enforcing feedback loops in chromatin organization. 
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Model of de novo heterochromatin formation in S. pombe 

Ectopic heterochromatin formation in mst2∆ cells 

My work identifies a unique role of Mst2C as a global repressor of heterochromatin, as it 

localizes throughout euchromatin, but is excluded from heterochromatin unlike Paf1C (data not 

shown). Importantly, Mst2C is not enriched at heterochromatin boundaries such as Swi6 or Epe1 

(Stunnenberg et al., 2015; Zofall and Grewal, 2006). My work significantly extends previous 

knowledge about Mst2C counteracting spreading of H3K9me2 at boundaries, subtelomeres or 

meiotic genes (Gómez et al., 2005; Wang et al., 2015). 

Intriguingly, the RNAi machinery seems to be genetically linked to Mst2, because lack of 

Mst2 allows simultaneous deletion of RNAi factors while maintaining heterochromatin (Reddy et 

al., 2011). Although the Jia group presented Dcr1-independent ectopic heterochromatin upon 

mst2+ deletion, no one investigated if such heterochromatin is formed also independent from the 

RITS complex (Wang et al., 2015). Even more, my results suggest that the RITS complex subunit 

Tas3 has to be present also in the absence of Mst2 to maintain heterochromatin, allocating an 

essential role of Tas3 in heterochromatin initiation, but also maintenance (see below). With our 

shRNA-based reporter assay, we cannot investigate if Mst2 also prevents RNAi-independent 

heterochromatin formation because we rely on the processing of the hairpin RNA to siRNAs. 

Paradoxically, deletion of mst2+ does not result in stable repression of the ade6+ locus 

despite extensive H3K9 methylation across a large chromatin domain and the generation of 

secondary small RNAs (see Figure 20A-C). This suggests that H3K9 methylation alone does not 

lead to stable (co-)transcriptional silencing, but depends on the presence or absence of other 

factors, which are missing in the mst2∆ background. We are currently conducting an EMS screen 

in a mst2∆ background to identify factors that prevent silencing. Another approach would be to 

overexpress a cDNA library and screen for factors that enforce silencing in mst2∆ cells. However, 

interpretation of these screen results might be difficult, because these factors may not necessarily 

be actively preventing the silencing or rely on co-factors to be functional when overexpressed. 
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Therefore, I postulate that studying the mechanism of de novo H3K9 methylation and 

propagation may reveal how downstream events are coordinated to induce gene silencing and 

ultimately allow a better understanding of how H3K9me2 connects to silencing. On our targeted 

Figure 20: Deletion of mst2+ allows formation of 
heterochromatin without transcriptional repression.  
A, Chromatin immunoprecipitation (ChIP) showing 
the high amounts of H3K9me2 in mst2∆, similar to 
mst2∆paf1* cells. B, siRNA sequencing of mst2∆ cells 
reveals generation of secondary siRNAs C, RNA 
expression analysis shows that in mst2∆, silencing 
does not occur compared to mst2∆paf1*, where 
silencing of H3K9me2 harboring genes is very 
efficient. 
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ade6+ reporter gene H3K9 methylation spreads far more than secondary siRNAs, raising the 

question of whether these siRNAs are a cause or consequence of high H3K9 methylation (see 

Figure 20A and B). 

To gain insight into the causal role of siRNAs in heterochromatin propagation, I investigated 

a different locus, the IRC1R locus. This locus demarcates a heterochromatin boundary without a 

discernable cis-acting DNA element such as a tRNA gene, which makes it ideal to study the 

interplay between eu- and heterochromatic factors (Keller et al., 2013; Noma et al., 2006). 

Intriguingly, IRC1R harbors increased H3K9 methylation in mst2∆ cells, but shows reduced 

siRNAs levels, which points towards a more efficient propagation of H3K9me2 without extensive 

siRNA generation. 

In general, formation and propagation of H3K9me2 can be promoted by four factors, which 

each contain a H3K9me2-recognizing chromodomain: Swi6, Chp2, Clr4, and Chp1. The HP1 

protein Swi6 recognizes H3K9me2 and may propagate H3K9me2 via its ability to oligomerize 

(Canzio et al., 2011). However, Swi6 does barely bind to euchromatin and is evicted from 

chromatin upon binding to RNA (Keller et al., 2012; Woolcock et al., 2011). Furthermore, deletion 

of swi6+ actually increases H3K9 methylation at the IRC1R boundary, pointing towards a rather 

inhibitory function of Swi6 in spreading of heterochromatin into euchromatin, similarly to Mst2 

(Stunnenberg et al., 2015). I tested if spreading in a mst2∆ is epistatic to swi6∆, but observed an 

even higher accumulation of H3K9me2, suggesting that both Swi6 and Mst2 control spreading of 

H3K9me2 independently at the IRC1R boundary (see Figure 21A). Another factor binding 

H3K9me2 is the second HP1 homologue Chp2, but deletion of chp2+ does not change H3K9me2 

at the IRC1R boundary (Stunnenberg et al., 2015). Thus, the HP1 proteins in S. pombe likely do 

not to contribute to spreading of H3K9me2 at heterochromatin boundaries. 

Also the H3K9 methyltransferase Clr4 contains a chromodomain, which recognizes 

H3K9me3 and is required for efficient spreading and propagation of methylated H3K9 

(Ragunathan et al., 2015; Zhang et al., 2008). However, the chromodomain of Clr4 recognizes 

H3K9me2 with rather low affinity and is outcompeted by the far more abundant HP1 protein Swi6, 
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which allows efficient spreading across nucleosomes (Al-Sady et al., 2013). Nevertheless, Clr4 is 

an attractive explanation for the observed ectopic H3K9 methylation. For a more detailed 

mechanistic insight, I propose to test the Clr4 mutant lacking the chromodomain (Clr4∆CD), which 

is unable to read its own mark and hence cannot propagate H3K9me2 (Nakayama et al., 2001; 

Zhang et al., 2008). If Clr4 propagates H3K9me2 spreading in the absence of Mst2, no H3K9me2 

should be present in a Clr4∆CDmst2∆ background, whereas residual H3K9me2 would point 

towards a recurrent recruitment of CLRC independently of its chromodomain, for example by the 

RNAi pathway. Unfortunately, Clr4∆CD mutants show an extensive reduction of H3K9me2, which 

requires high sensitivity H3K9me2 chromatin immunoprecipitation (ChIP) experiments to allow 

functional dissection of the reader and writer functions of Clr4. Another experiment could address 

the dependence of heterochromatin propagation on transcription. CLRC deposits and propagates 

H3K9me2 independent of RNA production (Ragunathan et al., 2015), hence tethering of Clr4 to 

a transcriptionally silent locus should reveal if H3K9me2 starts to spread further upon deletion of 

mst2+, which would point towards an RNA(i)-independent spreading mechanism. 

 

Without the HP1 proteins being responsible to promote H3K9 methylation, one factor 

remains, which can propagate H3K9 methylation: the RITS complex, consisting of Chp1, Tas3 

and Ago1. Importantly, Chp1 has the highest affinity for H3K9me2 of all chromodomain proteins 

and this affinity increases further upon binding to RNA (Ishida et al., 2012; Schalch et al., 2009). 

Unlike Swi6/Chp2, Chp1 has no chromoshadow domain and is unable to oligomerize on its own. 

However, oligomerization is achieved by the C-terminal domain of Tas3 and is essential for 

initiation of heterochromatin (Li et al., 2009b). Supporting the hypothesis of RITS-mediated 

spreading of H3K9me2 in a swi6∆ or mst2∆, H3K9me2 levels are reduced upon mutating Tas3 to 

the oligomerization mutant Tas3* at IRC1R (see Figure 21B and Stunnenberg et al., 2015). 

Additionally, deletion of mst2+ renders the entire RNAi machinery dispensable for heterochromatin 

maintenance with the exception of Tas3, in whose absence heterochromatin levels drop almost 

completely at the centromere (see Figure 21C). This underlines the fundamental role of Tas3 in 
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nucleation and maintenance of RNAi-dependent centromeric heterochromatin, but also in 

nucleation of facultative heterochromatin (Hiriart et al., 2012). 

In summary, these results suggest that in the absence of Mst2, enhanced spreading of RITS 

(and/or Clr4) results in high levels of H3K9 methylation. Due to Chp1’s high affinity to H3K9me2 

and RNA, Swi6/Chp2 could be prevented from nucleosome binding. In this model, I would expect 

only weak silencing despite high H3K9me2, because without Swi6/Chp2 binding neither Cid14 

nor SHREC2 may be recruited to mediate CTGS or TGS, respectively. Consequently, I propose 

Swi6, Chp1/Tas3 ChIP(-seq) experiments to test if RITS binding is increased and/or starts to 

spread upon deletion of mst2+ and if Swi6 binding is decreased in a mst2∆paf1* background. To 

further investigate the silencing role of Swi6/Chp2, I suggest tethering experiments of Swi6 to the 

ade6+ reporter to see if such tethering induces silencing of the transcripts. 

Figure 21: Mechanism of H3K9me2 spreading. A, ChIP showing that the spreading of H3K9me2 at IRC1R 
in mst2∆ is not Swi6-dependent but rather has an additive effect. B, spreading of H3K9me2 in mst2∆ is 
compromised upon mutation of Tas3 to the oligomerization mutant. C, unlike other RNAi components such 
as Dcr1 or Ago1, Tas3 is essential for maintenance of centromeric heterochromatin also in mst2∆ cells. 
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Another explanation could be that RITS itself promotes degradation of the transcript and 

that this action would be compromised in mst2∆ cells. Indeed, Chp1 contains a PIN 

(endonuclease) domain, which is important for subtelomeric silencing (Schalch et al., 2011). 

Although the PIN domain of Chp1 lacks endonucleolytic activity, it could still serve as a platform 

for the exosome complex, similar to Rrp44 (Schneider et al., 2009). In this regard, the RITS 

complex would act in two modes, either propagating H3K9 methylation or orchestrating the 

processing of transcripts into siRNAs. Such a model would comply with the observed reduced 

siRNA levels in mst2∆ cells, but clearly more experiments are necessary to follow up on this 

exciting model. First experiments could involve random mutagenesis of RITS subunits to identify 

separation of function-alleles, which disconnect H3K9 methylation and siRNA biogenesis. 

Investigation of structural changes upon deletion of mst2+ or of post-transcriptional modifications 

on RITS with/without Mst2 could also reveal exciting findings. 

 

In the paragraph above, I propose that in the absence of Mst2 the RITS complex starts to 

spread across chromatin and propagates H3K9 methylation, but only weak silencing. In this case, 

how is RITS-mediated propagation of H3K9me2 stopped? Notably, Chp1 and Clr4 cannot bind to 

H3K9me2 peptides with concomitant acetylated H3K4, which leads to an inhibition of Chp1/Clr4-

mediated H3K9 methylation (Xhemalce and Kouzarides, 2010). I speculate that H3K14 

acetylation might have a similar function, because H3K4 and H3K14 each reside five residues 

next to H3K9 and chromodomain proteins may bind in two “mirrored” orientations. We observe 

this for the HP1 protein Rhino in D. melanogaster, as its chromodomain recognizes H3K9me2 in 

combination with H3K4Ac, but also H3K14Ac (Fabio Mohn, unpublished). Furthermore, recent 

results from our group identified the H3K4 KAT Mst1 to enhance the phenotype in mst2∆ cells, 

corroborating the inhibitory role of H3K4 and H3K14 acetylation in spreading of H3K9me2 (Yukiko 

Shimada, unpublished). In this case, acetylated histones on the ade6+-neighboring genes would 

impair spreading of H3K9 methylation in paf1*mst2+ cells, which is consistent with what we 

observe. 
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Fine-tuning of HULC impairs de novo heterochromatin formation 

Whereas the H3K14 acetylation model discussed above fits with the observed spreading of 

H3K9 methylation, reduced siRNA production, and weak transcriptional repression upon deletion 

of mst2+, it is still not sufficient to explain the efficient initiation of silencing in mst2∆ cells. This is 

because Mst2C rather localizes to the body or 3’-end of genes, where only low levels of H3K14ac 

exist. Further supporting a function beyond H3K14 acetylation are also studies that report 

unchanged H3K14ac levels in mst2∆ due to the redundant acetylation by the other H3K14 KAT, 

Gcn5 (Hirota et al., 2007; Nugent et al., 2010; Wang et al., 2012). 

Indeed, no ectopic H3K9 methylation was observed in gnc5∆ cells and initiation of silencing 

in a gcn5∆paf1* is similar to a paf1* single mutant. However, once established, spreading of 

H3K9me2 downstream of the nucleation site could be observed (Valentin Flury, unpublished). 

These phenotypes place Gcn5 in between the phenotype of paf1* and paf1*mst2∆ mutants and 

may look inconsistent. However, another major function of Gcn5-containing SAGA is 

deubiquitination of H2B, which is lost upon deletion of gcn5+ and results in higher H2B 

ubiquitination levels (Vlaming et al., 2016, data not shown). Increased H2Bub levels may prevent 

efficient nucleation of heterochromatin, whereas reduced acetylation of histones may facilitate 

spreading, partially explaining the reduced initiation frequency of paf1*gcn5∆ cells. This could be 

tested by specifically mutating the active site of Gcn5 (Gcn5-E191Q; Wang et al., 1998), thus 

creating an intact complex without acetyltransferase activity, or vice versa by deleting the SAGA 

deubiquitinase Ubp8, which does not affect the activity of Gcn5. 

 

Because of this intriguing connection of H2B deubiquitination and increased silencing, I 

would like to postulate a second, alternative model, which involves Brl1, another Mst2 substrate 

identified in this thesis, and H2B, the so far only identified substrate of Brl1. My results 

demonstrate that Mst2-mediated acetylation of Brl1 stimulates H2B ubiquitination. Furthermore, 

the Mst2C anchor H3K36me3 overlaps remarkably well with the indirect Mst2C target H2Bub 
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across the gene body, which supports a potential crosstalk. Intriguingly, H2Bub has been linked 

multiple times to the protection of genes from silencing in S. pombe: 1) Deletion of HULC subunits 

strengthens silencing, whereas overexpression of HULC subunits leads to a loss of silencing of a 

heterochromatic reporter (Zofall and Grewal, 2007). 2) All Paf1C mutants that allow silencing in 

trans by RNAi show reduced H2Bub levels (Kowalik et al., 2015; Mbogning et al., 2013). 3) 

H2BK119R mutants show increased H3K9me2 at the central core of the centromere, which 

usually lacks repressive signals and contains the histone variant Cnp1 instead of histone H3 

(Sadeghi et al., 2014). Notably, also total H3 levels were increased, suggesting that H2Bub is 

important for depletion of H3 histones from the central core to protect it from ectopic H3K9 

methylation. 

 

Paradoxically, both deletion of Brl1 or mutation of H2BK119 prevent silencing (data not 

shown). This may be explained due to the additional functions of H2Bub in promoter repression 

and in the DNA damage response (Batta et al., 2011; Giannattasio et al., 2005), which may 

prevent or mask silencing. Hence, fine-tuning of HULC activity and localization may be important 

to prevent silencing and may be directly regulated by Paf1C and Mst2C, which stimulate HULC 

localization and activity in the gene body, respectively (see Results, Van Oss et al., 2016). In this 

case, solely reduced H2Bub levels within the gene body may allow silencing. Amongst the Paf1C 

subunits, only the leo1∆ null mutant maintains reduced H2Bub levels, whereas all other subunits 

show strongly reduced (paf1∆) or absent H2B ubiquitination (Mbogning et al., 2013). Similarly, 

only leo1∆ cells allow silencing, whereas all other Paf1C null mutants do not silence anymore 

(Kowalik et al., 2015). To support this model, it would be exciting to investigate H2Bub and its 

distribution across the gene in leo1Δ and paf1∆ cells.  

Hence, I postulate a model, where H2B ubiquitination in the gene body prevents nucleation 

of heterochromatin and that the ratio of H2B ubiquitination levels between the TSS and the gene 

body dictates the elongation (and potentially termination) efficiency, thus preventing RITS binding 

to the nascent transcript (see model in Figure 22). 
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Although H2B ubiquitination is the only identified substrate of HULC so far, acetylated Brl1 

could also ubiquitinate a different substrate or even have an ubiquitin-independent function to 

counteract nucleation of heterochromatin. In this way, ubiquitinomics (i.e. the identification of all 

ubiquitinated lysines in the proteome) would be an unbiased way to identify endogenous Brl1 

targets and to assess a potential alteration of Brl1 specificity depending on its acetylation state. 

Indeed, Bre1p (the Brl1 homologue in S. cerevisiae) was shown to ubiquitinate the 

Set1/COMPASS component Swd2p, which is needed for H3K4 trimethylation (Vitaliano-Prunier 

et al., 2008). Sequence alignments show that the two ubiquitinated lysines of Swd2p (K68 & 69) 

are conserved between S. cerevisiae, S. pombe, and human (data not shown). Therefore, it would 

be interesting to confirm potential ubiquitination of those residues by ubiquitinomics and to 

perform follow-up experiments investigating K68/9R mutants, which should mimic a non-

ubiquitinated form of Swd2. 

Excitingly, the budding yeast protein Swd2p is also involved in transcription termination and 

lack of H2B ubiquitination leads to mRNA export defects and increased RNAPII pausing at 

transcription termination sites (Harlen and Churchman, 2017; Vitaliano-Prunier et al., 2012). 

Hence, its potential homologue in S. pombe would be interesting to examine for a potential role 

in transcription termination. 

 

It still remains to be determined, which enzyme removes the acetylation mark on Brl1. 

Acetylomics experiments of different KDAC mutants (e.g. Clr3 and Sir2) may reveal if they 

deacetylate Brl1. Intriguingly, a suppressor mutation in a paf1* strain maps to Mit1, a subunit of 

SHREC, which also contains Clr3, a major KDAC (data not shown). This mutant shows increased 

H2Bub levels and does not silence anymore, thereby indirectly phenocopying a Brl1-K242Q 

mutant. In addition, Clr3 also acts in euchromatin (Paula Georgescu, unpublished) implying the 

possibility that SHREC directly regulates the euchromatic feedback loop by modulating histone 

and Brl1-K242 acetylation levels. Clearly, further experiments, such as acetylomics and 

measuring H2B ubiquitin levels in KDAC mutants are needed to strengthen this hypothesis. 
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Transcription termination and heterochromatin nucleation 

In the previous paragraphs, I elaborated how Mst2C and Paf1C modulate the chromatin 

context to prevent ectopic heterochromatin formation, presumably through H2B ubiquitination and 

H3K14 acetylation. However, the role of transcription itself is crucial in determining the fate of the 

transcript. Whereas the above-mentioned chromatin marks may impede the binding to or 

propagation of H3K9me2, the initial step of RNAi-directed heterochromatin formation is still 

dependent on a window of opportunity for the RITS complex to bind to the nascent transcript 

(Shimada et al., 2016). 

 

Numerous findings hint towards a model where efficient transcription termination is crucial 

for preventing heterochromatin formation. Analysis of facultative heterochromatin islands in  

S. pombe on meiotic genes revealed that H3K9me2 levels peak at the 3’-end of genes, a 

Figure 22: Speculative model for euchromatic repression of de novo heterochromatin formation. Multiple 
transcription-coupled chromatin marks prevent binding of the RITS complex to the nascent transcript. Both 
Paf1C and Mst2C promote HULC occupancy/activity in the body and the 3’-UTR of the transcribed gene 
leading to high H2B ubiquitination. This enhances elongation and termination efficiency, thus preventing 
RITS complex binding on a kinetic level, but also sterically. Furthermore, acetylation of H3K4/14 may also 
impair spreading of the RITS complex and CLRC, representing a second layer of repression. Since also 
Swi6 cannot bind to transcribed regions due to RNA-mediated eviction, all H3K9me2-recognizing and 
stabilizing proteins are prevented from binding to euchromatic loci, unless specifically recruited. 
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phenotype which is recapitulated on the ade6+ reporter (Zofall et al., 2012, see Manuscript). 

Furthermore, cis-acting signals on euchromatic transcripts, presumably 3’-end processing signals 

or polyadenylation sites prevent action of the RNAi pathway (Yu et al., 2014). Vice versa, 

heterochromatic transcripts were shown to undergo inefficient transcription termination and 

termination sites coincide with high siRNA levels (Zaratiegui et al., 2011). This is corroborated by 

findings from our group, which propose the inefficient transcription termination in Paf1 mutants to 

provide a binding opportunity for the RITS complex (Kowalik et al., 2015). Also trans-acting factors 

were identified such as the 5’ - 3’ exonuclease Dhp1, which can induce premature transcription 

termination to nucleate heterochromatin (Chalamcharla et al., 2015; Tucker et al., 2016). Although 

those studies used temperature-sensitive (ts) alleles of the essential Dhp1 protein, the link of 

transcription termination to de novo heterochromatin formation is exciting. 

 

Transcription termination has been studied extensively and the cis-acting signals on the 

nascent transcripts and the trans-acting factors involved in transcript processing, such as the CPF 

complex, are well-studied (see Introduction). However, if and how the chromatin context regulates 

transcription termination is largely unclear. Nevertheless, two major histone PTMs, H3K36me3 

and H2Bub, are present at the end of the gene body and 3’-UTR, thus evoking the exciting 

possibility that these two modifications modulate transcription termination and prevent RITS 

complex or CLRC assembly on chromatin (see Figure 22). Experiments addressing the RNAPII 

occupancy at transcription termination sites, such as RNAPII ChIP or Native elongating transcript-

sequencing (NET-Seq), in HULC, Set2, or Mst2 mutants may reveal novel functions of H2Bub 

and/or H3K36me3 in directing transcription termination. 

 

How could these histone modifications prevent binding of the RITS complex? Similar to  

S. cerevisiae, binding of repressing complexes might be prevented by steric interference. 

Especially the ubiquitin moiety is almost as big as a histone protein itself and thereby may 

profoundly affect nucleosome accessibility. The nucleosome contains an acidic patch, which 
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contains parts of H2A and H2B. This region is gaining more and more attention as it becomes 

evident that histone readers not only recognize their respective mark on the histone tail, but also 

contact the nucleosome via the acidic patch (McGinty et al., 2014). Hence, an intriguing model 

could be that the bulkiness of the ubiquitin moiety sterically blocks the access of chromatin binders 

to the acidic patch. Amongst the precluded factors would be Chp1, which was recently shown to 

contact the acidic patch with its chromodomain (Zocco et al., 2016). Also HULC contacts the 

acidic patch in order to ubiquitinate H2B, and is thus guided to non-ubiquitinated nucleosomes 

(Cucinotta et al., 2015). This suggests a competition between HULC and Chp1 to bind the 

nucleosome, therefore (genome-wide) Chp1 ChIP experiments in HULC or H2BK119R mutants 

could address this question. In such mutants, Chp1 binding should be increased and potential 

low levels of H3K9me2 may be expected. 

 

According to the model above, deubiquitination of H2Bub would be a prerequisite for de 

novo heterochromatin formation. Indeed, the subunit Sgf73 of the SAGA deubiquitination module 

was shown to interact with RITS and to assist in maintenance of centromeric silencing. Hence, I 

speculate that the RITS-DUB interaction may deubiquitinate H2Bub to allow efficient binding of 

RITS (Deng et al., 2015). Therefore, I would test sgf73∆ cells for their ability to initiate 

heterochromatin formation. Because all other SAGA DUB module subunits, including Ubp8, did 

not show any perturbations in heterochromatin, Sgf73 may recruit a different deubiquitinase or 

function via a completely different mechanism. Indeed, the Sgf73 homologue in D. melanogaster, 

Ataxin-7, modulates H2Bub differently than the other SAGA subunits (Mohan et al., 2014). In 

budding yeast, Sgf73p is involved in telomeric silencing via a direct interaction with the KDAC 

Sir2, however with context-dependent effects (McCormick et al., 2014). Furthermore, Sgf73p and 

Ubp8p form a SAGA-independent DUB module, which can deubiquitinate H2Bub outside of the 

SAGA complex and has been linked to promote mRNA export (Lim et al., 2013). Therefore it 

seems plausible that deubiquitination in S. pombe is also a prerequisite for heterochromatin 

formation, but might be orchestrated by multiple deubiquitinases. 
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It should be noted that besides HULC, multiple ubiquitin ligases and proteases were 

reported to affect heterochromatin stability in S. pombe. Amongst them are ubiquitin conjugating 

E2 enzymes such as Ubc15, Ubc3, and HULC subunit Rhp6; E3 ubiquitin ligases such as Brl1 

and Msc1; and ubiquitin proteases such as Ubp3 (Choi et al., 2002; Lawrence and Volpe, 2009; 

Nielsen et al., 2002; Reyes-Turcu et al., 2011; Zofall and Grewal, 2007). Furthermore, Rhp6 

ubiquitinates histone-like protein Obr1, which is crucial in mating-type region silencing and loss 

of silencing can be propagated even in the absence of Obr1 (Naresh et al., 2003).  

Also CLRC is a CRL-type E3 ubiquitin ligase, whose activity is important for heterochromatin 

assembly (Hong et al., 2005; Jia et al., 2005). Notably, a purified CLRC complex can 

polyubiquitinate H2B in vitro, providing a potential mechanism to displace (monoubiquitinated?) 

H2B in heterochromatin (Horn et al., 2005). However, other groups did not report such activity 

(Buscaino et al., 2012; Jia et al., 2005). Also non-histone substrates could be targeted by the 

CLRC complex for polyubiquitination, as it was shown for a different CRL-type E3 ligase, the Cul4-

Ddb1Ctd2 complex, which polyubiquitinates Epe1 in heterochromatin (Braun et al., 2011).  

 

In summary, despite the important functions of ubiquitin in chromatin regulation, they are 

still barely understood on a molecular level. Therefore, I propose to use ubiquitinomics to dissect 

the roles of CLRC with a special focus on Raf1 due to its role as possible substrate receptor 

(Kuscu et al., 2014). Additionally, ubiquitinomics for other ubiquitination-related factors affecting 

heterochromatin structures may be an elegant first experimental step to get novel insights into 

ubiquitin-mediated chromatin regulation.  
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Physiological role of hetero- and euchromatic feedback loops 

Unicellular organisms have the remarkable ability to adapt to changes in environmental 

conditions. Because S. pombe has a functional RNAi pathway, it is an excellent model organism 

to study potential siRNA-mediated adaptation to environmental changes (see Figure 23). For 

example, RNAi has been linked to adaption under heat shock conditions: Under normal 

temperatures, RNAi represses stress genes in a Dcr1-dependent manner (Woolcock et al., 2012). 

Upon heat shock however, Dcr1 is exported and aggregates in the cytoplasm, which leads to a 

derepression of these stress genes. At the same time, Heat shock protein 104 disaggregates 

Dcr1 in the cytoplasm, which leads to its reimport into the nucleus and to the repression of the 

stress genes, but also of the Hsp104 locus (Oberti et al., 2015). This constitutes a negative 

feedback loop, which buffers environmental changes by reducing the influence of RNAi-related 

gene expression changes. 

Evolution of such a sophisticated feedback loop suggests a modulatory function of RNAi in 

adaptation to environmental changes. This is further supported by unpublished data from our 

group, which shows that the RNAi pathway is involved in directing survival under high cobalt 

chloride conditions (see Figure 23). Intriguingly, a deletion library screen found mst2∆ cells to 

survive better under high cobalt chloride conditions (Ryuko et al., 2012). The same study also 

identified ubiquitin donor gene Ubi3 and the potentially ubiquitinated Set1/COMPASS subunit 

Swd2, implying that an imperfect euchromatic feedback loop could lead to faster adaption to 

stress conditions due to changed plasticity. Mst2 itself may be directly regulated environmentally, 

since a former PhD student in our group identified a shortened protein isoform of mst2+ under 

heat shock conditions (Kasia Kowalik, unpublished). This phenotype lets us speculate that RNAi 

and Mst2C represent major players in regulating epigenetic plasticity, especially during elevated 

temperatures. 

Intriguingly, Pdp3 is acetylated and phosphorylated on multiple residues, suggesting 

extensive regulation of the Mst2 complex anchor (Kettenbach et al., 2015). Furthermore in a 
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global localization study in S. cerevisiae, Pdp3p was found to localize to the cytoplasm upon 

hypoxia (Dastidar et al., 2012), which could imply that without Pdp3p, NuA3b may localize to silent 

regions such as subtelomeres and activate subtelomeric genes. This is what we observe for 

Mst2C in pdp3∆ in S. pombe and since the subtelomeric genes are regulated in a nutrient-

dependent manner (Mata et al., 2002), I propose that alteration of Pdp3 localization upon hypoxia 

or altered Mst2 interactions upon heat shock may lead to a metabolic shift to directly respond to 

environmental cues. Indeed, overexpression of S. cerevisiae Pdp3p or its human homologue, the 

oncogene NSD3s, leads to a metabolic shift from respiration to fermentation, a characteristic of 

cancer cells (Rona et al., 2016). This switch is dependent on Sas3p, implying a relevant function 

of Sas3p in metabolic control. In S. pombe, overexpression of Pdp3 has been annotated to be 

lethal, but has not been tested in more detail (Arita et al., 2011). 

 

Not only stress conditions induce gene expression changes, but also the developmental 

switch between mitotic and meiotic (sexual) reproduction. Nitrogen starvation is one of the major 

signals that promote sexual reproduction in S. pombe. Upon removal of all nitrogen sources, yeast 

cells stop in cell cycle phase G1 and express pheromones in order to conjugate with a yeast cell 

Figure 23: Interplay between Mst2C, HULC and RNAi machinery and their physiological roles. Tfg3 and 
Eaf6 are annotated to be present in multiple complexes, which may affect Mst2 specificity and activity. Ptf1 
has an annotated phosphatase domain, which could counteract the phosphorylation of Pdp3 and affect 
chromatin binding. Pdp3 is also acetylated which also may alter its function. HULC also has additional 
acetylation sites, which may be regulated by other KATs. Red color depicts newly discovered genetic 
interactions in this thesis and indicates future directions of research. See text for further information. 
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of the opposite mating type (reviewed in van Werven and Amon, 2011). In case of no mating 

partners, cells arrest in G1 (also called G0). Despite low transcriptional activity, nitrogen-starved 

G1 cells show very high levels of H3K36me3, which seems contradictory (Pai et al., 2014). One 

explanation for this discrepancy is that either H3K36me3 solely recruits Clr6C to induce 

transcriptional silencing, whereas Mst2C is precluded from H3K36me3 binding or that Mst2C 

binds these genes, but they are not (yet) transcribed. The latter hypothesis could attribute a 

poising function to Mst2C in priming cells to undergo meiosis upon conjugation. Indeed, in  

S. cerevisiae such a switch from a KDAC to a KAT system was proposed to shift nitrogen-starved 

cells from asexual to sexual reproduction (Pnueli et al., 2004). In this way, increased H2B 

ubiquitination due to Mst2-mediated acetylation of Brl1 may mark these genes for immediate (or 

efficient) transcription upon meiotic entry. Hence, it would be interesting to further investigate the 

role of Mst2C in this switch, potentially also looking at Brl1 and H2B ubiquitination. In addition, 

RNAi seems to play an essential role for cell survival upon prolonged starvation, which is 

proposed to work via ectopic heterochromatin formation (Joh et al., 2016; Roche et al., 2016). 

Altogether, this underlines the importance RNAi and Mst2C in regulating epigenetic plasticity to 

environmental cues. 

 

In meiosis, mst2∆ cells suffer from abnormal ascospore formation and chromosome 

missegregation (Gómez et al., 2005). Furthermore, paf1* single mutants initiate the ectopic 

silencing of the ade6+ reporter very efficiently during meiosis, indicating a more potent RNAi 

pathway (Kowalik et al., 2015), whereas paf1*mst2∆ hardly survive meiosis (data not shown). 

This suggests that RNAi becomes more powerful during meiosis and hence, investigation of RNAi 

during meiosis may reveal novel, interesting insights. Intriguingly, meiotic genes are repressed in 

a RITS-dependent manner and Chp1 is released (or ejected) from chromatin very quickly upon 

nitrogen starvation (Hiriart et al., 2012). In addition, recent studies show that concomitant deletion 

of RNAi and Dhp1 leads to haploid meiosis and dhp1-1 mutants mimic the mst2∆ phenotype in 
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ascospore formation, suggesting that RNAi, CTGS and Mst2 are linked in fine-tuning meiotic entry 

in G1-arrested cells (Chalamcharla et al., 2015; Tucker et al., 2016). 

These indications motivated me to investigate meiosis more closely and I already 

established protocols to do so. However, biochemical analysis of meiotic events is hampered by 

the asynchronous entry of a cell population from G1 into the premeiotic S phase. This problem 

has been solved in previous years by using a temperature-sensitive mutant of Pat1, the main 

inhibitory kinase of meiotic entry (Iino and Yamamoto, 1985). New advances significantly 

improved this technique by specifically mutating the ATP-binding pocket of Pat1, which renders it 

sensitive to bulky ATP analogues such as 1- NM-PP1 (Cipak et al., 2012, 2014). Addition of this 

small molecule specifically inhibits the Pat1-as2 mutant, guaranteeing a synchronous entry into 

meiosis without the need of increased temperature and no effect on other kinases (see Figure 

24). Therefore, in collaboration with an undergraduate student I established this protocol, which 

is enabling us to investigate epigenetic 

process during meiosis by biochemical 

and genetic approaches. Next, we will 

investigate the roles of Mst2C, Paf1C, 

and histone marks during meiosis to 

elucidate the importance of epigenetic 

plasticity during sexual differentiation. 

These experiments will enable 

us for the first time to dissect the 

meiotic function of heterochromatin 

formation and prevention and could 

have a major impact for understanding 

germline-induced phenotypes and 

diseases in human cells.  

Figure 24: Synchronous meiosis using the 1-NM-PP1 
sensitive pat1-as2 strain. Cycling diploid cells (blue) usually 
harbor four copies of the genome, which can be quantified 
using FACS. Starved cells (red) reside in G1 phase with only 
two copies. Addition of the Pat1-as2 inhibitor 1-NM-PP1 
leads to a synchronous entry (<1 h difference) into premeiotic 
S phase, where again four copies are present after 
replication (green). This synchrony makes it possible to 
sample the entire meiotic process (~8 h) in 15 min intervals 
and analyze global properties on siRNA, RNA and protein 
level. Figure adapted from the Master thesis of T. Kuzdere. 
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Conservation to other organisms 

Role of H3K36me3 and H2Bub in preventing silencing 

It is firmly established that acetylation counteracts nucleation and spreading of 

heterochromatin, by directly changing biochemical properties of nucleosomes, but also by 

providing binding platforms for activating proteins or preventing binding of repressive complexes 

(see Introduction). However, a direct crosstalk between H2Bub and H3K36me3 has not been 

reported so far, although both euchromatic marks counteract heterochromatin in all here 

discussed organisms. Notably, although both marks counteract heterochromatin formation, there 

is no evidence for specific action of H3K36me3/H2Bub in counteracting RNAi pathways in other 

organisms, such as the piRNA pathway in animals or siRNA-dependent DNA methylation in  

A. thaliana. Also in S. pombe, wherein RNAi-independent heterochromatin formation in the 

absence of Mst2 has been reported (Wang et al., 2015), H3K36me3/H2Bub counteract 

heterochromatin independently of RNAi. However, this could not be addressed in my experiments 

due to the dependence of de novo heterochromatin formation on siRNAs targeting the ade6+-

reporter gene. Furthermore, mechanisms of initiation of heterochromatin formation and its 

repression by euchromatic factors have not been addressed in many organisms because it is 

inherently difficult due to powerful feedback loops, which impair a clear dissection of events. 

 

In S. cerevisiae, H3K36me3 is sufficient to impair spreading of Sir2/3/4 independently of the 

KDAC Rpd3S, which suggests an additional role of H3K36me3 (Tompa and Madhani, 2007). Also 

H2Bub counteracts spreading of Sir2/3/4 in S. cerevisiae indirectly by promoting H3K79 

methylation (Behrouzi et al., 2016). This mark impedes binding of Sir3p to nucleosomes and 

concomitant acetylation of H4K16 completely abrogates Sir3p binding. Furthermore, active 

deubiquitination is necessary to promote efficient spreading, attributing an essential role for low 

H2Bub in repressed regions (Sun and Allis, 2002). Indeed, Sir4p interacts with deubiquitinase 

Ubp10p and ubp10 mutants show compromised silencing (Gardner et al., 2005). Ubp10p has 
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been further implicated to also deubiquitinate H2Bub in the gene body of long genes together with 

Ubp8p, which primarily deubiquitinates H2B at the start of the gene (Schulze et al., 2011). It could 

well be that the homologues of Ubp8/10p, Ubp8/16 also act redundantly in S. pombe. Such 

redundant functions would also partially explain why it is still unclear if deubiquitination of H2B is 

a prerequisite for heterochromatin assembly. Thus, I would test both genes as single/double 

deletions for their potential role in promoting heterochromatin formation. 

Due to the euchromatin-preserving functions of H3K36me3 and H2Bub, a potential 

conservation of the identified euchromatic feedback loop seems possible. Although the identified 

acetylation site K242 in Brl1 is not conserved to Bre1p in S. cerevisiae, other acetylated residues 

in close proximity have been identified (K191, K194, K231), but not tested for biological relevance 

(Downey et al., 2015). Yet, other acetylomics studies did not identify these residues, maybe due 

to low abundance or technical differences (Henriksen et al., 2012; Weinert et al., 2014).  

Notably, all investigated acetylomics studies in S. cerevisiae identified an acetylated lysine 

residue on Sgf73 (K33) with increased acetylation upon deletion of KDAC Rpd3p (Henriksen et 

al., 2012). The acetylated residue lies within the interaction motif of Sgf73p with Ubp8p (Köhler et 

al., 2010), suggesting that acetylation of K33 may impair association of Sgf73p with Ubp8p and 

thus reduce H2B deubiquitination. Such action would imply a potential divergence of the 

acetylation specificity of NuA3b, which targets the deubiquitination instead of the ubiquitination 

process. Although the responsible KAT remains to be identified (potentially NuA3b), such unusual 

divergent conservation would assign an important role of KAT/KDACs in the regulation of H2Bub 

levels. It would be therefore interesting to investigate the homologue of Rpd3p, Clr6 (or its non-

essential subunit Alp13) in the search of the KDAC, which deacetylates Brl1. 

 

In A. thaliana, deubiquitination of H2B by UBP26 is essential to allow spreading of H3K9me2 

and DNA methylation (Sridhar et al., 2007) and H3K36me3 inhibits facultative heterochromatin 

formation via H3K27me3 on FLC (Yang et al., 2014). Ubiquitination of H2B and H3K36me3 both 

are important to fully activate FLC expression and hence delay flowering (Cao et al., 2008; Gu et 
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al., 2009; Zhao et al., 2005). Notably, the H3K36me3-reader proteins MRG1/2 both bind to 

H3K36me3 and are also required for full activation of FLC (Xu et al., 2014). This activation likely 

occurs via recruitment of the KATs HAM1/2, which acetylate H4K5, thus mimicking the mode of 

recruitment of Mst2 in S. pombe. Yet, also H3K4me3 levels change in MRG1/2 mutants, thus 

precluding a clear distinction between H4K5ac being a cause or a consequence of FLC activation. 

Hence, acetylomics of KAT mutants, especially HAM1/2 may reveal novel substrates. 

Also deubiquitination of H2B seems to be important to regulate flowering time, as deletion 

of UBP26 also leads to early flowering, similarly to the phenotypes of the H2B ubiquitination 

machinery mutants (Schmitz et al., 2009). This finding implies that the turnover of ubiquitination 

on H2B could be important to activate gene expression. Yet, limited direct evidence such as ChIP 

experiments are available because most studies focused on genetic interactions, which do not 

allow a functional dissection of events. 

 

In D. melanogaster, the Ubp10p homologue Scrawny also deubiquitinates H2Bub and is 

required for gene silencing and stem cell maintenance, whereas UBP7 deubiquitinates H2Bub for 

efficient PRC2-mediated facultative heterochromatin formation (Buszczak et al., 2009; Van Der 

Knaap et al., 2005). Conversely, the SAGA deubiquitinase non-stop and the DUB subunit SGF11 

impair heterochromatin spreading, which suggests that the DUB module of SAGA rather prevents 

heterochromatin formation (Zhao et al., 2008). Another subunit of the DUB module, Ataxin-7 (the 

homologue of the previously introduced Sgf73 protein in yeast) plays a different role: Unlike in 

yeast, deletion of Ataxin-7 does not render the DUB module inactive, but rather hyperactive and 

reduces H2B ubiquitination levels (Mohan et al., 2014). It would be interesting to test if Sgf73 in 

S. pombe rather acts as its homologue in budding yeast or if its function is similar to metazoan 

Ataxin-7. 

Also H3K36me3 has been linked to repressing PRC2 activity and hence facultative 

heterochromatin formation (Schmitges et al., 2011). Furthermore, full transcriptional activation of 

the single X chromosome in male flies, also known as dosage compensation, partially relies on 
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H3K36me3 (Bell et al., 2008). H3K36me3 recruits the male-specific lethal (MSL) complex with the 

KAT MOF via the potential H3K36me3-reader MSL3 to these regions, which leads to 

hyperacetylation of H4K16 and thus resembles recruitment of Mst2C in S. pombe and HAM1/2 in 

A. thaliana. Intriguingly, H4K16ac levels only correlate with H3K36me3 on the X chromosome, 

whereas they anticorrelate on autosomes. Such inconsistence could be explained by additional 

substrates of MOF, which are chromatin-context dependent. Furthermore, in vitro data suggests 

that MOF directly acetylates MSL3 to regulate spreading of the complex (Buscaino et al., 2003). 

Hence, acetylomics experiments may confirm or reveal additional substrates of MOF. 

In summary, H3K36me3 and H2B ubiquitination protect genes from silencing and are 

required for full transcriptional activity in plants and flies. However, a direct link between these 

two marks is missing and only limited literature is available about regulation of both marks 

(especially H2B ubiquitination). Although acetylome studies have been performed, their coverage 

is limited and only identified a few hundred acetylation sites (Finkemeier et al., 2011; Weinert et 

al., 2011). 

 

 

In mammals, H2Bub was shown to prevent heterochromatin spreading, such as at the 

human β-globin locus, where H2B ubiquitination demarcates a protective boundary (Ma et al., 

2011). Furthermore, similar to S. pombe, H2Bub is important for centromere integrity, especially 

at the central core (Sadeghi et al., 2014). However, there is only limited data available about H2B 

ubiquitination preventing heterochromatin. As observed in D. melanogaster, H3K36me3 prevents 

PRC2 activity also in mammals (Lu et al., 2016; Yuan et al., 2011). Furthermore, H3K36me3 is 

recognized by the de novo DNA methyltransferases Dnmt3A and B1, which methylate DNA in the 

gene bodies and suppress cryptic transcription initiation events (Baubec et al., 2015; Neri et al., 

2017). DNA methylation is quite persistent and can be propagated through cell division, serving 

potentially as a memory function. It could well be that also metazoans acquired some sort of 

transcriptional memory involving DNA methylation, thereby using a similar model to S. pombe. 
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Conserved to D. melanogaster, the MSL complex with its KAT MOF (KAT8 in mammals) is 

important for H4K16 acetylation (Dou et al., 2005). Fascinatingly, the human MSL complex 

contains the E3 ligase MSL2, which ubiquitinates H2BK34 and promotes H3K4 and H3K79 

methylation (Wu et al., 2011). The authors propose a dual function of the MSL complex to activate 

gene expression both by acetylation of H4K16, but also by ubiquitination of H2BK34, thus strongly 

resembling the function of Mst2C in S. pombe. 

Notably, the lysine K242 of Brl1 is conserved to the human homologue Bre1A but not to 

Bre1B, despite similar conservation in general, which is quite low with 14 % (data not shown). 

However, acetylome analysis did not reveal this specific residue or residues in close proximity to 

be acetylated (Svinkina et al., 2015). In general, in order to understand the role of acetylated 

lysines in the N-terminal part of Brl1 or its homologues, structural information might be crucial. 

Because this region is predicted in silico to be quite stable due to many coiled-coil motifs (data 

not shown), crystallization attempts might be successful and provide useful insights in how 

acetylation of Brl1 may affect its structure, interactions and activity. 

 

On a physiological level, low levels of H2Bub are required to maintain stem cell identity in 

mammals and fruit flies, which is catalyzed by the activity of deubiquitinases, such as USP44 

(Fuchs et al., 2012a). During differentiation, USP44 expression is reduced to increase H2Bub 

levels and induce optimal gene activation, especially for long genes. Along these lines, H2Bub 

peaks during differentiation, but is again strongly reduced in terminally differentiated cells such 

as myotubes (Karpiuk et al., 2012; Vethantham et al., 2012). Similarly, H3K36me3 promotes cell 

differentiation and exists at low levels in mouse embryonic stem cells (Zhang et al., 2014). 

As a final point, H3K36me3 and H2Bub are also both deregulated in cancer. For example 

Setd2, a human homologue of Set2, is mutated in multiple cancer forms and many different cancer 

types are associated with a complete loss of H2B ubiquitination (Cole et al., 2015; Dalgliesh et 

al., 2010; Fontebasso et al., 2013; Hahn et al., 2012). Interestingly, a mutation of the H3K36 

residue itself (H3K36M) has a dominant-negative effect on H3K36 methylation by sequestering 
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the responsible methyltransferases and might be causal for sarcomas (Lu et al., 2016). This 

sequestering abolishes H3K36me3, leads to increased H3K27me3 by PRC2, and reduced 

differentiation, further corroborating the antagonistic actions of H3K36me3 and H3K27me3. 

In brief, both H2Bub and H3K36me3 protect genes from being silenced, actively prevent 

heterochromatin spreading and facultative heterochromatin formation, and are important for 

complete gene activation in multiple organisms. These functions are important during 

differentiation and promote genome stability, which counteracts development of cancer. However, 

it remains unknown if there is a direct crosstalk and self-enforcing feedback loop between 

H3K36me3 and H2B ubiquitination in other organisms than S. pombe. 

 

Function of Mst2C 

The homologue of Mst2 in S. cerevisiae, Sas3p, was postulated to be a promoter-

associated KAT that acts redundantly with SAGA to activate transcription (Taverna et al., 2006). 

The double deletion of Sas3p and Gcn5p is synthetic lethal in S. cerevisiae, but not in S. pombe, 

suggesting divergence of these complexes. Interestingly, recent research shows that in  

S. cerevisiae, an alternative subcomplex called NuA3b localizes to gene bodies via its newly 

identified subunit Pdp3p, which complies with my data in fission yeast (see Figure 25 left panel, 

Gilbert et al., 2014; Martin et al., 2017). Furthermore, NuA3 does not show high activity on H3K14 

unless Gcn5p is deleted (Vicente-Muñoz et al., 2014). Deletion of Pdp3p and Gcn5p is not 

synthetic lethal, suggesting a different role of this complex and hence it would be interesting to 

identify Sas3p targets by acetylomics to check if the H3K36me3(-Sas3p)-H2Bub signaling 

cascade is conserved.  

Intriguingly, Pdp3p-mediated NuA3b localization is especially important for efficient 

elongation on longer genes (Martin et al., 2017). This could be conserved to S. pombe, where I 

see increased cryptic antisense transcription on longer genes in paf1*mst2∆ cells (data not 

shown). Hence, it would be interesting to investigate if long genes are more prone to ectopic 
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heterochromatin formation and show increased H3K9me2 in a paf1*mst2∆ or paf1*pdp3∆ 

background. This could be tested by H3K9me2 ChIP-Seq and would also reveal other loci with 

de novo heterochromatin formation. Furthermore, budding yeast Pdp3p pull-down experiments 

identified Rpb1, FACT and deubiquitinating enzymes (Vicente-Muñoz et al., 2014), suggesting 

that NuA3b might interact with these components to promote transcriptional elongation directly or 

indirectly via H2Bub. 

Mst2C is also conserved in mammals, but it is difficult to assign a clear homologue (see 

Figure 25, right panel). Multiple KATs are known to acetylate H3K14, the main histone target of 

Mst2C, which are KAT6A, KAT6B and KAT7 (also known as MOZ, MORF and HBO1). They 

acetylate H3K14, but also H3K9 (Dreveny et al., 2014; Kueh et al., 2011). All three KATs exist in 

complexes, in which several members resemble Mst2C subunits, such as EAF6 and BRPF1, 

which also contains a H3K36me3-recognizing PWWP domain like Pdp3 (Vezzoli et al., 2010). 

Besides the PWWP domain, BRPF1 contains multiple DNA and histone-recognizing domains and 

likely acts as a scaffold protein, but also controls substrate specificity such as H3 acetylation for 

KAT7 (Lalonde et al., 2013). This suggests that BRPF1 orchestrates the localization and substrate 

specificity of multiple KATs and thus makes it a key player in directing histone acetylation by 

other substrates?
H3K14/H3K9

Preference?

H3K36me3
H3ac?

H3K4me3

Figure 25: Conservation and composition of Mst2C homologues. Left panel: NuA3b is the recently identified 
homologue of Mst2C including H3K36me3 reader Pdp3p. Also in S. cerevisiae, NuA3b is believed to have 
additional substrates to H3K14. Picture taken from Gilbert et al., 2014.  
Right panel: In mammals, multiple Mst2C homologues can acetylate H3K14. However, the exact 
preferences are unknown and may depend on complex composition. BRPF1 is an essential subunit for 
complex integrity and specificity and has multiple histone reader domains. Alternatively, HBO1 can also 
associate with JADE1, a scaffold protein similar to BRPF1. ING5 can be replaced by ING4 and is the 
homologue of S. cerevisiae Yng1p. Picture adapted from Yang, 2015. 
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KAT6A/B/7. It would be therefore crucial to investigate the role of BRPF1 and its regulation, 

potentially via PTMs. Besides that, KAT7 was shown to protect the central core of centromeres 

from excessive H3K9me3 and to promote incorporation of CENP-A (the mammalian Cnp1 

homologue), which resembles the role of H2Bub in S. pombe (Ohzeki et al., 2016). 

During mouse development, KAT7 is the major H3K14 KAT and KAT7 knockout (KO) mice 

die at E10.5, unlike KAT6A and 6B KO mice, which die at E14.5 or postnatally, respectively 

(Katsumoto et al., 2006; Kueh et al., 2011; Thomas et al., 2000). Furthermore, KAT6A/B KO mice 

show severe morphological phenotypes, mostly affecting senescence, neural stem cell 

proliferation, and craniofacial properties (Perez-Campo et al., 2014; Sheikh et al., 2012). 

Senescence might be directly affected by acetylation of key regulator p53, which was shown to 

be mediated by KAT6A (Rokudai et al., 2013). Furthermore, all three potential Mst2 homologues 

are implicated in cancer and neuronal disorders (reviewed in Yang, 2015). These phenotypes 

illustrate the important function of KATs in controlling gene expression and genome stability, but 

have not yet been clearly assigned to the individual KATs. 

 

While I focused on potential Mst2 homologues in mammals by looking at the same substrate 

H3K14, it could well be that the substrate specificity changed during evolution. Therefore, I would 

like to point out that the bona fide H4K16 KAT MOF as part of the MSL complex shows an 

intriguing similarity to the Mst2 complex. Multiple reports attribute a role of the MSL in stimulating 

transcriptional elongation, an anchoring role for H3K36me3 via MSL3 and a direct link to stimulate 

H2B ubiquitination via E3 ligase MSL2 (Bell et al., 2007; Larschan et al., 2007; Wu et al., 2011). 

 

Summarizing, the function and composition of NuA3b in S. cerevisiae is similar to Mst2C 

and would be interesting to follow up on, focusing particularly on possible feedback loops. The 

mammalian complexes are however much less characterized, which first demands a clear 

assignment of an actual Mst2C homologue by looking at its genomic distribution via ChIP-Seq, 

before following up a potential role in protecting euchromatin and regulation of H2Bub.  
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Conclusions 

Within this thesis, I discovered a euchromatic feedback loop, which involves an unusual 

histone writer crosstalk across the gene body, involving the KAT Mst2 and the euchromatic 

hallmarks H3K36me3 and ubiquitinated H2BK119. Since H2Bub directs H3K4 methylation, also 

a hallmark of transcription initiation, this loop ultimately closes the circle to transcriptional activity. 

Speculating, such a self-enforcing loop can serve multiple purposes: 

1) It creates some sort of transcriptional memory, which reduces transcriptional noise and 

enhances epigenetic robustness. Indeed, H3K4me3 has been linked to provide such memory in 

re-expression of stress response genes in A thaliana (Ding et al., 2012). Similarly, H3K36me3 

has been proposed to act as memory mark for parentally transcribed genes in the transcriptionally 

silent embryonic germ cells of C. elegans, which is absolutely essential to develop a functional 

germline in the offspring (Furuhashi et al., 2010). 

2) It protects euchromatic genes from ectopic heterochromatin formation by inhibiting the 

binding of heterochromatin factors. This is likely to occur in a competitive manner, wherein 

transcriptional kinetics dictate the outcome and hence represent the initial discrimination between 

heterochromatic and euchromatic transcription. Indeed, mutants with hampered initiation and 

elongation kinetics also show no ectopic heterochromatin formation in a paf1* background 

anymore, suggesting that RNAPII/nascent transcripts need to accumulate at the transcription 

termination sites to allow RNAi to nucleate heterochromatin. On the other hand, individual deletion 

of multiple transcription-associated factors, such as Mst2, Tfs1, mRNA export protein Mlo3, and 

Mediator subunit Med1 allows simultaneous deletion of RNAi factors such as Dcr1 without losing 

heterochromatin (Reddy et al., 2011; Reyes-Turcu et al., 2011). This suggests that transcription 

can also be shifted towards a condition favoring heterochromatin assembly. 

3) Feedback loops give epigenetic robustness to the organism to maintain genomic stability 

in stress conditions and ensure accurate inheritance of the genetic material. At the same time, 

feedback loops maintain a certain plasticity and modulation, which allows the organism to adapt 
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to environmental changes. Since multiple protein complexes are involved in maintaining feedback 

loops, they offer a great variety for regulation, as changing the abundance, activity, or localization 

of a single member might be sufficient to alter or inactivate the feedback loop. Besides multiple 

identified and characterized heterochromatic feedback loops (Figures 12, 14 - 17), the 

identification of a euchromatic feedback loop (Figure 19) during my PhD adds another layer of 

complexity, but also increases the options for the organism to cope with challenges. 

 

The role of H2B ubiquitination is fascinating. Given that various multisubunit complexes 

regulate H2Bub, such as Paf1C, Mst2C, and RNAPII, and that H2Bub is essential to install 

H3K4me3 (and H3K79me3 in other organisms), implies a central role of ubiquitination in 

chromatin regulation. This also makes sense on a structural level due to the bulkiness of ubiquitin, 

which suggests that ubiquitin may hinder chromatin effector proteins from binding to the 

nucleosome. Hence, I speculate that ubiquitin keeps chromatin in an intermediate, plastic state, 

which prevents (cryptic) transcription initiation, but also heterochromatin formation. Therefore, it 

is not surprising that H2B ubiquitination levels increase during differentiation, whereas being low 

in undifferentiated or terminally differentiated cells, suggesting that the increased plasticity during 

differentiation may rely on increased H2Bub levels and chromatin decompaction. In 

undifferentiated stem cells, H2Bub levels are kept low by the action of by multiple proteases 

perhaps in order not to create too much plasticity, which would result in uncontrolled 

differentiation. 

 

As already mentioned above, the initial discrimination between heterochromatin and 

euchromatic transcription may rely on transcription kinetics. Whereas it is conceivable that high 

transcriptional activity interferes with heterochromatin initiation (Shimada et al., 2016), I believe 

that rather the transcriptional elongation speed dictates the fate of the transcript. High 

transcriptional activity has to lead to an increased elongation speed in order to avoid RNAPII 

collisions and this increased elongation rate primarily interferes with de novo heterochromatin 
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formation. Therefore, I would like to introduce a new term describing transcriptional kinetics, the 

“transcriptional efficiency”. Whereas transcriptional activity rather describes how often RNAPII 

transcribes a gene and correlates well with H3K4me3 and H3K36me3, transcriptional efficiency 

describes how fast RNAPII proceeds through the gene body. This efficiency is orchestrated by a 

multitude of RNAPII-associated factors, such as Paf1C, FACT and HULC. Intriguingly, H2B 

ubiquitination plays an essential role and perhaps constitutes the actual histone mark associated 

with high transcriptional efficiency due to its stimulatory role on FACT and chromatin remodelers. 

Although this model is a wild speculation, a few examples hint in this direction. For a long 

time the transcriptional elongation rate has been determined by run-on experiments. However, 

these experiments also take into account how many RNAPII molecules are loaded onto a 

particular gene and therefore mirror transcriptional activity as well. Recently, different methods 

such as 4sUDRB-Seq or BruDRB-Seq have been established (Fuchs et al., 2014a; Veloso et al., 

2014). These methods use a block of early elongation by DRB to then measure how fast 4sU- or 

BrU-labelled nucleotides are incorporated after the release of this block. Although also this 

technique relies on the use of a drug and may induce artefacts, it is interesting that H2B 

ubiquitination seems to correlate very well with the respective elongation speed, whereas 

H3K36me3 correlates less (Fuchs et al., 2014b). Furthermore, such a model would partially 

explain the intimate link of H3K4me3 with H2B ubiquitination, since this would provide an essential 

crosstalk, wherein the transcriptional machinery, perhaps Paf1C, fine-tunes transcriptional 

initiation and elongation kinetics. 

I am aware that such a model requires more experimental evidence and it is unclear if 

H2Bub is cause or consequence of high elongation rates. More experiments addressing 

elongation speed and its interplay with chromatin marks are required to support such a model. 

Yet, I am fascinated by the versatility of biological systems using unusual crosstalks and feedback 

loops to fine-tune transcriptional kinetics. Furthermore, a still open question remains about the 

kinetics of transcription termination and the contribution of chromatin in that (m)RNA fate-

determining process. 
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The Paf1 complex represses small-RNA-mediated
epigenetic gene silencing
Katarzyna Maria Kowalik1,2*, Yukiko Shimada1,2*, Valentin Flury1,2, Michael Beda Stadler1,2,3, Julia Batki4 & Marc Bühler1,2

RNA interference (RNAi) refers to the ability of exogenously intro-
duced double-stranded RNA to silence expression of homologous
sequences. Silencing is initiated when the enzyme Dicer processes
the double-stranded RNA into small interfering RNAs (siRNAs).
Small RNA molecules are incorporated into Argonaute-protein-
containing effector complexes, which they guide to complementary
targets to mediate different types of gene silencing, specifically post-
transcriptional gene silencing and chromatin-dependent gene silencing1.
Although endogenous small RNAs have crucial roles in chromatin-
mediated processes across kingdoms, efforts to initiate chromatin
modifications in trans by using siRNAs have been inherently dif-
ficult to achieve in all eukaryotic cells. Using fission yeast, here we
show that RNAi-directed heterochromatin formation is negatively
controlled by the highly conserved RNA polymerase-associated fac-
tor 1 complex (Paf1C). Temporary expression of a synthetic hairpin
RNA in Paf1C mutants triggers stable heterochromatin formation
at homologous loci, effectively silencing genes in trans. This repressed
state is propagated across generations by the continual production
of secondary siRNAs, independently of the synthetic hairpin RNA.
Our data support a model in which Paf1C prevents targeting of na-
scent transcripts by the siRNA-containing RNA-induced transcrip-
tional silencing complex and thereby epigenetic gene silencing, by
promoting efficient transcription termination and rapid release of
the RNA from the site of transcription. We show that although com-
promised transcription termination is sufficient to initiate the forma-
tion of bi-stable heterochromatin by trans-acting siRNAs, impairment
of both transcription termination and nascent transcript release is
imperative to confer stability to the repressed state. Our work un-
covers a novel mechanism for small-RNA-mediated epigenome reg-
ulation and highlights fundamental roles for Paf1C and the RNAi
machinery in building epigenetic memory.

In the fission yeast Schizosaccharomyces pombe, a functional RNAi
pathway is required for the formation and stable propagation of con-
stitutive heterochromatin found at pericentromeric repeat sequences.
S. pombe contains single genes encoding for an Argonaute and a Dicer
protein, called ago11 and dcr11, respectively. Centromeres of ago1D
or dcr1D cells have markedly reduced histone 3 lysine 9 (H3K9) meth-
ylation, which is a hallmark of heterochromatin, and defective chro-
mosome segregation and heterochromatic gene silencing2. Ago1 is loaded
with endogenous small RNAs corresponding to heterochromatic repeats,
and interacts with Chp1 and Tas3 to form the RNA-induced transcrip-
tional silencing (RITS) complex3. Current models propose that Ago1-
bound small RNAs target RITS to centromeres via base-pairing interactions
with nascent, chromatin-associated non-coding transcripts. Conse-
quently, RITS recruits the RNA-dependent RNA polymerase complex
(RDRC) to initiate double-stranded RNA synthesis and siRNA amp-
lification, as well as the cryptic loci regulator complex (CLRC) to facil-
itate methylation of histone H3K9 (ref. 4). Chp1 reinforces the hetero-
chromatin association of RITS by binding methylated H3K9 with high
affinity5, thereby creating a positive-feedback loop between siRNA

biogenesis, RITS localization and H3K9 methylation. Hence, siRNA-
programmed RITS acts as a specificity determinant for the recruitment
of other RNAi complexes and chromatin-modifying enzymes to cen-
tromeres. However, an outstanding question is whether synthetic siRNAs
can also function in this context, and thereby be used to trigger de novo
formation of heterochromatin, particularly outside of centromeric re-
peats, to stably silence gene expression at will1.

Small RNAs have crucial roles in endogenous chromatin-mediated
processes also in plants, Caenorhabditis elegans, Drosophila melanoga-
ster and ciliates. Their role in chromatin silencing can also be extended
to mammalian cells, although the mechanisms and physiological path-
ways are less clear1,6. Yet, efforts to initiate chromatin modifications
in trans by using siRNAs have been inherently difficult to achieve in all
organisms. In plants, this is because the ability of siRNAs to induce
DNA methylation at gene promoters is context-dependent and sens-
itive to pre-existing chromatin modifications7. And although siRNAs
have been shown to promote DNA methylation in trans on homolog-
ous reporter transgenes in tobacco and Arabidopsis8, it is unclear whether
this is a general phenomenon for endogenous promoters. In mamma-
lian cells, the introduction of siRNAs or hairpin RNAs has been reported
to promote the modification of DNA and histones9–11. However, most
small RNAs seem to mediate post-transcriptional gene silencing exclu-
sively, and siRNA-mediated silencing of transcription does not neces-
sarily require chromatin modification12,13. Consequently, the potential
of synthetic siRNAs to trigger long-lasting gene repression in mam-
malian cells is debated. Similarly, although studies in S. pombe have
shown that RNA-hairpin-derived siRNAs can promote H3K9 methy-
lation in trans at a small number of loci14,15, it is inefficient, locus-
dependent, and the silent state observed is weak and highly unstable14.
Rather, endogenous protein-coding genes seem to be refractory to siRNA-
directed repression in trans in wild-type cells (Extended Data Figs 1
and 2). Therefore, it has been proposed that the ability of siRNAs to
direct de novo formation of heterochromatin in trans is under strict
control by mechanisms that have thus far remained elusive.

To identify putative suppressors of siRNA-mediated heterochroma-
tin formation, we designed a small-RNA-mediated silencing (sms) for-
ward genetic screen. We constructed a reporter strain (sms0), which
expresses an RNA hairpin (ade6-hp) that is complementary to 250 nu-
cleotides of ade61 (Fig. 1a and Extended Data Fig. 1). We chose ade61

as a reporter because ade6 mutant cells form red colonies on limiting
adenine indicator plates, whereas ade61 cells appear white. Although
the ade6-hp construct generated siRNAs complementary to ade61 mes-
senger RNAs, no red colonies were visible, demonstrating that ade61

siRNAs cannot silence the ade61 gene in trans in sms0 cells (Extended
Data Figs 1b and 2). To screen for mutants that would enable ade61

siRNAs to act in trans, we mutagenized sms0 cells with ethylmethan-
sulfonate (EMS). This revealed five sms mutants that are highly suscep-
tible to de novo formation of heterochromatin and stable gene silencing
by siRNAs that are acting in trans (Extended Data Fig. 3).
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To map the mutations in sms mutants, we re-sequenced the ge-
nomes of sms0 and backcrossed sms mutants using whole-genome
next-generation sequencing. We mapped missense or nonsense muta-
tions in the genes SPBC651.09c, SPAC664.03, SPBC13E7.08c and
SPBC17G9.02c (Extended Data Fig. 3), whose homologues in budding
yeast encode for protein subunits of the Paf1 complex. We therefore
named SPAC664.03, SPBC13E7.08c and SPBC17G9.02c after the S. cer-
evisiae homologues paf11, leo11 and cdc731, respectively. SPBC651.
09c has already been named as prf11 (ref. 16). To validate these as the
causative mutations, we reconstituted the candidate point mutations
in Paf1, Leo1, Cdc73 and Prf1 in sms0 cells. All five point mutations
recapitulated the sms mutant phenotype in cells expressing ade6-hp
siRNAs (Fig. 1b, c). As expected from the red colour assays, ade61

mRNA levels were reduced in all mutant strains. siRNA-mediated ade61

silencing was also observed in cells that express a carboxy-terminally
33Flag-tagged version of the fifth Paf1C subunit Tpr1, which acts as a
hypomorphic allele (Extended Data Fig. 4). Therefore, we have iden-
tified mutant alleles for the homologues of all five subunits of Paf1C
that enable siRNAs to induce gene silencing in trans.

We next analysed whether other genes could also be silenced in trans
in the Paf1C mutants. We first selected the endogenous ura41 gene,
as this has been shown to be refractory to silencing by siRNAs acting
in trans14,15,17. The paf1-Q264Stop mutation was introduced in a strain
expressing ura41 siRNAs from a ura41 hairpin integrated at the
nmt11 locus15. ura41 repression was monitored by growing cells on
media containing 5-fluoroorotic acid (5-FOA), which is toxic to ura41

expressing cells. As expected, paf11 cells did not grow on 5-FOA-
containing media, indicating that the ura41 gene is expressed. How-
ever, paf1-Q264Stop cells formed colonies on 5-FOA containing media,
demonstrating siRNA-directed silencing of the endogenous ura41

locus (Extended Data Fig. 5a). Similarly, siRNAs generated at the het-
erochromatic ura41::5BoxB locus18 were able to silence a leu1D::ura41

reporter in trans in paf1-Q264Stop but not paf11 cells (Extended Data
Fig. 5b), demonstrating that siRNAs generated from sources other than
RNA stem–loop structures also direct trans-silencing in paf11 mutant
cells. Finally, we also observed silencing of the endogenous ade61 gene
when ade6-hp siRNAs were expressed from the nmt11 locus in paf1-
Q264Stop cells (Extended Data Fig. 5c). In summary, Paf1C mutations
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enabled siRNA-directed silencing in trans at all euchromatic loci that
we tested.

The foregoing results indicated that de novo formation of hetero-
chromatin was mediated by trans-acting siRNAs. Indeed, Paf1C mutants
showed high H3K9 methylation at all ade61 siRNA target loci (Fig. 1d
and Extended Data Fig. 6a–c), demonstrating that Paf1C prevents trans-
as well as cis-acting siRNAs from directing methylation of H3K9. Fur-
ther corroborating the formation of bona fide heterochromatin at the
ade61 target locus, ade61 repression was dependent on components
of SHREC (Snf2/histone deacetylase (HDAC) repressor complex) and
CLRC, as well as the heterochromatin protein 1 (HP1) proteins Swi6
and Chp2, which are known to facilitate constitutive heterochromatin
formation at centromeres (Fig. 1e). Finally, the formation of hetero-
chromatin reduced transcriptional activity of the ade61 gene as evi-
denced by reduced H3K36 tri-methylation and RNA polymerase (Pol)
II occupancy (Extended Data Fig. 6d, e). From these results we con-
clude that siRNAs can initiate the formation of heterochromatin and
gene silencing, but that this is under strict negative control by Paf1C.
This explains previous unsuccessful attempts to induce stable hetero-
chromatin formation in trans using synthetic siRNAs.

Consistent with the formation of an epigenetically distinct chro-
matin domain at the siRNA target loci, cells in a population of freshly
generated Paf1C mutants were either fully red or fully white. The latter
gradually became red with increasing numbers of mitotic divisions, and
once established, the silent state was remarkably stable (Fig. 1b, c). The
fact that not all cells in a population of naive Paf1C mutant cells turned
red immediately allowed us to determine the frequency of initiation of
heterochromatin formation quantitatively. This analysis revealed that
silencing in mitotic cells was efficiently established in leo1-W157Stop
mutant cells, whereas cdc73-G313R cells were the least efficient (Fig. 2a).
Descendants of a red colony switched to the white phenotype only
sporadically in all Paf1C mutants, demonstrating that maintenance of
heterochromatin is very robust in these cells (Fig. 2b). Interestingly,
siRNA-directed de novo formation of heterochromatin was most effi-
cient in meiosis. In 70% of all crosses between a naive paf1-Q264Stop
mutant (white) and a paf11 cell, at least one of two paf1-Q264Stop
spores had initiated ade61 repression (red) (Fig. 2c and Extended Data
Fig. 7). We also observed highly efficient propagation of the silent state
through meiosis, but only in descendants of spores that inherited the
Paf1C mutation (Fig. 2d). Thus, siRNAs are sufficient to initiate the for-
mation of very stable heterochromatin when Paf1C function is impaired.

Notably, assembly of heterochromatin at the ade61 target gene was
accompanied by the production of novel ade61 siRNAs that are not
encoded in the ade6-hp and that accumulated to high levels (Fig. 2e).
Thus, primary ade6-hp siRNAs trigger the production of highly abun-
dant secondary ade61 siRNAs in Paf1C mutants. To test whether con-
tinuous production of siRNAs is necessary for sustaining the repressed
state, we deleted genes encoding for RNAi factors and found that ade61

silencing was completely abolished in all canonical RNAi mutants.
Deletion of tri11 resulted in moderate derepression of ade61 silencing,
suggesting a minor contribution of this exonuclease to siRNA-mediated
heterochromatin silencing (Fig. 1e). To test whether secondary siRNAs
produced at the ade61 target locus are sufficient to maintain hetero-
chromatin, we crossed a trp11::ade61 paf1-Q264Stop ade6-hp1 strain
(red) with a trp11::ade61 paf1-Q264Stop (white) strain. These crosses
regularly produced spores that gave rise to red cells even in the absence
of the nmt11::ade6-hp1 allele. The red phenotype was still visible after
replica plating, demonstrating that heterochromatin can be maintained
in the absence of the primary siRNAs for hundreds of mitotic cell divi-
sions (Fig. 2f). These results demonstrate that siRNAs can induce an
epigenetic change in gene expression in meiotic and mitotic cells, and
that secondary siRNA production is sufficient to propagate the repressed
state for many mitotic cell divisions independently of the primary
siRNAs that triggered the epigenetic switch.

The highly conserved Paf1C is well known for promoting RNA Pol
II transcription elongation and RNA 39-end processing (Fig. 3a). Paf1C
also governs transcription-coupled histone modifications and has con-
nections to DNA damage repair, cell cycle progression, and other pro-
cesses19. Given this broad function, we assessed the effect of our Paf1C
mutations on genome expression. This analysis revealed that paf1-
G104R, paf1-Q264Stop, prf1-Q472Stop and leo1-W157Stop impair repres-
sion of heterochromatin formation, without affecting RNA expression
globally (Supplementary Information and Extended Data Fig. 8). This
is consistent with our observation that ade61 expression is unaffected
in Paf1C mutants in the absence of siRNAs (Fig. 1b). We did, however,
detect a reduction in H3K36 tri-methylation and an increase in RNA
Pol II occupancy on the ade61 gene in paf1-Q264Stop cells (Fig. 3b, c).
This is consistent with the role of Paf1C in promoting transcription,
and suggests that decelerated transcription kinetics in Paf1C mutants
enables siRNA-directed epigenetic gene silencing. To dissect which of
Paf1C’s activities are most critical to prevent RNAi-mediated heterochro-
matin assembly, we interfered with transcription elongation, termination
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or co-transcriptional histone modification directly by mutating genes
encoding elongation factors (Tfs1 and Spt4), termination factors (Ctf1
and Res2), or histone methyltransferases (Set1 and Set2)20,21 (Fig. 3a).
We observed siRNA-mediated initiation of ade61 silencing in ctf1-70
and res2D cells, but not in tfs1D, spt4D, set1D and set2D cells (Fig. 3d–f),
demonstrating that impaired transcription termination but not elonga-
tion is sufficient to allow siRNA-directed repression. Notably, although
impaired transcription termination in ctf1-70 and res2D cells was suf-
ficient to initiate silencing, the silent state was less stable than in paf1-
Q264Stop mutant cells (Fig. 3e, f). This explains why our screen did not
reveal mutations in transcription termination factors.

In ctf1-70 cells, although RNA Pol II fails to terminate, the nascent
RNA is still properly processed and released from the site of transcrip-
tion21. This probably accounts for the less stable silencing in ctf1-70 cells
and suggests that the more severe phenotype of Paf1C mutants is due to
the combined effects of impaired termination and nascent transcript
release. Therefore, we tested whether artificially releasing the nascent
transcript from the site of transcription partially alleviates siRNA-
mediated heterochromatin formation in Paf1C mutant cells. To this
end, we inserted a 52-nucleotide hammerhead ribozyme (Rz), preceded
by a templated polyA (A75) tail, downstream of the ade61 open read-
ing frame (ade6-Rz) to induce self-cleavage of nascent ade61 tran-
scripts (Fig. 3g). Indeed, initiation of silencing at the ade6-Rz locus was
inefficient and the repressed state was poorly propagated in paf1-
Q264Stop mutant cells. By contrast, silencing was very effective in cells
that contain a single base change in the catalytic site of the ribozyme
(ade6-Rzm) that abolishes self-cleavage (Fig. 3h). Thus, retaining the
nascent transcript on chromatin is critical to stabilize the repressed state.

These results are consistent with a kinetic model for Paf1C function
and demonstrate that proper transcription termination is crucial to pre-
vent de novo formation of heterochromatin by siRNAs (Extended Data
Fig. 9). This is further supported by the recent observation that ter-
mination sequences in the 39 untranslated region of the ura41 gene

inhibit the ability of siRNAs to promote heterochromatin formation17

and is reminiscent of enhanced silencing phenotype (esp) mutations in
Arabidopsis thaliana, which are in genes that encode for members of
the cleavage polyadenylation specificity factor and cleavage stimulation
factor complexes22. Importantly, our results show that impairment of
both transcription termination and nascent transcript release is imper-
ative to confer stability to the repressed state, although compromised
transcription termination is sufficient to initiate the formation of bi-
stable heterochromatin by trans-acting siRNAs.

Besides Dcr1-dependent siRNAs, Ago1 associates with Dcr1-inde-
pendent small RNAs referred to as primal RNAs (priRNAs). priRNAs
seem to be degradation products of abundant transcripts and could
potentially trigger siRNA amplification and uncontrolled heterochro-
matic gene silencing23. Therefore, we speculated that the physiological
function of Paf1C is to protect the genome from spurious priRNA-
mediated heterochromatin formation. To investigate this we analysed
whether Paf1C mutants would disclose genomic regions that could be
potentially assembled into facultative heterochromatin by endogenous
small RNAs. On the basis of our results, loci at which facultative het-
erochromatin forms in an RNAi-dependent manner are expected to show
reduced RNA expression with a concomitant increase in siRNA pro-
duction. As expected, the nmt11::ade6-hp1, trp11::ade61 and ade6-
704 loci fulfilled this criteria (Extended Data Fig. 10a). Moreover, we
observed repression and siRNA production for genes flanking these
loci, indicating spreading of heterochromatin into neighbouring genes,
which occurred up to 6 kilobases (kb) up or downstream of the ade6-hp
siRNA target sites. Indeed, we observed H3K9 methylation in this re-
gion in leo1D cells specifically (Extended Data Fig. 10b, c). In addition
to these regions, we observed siRNA-directed silencing signatures at
different, non ade61-linked genomic loci, indicating that Paf1C may
indeed function to protect the genome from illegitimate repression of
protein coding genes by endogenous priRNAs. However, we did not
recover the same sites repeatedly in the different Paf1C mutants
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(Supplementary Table 1). This indicates that initiation of silencing at
these sites occurred stochastically and that there are no specific sites
primed for the formation of facultative heterochromatin in mitotic cells
that are grown under standard laboratory conditions. Therefore, we con-
clude that Paf1C protects protein-coding genes from unwanted long-term
silencing that might occur by chance, thereby restraining phenotypic
variation and conferring epigenetic robustness to the organism.

In summary, we discovered that synthetic siRNAs are highly effec-
tive in directing locus-independent assembly of heterochromatin that
can be stably maintained through mitosis and meiosis only when Paf1C
activity is impaired. A remarkable observation of our study is that the
newly established heterochromatin was inherited for hundreds of cell
divisions across generations in Paf1C mutant cells, even in the absence
of the primary siRNAs that triggered the assembly of heterochroma-
tin. This phenomenon complies with the classical definition of epige-
netics24 (that is, that it is heritable even in the absence of the initiating
signal) and highlights fundamental roles of Paf1C and the RNAi ma-
chinery in building up epigenetic memory. This mechanism is also re-
miniscent of RNA-mediated epigenetic phenomena in higher eukaryotes
such as paramutation25 and RNA-induced epigenetic silencing (RNAe)26.
RNAe is a phenomenon in which small RNAs of the C. elegans Piwi
pathway can initiate transgene silencing that is extremely stable across
generations even in the absence of the initiating Piwi protein. Yet, not
all Piwi pathway RNAs trigger RNAe (ref. 27). Similarly, generation of
siRNAs is necessary but not sufficient for paramutation in maize28.
Thus, Paf1C may also have a regulatory role in paramutation and/or
RNAe. Notably, Paf1C is known to help maintain expression of tran-
scription factors required for pluripotency in human and mouse em-
bryonic stem cells and prevent expression of genes involved in lineage
specification29,30, which may also involve small RNAs and chromatin
regulation.

The ability to induce long-lasting and sequence specific gene silen-
cing by transient delivery of synthetic siRNAs without changing the
underlying DNA sequence will not only enable fundamental research
on mechanisms that confer epigenetic memory, but may also open up
new avenues in biotechnology and broaden the spectrum of the poten-
tial applications of RNAi-based therapeutics. Epigenetic control over
gene expression is of particular interest in plant biotechnology, as this
would circumvent the generation of genetically modified organisms.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Strains and plasmids. Fission yeast strains were grown at 30 uC in YES medium.
All strains were constructed following a PCR-based protocol31 or by standard mat-
ing and sporulation. Plasmids and strains generated in this study are shown in Sup-
plementary Tables 2 and 3.
EMS mutagenesis, hit selection and backcrossing. Exponentially growing sms0
(SPB464) cells were washed and resuspended in 50 mM K-phosphate buffer (pH 7.0)
and treated with EMS (final concentration 2.5%) for 150 min. An equal volume of
freshly prepared 10% sodium thiosulfate was then added. Cells were washed with
water and subsequently resuspended in YES. EMS treatment resulted in ,50% cell
viability. To screen for mutants in which ade61 expression was silenced, cells were
spread on YE plates. About 350,000 colonies were examined and pink colonies were
selected for further evaluation. Positive hits were backcrossed four times with the
parental strains SPB464 or SPB1788, depending on mating type.
Silencing assays. To assess ura41 expression, serial tenfold dilutions of the re-
spective strains were plated on PMGc (non-selective, NS) or on PMGc plates con-
taining 2 mg ml21 5-FOA. To assess ade61 expression, serial tenfold dilutions of
the respective strains were plated on YES and YE plates.
Assessment of initiation versus maintenance of ectopic heterochromatin for-
mation. Mutant strains were seeded on YE plates and single-cell-derived red or
white colonies were selected. Colonies were resuspended in water and 100–500
cells were seeded on YE plates, which were then incubated at 30 uC for 3 days.
Images of the plates were acquired after one night at 4 uC and colonies were counted
automatically using Matlab (The MathWorks) and ImageJ Software (National In-
stitutes of Health).
RNA isolation and cDNA synthesis. RNA isolation and cDNA synthesis was per-
formed as described previously32.
Quantitative real-time PCR. Real-time PCR on cDNA samples and ChIP DNA
was performed as described33 using a Bio-Rad CFX96 Real-Time System using
SsoAdvanced SYBR Green supermix (Bio-Rad). Primer sequences are given in Sup-
plementary Table 4.
Chromatin immunoprecipitation. Chromatin immunoprecipitation (ChIP) exper-
iments were performed as previously described33 with minor modifications. In brief,
S. pombe cells were fixed with 1% formaldehyde for 15 min and then lysed in buffer
containing 50 mM HEPES/KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton
X-100, 0.1% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride (PMSF)
and protease inhibitor cocktail. Chromatin was sheared with a Bioruptor (Diage-
node). The following antibodies were used in this study: histone H3K9me2-specific
mouse monoclonal antibody from Wako (MABI0307), histone H3-specific rabbit
polyclonal antibody from Abcam (ab1791), histone H3K36me3-specific rabbit
polyclonal antibody from Abcam (ab9050), and RNA polymerase II mouse mono-
clonal antibody from Covance (8WG16).
Small RNA sequencing. Total RNA was isolated from exponentially growing cells
using the hot phenol method34. The RNA was fractionated using RNeasy Midi col-
umns (Qiagen) following the RNA cleanup protocol provided by the manufacturer.
The flow-through fraction was precipitated (‘small RNA’ fraction). Aliquots (25mg)
of the small RNA fraction were separated by 17.5% PAGE and the 18–28-nucleotide
population purified. Libraries were prepared using the Illumina TruSeqTM small
RNA preparation protocol (RS-930-1012). The 145–160-nucleotide population was
isolated and the library sequenced on an Illumina HiSeq2000. Small RNA reads
were aligned as described previously32 with two mismatches allowed.
Whole-genome sequencing. Cells from an overnight culture were collected, washed
once with water and flash frozen in liquid nitrogen. Cells were spheroplasted in
spheroplast buffer (1.2 M sorbitol, 100 mM KHPO4, pH 7.5, 0.5 mg ml21 zymolyase
(Zymo Research), 1 mg ml21 lysing enzyme from Trichoderma harzianum (Sigma)).
Genomic DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen). Bar-
coded genomic DNA libraries for Illumina next-generation sequencing were pre-
pared from 50 ng genomic DNA using the Nextera DNA Sample Preparation Kit
(Illumina). Libraries were pooled equimolarly and sequenced on one lane of a
HiSeq2000 machine (Illumina). Basecalling was done with RTA 1.13.48 (Illumina)
software and for the demultiplexing CASAVA_v1.8.0 (Illumina) was used. For each
strain, between 8.7 and 25.5 million (mean of 14.2 million) 50-nucleotide reads were
generated and aligned to the Schizosaccharomyces pombe 972h- genome assembly
(obtained on 17 September 2008 from http://www.broad.mit.edu/annotation/

genome/schizosaccharomyces_group/MultiDownloads.html) using ‘bwa’ (ref. 35,
version 0.7.4) with default parameters, but only retaining single-hit alignments
(‘bwa samse -n 1’ and selecting alignments with ‘X0:i:1’), resulting in a genome
coverage between 26 and 85-fold (mean of 44-fold). The alignments were con-
verted to BAM format, sorted and indexed using ‘samtools’ (ref. 36, version 0.1.19).
Potential PCR duplicates were removed using ‘MarkDuplicates’ from ‘Picards’ (http://
picard.sourceforge.net/, version 1.92). Sequence variants were identified using GATK
(ref. 37, version 2.5.2) indel realignment and base quality score recalibration using
a set of high confidence variants identified in an initial step as known variants, fol-
lowed by single nucleotide polymorphism (SNP) and INDEL discovery and gen-
otyping for each individual strain using standard hard filtering parameters, resulting
in a total of 270–274 sequence variations (mean of 280) in each strain compared to
the reference genome (406 unique variations in total over all strains). Finally, var-
iations were filtered to retain only high quality single nucleotide variations (QUAL
$ 50) of EMS type (GjC to AjT) with an alellic balance $ 0.9 (homozygous) that
were not also identified in the parental strain (sms0), reducing the number of var-
iations per strain to a number between 2 and 8 (mean of 4.6).
Expression profiling. RNA was isolated from cells collected at an attenuance (D)
of 600 nm of 0.5 (D600 nm 5 0.5) using the hot phenol method34. The isolated RNA
was processed according to the GeneChip Whole Transcript Double-Stranded Tar-
get Assay Manual from Affymetrix using the GeneChip S. pombe Tiling 1.0FR. All
tiling arrays were processed in R38 using bioconductor39 and the packages tiling-
Array40 and preprocessCore. The arrays were RMA background-corrected, quantile-
normalized, and log2-transformed on the oligonucleotide level using the following
command: expr ,2log2(normalize.quantiles(rma.background.correct(exprs(read-
Cel2eSet (filenames,rotated 5 TRUE))))). Oligonucleotide coordinates were inter-
sected with the genome annotation and used to calculate average expression levels
for individual genomic features (excluding those with ,10 oligonucleotides) as well
as broader annotation categories. In the latter case, multimapping oligonucleo-
tides were counted only once per category (avoiding multiple counts from the same
oligonucleotide).
Gene nomenclature. The proteins PAF1p, CDC73p, RTF1p, LEO1p and CTR9p
form a stable complex in S. cerevisiae (Paf1C). The systematic IDs of the genes en-
coding the S. pombe homologues of these proteins are SPAC664.03, SPBC17G9.02c,
SPBC651.09c, SPBC13E7.08c and SPAC27D7.14c, respectively. The CTR9 homo-
logue SPAC27D7.14c is currently annotated as Tpr1. The RTF1 homologue
SPBC651.09c is currently annotated as PAF-related factor 1 (prf11), because rtf11

is already used for an unrelated gene (SPAC22F8.07c). Therefore, we refer to
SPAC664.03, SPBC17G9.02c, SPBC651.09c, SPBC13E7.08c and SPAC27D7.14c
as paf11, cdc731, prf11, leo11 and tpr11, respectively, in this paper.
Statistics. A one-tailed Student’s t-test was used, with P , 0.05 as the significance
level. No statistical methods were used to predetermine sample size.
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Extended Data Figure 1 | Design of the ade61 RNA hairpin (ade6-hp)
construct that expresses abundant sense and antisense (primary) siRNAs.
a, The RNA stem–loop construct consists of a 250-nucleotide-long ade61

fragment, followed by a cox41 intronic sequence and the reverse complement
of the ade61 fragment. The promoter sequence of the adh11 gene drives
expression of the RNA hairpin. Transcription of the construct is terminated by
the termination signals of the nmt11 gene. The construct was provided by
T. Iida. b, c, Small RNA sequencing revealed that the RNA stem is converted
into sense and antisense siRNAs covering the 250-nucleotide stretch from the
ade61 open reading frame (nucleotides 621–870). Furthermore, sense and
antisense siRNAs mapping to the cox41 intronic and adh11 promoter
sequences are also generated when this construct is expressed in wild-type cells.
ORF, open reading frame. Asterisk denotes the point mutation (Thr645Ala) in
the ade6-704 loss of function allele. Green arrows indicate forward and reverse
primers that were used for PCR in ChIP experiments. d, Schematic diagram
depicting origin and target(s) of synthetic ade6-hp siRNAs. The ade6-hp

expression cassette (a) was inserted into the nmt11 locus on chromosome I by
homologous recombination. The ade6-hp-containing plasmid was linearized
with PmlI, which cuts in the middle of the nmt11 terminator sequence, and
transformed into ade6-704 cells. Thereby, the ade6-hp construct was inserted
downstream of the nmt11 gene. The nourseothricin (Nat)-resistance
cassette linked to the ade6-hp construct allowed selection of positive
transformants. It also allows assessment of spreading of repressive
heterochromatin that is nucleated by the ade6-hp siRNAs in cis (see Extended
Data Fig. 7b). A wild-type copy of the ade61 gene was inserted upstream of
the trp11 gene on chromosome II by homologous recombination. Because
the endogenous ade6-704 allele is non-functional, positive transformants
could be selected by growth in the absence of adenine. In Paf1C mutant cells,
ade6-hp-derived siRNAs either act in cis to assemble heterochromatin at
the nmt11 locus (chromosome I), or in trans to direct the formation of
heterochromatin at the trp11::ade61 (chromosome II) and ade6-704
(chromosome III) loci.
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Extended Data Figure 2 | Silencing assays demonstrating the inability of
synthetic siRNAs to act in trans in Paf1C wild-type cells. a, ade61 silencing
assays were performed with cells expressing synthetic ade6-hp siRNAs, ura4-hp
siRNAs or no siRNAs. The ability of ade6-hp siRNAs to silence either the
endogenous ade61 gene or the trp11::ade61 reporter gene was assessed at
different adenine concentrations. ade6-704 cells were used as positive control.

b, c, ade61 mRNA levels were determined by quantitative RT–PCR and
normalized to act11 mRNA. One representative biological replicate is shown.
Error bars, s.d. d, ade61silencing assays demonstrating that neither the
endogenous ade61 gene nor the trp11::ade61 reporter gene becomes
repressed by trans-acting ade6-hp siRNAs, even upon overexpression of the
heterochromatin protein Swi6.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015



Extended Data Figure 3 | Sms forward genetic screen identifies five true
positive hits that enable siRNAs to methylate H3K9 at the ade61 gene in
trans. a, Workflow of the EMS mutagenesis screen. We mutagenized sms0
cells, which express abundant siRNAs complementary to the ade61 gene
(indicated by green hairpin), with EMS (primary screen). Subsequently, we
tested the positive red colonies for growth in the absence of adenine to select
against loss-of-function mutations in the adenine biosynthesis pathway
(secondary screen). In hits that remained positive after the secondary
screen, dcr11 was deleted to identify truly siRNA-dependent hits (tertiary
screen). For mapping of causative mutations by whole-genome next-generation
sequencing, positive hits were backcrossed four times. b, sms1-10 mutants show
the red ade61 silencing phenotype on YE plates, which segregated through
four successive backcrosses for all 10 mutants. The ade6-M210 loss-of-function
allele and ade61 inserted within centromeric heterochromatin (otr1R::ade61)

serve as positive controls. c, ChIP experiment demonstrating methylation of
H3K9 at the ade61 target loci in sms1, 3, 4, 6 and 8. One representative
biological replicate is shown. d, ade61 silencing in sms1, 3, 4, 6 and 8 is Dcr1-
dependent. e, Resequencing of EMS-mutagenized S. pombe strains. From
outside to inside, the tracks show the genomic location, the average coverage
per window of 10 kb (black line, scale from 0 to 30), the number of sequence
variations identified before filtering in all strains per window of 10 kb
(blue bars, scale from 0 to 90) and the five mutations that passed the filtering
and overlapped with Paf1C genes (red lines, the two mutations in Paf1 are
too close to be resolved individually). f, Table lists mutations mapped by
whole-genome sequencing. In Dcr1-dependent mutants, we mapped
mutations in the genes SPBC651.09c, SPAC664.03, SPBC13E7.08c and
SPBC17G9.02c whose homologues in budding yeast encode for protein
subunits of the Paf1 complex.
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Extended Data Figure 4 | Mutant alleles for the homologues of all five
subunits of Paf1C enable siRNAs to induce gene silencing in trans. a, ade61

siRNAs reduce ade61 mRNA levels in all Paf1C mutant strains identified
in this study. Whole-genome tiling arrays were used to assess gene expression in
the mutant cells indicated. y axis is in linear scale. b, C-terminally tagged Tpr1

and Cdc73 are hypomorphic. Full deletions of the tpr11 and cdc731 genes
cause retarded growth phenotypes (Extended Data Fig. 8c). By contrast,
tpr1-3xFLAG and cdc73-3xFLAG grow normally, and display ade6-hp siRNA-
mediated repression of the ade61 gene.
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Extended Data Figure 5 | Expression of synthetic siRNAs in paf1-Q264Stop
cells is sufficient to trigger stable repression of protein coding genes in trans.
a, Left, the paf1-Q264Stop mutation was introduced into cells that express
synthetic ura4-hp siRNAs15. Right, wild-type (paf11) and paf1-Q264Stop were
grown in the presence or absence of 5-FOA. Red arrow indicates paf1-Q264Stop
colonies growing on FOA-containing medium. Note that these colonies
could be propagated in non-selective medium without losing the repressed
state. b, In S. pombe, artificial tethering of the RITS complex to mRNA
expressed from the endogenous ura41 locus using the phagelN protein results
in de novo generation of ura41 siRNAs. These siRNAs load onto RITS and are
necessary to establish heterochromatin at the ura41 locus in cis. However,
like ura4-hp siRNAs, they are incapable of triggering the repression of a second
ura41 locus in trans18. To test whether ura41 siRNAs produced as a result
of Tas3lN tethering to ura41::5BoxB mRNA (chromosome III) can act
in trans to silence a second ura41 allele (leu1D::ura41, chromosome II),
paf11 was mutated and ura41 repression was assessed by FOA silencing
assays. Whereas 5-FOA was toxic to both paf11 and paf1-Q264Stop cells in the
absence of ura41 siRNAs (Tas3 not fused to lN), FOA-resistant colonies

appeared upon Tas3-lN tethering, demonstrating that siRNAs generated from
the ura41::5BoxB locus can initiate repression of the second ura41 copy
expressed from the leu11 locus. Notably, siRNA-mediated ura41 repression
in trans was more pronounced in the absence of the RNase Eri1. We have
previously shown that the levels of ura41::5BoxB-derived siRNA are higher in
eri1D cells41. We note that trans-silencing of the second ura41 allele
occasionally occurs in paf11 cells in the absence of Eri1 (ref. 18). However, in
contrast to paf1-Q264Stop cells, the repressed state of ura41 is not stably
propagated. Hairpin symbols downstream of the ura41 ORF denote BoxB
sequences. They form stem–loop structures when transcribed and are bound
by the lN protein. c, ade61 silencing assay demonstrating that also the
endogenous ade61 gene is repressed if ade6-hp siRNAs are expressed from the
nmt11 locus in paf1-Q264Stop cells. Silencing assay was performed with
two freshly generated (naive) paf1-Q264Stop mutant strains. A few white
colonies in which heterochromatin has not yet formed are discernable.
Such white colonies were picked to determine heterochromatin initiation
frequencies shown in Fig. 2.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015



Extended Data Figure 6 | ade61 siRNAs trigger de novo methylation of
H3K9 at homologous ade61 sequences in cis and in trans. a, ade6-hp RNA
producing locus and siRNA target loci in trans in the sms0 strain. ade6-704
is a loss-of-function allele of the endogenous ade61 gene and serves as a
positive control in the silencing assays. b, c, ade61 siRNAs direct the
methylation of H3K9 at ade6 targets in cis (green) and in trans (red) in
Paf1C mutant cells. H3K9me2 for trp11::ade61 is shown in Fig. 1d.

Quantitative PCR was performed with locus-specific primers. Error bars,
s.e.m.; n 5 3 technical replicates. d, e, ChIP experiments to assess ade61

transcriptional activity. H3K36me3 levels were normalized to total H3 levels.
snu61 is transcribed by RNAPIII and serves as background control. Error bars,
s.e.m.; n 5 3 independent biological replicates; P values were calculated
using the one-tailed Student’s t-test.
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Extended Data Figure 7 | Pronounced siRNA-directed heterochromatin
formation in trans during meiosis. a, White (naive) cells that had not yet
established heterochromatin at the trp11::ade61 locus were isolated from
populations of freshly generated paf1-Q264Stop strains and crossed with paf11

cells. Both mating partners expressed ade6-hp siRNAs and contained the same
trp11::ade61 reporter. Spores were dissected on YE plates and incubated for
3–4 days at 30 uC. Note the non-Mendelian inheritance pattern of the parental
white phenotype and the high incidence of heterochromatin formation (red
phenotype) in paf1-Q264Stop cells after meiosis. b, Spores from 43 tetrads were
dissected in total. Colonies formed by the individual spores (a) were then struck
on YE plates and incubated for 3–4 days at 30 uC, followed by replica-plating
onto YES-G418 and YES1nourseothricin (Nat) plates for genotyping. Thus,
the cells visible on the YE plates have gone through roughly 50–80 mitotic
divisions after mating and sporulation. This analysis shows that de novo

formation of heterochromatin by trans-acting siRNAs during meiosis occurs
more frequently than in mitosis. However, once established, heterochromatin is
remarkably stable in mitotic cells (see also Fig. 2). Notably, growth of some
paf1-Q264Stop descendants was reduced on YES1Nat plates, demonstrating
spreading of heterochromatin into the neighbouring Nat-resistance cassette
that marks the nmt11::ade6-hp1 locus (see Extended Data Fig. 1). Note
that genes repressed by heterochromatin can be derepressed under strong
negative selection. Thus, this observation indicates extraordinary repressive
activity of the heterochromatin that forms in cis at the ade6-hp siRNA-
producing locus. Finally, paf11 cells (no growth on YES-G418 or PMG-LEU)
never turned red, demonstrating the high repressive activity of Paf1. This
explains unsatisfactory results of previous attempts to induce the formation of
stable heterochromatin in trans by expressing synthetic siRNAs.
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Extended Data Figure 8 | Effect of Paf1C mutations on global gene
expression and silencing. a, The effect of the Paf1C mutations on genome
expression was assessed by hybridizing total RNA to whole-genome tiling
arrays. The parental wild-type strain, all Paf1C point mutations discovered in
the screen, and full deletions of the paf11 and leo11 genes were included in
the analysis. To compare the genome-wide expression profiles of the mutants
with the wild-type strain, a principal component analysis (PCA) was performed
on the data obtained for two biological replicates of each strain. Principal
component (PC) 1 and 2 explained 41.5% and 16.4% of the variance between
samples and were selected for visualization, revealing that cdc73-G313R and

paf1D cells are most different from wild-type cells. All the other mutants
clustered together in a group of samples that also includes wild type,
demonstrating that RNA steady-state levels are only minimally affected in these
mutants. Note that leo1D is more similar to wild type than paf1D, as well as
that paf1D clusters separately from the Paf1C point mutants. b, Pairwise
comparisons of gene expression between wild-type and paf1 mutant strains.
c, leo1D cells have no growth defect but are susceptible for de novo formation
of heterochromatin by siRNAs acting in trans. These results suggest that
Leo1 might be a bona fide repressor of small-RNA-mediated
heterochromatin formation.
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Extended Data Figure 9 | Kinetic model for Paf1C-mediated repression of
siRNA-directed heterochromatin formation. a, Paf1C facilitates rapid
transcription and release of the nascent transcript from the DNA template.
Because the kinetics of transcription termination and RNA 39 end processing is
faster than RITS binding and CLRC recruitment, stable heterochromatin
and long-lasting gene silencing cannot be established. b, In Paf1C mutant cells
identified in this study, elongation of RNA polymerase II, termination of
transcription, and the release of the nascent transcript from the site of
transcription is decelerated. This results in an accumulation of RNA

polymerases that are associated with nascent transcripts, opening up a window
of opportunity for the siRNA-guided RITS complex to base-pair with nascent
transcripts and recruit CLRC. Consequently, highly stable and repressive
heterochromatin is assembled, which is accompanied by the generation of
secondary siRNAs covering the entire locus (not depicted in this scheme).
Notably, our results demonstrate that impaired transcription termination but
not elongation is sufficient to allow silencing. However, to confer robustness to
the repressed state, both transcription termination and release of the RNA
transcript from the site of transcription must be impaired concomitantly.
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Extended Data Figure 10 | Formation of ectopic heterochromatin.
a, Differential gene expression compared to differential antisense siRNA
expression in leo1D. Gene expression profiles were obtained with whole-
genome tiling arrays and small RNA profiles by deep sequencing. Genes
neighbouring the nmt11::ade6-hp1, trp11::ade61 and ade6-704 loci are
marked in colour (see also Supplementary Table 1). b, siRNA reads mapping to
the ade6-704 locus in leo11 and leo1D strains. Red, plus strand; blue, minus

strand. Intronic rpl2302 siRNAs in leo1D cells indicate co-transcriptional
double-stranded RNA synthesis by RDRC before splicing. c, ChIP experiment
showing H3K9me2 enrichments on genes surrounding the ade6-704 locus in
leo11 and leo1D cells. Enrichments were calculated relative to background
levels obtained in clr4D cells and normalized to adh11. Error bars, s.d.; mean of
n 5 2 independent biological replicates.
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SUMMARY

Faithful propagation of functionally distinct chro-
matin states is crucial for maintaining cellular iden-
tity, and its breakdown can lead to diseases such
as cancer. Whereas mechanisms that sustain
repressed states have been intensely studied, regu-
latory circuits that protect active chromatin from in-
activating signals are not well understood. Here we
report a positive feedback loop that preserves the
transcription-competent state of RNA polymerase
II-transcribed genes. We found that Pdp3 recruits
the histone acetyltransferase Mst2 to H3K36me3-
marked chromatin. Thereby, Mst2 binds to all tran-
scriptionally active regions genome-wide. Besides
acetylating histone H3K14, Mst2 also acetylates
Brl1, a component of the histone H2B ubiquitin ligase
complex. Brl1 acetylation increases histone H2B
ubiquitination, which positively feeds back on tran-
scription and prevents ectopic heterochromatin
assembly. Our work uncovers a molecular pathway
that secures epigenome integrity and highlights the
importance of opposing feedback loops for the par-
titioning of chromatin into transcriptionally active
and inactive states.

INTRODUCTION

Chromatin exists in different states that are intimately linked

with gene activity. Active chromatin is associated with histone

H3 lysine 36 (H3K36) methylation in all eukaryotes. H3K36-

specific methyltransferases contain a catalytic SET domain,

but they have varying preferences to catalyze mono-, di-, or tri-

methylation of H3K36. In yeast, the conserved SET domain-

containing protein 2 (Set2) performs all H3K36 methylation

and is recruited to chromatin co-transcriptionally via direct

interaction with RNA polymerase II (Wagner and Carpenter,
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2012). Specific reader proteins that interact with histone

deacetylases (HDACs) recognize methylated H3K36, which is

necessary for HDAC activity within active genes (Drouin

et al., 2010; Govind et al., 2010; Nicolas et al., 2007). This com-

pensates for transcription-coupled disruption and hyperacety-

lation of chromatin, which would otherwise activate cryptic

promoters within coding sequences (Carrozza et al., 2005; Nic-

olas et al., 2007). H3K36me2 is sufficient for localized HDAC

activity on protein-coding genes in both Saccharomyces cere-

visiae and Schizosaccharomyces pombe (Li et al., 2009; Suzuki

et al., 2016), suggesting that H3K36me3 may have a distinct

function.

How the active chromatin state is maintained and protected

from aberrant inactivation is not well understood. In contrast,

we have a detailed understanding of how repressed heterochro-

matin is maintained due largely to genetic studies in S. pombe

and other model organisms. S. pombe shares many of the het-

erochromatin-specific histone modifications (H3K9 methylation

and histone hypoacetylation) and protein components with ani-

mals and plants. Constitutive heterochromatin is found at the

pericentromeric DNA repeats, telomeres, and the silent mat-

ing-type loci in S. pombe. As in all other eukaryotes studied,

cis-acting DNA elements have evolved to specify the assembly

of these heterochromatic regions (Beisel and Paro, 2011;

Moazed, 2011). Additionally, the RNAi pathway is directly

involved in the formation of heterochromatin at these loci, and

it is indispensable for the stable propagation of pericentromeric

heterochromatin (Grewal, 2010). The RNA-induced transcrip-

tional silencing complex (RITS), which includes the RNAi protein

Ago1, is directed to chromatin co-transcriptionally via base

pairing of the Ago1-bound small RNA with complementary

sequences in RNA polymerase II-generated nascent transcripts

(Shimada et al., 2016). RITS recruits the sole S. pombe H3K9

methyltransferase Clr4 (Bayne et al., 2010), which methylates

H3K9 to form a binding site for heterochromatin protein 1

(HP1) homologs. RITS also helps recruit an RNA-dependent

RNA polymerase-containing complex to amplify the process

by generating more double-stranded RNA substrate for Dcr1

(Motamedi et al., 2004; Sugiyama et al., 2005). This creates a

positive feedback loop on centromeric repeats, guaranteeing
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Figure 1. Mst2 Counteracts siRNA-Directed De Novo Heterochromatin Assembly

(A) Scheme: de novo silencing in trans by siRNAs from a hairpin RNA-producing locus is repressed by Paf1C and other protein complexes.

(B) Experimental setup: white (expressed) or red (silenced) colonies were selected, and their descendants were analyzed for initiation and maintenance of the

silenced state, respectively.

(C) Descendants were categorized by color, and the percentage of colonies containing non-white (red) cells was calculated. The p value was calculated using the

two-sided, two-sample Student’s t test (n R 3 individual white colonies). Exact numbers are listed in the STAR Methods.

(D) Silencing assays were performed with indicated mutant strains to illustrate the difference between initiation and maintenance of silencing. A representative

experiment is shown. Note that quantification shown in (C) was not based on this assay, because individual colonies cannot be clearly distinguished. For (C) and

(D), see the STAR Methods for details.
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high levels of H3K9 methylation and rapid turnover of centro-

meric RNAs into small interfering RNAs (siRNAs) to maintain a

repressive chromatin state.

H3K9methylation also promotes the recruitment of the class II

HDAC Clr3, which deacetylates H3K14 and restricts the access

of RNA polymerase II to heterochromatin, thus limiting transcrip-

tion (Bjerling et al., 2002; Fischer et al., 2009; Motamedi et al.,

2008; Sugiyama et al., 2007). In contrast, acetylation of H3K14

is associated with active chromatin, and it is mediated by

the Gcn5 and Mst2 histone acetyltransferases (HATs). Interest-

ingly, deletion of the mst2+ gene strengthens heterochromatin

silencing at telomeres (Gómez et al., 2005), and it bypasses

the requirement of RNAi to maintain centromeric heterochro-

matin (Reddy et al., 2011). Mst2 also potentiates the phenotype

of cells lacking Epe1, which is a putative H3K9 demethylase
2 Molecular Cell 67, 1–14, July 20, 2017
(Wang et al., 2015). These results indicate that Mst2 antagonizes

heterochromatin silencing; however, the underlyingmechanisms

are unknown.

Whereas we have an advanced understanding of RNAi-medi-

ated maintenance of heterochromatin, relatively little is known

about de novo formation of heterochromatin because this is

repressed by the RNA polymerase II-associated factor 1 com-

plex (Paf1C). In Paf1C mutant cells, siRNAs initiate gene

silencing in an all-or-nothing fashion characteristic of an epige-

netic silencing response. Once established, the OFF state is sta-

bly propagated even in the absence of the primary siRNAs (Ko-

walik et al., 2015; Shimada et al., 2016). Yet, the rate at which

individual cells initiate silencing is quite low, implying the exis-

tence of additional repressive activities (Figure 1A). To isolate

factors that are specifically involved in initiating heterochromatin
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assembly, but not maintenance, we tested previously described

chromatin regulators in combination with Paf1Cmutants, andwe

identified the HAT Mst2. We show that Mst2 represses RNAi-

mediated heterochromatin formation specifically during the initi-

ation phase of heterochromatin assembly. This is achieved by

H3K36me3-dependent sequestration of Mst2 on actively tran-

scribed genes, which is mediated by its interaction partner

Pdp3. By restricting Mst2 activity to transcribed protein-coding

genes, H3K36me3 maintains those in a euchromatic state. Sur-

prisingly, we discovered that Mst2 acetylates a specific lysine in

Brl1, a component of the histone H2B ubiquitin ligase complex

(HULC), revealing insights into the mechanism by which Mst2

antagonizes the assembly of ectopic heterochromatin and se-

cures epigenome integrity.

RESULTS

Mst2 Counteracts Small RNA-Directed Initiation
of Heterochromatin Assembly
Ectopic heterochromatin formation in S. pombe can be triggered

by the temporary expression of trans-acting primary siRNAs in

cells harboring mutations in Paf1C subunits; however, the fre-

quency of de novo silencing is low (Kowalik et al., 2015). To

identify additional repressors of RNAi-directed heterochromatin

assembly, we tested candidate proteins that have previously

been implicated in chromatin regulation. We used a reporter

strain expressing an RNA hairpin (ade6-hp) complementary to

250 nt of ade6+ and harboring a nonsense mutation in the

paf1+ gene (paf1-Q264Stop) (Kowalik et al., 2015). We chose

ade6+ as a reporter gene because it allowed us to quantify the

initiation of silencing in individual colonies that derived from sin-

gle cells. When grown on limiting adenine indicator plates, cells

with active or inactive ade6+ form white or red colonies, respec-

tively. To determine the frequency of initiation of silencing, we

grew single- and double-mutant strains of paf1-Q264Stop alone

or in combination with a deleted candidate gene on low-adenine

originator plates, selected white colonies, and seeded a given

number of (white) cells at single-cell density on low-adenine

assay plates (Figure 1B). Subsequent counting of the colonies

containing red cells allowed us to calculate the percentage of

cells that had initiated ade6+ silencing since they were seeded.

This analysis revealed that deletion of the mst2+ gene, which

encodes one of two MYST family HATs (Gómez et al., 2005),

dramatically increased the rate at which paf1-Q264Stop cells

silenced the ade6+ reporter gene: 11% of paf1-Q264Stop cells

formed red colonies (inactive ade6+), whereas more than 90%

of the mst2D paf1-Q264Stop double-mutant cells inactivated

ade6+ (Figure 1C). Importantly, although deletion ofmst2+ alone

did enable ade6+ silencing (Figure 1C), the repressed state was

poorly maintained (Figure 1D). In contrast, ade6+ silencing was

stably propagated inmst2D paf1-Q264Stop double-mutant cells

(Figure 1D).

Therefore, we have identified Mst2 as a repressor of RNAi-

mediated heterochromatin formation. Mst2 acts specifically

during the initiation phase of heterochromatin assembly as, in

contrast to Paf1C, it does not disrupt heterochromatin once

it has been established (Figure 1D and results described

hereafter).
Mst2 Prevents RNAi-Dependent Spreading of
Heterochromatin
The siRNAs trigger de novo formation of heterochromatin by

guiding the H3K9 methylation machinery to complementary

target sites (Kowalik et al., 2015). Consistent with this, we

observed high levels of H3K9me2 at the endogenous ade6+

locus in both paf1-Q264Stop single and mst2D paf1-Q264Stop

double mutants, but not in wild-type cells (Figure 2A). As

reported previously, H3K9me2 was not restricted to ade6+ but

spread into neighboring regions (Kowalik et al., 2015; Shimada

et al., 2016), resulting in gene repression (Figures 2A and S1A).

Remarkably, this spreading was greatly enhanced in the dou-

ble-mutant strain. Whereas H3K9me2 enrichments dropped to

wild-type levels in paf1-Q264Stop cells within a few kilobases

(kb) around ade6+, concomitant deletion of mst2+ led to a sub-

stantial increase and extensive spreading of H3K9 methylation

and gene silencing up to 30 kb downstream of ade6+ (Figure 2A).

Another characteristic of RNAi-induced de novo formation of

heterochromatin is the subsequent production of secondary

siRNAs complementary to the target locus (Jain et al., 2016; Ko-

walik et al., 2015; Shimada et al., 2016; Simmer et al., 2010). By

sequencing small RNAs, we observed that these secondary

siRNAs were also more abundant in paf1-Q264Stop mst2D cells

compared to the paf1-Q264Stop single mutant, particularly

beyond the nucleation site targeted by the trans-acting primary

siRNAs (Figure 2A). This suggests that de novo targeting of

RITS to the neighboring genes via cis-acting secondary siRNAs

mediates H3K9me2 spreading. However, H3K9me2 was still

strongly enriched20 kbdownstreamof the ade6+ gene in the dou-

ble-mutant cells, whereas secondary siRNAs mapping to this re-

gion were barely detectable. Thus, it is possible that H3K9me2

spreads independently of siRNAs in the absence ofMst2. Alterna-

tively, very low levels of siRNAs might be sufficient to promote

spreading of heterochromatin in cis. We could not distinguish be-

tween these two possibilities at the ade6+ locus, because RNAi is

absolutely necessary to maintain ectopic heterochromatin at this

site (Kowalik et al., 2015; Shimada et al., 2016) (Figure S1B).

Therefore, we analyzed the effect of mst2+ deletion on the

boundary of constitutive heterochromatin at centromere 1.

Similar to genes flanking ade6+, we observed increased

H3K9me2 at the centromeric heterochromatin IRC1R boundary

and spreading to its proximal genes emc5+ and rad50+ in

mst2D cells (Figure 2B). Thus, consistent with a previous study

(Wang et al., 2015), Mst2 counteracts spreading of H3K9methyl-

ation also at this locus. This is interesting because H3K9me2

levels are low in wild-type cells, despite abundant siRNAs that

originate from the IRC1R boundary (Figure 2C) (Keller et al.,

2013), indicating that Mst2 counteracts small RNA-directed initi-

ation of H3K9methylation at this locus aswell. Notably, also here

we observed H3K9me2 spreading into the more distal emc5+

and rad50+ genes without the concomitant production of high

levels of secondary siRNAs (Figure 2C). Because the RNAi ma-

chinery is not required to maintain H3K9 methylation at pericen-

tromeric dg/dh repeats in the absence of Mst2 (Reddy et al.,

2011), we could delete ago1+ and dcr1+ in the mst2D back-

ground to test whether a functional RNAi pathway is necessary

for the observed cis-spreading of H3K9me2. This revealed that

RNAi is indeed essential for H3K9me2 spreading into the
Molecular Cell 67, 1–14, July 20, 2017 3



Figure 2. Large Heterochromatin Domains

Form upon Removal of mst2+

(A) Upperpanel: ChIP analysis ofH3K9me2showing

enrichments at the target gene ade6-704 and

neighboring regions. Error bars indicate SD (n R 3

independent biological replicates). The y axis is

shown in logarithmic scale.Middleand lowerpanels:

siRNAs (middle panel) and RNA (lower panel) reads

mapping to the ade6-M210 locus and neighboring

regions inwild-type (gray),paf1-Q264Stop (red), and

paf1-Q264Stop mst2D cells (blue), respectively, are

shown. Read counts were normalized to the total

read number and are depicted in log2 (middle panel)

or linear scale (lower panel).

(B) H3K9me2 enrichments at the right centromere

boundary of chromosome 1 (IRC1R). ChIP en-

richments are shown relative to the centromeric

repeats dg/dh, which was set at 100%. Error bars

indicate SD (n = 2 or 3 independent biological

replicates; mst2D ago1D and mst2D dcr1D or

wild-type (WT) and mst2D, respectively).

(C) siRNAs mapping to IRC1R and neighboring

regions in wild-type (gray), paf1-Q264Stop (red),

and paf1-Q264Stop mst2D cells (blue). Read

counts were normalized to the total read number

and are depicted in log2 scale.

See also Figure S1.
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adjacent euchromatic regions in the absence ofMst2 (Figures 2B

and S1C). Together, our results reveal that Mst2 prevents RNAi-

directed de novo assembly and spreading of heterochromatin.

Mst2 Is Excluded from Constitutive Heterochromatin
Because Mst2 prevents spreading of constitutive and synthetic

heterochromatin, it is unlikely thatMst2 is recruited to heterochro-

matin boundaries in a sequence-specific manner. To assess the
4 Molecular Cell 67, 1–14, July 20, 2017
localization of Mst2 genome-wide in wild-

type cells, we used DNA adenine methyl-

transferase identification (DamID), a sensi-

tive chromatin-profiling technique that we

and others have previously adapted for

use in S. pombe (Steglich et al., 2012;

Woolcock et al., 2011). We generated

strains that express Mst2 fused to DNA

adenine methylase (Dam), and we as-

sessed GATC methylation, and thereby

Mst2 binding, throughout the S. pombe

genome using tiling arrays.

Comparing Dam-Mst2-binding profiles

with genome-wide H3K9 methylation data

(Keller et al., 2013) revealed a striking

anti-correlation (Figure 3A). Whereas

Mst2bound throughout the entire genome,

it was strongly depleted from constitutive

heterochromatin found at centromeres,

telomeres, and thesilentmating-type locus

(Figure 3B). We did not observe specific

Mst2enrichmentat thebordersofconstitu-

tive heterochromatin, consistent withMst2
not being a bona fide boundary factor (Figure 3C). In contrast, we

observed a preferential enrichment of Mst2 on RNA polymerase

II-transcribed protein-coding genes (Figure 3D). Of note, regions

transcribed by RNA polymerases I and III, such as tRNA, small

nucleolar RNAs (snoRNAs), and rRNAs, were depleted of Mst2,

similar to heterochromatic regions. To validate these data with

analternativemethod,weperformedchromatin immunoprecipita-

tion (ChIP) with cells expressing C-terminally FLAG-tagged Mst2.



Figure 3. Mst2 Is Excluded from Constitutive Heterochromatin and Specifically Associates with Transcriptionally Active Chromatin

(A) Mst2 DamIDmaps for all three chromosomes (bottom) compared to previously generated H3K9me2ChIP-sequencing data (top; Keller et al., 2013). The signal

of Dam-Mst2 (normalized to Dam only) was averaged over 500 probes and is shown in log2 scale. The x axis shows position on chromosomes.

(B) Enrichment of Dam-Mst2 at different genomic regions. Two independent replicates are shown (scale in log2).

(C) Zoom of DamID map from (A) on centromere of chromosome 1.

(D) Enrichment of Dam-Mst2 at different euchromatic elements. Two independent replicates are shown (scale in log2).

(E and F) ChIP enrichment of Mst2-FLAG (blue) compared to untagged Mst2 (black) over the mto1+/tef3+ locus (E) and the ade6-704 locus (F). ChIP data are

shown relative to the mean of the untagged control with the background subtracted (n = 4 ± SEM).
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Consistent with our DamID results, we observed Mst2 preferen-

tially enriched on transcribed genes, including bub1+, ade6+,

and vtc4+ (Figures 3E and 3F), the region targeted for de novo for-

mationof heterochromatin byprimary ade6 siRNAs in our initiation

of silencing assays. Generally, Mst2 bound weakly to intergenic

and promoter proximal regions and most strongly in the body of

transcribed genes (Figures 3D–3F).

Pdp3 Binding to H3K36me3 Confines Mst2 to
Euchromatin
How Mst2 is recruited to active genes is unclear. It is known to

physically interact with a number of proteins to form a complex,
which includeshomologsofS.cerevisiaeNuA3HATcomplexsub-

units (Wang et al., 2012). One of its subunits, Pdp3, contains a

PWWPdomain (Figure4A),whichbindsmethylated lysinesandar-

ginines (Adams-Cioaba and Min, 2009; Maurer-Stroh et al., 2003;

Vermeulen et al., 2010). Interestingly, theS.cerevisaePdp3homo-

log recognizes H3K36me3 (Gilbert et al., 2014), which is enriched

in the gene body and the 30 UTR of active genes (Bell et al., 2007).

This pattern is highly reminiscent of Mst2 localization (Figure 3D).

Therefore, we speculated that Mst2 is targeted to transcribed

genes via Pdp3 binding to H3K36me3. Indeed, we observed a

positive correlation between our Dam-Mst2 and published

H3K36me3 ChIP on microarray (ChIP-on-chip) data (Wilhelm
Molecular Cell 67, 1–14, July 20, 2017 5



Figure 4. Pdp3 Anchors the Mst2 Complex

to Euchromatin via H3K36me3

(A) Scheme of the Mst2 complex and protein

domain organization of Pdp3.

(B and C) Correlation between enrichment of Dam-

Mst2 and ChIP-on-chip data of H3K36me3 in wild-

type (B) and pdp3D cells (C). Two independent

biological replicates are shown (in log2 scale).

ChIP-on-chip data are from Wilhelm et al. (2011).

(D and E) ChIP enrichment of Mst2-FLAG in WT

(blue) or pdp3D (red) cells compared to an un-

tagged wild-type strain (black) at the mto1+/tef3+

locus (D) or the ade6-704 locus (E).

(F) ChIP enrichment of FLAG-Pdp3 (blue) or FLAG-

Pdp3 mutant (pdp3-F109A, red) compared to un-

tagged wild-type strain (black) at the mto1+/tef3+

locus.

(G) ChIP ofMst2-FLAG inWT (blue), set2D (purple),

and set2-SRID (green) cells at the ade6-704 locus.

(H) ChIP of H3K36me3 in WT (orange), set2D

(purple), and set2-SRID (green) cells at the ade6-

704 locus. ChIP data in (D)–(G) are shown relative

to the mean of the untagged control with the

background subtracted; ChIP data in (H) are

shown relative to the mean of WT over the entire

chromatin region examined. All ChIP experiments

have been performed with n = 3–4 ± SEM.

(I) Initiation frequencies in paf1-Q264Stop cells

additionally deleted formst2+, pdp3+, or set2+ as in

Figure 1D. The p values were calculated using the

two-sided, two-sample Student’s t test (n R 4 in-

dependent white colonies). Exact numbers are

listed in the STAR Methods.
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et al., 2011) (Figure 4B; R2 = 0.25). This positive correlation was

completely lost upon deletion of the pdp3+ gene (Figure 4C;

R2 = �0.27). Similarly, the enrichment of Mst2 on transcribed

genes, including bub1+, ade6+, and vtc4+, was abolished in

pdp3Dcellswhen interrogatedbyChIP (Figures4Dand4E). These
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results are consistent with Mst2 recruit-

ment to transcribed genes via Pdp3. This

is further supported by ChIP experiments

with FLAG-tagged Pdp3, which revealed

very similar binding patterns for Mst2 and

Pdp3 on transcribed genes (Figures 4D

and 4F). Importantly, Mst2 binding at the

ade6+ and bub1+ genes was abolished in

set2Dmutants (Figure 4G), demonstrating

that methylation of H3K36 is necessary

for the recruitment ofMst2 to actively tran-

scribed genes. Moreover, Pdp3 binding to

chromatin was lost when we introduced a

single point mutation (F109A) in the bona

fide recognition site of the PWWP domain

(Figure 4F).

H3K36me3 is deposited co-transcrip-

tionally by the methyltransferase Set2

(Morris et al., 2005). Set2 is recruited to

the transcribing RNA polymerase II

through its conserved C-terminal Set2-
Rpb1 interaction (SRI) domain (Kizer et al., 2005). Intriguingly,

mutations in the SRI domain of S. pombe Set2 cause a specific

loss of H3K36me3, without affecting H3K36me2 (Suzuki et al.,

2016). This enabled us to determine whether Pdp3 is specific

to H3K36me3 or whether it would also recognize H3K36me2.
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Resembling Mst2 binding, H3K36me3 was enriched throughout

the gene bodies of ade6+ and bub1+ but depleted from the inter-

genic region. As expected, H3K36me3 was completely abol-

ished in set2D cells and in set2-SRID cells (Figure 4H). Impor-

tantly, Mst2 binding at the ade6+ and bub1+ genes was also

abolished in both mutants (Figure 4G). Together, these results

reveal that Pdp3 specifically recognizes H3K36me3, but not

H3K36me2, to recruit Mst2 to transcribed genes.

Thus far we have shown that the HATMst2 is recruited to tran-

scribed genes via H3K36me3 and that it acts as a suppressor of

RNAi-directed heterochromatin assembly and spreading. To

assess whether these functions are connected, we quantified

the initiation of ade6+ silencing in mutants unable to recruit

Mst2 to transcribed genes (i.e., pdp3D and set2D cells). Similar

to mst2+ deletion (mst2D paf1-Q264Stop), deletion of pdp3+

(pdp3D paf1-Q264Stop) or set2+ (set2D paf1-Q264Stop) also

initiated silencing more frequently than the paf1-Q264Stop

single mutant (Figure 4I). This demonstrates a functional link be-

tween H3K36 modification and RNAi-directed heterochromatin

formation. Yet, we note that although phenocopying each other,

pdp3D and set2D did not fully phenocopy an mst2D mutant in

this assay. This indicates that Mst2 remains partially repressive

in the absence of H3K36me3 binding.

H3K36me3 Preserves Euchromatin and Safeguards
Heterochromatic Genes from Illegitimate Activation
The foregoing results establish Pdp3 as a reader of the

H3K36me3 mark that recruits Mst2 to active genes. Neverthe-

less, in the absence of Pdp3 and Set2 there was residual Mst2

chromatin association above background (Figures 5A and

S2A). Most prominently, Mst2 exclusion from constitutive het-

erochromatin was largely abolished in both pdp3D and set2D

cells (Figures 5A and S2A). In contrast, deletion of set1+, which

encodes the histone methyltransferase that methylates H3K4,

had no effect on Mst2 localization (Figure S2B).

These results suggest that H3K36me3-mediated recruitment

of Mst2 to transcribed genes serves a dual function: it prevents

RNAi-mediated heterochromatin formation in euchromatin, and

it sequesters Mst2 away from heterochromatin to prevent aber-

rant activation of heterochromatic genes. In further support of

the latter, it was previously reported that deletion of set2+ or

pdp3+ alleviated heterochromatin silencing (Braun et al., 2011;

Chen et al., 2008; Creamer et al., 2014; Matsuda et al., 2015; Su-

zuki et al., 2016) (Figure S2C). To test this more directly, we in-

hibited Mst2 recruitment to active genes using pdp3D cells,

and we analyzed the effect on silencing of heterochromatic

genes. We observed increased expression of centromeric re-

peats and subtelomeric genes in pdp3D cells, but not in mst2D

cells (Figures 5B–5D). Importantly, these heterochromatin-

silencing defects in the pdp3D background were rescued by

deleting mst2+ (Figures 5C, S2C, and S2D).

To further support our model that Mst2 recruitment to active

genes prevents it from aberrantly activating heterochromatic

genes, we fused the high-affinity DNA-binding protein LexA

to wild-type Mst2 (LexA-Mst2) and catalytically inactive Mst2

(LexA-Mst2*[E274Q]) (Reddy et al., 2011), both expressed

from the endogenous mst2+ locus. In addition, we inserted an

ade6+ reporter gene linked to four LexA-binding sites into peri-
centromeric heterochromatin on chromosome 1 by homologous

recombination (Figure 5E). Tethering of LexA-Mst2, but not

LexA-Mst2*, caused a mild silencing defect of the heterochro-

matic ade6+ reporter (Figure 5F). Because H3K36me3 ought to

sequester LexA-Mst2 away from heterochromatin, we would

expect a stronger silencing defect in cells lacking Pdp3 or

Set2. Indeed, ade6+ silencing was almost completely abolished

in pdp3D (Figure 5G) and set2D cells (Figure 5H). Expression of

the euchromatic ade6-M allele remained unaffected in those ex-

periments (Figure S2E).

Therefore, we conclude that the Pdp3 subunit of the Mst2

complex serves two purposes: first, it focuses Mst2 activity on

transcribed genes to maintain those in a euchromatic state;

and second, it prevents Mst2 from functioning promiscuously

and thereby safeguards heterochromatic genes from illegitimate

activation.

Mst2 Acetylates Lysine 242 of the E3 Ubiquitin Protein
Ligase Brl1
Mst2 is a MYST family HAT that specifically acetylates K14 on

histone H3 in vitro and in vivo (Wang et al., 2012). However,

H3K14 acetylation levels remained unchanged at centromeres,

telomeres, or euchromatic protein-coding genes in mst2D cells

(Figures S3A–S3C). Notably, Mst2 functions together with

another HAT, Gcn5, to regulate global levels of H3K14ac

(Wang et al., 2012). Thus, both HATs might interfere with the

initiation of heterochromatin assembly through the acetylation

of H3K14. However, we observed neither spreading of hetero-

chromatin nor strongly enhanced initiation of heterochromatin

assembly triggered by siRNAs in gcn5D cells (Figures S3D and

S3E). Thus, the repressive effect on de novo formation of hetero-

chromatin is unique toMst2, and it appears to bemediated by an

additional, unknown target of Mst2.

Therefore, we explored whether Mst2 also acetylates non-his-

tone substrates using a liquid chromatography triple-stage mass

spectrometry (LC-MS/MS/MS) approach (Aebersold and Mann,

2016; McAlister et al., 2014). Briefly, we extracted total protein

from wild-type and HAT mutant cells and digested with Lys-C

and Trypsin. The total protein digest was used to quantify global

protein changes. Additionally, a fraction of the digest was

enriched for peptides containing acetylated lysine using an

anti-acetyl lysine-specific antibody. Before the LC-MS/MS/MS

analysis on the Orbitrap Fusion Tribrid Mass spectrometer,

samples were labeledwith tandemmass tags (TMTs) and pooled

(Figure 6A). MS-based analysis revealed that the S. pombe pro-

teome remains largely unchanged in mst2D and pdp3D cells

compared to wild-type cells (Figures S4A–S4C). The few pro-

teins that changed in abundance were encoded by genes that

reside in the vicinity of telomeric heterochromatin. As expected

from our RNA measurements, protein levels of subtelomeric

genes decreased in mst2D cells and increased in pdp3D cells

(Figures S4A–S4C). In contrast, deletion of gcn5+ caused sub-

stantial proteome-wide changes in protein abundance (Fig-

ure S4D). These results consolidate our findings described

above and highlight that Gcn5 and Mst2 have distinct roles in

controlling genome expression.

Intriguingly, quantification of the acetyl-lysine-enriched sam-

ples revealedwidespreadacetylomechanges ingcn5Dcompared
Molecular Cell 67, 1–14, July 20, 2017 7



Figure 5. Promiscuous Mst2 Activity in the Absence of Pdp3 Attenuates Heterochromatin Silencing

(A) Mst2 DamID maps for the centromere of chromosome 1 in WT, pdp3D, and set2D cells. The signal of DamMst2 (normalized to Dam only) was averaged over

500 probes and is shown in log2 scale. The x axis shows position on chromosomes.

(B and D) RNA expression inWT, pdp3D, andmst2D cells at centromere 1 (B) and telomere 1L (D) assessed by RNA-seq. Relative read counts normalized to total

read number (axis scale in log2) are shown.

(C) Relative RNA expression levels of ura4+ (qRT-PCR analysis) at the innermost repeat (imr) in indicated mutants. Shown are the transcript levels relative to WT

after normalization to act1+. Data are represented as mean ± SEM from four independent biological experiments.

(E) Scheme of experimental setup for tethering Mst2 at heterochromatin: Four LexA-binding sites were inserted downstream of the ade6+ reporter at the

outermost repeat (otr) of chromosome 1 (top). The ade6-M210 allele at the euchromatic endogenous locus of ade6 (bottom) was used as a reference.

(F–H) Expression levels of heterochromatic ade6+ reporter relative to euchromatic ade6-M210 allele in WT (F), pdp3D (G), or set2D (H) cells. The p values were

calculated using the two-sided, two-sample Student’s t test. Error bars indicate SD (n R 3 independent biological replicates).

See also Figure S2.
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towild-type cells (Figure S4E). In contrast, only one lysine acetyla-

tion site was significantly decreased in mst2D cells (Figure 6B).

We mapped this Mst2-dependent acetylation site to K242 of the

E3 ubiquitin protein ligase Brl1 (Figure S4F). Importantly, Brl1 pro-

tein abundance remained unaffected in Mst2 and Pdp3 mutants

(Figures S4A–S4C). Furthermore, acetylation of K242 was highly

specific, because acetylation levels of other lysine residues in

Brl1 (K339 and K138) remained unchanged in the absence of

Mst2 (Figure 6B). Thus, in addition to H3K14 (Wang et al., 2012),

Mst2 specifically acetylates the non-histone substrate Brl1 at

lysine 242.

Brl1 Acetylation Antagonizes RNAi-Directed
Heterochromatin Formation
Brl1 is an E3 ligase responsible for the ubiquitination of H2BK119

as part of the HULC complex, which promotes transcription and

antagonizes heterochromatin silencing (Tanny et al., 2007; Zofall

and Grewal, 2007). This raises the intriguing possibility that Mst2

regulates the activity of the HULC complex via the acetylation of

Brl1. To test the role of Brl1 acetylation on H2B monoubiquitina-

tion directly, we substituted Brl1-K242 with glutamine (Q) or argi-

nine (R) to mimic acetyl lysine or non-acetylated lysine, respec-

tively. This revealed an overall reduction of H2B ubiquitination

in brl1-K242R cells compared to wild-type or brl1-K242Q cells

(Figures 6C and 6D). Confirming Brl1 as the sole H2B-ubiquiti-

nating enzyme, H2BK119ubwas undetectable in brl1D cells (Fig-

ure 6C). Moreover, H2BK119ub enrichment at the ade6+ gene

was depleted specifically upon expression of ade6 siRNAs in

paf1-Q264Stop cells (Figure S4G).

Next, we tested whether Brl1-K242 Q and R mutations would

affect RNAi-directed heterochromatin formation. Mimicking an

mst2D phenotype in the presence of a wild-type paf1+ allele,

brl1-K242R cells enabled primary siRNAs to initiate ade6+

silencing. In contrast, brl1-K242Q cells were refractory to ade6

siRNAs (Figure 6E). Remarkably, the brl1-K242Q allele com-

pletely disabled the initiation of ade6+ silencing by trans-acting

siRNAs in both mst2D single- (Figure 6E) and paf1-Q264Stop

mst2D double-mutant cells (Figure 6F). In contrast, the initiation

of siRNA-directed ade6+ silencing in paf1-Q264Stopmst2D cells

was not affected by the Brl1-K242 to R mutation (Figure 6F). We

further observed secondary siRNAs covering the ade6+ gene

(Figure 6G), validating that the observed ade6+ silencing was

indeed mediated by RNAi.

In line with the abovementioned results that Mst2 does not

disrupt heterochromatin once it is established, short-term main-

tenance of ade6+ silencing remained largely unaffected in both

Brl1-K242 Q and R mutants (Figure 6H). However, when cells

were cultivated over several days, silencing was gradually lost

in Brl1-K242Q, but not Brl1-K242R, mutant cells (Figures 6I

and 6J). Hence, long-term maintenance of the silent state is

impaired in the Brl1-K242Q mutant. We conclude that the Brl1-

K242 Q mutation disables siRNA-directed re-initiation of ade6+

silencing and, thus, affects consolidation of the silent state.

These results show that mimicking acetylation of a single

lysine in Brl1 abrogates small RNA-directed initiation of epige-

netic gene silencing. This places Brl1 at the center of a regulatory

circuit that maintains protein-coding genes in an active state.

Conjugation of mono-ubiquitin to H2B has been associated
with active transcription by RNA polymerase II (Jason et al.,

2002; Tanny, 2014). Thus, the observed stimulatory effect on

H2B ubiquitination is expected to feed back positively on tran-

scription. Indeed, we observed that overall H3K4me3 levels

were slightly elevated in brl1-K242Q compared to wild-type or

brl1-K242R cells, indicating augmented transcription initia-

tion (Figures S4H and S4I). Thus, we have discovered an unex-

pected positive feedback loop that maintains transcriptionally

active regions of the fission yeast genome in a euchromatic

state. Because much of the enzymatic machinery involved is

conserved from yeast to human, we anticipate that epigenome

integrity is secured through similar mechanisms also in other or-

ganisms. Although not addressed in our study, it is possible that

RNAi-independent pathways that assemble silent chromatin are

equally counteracted.

DISCUSSION

Studies in a wide variety of eukaryotic systems have established

the cooperation of sequence-dependent specificity factors with

existing repressive histone marks to reinforce the silent chro-

matin state through positive feedback loops as a common prin-

ciple (Gottschling, 2004; Moazed, 2011). Our study highlights

that, like silent chromatin, maintenance of the active chromatin

state equally depends on positive feedback. Because faithful

propagation of active chromatin states through cell divisions is

crucial to maintain cellular identity, we anticipate that multicel-

lular organisms depend on similar mechanisms to shield specific

cell types from differentiation signals. Below we discuss the im-

plications of our findings on our understanding of how chromatin

is partitioned into silent and active domains.

Reinforcement of the Active Chromatin State through
Positive Feedback
Akin to positive feedback loops that reinforce silent chromatin

states (Moazed, 2011), we propose a positive feedback system

that maintains euchromatic genes in an active state that involves

Paf1C and Mst2 (Figure 7A). Both Paf1C and Set2 are recruited

to euchromatin co-transcriptionally through interactions with

RNA polymerase II, which results in high levels of H3K36 methyl-

ation. H3K36me3 is recognized by Pdp3, leading to a high local

concentration of Mst2, which acetylates K242 of the HULC sub-

unit Brl1. HULC is required for the ubiquitination of histone H2B

at lysine 119 (H2Bub), which is universally linked to active gene

transcription, thereby closing the positive feedback loop. Acety-

lation of a non-histone protein by a HAT is intriguing and high-

lights that chromatin phenotypes in HAT or HDAC mutants

may not necessarily be caused by histone acetylation. Because

there is evidence from other systems that histone modifications

deposited co-transcriptionally regulate the mechanisms that

direct their formation (Tanny, 2014), we believe that consolida-

tion of the active chromatin state through positive feedback is

more prevalent than generally assumed.

High Activation Energy Warrants Stable Propagation
of Euchromatic and Heterochromatic States
Our recent discovery of Paf1C as a repressor of siRNA-directed

heterochromatin formation (Kowalik et al., 2015) and the results
Molecular Cell 67, 1–14, July 20, 2017 9



Figure 6. Mst2-Mediated Acetylation of Brl1 Represses Initiation of Heterochromatin Assembly

(A) Scheme: acetylomics workflow. Total peptides or peptides enriched for acetylation were labeled with TMT and subjected to LC-MS/MS/MS. We identified

8,926 acetylated peptides and quantified 3,933 proteins (Table S1). See the STAR Methods for more information.

(B) Volcano plot showing fold changes in pdp3Dmst2D compared to WT cells. Identified acetylated Brl1 peptides are shown in red (n = 3 independent biological

replicates). The x axis is shown in log2 scale.

(C) Immunodetection of H2BK119ub in different strains. Dilution serieswas 1/9, 1/3, and 1/1 of the respective protein extracts. Tubulin served as a loading control.

A representative experiment is shown.

(D) Quantification of H2BK119ub (left) and H2B (right) levels normalized to tubulin and relative to WT (brl1+). Multiple independent biological replicates were for

H2BK119ub (WT n = 5 and brl1-KR/KQ n = 7) and H2B (WT n = 3 and brl1-KR/KQ n = 6). The p values were calculated using the two-sided, two-sample Student’s

t test with equal/unequal variance according to prior evaluation with the F test.

(legend continued on next page)
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Figure 7. Mst2 Constitutes an Activation

Barrier for Heterochromatin Assembly

(A) Scheme depicting the regulatory circuit that

protects active chromatin from inactivating siRNAs

(solid green arrows). Transcription by RNA poly-

merase II promotes Set2-mediated tri-methylation

of H3K36 (Me3, green), which is recognized by

Pdp3. This results in high local concentrations of

Mst2 on actively transcribed genes. Mst2 acety-

lates Brl1 at lysine 242, which causes increased

H2B ubiquitination and reinforced transcription.

Black circles depict opposing feedback loops that

maintain the inactive chromatin state (RNAi and

CLRC). Relevant residues in the N-terminal tails of

H3 and H2B are highlighted in blue. See the text for

details.

(B) Model highlighting that a maximal transition

state energy warranties stable propagation of

euchromatic and heterochromatic states. Note

that Mst2 and Paf1C repress distinct steps in the

transition from euchromatin (A) to heterochromatin

(R). The heterochromatin assembly reaction pro-

ceeds the fastest in paf1mst2 double-mutant cells,

where the activation energy (Ea) is the lowest and

heterochromatin eventually reaches a low-energy

state (R stable). See the text for details.

(C) Mitotic propagation of siRNA-directed silencing

of the ade6+ gene monitored by red pigmentation

of clones that grew on YE-Nat plates.
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presented in this study demonstrate that siRNAs are sufficient to

initiate the formation of heterochromatin independently of ge-

nomically encoded silencers, but only if repressive activities in

the cell are constrained. Mst2 and Paf1C repress distinct steps

in the transition from euchromatin to heterochromatin. This can

be best illustrated in analogy to a chemical reaction with high

activation energy (Ea) and where reactants (euchromatin) and

products (heterochromatin) assume different energetic states

(Figure 7B). In the absence of Mst2 or Paf1C, the energy level
(E) Silencing assays of siRNA-directed de novo heterochromatin assembly (as described in Figure 1) in the

paf1+ allele. A representative experiment is shown.

(F and H) Initiation (F) andmaintenance (H) frequencies in paf1-Q264Stop cells with additional mutations inms

frequency was as in Figure 1D. The p values were calculated using two-sided, two-sample Student’s t test (n

listed in the STAR Methods.

(G) siRNA readsmapping to the ade6-M210 locus and neighboring regions in brl1-K242R (red) andmst2Dbrl1-

total read number and are depicted in log2 scale.

(I and J) Dilution assays showing gradual loss of ectopic silencing at the trp1+::ade6+ locus in brl1-K242Q m

grown exponentially for 1 day (I) or 5 days (J), and equal cell numbers were plated onto yeast extract-nourse

independent strains is shown. Different yeast strains are depicted on the right.

See also Figures S3 and S4 and Table S1.
of the transition state is reduced so that

the heterochromatin assembly reaction

can proceed; but, only Paf1Cmutant cells

reach a heterochromatic state that is

energetically lower than that of euchro-

matin, explaining why silencing is not sta-

bly maintained in mst2 single mutants.

The heterochromatin assembly reaction

proceeds the fastest in paf1 mst2 dou-

ble-mutant cells, where the activation en-
ergy is the lowest and heterochromatin eventually reaches a low-

energy state. Yet at the same time, Ea for the reverse reaction is

smaller in double mutants compared to paf1 single mutants,

which predicts less stable inheritance of heterochromatin.

Indeed, we observed a variegating silencing phenotype in mst2

paf1 double, but not paf1 single, mutants (Figure 7C).

This model highlights that a maximal transition state energy

warranties stable propagation of both euchromatic and hetero-

chromatic states. Thus, it does not seem surprising that previous
strains indicated (close up). All strains contained a

t2+ and brl1+. Assessment of initiation/maintenance

R 8 individual white colonies). Exact numbers are

K242R (blue) cells. Read countswere normalized to

utants, but not in brl1-K242R mutants. Cells were

othricin (YE-Nat). A representative experiment with
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attempts to induce epigenetically stable gene silencing by using

trans-acting siRNAs have failed under wild-type conditions

(B€uhler et al., 2006; Iida et al., 2008; Sigova et al., 2004; Simmer

et al., 2010). It is the aforesaid self-reinforcing feedback regula-

tion that possibly underlies the high activation energy of a hetero-

chromatin assembly reaction. We speculate that Ea might be

lowered under certain conditions, enabling the organism to

establish facultative heterochromatin and, thus, adapt its gene

expression program for optimal fitness. It will be a challenging

but exciting task to find the putative enzymes that lower Ea in

such a scenario.

Conservation of H3K36 Methylation-Mediated
Anti-silencing
Certain post-transcriptional histone modifications are highly

correlated with transcription. Yet, it is often unclear whether

active chromatin marks are simply a consequence or rather a

cause of transcriptional activity. The active H3K36me3 mark is

generated by the SET domain containing proteins recruited by

RNA polymerase II as a consequence of transcriptional activity.

Our results suggest that, in S. pombe, H3K36me3 is also a cause

of transcriptional activity. Importantly, it functions to sequester

Mst2 on transcriptionally active genes, which serves a dual

purpose: (1) it fuels the euchromatic positive feedback loop

described above, and (2) it prevents Mst2 from acting promiscu-

ously on constitutive heterochromatin. Thereby, H3K36me3

maintains euchromatic genes in an active state, and it concur-

rently safeguards constitutive heterochromatin from illegitimate

activation by an invasion of Mst2, providing an explanation for

the previously reported silencing defects in set2+-deficient cells

(Chen et al., 2008; Creamer et al., 2014; Matsuda et al., 2015;

Suzuki et al., 2016).

In S. cerevisiae, the methylation of H3K36 by Set2 protects

euchromatin from silencing by spreading of the Sir complex

from neighboring silent chromatin independently of the Rpd3S

HDAC complex (Tompa and Madhani, 2007). This highlights

that H3K36 methylation functions through different effector

mechanisms that may be conserved. Indeed, SETD2-mediated

tri-methylation of H3K36 targets the de novo DNA methyltrans-

ferase DNMT3B to transcribed genes in mouse embryonic

stem cells (Baubec et al., 2015). Similar to Pdp3-mediated

recruitment of Mst2 to active genes in S. pombe, the PWWP

domain of DNMT3B is likely to specify recruitment of DNA

methylation activity to transcribed genes via interactions with

methylated H3K36 (Baubec et al., 2015). The functional rele-

vance of genic DNA methylation in mammalian cells is just being

unraveled (Neri et al., 2017). If it had stimulatory effects on tran-

scription, it would also constitute a positive feedback regulatory

system. Finally, the polycomb repressive complex 2 (PRC2), re-

constituted from humans, flies, mouse, and plants, is directly in-

hibited by H3K36 methylation (Schmitges et al., 2011; Yuan

et al., 2011). Thus, it is tempting to speculate that methylation

of H3K36 is an evolutionarily conserved strategy to maintain

euchromatin in an active state. In light of this hypothesis, it is

intriguing that human H3K36 methyltransferases have been

implicated in a wide range of cancers (Papillon-Cavanagh

et al., 2017; Schneider et al., 2002; Wagner and Carpenter,

2012). Moreover, the H3K36 to M mutation is seen in 95% of
12 Molecular Cell 67, 1–14, July 20, 2017
chondroblastomas and promotes sarcomagenesis through

altering polycomb-mediated gene silencing (Behjati et al.,

2013; Lu et al., 2016). Failure to partition chromatin into silent

and active domains as a result of defective H3K36 methylation

may, hence, contribute to the initiation and progression of hu-

man disease. Therefore, a detailed understanding of the mecha-

nisms that control the active state of chromatin is extremely rele-

vant to human health.
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J., Watt, S., Ma, C., Hou, H., Shi, Y., et al. (2012). Histone H3 lysine 14 acety-

lation is required for activation of a DNA damage checkpoint in fission yeast.

J. Biol. Chem. 287, 4386–4393.

Wang, J., Reddy, B.D., and Jia, S. (2015). Rapid epigenetic adaptation to un-

controlled heterochromatin spreading. eLife 4, 80.

Wilhelm, B.T., Marguerat, S., Aligianni, S., Codlin, S., Watt, S., and B€ahler, J.

(2011). Differential patterns of intronic and exonic DNA regions with respect

to RNA polymerase II occupancy, nucleosome density and H3K36me3

marking in fission yeast. Genome Biol. 12, R82.

Woods, A., Sherwin, T., Sasse, R., MacRae, T.H., Baines, A.J., and Gull, K.

(1989). Definition of individual components within the cytoskeleton of

Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93,

491–500.

Woolcock, K.J., Gaidatzis, D., Punga, T., and B€uhler, M. (2011). Dicer associ-

ates with chromatin to repress genome activity in Schizosaccharomyces

pombe. Nat. Struct. Mol. Biol. 18, 94–99.

Yuan, W., Xu, M., Huang, C., Liu, N., Chen, S., and Zhu, B. (2011). H3K36

methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem.

286, 7983–7989.

Zofall, M., and Grewal, S.I.S. (2007). HULC, a histone H2B ubiquitinating com-

plex, modulates heterochromatin independent of histonemethylation in fission

yeast. J. Biol. Chem. 282, 14065–14072.

http://refhub.elsevier.com/S1097-2765(17)30366-0/sref36
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref36
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref36
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref36
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref37
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref37
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref37
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref37
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref37
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref38
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref38
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref39
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref39
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref39
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref39
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref40
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref40
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref40
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref41
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref41
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref41
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref41
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref42
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref42
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref42
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref43
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref43
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref43
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref43
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref44
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref44
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref44
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref44
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref45
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref45
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref45
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref45
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref45
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref46
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref46
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref46
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref46
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref47
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref47
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref48
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref48
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref49
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref49
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref49
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref49
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref50
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref50
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref50
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref51
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref51
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref51
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref51
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref52
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref52
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref52
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref53
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref53
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref53
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref53
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref54
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref54
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref54
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref55
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref55
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref55
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref55
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref56
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref56
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref57
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref57
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref57
http://www.R-project.org/
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref59
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref59
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref59
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref60
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref60
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref60
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref60
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref61
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref61
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref62
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref62
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref62
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref62
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref63
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref63
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref63
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref63
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref64
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref64
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref65
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref65
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref65
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref65
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref65
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref66
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref66
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref66
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref66
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref67
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref67
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref67
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref67
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref68
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref68
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref68
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref69
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref69
http://refhub.elsevier.com/S1097-2765(17)30366-0/sref69


Please cite this article in press as: Flury et al., The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating
the Ubiquitin Ligase Brl1, Molecular Cell (2017), http://dx.doi.org/10.1016/j.molcel.2017.05.026
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-H3K9me2 (Kimura et al., 2008) N/A

anti-FLAG Sigma Cat# F3165; RRID: AB_259529

anti-H3K14ac Abcam Cat# ab52946; RRID: AB_880442

anti-H3K36me3 Abcam Cat# ab9050; RRID: AB_306966

anti-H3 (ChIP) Active Motif Cat# 61475

anti-H2B Active Motif Cat# 39238; RRID: AB_2631110

anti-H2BK119ub Cell Signaling Cat# 5546

anti-H3K4me3 Abcam Cat# ab8580; RRID: AB_306649

anti-H3 (Western) Abcam Cat# ab1791; RRID: AB_302613

anti-tubulin (Woods et al., 1989) N/A

goat anti-mouse IgG (H + L)-HRP conjugate Bio-Rad Cat# 1706516; RRID: AB_11125547

Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) Jackson Immunoresearch Cat# 115-035-146; RRID: AB_2307392

Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson Immunoresearch Cat# 111-035-144; RRID: AB_2307391

Acetyl-Lysine Motif Kit Cell Signaling Cat# 13416S

Chemicals, Peptides, and Recombinant Proteins

5-Fluoroorotic Acid (FOA) US biological, Thermo Fisher Cat# 207291-8-4

nourseothricin dihydrogen sulfate (NAT) Fisher or WERNER BioAgents

GmbH

Cat# 5029426 or Cat# 5.0

G418 sulfate (Geneticin) Roche or Invitrogen/Life

Technologies

Cat# 04727878001-2 or Cat# 10131027

Hygromycin Sigma or Invitrogen/Life

Technologies

Cat# H7772 or Cat# 10687010

PrimeSTAR GXL DNA Polymerase Clontech Cat# R050A

Taq DNA Polymerase NEB Cat# M0267

Formaldehyde Sigma or Carl Roth Cat# F8775 or Cat# 4979

PMSF Sigma Cat# P7626

cOmplete Protease Inhibitor Cocktail Roche Cat# 11836145001

AEBSF (Pefabloc SC) Roche Cat# 11585916001

Dynabeads M-280 Sheep anti-mouse IgG Thermo Fisher Cat# 11202D

Dynabeads Protein G Thermo Fisher/ Life

Technologies

Cat# 10009D

Leupeptin hemisulfate Carl Roth Cat# CN33

Proteinase K Roche Cat# 3115879001

RNase A Roche Cat# 10109169001

SuperScript III Thermo Fisher/ Life

Technologies

Cat# 18080085

Acrylamid/BIS solution (30%) 37.5:1 Serva Cat# 10688

Titriplex III (EDTA) Merck Millipore Cat# 108418

SsoAdvanced Universal SYBR Green Supermix Bio-Rad Cat# 172-5274

PowerUp SYBR Green Master Mix Life Technologies Cat# A25742

Zymolyase Fischer Cat# 6064819

Lysing enzyme from Trichoderma harzianum Sigma Cat# L1412

DpnI NEB Cat# R0176

DpnII NEB Cat# R0543

T4 DNA ligase Roche Cat# 10481220001
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Lys-C Wako Chemicals Cat# 125-05061

Trypsin Thermo Fisher Cat# 20233

SEP-PAK Waters Cat# WAT036790

YMC Triart C18 0.5 3 250 mm column YMC Europe GmBH Cat# TA12S0325J0AU

PepMap 100 C18 2 cm trap Thermo Fisher Cat# 164946

EASY-Spray C18 column Thermo Fisher Cat# ES801

Bolt 4-12% Bis-Tris Plus Gels Thermo Fisher Cat# NW04127BOX

Immobilon Western Chemiluminescent HRP Substrate Millipore Cat# WBKLS0500

Immobilon-P Membran, PVDF, 0,45 mm Merck Millipore Cat# IPVH00010

Critical Commercial Assays

MasterPure Yeast RNA Purification Kit Epicenter Cat# MPY03100

Bio-Rad Protein Assay Dye Reagent Concentrate Bio-Rad Cat# 500-0006

TruSeq Small RNA library preparation kit Illumina Cat# RS-200-0012

TruSeq Stranded mRNA library preparation kit Illumina Cat# RS-122-2101

DNeasy Blood and Tissue Kit QIAGEN Cat# 69506

RNeasy Midi Kit QIAGEN Cat# 75144

GeneChip Hybridization, Wash, and Stain Kit Affymetrix Cat# 900720

Turbo DNA free Thermo Fisher/ Life

Technologies

Cat# AM1907

ChIP DNA Clean & Concentrator Zymo Research Cat# D5201

Deposited Data

smallRNA and poly(A) mRNA sequencing data This study GEO: GSE93434

DamID data This study GEO: GSE93434

Mendeley Data dataset (original unprocessed Western

Blot images)

This study http://dx.doi.org/10.17632/98ywc24xv7.1

Mass spectrometry raw data This study ProteomeXchange: PXD005714

H3K36me3 ChIP-chip data (Wilhelm et al., 2011) ArrayExpress: E-TABM-946

Experimental Models: Organisms/Strains

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX

(Kowalik et al., 2015) spb464

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX

(Kowalik et al., 2015) spb1788

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2

(Kowalik et al., 2015) spb2047

h+ leu1-32 ura4-D18 ade6-704 or 210 trp1+::ade6+

nmt1+::ade6-hp+::natMX Paf1-SMS8::kanMX

(Kowalik et al., 2015) spb2076

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

This study spb2151

h+ leu1-32 ura4-D18 ade6-M210 or 704 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX paf1-sms8::LEU2

This study spb2630

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX

This study spb2094

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX clr4D::hphMX

(Kowalik et al., 2015) spb1950

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX

(Keller et al., 2013) spb1591

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA (C. albicans)

mst2D::hphMX

This study spb1719

(Continued on next page)
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h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX clr4D::kanMX

This study spb1754

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 or M216 ncRNA.95D::URA3

(C. albicans) mst2D::hphMX dcr1D::kanMX

This study spb1776

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 or 216 ncRNA.95D::URA3

(C. albicans) mst2D::hphMX ago1D::kanMX

This study spb1755

h+ otr1R(SphI)::ura4+ ura4-DS/E ade6-M210

leu1D::nmt1(81x)-dam-myc::kanMX

(Woolcock et al., 2011) spb492

h+ otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210

leu1D::nmt1(81x)-dam-myc-mst2::kanMX

This study spb2104

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+ (Kowalik et al., 2015) spb426 (PSB1782)

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+ mst2-CBP-

2xFLAG::natMX

This study PSB1855

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+ mst2-FLAG::natMX

set2D::kanMX

This study PSB1870

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+ mst2-FLAG::natMX

pdp3D::kanMX

This study PSB1871

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+ mst2-FLAG::natMX

set2-SRID::kanMX

This study PSB1882

h+ imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+ leu1-32 ura4-DS/E

ade6-M210

(Ekwall et al., 1999) PSB65

h+ imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+ leu1-32 ura4-DS/E

ade6-M210 natMX::CBP-2xFLAG-pdp3

This study PSB1696

h+ imr1L(NcoI)::ura4+ otr1R(SphI)::ade6+ leu1-32 ura4-DS/E

ade6-M210 pdp3D::natMX::CBP-2xFLAG-pdp3_F109A

This study PSB1698

h+ otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210

leu1D::nmt1(81x)-dam-myc-mst2::kanMX pdp3D::natMX

This study spb2212

h? leu1-32 ura4-D18 ade6-704 or ade6M210 trp1+::ade6+

nmt1+::ade6-hp::natMX paf1-sms8::LEU2 pdp3D::kanMX

This study spb2647

h? leu1-32 ura4-D18 ade6-704 or ade6M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 set2D::kanMX

This study spb2646

h+ otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210

leu1D::nmt1(81x)-dam-myc-mst2::kanMX set2D::natMX

This study spb2220

h+ otr1R(SphI)::ura4+ ura4-DS/E leu1-32 ade6-M210

leu1D::nmt1(81x)-dam-myc-mst2::kanMX set1D::natMX

This study spb2239

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX pdp3D::kanMX

This study spb2319

h- SPSQ (cyhR) SPL42 (cyhS) hphMX::cen1 imr1L(NcoI)::ura4+

otr1R(SphI)::ade6+ leu1-32 ura4-DS/E ade6-M210

(Barrales et al., 2016) PSB582

h- SPSQ (cyhR) SPL42 (cyhS) hphMX::cen1 imr1L(NcoI)::ura4+

otr1R(SphI)::ade6+ leu1-32 ura4-DS/E ade6-M210 pdp3D::natMX

This study PSB689

h- SPSQ (cyhR) SPL42 (cyhS) hphMX::cen1 imr1L(NcoI)::ura4+

otr1R(SphI)::ade6+ leu1-32 ura4-DS/E ade6-M210 mst2D::natMX

This study PSB1122

h- SPSQ (cyhR) SPL42 (cyhS) hphMX::cen1 imr1L(NcoI)::ura4+

otr1R(SphI)::ade6+ leu1-32 ura4-DS/E ade6-M210 pdp3D::natMX

mst2D::kanMX

This study PSB2099

h? otr1R(SphI)::ade6-4LexAb.s. (binding site) leu1-32 ura4-D18

or DS/E ade6-M210

This study spb2835

h+ otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 LexA-mst2

This study spb2821

(Continued on next page)
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h+ otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 LexA-mst2(E274Q) cat.dead

This study spb2822

h? otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 pdp3D::kanMX

This study spb2836

h+ otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 LexA-Mst2 pdp3D::kanMX

This study spb2804

h+ otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 LexA-mst2(E274Q) cat.dead pdp3D::kanMX

This study spb2852

h- leu1-32 ura4-D18 or DS/E otr1R(SphI)::ade6-4LexAb.s.

ade6-M210 set2D::kanMX

This study spb2881

h+ otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 set2D::kanMX LexA-mst2

This study spb2885

h? otr1R(SphI)::ade6-4LexAb.s. leu1-32 ura4-D18 or DS/E

ade6-M210 set2D::kanMX LexA-mst2(E274Q) cat.dead

This study spb2894

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

gcn5D::kanMX

This study spb2101

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

pdp3D::kanMX

This study spb2153

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX pdp3D::kanMX

This study spb2115

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX brl1-K242R

This study spb2982

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX brl1-K242Q

This study spb2983

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX brl1-K242Q

This study spb2984

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX brl1-K242R

This study spb3023

h- leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX paf1SMS8::LEU2

brl1-K242R

This study spb3024

h- leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242Q

This study spb2996

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX mst2D::kanMX dcr1D::hphMX

This study spb2364

h+ leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX dcr1D::hphMX paf1sms8::LEU2

mst2D::kanMX

This study spb2661

h- leu1-32 ura4-D18 ade6-M210 trp1+::ade6+

nmt1+::ade6-hp+::natMX dcr1D::hphMX paf1sms8::LEU2

mst2D::kanMX

This study spb2662

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX arb2D::kanMX

This study spb1739

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX arb1D::kanMX

This study spb1740

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX cid12D::kanMX

This study spb1741

(Continued on next page)
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h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX ers1D::kanMX

This study spb1745

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX stc1D::kanMX

This study spb1747

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX tas3D::kanMX

This study spb1753

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX chp1D::kanMX

This study spb1756

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX rik1D::kanMX

This study spb1757

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMXD hrr1D::kanMX

This study spb1772

h90 mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-M210 ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX rdp1D::kanMX

This study spb1774

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX raf1D::kanMX

This study spb1802

h? mat3::GFP-natMX (ura4 promoter and adh1 terminator)

ura4-DS/E leu1-32 ade6-? ncRNA.95D::URA3 (C. albicans)

mst2D::hphMX raf2D::kanMX

This study spb1803

h+ SPSQ (cyhR) hphMX::cen1 imr1L(NcoI)::ura4+

otr1R(SphI)::ade6+ leu1-32 ura4-DS/E ade6-M210 clr3D::kanMX

This study PSB1524

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX gcn5D::kanMX

This study spb2404

h- leu1-32 ura4-D18 ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX gcn5D::kanMX paf1SMS8::LEU

This study spb2443

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242Q

This study spb3115

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242Q

This study spb3116

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242Q

This study spb3117

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242R

This study spb3118

h+ leu1-32 ura4-D18 ade6-M210 or ade6-704 trp1+::ade6+

nmt1+::ade6-hp+::natMX paf1-sms8::LEU2 mst2D::kanMX

brl1-K242R

This study spb3119

Oligonucleotides

Primers This study Table S2

Recombinant DNA

pFa6a 81xnmt1 - Dam - mst2 This study pMB1436

pJR1 - 3xL - LexA - Mst2 gDNA This study pMB1636

pJR1 - 3xL - LexA - Mst2 mut (E274Q)-gDNA This study pMB1639

(Continued on next page)
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Software and Algorithms

ImageJ 1.47v (Schneider et al., 2012) N/A

R (Team, 2014) https://www.r-project.org/

QuasR (Gaidatzis et al., 2015) N/A

Proteome Discoverer 2.1 software Thermo Fisher Cat# IQLAAEGAB SFAKJMAUH

Other

Illumina HiSeq2500 Illumina N/A

GeneChip Scanner 3000 7G System Affymetrix Cat# 00-0213

Agilent 1100 system Agilent Cat# DE33201061

Orbitrap Fusion Tribrid Thermo Fisher Cat# IQLAAEGA APFADBMBCX

Easy nLC 1000 system Thermo Fisher Cat# LC-010190
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marc

B€uhler (marc.buehler@fmi.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Schizosaccharomyces pombe strains used in this study are derivatives of the standard laboratory strain 972 and are listed in the Key

Resources Table. Cultures were grown at 30�C in liquid YES media (160 rpm, 12-24 hr) or at 30�C on solid YES agarose plates

(for 3 days).

METHOD DETAILS

Strains and Plasmid Construction
All strains were constructed using the PCR-based protocol (B€ahler et al., 1998) or by standardmating and sporulation. Brl1-K242R/Q

point mutants were generated by first deleting the ORF with URA3 from Candida albicans and then reinserting the mutated ORF

into the same locus by FOA counter-selection. LexA-Mst2 and LexA-Mst2* strains were generated by deleting the mst2+ ORF

and reinserting mst2(*) fused LexA from a plasmid by homologous recombination. FLAG-Pdp3, FLAG-Pdp3-F109A point mutant

and Mst2-FLAG were similarly generated by first deleting the respective ORF with a kanMX cassette; subsequently the kanMX

cassette was replaced by inserting the FLAG-fusion together with a natMX selection marker. In case of Pdp3, the natMX marker

is upstream of the 50 UTR of pdp3+. In the case of Mst2, the selection marker is downstream of the mst2+ ORF (between the

FLAG-tag ADH1 terminator and the 30UTR of mst2+). Western Blots to assess FLAG-tagged protein levels were deposited in

Mendeley Data, http://dx.doi.org/10.17632/98ywc24xv7.1.

Silencing Assays
For ade6+ reporter silencing assays, cells were spotted on YES and YE-Nat plates (containing 100 ug/mL nourseothricin) in a ten-fold

serial dilution (initial seeded cell number 105 cells) and grown for four days. White colonies were picked to perform dilution assays for

initiation of silencing, whereas red colonies were picked to visualize maintenance of silencing.

Serial dilutions of the strains indicated in Figure S1C were plated on PMGc (nonselective, NS) or on PMGc plates containing

2 mg/mL 5-Fluoroorotic Acid (FOA). For ura4+ reporter assays in Figure S2C, cells were plated on EMM (non-selective, NS) or

EMM containing 1 mg/mL FOA. The strains were grown at 30�C for three and four days, respectively.

Quantification of silencing frequency
In order to quantify the initiation andmaintenance frequency of the silent state in different strains either a single cell-derived white (for

initiation) or red (for maintenance) colony was selected. The single colony was resuspended in water and 50 - 500 cells were seeded

on YE-Nat plates, which were incubated at 30�C for 5 days. Colonies were counted/categorized after an additional over night incu-

bation at 4�C. Characterization distinguished between white and non-white cells (which could be either red, pink or variegating) and

the relative percentage of white cells was used for visualization by boxplots. Multiple individual colonies were quantified for each
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strain ( = independent biological replicate): n = 3 (wild-type), n = 4 (paf1-Q264Stop,pdp3D; paf1-Q264Stop,set2D), n = 5 (gcn5D),

n = 8 (paf1Q-264Stop,brl1-K242R,mst2D), n > 10 (mst2D; paf1-Q264Stop; paf1-Q264Stop,mst2D; paf1-Q264Stop,gcn5D; paf1Q-

264Stop,brl1K242Q,mst2D).

ChIP-qPCR
ChIP experiments with H3K9me2 were performed as described in B€uhler et al. (2006), using 2 mg of an anti-H3K9me2 antibody (Ki-

mura et al., 2008). Briefly, 50mL of exponentially growing cells were harvested at OD= 1.2 and crosslinkedwith 1%Formaldehyde for

15 min at room temperature. Cell pellets were lysed in ChIP lysis buffer (50 mMHEPES KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 0.1% Na-deoxycholate, 1 mM PMSF, 1x Roche cOMPLETE protease inhibitor cocktail) using a Bead-beater. Lysates

were sonicated 133 30 s (60 s off) in a Bioruptor and centrifuged for 1x 5 min and 1x 15 min while proceeding with the supernatant.

Protein concentration was determined using the Bio-Rad Assay and equal protein amounts were incubated with antibody for 2 hr and

with 25 ug Dynabeads (Sheep anti-mouse IgG). Washes were performed three times with lysis buffer, once with wash buffer (10 mM

Tris/HCl pH 8, 250 mM LiCl, 0.5% NP40, 0.5% sodium deoxycholate and 1 mM EDTA) and once with TE buffer. Eluates were

de-crosslinked in TE and 1% SDS over night at 65�C and subsequently treated with RNase A (0.2 mg/mL) for 1 hr at 37�C and

0.1 mg protease K for 1 hr at 65�C. DNA was purified using phenol/chloroform extraction and real-time qPCR performed on the

eluates using the SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). Enrichment was calculated by normalization to the

adh1+ locus in the clr4D mutant that lacks H3K9me2.

ChIP experiments with FLAG-taggedMst2 or Pdp3, H3K36me3, H3K14ac andH3were essentially conducted as described in Bar-

rales et al. (2016), using a Q800R1 sonicator (QSonica) for chromatin shearing (30 min, 30 s on /off cycles, 90% amplitude). For each

IP, 2 mg of the following antibodies was used (cell lysates corresponding to different amounts of OD600 in brackets): anti-FLAG (Sigma

F3165; 30 ODs); anti-H3K14ac (Abcam ab52946, 10 ODs); anti-H3K36me3 (Abcam ab9050, 5 ODs); anti-H3 (Active Motif 61475,

5 ODs). For ChIP experiments with Mst2-FLAG, 4 mg of anti-FLAG antibody and cell lysates corresponding to 50 OD600 were

used. DNA was immunoprecipitated with Dynabeads Protein G (Life Technologies) and quantified by qPCR using the PowerUp

SYBR Green Master Mix (Life Technologies) and a 7500 Fast Real-Time PCR System (Applied Biosystems). Datasets from each in-

dependent experiment (n = 3-4) were standardized using an experimental normalization by defining a global mean value for ChIP

efficiency. This global mean value includes all qPCR amplicons (used for each tiling array) from the entire sample pool of strains

(wt and mutant strains used in each experiment). For ChIP experiments with FLAG-tagged Mst2 and Pdp3, the raw values were first

normalized against mitochondrial DNA as an internal control before applying the same calculations as above. The results are shown

with the background subtracted. As background signal, we used for each amplicon the mean value of the untagged strain and the

pdp3D (or pdp3-F109A) mutant, which significantly reduced the noise in the background-corrected data (as compared to the un-

tagged control only). For ChIP with H3K14ac and H3, the raw values were also normalized against input and mitochondrial DNA;

these normalized data are presented relative to the mean value of the wild-type for each amplicon.

small and poly(A)-RNA sequencing
Briefly, total RNAwas isolated from exponentially growing cells with the hot phenol method. For small RNA-sequencing, the RNAwas

fractionated with RNeasy Midi columns (QIAGEN) according to the RNA cleanup protocol provided by the manufacturer. The flow-

through fraction was precipitated (‘small-RNA’ fraction). The RNA retained on the column was eluted and ethanol-precipitated

(‘large-RNA’ fraction). 25 ug of the small-RNA fraction was separated by 17.5% PAGE and the 15-28 nt fraction excised and purified.

Libraries were prepared using the TruSeq Small RNA and TruSeq StrandedmRNA library preparation kits from Illumina for sRNA- and

mRNA-Seq, respectively. Following the isolation of the 145-nt to 160-nt population, the libraries were sequenced on an Illumina

HiSeq2500. Reads were processed, normalized and analyzed using QuasR (Gaidatzis et al., 2015) with two mismatches allowed.

DamID and Microarray analysis
DamID was performed as described in Woolcock et al. (2011). Briefly, strains expressing either unfused Dam or Dam fusion proteins

were grown to OD = 0.4. Approximately 5.3 3 107 cells were harvested, washed once with water and flash frozen in liquid nitrogen.

Cells were spheroplasted in 500 mL spheroplast buffer (1.2 M sorbitol, 100 mM KHPO4, pH 7.5, 0.5 mg/ml Zymolyase (Zymo

Research), 1 mg/ml lysing enzyme from Trichoderma harzianum (Sigma)). Genomic DNA was isolated using the DNeasy Blood

and Tissue Kit (QIAGEN). gDNA was first digested with DpnI (NEB) before ligation of PCR adapters and subsequent DpnII digestion

and final PCR amplification. Fragmentation and labeling was done using the GeneChip Whole Transcript Double-Stranded DNA

Terminal Labeling Kit (Affymetrix). The fragmented and labeled DNA was hybridized to GeneChip S. pombe Tiling 1.0FR Arrays

(Affymetrix). Average enrichment values were calculated for all oligos overlapping the major heterochromatic regions: mating

type locus (chromosome 2, 20114’000-20137’000), telomeres (chromosome 1, 1-20’000 and 50571’500-50579’133; chromosome 2,

4’516’200-4’539’804), centromeres (chromosome 1, 30753’687-30789’421, chromosome 2, 1’6020264-1’644’747, chromosome 3,

1’070’904-1’137’003) and subtelomeres (chromosome1, 20’001-35’600 and 50530’001-50571’500; chromosome2, 1-15800 and

4497201-4516200). R scripts are available on request.

Microarray data was taken from Wilhelm et al. (2011) (ArrayExpress: E-TABM-946) and processed according to Woolcock et al.

(2011), including a pseudocount of 64 to reduce background. R scripts are available upon request.
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RT-qPCR
RNA isolation, reverse transcription and RT-qPCRwere performed as described previously in Barrales et al. (2016) and Kowalik et al.

(2015). For analysis, act1+-normalized datasets were standardized against the mean of a sample pool of strains (wt and mutant

strains) from each experiment. These results are shown as relative to the mean value of the wt (which is set to 1). qPCR primers

used in this study are listed in Table S2.

Acetylomics
Experimental procedure

Briefly, 400 mL of indicated strains were grown to mid-late growth phase (OD = 1.5), harvested in lysis buffer (50 mM Tris, pH7.5,

150mMNaCl, 1 mMEDTA, 1x mini complete protease inhibitor cocktail (Roche)) and frozen in liquid N2. Cells were ground in a liquid

nitrogen-chilled steel container for 3 3 3 min at 30 Hz using a Retsch MM 400 Ball Mill (Retsch, Haan, Germany) in presence of 1%

NP-40 and 0.1%Na-deoxycholate (final concentration). Cell lysates were incubated at 4�C for 15min and then centrifuged for 15min

at 8’000 g. Proteins in the supernatant were precipitated with > 4 volumes of acetone overnight at �20�C. Protein pellets were re-

suspended in 8M guanidine hydrochloride and 50 mMHEPES pH 8.5. Approximately 80-120 mg of proteins were reduced, alkylated

and digested with Lys-C (Wako Chemicals) and Trypsin (Thermo Fisher) at 37�C. Peptides were purified using a SEP-PAK (Waters)

and eluted in 50% acetonitrile in water. 15 mg of peptides were subjected to immunoprecipitation using the PTMScan Acetyl-Lysine

Motif Kit fromCell Signaling Kit (13416S). Acetylated peptideswere enriched and eluted according to themanufacturer’s instructions.

Eluted peptides were labeled with TMT 10plex isobaric labeling reagents (Thermo Fisher) as described in the manufacturer’s instruc-

tions. To determine global proteome changes 20 mAc of each sample prior acetyl enrichment was labeled with TMT reagents. TMT

labeled peptides were subjected to high pH offline fractionation on a YMC Triart C18 0.5 3 250 mm column (YMC Europe GmbH)

using the Agilent 1100 system (Agilent Technologies). 72 fractions were collected for each experiment and concatenated into 24

fractions as previously described (Wang et al., 2011). For each LC-MS analysis, approximately 1 mg of peptides were loaded onto

a PepMap 100 C18 2 cm trap (Thermo Fisher) using the Proxeon NanoLC-1000 system (Thermo Fisher). On-line peptide separation

was performed on the 15 cm EASY-Spray C18 column (ES801, Thermo Fisher) by applying a linear gradient of increasing ACN

concentration at a flow rate of 150 nL/min.

Spectra Acquisition

An Orbitrap Fusion Tribrid (Thermo Fisher) mass spectrometer was operated in a data-dependent mode and TMT reporter ions were

quantified using a synchronous precursor selection (SPS)-based MS3 technology, as previously described (McAlister et al., 2014). In

brief, the top 10 most intense precursor ions from the Orbitrap survey scan were selected for collision-induced dissociation (CID)

fragmentation. The ion-trap analyzer was used to generate the MS2 CID spectrum from which the notches for the MS3 scan were

selected. The MS3 spectrum was recorded using the Orbitrap analyzer at a resolution of 60000.

Data processing

Thermo RAW files were processed using Proteome Discoverer 2.1 software (Thermo Fisher), as described in the manufacturer’s in-

struction. Briefly, the Sequest search engine was used to search the MS2 spectra against the Schizosaccharomyces pombe UniProt

database (downloaded on 30/01/2015) supplemented with common contaminating proteins. For total proteome analysis, cysteine

carbamidomethylation and TMT tags on lysine and peptide N-termini were set as static modifications, whereas oxidation of methi-

onine residues and acetylation protein N-termini were set as variablemodifications. For acetyl-lysine enriched sample analysis, lysine

acetylation and lysine TMT tags were set as variable modifications, while other modifications were set the same as for the proteome

analysis. The assignments of theMS2 scanswere filtered to allow 1%FDR. For reporter quantification, the S/N valueswere corrected

for isotopic impurities of the TMT reagent using the values provided by the manufacturer. The sums across all TMT reporter channels

were normalized assuming equal total protein content in each sample for proteome analysis, whereas for acetylome analysis normal-

ization was based on total amount of acetylated peptides. All identified peptides from the proteome and acetylome experiments in

this study are listed in Table S1.

Western Blotting
For all proteins examined (unless otherwise indicated), total proteins from exponentially growing cells were extracted using TCA and

resuspended in 1M Tris-HCl pH 8.0. Protein concentrations were estimated by Bio-Rad Protein Quantification Assay (Bio-Rad). 5x

Laemmli buffer was added to a final concentration of 1x and samples boiled for 5 min at 95�C before separation by SDS-PAGE on a

Bolt 4%–12% Bis-Tris gradient gel. Subsequently, proteins were plotted onto a PVDF membrane (Millipore). Antibodies for immu-

nodetection were used at the following concentrations: total H2B (Active Motif, 39238, 1:50000), H2BK119ubiquitin (Cell Signaling

#5546, 1:30000), H3K4me3 (Abcam, ab8580, 1:20000), total H3 (Abcam, ab1791, 1:30000), tubulin (Woods et al., 1989) (1:4’000),

HRP-conjugate goat anti-rabbit or goat anti-mouse IgG (Jackson ImmunoResearch, 1:10000). Antibody detection was performed

using Millipore Immobilon HRP substrate using the Azure Biosystem c400 Imaging System or the ImageQuant LAS-3000 (GE Health-

care). Equal expression levels of Mst2-FLAG in wt and pdp3D cells were validated by quantification using ImageJ. For the F109 point

mutant of FLAG-tagged Pdp3, we noticed a two-fold decrease (see original blots in Mendeley Data, http://dx.doi.org/10.17632/

98ywc24xv7.1).

For FLAG-tagged proteins, total proteins of exponentially growing cells were extracted by NaOH lysis and TCA precipitation as

described (Knop et al., 1999). Samples were resuspended in HU Buffer to a final concentration of 0.1 OD/ml. Samples were
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boiled for at least 10 min at 65�C prior loading and 0.5 OD per sample was separated by NU-PAGE on a 10% or 12% Bis-Tris gel.

Subsequently, proteins were blotted onto an Immobilon-P PVDFmembrane (Millipore). Antibodies for immunodetection were used at

the following concentrations: anti-FLAG (Sigma, F3165, 1:1’000) and goat anti-mouse IgG (H + L)-HRP conjugate (Bio-Rad,

#1706516, 1:10’000). Antibody detection was performed using Millipore Immobilon HRP substrate on a Fusion FX Vilber Lourmat

CCD camera. Quantification was done using ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

P values were generated using the two-tailed, two-sample with equal/unequal variance Student’s t test. Error bars are annotated

in Figure legends if they show the standard deviation (SD) or standard error of the mean (SEM) and how many replicates were per-

formed. For western blotting, a F-test was performed to assess if the variance between samples is equal or unequal before applying

the corresponding Student’s t test (two-tailed, two-sample equal/unequal variance).

DATA AND SOFTWARE AVAILABILITY

The accession number for the sRNA and DamID data reported in this paper is GEO: GSE93434. The accession number for the mass

spectrometry raw data is ProteomeXchange: PXD005714. Original Western Blots were deposited inMendeley Data and are available

at http://dx.doi.org/10.17632/98ywc24xv7.1.
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Figure S1 (related to Figure 2) 
(A) Relative mRNA expression levels determined by RT-qPCR analysis in indicated 
mutants. Shown are transcript levels relative to ade6-704 in wt (grey) after normalization 
to act1+. paf1-Q264Stop and paf1-Q264Stop mst2∆ are shown in red and blue. Error 
bars indicate SD. n=3 independent biological replicates. 
(B) Silencing assay with ade6+ reporter in indicated strains to monitor siRNA-directed de 
novo heterochromatin assembly (see text for details). Cells were plated in a 10-fold 
dilution series onto YE-Nat (100 ug/mL nourseothricin). 
(C) Silencing assay with IRC1R∆::URA3 in indicated strains to monitor siRNA-
dependent heterochromatin spreading (see text for details). Cells were plated in a 10-
fold dilution series on PMGc plates (control) or PMGc plates with 2g/L FOA. 
 
 
 
 
 
 
 



 
 
Figure S2 (related to Figure 5) 
(A) Mst2 DamID maps of all three chromosomes in wt, pdp3∆, and set2∆ cells. The 
signal of DamMst2 (normalized to Dam-only) was averaged over 500 probes and is 
shown in log2 scale. X-axis shows position on chromosomes.  
(B) Enrichment of Dam-Mst2 at different genomic regions in wt, pdp3∆, set1∆, and 
set2∆ cells. Two independent replicates are shown (scale in log2). 
(C) Silencing assay with imr1L::ura4+ reporter in indicated strains to monitor 
heterochromatin maintenance (see text for details). Cells were plated in five-fold serial 
dilutions on EMM plates (control) or EMM plates containing 1g/L FOA and incubated for 
the indicated time.  
(D) Relative RNA expression levels of subtelomeric genes at telomere 1 in mst2∆, 
mst2∆pdp3∆, and pdp3∆ relative to WT. Transcript levels relative to wild type after 
normalization to act1+ are shown. Data are represented as mean ± SEM from 4 
independent biological experiments.  
(E) Relative RNA expression levels at the endogenous ade6-M210 locus in wild type 
(black), pdp3∆ (dark grey), and set∆ (light grey) cells with Mst2-tethering variants. Error 
bars indicate SD. n≥3 independent biological replicates. 



 
 
Figure S3 (related to Figure 6) 
(A-C) ChIP enrichment of H3K14ac and H3 at centromere 1 (A), telomere 1L (B), and 
euchromatic loci (C) in indicated strains. Cells lacking the H3K14ac HDAC Clr3 served 
as a positive control. ChIP data at the indicated loci have been normalized to 
mitochondrial DNA and to input, and are shown relative to wild type. n=3 ± SEM from 
independent biological experiments.  

(D) ChIP enrichment of H3K14ac at the mto1+/tef3+ locus. ChIP data have been 
normalized to mitochondrial DNA and to input, and are shown relative to wild type for 
each target, respectively. n=3 ± SEM from independent biological experiments.  
(E) ChIP enrichment of H3K9me2 at the boundary of IRC1R in wt, mst2∆, and gcn5∆ 
cells. Error bars indicate SD. n≥2 independent biological replicates. 



(F) Initiation frequencies of siRNA-directed de novo heterochromatin assembly in 
different strains. Frequency was calculated as in Figure 1D. P-value was calculated 
using the two-sided, two sample Student t-test. n≥3 different white colonies. Exact 
numbers are listed in the STAR methods. 
 
 



 



Figure S4 (related to Figure 6) 
(A-E) Volcano plots showing the relative changes in different strains. X-axis is in log2 
scale, y-axis depicts the inverted p-value. All experiments were performed in three 
independent biological replicates. A-C, relative proteome changes in mst2∆ (A), mst2∆ 
pdp3∆ (B), and pdp3∆ cells (C) compared to wild type. Proteins encoded by 
subtelomeric genes are highlighted in green, whereas Per1 (encoded by a locus 
adjacent to the cen1L boundary) is shown in blue. Brl1 is highlighted in red. (D) 
proteome changes in gcn5∆ cells compared to wild type. E, changes in the acetylome in 
gcn5∆ compared to wt cells.  
(F) Annotated high resolution MS/MS spectrum of acetylated peptide fragmented with 
higher-energy collisional dissociation (HCD). The triply charged precursor ion located at 
m/z of 906.801 was isolated using quadrupole filter, fragmented with HCD and analyzed 
in the orbitrap detector. The acetylated peptide AILENGEGcamCLNDNDNISacKLK was 
identified and annotated by the Andromeda search engine assigning b- and y-ions with 
an Andromeda score of 203. 
(G) ChIP enrichment of H2BK119ub at the ade6+ locus relative to adh1+. n=3 ± SD 
from independent biological experiments. P-value was calculated using the two-sided, 
two sample Student t-test. 
(H) Immunodetection of H3K4me3 and total H3 in different strains. Dilution series of 1/9, 
1/3 and 1/1 of the respective protein extracts. Tubulin served as a loading control. A 
representative experiment is shown. 
(I) Quantification of H3K4me3 (top) and H3 (bottom panel) levels normalized to tubulin 
and relative to brl1+. Multiple independent biological replicates for H3K4me3 (WT: n=4; 
brl1-KR/KQ: n=7) and H3 (WT: n=3; brl1-KR/KQ: n=4). P-value was calculated using the 
two-sided, two-sample Student t-test with equal/unequal variance according to prior 
evaluation with the F-test. 
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