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Summary 
Here in the first part of this Thesis, I investigated endothelial cell division in 

differing vascular architecture during sprouting angiogenesis in zebrafish. 

The vasculature of the zebrafish trunk is composed of tubes with different 

cellular architectures. Unicellular tubes form their lumen through membrane 

invagination and transcellular cell hollowing, whereas multicellular vessels 

become lumenized through a cord hollowing process. Endothelial cell 

proliferation is essential for the subsequent growth and maturation of the 

blood vessels. However, how cell division, lumen formation and cell 

rearrangement are coordinated during angiogenic sprouting has so far not 

been investigated at a detailed cellular level.	 We have analyzed and 

described the sequential steps of cell division (mitotic rounding, cytokinesis, 

actin re-distribution and adherence junction formation) in branches of 

differing cellular architectures during sprouting angiogenesis. In particular, 

we characterized mitosis and lumen dynamics within unicellular and 

multicellular tubes. Unicellular tubes constrict the lumen prior to mitosis and 

ultimately displace it from the division plane during mitosis, at which site a 

de-novo junction forms by the recruitment of junctional proteins at the 

division plane right after abscission. In contrast, the lumen of multicellular 

tubes remains intact throughout the cell division process and new junctions 

form from pre-existing junctions. Our findings illustrate that during the 

course of normal development, multiple tube architectures can accommodate 

the cell division machinery, thereby avoiding disruptions of the vascular 

network.  

 



In the second part of this Thesis, I investigated the lumen invagination 

including the aspects of endosomal trafficking, as well as the distribution of 

cytoskeleton and subcellular organelles (e.g. golgi) during endothelial cell 

behavior changes. 

During development, vascular networks form via vasculogenesis at early 

stages, followed by angiogenesis at later stages, a process in which new 

vessels grow from pre-existing vessels through coordinated cell division, 

migration, and cell rearrangements and eventually each sprout connects one 

with another to form vascular loops. The functionality of connected vascular 

networks depends on opening of luminal spaces allowing fluid flow. 

However, how vascular tubes establish continuous lumens within branches 

of endothelial cells in vivo to meet local metabolic needs remain obscure. In 

this study, we used a transgenic zebrafish line expressing the membrane 

marker CAAX-mCherry, to image apical membrane compartment with high 

spatial and temporal resolution. Our approach allows visualizing both the 

endothelial cell membrane and the apical lumen within the endothelial cells. 

Here we show that some vesicle-like structures, labeled with CAAX-

mCherry, form and move in the cytoplasm and eventually dissolve on/fuse 

with the growing apical membrane. Based on these observations, our 

hypothesis is that the vesicular/membrane trafficking contributes to apical 

luminal membrane invagination. To investigate this phenomenon in more 

detail, we currently characterized localization and dynamics of Rab5c-early, 

Rab7-late, and Rab11a-recycling endosomal pathways during lumen 

invagination in sprouting angiogenesis. In addition, we also visualized the 

dynamics of the cytoskeleton (microtubules and actin) and the Golgi 

apparatus, which are linked to vesicle trafficking. 
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1 General Introduction 
 

1.1 Cardiovascular system: research history and 

evolution 
1.1.1 Circulatory system research throughout history 
The circulatory or vascular system has fascinated many philosophers and 

researchers. Based on observations from animals and humans, a vast amount 

of knowledge has been acquired during the past centuries. Even though 

some of the early hypotheses have been disproved, it is interesting to have 

an overview over the origins of this field of research. The earliest writings 

about the circulatory system date back to the Ebers Papyrus, from the 16th 

century BC Egypt. The early Egyptians thought that air came in through the 

mouth and was distributed into the lungs and heart. They believed that from 

the heart, the air is delivered through the body by the arteries. In India 

during the 6th century BC, there was a notion of the circulation of vital fluids 

through the body however, there was no real proof of this concept. During 

the 4th century BC, Hippocrates discovered the valves of the heart without 

knowing their function. During this period, it was possible to examine and 

experiment on human cadavers. After death, blood accumulates in veins and 

arteries look empty. This observation led to the claim that arteries are filled 

with air instead of blood. At 335-280 BC, Herophilos, an anatomist, 

distinguished veins from arteries by pulse activity and claimed that pulse is 

the only property of arteries. He examined the human body for anatomical 

research, which had been banned a long time and then geared up with 

Leonardo Da Vinci later on in the 16th century. At 304-250 BC, Erasistratus 



                                                              General Introduction 

 2 

cut arteries on living bodies, and showed that air escapes from the arteries 

and is replaced by blood. Erasistratus was the first who described the 

circulatory system as an open system where arteries and veins are separate; 

the veins carrying blood, and arteries carrying air (Figure 1 (A)). He 

described that the digested food from the intestine was taken up by portal 

veins and transported to the liver where it was then transformed into blood, 

which was further delivered through the right ventricle (heart) by veins and 

then reaches pulmonary artery to feed the lungs. The air is taken up by the 

pulmonary arteries and then delivered to the left ventricle (heart) and is 

eventually distributed to the tissues by the arteries. The waste is removed 

through the pulmonary vein by retrograde flow (Aird, 2011).  

During 2-3th century AD, Galen showed that arteries carry blood but not air. 

He claimed that arterial blood is derived from venous blood passing through 

invisible pores in the interventricular septum (interface of right-left 

ventricles in heart) (Figure 1 (B)). During 11th century AD, Avicenna 

provided first correct explanation of pulsation as 2 movements and 2 pauses: 

expansion-pause-contraction-pause. He explained the pulse occurs as a 

movement in the heart and arteries. At 13th century AD Ibn al-Nafis was the 

first person to accurately describe the process of pulmonary circulation. In 

addition, he stated that “it has to be some small pores or communications 

between the pulmonary artery and vein” and developed a theory of capillary 

circulation, which took another 400 years to confirm. In the early 16th 

century, Andreas Vesalius- an anatomist- was convinced that the porous 

interventricular septum theory from Galen was wrong based on his 

experimental observations. He believed that the cardiac systole synchronize 

with the arterial pulse. In addition, he also proved the presence of valves in 
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the veins and discovered the canal that goes into the fetus between the 

umbilical vein and vena cava. Later in the 16th century AD, Realdo Colombo 

described the pulmonary circuit, in which venous blood in the right ventricle 

passes through the lung and reaches the left ventricle in the heart and then 

the arteries. Until then, it was believed that blood flow in veins is 

centrifugal, meaning that blood goes away from liver towards other tissues. 

Colombo described a hybrid system; the pulmonary circuit represents the 

closed system and the open system represents blood flow from liver towards 

all tissues (Figure 1 (C)). At 16-17th century AD, Harvey discovered that 

blood circulates through the whole body (Figure 1 (D)), demonstrating direct 

connections between venous and arterial system throughout the body, not 

limited to the lungs. He also confirmed the presence of valves in the veins. 

The system was driven by the mechanical power of the heart; meaning that 

the heartbeat induces a continuous circulation. The blood transfer from 

arteries to the veins in the lung and periphery was shown by direct 

connections or anastomoses, but it was not yet known what these direct 

connections were. In 1661, 30 years after Harvey, Marcello Malpighi 

discovered the capillary system, which connects arteries with veins.  

After all these centuries of research and development, we have gained a 

general understanding about the circulatory system. People had the common 

interest of observing curiosity and a search for the truth. They believed in 

the value of dissection and comparison of anatomy. The complexity of the 

circulatory system was explained with teleological causes in the early BC 

and towards the 19th century there was a demand of challenging dogma and 

authorities and more scientific explanations such as experimental 

reproducibility and quantification. However, there was little access to a 
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technology for example, microscopy was discovered in 17th century. In the 

present, we are in a more advance technological century with diverse 

research areas including molecular biology, genetics and biochemistry. 

However, we are still only at the beginning of understanding the 

mechanisms which drive the development of the vascular system (Aird, 

2011). To obtain a cellular and molecular level understanding of the 

circulatory system, we have to keep developing new techniques and tools.  

 
Figure 1: Demonstration of circulatory system throughout history. 
(A) Erasistratus reported that arteries carry air (white color) and veins carry 
blood (blue color) and they are separate. Food was absorbed in intestine and 
transferred by portal veins to liver (black color), transformed into blood. (B) 
Galen reported that arteries carry blood (red color), not air. Arterial blood 
was derived from invisible pores in the interventricular septum. (C) 
Colombo reported pulmonary system in which venous blood in right 
ventricle passes through lungs and then reach left ventricle and arteries. (D) 
Harvey reported that blood circulates in whole body not only in lungs. Liver 
is not the source of veins anymore. The system is mechanically driven by 
heart-beat. Transfer of blood from arteries to veins occurs via direct 
connections, which was shown by Marcello Malpighi (Aird, 2011). 
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1.1.2 Evolutionary perspective on endothelium: the origin, the 

need and the diversity 
 

First evidence of a prokaryotic life dates back 3.7 billion years and the first 

eukaryotic cells evolved 1.5 billion years ago. It took roughly 1 billion years 

for the first multicellular organism to appear. 

All living organism evolved to survive, reproduce and grow. When a three 

dimensional (3D) body enlarges, surface area increases in proportion to 

radius squared (r2), whereas volume develops more rapid by (r3). Cells at the 

growing body need to proportionate its surface with volume. For example, 

early triplobastic animals- having a blastula stage with three layers; 

ectoderm, endoderm and mesoderm- such as flatworms, distribute their 

metabolites by diffusion, a movement from high to low concentration, which 

is energy-efficient but only effective at short distances (< 1mm). However, 

at some point, further growth leads to a disproportionate surface-to-volume 

ratio and more advanced strategies such as an internal exchange and 

transport system became necessary. Some indications suggest that the 

circulatory system (blood vascular system) first appeared in ancestor of the 

triploblasts over 600 million years ago. To overcome time-distance 

constraints of diffusion, optimize flow dynamics, deliver metabolites and 

immune cells through long distances, the endothelium, a layer of cells that 

line the interior surface of blood and lymphatic vessels, evolved in an 

ancestral vertebrate 540-510 million years ago (Monahan-Earley et al., 

2013).  
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1.1.3 Endothelium acquirement: a transition from invertebrate 

to vertebrate 
Throughout evolution, many drastic changes have occurred during the 

transition from invertebrate to vertebrate. One of the most important changes 

is the gain of the endothelium in vertebrates, which bring several advantages 

to vertebrates. First of all, it is important for immunological defense. The 

endothelium cooperates in the defensive task by exposing surface molecules 

or receptors in an inflammation area, which are then recognized by immune 

cells. This way, endothelial cells rapidly and precisely guide immune cells to 

the infection area. A second advantage is the regulation of blood flow. In 

invertebrates, regulation of flow is controlled by contraction and relaxation 

of the myoepithelial cells under neuoregenic stimuli (Shigei et al., 2001). 

Similarly, vertebrate blood flow is controlled by an interplay between 

smooth muscle cells, where endothelial cells produce nitric oxide to tightly 

regulate the local blood flow. The third advantage is angiogenesis, which is 

a process of new blood vessel formation. With this ability, the endothelium 

can invade tissues and control vascularization of embryonic areas such as 

head, tail, limbs, and other areas dynamically (Muñoz-Chápuli et al., 2005). 

As a summary, the gain of an endothelium provided many advantages in 

vertebrates including immunological defense, blood flow regulation and 

angiogenesis.  

In the context of this thesis, the angiogenesis process is the most important 

and will be further described in the following chapters. 
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1.2 The cardiovascular system: development and 

associated diseases  

  
1.2.1 Development of the vascular system 
In all vertebrate species, the cardiovascular system is the first functional 

complex organ emerging in developing embryos and consists of four major 

components: heart, arteries, veins and blood. It provides tissues with 

nutrients, hormones, metabolites, gas-exchange, and removes waste 

products. During development, all organs need to form and connect to a 

proper vascular network as they form and grow. Endothelial cells (ECs), like 

many of our internal organs, derived from mesodermal progenitors and are 

the building blocks of the vasculature and their task is to form tubular 

structures surrounding a luminal space. Therefore it is critical for ECs to 

form and maintain the continuous hollow tubes (Risau and Flamme, 1995; 

Xu and Cleaver, 2011). 

ECs line the interior surface of arteries and veins, which are additionally 

surrounded by smooth muscle cells, derived from mesoderm progenitors, as 

an elastic tissue and an additional layer of fibrous connective tissue. 

Depending on the size of vessels, muscle layer thickness can change to deal 

with blood pressure. In addition, larger veins contain valves, which are the 

specialized structures helping uni-directional blood transport towards the 

heart (reviewed in Torres-Vázquez et al., 2003). 

The heartbeat induces the circulation of blood within the vessels. Blood 

flows through large arteries towards to smaller arterioles and eventually 

arrives at the capillaries, which infiltrate the tissues and where they are 
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involved in metabolite and gas exchange. Later, circulating blood returns 

back to the heart via venules and veins and finally reaches as the lungs, 

where the blood is replenished with oxygen (reviewed in: Adams and 

Alitalo, 2007; Carmeliet, 2005; Risau and Flamme, 1995). 
 

Despite the variations in detailed blood vessel anatomy, the main vascular 

developmental plan is conserved among vertebrates. For example, similar 

cellular and molecular mechanisms play a role to build a blood vessel 

network. 

During vascular network formation, ECs have to be able to execute many 

cellular activities such as cell migration, cell division, cell-cell contact 

formation (anastomosis), cellular re-arrangements and lumen formation in 

order to form a complete circulatory system (Herwig et al., 2011; Lenard et 

al., 2013). Therefore, it is critical to orchestrate cellular and molecular 

events to form intact vascular system.  

 

 

1.2.2 Vascular development in disease 
The circulation of blood via vascular system is vital to deliver oxygen and 

nutrients to each cell in our body. Homeostasis of such system has a 

fundamental role on health. After the circulatory system has been 

established, endothelial cells enter a quiescent phase. Intrinsic factors (e.g. 

genes) and extrinsic factors (e.g. microenvironment signaling) can induce a 

transition from quiescent state to the active state or vice versa. The balance 

and coordination between the intrinsic and the extrinsic factors provides a 

homeostasis in the vascular system and is involved in the control of the 
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location and degree of vascularization. Therefore, this balance is very 

critical to maintain the normal function of the vasculature. If the balance is 

broken, then the resulting vasculature can be either insufficient or extensive. 

Diabetes, multiple sclerosis, inflammation and cancer are diseases linked to 

extensive angiogenesis. Furthermore, many diseases occur due to 

inappropriate function of heart, vessels (arteries and veins) and fluid. 

Diseases such as coronary artery disease, atherosclerosis, stroke, 

hypertension, heart failure, cardiomyopathy, vasculitis are prominent 

examples. To understand the underlying mechanisms of how diseases affect 

the circulatory system is crucial to fight those diseases (Carmeliet, 2005; 

Potente et al., 2011). 

In order to treat diseases, many drugs are developed based on the 

understanding of the cellular and molecular processes of the vasculature. 

However, most of the angiogenesis inhibitor drugs in cancer have not been 

successful individually, suggesting that our current understanding is still 

incomplete. Therefore, basic research has a fundamental role to provide 

know-how and deep understanding of vascular system principles, which can 

be used to develop better drugs and therapies. For this, we use zebrafish as a 

model organism to study vascular development. 
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1.3 Vascular development in zebrafish 
1.3.1 Zebrafish 
To study vascular development in vivo, model organisms such as quail, 

mouse, chicken, frog, and zebrafish are indispensible. Although the final 

vascular anatomy differs greatly between species, most cellular and 

molecular mechanisms involved in vascular development are similar 

between zebrafish and other vertebrates, including mammals (Howe et al., 

2013). The zebrafish (Danio rerio) is a tropical freshwater fish, native to the 

region in India and Southeast Asia. Adult zebrafish size is 4-5 cm and their 

live span is 2-3 years (Gerhard et al., 2002). Female adult fish (> 3 months) 

can lay eggs every week, around 100 eggs at a time. Within 10-15 minutes, 

the laid eggs are fertilized externally when male fish spawn their sperm on 

eggs. After the fertilization, the first cell division starts in 45 minutes and 

following cell divisions occur in a synchronous manner in a shorter time 

(Kimmel et al., 2005).  

Among the mentioned species, we use zebrafish as a model organism to 

study angiogenesis. Zebrafish is one of the most promising model organisms 

for the study of cardiovascular development for the following reasons: the 

embryos are transparent throughout their early development and develop 

externally, fish are easy to breed, and transgenic lines are available (e.g 

fli:EGFP), which enable us to visualize cellular and subcellular events 

dynamically during vascular development (Figure 2). The vasculature 

develops early in the embryo and at 24 hpf (hours post fertilization), heart-

beat already starts and the blood cells can be seen traveling along the arteria 

and veins. Transparency of the vascular system and availability of transgenic 

zebrafish lines allow us to use high-resolution live imaging tools to observe 
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the entire process of vascular development, including angiogenesis (Lawson 

and Weinstein, 2002a). 

In the recent years a considerable variety of genetic tools, indispensable for 

functional analyses, are getting more and more established for the fish. For 

example, the novel CRISPR/Cas9 system is being used for genetic 

modifications in zebrafish (Cong et al., 2013; Hwang et al., 2013; Wang et 

al., 2013). However, genome duplication in zebrafish (all teleost fish have a 

duplicated genome) creates additional complexity for functional studies. 

Additionally zebrafish embryos are suitable for large-scale drug screening 

(Parng et al., 2002). All those advantages make zebrafish an outstanding 

model organism to study vascular development. 

 

A

B C
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Figure 2: Zebrafish vascular network formation (~3 day embryo). 
 (A) Image shows the zebrafish blood vessel network formation visualized 
by flk1:EGFP (green) and (B-C) blood visualized by microangiography 
injecting quantum dots (red). 
PHS: primary head sinus; AA: aortic arches; CCV: common cardinal vein. 
PCV: posterior cardinal vein; DA: dorsal aorta; DLAV: dorsal longitudinal 
anastomotic vessel; SV segmental vein; SA: segmental artery; CV: caudal 
vein (Ellertsdottir et al., 2010). At these stages, we focus on SA and DLAV 
in our experiments. 
 

 

1.3.2 Vascular network formation 
Two distinct mechanisms, vasculogenesis and angiogenesis, contribute to 

blood vessel formation in zebrafish embryos. Two main vessels in the trunk, 

the dorsal aorta (DA) and the posterior cardinal vein (PCV), develop along 

the anterior- posterior axis through assembly of mesoderm-derived 

angioblasts in a guided manner (Figure 3 (A)). This process is also known as 

vasculogenesis, the de novo formation of blood vessels (Poole and Coffin, 

1989). 

During angiogenesis, new vessels sprout from pre-existing ones and 

eventually these sprouts fuse with each other to form new vascular loops. 

Sprouting vessels are made up of two distinct cell populations: tip cells and 

stalk cells (Figure 3 (B)). Tip cells are leading and guiding the sprout. The 

following stalk cells provide the connection between the tip cell and the 

parental vessel (reviewed in Siekmann et al., 2013). In the embryo trunk, 

new sprouts emerge from the dorsal aorta (DA) at ~22 hpf (hours post 

fertilization) and form intersegmental vessels (ISVs). Eventually, these 

sprouts fuse to each other to form the dorsal longitudinal anastomotic vessel 

(DLAV). At ~32 hpf, secondary sprouts emerge from the PCV. They 
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connect to the nearest primary segmental artery (SA) and transform it into a 

segmental vein (SV), which allows the formation of a closed blood circuit 

(Ellertsdottir et al., 2010; Isogai et al., 2001)  

 

 
Figure 3: Vasculogenesis and angiogenesis  
(A) Angioblast cells (> 1000 cells) come together in a guided manner and 
form a de novo vascular tube, which is known as vasculogenesis. (B) A 
sprout comes out from the pre-existing vessel to form a new vessel, which is 
known as angiogenesis process (Blasky et al., 2015) 
 

 

1.3.2.1 Vasculogenesis 
The cardiovascular system is the first organ system developing in the 

embryo because of its critical role in nutrient and oxygen delivery. The heart 

is one of the earliest developing organs. However, it does not start pumping 

until the first vascular loop has been formed. Da Vinci compared the 

vascular loop formation in an analogy to a sprouting seed, where the seed 

represents the heart and the roots are the vessels (Wener Risau, 1997). Now, 

we know that vascular sprouts form and eventually connect to the heart. 
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Early stages during development, a primitive network of blood vessel is 

formed and ramified into arteries, veins and capillaries through the migration 

and aggregation of mesoderm-derived angioblasts. This de novo blood 

vessel formation process is known as vasculogenesis. The circulatory system 

is different in their pattern formation from species to species. However, 

basic principles of mechanisms are commonly shared among vertebrates.  

 

Unlike mammals in which a pair of dorsal aorta (DA) forms during 

embryogenesis, in zebrafish (Danio rerio) vasculogenesis produces only one 

DA. During the zebrafish embryonic development at 13 hours post 

fertilization (hpf), angioblasts come together in two stripes and give raise to 

dorsal aorta (DA) and posterior cardinal vein (PCV). Mesoderm derived 

angioblasts migrate towards the embryonic midline and coalesce and form a 

tube at 17 hpf (Lawson and Weinstein, 2002a). Initial cells give raise to 

arteria (DA) and shortly afterword, DA sprouts ventrally to form the PCV 

(Herbert and Stainier, 2011). 

It has been identified that signaling pathways influence the formation of DA 

and PCV extensively. For example, growth factors, secreted by the ventral 

somites, determine the angioblast fate to give raise to DA. However, in the 

notochord, sonic hedgehog signaling regulates the secretion of vascular 

endothelial growth factor A (VEGFA) in the ventral somites. VEGFA 

signals attract the angioblasts towards the midline and promotes the 

angioblast arterial determination (Lawson and Weinstein, 2002b; Lawson et 

al., 2002). Therefore, angioblasts at the dorsal side start expressing the 

arterial marker EphrinB2a, downstream of Notch signaling. The expression 

of EphrinB2a represses the venous fates and promotes arterial fates. 
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However, Ephrin signaling in the ventral region might drive the angioblast 

sprouting which give rise to the PCV (Ellertsdottir et al., 2010; Herbert et 

al., 2009). 

While vasculogenesis is critical for the early steps in vascular network 

formation, it is through angiogenesis that the majority of networks grow and 

adapt to the quickly changing environment of the developing embryo. 

 

 

1.3.2.2 Angiogenesis 
Angiogenesis is a process of new blood vessel formation from pre-existing 

ones. Eventually, these vessels fuse with one another to form new vascular 

loops. During angiogenesis, endothelial cells divide, migrate, re-arrange, 

contact one another, polarize and subsequently lumenize to fulfill their 

function, the carrying of metabolites in and the removal of waste away from 

cells. During development, the majority of vessels in a body are formed via 

the angiogenesis process. Furthermore, angiogenesis is not limited to early 

development or embryogenesis. It can occur in adults as results of 

physiological adaption such physical trainings, wound healing after an 

injury, organ lining regeneration (e.g. in stomach and intestine), menstrual 

cycle and tumor vascularization. Thus depending on the local needs, the 

system is flexible and adopts constantly.  

There are two types of angiogenesis: sprouting angiogenesis and 

intussusception. The sprouting angiogenesis will be the main focus of my 

thesis and explained in more detail in the following paragraph.  
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1.3.2.2.1 Sprouting angiogenesis 
Sprouting, tip cell activation, migration, and proliferation 

Sprouting angiogenesis is a multistep branching morphogenesis process and 

represents the major part of angiogenesis. To start an angiogenic sprout, 

angiogenic growth factors (e.g. VEGFA) activate receptors on quiescent 

endothelial cells, which are located on pre-existing vessels. The one that gets 

the signal and responds quickly goes from a quiescent to an active state 

(Figure 4 (A)). For example, extending filopodia structure, which facilitates 

migration towards the source, is a characteristic of such cells called tip cells. 

The active endothelial cell secretes enzymes to degrade the basal membrane 

to allow cell migration away from the parental vessels (Figure 4 (B)). In 

parallel, the active endothelial cells repress neighboring cells via Notch-delta 

signaling in order not to get activated by angiogenic stimulus (Figure 4 (C)). 

Sprouting vessels are made up of two distinct cell populations: the first cell 

that comes out of a parental vessel represents the tip cell and the following 

cell(s) are stalk cell(s) that provide the connection between the tip cell and 

the parental vessel (Jakobsson et al., 2010; Siekmann et al., 2013). In the 

sprout, tip and stalk cells proliferate and migrate towards the source of an 

angiogenic stimulus, for example VEGF signals, which stimulate sprouting 

of ECs. It was thought that a single migratory cell at the tip guides the sprout 

and the stalk cells behind the tip cell, follow it with fixed fates (Gerhardt, 

2003). However, during the migration, tip and stalk cell compete for their 

position and possibly change the leading position based on quick response 

towards stimulus. Cross-talk between VEGF-A and Notch signaling balance 

tip and stalk cell formation, revealing dynamic changes in cell behavior 

rather than fixed fates for endothelial cells	(Arima et al., 2011; Jakobsson et 
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al., 2010). The tip cell experience high VEGF and low Delta4/Notch 

signaling and, tip cell selection is achieved by Dll4-Notch mediated lateral 

inhibition. The stalk cell reacts to tip cell DII4 by increasing Notch signaling 

activity, which downregulates VEGF signaling (Hellström et al., 2007; 

Siekmann and Lawson, 2007a). 

 

 
Figure 4: Steps of sprouting angiogenesis 
(A) tip/stalk cell selection; (B) tip cell migration towards VEGF signals and 
tip and stalk cell division; (C) branching coordination; (D) stalk cell 
elongation, tip cell fusion (anastomosis), and lumen formation; and (E) 
perfusion and vessel maturation. (Potente et al., 2011) 
 

 

Sprouts expand towards the source of the angiogenic stimulus as the lumen 

formation within the vessels takes place continuously. During the sprouting, 

vessel architecture is not homogenous and changes dynamically. Therefore, 

we describe the vascular architecture as unicellular and multicellular tube, 

based on junctional positioning. At the earlier stages of the sprouting 

process, in many cases the lumen goes through a single cell and junctions 

are not continuous, and cell-cell contacts are far from each other. This type 

of vessel is named a unicellular tube (Figure 5 (A)). However, in later stage 

of angiogenesis, sprouts consist of multiple cells with continuous junctions 
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along the cell-cell contact sides and lumen goes between the cells. Such a 

vessels is referred to as a multicellular tube (Figure 5 (B)).  

 

 
Figure 5: Unicellular and multicellular tube 
(A) Unicellular tube: lumen goes trough a single cell and there are no 
continuous junctions (right). (B) Multicellular tube: lumen goes between 
multiple cells and there are continuous junctions (left). 
 

Anastomosis and Vascular Polarization 

Extending sprouts from parental vessels eventually come together and 

connect to one another, a process known as anastomosis or vessel fusion, in 

which sprouts form loops to become fully functional, lumenized vessel 

(Figure 4 (D-E)). As sprouting angiogenesis takes place, collectively 

migrating tip and stalk cells move towards each other in dorsal side and 

eventually tip cells contact with one another.  Two cells make first contact 

with filopodial structures and deposit their adherens junctions at the contact 

sites. When two ECs make a first contact via filopodia, they deposit 

junctional materials at the contact side (Figure 6 (A)). Junctions are 

dispersed and localized in a small contact area at the beginning. Eventually, 

the junctional contact area enlarges and forms a ring shape. While the ring 

forms, apical domain material such as podocalyxin, an anti adhesive 

transmembrane protein, is carried by vesicles and deposited at the junctional 
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contact. By this way, two endothelial cells form apical compartments at the 

contact side and apical-basal polarity is established (Figure 6 (B)).  

After ECs establish apical domains at the contact sites, they extent the 

junctional area by crawling over each other. Eventually, circuit loops need to 

be lumenized in order to complete and become functional to allow blood 

flow (Figure 6 (C)). Anastomosis is one of the important key steps in order 

to form circular loops. However, it is not yet understood, what molecules are 

involved in the regulation of the anastomosis process. How endothelial cells 

avoid connecting to other cell types and how they make a right cell 

connection still remain challenging questions. 

 
Figure 6: A multistep process in anastomosis  
(1) Contact formation with filopodia structures. (2) De novo polarization of 
newly contacted cells. (3) Apical membrane invagination (lumen) in 
unicellular tubes. (4) Cell rearrangements: junctional rearrangements and 
transformation from unicellular to multicellular tube (Lenard et al., 2013) 
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1.4 Vascular remodeling 

 
1.4.1 Intussusception  
Intussusception angiogenesis is a process in which an existing vessel splits 

into two by pillar formation. In other words, vessels can sense blood flow 

changes and react towards those changes. Thereby, vascular tubes undergo 

rearrangements and split a vessel into smaller diameter vessels. 

Intussusception does not require cell division or drastic changes in the 

surrounding tissues, which sets the process apart from sprouting 

angiogenesis.  
 

 

1.4.2 Pruning 
Pruning is an adaptation process, removing vessels in order to optimize 

blood flow after functional vascular networks have been established. When 

there is less or no blood flow, endothelial cells migrate toward adjacent 

vessels from the pruning vessel to regulate the blood flow dynamics 

(reviewed in Betz et al., 2016). However, when there is an increased blood 

pressure, pruning vessel number decreases dramatically, which shows the 

relationship between blood pressure and pruning activity. VEGF signaling 

level is also associated with pruning activity. It has been demonstrated that 

due to hyperoxia (high oxygen), VEGF signaling suppresses pruning activity 

(Alon et al., 1995).  
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1.5 Endothelial cell-cell junctions 

 
In order to maintain the integrity of the endothelium, junctional structures 

play critical roles such as promoting cell-cell adhesion, vascular homeostasis 

and functioning as signaling structures for cellular activities (reviewed in 

Dejana, 2004). Similar to epithelial cells, endothelial cells also have two 

types of junctions; adherens junctions (AJs) and tight junctions (TJs). 

However, in the endothelium TJs are merged with AJs along the intercellular 

cleft, rather than being concentrated more in the apical side of the cleft. In 

addition, the endothelium lacks desmosomes with some exceptions in the 

lymphatic system and veins, which have desmosomal-like structures, and 

which are associated with vascular endothelial cadherin (VE-cadherin) 

(Dejana, 2004; Dejana et al., 1995). Even though AJs and TJs are built from 

different components, they share the feature of mediating adhesion between 

cells. AJs, e.g. Cadherins and Catenins, play an important role for cell-cell 

adhesion. The most important cadherins are, for example, vascular 

endothelial cadherin (VE-cadherin), N-cadherin, PECAM-1 

(platelet/endothelial cell adhesion molecule 1) and VCAM-1 (vascular cell 

adhesion molecule). TJs are adhesion molecules and Claudins, Occludins 

and JAMs (e.g. ESAM) are some of the examples. For example, Zona 

occludens 1 (ZO-1) is an intracellular molecule associated with TJs and 

localized at the cell-cell contacts (reviewed in Xu and Cleaver, 2011). 

Overall, in the lab we use VE-cadherin (AJs) and ZO-1 (as TJs) transgenic 

zebrafish lines to investigate the endothelial cell behaviors during sprouting 

angiogenesis (Figure 7).  
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Figure 7: Junctions in endothelial cells  
A cross-section of a vascular tube (left) and a magnification of the contact 
surface between two endothelial cells (right). TJ components were located 
apically and AJ components were located basolaterally. (Dejana et al., 2004 
and PhD Thesis of Loic Sauteur) 
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In this thesis I want to focus on two projects:  

 

1. Endothelial cell division in a differing vascular architecture, based on 

unicellular and multicellular patterns in sprouting angiogenesis. 

The results of the first project have recently been published; in the first 

project, I analyzed how endothelial cells divide in differing cellular 

architectures during sprouting angiogenesis.  

 

2. Lumen invagination process, investigating whether vesicular/membrane 

trafficking contributes to the formation of the apical membrane compartment 

in sprouting angiogenesis. 

In the second project, an ongoing project, I characterized three distinguished 

vesicular/membrane trafficking pathways during the lumen invagination in 

angiogenic sprouts to investigate relationship between lumen growth and 

endosomal trafficking. 
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Part I: Endothelial cell division in angiogenic 

sprouts of differing cellular architecture 
 

 

2 Introduction 

 
2.1 Endothelial cell division  
Cell division has been extensively investigated in vitro, and the cellular and 

molecular mechanisms of the mitotic machinery are well understood. The 

first step is mitotic rounding, a generic feature of cell division that is driven 

by changes in the shape and the rigidity of the cell cortex (reviewed in 

Cadart et al., 2014). It has been shown that this actomyosin-driven process is 

necessary for the proper assembly, maintenance and orientation of the 

central spindle (Kunda et al., 2008; Lancaster et al., 2013; Rosenblatt et al., 

2004). Spindle orientation subsequently defines the plane of cell division 

through the accumulation of phosphorylated Myosin II at the plasma 

membrane, which drives the assembly of a contractile ring (reviewed in 

Fededa and Gerlich, 2012; Green et al., 2012; Levayer and Lecuit, 2012). 

The next step is the partitioning into two daughter cells, or cytokinesis, 

which takes place shortly after chromosome segregation. During cytokinesis, 

the actomyosin ring contracts and eventually collapses to a small 

intercellular bridge, the so called midbody. Finally, the severing of the 

constricted plasma membrane, a process known as abscission, marks the end 

of mitosis. This generally described process is also valid for ECs. 
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Within epithelial sheets or tubes, dividing cells maintain the adherens 

junctions (AJs), which confer tissue integrity (Nakajima et al., 2013; 

reviewed in Bourdages and Maddox, 2013). However, AJs are extensively 

reconstructed during mitotic rounding and cytokinesis (reviewed in Harris 

and Tepass, 2010; Herszterg et al., 2014). The neighboring ECs exert forces 

on the mitotic cell through cadherin proteins (the core of AJs) that are, in 

turn, linked to the actomyosin cortex (reviewed in Harris and Tepass, 2010). 

Morphogenetic movements such as cell intercalation and invagination 

require a degree of synchronization between junctional re-arrangement and 

mitosis (Kondo and Hayashi, 2013; reviwed in Levayer and Lecuit, 2012).  

Because of their 3-dimensional structure, tubular networks have a more 

complex morphology than epithelial sheets. Therefore, the division of 

elongated and lumenized cells may require some adaptations of the mitotic 

machinery in order to accommodate their peculiar geometry as was recently 

shown in a study of the Drosophila larval trachea system (Denes et al., 

2015). While the actomyosin rings that drive cytokinesis in the Drosophila 

epithelia are able to symmetrically deform the AJs of the two cells that flank 

the emerging junction (Founounou et al., 2013; Guillot and Lecuit, 2013; 

Herszterg et al., 2013), during cytokinesis in tracheal tubes, the membrane 

furrows asymmetrically on the side of the cell that is proximal to the 

nucleus, and the new junction then extends around the lumen until it 

connects and fuses with another membrane. It has been demonstrated that in 

the remodeling dorsal tracheal branches, such asymmetric de novo junction 

formation is the norm, presumably because the specific geometry and the 

rigidity of the tubes favor this outcome (Denes et al., 2015).  
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The vasculature of the zebrafish trunk consists of segmental arteries (SAs) 

that branch out of the dorsal aorta (Isogai et al., 2001). A vascular sprout 

contains several stalk cells and a leading tip cell (Blum et al., 2008a; 

Siekmann and Lawson, 2007b). SAs are arranged in a metameric pattern and 

their tip cells eventually contact each other, leading to vessel anastomosis 

and the formation of the dorsal longitudinal anastomotic vessel (DLAV) 

(Herwig et al., 2011; Lawson and Weinstein, 2002a). During the formation 

of the trunk vasculature, approximately from 20 and 50 hpf, the endothelial 

cells of the SAs and the DLAV undergo extensive proliferation (Blum et al., 

2008a; Lawson and Weinstein, 2002a). Therefore, the interplay of the 

cellular mechanisms of junctional remodeling, lumen formation and EC 

division can be investigated through live imaging during this time window 

(Lawson and Weinstein, 2002a; reviewed in Ellertsdottir et al., 2010).  

To form a proper vessel morphogenesis, the integration of proliferative and 

morphogenetic processes is critical (Zeng et al., 2007). However, it has not 

been investigated in detail how EC division proceeds in a dynamic 

environment, in which lumen formation and cell rearrangements occur 

concomitantly and vessel integrity has to be maintained.  
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2.2 Aim of Endothelial Cell Division Project 
Here, we aimed to investigate the interplay between cell division, junctional 

rearrangement, actin distribution and lumen dynamics during SA 

morphogenesis in the zebrafish, using an array of fluorescently labeled 

markers and confocal live imaging. We aimed to demonstrate whether 

membrane furrowing during cytokinesis differs in unicellular tubes 

compared to multicellular tubes. In addition, we wanted to find out how ECs 

in a multicellular DLAV manage cytokinesis, depending on the orientation 

of the intercellular junctions relative to the plane of division. We also 

wanted to see that how the lumen of unicellular and multicellular vascular 

tubes overcome changes in cellular architecture during mitotic rounding and 

cytokinesis.  
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3 Materials and Methods 

3.1 Preparation of electro-competent E. coli bacteria 

Solutions: 

Luria-Bertani (LB) without salt (10g tryptone, 5g yeast extract add water to 

1l (ca. 980ml), autoclave) 

10% Glycerol, sterile 

 

Electro-competent cell preparation: 

50 ml (LB) w/o salt medium was inoculated with TOP10 bacteria strain 

(Invitrogen) and incubated overnight at 37°C. As TOP10 has a 

Streptomycin-resistance cassette, Streptomycin (50 μg/ml) was added to the 

overnight culture. Next morning, the culture was diluted 1:100 in 1 L of LB 

w/o salt (without antibiotics) in 2x 3L Erlenmeyer flasks with baffles. Next, 

the culture was grown to an optical density (OD) of 0.6-0.8 (around 3-4h), 

and immediately cooled down on 4°C and kept cool from now on. Before 

use, collection bottles and centrifuge were precooled to 4°C. Then, 1L 

culture was distributed to 4 collection bottles for the SLA-3000 rotor and 

centrifuged for 10 min at 3300 rpm (It's normal when the supernatant is still 

a bit turbid after centrifugation). Next, the supernatant was discarded and 

each pellet was re-suspended in 5 ml 10% glycerol (sterile, cooled; do not 

vortex). Next, the suspension was redistributed to 2ml eppendorf tubes and 

centrifuged at 8000 rpm for 5 min in a cooled bench-top centrifuge. The 

supernatant was carefully discarded and the pellet was re-suspended in 1 ml 
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10% glycerol again (now the culture is 100x concentrated). As a last step, 

the suspension was distributed into 50-75ul aliquots and immediately frozen 

in liquid nitrogen. The aliquots were stored at -80°C until usage. 

 

3.2 DNA preparation from a single fish 

DNA sample was isolated from an adult fish fin. The DNA extraction was 

performed according to instructions, as described in (Meeker et al., 2007). 

The fish was anesthetized in 1 x tricaine solution in 1x E3 egg water and was 

transferred on a sterile plastic dish to cut the tip of the tail by sterilized razor 

blades (blades were sterilized by ethanol 70 %). The fin tip was transferred 

in 50 µl of DNA extraction buffer A (alkaline lysis, 50mM NaOH) and 

incubated at 95°C by shaking at 800rpm for ~ 30 min. After anesthesia, the 

fish was put in egg water with methylene blue for recovery. To extract DNA 

after shaking, the sample was put on ice and 5 µl Extraction Buffer B 

(neutralization, 1M Tris HCl, pH 8) was added, mixed and centrifuged down 

to the bottom of the tube and kept at -20°C for storage. 1 µl of the sample 

was used as a template for polymerase chain reaction (PCR). 
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3.3 Polymerase Chain Reaction (PCR) 

PCR reaction mix: 

5x Phusion® HF Reaction Buffer (Finnzymes)/ or 

10x ThermoPol Reaction Buffer (NEB) or GC Buffer 

10 µl/ or 

5 µl 

10mM dNTP mix 5 µl 

10µM forward primer 2.5 µl 

10µM reverse primer 2.5 µl 

template (gDNA), usually 50 ng 1 µl 

Phusion® Polymerase (Finnzymes)/  

Taq DNA Polymerase (NEB) 

(1.25 units/50 µl) 

0.5 µl 

H2O 28.5 µl 

                                                                                                    Total= 50 µl 

 

Standard PCR program:  

Initial denaturation 98°C 30sec  

 

      30 cycles 

Denaturation 98°C 10sec 

Annealing  57°C 30sec 

Extension 72°C time alters with product 

length  

Final extension 72°C 5min 

Pause 4°C ∞ 
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T3 Thermocycler (Biometra) was used for the PCR reactions. For Phusion® 

Polymerase the elongation time was set to 30 sec per 1000 bp fragment size. 

For Taq DNA Polymerase the elongation time was set to 1 min per 1000 bp. 

If unspecific, spurious PCR products appeared on the agarose gel the 

annealing temperature was increased by 1-2 °C 

After PCR reaction, the products were purified from Agarose gels using the 

NucleoSpin® Gel and PCR Clean-up Kit (Macherey-Nagel) following the 

provided protocol by the company. 

To clone a DNA fragment, the region of interest was amplified from the 

genomic DNA by PCR. Primers were designed as 20-22 nucleotides (nt) 

complementary to the template DNA with a GC content between 40 % and 

60 %. In order to further clone or manipulate the DNA, restriction sites were 

introduced at the 5’ ends. To improve cleavage efficiency of these restriction 

sites, additional four nucleotides, usually an ATTA sequence, were added to 

the designed primers at the 5’ end (Sambrook and Russell, 2006a). The 

oligonucleotides were ordered from and synthesized by Sigma-Aldrich Corp. 

(United Kingdom). pT2_4xUAS:EGFP-rab35 plasmid was generated by this 

way and will be explained in the cloning of the EGFP-rab35 plasmid 

section. 

3.4 Restriction digestion 

DNA backbone (1.5 µg) 1 µl 

10x Buffer 2.5 µl 

10x BSA 2.5 µl 

Enzyme X 0.5 µl 
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H2O  x µl to Total= 25 µl 

Plasmids and the PCR products were digested by the corresponding 

restriction enzymes at the special temperature, which depends on enzyme 

working condition, for 2h in a volume of 25 µl in the corresponding buffers 

(NEB or Roche). Depending on the experiment design, if a sequential 

digestion by restriction enzymes was necessary, after incubation of the first 

enzyme for 2h, the fragment was cut and purified with the NucleoSpin® Gel 

and PCR Clean-up Kit (Macherey-Nagel). Further digestion was continued 

with a next enzyme. 

3.4.1 Dephosphorylation 

Arctic phosphate buffer (10x) 2.5 µl 

Vector backbone 25 µl 

Enzyme phosphotase 1 µl 

In order to prevent the binding of sticky ends created by digestion enzymes, 

the vector backbone was dephosphorylated by Shrimp Alkaline Phosphatase 

(Promega) at 37°C for 30-60 min. Later on, the temperature was raised to 60 

°C to deactivate the phosphatase. 

 Afterwards the digested DNA vector was run on an agarose gel 

electrophoresis to separate mixed DNA fragments (Sambrook and Russell, 

2006b), and then purified with the NucleoSpin® Gel and PCR Clean-up Kit 

(Macherey-Nagel) according to the provided protocol. Finally, the purified 

DNA concentration was measured by spectrophotometry (NanoDrop 

spectrophotometer, Thermo Fischer Scientific). 
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3.5 Ligation 

T4 DNA Ligase Buffer (10x) 2 µl 
Vector DNA (4kb) 50 ng (0.020 pmol) 
Insert DNA (1kb) 37.5 ng (0.060 pmol) 
T4 DNA Ligase 1 µl 
H2O to 20 µl 

 

The plasmid of interest, together with the digested inserts was ligated in a 

volume of 20 µl in the presence of T4 DNA ligase and the corresponding 

buffer (T4 Ligase Buffer). The insert/plasmid ratio was shown in the above. 

The ligation was incubated at 18°C overnight (Sambrook and Russell, 

2006c). 

 

3.6 Transformation 

Gene Pulser (Biorad) and cuvette 

Electro-competent E.coli TOP10 

Ligated plasmid of interest 

 

Solution: 

• Luria-Bertani (LB) medium (10g Bacto-tryptone; 5g yeast extract; 10g 

NaCl in 1l H2O, adjust to pH 7.5, autoclave) 

• LB Agar plates (add 15 g Agar to 1l of LB, autoclave, added corresponding 

antibiotics, pourchot liquid LB Agar into plates (20ml in 10cm diameter 

plates) and let the Agar harden by cooling down to RT and kept in 4°C 
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Protocol: 

Electro-competent Top10 E. coli bacteria were used for transformation. 

Frozen electrocompetent E. coli (50/ or 75 µl in Eppendorf tubes) were 

thawn on ice. Next, 1µl of the DNA ligation was added on the thawn 

bacteria. Then the bacteria were transferred into a 1 mm precooled Gene 

Pulser cuvette (Biorad). The electro-transformation was performed with a 

Gen Pulser (Biorad) at 1.8 mV, 200 Ω and 25 µF. After transformation, the 

bacteria were propagated in 1 ml LB medium without antibiotics on a shaker 

at 37°C for one hour. The bacteria were spread on LB Agar plates 

supplemented with corresponding antibiotics and grown over night in a 37°C 

incubator. 

3.7 Minipreps 

Single colonies were picked and incubated at 37°C overnight in 5 ml LB 

medium with corresponding antibiotics on a shaker. The plasmid DNA was 

further isolated with the NucleoSpin® Plasmid kit according to the provided 

protocol.  

3.8 Gel electrophoresis 

To assess the correct plasmid selection, the isolated DNA plasmids were 

digested by the corresponding enzymes and then run on the gel 

electrophoresis to separate the DNA fragments. 

3.9 Sequencing 

To confirm the positive candidates from the miniprep and PCR output, the 

products were sequenced. 0.8-1.2 µg of the plasmid were mixed with the 
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primer (either with Standard primers or self-designed primers were added) in 

a final volume of 15 µl. The sequencing was operated by Microsnyth AG 

(Balgach, Switzerland) and the result was sent on the following day via 

email. ApE© and SnapGene DNA softwares were applied to analyze 

sequencing results. 

 

3.10 Midiprep 

To purify high quality and large amount of DNA plasmid, midiprep was 

performed. A positive clone was picked and grown in100 ml LB medium 

with the corresponding antibiotics at 37°C on a shaker overnight.  

At the following day, plasmid DNA was purified by applying a 

NucleoBond® Xtra Midi EF (Macherey-Nagel) protocol. After the 

purification, the plasmid DNA concentration was measured with the 

NanoDrop spectrophotometer (Thermo Fischer Scientific) and the plasmids 

were stored at -20°C. 

 

3.11 Injection 

Depending on experimental interests, appropriate fish lines were set up in 

mouse or small cages, replenished by stones or artificial plants to stimulate 

egg laying (set up 3 male and 3 female adult fish per cage) overnight. Next 

day around 8 a.m., the water in the cages were replaced by fresh water and 

internal grid was tilted around 30 degree. Fish began to the lay sufficient 

amounts of eggs for the injection. 
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Eggs were collected and transferred to a block of LB Agar channels 

(injection plates) and aligned with a coarse needle under the binocular. The 

plasmid solution (30-100 ng/µl plasmid in5 mM KCl, 100µM Na2HPO4 and 

100µM NaH2PO4) was injected at single cell stage under the binocular. 

Injected eggs were then incubated at 28°C. In the afternoon, dead or 

unfertilized eggs were discarded. In the following day, the embryos were 

dechorionized manually or by proanase solution (0.1-0.5 mg/ml) for 10-20 

min. After dechorionation, the embryos were washed with fresh 1x E3 egg 

water and transferred into a new dish. To assess the result of injection, 

embryos were screened for a fluorescent signal under a fluorescent binocular 

(Leica M205 FA). Selected positive embryos were either further imaged by 

confocal microscopy or grown up to generate transgenic lines. 

 

3.12 Zebrafish Maintenance and Strains  

Zebrafish (Danio rerio) were maintained at standard conditions 

(Westerfield, 2007) and embryos were raised and staged at 28.5 °C, as 

previously described (Kimmel et al., 2005). The following transgenic lines 

were used in this study: Tg(BAC:kdrl:mKate2-CAAX)UBS16  or 

Tg(BAC:kdrl:mcherry-CAAX) (Lenard et al., 2013). Tg(kdrl:NLSEGFP); 

Tg(fli1a:B4GALT1-mCherry) (Kwon et al., 2016); Tg(kdrl:eGFP:EB3) and 

Tg(kdrl:eGFP:tuba) (Asakawa and Kawakami, 2010); 

Tg(fli1ep:GAL4FF)UBS3; (UAS:mRFP); Tg(UAS:EGFP-UCHD)UBS18 

(Sauteur et al., 2014). 
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3.13 Immunohistochemistry 
Embryos were grown in egg water (1x E3) until desired experimental age (in 

this case 24-48 hours) and then decorionated manually. If later stages 

needed, then embryos were incubated in 1x E3 containing 1x PTU (1-

phenyl-2-thiourea) solution to prevent pigmentation. 

Fixation solution 

Embryos were fixed in 2% PFA o/n at 4°C. Next day, embryos were washed 

several times. 

Permeabilization  

Tissue permeabilization was done with 0.5% Triton X-100 in PBST (Sigma) 

for 2h at RT 

Blocking solution 

Next, embryos were incubated in “Bovine serum albumin (BSA)” o/n at 

4°C.  

Primary antibody 

In the following day, embryos were incubated in primary antibody solution 

(diluted in blocking solution 1:500/1000) o/n at 4°C. Primary antibody 

solution was collected to reuse in future experiments and samples were 

washed 4-5 times in PBST for 6-8 hours at RT. 

Secondary antibody 

Next, embryos were incubated in secondary antibody (diluted in Blocking 

solution 1:1000/2000) o/n at 4°C. The following day, secondary antibody 

solution was preserved to reuse in future experiments and samples were 

washed at least 6 times with PBST during 6-8 hours at RT. Finally, embryos 

were ready to image. 
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3.14 Image acquisition and analysis 
 
Sample mounting 
Embryos were selected for fluorescent expression under a fluorescent 

binocular (Leica M205 FA). Then, staged embryos that exhibited 

fluorescence were anesthetized in 1x E3 with 1x tricaine (0.08 %). In mean 

while, 0.7% low melting agarose (Sigma, dissolved in 1x E3) was melted in 

microwave and supplemented with 1x tricaine and 1x PTU (0.003 %, Sigma) 

and was kept at 55°C during mounting. 4-6 embryos were put on a 35 mm 

glass bottom petri dish (0.17 mm, MatTek) and covered with pre-warmed 

low melting agarose. Life embryos or tail of fixed samples were oriented and 

aligned with a piece of soft material like hair, which attached on painting 

brush. After the agarose solidified, the glass dish was covered with 1x E3 

egg water and supplemented with 1x tricaine and 1x PTU. 

 
 
3.15 Confocal imaging 
 
3.15.1 Point scanning confocal imaging 

Leica SP5 II Matrix microscopy was used for over night time-lapse 

recordings with 40x water immersion objective (NA=1.1) and incubation 

chamber was always set to 28.5°C during the experiments. The point 

scanner was set to 400Hz. Over night time-lapse recordings were performed 

with multiple positions and z-stacks with a 0.5-0.75 µm step size were 

acquired every 8 or 10 minutes. 

 
3.15.2 Spinning disk confocal imaging 

Most of the movies were recorded by spinning disk confocal microscopy for 
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high spatial-temporal resolution (with Δt<1min). Here, endothelial cell 

division movies were recorded with 63x water immersion objective 

(NA=1.2) and z-stacks with a 0.2 µm step size were acquired every 30 

seconds. Later on, vesicular/membrane trafficking movies were recorded 

every 10 second to improve spatial-temporal resolution. To obtain best 

resolution and the least photo-bleaching, laser intensities and exposure times 

were adjusted to get best signal to noise ratio. 

 
 
3.16 Image processing and deconvolution 
Images with 0.2µm z-stacks and high-resolution (>1024x1024pixel) were 

de-convolved. Raw data was divided to < 4gb parts and uploaded on to the 

server (HRM: smb://131.152.25.73/hrm_data/) and processed over the 

online interface (https://huygens.bc2.unibas.ch/hrm/) with pre-determined 

setup of parameters. Results were retrieved from the server and further 

processed by FIJI. 

Imaris (Bitplane), Volocity (PerkinElmer) and ImageJ/ FIJI 

(http://imagej.nih.gov/ij/) were used for additional data processing and 

image analysis. All images are maximum intensity projections. Adobe 

Illustrator was used for figure preparation.	

 

 

 



 

 40 

4 Results 

4.1 Publication 
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Endothelial cell division in angiogenic sprouts of differing cellular
architecture
Vahap Aydogan, Anna Lenard, Alexandru Stefan Denes, Loic Sauteur, Heinz-Georg Belting andMarkus Affolter*

ABSTRACT
The vasculature of the zebrafish trunk is composed of tubes with
different cellular architectures. Unicellular tubes form their lumen
through membrane invagination and transcellular cell hollowing,
whereas multicellular vessels become lumenized through a chord
hollowing process. Endothelial cell proliferation is essential for the
subsequent growth and maturation of the blood vessels. However,
how cell division, lumen formation and cell rearrangement are
coordinated during angiogenic sprouting has so far not been
investigated at detailed cellular level. Reasoning that different
tubular architectures may impose discrete mechanistic constraints
on endothelial cell division, we analyzed and compared the
sequential steps of cell division, namely mitotic rounding,
cytokinesis, actin re-distribution and adherence junction formation,
in different blood vessels. In particular, we characterized the interplay
between cell rearrangement, mitosis and lumen dynamics within
unicellular and multicellular tubes. The lumen of unicellular tubes
becomes constricted and is ultimately displaced from the plane of cell
division, where a de novo junction forms through the recruitment of
junctional proteins at the site of abscission. By contrast, the new
junctions separating the daughter cells within multicellular tubes form
through the alteration of pre-existing junctions, and the lumen is
retained throughout mitosis. We also describe variations in the
progression of cytokinesis: while membrane furrowing between
daughter cells is symmetric in unicellular tubes, we found that it is
asymmetric in those multicellular tubes that contained a taut
intercellular junction close to the plane of division. Our findings
illustrate that during the course of normal development, the cell
division machinery can accommodate multiple tube architectures,
thereby avoiding disruptions to the vascular network.

KEY WORDS: Junctional dynamics, Cytokinesis, Endothelial
cell division, Multicellular tube, Unicellular tube, Lumen,
Live-cell imaging, Actin distribution

INTRODUCTION
Embryonic organogenesis requires nutrient delivery, gas exchange
and metabolic waste removal, and these processes depend upon
the presence of a functional cardiovascular system. Therefore, the
vascular network assembles early during development from
endothelial cells (ECs) and grows into a dynamic network of
hollow tubes that directs blood flow to the developing organs. Most

of the later born blood vessels are the product of angiogenesis, a
process in which new branches sprout from pre-existing blood
vessels. During development, the vascular network becomes more
elaborate through the opening of new circulatory pathways, a
process known as anastomosis (Adams and Alitalo, 2007; Wacker
and Gerhardt, 2011). As we have recently shown (Herwig et al.,
2011; Lenard et al., 2013) anastomosis entails a stereotypic set of
cell behaviors and can occur either between two sprouts that contact
each other, or through the fusion of a sprout with a pre-existing,
perfused blood vessel.

The vasculature of the zebrafish trunk consists of segmental
arteries (SAs) that branch out of the dorsal aorta (Isogai et al., 2001).
A vascular sprout contains several stalk cells and a leading tip cell
(Blum et al., 2008; Siekmann and Lawson, 2007). SAs are arranged
in a metameric pattern and their tip cells eventually contact each
other, leading to vessel anastomosis and the formation of the dorsal
longitudinal anastomotic vessel (DLAV) (Herwig et al., 2011;
Lawson and Weinstein, 2002). During the formation of the trunk
vasculature, approximately from 20 and 50 hpf, the endothelial cells
of the SAs and the DLAV undergo extensive proliferation (Blum
et al., 2008; Lawson and Weinstein, 2002). Therefore, the interplay
of the cellular mechanisms of junctional remodeling, lumen
formation and EC division can be investigated through live
imaging during this time window (Ellertsdottir et al., 2010;
Lawson and Weinstein, 2002). It has been shown that the ECs
within the SAs can reorganize their intercellular junctions and
apical domains, through a cell-autonomous process that does not
require blood pressure (Herwig et al., 2011). Neighboring cells were
observed to crawl over each other, expanding their shared subapical
contacts and their apical surface until the vascular lumen was
stabilized by multiple cells (Blum et al., 2008; Herwig et al., 2011;
Lenard et al., 2013; Phng et al., 2015).

In terms of morphology and cellular plasticity, SA cells fall
somewhere in-between migrating cells (at the tip) and cells that are
tightly built into epithelial sheets (in the stalk). Tip cells are
characterized by abundant filopodia at the leading edge, befitting
their migratory nature and are followed by the trailing stalk cell
(Gerhardt and Betsholtz, 2003; Siekmann and Lawson, 2007). By
contrast, stalk cells undergo an extension of their cell surface and
junctional contacts and are mostly arranged into multicellular tubes
(Herwig et al., 2011; Sauteur et al., 2014).

Cell division has been extensively investigated using in vitro
culture, and the cellular and molecular mechanisms of the mitotic
machinery are well understood. The first step is mitotic rounding, a
generic feature of cell division that is driven by changes in the shape
and the rigidity of the cell cortex (Cadart et al., 2014). It has been
shown that this actomyosin-driven process is necessary for the
proper assembly, maintenance and orientation of the central spindle
(Kunda et al., 2008; Lancaster et al., 2013; Rosenblatt et al., 2004).
Spindle orientation subsequently defines the plane of cell division
through the accumulation of phosphorylatedMyosin II at the plasmaReceived 20 May 2015; Accepted 31 July 2015
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membrane, which drives the assembly of a contractile ring
(reviewed in Fededa and Gerlich, 2012; Green et al., 2012;
Levayer and Lecuit, 2012). The next step is the partitioning into two
daughter cells, or cytokinesis, which takes place shortly after
chromosome segregation. During cytokinesis, the actomyosin ring
contracts and eventually collapses to a small intercellular bridge, the
so called midbody (Green et al., 2012). Finally, the severing of the
constricted plasma membrane, a process known as abscission,
marks the end of mitosis.
Within epithelial sheets or tubes, dividing cells maintain the

adherens junctions (AJs), which confer tissue integrity (Bourdages
and Maddox, 2013; Nakajima et al., 2013). However AJs are
extensively reconstructed during mitotic rounding and cytokinesis
(Harris and Tepass, 2010; Herszterg et al., 2014). The neighboring
ECs exert forces on the mitotic cell through cadherin proteins (the
core of AJs) that are, in turn, linked to the actomyosin cortex (Harris
and Tepass, 2010). Morphogenetic movements such as cell
intercalation and invagination require a degree of synchronization
between junctional re-arrangement and mitosis (Kondo and
Hayashi, 2013; Levayer and Lecuit, 2012).
Because of their three-dimensional structure, tubular networks

have a more complex morphology than epithelial sheets. Therefore,
the division of elongated and lumenized cells may require some
adaptations of the mitotic machinery in order to accommodate their
peculiar geometry as was recently shown in a study of the
Drosophila larval trachea system (Denes et al., 2015). While the
actomyosin rings that drive cytokinesis in the Drosophila epithelia
are able to symmetrically deform the AJs of the two cells that flank
the emerging junction (Founounou et al., 2013; Guillot and Lecuit,
2013; Herszterg et al., 2013), during cytokinesis in tracheal tubes,
the membrane furrows asymmetrically on the side of the cell that is
proximal to the nucleus, and the new junction then extends around
the lumen until it connects and fuses with another membrane. We
found that in the remodeling dorsal tracheal branches, such
asymmetric de novo junction formation is the norm, presumably
because the specific geometry and the rigidity of the tubes favor this
outcome (Denes et al., 2015).
The integration of proliferative and morphogenetic processes is

therefore critical for proper vessel morphogenesis (Zeng et al., 2007).
However, it has not been investigated in detail how EC division
proceeds in a dynamic environment, in which lumen formation and
cell rearrangements occur concomitantly and vessel integrity has to
be maintained. Here, we investigated the interplay between cell
division, junctional rearrangement, actin distribution and lumen
dynamics during SA morphogenesis in the zebrafish, using an array
of fluorescently labeled markers and confocal live imaging. We find
that membrane furrowing during cytokinesis is symmetric in
unicellular tubes and in those multicellular tubes with a cylindrical
symmetry. ECs in a multicellular DLAV may undergo either
symmetric or asymmetric cytokinesis, depending on the orientation
of the intercellular junctions relative to the plane of division.We also
found that, unlike the chitin-reinforced lumen of Drosophila trachea
(Denes et al., 2015), the flexible lumen of unicellular vascular tubes
can collapse during mitotic rounding and cytokinesis.

RESULTS
The cellular organization of SA branches and of the DLAV
The ECs that are part of the segmental arteries (SAs) divide in a
stochastic fashion. SAs are dynamic structures, which contain
anywhere between three and seven cells (Blum et al., 2008).
Therefore, ECs, which undergo mitosis, may find themselves in
quite different environments (Fig. 1). Tip cells sprout from the

dorsal aorta (Childs et al., 2002; Siekmann and Lawson, 2007) and
extend filopodia that will eventually contact those from neighboring
branches, leading to anastomosis and giving rise to the DLAV
(Blum et al., 2008; Herwig et al., 2011). During early phases of SAs
formation the angiogenic sprout is not lumenized. Here, the tip cell
is connected to the stalk cells by intercellular junctions (Fig. 1A).
While the stalk is not lumenized at the onset of SAs sprouting, the
stalk cells are surrounded by several neighbors – to each other, the
tip cells and ventrally to ECs in the dorsal aorta (Fig. 1B). The
formation of the lumen (through perfusion from the dorsal aorta)
alters the shape of the stalk cells, as well as the relative positions of
their nuclei and intercellular junctions (Fig. 1C). Subsequent
junctional re-arrangements achieve the transition from a unicellular
to a multicellular tube (Fig. 1D; Herwig et al., 2011; Lenard et al.,
2013). Finally, the DLAV contains former tip cells that now possess
a lumen and a T-shaped structure, and form intercellular junctions
with the two neighboring tip cells and a stalk cell (Fig. 1E).

Cell division in migrating tip cells
In order to document different aspects of EC proliferation in the
ISVs, we imaged 30-50 hpf embryos of the following genotypes: (1)
Tg( fli1ep:GAL4FF)UBS3, (UAS:RFP), (UAS:EGFP-ZO-1)UBS5; (2)
Tg( fli1ep:GAL4FF)UBS2-4, (UAS:mRFP), (UAS:VE-cadherinΔC-
EGFP)ubs12 (Herwig et al., 2011; Lenard et al., 2013); and (3)
Tg(fli1ep:GAL4FF)ubs3; (UAS:mRFP); Tg(UAS:EGFP-UCHD)ubs18

(Sauteur et al., 2014). The EGFP-labeled ZO-1 (zona occludens 1)
and VE-cadherinΔC-EGFP proteins localize to the cell junctions,
EGFP-tagged UCHD (utrophin calponin homology domain)
localizes to the stable F-actin, while cytoplasmic RFP labels the
entire cell. The presence and extent of the lumen was ascertained
by subtracting the volume occupied by the cytoplasm in the Z-axis,
or through the localization of the membrane marker mKate2-CAAX
(Lenard et al., 2013). Condensed chromatin was identified either as
a zone of low RFP accumulation, or directly through the localization
of labeled histones (H2B-GFP; Kochhan et al., 2013).

During the early stages of SA formation, tip cells extend filopodia
structures can undergo rapid shape changes. We observed that
dividing tip cells (n=15; where n represents the number of the
examined vessels) underwent mitotic rounding (Fig. 2B,B′,F,F′). At
anaphase, cell furrowing started symmetrically (Fig. 2C,C′,G,G′,
wedges) from both sides and was accompanied by actin
accumulation. Following anaphase (Fig. 2C,C′), the cell was
pinched the cell body at the plane of division (Fig. 2D,D′;
supplementary material Movie S1a) and the two daughter
cells remained attached through a thin cytoplasmic bridge
(Fig. 2H,H′; supplementary material Movie S1b). We observed the
deposition of new junctional material in the region of the division
plane, followed by its expansion as the two daughter cells established
a de novo junction along the mitotic interface. Blebs (Fig. 2D,G,
arrowheads), which are dynamic membrane protrusions generated
through actomyosin contractions (Bergert et al., 2012), were present
at the interface between the daughter cells during cytokinesis.
Interestingly, the filopodial dynamics at the front of the tip cells was
not markedly changed during cell division, despite the mitotic
rounding of the cell body (supplementary material Movie S1c).

De novo junctional formation in dividing stalk cells without
a lumen
We next investigated those stalk cells, which divided before
acquiring a lumen. We observed that dividing stalk cells (n=10;
Fig. 3F,F′) also underwent mitotic cell rounding. Although lacking
the extended filopodia of tip cells, these stalk cells also produced
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numerous blebs duringmitosis (Fig. 3A,G,white/black arrowheads).
Cytokinesis took place symmetrically and perpendicularly to
the long axis of the sprout (Fig. 3A,G). Subsequently, and similar
to tip cells, the two daughter cells formed a de novo junction
(Fig. 3C,C′,D,D′; supplementary material Movie S2a) and actin
accumulated at the plane of division (Fig. 3I,I′,J,J′; supplementary
material Movie S2b).

Dividing unicellular stalk cells collapse the lumen in the
plane of mitosis
We also investigated unicellular tubes made up of stalk cells that
contain a lumen and entered mitosis (n=10). Such unicellular stalk
cells form a transcellular lumen through a process of apical
membrane invagination, during which the luminal compartment is
extended and inflated from one or both sides of the cell under the
pressure of incoming blood plasma. This type of lumen is not very
stable and can easily collapse, upon a local drop in pressure (Herwig
et al., 2011; Lenard et al., 2013). We observed that – in many cases –
the inflated lumen did not penetrate the region of the cell where the
prophase nucleus was located (Fig. 4A′; n=10). In those instances, in
which comprised regions on either side of the nucleus, and where a
pressure differential developed between the two sides, the nucleus
was in some cases shifted to a new location within the cell (Fig. 4A,
B; supplementary material Movie S3a). We also followed cell
division in the presence of a fully inflated transcellular lumen
(Fig. 4F,G; supplementary material Movies S3b, S8). The section of
the lumen adjacent to the nucleus shrank during mitotic rounding
(Fig. 4C,C′,H,H′). Subsequently, the lumen was entirely excluded
from that region for the duration of cytokinesis (Fig. 4D,D′, I,I′),

only to return immediately after the completion of mitosis (Fig. 4J,J′)
and thereby inflating the ring-like de novo junction (Fig. 4E,E′,J,J′).

Mitosis in multicellular SAs does not collapse the lumen
During the later stages of SA formation, when the DLAV has formed
and blood flow has been established, most ECs are part of
multicellular tubes. In these vessels, we observed that dividing
stalk cells (Fig. 5A,A′) clearly undergo mitotic rounding as well.
However, and in contrast to cell division in a unicellular, lumenized
tube, the lumen was kept intact during the entire process of
cytokinesis (Fig. 5B,B′, n=25). The behavior of the intercellular
junctions in such tubes closely resembled those described in
epithelial tissues (Bourdages and Maddox, 2013). We observed
that during anaphase, actin accumulated in the division plane, at a
spot where two adjacent junctions were pulled towards the
prospective location of the midbody, halfway between the two
daughter nuclei (Fig. 5C,C′,H,H′). The previously straight junctions
of the dividing cell were bent and brought into close proximity
during cytokinesis (Fig. 5D,D′,I,I′; supplementary material
Movie S4a,b), and shortly thereafter, the new intercellular junction
began to form. Therefore, the new junctions only needed to extend
halfway around the lumen in multicellular tubes (Fig. 5E,E′).
Cytokinesis took place symmetrically, as the division plane that
contained the collapsing actomyosin ring was equally distant to the
two sides of the cell.

ECs within the DLAV can undergo asymmetric cytokinesis
During anastomosis, tip cells establish junctions with their
anterior and posterior counterparts along the DLAV, while

Fig. 1. Schematic representation of cell types in the SA and
DLAV. (A) Early sprout from the dorsal aorta, showing the shape
of a tip cell, highlighted by blue cytoplasm and an orange
nucleus. (B) Stalk cell with elliptical intercellular junctions,
highlighted by blue cytoplasm and an orange nucleus, before
lumen and DLAV formation. (C) Highlighted stalk cell (blue
cytoplasm and orange nucleus) showing a partial transcellular
lumen (blue arrows). (D) Fully lumenized multicellular SA, with
one highlighted cell (blue cytoplasm and orange nucleus).
(E) Cell within the DLAV shows the three-way connection with the
neighboring cells and two partial transcellular lumens (blue
arrows). (Green represents cell-cell junctions.)
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retaining their initial junction with the most distal stalk cell of
the corresponding sprout giving rise to T-shaped ECs. These
ECs have 3 junctional rings and underwent asymmetrical
cytokinesis, depending on the location of the prophase nucleus
relative to the junctional rings. The DLAV was shown to transition
from a unicellular to a multicellular tube through junctional

re-arrangement (Herwig et al., 2011). Before this transition
occurs, cells within the DLAV may be partially or completely
perfused by a lumen, which in turn may be connected to the SA
stalk, the neighboring tip cells, or both (Fig. 6A-A‴). The
expansion of lumen (derived from the SA) into the dividing cell
was apparent during metaphase and anaphase (Fig. 6A‴,B‴).

Fig. 2. Mitosis in a tip cell. (A-E) Still pictures from time-
lapse supplementary material Movie S1a, with highlighted
intercellular junctions (EGFP- ZO1) and cytoplasm (RFP);
(F-J) time-lapse supplementary material Movie S1b, with
actin cytoskeleton (EGFP-UCHD) and cytoplasm (RFP).
The location of condensed chromatin is apparent as a zone
of decreased red signal (asterisks). (A) Partially rounded tip
cell, with the approximate position of the nucleus indicated
by the asterisk. (B) Fully rounded tip cell with a metaphase
plate (asterisk). (C) Tip cell during anaphase, showing the
separation of the daughter chromosomes (asterisks) and
the beginning of membrane furrowing (wedges). (D) Late
stage cytokinesis, with a narrow intercellular bridge in the
plane of division (wedges). Blebs are visible at the interface
between the daughter cells (white/black arrowheads).
(E) Established de novo junction between the two daughter
cells (pink arrowheads). (A′-E′) Still pictures
corresponding to those from panels A-E, showing only the
green channel (grayscale). (F) Partially rounded tip cell,
with the approximate position of the nucleus indicated by
the asterisk. (G) Tip cell during anaphase, showing the
separation of the daughter chromosomes (asterisks) and
the beginning of membrane furrowing with actin
accumulation (wedges) and blebs are visible at the cell
surface (white/black arrowheads). (H) Late stage
cytokinesis, with a narrow connection bridge in the plane of
division (red arrowheads). (I) Thickening of the connection
bridge between the daughter cells (red arrowheads).
(J) Connection formed between the two daughters cells
(red arrowheads). (F′-J′) Still pictures corresponding to
those from panels F-J, showing only the green channel
(grayscale). (A″-E″) Schematic representation
corresponding to the five stages from panels A-E.
(B″-E″) Schematic representation corresponding to from
panels F-J. (In the schematic: red, actin; green, junctions;
orange, nucleus; blue, cell body.)
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Subsequently, the progression of cytokinesis was associated with
the shrinkage of the lumen in the plane of division (Fig. 6C,D,C‴,
D‴). We observed the preferential deformation of the intercellular
junction closest to the mitotic nucleus during the early stages of
cytokinesis (Fig. 6B-B″). The emerging new junction first
appeared as a pair of cellular processes, derived from the top

right junctional ring (Fig. 6C-C″; supplementary material
Movie S5). After the growing junction spanned almost the
entire width of the cell, a complementary deformation of the
bottom junctional ring became apparent as well (Fig. 6D-D″),
shortly before the completion of the new junction between the
daughter cells (Fig. 6E-E″). The cell within the DLAV divided

Fig. 3. Mitosis in a stalk cell without a lumen.
(A-E) Still pictures from time-lapse supplementary
material Movie S2a, with highlighted intercellular
junctions (EGFP- ZO1) and cytoplasm (RFP);
(F-J) time-lapse supplementary material
Movie S2b, with actin cytoskeleton (EGFP-UCHD)
and cytoplasm (RFP). The location of condensed
chromatin is apparent as a zone of decreased red
signal (asterisks). (A) Stalk cell during anaphase,
showing the separation of the daughter
chromosomes (asterisks) and the beginning of
membrane furrowing (wedges). Blebs are visible at
several locations around the cell (white/black
arrowheads). (B) Late stage cytokinesis, with a
narrow intercellular bridge in the plane of division
(wedges). (C) Established de novo junction
between the two daughter cells (pink arrowheads),
as the two daughter cells start to reconnect.
(D) Wide intercellular junction between the two
daughter cells. (A′-D′) Still pictures corresponding
to those from panels A-D, showing only the green
channel (grayscale). (F) Partially rounded stalk cell,
with the approximate position of the nucleus
indicated by the asterisk. (G) Stalk cell during
anaphase, showing the separation of the daughter
chromosomes (asterisks) followed by blebs
formation (white/black arrowheads) and the
beginning of membrane furrowing with actin
accumulation (wedges). (H) Late stage cytokinesis,
with a narrow connection bridge in the plane of
division (red arrowheads). (I) Thickening of the
connection bridge between the daughter cells.
(J) Connection formed between the two daughters
cells (red arrowheads). (F′-J′) Still pictures
corresponding to those from panels F-J,
showing only the green channel (grayscale). (A″,B″)
Schematic representation of the stalk cell during
prophase and metaphase, not part of the movie
(A-D). (C″-E″) Schematic representation
corresponding to panels A-D. (A″-E″) Schematic
representation corresponding to panels F-J. (In the
schematic; red: actin, green: junctions, orange:
nucleus, blue: cell body).
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without completely collapsing the lumen, in a manner reminiscent
of the ECs in multicellular vessels. However, the repositioning of
the nucleus close to one of the intercellular junctions favored
asymmetrical cytokinesis. Our analysis (n=5) indicates that the
actomyosin ring preferentially deforms those junctions that are
close to it during cytokinesis (Fig. 6C-C″).

New junctions form through the zipping of furrowed
membranes and the lumen does not impede cytokinesis
In order to better understand how the new junctions are
formed during asymmetrical cytokinesis, we investigated the
dynamics of the cell membrane on the apical and basolateral side,
using the Tg(BAC:kdrl:mKate2-CAAX)UBS16 marker (Lenard et al.,

Fig. 4. Mitosis in a stalk cell with a partial
transcellular lumen. (A-E) Still pictures from time-
lapse supplementary material Movie S3a, with
highlighted intercellular junctions (VE-cadherinΔC-
GFP) and cytoplasm (RFP); (F-J) time-lapse
supplementary material Movie S3b, with actin
cytoskeleton (EGFP-UCHD) and cytoplasm (RFP).
The location of the lumen is apparent as an empty
zone bounded by red cytoplasm (blue arrows), and the
approximate position of the nuclei is indicated by
asterisks. (A) Stalk cell with a partial transcellular
lumen (blue arrow) that extends from the aorta to the
nucleus (asterisk). The cell is bounded by ring-like
intercellular junctions (green arrowheads).
(B) Retraction of the lumen from the bottom side of the
cell and expansion of the transcellular lumen from the
top (blue arrow). Elongation of the top ring and
contraction of the bottom ring (green arrowheads).
(C) Rounding of the stalk cell pushes out the lumen
from the nuclear region (blue arrows). (D) Late stage
cytokinesis, with a narrow intercellular bridge in the
plane of division (wedges). The de novo junction
between the two daughter cells is apparent as a dot
(pink arrowheads) close to the intercellular bridge that
contains the midbody. (E) The lumen re-inflates after
mitosis is complete (blue arrows), expanding the de
novo junction between the two daughter cells into a
ring (pink arrowheads). (A′-E′) Still pictures
corresponding to those from panels A-E, showing only
the GFP channel (grayscale). (F) Stalk cell with a
transcellular lumen (blue arrows) that extends from the
aorta to the nucleus (asterisk). The cell is bounded by
actin cytoskeleton. (G) Narrowing of the lumen
from the bottom side of the cell prior to division.
(H) Rounding of the stalk cell collapses the lumen from
the bottom side of the cell (blue arrows). (I) After
cytokinesis (wedges), the actin cytoskeleton
accumulated at the plane of division (red arrowhead).
(J) The lumen re-inflates after mitosis is complete
(blue arrows), expanding the actin cytoskeleton
between the two daughter cells (red arrowheads).
(F′-J′) Still pictures corresponding to those from
panels F-J, showing only the green channel
(grayscale). (A″-E″) Schematic representation
corresponding to the five stages from panels A-E
and F-J. (In the schematic: red, actin; green, junctions;
orange, nucleus; blue, cell body.)
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2013) together with the Tg(kdrl:H2B-GFP) (Kochhan et al., 2013)
marker, which label cell membranes and chromatin, respectively.
The mitotic rounding of the dividing cell did not deform the lumen
inflated between the two cells (Fig. 7A-A″). According to our
observations, the membrane furrowing that is presumably driven by
the contraction of the actomyosin ring begins on the basolateral
(outer) side of the vessel and proceeds towards its middle, where

the cell connects to another EC, thereby supporting the lumen
(Fig. 7C-C″; supplementary material Movie S6). During the late
stages of cytokinesis, when the two sides of the membrane have been
juxtaposed (Fig. 7D-D″), the new junction zips together (Fig. 7E-E″;
supplementary material Movie S6).

Using the same membrane marker, we followed the lumen
dynamics during cytokinesis in a cell that possesses a transcellular

Fig. 5. Mitosis in a stalk cell with an extracellular
lumen. (A-E) Still pictures from time-lapse
supplementary material Movie S4a, with highlighted
intercellular junctions (VE-cadherinΔC-GFP) and
cytoplasm (RFP); (F-J) time-lapse supplementary
material Movie S4b, with actin cytoskeleton (EGFP-
UCHD) and cytoplasm (RFP). The location of the
lumen is apparent as an empty zone bounded by red
cytoplasm, and asterisks indicate the approximate
position of the nuclei. (A) Stalk cell with intercellular
junctions surround whole surface of a cell body
(green arrows) that is part of a multicellular tube,
prior to mitosis. (B) Stalk cell during metaphase,
showing that the intercellular junctions (green
arrows) and the extracellular lumen are not affected
by the mitotic rounding. (C) Following anaphase, the
furrowing of the actomyosin ring (wedges)
symmetrically deforms the adjacent intercellular
junctions (green arrows). (D) Late stage cytokinesis,
with a narrow intercellular bridge in the plane of
division (wedges). The angle between the deformed
intercellular junctions has become more acute.
(E) Formation of a new junction between the
daughter cells (pink arrowheads), through the
modification of the existing intercellular junctions.
(A′-E′) Still pictures correspond to those from panels
A-E, showing only the green channel (grayscale).
(F) Partially rounded stalk cell that is a part of
multicellular tube, prior to mitosis and the
extracellular lumen are not affected by the mitotic
rounding. (G) Stalk cell during anaphase, showing
the separation of the daughter chromosomes
(asterisks). (H) The beginning of membrane
furrowing with actin accumulation (wedges). (I) Late
stage cytokinesis, with a narrow connection bridge
in the plane of division (red arrowheads).
(J) Thickening of connection bridge between the
daughter cells and connection formed between the
two daughters cells (red arrowhead). (F′-J′) Still
pictures corresponding to those from panels
F-J, showing only the green channel (grayscale).
(A″-E″) Schematic representation corresponding to
the five stages from panels A-E and F-J. (In the
schematic: red, actin; green, junctions; orange,
nucleus; blue, cell body; black arrows, position of
junctions.)
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lumen, in addition to a dead-end multicellular lumen that is
supported together with a neighboring cell (Fig. 7F). As previously
described in the article, the apical side that faces the lumen is visible
as a nested membrane within the tube, while the basolateral
membrane is seen on the outside of the blood vessel. The two
lumens were initially in close proximity. However, at the onset of
mitotic rounding of the transcellular lumen compartment collapsed,
while the proximal multicellular luminal compartment appeared
unchanged, apart from a degree of narrowing (Fig. 7G,G′). We
observed that membrane furrowing was asymmetrical, on account of
the position of the lower neighboring cell, relative to the plane of
division (Fig. 7I,I′; supplementary material Movie S7). Following
the establishment of a de novo junction and the completion of
mitosis, both lumens began to expand, especially the upper
transcellular lumen (Fig. 7J,J′; supplementary material Movie S7).
Therefore, the transcellular lumen present within the unicellular
tubes was found to be responsive to the changes in cell shape

accompanying the mitotic process, and did not interfere with
cytokinesis.

DISCUSSION
To date, the largest body of in vivo data on mitosis in a multicellular
environment has been collected in Drosophila and describes the
process in the embryonic epithelium (Guillot and Lecuit, 2013),
the wing disc epithelium (Nakajima et al., 2013), the follicular
epithelium (Morais-de-Sá and Sunkel, 2013), the dorsal thorax
epithelium (Founounou et al., 2013; Herszterg et al., 2013) and the
trachea (Denes et al., 2015; Kondo and Hayashi, 2013). With
our analysis of cell division in the vasculature of the zebrafish
embryo, we aimed to characterize those aspects of the mitotic
process that are conserved between the tubular organs of vertebrates
and those of insects. We have identified a sequence of cellular
events that appears to be shared between the two cellular systems,
which is not surprising given that all epithelial cells face a similar set

Fig. 6. Mitosis in a cell within the DLAV with a partial transcellular lumen. (A-E) Still pictures from time-lapse supplementary material Movie S5, with
highlighted intercellular junctions (EGFP-ZO1) and cytoplasm (RFP). The location of the lumen is apparent as an empty zone bounded by red cytoplasm, and the
approximate position of the nuclei is indicated by asterisks. (A) T-shaped cell within the DLAV with intercellular junctions (green arrows), during the metaphase.
(B) Lumenal push, from the bottom, positions the nucleus close to the top ring and following anaphase furrowing is observed in the upper region of the cell
(wedge). (C) The top ring (wedges) deforms during the anaphase, generating a pair of cellular processes that extend towards the opposite side of the cell (pink
arrows). The lumen is partially constricted in the plane of division. (D) During late stage cytokinesis, the bottom ring is deformed aswell (wedge) prior to the closure
of the new junction (pink arrow). The lumen continues to shrink within the plane of division, without completely collapsing. (E) A complete, ring-like junction is
established between the daughter cells (pink arrow), through the modification of the existing intercellular junctions. (A′-E′) Still pictures corresponding to those
from panels A-E, showing only the green channel (grayscale). (A″-E″) Schematic representation corresponding to the five stages from panels A-E, depicting the
nuclei and the junctions. (A‴-E‴) Schematic representation corresponding to the five stages from panels A-E, depicting the nuclei and the cytoplasm/lumen.
(In the schematic; green: junctions, orange: nucleus, blue: cell body, blue arrows: ending and growth direction of lumen.)
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Fig. 7. Membrane furrowing and lumen dynamics in a dividing cell from the DLAV. (A-E) Still pictures from time-lapse supplementary material Movie S6,
with highlighted membranes (mKate2-CAAX). The apical side (where the lumen is located) is apparent as a bright zone bounded by cell membranes, cell-cell
contacts form a stripe of strong red signal (green arrow) and the position of the nuclei is shown by histone-GFP and asterisks. (A) Cell within the DLAV with a
nucleus on the left (asterisk represents nuclei number.) connected to the ISV cells (intercellular junction, green arrow), prior to mitosis. (B) Cell after anaphase
and before the start of cytokinesis. The daughter nuclei have separated but the membranes have not furrowed. (C) The membrane starts furrowing (wedge)
asymmetrically during cytokinesis, generating a deep furrow that extends towards the middle of the vessel. (D) During late stage cytokinesis, the two sides of
the membrane are juxtaposed (pink arrow). (E) The new junction between the two daughter cells forms through the zipping of the juxtaposed membrane,
starting from the apical side (pink double arrow). (A′-E′) Still pictures corresponding to those from panels A-E, showing only the red channel (grayscale).
(A″-E″) Schematic representation corresponding to the five stages from panels A-E, depicting cell-cell contacts (green line and arrow), the basal membrane
(black) and the nuclei (orange). (F-J) Still pictures from time-lapse supplementary material Movie S7, with highlighted membranes (mKate2-CAAX). The apical
side (where the lumen is located) is apparent as an intracellular membrane (turquoise arrows). (F) Cell within the DLAV, showing the position of the apical
(turquoise arrows) and basal (black arrows) membranes, prior to mitosis. The region contains an upper trans-cellular lumen and a lower multicellular lumen.
(G) The cell undergoes mitotic rounding and the upper transcellular lumen is pushed away from the future plane of mitosis (light blue arrow), while the lower
multicellular lumen constricts but is not excluded from the region. (H) The cell after anaphase and before the start of cytokinesis. The upper lumen continues to
shrink (light blue arrow) while the multicellular lumen remains unaffected. (I) The membrane starts furrowing (black wedges) asymmetrically deforms the basal
membrane, with a deeper furrow on the left side of the cell, which is more distant from the multicellular junction on the right side. (J) Formation of a de novo
junction between the two daughters cells (pink arrows). Following the end of mitosis, the upper lumen recovers and begins to push again into the vessel.
(F′-J′) Schematic representation corresponding to the five stages from panels F-J, depicting the apical membrane (turquoise lines and arrows), the basal
membrane (black/white arrows represent basal membrane).
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of constraints, such as retaining their apico-basal polarity and
their barrier function throughout mitosis. In our study, we have
examined the specific interactions between the lumen, the
junctions and the actin distribution, within the different cellular
architectures that are encountered in the embryonic zebrafish trunk
vasculature (Fig. 1).
The sprouting of the tip cells from the dorsal aorta is the first step

towards the formation of the SAs and the DLAV. Branch elongation
takes place through a combination of tip cell migration and
actin-mediated shape changes within the stalk cells (Sauteur et al.,
2014). In most cases, the nascent sprout is not lumenized at this early
stage (n=25). At this stage, ECs may undergo mitosis with little
interference from the neighboring cells, as their intercellular junctions
are located toward the proximal and distal tips of the cells, and
therefore away from the future mitotic plane (Fig. 2A and Fig. 3A).
These dividing cells were observed to go through the ‘classic’ stages,
namely mitotic rounding during metaphase (Cadart et al., 2014),
symmetrical membrane furrowing during cytokinesis (Green et al.,
2012), and expansion of cell-cell contacts as the first step of de novo
junction formation (Yamada and Nelson, 2007).
Whereas the formation of multicellular tubes depends on stalk cell

elongation, which allows extensive ‘cell pairing’, in the absence of
this pairing a unicellular tube can be formed via transcellular lumen
formation. Themechanism of transcellular lumen formation depends
by and large on directed membrane invagination along the blood
vessel axis. Because of the small diameter of ECs, endothelial nuclei
may impede this invagination process (Fig. 4A-A″). Despite the
plasticity of these ECs, the lumen cannot easily penetrate through the
region containing the nucleus, and under certain conditions, the
nucleus may also be shifted back and forth within the cell, similar to
a piston in a cylinder (Fig. 4A-B). During metaphase, the lumen is
eventually excluded from the plane of division. However, the lumen
is capable of re-perfusing the two daughter cells immediately after
mitosis is complete (Fig. 4E). These dynamic changes of luminal
compartments are consistent with our previous reports. Lumen forms
and collapses repeatedly in blood vessels with erratic blood flow,
during the early steps of vessel fusion (Lenard et al., 2013) or during
vessel regression (Lenard et al., 2015). Cell division causes changes
in the organization of the cytoskeleton, which may account for the
instability of the generally fragile transcellular lumen.
The simplest multicellular tubes are composed of a pair of cells

that envelop a lumen and are held together by continuous intercellular
junctions along the vessel axis. Unlike the partial transcellular
lumens, the extracellular lumen of multicellular tubes is more robust
and does not collapse during mitotic rounding. We have also
observed that the plane of division was always orthogonal to the
axis of the lumen, thereby positioning the actomyosin ring close
to the intercellular junctions. Within planar epithelial sheets, the
neighboring cells that are flanking the mitotic plane and
the associated actomyosin ring exert a strong influence on the
progression of cytokinesis. The actin cytoskeleton of the neighboring
cells is coupled to the plasma membrane through cadherin proteins,
which are in turn the core components of adherens junctions (Harris
and Tepass, 2010). In order for cytokinesis to take place, the
ingression of the actomyosin ring must overcome the tensile forces
generated by the neighboring cells (Bourdages and Maddox, 2013).
However, it has also been shown that the juxtaposition of the
furrowed membrane is actively supported by the neighboring cells,
through actin polymerization at the base of the furrow (Founounou
et al., 2013; Herszterg et al., 2013). Our analysis of cytokinesis in
multicellular tubes reveals that membrane ingression takes place
symmetrically on both sides of the contracting actomyosin ring

(Fig. 5C-C″). The membrane of the counterpart cell undergoes a
complementary deformation, ensuring that adhesion and barrier
function are maintained for the duration of mitosis. We were able to
investigate the localization of actin filaments and junctions in
different cells. The sharp shoulders of the furrowed membrane
(Fig. 5D′) are very similar to those described in planar epithelial
sheets (Herszterg et al., 2014), which suggest that cytokinesis in
tubular epithelia is probably a multicellular process as well.

Cells within the DLAV have a more balanced aspect ratio
compared to stalk cells, with a central body and 3 sets of ring-shaped
intercellular junctions at the tips of a T shape. Lumen perfusion can
occur from either direction and on account of their three-fold
symmetry, the prophase nucleus may be positioned close to only one
of the rings (Fig. 6A,B). In such an orientation, the actin accumulates
preferentially at an asymmetric position and the actomyosin ring
preferentially deforms the intercellular junction that was adjacent or
closest to the plane of division, resulting in an asymmetric
cytokinesis event (Fig. 6C). Tubular cells from the trachea of
Drosophila larvae have recently been shown to undergo such
asymmetric cytokinesis (Denes et al., 2015). In both instances, the
ingression of the actomyosin ring caused a local deformation of the
junction, followed by the formation of a membrane protrusion that
grew until it contacted another junction, where they finally
connected (Fig. 6D). However, it is important to note that the rigid
lumen found in the trachea forces the emerging junction to curve
around it (Denes et al., 2015), whereas in the DLAV, the lumen
slowly yields to the tension generated by cytokinesis (Fig. 6E,E‴).

Mitotic cells from polarized epithelia have also been shown to
undergo asymmetric cytokinesis along the apico-basal axis.
Because the cytokinetic furrow contracts faster from the basal
side, the midbody eventually comes to rest at the apical side of the
dividing cell (Founounou et al., 2013; Guillot and Lecuit, 2013).
Our analysis shows that membrane ingression in cells within the
DLAV takes place asymmetrically (Fig. 7C) and that the zipping of
the two juxtaposed membranes begins at the apical side, where the
lumen is located (Fig. 7D,E).

Conclusion
We found that in the absence of a lumen, endothelial cells in the
segmental arteries divide symmetrically and form intercellular
junctions de novo. The mechanisms of cell division in multicellular
tubes closely resemble those seen in planar epithelial sheets:
following actomyosin ring ingression and membrane furrowing,
new junctions between the daughter cells are formed through the
modification of pre-existing ones. However, we also observed
asymmetric cytokinesis in T-shaped cells within the DLAV, in
which the prophase nuclei were positioned closer to some
intercellular junctions than to others.

MATERIALS AND METHODS
Zebrafish maintenance and strains
Zebrafish (Danio rerio) were maintained at standard conditions
(Westerfield, 2007) and embryos were staged at 28.5°C, as previously
described (Kimmel et al., 1995). The following transgenic lines were used in
this study: Tg(fli1ep:gal4ff )ubs3 Tg(UAS:EGFP-ZO1-cmlc:EGFP)UBS5

(Herwig et al., 2011), Tg(5×UAS:mRFP) (Asakawa et al., 2008),
Tg(BAC:kdrl:mKate2-CAAX)UBS16 and Tg(UAS:VE-cadherinΔC-
EGFP)ubs12 (Lenard et al., 2013), Tg(kdrl:H2B-GFP)mu122 (Kochhan
et al., 2013), Tg(UAS:EGFP-UCHD)ubs18 (Sauteur et al., 2014).

In vivo time-lapse analysis
Staged embryos that exhibited fluorescence were anaesthetized with tricaine
solution (0.08%) and subsequently mounted in a 35-mm glass bottomed
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petri dish (0.17 mm, MatTek), containing 0.7% low-melting agarose
(Sigma), 0.08% tricaine and 0.003% PTU (Sigma). Long duration movies
were recorded with a Leica TCS SP5 confocal microscope, using a 40×
(NA=1.1) water immersion objective. Z-stacks with a 0.7- to 1-µm step size
were acquired every 8 or 10 min.

High-resolution movies were acquired with a spinning disk confocal
microscope (Perkin Elmer Ultraview), using a 63× (NA=1.2) water
immersion objective. Z-stacks with a 0.2-µm step size were recorded
every 30 s. For improved resolution, datasets were deconvolved using the
Huygens Remote Manager software (Ponti et al., 2007).

Imaris (Bitplane), Volocity (PerkinElmer) and ImageJ (http://imagej.nih.
gov/ij/) were used for additional data processing and analysis. All images are
maximum intensity projections.
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Part II: Characterizing the vascular lumen invagination 

process: vesicle/membrane trafficking & subcellular 

events in sprouting angiogenesis  
 

5 Introduction 
 

5.1 Morphological changes during lumen formation in the 

zebrafish vasculature 
Another key step during sprouting angiogenesis in addition to anastomosis is 

the development of interconnected luminal space, which allows blood flow 

circulation. However, it has not been demonstrated yet what is the origin of 

the vascular lumen during angiogenic sprouts. 

Two different lumen formation models in the vasculature have been 

proposed: cell hollowing and cord hollowing (Figure 8 A, B). The cell 

hollowing model was suggested as a major mechanism in vascular lumen 

formation (Davis and Camarillo, 1996; Kamei et al., 2006). According to the 

cell-hollowing model (Figure 8 (B)), endothelial cells form large 

intracellular vacuoles, which fuse with one another, giving raise to a 

seamless vascular lumen. Later, it was shown by in vitro studies that the 

pinocytosis pathway is involved in this formation (Davis and Camarillo, 

1996). Similar large luminal spaces have been reported in vitro in HUVEC 

culture (Childs et al., 2002). Furthermore, a recent study (Yu et al., 2015) 

shows that during sprouting angiogenesis, small membrane vesicles 

coalescence into larger membrane structures, which could be representative 
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of vacuoles. Nonetheless, the study lacks the demonstration of whether large 

membrane structures contribute to the lumen expansion process. 

However, other studies have indicated that cord hollowing (Figure 8 (A)) is 

the major mechanism of vascular lumen formation (Blum et al., 2008b; 

Herbert et al., 2009; Jin et al., 2005; Parker et al., 2004; Strilić et al., 2009). 

In the cord hollowing model, when two cells make a contact, they initiate 

junction formation at the contact site and eventually deposit the apical 

membrane components via vesicles, which contribute to expanding the 

membrane surface for lumen formation. In addition to these models, a new 

model has been proposed: The “plasma membrane invagination model” 

(Herwig et al., 2011). A single endothelial cell can generate an internal 

lumen when an apical membrane invaginates and extends towards the 

interior of the cell. In the plasma membrane invaginating model, blood 

pressure pushes through an already-existing lumen into another cell and 

extends the continuity of the lumen. Lumen formation in sprouting 

angiogenesis was investigated with different tools including membrane, 

cytoskeleton and junctional markers (Blum et al., 2008b; Herwig et al., 

2011; Lenard et al., 2013) and they reported lumen formation through cord 

hollowing and apical membrane (lumen) invagination processes (Figure 8 

(C)) in vivo. Additionally, a recent study also supports the lumen 

invagination process in vivo, demonstrating lumen expansion during 

sprouting angiogenesis by using a membrane tagged marker expressed in 

vasculature (Gebala et al., 2016).  

 

Membrane invagination requires new materials to feed the apical lumen 

extension process. However, it is not known yet how the lumen extends 
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during the lumen invagination process. It is important to dissect potential 

mechanisms such as endosome trafficking that might deliver the needed 

material to the apical compartment.  

Together, current understanding in vivo suggests that the cord hollowing 

mechanism creates a de novo lumen at the two cell contact side. Eventually, 

the de novo formed lumen connects with the rest of the vasculature either by 

plasma membrane invagination in the presence of blood pressure or by 

junctional rearrangements in the absence of blood pressure (Herwig et al., 

2011; Lenard et al., 2013). However, a recent study suggests, similar to 

endothelial cell culture experiments, that de novo lumen appears through the 

mechanism of vacuoles fusion in vivo (Yu et al., 2015).  

 

 

 
 

Figure 8: Morphological mechanisms of lumen formation  
(A) In cord hollowing, the lumen forms at the contact surface between cells. 
Vesicles, delivered by exocytosis, fuse to the apical membrane at the cell-
cell contact side and increase the membrane surface area by delivering fluids 
and other materials that are required for lumen expansion. Eventually 



                                                                                   Introduction Part II 

 55 

adjacent lumens connect and form a continuous lumen. (B) In cell 
hollowing, vesicles fuse to vacuoles and vacuoles fuse with one another to 
form a continuous lumen. The difference from cord hollowing is that these 
vesicles are not delivered to the plasma membrane but rather they fuse 
within the cytoplasm. (C) In plasma membrane invagination, an already-
existing apical membrane extends by adding membrane material to 
invaginating lumen with vesicle delivery (Sigurbjornsdottir et al., 2014).  
 

 

5.1.1 Lumen formation steps 
The lumen formation process can be categorized into 4 different steps: 

positioning, growth, maintenance or structuring and maturation of the 

lumen.  

The first step consists of positioning the site, where the new space will 

appear by adding new membrane material through the plasma membrane. 

For example, when two endothelial cells contact each other, apical cell 

polarity is established at the cellular intersection and eventually, a lumen 

starts forming. The site at which the lumen will be formed is determined 

through direct cell-cell interactions in vivo (e.g. zebrafish) or interactions 

with ECM in vitro (e.g. Madin–Darby canine kidney (MDCK) cells). For 

example, β1-integrin in MDCK cells is necessary to initiate polarization, and 

a lack of β1-integrin results in an absence of lumen (O'Brien et al., 2001; Yu 

et al., 2008). In vitro studies show that cells require the integrin to bind the 

ECM, which then induces the initiation of intracellular vacuole formation 

downstream of ECM-integrin interactions, resulting in the activation of 

cytoskeletal regulators (e.g. ARP2/3). In addition, when the apical 

membrane initiation site (AMIS) is determined at the patch of contact 

surface, apical membrane material or apical polarity proteins are delivered to 

form the platform of apical polarity determinants such as podocalyxin 
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(reviewed in Apodaca et al., 2012; Martin-Belmonte and Mostov, 2008). 

Small GTPases (e.g. RAB11A), which might regulate vesicle/membrane 

trafficking, are associated with apical polarity proteins such as PAR3, 

CDC42 and CRB (Bryant et al., 2010).  

In summary, transmembrane proteins (e.g. E-cadherin or integrin) become 

activated through interaction with the microenvironment via either direct 

cell-cell contact or cell ECM contact. This results in intracellular signaling 

cascade activation that then leads to cytoskeletal rearrangements, which are 

necessary to deliver apical determinants to the lumen initiation site 

(reviewed in Sigurbjörnsdóttir et al., 2014). 

 

The second step is the growth initiation, in which polarized trafficking plays 

a role to deliver needed materials towards the apical membrane in order to 

generate and expand a new luminal space. The secretory pathway is 

involved in supplying CRB or podocalyxin to the AMIS. However, in the 

lumen growth stage, vesicular transport of large amount of membrane 

materials is needed. For this, the vesicle transport machinery together with 

the cytoskeleton guide the delivery of vesicles, and thus play a crucial role to 

managing the lumen expansion process properly (Gervais and Casanova, 

2010).  

Lumen growth occurs very rapidly in angiogenic sprouts. This raises a 

concern: cells cannot provide all needed material via the secretory pathway 

since the lumen invagination might be very rapid due to the blood pressure. 

However, a role of vesicle/ membrane trafficking has not been investigated 

in detail, for example, and it is not known whether it provides a source of 
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needed materials to the invaginating lumen. This will be a scope of my 

second project.  

 

Since lumen growth is dynamic, it needs correct shape formation. The third 

step is the structuring of the lumen into the correct shape with the help of 

cytoskeleton and other regulators. For example, blood pressure speeds up 

lumen invagination dramatically. To create a lumen, bringing apical 

membrane material per se is not sufficient. Extensive apical membrane 

growth has to be organized and structured in a spatial and temporal manner. 

Otherwise, new membrane will not form a lumen properly. Studies in 

Drosophila suggest that cytoskeletal tracks not only facilitate vesicle 

trafficking by acting as a guide for lumen formation, but also might give 

physical support and to structure extensively in the growing lumen (Lee and 

Kolodziej, 2002). However, the role of the cytoskeleton constructing the 

luminal plasma membrane is still unclear.  

 

The fourth step is the maturation of lumen growth in a spatial and temporal 

regulated manner to attain physiological function. Maturation covers lumen 

expansion to generate the proper diameter, stabilizing the structure and 

equilibrate the system to fulfill the requirements of physiological purpose. 

Two mechanisms are known to have a role in lumen inflation: one is 

depositing anti-adhesive molecules and the second is creating a turgor 

pressure. For example, the deposition of podocalyxin at the apical membrane 

creates negative charges, which then force luminal membranes to go apart 

(Meder et al., 2005). In addition, inducing the turgor by activation of apical 

channels and pumps is another way of enlarging the luminal space (Bagnat 
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et al., 2007; Bryant and Mostov, 2008). The secretory machinery also can 

induce expansion of the initial lumen by bringing various molecules and 

remove the fluid from the luminal space in Drosophila trachea (Tsarouhas et 

al., 2007). 

Recent studies have shown that the apical membrane invagination 

mechanism most likely contributes to lumen formation during sprouting 

angiogenesis in zebrafish; however, it needs further investigation to 

understand the processes driven by intrinsic and extrinsic factors. From the 

vesicle/ membrane trafficking point of view, it has not been well understood 

yet how plasma membrane invagination is regulated at the cellular and 

molecular level during sprouting angiogenesis in vivo. Here, we focus to 

investigate the relationship between vesicle/membrane trafficking dynamics 

and apical membrane invagination or lumen expansion processes in 

sprouting angiogenesis. 

 
5.2 Dissecting the cellular and subcellular events in blood 

vessel lumen formation and expansion 
 

5.2.1 Vesicle/membrane trafficking 
Vesicles are small structures, consisting of fluid enclosed by a lipid bilayer 

inside the cell. They naturally form during the process of secretion (e.g. 

exocytosis), uptake (e.g. phagocytosis and endocytosis), and transport of 

materials within the cytoplasm. Vacuoles, lysosomes, transport vesicles, 

secretory vesicles and extracellular vesicles represent some vesicle 

examples. Rab GTPases regulate many steps in membrane traffic such as 

vesicle formation, vesicle movement along cytoskeleton and membrane 
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fusion. The Rab family of GTPases is a member of the Ras superfamily and 

acts as molecular switches, based on oscillations between GTP- and GDP-

bound forms, regulating membrane and protein trafficking. GDP/GTP 

exchange factors (GEF) activate the Rabs by inducing an exchange from 

GDP-bound to GTP-bound forms (Figure 9). Rabs are peripheral membrane 

proteins and bound to the cytosolic part of a specific intracellular membrane 

via prenyl groups on two cysteines in the C-terminus, which facilitate 

communication between membrane structures by interactions between 

specific Rabs and their effector proteins that help formation, motility and 

tethering of vesicles in and between membrane-bound organelles. 
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Figure 9: Membrane trafficking steps 
Membrane trafficking is a multi step process and controlled by a Rab 
GTPase and its effector proteins (orange color). (a) A sorting adaptor can be 
activated by an active GTP-bound Rab to sort a receptor into a budding 
vesicle from plasma membrane. (b) Phosphoinositide (PI) kinases or 
phosphatases are recruited to vesicle membrane and the PI composition of a 
transport vesicle might be changed (conversion of PI-x into PI-y), which 
cause uncoating through the dissociation of PI-binding coat proteins. (c) Rab 
GTPases can mediate vesicle transport along cytoskeleton (e.g. actin 
filaments or microtubules) by recruiting motor adaptors or by binding 
directly to motor proteins. (d) Rab GTPases can mediate vesicle tethering by 
recruiting tethering factors, which interact with molecules in the acceptor 
membrane. For example, tethering factors might interact with SNAREs and 
their regulators to activate SNARE complex formation that helps in 
membrane fusion. (e) After membrane fusion and exocytosis, the Rab 
GTPase is converted to its inactive GDP-bound form through hydrolysis of 
GTP, which is stimulated by a GTPase-activating protein (GAP) (Stenmark 
et al., 2009).  
 

 

More than 65 rab genes have been identified with distinct functions and 

localizations patterns in vertebrates (Zhang et al., 2007). There is a high 

degree of functional conservation for specific Rab proteins from yeast to 

humans.  

 

Due to their established localization and functions as well as the 

conservation across evolution, Rab5c (early), Rab7 (late), and Rab11a 

(recycling) representing well characterized markers for their respective 

vesicles were chosen to study the vesicle/membrane trafficking during 

lumen invagination in sprouting angiogenesis. In this thesis, I focus on a 

transient overexpression of Rab5c (early endosome), Rab7 (late endosome), 
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and Rab11a (recycling endosome trafficking) during lumen invagination 

process in sprouting angiogenesis at zebrafish embryos.  

RAB5 was first identified in neuroendocrine tumor cells, in a screen to 

analyze homologous genes to yeast sec4. Initially, RAB5 localization was 

associated with membrane and vesicle structures. From electron microscopy, 

it was demonstrated that RAB5 was localized on early endosomes, on the 

cytoplasmic side of the plasma membrane (Chavrier et al., 1990; Gorvel et 

al.,1990). Multiple studies indicated that RAB5 functions in vesicle transport 

and regulates a variety of receptor-mediated signaling pathways. For 

example, studies in zebrafish have indicated that Rab5c is involved in the 

regulation of both the FGF and Wnt signaling pathway and interferes with 

E-cadherin endocytosis via a Wnt11-dependent pathway (Nowak et al., 

2011; Tay et al., 2010; Ulrich et al., 2005). Most vertebrates have 3 paralogs 

of Rab5, however in zebrafish there are additional rab5 genes. In total, 

Rab5a, Rab5aa, Rab5b are ubiquitously expressed in zebrafish. As Rab5c 

expression is enriched in the vasculature (Clark et al., 2011; Thisse et al., 

2004), we chose Rab5c as a candidate to study early endosome trafficking 

during sprouting angiogenesis  

 

RAB7 was first identified in Buffalo rat liver cells, in a screen to analyze 

homologous genes to ras and ras-related genes (Bucci et al., 1988). Later, 

RAB7 was identified as a member of the Rab family. Immuno-electron 

microscopy and marker colocalization observations have shown that RAB7 

localizes to vesicle structures, which have been identified as late endosomes 

(Chavrier et al., 1990). Other functional studies have demonstrated that 

RAB7-tagged vesicles are involved in degradation and biogenesis of 
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lysosomes (Feng et al., 1995). Additionally, RAB7 functional studies are 

associated with severe disease outputs in such cancer, neuropathy and lipid 

metabolism syndromes (Zhang et al., 2009). Rab7 is the only homolog in 

zerbrafish and this gene was chosen as a late endosomal marker, with 

distinct pattern and function. There are some hypothetical proteins that share 

significant homology with Rab7, suggesting that zebrafish might have other 

Rab7 paralogs (Clark et al., 2011; Thisse et al., 2004). Previous research in 

zebrafish showed that notochord vacuoles formation (biogenesis and 

maintenance) requires late endosomal trafficking and Rab7 is the classical 

regulator of the late endosomes (Ellis et al., 2013). For this reason, we have 

chosen Rab7 as a candidate to study late endosomal trafficking during the 

lumen invagination process in sprouting angiogenesis. 

RAB11 was first identified in MDCK cells in a screen to analyze transcripts 

homologous to yeast YPT1/SEC4 (Chavrier et al., 1990). RAB11 

localization was observed in recycling compartments/endosomes from 

immunofluorescent images. For example, over-expressing RAB11 showed 

co-localization with transferrin receptor at the membrane surface (Ullrich et 

al., 1996). Previous research has suggested that Rab11a is needed for lumen 

formation and apical trafficking in MDCK cells and Drosophila embryos, 

showing that apical trafficking of Rab11a-positive endosomes needs 

microtubules (MTs) for the movement in vitro. Similarly, it was 

demonstrated that the MT cytoskeleton serve as railroads for vesicle 

trafficking. For example, Rab11a-tagged vesicles move along MTs and are 

required for lumen formation during neural rod development in zebrafish 

(Buckley et al., 2012). Furthermore, RAB11 was implicated maintaining 

apical adherens junctions and in regulating a variety of signaling pathways. 
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Although many vertebrates only have a single rab11 gene, zebrafish has four 

paralogs; rab11a, rab11a-like, rab11ba, and rab11bb (Clark et al., 2011; 

Thisse et al., 2004). Rab11a is expressed ubiquitously and a well-studied 

paralog of Drosophila RAB11. Since we previously generated Rab11bb 

construct to study the localization and dynamics in vasculature (unpublished 

data), we have chosen Rab11a as another representative of recycling 

endosomes.  

 
In Drosophila, N-terminally tagged fluorescent Rab proteins were generated 

for nearly all Rabs to investigate their function in vivo. Recently, all 27 Rabs 

have been endogenously tagged with fluorescent proteins to exclude 

overexpression-generated artifacts, which resolved the precise localization 

of Rabs (Dunst et al., 2015). In vertebrates, however, Rab-based endosome 

biology is, to a large extend, still limited to cell culture.  

 

Strikingly, our observations from the CAAX-mCherry transgenic zebrafish 

line showed that some vesicle-like structures appear, move in the cytoplasm 

and some dissolve on the invaginating lumen, suggesting that these 

structures might be exocytotic vesicles. Based on this observation, our 

curiosity in endosome biology increased. To study lumen dynamics, we used 

a CAAX-mCherry transgenic zebrafish line. The CAAX motif (C: cysteine, 

A: aliphatic amino acid and X: any amino acid) is attached to Ras protein 

(H-Ras, in this case) and X is defining the prenylation of C (cysteine 

residue) with farnesylation (15C) or geranylgeranylation (20C). Prenylation 

domain is integrating into lipid bilayers and H-Ras protein that linked to 

membrane with prenylation stays in the cytoplasm visualized by a tagged 

fluorescent protein. The CAAX represents a post-translational modification 
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motif that undergoes three consecutive enzymatic reactions: polyisoprene 

lipid chain addition to the cysteine residue, the cleavage of the AAX domain 

and methyl group addition at the C-terminus of the protein. This 

modifications lead to a hydrophobic domain formation, which provide 

affinity for lipid bilayers (Wright and Philips, 2006). Therefore, CAAX 

carries and anchors any fused protein of interest to the peripheral membrane 

by prenylation, allowing visualization of the apical and basal membrane, 

which was also applied in previous studies (Gebala et al., 2016; Lenard et 

al., 2013).  

From the literature, we found that in 2011, ubiquitously expressed N-

terminal EGFP fused Rab5c, Rab7 and Rab11a transgenic zebrafish lines 

were created and validated to investigate localization and dynamics of 

endosome biology during development in neural retina and hind brain (Clark 

et al., 2011). 

 

Taking a step further, we have ordered the same constructs and re-cloned 

them under the vascular specific promoter fli1ep to investigate cellular and 

sub-cellular vascular events. More specifically, we wanted to observe the 

localization and dynamics of endosomal trafficking during the lumen 

invagination process to see whether their localization and dynamics might 

correlate with the lumen expansion process. For this, we applied high spatio-

temporal resolution microscopy in order to resolve the Rabs’ localization 

and dynamics. Recently, it was shown in Drosophila that Rab11, Rab39 and 

large lysosomal vesicles were involved in anastomotic tube fusion events in 

tracheal development (Caviglia et al., 2016). We were encouraged from the 

Drosophila tracheal tube research, indicating the importance of endosomal 
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trafficking at the fusion process, which raises the question whether similar 

endosomal pathways play a role during lumen formation in sprouting 

angiogenesis (Figure 10). Similarly, we want to find out what Rabs with 

distinct function and distribution pattern might regulate the lumen 

invagination process in sprouting angiogenesis (Figure 11). 

 

 

 
Figure 10: Tracheal tube formation  
A tracheal tip cell (gray: cell body, white: tube) contacted with another tip 
cell (blue). Apical membrane compartments (magenta color) at the contact 
interface represent the growing part of the tube. Microtubules are positioned 
in between the apical membrane compartments (green) facilitating 
trafficking. Endosomal vesicle trafficking contributes tube extension (e.g. 
Rab11, Rab23 and Staccato) (Caviglia et al., 2014). 
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Figure 11: Anastomosis and lumen invagination process. 
Two tip cells come in close contact (gray color), lumens inside (blue and 
orange color) and junctions (green color). Tip cells contact one another and 
junctions were deposited at the connection site. Polarization is taken place 
(orange and blue) and junctions are in ring shape (green). Lumen invaginates 
(blue) from left to right. 
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5.3 Aim of the lumen invagination project 
Here, we aim to visualize the localization and dynamics of 

vesicle/membrane trafficking during apical lumen compartment 

invagination, a process of lumen expansion during sprouting angiogenesis. 

For this purpose we designed EGFP-fused Rabs, tagging early, late and 

recycling endosomes to visualize dynamics of subcellular vesicular 

trafficking. We transiently characterized and used distinct Rabs with 

different function and localization patterns. This approach will allow, for the 

first time, the visualization of specific sub-fractions of vesicle/membrane 

trafficking during vascular lumen growth and investigate their function. 

In summary, the visualization of vesicle/membrane trafficking during lumen 

invagination will allow us to: 

(1 ) Investigate the subcellular distribution of EGFP:Rabs; Rab5c-early 

endosome, Rab7-late endosome and Rab11a-recycling endosome during 

lumen invagination  

(2 ) Assess the contribution of early, late or recycling endosomal pathways  

to the lumen invagination  process. 

Moreover, the characterized and differentially localized Rabs will provide a 

novel tool-set to gear up the studies in order to understand the lumen 

expansion process in a novel way. 
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6 Materials and Methods 

 
6.1 Cloning of plasmids 
Initially, plasmids were cloned downstream of a 4 times non-repetitive 

(4xnr) UAS (upstream activation sequence), which is driven by the Gal4 

transcription factor (Akitake et al., 2011). Since there is a risk of silencing 

transgenic DNA due to the repetitive sequences, less non-repetitive sequence 

such as 4xnr compared to 15xnr reduces the silencing over generations.  

To increase target efficacy of mRNAs to ribosomes, Kozak sequence, ACC, 

was introduced in the upstream of the translation the constructs before ATG 

site. Further to design a plasmid, it is critical to contain a SV40 (Simian 

virus 40) terminator sequence at the end of the coding sequence because 

SV40 sequences terminates transcription and poly-adenlylates mRNA by 

adding polyA tail. Lastly, to promote trangenesis, all plasmids were flanked 

by Tol2 transposable element site, which is needed for Tol2 transposase-

dependent genome integration (Asakawa et al., 2008; Kawakami et al., 

2000). 

 

6.2 Transgenesis 

DNA plasmids were designed including promoter region (e.g. fli1ep), coding 

fluorescent protein (e.g. EGFP, mcherry etc.) and coding DNA sequence 

(e.g. rab5c) and regulatory elements if needed.  The plasmids were cloned 

with using the Multisite Gateway system (Life Technologies) into 

destination vectors (e.g. pDestTol2CG2) from the Tol2Kit (Kwan et al., 
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2007). The plasmids were injected together with Tol2 transposase RNA to 

improve transgenesis (increasing genome insertion) into one cell stage eggs 

of Tg(kdrl:mCherry:CAAX) (Lenard et al., 2013). In the following day, at 

1dpf the embryos were manually dechorionated by forceps and screened 

under the fluorescent binocular for a transient expression. Embryos that 

expressed the plasmids, visualized by a transgenesis marker (e.g. cmlc-

eGFP, a heart marker) were raised to adulthood. After 3 months, grown fish 

were crossed out to wild-type fish to screen for germline transmission. The 

F1 offspring was then screened for positive expression again and the ones 

with the strongest expression were selected under fluorescent binocular and 

raised to adulthood for transgenic expression. 

 

6.3 Cloned Plasmids 
The fli1ep promoter (ordered from ADDGENE) was used to drive 

endothelial expression. rab5c, rab7 and rab11a 3`entry clones were ordered 

from ADDGENE (Clark et al., 2011). Tg(Fli1ep:eGFP-rab5c), 

Tg(Fli1ep:eGFP-rab7), and Tg(Fli1ep:eGFP-rab11a) constructs were 

generated with the Gateway cloning system (Life technologies). For 

transient expression, 30-100 nM plasmid injections were performed at the 

single cell stage and survived embryos were picked. Positive embryos were 

selected at 2 dpf (days post-fertilization) for high expression under 

fluorescent binoculars. Selected embryos were further imaged either by 

confocal or spinning disk microscopies. 
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Figure 12: Three-fragment Gateway cloning. 
Multiple fragments were amplified with PCR using primers that incorporate 
flanking sites (e.g. attB1, attB5r). In the BP reaction these fragments were 
combined with donor vectors. In the LR reaction these three entry clones 
were combined with a destination vector to produce an expression clone 
containing all three fragments in a specific orientation (the figure was taken 
from (Petersen and Stowers, 2011). For example, fragment 1 represents 
4xUAS or fli1ep (promoters), fragment 2 represents non-stop EGFP and 
fragment 3 represents rabs (rab5c, rab7 and rab11a).  
 

 
6.3.1 Cloning of the EGFP-rab5c construct 
To generate pT2_4xUAS:EGFP:rab5c plasmid, isolated pDEST-destination 

vector, p-5`entry clone (4xUAS), p-middle entry clone (EGFP) and p-

3`entry clone (rab5c) were put together with LR clonase at 25°C for 16 

hours (Figure 13). Later, the mix pladmids were electroporated. Injected 

plasmid expression was too high, which was all over the cytoplasm.  

To reduce the expression, the 4xUAS promoter was changed to a fli1ep 

promoter. For this, the same strategy was applied to generate fli1ep:EGFP-
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rab11a plasmid. Finally, the plasmid was sequenced in both cases to ensure 

correct sequence. Map of the expression clone is provided below. 

 

 
 

Figure 13: Schematic Gateway cloning steps and fli1ep:EGFP:rab7 
Four modules are represented from snapgene software. (1) Destination 
vector. (2) Fli promoter. (3) non-stop EGFP and (4) rab5c entry clones. With 
LR clonase, four modules are combined and full construct represented as 
Expression Clone_Rab5c (fli1ep:EGFP:rab5c).  
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6.3.2 Cloning of the EGFP-rab7 construct 
To generate pT2_4xUAS:EGFP:rab7 plasmid, isolated pDEST-destination 

vector, p-5`entry clone (4xUAS), p-middle entry clone (EGFP) and p-

3`entry clone (rab7) were put together with LR clonase at 25°C for 16 hours. 

Later, the mix pladmids were electroporated. Injected plasmid expression 

was too high, which was all over the cytoplasm.  

To reduce the expression, the 4xUAS promoter was changed to a fli1ep 

promoter. For this, the same strategy were applied to generate 

fli1ep:EGFP:rab11a plasmid (Figure 14). Finally, the plasmid was 

sequenced in both cases to ensure correct sequence. 

 
 
Figure 14: Full construct represented as fli1ep:EGFP:rab7.  
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6.3.3 Cloning of the EGFP-rab11a construct 
To generate pT2_4xUAS:EGFP:rab11a plasmid, isolated pDEST-

destination vector, p-5`entry clone (4xUAS), p-middle entry clone (EGFP) 

and p-3`entry clone (rab11a) were put together with LR clonase at 25°C for 

16 hours. Later, the mix pladmids were electroporated and selected by mini 

and midi preps. Ready plasmids were injected into a single cell stage of egg. 

Injected plasmid expression in vasculature was too high, which was all over 

the cytoplasm.  

To reduce the expression, the 4xUAS promoter was changed to a fli1ep 

promoter. Therefore, the same strategy were applied to generate 

fli1ep:EGFP:rab11a plasmid (Figure 15). Finally, the plasmid was 

sequenced in both cases to ensure correct sequence. 

 
 

 
 
Figure 15: Full construct represented as fli1ep:EGFP:Rab11a.  
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6.3.4 Cloning of the EGFP-rab35 plasmid 
To generate pT2_4xUAS:EGFP:rab35 plasmid, the two plasmids 3`E 

p_Rab35-NT and pT2_4xUAS:eGFP:rab11bb were digested with BsRGI 

(NEB) and Xhol (NEB), cutting out Rab11bb sequence out and generating 

sticky sequence for both p_Rab35-NT and pT2_4xUAS:eGFP plasmids that 

form pT2_4xUAS:eGFP:rab35 plasmid via homologous recombination. 

Individual fragments were dephosphorylated and run on the gel 

electrophoresis. Later, extracted DNA fragments were ligated. Finally, the 

plasmid was sequenced to ensure correct sequence. 

 
 
6.4 List of other transgenic fish lines 
 
-Tg(fli1ep:GAL4FF)UBS3, (UAS:RFP), (UAS:EGFP-ZO-1)UBS5  
-Tg(fli1ep:GAL4FF)UBS2-4, (UAS:mRFP), (UAS:VE-cadherinΔC-EGFP)ubs12 
-Tg(fli1ep:GAL4FF)ubs3; (UAS:mRFP); Tg(UAS:EGFP-UCHD)ubs18 
-kdrl:mKate2- CAAX 
-kdrl:mCherry-CAAXubs916 
-kdrl:H2B-GFP 
-kdrl:EGFP:EB3 
- fli1ep:GolT-mCerry 
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7 RESULTS  
 
7.1 Visualization of lumen invagination and junctions  
We imaged lumen invagination with cytoplasmic markers combined with 

ZO1 or Ve-cadherin junctional markers (Figure 16, 17). This allows us to 

visualize different cellular architectures including unicellular and 

multicellular tubes. We observed that lumen invagination occurs in 

unicellular tubes at the early stage of sprouting angiogenesis. For example, 

when two cells contacted each other, junctional material was deposited at the 

contact site (Figure 16 (A)). Lumen invagination started from a cell towards 

the neighboring cell (Figure 16 (B)). While the lumen growth reached the 

cell-cell contact site, junctional ring formed (Figure 16 (C-E)). Further, 

lumen pushed through neighboring cell and the nucleus was pushed on the 

site (Figure 16 (D)). Further, lumen invagination can also happen from both 

sides towards each other (Figure 17 (C)). Depending on the blood flow 

pressure, one invaginates always faster than another.  
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Figure 16: Lumen invagination process in newly contacted cells  
(A-E) Still pictures from time-lapse movie S1, with highlighted ZO1 
(EGFP-ZO1) and cytoplasm (RFP). The location of the lumen is apparent as 
a black zone bounded by cytoplasm, white arrowhead indicates the direction 
of lumen invagination, green arrowheads indicate the position of junctions. 
(A) Newly contacted two endothelial cells, junctions are deposited at the 
contact interface (green arrowheads). (B) Lumen invaginates from SA to 
DLAV (white arrowhead). (C) Junctions start forming ring shape (green 
arrowhead) and lumen invagination pushes nucleus. (D) Lumen invaginates 
into next cell (white arrowhead) and junctional ring becomes more 
structured. (E) Lumen invagination continuous in the neighboring cell 
(white arrowhead) and nucleus is pushed on the side. (A’-E’) Still pictures 
correspond to those from panels A-E, showing only the green channel 
(grayscale). (In the schematic; green: ZO1, red: cytoplasm).  
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Figure 17: Lumen invagination process in unicellular tube 
(A-E) Still pictures from time-lapse movie S2, with highlighted VeCadherin 
(EGFP-VeCad) and cytoplasm (RFP). The location of the lumen is apparent 
as a black zone bounded by cytoplasm, white arrows indicate the direction of 
lumen invagination, green arrowheads indicate the position of junctions. (A) 
Lumen invaginates from SA to DLAV to form unicellular tube (white 
arrows). (B-E) Lumen invagination continues from both sites (SA to DLAV 
and vice versa) (white arrows). (A’-E’) Still pictures correspond to those 
from panels A-E, showing only the green channel (grayscale). (In the 
schematic; green: VeCad, red: cytoplasm).  
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7.2 Visualization of apical membrane compartment  
In this study, we established high spatial and temporal resolution imaging in 

a CAAX-mCherry transgenic zebrafish line. In particular, this setup let us 

visualize both the endothelial cell membrane (basal) and the apical 

membrane compartment (lumen) within the endothelial cells in order to 

distinguish dynamic lumen growth from different cellular arrangements. 

In comparison with the apical membrane fusion process in the Drosophila 

tracheal system (Caviglia et al., 2016), the apical membrane compartment of 

vascular endothelial cells is extremely dynamic due to the blood pressure 

changes (Gebala et al., 2016). By imaging the CAAX-mCherry transgenic 

zebrafish line, we observed that the lumen at the leading edge does not 

always grow continuously. It is rather that the apical compartments (lumen) 

in endothelial cells can break and fuse repeatedly during vascular sprouting 

depending on the pressure fluctuation (Figure 18).  

 

 

0 minA 7 minB 10 minC 18 minD  21.5 minE

CAAX-mCherry

* * *

 
Figure 18: Lumen invagination dynamics 
(A-E) Still pictures from time-lapse movie S3, with highlighted membrane 
(CAAX-mCherry). The location of the lumen is apparent as a gray zone 
bounded by cytoplasm, white arrows indicate the direction of lumen 
invagination, magenta asterisks indicate the collapsing of lumen and blue 
arrowheads indicate the approximate position of vesicle-like structures. (A) 
Lumen invagination into an endothelial cell from SA to DLAV (white 
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arrow), vesicle-like structures (blue arrowheads). (B-E) Invaginating lumen 
started to disintegrate into two parts and the upper part is collapsed in a 
while (asterisk). Eventually lumen starts invaginating from down again. 
(white arrow). (In the schematic; red: membrane).  
 

 

 

7.3 Vesicle-like structures fuse with invaginating lumen  
In addition, we showed that some vesicle-like structures ranging between 

200-500 nm, labeled with CAAX-mCherry, form and move in the cytoplasm 

and eventually some dissolve into the growing apical membrane. We do not 

know from where these vesicle-like structures originate and to which 

destination they travel. However, we observed that sometimes, they dissolve 

(n=5; where n represents the number of the examined vessels) on the 

invaginating membrane (apical lumen compartment) (Figure 19). Based on 

these observations, we hypothesized that these vesicle-like structures are real 

vesicles.  
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Figure 19: Vesicle-like structures and lumen invagination 
(A-E) Still pictures from time-lapse movie S4, with highlighted nucleus (nls-
GFP, blue color) and membrane (CAAX-mCherry, green). The location of 
the lumen is apparent as a gray zone bounded by cytoplasm, white arrows 
indicate the direction of lumen invagination, and blue arrowheads indicate 
the approximate position of vesicle-like structures originated from CAAX-
mCherry line. (A-C) Lumen invagination into an endothelial cell at DLAV 
(white arrow), vesicle-like structures (blue arrow heads) appears and 
dissolve on the growing lumen lateral site (white astricks) . (D-E) Lumen 
invagination continues and vesicle-like structures dissolve at the front part of 
invaginating lumen (white astricks). (A’-E’) Still pictures correspond to 
those from panels A-E, showing only the green channel (grayscale). (In the 
schematic; green: membrane, blue: nucleus).  
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7.4 Visualizing the localization and dynamics of early, late and 

recycling endosomes during the lumen invagination process 
As a next level, we addressed the question whether vesicle/membrane 

trafficking correlates with the lumen invagination process. In the long term, 

we aim to identify the role of vesicle/membrane trafficking on building the 

apical membrane compartment during sprouting angiogenesis. 

To address how vesicle/membrane trafficking promotes fusion and 

coalescence of apical membrane compartments during sprouting 

angiogenesis, we applied live imaging of vesicle trafficking to screen 

candidate assigned Rab proteins, for those, which have a distinct distribution 

pattern and function. To analyse the subcellular distribution of Rab proteins, 

we generated N-terminally EGFP-tagged constructs, which were expressed 

transiently in zebrafish embryos. Initially, we focused on rab5c, rab7 and 

rab11a constructs, which were characterized and validated previously in 

zebrafish (Clark et al., 2011). Therefore, we sub-cloned the same rab 

constructs under a vascular-specific promoter (fli1ep) and injected the 

constructs into single cell stage kdrl: CAAX-mCherry fish eggs to observe 

transient expression. Then, we imaged the localization and dynamics of 

Rabs within endothelial cells during lumen invagination in sprouting 

angiogenesis.  

At first, we analysed Rab5c transient expression pattern within the CAAX-

mCherry transgenic line. We demonstrated that Rab5c was generally 

distributed over the cell when there was no lumen formation yet (not 

shown). However, strikingly, we observed during lumen invagination that 

Rab5c accumulated at the leading edge of the invaginating lumen (n=5) 
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(Figure 20). This observation might indicate that Rab5c retrieves the 

membrane material at the leading edge of invaginating lumen. 
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Figure 20: Lumen invagination and Rab5c-early endosome trafficking 
(A-E) Still pictures from time-lapse movie S5, with highlighted Rab5c 
(EGFP-Rab5c) and membrane (CAAX-mCherry). The location of the lumen 
is apparent as a gray zone bounded by cytoplasm, white arrows indicate the 
direction of lumen invagination, magenta arrowheads indicate the 
approximate position of Rab5c location and blue arrowheads indicate the 
approximate position of vesicle-like structures. (A) Lumen invagination into 
an endothelial cell at DLAV (white arrow). Vesicle-like structures (blue 
arrowheads) and Rab5c vesicles (magenta arrowheads) are not co-localized. 
However, Rab5c tagged vesicles are confined at the tip of the invaginating 
lumen (B-E) Lumen invagination seems slow and Rab5c tagged vesicles are 
kept their position at the tip of invaginating lumen (magenta arrowheads). 
(A’-E’) Still pictures correspond to those from panels A-E, showing only the 
green channel (grayscale). (A’’-E’’) Still pictures corresponding to those 
from panels A-E, showing only the red channel (grayscale). (In the 
schematic; green: Rab5c, red: membrane).  
 

 

As a next experiment, we analysed transient Rab7 expression in the CAAX-

mCherry transgenic line. We showed that Rab7 expression, similar to that of 

Rab5c, was all over the cell when there was no lumen formation yet (not 

shown). However, during lumen invagination, we observed that Rab7 

vesicles seem to form a donut-shaped structure in tip cell and distributed 

randomly rather than in a specific pattern. Strikingly, we demonstrated that 

CAAX-mCherry vesicles-like structures were positioned within the donut 

shapes formed by EGFP-Rab7 and co-localized with the later (n=5) (Figure 

21). However, we need to do further experiments and analyses to find out 

whether Rab7 stays intact in cytoplasm, when some CAAX-mCherry 

vesicles-like structures dissolve on the invaginating lumen. 
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Figure 21: Lumen invagination and Rab7-late endosome trafficking 
 (A-E) Still pictures from time-lapse movie S6, with highlighted Rab7 
(EGFP-Rab7) and membrane (CAAX-mCherry). The location of the lumen 
is apparent as a gray zone bounded by cytoplasm, white arrows indicate the 
direction of lumen invagination, magenta arrowheads indicate the 
approximate position of Rab7 location and blue arrowheads indicate the 
approximate position of vesicle-like structures. (A) Lumen invagination into 
an endothelial cell from SA to DLAV (white arrow). Vesicle-like structures 
(blue arrowheads) and Rab7 vesicles (magenta arrowheads) are co-localized. 
(B-E) Lumen invagination continues and Rab7 tagged vesicles are co-
localized with vesicle-like structures. (A’-E’) Still pictures correspond to 
those from panels A-E, showing only the green channel (grayscale). (A’’-
E’’) Still pictures corresponding to those from panels A-E, showing only the 
red channel (grayscale). (In the schematic; green: Rab7, red: membrane).  
 
 

Last, we analysed transient Rab11a expression within the CAAX-mCherry 

transgenic line. We demonstrated that Rab11a expression was distributed all 

over the cell in the absence of lumen formation. However, in the presence of 
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lumen invagination, Rab11a was also distributed all over the cell (n=4), 

more close to the invaginating lumen (Figure 22). This observation suggests 

that Rab11a vesicles might recycle membrane compartments to the growing 

lumen, which might contribute to the extension of the lumen. 
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Figure 22: Lumen invagination and Rab11a-recycling endosome 
trafficking 
 (A-E) Still pictures from time-lapse movie S7, with highlighted Rab11a 
(EGFP-Rab11a) and membrane (CAAX-mCherry). The location of the 
lumen is apparent as a gray zone bounded by cytoplasm, white arrows 
indicate the direction of lumen invagination, magenta arrowheads indicate 
the approximate position of Rab11a location and blue arrowheads indicate 
the approximate position of vesicle-like structures. (A) Lumen invagination 
into an endothelial cell at DLAV (white arrow). Vesicle-like structures (blue 
arrowheads) and Rab11a vesicles (magenta arrowheads) are not co-
localized. (B-E) Lumen invagination continues and Rab11a tagged vesicles 
are localized close to invaginating lumen. (A’-E’) Still pictures correspond 
to those from panels A-E, showing only the green channel (grayscale). (A’’-
E’’) Still pictures corresponding to those from panels A-E, showing only the 
red channel (grayscale). (In the schematic; green: Rab11a, red: membrane).  
 

 

Taken together, we showed that Rab5c-positive early endosomes were 

enriched at the leading edge of the apical lumen compartment, whereas Rab7 

and Rab11a, which mark late and recycling endosomes, respectively, were 

distributed throughout the cytoplasm of endothelial cells (Figure 22). We did 

not observe any co-localization of Rab5c and Rab11a with vesicle-like 

structures originated from CAAX-mCherry. Interestingly, EGFP-tagged 

Rab7 vesicles were co-localized with vesicle-like structures labeled by 

CAAX-mCherry.  
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7.5 Visualizing microtubule dynamics and localization during 

lumen invagination process  
From the previous research, it has been shown that some of the Rab vesicles 

move along the MTs (microtubules) and contribute to lumen formation 

(Blasky et al., 2015). To get familiar with MTs dynamics and localization 

during lumen invagination, we imaged angiogenesis in an embryo 

expressing both EB3-EGFP (end binding protein 3) (Stefan Schulte-Merkers 

lab) and CAAX-mCherry. We observed a positional correlation between 

vesicle-like structures movement originated from CAAX-mCherry 

transgenice line and microtubule-based cytoskeletal tracks, indicating that 

vesicles might move on microtubule tracks. However, further studies are 

needed to prove the correlation. Furthermore, we wanted to investigate the 

cytoskeletal dynamics during lumen invagination. Interestingly, we observed 

that the microtubule cytoskeleton, which might serve as a transport route, 

always seemed to connect the invaginating lumens (Figure 23). When the 

two apical lumen compartments get close to within a certain distance to each 

other before the fusing process, the microtubule-organizing center always 

moves to the side (n=3) (Figure 23 (E)). This observation suggests that 

microtubules might also guide the direction of the lumen growth process in 

addition to serving as a cytoskeletal track. 
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Figure 23: Lumen invagination and microtubules 
(A-E) Still pictures from time-lapse movie S8, with highlighted 
microtubules (EB3-EGFP) and membrane (CAAX-mCherry). The location 
of the lumen is apparent as a red zone bounded by cytoplasm, white arrows 
indicate the direction of lumen invagination and blue arrowheads indicate 
the approximate position of vesicle-like structures and orange asterisk 
indicate the position on microtubule organization center. (A) Two lumen 
invaginates towards each other (white arrows) and vesicle-like structures 
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(blue arrowheads) formed from the upper invaginating lumen. (B-D) Lumen 
invagination from the upper part seems to form big vesicle-like structures 
(blue arrow heads), indicating lumen continuity is broken (white arrows). 
(E) The lumen invagination from SA to DLAV comes close to another 
invaginating lumen from DLAV to SA (white arrows) and microtubule 
organization center is pushed on the site (asterisk). (A’-E’) Still pictures 
correspond to those from panels A-E, showing only the red channel 
(grayscale). (A’’-E’’) Still pictures corresponding to those from panels A-E, 
showing only the green channel (grayscale). (In the schematic; green: 
microtubules, red: membrane).  
 

 

7.6 Visualizing actin distribution during lumen invagination 

process 
Previous research has shown that when the lumen invaginates, there are 

some spherical deformations happening at the leading edge. Because of the 

blood pressure fluctuations, endothelial cells react towards deformations by 

recruiting actomyosin clusters, visualized by life-actin. The actomyosin 

forces, generated in the cytoplasm, put these spherical deformations back on 

the growing lumen. This process was described as reverse blebbing, and was 

claimed as a mechanism contributing to lumen expansion (Gebala et al., 

2016). To analyze the distribution of the actin cytoskeleton during the lumen 

invagination process, we used a UCHD-GFP transgenic line (Sauteur et al., 

2014), which labels filamentous actin. Similar to previous research, we 

observed the recruitment of actin at the leading edge of the expanding 

lumen. However, recruitment of actin was far less specific than previously 

reported and positioned not only at the leading edge of the lumen but also on 

the side of the lumen (Figure 24). The results indicate that during lumen 

invagination, the actin cytoskeleton might keep the lumen intact. To better 
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understand the role of the actin cytoskeleton at the lumen invagination 

process, further functional studies are needed.  
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Figure 24: Lumen invagination and actin cytoskeleton 
(A-E) Still pictures from time-lapse movie S9, with highlighted actin 
cytoskeleton (EGFP-UCHD) and cytoplasm (RFP). The location of the 
lumen is apparent as an empty zone bounded by red cytoplasm, white arrows 
indicate the direction of lumen invagination and orange arrowheads indicate 
the approximate position of actomyosin accumulations. (A) Lumen 
invagination into an endothelial cell from SA to DLAV (white arrows). (B-
E) The lumen structure is not smooth on the edge and form blebs towards 
cytoplasm from apical and vice versa (orange arrowheads). (A’-E’) Still 
pictures correspond to those from panels A-E, showing only the green 
channel (grayscale). (A’’-E’’) Still pictures corresponding to those from 
panels A-E, showing only the red channel (grayscale). (In the schematic; 
green: actin, red: cytoplasm).  
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7.7 Visualizing Golgi apparatus during lumen invagination 
One of the major platform for retrograde trafficking is endosome-to-trans 

Golgi network (TGN) pathway. This path diverts proteins and lipids away 

from lysosomal degradation by transporting cargoes from the early 

endosome/recycling endosome or the late endosome pathways to TGN 

(reviewed in Lu and Hong, 2014). This data demonstrates the close relation 

between Golgi and endosomal trafficking pathways. 

Previous research has shown that the Golgi apparatus changes its position 

relative to the nucleus depending on blood flow in zebrafish (Kwon et al., 

2016). To identify a possible correlation between Golgi apparatus and apical 

membrane invagination, we used a transgenic zebrafish line in which the 

Golgi apparatus is labeled with a fluorescent protein. During sprouting 

angiogenesis, in which blood flow is not established yet and cells migrate 

towards the dorsal side, we observed that the Golgi apparatus is always 

positioned at the front end of the nucleus, agreeing with previous 

observations (Kwon et al., 2016). During lumen growth, the Golgi apparatus 

was positioned at the apical side of the cell. While the lumen was expanding 

and pushing the nucleus to the side, the Golgi apparatus also is positioned on 

the lumen side (Figure 25). This finding suggests that the building blocks of 

apical membrane compartments might emerge from the Golgi as well. Since 

endosomal proteins are shuttled from ER to Golgi and some of the proteins 

are transported from endosomal pathways to TGN (Lu and Hong, 2014), 

observing the Golgi behavior might give additional insight into the lumen 

invagination process.  
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Figure 25: Lumen invagination and Golgi apparatus 
(A-C) Still pictures from time-lapse movie S10, with highlighted Golgi 
apparatus (GolT-mCerry) and nucleus (nls-GFP). The location of condensed 
Golgi aparatus is apparent as a zone of magenta signal (white asterisks). (A) 
Lumen invagination process (white arrows), with the approximate position 
of the Golgi indicated by the white asterisks, which is the tip of invaginating 
lumens. (B-C) Lumen invagination pushes the nucleus to the right site from 
down to open the space (white arrows) and Golgi does not move with 
invaginating lumen, but rather Golgi stays behind of nucleus when lumen 
invaginates further.  
 

 

 

7.8 Conclusion 
In summary, we have developed novel tools that allow the in vivo 

visualization of Rab5c- early endosome, Rab7- late endosome, and Rab11a- 

recycling endosome within endothelial cells. We have imaged the 

endosomal trafficking with cutting edge spatio-temporal resolution within 

the endothelial cells during the lumen invagination process in sprouting 

angiogenesis. Interestingly, Rab5c expression is confined to the leading edge 

of the invaginating lumen. CAAX-mCherry originated vesicle-like structures 

co-localize with EGFP-tagged Rab7 late endosomal vesicles, demonstrating 

a correlation of their dynamics and localization. Overall, we analyzed the 

distinct localization and dynamic pattern of vesicle/membrane trafficking 

during lumen invagination. To map endothelial cell behavior during lumen 

invagination, we also observed dynamic rearrangements of sub-cellular 
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structures, which are involved in cell architecture changes. For example, 

microtubules (MTs) are enriched in-between the invaginating lumens and 

move to the side when two invaginating lumens come in close contact. MTs 

may provide a highway for transporting vesicles towards the growing lumen, 

since similar process was described in tube formation in the Drosophila 

trachea (Caviglia and Luschnig, 2014; Caviglia et al., 2016). One more key 

player, actomyosin contraction, is activated in different positions when the 

lumen starts invaginating into an endothelial cell. Because of pressure 

fluctuations, the invaginating apical membrane can break in it’s continuity, 

and eventually fuses back. During lumen expansion, it has also been 

observed that many blebs can form (Gebala et al., 2016). During this 

process, actin accumulation occurs on the blebbing sites and may regulate 

lumen maintenance, recovering lumen continuity by pushing these bubbles 

back to the apical membrane. Another key player, the Golgi apparatus, is 

used for planar cell polarity indication and positioned at the tip of the 

invaginating lumen, indicating the Golgi might shuttle building blocks of 

apical membrane compartments. Establishing and analysing the distribution 

pattern of endosomal trafficking, cytoskeleton (MTs, actin) and Golgi 

apparatus during lumen invagination, we are able to describe the lumen 

invagination process and observe endothelial cell behavior in detail at 

cellular and subcellular level in vivo. 
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8 Discussions and Outlook 

8.1 Lumen invagination and vesicle/membrane trafficking in 

sprouting angiogenesis 

8.1.1 Visualization of apical membrane compartment: CAAX-

positive, vesicle-like structures fuse to invaginating lumen 

during sprouting angiogenesis.  

The mechanism of how a lumen expands during sprouting angiogenesis is 

not understood yet. One of the studies in the field proposed a vacuole fusion 

model, in which vacuoles in the cell emerge via pinocytic pathways and 

form large intracellular, luminal spaces. These vacuoles eventually come 

together and fuse with one another to form interconnected lumen, during 

sprouting angiogenesis independent of blood flow (Kamei et al., 2006). 

Similar large luminal spaces have been reported in vitro in HUVEC culture 

(Childs et al., 2002 and Kamei et al., 2006). Furthermore, a recent study (Yu 

et al., 2015) shows that during sprouting angiogenesis, small membrane 

vesicles coalesce into larger membrane structures, which could be 

representative of vacuoles. In these studies, both prenylated Cdc42 and 

cytoplasmic GFP tools were applied to visualize luminal membrane 

structures. Nonetheless, the study lacks the demonstration of whether these 

large membrane structures contribute to the lumen expansion process. In a 

number of other studies, using membrane and junctional markers, it was 

reported that the lumen is formed in zebrafish by a combination of lumen 

invagination and cord hollowing process, rather than by vacuole fusion 

(Blum et al., 2008a; Fededa and Gerlich, 2012; Gebala et al., 2016; Green et 
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al., 2012; Herwig et al., 2011; Lenard et al., 2013; Levayer and Lecuit, 

2012).  

To visualize the lumen expansion process, we also used a CAAX-mCherry 

transgenic zebrafish line, which allows to visualize apical and basal 

compartments. However, to the earlier claim, we did not observe large 

vacuolar structures when the lumen forms. However, this does not exclude 

that vacuoles are involved in the lumen formation process. Interestingly, our 

results show that some vesicle-like structures, labeled with CAAX-mCherry, 

form and move in the cytoplasm and eventually fuse to the growing 

membrane. These observations indicate that vesicle trafficking might 

contribute to lumen expansion during the invagination process (Figure 19).  

Recently, it was shown in the Drosophila tracheal system, that 

vesicle/membrane trafficking plays a critical role in tube formation. For 

example, Rab11, Rab39 and lysosomal vesicles regulate the lumen fusion 

process, a last step of lumen expansion, in tracheal tip cells (Caviglia et al., 

2016; reviewed in Caviglia and Luschnig, 2014). This data from Drosophila 

suggest that similar events might occur in vertebrates. Along those lines, 

integration of vesicle-like structures, originated from CAAX-mCherry 

transgenic zebrafish line, into the growing lumen, is a potential indication 

for vesicle/membrane trafficking during lumen invagination process. 

Although the two systems, tracheal tube formation and vascular network 

formation, are from different organisms, we might benefit from Drosophila 

research. These are many differences between lumen formation in tracheal 

tube and in the vasculature. Tubes in Drosophila are solid, carry air and cells 

are very small. However, endothelial cells are larger and allow better resolve 
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the subcellular events by imaging and there is blood instead of air, and 

lumen growth is dynamic and fragile. Most importantly, we are able to 

record the dynamics of cellular and subcellular events in vivo. 

In light of our findings, it is crucial that we can visualize apical and basal 

compartments in endothelial cells with the CAAX-mCherry transgenic line. 

Additionally, we identified vesicle-like structure formation and fusion to the 

invaginating lumen. These findings open important questions in whether 

these vesicle-like structures are real vesicles and might contribute to lumen 

growth. 

 

 

8.1.2 Dynamics and localization of early, late and recycling 

endosomes during lumen invagination process in sprouting 

angiogenesis 
Very often, we observe that the vascular lumen forms rapidly via lumen 

invagination processes and cells might provide a reservoir of membrane 

materials (lipids, proteins as building blocks) via vesicle/membrane 

trafficking in order to expand the lumen as an addition to de novo production 

of the building blocks (e.g. exocytosis).  

Imaging the membrane marker, CAAX-mCherry, we observed that vesicle-

like structures dissolve on growing lumen. This observation encouraged us 

to hypothesize that vesicle/membrane trafficking contributes to extend 

rapidly invaginating lumen by providing building blocks. 

To address whether these vesicle-like structures are endosomes, we 

generated tagged version of different Rab proteins driven by an endothelial 
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specific promoter –fli1ep:EGFP-rab5c, fli1ep: EGFP-rab7, and fli1ep: 

EGFP-rab11a. To observe the dynamics and localization of endocytotic 

pathways during the lumen invagination process, we analysed the expression 

of distinct Rabs upon transient expression. During tube expansion in 

Drosophila trachea, Rab5 is required to remove luminal material to generate 

an open space, indicating the importance of early endocytotic pathways 

(Tsarouhas et al., 2007). 

Rab5c is an early endosomal marker and when it is expressed under the fli 

promoter in zebrafish, the expression is mostly confined at the leading edge 

of the invaginating lumen (Figure 20). Therefore, Rab5c accumulation at the 

leading edge might indicate to retrieve apical membrane from the 

invaginating lumen. We observed that when two lumens fuse with one 

another, one invaginates faster and another invaginates slower probably due 

to a blood pressure change. Interestingly, Rab5c accumulate at the slow 

invaginating lumen (n=3), but does not accumulate at the fast invaginating 

lumen, which is at the opposite side. The reason why Rab5c expression is 

not seen in both invaginating lumen might be due to mosaic expression. The 

lumen in which Rab5c accumulate grows very slow, which might be 

explained by apical membrane removal from the leading edge. Removing of 

apical membrane material from invaginating lumen via early endosomal 

pathway might be the reason for the slow growth. More research is needed 

to elucidate the role of early endosome on lumen invagination process 

during sprouting angiogenesis. It might be interesting to follow up whether 

Rab5c always accumulates on one side of an invaginating lumen. Also, it 

will be interesting to know what will be the next Rabs, which take over 

vesicles from Rab5c in the cell to see what happens on these Rab5c-tagged 
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vesicles. For this, we need to visualize multiple Rabs simultaneously during 

the lumen invagination process with different fluorescent proteins. This will 

allow us to address some issues such as whether Rab5c-tagged vesicles are 

recycled, or moved to late endosomes and so on to observe the next stages of 

vesicle trafficking.  

 

Previous research (Ellis et al., 2013) in zebrafish showed that notochord 

vacuoles biogenesis and maintenance requires late endosomal trafficking 

regulated by Rab32a and H+-ATPase–dependent acidification. However 

dominant negative (DN) expression of Rab7 (the classical regulator of late 

endosomes) gave no phenotype. We can argue that DN experimental setup is 

not ideal for functional studies: since the time of expression is not controlled 

and there might be compensation due to possibly existing isoforms of Rab7.  

In the vascular system, we aimed to observe the localization and dynamics 

of Rab7 during the lumen invagination process. Similar to Rab5c, Rab7 

expression was randomly distributed in the absence of lumen. Strikingly, 

however, Rab7 vesicles were co-localized with CAAX-tagged vesicle-like 

structures and moved together in the cytoplasm of ECs during the lumen 

invagination process (Figure 21). More analyses are needed to identify 

whether CAAX-tagged vesicle-like structures still fuse to the growing 

lumen. Since Rab7 regulates late endosome formation, Rab7-tagged vesicles 

should remain in the cytoplasm when CAAX-tagged vesicle-like structures 

fuse with growing lumen. Another interesting observation was that Rab7- 

tagged vesicles are smaller in size at DLAV (n=2). However, they form big 

donut shape vesicles at the tip cells (n=2). They also seem to have an 

influence on the size of vesicle-like structures originating from CAAX-
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mCherry in tip cells. Co-localization of CAAX-mCherry vesicle-like 

structures and Rab7-labeled late endosomes show that we have already 

strong evidence for late endosomes might be involved in the lumen growth. 

Further research is needed to elucidate what these late endosomes contains 

and how they might contribute to lumen invagination process. 

 

Rab11a regulates recycling endosomes and the expression is all over the cell 

both in the absence and presence of lumen (Figure 22). It is difficult to 

interpret the recycling endosomes’ expression during the lumen invagination 

process. One suggestion is that when the lumen invaginates rapidly, there is 

a high demand of building blocks to supply membrane to growing lumen. 

Therefore, recycling endosomes might be involved in supplying building 

blocks to extend lumen rapidly by bringing material from cytoplasm to 

apical. However, these preliminary results might give some indications 

about the events and show some correlations. More research is needed to 

elucidate the role of recycling endosomes during the lumen growth. 

Endothelial cells in vascular network have confined space, and need to be 

lumenized for functioning. Rab5c vesicles might retrieve the membrane 

material through the leading edge of apical membrane, which does not grow 

fast and Rab11a vesicles might bring the membrane material towards the fast 

growing apical membrane compartment. The system should be in an 

equilibrium within the confined space. However, we need more research to 

validate the statement. For example, simultaneously tagging Rab5c and 

Rab11a with different fluorescent markers and observe them during the 

lumen invagination process could help to understand whether there is an 

exchange between the two endocytotic pathways. 
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In addition, we dissected the subcellular rearrangements during the lumen 

invagination process with different tools, such as the Golgi apparatus tagged 

with mCherry. Particularly, the Golgi apparatus migh help us to visualize the 

interaction between Golgi and endocytotic pathways. We observed that 

vesicle-like structures, originated by GolT-mCherry appear and move in the 

cytoplasm (n=1, not shown). Our preliminary finding suggests that building 

blocks of apical membrane compartments might emerge from the Golgi as 

well, indicating both biosynthesis of trafficking via exocytosis and 

endocytotic trafficking via endocytosis. However, to what extend 

endocytosis and exocytosis contribute to lumen growth is a complex and 

challenging issue to understand. 

 

 

 

For the functional studies, we develop some novel approaches to manipulate 

the localization or degradation of our protein of interest. First, we want to 

identify which Rabs are potentially promising candidates to study further 

based on the localization and dynamic point of view during lumen 

invagination. Additionally, we also investigate the correlation of Rabs with 

other tools (CAAX-mCherry and podocalyxin) from the dynamic 

localization aspects. For the moment, Rab7 is a strong candidate to 

investigate further since it co-localize with vesicle-like structures, originate 

from CAAX-mCherry. Rab7 overexpression might have an influence on the 

size of vesicle-like structures originated from CAAX-mCherry. To find out, 

we analyze Rab7 and CAAX-mCherry expression alone and together.  
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Overexpression analysis might give us some indications to follow up. 

However, to determine the role of specific proteins such as Rabs, we need to 

manipulate the function of a protein of interest specifically. There is a couple 

of ways to study the function of proteins (e.g. Rab7) For example, 

generating endogenously tagged (e.g. HA or Suntag) Rab7 or other Rabs, 

which are potentially involved in the lumen growth process. Endogenous 

tagging in zebrafish is still not easy, but hopefully better approaches will be 

developed in near future. Once we have an endogenously tagged protein of 

interest, we can manipulate it’s cellular localization and change the 

dynamics of the protein of interest by applying nanobody-trap methods, 

darpins or chromobodies. For example, overexpressed Rab5c-tagged GFP 

was mis-localized by the expression of a CAAX tagged Darpin binding GFP 

(Brauchle et al., 2014 and reviewed in Bieli et al., 2016). With these new 

methods, we can possibly dissect the events more specifically and analyze 

the consequences of subcellular disturbances and observe cell behaviors 

during lumen invagination process in order to map the functional activities. 

It is difficult to predict how these methods can solve the functional 

problems. For example, one has to make sure that the Rabs were 

mislocalized but what if there is no effect on vesicle formation because 

vesicles themselves were not catched by the trapping system but only the 

Rab of interest. Nonetheless, one needs to create, test and optimize novel 

tools in zebrafish. As soon as we have better tools, we can fine-tune the tools 

and find out the best way to address questions of interest more specifically.  
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8.2 Guidance of the invaginating lumen; visualizing 

microtubule dynamics and localization during lumen 

invagination process 
 

Another interesting question is that how a growing lumen can be guided 

correctly in one particular direction or keep the proper polarity within a cell. 

It is known that the cytoskeleton plays an important role in cell polarity 

(reviewed in Blasky et al., 2015). In addition, microtubules (MTs) represent 

railroads for vesicle trafficking between growing apical membranes during 

Drosophila tube formation (Caviglia et al., 2016; reviewed in Caviglia and 

Luschnig, 2014). However, there is not much information about the 

dynamics of MTs during lumen growth in vivo. To study MTs dynamics and 

look at a possible role of the cytoskeleton in guiding lumen growth, we used 

an EB3-GFP transgenic line and visualized during lumen invagination 

process.  

MTs might guide lumen growth, regulate polarity and also facilitate 

vesicle/membrane trafficking during the lumen invagination process in 

sprouting angiogenesis. For example, we observe that microtubules (MTs) 

are enriched between the invaginating lumens and move to the side when 

two invaginating lumens come in close contact. In addition, vesicle-like 

structures, originated from CAAX-mCherry, seem to move on MTs during 

lumen growth. MTs might provide a highway for transporting vesicles 

towards the growing lumen in sprouting angiogenesis (Figure 23). For 

further analysis, we need to manipulate MTs with drugs or laser ablation to 

better dissect their role during lumen invagination process in vivo. 
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8.3 The maintenance of the invaginating lumen; visualizing 

actin distribution during lumen invagination process 
 

How a lumen adapts to the dynamic blood flow changes and maintains its 

structure during lumen expansion is not well understood yet. The 

cytoskeleton has a wide range of roles in maintaining cell shape, organizing 

trafficking, and regulating cell division and more. A recent study (Gebala et 

al., 2016) shows that because of the blood flow, spherical deformational 

changes take place at the tip of an expanding lumen. In order to contribute to 

the expansion of the lumen, local and transient recruitment and contraction 

of the actin cytoskeleton might be necessary. However, it is not clear, local 

recruitment and contraction of actomyosin is needed for lumen expansion in 

vascular sprouts rather than keeping the lumen stability. We used a UCHD-

GFP transgenic line (Sauteur et al., 2014), which labels filamentous actin, to 

analyze the distribution of the actin cytoskeleton during lumen growth. Our 

preliminary observations using the UCHD-GFP line shows that due to the 

pressure changes, there is intensive accumulation of actin pulses at the 

growing end/or tip of a lumen. Based on our observations, we assume that 

during lumen invagination, the actin cytoskeleton has a role in keeping the 

lumen intact due to fluctuating blood flow changes. As a role of actin in the 

stability of lumen is also supported by observations in which actomyosin 

contraction is activated in different positions such as at tip or lateral side of a 

lumen when the lumen starts invaginating into an endothelial cell. Because 

of the pressure fluctuation, the invaginating apical membrane can break in 

continuity and create many blebs (Gebala et al., 2016). During this process, 

actin accumulation occurs on the blebbing sides and may regulate lumen 
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maintenance by recovering lumen continuity by pushing these bubbles back 

to the apical membrane (Figure 24). Therefore, it is possible that actin 

polymerization or actomyosin contraction is required to avoid that these 

structures detach from a growing lumen. These results indicate that the actin 

cytoskeleton keeps lumen maintenance rather than contributes to lumen 

growth during lumen invagination. To better understand the function of the 

actin cytoskeleton, we need to manipulate its structure and/or function 

during the lumen invagination process with precise tools and in specific cells 

rather than applying drugs, which have effects on whole body tissues. 

 

 

 

As a summary, we showed that Rab7-labeled late endosomal vesicles co-

localize with CAAX-mCherry vesicle like structures, which is a strong 

candidate for lumen invagination process to follow up. In addition, we need 

to screen other Rabs, which are involved in distinct endosomal pathway 

regulations and identify the potential ones based on their expression 

(dynamics and localization), correlation with lumen growth and co-

localization with other markers such as membrane marker or podocalyxin. 

We also need to image other markers such as photo-convertible membrane 

marker (Dendra transgenic line from Herwig Baier lab). We can photo-

convert a part of cytoplasm or growing lumen and image the color changes 

in time, which can give us additional information about the lumen 

invagination process. Further, we should also generate and screen new tools 

not only directed to proteins but also to lipids, which are highly present in 

membranes (e.g. BoDIPY), to visualize lumen invagination. Since we are 
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advanced in imaging technology to visualize the dynamics of events by 

different tools (e.g. Rabs, lipid markers), we might have preliminary 

indications (e.g. correlation with other markers, CAAX-mCherry, 

podocalyxin) that can be used as a base for follow-up experiments. Next, we 

need to develop novel tools to more functional studies in zebrafish using 

CRISPR/Cas9 that undertake and allows us to edit (e.g. delete or add) a gene 

of interest at the DNA level. At the protein level, we would like to establish 

and use tools to degrade or to mislocalize a protein of interest with applying 

nanobodies or darpins, which was initiated in our lab in Drosophila. 

Similarly, we need to establish a similar system in the zebrafish vasculature 

to manipulate proteins of interest (e.g. endosomal pathway regulators: Rab7-

late, Rab5-early endosomes) and further to visualize the dynamics of cellular 

behavior during vascular development with a high spatio-temporal 

resolution. Further, as a long term goal we aim to visualize these endosomal 

vesicles with applying correlative light and electron microscopy (CLEM) 

technique during lumen invagination process. Revealing cellular 

ultrastructure will allow to improve our understanding about lumen 

invagination process in depth. To map endothelial cell behaviors in each step 

during blood vessel network formation, we need to dissect subcellular events 

with high-resolution images and functional studies and new tools will help 

us to come there soon. 
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9 Appendix 
9.1 Further Publications 
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regulating macrophage responses to cancer 
that could motivate the development of new 
anti-tumour approaches. From a pharma-
cological standpoint, the real challenge lies 
in developing treatments that would target 
the miRNA machinery in tumours in a mac-
rophage-specific fashion. Intratumoral deliv-
ery of miRNA mimics or Dicer antagonists to 
target tumour-associated myeloid cells by nan-
oparticles or similar carriers may provide such 
a strategy15. However, the outcome of this type 

of therapy may be limited by the rapid TAM 
turnover in the tumours and the complexity 
of the immune cell composition and dynamics 
in distinct tumour types. Future studies tak-
ing this into consideration will be necessary to 
devise effective therapeutic strategies.
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Mapping the molecular steps of secretory-lysosome-
driven tracheal tube fusion
Vahap Aydogan, Heinz-Georg Belting and Markus Affolter

During development, tubular networks form through the joining of lumenized branches. Further insights into tracheal tube fusion 
in Drosophila melanogaster now reveal the molecular steps that promote the connection of two apical membrane compartments 
within a single cell through secretory lysosomes.

Biological tubes exist in many forms in organ-
isms from plants to animals, and the architec-
ture of such tubular systems has fascinated 
biologists for centuries. Tubular networks can 
be established through different morphoge-
netic mechanisms1. In many cases, they are 
formed by individual branches that intercon-
nect and fuse in order to establish a continuous 
lumen. At the cellular level, luminal connectiv-
ity can be achieved by cell rearrangements or 
by a cell-hollowing mechanism that involves 
invagination of luminal and apical cell mem-
branes and their intracellular fusion. Until now, 
the exact cellular mechanisms that underlie cell 
hollowing have been unclear. Stefan Luschnig 
and colleagues2 have now identified a molecu-
lar pathway that mediates the intracellular 
fusion of separate luminal compartments 
in vivo, demonstrating that individual steps in 
generating continuous luminal networks are 
controlled by distinct molecular mechanisms. 
Surprisingly, this work revealed that molecules 
best known for their role in calcium-triggered 
exocytosis in vertebrates are involved in this 

membrane fusion event in the fly embryo. 
These studies open up the possibility of inves-
tigating whether similar processes also occur in 
other tubular networks, such as in the develop-
ing vasculature in vertebrates.

Studies on tubular fusion events have been 
pioneered in the Drosophila tracheal system3,4. 
Subsequent work has uncovered a sequence of 
morphogenetic cell behaviours that underlie 
tube fusion5. Following cell fate determination 
and migration, specialized tip cells (so-called 
fusion cells) of adjacent tracheal branches recog-
nize each other and form ring-shaped adherens 
junctions at the contact site. These junctional 
rings encompass an apical membrane domain 
and each fusion cell therefore possesses an apical 
pole on either end. The apical domains are then 
connected by a microtubule-based cytoskel-
etal track, which serves as a transport route for 
Rab11-positive recycling endosomes. These in 
turn contribute to apical membrane growth and 
invagination. However, the precise molecular 
cascade that leads to the completion of this 
process through the connection and fusion of 
the two apical membrane domains to generate 
a continuous lumen has remained unknown.

Luschnig and colleagues shed light into 
this process by isolating a Drosophila mutant 
in which the very last step, the connection of 

the separate apical compartments generated 
in the fusion cells, was defective, despite all 
other steps involved in the formation of an 
interconnected tracheal network proceeding 
in a normal manner. This defect resulted in a 
failure to connect the individual tracheal meta-
meres, causing segmental interruptions in the 
main tracheal tube — a phenotype that led to 
naming this mutant staccato (stac). It emerged 
that the gene defective in the stac mutant fly 
encoded a calcium-binding-motif-containing 
protein similar to mammalian Munc13-4, a 
vesicle priming factor best known for its func-
tion during the maturation and exocytosis of 
lysosome-related organelles (LROs), including 
Weibel–Palade bodies, granules in platelets 
and neutrophils, and lytic granules in lympho-
cytes. Mutations in Munc13-4 are also associ-
ated with a genetic disorder known as familial 
haemophagocytic lymphohistiocytosis type 3, 
a hyperinflammatory syndrome resulting from 
a lack of lytic granule release by cytotoxic cells6.

To address how Stac/Munc13-4 promotes 
the fusion and coalescence of apical membrane 
compartments in the developing tracheal sys-
tem, the authors used a large and diverse tool-
box that included fosmid-based rescue with 
GFP-tagged wild-type and mutant Stac, live 
imaging of vesicle trafficking in wild-type and 
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mutant embryos, screening of a complete library 
of endogenously tagged Rab proteins, and cal-
cium measurements. They discovered that, in 
line with its proposed function, Stac protein 
localized to large vesicles that formed only in 
fusion cells. Stac-positive vesicles moved within 
the cytoskeletal track region of tip cells, which 
connect the growing apical membranes, and 
were found to accumulate at the site of lumen 
fusion (Fig. 1).

Given that organized vesicle trafficking is 
tightly linked to Rab GTPases, the Luschnig 
group joined forces with the group of Suzanne 
Eaton, who had previously established a col-
lection of fly strains, in which 27 Drosophila 
rab genes were tagged at the endogenous locus 
with YFP–Myc7. Using this resource to compare 
the dynamic localization of Stac with respect 
to the complete set of Rab proteins revealed 
that Stac vesicles represent a late-endosomal 
compartment marked by Rab7 and Rab39. 
Expression of dominant-negative versions of 

different Rab proteins and epistasis analyses 
further confirmed that Stac vesicles were derived 
from the maturation of late endosomes into 
LROs, a process that requires Rab39. Labelling 
with lysosomal markers indicated that Stac 
vesicles represented a subset of Lamp1-positive 
lysosomes with mildly acidic content, and 
that these vesicles associated with the central 
track and moved in a dynein/dynactin-motor-
dependent manner.

However, as all tracheal cells express Stac, the 
question remains why such large Stac vesicles, as 
those required for apical membrane fusion, do 
not form in all tracheal cells. The authors showed 
that the fusion-cell-specific small GTPase Arf-
like 3 (Arl3)8,9 was both necessary and sufficient 
for Stac vesicle formation, and acted upstream 
of Rab39 and Stac in tracheal tube fusion. To 
further unravel the molecular function of Stac 
and find an explanation as to why Stac vesi-
cles promote the connection of adjacent apical 
compartments, the authors mined the literature 

based on the homology of Stac to mammalian 
Munc13-4. Interaction of Munc13-4 with the 
t-SNARE Syntaxin has been previously reported, 
either on the plasma membrane or on granules, 
thereby facilitating membrane fusion10,11. In line 
with this, Luschnig and colleagues demonstrated 
that Stac vesicles carry SNARE machinery com-
ponents and contribute to membrane formation 
of the transcellular lumen. The observation that 
Stac contains two calcium-binding C2 domains 
raises the interesting question of whether cal-
cium might be required for Stac function and 
where this calcium might originate. Using 
calcium sensors, the authors showed that sub-
cellular calcium spikes around ER exit sites in 
fusion cells correlated with tracheal lumen for-
mation, suggesting that polarization of the ER 
around the fusion cell apical domains leads to 
localized calcium release. These events create 
a microdomain of elevated calcium levels near 
the membranes, and might trigger the fusion of 
Stac vesicles and the two independently growing 
apical compartments. This last series of experi-
ments closed the loop from the identification 
of Stac to local calcium spikes and membrane 
fusion processes that are dependent on orga-
nelles resembling secretory lysosomes.

Several intriguing questions remain. As 
LROs are found as single vesicles or multivesic-
ular bodies10, it would be interesting to follow 
the Stac-containing vesicles during the fusion 
process using time-resolved electron micros-
copy or correlative light electron microscopy 
analyses. In a recent study using transmission 
electron microscopy, a multimembrane com-
partment was visualized in tracheal terminal 
cells, which generated a highly ramified intracel-
lular lumen12. It might be insightful to examine 
whether a reservoir of multimembrane vesicles 
also contributes to tube fusion in the Drosophila 
trachea or in other branched networks. An 
additional question is what we can learn about 
the development of other tubular organs from 
this work in the fly embryo. Apical membranes 
reportedly also have to connect in a topologi-
cally similar manner during the anastomosis of 
blood vessels in zebrafish embryos13. Whether 
a similar molecular mechanism is involved in 
the intracellular connection of luminal com-
partments of blood vessels can now be tested 
using approaches such as those presented here, 
namely genetic analyses combined with subcel-
lular localization studies. In comparison with the 
apical membrane fusion process described in the 
Drosophila tracheal system, the apical mem-
brane compartment of vascular endothelial cells 

Continuous lumen 

WT (Stac-positive) Stac-negative

Stac, Rab39Stac, Rab39

Ca2+ Ca2+

Anastomosis and lumen fusion

Rab11Rab11

Ca2+ Ca2+

 Rab39 Rab39

Discontinuous lumen 

Figure 1 Lumen formation in the tracheal system of wild-type and staccato mutant Drosophila embryos. 
Top: Fusion cells migrate towards each other, establish contact and form adherens junctions (green) 
at the contact sites. Microtubules and actin bundles guide membrane trafficking, which contributes 
to apical membrane insertion and lumen extension at both ends of the bipolar fusion cells. Bottom: 
Membrane trafficking in fusion cells of the Drosophila tracheal system in the presence (left) and 
absence (right) of Stac. Stac vesicles derived from late endosomes (larger vesicles) are required to fuse 
the two individual apical membrane compartments in fusion cells. In the absence of Stac, the apical 
membrane compartments grow normally but do not connect, leading to a discontinuous lumen and a 
non-functional tubular network.
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seems to be extremely dynamic. During sprout 
lumenization, the apical compartment can break 
and fuse repeatedly14, and the same phenome-
non has been observed during vascular prun-
ing15. It will be interesting to explore whether 
LROs are involved in these dynamic processes.

Luschnig and colleagues demonstrate in an 
impressive manner that studies elucidating 
the formation of tubular networks in inver-
tebrates continue to provide fruitful ground 
for similar work in vertebrates. The refined 
toolbox available to undertake such studies in 
Drosophila will continue the cross-fertilization 

between different model systems. Subsequent 
findings might in turn propose the contribu-
tion of additional or different mechanisms that 
ensure that tube formation is correctly executed 
to meet the needs of the organism.
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p21 shapes cancer evolution
Vasily S. Romanov and K. Lenhard Rudolph

Although known to induce cellular senescence, an important tumour suppressor mechanism, mutation of CDKN1A — the gene 
encoding p21 (also known as WAF1 or CIP1) — is rare in human cancers. Now, a study reports a previously unappreciated 
oncogenic effect of p21 overexpression that shapes cancer genome evolution through induction of replication stress.

Since its discovery more than 20 years ago, our 
view on p21 has changed. Rather than simply 
being a cell cycle inhibitor, senescence inducer 
and tumor suppressor, it is now appreciated as 
a much more complex and broader regulator of 
additional cellular programs such as apoptosis, 
DNA repair, actin cytoskeleton remodelling, 
and cell migration1. Besides the original binding 
partners of p21 — cyclin E/A–CDK2 complexes 
and the DNA polymerase δ cofactor PCNA — 
additional interaction partners were identi-
fied, including transcription factors (E2F1, 
STAT3 and c-Myc), transcription coactivators 
(p300 and CBP), cyclin D–CDK4/6 complexes, 
ASK1 and JNK stress kinases, procaspase-3, 
poly(ADP-ribose) polymerase 1 (PARP1) and 
a regulator of the actomyosin cytoskeleton, the 
kinase ROCK1 (Fig. 1)2. All these protein inter-
actions may mediate the diverse functions of 
p21 in cell physiology. In addition, other as yet 
unknown mechanisms are likely to contribute 
to the regulation of cellular processes by p21.

p21-dependent suppression of cell prolifera-
tion by inhibition of cyclin–kinase complexes, 

PCNA, transcription factors and coactiva-
tors are regarded as mechanisms that impair 
the formation of tumours in response to p53 
activation. However, p21 deletion does not 
abrogate tumour suppression mediated by 
p53-dependent regulation of metabolism and 
antioxidant function3. Instead, p21 contributes 
to leukaemia cancer growth by slowing the 
accumulation of DNA damage in leukaemia 
stem cells and thus maintaining their capacity 
to self-renew4. Moreover, p21-dependent acti-
vation of cyclin D–CDK4/6 complexes, inhibi-
tion of apoptosis and induction of cell motility 
contribute to p21-dependent promotion of 
tumorigenesis, which has been observed in sev-
eral mouse models5. Interestingly, the tumour-
suppressive activities of p21 are associated with 
its nuclear localization, whereas its localization 
in the cytoplasm associates with oncogenic 
effects (Fig.  1)2. Intriguingly, mutations or 
deletions of the CDKN1A gene are very rare 
in human tumours. Instead, the inactivation of 
p21-dependent tumour-suppressive functions 
and activation of its oncogenic features com-
monly occur by its relocation from the nucleus 
to the cytoplasm; overexpression or cytoplasmic 
localization of p21 correlates with poor prog-
nosis in a broad range of tumours6. But a 
completely different oncogenic mechanism of 

nuclear p21 is now presented by Galanos et al.7 
in this issue of Nature Cell Biology. The authors 
demonstrate that a subset of p53-deficient can-
cer cells and tumours exhibit chronic overex-
pression of nuclear p21, which in turn leads to 
deregulation of replication licensing, replication 
stress and genomic instability.

The authors initially observed that p21 
expression correlates with the proliferation 
marker Ki67 in a subset of atypical cancer 
cells and in pre-neoplastic lesions with p53 
aberrations. This led them to set up two cell-
culture-based systems of inducible p21 expres-
sion in a p53-negative background. Although 
p21 induction results in senescence of most 
cells, the authors noticed the emergence of 
p21-positive cells that escaped senescence and 
re-entered the cell cycle. Proteomic and gene 
expression analyses of p21-positive senescence 
‘escapers’ identified transcription-independent 
upregulation of replication licensing factors 
(RLFs) — CDT1, CDC6 and ORC2. Shutting 
down p21 expression conversely led to a ubiq-
uitylation-dependent decrease in Cdt1. p21, 
CDT1 and CDC6 share the same E3 ubiquitin 
ligase, CRL4–CDT2, and, based on the fact 
that p21 has the strongest affinity for PCNA 
binding among all other PCNA-interacting 
proteins8, Galanos et al. tested the hypothesis 
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9.2 List of abbreviations 
4xnr 4x non-repetitive 

4xUAS 4 times non-repetitive UAS 

aa amino acid 

AJ adherens junction 

AMIS apical membrane initiation sites 

CRISPR clustered regularly interspaced short palindromic repeats 

DA dorsal aorta 

ddH2O double deionized water (Quarz-Water) 
DLAV dorsal longitudinal anastomotic vessel 

Dll4 Delta-like-4 

DNA deoxyribonucleic acid 

dpf days post-fertilization 

e.g. example given 

EC endothelial cell 

ECM extracellular matrix 

GEF guanine-nucleotide-exchange factor 

EGFP enhanced green fluorescent protein 
hpf hours post-fertilization 

HyD hybrid detector 

Hz hertz 

ISV intersegmental vessel 

kb kilobase 

Kdrl Kinase insert domain receptor-like 

MDCK Madin-Darby canine kidney (cells) 
min minute 
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mRNA messenger RNA 

NA Numerical aperture 

o/n overnight 

OD 0.6/0.8 Optical density at 600/800nm wavelength 

PCR Polymerase Chain Reaction 

PCV posterior cardinal vein 

PFA paraformaldehyde 

PTU 1-Phenyl-2-thiourea 

RNA Ribonucleic acid 

rpm rounds per minute 

RT room temperature 

SA segmental artery 

sec second 

SIV subintestinal vessels 

SV segmental vein 

SV40 Simian virus 40 

sVEGFR1 soluble Vascular endothelial growth factor receptor 1 

Temp. temperature 

TJ tight junction 

UAS upstream activation sequence 

UCHD Utrophin calponin homology domain 

VE-cad Vascular endothelial cadherin (Cdh5) 

VEGFA Vascular endothelial growth factor A 

VEGFR Vascular endothelial growth factor receptor tyrosine kinase 

wt wild-type 

Zo-1 Zonula occludens 1 
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9.3 Movie Legends 

Movie caption S1a and S1b 

Time-lapse movie showing the lumen invagination process from the SA to 

DLAV of a 30-50 hpf Tg(fliep:GFF)ubs3,(UAS:RFP), (UAS:EGFP-ZO-1)ubs5 

transgenic embryos, imaged at 30 seconds intervals by spinning disk 

confocal microscopy. The cell is undergoing apical membrane invagination; 

lumen invaginates from one cell to the neighboring cell and junctional ring 

form at the interface, followed by the invagination of the lumen into the 

neighboring cell. 

(S1a movie= EGFP-ZO1 + RFP; S1b movie= EGFP-ZO1, gray). 

 

Movie caption S2  

Time-lapse movie showing the lumen invagination process from the SA of a 

30-50 hpf Tg(fliep:GFF)ubs3, (UAS:mRFP), (UAS:VE-cadherinΔC-

EGFP)ubs12, imaged at 8 minutes intervals by confocal microscopy. The cell 

is undergoing lumen invagination; lumen invaginates in a single cell from 

down to up. Later, upper lumen starts invaginating towards down from 

neighboring cell. Because of the blood flow pressure, lumen invagination 

from down to up is faster. Eventually, lumen is opening in whole vessel. 

 

Movie caption S3 

Time-lapse movie showing the lumen invagination process from the SA of a 

30-50 hpf Tg(BAC:kdrl:CAAX-mCherry) transgenic embryos, imaged at 30 

seconds intervals by spinning disk confocal microscopy. Vesicle-like 

structures appear and come close to invaginating lumen. The invaginating 
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lumen is broken into two pieces because of the blood flow fluctuations. 

Lumen, which disintegrated from the down part of lumen collapses and 

eventually the lumen from down, starts invaginating again. 

 

Movie caption S4a and S4b 

Time-lapse movie showing the lumen invagination process from the SA of a 

30-50 hpf Tg(BAC:kdrl:CAAX-mCherry) and Tg(kdrl:H2B-GFP)mu122 

transgenic embryos, imaged at 30 seconds intervals by spinning disk 

confocal microscopy. Vesicle-like structures appear and move in the 

cytoplasm and eventually some dissolve on the invaginating lumen on the 

lateral and front part of the apical membrane. 

(S4a movie= CAAX-mCherry + H2B-GFP; S4b= CAAX-mCherry, gray).  

 

Movie caption S5 
Time-lapse movie showing the lumen invagination process from DLAV of a 

30-50 hpf Tg(fli1ep:EGFP:rab5c) injected construct in 

Tg(BAC:kdrl:CAAX-mCherry)  transgenic embryos, transient expression 

imaged at 10 seconds intervals by spinning disk confocal microscopy. The 

lumen invaginates and Rab5c-early endosome vesicles are confined at the tip 

of the lumen. 

 

Movie caption S6 

Time-lapse movie showing the lumen invagination process from SA of a 30-

50 hpf Tg(fli1ep:EGFP:rab7) injected construct in Tg(BAC:kdrl:CAAX-

mCherry) transgenic embryos, transient expression imaged at 10 seconds 

intervals by spinning disk confocal microscopy. The lumen invaginates and 
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Rab7-late endosome vesicles are co-localized with vesicle-like structures, 

originated from CAAX-mCherry. 

 

Movie caption S7 

Time-lapse movie showing the lumen invagination process from DLAV of a 

30-50 hpf Tg(fli1ep:GAL4FF)UBS3; (UAS:mRFP); Tg(UAS:EGFP-

UCHD)UBS18 transgenic embryos, transient expression imaged at 10 

seconds intervals by spinning disk confocal microscopy. The lumen 

invaginates and Rab11a-late endosome vesicles are localized randomly 

within the cell, mostly close to invaginating lumen. 

 

Movie caption S8a and S8b 

Time-lapse movie showing the lumen invagination process from SA of a 30-

50 hpf Tg(fli1ep:EGFP:EB3) and Tg(BAC:kdrl:CAAX-mCherry) transgenic 

embryos, imaged at 30 seconds intervals. Microtubules are positioned in 

between the growing lumens. The lumen is collapsed at the upper part and 

generates many vesicle-like structures, which seems to move along the 

microtubules. When lumen invagination continuous towards DLAV, 

microtubules move to the side. 

(Movie S8b is the continuation of movie S8a with the same markers). 
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Movie caption S9 

Time-lapse movie showing the lumen invagination process from SA of a 30-

50 hpf Tg(fli1ep:GAL4FF)UBS3; (UAS:mRFP); Tg(UAS:EGFP-UCHD)UBS18 

transgenic embryos, imaged at 30 seconds intervals by spinning disk 

confocal microscopy. Because of blood pressure fluctuation, the lumen 

structure is not smooth on the edge and form blebs from apical to cytoplasm 

and vice versa. 

 

Movie caption S10 

Time-lapse movie showing the lumen invagination process from SA of a 30-

50 hpf (kdrl:GolT-mCerry) and nucleus (kdrl:nls-GFP) transgenic embryos, 

imaged at 30 seconds intervals by spinning disk confocal microscopy. 

During the lumen invagination from SA to DLAV, Golgi apparatus is 

positioned at the tip of the invaginating lumen. Eventually, apical membrane 

invagination pushes the nucleus on the side and Golgi stays at the behind of 

nucleus. 
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