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Abstract 
 

Amorphous solid dispersions (SDs) are considered as one of the most effective strategies for the 

formulation of poorly water-soluble compounds. The active compound is dispersed in an inert 

carrier composed of a polymer and active excipients. Since the drug is amorphous, there is 

typically an increase in apparent solubility as well as dissolution rate. Various methods are 

employed for manufacturing of SDs, nevertheless, hot-melt extrusion (HME) has become one of 

the most common process techniques. Indeed, as a solvent-free, one-step continuous process 

allowing the production of a wide variety of solid dosage forms, HME has emerged as an 

attractive method. Among the excipients that can be used for SD development, lipid-based 

excipients are particularly interesting for the formulation of lipophilic compounds. They act as 

drug solubilizers and stabilizers by improving the chemical and physical stability of drugs. 

Among poorly water-soluble compounds those exhibiting both high crystallinity and lipophilicity 

are particularly challenging and require specific formulation considerations. A simple polymeric 

system might not be sufficient to obtain amorphous SDs. This can lead to sophisticated systems 

in structure and composition, which are hence rather complex to characterize by means of 

conventional analysis methods.  

The present thesis consists of four studies that aim at developing novel lipid-based formulations 

for crystalline lipophilic compounds by means of HME and that introduce new characterization 

methods. For this purpose, β-carotene (BC) was selected as a high melting point, poorly water-

soluble model compound.   

 
The objective of the first study was to compare the ability of state-of-the-art methods to detect the 

presence of low-dose crystalline compounds in lipid matrices. Sensitivity issues were 

encountered using conventional methods, therefore a new analytical tool was introduced. The 

novel flow-through cross-polarized imaging combined the advantages of analyzing large sample 

sizes and the high sensitivity of a microscopic technique. Small amounts of crystalline materials 

could easily be detected and an upper limit of the kinetic solubility of the model compound could 

be estimated. 
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The second study aimed at designing lipid microdomains for drug delivery systems produced by 

HME. A polymer, a solid fatty acid and an inorganic adsorbent were combined. The acidic lipid 

was meant to adsorb onto the inorganic carrier to create so called designed lipid microdomains 

(DLMs) to host an active compound. The employed analytical methods supported the assumption 

of specific molecular interactions between the fatty acid and the adsorbent. These interactions 

fostered the amorphization and stabilization of the acidic lipid and lead to the targeted DLM. The 

novel delivery system appeared to be promising for inclusion of a crystalline lipophilic 

compound.    

 

In the third study, hot-melt extrudates composed of a polymer, a liquid lipid and different kinds 

of silica-based adsorbents were produced. Such formulations exhibited a complex microstructure. 

Since the microstructure can influence the final dosage form quality attributes, the aim was to 

introduce a mathematical tool for structural analysis of extrudates. This work introduced the 

multifractal formalism in the field of pharmaceutics and showed that the adsorbent concentration, 

the type of adsorbent as well as the screw speed had an influence on the microstructure. This 

study was complemented by self-dispersion analysis since it can condition release of any active 

compound. We showed that the self-dispersion ability of extrudates can be modified by the 

lipophilic or hydrophilic nature of the adsorbent. The multifractal and self-dispersion studies 

appeared to be complementary to better understand complex formulations and future work should 

evaluate specific effects on drug formulation microstructure.   

 

Finally, in the fourth study a polymer, a liquid lipid and two types of adsorbents were employed 

as excipients for HME. Using these ingredients, amorphous SDs of BC were produced. The 

influence of the adsorbent type as well as the presence of amorphous substance on the 

microstructure was assessed by multifractal analysis. This structural analysis was complemented 

by mechanical analysis of extrudates. Our results suggested that the type of adsorbent and the 

presence of amorphous compound had an impact on the extrudate microstructure and thus on the 

mechanical performance. These findings evidenced the complementarity of the two methods, 

which could further be used in the development of dosage forms that require knowledge on 

mechanical properties.      
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This thesis introduced new lipid-based delivery systems for poorly-water soluble compounds. 

Novel excipient combinations, involving polymer matrices, lipid-based excipients and inorganic 

adsorbents, have been suggested for HME and state-of-the-art characterization methods were 

complemented by new analytical tools to better understand complex formulations. A flow-

through cross polarized imaging technique allowed overcoming sensitivity issues encountered 

otherwise with conventional methods. Moreover, multifractal formalism complemented by self-

dispersion imaging provided key insights into pharmaceutical dosage form microstructure that is 

hardly accessible using conventional methods. These new approaches for HME bear much 

potential in pharmaceutical technology to tailor dosage form performance.  
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Chapter 1. Introduction and objectives 

 

Introduction 1)
 

  Background 1.1.
 

Currently, 50-60% of the new active pharmaceutical ingredients (API) exhibit poor aqueous 

solubility. Therefore, the formulation of such new chemical entities (NCEs) is a substantial 

challenge for the pharmaceutical industry. Most of these compounds belong to class II according 

to the Biopharmaceutical Classification System (BCS) introduced by Amidon et al. [1,2]. Class II 

compounds are characterized by a low aqueous solubility and high effective permeability. The 

main challenge for delivery of class II substances is to achieve sufficiently high solubility in line 

with the requirements of the dosage form. Among all routes of administration, oral drug delivery 

is the preferred and easiest way since it is better accepted by the patients and can be produced in a 

wide variety of dosage forms [3]. Different approaches have been developed to formulate oral 

dosage forms of poorly water-soluble APIs, such as complexation, microemulsions, 

nanoemulsions, micellization, salt formation or solid dispersions (SDs) [4]. Over the last decades, 

SD which involves the dispersion of a poorly water-soluble compound in a hydrophilic or 

amphiphilic carrier, appeared as the most successful and promising strategy [1,5,6]. SDs are of 

high interest for the formulation of high melting point lipophilic compounds that are particularly 

challenging and require special excipient combinations.  

 

Several types of SDs have been developed over the last decades that are not all equal regarding 

the physical state of the API in the matrix. The most common and attractive systems are the 

amorphous solid suspension or solution, where the active compound is in an amorphous form or 

molecularly dispersed, respectively [4,7]. The amorphous state or the molecular dispersion of an 

API indeed show typically higher oral bioavailability compared to the crystalline form because of 
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higher free energy and better thermodynamic activity [8]. Amorphous SDs can be produced by 

using various manufacturing methods such as solvent evaporation, spray-drying, melting, or hot-

melt extrusion (HME).  

 

As a solvent-free, one-step continuous process, HME offers an attractive alternative to other 

pharmaceutical techniques, therefore a growing interest in this method has been shown in the last 

10-15 years [9–11]. During the HME process a material melts or softens under elevated 

temperature/pressure and is forced through an orifice (i.e. die) by rotating screws [12]. A variety 

of downstream processes exist that can be even combined, allowing the design of a wide range of 

dosage forms (e.g. pellets, tablets, granules). The intense mixing imposed by the screws results 

typically in a uniform dispersion of excipients and active ingredients. The release rate and 

formulation stability can be tailored according to the choice of polymeric matrix and additives 

[7]. The major excipient used in HME is a polymeric carrier. In some cases, the selection of the 

adequate polymer can be challenging and it requires knowledge on the physico-chemical 

properties. Polymers used in HME should have a thermoplastic behavior, which means that they 

should soften without decomposing at the processing temperature and solidify while exiting the 

die. One drawback of the HME process is the rather low number of available polymers that are 

approved for pharmaceutical use and exhibit sufficient thermal stability [12,13].  

 

The selection of appropriate polymer and functional excipients (e.g. plasticizer, antioxidant, pore 

formers) is of high importance in the development of amorphous SDs [14]. Thermal stability is a 

first prerequisite, however, other parameters should also be considered to ensure drug/excipients 

miscibility and thermodynamic stability of the final dosage form. Physico-chemical properties, 

such as solubility parameters, glass transition temperature, melting temperature, hygroscopicity, 

hydrogen-bonding donor or accepting groups, and mechanical properties are all key parameters 

that contribute to the achievement of the desired improvement in solubility, bioavailability and 

stability [15]. Numerous methodologies are available to characterize material properties in pre- 

and post-processing steps. The most commonly used methods are differential scanning 

calorimetry (DSC), thermogravimetric analysis (TGA), microscopic techniques, X-ray powder 

diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and 

dissolution tests.  
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In the case of highly crystalline and lipophilic APIs, already an initial assessment for the 

selection of suitable excipients can show clear limitations. As already mentioned, such 

compounds are particularly challenging and often require special formulation consideration. 

Thus, simple polymer systems might often not be suitable for the production of amorphous SDs 

[16,17] (c.f. sections 4, 6 and [18]). The use of lipid-based excipients can be a key for the 

formulation and stabilization of lipophilic compounds. It will be shown that the combination of 

lipid-based excipients with inorganic carriers enabled amorphous SDs of a low-dose crystalline 

lipophilic model compound, β-carotene (BC) [16] (c.f. sections 4, 6 and [18]).  

 

Such multi-component formulations often exhibit a complex microstructure, which likely affect 

the final dosage form performance such as processability during downstream processing, 

mechanical properties, or dissolution behavior. Therefore a better characterization of this 

microstructure is crucial for a better understanding and tailoring of SDs quality attributes.  

 

 

 Objectives 1.2.
 

The aims of this thesis address the aforementioned challenges to formulate a lipophilic as well as 

crystalline model compound with lipid-based amorphous SDs produced by HME. The 

formulation of such substances should overcome high crystal energy as well as limited water 

solvation. The use of conventional HME polymer systems is not sufficient to convert crystalline 

lipophilic compounds in an amorphous form and solid lipid excipients alone are not adapted for a 

melt extrusion process. Therefore, new kinds of formulations that involve specific excipient 

combinations are developed and new analytical tools are introduced. These formulations aim at 

taking advantage of polymer systems, lipid-based excipients and inorganic adsorbents to obtain 

amorphous SDs by HME. This thesis is subdivided into individual chapters, which study the 

formulation of lipid-based SDs and propose characterization tools for complex formulations. 

 

The theoretical section presented in the second chapter aims at providing background information 

on the formulation of SDs and commonly used characterization methods.  

A first objective of this PhD thesis is to compare sensitivity limits of commonly used methods to 

detect the presence of a low-dose crystalline compound in a lipid matrix. Based on the sensitivity 
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issues encountered with state-of-the-art methods, a new tool was introduced, which allowed 

detecting small amounts of crystalline substances. 

Lipid-based excipients are particularly attractive for the formulation of lipophilic compounds. 

However, high amounts of lipid-based excipients cannot be used for the HME process due to 

their low melt viscosity. Therefore, a second aim was to develop new kinds of SDs by HME. The 

new approach is based on the combination of a polymer, a solid lipid, and a silica-based 

adsorbent. The target is to adsorb the lipid onto the inorganic carrier to design lipid 

microdomains that could further accommodate a poorly-water soluble compound.   

The formulation of crystalline lipophilic compounds implies multiple excipient combinations. 

The third objective of this study is to introduce multifractal analysis to characterize complex hot-

melt extrudates composed of a polymer, a liquid lipid and different types of inorganic silica-

based adsorbents. The purpose is to study the influence of the concentration and the type of 

inorganic carrier as well as the screw speed on the formulation microstructure. This is 

complemented by the investigation of self-dispersion ability of extrudate pellets by optical 

imaging. 

The final aim is to employ multifractal analysis to assess the influence of the adsorbent 

manufacturing process and the presence of an amorphous substance on the microstructure. Since 

changes in the microstructure can have an impact on final dosage form mechanical performances, 

mechanical properties of extrudates are also investigated.  

 
 
 
 
 
 



 

 

 

Chapter 2. Theoretical section  

 

 Theoretical section 2)
 

 Solid dispersions 2.1.
 

Since the 1960’s, solid dispersions (SDs) have become the most commonly used formulation 

technology to improve the solubility and bioavailability of highly crystalline and lipophilic drugs 

[13]. Their formulation involves an increase in surface area, the optimization of their wetting 

properties or the improvement of their apparent solubility. SD allows overcoming some 

limitations encountered with conventional solubilization techniques used for solubility 

enhancement, such as salt formation, co-solvent solubilization or particle size reduction. Salt 

formation cannot be applied to neutral compounds, solubilization leads primarily to liquid dosage 

forms, and finally very small particles obtained by particle size reduction can exhibit low 

mechanical properties and can therefore be difficult to handle. Further aspects of different 

formulation approaches for poorly-water soluble drugs can be inferred elsewhere [19]. According 

to Chiou and Riegelman [20] a SD is defined by a “dispersion of one or more active ingredients 

in an inert carrier at the solid state, prepared by the melting, solvent or melting solvent method”. 

Most of SD formulations contain organic excipients, with the principal component being a 

polymeric matrix. However, SD that contain inorganic additives have also been developed in 

recent years [21].  
 

 Solid dispersions containing organic excipients 2.1.1.
 

 Classification  2.1.1.1.
 

Over the last decades four generations of SDs containing organic excipients were developed 

[4,6,22–24]. The first generation was initiated by Sekiguchi and Obi in 1961 [25]. Two types of 
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SDs were obtained by using crystalline carriers such as urea or mannitol, i.e. (i) eutectic mixtures, 

where both the drug and the carrier were in a crystalline state, and (ii) monotectic mixtures (or 

solid solutions), where the drug was in an amorphous form. Such first generation formulations 

with crystalline drug were suffering from little dissolution enhancement, while amorphous 

formulation in non-polymeric matrix were problematic from the perspective of physical stability. 

To overcome such issues, the second generation SD emerged in the 1970’s for which crystalline 

matrices were replaced by natural or synthetic amorphous polymeric carriers. This generation 

includes three types of SDs depending on the physical state of the API in the matrix. The 

dispersion of the drug in an amorphous state corresponds to a glassy suspension, if the drug 

remains in the form of fine crystalline particles after the formulation process, a crystalline 

suspension is obtained and finally, a glassy solution corresponds to the molecular dispersion of 

the API in the matrix. Fig. 2.1 illustrates the three different types of amorphous SDs. In this 

generation of SDs, drug release in aqueous media is often limited by issues of poor dispersibility 

or short duration of drug supersaturation [4].  
 

 

 
 

Fig. 2.1. Illustration of the different types of amorphous solid dispersions 
 

 

This led to the development of the third generation of SD, which contains surface active agents or 

lipid-based excipients in combination with polymers to achieve improved drug precipitation 

inhibition upon aqueous dispersion, which is likely to result in enhanced oral absorption. Finally, 

a fourth SD generation was proposed to combine amorphous drug formulation technique with 

uses of insoluble or swellable polymers to control the release of drugs having short biological 

half-life [4]. Table 2.1 summarizes the properties of the four generation SDs.  
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Table 2.1. Classification and properties of solid dispersions [4,6,22,23,26] 
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 Advantages and limitations  2.1.1.2.
 

As already mentioned SD formulation is a way to formulate poorly water-soluble drugs in the 

form of solid dosage, which is the most preferred way of administration. General advantages of 

SDs compared to other formulation strategies can be highlighted [1,23]: 

- For drug particle size reduction 

- For drug wettability and porosity enhancement  

- For the conversion of a crystalline drug into its amorphous state  

- For homogeneous formulation preparation  

- For stabilization of some chemically unstable drugs 

- For apparent water solubility and drug absorption enhancement 

- For taste masking 

- For rapid disintegration oral tablet preparation 

- For controlled release 
 

Despite these numerous advantages, the commercialization of SD systems has been limited by 

some drawbacks [23,27]: 

- Expensive and laborious methods of preparation 

- Scale-up limitation of some manufacturing processes (other than HME) 

- Physico-chemical stability of the drug and matrix 

- Difficult incorporation of SD into solid dosage forms 

- Limited drug:carrier ratio 

- Solvent residue in a solvent method 
 

However suitable carrier selection can overcome these limitations. Required properties for 

carriers are [1,5]:  

- High water solubility for wettability and dissolution enhancement 

- High glass transition temperature for stability enhancement 

- Minimal water sorption 

- Low melting point, thermostability and thermoplasticity for melting process  

- Solubility in common solvents for a solvent process 

- Solid solution formation with a drug (i.e. similar solubility parameter; cf. section 2.2.4) 

- Inert and recognized as safe 
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  Manufacturing processes  2.1.1.3.

 

Different methods are used to produce SDs. Table 2.2 illustrates commonly used technologies in 

amorphous SD formulation. The goal is to mix a carrier with a drug to obtain a glassy suspension 

and preferably a glassy solution. The main challenge is to prevent phase separation due to 

recrystallization or formation of amorphous drug clusters. It can be prevented by targeting low 

molecular mobility of the components at the storage temperature and amorphous phase separation 

should be circumvented using an elevated process temperature for a sufficient time during 

preparation [1].  

 

 

Table 2.2. Processing technologies used in amorphous solid dispersion manufacturing [28,29] 
 

Solvent methods Fusion methods 

Spray drying 

Cryogenic 

Supercritical fluid 

Fluid bed granulation  

Solvent-controlled precipitation  

(e.g. microprecipitated bulk powder) 

Electrospinning 

Adsorption on mesoporous carrier 

Melt granulation 

Hot-melt extrusion 

Milling 

Ultrasonic assisted compaction 

Kinetisol 

 

In the solvent evaporation method, the drug and carrier are dissolved in an organic solvent [1,5]. 

The SD is then obtained by evaporation of the organic solvent, which requires low temperatures. 

Therefore, this technique is particularly interesting for drugs or carriers that are decomposing at 

high temperatures. However, since drug candidates used for SD formulations are generally 

hydrophobic and carriers are mostly hydrophilic, it can be difficult to select a suitable solvent that 

can solubilize both components. Moreover, large amounts of solvent are often required to achieve 

complete drug/excipient dissolution and a second drying step (e.g. vacuum, spray drying or 

lyophilization) is imperative to minimize residual solvent below acceptance levels [30].    

A second technique for SD preparation is the supercritical fluid method (SCF) [1,24]. A fluid is 

in a supercritical state when its temperature and pressure are above its critical temperature and 
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pressure point. At this point, the liquid and vapor phases are in equilibrium and above this point 

the liquid and the gas have the same density and form a single phase. SCFs have the solvent 

properties of liquids but behave in many other respects like gases. Carbon dioxide is commonly 

used as SCF. It is able to solvate polymers and infuses small drug molecules into their swollen 

network for controlled release application. This method has the advantage to be fast and to give 

rise to high purity products and high yield due to ease of solvent removal. Moreover no aqueous 

solvent is needed, which prevents hydrolytic degradation of drugs [8,17].  

Apart from the solvent-based methods, there is the possibility to produce SDs by means of 

different melting (or fusion) technologies (Table 2.2). These methods are used to the same extent 

as spray drying in SDs that are on the market [31]. The conventional laboratory-scale melting 

method is based on simple heating of the excipients and drug above their melting point or glass 

transition temperature before solidification in an ice-bath under vigorous stirring [1,5,24]. A first 

prerequisite for the use of this method is the drug-carrier miscibility in the molten state and their 

thermostability [18]. There is also a variant of the fusion method that makes of microwaves, 

mechanical or ultrasound energy [28,32]. While these different fusion methods are easy to apply 

at a laboratory scale, they are not equally suited for scale-up. Therefore, melt granulation and 

HME have become methods of choice as they are both scalable and can run in case of HME in a 

continuous operation mode. This process technology is on focus of the present thesis and further 

details can be inferred from section 2.2. 

 

 

  Solid dispersions containing inorganic carriers 2.1.2.
 

Recently, another type of excipients (other than lipid or polymer) has been included in the list of 

materials that may improve formulation of poorly water-soluble compounds. Porous excipients or 

adsorbents having high pore volume and large surface area are particularly appealing as 

amorphous drug stabilizer and carrier. Large surface area materials have a high surface free 

energy. Upon adsorption of drug molecules, the system transfers to a lower free energy state and 

hence the drug is typically converted to a stable amorphous state. The drug physical stability 

results from the combination of decreased free energy and spatial constraints imposed by the 

pores. Indeed, the small pore size does not allow incorporation of enough drug molecules that 

could reach a critical nucleation size. Many studies reported that the use of porous materials 
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could improve poorly-water soluble substances dissolution. Indeed, the nano-confinement of drug 

molecules onto their surface and pores often leads to enhanced dissolution [21,33–35]. Most of 

the porous excipients used for the dissolution enhancement are silica-based materials. However, 

aluminum, titanium or carbon-based porous materials have also been developed for drug delivery 

[36]. Table 2.3 lists some ordered and non-ordered porous excipients that are used for the 

formulation of poorly water-soluble compounds. Porous media can be classified according to 

their average pore diameter. Microporous materials have pores smaller than 2 nm, mesoporous 

adsorbents have pore sizes between 2-50 nm and macroporous media display pores greater than 

50 nm. The performance of formulations comprising such porous carriers is highly dependent on 

the inorganic material properties and the impact of pore volume/size/connectivity, which has 

been reviewed excellently [21,36,37]. Several methods have been introduced in the literature to 

incorporate porous drug carrier systems, such as organic solvent immersion, incipient wetness 

impregnation, or melt method [21,36,37]. Whereas, conventional methods for the preparation of 

adsorbed products are a batch process, Kinoshita et al. showed that HME can be used as an 

alternative continuous process for a melt-adsorbed product preparation [38]. The authors could 

successfully adsorb TAS 301 onto porous calcium silicate (Florite R) by batch melting method 

and also by a continuous method (HME). They observed similar improved dissolution rate and 

bioavailability of the drug in both amorphous melt-adsorbed products.  

 

 

Table 2.3. List of inorganic excipients commonly used in pharmaceutical formulation 

 

Adsorbent trade name 
(supplier) 

Composition 
Average 
particle size 
(µm) 

Specific 
surface area 
(m2/g) 

Average pore 
diameter (nm) 

Neusilin® US2 
(Fuji Chemical Industry 
Co., LTD)[39,40] 

Disordered aluminum 
magnesium silicate 

44–177 300 15 

Sylysia® 350 
(Fuji Chemical Industry 
Co., LTD) [40,41] 

Disordered mesoporous 
silica 3.9 350 21 

Florite® R (Tomita 
Pharmaceutical) [40,42] 

Disordered porous 
calcium silicate 

29 100 150 
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Adsorbent trade name 
(supplier) Composition 

Average 
particle size 
(µm) 

Specific 
surface area 
(m2/g) 

Average pore 
diameter (nm) 

Aeroperl® 300 Pharma 
(Evonik Industries) 
[43,44] 

Disordered meso- and 
macroporous silica 33 300 30 

Syloid® 244 FP 
(Grace) 
[40,45] 

Disordered mesoporous 
silica 3.5 300 2.5-.5 

Syloid® XDP 3050 
(Grace) 
[45,46] 

Disordered mesoporous 
silica 50 320 21 

Upsalite 
[47] 

Disordered mesoporous 
calcium carbonate - 400-800 3-20 

Parteck SLC (Merck) 
[48] 

Disordered mesoporous 
silica 5–25 500 2–7 

Sipernat® 50 
(Evonik Industries) 
[49] 

Disordered porous silica 40 500 - 

NLAB SilicaTM 
(Nanologica) 
[50] 

Disordered mesoporous 
silica 

0.3–50 up to 1300 2–50 

MCM-41 
[51] 

Ordered mesoporous 
silica - 800-1000 1.5–10 

SBA-15 
[52] 

Ordered mesoporous 
silica - 400-900 1–15 

 

 

 Hot-melt extrusion 2.2.
 

HME has been primarily used in the plastic and the food industries since the 1930’s. HME 

process consists in pumping raw materials with rotating screws under elevated temperature 

through a die to obtain a new material (the extrudate) having a desired shape [9]. Today, half of 

the plastic materials are produced by HME. It is used to give special shapes to tubes, pipes, 

plastic bags, etc. Cereals and pet food can also be produced by HME. It is an interesting way to 

mix the ingredients, to give special texture or to add nutritional ingredients like vitamins. Since 

the 1980’s, there is a growing interest in using HME in the pharmaceutical field [53]. As 
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illustrated in Fig. 2.2, the number of issued patents and publications on HME in the 

pharmaceutical area has considerably increased the past two decades. Research and 

manufacturing propelled HME as an alternative method for bioavailability enhancement of 

poorly water-soluble drugs by producing SDs. During HME process of pharmaceutical 

excipients, the active compound is embedded in a carrier, usually composed at least of one 

thermoplastic polymer. Intense agitation and mixing caused by the rotating screws implies the de-

aggregation of the suspended particles in the molten polymer and thus results in a uniform 

dispersion or a solid solution. HME is therefore an attractive alternative to traditional methods 

(e.g. spray drying, solvent method) to prepare pharmaceutical drug delivery systems such as 

granules, pellets or sustained release tablets [53,54]. 

 

 

 
 

Fig. 2.2. Number of publications since 1980 to current on the topic of hot-melt extrusion  
(Source: Scopus, Search words: Hot-melt extrusion + Pharmaceuticals ). 

 
 

  Equipment and process 2.2.1.
 

The basic components of an extruder are: the hopper, barrel, control panel, torque sensors, 

heating/cooling system, and a die [53,55]. The hopper allows powder feed. The barrel, which 

contains the screws, can be segmented into individual heating zones and eventually comprises 

additional feed ports for heat sensitive or liquid materials. The screws, which represent the 

principal part of the extruder, can exhibit versatile configurations depending on the desired shear 

and mixing. Two types of screws are available: single- and twin-screws. The single-screw 
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extruder is commonly used in the plastic industry, while the twin-screw extruder is used in the 

pharmaceutical industry for its high mixing capability. Single-screw extruders have higher 

mechanical simplicity and a more reasonable investment cost compared to twin-screw extruder. 

However, twin-screw extruders have easier material feeding, higher kneading and dispersing 

capacities, less tendency to over-heat and shorter residence times (5 s to 10 min). Twin-screws 

can either rotate in the same (co-rotating) or opposite (counter-rotating) direction. Counter-

rotating screws are used when high shear forces are needed since the molten material is squeezed 

between the screws when they come together. However, counter-rotating screws have some 

disadvantages such as air entrapment, high pressure generation, low maximum screw speed and 

low output. Co-rotating extruders are the most commonly used in the industry since high output 

and good mixing can be achieved thanks to high screw speed. The temperature of the barrel is 

controlled by electrical heating bands and monitored by thermocouples. Finally, a die is mounted 

at the end of the barrel and defines the physical shape of the extrudate. Additionally, downstream 

equipment can be attached to the die for the collection and shaping of extrudates (e.g. 

pelletization, granulation, tableting, film forming, calendaring, injection molding) [54,56]. The 

major difference between a plastic extruder and a pharmaceutical-class extruder is that metal 

parts in contact with the product must meet regulatory requirements, i.e. they must not be 

reactive, or absorptive with the product. Most screws are made from surface coated stainless steel 

with reduced friction. The equipment is configured for the cleaning and validation requirements 

associated with a pharmaceutical environment [57]. Fig. 2.3 shows a twin-screw extruder and 

different downstream processes, which can be combined with the extrusion process. 

 

 

 
 

Fig. 2.3. Scheme of a twin-screw extruder and downstream processes. Adapted from [58,59] 
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The use of laboratory scale extruders (Fig. 2.4) for research and development of new materials 

can suffer from the costs of these materials since large sample sizes are needed. Therefore, 

scaled-down systems that use grams as opposed to kilograms can be a key for fast and low cost 

formulation screening. Such microscale compounder (or microcompounder) typically need small 

quantities from about 5 g of raw materials [60] and a conical design is the most commonly 

commercialized type. The operator can control the residence time thanks to a “backflow” channel 

(or recirculation channel) that can be opened or closed by a bypass valve. Fig. 2.5 illustrates an 

example of a microcompounder and the barrel design.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Example of a Thermo Fisher laboratory scale twin-screw extruder  
 
 

 

      
 
 

 

 

 

 
 

Fig. 2.5. Example of a Thermo Fisher microcompounder (left) and barrel design (right) 
 

Barrel 

Gravimetric feeder 

Conveyor belt 

Die 

Conical, co-rotating twin-screw 

Recirculation channel 

Bypass valve 
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HME is a unit operation that can be subdivided into a series of subprocesses [57]. Fig. 2.6 

illustrates the different consecutive barrel subsections. The first step of the HME process is the 

gravimetric or volumetric material feeding trough a hopper. Heat sensitive or liquid materials can 

be added through additional feed ports along the side of the barrel. The feedstock reaches the 

conveying section in the barrel where conveying elements move the material to the die direction. 

Conveying efficiency can be tailored by adapting the geometry of the conveying elements. The 

material reaches then the melting section where softening and melting occurs by conductive 

thermal energy and mechanical energy input via the preheated barrel and the screws, respectively. 

Screw design can directly influence the residence time and the maximum shear stress. Screws 

that comprise only conveying elements would move the material towards the die direction via 

drag flow with minimal mixing. Therefore, kneading elements are essential for comparatively 

larger equipment to ensure sufficient mixing that can be a molecular dispersion of the miscible 

components. The use of plasticizers can also help to make this step easier by decreasing the 

melting point or the glass transition temperature of the polymer. Prior to extrusion of the material 

through the die, venting is applied to the melt. This step is essential to remove residual moisture 

or gas that might have been entrapped during intense mixing and melting.  

Finally, build-up pressure pushes the molten extrudate through the die, which defines the product 

shape (e.g. film, annular, circular). A conveyor belt is often employed for the cooling of the 

extrudate. As already mentioned, downstream processes can be used (e.g. injection molding, 

spheronization, tableting) [59]. 

 

 
 

Fig. 2.6. Example of screw configuration showing the different subsections of twin-screw 
extrusion process. Adapted from [58]. 

 

 

HME screws are segmented and can be configured as desired to meet various application 

requirements [61]. The most common application of screw configurations is conveying, melting, 

mixing and shaping. Conveying elements are used in the feeding, conveying and venting 
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sections. They have a self-wiping lead geometry. Mixing elements are composed of a 

combination of single mixing elements with offsets of 30, 60 or 90°. High offset leads to low 

conveying but high mixing properties. Distributive flow elements are used to generate low-

energy mixing when liquids are added to the melt in the barrel. The elements are composed of an 

outer grooved and inner plain diameter disk. Finally, discharge feed screws have a single lead 

geometry to generate the extrusion pressure to shape the final product at the die. Fig. 2.7 

illustrates the different types of screw elements that are currently used in a HME process. 
 

 

 
 

Fig. 2.7. Commonly used screw elements in pharmaceutical hot-melt extrusion process.  
Adapted from [61] 

 
 

Important is also the extrusion process itself, which can be adapted according to a desired final 

dosage form and performance [61]. The selection of an extruder type is the first choice that has to 

be made. As already mentioned, it can be single- or twin screw equipment. The screws may be 

designed individually with different elements (Fig. 2.7) and in the case of twin-screws, they can 

be configured either as co-rotating or as counter-rotating screws. The process temperature, the 

residence time and the screw speed also condition the final product quality and have to be 

carefully selected to avoid any drug or matrix degradation. The feed rate of the raw materials can 

have an influence on the throughput and the degree of fill can also affect the quality of mixing. 

As related before, the screw design is also a key parameter to achieve homogeneous dispersion, 

optimal residence time and low degradation. All the parameters are interconnected and a 

thorough understanding of their influence on the mixing quality, on the degradation, and on the 

viscosity of the materials is required to produce extrudates with desired quality attributes.  
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  Advantages and limitations 2.2.2.
 
The major advantage of HME is that it is a solvent free process and therefore no drying step is 

required in contrast to other methods used for the formulation of pharmaceutical compounds. 

HME also provides good mixing capability thanks to the use of the twin-screws, which implies a 

good agitation, de-aggregation of suspended particles in the molten polymer and thus a good 

content uniformity and dispersion. Moreover, it is an economical process with reduced 

production time, limited number of steps and a continuous operation. The residence time of the 

mixture in the extruder is low, which prevents degradation of heat-sensitive components, which 

makes HME preferred compared to other fusion methods. The dosage form can be adjusted by 

the numerous downstream processes (e.g. pelletizing, granulation, film forming, tableting) that 

can be combined with the extruder. Drug release profile can be adjusted according to the type of 

excipients [11,62].  

Nevertheless, HME is a thermal process and therefore it cannot be used for the formulation of 

thermolabile compounds. The number of available polymers and excipients with good flow 

properties is rather limited. The cost of the equipment is relatively high and high energy input 

from the drive unit is needed. The use of excipients like plasticizer can have an influence on the 

stability of the final dosage form and may cause the recrystallization of the API in the matrix. 

However, most of these disadvantages can be controlled by appropriate adjustment of process 

parameters [14,53]. 

 

 

  Excipients used in HME 2.2.3.
 

The carrier is composed of one or several meltable substances (generally a polymer or low 

melting point wax) and other functional excipients. As previously mentioned, the number of 

available pharmaceutical grade polymers that can be used for preparing amorphous SDs is rather 

limited. Most commonly used polymeric carriers are listed in Table 2.4. A more extensive list of 

polymers and their properties can be found in the literature [9,63].  
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Table 2.4. Common pharmaceutical polymers used in hot-melt extrusion processes [53,54] 
 

 Chemical name Trade name 
Tg orTm 
(°C) 

Tdegradation 
(°C) 

Im
m

ed
ia

te
 r

el
ea

se
 

Polyvinylpyrrolidone 

Kollidon®K12, 
K17,K30, K90, 
Plasdone® K25, 
K29/32, K90 

90-170 (Tg) 175-250 

Polyvinylpyrrolidone vinylacetate Kollidon® VA 64,  
Plasdone® S 630 101 (Tg) 230 

Polyvinyl caprolactam-polyvinyl acetate 
graft polyethylene glycol copolymer Soluplus® 70 (Tg) 250 

Polyvinyl alcohol Elvanol® 
Parteck® MXP 

40 – 45 (Tg) 
170 (Tm) > 250 

Amino methacrylate copolymer Eudragit® EPO 56 (Tg) > 200 

Polyethylene glycol Carbowax 
20 (Tg) 
37-63 (Tm) 
(Mw= 6000 g/mol) 

≈ 250 

Hydroxypropylcellulose Klucel® 130 (Tg) 260-275 

Hydroxypropylmethylcellulose Methocel® 160-210 (Tg) > 190 

Hydroxypropylcellulose acetate 
succinate Aqoat® 120-135 (Tg) >190 

Su
st

ai
ne

d 
re

le
as

e 

Polyvinylacetate Sentry® plus 35-40 (Tg) - 

Polymethacrylates Eudragit® RL/RS 130 (Tg) 155 

Ethyl cellulose Ethocel® 133 (Tg) - 

Poly(ethylenvinylacetate) Elvax® 65-70 (Tg)  

Poly(ethylene oxide) Polyox® 25-80 (Tm)  

Polylactic-co-glycolide acid Resomer®  40-60 (Tm)  
Carnauba wax - 81-86 (Tm) > 250 

Chitosan  203 (Tg)  

Xantan gum    

Glyceryl palmitostearate Precirol® ATO 5 52-55 (Tm) - 
Tg: glass transition temperature; Tm: melting temperature 
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Other additives can also be employed to improve processing conditions or final dosage 

performance. Table 2.5 summarizes common pharmaceutical functional additives used in HME. 

Plasticizers are used for lowering the glass transition temperature (Tg) and the melt viscosity of 

the polymer. This allows reducing drug and carrier degradation by lowering the shear force. 

Plasticizers are usually low molecular weight compounds. In some cases, the drug itself can 

function as a plasticizer [64]. The ability to decrease the Tg of the matrix, the physico-mechanical 

properties and the drug release of the final dosage form depend on the plasticizer type and 

concentration [9]. The physical and mechanical properties as well as the drug release of the 

dosage form are dependent on the nature and stability of the plasticizer. Ardwisson et al. [65] 

demonstrated that the volatilization of plasticizer during curing or storage can induce dramatic 

changes in drug release. Other additives can also be added to the formulation. The stability of the 

degradable polymers can be improved by the addition of preventive antioxidants or chain-

breaking antioxidants, acid receptors or light absorbers. Thermal lubricants can also be used to 

facilitate the HME process.  
 

 

Table 2.5. Common pharmaceutical functional additives used in hot-melt extrusion [9,11,28] 
 

 
 Physical 

state 
Molecular weight (g/mol) 
 (Tm (°C) for solid additives)* 

Pl
as

tic
iz

er
s 

Polyethylene glycol 
L 

S 

< 600  

800-20000 (30-60) 

Polyethylene oxide  

Propylene glycol  

Triethyl/tributyl/acethyl triethyl citrate 

Diethyl/dibutyl phthalate 

Dioctyl phosphate 

Dibutyl sebacate 

S 

L 

L 

L 

L 

L 

> 20000 (> 60) 

76  

276/360/318  

222/278 

322 

314 

A
nt

io
xi

da
nt

s 

Butylated hydroxytoluene 

Butylated hydroxyanisole 

Citric acid 

Ascorbic acid 

Etylenediamine tetraacetic acid 

S 

S 

S 

S 

S 

220 (69-73) 

180 (48-55) 

192 (153-159) 

176 (190-192) 

292 (245) 
* Pubchem and Chemical Book; L: liquid; S: solid 
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As already mentioned, surfactants and lipid-based excipients have been introduced in amorphous 

SD formulations by Serrajuddin et al. in the 1990’s to overcome limitations encountered in 

systems using polymeric carriers only [6]. Lipid-based excipients and surfactants can in some 

cases prevent drug recrystallization in the anhydrous matrix but the main benefits are of 

biopharmaceutical nature. Such additives can increase drug solubilization upon aqueous 

dispersion and may circumvent precipitation, while another mechanism is a possible 

enhancement of membrane permeability [66,67]. Table 2.6 summarizes commonly used lipid-

based excipients used in HME.  

 

 

Table 2.6. Commonly used lipid-based excipients [9,11,14,28] 
 

Lipid-based excipients 
(surfactant/ plasticizers) 

Physical 
state* 

Molecular weight (g/mol) 

(Tm (°C) for solid compounds)* 

Vitamin E TPGS 

Triacetin 

Polyoxyethylene of sorbitan esters (Tween) 

Sorbitan esters of long-chain fatty acids (Span) 

Glyceryl behenate (Compritol® 888 ATO) 

Castor oil 

Soybean oil 

Palmitic acid/stearic acid 

Sodium lauryl sulfate 

Polyoxyethylene hydrogenated castor oil 

(Kolliphor ®RH 40) 

Sucrose laurate 

Glycerol monostearate/butyl stearate 

Glyceryl palmitostearate (Precirol®ATO 5) 

Lauroyl polyoxylglycerides (Gelucire® 44/14) 

Stearoyl polyoxylglycerides (Gelucire® 50/13) 

PEG-8 Caprylic-Capric Glycerides (Labrasol®) 

L 

L 

L 

S 

S 

L 

L 

S 

L 

L 

 

S 

S/L 

S 

S 

S 

L 

430 

218 

Tween 20: 522 

Span 60: 430 (53) 

 414 (69-74) 

 

 

256 (61-63)/284 (67-72) 

288  

 

 

524 

358 (78–81)/340 

633 (50–60) 

(42.5–47.5) 

(46–51) 

 
* Pubchem and Chemical Book; L: liquid; S: solid 
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Lipids in oral formulations such as HME extrudates have the ability to form different colloids in 

the process of dispersion and digestion. These colloids are enriched by endogenous bile salts and 

phospholipids and may foster drug solubilization thereby circumventing precipitation. Lipid-

based excipients can affect drug absorption by different mechanisms and this has been 

summarized elsewhere [67]. The synergetic effect of a hydrophilic polymer, which increases the 

dissolution rate and of a lipid, which increases drug solubilization has proven advantages over 

traditional HME formulations [68]. Moreover, lipids have a low physiological toxicity, offer a 

wide range of physico-chemical properties and are inexpensive [69].  

Lipids are also used in the so called solid lipid extrusion. Solid lipid extrusion also known as cold 

extrusion is performed below the lipid melting point or melting range. The plasticity is achieved 

by thermomechanical treatment of the lipid. This process is suitable for thermosensitive 

substances and is primarily used for controlled release. Since this study focused on HME, cold 

extrusion will not be further discussed. More details about solid lipid extrusion principle and 

applications can be found in the literature [69–73].  

 

 

  Selection of excipients 2.2.4.
 

A critical requirement of any stable formulation is the miscibility between the drug and carrier. 

The selection of excipients for the formulation of poorly water-soluble APIs can be facilitated by 

using mathematical models that predict drug-polymer miscibility. Similarly to polymer-solvent 

chemistry these models calculate the interaction energies of a pharmaceutical polymer and an 

amorphous drug. Calculations usually consider a polymeric chain segment. In silico methods 

based on two-dimensional structure certainly have limitations with respect to conformational or 

supramolecular effects and also process factors are not considered regarding miscibility. 

Accordingly, the main application of such an in silico approach is early excipient screening for 

which high precision of estimates may not be needed. The most commonly used methods are the 

Flory-Huggins Theory and the solubility parameter concept [74,75]. The needed interaction 

parameters are not only estimated in silico but can alternatively come from experimental 

measurements such as inverse gas chromatography [76–79], melting point depression [80,81], 

energy of vaporization [77,78], solubility or swelling [82,83] methods. Table 2.7 summarizes 

computational and experimental methods that can be used to estimate drug-polymer miscibility. 
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Table 2.7. Commonly used computational and experimental methods for the estimation of drug-

polymer miscibility 
 

  Limitations 

In
 si

lic
o 

m
et

ho
ds

 

Hildebrand Suitable only for non-polar, non-associating systems [75] 

Group contribution 

- Hansen 
- Van Krevelen 
- Hoy 

Only based on 2D structure, does not consider polymer-polymer and 

drug-drug self-association. Not suitable for salt-forming drugs [84] 

Molecular dynamics 

simulation  

Simplifications are made within models (e.g. selected force field, 

number of molecules and size of polymer fragments, duration of 

simulation) 

E
xp

er
im

en
ta

l m
et

ho
ds

 

Energy of vaporization Not suitable for non-volatile substances like polymers or thermolabile 

compounds [77,78] 

Swelling Difficult prediction in the case of non-homopolymers [82] 

Inverse gas chromatography  Influence of material surface properties.  

Selection of appropriate solvents is crucial [77,84] 

Solubility Necessity to find the appropriate solvent [83] 

Melting point depression Appropriate for polymers having a glass transition temperature 

significantly lower than drug melting point.  

Estimation of χ interaction parameter close to the melting point of the 

drug.  

Polymer-drug ratio limited to low polymer concentrations [81]  

Care is needed with experimental error propagation [85] 

 

 

The Flory-Huggins theory can be applied to any binary mixture for example composed of a larger 

molecule (polymer) and a smaller molecule (amorphous drug). It takes into account interactions 

between the polymer and drug molecules and calculates the change in entropy according to the 

placement of the molecule units in a lattice model. 

The Flory-Huggins theory uses the Gibbs free energy to predict miscibility of a drug and a 
polymer [75,86]: 
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∆GM = RT �ndrug ln φdrug+ npolymer ln φpolymer  + ndrugφpolymepχdp�  (2.1) 

 
                                    Entropic contribution                Enthalpic contribution 
 

Where ΔGM is the free energy of mixing, ndrug and φdrug represent the number of moles and the 

volume fraction of the drug; npolymer and φpolymer are the number of moles and the volume fraction 

of the polymer, and χdp is the Flory-Huggins interaction parameter. A condition to ensure 

miscibility between the drug and the polymer is a negative ΔGM. The entropic contribution is 

always negative (φ <1 and thus lnφ < 0) and depends on the size of the molecule. Small 

molecules have a large entropy term and thus are likely to be soluble in each other. On the 

contrary, high molecular weight compounds (e.g. polymers used in SDs) are likely to be poorly 

miscible due to low entropy term. The polymer-drug miscibility depends mostly on the enthalpy 

contribution, which can be computed using “Flory’s Chi” thermodynamic interaction parameter 

χdp [75]:  
 

χdp= Vm 
 (δdrug - δpolymer)

2

RT
  (2.2) 

 
where Vm is the molar volume of the solvent, R is gas constant, T is the temperature, and δdrug and 

δpolymer are the solubility parameters of the drug and polymer, respectively.  

χdp can be obtained by using solubility parameters of the materials. The concept of solubility 

parameter was introduced by Hildebrand and Scott [74,75,87] to evaluate low molecular weight 

materials and polymers miscibility. Solubility parameters calculate the cohesive energy density 

(CED) per unit volume of materials, which corresponds to the attractive energy that holds atoms 

or molecules of two materials together. It is the amount of energy required to separate atoms or 

molecules constituting the materials to an infinite distance and it is mathematically defined as 

[83]:  

 

𝛿𝛿 = (𝐶𝐶𝐶𝐶𝐶𝐶)0.5 = �𝐸𝐸𝑣𝑣
𝑉𝑉𝑚𝑚
�
0.5

  (2.3) 

 

where Ev and Vm are the energy of vaporization and the molar volume of the compound at the 

temperature if vaporization, respectively. Since the first application of solubility parameters was 
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for liquid mixtures, several approximations were done to extend the theory to more complex 

systems. For example gases are described as hypothetical liquids and solids are treated as 

supercooled liquids. This allows using the theory of solubility parameters for ideal gases and 

organic solids having a low crystallinity. Since this theory is better suited for non-polar molecules 

interacting through weak forces, other methods have been suggested to calculate solubility 

parameters of pharmaceutical compounds. Hansen [88] subdivided the total solubility parameter 

(δt) into three components corresponding to the contribution of the different interactions between 

atoms or molecules, i.e. hydrogen bonds (δh), dispersion forces (δd), and polar interactions (δp). 

The total 3D Hansen solubility parameter is expressed as [76]: 

 

δt
2 = δh

2 + δd
2 + δp

2  (2.4) 

 

Experimentally, partial and total solubility parameters can be determined by measuring the 

solubility of a material in liquids with known cohesive energy. This method assumes that the 

material of interest has the same solubility parameter as the one of the liquid in which it is 

completely and athermally dissolved [76]. Solution calorimetry can be used to ensure accurate 

heat of vaporization measurements. Inverse gas chromatography is an alternative method that 

allows the calculation of solubility parameters of pharmaceutical compounds by means of 

retention times of gases of known cohesive energies. Partial solubility parameters can also be 

estimated using molecular modelling or molecular dynamics calculations (Table 2.7).  

One of the mostly used computational methods for the prediction of each solubility parameter 

component is the group contribution method, which requires knowledge of the chemical 

properties of the material that should be available for pharmaceutical compound. Each compound 

is broken into fragments with known parameters and the sum of the parts enables estimating the 

partial solubility parameters [76]:  

 

δhi = �∑Ehi
V

, δdi = ∑Fdi
V

, δpi = �
∑Fpi

2

V
  (2.5) 

 

where Ehi, Fdi and Fpi are the group contributions for different components of structural groups 

and V is the group contribution to molar volume. Examples of group contribution methods are 

those of Van Krevelen, Hoy and Hansen (Table 2.7). Lists of group contribution values are 
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available in the literature [89–91]. However, the group contribution method allows calculation of 

hydrogen bonds, it does not consider self-association between polymer-polymer and drug-drug 

molecules. Moreover, solubility parameters are calculated at room temperature and may rather 

apply for amorphous substances than crystalline structures that cannot be viewed as supercooled 

liquids. Nevertheless, solubility parameters have successfully been applied for prediction of drug-

excipients miscibility [75]. Greenhalgh et al. [83] and Forster et al. [92] findings provided 

efficient prediction tools for drug-polymer miscibility. It is assumed that compounds having 

similar solubility parameters are likely to be miscible since the energy required for mixing is 

compensated by the energy released by the interactions between the compounds. According to 

Greenhalgh et al., the difference between two components solubility parameters (Δδt) should be 

smaller than 7 MPa1/2 to ensure good miscibility, whereas if Δδt > 10 MPa1/2, the two substances 

are immiscible. Foster and al. also demonstrated that, when Δδt < 2 MPa1/2, the two compounds 

form a glassy solution, whereas when Δδt > 10 MPa1/2, they are immiscible.  

 

Besides solubility parameters also other physico-chemical characteristics of polymers, additives 

and API have to be considered since the HME process imposes some restrictions due to the use of 

high temperature and mechanical energy. Table 2.8 shows the main properties of the excipients 

(polymers, additives) and API used in HME, which have to be taken into account before the 

processing. Basic requirements for polymers used in HME are a thermoplastic behavior, a 

suitable glass transition temperature, thermal stability, no toxicity, good dissolution properties. 

Additionally to polymeric carrier other additives can be used as processing aid. Besides 

compatibility with the drug and the polymer, they also require plasticizing or lubricant effect, 

thermal stability and no toxicity. Finally the drug itself should be stable at the processing 

temperature and its physico-chemical properties should be known to ensure efficient processing 

parameters and excipients selection. As shown by Friesen et al. [93], the drug melting point, glass 

transition temperature and partition coefficient (Log P), which measures the lipophilicity, can 

provide information on a suitable formulation strategy. The evolution of Tm/Tg as a function of 

Log P is shown in Fig. 2.8.  
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Table 2.8. Relevant characteristics of polymers, additives and API used in hot-melt extrusion 
[11] 

 

Polymers Additives API 
Water solubility 
Lipophilicity 
Thermal stability 
Tg/Tm 
Chemical state 
Melt viscosity 
Dissolution properties 
Interaction with API 

Plasticizing effect 
Lubricant effect 
Tm 
Thermal stability 
Physical state 
Compatibility with API & polymer 
 

Water solubility 
Lipophilicity 
Thermal stability 
Tm 
Physical state 
 

 

 

 
 

Fig. 2.8. Tm/Tg of drug as a function of Log P and related drug loading range.   
Adapted from [93] 

 

 

  Solid-state characterization 2.2.5.
 

The HME process generates extrudates that are generally intermediate products for final dosage 

forms. It is necessary to analyze the extrudates to confirm for example the formation of a SD and 

to monitor its stability during storage. Several methods can be employed to characterize raw 
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materials and the API physical state in the extrudates, as well as chemical stability and molecular 

interactions of drug and carrier. Table 2.9 summarizes the methods commonly used for SD 

characterization. Few comments will be given on selected aspects but not all of these methods are 

discussed in detail since a thorough discussion is beyond scope and there are already excellent 

reviews and book chapters [63,94,95]. 

 

Differential scanning calorimetry (DSC) is the most frequently used method to assess thermal 

properties of raw materials. Thermal events such as Tg and Tm can be detected by liberation or 

gain of energy (i.e. endothermic or exothermic phase transition). Prior to the extrusion process, it 

is essential to assess the polymer Tg since extrusion temperature should be 20-30°C above this 

temperature to ensure good flow properties [11]. Analysis of hot-melt extrudates allows 

evaluating drug-carrier miscibility. If a glassy solution has been obtained there is one Tg, which is 

characteristic for the miscibility between the drug and the carrier. If a glassy suspension has been 

obtained there are two Tg values (carrier and drug). For a crystalline suspension the Tg of the 

carrier and the Tm of the drug are visible. In the latter two, the drug and the carrier are not 

miscible [96]. Drug crystallinity can also be assessed by DSC analysis before and after 

processing as well as during storage under different conditions (e.g. temperature, humidity, light). 

However, DSC has clear limits of sensitivity and resolution for detection of weak thermal 

transitions or when overlapping thermal events occur. Modulated DSC (MDSC) can be used in 

such cases as an advanced thermoanalytical method [11,94]. In MDSC, sinusoidal wave 

modulation is superimposed onto the conventional linear heating rate. The DSC total heat flow is 

divided into reversing (e.g. glass transition, melting) and non-reversing (e.g. evaporation, 

crystallization, thermal decomposition) heat flow by Fourier transformation. MDSC is highly 

useful for amorphous SD studies since is allows differentiating Tg values from other interfering 

thermal events. 

An alternative advancement in thermal analysis is fast-scanning DSC (or high-speed DSC). The 

heat is applied rapidly to avoid changes that might occur during slow measurements. It allows for 

a better understanding of polymer-drug compatibility since their miscibility is not affected during 

the high speed measurement [97,98].   

DSC can be complemented with thermogravimetric analysis (TGA) that is based on the weight 

loss of a material as a function of time and temperature to determine, for example, the 
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degradation temperature. Moisture content, decomposition vaporization and sublimation 

temperatures can also be determined by TGA [4].    

Spectroscopic techniques are non-destructive methods and allow for quantitative and qualitative 

analysis of HME formulations. X-ray powder diffraction (XRPD) is used to characterize the 

crystallinity of the extrudates by comparing the characteristic diffraction peaks of the crystalline 

form of the drug and the diffraction scattering signals of the extrudate [96]. Fourier-transform 

infrared spectroscopy (FTIR), Raman spectroscopy and solid state nuclear magnetic resonance 

are the most commonly used analyses to investigate intermolecular interactions and drug-carrier 

compatibility [4,94].  

Microscopic techniques give information on surface morphology of SDs, phase separation or 

physical state of the drug [4]. Polarized light optical microscopy (PLM) can visualize crystals in 

the extrudates but it does not give quantitative information. The homogeneity of the extrudates, 

the presence of surface crystals, and the surface topography can be observed by scanning electron 

microscopy (SEM). SEM can be complemented by energy dispersive X-ray spectroscopy (EDS) 

to map the distribution and heterogeneity of components. Hot-stage microscopy can be used to 

investigate the presence of crystallites within a dispersion at high temperature as well as phase 

separation [11]. Finally, atomic force microscopy (AFM) is a surface analytical tool used to scan 

the surface morphology thanks to a tiny probe mounted on a cantilever [12]. It gives information 

on chemical nano-heterogeneity (phase imaging) and on the topography (amplitude imaging) of 

SDs. 
 
Image analysis is a useful tool that provides qualitative information on SD. However, quantitative 

information is of interest for better characterization and understanding of pharmaceutical 

formulations. To achieve this, fractal and multifractal concepts can be used as complementary 

methods. Fractal geometry has been introduced in the 1960’s by Mandelbrot to describe complex 

patterns that cannot be described by Euclidean geometry [99,100]. A fractal object is an object 

that is self-similar regardless of the scale of magnification and that can be described by a non-

integer dimension or fractal dimension. Multifractal formalism applies for even more complex 

structures that can be viewed as the superposition of homogeneous fractal objects. It decomposes 

self-similar objects into intertwined fractal sets that have a singularity strength and fractal 

dimension. It combines a sequence of fractal dimensions that characterize the variability and 

heterogeneity of the object. By assigning a dimension (or a set of dimensions) to complex objects 
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fractal and multifractal theories provide a quantitative analysis. Fractal have been used in 

pharmaceutics for example to study particle shape, surface morphology, crystal growth [100]. 

Only few studies using fractal geometry based on image analysis to characterize hot-melt 

extrudates have been published but such previous work was outside of pharmaceutics [101–103]. 

Even less frequently has the multifractal formalism been used in applied sciences and the 

introduction to pharmaceutics and hot-melt extrudates in particular is new (c.f. chapter 5; [104]). 

 

 

Table 2.9. Common analytical methods used to investigate hot-melt extrusion formulations 
[63,94] 

 

Property Method 

Drug-carrier miscibility 

Hot-stage microscopy 
Differential scanning calorimetry  
X-ray powder diffraction 
Atomic force microscopy  
Fourier-Transform infrared imaging 
Raman mapping 

Individual component distribution 
Fourier-Transform infrared imaging 
Raman mapping 
Fluorescence microscopy 

Drug-carrier interaction 

Fourier-Transform infrared spectroscopy 
Raman spectroscopy 
Nuclear magnetic resonance spectroscopies (1-and 2-D 
methods) 

Surface morphology 
Scanning electron microscopy  
Atomic force microscopy  

Surface properties 
Inverse gas chromatography 
BET  

Mechanical properties Dynamic mechanical analysis 

Drug crystallinity 

Polarized light microscopy 
Hot-stage microscopy 
Differential scanning calorimetry  
X-ray powder diffraction 
Atomic force microscopy 

Stability 
Differential scanning calorimetry  
Thermogravimetric analysis 
Dynamic vapor sorption 

Microstructure 
Tomography 

X-ray micro-or nano-tomography 
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 Biopharmaceutical characterization   2.2.6.
 

The aim of the present study was the design of novel type of formulations for poorly-water 

soluble compounds. The focus was more on material characterization, which entailed the 

introduction of new methods to address current needs for a better understanding of complex 

microstructures. The biopharmaceutical performances of the formulation were therefore not 

within the scope of this work. However, biopharmaceutical in vitro characterization is in general 

pivotal for the field of SDs because such formulation primarily target improved solubilization and 

absorption of poorly soluble compounds. Dissolution test is an efficient characterization method 

that allows selection of suitable excipients according to the targeted performances (e.g. enhanced 

dissolution, maintenance of supersaturated solution, amorphous state stability) [105]. 

Standardized tests and apparatus are described in the United State Pharmacopeia [106], European 

Pharmacopeia [107], and Japanese Pharmacopeia [108]. For the dissolution of amorphous SDs, it 

is important to characterize both the dissolution and the ability of the formulation to maintain a 

supersaturated state upon dissolution. Any of the dissolution apparatus used for solubility 

assessment can be selected. Usually, the basket and paddle apparatus are the most commonly 

used. When drug absorption is limited by the drug dissolution an in vitro-in vivo correlation may 

be established, provided that appropriate test conditions are used. Solubility and dissolution 

studies of amorphous SD is well reviewed in the literature [105,109–111]. A compilation of 

different in vitro methods for oral formulations can be inferred from Kostewicz et al [112]. Most 

notable are here novel chemical imaging methods that have been applied recently to study the 

drug release from solid dispersions [113–115]. 
 

 

 β-carotene 2.3.
 

In this study, β-carotene (BC) was chosen as a crystalline lipophilic model compound for the 

formulation of amorphous SDs by HME. BC belongs to the family of carotenoids.  

More than 700 carotenoids have been identified in the nature and these natural chemicals are 

yellow, red, or orange pigments that can be found in plants, microorganisms or animals 

[116,117]. They are characterized by their conjugated double-bound chain that is responsible of 

their color and their antioxidant properties. Most abundant carotenoids in foods are BC, α-
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carotene, β-cryptoxanthin, astaxanthin, lycopene, lutein, and zeaxanthin. Among these six 

principal carotenoids, the three first are the so-called provitamin A since they can be converted to 

retinol, an active form of vitamin A, in the human body. The non-provitamin A carotenoids are 

known to stimulate the immune system.  

The best known carotenoid and most widely distributed carotenoid in foods and human blood and 

tissues is BC [118]. This carotenoid was isolated by Wackenroder in 1831 but its chemical 

structure (Fig. 2.9) was only elucidated later on, in 1930, by Karrer [119]. It was firstly fully 

synthetized in 1950 and commercialized by Roche in 1954.  
 

 
 

Fig. 2.9. Chemical structure of all-trans β-carotene 
 

 

As previously mentioned, BC plays an important role in human health since it can be fragmented 

to vitamin A. Vitamin A is an essential nutrient, which plays a role in vision, reproduction, bone 

health, cell division, cell differentiation and immune system. The main sources of BC are dark 

orange fruits and vegetables (e.g. mango, apricot, carrots, sweet potatoes, pumpkins) and green 

vegetables (e.g. broccoli, chard). Alike the majority of carotenoids, BC is lipophilic and insoluble 

in water. Table 2.10 gives the principal physico-chemical properties of BC. 
 
 

Table 2.10. Physico-chemical properties of β-carotene [120] 
 

Molecular formula C40H56 
Molecular weight 536.9 g/mol 
Color of crystalline powder Red-orange 
Melting point 176-182°C 
clogP 11.12 * 
Solubility in water 0.015 mg/L ** 
Solubility in fats and oils 0.05 mg/100mg 
Solubility in cyclohexane 0.1 mg/100mg 
Maximum absorption wavelength in cyclohexane 455-456 nm 
* ChemAxon 
** Experimental value measured by DSM 
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Due to its highly conjugated structure, BC is likely to isomerize. The most stable form in nature 

is the all-trans isomer, however thermal or mechanical treatment as well as exposure to light and 

oxygen can cause isomerization and degradation.  

BC is mainly used as colorant in the food industry (e.g. beverages, margarine, milk) [121]. It is 

also available as individual supplements and in especially marketed supplements to promote 

visual health or for its provitamin A activity [122].  

Pure crystalline BC commercialization is rather impractical due to its insolubility in water. The 

majority of marketed products are micronized oil suspensions, where BC is in microcrystalline 

form. Water-dispersible formulations containing pure crystalline BC are also commercialized. 

These products are colloidal suspensions, emulsions of oily solutions or dispersion in colloids 

containing surface active agents [123]. In the present study, BC served as a model compound that 

is both lipophilic as well as highly crystalline, so the compound was associated with particular 

biopharmaceutical challenges for which novel formulation approaches by HME were to be 

evaluated.  
 



 

Adler C. et al. Flow-through cross polarized imaging as a new tool to overcome analytical sensitivity challenges of a low-dose 
crystalline compound in a lipid matrix. Journal of Pharmaceutical and Biomedical analysis 115 (2015) 20-30.  
 

 

Chapter 3. New tool to overcome sensitivity challenges of low-dose crystalline compounds 

 

 Flow-through cross-polarized imaging as a new tool to 3)
 overcome the analytical sensitivity challenges of a low-
 dose crystalline compound in a lipid matrix 

 

Summary 
 

Assessing the physical state of a low-dose active compound in a solid lipid or polymer matrix is 

analytically challenging, especially if the matrix exhibits some crystallinity. The aim of this study 

was first to compare the ability of current methods to detect the presence of a crystalline model 

compound in lipid matrices. Subsequently, a new technique was introduced and evaluated 

because of sensitivity issues that were encountered with current methods. The new technique is a 

flow-through version of cross-polarized imaging in transmission mode. The tested lipid-based 

solid dispersions (SDs) consisted of β-carotene (BC) as a model compound, and of Gelucire 

50/13 or Geleol mono- and diglycerides as lipid matrices. The solid dispersions were analyzed by 

(hyper) differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and 

microscopic techniques including atomic force microscopy (AFM). DSC and XRPD could 

analyze crystalline BC at concentrations as low as 3% (w/w) in the formulations. However, with 

microscopic techniques crystalline particles were detected at significantly lower concentrations of 

even 0.5% (w/w) BC. A flow-through cross-polarized imaging technique was introduced that 

combines the advantage of analyzing a larger sample size with high sensitivity of microscopy. 

Crystals were detected easily in samples containing even less than 0.2% (w/w) BC. Moreover, 

the new tool enabled approximation of the kinetic BC solubility in the crystalline lipid matrices. 

As a conclusion, the flow-through cross-polarized imaging technique has the potential to become 
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an indispensable tool for characterizing low-dose crystalline compounds in a lipid or polymer 

matrix of solid dispersions. 

 

 

  Introduction 3.1.
 

Over 60% of the newly developed active compounds are poorly water-soluble [12]. Therefore, 

improving the solubility and oral bioavailability of such compounds has become a challenge in 

formulation development. Among the different formulation strategies, solid dispersions (SDs) 

represent one of the most efficient ways to overcome biopharmaceutical hurdles [4,6]. Over the 

last decades, four generations of SDs have emerged that are classified according to their 

composition [4]. The first generation, composed of a crystalline carrier (e.g. urea, fructose, 

mannitol), was developed in the 1960s. The second generation appeared in the 1970s and was 

based on amorphous polymeric carriers, such as cellulose derivatives, polyethylene glycol, or 

povidone. In the third generation SDs (1990s), surface active agents were used as additives (e.g. 

Tween 80, sodium lauryl sulfate, sucrose laurate) or as carriers (e.g. Compritol 888 ATO, 

Gelucire 44/1, poloxamer) to overcome the precipitation and recrystallization of the active 

compound that is otherwise often encountered with first or second generation SDs [4,124,125]. A 

fourth generation of SDs contains active compounds with short biological half-life, which require 

solubility enhancement as well as controlled release. For this purpose poorly-water soluble 

polymers such as ethyl cellulose, hydroxypropylcellulose, or polyethylenoxide are used [4].  

Recently, the use of lipid matrices with or without surfactants in the field of the third generation 

SDs has generated great interest among pharmaceutical scientists because of the numerous 

advantages of lipid-based excipients (e.g. low physiological toxicity, high bioavailability, wide 

physico-chemical properties, as well as low costs) [69]. However, a drawback of lipid systems is 

a potentially low recrystallization rate and the issue of exhibiting different polymorphic forms (α, 

β, or β´) [126]. Such polymorphic change can lead to altered release of an active substance or it 

may even cause compound expulsion from the lipid [127]. Important are the physical states of the 

active compound and of the matrix, which may change over time given their thermodynamic and 

kinetic properties. A well-known example of such physical changes is the conformational 

polymorphism that was observed with Ritonavir in the first marketed formulation (Norvir by 
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Abbott Laboratories) [124]. This emphasizes the importance of a thorough physical 

characterization of the active compound in the product to avoid such complications [125]. 

Chadha et al. [128] listed the most commonly used methods to study the compatibility between 

active compounds and excipients in solid dosage forms. They mentioned X-ray powder 

diffraction (XRPD), Fourier-transform infrared spectroscopy (FT-IR), hot stage microscopy 

(HSM) and differential scanning calorimetry (DSC). DSC has recently been complemented by 

the use of high speed or hyper-DSC (HDSC) for compound solubility studies in a semi-solid or 

solid matrix [97,129,130]. Besides the advantage of reducing analysis time with heating rates 

>100°C/min, HDSC demonstrated higher sensitivity to detect small thermal events such as a glass 

transition of an amorphous sample [131]. It was also demonstrated that HDSC may be used to 

suppress undesirable thermal events like compound dissolution in the matrix that typically occurs 

during a slow heating rate [97]. Another very interesting application of HDSC is its use to assess 

solubility of the active compound in a complex matrix, for example in polymers [97] or in a wax 

[128]. The applied method in these studies was introduced by Theeuwes et al. [132] and is based 

on plotting the melting enthalpy of an active compound for different concentrations to extrapolate 

the solubility at the intersection with the X-axis. An alternative method has been suggested by 

Jannin et al. [133]. They concentrated on the melting enthalpy of the lipid matrix rather than that 

of the active compound. They assumed that the presence of an active substance would alter the 

lipid melting enthalpy. By analyzing the change in lipid enthalpy of fusion as a function of the 

active compound amount, they estimated the maximal amount of dissolved (or amorphous) 

compound in the matrix. 

However, the applicability of the latter methods depends, a priori, on the compound amount and 

on the specific matrix used. It is a particularly challenging problem to detect a low amount of a 

crystalline substance in a crystalline matrix. Bikiaris et al. [134] highlighted the limitations of 

thermal methods in two cases, i.e. active compounds having a melting point higher than the glass 

transition temperature of the polymer or active compounds being dispersed in a low melting point 

crystalline matrix. To overcome such a challenge, the combination of several characterization 

methods was suggested. They emphasized the importance of combining DSC with XRPD, 

scanning electron microscopy, and hot stage microscopy to show the presence of active 

compound particles. Following the same idea, Vippagunta et al. [98] suggested to use XRPD and 

FTIR to overcome the limiting sensitivity of thermal analysis to determine the solid-state 

solubility of nifedipine in a polymeric matrix. Information about the physical state of the active 
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substance or of the excipients can also be provided by atomic force microscopy (AFM). Due to 

its high surface sensitivity, this method has a broad scope of different applications, e.g. crystal 

morphology characterization, polymorphs identification, homogeneity assessment, stability study, 

detection of compound-excipient interactions, or phase separations [135,136]. 

A particular hurdle analyzing the physical state of a dispersed substance in a solid matrix is 

sampling when dealing with low concentrations. Most of the mentioned analytical techniques 

rely on comparatively small sample volumes in which a low-dosed substance is present with only 

a few crystals. The analytical situation is further complicated by a lipid or polymer matrix that 

shows itself some crystallinity. The present study investigates such a case with a dispersed 

substance in a crystalline lipid matrix. Lipids can be processed below their melting point by 

(cold) solid lipid extrusion [69] or alternatively at least ∼20°C above their melting point [98]. In 

this study, lipid SDs were prepared by melting them at 125°C (e.g. well above the melting points 

of the selected lipids) to simulate the temperature that could further be used in a melting process 

such as hot-melt extrusion. For the formulation of the SDs, a rather polar lipid, Gelucire 50/13 

and a less polar lipid, Geleol mono- and diglycerides were selected as matrices. The first goal was 

to employ state-of-the-art methods to emphasize analytical sensitivity limits as well as sampling 

issues. The objective was to clarify the physical state of the model compound BC and it was 

further intended to determine its kinetic solubility. This kinetic value is the concentration of 

maximally dissolved (or amorphous) active compound in the matrix directly after manufacturing 

under the given conditions. The thermodynamic BC solubility and stability studies of the SDs 

were beyond the focus of the current research that focused on the analytical tools. A second aim 

was to explore flow-through cross-polarized imaging as a novel method to potentially overcome 

current analytical limitations. 

 

 

 Materials and methods 3.2.
 

 Materials 3.2.1.
 

The lipids Gelucire 50/13 (Stearoyl macrogol-32-glycerides) and Geleol mono-and diglycerides 

(Glycerol monostearate 40-55, Type I) were kindly donated by Gatefossé (Luzern, Switzerland). 
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Crystalline BC was obtained from DSM Nutritional Products Ltd (Kaiseraugst, Switzerland). 

Titanium dioxide was purchased from Hänseler AG (Herisau, Switzerland). N-hexane, 

dichloromethane, cyclohexane, methanol, ethanol, and acetonitrile were obtained from Merck 

(Darmstadt, Germany). Butylated hydroxytoluene, tetrahydrofuran, N-ethyldiisopropylamine, 2-

propanol, and ammonium acetate were purchased from Sigma-Aldrich (Steinheim, Germany). 

 

 Preparation of the solid dispersions 3.2.2.
 

Gelucire 50/13 and Geleol pellets were milled with a mortar and a pestle to obtain a fine powder. 

The physical mixtures (PMs) were prepared by weighing the lipid and BC (0.05–5%, w/w) in 

brown flacons and mixing them carefully with a spatula. SDs were obtained by melting the 

physical mixtures at 125°C in an oil bath during 5 min under stirring at 250 rpm. To avoid BC 

degradation, the samples were continuously flushed with nitrogen. The melts were cooled down 

to room temperature during 1 h before milling (with a mortar and a pestle) and analyzed. 

 

  Time-domain NMR 3.2.3.
 

The solid fat content (SFC) of the raw lipids was measured by time-domain NMR (TD-NMR) 

using a minispec mq 20 (Bruker BioSpin GmbH, Rheinstetten, Germany). Since the samples 

were analyzed with the indirect method, olive oil was used as a reference. The as received lipid 

powders were molten at 125°C in an oil bath during 5 min before being transferred into 18 mm 

diameter tests tubes (20 mm filling height). The melts were cooled to room temperature during 

1 h. A serial tempering method was used for the SFC analysis. The tubes were placed at 0°C (ice-

bath) during 60 min before the first measurement. The next measurements were carried out in the 

range of 10 to 80°C at 10°C intervals following an equilibration time of 30 min at each 

temperature. For each tube four scans were conducted with a frequency of 19.95 MHz and a 

pulse attenuation of 11 dB. The SFC was calculated from Eq. (1) [137]  

 

SFC (%) = Sample80°C× OilT

SampleT×Oil80°C ×100  (3.1) 
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where Sample and Oil correspond to the signal intensity obtained for the sample and the olive oil, 

respectively. T is the temperature at which the measurement was carried out and 80°C is the final 

measurement temperature. 

 

  Differential scanning calorimetry 3.2.4.
 

The thermal properties of the raw materials, the PMs, and the SDs were determined using a 

PerkinElmer DSC 8500 (Schelton, USA) under a dry nitrogen purge gas of 20 ml/min. The 

instrument was calibrated for heat flow and temperature with indium and water. Samples were 

accurately weighed (1.20 ± 0.05 mg) in 30 µL aluminum pans and hermetically sealed. An empty 

pan was used as reference. Heating rates of either 5 or 150°C/min were used. The analyses were 

conducted in triplicates. 

 

 Statistical analysis 3.2.5.
 

Analysis of the variance (ANOVA) was calculated using Statgraphics (v16.1.11, Statpoint 

Technologies, Inc., Warrenton, Virginia). 

 

  X-ray powder diffraction 3.2.6.
 

XRPD patterns were obtained by using a D2 Phaser diffractometer (Bruker AXS GmbH, 

Karlsruhe, Germany) configured with a fast linear 1-D Lynxeye detector. The radiation was 

provided by a 1.8 kW Co KFL tube (wavelength = 1.79 Å) working with a Fe filter. The applied 

voltage and current were 30 kV and 10 mA, respectively. The powder samples were analyzed at 

room temperature over the 2θ range of 6 –45°. The time per step was 0.6 s and the increment was 

0.02° (2θ). 

 

 Polarized light microscopy in reflection-mode 3.2.7.
 

To detect BC crystals in the molten lipid mixtures, the SDs were observed by polarized light 

microscopy in the reflection mode using an Olympus BX61 (Volketswil, Switzerland) equipped 



Chapter 3. New tool to overcome sensitivity challenges of low-dose crystalline compounds   40 
 
 
with a U-PO3 polarizer and a U-AN360-3 analyzer. The melting procedure above the melting 

point of the lipids was based on a special Peltier-Element (Quick cool QC-32-0.6-1.2, Conrad, 

Emmenbrücke, Switzerland). 

 

  3D-laser scanning microscopy 3.2.8.
 

The surface of the SDs was observed with a Keyence VK-X200 Series 3D-laser scanning 

microscope (Mechelen, Belgium). SDs were prepared according to the method outlined in 

Section 3.2.2. A small droplet of each molten mixture was spread on a preheated glass slide. The 

samples were cooled to room temperature before analysis. 

 

 Atomic force microscopy 3.2.9.
 
AFM images were acquired in the tapping mode using a Dimension 3100 with Nanoscope V 

(controller) from Bruker (Karlsruhe, Germany). A Budget Sensors Tap 190 Al-G cantilever with 

a resonance frequency of 190 kHz and a 48 N m−1 force constant was used. The samples were 

prepared as described in Section 3.2.2. 

 

 Reversed-phase high-performance liquid chromatography (RP-HPLC) 3.2.10.
 

A chromatographic method was employed to evaluate BC degradation and cis-trans isomerization 

that could occur during the preparation process. The AOAC official method 2005.07 for 

analyzing BC in supplements and raw materials was used, which is based on RP-HPLC (method 

first action 2005) [138]. A sample containing 3% (w/w) BC was chosen as a reference for this 

analysis. The mobile phase consisted of butylated hydroxytoluene (50 mg/L)/2-propanol (2%, 

v/v)/N-ethyldiisopropylamine (0.02%, v/v)/0.2% ammonium acetate solution (2.5%, 

v/v)/acetonitrile (45.5%, v/v)/methanol (45.0%, v/v). BC was extracted from the SDs with a 

butylated hydroxytoluene (100 mg/L)/ water (6%, v/v)/ethanol (40%, v/v)/dichloromethane 

(54%, v/v). 
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 Flow-through cross-polarized imaging in transmission mode 3.2.11.
 

A XPT-C particle analyzer (PS-Prozesstechnik, Basel, Switzerland) was employed for detection 

of BC crystals in low-concentrated samples (0.05–1%, w/w). A non-commercial instrument 

version was assembled with the intention to monitor samples in transmission mode by using 

cross-polarized light. For each concentration, five series of three hundred pictures were recorded 

with a Cosmicar Pentax TV lens extension tune (40 mm) attached to a cross-polarizer. The time 

interval between each picture was 100 ms. The molten mixtures were filled in a glass syringe 

heated with a heating pad (New Era Pump systems, Framingdale, USA). The melts were injected 

in the flow-through cell tempered at 15°C above the lipid melting point (65 and 72°C for Gelucire 

50/13 and Geleol, respectively) with a Universal Thermostat 3680 Xavax. Each sample was 

collected in a beaker that was placed at the output of the flow-through cell. These samples were 

weighted to calculate the number of particles detected per gram of melt. 

Shutter and light power were adjusted for each BC concentration to optimize the quality of the 

pictures. The number of crystals in each sample was detected by analyzing the pictures using the 

XenParTec software (v5.1, TechApp Switzerland).  

Fig. 3.1 depicts a scheme of the method, which was centered on a dynamic image analysis 

particle analyzer (XPT-C). The measurement cell was connected to a flow-through cell that 

enabled analysis of relatively large sample sizes to cope with sampling. For the detection of 

crystalline particles, the instrument was equipped with a polarizer and an analyzer. This 

equipment allowed gentle heating thereby differentiating crystalline entities, which appeared 

white, from the dark molten lipid matrix. A CCD camera recorded pictures at defined time 

intervals. Analyzing the bright particles in each recorded image provided the number of 

crystalline BC particles in the molten SDs. 

 

 
 

Fig. 3.1. Schematic of XPT-C cross-polarized particle analyzer 
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 Results and discussion 3.3.
 

 Study of the raw materials 3.3.1.
 

Prior to the study of the SDs, the crystalline properties of the raw materials were characterized as 

this can help understanding the solubility of the active compound in the excipients. 

Previous studies have shown that an active substance preferentially occupies the amorphous 

regions of polymeric matrices [139]. This is comparable to lipid matrices where an active 

compound would be primarily solubilized in oily microdomains, while the active compound 

solubility in crystalline lipid is expected to be rather poor [140]. Therefore, the SFC of Gelucire 

50/13 and Geleol was analyzed by means of TD-NMR. Geleol and Gelucire 50/13 are highly 

crystalline lipids with SFC values greater than 90% below 20°C (Fig. 3.2). Due to these high SFC 

values, it was assumed that the active compound solubility in these lipids would be rather limited. 

Gelucire 50/13 had a lower SFC and showed a broader melting range compared to Geleol. Both 

lipids are composed of long chain fatty acids but the presence of polyethylene glycol chains in 

Gelucire 50/13 and the broad lipid composition (mixture of mono-, di-, and triglycerides) [141] 

are likely to cause the comparatively lower SFC and wider melting range. 

 

 

 
 

Fig. 3.2. Solid fat content profiles of pure Gelucire 50/13 (    ) and Geleol (    ) as a function of 
temperature obtained by TD-NMR. 
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Such compositional heterogeneity of Gelucire 50/13 was also reflected by the DSC analysis 

(Table 3.1). The scans at a heating rate of 5°C/min showed that Gelucire 50/13 melting was 

divided into three peaks: a major peak at 45.3°C accompanied by two smaller peaks. In contrast, 

Geleol exhibited only one narrow peak at 58.7°C. These results were in agreement with the SFC 

analysis (Fig. 3.2), which showed that Gelucire had a broader melting range and melted at a 

lower temperature compared to Geleol. The use of a high heating rate suppressed the small 

thermal events of Gelucire 50/13 (Table 3.1). Moreover, the fast heating rate broadened and 

shifted the melting peaks of the two lipids as well as of BC to higher temperatures (Table 3.1) as 

it was expected from literature [142].  

 

 

Table 3.1. Melting peak and onset temperature of the raw materials obtained by DSC at heating 
rates of 5 C/min and 150°C/min. (1), (2), and (3) refer to the first, second and third peaks, 

respectively, that exhibited Gelucire 50/13 during melting. 
 

 
5°C/min  150°C/min 

Onset (°C) Peak (°C)  Onset (°C) Peak (°C)  

Gelucire 50/13 
36.5 (1) 38.4  37.8 48.6  
42.5 (2) 45.3     
48.0 (3) 50.9     

Geleol 55.6 58.7  60.8 65.8  
Pure BC 177.0 180.2  185.8 192.7  
 

 

Fig. 3.3 shows high resolution 3D-laser scanning images of the pure recrystallized lipids after 

melting. In the Geleol sample, spherulites were visible (Fig. 3.3b) whereas Gelucire 50/13 did not 

exhibit such a structure on the length scale studied (Fig. 3.3a). It was probably due to its 

compositional diversity that Gelucire 50/13 did not show distinct spherulites during 

crystallization, which resulted in a less ordered microstructure. 
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Fig. 3.3. 3D-laser scanning images of pure Gelucire 50/13 (a) and Geleol (b) (20x magnification). 

 

 

 Solid dispersion characterization with state-of-the-art methods 3.3.2.
 

The BC formulations with Gelucire 50/13 and Geleol were studied using a series of different 

methods. The combination of these methods can be viewed as a state-of-the-art characterization. 

DSC is one of the most abundantly used methods to characterize pharmaceutical SDs. A heating 

rate of 5°C/min was first selected to analyze physical mixtures of crystalline BC (1–5%, w/w) 

with the given lipids. No melting peak of BC could be detected at 185°C in these reference 

samples (data not shown). The absence of a melting endotherm could result from BC dissolution 

during analysis, therefore significantly faster heating rates were evaluated. A (hyper) heating rate 

of 150°C/min was chosen because even higher heating rates resulted in limited analytical 

resolution since the lipid melting peak broadened and overlapped with the melting peak of BC. In 

contrast to low heating rates, the HDSC traces at 150°C/min (Fig. 3.4) revealed some 

endothermic events between 120 and 180°C in SDs containing at least 5 or 3% (w/w) BC in 

Gelucire 50/13 (Fig. 3.4a) and Geleol (Fig. 3.4c), respectively. These events can be attributed to 

the melting of BC as they were also observed with the physical mixtures of lipid and crystalline 

BC (Fig. 3.4b, d). However, Fig. 3.4 indicates that the melt enthalpies were very small and 

appeared not always exactly at the same temperature. The reproducibility was poor and some 

individual DSC traces did not exhibit any recorded endotherm. Sampling issues due to an 

inhomogeneous dispersion of the small amount of crystalline active compound were accounting 

for these inconsistent thermograms. Moreover, the absence of a BC melting peak in SDs could be 
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due to an amorphous state of BC or to the fact that BC dissolved in the liquefied lipid during the 

DSC measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. DSC thermograms of Gelucire 50/13 (a, b) and Geleol (c, d): solid dispersions 
containing 3 and 5% (w/w) BC (a, c) and physical mixtures containing 5% (w/w) BC (b, d). The 

circles indicate BC endotherms (heating rate of 150°C/min). 
 

 

To assess the sensitivity limit of the DSC instrument, physical mixtures (PMs) of BC with an 

inert carrier (titanium dioxide) were analyzed. A BC melting endotherm was clearly visible at 

∼185°C in PMs at 3% (w/w) BC, whereas in the physical mixtures with 1% (w/w) BC the 

melting endotherm was not visible in all thermograms (data not shown). Such poor 

reproducibility was explained again by the aforementioned sampling issues when low active 

a                                                       b 
 
 
 
 
 
 
 
 
 
 
 
c                                                          d 
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compound concentrations are analyzed. However, these experiments in an inert matrix indicated 

a sensitivity limit of the DSC instrument between 1 and 3% (w/w) BC. While these experiments 

used titanium dioxide as an inert matrix, the lipid formulations with active compound may have 

exhibited a BC interaction with the lipid either as part of manufacturing or during the 

measurement. Bikiaris et al. [134] showed that active compound went completely into solution 

during the heating even though HDSC and rather high active compound concentrations (20%, 

w/w) were used. Consequently, PMs composed of the lipids and crystalline BC were analyzed to 

validate this assumption. As a result, only PMs containing 5% (w/w) BC showed a poorly 

reproducible minor melting endotherm of the active compound at ∼150°C (Fig. 3.4.b, d). 

Therefore, most of the active substance could have also dissolved in the SD at 1 to 5% (w/w) BC. 

Moreover, it cannot be ruled out based on the thermoanalytical data that a fraction of amorphous 

compound was present even though a clear glass transition temperature was not detected. Such 

differentiation of different physical compound states was not possible at these low concentrations 

close to the sensitivity limit of the method. 

 

Theeuwes et al. [132] proposed a method that employed active compound melting enthalpies at 

different concentrations (0.8–25%, w/w) to extrapolate a solubility value. However, in our study 

it was not possible to directly assess the kinetic BC solubility in the matrix due to the erratic 

observation of the BC melting peak in the thermograms. Another indirect method was proposed 

by Jannin et al. [133] based on the fact that a dissolved active compound in lipid can affect the 

lipid melting. Thus, lipid enthalpy can be plotted against different active compound 

concentrations to possibly reveal a change in excipient enthalpy with increasing compound 

concentrations. The highest active substance concentration for which a change in lipid enthalpy is 

recorded should correspond to the active compound solubility. Table 3.2 summarizes the lipid 

melting enthalpies obtained for the different BC loads using the HDSC heating rate of 

150°C/min. The comparison of the values obtained and the associated standard deviations 

showed that the active compound concentration had apparently no effect on the lipid melting 

enthalpy. To test this assumption a one-way ANOVA was calculated for BC-containing 

formulations. The p-values obtained were 0.3 and 0.09 for Gelucire 50/13 and Geleol 

formulations, respectively. These results confirmed that the comparison of different active 

compound loads did not have a significant effect on the lipid enthalpy of fusion in the 

concentration range studied. These results were confirmed by complementary experiments using 
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TD-NMR. Mixtures of Gelucire 50/13 or Geleol and different concentrations of BC (1–5%, w/w) 

were analyzed according to the method outlined in Section 3.2.3. The aim was to compare the 

SFC of the pure lipids with BC loaded formulations. The TD-NMR profiles of the BC loaded 

samples (data not shown) could not be clearly differentiated from those of the pure lipids (Fig. 

3.2). The crystalline lipid was hence rather unperturbed by the presence of compound. In light of 

these HDSC and TD-NMR results, it was likely that the kinetic BC solubility was rather low so 

that a significant effect was not detected for the concentration range studied. 

 

 

Table 3.2. Enthalpy of melting of the lipid-based solid dispersions containing different 
concentrations of β-carotene (BC) (150°C/min heating rate). 

 

 BC concentration (%, w/w) Lipid melting enthalpy (J/g)  

BC/Gelucire 50/13 

0 126.66 ± 0.81 
0.5 122.98 ± 1.72 
1 117.73 ± 3.73 
3 120.66 ± 5.61 
5 117.69 ± 3.10 

BC/ Geleol 

0 110.45 ± 3.57 
0.5 116.56 ± 4.00 
1 113.84 ± 4.76 
3 107.99 ± 6.02 
5 106.86 ± 3.25 

 

 

Given the different issues of sampling and sensitivity, it was important to complement the HDSC 

analysis with further physical methods. The sensitivity of the XRPD was first assessed by 

analyzing the PMs of the individual lipids and BC. For both excipients, even though the signal 

was very low, BC crystalline peaks could still be detected at an active substance load of ∼1% 

(w/w) (data not shown). Fig. 3.5 shows XRPD patterns of the SDs together with that of the pure 

active compound. Pure Gelucire 50/13 exhibited three main broad crystalline peaks at 22.4, 25.1, 

and 27.2° (2θ) and Geleol showed only one broad crystalline peak at 25.1° (2θ). The broadness of 

theses peaks can be explained by heterogeneity in crystallite sizes that is likely caused by the 

aforementioned chemical heterogeneity of the lipids. Gelucire 50/13 SDs comprising 3 and 5% 



Chapter 3. New tool to overcome sensitivity challenges of low-dose crystalline compounds   48 
 
 
(w/w) of BC showed characteristic BC peaks in the scattering ranges of 17.0–20.6° (2θ) and 

28.6–29.3° (2θ) (Fig. 3.5a). The presence of these peaks confirmed existence of crystalline 

compound in the SD. Therefore, disappearance of the active compound endotherm in the DSC 

thermograms was at least partially due to its dissolution during heating. In the diffractogram 

corresponding to a 1% (w/w) BC content, the presence of these peaks was not so evident given 

the signal to noise ratio. This was in line with the sensitivity limit as observed with the physical 

mixtures. In Geleol SDs, BC crystalline peaks were only clearly visible for an active substance 

load of 5% (w/w) in the scattering range of 16.7–22.1° (2θ) and 28.6–29.2° (2θ) (Fig. 3.5b). The 

absence of BC crystalline peaks at for example 3% (w/w) was interesting given the sensitivity 

limit of around 1% (w/w) BC that was estimated from the XRPD experiments of the PMs. The 

SD could have exhibited less crystalline material than the reference PM due to some amorphous 

BC. This assumption can also be confirmed by the shift observed in the peak positions of both 

lipids in SDs containing BC. Indeed, the presence of BC likely affected the crystalline structure 

of the lipids. Another parameter that could also limit the detection of crystalline BC is the 

broadening of the compound crystalline peaks observed in the lipid SDs (Fig. 3.5a, b). In line 

with literature, a decrease in crystallite size is corresponding to widening of crystalline peaks 

[143,144]. Therefore, it is possible that during manufacturing, besides partial BC amorphization, 

some decrease in crystallites size could also have occurred. Based on the XRPD and HDSC data, 

it was obviously not possible to determine how much of crystalline or amorphous material was  

present in the 3% (w/w) SD using Geleol. This low BC concentration was certainly problematic 

regarding sampling in HDSC. However, since one run of the 3% (w/w) BC in Geleol SD 

displayed a clear endothermic peak, there was evidently some crystalline material present. A 

better understanding of the physical state of BC at low concentrations obviously required further 

analytical methods apart from HDSC and XRPD. 
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Fig. 3.5. XRPD diffractograms of Gelucire 50/13 (a) and Geleol (b) solid dispersions containing 
0 to 5% (w/w) BC, as well as of pure BC (c). The rectangles mark BC main crystalline peaks for 

differentiation from the lipid matrix. 
 

 

Detection of BC crystals in the molten or solid state SDs was investigated by microscopic 

techniques. The focus was on low-dose formulations with a BC content of up to 1% (w/w) 

because this was here a barely accessible range for the experimental techniques of HDSC and 

XRPD. Polarized light microscopy in reflection mode showed that molten lipids were completely 

a                                                  c 
 
 
 
 
 
 
 
 
 
 
 
 
 
b                                                           
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transparent, whereas all the molten samples containing BC presented the characteristic orange 

color of the active compound and contained aggregated particles (Fig. 3.6). It is however 

important to stress that particle detection was more difficult in samples having a low active 

compound load. That was for example the case with a BC concentration of 0.5% (w/w) (Fig. 

3.6a, c) for which the analysis of a higher sample amount was necessary to detect the presence of 

BC particles. This confirmed again that sampling issues due to low BC concentration made it 

difficult to identify the physical state of BC.  

 

 

 
 

Fig. 3.6. Polarized light micrographs of molten Gelucire 50/13 solid dispersions containing 0.5% 
(a) and 1% (b) (w/w) BC, as well as Geleol solid dispersions containing 0.5% (c) and 1% (d) 

(w/w) BC. 
 

 

Polarized light microscopy could detect BC particles in the molten SDs, therefore it appeared 

interesting to investigate the surfaces of the SDs by 3D-laser scanning microscopy and AFM.  

3D-laser scanning microscopy provided information about the topography and the color of a 

sample. As a result, inspection of the SDs containing BC indicated the presence of shiny particles 

(Fig. 3.7b, d). These shiny particles were absent in the pure lipids (Fig. 3.7a, c) as well as in the 

SDs containing 0.5% (w/w) BC (data not shown), so they most likely corresponded to BC 
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crystals. In Geleol SDs, the particles were mostly located in the interstitial spaces between the 

spherulites. 

 

 

 
 

Fig. 3.7. 3D-laser scanning images of Gelucire 50/13 (a, b) and Geleol (c, d) solid dispersions 
containing 0% (a, c) and 1% (b, d) (w/w) BC (150x magnification). The circles highlight shiny 

particles present on the surface of the samples. 
 

 

The last microscopic technique used to analyze the BC samples was AFM. Usually, AFM is 

employed to investigate amorphous SDs where for example crystalline compound can be 

detected in an amorphous carrier. Phase image can be constructed from the results of the tapping 

mode and different areas tell about differences in local viscoelastic properties and adhesion forces 

of the materials. Materials having different mechanical characteristics give a different response to 

the applied force and thus exhibit different color contrasts. Soft materials appear dark in the 

phase image whereas hard materials appear light [136,145]. We used phase image AFM analysis 

to identify the presence of BC crystals within the lipid matrices. The superposed AFM 

topography and phase images are displayed in Fig. 3.8. The comparison of the surface of pure 

lipids (Fig. 3.8a, c) and BC loaded formulations (Fig. 3.8b, d) did not reveal clear differences 

since the phase as well as the topography appeared similar. The different tints observed could 

result from the heterogeneous crystallization of the lipids. Interestingly, the particles detected by 



Chapter 3. New tool to overcome sensitivity challenges of low-dose crystalline compounds   52 
 
 
3D-laser scanning microscopy were not detected by the AFM method. Laser light can scan a 

surface while penetrating slightly, whereas the AFM tip could only give information directly of 

the sample surface. The lack of AFM sensitivity may therefore arise from particles that are 

covered with a thin lipid layer. Another possibility is that the low amount of BC crystals 

dispersed in the crystalline lipid matrix did not result in sufficient mechanical differentiation for 

the AFM tip. 

 

 

 
 

Fig. 3.8. Atomic force microscopy superposed topography and phase images of Gelucire 50/13 
(a, b) and Geleol (c, d) solid dispersions containing 0% (a, c) and 1% (w/w) BC (b, d) with an x, 

y-scale of 2 µm. 
 
 

As mentioned earlier, it could not be ruled out that a small BC fraction was in an amorphous 

state. Therefore, SDs containing 5% (w/w) BC were analyzed by 3D-laser scanning microscopy 

and AFM. 3D-laser scanning images (Fig. 3.9a, b) showed that besides the shiny crystalline 

particles (already detected in low-dose SDs) additional red colored areas were visible. These 

areas covered a higher surface in Gelucire 50/13 SD (>20 × 20 µm) than in Geleol SD (∼20 × 

20 µm). The different appearance compared to typical crystalline particles could indicate the 

presence of some amorphous BC. 
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Moreover, the absence of such red areas in samples at a low-dose could be explained by sampling 

issues. Interestingly, AFM did not identify amorphous regions even at 5% (w/w) BC 

concentration. As in SDs containing less BC, no clear differentiation could be made between the 

pure lipids (Fig. 3.9c, d) and their SDs containing 5% (w/w) BC (Fig. 3.9e, f). These different 

findings may be attributed to differing fields of view. Indeed, the size of the samples analyzed by 

AFM (30 × 30 µm) was in the range of the surface covered by the red areas (> 20 × 20 µm). The 

3D-laser scanning microscopy enabled, on the other hand, to observe a much larger sample size 

(> 80 × 80 µm). Given these findings, amorphous BC may have occurred to a rather limited 

extent and appeared probably in the form of surface amorphization of BC particles. A 

considerable amorphous phase would have likely been identified (at 5% (w/w) BC) at length 

scales analyzed by AFM. 

 

 

 
 

Fig. 3.9. 3D-laser scanning images (a, b) and atomic force microscopy superposed topography 
and phase images (c-f) of Gelucire 50/13 (a, c, e) and Geleol (b, d, f) solid dispersions containing 

0% (c, d) and 5% (w/w) BC (a, b, e, f). 
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It can be concluded from the obtained experimental results that different state-of-the-arts methods 

showed sensitivity issues to detect crystalline BC in a mostly crystalline lipid matrix. The main 

problem was obviously the sampling at such low concentrations studied. While in microscopy 

analysis the increase in sample size could substantially lower the detection limit, this was 

different compared with DSC or XRPD. In the latter methods, the detection limits observed were 

depending on the measuring conditions and on the given detector technology. In this study, the 

limits were reflecting screening conditions on standard equipment. Moreover, rather short X-ray 

radiation was deemed as beneficial to avoid optional BC degradation. Such degradation of the 

labile BC can in principle occur under different stress conditions, which also involves heat 

treatment. 

 
Even though the chemical stability was not within the primary scope of this study, it would be 

relevant to know, whether a major fraction of BC degraded during sample preparation. Reversed 

phase HPLC analysis of SDs (3% (w/w) BC) demonstrated that a majority of the active 

compound remained chemically stable after the heating process. Indeed, BC recovery was 90% 

and 77% in Gelucire 50/13 and Geleol SDs, respectively. Moreover, the assessment of trans- to 

cis-isomerization also provided acceptable results. The transformation from trans- to cis-isomer 

was ∼23% in Gelucire 50/13 SDs and ∼25% in Geleol SDs. Such an extent of isomerization is 

rather common in BC formulations [146]. These results confirmed that the obtained physical 

findings in this study were not greatly influenced by chemical degradation of BC. 

 

 

 Study of the solid dispersions using flow-through cross-polarized 3.3.3.

imaging 
 

The different state-of-the-art methods showed limits of sensitivity and particularly issues of 

sampling were critical for analyzing low concentrations of BC in crystalline lipids. There is the 

risk to draw erroneous conclusions about the physical state of BC especially when only one or 

two standard methods are used. The microscopic techniques were as expected best suited to 

analyze low concentrations but considering a typical field of view in polarized light microscopy 

or a conventional scanning range in AFM, sampling is again the most critical factor. It seems 

unpractical to analyze a sufficiently large sample size to study the selected model systems 
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appropriately. Therefore, a new method was needed. This work introduces flow-through cross-

polarized imaging as a new analytical tool. Fig. 3.10 represents the number of particles per gram 

of molten sample as a function of the BC concentration. Raw molten lipids were analyzed first to 

investigate the possible presence of crystalline particles remaining after gentle melting of the 

lipid. The number of particles identified in the pure lipids was used as a reference for analyzing 

the SDs containing BC. Fig. 3.10a displays the number of detected particles for different BC 

concentrations in Gelucire 50/13, which may provide a first estimate of the kinetic solubility of 

BC. Since the number of particles counted at 0.05–0.1% (w/w) BC was in the range of counts 

obtained for pure lipid, this threshold can indeed be viewed as a measure of kinetic solubility 

(Fig. 3.10a). The Geleol SDs were similar to the Gelucire 50/13 SDs in that the number of 

crystalline entities was for most concentrations above the reference (Fig. 3.10b). However, the 

BC concentration of 0.05% (w/w) displayed an overlapping standard deviation with that of the 

pure lipid. This suggested that the limit of detection was reached and that the solubility was 

estimated to be in vicinity of this threshold concentration. Moreover, in both lipid systems, 

increasing BC concentration until 0.8% (w/w) was leading to a moderate increase in the detected 

particles. Then an increase of BC amount to 1% (w/w) resulted in a sharp increase of both the 

number of particles and the standard deviations. Such higher standard deviations could be 

explained by an increase in the opacity of the samples with rising BC content and thus by an 

increased difficulty to detect crystalline particles in a quantitative way. Moreover, aggregation of 

crystalline particles could further lead to increased standard deviations for the particle numbers. 

Results from flow-through cross-polarized imaging confirmed that BC kinetic solubility was 

indeed below the sensitivity limit of DSC and XRPD, which thereby explained why these 

methods were critical to use for the selected model systems. 

The analysis of the recorded pictures would in principle also allow quantitative analysis of 

particle size greater than one micrometer. However, due to shadow effects of the cross-polarized 

light there was some halo that integrated into the particle size analysis. Moreover, aggregates 

were leading to a systematic bias so that the novel tool may be less adequate for quantitative 

particle sizing. Compared to state-of-the-art methods, the new flow-through cell cross-polarized 

imaging technique demonstrated highest sensitivity to detect crystalline BC. It was successfully 

used to overcome the sampling issues encountered with the other techniques, since the flow-

through cell allowed analyzing higher sample amounts. 
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Sample sizes of the introduced method were typically thousand times larger than those 

investigated by DSC or microscopic techniques. As demonstrated, it provided qualitative and 

quantitative information concerning BC crystals and enabled an approximation of BC kinetic 

solubility. There is certainly a limitation of the new method when another compound would melt 

close to the analysis temperature. Solubilization of compound during heating is likely to become 

problematic for the novel flow through technique. In contrast to DSC, where the melting 

temperature of the compound has to be reached to detect crystalline substance, the samples only 

required gentle heating to enable the matrix to flow. Since the melting point of BC is rather high 

(∼180°C), such gentle heating is not expected to cause relevant compound solubilization during 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Number of particles per gram of molten Gelucire 50/13 (a) and Geleol (b) samples as a 
function of BC concentration detected by cross-polarized light in transmission mode. The dashed 

lines represent the variability of the pure (BC-free) samples. 

a                                                   
 
 
 
 
 
 
 
 
 
 
 

b                                                           
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 Conclusion 3.4.
 

State-of-the-art methods exhibited clear sensitivity limits for the characterization of the physical 

state of low amounts of BC in crystalline lipids. It was shown that DSC and XRPD could identify 

the presence of BC crystals in samples containing at least 3% (w/w) BC. However, use of 

conventional polarized light microscopy in transmission mode as well as 3D-laser scanning 

microscopy revealed BC particles in samples having much lower BC concentrations. The 

drawback of classical microscopy and in particular of AFM is the small sample size. Introduction 

of a flow-through cell attached to cross-polarized dynamic imaging provided the means to cope 

with such sampling issues. It was found suitable not only to qualitatively assess the samples but 

also to estimate the kinetic solubility of BC in the different matrices. It may even be used to study 

quantitatively the degree of drug crystallinity provided that the particle density is known apart 

from the particle size. Particle aggregation or opacity of a sample could, however, make such 

analysis troublesome. The new technique has further potential for other applications. In several 

delivery systems the first appearance of a few crystalline substance particles is an indicator of 

physical instability. This is for example true for amorphous SDs. Depending on the physical state 

of the studied system, there would be further technical development needed for the current 

version of the flow-through cell. A further technical development could address advancement in 

the heating of the measurement chamber. Moreover, detection of a few crystalline particles in a 

matrix is interesting also for other applications in pharmaceutics, for example regarding lipid-

based formulations filled in capsules. The lipids are here often partially crystalline and the active 

compound is generally dissolved in the matrix. Changes in the matrix during aging, which could 

be due to polymorphism or because of an increased SFC may alter the active compound 

solubility in the matrix. First active compound precipitation can occur long before such a quality 

issue is for example detected in the dissolution tests. Therefore, flow-through cross-polarized 

imaging bears for different delivery systems a high potential to early anticipate quality failures 

that are due to physical instability. 
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Summary 
 

Amorphous solid dispersions have for many years been a focus in oral formulations, especially in 

combination with a hot-melt extrusion process. The present work targets a novel approach with a 

system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the 

acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl 

chains of the lipid. Such designed lipid microdomains (DLM) were created as a new 

microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-

ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were 

employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium 

silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to 

formulate with conventional solid dispersion formulations. The results indicated that the targeted 

molecular excipient interactions indeed led to DLMs for specific compositions. The different 

methods provided complementary aspects and important insights into the created microstructure. 

The novel delivery system appeared to be especially promising for the formulation of oral 

compounds that exhibit both high crystal energy and lipophilicity. 
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 Introduction 4.2.
 

Solid dispersions (SDs) represent one of the most successful strategies to improve the solubility 

and bioavailability of poorly water-soluble compounds [5]. The first generation of SDs comprised 

crystalline carriers (e.g., urea or mannitol) and was developed in the 1960s. The second 

generation of SDs emerged in the 1970s with the replacement of crystalline excipients by 

amorphous matrices (e.g., polymers or sugar glasses) to overcome the low release rate of 

crystalline SDs. However, the supersaturated state of the compound in the polymeric carrier led 

to its precipitation and crystallization, which negatively affected the release rate and drug 

absorption [4,24]. Another problem of several formulations was their rather poor dispersibility in 

aqueous media such as gastrointestinal fluids, and therefore a third generation of SDs was 

developed in the 1980s. Serajuddin [6] proposed that the use of surface active agents (e.g., lipid 

excipients) as carriers or in combination with polymers can be beneficial in several formulations 

with respect to anhydrous SDs and was deemed as particularly advantageous for the dispersion 

behavior in aqueous media. 

Among the different SD preparation techniques such as spray drying, solvent evaporation or melt 

agglomeration methods, hot-melt extrusion (HME) has become a common manufacturing process 

over the last two decades [4]. HME has several advantages such as being a solvent free and 

continuous process with high applicability and scalability [53]. The most commonly used 

matrices are thermoplastic polymers like cellulose derivatives, polyethylene oxides, or 

polyvinylpyrrolidone [54]. In addition to polymers, other excipients can also be used as carriers 

for HME, and a few reports showed that, as with the melt-adsorption method, stable melt-

extruded amorphous SDs could be produced by adsorbing an active compound onto an inorganic 

carrier [147,148]. There are hence different ways to molecularly disperse a compound in a matrix 

or to convert it into small amorphous domains. 

To explore the full potential of amorphous systems, the development of new microstructures 

would be of high interest. The aim of this study was within this scope to target designed lipid 

microdomains (DLMs) for delivery systems by HME. This new approach is based on a 

combination of a lipid, a polymer and an adsorbent. The lipid was here meant to adsorb onto the 

carrier surface to obtain disordered microdomains of lipid alkyl chains to accommodate an active 

compound. In contrast, previous studies by Gupta et al. [33] and Maclean et al. [147] intended the 

amorphization of an acidic drug by direct adsorption onto an inorganic carrier like aluminum 
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magnesium silicate (AMS). They showed that the acidic moiety of the compounds interacted with 

silicate silanol groups through H-bonds and with magnesium and aluminum ions present on the 

adsorbent surface through ion-dipole interactions. These interactions drove the amorphization and 

stabilization of the acidic drugs. Our novel approach was to employ a fatty acid to adsorb onto 

the AMS inorganic carrier to achieve the aforementioned DLMs for amorphous drug delivery. 

The DLM formulations were prepared by HME. Hydroxypropylcellulose (HPC) was used as an 

immediate or controlled release polymer, and stearic acid (SA) was employed as plasticizer and 

acidic lipid to interact with AMS (Neusilin US2). The first aim was a proof-of-concept regarding 

the technical feasibility of DLM formulations. The influence of AMS on SA crystallinity was 

studied in the melt extrudates by X-ray powder diffraction (XRPD), atomic force microscopy 

(AFM), and scanning electron microscopy (SEM). Interactions between the lipid and the inert 

material were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) 

spectroscopy. The second aim was then to use the DLM delivery system to formulate a model 

compound, i.e., β-carotene (BC). 

 

 

 Materials and methods 4.3.
 

 Materials 4.3.1.
 
HPC (Klucel EF Pharm) was kindly donated by Ashland (Schaffhausen, Switzerland). N-hexane 

(purity _99%), dichloromethane (purity _99.5%), cyclohexane (purity 99.5%), methanol (purity 

99.8%), ethanol (purity _ 99.5%), and acetonitrile (purity _99.9%) were obtained from Merck 

(Darmstadt, Germany). Butylated hydroxytoluene (purity _99%), tetrahydrofuran (purity 

_99.5%), N-ethyldiisopropylamine (purity _98%), 2-propanol (purity _98%), ammonium acetate 

(purity _98%) and stearic acid were purchased from Sigma–Aldrich (Steinheim, Germany). AMS 

(Neusilin US2) was obtained from Fuji Chemical Industry Co., Ltd. (Toyama, Japan). Crystalline 

β-carotene (BC) was supplied by DSM Nutritional Products Ltd. (Basel, Switzerland). 
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 Hot-melt extrusion 4.3.2.
 

HPC, SA and AMS were weighed and premixed with a spatula at different ratios. Table 4.1 

summarizes the different compositions of the extrudates that were prepared by the HME process 

using a Thermo Scientific Haake MiniLab II conical, co-rotating, twin-screw microcompounder 

(Thermo Electron, Karlsruhe, Germany). The premix was manually fed into the extruder hopper 

and the temperature of the barrel was set to 160°C. The screw speed during the feeding step was 

50 rpm, followed by one minute mixing at 250 rpm. Subsequently, the extrudate strand was 

allowed to exit from the flat die by opening the bypass valve. The strands were stored in the 

fridge until analysis. Extrusion with BC (3%, w/w) was performed using the same conditions. 

The BC strands were stored in sealed aluminum bags purged with nitrogen until analysis. The 

placebo samples and BC formulations will be denoted HPC/SA/AMS and HPC/SA/AMS/BC, 

respectively. The most promising formulation containing 70/10/20% (w/w) HPC/SA/AMS, will 

be named designed lipid microdomain (DLM) system. 

 

 

Table 4.1. Formulation composition of extrudate strands produced by HME. 
 

HPC (%, w/w) SA (%, w/w) AMS (%, w/w) BC (%,w/w) 
100 0 0 0 
90 10 0 0 
85 10 5 0 
80 10 10 0 
75 10 15 0 
70 10 20 0* 
80 0 20 0 
97 0 0 3 
87 10 0 3 
77 0 20 3 
67 10 20 3** 
HME = hot-melt extrusion 
HPC = hydroxypropylcellulose 
SA = stearic acid 
AMS = aluminum magnesium silicate 
BC = β-carotene 
* Designed lipid microdomain (DLM) formulation 
** DLM formulation containing 3% (w/w) BC 
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 Time-domain nuclear magnetic resonance 4.3.3.
 

The solid fat content (SFC) of raw SA was measured by time-domain NMR (TD-NMR) using a 

minispec mq 20 (Bruker BioSpin GmbH, Rheinstetten, Germany). Since the samples were 

analyzed with an indirect method, olive oil was used as a reference. The lipid powder and the 

olive oil were filled into separate 18 mm diameter test tubes (20 mm filling height) and heated at 

100°C in an oven for 45 min. A serial tempering method was used for the SFC analysis. The 

tubes were placed at 0°C (ice-bath) for 60 min before the first measurement. The subsequent 

measurements were carried out over a range of 10–80°C, following an equilibration time of 

30 min at each temperature. For each tube, the samples were scanned four times with a frequency 

of 19.95 MHz and a pulse attenuation of 11 dB. The SFC was calculated from Eq. (1) [137]: 

 

SFC (%)= Sample80°C× OilT

SampleT×Oil80°C ×100      (4.1) 

 

where Sample and Oil correspond to the signal intensities obtained for the sample and the olive 

oil, respectively. T is the temperature at which the measurement was carried out, and 80°C is the 

final measurement temperature.  

 

 X-ray powder diffraction 4.3.4.
 

XRPD patterns were obtained using a D2 Phaser diffractometer (Bruker AXS GmbH, Karlsruhe, 

Germany) configured with a fast linear 1-D Lynxeye detector. The radiation was provided by a 

1.8 kW Co KFL tube (wavelength = 1.79 Å) working with a Fe filter. The applied voltage and 

current were 30 kV and 10 mA, respectively. Instead of being milled, the extrudate strands were 

cut into 2–2.5 cm long pieces to avoid the potential recrystallization of the lipid. Four of these 

pieces were positioned in parallel in a sample holder and analyzed at room temperature over the 

2θ range of 6–37°. The time per step was 3 s, and the increment was 0.02° (2θ). SA crystallite 

size was estimated using the Diffrac.Eva v4.0 software (Bruker AXS GmbH, Karlsruhe, 

Germany). Sizes were evaluated by means of Scherrer equation from the full width at half 

maximum of selected peaks. 
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 Attenuated total reflectance Fourier-transform infrared spectroscopy 4.3.5.
 

ATR-FTIR spectra of pure compounds and extrudates were acquired in the 4000–600 cm-1 range 

using a Varian 670 IR spectrometer (Varian Inc., Palo Alto, CA, USA) equipped with a golden 

gate high temperature heated diamond ATR top plate (Specac Ltd., Swedesboro, NJ, USA). The 

spectral resolution was 4 cm-1. Temperature-variable ATR-FTIR analysis of pure SA was 

performed from ambient temperature to 95°C using a Specac 4000 series high stability controller 

(Specac Ltd., Swedesboro, NJ, USA). The temperature ramp was set to 5°C/min, and the sample 

scan number was 16. Spectra were processed using the Agilent ResolutionsPro v5.3.0.1694 

software (Agilent Technologies, Santa Clara, CA, USA). 

 

 Atomic force microscopy 4.3.6.
 

The extrudates were cut with a razor blade. AFM images of extrudate cross sections were 

acquired in tapping mode with a Dimension 3100 with Nanoscope V (controller) from Bruker 

(Karlsruhe, Germany). A Bruker RFESP rectangular cantilever with a resonance frequency of 

75 kHz and a 3 N.m-1 spring constant was used. 

 

 Scanning electron microscopy and energy dispersive X-ray spectroscopy 4.3.7.
 

Cross sections of extrudates were analyzed using a tabletop SEM TM3030 Plus (Hitachi, Tokyo, 

Japan). Pictures were taken with an acceleration voltage of 15 kV. Multiple elemental analysis 

was assessed by energy dispersive X-ray spectroscopy (EDS) with a Quantax 70 system (Bruker 

Nano GmbH, Berlin, Germany), which consists of an X Flash Min SVE signal processing unit, a 

scan generator and Megalink interface, and an X Flash silicon drift detector 410/30H (Bruker 

Nano GmbH, Berlin, Germany). 

 

 Reversed phase high-performance liquid chromatography 4.3.8.
 

A chromatographic method was employed to evaluate BC degradation and cis-trans isomerization 

that could occur during the HME process. The AOAC official method 2005.07 for analyzing BC 
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in supplements and raw materials was used, which is based on reversed phase high-performance 

liquid chromatography, RP-HPLC (Szpylka and DeVries, 2005). The mobile phase consisted of 

butylated hydroxytoluene (50 mg/L)/2-propanol (2%, v/v)/N-ethyl-diisopropylamine (0.02%, 

v/v)/0.2% ammonium acetate solution (2.5%, v/v)/acetonitrile (45.5%, v/v)/methanol (45.0%, 

v/v). BC was extracted from the SDs using butylated hydroxytoluene (100 mg/L)/water (6%, 

v/v)/ethanol (40%, v/v)/dichloromethane (54%, v/v). 

 

 

 Results 4.4.
 

 Study of raw materials 4.4.1.
 

Since the objective was to design lipid microdomains, the crystallinity of pure SA was first 

characterized to better understand the changes induced by the presence of AMS. The SFC of pure 

SA was assessed by TD-NMR at different temperatures (Fig. 4.1a). SA exhibited a SFC greater 

than 99% at room temperature and a melting range between 65°C and 75°C. The main SA 

crystalline peaks in the XRPD spectrum were at 7.8, 13.0, 23.8, 25.1, and 27.9° (2θ) (Fig. 4.1b). 

In contrast, both HPC and AMS showed amorphous XRPD halos (data not shown). Crystallite 

size analysis showed that SA crystallites had sizes between 25 and 53 nm. 
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Fig. 4.1. Solid fat content (SFC) profile as a function of temperature measured by TD-NMR (a), 
and XRPD diffractogram (b) of pure stearic acid (SA). 

 

 

 Characterization of extrudate strands 4.4.2.
 

 Evaluation of SA crystallinity by XRPD 4.4.2.1.

 

HPC hot-melt extrudates containing 10% (w/w) SA were produced at 160°C with increasing 

amounts of AMS (Table 4.1). XRPD analyses showed that the presence of AMS led to a 

complete disappearance of SA peaks at 7.8 and 13.0° (2θ) (Fig. 4.2). Interestingly, an increase in 

AMS concentration from 5 to 15% (w/w) resulted in a gradual decrease in SA peak height around 

a 
 
 
 
 
 
 
 
 
 
 
 
b 



Chapter 4. Designed lipid microdomains for solid dispersions    66 
 
 
23, 25 and 28° (2θ). Crystallite size analysis showed that SA crystallites were smaller in presence 

of AMS than in pure SA. Indeed, the crystallite sizes were between 22 and 36 nm in extrudates 

containing AMS. This showed that the crystallization of the lipid was influenced by the presence 

of the adsorbent. Shifts in the peak positions could also be observed. Shifts are usually attributed 

to changes in the crystalline structure or to the presence of impurities [149]. However, since the 

samples were not analyzed in powder form but rather in the form of strand pieces, such shifts 

were likely due to the positioning and not perfectly flat surfaces of the extrudates. In the 

formulation containing 20% (w/w) AMS, no SA crystalline peak was visible, showing that the 

lipid did not recrystallize after HME. This confirmed the hypothesis that the adsorbent interacted 

with SA acidic moiety to induce disorder in the alkyl chain configuration, leading to a lack of 

lipid crystallinity. This reference system was referred to as designed lipid microdomain (DLM) 

formulation throughout the article. 

 

 

 
 

Fig. 4.2. XRPD diffractogram of extrudates containing different ratios of hydroxypropylcellulose 
(HPC), stearic acid (SA) and aluminum magnesium silicate (AMS). The ratios are denoted 

HPC/SA/AMS in the figure. The designed lipid microdomains (DLM) formulation is composed 
of 70/10/20% (w/w) HPC/SA/AMS. 
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 Interaction of SA with AMS 4.4.2.2.

 

ATR-FTIR spectroscopy was used to study the interactions between SA and the groups present 

on the AMS surface (i.e., silanol, aluminum and magnesium ions). Changes in the absorbance 

spectra were observed in four different regions in presence of the adsorbent. The first region was 

the high-frequency region (3100–2400 cm-1), related to OH and CH stretching vibrations       

(Fig. 4.4a). The second region between 1750 and 1550 cm-1 was characteristic of C=O and COO- 

stretching vibrations (Fig. 4.3a), and the third vibration region (1500–1180 cm-1) was assigned to 

dimer ring, C--O--H bending and CH wagging (Appendix A: Fig. 4.14). Finally, the last region 

(750–700 cm-1) displayed changes of methylene rocking vibrations (Fig. 4.4b). The 1180–

800 cm-1 absorption range could not be interpreted because of overlapping bands corresponding 

to HPC ethereal (C--O--C) and Si--O vibrations. 

 

 

 SA head group vibrations  

In the pure SA and 90/10% (w/w) HPC/SA extrudate spectra, a broad band corresponding to SA 

dimer H-bonded hydroxyl groups was visible in the 3100–2400 cm-1 region. The absence of this 

band in extrudates containing AMS (data not shown) indicated a modification in SA 

intermolecular interactions. 

The characteristic C=O stretching band of SA dimers was observed at 1699 cm-1 with a small 

shoulder at 1685 cm-1 (Fig. 4.3a). A shift to a higher frequency (1703 cm-1) was observed in all 

extrudates. Moreover, an increasing amount of AMS led to the vanishing of this band, while a 

new band appeared at 1587 cm-1, indicating carboxylate formation. Fig. 4.3b shows the evolution 

of the area under the curve corresponding to the dimer and the carboxylate vibration bands. Since 

both bands are isolated, the integral band can be used for quantification providing more robust 

results than a single absorbance value. The intensity of the dimer band gradually decreased with 

an increasing AMS content, while the carboxylate band intensity increased to reach a maximum 

for the DLM formulation. It could also be observed that the intensity of the C--O--H vibrations at 

1429, 1410 (in-plane bending), and 1297 cm-1 (stretching) decreased with AMS concentration 

until they practically disappeared in the DLM formulation (Appendix A: Fig. 4.13). The observed 

changes in SA head group vibrations with increasing amount of adsorbent showed a modification 
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in the lipid intermolecular interactions and suggested the creation of new interactions between SA 

and the inorganic carrier, as was targeted for the DLM. 

 

 

Fig. 4.3. Room temperature ATR-FTIR absorption spectra of pure SA, and HPC/SA/AMS 
extrudates in the regions of C=O and COO- stretching (a), and area under the curve 

corresponding to dimer band (- - + - -) and carboxylate band (- -●- -) as a function of formulation 
composition (b). 

 

 

 SA alkyl chain vibrations  

Changes showing disruption in the alkyl chains conformation were observed in the region 3000-

2800 cm-1, corresponding to CH stretching vibrations (Fig. 4.4a). A significant decrease in the 

a 
 
 
 
 
 
 
 
 
 
 
 
b 
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intensity of the two bands characteristic of asymmetric (2914 cm-1) and symmetric (2847 cm-1) 

CH2 stretching vibrations was noted with increasing amount of AMS. Moreover, the weak 

asymmetric CH3 vibration band (with a maximum at 2954 cm-1 and a shoulder at 2964 cm-1) was 

only visible clearly in the 90/10% HPC/SA and 85/10/5% HPC/SA/AMS extrudates. In the other 

formulations, the two asymmetric vibrations as well as the symmetric vibration at 2871 cm-1 

could not be detected. In the region 1500–1180 cm-1 (Appendix A: Fig. 4.13), the CH2 scissoring 

vibrations appeared as a doublet (1471 and 1462 cm-1) in pure SA.  

 

 

 

Fig. 4.4. Room temperature ATR-FTIR absorption spectra of pure SA, and HPC/SA/AMS 
extrudates in the regions of CH stretching (a), and CH rocking (b) vibrations. 

 
 

a 
 
 
 
 
 
 
 
 
 
 
 
b 
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The intensity of the two peaks decreased when AMS amounts increased and were even not 

visible at all in the DLM formulation. Additionally, the intensity of the methylene wagging bands 

between 1350 and 1150 cm-1 (Appendix A: Fig. 4.13) started to vanish with increasing AMS 

concentration until practical disappearance in the DLM system. In the region 750–700 cm-1    

(Fig. 4.4b), the CH2 rocking vibration band appeared as a doublet (729/719 cm-1) in pure SA. It 

was again observed that the band started to vanish with an increasing amount of adsorbent. In the 

DLM system, only a shoulder could be detected at approximately 719 cm-1. In conjunction with 

the changes in head group vibrations, the aforementioned CH vibration modifications indicated 

that the alkyl chain conformation of the pure lipid was strongly disrupted by the presence of the 

adsorbent. 

 

 

 Temperature-variable ATR-FTIR analysis of SA 4.4.2.3.

 

 SA head group vibrations.  

In the DLM delivery system, it seemed that SA exhibited disorder of the alkyl groups due to 

molecularly designed interactions with AMS. To better understand the observed changes in the 

DLM formulation, the comparison with SA FTIR bands upon melting appeared to be of great 

interest. Indeed, the melting that corresponds to a progressive loss of crystallinity also leads to an 

increased disorder and could be related to the non-crystallinity of SA in the DLM system. As 

shown in Fig. 4.5 and Fig. 4.6, variations were observed in the same regions as described above 

for the extrudates. The most important changes occurred between 72 and 73°C, corresponding to 

SA melting. Above 75°C, the spectra did not show any further changes. In the region 1750–

1550 cm-1 the carboxylic acid band started to shift to higher frequencies between 72 and 72.5°C 

and showed a maximum shift of 13 cm-1 at 73°C (Fig. 4.5). As expected, no band corresponding 

to carboxylate formation (1630–1550 cm-1) was observed, in contrast to the DLM formulation. 

Changes could also be detected in the region 1500–1150 cm-1 (Appendix A: Fig. 4.14). From 

room temperature to 73°C, the intensity of C--O--H bending and stretching vibrations (1429, 

1410 and 1297 cm-1) strongly decreased. Finally, above 75°C, they only appeared in the form of 

broad bands corresponding to a high disruption in dimer intermolecular interactions when SA 

was in a molten state. 
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Fig. 4.5. ATR-FTIR absorption spectra of SA as a function of temperature, and of the DLM 
formulation extrudate at room temperature in the regions of C=O and COO- stretching vibrations. 
 

 

 SA alkyl chain vibrations 

Fig. 4.6a shows that the band intensity in the region 3000–2800 cm-1 of pure SA (corresponding 

to CH2 and CH3 stretching vibrations) decreased with increasing temperature. The two CH2 

stretching vibrations started to shift to higher frequencies between 72 and 72.5°C and showed a 

maximum shift of 7 cm-1 at 73°C and above. Temperature had the same effect on the CH3 

stretching vibrations of SA. The intensity of the doublet at 2964 (asymmetric stretching) and 

2954 cm-1 (symmetric stretching) decreased with increasing temperature until it only appeared as 

a shoulder at 2954 cm-1 when SA was in the molten state. Additionally, SA CH2 scissoring 

vibration doublet (1471 and 1461 cm-1) exhibited an intensity decrease with increasing 

temperature (Appendix A: Fig. 4.14). Above a temperature of 65°C, the two peaks merged and 

only a single band was visible at 1463 cm-1. The same phenomenon was observed for the CH2 

rocking vibration (Fig. 4.6b). The two peaks of the doublet that were visible at 25°C 

(728/719 cm-1) progressively merged until they appeared as a singlet at 721 cm-1 above 55°C. It 

was also observed that the wagging bands between 1350 and 1150 cm-1 changed on heating. The 

intensity of the successive band decreased upon SA melting until its complete disappearance 

above 75°C. 
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Fig. 4.6. ATR-FTIR absorption spectra of SA as a function of the temperature, and of the DLM 
formulation extrudate at room temperature in the regions of CH stretching (a), and CH rocking 

vibrations (b). 
 

 

 AFM and SEM/EDS analyses of the extrudates 4.4.2.4.
 
Since XRPD and FTIR analyses showed a disruption in SA crystallinity due to AMS, it was of 

great interest to examine the presence of SA crystals in the extrudate strands. AFM analysis was 

chosen since it allows differentiating crystalline areas from an amorphous phase by assessing the 

mechanical properties of a sample surface. Fig. 4.7 shows the 3D height images of extrudate 

cross sections. The pure HPC extrudate appeared smooth (Fig. 4.7a), whereas the 90/10% (w/w) 

HPC/SA sample (Fig. 4.7b) displayed large sharp structures (~ 100–800 nm) protruding from the 

a 
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surface that probably corresponded to SA crystals. In presence of 5% AMS (Fig. 4.7c), these 

structures were still visible but appeared to be smaller (100–400 nm). By increasing the AMS 

amount to 15% (w/ w), their number decreased (data not shown). Finally, in the DLM sample, no 

SA crystalline structure could be detected, suggesting that the lipid did not recrystallize following 

HME (Fig. 4.7d). 

 

 

 
 

Fig. 4.7. AFM 3D height images of extrudates composed of 100% HPC (a), 90/10/0% (b), 
85/10/5% (c) (w/w) HPC/SA/AMS, and DLM system (d) with x, y scale of 5 µm. Protruding 

white structures in (b, c) correspond to SA crystals. 
 

 

SEM and EDS analyses were conducted to elucidate the distribution of the components in the 

extrudates (Fig. 4.8). The extrudate composed of pure HPC had a smooth surface (data not 

shown). In contrast, the extrudate without SA, composed of 80/20% (w/w) HPC/AMS was rather 

porous (Fig. 4.8a). Moreover, structures of approximately 34–40 mm were protruding from the 

surface. As shown in the EDS picture (Fig. 4.8b), these structures were composed of Si, Al, Mg, 
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and O, which corresponded to the adsorbent composition. Regions of porosity as well as others 

that were rich of Si, Al, Mg, and O were also observed in the samples containing up to 15% 

(w/w) AMS (data not shown). In the DLM formulation (Fig. 4.8c), some structures were also 

visible. However, in contrast to the samples containing lower amounts of AMS, they did not 

correspond to Si, Al, Mg, and O rich areas in the EDS image (Fig. 4.8d). The EDS colors 

corresponding to the different atoms were homogeneously distributed. 

 

 

 

 
 

Fig. 4.8. SEM (a, c) and corresponding EDS (b, d) pictures of 80/20% (w/w) HPC/AMS (a, b) 
and DLM system (c, d). 

 

 

 Extrudates containing β-carotene as model compound 4.4.3.
 

The DLM formulation was extruded with 3% (w/w) BC. For comparison, BC was also extruded 

with HPC alone, HPC/SA, as well as HPC/AMS. Table 4.1 summarizes the different formulation 

compositions of the BC extrudates. XRPD diffraction patterns were analyzed to assess the 

presence of BC crystalline peaks in the extrudates and to determine if the presence of BC had an 

effect on SA crystallinity. Fig. 4.9a shows that in pure BC the main peaks appeared at 13.6, 16.9, 

18.0, 19.4, 21.8, 24.8, 25.4 and 28.7° (2θ). In the extrudate composed of 97/3% (w/w) HPC/BC 
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(Fig. 4.9b), the BC peaks were still visible around 17.0, 19.7 and 22.0° (2θ). In the 77/ 20/3% 

(w/w) HPC/AMS/BC sample, only two small BC crystalline peaks could be detected around 19.8 

and 22.2° (2θ). Finally, in the DLM system containing BC, no crystalline peaks were detected. 

As mentioned previously, the peak shifts could be again interpreted as an effect of the strand 

positioning in the sample holder. 

 

 

                                      
 

Fig. 4.9. XRPD diffractograms of pure β-carotene (BC) (a) and of extrudates containing 3% 
(w/w) BC (b). 

 

 

We also analyzed ATR-FTIR spectra to verify that BC did not disturb the interactions between 

AMS and SA and to identify potential further interactions that were caused by BC. In presence of 

a 
 
 
 
 
 
 
 
 
 
 
 

b 
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BC, changes could only be detected in the carbonyl region (Fig. 4.10). Compared to the DLM 

formulation, the intensity of the C=O stretching band was lower in presence of BC, whereas the 

carboxylate band looked similar. 

 

 

 
 

Fig. 4.10. Room temperature ATR-FTIR spectra of placebo DLM formulation and DLM 
formulation containing 3% (w/w) BC. 

 

 

In a next step, AFM images of BC extrudates were analyzed to potentially identify the presence 

of any crystalline BC in the matrix. The comparison between BC formulations was based on 

phase pictures (Fig. 4.11) in which crystals were more easily detected compared to in height 

images. As shown in Fig. 4.11a, small structures were clearly visible in the 97/3% (w/w) 

HPC/BC extrudate. Thus, numerous dark entities were present on the surface and could be 

assigned to BC crystals. In the 87/10/3% (w/w) HPC/SA/BC extrudate (Fig. 4.11b), it was 

difficult to differentiate BC crystalline structures from other large entities that corresponded to 

SA crystals. However, since the number of small entities was greater in the BC formulation than 

in the placebo system, it was suggested that they corresponded to BC crystals. 

In the sample composed of 77/20/3% HPC/AMS/BC, small BC structures could again be hardly 

differentiated from other large protruding structures (Fig. 4.11c). These entities could most likely 

be assigned to AMS since they were also visible in the 80/20% (w/w) HPC/AMS sample (data 

not shown). However, small structures in the BC containing sample seemed to be more 
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numerous, which could be assumed to be due to the presence of crystalline BC. Finally, in the BC 

loaded DLM sample (Fig. 4.11d), there was no protruding structure detected, which entails that 

neither SA nor BC were in a crystalline form. 

 

 

 
 

Fig. 4.11. AFM phase images of extrudates composed of 97/3% (w/w) HPC/BC (a), 87/10/3% 
(w/w) HPC/SA/BC (b), 77/20/3% (w/w) HPC/AMS/BC (c), and DLM formulation containing 

3% (w/w) BC (d). Large white structures visible in (b) correspond to SA crystals already 
identified in the height images (Fig. 4.8). 

 

 

To complement the physical studies of the formulations, we also conducted a chemical analysis 

of BC in the products. Even though BC stability was not within the primary scope of the study, it 

appeared important to verify that BC degradation was acceptable for a thermal manufacturing 

process. It was found that BC degradation was less than 20% in all formulations (data not 

shown). BC was primarily a model compound but the results of the chemical analysis were rather 

promising with respect to using HME as processing technique.  
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 Discussion 4.5.
 

 Molecular design of lipid microdomains 4.5.1.
 
The present study aimed at a new microstructure for SDs using HME. Fig. 4.12 displays the 

targeted molecular interactions between the lipid acid SA and the inorganic carrier to reduce the 

lipid crystallinity, thereby creating DLMs for inclusion of molecularly dispersed or amorphous 

compounds. In this study, AMS was chosen as an inorganic excipient because of its potential to 

interact with an acidic moiety. Unlike previous studies where the acidic compound was a drug 

[33,147,150], we adsorbed a lipid excipient to design microdomains for amorphous compound 

formulation. The acidic lipid excipient, SA, had a further role as HPC plasticizer in the HME 

process. TD-NMR analysis of pure SA showed that it is a highly crystalline fatty acid at room 

temperature, having a melting range between 65 and 75°C. Fig. 4.12 shows that pure crystalline 

SA exists as H-bonded dimers with an orthorhombic packing of methylene chains [151,152].  

 

 

 
 

Fig. 4.12. Schematic of H-bond and ion-dipole interactions between stearic acid (SA) and 
aluminum magnesium silicate (AMS) in the designed lipid microdomains (DLM) system. 

 

 

According to previous studies, a perfect crystalline structure leaves only little space for 

accommodation of an active compound [139,140,153]. In a classical lipid SD, any active 

compound is hence mainly located between the lipid chains, in amorphous microdomains, or 
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between the lipid layers [153]. Therefore, designing microdomains, where the fatty acid would be 

in a non-crystalline state, could be of great interest to accommodate an active compound in the 

final formulation. Moreover, it could also limit stability issues such as compound expulsion over 

time due to polymorphic changes of crystalline lipid [127]. XRPD diffractograms (Fig. 4.2) 

demonstrated a lower SA recrystallization using increasing amounts of AMS. Comparison of SA 

crystallite size with the size of the protruding entities visible in AFM pictures showed that SA 

was multicrystalline. Indeed, it was found that SA crystallites had sizes between 22 and 36 nm by 

XRPD in the extrudates, whereas SA crystals in AFM images had sizes between 100 and 800 nm. 

XRPD analysis allowed measuring the size of the single crystallites that composed the protruding 

structures visible by AFM. Finally, it was even feasible to completely inhibit SA recrystallization 

following the HME process, as was achieved with the DLM formulation. The disappearance of 

SA crystals with an increase in AMS concentration was confirmed by AFM analysis (Fig. 4.7). 

The AFM images suggested that the DLM system did not contain any SA crystals, whereas they 

could clearly be detected in the other extrudates. These results further supported the illustration 

given in Fig. 4.12 with respect to the DLM microstructure. The molecular interactions between 

the two excipients were also supported by ATR-FTIR spectroscopy. Several changes were 

observed in the vibrations of the SA head groups and alkyl chains that depended on the AMS 

content (Fig. 4.3 and Fig. 4.4). Interestingly, the same bands were affected upon SA melting (Fig. 

4.5 and Fig. 4.6). The heating experiments started with SA in the form of H-bonded dimers, 

which could be identified by the presence of a large band between 3100 and 2400 cm-1, a C=O 

stretching band at 1699 cm-1, and C--O--H stretching and bending vibrations at 1429, 1410 and 

1297 cm-1. The orthorhombic packing of the alkyl chains was identified by the splitting (known 

as Davydov splitting) of methylene scissoring (1461 and 1471 cm-1) and rocking (728 and 719 

cm-1) bands [151]. Upon SA melting, it was observed that the dimer and alkyl chain vibrations 

bands showed important transitions (Fig. 4.5 and Fig. 4.6). Namely, all head group vibrations 

vanished, and the C=O stretching vibration band (1699 cm-1) shifted to higher frequencies with 

the temperature. These changes proved that as SA was heated, the dimer associations became less 

ordered. Additionally, all alkyl chain vibration bands vanished with temperature, methylene 

stretching bands shifted to higher frequencies, and Davydov splitting of scissoring and rocking 

vibrations decreased. It is known that peak position and intensity are related to the degree of 

conformational order of the methylene chains [152]. Therefore, the peak shifts and their intensity 

reduction can be explained by an increasing disorder in the lipid methylene chain conformation 
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upon melting. This was also supported by the decrease in Davydov splitting, which is observed 

when a modification in the alkyl chain packing occurs [151]. 

As mentioned previously, the observed spectral modifications of extrudates containing AMS 

were similar to those observed upon SA melting. Indeed, the same vibration bands vanished and 

shifted with increasing amount of adsorbent as with rising temperature. The highest band 

modifications were observed with the DLM system. The band shift was similar to that observed 

in SA spectrum at 72.5°C. The peak vanishing was similar to that of molten SA above 80°C. 

Thus, it can be concluded that in the extrudates, the presence of AMS provided a relevant degree 

of disorder in SA conformation (Fig. 4.12). Upon cooling, it seemed that SA did not return to its 

initial crystalline structure but was mostly in a highly disordered form. Another important 

observation was also the appearance of a new band at 1587 cm-1 that corresponded to carboxylate 

formation. The appearance of the carboxylate band showed that other interactions were involved. 

As reported by Bahl and Bogner , and Gupta et al. [33,150], Al3+ and Mg2+ ions present on the 

AMS surface can interact with an acidic compound via ion-dipole interactions. As illustrated in 

Fig. 4.12, it could be assumed that the interactions between AMS and SA were of a double 

nature: (1) H-bonds between SA carboxylic groups and AMS silanol groups and (2) ion-dipole 

interactions between carboxylate groups and the adsorbent cations. The results found by XRPD 

and AFM analyses were in agreement with the ATR-FTIR spectral changes. The gradual 

decrease in FTIR vibration band intensity (head group and alkyl chain vibrations) with an 

increased adsorbent amount was in correlation with a decrease in SA XRPD crystalline peak 

intensity. In the case of the DLM formulation, no SA crystalline peak was visible at all, which 

could be linked to the nearly complete vanishing of ATR-FTIR vibration band intensity, 

corresponding to a higher disruption in SA crystalline lattice. However, it could not be ruled out 

that a very small fraction of SA was still in crystalline form. Indeed, the dimer peaks did not 

completely disappear, and the band shifts were less pronounced than for molten SA. However, 

since they could not be detected by XRPD or AFM analyses, it can be assumed that potentially 

remaining dimers would not affect the capacity of the system to accommodate a poorly water-

soluble compound. Long-term stability studies were beyond the scope of the present study but 

they could reveal the thermodynamically most stable structure. It is possible that the SA 

adsorption on the inorganic carrier is only the kinetically favored structure, so that residual SA 

nuclei would give rise to further growth and crystallization. Residual crystals of SA would, on 

the other hand, barely have relevance for a DLM formulation when the SA interaction with the 
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carrier is thermodynamically stable. It is interesting to compare the current strategy of the DLM 

system for HME with nanostructured lipid carrier (NLC) formulations. In NLC systems, 

imperfections are created by the incorporation of a liquid lipid into a crystalline lipid carrier. This 

avoids the expulsion of the active compound [140,153]. NLC systems are primarily used in non-

oral formulations but this is not the main difference from the DLMs. The latter novel systems 

were designed by a targeted molecular interaction between excipients. In contrast, NLC 

formulations are based on the inclusion of an excipient that disturbs the lipid crystallization. 

A further aspect to consider in the novel SDs is macroscopic homogeneity. From SEM and EDS 

analyses, it was concluded that the DLM system displayed a homogenous distribution of all 

components. The lipid domains were obviously quite evenly distributed in the systems, and the 

absence of larger aggregates of any kind might be advantageous from a stability viewpoint. 

 

 

 Formulation of a lipophilic, highly crystalline compound using DLM 4.5.2.
 

As already mentioned, BC is a lipophilic compound having a high crystalline energy. Therefore, 

the use of conventional HME polymeric formulations can be a challenge to obtain an amorphous 

solid dispersion. Indeed, there are only few polymers with a solubility parameter that is 

reasonably close to the estimated solubility parameter (δ) of our model compound BC (δBC = 17.5 

MPa1/2, as estimated by Molecular Modeling Pro, v6.2.6.; Norgwyn Montgomery Software, 

USA). Thus, a suitable polymer should be selected so that the solubility parameter difference 

between polymer and compound is minimal to achieve good miscibility, i.e., δpolymer - δcompound < 

7 MPa1/2 [83,92]. According to this rule, lipids, which usually have a solubility parameter 

between 10.5–24.5 MPa1/2 [83], are good candidates for BC formulation. However, it was 

reported in a previous study that BC solubility was essentially low in simple lipid-based SDs 

[154]. The present work therefore used the novel DLM delivery system to assess its ability to 

accommodate BC in an amorphous form. The temperature (160°C) was deliberately set below the 

BC melting point (~180°C) to limit thermal degradation. Even though HPC has a Hansen 

solubility parameter of 20.8–22.1 MPa1/2 [155], it was expected that a formulation composed of 

the polymer alone would not enable converting BC in an amorphous state (Fig. 4.9b). This 

probably resulted from the extrusion temperature being below BC melting point. The 

formulations composed of 77/20/3% (w/w) HPC/AMS/BC and 87/10/3% (w/w) HPC/SA/BC 
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exhibited small BC crystalline peaks, which indicated that neither system could entirely 

accommodate 3% amorphous BC. In contrast, the DLM system allowed total disappearance of 

BC crystallinity because of the lipid microdomains. XRPD results were supported by AFM 

analysis. No BC or SA crystals could be detected in the DLM formulation. In the polymer/BC 

extrudate, however, BC crystals were clearly visible. In the HPC/SA/BC and HPC/AMS/BC 

samples, BC crystals could not easily be detected, but the presence of numerous small particles 

compared to the placebo samples was assigned to BC crystallinity. Since BC is sensitive to 

temperature, it was important to verify that the lack of BC crystalline XRPD peaks or structures 

in the DLM system were not the result of a high degradation during HME. HPLC stability data 

showed that even though BC was exposed to a high processing temperature its degradation was 

comparatively low. It was also observed that all-trans BC was lower in the formulations 

containing AMS. Even though BC was primarily used as model compound, the novel DLM 

formulations could not only be meaningful from a physical viewpoint but also with respect to 

minimal chemical degradation following manufacture. 

 

 

 Conclusion 4.6.
 

The aim of the current work was to design lipid microdomains on an inorganic carrier by HME in 

a polymeric matrix. The classical SD formulation approach usually involves the selection of 

excipients and analyzing the structure and stability of the SD and the potential resulting 

interactions. In this study, an entirely new approach was to molecularly design excipient 

interaction to obtain a desired microstructure to host amorphous drugs. This new way of thinking 

could be employed in future formulations to specifically design also other microstructures to 

tailor SD formulation properties such as stability, release rate, or drug loading capacity. This 

could also be assisted by molecular modeling for the prediction of compatibility and interactions 

between different excipients. The advantage of the DLM delivery system was the absence of 

solid lipid recrystallization after HME. It is certainly an advantage that the HME processing 

technology is a single-step, solvent free process that can run in a continuous way. It is interesting 

to mention that the use of AMS facilitated the cleaning of the extruder barrel, which could 

increase the production efficiency. DLM is a newly introduced delivery system that has a high 

potential in the field of SD formulation. It would be of great interest to conduct long term 
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stability studies. Such future studies may also test the performance of the DLM SDs with respect 

to drug release and behavior upon in vitro digestion, and finally pharmacokinetic studies in vivo 

would be next steps in the further development of this pertinent novel delivery principle. 

 

 

Appendix A 
 

Spectra corresponding to C--O--H bending and stretching as well as CH scissoring and wagging 

vibrations of extrudates and of pure SA upon melting are presented in this Appendix A to support 

information given in sections 4.4.2 and 4.4.3. 

 

 

 
Fig. 4.13. Room temperature ATR-FTIR absorption spectra of SA, and HPC/AMS/SA extrudates 
in the region of C-O-H bending and stretching as well as CH scissoring and wagging vibrations. 
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Fig. 4.14. ATR-FTIR absorption spectra of pure SA and of the DLM formulation as a function of 

the temperature in the region of C-O-H bending and stretching as well as CH scissoring and 

wagging vibrations. 
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Chapter 5. Multifractal characterization of extrudates 

 
 Multifractal characterization of  pharmaceutical hot-melt 5)

 extrudates 
 

Summary 
 

Multifractal geometry has become a powerful tool to describe complex structures in many fields. 

Our first aim was to combine imaging and multifractal analysis to better understand the 

microstructure of pharmaceutical extrudates. A second objective was to study erosion/dispersion 

behavior of the formulations because it would condition release of any drug. Different 

formulations containing a lipid, a polymer and different silica-based inorganic carriers were 

produced by hot-melt extrusion at various screw speeds. Multifractal analysis was based on 

scanning electron microscopy/energy dispersive X-ray spectroscopy images. This microstructural 

analysis was complemented with dynamic optical imaging of formulation erosion/dispersion 

behavior. Multifractal analysis indicated that inorganic carrier type and concentration as well as 

the screw speed affected the microstructure of the extrudates. The aqueous erosion/dispersion 

study showed that only the type and concentration of inorganic carrier were important. The use of 

microstructural and dispersion analysis appeared to be complementary to better characterize and 

understand complex formulations obtained by hot-melt extrusion.  

 

 

 Introduction  5.2.
 

Fractals revolutionized the geometric description of real objects and they have been applied in 

various fields like geophysics, material sciences, ecology, agronomy, medical sciences, or more 

recently, pharmaceutical sciences [99,100]. The concept of fractals enables description of 
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complex physical objects that have irregular shapes or fragmented structures and that can 

therefore be assigned to non-integer dimensions. Fractals are characterized by their self-similarity 

or invariance under scale of magnification [99,156]. Even more complex are multifractals that 

can be viewed as a superposition of homogeneous monofractal objects, i.e. objects that are 

invariant by translation. Although multifractals provide a powerful mathematical model for 

complex structures, applied sciences were more often using a single fractal dimension to describe 

non-Euclidean objects [156]. Applications of fractal geometry have largely profited from modern 

tools of image analysis [157–160]. Evolution and advances in imaging techniques over the last 

decades have enabled better characterization and understanding of objects structure and 

morphology. While optical microscopy is the simplest method but limited to micrometer range, 

electron microscopy enables observation of systems in the nanoscale range [161]. Other useful 

methods are for example atomic force microscopy for topographic measurements or confocal 

Raman spectroscopy, which provides information on molecular composition [162]. Fractal 

analysis of such imaging data is particularly of interest when it is possible to link a mathematical 

dimension (or set of dimensions) to object microstructure. In geoscience, for example, 

multifractal analysis of images was used to quantify clusters of calcium silicate hydrate from 

Portland cement [160]. Another example in food sciences emphasized discrimination of apple 

microstructures by multifractal analysis [159]. In pharmaceutical technology, Thibert et al. [163] 

found a link between surface geometry of granules in solid dosage forms and physical behavior 

(i.e., bulk density, compressibility, and angle of repose) using fractal geometry. There are other 

further promising applications of classical fractal analysis in pharmaceutical technology [100] but 

the multifractal formalism has to our knowledge not been used to investigate pharmaceutical 

excipients or drug products. 

In this study, multifractal analysis was applied to characterize solid pharmaceutical formulations 

produced by hot-melt extrusion (HME). These extrudates contain silica-based adsorbents, which 

can be advantageous regarding a direct interaction with drug or with lipids. Indeed, as shown by 

Gupta et al., interactions between an inorganic carrier and a drug can imply the formation of a 

physically stable amorphous formulation [33]. In another study, Adler et al. targeted interactions 

between an adsorbent and a fatty acid to thereby design microdomains of non-crystalline lipid, 

which facilitated inclusion of a poorly soluble compound [16]. Such rather complex drug delivery 

systems are needed to formulate new drug candidates because they often exhibit poor aqueous 

solubility that typically leads to erratic oral drug absorption [10,13,26]. The formulation of such 



Chapter 5. Multifractal characterization of extrudates    87 
 
 
challenging compounds relies on specific combinations of excipients and process parameters and 

HME has become one of the preferred manufacturing technologies. Besides being a solvent-free, 

continuous process with wide application in the pharmaceutical industry, HME also provides 

high mixing quality [57,164]. Indeed, the shear forces generated by the rotating screws ensure 

good mixing and hence dispersion of components in the formulation. Typical pharmaceutical 

studies focus on the physical state of the drug in such extrudates but regarding dosage form 

performance, it seems that a better structural understanding of such components should be 

achieved in general. The purpose of the current work was to analyze images of produced 

extrudates by multifractal geometry using scanning electron microscopy (SEM)/energy dispersive 

X-ray spectroscopy (EDS). Different silica-based adsorbents (granulated, fumed, hydrophobic, 

hydrophilic, crystalline) were selected. The formulation microstructure is at least to some extent 

defining the product attributes. It can later in development be tested how changes of the 

microstructure affect given quality attributes such as mechanical properties, drug release, or 

stability. Therefore, the influence of the concentration as well as the type of inorganic material 

were studied with a general interest in effects on the obtained microstructure. Since screw speed 

is an important parameter in the HME process, this factor was also considered in the multifractal 

analysis. The structural analysis was complemented with optical imaging of aqueous 

erosion/dispersion behavior because the type of erosion and dispersion is expected to be critical 

for oral dosage form performance. Previous use of optical imaging for self-dispersion testing has 

primarily focused on matrix systems intended for controlled release [165]. Only a few studies 

reported the use of optical imaging for the assessment of erosion/swelling behavior of solid 

dispersions (e.g. Harmon et al. and Bialleck et al. [166,167]. Our approach was to study self-

dispersibility as an early check and de-risking method in solid dispersion development. A typical 

prerequisite of biopharmaceutical performance is that solid dispersions exhibit some degree of 

self-dispersion ability [6]. A good self-dispersibility may likely facilitate good drug release. 

However, one should bear in mind that good dispersibility of placebo extrudates cannot guarantee 

suitable release kinetics. As described by Pudlas et al. and Bravo-Osuna et al. [113,168], strong 

drug/excipient interactions can still lead to poor or even absence of drug release. On the other 

hand, poorly self-dispersing formulations have a high risk of inadequate drug release. In our 

study, interactions between excipients or strong adsorption to the inorganic carrier bear indeed 

the risk of inadequate dispersibility so that an early screening of self-dispersibility was 
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conducted. Thus, combination of microstructural and dispersion analysis was aiming at a better 

understanding of complex extrudates. 

 

 

 Essentials of multifractal analysis 5.3.
 

Fractal objects are characterized by their self-similarity regardless of the observation scale. 

Mathematically, this property can be translated by the scaling law: 

 

N(ε) ~ ε-D0  (5.1) 
 

where N is the number of features having a certain linear dimension ε, and D0 is the fractal 

dimension of the object [99,157,159]. The box-counting method is one of the existing methods 

that allow calculation of the fractal dimension from binary two-dimensional images. The 

approach consists in covering a 2-D image with boxes of sizes ε. The number N of boxes 

containing at least one pixel of the observed object is recorded and this procedure is repeated 

with a range of different box sizes. The fractal dimension D0 is calculated from the equation: 

 

D0 = ε→0
lim log N(ε)

log1
ε

  (5.2) 

 

However, more complex structures cannot entirely be described by monofractal analysis. 

Multifractal is an extension of fractal analysis, which decomposes self-similar measures into 

intertwined fractal sets that are characterized by their singularity strength and fractal dimension 

[157,159,169]. Multifractals can therefore be described as a superposition of homogeneous 

fractal objects and are characterized by a sequence of generalized fractal dimensions [99,159]. In 

multifractal analysis the probability Pi of finding the object pixel in the ith box is determined by: 

 

Pi(ε) ~ εαi  (5.3) 
 

with αi Lipschitz-Hölder exponent corresponding to the density in the ith box [157,159]. 
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The number of boxes N(α) where Pi has singularity strengths between α and α + dα is found to 

scale as: 

 

N(α) ~ ε-f(α)  (5.4) 
 

where f(α) is the Hausdorff fractal dimension of the set of boxes with singularities α [169,170]. 

The box counting method determines the partition function X(q, ε), which can be considered as 

the probability to find the object in the ith box for different moments q varying in the [−∞; +∞] 

interval. The partition function is expressed as follows: 

 

X(q,ε) = ∑ pi
q(ε) ~ ε(q-1)DqN(ε)

i=1   (5.5) 
 
with Dq the generalized dimensions corresponding to the scaling exponents for the qth moment of 

the measure. Dq is finally defined as: 

 

Dq = 1
1-q

 
ε→0

lim log∑ pi
q(ε)N(ε)

i=1
log ε

  (5.6) 

 
In the present work, three generalized dimensions were of particular interest. Firstly, D0, the 

capacity dimension, which describes how a multifractal system covers the observed domain. 

Secondly, D1, the information dimension (or Shannon entropy) that characterizes the degree of 

disorder in a distribution. And finally, D2, the correlation dimension that indicates the degree of 

clustering. Higher D0 values indicate higher degree of space coverage, while higher D1 values 

correspond to higher disorder, and lower D2 values, suggest a higher clustering level [171]. Fig. 

5.1 depicts the general shape of a multifractal system for which D2 < D1 < D0. More precisely, a 

multifractal curve is initially concave downwards before an inflexion point around q = 0 is 

reached and finally, it becomes concave upwards as q increases. The particular case D2 = D1 = D0 

suggests a simpler structure that is monofractal [172]. 
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Fig. 5.1.Generalized dimensions Dq versus moment q for a multifractal (■) and a monofractal (▲) 
object. 

 

 

 Materials and methods 5.4.
 

 Materials 5.4.1.
 

Vinylpyrrolidone-vinyl acetate copolymer (PVPVA; Kollidon VA 64) was purchased from BASF 

(Ludwigshafen, Germany). Propylene glycol dicaprylocaprate (Labrafac PG) was kindly donated 

by Gattefossé (Saint-Priest, France). Hydrophilic colloidal silicon dioxide (Aerosil 300), 

hydrophobic colloidal silicon dioxide (Aerosil R 972), granulated form of colloidal silicon 

dioxide (Aeroperl 300 Pharma) were supplied by Evonik Industries (Hanau, Germany). 

Aluminum magnesium silicate (Neusilin US2) was obtained from Fuji Chemical Industry Co., 

Ltd. (Toyama, Japan). Calcium silicate (Florite R) was supplied by Kobo Products SAS (Labège, 

France). 

 

 BET powder specific surface area 5.4.2.
 

The specific surface area was determined for a basic characterization of inorganic carriers by 

physical adsorption of nitrogen gas using a Micromeritics Gemini V surface area and pore size 
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analyzer (Norcross, USA). Powders were conditioned over night at 105°C in nitrogen prior to 

analysis. BET values were calculated by the software Gemini v2.00 (Table 5.1). 

 

 

Table 5.1. Adsorbents used in the extrudate formulations 
 

Adsorbent Chemical name BET surface area (m2/g) 
Aeroperl 300 [44] granulated silicon dioxide 263 ± 1 

Aerosil 300 [173] hydrophilic fumed silicon dioxide 274 ± 5 

Aerosil R 972 [173] hydrophobic fumed silicon dioxide 126 ± 13 

Neusilin US2 [39] aluminum magnesium silicate 340 ± 1 

Florite R [42] porous calcium silicate 145 ± 1 

 

 

 Hot-melt extrusion 5.4.3.
 

Prior to HME, physical mixtures were prepared by weighing and mixing different ratios of 

PVPVA, Labrafac PG and adsorbent with a spatula. Table I describes the different adsorbents 

used. Formulation compositions and process parameters used in the study are presented in Table 

5.2.  

 

 

Table 5.2. Composition of the extrudates and screw speeds used during HME process 
 

Adsorbent 
Formulation composition 
PVPVA/Labrafac PG/adsorbent 
(%, w/w) 

Screw speed 
(rpm) 

Aeroperl 300 
85/10/5 
82/10/8 
80/10/10 

150 
150, 250, 350 
150 

Aerosil 300 82/10/8 150 

Aerosil R972 82/10/8 150 

Neusilin US2 82/10/8 150 

Florite R 82/10/8 150 
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Premixes were manually fed into the hopper of a DSM Xplore MC 5 conical, co-rotating twin-

screw microcompounder (Geleen, Netherlands). After 1 min mixing time at 150°C, the extrudate 

strand was allowed to exit from a 2 mm diameter die by opening the bypass valve. The extrudates 

were collected after cooling at ambient temperature and pelletized using a Thermo Scientific 

Process 11 Variable length pelletizer (Karlsruhe, Germany). Extrudates pellets were stored in the 

fridge until analysis. 

 

 

 Scanning electron microscopy and energy X-ray dispersive spectroscopy 5.4.4.
 

Extrudate pellets were observed with a Hitachi SEM TM3030 PLUS (Tokyo, Japan). A voltage 

of 15 kV and 1000 × magnification were used. EDS analysis was based on a Quantax 70 system 

(Bruker Nano GmbH, Berlin, Germany) consisting of an X Flash Min SVE signal processing 

unit, a scan generator and Megalink interface, and an X Flash silicon drift detector 410/30H 

Bruker Nano GmbH, Berlin, Germany). Samples were scanned during 6 min to map silicon (Si) 

atoms present in the inorganic materials. 

 

 Image processing and multifractal analysis 5.4.5.
 

Prior to multifractal analysis, EDS pictures were converted to 1020 × 760 pixels binary pictures 

using the image manipulation program GIMP (v2.8.14). Fig. 5.2 illustrates the conversion from a 

SEM/EDS picture (a) to a binary picture (b). The Image J plugin image analysis FracLac was 

employed to perform the box counting multifractal analysis. The black and white pictures were 

used and black color was set as background. The number of grid orientations, the maximum box 

size as % of pixels, and the moment q range were set to 4, 60, and [−5; 5], respectively. Power 

series of box sizes was selected and box sizes were 2, 4, 16, 64 and 256 pixels. Fig. 5.2c, d show 

examples of grid sizes used in the box-counting method. For each formulation five extrudate 

pellets were analyzed. 
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Fig. 5.2. Illustration of the conversion of a SEM/EDS 2D-picture (a) to a binary picture (b) and 
examples of box sizes used in the box-counting method (c, d). Only boxes containing at least one 

pixel of the object are counted. 
 

 

 Dispersion and erosion of pellets in water 5.4.6.
 

Aqueous dispersion and erosion of pelletized extrudates was investigated by dynamic optical 

imaging using a Malvern Instruments Morphology G3S microscope (Instrumat AG, Renens, 

Switzerland). A pellet was placed in a beaker, 50 μL water was added and without stirring, 

images were taken every 5 s with the microscope using the Morphologi software v8.11. In each 

image, the pellet diameter was measured using Image J software v1.49 and the normalized 

diameters, X/X0 were calculated as a function of time, where X0 is the diameter of the dried pellet 

and X is the pellet diameter at the time of analysis. The experiment was repeated five times for 

each formulation. 

 

 Statistical analysis 5.4.7.
 

Analysis of the variance (ANOVA) was calculated using OriginPro 2016 (vB9.3.226 Academic, 

OriginLab Corporation, Northampton, USA). Tukey's honest significance difference test was 

used for means comparison of generalized multifractal dimensions D0, D1 and D2. 
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 Results and discussion 5.5.
 

 Understanding the microstructure of pharmaceutical extrudates 5.5.1.
 

 Multifractal analysis of extrudate pellets containing Aeroperl 300 5.5.1.1.

 

A twin-screw microcompounder was used to produce a series of extrudate formulations 

containing increasing amounts of the silica-based carrier Aeroperl 300 (5, 8 and 10% (w/w)) at 

150 rpm screw speed. Samples of the extrudates were then studied by electron microscopy and 

EDS for subsequent image analysis using multifractals. Si distribution in the extrudate pellets is 

shown in Fig. 5.3a-c and the complex structure of the inorganic clusters provided a challenge for 

a quantitative differentiation. Therefore multifractal analysis was conducted to reveal the likely 

influence of increasing concentration of the inorganic carrier on the extrudate microstructure.  

 

 

 
 

Fig. 5.3. SEM/EDS 2D-pictures of Si distribution in 85/10/5 (a), 82/10/8 (b), and 80/10/10% 
(w/w) (c) PVPVA/Labrafac PG/Aeroperl 300 extrudates and in 82/10/8 % (w/w) 

PVPVA/Labrafac PG/Aeroperl 300 extrudates produced using 150 (d), 250 (e), and 350 rpm (f) 
screw speeds. 

 
 

From Fig. 5.4, which presents the generalized dimension Dq versus the moment q, it can be 

inferred that the three formulations were best described as multifractals since they all exhibited a 

similar decreasing Dq with increasing q. These differences were pronounced so that multifractal 
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modeling was required and an alternative consideration as monofractals would not have been 

adequate. In order to compare the three formulation microstructures, D0, D1 and D2 were taken 

into account. It could be seen that increasing the silica adsorbent concentration implied an 

increase in all three dimensions. However, while comparing the samples containing 5 and 8% 

(w/w) Aeroperl 300 and taking standard errors into account, the difference appeared to be rather 

small. In contrast, the extrudate containing 10% (w/w) inorganic carrier exhibited significantly 

higher D0, D1, and D2 values. It was also interesting to note that the standard errors decreased 

with increasing adsorbent amount. As already reported by Bumm [174], an increase in silica 

concentration resulted in an increasing particle breakage. This was likely to result in higher 

apparent space coverage of the adsorbent in the images, which was reflected by a higher D0 

value. Higher D1 value meant that the degree of disorder increased as well and finally, a higher 

D2 value corresponded to lower clustering level. 

 

 

 
 

Fig. 5.4. Generalized dimension spectrum over the [-5;5] moment q range of formulations 
containing 85/10/5, 82/10/8, and 80/10/10% (w/w) PVPVA/Labrafac PG/Aeroperl 300 prepared 

at 150 rpm. 
 

 

Apart from the concentration of inorganic carrier, it was also of interest to study screw speed that 

is a most important HME process parameter. As reported by Bumm [174], the screw speed can 

have an influence on particle breakage and most probably on the microstructure. The formulation 
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composed of 82/10/8% (w/w) PVPVA/Labrafac PG/Aeroperl 300 was produced with three 

different screw speeds (150, 250, and 350 rpm) to assess the influence on the silica 

microstructure. SEM/EDS pictures of the produced extrudates are presented in Fig. 5.3d–f. No 

relevant difference could be again observed by the naked eye. However, as shown in Fig. 5.5, 

differences could be revealed in the generalized fractal dimensions for the different screw speeds. 

It was observed that an increase in the screw speed resulted in an increase in the generalized 

fractal dimensions. In the present case, Aeroperl 300 is a granulated form of colloidal silicon 

dioxide that is composed of spherical particles with a porous structure [44]. While exposed to 

high screw speeds during the HME process, the silica granules can be partly destroyed and 

particles may have returned to their primary aggregated form [175]. This result is interesting to 

compare with Bumm’s report [174] who studied silica filler into thermoplastics in HME process 

and found an increase in silica agglomerates breakage as screw speed increased. During 

extrusion, the breakage of Aeroperl 300 granules may not only have caused higher apparent space 

coverage in the images. Also higher heterogeneity and lower degree of clustering make sense in 

line with our finding of increased values of the capacity dimension D0, the entropy dimension D1, 

and the correlation dimension D2. Fig. 5.5 further suggests that the 150 rpm screw speed 

exhibited significantly lower generalized dimensions compared to the higher speeds at 250 and 

350 rpm, which had partly overlapping standard errors. This can be interpreted in that maximum 

particle breakage at high screw speed would lead to levelled off values in fractal dimensions. 

Such effects are important to know from a process development perspective to make sure that 

selected process conditions provide a reproducible microstructure. Process robustness would be 

desirable to achieve reproducibility in the quality attributes of pharmaceutical excipients and final 

end products. Indeed, identifying a robust operating space for process engineering is of great 

importance since the gained insights into how to achieve a desired microstructure in a highly 

reproducible way is attractive for pharmaceutical process development as well as production. 
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Fig. 5.5. Generalized dimension spectrum over the [-5;5] moment q range of 82/10/8 % (w/w) 
PVPVA/Labrafac PG/Aeroperl 300 formulations prepared using 150, 250, and 350 rpm screw 

speeds. 
 

 

 Multifractal Analysis of extrudates containing different adsorbents 5.5.1.2.

 

Different kinds of adsorbents were selected in a next research step to study the influence of 

physico-chemical properties on the microstructure by multifractal analysis. Aerosil adsorbents are 

fumed silicon dioxide with high density and small primary particle size (< 50 nm; Appendix B: 

Fig. 5.10). Aeroperl 300 is a granulated silicate (Appendix B: Fig. 5.11a, d) and Florite R is a 

calcium silicate with petaloid crystal structure (Appendix B: Fig. 5.11b, e). Finally, Neusilin US2 

was selected as a granulated magnesium aluminum silicate (Appendix B: Fig. 5.11c, f). 

SEM/EDS 2D-pictures are shown in Fig. 5.6. The presence of clusters can be readily seen in the 

extrudates containing Florite R (c) and Neusilin US2 (d), which may have been due to the 

original high particle size of the raw materials. Multifractal analysis was performed to understand 

their microstructure.  
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Fig. 5.6.SEM/EDS 2D-pictures of Si distribution in extrudates containing 82/10/8 % (w/w) 
PVPVA/Labrafac PG/adsorbent extrudates, where the adsorbents are Aerosil 300 (a), Aerosil R 

972 (b), Florite R (c), and Neusilin US2 (d). 
 

 

As shown in Fig. 5.7, a difference was evidenced between the different inorganic carriers of 

rather high granulated particle size as opposed to the fumed silica material (i.e. Aerosil). The one-

way ANOVA using Tukey’s method for comparison of mean D0, D1 and D2 values showed that 

Aerosil resulted in significantly different values from Neusilin US2, Florite R, and Aeroperl 300. 

Indeed, as shown in Fig. 5.7, Aerosil 300 and Aerosil R 972 exhibited higher generalized 

dimensions than the other adsorbents. This was due to small primary particle size of Aerosil 

materials, which led to better apparent space coverage (higher D0) than granulated particles. An 

intuitive expectation would have been that the presence of granulated particles of different size in 

Neusilin US2, Florite R and Aeroperl 300 and their partial breakage during HME would result in 

higher heterogeneity. However, the D1 values of the latter three inorganic carriers were lower 

than those of Aerosil excipients. This might be due to the short mixing time (1 min) and low 

screw speed (150 rpm) that did probably not lead to sufficient breakage of the granulated 

ingredients. For a comparison, Aeroperl 300 was also extruded at 250 rpm (Fig. 5.5, black curve) 

and the generalized dimension spectrum superposed perfectly with the one of Aerosil 300. This 

confirmed that a sufficiently high screw speed was necessary using Aeroperl 300 to break 

granules and to reveal the typical aggregates of primary silica particles. The lower D2 value 

observed for the granulated materials confirmed a rather high level of clustering that could also 

be seen in the SEM/EDS pictures (Fig. 5.3b and Fig. 5.6c, d). The multifractal analysis provided 

a tool to gain better understanding of the microstructure caused by the adsorbent. We studied the 

influence of concentration, screw speed, and adsorbent type on Si microstructure in the 

extrudates. The comparison of the generalized multifractal dimensions provided information on 

coverage (or capacity), homogeneity, and cluster level. All this information is of great interest to 
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scientists in pharmaceutical product development or quality control to tailor drug delivery 

systems of desired attributes and to make sure that their structure and hence properties are 

obtained in a reliable way throughout manufacturing.  

 

 

 
 

Fig. 5.7. Generalized dimension spectrum over the [-5;5] moment q range of 82/10/8 % (w/w) 
PVPVA/Labrafac PG/adsorbent formulations. The adsorbents were Aerosil 300, Aerosil R 972, 

Florite R, and Neusilin US2. 
 

 

 Automated static imaging of pellets self-dispersion 5.5.2.
 

Self-dispersion in aqueous media is an important characteristic of pharmaceutical extrudates. It 

was not expected to find a correlation with the results of multifractal analysis but since 

pharmaceutical formulations would have to release an active substance, it was important to 

study also the ability of the extruded pellets to self-disperse and erode in aqueous environment. 

In absence of any stirring, this ability is named as self-dispersion, which should exhibit a 

reasonable short duration with respect to the intended gastrointestinal release. This method 

was used as an early check for drug formulation development using complex matrices. 

Indeed, poor self-dispersion is likely to result in poor drug dissolution. Therefore, a self-

dispersion study can be considered as a de-risking method for selecting matrices that could 

further be used for drug formulations. Extrudates dispersion and erosion was observed by 
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automated optical microscopy. PVPVA is a water soluble polymer that is used to improve the 

dissolution of poorly water-soluble drugs and thus their bioavailability [ 17 6] . Such 

hydrophilic polymeric matrices are erodible and dissolve after a more or less pronounced 

swelling step [165] . When a solid dosage form comes into contact with an aqueous medium, a 

rapid water uptake occurs. The polymer becomes hydrated and forms a gel layer with expansion 

or swelling of the matrix that gradually erodes and completely dissolves According to 

Colombo et al. [177,178], the release of a drug is controlled by both its diffusion from the solid 

core through the gel layer and by the erosion of this gel. The dispersion of swellable solid dosage 

forms is characterized by a growth of the gel layer in parallel to the reduction of the dry core size 

and finally by an increase in matrix diameter over time. According to the rate of matrix erosion 

and gel layer formation, the drug release can be tailored, i.e. it may provide controlled or 

immediate release. Since different kinds of adsorbents were used in this work, it was critical to 

study their influence on the self-dispersion behavior of the pellets. Thus, evolution of erosion and 

swelling fronts of extrudate pellets was monitored over time, where the erosion front corresponds 

to the frontier between the medium and the gel layer, and the swelling front separates the still 

dried matrix from the gel layer. Erosion and swelling fronts are highlighted in Fig. 5.8a that 

illustrates pellet self-dispersion and erosion over time. Fig. 5.9 shows the evolution of the erosion 

(a, c, e) and swelling (b, d, f) fronts for the different formulations. Fig. 5.9a displays the erosion 

front of pellets containing different Aeroperl 300 amounts and during the first 40 s, the erosion 

front moved outwards (X/X0 > 1). This was because of matrix expansion that occurred before the 

front moved inwards, which reflects matrix self-dispersion or erosion. In parallel, the swelling 

front decreased owing to water penetration. A first observation was that, even though the 

standards errors were rather high, pellets containing Aeroperl 300/Labrafac PG showed a 

tendency to differ from pure polymer pellet regarding a more important matrix expansion 

phenomenon (first 40 s) and a slower erosion. The high standard errors are partially due to the 

difficulty of selecting identical pellets. Indeed, some notable variation in dimension and weight 

was observed among the produced pellets. Although pellets were selected according to their 

mass, the dissolution behavior also depended on the diameter and height, which may have caused 

variation even though measured diameters were normalized by initial values in Fig. 5.9. 

Regarding the swelling fronts of the Aeroperl 300 pellets, no significant difference could be 

highlighted between the swelling fronts of the different formulations (Fig. 5.9b), there were no 

marked differences observed within given variability. The adsorbent concentration was therefore 
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not affecting the conversion of the solid core to a gel in a relevant way. All the pellets completely 

self-dispersed within 900 and 1000 s. In conclusion, the most important response parameter of 

self-dispersion was the erosion of the matrix that was faster in pure PVPVA pellet.  

Fig. 5.9c, d show the evolution of the erosion (c) and swelling (d) fronts of extrudate pellets 

produced at different screw speeds, which did not reveal any marked effects. It therefore seemed 

that the composition had a more important impact on dissolution behavior than the screw speed. 

Since the pellet composition seemed to be critical for self-dispersion behavior of the solid dosage 

form, self-dispersion of pellets containing different types of adsorbents was studied in a next step. 

Fig. 5.9e, f show the evolution of erosion (e) and swelling (f) fronts of extrudates containing 

82/10/8% (w/w) PVPVA/Labrafac PG/adsorbent. Relevant differences could be observed 

between extrudates containing hydrophobic (Neusilin US2 and Aerosil R 972) and hydrophilic 

adsorbents. Indeed, pellets containing Aerosil R 972 or Neusilin US2 (hydrophobic) did not 

erode but swelled (Fig. 5.8b) and reached a maximum and constant diameter after approximately 

700 s. Even after few hours in water the pellets did not erode. In contrast, pellets containing 

Aerosil 300 or Aeroperl 300 only slightly swelled (first 50 s) and eroded (Fig. 5.8a) until 

complete self-dispersion occurred within 900–1000 s. Florite R demonstrated an intermediate 

behavior (Fig. 5.9e–f). It swelled and eroded but an external opaque layer was still visible after 

complete water penetration in the matrix (Fig. 5.8c). This was probably due to the crystalline 

nature of Florite R that did not entirely disperse in the medium. However, unlike pellets 

containing Neusilin US2 and Aerosil R 972, the pellets containing Florite R completely self-

dispersed after 1000 s since no gel layer was visible anymore. 

In addition to the possibility of modifying the erosion rate by using an adsorbent/lipid 

combination, we found that the nature of the adsorbent can completely inhibit erosion. This is of 

great interest regarding formulation of poorly-water soluble drugs. Indeed, as shown by Joyce et 

al. [179] and Speybroeck et al. [180], the use of a lipid in combination with hydrophobic silica 

particles inhibited the lipid desorption during an in vitro digestion study. This was due to high 

interactions between the silica particles and the lipid. In our study, Aerosil R 972 and Neusilin 

US2 are hydrophobic adsorbents that might have high affinity to the lipophilic excipient i.e. 

Labrafac PG, which probably resulted to the absence of erosion of those pellets containing one of 

these more lipophilic adsorbents. This could have a negative effect on a poorly water-soluble 

drug regarding their release during formulation dispersion and possible digestion in vivo. Since 

poorly water-soluble drugs are often lipophilic, a silica/lipid solid dosage form is expected to 
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have the drug primarily in the lipid phase that is adsorbed on the inorganic carrier. If the lipid and 

adsorbent exhibit high affinity, strong interactions can be created that may hinder lipid dispersion 

and drug release [113]. The results of self-dispersion did not reveal significant correlations with 

results of the multifractal analysis. These two parts of the present work were deliberately chosen 

as complementary studies for an initial quality assessment of extrudates. It is, however, possible 

that a later formulation development for a specific drug may reveal correlations between 

multifractal measures and given drug dissolution. Such correlations may also be identified with 

other quality attributes of the extrudates and their final end products. In any case the basis of 

several quality tests for solid dosage forms is the sample microstructure and the corresponding 

basis for any drug dissolution testing is to a great extent the aqueous dispersion behavior and 

therefore both aspects require proper investigation and understanding.  

 

 

 
 

Fig. 5.8. Aqueous dispersion of extrudate pellets over time in 50 µL water without stirring. 
PVPVA/Labrafac PG/Aeroperl 300 (a), PVPVA/Labrafac PG/Neusilin US2 (b), and 

PVPVA/Labrafac PG/Florite R (c). 
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Fig. 5.9. Evolution of erosion (a, c) and swelling (b, d) fronts of pellets containing different 
Aeroperl 300 concentrations and of pure PVPVA (a, b), of pellets produced with different screw 

speeds (c, d), and of pellets containing different adsorbents (e, f) over time. 
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 Conclusion 5.6.
 

The aim of this work was to study the microstructure of extrudates pellets containing a lipid and 

an adsorbent by multifractal analysis and to evaluate their dispersion in aqueous medium. The 

tested extrudates revealed indeed a multifractal nature and relevant differences were identified. 

Adsorbent concentration, screw speed as well as physical properties of adsorbents had an effect 

on the microstructure. Further studies could also be done on the influence of screw design and 

feed rate, which are important parameters in HME processing. A better understanding of the 

microstructure is of great interest to a formulator since it can help tailoring the dosage form 

performance in line with the therapeutic objectives. The use of multifractal dimensions can in the 

future also help in modeling of such formulations since computational pharmaceutics is a thriving 

discipline. Any modeling must of course be based on proper understanding of a material structure 

and the presented multifractal analysis is advancement to this end. Multifractal analysis is a way 

to assign numbers to a complex microstructure, which can greatly help in microscopy and 

chemical imaging of pharmaceutical systems. The use of multifractal analysis in pharmaceutical 

technology is a new strategy so a traditional formulation and process development approach was 

only to study effects on the quality attributes, while the microstructure remained either unknown 

or it was not analyzed on a quantitative basis. The presented multifractal analysis may reveal 

changes in the microstructure even before the quality attributes are measured, which could even 

help beyond the development phase to assure a robust manufacturing. While multifractal analysis 

provided a morphological view on the system, the analysis of self-dispersion in water is a basic 

test for how components dynamically interact regarding any later-stage drug dissolution process. 

Interesting findings were made with respect to the interaction of more lipophilic adsorbents with 

lipids that should be considered for the development of pharmaceutical formulations. Such 

development should in the future not just be based on correlations of compositions/process 

parameters with quality attributes but a thorough characterization and understanding of the 

excipients and their microstructure should guide the way to a more efficient and robust 

pharmaceutical product development. The combination of multifractal analysis, and self-

dispersion and erosion studies gave interesting results, which could further be used to formulate 

poorly water-soluble compounds of different natures, e.g. lipophilic, acidic, low molecular 

weight. 

 



Chapter 5. Multifractal characterization of extrudates    105 
 
 
Appendix B 
 

SEM pictures of the used adsorbent powders are presented in this Appendix B to illustrate their 

physical variety. 

 

 
 

Fig. 5.10. SEM pictures of fumed Aerosil 300 (a), and Aerosil R 972 (b). Aerosil fumed silicates 
are very fine powders composed of aggregated and agglomerated primary particles. Primary 

particles could not be identified due to their very small size (< 50 nm) 
 

 

 
Fig. 5.11. SEM pictures of Aeroperl 300 (a, d), Florite R (b, e), and Neusilin US2 (c, f). Aeroperl 

300 spherical granules have a rather smooth surface. Florite R particles exhibit irregular shape 
while the pore structure can be viewed as petaloid. Finally, the spherical Neusilin US2 particles 

display some porosity on their surface compared to Aeroperl 300. 
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 dispersions 
 

Summary  
 

The formulation of lipophilic and hydrophobic compounds is a challenge for pharmaceutical 

industries and it requires the development of complex formulations. Our first aim was to 

investigate hot-melt extrudates microstructure by means of multifractal analysis using scanning 

electron microscopy imaging. Since the microstructure can affect solid dosage form performance 

such as mechanical properties, a second objective was to study the influence of the type of 

adsorbent and of the presence of an amorphous compound on extrudate hardness. β-carotene 

(BC) was chosen as poorly water-soluble model compound. Formulations containing a polymer, 

a lipid and two different silica-based inorganic carriers were produced by hot-melt extrusion. 

Based on scanning electron microscopy/energy dispersive X-ray spectroscopy, the obtained 

images were analyzed using multifractal formalism. The breaking force of the strands was 

assessed by a three point bending test. Multifractal analysis and three point bending results 

showed that the nature of interparticle interactions in the inorganic carrier as well as the presence 

of amorphous BC had an influence on the microstructure and thus on the mechanical 

performance. The use of multifractal analysis and the study of the mechanical properties were 

complementary to better characterize and understand complex formulations obtained by hot-melt 

extrusion. 
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 Introduction 6.1.
 

More than 40% of newly developed chemical entities are poorly water-soluble, which often 

implies erratic absorption and a reduced oral bioavailability [66]. Some compounds exhibit 

limited water solubility because of solvation limitation as they are highly lipophilic, while other 

drugs are hydrophobic based on comparatively high crystal energy [181]. Particularly challenging 

are drugs that combine both lipophilicity and hydrophobicity, which requires special formulation 

strategies. One of the most successful oral formulation approaches of poorly-water soluble drugs 

is the solid dispersion (SD) technique [6]. It corresponds to the dispersion of an active compound 

in a solid matrix that is generally composed of a polymer and excipients. The most preferred type 

is here the amorphous SD, where the drug is dispersed either in an amorphous state or at a 

molecular level in an amorphous carrier. Among the additives that can be used, lipid excipients 

can be a key for the formulation of lipophilic compounds. Lipid excipients have been introduced 

in amorphous SD formulations by Serajuddin et al. [6] in the 1990’s to overcome limitations 

encountered in systems using polymeric carriers only. Indeed, lipids can prevent drug 

recrystallization in the matrix and can be of further biopharmaceutical benefit. Such additives can 

increase drug solubilization upon aqueous dispersion and may circumvent precipitation, while 

another mechanism is an optional enhancement of membrane permeability [66,67]. Moreover, 

lipids have a low physiological toxicity, offer a wide range of physico-chemical properties and 

are inexpensive [69].  

In this study, β-carotene (BC), also known as provitamin A, was selected as model compound 

that is lipophilic as well as hydrophobic. In a previous work, we already demonstrated that a 

specific combination of a polymer, a solid lipid and an inorganic adsorbent provided an 

amorphous SD of low-dose BC by hot-melt extrusion (HME) [16]. The key to success of this 

formulation strategy was the creation of designed lipid microdomains (DLM). This DLM 

delivery system is a molecularly designed formulation that tailors specific interactions between a 

solid fatty acid and an inorganic carrier. While the DLM formulation uses lipid in solid form, also 

liquid excipients could be of interest as direct solubilizer and polymer plasticizer. It was already 

reported that SD based on polymeric carriers have the tendency to be sticky and an intuitive 

expectation suggests that addition of a liquid lipid excipient may increase this undesired effect 

leading to difficulties of handling [35]. Therefore, the use of inorganic carriers with good oil 

adsorption capacity and that are already employed for the conversion of liquid to solid dosage 
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forms, can be a key to improve polymeric SD quality [182]. The combination of liquid lipid, 

polymer, and inorganic carrier has already been reported in a previous study [104]. The focus was 

on the influence of processing parameters and type of adsorbents on the microstructure of HME 

extrudates by introduction of multifractal analysis. Multifractals provide a powerful mathematical 

model to describe complex structures that cannot be described by the Euclidean geometry. 

Multifractals correspond to the superposition of homogeneous fractal objects that are 

characterized by their self-similarity or invariance under scale of magnification [156,183]. Fractal 

geometry has largely profited from the evolution of image analysis [157–159]. Optical 

microscopy, electron microscopy, atomic force microscopy, or confocal Raman spectroscopy are 

methods that provide morphological, structural or compositional information [162]. Fractals and 

multifractals of such imaging methods data are of particular interest for a better understanding of 

object microstructure, when a link to a mathematical dimension (or a set of dimensions) is 

possible. Multifractal analysis has been previously used mostly in food applications or in 

geosciences [159,169]. In the field of pharmaceutics, the single fractal formalism has been 

applied to numerous applications such as drug dissolution and release [100,163,184,185] 

pharmacokinetics [186], pharmacodynamics [187], or surface ruggedness of solids [163]. The 

multifractal formalism has been introduced only recently [104]. The purpose of the current study 

is to follow-up on our previous work on HME formulations by comparing microstructural 

analysis and multifractal analysis with a mechanical property of the extrudates. A first aim is to 

study microstructures of hot-melt extrudates using a multifractal analysis of scanning electron 

microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) images. A polymer and a lipid 

excipient having solubility parameters close to that of BC were selected, and two types of silica-

based adsorbents were chosen. The influence of the type of inorganic excipient and of the 

presence of amorphous BC on the SD microstructure was assessed. Finally, the breaking strength 

of the extrudates was measured and results were compared to results and insights gained from the 

microstructural analysis. 
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  Materials and methods  6.2.
 

 Materials 6.2.1.
 

Polyvinylpyrrolidone-vinylacetate (PVPVA; Kollidon VA 64) was purchased from BASF 

(Ludwigshafen, Germany). Propylene glycol dicaprylocaprate (Labrafac PG) was kindly donated 

by Gattefossé (Saint-Priest, France). Granulated form of colloidal silicon dioxide (Aeroperl 300 

Pharma) was supplied by Evonik Industries (Hanau, Germany). Syloid XDP 3050 (Syloid XDP) 

was provided by Grace GmbH & Co. KG (Worms, Germany). Crystalline β-carotene (BC) was 

provided by DSM Nutritional Products Ltd. (Basel, Switzerland). N-hexane (purity 99%), 

dichloromethane (purity 99.5%), cyclohexane (purity 99.5%), methanol (purity 99.8%), ethanol 

(purity 99.5%) and acetonitrile (purity 99.9%) were obtained from Merck (Darmstadt, Germany). 

Butylated hydroxytoluene (purity 99%), tetrahydrofuran (purity 99.5%), N-

ethyldiisopropylamine (purity 98%), 2-propanol (purity 98%) and ammonium acetate (purity 

98%) were purchased from Sigma–Aldrich (Steinheim, Germany).  

 

  Hot-melt extrusion 6.2.2.
 

Prior to HME, physical mixtures were prepared by weighing and mixing different ratios of 

PVPVA, Labrafac PG, adsorbent and BC with a spatula. Formulation compositions are presented 

in Table 6.1. Premixes were manually fed into the hopper of a Thermo Scientific Haake MiniLab 

II conical, co-rotating, twin-screw microcompounder (Thermo Electron, Karlsruhe, Germany). 

After one minute of mixing time at 160°C and 150 rpm, the extrudate strand was allowed to exit 

from a 2 mm diameter die by opening the bypass valve. The extrudates were collected after 

cooling at ambient temperature. A fraction of the strands was pelletized using a Thermo 

Scientific Process 11 Variable length pelletizer (Karlsruhe, Germany) for further SEM/EDS 

analysis. Extrudates strands and pellets were stored in a fridge until analysis. 
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Table 6.1. Hot-melt extrusion formulations composition 
 

Formulation Adsorbent Composition 
PVPVA/adsorbent/Labrafac PG/BC (%, w/w) 

F1* Aeroperl 300 80/10/10/0 
F2     Aeroperl 300 75/10/10/5 
F3** Syloid XDP 80/10/10/0 
F4 Syloid XDP 75/10/10/5 
F5 / 95/0/0/5 
* drug-free reference formulation for F2 
** drug-free reference formulation for F4 

 
 Oil loading capacity 6.2.3.

 

To determine the oil adsorbing capacity of the inorganic materials, we adapted a method from the 

literature [188]. In brief, 1 g of adsorbent was placed in a beaker and oil was added drop wise 

until a dry free-flowing paste-like mass was obtained. 

 

 BET powder specific surface area 6.2.4.
 

The specific surface area of the two adsorbents was determined by physical adsorption of 

nitrogen gas using a Micromeritics Gemini V surface area and pore size analyzer (Norcross, 

USA). Powders were conditioned over night at 105°C in nitrogen prior to analysis. BET values 

were calculated by the software Gemini v2.00 (Table 6.2). 

 

 Mercury porosimetry 6.2.5.
 

Pore analysis of Aeroperl 300 and Syloid XDP was performed by Quantachrome GMbH & Co. 

KG (LabSPA, Odelzhausen, Germany). Mercury porosimetry was conducted using a 

Quantachrome Poremaster 60 GT. The two adsorbents were conditioned at 150°C for five hours 

under vacuum prior to analysis. The Washburn equation was used to calculate pore volume and 

pore size (Table 6.2). 
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 Differential scanning calorimetry 6.2.6.
 

Thermal events in the extrudate strands and melting point of pure BC were assessed using a TA 

Instrument Discovery DSC (New Castle, USA). The extrudates strands and pure crystalline BC 

were accurately weighed (5.5 g ± 0.5g) in 50 µL aluminum pans and hermetically sealed. An 

empty pan was used as a reference. Samples were heated to 210°C using a heating rate of 

20°C/min under a nitrogen flow of 20 mL/min.  

 

 X-ray powder diffraction 6.2.7.
 

X-ray powder diffraction (XRPD) patterns were obtained by using a D2 Phaser diffractometer 

(Bruker AXS GmbH, Karlsruhe, Germany) configured with a fastlinear 1-D Lynxeye detector. 

The radiation was provided by a 1.8 kWCo KFL tube (wavelength = 1.79 Å) working with a Fe 

filter. The applied voltage and current were 30 kV and 10 mA, respectively. The powder samples 

were analyzed at room temperature over the 2θ range of 6–45°. The time per step was 0.6 s and 

the increment was 0.02° (2θ). 

 

 Raman spectroscopy 6.2.8.
 

Raman spectra were collected employing a RamanRXN1 Analyzer (Kaiser Optical Systems Inc., 

Ann Arbor, MI, USA) equipped with a 785 nm NIR Invictus laser and a non-contact optic 0.4 

NIR. Raman data were recorded with a resolution of 4 cm-1 using a 400 mW laser power in a 

spectral range of 100 to 1890 cm-1. For data acquisition and analysis, the software iC Raman 

Instrument software (v4.1.910, Mettler-Toledo AutoChem Inc., Columbia, MD, USA) was used. 

 

 Scanning electron microscopy/energy X-ray dispersive spectroscopy 6.2.9.
 

Extrudate pellets were observed with a Hitachi SEM TM3030 PLUS (Tokyo, Japan). A voltage 

of 15 kV and 150x magnification were used. EDS analysis was based on a Quantax 70 system 

(Bruker Nano GmbH, Berlin, Germany) consisting of an X Flash Min SVE signal processing 

unit, a scan generator and Megalink interface and an X Flash silicon drift detector 410/30H 
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Bruker Nano GmbH, Berlin, Germany). Samples were scanned during 6 min to map silicon (Si) 

atoms present in the inorganic materials. 

 

 Image processing and multifractal analysis 6.2.10.
 

Prior to multifractal analysis, SEM/EDS pictures were processed using the image manipulation 

program GIMP (v2.8.14). The images were converted to binary pictures. Fig. 6.1 illustrates the 

conversion from a SEM/EDS picture (a) to a binary picture (b). The Image J plugin image 

analysis FracLac was employed to perform the box counting multifractal analysis. The black and 

white pictures were used and black color was set as background. The number of grid orientations, 

the maximum box size as % of pixels, and the moment q range were set to 4, 60, and [-5; 5], 

respectively. Power series of box sizes was selected and box sizes were 2, 4, 16, 64 and 256 

pixels. The special scan options “check pixel” and “tighten grid” were chosen. Fig. 6.1c, d show 

examples of grid sizes used in the box-counting method. Five extrudate pellets were analyzed for 

each formulation.  

 

 

 
 

Fig. 6.1. Illustration of the conversion of a SEM/EDS 2-D picture (a) to a binary picture (b) and 
examples of box sizes used in the box-counting method (c, d). Only boxes containing at least one 

pixel are counted. 
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The box-counting method is one of the existing methods that allow for calculation of the fractal 

dimension using binary two-dimensional images. The approach consists of covering a 2-D image 

with boxes of sizes ε. The number N of boxes containing at least one pixel of the observed object 

is recorded and this procedure is repeated with a range of different box sizes [99]. The 

monofractal dimension D0 is calculated from the following equation: 

 

D0 = ε→0
lim log N(ε)

log1
ε

  (6.1) 

 

However, for the description of more complex structures, multifractal analysis can be used. 

Multifractal is an extension of fractal analysis, which decomposes self-similar measures into 

intertwined fractal sets that are characterized by their singularity strength and fractal dimension 

[157,159,169]. Multifractals can therefore be described as a superposition of homogeneous 

fractal objects and are characterized by a sequence of generalized fractal dimensions [159,183]. 

In multifractal analysis, the probability Pi of finding the object pixel in the ith box is determined 

by: 

 

Pi(ε) ~ εαi  (6.2) 

 

with αi Lipschitz-Hölder exponent corresponding to the density in the ith box. 

The number of boxes N(α) where Pi has singularity strengths between α and α + dα is found to 

scale as:  

 

N(α) ~ ε-f(α)  (6.3) 

 

where f(α) is the Hausdorff fractal dimension of the set of boxes with singularities α [169,170].  

The box counting method determines the partition function X(q, ε), which can be considered as 

the probability to find the object in the ith box for different moments q varying in the [-∞; +∞] 

interval. The partition function is expressed as followed:  

 

X(q,ε) = ∑ pi
q(ε) ~ ε(q-1)DqN(ε)

i=1   (6.4) 
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with Dq the generalized dimensions corresponding to the scaling exponents for the qth moment of 

the measure. Dq is finally defined as:  

 

Dq = 1
1-q

 
ε→0

lim log∑ pi
q(ε)N(ε)

i=1
log ε

  (6.5) 

 

In the present work D0, D1 and D2 were of particular interest. D0 also called capacity dimension, 

describes how a multifractal system covers the observed domain. D1 is the information dimension 

(or Shannon entropy) that characterizes the degree of disorder in a distribution. Finally D2, which 

corresponds to the correlation dimension, indicates the degree of clustering. Higher D0, D1, and D2 

values indicate higher degree of space coverage, higher disorder and lower clustering level, 

respectively [171]. Fig. 6.2 depicts the difference between a multi- (F1) and a monofractal 

spectrum for which D2 ≤ D1 ≤ D0, and D2 = D1 = D0, respectively.  

 

 

 
 

Fig. 6.2. Example of generalized dimensions Dq versus moment q for a multifractal (■) and a 

monofractal (▲) object. 
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 Three point bending test 6.2.11.
 

The breaking strength of extrudate strands was measured using a Stable Micro Systems TA-XT2i 

Texture Analyser (Surrey, England) equipped with a thin blade three point bend rig. The strands 

were cut into 1.5 cm pellets. The distance between the two thin blades was 1.0 cm. Since the 

thickness of the strands varied over their full length, the diameter was measured using a caliper. 

A force of 5 kg was employed. Pre-test speed and test speed were set up to 1 and 2 mm/s, 

respectively. The trigger force was 49 mN. The maximum recorded strength was taken as 

breaking force for each sample. The breaking strength index (BSI) was calculated using the 

following formula [189]:  

 

BSI=
maximum recorded strength (mN)

diameter (mm)
 

 

 Reversed phase high-performance liquid chromatography 6.2.12.
 

Reversed phase high-performance liquid chromatography (HPLC) was employed to evaluate BC 

degradation and cis-trans isomerization that could occur during the HME process. We employed 

the AOAC official method 2005.07 for analyzing BC in supplements and raw materials, which is 

based on reversed phase HPLC [138]. The mobile phase consisted of butylated hydroxytoluene 

(50 mg/L)/2-propanol (2%, v/v)/N-ethyl-diisopropylamine (0.02%, v/v)/0.2% ammonium acetate 

solution (2.5%, v/v)/acetonitrile (45.5%, v/v)/methanol (45.0%, v/v). BC was extracted from the 

SDs using butylated hydroxytoluene (100 mg/L)/water (6%, v/v)/ethanol (40%, 

v/v)/dichloromethane (54%, v/v). 
 

 

  Results and discussion 6.3.
 

  Characterization of BC physical state 6.3.1.
 

The challenging physico-chemical properties of BC make it hard to obtain comparatively simple 

amorphous systems and more complex quaternary SDs have been identified recently as a 
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promising formulation principle [16]. An initial goal of the current work was therefore to produce 

BC amorphous SDs by combining a lipid, an adsorbent and a polymer. The lipid and polymer 

were selected according to their Hansen solubility parameters to ensure good miscibility during 

HME process. BC is a lipophilic compound with high melting point, thus the use of conventional 

polymeric formulations can be a challenge. There are only few polymers that have a solubility 

parameter close to the one of BC that is 17.5 MPa1/2 (as estimated by Molecular Modeling Pro 

v6.2.6; Norgwyn Montgomery Software, USA). Greenhalgh et al. (1999), recommended that 

excipients should be selected so that the difference between excipient and compound solubility 

parameters is below 7 MPa1/2. According to this rule, excipients having a solubility parameter 

between 10.5 and 24.5 MPa1/2 are good candidates for BC formulation. Therefore, PVPVA and 

Labrafac PG, which have Hansen solubility parameters of 19.9 and 20.4 MPa1/2, were selected. 

In a first step, a formulation composed of 5% (w/w) BC and PVPVA alone (F5) was produced at 

160°C and 150 rpm. The physical state of BC in the strands was initially evaluated by XRPD and 

DSC as classical characterization methods for SDs. Fig. 6.3 shows the XRPD diffractogram (a) 

and DSC thermogram (b) of F5. Even though the solubility parameter of PVPVA was expected to 

suggest miscibility of the excipient with BC according to the Greenhalgh et al. rule, the polymer 

alone did not enable converting BC in an amorphous state. Indeed, BC crystalline peaks (17, 18, 

19.5, 22, 25.5 27.1 and 28.8° (2θ)) could still be observed in the extrudate diffractogram (Fig. 

6.3a). This result was supported by the presence of BC melting point above 180°C in the DSC 

thermogram (Fig. 6.3b). A likely factor was the extrusion temperature that was below the BC 

melting point. An extrusion temperature above the BC melting point was avoided as it may result 

in a rapid, undesired isomerization and even degradation of BC. In a second step, a formulation 

composed of 85/10/5% (w/w) PVPVA/Labrafac PG/BC was produced but the resulting strand 

was oily and could therefore not be further analyzed. This observation confirmed the usefulness 

of adding an inorganic carrier to adsorb the excess of oil. Thus, two different adsorbents were 

evaluated, i.e. Aeroperl 300 and Syloid XDP. Table 6.2 summarizes the main physico-chemical 

properties of the two inorganic excipients. They have similar characteristics (e.g. chemical 

composition, pore volume, oil loading capacity), but differ in their manufacturing process. 

Aeroperl 300 is a granulated silica produced by a mechanical process, i.e. granulation of the 

fumed silica Aerosil 300; and Syloid XDP is a silica aerogel produced by a chemical process 

proprietary by Grace (Evonik Industries, 2013, Grace, 2015). Formulations F2 and F4 (Table 6.1) 

composed of 75/10/10/5% (w/w) PVPVA/Labrafac PG/adsorbent/BC were produced. They were 



Chapter 6. Multifractal and mechanical analysis of solid dispersions    117 
 
 
not oily and as shown in Fig. 6.3, no BC crystalline peak or melting point was visible. The 

combination of polymer/lipid and adsorbent obviously enabled amorphous SDs regardless of the 

adsorbent used.  

 

 

Table 6.2. Physico-chemical properties of adsorbents 
 

* Proprietary by Grace 
** Appendix C: Fig. 6.10 
*** Maximum oil loading that still led to a dry free flowing powder (visual assessment)   
**** Measured by Mercury intrusion porosimetry 
[1] [44] 
[2] [45] 

 

 
Aeroperl 300 Syloid XDP 

Type of silica granulated form of colloidal silicon silica aerogel 
Manufacturing process granulation of fumed silica particles chemical process* 

Particle shape**  spherical irregular 
Average particle size (laser 
diffraction; µm) 

20-40 [1] 48-66 [2]  

BET (N2) surface area (m2/g) 263 ± 1 300 

Oil loading capacity 
(Labrafac PG; g/100g)*** 173 ± 3 160 ± 3  

Pore structure meso- and macropores highly developed network of 
mesopores 

Total pore volume 
(cm3/g)****  1.65 1.66 

Median large pore diameter 
(nm)**** 67.2 34.6 

Median small pore diameter 
(nm)**** 15.7 8.1 



Chapter 6. Multifractal and mechanical analysis of solid dispersions    118 
 
 

 
 

Fig. 6.3. XRPD diffractograms (a) and DSC thermograms (b) of extrudate formulations 
 

 

BC is a non-polar molecule, Raman spectroscopy was therefore employed to assess the changes 

in BC vibrational spectrum according to its physical state in the extrudates. As shown by Pudney 

et al. (2011) and Lopez-Sanchez et al. (2011), changes affecting BC spectrum can be assigned to 

a solvated state of BC. Accordingly, they observed the same shift to higher frequency of the C=C 

stretch vibration band (around 1520 cm-1) and found an increase in intensity of a band around 

960 cm-1 (C-H out of plane op wagging and C=C torsion), when BC was solvated in a lipid phase 

or dissolved in chloroform. In the present case, XRPD and DSC results showed that BC was 
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amorphous in F2 and F4 but still crystalline in F5. Therefore, changes should be seen in the 

Raman spectra of F2 and F4, whereas F5 spectra should be comparable to pure crystalline BC. 

Moreover, in order to study the influence of BC solubilization in Labrafac PG, BC was 

solubilized in the pure oil and the filtered solution was assessed by Raman spectroscopy. Fig. 6.4 

shows the Raman spectra of the extrudates, of pure crystalline BC powder and of BC solubilized 

in Labrafac PG. Changes in the above-mentioned regions could effectively be observed in the 

amorphous SDs and BC/Labrafac PG solution compared to crystalline BC. Pure crystalline BC 

exhibited a band around 1514 cm-1, whereas for F2, F4 and BC solution, this band was shifted to 

1525-1526 cm-1 (Fig. 6.4a). A shift to higher frequency and broadening of the C=C stretch band 

can be assigned to the more relaxed conformation of BC when it is in a non-crystalline state, (i.e. 

in solution or amorphous) [191,192]. The second observation was an increase in the band 

intensity at around 960 cm-1 (Fig. 6.4b). The presence of a broad band in this region could also be 

observed in BC solution, whereas it was barely visible in F5 and for pure crystalline BC. 

Moreover, a smoothing of the bands between 850 and 900 cm-1 (Fig. 6.4b), assigned to C-H out 

of plane wagging [193], could be observed in non-crystalline samples. All the changes seen in the 

Raman spectra of F2, F4, and BC in Labrafac PG confirmed an altered physical state of BC and 

suggest that interactions occurred between BC and the excipients to stabilize amorphous BC. 

Similarly to most of the unsaturated carotenoids, BC is prone to isomerization and oxidation. 

Light, oxygen and temperature are factors that can cause BC degradation [194]. Even though BC 

chemical stability was not within the scope of this study, it would be relevant to know if HME 

processing caused significant BC degradation. A chemical analysis was conducted using reversed 

phase HPLC analysis, which showed that BC recovery was > 85% in F2 and F4, and that no 

degradation occurred in F5. This confirmed that the absence of BC crystalline peaks in DSC and 

XRPD analysis indeed suggested an amorphous form and the analytical results were not 

influenced by BC degradation. Moreover, isomerization from trans- to cis-isomer was also 

assessed to verify that changes in Raman spectra of amorphous SDs were not due to BC 

isomerization. F2, F4 and F5 exhibited similar trans- to cis-isomerization (i.e. 40%) but F2 and 

F4 had similar Raman spectra, that were different from F5 spectra (Fig. 6.4). It can therefore be 

concluded that the chemical degradation was not responsible for band shifts, band broadening, or 

increase in band intensity. Finally, absence of BC isomerization in Labrafac PG solution and 

similarities observed with F2 and F4 Raman spectra demonstrated that the observed spectral 

changes were as expected caused by the physical state of BC that was interacting with the matrix.  
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Fig. 6.4. Raman spectra of pure crystalline BC, extrudate strands and of BC dispersed in Labrafac 
PG in the 1500 cm-1 (a) and in the 900 cm-1 (b) regions. 

 

 

The study of changes in PVPVA glass transition temperature (Tg) by DSC also suggested 

formation of interactions between BC and the matrix. Indeed, PVPVA had a Tg of 90°C that 

decreased to 74°C in the placebo samples F1 and F3. This was due to a plasticization effect of the 

oil/adsorbent mixtures. In presence of BC (F2 and F4), the Tg increased slightly to 78°C. 

Previous studies have demonstrated that an increase in polymer Tg can be due to an 

antiplasticization effect resulting from bonding between the polymer and other excipients or 

drugs, or it may be due to steric hindrance of the polymer chains [195]. 
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All the analytical techniques used to assess BC physical state were in agreement and confirmed 

that BC amorphous SD could be obtained by using a rather complex formulation composed of 

oil, polymer and adsorbents.  

 

 

  Understanding the microstructure of hot-melt extrudates 6.3.2.
 

  Multifractal analysis of placebo extrudates 6.3.2.1.

 

The key to success for obtaining the two amorphous BC SDs F2 and F4 was obviously to develop 

multicomponent formulations. Prior to SD analysis with BC, the placebo formulations were 

studied to understand the influence of the type of adsorbent on the microstructure. HME is a 

thermo-mechanical process, for which good excipient mixing results from the shear applied by 

two co-rotating screws. The applied shear as well as the nature of the excipients can therefore 

influence the formulation microstructure. In the present work, the extrudates differed in the type 

of adsorbents used. Aeroperl 300 and Syloid XDP were selected since they have similar physico-

chemical properties (Table 6.2) but are produced by two different processes. Aeroperl 300 is 

manufactured by a mechanical process (i.e. granulation of Aerosil 300), whereas Syloid XDP is 

produced by a proprietary chemical reaction. These two manufacturing ways are expected to 

influence the type of interparticle interactions. Indeed, primary particles constituting of 

granulated silica-based adsorbent are stabilized by weak interactions (e.g., Van der Waals, H-

bonds). In contrast, covalent bonds result in the structure of mesoporous silica-based adsorbent 

that are produced by a chemical reaction. As mentioned by Bumm, and Adler et al. [104,174], the 

screw speed can have an influence on particle breakage and thus on the final formulation 

microstructure. While exposed to shear stress, silica agglomerates can be partially destroyed and 

may return to their primary aggregated form [175]. Provided that weak interactions primarily 

exist in agglomerated silica particles, an intuitive expectation is that the shear during extrusion 

would have rather influenced the Aeroperl 300 formulation than the Syloid XDP system. 

Fig. 6.5a, b depict F1 an F3 pellet cross sections observed by SEM and the corresponding EDS 

2D-binary pictures (Fig. 6.5c, d). These systems exhibited a rather complex structure. Indeed, 

protruding silica particles could be seen on the SEM pictures (Fig. 6.5a, b) as well as on EDS 

pictures but with numerous other rather small entities (Fig. 6.5c, d). A quantitative differentiation 
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of the two placebo samples was therefore challenging based on simple image comparison. The 

recently introduced multifractal formalism in pharmaceutics was here promising to distinguish 

formulation microstructures by means of the generalized dimensions D0, D1 and D2 [104].  

 

 

 
 

Fig. 6.5. SEM (a, b) and corresponding EDS 2-D binary pictures (c, d) of F1 (a, c) and F3 (b, d) 
formulations. 

 

 

Accordingly, F1 and F3 were analyzed and thereby it was possible to assign numbers (i.e. 

dimensions) that could describe formulation or process effects on the microstructure. As a result, 

multifractal analysis confirmed that the type of adsorbent had an effect on the extrudate 

microstructure. Fig. 6.1 presents the generalized dimension Dq versus the moment q of F1 and 

results suggest that the formulation can be much better described as multifractal compared to a 

model assuming a single fractal dimension. This can be concluded since Dq clearly decreased 

while q increased and F2 exhibited the same behavior (data not shown). A zoom in D0, D1 and D2 

multifractal region of F1 and F3 is depicted by Fig. 6.6. F1 exhibited higher generalized 

dimensions than F3, which corresponded to a higher space coverage (D0), higher heterogeneity 

(D1), and lower clustering level (D2), respectively. This was in agreement with the assumption 

that Aeroperl 300 agglomerates were more prone to particle breakage than Syloid XDP particles. 
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This was hence likely to result in higher space coverage of Si atoms due to the presence of 

numerous smaller particles, as well as lower homogeneity and lower clustering level.  

 

 

 
 

Fig. 6.6. Generalized multifractal dimensions Dq over the [0,2] moment q range of formulations 
F1(●) and F3 (■). 

 

 

The multifractal analysis provided a tool to assign numbers to the microstructure of the placebo 

extrudates and thereby enabled a better understanding of adsorbent effects. The differences 

observed in the microstructure were mainly due to the different types and strength of interparticle 

interactions. The use of multifractal could be of particular interest for scientists in formulation 

process research, since it could be used to study the impact of process parameters on different 

types of excipients to achieve a final dosage form of desired quality attributes. 

 

 

 Multifractal analysis of BC extrudates 6.3.2.2.

 
Since BC amorphous SDs could be obtained by using both adsorbents, the second aim of the 

multifractal analysis was to assess the influence of BC on the microstructure. 

SEM/EDS 2D-pictures of the two BC amorphous SDs (F2 and F4) pellet cross sections are 

shown in Fig. 6.7. The protruding inorganic particles that were previously visible in F1 and F3 
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(Fig. 6.5a, b) could not be so easily detected, most probably because of the presence of BC that 

might have been adsorbed (alone or in combination with Labrafac PG) to the inorganic excipient.  

 

 

 
 

 

Fig. 6.7. SEM (a, b) and corresponding EDS 2-D binary pictures (c, d) of F2 (a, c) and F4 (b, d) 
formulations. 

 

 

Multifractal analysis was again conducted to study the pellets microstructure. As shown in Fig. 

6.8, the presence of BC exhibited a tendency towards higher capacity, D0, information, D1, and 

correlation, D2, dimensions. These findings showed that BC probably disturbed the overall 

mixing of silica particles, which resulted in the perturbation of adsorbent distribution und thus 

changes in the microstructure. As shown by Raman and DSC analyses, interactions between BC 

and the matrix were created during HME, which probably led to the observed changes in the 

microstructure. Moreover, both adsorbents had a porous structure, it is likely that BC could 

penetrate in the pores or be adsorbed on the adsorbent surfaces, which would have perturbed 

interactions of particles.  

DSC and XRPD analyses could not detect any difference between F1/F3 or between F2/F4, 

whereas multifractal analysis suggested differences in their microstructure. Indeed, the 

multifractal analysis of placebo and BC extrudates demonstrated that both the type of adsorbent 



Chapter 6. Multifractal and mechanical analysis of solid dispersions    125 
 
 
and the presence of the active compound had an influence on the microstructure. The 

microstructure in turn can affect quality attributes of intermediate or final dosage forms. The use 

of inorganic particles can especially modify the mechanical properties of polymeric composite 

matrices so that hardness of extrudate strands was studied in particular.  

 

 

 
 

Fig. 6.8. Generalized multifractal dimensions Dq over the [0,2] moment q range of formulations 
F1(■), F2 (■), F3 (●), and F4 (●). 
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 Mechanical properties of hot-melt extrudates 6.3.3.
 
The addition of inorganic excipients in a polymeric matrix is used in the field of composites and 

nanocomposites to reinforce or to modify the mechanical properties of polymers [196,197]. 

Thermoplastic polymers have generally poor mechanical properties, therefore inorganic particles 

can be added to provide higher strength. In the present case, the purpose of adding silica-based 

excipients in hot-melt extrudates was not to primarily modify the mechanical properties of the 

strands but to improve the premix powder flow and to adsorb an excess of oily components. 

However, since mechanical properties of polymer loaded with inorganic excipients are highly 

influenced by their microstructure [198] and since multifractal analysis revealed differences in 

the strand microstructure, it was of interest to study a mechanical property of the four HME 

formulations.  

Three point bending was carried out by using a texture analyzer. The maximum force was 

recorded that corresponded to the extrudate bending point. Since variations in strand diameter 

were observed, the recorded peak breaking force was normalized by the strand diameter at the 

point of breakage for a relative data comparison. This value allowed the evaluation of strand 

hardness and was named BSI [189]. The strand composed of the pure polymer and F5 had very 

irregular shapes and therefore could not be analyzed with the texture analyzer. BSI values of F1-4 

are presented in Fig. 6.9. Firstly, it occurs that F1 had higher BSI than F3. Accordingly, the 

formulation containing Aeroperl 300 was harder and needed higher force to break. Multifractal 

analysis showed that F1 exhibited higher space coverage and lower degree of clustering due to 

particle breakage compared to F3. As reported by Fu et al. (2008), particle size and loading may 

have an effect on material strength. Smaller particles result in higher strength and a higher 

particle loading also leads to enhanced mechanical properties. Aeroperl 300 sample exhibited a 

higher space coverage of Si atoms compared to Syloid XDP formulation. Higher space coverage 

provided more mechanical resistance and therefore is in line with the higher BSI value observed 

for F1. Besides particle size and loading, the particle shape can also play a role in the matrix 

strength. Oréfice et al. (2001) observed that spherically shaped particles led to higher toughness 

than particles having a high aspect ratio (i.e. relation between width and height). Syloid XDP is 

composed of irregularly shaped particles (aspect ratio > 1), whereas Aeroperl 300 particles are 

spherical (aspect ratio = 1; cf. Appendix C: Fig. 6.10). They explained this effect by the 

susceptibility of irregular particles to induce cracks, which was in agreement with the lower BSI 
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value found for F3. Such cracks were previously observed in strands following pelletization, (e.g. 

Fig. 6.5b). Thus, comparing the multifractal data and the mechanical properties, it can be 

concluded that interactions of particles, their clustering as well as their shape were likely to 

explain the differences observed in BSI values for F1 and F3.  

In a second step, the BSI of BC SDs was recorded. Both SDs exhibited higher BSI values than 

the corresponding placebo formulations. As highlighted by the multifractal analysis, BC might 

have helped in the overall silica particles mixing and grinding during HME since higher space 

coverage and lower degree of clustering were observed. Moreover, Raman spectroscopy and 

DSC analysis showed that BC was interacting with the matrix in F2 and F4. An enhancement of 

polymeric matrix strength has in a previous study been attributed to interactions with an excipient 

[199,200]. Such interactions appear to more generally reinforce the matrix mechanical properties, 

which leads to a higher strand hardness. 

 

 

 
 

Fig. 6.9. . Breaking force index of extrudate formulations containing Aeroperl 300 (●) and Syloid 
XDP (■) obtained by three point bending test. F1-4 are codded according to Table 6.1. 

 

 

From the three point bending test, it could be concluded that not only the microstructure (due to 

the inorganic carrier) but also the presence of BC/matrix interactions defined the SDs mechanical 

properties. The two methods were therefore complementary to understand the effect of the 

adsorbents and BC on the microstructure and the hardness of the extrudate strands.  
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  Conclusion 6.4.
 
The purpose of this study was to use multifractal analysis to better understand effects on the 

microstructure of hot-melt extrudates. Knowledge of the microstructure is of great interest for 

formulators since it can help to tailor the final dosage form according to desired product quality 

attributes. Multifractal analysis is here a powerful tool that allows assigning numbers to complex 

formulation structures. In the present case, microstructural differences were identified according 

to the type of adsorbent and due to the presence of BC. The shear stress induced by the screws 

had a more significant impact on granulated silica mixing and grinding than on silica gel. The 

presence of BC also influenced the overall distribution of silica excipients in the extrudates. The 

microstructure has usually a significant impact on quality attributes of pharmaceutical systems. 

Changes occurring within the microstructure could not only influence the final performance of 

pharmaceutical products, such as stability or drug release, but also impact the performance during 

downstream processing. Mechanical properties of materials are one of the most important 

parameter that should be taken into account prior to any downstream process. Since mechanical 

properties are conditioned by the microstructure, multifractal analysis was complemented by the 

assessment of the mechanical properties of the extrudate strands. Interesting correlations were 

observed and allow better understanding the impact of adsorbents and presence of an amorphous 

compound on the microstructure and the mechanical properties. The combination of both 

methods could further be used in the development of pharmaceutical products for which 

mechanical properties are of great interest, e.g. tablets or films. Future studies may extend the 

scope of microstructural analysis to elucidate effects on drug release.  
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Appendix C 
 
SEM pictures of the pure adsorbent powders are presented in this Appendix C to illustrate their 

particle shape. 

 

 
 

Fig. 6.10. SEM pictures of Aeroperl 300 (a, c), and Syloid XDP (b, d). Aeroperl 300 particles are 
spherical and exhibit a broad size distribution, whereas Syloid XDP particles have an irregular 

shape with consistent size. 
 

  

 

  
 
 
 
 
 



 

 

 
Chapter 7. Final remarks and outlook 

 
 Final remarks and outlook 7)

 
The formulation of poorly-water soluble compounds is one of the major challenges that the 

pharmaceutical industry is facing. Amorphous SD is one the most successful strategies that have 

been developed for solubility enhancement. However, some compounds require specific 

formulation considerations and simple polymeric systems usually employed in the development 

of SDs might be not sufficiently effective. Particularly complex is the formulation of APIs that 

combine both high crystallinity and lipophilicity. The present thesis focused on the development 

of new lipid-based types of SDs for such crystalline lipophilic compounds by means of HME. A 

second aim was to introduce novel analytical tools to better characterize complex solid dosage 

forms.  

 

Lipid-based materials are potent excipients that can be used for the bioavailability enhancement 

of BCS class II APIs. Nevertheless, we observed that pure lipid systems could not form an 

amorphous SD of a primarily highly crystalline lipophilic compound by using a simple melting 

method. These findings were supported by the use of a novel detection tool. We observed that 

conventional method exhibited sensitivity limits that could lead to erroneous conclusion about the 

physical state of an API. Therefore, flow-through cross polarized imaging was introduced and we 

showed that it was an excellent tool to detect a low-dose crystalline compound in lipid matrices.  

It provided qualitative and quantitative information concerning the compound crystallinity.  

This new method has a great potential in the pharmaceutical technology for the detection of few 

crystalline particles that could lead to physical instability and thus to a likely altered 

bioavailability.  

 

Simple lipids systems were not suitable for the development of amorphous SDs of a crystalline 

lipophilic compound, therefore specific excipient combinations were employed in HME process. 
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We targeted molecular interactions between a solid fatty-acid and an adsorbent in a polymeric 

matrix to create designed lipid microdomains (DLMs) for amorphous drug delivery. The creation 

of ion-dipole interactions was supported by FTIR spectroscopy. Additionally DSC, XRPD and 

AFM analysis showed that the lipid was in a non-crystalline form in the DLM delivery system. 

By combining analytical results, we concluded that the targeted interactions inhibited the lipid 

crystallization after HME, which resulted in the creation of disordered microdomains of lipid 

alkyl chains. The aim of creating DLMs was to generate a new pharmaceutical structure that is 

particularly suitable for inclusion of a poorly water-soluble compound. As expected, the DLM 

delivery system resulted in absence of model drug crystallinity, whereas this was not the case for 

the formulations containing crystalline lipid or polymeric matrix only.  

 

We showed that the combination of a solid fatty acid, an adsorbent, and a polymer was a 

promising formulation approach for amorphous SD of challenging compounds. Therefore, this 

strategy was extended to the use of liquid lipids, which could act as polymer plasticizer and could 

further play the role as solubilizer for a poorly water-soluble compound. We showed that the 

formulations had complex structures and that a quantitative differentiation was not feasible using 

conventional visual assessment. Multifractal formalism was therefore introduced. It allowed 

assigning numbers on extrudates microstructure. Using three generalized multifractal dimensions, 

D0, D1 and D2, we were able to describe the influence of the type of adsorbent, the adsorbent 

concentration and the screw speed on the microstructure. In a similar study, we also observed 

microstructural changes due the presence of amorphous API. Such direct quantification of 

microstructural changes is also of interest outside of the field of oral solid dispersions. It may be 

applicable to any field in which microstructural changes are expected to affect relevant quality 

attributes of a product. The present work further studied the self-dispersibility of extrudate 

products as it is of great importance for drug release. We assessed the erosion/dispersion behavior 

of the extrudate pellets as an early check in SD development. Even though no significant 

correlation with the multifractal analysis could be identified, an interesting finding was that the 

nature of the adsorbent could completely inhibit the pellet erosion and therefore could have an 

effect on drug release. We also complemented multifractal analysis by mechanical testing and 

found correlations with the microstructural study. All these methods were complementary and 

could further be used for a quality assessment of solid dosage forms.  
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The present thesis introduced a new flow-through technique that has the potential to be further 

used for lipid or any fluid systems. However, further technical development would be needed for 

its application to more viscous amorphous systems. This technique could be used in early phase 

development to anticipate quality failures of pharmaceutical dosage forms, which result from 

physical instabilities.  

 

This thesis also proposed novel combinations of excipients for the formulation of amorphous 

SDs. Amorphous SDs are known to improve solubility of poorly-water soluble APIs. In this work 

the emphasis was on the physical characterization of BC in the extrudates and on a better 

understanding of complex microstructures. Further research could also address the dissolution of 

the novel formulations to evaluate to which extent BC solubility is enhanced. Using a 

conventional dissolution test could be of interest to assess the supersaturated state of BC and to 

observe a possible precipitation upon dissolution. However, for in vitro/in vivo correlation an in 

vitro digestion test would be recommended. BC is in fact highly lipophilic and it was 

demonstrated that its so-called bioaccessibility is greatly improved only when it is incorporated 

into mixed micelles [201,202]. Considering the complexity of the newly developed SDs, BC 

could either be associated with lipid into mixed micelles, be adsorbed onto the adsorbent surface, 

be associated with the polymer or be in the form of single molecules. A digestion test might 

therefore determine the bioavailable fraction of BC, which could be subject to a research 

continuation. The newly developed drug delivery systems could also be used to formulate other 

pharmaceutical compounds.   

 

In general, this thesis offers interesting and promising formulation strategies for the formulation 

of crystalline lipophilic compounds. It also provided efficient characterization tools that could be 

used in the development of drug delivery systems during initial quality assessment as well as for 

long term stability evaluation.          
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