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Abstract

This PhD thesis is concerned with the reconstruction of intricate shapes from scanning
electron microscope (SEM) imagery. Since SEM images bear a certain resemblance to optical
images, approaches developed in the wider field of computer vision can to a certain degree
be applied to SEM images as well. I focus on two such approaches, namely Multiview Stereo
(MVS) and Shape from Shading (SfS) and extend them to the SEM domain.

The reconstruction of intricate shapes featuring thin protrusions and sparsely textured curved
areas poses a significant challenge for current MVS techniques. The MVS methods I propose
are designed to deal with such surfaces in particular, while also being robust to the specific
problems inherent in the SEM modality: the absence of a static illumination and the unusu-
ally high noise level. I describe two different novel MVS methods aimed at narrow-baseline
and medium-baseline imaging setups respectively. Both of them build on the assumption of
pixelwise photoconsistency.

In the SfS context, I propose a novel empirical reflectance model for SEM images that allows
for an efficient inference of surface orientation from multiple observations. My reflectance
model is able to model both secondary and backscattered electron emission under an arbitrary
detector setup. I describe two additional methods of inferring shape using combinations of
MVS and SfS approaches: the first builds on my medium-baseline MVS method, which
assumes photoconsistency, and improves on it by estimating the surface orientation using
my reflectance model. The second goes beyond photoconsistency and estimates the depths
themselves using the reflectance model.
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Chapter 1

Introduction

Scanning electron microscopy (SEM) allows us to render very small objects of arbitrary
topology visible to the human eye. It works by scanning the surface of a probe with an
electron beam, while a nearby detector measures the electrons emitted from the surface.
This results in images that look strikingly similar to optical grayscale photographs. Unlike
optical microscopy, which is limited by the wavelength of visible light, SEM can resolve
features as small as one nm in size. Although a number of other microscopy techniques do
allow for higher resolutions, SEM is unique in its ability to make intricate microscopic shapes
immediately comprehensible to the untrained human eye.

Given that the shapes depicted in SEM images can be easily understood by humans, their
reconstruction by computational means has garnered only limited attention. This kind of
digital reconstruction is useful for the following applications:

• Colorization: currently, single SEM images can be colorized by expert artists to
create instructive and aesthetically pleasing pictures. Knowing the precise shape of the
object allows this colorization to transferred to an entire sequence of images, yielding
a colorized SEM animation.

• Visualization: the estimated shape can be used to compute a synthetic rendering
of the object made out of any material from an arbitrary viewing angle and under
arbitrary lighting conditions. This can greatly enhance the use of SEM as a teaching
tool or to communicate research findings.

• 3D Printing: additive manufacturing techniques can be used to generate a greatly
enlarged copy of the original shape.

The methods that have been proposed so far aim at the reconstruction of comparatively
simple surfaces.

The reconstruction of intricate shapes from images in general is still considered a challenging
problem, even in the far more active field of generic computer vision. Researchers in that field
work with all types of image-structured data, though much of the work focuses on optical
images. Because the image formation process in a scanning electron microscope is in certain
ways similar to that of an optical image, some of those approaches can be applied to the SEM
domain. I will consider the following two areas of computer vision research in particular:
multiview stereo, which deals with the reconstruction of 3D shapes from multiple images
taken from different vantage points, and Shape from Shading, which attempts to reconstruct
shapes from observed shading patterns, often under a known illumination.
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CHAPTER 1. INTRODUCTION

1.1 Challenges and Opportunities

I will focus specifically on the reconstruction of intricate organic objects, such as the bod-
ies of insects. The many thin protrusions on such objects, combined with smoothly curved
untextured areas, make them a very challenging problem for current multiview stereo meth-
ods, independently of the imaging modality. Furthermore, SEM itself poses a number of
additional challenges but it also provides certain opportunities.

The main SEM-specific challenge is the fact that the apparent illumination in an SEM
image always rotates along with the observer. This is unavoidable, because it is only the
sample that moves within the microscope, while microscope itself remains static. The vast
majority of current multiview stereo methods rely on a property termed photoconsistency :
the assumption that the same point will appear in the same color in all images. In optical
images, this is equivalent to a world made out of Lambertian, i.e. perfectly matte, surfaces
under a static illumination. In SEM images, however, the same point will show very different
gray values when observed from different angles. This makes identifying the same point more
difficult, and the problem is further exacerbated by the absence of color and by the sometimes
challenging signal-to-noise ratio.

The main advantage of the SEM modality is the fact that the dependence of the light-
ness value on the viewing angle is very predictable. This makes SEM more amenable to
shape-from-shading approaches than optical imaging. Unlike optical images, where the re-
flectance properties differ greatly among different materials, organic SEM samples are com-
monly coated with a thin layer of conductive material to increase image contrast and to
prevent charging. This layer gives them an almost uniform reflectance behavior under the
electron microscope. This means that the observed lightness value depends almost exclu-
sively on the surface orientation, i.e. the direction of the surface normal at that point. As a
consequence, the normal can be estimated more reliably from the observations, and it can
be integrated to obtain a shape estimate.

12



Chapter 2

Background and Previous Work

In the following chapter, I will describe the relevant previous research directed at reconstruct-
ing shapes from images. The first part covers generic computer vision approaches, while the
second part looks at SEM in particular. Because of the somewhat interdisciplinary nature of
this work, this chapter is comparatively long and detailed, as it needs to introduce resarch
from both of those fields. It will begin with a general overview and turn to the individual
works later on.

2.1 Computer Vision

The field of computer vision strives to obtain abstract information from images. It pursues
the opposite goal of computer graphics, which aims to generate images from abstract infor-
mation. The applications of computer vision range from autonomous vehicle navigation and
pedestrian detection, to the recognition and tracking of human faces in crowded scenes to
the creation of 3D assets for the films and games industries and the digitization of historical
artifacts.

Many modern methods formulate vision problems as optimization problems, where a cost or
energy is minimized as a function of the unknowns. This formulation decouples the algorithm
used for the optimization from the cost function itself, and it makes the specific problem
formulation easier to understand. This is further amplified by the often included probabilistic
interpretations, where the energy to be minimized is usually interpreted as the negative log of
a likelihood, i.e. the probability of a set of parameters. This probabilistic interpretation then
makes it possible to apply Bayesian statistics to those problems by weighing the observed
evidence against prior assumptions.

One possible way to organize the very large number of vision problems that have been
addressed over the decades would be to order them according to the amount of information
that has to be extracted, which I will do in the following. This is not indended to give an
overview over the entire field of computer vision, since that would be beyond the scope of this
introductory chapter. The purpose of ordering the problems along the information spectrum
is merely to place my own work within the larger context of computer vision research.

On the lower end of that spectrum, one would then find classification and detection problems,
where an algorithm is e.g. required to ascribe one single label to a given image or a probability
to a given image region. Methods that approach these problems often avoid modelling their
problem domain explicitly, and instead rely on sophisticated machine learning techniques

13



CHAPTER 2. BACKGROUND AND PREVIOUS WORK

to build highly complex models directly from labeled data. If such an algorithm is e.g.
tasked with detecting pedestrians in images, it will need a reliable model that captures the
very different ways in which pedestrians appear in images when seen from different sides, in
different poses and under varying illumination. Because so much of the information has to
be contained within the model, the representation and acquisition of that model knowledge
is typically the focus of the methods on this end of the spectrum. In the case of discrete
problems, such as the image labeling problem, the small amount of output information often
makes it possible to explicitly evaluate all possible answers and to return the best one.

Further along the spectrum, one finds problems such as that of reconstructing the shape of
an observed object that belongs to a specific known class of objects, such as human faces [1]
or dolphins [2]. In this scenario, the specific shape within the class is typically represented by
tens to hundreds of unknown coefficients, and the usually unknown viewing and illumination
parameters represent further unknowns. Since those parameters are part of the answer that
the algorithm returns, they have to be modelled explicitly. This explicit modelling of the
interrelations of parameters within the model allows such models to be constructed from a
smaller amount of data, since the interrelations do not need to be learned by the algorithm.
Due to the increased number of unknowns, those can no longer be determined by exhaustive
computation, so iterative optimization strategies are usually applied.

In most cases, the resulting problems are not convex, because the image values are themselves
non-convex functions of the spatial domain. When dealing with a non-trivial non-convex
problem, there is no guarantee that an iterative procedure will converge towards a global
minimum. Many of the proposed algorithms thus rely on a good initialization [3, 4], and
only recent methods address the problem of non-convexity through e.g. stochastic sampling
[5].

On the high-information end of the spectrum, we find problems that associate at least one
unknown with each pixel of an image. Those are e.g. the problems of image segmentation,
where each pixel receives one discrete label, and depth estimation, where pixels receive
continuous depth values.

Even further along the spectrum, we find the methods that perform such operations on voxel
grids, which are equivalent to 3D images. Most importantly in the context of this thesis,
here we also find the problem of surface reconstruction, which is nowadays usually posed as
a segmentation problem that segments a 3D voxel grid into an inside and an outside region.
This formulation guarantees a watertight surface while allowing for an arbitrary topology,
limited only by the resolution of the voxel grid.

Problems on this end of the spectrum often contain millions, and sometimes billions of
unknowns. Conversely, the prior assumptions about the problem can be very minimalistic,
and are often limited to a smoothness assumption. Smoothness in this context means that
two adjacent pixels or voxels are more likely to exhibit the same or a similar value than two
very different values.

With the appropriate choice of smoothness metric, these problems can be made convex, but
those metrics are also usually very strict and lead to oversmoothed results. They are thus the
least appropriate for the reconstruction of intricate geometry. In addition, the large number
of unknowns makes it very difficult to choose the initial state for the optimization manually.

As a consequence, modern methods that aim to reconstruct intricate geometry are rarely
formulated as pure optimization problems. Instead, they more often consist of elaborate
sequences of processing steps that produce a number of intermediate data terms. Those
data terms are then used as parameters for a final surface reconstruction step that almost

14



2.1. COMPUTER VISION

always is formulated as a convex problem. In the following, I will present the previous work
on the multi-view stereo problem in detail.

2.1.1 Multi-view Stereo

Multi-view stereo (MVS) refers to the reconstruction of unknown shapes from sets of cal-
ibrated images. Calibration means that functions are known that map every point in 3D
space onto the image plane of each frame. The problem of finding such mappings is referred
to as the Structure-from-Motion problem (SfM), and it is not the focus of this thesis. It is
most often performed by matching sparse points between the images, before the shape itself
is known. This type of calibration will be referred to as geometric calibration in this work,
in order to distinguish it from the measurement of the actual brightness values, to which I
will refer as radiometric calibration.

The MVS problem is closely related to binocular stereo, which aims to reconstruct shapes
from only two images. Unlike MVS, binocular stereo does not allow for the reconstruction of
complete objects, and it is usually limited to finding depth maps corresponding to the input
views. A depth map is an image that contains within its pixels the distances between the
observer and the respective surface points seen in that pixel.

The majority of MVS work relies on a property termed photoconsistency : a point in space
is said to exhibit high photoconsistency if it maps onto 2D points in the different images
that look similar to each other. If a point lies on the true surface of an object, then the
corresponding image areas will all show the same part of that surface, and therefore they are
expected to exhibit high photoconsistency. The goal is to then find a surface in 3D space
that is made up of photoconsistent points, while at the same time explaining the pixels of
the images.

Photoconsistency can be either measured by comparing the corresponding pixel colors di-
rectly, or by applying more abstract metrics, such as normalized cross-correlation (NCC), to
corresponding image areas. The former approach is better suited for the reconstruction of
small features, but it is also more susceptible to occlusions and to changes in surface radiance
such as specular highlights.

The term radiance refers specifically to the amount of light emitted from the surface in the
direction of the camera sensor. If that value is to remain constant over different viewing
angles, then the illumination must not move with respect to the object, and the surface of
the object has to be Lambertian (the latter concept will be explained in more detail in 2.1.2).
In the following, I will refer to this type of photoconsistency as strict photoconsistency.

In context of SEM images, a more appropriate term would be electroconsistency, because no
light is involved in the image formation. I will still refer to the property as photoconsistency,
however, in order to maintain a uniform terminology.

More importantly, strict photoconsistency does not hold for SEM images. Instead, the
illumination rotates along with the observer, because it is the sample that moves, and not
the microscope. As a consequence, the gray value of a point only allows for identifying that
point in images taken from similar directions. Globally, any point can theoretically appear
under any gray value in every image.

The first part of this thesis will focus on methods for reconstructing intricate surfaces with
small features in the absence of global photoconsistency through MVS. The second part will
investigate the precise way in which the gray value in a SEM image changes as a function
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CHAPTER 2. BACKGROUND AND PREVIOUS WORK

of the viewing direction, and methods will be presented that extract additional information
from that change.

A survey of MVS methods published before 2006 has been presented by Seitz et al. [6].
According to their taxonomy, one way to classify the different methods is based on the
reconstruction algorithm that is applied:

1. Feature extraction and growing methods

2. Iterative surface evolution methods

3. Image-based methods

4. Volumetric one-shot methods

Many methods that have been presented since then combine multiple such approaches in
different parts of their pipelines. In the following, I will look at each of them with a view
towards the reconstruction of intricate geometry from SEM images.

1. Feature Extraction and Growing Methods

These methods work on sparse points and are therefore inadequate for the reconstruction
of intricate geometry. The today probably most prominent representative of these is PMVS
[7]. This method estimates a set of sparse planar patches in space and fits their orientation
to the input images.

The resulting patches are equivalent to a cloud of oriented surface points and are often used
to compute a watertight surface by one of the volumetric surface reconstruction methods
that are described further below.

2. Iterative Surface Evolution Methods

Here, an initial surface estimate is iteratively optimized according to some cost measure in
order to better fit the input images. The main advantage of these methods is their ability
to model occlusion geometrically, since the visibility of individual points in space can be
determined from the current shape estimate. This can also lead to errors in cases where that
estimate is wrong.

An early such method is voxel carving [8], where the initial surface contains the entire object,
and voxels on the surface are iteratively removed if they exhibit insufficient photoconsistency.
This leads to surfaces that balloon outward in the smooth areas, and it can also damage
surfaces in the case of specular highlights. The inability of that algorithm and its variants
to un-carve voxels that have been removed compromises their stability.

This particular problem was solved through level set methods [9, 10, 11]. Here, an arbi-
trary surface, represented by a level set in a 3D scalar field, is evolved in both directions
(i.e. material is added or removed) to increase photoconsistency and to decrease an addi-
tional regularization energy. These methods are still local, so they rely on an appropriate
initialization. This is a problem particularly with respect to the visibility estimation.

Although not a surface evolution technique, the recently proposed inverse ray-tracing method
by Liu et al. [12] is also a local method, since it performs loopy belief propagation on a
Markov random field (MRF). The main difference to surface evolution techniques lies in the
fact that the scalar field is evolved everywhere in space at the same time, and not only along
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2.1. COMPUTER VISION

the current surface estimate. Since it considers the pixels individually, this method is able to
reconstruct very complex geometry showing complicated self-occlusion. It is, however, com-
putationally very demanding, since the MRF formulation used considers cliques comprising
up to thousands of random variables. It is also dependent on strict photoconsistency.

3. Image-based Methods

In image-based methods, the scene is described by a grid of depth values, usually coinciding
with the pixels of one of the input images. These depth images are referred to as depth
maps. This representation is nowadays mostly used when time is an essential factor, like
e.g. in autonomous navigation [13]. In that case, the aim is not the precise reconstruction of
intrictate geometry. Another application of depth maps is the reconstruction of scenes that
span too many different levels of scale to be effectively represented by a voxel grid [14, 15, 16].
In those works, the depth maps are not the final result of the algorithm, but are used to
construct a mesh using volumetric Delaunay triangulation. The depth maps are estimated
using normalized cross-correlation (NCC) of image windows, SIFT [17] or PatchMatch [18]
descriptors. Since those windows and descriptors carry information collected from image
areas of a certain size, they cannot adequately describe features smaller than that size.

A notable exception is the recent method by Kim et al. [19] which works on very dense image
sequences and aims to estimate the depths of individual pixels independently. Although it can
reconstruct very thin features, it assumes strict photoconsistency and clearly distinguishable
colors, which prevents its application to SEM images.

In spite of the small number of purely image-based methods that have been published in
recent years, recent work on volumetric methods [20, 21] has shown that accurate depth
maps can greatly improve their performance. In chapter 4, I will present a depth estimation
technique that works on individual pixels and that can cope with noisy gray-level images,
as long as the images are taken from sufficiently close view angles so that the gray values of
given points do not change excessively. The key to that method is that it computes both the
depth value and a denoised gray value simultaneously.

4. Volumetric One-shot Methods

Volumetric one-shot methods have become very popular over the past decade. They first
use the images to compute local energy terms defined on a voxel grid, and then they extract
a 3D surface that is optimal under those terms. In many cases, a scalar regional term
expresses a preference of a voxel for being labelled object or empty space, while a surface
energy term describes the likelihood of a surface traversing that point in space. The final
surface extraction is then equivalent to the computation of the most likely inside-outside
segmentation of 3D space. Unlike in the case of surface evolution methods, the computation
of this segmentation is usually a convex problem with a unique solution that does not depend
on the initialization. In almost all cases, a mesh is finally extracted from the segmentation
using the marching cubes algorithm [22]. The methods that I have developed as part of this
thesis fall into this fourth category if considered in their entirety.

Because methods of this type cannot rely on geometric visibility information in the way
iterative surface evolution methods can, they need to estimate image correspondence in an
occlusion-robust way. All of the methods surveyed below that estimate image correspondence
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(and thus depth) do so by correlating image windows of a certain size using normalized cross-
correlation (NCC). The advantage of this metric is the low probability of observing a strong
correlation accidentally. Even though this can happen if only two views are considered,
particularly if the scene contains periodic patterns, it is very unlikely that those mismatches
would coincide in space for multiple image pairs.

The use of NCC as a measure of photoconsistency allows these methods to essentially count
the number of images where a given depth shows strong correlation to the reference image.
Images in which that point is occluded do not contribute to the total matching score, but they
are also not likely to corrupt the correct depth. The main drawback of NCC as a similarity
metric is the fact that it is measured for an entire window worth of pixels simultaneously.
This leads to artifacts in cases where a feature is too small to be entirely covered by a window.

While many surface reconstruction techniques have been proposed as part of full MVS
pipelines, others have been presented as independent methods. In those cases, the meth-
ods merely assume that adequate depth maps or point clouds are available, and they make
no distinction whether these have been obtained through MVS or by other means, such as
laser-range or structured-light scanning. In both scenarios, the final volumetric segmenta-
tion makes it possible to remove noise and outliers from the initial measurements through a
process equivalent to local probabilistic reasoning within the voxels of the volume.

In the following, I will discuss both types of surface reconstruction together, because some of
them are very closely related, even though certain variants contain a depth estimation step
while others do not.

Volumetric Surface Reconstruction

Three main strands of volumetric surface reconstruction have emerged over the years: dis-
crete Markov-random-field (MRF) based methods, total-variation (TV) based convex relax-
ation methods and Poisson surface reconstruction. All three approaches aim to estimate a
scalar indicator function u(x) that is equal to one inside the object and zero outside. They
all suffer from a minimal surface bias, since the cost of a surface must always be positive
to keep the problem well-posed. This minimal surface bias tends to cut off thin protrusions
and to fill in cavities.

MRF-based methods: The MRF-based methods [23, 24, 25, 26] formulate the problem
in a discrete way, by defining a graph that consists of the voxels as nodes while the edges
between them are given by pairwise neigborhood relations. Each voxel is associated with a
scalar unary term that defines the cost of the voxel being labelled either inside or outside,
while each edge carries a binary term, defining the cost incurred if the two attached voxels do
not share the same label. This binary term corresponds to the local cost of a surface. This
formulation is equivalent to the Ising model of ferromagnetism, which has been studied for
almost a century at the time of this writing. As long as all binary terms are non-negative, a
globally optimal segmentation can be computed using the min-cut algorithm [23].

The main disadvantage of this approach is the discrete problem structure. The total surface
cost is equal to the sum of the binary terms of all edges that coincide with inside-outside
transitions. As a consequence, a diagonal surface can be up to

√
3 times more expensive

than an axis-aligned one. Although this can be alleviated to some degree through the use of
a more complex graph structure, i.e. edges to more than the six immediate neighbor voxels,
this also greatly increases the computational complexity of the problem.
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The very early MRF-based MVS method proposed by Vogiatzis et al. in 2005 [24] is note-
worthy in that it avoids computing image depths altogether as an intermediate step. Instead,
the binary terms are given by a photoconsistency measure that is evaluated at every voxel. If
a point in space projects onto image areas that appear similar to each other, then the surface
cost is lower in that area of space. As a photoconsistency measure, the authors apply the
normalized cross-correlation (NCC) between image patches of a certain size centered around
the point in question. The unary terms require points on the boundary of the volume to be
labelled outside, while points sufficiently deep within the scene are always labelled inside.
An additional heuristical inflationary term favors the voxels in between being labelled in-
side. In spite of this latter term, the method still tends to cut off thin protrusions, because
those require a large surface area, while the cost of mislabelling the small number of voxels
contained inside is comparatively low.

The same authors have later improved on their algorithm [25] by introducing a robust depth
voting scheme. In this formulation, the depth of maximal photoconsistency is first deter-
mined for each pixel of each image. The binary terms are then only reduced for edges that
fall close to those optimal depths. This helps to sharpen the binary terms and leads to a
better reconstruction of corners and sharp edges, but the central problem of thin protrusions
remains. This estimation of an optimal per-pixel depth is equivalent to the computation of
a depth map.

Also worth mentioning is the early method by Sinha and Pollefeys [27] that aims to en-
force precise silhouette consistency in addition to photoconsistency. Most of the methods
mentionend above also consider silhouette information in a negative sense, i.e. any point in
space that projects outside the silhouette in any of the images is required to be classified
as outside. In contrast, the method by Sinha and Pollefeys also requires every image point
within the silhouette to back-project onto an object surface and not the background. This
is accomplished by discretizing 3D space in such a way that silhouette consistency can be
formulated as a hard constraint. The idea of enforcing strict silhouette consistency would
appear again in the context of TV-based continuous surface reconstruction.

Poisson reconstruction methods: While the discrete MRF-based methods work on a
graph that represents the scene, the continuous Poisson reconstruction methods aim to es-
timate a scalar indicator function u : R3 7→ R that maximizes consistency with a discrete
set of surface normals ni known at certain points, while at the same time minimizing an
L2 regularization energy, |∇u(x)|2. This is accomplished via the minimization of the func-
tional |n(x) − ∇u(x)|2, where n(x) is zero everywhere except at the given discrete points.
The Euler-Lagrange equation associated with this energy functional is the Poisson equation
∆u(x) = div(n(x)), hence the name.

A precursor to this family of methods was proposed by Davis et al. in 2002 [28], where the
authors aim to fill gaps in given 3D meshes through linear diffusion on a regular voxel grid.
The input information takes the form of boundary conditions, i.e. certain voxels around
the mesh geometry are always defined as either inside or outside (i.e. u(x) = ±1), and
that information is propagated into the remainder of the volume though diffusion. A linear
diffusion process, u̇ = div(∇u(x)), corresponds to a gradient descent in the aforementioned
L2 regularizer.

The term Poisson reconstruction was coined only later [29], where the problem takes the form
common today of fitting a function u(x) to a cloud of oriented points. In that formulation,
the input points no longer constitute boundary conditions but are instead contained in the
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vector field n(x), as described above. This formulation allows the input points to contain a
certain amount of noise, and the method interpolates gracefully between them.

This and later works have shown that the problem can be solved very efficiently using an
adaptive octree representation [29], parallelizable multigrid techniques [30] and even pure
GPU implementations [31]. Originally, the unknown integration constant was estimated as
a constant global value [29]. The approach was later made more robust by allowing the
integration constant to vary smoothly across space as well [32]. This variant is known as
screened Poisson reconstruction.

Traditionally, Poisson reconstruction methods were formulated as pure surface reconstruction
techniques that take a cloud of oriented points as input. Since no information is available at
all in areas far away from those points, this tends to lead to surfaces that balloon into those
empty areas. Shan et al. [20] could improve dramatically on those results by constructing
dense depth maps that correspond to the input images and that exhibit depth discontinuities
coinciding with the edges in the images. These contour-correct depth maps are then used
to augment the Poisson reconstruction approach through the addition of free-space voting,
i.e. a term that encourages areas seen in front of observed points to be classified as empty
space. This allows their algorithm to use the depth maps as a local silhouette constraint,
leading to considerably better reconstructions of the internal (i.e. non-silhouette) contours
of the object. This latter work clearly illustrates the need for contour-correct dense depth
maps in MVS, even if they are not the final result of a pipeline.

TV-based convex relaxation methods: Like the Poisson reconstruction methods, these
methods are also continuous, and they also aim to find an optimal indicator function u(x) :
R
3 7→ [0, 1]. The main difference is that they use an integral over the L1-norm of the gradi-

ent, |∇u(x)|, as a regularizer, i.e. the total variation (TV). Unlike the L2 regularizer which
always prefers a smoother function, the L1 regularizer is better suited for the reconstruction
of piecewise constant functions. This can be illustrated using a minimalistic discrete 1D
example.

Let x1, x2, and x3 be three equidistant neighboring points along a 1D line, and let the
function values for the two outer points be fixed, f(x1) = a and f(x3) = b. If we aim to
optimize the value of y = f(x2) under an L

2-regularizer, then the total energy will be equal
to (y−a)2+(y− b)2. The minimum of that energy is given at y = (a+ b)/2, i.e. the mean of
the two points. If we look at the L1 energy instead, then that energy, |y−a|+ |y− b|, will be
constant and equal to |a− b| for all values of y between a and b. The L1 energy is indifferent
to the precise value of y, as long as it is located between the two sample values. It can thus
tolerate arbitrarily sharp edges, while the L2 energy always prefers a smooth solution. This
effect forms the core of the seminal denoising model by Rudin, Osher and Fatemi [33] from
1992 and its extension by Chan and Esedoglu [34].

Another interesting property of the TV regularizer comes into play when it is used in the
solution of a segmentation problem, such as surface reconstruction. In that case, the TV
integral is equivalent to the perimeter of the enclosed set, i.e. the surface area. While the
discrete MRF-based methods only approximate the surface area by the number of inside-
outside transition edges, the TV-based convex relaxation methods aim to minimize the actual
surface area.

Analogously to the unary terms in the MRF scenario, and unlike the classical point-cloud
based Poisson methods, each voxel carries a real-valued scalar parameter that biases that
voxel towards preferring to belong to either the inside or the outside partition of the volume.
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This parameter is usually referred to as a regional term in this context. While the TV
approach avoids the discretization errors of the MRF approach and allows for a more memory-
efficient optimization, the essential difficulties of reconstructing thin protrusions remain.

An early such method was the depth fusion technique presented by Zach et al. in 2007 [35].
There, in addition to the homogeneous TV model, the authors also propose a weighted TV
model, building on the active-contour based image segmentation method by Bresson et al.
[36]. In the weighted TV model, the TV integrand |∇u(x)| is replaced by a locally weighted
one, g(x)|∇u(x)|. The scalar function g assumes the role of the binary terms from the MRF
formulation, and it encourages the surface to pass through points where g is small.

The TV approach was later reformulated by Kolev et al. [37, 38] as a full MVS method, using
continuous adaptations of the unary terms proposed by Vogiatzis et al. [24, 25] as regional
terms. Another paper by Cremers and Kolev [39] focuses on enforcing precise silhouette
constraints in addition to consistency with depth estimates derived from MVS. This is shown
to greatly improve the reconstruction of thin features, as long as they are silhouetted against
the background in some of the images. Unlike the method by Sinha and Pollefeys [27], this
is not accomplished through an irregular volume discretization, but instead by iteratively
projecting the resulting surface onto the most similar one that fits the silhouettes.

A later paper by Kolev et al. [40] reformulates silhouette consistency in an exact proba-
bilistic way, but it abandons the idea of strict silhouette consistency and it treats silhouette
information as uncertain instead. The probability of a pixel belonging to either foreground
or background is given by two color distributions that are measured from the images.

Although silhouette information helps greatly in the reconstruction of thin features, it can
only be exploited if the scene can be trivially segmented into a foreground and a background.
In the SEM setting, both areas consist of the same gray values and the edge between them
can be arbitrarily faint, so silhouette information is generally not available. In addition,
features located within concavities can never be seen silhouetted against the background.

In a different paper, Kolev et al. [41] have shown that the reconstruction of thin structures
can also be improved by making the surface cost anisotropic, i.e. dependent on the orien-
tation of the surface. Formally, this is accomplished by minimizing |D(x)∇u(x)| instead
of g(x)|∇u(x)|, where D(x) is a regularization tensor that takes the form of a symmetric,
positive definite 3× 3 matrix.

Here, D behaves similarly to the diffusion tensor under anisotropic diffusion. A process
of anisotropic diffusion, u̇ = div(D(x)∇u(x)), is indeed equivalent to a gradient descent
in the corresponding L2 energy, |D(x)∇u(x)|2. The eigenvectors of D form an orthogonal
system, and the amount of diffusion along each of those three directions is proportional to
the corresponding eigenvalue [42, 43, 44]. When used as a regularizer, the eigenvalues of D
determine the cost of a surface running orthogonally to their corresponding eigenvectors.

The method by Kolev et al. [41] always assumes a locally planar surface, so the regularization
tensor D(x) exhibits one small eigenvalue at most, while the other two or three are large.
This results in a regularizer that allows for only one surface orientation in any given area
of space. That orientation is taken from planar PMVS patches [7] that can only provide
reliable orientation estimates for textured, locally planar surfaces. While this type of planar
anisotropy indeed helps in the reconstruction of thin disc-shaped features, it tends to destroy
thin cylindrical features.

This problem is addressed by the anisotropic depth fusion method by Schrörs et al. [45], where
the authors allow for all four possible types of eigenvalue configurations, corresponding to
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corners (three small eigenvalues), sharp edges or ridges (two small eigenvalues, one large),
planes (one small, two large) and homogeneous regions (three large eigenvalues). In this
approach, the regularization tensor is computed directly from the current estimate of u.

In chapter 6, I will present a regularizer that extends on this idea by estimating the local
structure directly from the images. Specifically, this novel approach abandons the assumption
that a local surface normal can even be known in all circumstances. Instead, I argue that
a set of observations of the same edge from multiple views only allows for determining one
of the two dimensions of the normal around that edge. The complete normal can only be
estimated by considering multiple edges in close proximity.

2.1.2 Shape from Shading and Photometric Stereo

The term Shape from Shading (SfS) refers to the problem of finding a 3D surface that
explains the smooth radiance changes observed in one single image that stem from changes
in surface orientation. This excludes radiance changes resulting from observed contours or
cast shadows. Since only one single image is used, the surface can be represented by a depth
map, u(x, y).

The first application of such a method known to me was proposed by Rindfleisch [46] to the
reconstruction of lunar topography along parallels (i.e. lines of constant latitude) in 1966.
The term shape from shading itself was only coined by Horn in 1970 [47]. There, he already
suggests an application of the approach to shape reconstruction from secondary-electron
SEM images, though the shading model he applies does not consider the position or shape of
the detector and it does not account for cast shadows. These effects and the different types
of SEM images will be discussed in section 2.2.

In 1977, Horn proposed the concept of a reflectance map R(n) for distant illumination en-
vironments viewed under an orthographic projection [48]. R(n) is a 2D scalar field that
maps depth gradients ∇u (that are equivalent to surface normals n ∈ S

2) onto the radi-
ances v ∈ [0,∞[, that a point will emit if it exhibits normal n. The reflectance map thus
encapsulates both the distant illumination and the reflectance properties of the object.

Also in 1977, Nicodemus et al. proposed the bidirectional reflectance distribution function
(BRDF) [49] as a property particular to a given material. It takes the form of a 4D scalar
field fλ(ωi, ωe) : S

2 × S
2 7→ R

+ that, for each given wavelength λ, describes the amount of
light emitted in a given direction ωe when the surface is irradiated by light coming from
a given incidence direction ωi. Both directions ω are given relative to the surface normal,
which we can define as (0, 0, 1) without loss of generality.

From the linearity of light that was first noted by J. H. Lambert in his Photometria in 1760
[50], it follows that Horn’s reflectance maps are integrals over the illumination environment
L(ω) weighted by the BRDF of the observed material:

Rλ(N) =

∫

Ω
max(0, ω · n)L(ω)fλ(Anω,Anωe)dω, (2.1)

where An are orthogonal 3×3 matrices that rotate the surface normal n into (0, 0, 1), and ωe

is the reverse viewing direction that is constant under an orthographic projection. The factor
max(0, ω ·n) accounts for the fact that the irradiance of a surface element dA is proportional
to the surface area that dA assumes from the point of view of the light source [50]. Please
note that above definition is only unique for isotropically reflecting materials, because the
matrices An are only specified up to a final rotation around the z-axis. The radiance of
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anisotropically scattering materials, such as brushed metal, feathers or fur, are not constant
under such rotations. I will, however, only consider isotropical reflectance in this thesis.

Furthermore, the above definition assumes that the illumination field L(ω) is homogeneous
across the volume. This assumption only holds for convex surfaces, because certain incoming
light directions can be occluded within cavities, which produces shadows. If L consists of a
single sharp peak, e.g. L(ω) = δ(ω − ωL), then we speak of a directional light, or a distant
point light. Under that type of illumination, points where that peak direction is occluded will
lie in a shadow. If the illumination is a wider function, then we speak of soft lighting which
casts soft shadows. In that case, more points will be affected by shadows, but fewer of them
will be completely dark. The extreme case of this is a uniform function L(ω) = L0 ∈ R

+,
which is approximated by the illumination on a foggy or cloudy day.

The simplest BRDF is constant, and such a material is said to exhibit Lambertian reflectance.
The value of that constant is referred to as the albedo of the material.

Two distinct types of reflections occur in nature: diffuse and specular reflections. A diffuse
reflection is observed when the incoming light raises the electrons within the material into
excited states. When they leave those states, they emit the very specific energy difference
in the form of a photon that is released in a random direction, with a wavelength that cor-
responds to the energy difference. Due to the randomness of the direction, the behavior of
diffuse reflectors is often near-Lambertian, i.e. it does not depend strongly on the position of
the observer. Deviations from Lambertian behavior do occur, however, because the surface
normal is never constant across the surface area covered by a pixel. Due to microscopic shad-
owing and masking effects, rough surfaces generally scatter more light back in the incident
direction than in other directions. This behavior is modelled explicitly by the Oren-Nayar
shading model [51].

Specular reflections are wave effects that happen at the surface of the material. When an
electromagnetic wave traverses the interface between media of different optical density, a
part of the wave is reflected back. The reflected wave travels in the incoming direction
mirrored on the surface normal. For a perfectly reflecting mirror surface, the BRDF is given
by f(ωi, ωe) = δ(ωe− (2ωi ·n−1)ωi). The local distribution of surface normals under a pixel
generally blurs this mirror reflection, leading to a wider peak around the mirror direction. A
very prominent effect for specular reflectors, especially dielectric ones, is the Fresnel effect.
It produces specular reflections that are much stronger at grazing angles (i.e. ω · n is small)
than at more frontal angles.

In 1979, Woodham proposed the technique of photometric stereo (PS) [52] that entails
the reconstruction of a shape from multiple images of the same object seen from the same
point of view under different illuminations. In order to distinguish PS from the binocular
and multiview stereo methods discussed in 2.1.1, I will refer to the latter as photogrammetric
stereo methods in the following.

Although PS is essentially an extension of SfS, the two concepts have been considered sep-
arately in literature ever since. This is because SfS aims to estimate a 2D quantity, the
surface normal n ∈ S

2, from a single radiance value v ∈ R. As this is an underconstrained
problem (with the exception of certain singular points), SfS is unable to estimate the normal
locally. Instead, the normals of all points have to be estimated simultaneously. As soon as
observations under two or more illumination environments are available, the normals of the
individual pixels can be determined separately, at least up to pointwise ambiguities. Then,
surface reconstruction reduces to a problem of numerical integration from noisy gradients.

The methods I have developed as part of this thesis would be properly considered PS meth-
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ods, and not SfS. Overviews of later pure SfS methods can be found in the surveys by Zhang
et al. from 1999 [53] and by Durou et al. from 2007 [54]. A more recent survey of PS methods
was published by Herbort and Wöhler in 2011 [55].

An interesting property of SfS and PS methods that had already been noted by Horn [47] is
their complementarity to photogrammetric stereo methods. While photogrammetric stereo
allows us to estimate the depth of sharp edges where SfS methods often fail, SfS allows
us to estimate the depth of smooth regions where this is not possible for photogrammetric
stereo approaches. In 1983 and 1987, Ikeuchi developed the first algorithms based on this
idea [56, 57], by fusing surface orientations obtained through PS with sparse depth maps
obtained by binocular stereo.

A slightly different type of complementarity was described by Nehab et al. in 2005 [58].
There, the authors look at the problem in frequency space, and they observe that the in-
tegration of noisy surface orientations obtained through PS leads to a degradation of the
low frequencies of the depth function. At the same time most triangulation-based methods
(e.g. both photogrammetric stereo and active methods such as structured-light or laser-range
scanning) reconstruct the low frequencies well, but they miss the high-frequency components
instead. The authors then present an algorithm that allows them to fuse the two types of
information efficiently. Their triangulated depths are determined through a structured-light
scanning setup. In 2009, I proposed a similar approach [59] for the reconstruction of human
faces, where the high-frequency component is measured through PS, while the low-frequency
component stems from a fit of a statistical shape model.

In 2006 and 2008, Hernandez, Vogiatzis and Cipolla [60, 61] have proposed combined MVS/PS
methods that aim to reconstruct very smooth, shiny and untextured surfaces from multi-
ple views under a point light illumination. Their capture setup allows for a reliable fore-
ground/background segmentation, which provides strong silhouette constraints to their al-
gorithm.

This concludes my review of the relevant computer vision methods. In the next section, I
will discuss their applications to the SEM domain.

2.2 Scanning Electron Microscopy

In the following, I will first explain the way in which an image is formed in a scanning electron
microscope, since this is necessary in order to discuss the existing methods. The discussion
of those methods will be given afterwards.

2.2.1 Image Formation

As mentioned in the introduction, a scanning electron microscope generates an image by
scanning the scene with a focused electron beam. Every pixel corresponds to a particular
beam direction, and the pixels are recorded sequentially. When the electron beam strikes
the surface, electrons are emitted which are then captured by specialized detectors located
nearby.

Since every pixel corresponds to an electron ray, all of which originate from the same source
(the final aperture of the objective lens), it is this origin of the electrons that corresponds to
the eye in an optical image. This means that the particles travel in the opposite direction
compared to optical imaging.
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When the electron beam collides with the surface, different types of electrons are emitted:
most importantly, the slow secondary electrons (SE) and the faster back-scattered electrons
(BSE). Specialized types of detectors are used to capture those two types of electrons, and
they can be used simultaneously. The number of emitted electrons depends on the energy
of the scanning beam, the material being scanned and on the angle between the beam and
the surface normal at the point of impact. The distribution of exitant directions depends on
the angle of incidence as well. Just like in the case of optical imaging, this behavior can be
encapsulated by a BRDF, although the specific functions differ.

Once an electron is emitted from the surface, it still needs to be captured by a detector.
Whether that happens depends on the direction of travel of the electron and on the location
and shape of the detector. Since the value that is finally stored in a given pixel is proportional
to the number of electrons captured during the time interval corresponding to that pixel, it
is the detector that corresponds to the light source in an optical image.

Even if the electron is emitted in a direction that points to a detector, it can still be re-
absorbed by surrounding matter. This occlusion effect corresponds to shadows in optical
images. Detectors for secondary electrons are usually surrounded by a charged grid. This
serves to attract electrons that would otherwise miss the detector, and thereby boosts the
effective signal-to-noise ratio. A greater detector charge thus corresponds to an increase in
the effective size of the detector. Analogously to optical images, a larger effective detector
size corresponds to a larger light source and thus to softer illumination and softer shadows.

Qualitatively, the behaviors of the two mentioned types of electrons differ as follows. Sec-
ondary electrons are generated within an area termed the interaction volume, which is located
beneath the impact point. If the angle between the beam direction and the normal is large,
i.e. if the surface exhibits a significant slope, then the interaction volume is more exposed
and a greater number of SE is emitted. This leads to an edge highlighting effect, and it
is qualitatively similar to the Fresnel effect of specular reflections in optical images. This
is possibly the main reason why SE images are immediately comprehensible to untrained
humans, though this assumption would require further examination. SE images exhibit very
soft shadows, similar to those seen under uniform optical illumination. The total number of
SE captured is generally greater than that of BSE, so SE images are less noisy.

Back-scattered electrons penetrate deeper into the material, and their intensity depends more
strongly on the composition of that material. Specifically, materials containing heavier atoms
will produce a greater number of BSE. As their name implies, BSE are mostly scattered in
the direction of beam incidence. For that reason, BSE detectors are usually mounted around
the objective lens and exhibit a ring-like shape. This ring is in some cases separated into a
number of segments, and the numbers of electrons captured by each of those ring-segments
can be read out separately. BSE are usually much faster than SE and travel along mostly
straight lines, so their shadows are much harder. They are similar to the shadows cast
by a ring-shaped lightsource, such as the ring-shaped lamps that would be found around a
cosmetic mirror. If only a segment of the ring-shaped detector is used, then the shadows
appear similar to those cast by an elongated light source.

2.2.2 Shape Reconstruction from SEM images

The photogrammetric approach to shape reconstruction from SEM images has been discussed
by Piazzesi in 1973 [62], where he presents simplified photogrammetric equations that arise
under one tilt-axis in the SEM scenario. Since the matching of surface points does not differ
from the same process in optical stereo methods, the optical methods are usually applied as-is
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[63, 64, 65]. In all surveyed papers, this matching was performed either through comparisons
of image windows or through the use of high-level descriptors such as SIFT [17]. As discussed
in 2.1.1, this does not allow for the reconstruction of fine-scale surface details.

The reconstruction based on SfS and PS depends on the assumed reflectance maps. The
early SfS work by Horn from 1970 [47] assumes that SE reflectance can be approximated by
an inverse cosine law,

v ≈ n−1
z , (2.2)

where n is the surface normal and nz its component in (reverse) beam incidence direction.
In 1981, Ikeuchi and Horn applied [66] an updated reflectance function,

v ≈ (1 + n−1
z )/2. (2.3)

The special case of two symmetrically mounted detectors on opposite sides of the scene has
received particular attention over the years. For two such BSE detectors, Lebiedzik has
established [67] the empirical relation,

sin(i) =
nx

n2x + n2z
≈ vR − vL
vR + vL

, (2.4)

where n is the unit surface normal, i the lateral inclination angle and vR and vL are the
detector responses from two BSE detectors mounted on the left and right side of the scene.
The approximation is valid for angles |i| < 60◦, and robust to variations in beam intensity
and material composition. An analogous relation for SE was proposed by Reimer and Stelter
in 1987 [68],

sin(φ) sin(A) = nx ≈ vR − vL
vR + vL

, (2.5)

where the azimuth angle A is the angle between the projections of the detector direction ex
and the normal n onto the frontal XY plane, and the inclination angle φ is measured relative
to the beam direction ez. This model can be derived from the assumption of an inverse cosine
emission yield in conjunction with a Lambertian reflectance (i.e. uniform distribution over
the emission directions and Lambert’s cosine law) and infinitely small detectors.

In 1991, Beil and Carlsen proposed a combined binocular-stereo/PS algorithm [69] that
uses both of these relations for symmetrical detector arrangements. This method applies
the framework proposed by Ikeuchi in 1987 [57] which relies on a coarse-to-fine strategy for
stereo matching. As has been noted more recently in the optical context [19], such a strategy
is unable to deal with thin features.

These symmetrical arrangements were studied in more detail by Vynnyk et al. in 2010 [70],
resulting in a more advanced raflectance map for SE. Their model considers the absorption
of electrons by the electron gun, local self-shadowing (i.e. not cast shadows) and it represents
the relation between the normal and the two detector responses by a non-monotonic function.
The latter fact prevents the model from reconstructing normals that form an angle of more
than 45◦ with z, the beam incidence direction.

The symmetric two-detector arrangement can be extended to four detectors, which allows for
a more stable reconstruction, even from only one view [71]. Such a four-detector system has
also been simulated by using one detector and rotating the probe four times by 90◦ around
the z-axis [72].

All of those methods rely on a symmetrical detector arrangement, so they are only applicable
if the corresponding equipment is available. The recent method for silicon wafer verfication
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by Estellers et al. [73] performs SfS from only one image, and it applies prior knowledge in
the form of a deformable template. The reflectance model used is the inverse cosine model
that had already been applied by Horn [47]. The method by Danzl and Scherer from 2001
[74] is the only one that has come to my attention that aims to estimate the reflectance map
ad hoc, in conjunction with photogrammetric stereo information. Their reflectance model
is a free fourth degree polynomial of the angle between the beam direction and the surface
normal. This definition prevents it from considering the position of the detector, leading to
reflectance maps that are always radially symmetrical. None of the surveyed methods that
consider shading information aim to reconstruct a full 3D shape. Instead, they all work on
depth maps exclusively.

2.3 Contributions

My thesis makes the following contributions to shape reconstruction from multiple SEM
images based on MVS alone as well as MVS in combination with PS. The first part of
the thesis deals with photogrammetric reconstruction exclusively, i.e. pure MVS based on
photoconsistency.

1. In chapter 4, I will present a novel multi-view depth estimation method that performs
simultaneous depth estimation and denoising on narrow-baseline SE image sequences,
i.e. sequences taken with a very fine angular resolution. This allows the method to deal
with the often low local signal-to-noise ratio found in SEM images.

2. In chapter 5, I will show how a number of such depth maps can be used to reconstruct
intricate and curved surfaces using a novel surface model based on local quadrics.

3. In chapter 6, I will present a novel surface reconstruction method that works on wide-
baseline image grids taken from a range of rotation and tilt angles using both an SE
and a BSE detector. The method focuses on fine surface features and curved surfaces.

The second part considers the shading found in SE and BSE images.

4. In chapter 7, I will present a novel empirical shading model for both SE and BSE
reflectance and show how its parameters can be fitted to a sequence of images of a
cylinder recorded at different rotation angles.

5. In chapter 8, I will show how my specific model formulation can be used to efficiently
estimate the local surface normal from a set of observations.

6. In chapter 9, I will propose a depth estimation method that builds on normal consis-
tency instead of photoconsistency, allowing it to estimate depths from images taken
under a wide range of viewing angles.
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Chapter 3

Projections and Conventions

In the following, I will briefly describe the notations used throughout this thesis. Much of
the thesis deals with the mapping of 3D points to 2D images and vice-versa. There, I mostly
follow the conventions that have been established by Hartley and Zisserman [75].

Points in 3D are denoted by capital letters and represented by column vectors, e.g. X =
(X1, X2, X3)

t. The corresponding coordinate system is referred to as world space. Points
given in world coordinates are projected into eye-space coordinates (e1, e2, e3)

t through an
affine transform



e1
e2
e3


 = V




X1

X2

X3

1


 , (3.1)

where V is a 3×4 view matrix specific to a given view. In eye space, the observer is located at
the origin and looking at the scene in positive z-direction. The view matrix V is composed
of an orthogonal 3 × 3 rotation matrix R and a column vector t ∈ R

3 that represents a
translation:

V =
(
R t

)
. (3.2)

The origin of eye space is located at −Rtt in world space. The eye space is primarily used
when discussing surface normals. In those cases, I also use the symbol V̄ to denote the
normal matrix:

V̄ =




R
0
0
0

0 0 0 1


 . (3.3)

From eye space, a point is further projected into the image space coordinates p = (x, y)t via
a projective transform:

(
x
y

)
=

1

w

(
u
v

)
,



u
v
w


 = K



e1
e2
e3


 = KV




X1

X2

X3

1


 . (3.4)

Here, K is an upper-triangular 3 × 3 camera matrix, and its last component k3,3 is always
equal to 1. Image space vectors are denoted by lowercase letters. The product KV is denoted
by T , and the index i of the respective image is indicated in the subscript, e.g. Ti or Vi.
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In certain places, a ray rx,y,i(z) : R 7→ R
3 is constructed that corresponds to a pixel (x, y) in

a given image i and that maps different real-valued depths z to points in world space. It is
given by

rx,y,i(z) := −Rt
it+ zRt

iK
−1
i



x
y
1


 . (3.5)

Lines l in image space are denoted by homogeneous row vectors. Then, a point x is located
on the line when

lx =
(
l1 l2 l3

)


x
y
1


 = 0. (3.6)

Planes in world space are denoted analogously.

Superscripts in parentheses denote additional qualifiers, and not exponents or derivatives.
For example, z(D) denotes dense depth maps. Pixelwise access to images is denoted by

subscripts – e.g. z
(D)
p refers to the value of that depth map at pixel p = (xp, yp). In a number

of places, a 3D point is used as an argument to an image, e.g. ui(X). There, it means the
interpolated value of image ui at the 2D position to which point X projects in view i.
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Chapter 4

Depth Estimation from Dense

Image Sequences

The following chapter describes the shape reconstruction from geometrically calibrated narrow-
baseline image sequences. A narrow baseline means that the angles between consecutive views
are small. In my experiments, this angle was on average equal to 0.05◦. In this scenario, we
can safely assume that the gray value of a given point will only undergo a marginal change
from frame to frame. The gray value of a point can therefore be used to identify that point
in a sufficiently long subset of images around the reference image.

For that reason, the input sequence is subdivided into image batches, with the reference frame
located in the middle. The depth map of each reference frame is computed exclusively from
images within its batch. Choosing an overly long batch exposes us to the risk of excessive
gray value changes, while a batch of insufficient length does not allow for a sufficiently
precise triangulation of the depth. I have found batches comprising arcs of ±1.25◦ around
the reference frame to offer a reasonable trade-off between precision of triangulation and
gray-value constancy.

Most traditional MVS methods estimate image correspondence by comparing image windows
of a certain size. This makes the estimation robust to lighting changes, occlusion and noise,
but it impairs the reconstruction of small features that do not cover an entire window.
Methods that rely on individual pixels, on the other hand, generally require images with
clearly distinguishable colors that remain constant over the entire sequence.

Since this thesis is concerned with the reconstruction of intricate shapes, the proposed meth-
ods should preferrably work on individual pixels. SEM images are always grayscale, and they
contain a certain amount of noise. Although the most prominent features in those images
are much stronger than the noise, many areas in the images show far fainter constrast.

In order to still be able to correctly match pixels in those areas, I have developed a depth
estimation method that performs simultaneous depth estimation and denoising, producing
both a depth estimate and a denoised gray value for each pixel. Both computations are per-
formed simultaneously, so that my algorithm can use image structures for depth estimation
that are fainter than the noise level of one individual image. Conversely, this also means
that it can uncover hidden structures from a collection of images that are invisible in every
single image alone.

The general framework for this type of depth estimation looks as follows. For each pixel
xy in the reference image I0, a ray through the scene can be defined that maps each depth
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z ∈ R to a 3D point px,y,z ∈ R
3. That point can be projected into every other image Ii and

the encountered gray values can be extracted via cubic interpolation, yielding a set of values
vx,y,z,i.

Since the pixels are treated independently, the subscript xy can be dropped. Formally, the
denoising depth estimation then consists of finding the maximum of the joint distribution
p(v, z|vz,i). The depth and denoised gray value are given by the depth z∗ and value v∗ that
maximize this likelihood.

In the following section, I will first describe the statistical observation model that defines
the relation between the observed gray values vz,i and the unknown true value v0. This
model contains an estimate of the noise amplitude as a function of the gray value, and it
also accounts for outliers caused by occlusion.

The measurement of the noise parameters is described in section 4.2. Since that process
already contains a depth estimation step using a simpler observation model, it also serves as
a didactic example that should help the reader to better understand the method. The full
observation model corresponds to a non-convex energy, so its global optimization is more
involved than under the simplified model. Therefore, section 4.3 will describe an efficient
algorithm to accomplish this.

The final result after this chapter will consist of a denoised image corresponding to the
reference image, and a sparse depth map that describes the depth at each pixel where it can
be known. If a pixel is located in a smooth area of the image, a certain range of depths
around the true one all produce very similar gray values vz,i. The true depth of those pixels
therefore cannot be inferred from one pixel alone. The reconstruction of the entire surface
from such sparse depth maps will be described in the next chapter.

4.1 Observation Model

Two distinct processes hamper the gray-value based identification of corresponding points:
noise and occlusions. Noise refers specifically to pixelwise uncorrelated sensor noise, i.e. the
fact that the gray value we observe is only a sample from a statistical distribution around
the true value. The images are noisy because only a limited time (i.e. a few µs) is spent
capturing electrons for each pixel, and only a finite number of electrons can be captured
during that time. Because the process that determines whether a given electron is captured
by a detector or whether it is missed is random, that number is associated with a specific
uncertainty.

Occlusion refers to arbitrary surfaces from other parts of the object that can potentially be
seen in front of the true point in any given view. If that is the case, then the observed value
is completely independent of the true value.

Since the outcome of that random event is independent for each electron, this corresponds to
a Poisson process, and would be optimally modelled by a Poisson distribution. Because of the
very large number of electrons - and also in order to simplify the depth estimation algorithm
- it is more practical to approximate the distribution by a normal distribution instead, with a
standard deviation σ(v0) that is an affine function of the true value v0. My model therefore
assumes that the observed gray values are distributed according to a normal distribution
around the true value, and that there is a certain minimal probability of observing any gray
value.
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Formally, let the distribution of observed gray values v be defined as follows:

p(v|v0) =
1

N
max

(
θ, exp(−|v − v0|2

σ(v0)2
)
)
, (4.1)

where v0 is the true gray value, N is a normalization constant, θ is the outlier threshold and
σ(v) is the noise amplitude for gray value v. The noise amplitude is defined as

σ(v) = σ0 + σSv, (4.2)

where σ0 and σS are measured from the input data. The area where Np(v|v0) > θ(v0) will
be referred to as the noise range of v0.

This distribution is an approximation of a mixture of a normal distribution representing
noisy observations of the true surface and a uniform distribution representing occluded views.
Although a sum of those two distributions would yield a more realistic model, i.e. the Blake-
Zisserman function [76], the key advantage of the distribution in Eq. 4.1 is the fact that it
is constant outside the noise range. This makes it more amenable to global optimization, as
will be shown in 4.3.

We assume that the slope σS of the noise amplitude is sufficiently small compared to the
noise range, so that p(v|v0) can be considered symmetrical, i.e. p(v|v0) ≈ p(v0|v). If the slope
were zero, those two probabilities would indeed be identical. In reality, the small positive
slope leads to a p(v0|v) that is slightly skewed to the right, but the assumption of symmetry
is required for efficient optimization.

The outlier probability θ is fixed to e−4 for all images except for the reference. This guaran-
tees that the Gaussian is cut off at two standard deviations. For the reference image, we keep
θ zero, since a point can by definition never be occluded in the reference view; otherwise,
that pixel would refer to the occluding point in front of it. To account for this distinction, I
will refer to θ as θi going forward.
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Non-robust Gaussian distribution pS(v|v0).

Robust distribution p(v|v0).

Robust energy E(v|v0).

Figure 4.1: Illustrations of the functions described in the text.

34



4.2. ESTIMATION OF NOISE INTENSITY

4.2 Estimation of Noise Intensity

In the following section, I will describe how the noise parameters σ0 and σS are measured
from a short sequence of geometrically calibrated input images Ii. A secondary purpose of
this section is to serve as a simplified version of the actual depth estimation method that
will be presented in the next chapter.

The noise estimation algorithm essentially consists of a depth estimation procedure where
the observation model p(v|v0) has been replaced by a simple normal distribution of constant
σ, followed by a measurement of the noise using the image correspondence implied by those
depths. Note that the value of the constant σ is not relevant, as it does not influence the
optimum in Eq. 4.4. It has therefore been set to 1 for the sake of simplicity.

4.2.1 Simplified Depth Estimation

As mentioned at the beginning of the chapter, the depth estimation consists of finding the
maximum of the joint distribution p(v, z) of the gray value v and depth z for every pixel.
We assume a normal distribution as our simplified observation model,

pS(v|v0) =
1

2π
exp(−(v − v0)

2). (4.3)

This is equivalent to Eq. 4.1 with the outlier threshold θ set to 0 and the variance σ set to
1.

Under this assumption, the computation of the maximum along the v direction for a given
depth z becomes trivial. Every such depth corresponds to a set of gray values vz,i. The most
likely true value v∗z is the most likely v0 to give rise to those values. Since we have assumed
the measurements to be uncorrelated, we can write,

v∗z = argmax
v0

∏

i

pS(vz,i|v0) = argmin
v0

∑

i

(vz,i − v0)
2 = µz. (4.4)

Under the simplified assumption, v∗z is equal to the mean µz of the observed values vz,i. The
most likely depth z∗ is then given by the depth of the most likely µz, which is the depth of
least variance,

z∗ = argmin
z

σ2z , (4.5)

σ2z =
1

#i− 1

∑

i

(vz,i − µz)
2. (4.6)

This depth is only reliable if the pixel x lies in an area with sufficient image contrast.
Otherwise, multiple depths around z∗ produce very similar gray values, and thus very similar
means and variances. This is only a problem if the actual depth is of interest, however. For
the purpose of noise estimation, the unreliable depth is of no concern, as long as the vz,i do
not deviate excessively from the true ones.
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4.2.2 Noise Estimation from Depths

If the surface point behind pixel x is not visible throughout the entire sequence, then its
minimal variance σ2

∗
will still be comparatively large. For that reason, only pixels with a

variance beneath a certain threshold τ are considered from this point forward. This filtering
step removes all observations of that point, not only those in the occluded views. Hence, an
occlusion only has to be certain in some of the views for that point to be removed completely.

Since we are working with a short narrow-baseline sequence, we can assume that many pixels
will still remain valid, in spite of the aggressive filtering step. At the same time, incorrect
pixels that have survived that filtering step have done so because of their low variance. As
a consequence, the extent to which they can distort the final estimate is limited.

Next, all the pixels x are collected into bins b based on their mean value, µ∗. Each bin b
corresponds to a bin gray value, vb. For each bin, a new variance σ2b is computed from the
differences between the values vz∗,i observed at the optimal depth z∗ and their respective
means µ∗. Due to the discretization of the bins, that mean is not exactly equal to the bin
gray value.

Finally, the intercept σ0 and slope σS are estimated through weighted linear regression. This
is done by finding a σ0 and σS that minimize

∑

b

wb(σ0 + σSvb − σb)
2, (4.7)

where wb is the number of pixels that have contributed to bin b.

4.3 Occlusion-Robust Depth Estimation

The denoised values v∗ that were estimated under the simplified model are mere averages of
all observed values vz∗,i. If any of those values is produced by an occluding surface, then the
denoised value will be contaminated by the gray value of the occluder. In that case, v∗ will
strike a compromise between the true value and the outlier. As a consequence, the variance
will be formed around the wrong mean, and the depth of least variance will therefore also
be unreliable.

Under the full observation model, estimating the most likely gray value v∗ is no longer trivial.
The observations are still uncorrelated, so we can still write,

v∗z = argmax
v0

∏

i

p(vz,i|v0) = argmin
v0

∑

i

E(vz,i|v0) (4.8)

The energy E is given by,

E(vz,i|v0) = − log(p(vz,i|v0)) = min
(
− log(θi),

(vz,i − v0)
2

σ(v0)2

)
− log(N), (4.9)

and it takes the form of a truncated parabola. Under the simplified model, the sum of the
(not truncated) parabolae was still a parabola and its minimum was located at the mean of
the vz,i. Under the full model, there is no longer an analytical solution for the minimum v∗z .

The energy E is also not a convex function, so a local optimization would not converge
from all initial positions. In order to avoid a costly exhaustive search that would have to be
repeated for each depth sample of each of the millions of pixels, we need to slightly alter the
definition of E.
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4.3.1 Shifted Energy

Since we are only interested in the minimum of the sum of the individual contributions of
E, we can shift each energy where θi > 0 by a constant offset,

EZ(v0|v) := E(v0|v) + log(Nθi) (4.10)

= min
(
0,

(v − v0)
2

σ(v)2
+ log(Nθi)

)
. (4.11)

The shifted energy EZ is now zero outside the noise range of its associated observation v
and negative inside. This allows for an efficient non-iterative algorithm. This shift does not
influence the position of the optimum.

4.3.2 Optimization

Using the shifted energy EZ , the most likely true gray value v∗ to have produced a set of
observations vz,i can be computed efficiently through Eq. 4.8.

To this end, we discretize the value range of v and we allocate one scalar energy value ev
for each value sample. The denoising behavior of my algorithm allows it to determine values
that are more precise than the signal resolution of a single source image. For that reason,
even though I am working with 8-bit images, more than 256 samples would be needed to
cover the entire value range.

Since a point can by definition never be occluded in the reference view, we know that the
true value must be close to the value vz,0 seen there, so that only values close to it need to
be considered. In my implementation, I have chosen the range to be centered at vz,0, i.e. the
value observed in the reference view, and six standard deviations σ(vz,0) wide.

The energies ev are initialized by E(v0, vz,0). As the point can never be occluded in the
reference view, θ0 is equal to zero there, so the unshifted energy E has to be used in that
case.

Next, the algorithm iterates over all observations vz,i, and we determine the noise range
[vmin, vmax] of each observation. For every value sample within that interval, its energy
contribution EZ(v0, vz,i) is added to the ev. Since the shifted energy EZ is zero outside of
the interval, we know that the observation cannot contribute to any ev there. Hence, my
algorithm only needs to update the ev of value samples within the noise range.

The outlier threshold θi has been fixed to two standard deviations, so vmin and vmax are
given by

vmin, vmax = vz,i ± 2σ(vz,i). (4.12)

After all the observations have been considered, the smallest ev is chosen as the energy ez of
depth z, and its corresponding gray value v is chosen as the value vz at that depth.

This procedure is repeated for all depth samples z, yielding a sequence of depth energies ez
and depth gray values vz. The depth corresponding to the smallest energy ez is then chosen
as the discrete depth estimate z∗D, and its gray value is chosen as the denoised pixel value
v∗.

Finally, as is common in depth estimation algorithms, a more precise depth estimate z∗

is computed through quadratic interpolation. This is done by finding the vertex of a 1D
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parabola that passes through the energy values ez∗
D
and its two immediate neighbors, e(z∗

D
−δz)

and e(z∗
D
+δz):

z∗ := z∗D +
δz

2

e(z∗
D
−δz) − e(z∗

D
+δz)

e(z∗
D
−δz) + e(z∗

D
+δz) − 2ez∗

D

, (4.13)

where δz is the step size in z direction.

4.3.3 Confidence Estimation

Although both the depth and the denoised gray value are now known for each pixel, the
algorithms that will be presented in the following chapter also require a measure of confidence.
The confidence c of the depth estimate is determined as follows.

The depth energies ez are converted into probabilites pz := exp(−β(ez − e∗z)) which are then
normalized along the z direction. Here, β is an additional sharpening parameter, inspired by
the thermodynamic coldness β in thermodynamics. The normalization corresponds to the
assumption that one of the depth values has to be the true one.

From those probabilites, the variance σ2z around z∗ is computed,

σ2z :=
1

1−∑
z
p2z

∑

z

pz(z − z∗)2, (4.14)

And the confidence c is then given by

cp :=

{
σ−2
z if σ2z < θσ

0 otherwise.
(4.15)

The computation of the variance corresponds to fitting a normal distribution to pz under
a known mean, while the thresholding by θσ can be understood as a test on whether the
normal distribution is an appropriate approximation of pz.

4.4 Experiments

A sequence showing a cat flea was recorded, consisting of 1400 SE images spaced at 0.05◦

angular intervals. The capture of these images was performed by Martin Oeggerli and Ken
Goldie. I have calibrated the sequence geometrically by manually selecting a number of
corresponding points in every 100th frame, and then performing a bundle adjustment proce-
dure on this sparse set. The calibration of the intermediate frames was obtained through a
Farnebäck dense optical flow [77] computed between neighboring frames in both directions.
Only pixels with a sufficiently small roundtrip error after being mapped through the 100
frame sub-sequence and back were considered for the calibration of the intermediate frames.
No lens distortion model was applied.

The sequence was subdivided into 108 overlapping batches of 51 images. The center image
of each batch was selected as the reference. The proposed algorithm was applied to each
batch, resulting in a sparse depth map and a denoised version of the image. A number of
results are shown below. The computation of a single depth map took approximately 14
hours using the robust model and slightly more than 3.5 hours with the simplified model on
a single CPU of an Intel Xeon E5-1620 running at 3.6GHz.
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first frame reference frame last frame

Figure 4.2: Three out of 51 input images that constitute a batch. The squares correspond
to the closeup shown in Figs. 4.6 and 4.7. Readers who are able to look at neighboring pairs
of images cross-eyed will observe a 3D effect.
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Figure 4.3: Slices through the robust energy ex,z at the y values indicated by the black
lines. The x-axes of the images and the diagrams coincide, while points lower in the diagram
are further away. The vertical scale of the diagrams is arbitrary but equal. Darker points
indicate higher energies.
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Figure 4.4: Slices through the probabilites px,z corresponding to the energies in Fig. 4.3.
Darker points indicate a greater probability. Note that reliable depth estimates are missing
in the smooth areas of the image.
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Figure 4.5: Reconstruction of two batches. The reference frame (top), the depth map (center)
and its confidence (bottom). Darker pixels indicate closer points in the depth map and a
higher confidence in the confidence map. Note that the noise in the depth map is contained
to areas that are smooth in the reference frame, where the confidence is also low.
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original simplified robust

Figure 4.6: Denoising results. Original image (left), image denoised using the simplified
model (center) and the robust model (right). Note the artifacts in the presence of occlusion.
The contrast has been increased to showcase the effects of denoising.
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image simplified robust

Figure 4.7: The estimated depth. Input image (left), depth obtained under the simplified
model (center) and the robust model (right).
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4.5 Conclusions

In this chapter, I have shown a depth estimation method that performs simultaneous depth
estimation and denoising using an occlusion-robust and a simplified observation model. Al-
though the robust estimation is four times more expensive, it is able to obtain reliable depth
estimates and denoised values in areas that are not visible throughout the entire batch. The
artifacts of the simplified model are more noticeable in the depth maps than in the denoised
images. Under both models, the depth is only reliable near edges and it takes on nearly
random values in large smooth areas. I will therefore refer to these depth maps as sparse
depth maps from now on.

In the next chapter, I will describe how the sparse depth maps can be interpolated along the
structure of the denoised images, resulting in truly dense depth maps. Those will then be
utilized for a volumetric surface reconstruction procedure.
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Chapter 5

Shape Reconstruction From Dense

Sequences

In the following chapter, I will describe a method that aims to reconstruct watertight surfaces
from the depth maps estimated in the previous chapter. In particular, this method is directed
at curved geometry featuring thin protrusions and sparsely textured surfaces. The
latter property means that large surface areas appear very smooth in the images, so that
their depths can only be determined at their edges. In SEM images, such areas often appear
at depths far away from the focal plane. There, only high-contrast edges can be observed
while all fainter edges are blurred beyond perception.

The method also takes into account that only a narrow range of input views are available.
This is a neccessary consequence of the high angular resolution of the image sequences
and any given time budget. The capture of the 1400 images used in my experiments took
approximately three days on an FEI Versa SEM, and it shows a 70◦-arc sampled in 0.05◦

intervals. If the same resolution were to be obtained along a 2D grid of angles, i.e. 70◦×70◦,
then the capture of the corresponding 1.96 · 106 images would take more than ten years.

In order to deal with curved surfaces seen from a narrow range of angles, my method uses
quadrics to model curved contours. This allows it to extrapolate the curvature implied by
multiple corresponding contour observations beyond the angles under which the contours
can be observed. This quadric-based approach can be understood as a form of third-order
regularization. The classical Poisson reconstruction approach corresponds to first-order reg-
ularization, since it entails finding a scalar field that exhibits a small gradient length every-
where. A second-order approach would consist in finding a scalar field with a small Frobenius
norm of the Hessian matrix. Such a method has been proposed by Schrörs et al. [78], and
it has been shown to reconstruct smoothly curved surfaces well. Quadrics are defined as
isosurfaces of quadratic 3D functions which exibit a constant Hessian. By looking for local
quadrics in space, I am in essence minimizing local changes in the Hessian matrix itself,
while allowing for arbitrarily large entries in it. Unlike the methods mentioned above, this is
not done through a variational approach, but through a conceptually simpler sliding-window
approach.

My method comprises three individual steps, outlined as follows:

1. Depth map interpolation: for each input view, a novel depth map is computed that
is consistent with the per-pixel depth values at high-confidence pixels and whose depth
contours coincide with the edges observed in the denoised images.
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2. Local quadric estimation: quadrics are estimated that conform locally to the con-
tours seen in the interpolated depth maps. These quadrics are used to model surface
areas of high curvature, i.e. thin protrusions.

3. Volumetric reconstruction: the quadrics are combined with the depth information
from the depth maps to obtain a final watertight surface. Areas of high curvature
are reconstructed from the quadrics, while the smoother areas are reconstructed using
information from the interpolated depth maps.

These steps will be elucidated and further motivated in the following.

5.1 Depth Map Interpolation

The depth maps that have been estimated in the previous chapter are only reliable for pixels
that show a certain amount of image contrast. Although a depth is technically known for
each pixel, I will refer to those depths z∗ as sparse depth maps from now on. The new
depth maps that are computed by the method presented in this section will be referred to
as dense depth maps.

Because the depths are known for pixels where the gray value intensity exhibits a significant
gradient magnitude, they are known at the edges seen in the image, but not in the smooth
areas. More precisely, only edges that are not parallel to the epipolar direction, i.e. the
direction of perceived image motion, count as edges in this context. In my experiments,
the object is rotating around a vertical axis, so the epipolar direction is always horizontal.
Horizontal edges thus do not provide any information about their depth.

The aim of the depth interpolation algorithm is to propagate this depth information known
at the edges into the smooth areas that separate them. This is accomplished by finding a

new 2D scalar field z
(D)
p that assumes values similar to those of z∗p for pixels p = (x, y) where

the confidence cp is high, and that exhibits a similar value for neighboring pixels p and q
unless the corresponding denoised values v∗p and v∗q also differ significantly.

Formally, this corresponds to the minimization of the following discrete energy,

Efill(z
(D)) :=

∑

p

(
cp(z

(D)
p − z∗p)

2 + µD
∑

q∈N(p)

apq(z
(D)
p − z(D)

q )2
)
, (5.1)

where µD is a regularization scale and N(p) is the Moore neighborhood of pixel p, i.e. its
eight immediate neighbors. The pairwise pixel-affinities apq are given by

apq := exp(− 1

λ2
(v∗p − v∗q )

2), (5.2)

where λ is a contrast parameter that describes the sensitivity of the regularizer to the image
structure. Because the image v∗ has been denoised, a very low value can be used here.

Unlike the similar depth interpolation step proposed by Shan et al. as part of their extension
to Poisson reconstruction [20], my formulation is discrete and, when viewed as a discretization
of a continuous energy, it corresponds to a penalty on the first derivative of z(D). Their
energy is formulated in a continuous way and it penalizes the diagonal terms of the second
derivative. My formulation can thus handle features that are only one pixel in size, while
theirs requires an area of sufficient size to compute a Hessian matrix.
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I do, however, apply the sky term proposed in that work. This means that a set of pixels
that certainly belong to the background (i.e. the sky in their work) are marked manually and
set to a very large depth value and a high confidence. This ensures that the uniform image
areas around the object are reconstructed as the background. Without that term, there is
usually not enough contrast in the background to estimate its depth. In practice, those areas
are only marked once and the same mask is applied for all images.

This sky term produces very large depth differences across the outer contours of the object.
This can have a destructive effect on the resulting depth maps, since it tends to pull fore-
ground features down towards the background. At the same time, it makes small protruding
features stand out better against the background, so I have chosen to use it anyway and rely
on the large number of depth maps to alleviate its destructive effects.

The energy Efill is convex and it is minimized using an iterative Jacobi method, i.e. the

value z
(D)
p of each pixel is iteratively set to the optimum given the current values of its eight

neighbors,

z(D)
p [t+ 1] :=

cpz
∗
p [t] + µD

∑
q∈N(p)

ap,qz
(D)
q [t]

cp + µD
∑

q∈N(p)

ap,q
. (5.3)

The procedure is aborted once the smallest value change minp |z(D)
p [t + 1] − z

(D)
p [t]| in an

iteration falls beneath a certain threshold δmin. This optimization process is accelerated
through a hierarchical multigrid approach, i.e. the optimal z(D) is first determined at a lower
resolution, that solution is upsampled to the next resolution level and it is then used as the
initial condition for the optimization at that resolution level.

In addition to the dense depth maps, I also interpolate the sparse confidence c itself by
minimizing,

Efill(c
(D)) :=

∑

p

(
cp(c

(D)
p − cp)

2 + µD
∑

q∈N(p)

apq(c
(D)
p − c(D)

q )2
)
. (5.4)

The interpolated confidence c(D) then indicates which points have received high-confidence
information from their neighbors and is used in the surface reconstruction process in the end
of this chapter.

The resulting dense depth maps z(D) are smooth in low-confidence areas, and their contours
coincide with the edges in v∗. The depths also carry a fronto-planarity bias, which leads to
a positive depth bias in convex curved areas and to a negative bias in concave areas. In the
extreme case of smooth, untextured cylindrical features, this results in flat ribbons that are
located at the depth at which the contour of the cylinder is seen.

Furthermore, thin protruding features that do not exhibit sufficient contrast are shifted
backwards. This has three reasons. First, the low contrast does not allow for a sufficient
confidence. Second, their small image area (i.e. number of pixels) does not lead to a sufficient
increase in energy when they are dislocated. Third, the gray value difference does not reduce
the pairwise affinity a sufficiently if the contrast is too low.

Because of these limitations, the dense depth maps alone do not provide a sufficient descrip-
tion of the object. They are still necessary for the following two purposes.

First, they tell us the depth of sparsely textured areas. Without this depth interpolation, I
have found that the final watertight surface will often collapse to a skeletonized version, i.e.
one that shows material underneath the visible edges, while the smooth areas, as well as the
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majority of the enclosed volume, is wrongfully classified as empty space. In the absence of
dense depth maps, this version is an equally plausible interpretation of the sparse depths as
the correct one.

Second, contours can be reliably detected in the dense depth maps and their lateral (i.e.
image-space) locations can be extracted from them. Such contours can then be used to fit
local quadrics, as will be shown in the following.

5.2 Local Quadric Estimation

5.2.1 Contour Detection

The 3D curve that we perceive as the contour of a curved surface slides across the surface
as the point of view changes. If the image stream offers sufficient angular resolution, then
the depth of such a curve can still be determined. I will refer to those depths as transient
depths, since they are only valid for one moment in time.

In the following, I will describe how to detect a set of image points representing likely contour
candidates and how to estimate their transient depth. Later, these contour candidates will
be used to fit local quadrics.

To detect the contours, I apply the non-maximum suppression step defined by the Canny
edge detector [79] to the dense depth map z(D). This provides a set of potential contour
pixels pc = (xc, yc). For every such contour candidate, its transient depth is estimated from
the initial sparse depth samples z∗, and not from the dense depth map z(D). This helps
to preserve small features that are dislocated towards the background during depth map
interpolation.

The transient depth z
(T )
p of every contour pixel p is estimated using a sliding window ap-

proach,

z(T )
p :=

1

wp

∑

q∈W (p)

wpqz
∗
q , (5.5)

wp :=
∑

q∈W (p)

wpq (5.6)

where W (p) represents a window of width 4σc centered at pixel p and the pixel weights wpq

are given by

wpq := cqγq exp
(
− |q − p|2

σ2c

)
(5.7)

γq := max
(
0, (Gσc

∗ z∗)q − z∗q

)
. (5.8)

Here, the distance |q − p| is measured in image space, and Gσc
∗ represents a convolution

with a Gaussian. The clamped difference of Gaussians γ serves to select foreground pixels,
i.e. pixels that are closer to the observer than the average in their area.

The edge candidates are then filtered by computing the total confidence,

c(C)
p := |∇z∗p |

(
1− exp(−

w2
p

σ2w
)
)
exp

(
−
ν2p
σ2ν

)
, (5.9)
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where σ2w and σ2ν are two parameters that control the sensitivity to the two criteria, and ν2

is the wpq-weighted variance of z∗ around z(T ) which is given by

ν2p :=
wp

w2
p −

∑
q∈W (p)

w2
pq

∑

q∈W (p)

wpq(z
∗
q − z(T )

p )2. (5.10)

This excludes candidates that are either insufficiently supported by evidence (w is small) or
that contradict too much evidence (ν2 is large).

For each contour candidate pc = (xc, yc), the corresponding 3D normal n is computed from
the image-space gradient of z∗, g = (gx, gy)

t := ∇z∗, under the assumption that nc is
perpendicular to the viewing direction. This is always the case if pc represents a contour.

To that end, we define an image-space line l in homogeneous coordinates by lpH = 0,
pH = (x, y, 1)t that is perpendicular to g and that passes through pc. That line is given
by the row vector (−gx,−gy, gxxc + gyyc). It corresponds to a plane in space π = lTi. The
surface normal nc is then given by the normal of that plane, i.e. the first three components
of π.

Together withXc, the back-projected position of pc, the normal represents an oriented surface
point that will be used to estimate local quadrics, as will be shown in the following.

5.2.2 Voxelwise Quadrics

The operations so far have taken place on individual depth maps. Each of them corresponds
to one of the short image batches that were defined at the beginning of chapter 4. From
this point forward, the information from all those depth maps is merged together to obtain
a reconstruction of the entire surface.

The next operation aims to estimate local quadrics from the contour candidates of all images.
This is done in the voxels of a discretized volume. An arbitrary quadric can be written as
the level set f(X) = XtCX = 0, where X = (x1, x2, x3, 1)

t is a homogeneous position vector
and C is a real, symmetrical 4× 4 matrix that holds the coefficients of the quadric.

We are now looking for a matrix-valued field C(x, y, z) that varies smoothly across space
and corresponds to quadrics consistent with the detected contour candidates. This is done
by estimating a quadric C for each voxel, relying on information provided by nearby edge
candidates. This corresponds to another sliding-window fit.

I have found that more reliable results can be obtained by estimating the gradient of f(X)
first, and then the integration constant. Estimation of the full quadric at once tends to
produce unwanted folding-over effects if the contours are misaligned. The gradient of f(X)
is parallel to the surface normal of the quadric and is given by the first three components of
2CX, to which I will refer as (2CX)xyz.

To estimate the gradient of the quadric, I minimize the following expression over the contours
in a neighborhood N of each grid point XG,

∑

Xc∈N(XG)

wc((2CXc)xyz − nc)
2, wc = cc exp(−

1

σ2q
|Xc −XG|2). (5.11)

This yields the gradient of a quadric that conforms to the contour normals nc at the loca-
tions of the contours Xc, weighted by their confidence cc and their distance to XG. This
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computation is performed in closed form. In addition to Cxyz, I also store the sum of all
contour weights wc, to which I will refer as wq, the weight of the quadric.

Since C is symmetrical, we are now only missing one last coefficient, c4,4. It is computed as
the median of −Xt

cC0Xc over all contours Xc in N(XG); C0 is equal to C with its unknown
last coefficient set to zero. The quadric matrix estimated at grid point XG will be referred
to as CG.

5.3 Watertight Surface

Finally, my algorithm estimates a watertight surface that conforms to the quadrics in the
areas surrounding the detected contours and to the dense depth maps elsewhere. This is
done by solving a Poisson problem using specific regional terms. An optimal 3D scalar field
f is found by minimizing

∫

V
µqcq(X)(f(X)− q(X))2 + µφcφ(X)(f(X)− φ(X))2 + µr|∇f(X)|2dX, (5.12)

where V is the volume covered by the voxel grid, q(X) and φ(X) are the quadric regional
term and the flat regional term, cq(X) and cφ(X) are their confidences, and µq and µφ are
the corresponding global weights, while µr controls the amount of regularization.

The quadric regional term q(X) and its confidence cq(X) are computed using the following
quadric voting scheme:

ψ(x) =
∑

XG∈N(X)

wq exp(−
1

σ2q
|X −XG|2) sign(XTCGX), (5.13)

q(X) = sign(ψ(X)), (5.14)

cq(X) = |ψ(X)|. (5.15)

This can be understood as follows. For every point X, every surrounding grid point XG casts
a vote on whether X belongs inside or outside the quadric CG. Those votes are weighted
based on the distance between X and XG and proportionally to the weight of the quadric,
wq.

The flat regional term φ(X) is computed from the dense depth maps z(D) and the filled
confidence maps c(D). For every depth map, a flatness term h(x, y) is computed from the
contour confidence cc as

h(x, y) = exp(−(Gσh
∗ cc)2(x, y)/η2h), (5.16)

where Gσh
∗ denotes a convolution with a Gaussian and the threshold ηh is set low enough

to exclude all areas that contain a significant contour confidence cc.

For every 3D point X and image i, let δi(X) be the depth difference between X and the
depth map, with a positive sign if X is located behind the surface. We define the flat regional
term and its confidence as follows:

χ(x) =
∑

i

{
ζhi(X)c

(D)
i (X) exp(−δi(X)2/τ2), if δi(X) > 0

hi(X)c
(D)
i (X)(1− exp(−δi(X)2/ρ2)), otherwise

(5.17)

φ(X) = sign(χ(X)), (5.18)

cφ(X) = |χ(X)|. (5.19)
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If X is located behind the depth map, then we assume it to be inside the material with a
certainty that decays as the distance increases. If X is located in front of the depth map, then
the certainty of being outside increases with the distance. The parameter τ describes the
expected thickness of the material, while ρ describes the uncertainty of the depth map. The
parameter ζ is intended to increase the weight of the inside region to counter the minimal
surface bias introduced by unreliable depth maps.

Given those regional terms, I compute the optimal f using the Jacobi method. This results
in an evolution of f analogous to the depth map interpolation in Eq. 5.3:

fX [t+ 1] :=

µqcq(X)q(X) + µφcφ(X)φ(X) + µr
1
6

∑
Y ∈N(X)

fY [t]

µqcq(X) + µφcφ(X) + µr
. (5.20)

Here, N(X) is a von Neumann neighborhood around voxel X, i.e. its six closest neighbors
at most (fewer on the edges of the voxel grid where some are missing).

Finally, I extract a watertight mesh from f by applying the marching cubes algorithm [22].

5.4 Experiments

I have performed the proposed reconstruction procedure on the sparse depth maps obtained
through the method presented in the previous chapter. A number of dense depth maps are
shown in Fig. 5.1 and the reconstructed surface is shown in Figs. 5.2 and 5.3.
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Figure 5.1: Depth map interpolation. Top row: the reference views; center: sparse depth
maps; bottom: interpolated depth maps. Note that the noise in the uncertain areas disap-
pears while the depth values near the edges remain constant.
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Figure 5.2: Reconstruction of a cat flea. Top, from left to right: one of the input images; two
views of the full reconstruction. Bottom: enlarged area of the input image; a reconstruction
obtained through the full quadric based method; a reconstruction based only on the depth
maps (i.e. µq = 0 and cφ(X) = 1, ∀X in Eq. 5.12).
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Figure 5.3: Reconstruction of a smoothly curved area. The surface is only reconstructed
correctly on the right hand side, where it is seen as a contour in part of the sequence.
Smooth areas that are only seen frontally do not allow for a reliable reconsturction using the
presented method.

5.5 Conclusions

As can be seen in the figures, the method allows for the reconstruction of very fine untextured
features. At the same time, the quadric-based reconstruction fails in smooth untextured
regions unless they are seen as contours in some of the images. One reason for this is that
spurious edges observed in those areas lead to arbitrary quadrics. In the next chaper, I will
describe a reconstruction method that works on a wider range of viewing angles and that no
longer relies on a fragile quadric model to extrapolate the curvature of curved contours.
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Chapter 6

Photoconsistency-Based

Reconstruction from Image Grids

In the previous two chapters, I have shown that dense sequences of secondary-electron images
allow for the reconstruction of very fine surface features. This was possible because under
sufficient angular resolution, the gray value of a surface point changes only marginally from
frame to frame. That angular resolution can, however, only be obtained at the cost of angular
coverage.

In the following chapter, I will describe a method to reconstruct such shapes from images
that have been captured under a wider range of viewing angles. In this new scenario, the
images no longer take the form of a sequence, but instead that of a grid. A scanning electron
microscope allows us to rotate the probe around the frontal axis and to tilt it around the
horizontal axis. Since the horizontal axis is itself a function of the current rotation angle,
this allows us to view the probe from different sides at different tilts.

By recording a tilt sequence at different rotation angles, it is possible to obtain a grid of
different rotation and tilt combinations. In my setup, this grid corresponds topologically to
a cylinder. While it is cyclical around the rotation direction, the tilt angles only reach down
to a maximum angle of 60◦. Although this is a specific limitation of the equipment that was
used, as long as in-plane rotations are neglected, such a grid will always be two-dimensional.
An intuitive way to imagine this is to map the viewing directions onto points on a sphere.
In my specific case, those directions are all contained within a ±60◦-cone around the north
pole.

As was discussed at the beginning of chapter 5, such an angular coverage can only be reason-
ably obtained at the cost of angular resolution. For that reason, a denoising depth estimation
in the manner presented in chapter 4 is no longer possible. Instead, the depths have to be
estimated in a less reliable way, and a surface reconstruction technique has to be applied
that is robust to those less reliable depth maps.

While in the case of image sequences, I used secondary electron (SE) images exclusively,
in this case, I recorded both secondary and backscattered electron (BSE) images. In the
following chapter, the photoconsistency is still only measured from SE images, since their
gray values change far less under a changing viewing direction. The BSE images are only
considered during the depth map interpolation process, because they indicate edges in places
where the corresponding edges in the SE images are very faint.

The method that I am proposing exploits the anisotropic total-variation (TV) surface re-
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Figure 6.1: Example of an image grid showing five rotation angles (columns) and four tilt
angles (rows).

construction framework presented by Kolev et al. [41], and it uses the efficient primal-dual
saddle-point algorithm that has been described in that paper.

Formally, the surface reconstruction is accomplished by minimizing the following energy
functional for the indicator function u : R3 7→ [0, 1]:

ETV(u) :=

∫

Ω
−f(X)u(X) + |D(X)∇u(X)|dX, (6.1)

where f : R3 7→ R is the regional term while the anisotropic regularizer D takes the form of
a symmetric, positive definite 3×3-matrix. The scalar µ provides a weighting of the regional
term vis-à-vis the regularizer. This formulation is equivalent to the one used in previous
work [41, 80].

The specific regularization tensor, as well as the regional terms that I use, are novel and
pursue different aims from the ones proposed in the original formulation. My regional term
has to be computed in a way that makes it robust to the specific problems that arise in
conjunction with sparsely textured curved surfaces and thin protruding features, while the
regularizer pursues an altogether novel approach.

Unlike the original formulation, my regularizer does not assume that the local surface normal
is known a priori. The estimation of such a normal is only possible if surface patches of
a certain size are considered. Similarly to the use of image windows to estimate image
depths that has been discussed at the beginning of chapter 4, such a surface patch can be
contaminated by points from different surfaces.

For that reason, my regularizer does not assume that the surface normal can even be known
from the local area of a point alone. Specifically, when looking at an edge on the surface
from multiple angles, that edge only tells us one of the two dimensions that make up the
surface normal. It tells us that the normal is certainly perpendicular to the edge, but this
only limits the space of possible normals to a circle. An additional nearby edge is necessary
to estimate the precise normal.

58



6.1. DEPTH ESTIMATION UNDER CHANGING RADIANCE

It is also interesting to note that the edges that we see on surfaces are often hinges, i.e.
they are formed by a local change in surface orientation. Although the surface exhibits two
different normals on the two sides of such a hinge, both of the normals have to lie on the
same circle perpendicular to it.

My proposed regularizer accounts for these facts, and it only assumes that minimal amount
of information that can be extracted from the images locally. The actual surface normal
then emerges as part of the optimization process. This will be explained in more detail later
in this chapter.

My algorithm begins with the estimation of image depths in way that is robust to changes
in surface radiance. These sparse depths are then interpolated using the method presented
in chapter 5, which are used in conjunction with the sparse depths to construct the regional
term f . The regularizer D is computed from the sparse depths alone.

6.1 Depth Estimation Under Changing Radiance

Depth estimation under a wider baseline angle confronts us with two challenges. First, the
number of images is insufficient for the occlusion-robust denoising approach that I have
presented for narrow-baseline sequences. Instead, in order to remain robust to occlusion, the
estimation has to be performed on the bare minimum of neighboring views, i.e. the reference
view and its two closest neighbors.

Second, in the absence of significant denoising, a single pixel no longer carries sufficient
information for a reliable estimate of depth. In order to still avoid the use of explicit patches,
I apply a minimalistic form of local cost volume filtering [81] instead.

As I have mentioned in the introduction to this chapter, only SE images are used for depth
estimation. The lightness changes seen in the BSE images are far more pronounced, so they
are inadequate for a photoconsistency-based depth estimation approach. In order to deal
with the lightness changes that are nevertheless present in the SE images, I first compute
high-pass filtered images ui = vi −Gν ∗ vi, where Gν is a convolution with a Gaussian with
a standard deviation of ν. The depth estimation is then performed through cost volume
filtering with a minimalistic 5×5-pixel Gaussian kernel and the following pixelwise matching
cost for a point in space X:

C(X) := min
a,b

∑

i

(ui(X)− a)2 + |vi(X)− b|, (6.2)

=
∑

i

(ui(X)− µ(X))2 + |vi(X)−m(X)|, (6.3)

where ui(X) is a shorthand for the value of image ui at the point to which X projects, µ(X)
is the mean of all ui(X) and m(X) is the median of all vi(X). This cost can be understood
as follows. It is an L2 cost over the high-pass filtered images ui, but, since the ui do not
contain all information from the vi, using ui alone can hallucinate false matches that can
outweigh the true matches. The second summand is therefore intended as a tie-breaker that
will select the depth at which there is more agreement between the vi, in cases where the ui
happen to agree at multiple depths.

This cost C(X) is evaluated at a set of discrete points Xz arranged along the viewing ray
for every pixel, yielding a set of costs Cz(x, y). Next, cost volume filtering is perfomed by
Gauss-filtering the images Cz(x, y) corresponding to each depth z, resulting in the filtered
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costs C̄z(x, y). These are then mapped onto probabilites pz(x, y) = exp(−C̄z(x, y)/β), where
β is a sharpening parameter. The probabilites are then normalized along each ray. The
depth z∗ of maximal pz is then computed by quadratic interpolation around the discrete
maximum, analogous to Eq. 4.13. In spite of using cost volume filtering, those depths are
still sparse because the filter kernel is very narrow. The purpose of the filtering is merely to
make the depth estimates more reliable, not to fill them. The probability pz∗(x, y) itself is
used as the corresponding confidence, ci(x, y). In contrast to the narrow-baseline scenario,
the variance is no longer a reliable measure of confidence.

Analogously to the method by Yücer et al. [21], the depths are then filtered as follows. The
3D points corresponding to the estimated depths are forward-projected into the voxels of
a volume, where the confidences of all the depth maps are summed up. Only points that
project into voxels with a sufficient confidence sum are kept, while the confidences of the
others are set to zero. This eliminates most of the spurious matches.

Finally, interpolated versions z(D) of the sparse depth maps z∗ are computed as described in
section 5.1. Since no denoised images are available to tell us the locations of the contours,
the raw input images v have to be used in their place. The increased noise level in these
images demands a larger value for the contrast parameter λ in Eq. 6.4, which in turn further
aggravates the problem of dislocated thin features.

To counteract this, both the SE and the BSE images are used to compute the pairwise pixel
affinities apq in eq. 5.2,

apq := exp
(
− 1

λ2S
(vS,p − vS,q)

2 − 1

λ2B
(vB,p − vB,q)

2
)
, (6.4)

where vS and vB are the pixel values of the SE and BSE images respectively. Using both
images increases the chance of observing an image edge at the location of a contour. Failure
to find such an image edge leads to effects of depth leakage — smooth protruding features,
both thin ones and large, smoothly curved ones, are dislocated towards the background.

6.2 Anisotropic Regularizer

The sparse depth maps z∗ obtained in the previous section already contain the depths of
most of the image edges of significant contrast. Since my anisotropic regularizer is based on
the observed image structure, these sparse depths and the original input images are all that
is necessary to compute the regularizer matrix D(X).

In the following, I will first explain the reasoning behind the regularizer in more detail, and
then describe how it is computed.

6.2.1 Reasoning

My goal is to reconstruct a surface from image edges as the largest feature. As mentioned
previously, considering image areas larger than a single pixel exposes us to the risk of missing
small shape features. Since the wide-baseline scenario no longer allows us to use single pixels
as our largest features, single local edges are the next larger choice.

Each time we observe an edge in an image, we can ask ourselves to which curve in 3D space
that edge corresponds. Since we are working with images of finite resolution, we can reduce
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every observed edge locally to a straight 2D line by looking at the image gradient. The
curve we seek must thus be the 3D line in which all the planes intersect that are formed by
back-projecting corresponding 2D lines into 3D space.

Next, we ask what that 3D line tells us about the surface around it. Since the edge has to
be contained in the surface, we know that the direction of the line can have no component
in the direction of the surface normal — otherwise, the line would leave the surface. The
surface normal thus has to lie within the plane perpendicular to the line direction. If we also
assume that the normal is of unit length, then this means that the normal lies on a circle
around the line. This is illustrated in fig. 6.2.

(a) hinge (b) surface edge (c) between edges

Figure 6.2: Illustration of the above argument. Each edge limits the space of possible
normals to a circle (a, b). A single normal can only be estimated if multiple nearby edges
are considered (c).

Such a surface line can be formed either by a change in surface color or by a change in surface
orientation, i.e. a hinge edge. While in the former case, the line merely provides insufficient
information to reconstruct the surface normal, in the latter case, that information does not
even exist. Around a hinge edge, the surface has two different normals on either side of the
line, though both of them have to be perpendicular to it.

From this we conclude that in the context of reconstruction from edges, the surface normal
can only be determined from multiple surrounding edge observations. From the edge, the
minimal feature itself, we can only determine a circle on which the normal has to lie. This
is the essential assumption behind my regularizer. I do not presume to know the normal be-
forehand, but I only enforce consistency with the line observations. This allows the unknown
normal to emerge from the bottom up in the smooth areas between the edges. Although
this observation was already made by Ikeuchi [56], it does not form the basis for current
anisotropic reconstruction methods [41, 80]. Both of these methods make explicit normal
assumptions.

It should be noted at this point that our concept of a discrete edge is an abstraction. In
reality, image edges take up multiple pixels across their width, and the gradient is usually
stronger in the middle than at the ends. Also, hinge edges are in reality only areas where the
surface exhibits strong curvature in one direction — an infinitely sharp hinge cannot exist in
nature. Still, in both cases it remains true that the surface normal has to be perpendicular
to the line implied by the image gradients. Thus, in order to deal with curved geometry, I
do not perform any edge-thinning operations, but instead use all the gradients.
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6.2.2 Structure Tensor Computation

My anisotropic regularization tensor is computed from the equivalent of a 3D structure
tensor, in a similar manner as one would compute an anisotropic diffusion tensor from the
structure tensor [43, 44], e.g. for the purposes of denoising.

Traditionally, a 2D structure tensor J(x, y) of an image u(x, y) is computed by first evaluating
what I will refer to as the edge tensors E(x, y) = ∇u∇uT at every pixel (x, y), where ∇u
is the image gradient [82]. The 2× 2 matrices E are symmetric and they have one positive
eigenvalue corresponding to ∇u as eigenvector, while the other eigenvalue is zero.

Then, for a traditional structure tensor, E(x, y) is filtered, resulting in the structure tensor
J(x, y) = Gρ ∗ E(x, y), where Gρ denotes a convolution with a Gaussian kernel with a
standard deviation of ρ.

The new matrices J(x, y) are now positive semidefinite. In areas where edges of different
orientations meet, J has two large eigenvalues. In areas showing only one dominant orienta-
tion, it has one large eigenvalue and its eigenvector points in the dominant gradient direction.
Finally, in smooth areas, both eigenvalues of J are small or zero.

In the case of a 3D structure tensor, such as those that can be obtained from 3D CT images,
the edge tensors E(x, y, z) still only have one non-zero eigenvalue. This is because they
are still outer products of a vector with itself, albeit a 3D vector. The structure tensor
J(x, y, z), however, can now have up to three large eigenvalues, allowing us to distinguish
between smooth, planar, line-like and corner-like areas.

Assuming we know the depth of a large number of image edges, my 3D structure tensor
is computed as follows. Let ∇ui(x, y) = (ux, uy)

t be the gradient of image i at (x, y). As
mentioned above, any gradient at any given point (x, y) implies a 2D line l(x, y, 1)t = 0. The
row vector l = (ux, uy, d) is composed of the image gradient and an offset d that describes
the position of the line. It is given by d = −(xux + yuy). We lift the line into 3D space
by finding the plane πX = 0 given by the row vector π that corresponds to line l. From
(x, y, 1)t = TiX and l(x, y, 1)t = 0, it follows that π = lTi.

Next, we define a partial 3D gradient vector

g = |∇u| πxyz|πxyz|
. (6.5)

This vector points in the direction of the plane normal, and its length is equal to that of the
gradient. We treat g as if it were the gradient of a 3D image, and we use it to compute the
partial edge tensor Fi(x, y) = ggT .

Since we assumed the depths of edge pixels to be known, we now use that depth to project
this symmetric 3 × 3 matrix F into 3D space. At every voxel (x, y, z), we compute the 3D
edge tensor,

E(x, y, z) =

∑
i∈S ciFi∑
i∈S ci

, (6.6)

where S is the set of all pixels in all images that project onto voxel (x, y, z), and ci are the
depth confidences of those pixels.

Because we have added Fi from multiple pixels and images, the E(x, y, z) are not all rank 1
matrices. On the contrary, if a voxel contains a surface line that is seen in more than one
image, then its E will indeed show two larger eigenvalues and a small or zero one, with the
latter corresponding to the line direction as eigenvector. This follows from the fact that all
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partial gradients g, i.e. the normals of all planes containing the line, have to be perpendicular
to the line. Areas with only one dominant eigenvalue do occur within smooth areas, though,
if those areas are seen near the contour in any of the images.

Next, the matrix field E is filtered with a Gaussian of variance σE , and the resulting pseudo
structure-tensor J is used to classify (in a continuous sense) the underlying surface structure.

6.2.3 Regularization Tensor Construction

My regularization tensor is inspired by the work by Mendrik et al. [44], who proposed an
anisotropic diffusion process as a means of denoising 3D computer tomography (CT) data.
They developed a diffusion tensor that selectively performs different types of diffusion, de-
pending on the local environment of each voxel in a CT image. If the local image information
suggests a thin, line-like feature, then the diffusion only takes place along that line, while
in the case of a planar environment, the image is diffused in both directions parallel to that
plane. In the extreme case of a uniform environment, the diffusion is isotropic, and in the
case of point-like features, there is no diffusion.

Their approach has been termed hybrid diffusion with a continuous switch (HDCS), because
the distinction between those four environments is not a discrete classification, but instead,
the diffusion process is able to interpolate smoothly between the four behaviors. I chose not
to adopt their HDCS formulation directly, since it is aimed at CT image denoising and its
four different parameters do not map well to the scenario of incomplete edge information.
Also, their formulation is built on top of the (originally 2D) edge-enhancing diffusion (EED)
and coherence-enhancing diffusion (CED) filters proposed by Weickert [42, 43], and it carries
those parameters along with it.

Instead, my regularization tensor definition aims to be optimally comprehensible, and is
given as follows.

The pseudo structure-tensor J is subjected to an eigenvalue decomposition, yielding three
positive eigenvalues λi and eigenvectors vi.

J = (v1, v2, v3)Λ(v1, v2, v3)
t. (6.7)

where Λ is a diagonal matrix with λi as its diagonal entries.

The type of environment is then inferred from the eigenvalues alone. The environment type
is expressed by four scalar values ∈ [0, 1] to which I will refer as the four qualities: the void
quality qV , the line quality qL, the plane quality qP and the corner quality qC . The four
values are required to sum to one.

Since lines form the central concept in the derivation of my regularizer, line-like features are
considered the default environment. For that reason, the other three qualities are subtracted
in a given order, so that the remaining number is the line quality qL. The reader may find it
helpful to think of this classification as a sequence of areas that are chipped away from the
3D volume which is spanned by the three eigenvalues λi.

In the following, we can assume without loss of generality that the λi are given in descending
order, with λ1 being the largest eigenvalue.

First, we define the void quality:

qV := exp(−λ
2
1

τ2V
). (6.8)
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This ensures that qV will generally be zero, unless even the largest eigenvalue is sufficiently
small compared to the parameter τV : this means that no edges are seen in that region. This
is the only definition that considers the absolute values of the λi. All following definitions
are invariant under uniform scaling of the eigenvalues, which makes them independent of the
number of observations of a given surface area.

Next, the corner quality is defined as

qC := (1− qV )(
λ3
λ1

)kC , (6.9)

where kC is another parameter describing the strictness of corner classification. The corner
quality can only approach 1 if qV is close to zero and all three eigenvalues are of similar
magnitude.

Next, the plane quality is given by

qP := (1− qV − qC)(
λ1 − λ2
λ1 − λ3

)kP , (6.10)

where kP is the corresponding strictness parameter for plane classification. The plane quality
is only close to 1 if the two smaller eigenvalues are of similar size, i.e. significantly smaller
than the largest one.

Finally, the line quality is given by

qL := 1− qV − qC − qP . (6.11)

With the four qualities defined, we can now construct the regularization tensor by replacing
the eigenvalues λi by new ones, µi,

µ1 := ǫ+ (1− ǫ) qV (6.12)

µ2 := ǫ+ (1− ǫ)(qV + qP ) (6.13)

µ3 := ǫ+ (1− ǫ)(qV + qP + qL) (6.14)

and then recomposing the matrix,

D := (v1, v2, v3)Λµ(v1, v2, v3)
T , (6.15)

where Λµ is a diagonal matrix with µi as its diagonal entries, and ǫ > 0 is a parameter of
small value that ensures that D is strictly positive definite.

6.3 Regional Term

The purpose of the regional term f(X) is to bias certain voxels to be classified as either inside
or outside, depending on the sign of f . In the following, I will assume that a positive sign
means inside. The regional term is the only active component of this surface reconstruction
framework. This means that without it, an empty space would always form the optimal
surface, because the regularizer favors a smaller surface area and the area of an inexistent
surface is effectively zero.

The main problem in the construction of such regional terms is the fundamental asymmetry
of vision: we can only ever observe the space up to the surface of an object, but we never
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have any observations of the volume within it. Thus, while seeing a point in space in front of
a depth map is evidence of that point being outside the object, there is never any evidence
for a point being inside.

Traditionally, surface reconstruction methods would construct regional terms under the as-
sumption of a locally planar surface. Then, if a point in space is located behind a given depth
map, that observation can be taken as evidence of the point being inside the object. In order
to prevent observations from opposite sides of the object from interfering with each other,
this assumption is usually only assumed valid if the distance between the depth sample and
the point is small enough [83].

Since we are dealing with very thin features, that critical distance would have to be equally
small. In that case, the bulk of the inside volume could not be classified at all, i.e. f would
be zero there. Only a small number of erroneous observations would then suffice to collapse
large parts of the inside volume to an erroneous outside classification. If such an unstable
regional term f were to be constructed from the sparse depth maps and their confidences,
then the collapsed shape would assume the skeletonized form that has been mentioned briefly
in 5.1.

Although this could be counteracted through the use of an inflationary (or, ballooning) term
[24] that blindly biases each point towards the inside (i.e. a constant positive offset on f),
such a term would also inflate all smooth surface areas, since they do not offer any evidence
of being inside or outside either.

For these reasons, I conclude that interpolated, dense depth maps without any notion of
confidence are necessary to compute a regional term that exhibits stable behavior. If ideal
dense depth maps, free of errors and noise, were available, then computing f from them
would be trivial. Every point in space that is visible in front of even a single depth map
could be immediately classified as outside, while only points that are occluded by all depth
maps could potentially be inside the object.

In the real scenario, however, the estimated depth maps z(D) suffer from three specific
degradations:

1. Faint thin features are dislocated towards the background.

2. Curved protruding areas are flattened.

3. The interpolated depth maps form arbitrary sheets across smooth image regions around
contours.

The first two degradations have been discussed at the end of section 5.1. They are generally
even worse in the wide-baseline case, because the depth maps are of lower quality. They are
destructive, i.e. they remove parts of the object, resulting in points within the object that
are nevertheless seen in front of a number of depth maps. At the same time, surface regions
located within cavities are really only visible in a small number of images. Allowing points
that are seen in front of a certain number of depth maps to still be classified as inside would
also start filling up those cavities. The third type of degradation aggravates this problem
further, because it tends to fill in cavities as well.

In order to deal with these problems, I have chosen the following approach. Only points
that are occluded by almost all of the depth maps are assumed to be certainly inside, and
only points that are visible in front of a very large number of depth maps are assumed to be
certainly outside. Points that are seen by an intermediate number of views are handled by
three specific terms that correspond to the three types of degradations.
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Formally, let

f := αc(fin − fout) + α1f1 + α2f2 − α3f3, (6.16)

where fin and fout are the aforementioned certain terms, while f1,2,3 are the terms designed
to deal specifically with those degradations. The positive scalars α1,2,3 control the relative
weighting of the terms. The terms f1,2,3 will be defined and explained in the following.

6.3.1 Certain Terms

Let wD(X) be the dense visibility function that counts the number of views that see point X
in front of their respective dense depth map z(D). This function is generally small inside the
object, though degradations of type 1 and 2 tend to increase its value within thin features
and underneath smoothly curved convex surface areas. Outside of the object, wD can also
be very small within cavities, and it is maximal in areas that are seen by the most views.
Slices through such a dense visibility function wD can be seen in Figs. 6.6, 6.7 and 6.8 on
pages 74, 75 and 76 respectively.

Practically, wD is computed by projecting the position of each voxel into every depth map
and then comparing the depth of the voxel to that of the corresponding depth map pixel. If
the depth of the voxel is smaller than the value in the dense depth map, then the value of
the voxel is increased by one.

The certain terms are then defined as follows:

fin := 1− exp
(
− 1

σ2in
max(0, τin − wD)

2
)
, (6.17)

fout := 1− exp
(
− 1

σ2out
max(0, wD − τout)

2
)
, (6.18)

where τ and σ are the respective inside and outside thresholds and tolerances. Their values
can be determined by looking at cross-sections of wD and finding the smallest value that
does not occur outside the object (τin) and the greatest value that does not occur inside of
it (τout).

6.3.2 Thin Term

The thin term f1 represents the thin features that are missing in many of the depth maps.
Because many depth maps see through such features, the value of wD inside of them is
significantly greater than zero. Because of the depth maps that do contain such features,
that value of wD is still smaller than in their immediate neighborhood. At the same time,
these features generally form edges in the images, so they also often exhibit a large sparse
confidence ci(x, y).

The idea behind the thin term f1 is to find a local threshold value θ1 that indicates the value
of wD at the surface of the features. Then, the difference θ1 − wD is positive inside and
negative outside of them.

To compute f1, we first need to construct an indicator of the position of the true surface.
This is done by computing a non-maximum-suppressed edge tensor Es from the sparse depths
maps, analogous to the edge tensor E in Eq. 6.6. For Es, we only consider gray value edges
that exhibit maximal intensity along their gradient direction. This is the same non-maximum
suppression operation that has been applied to the depth values for the contour candidates
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in 5.2.1. The edge tensors are not subject to the degradations introduced through depth
interpolation, because they are computed from the sparse depth maps.

We then compute the largest and second-largest eigenvalues of Es, e1 and e2. While e1 can
be large even on smoothly curved surfaces, i.e. the locally plane-like environments described
in 6.2.2, e2 is only large in a line-like environment. Such an environment is given either by
a surface line or hinge, or by the contours of a strongly curved feature. Both indicators are
undisturbed by the degradations that are introduced through depth interpolation. Since we
are only interested in thin features here, only e2 is used for f1. The smoothly curved surfaces
that are contained in e1 will be dealt with by f2.

The thin term f ′1 is now computed as the signed difference θ1 − wD, scaled by the local
average of e2, while θ1 is itself defined as the e2-weighted local average of wD:

f ′1 := (Gσ ∗ e2)(θ1 − wD) (6.19)

= (Gσ ∗ e2)(
Gσ ∗ (e2wD)

Gσ ∗ e2
− wD) (6.20)

= (Gσ ∗ (e2wD))− (Gσ ∗ e2)wD. (6.21)

The effect of type 1 degradations is purely destructive, so we are only interested in points
where f ′1 is positive. We thus subject it to a smooth thresholding operation,

f1 := 1− exp
(
− 1

σ2f1
max(0, f ′1)

2
)
. (6.22)

The final f1 is now ≈ 1 where f ′1 is significantly larger than the parameter σf1, which is set
to a very low value (in my experiments, σf1 was set to 10−3).

6.3.3 Curved Term

The purpose of the curved term f2 is to reconstruct smoothly curved areas that are missing
in many depth maps. Because of their smoothness, these areas generally do not allow for a
reliable estimation of depth, and they are thus often flattened to the depth of their contours
in the interpolation process. As a result, the value of wD is larger than zero underneath the
surface of such areas. Just as in the case of the missing thin features, some depth maps still
see these features correctly, so there is generally a visible strong gradient in wD along the
true surface.

Unlike the thin features, the effects of degradations of type 2 are not strictly local. For a
sufficiently large smoothly curved feature, the area where the value of wD is excessive can
reach deep inside the object. Without f2, our regional term would be at risk of subsurface
collapse, i.e. a gap could form between the deep inside region indicated by fin and the strictly
locally determined inside region indicated by f1.

To prevent this, the term f2 serves to indicate whether the local value of wD is greater or
smaller than θ2, the value of wD at the nearest known surface point. If the value is smaller,
then that means that the point lies beneath the surface.

For smoothly curved areas, the indicator of surface points is defined as follows. We define
another scalar field cs(x, y, z) as the local density of points from the sparse depth maps,
scaled by their respective confidence. It is computed as the sum of the sparse confidences
ci(x, y) of all sparse depths from all the images that back-project into each voxel. This
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forms a diffuse cloud around the true surface, and, like e1 and e2, it is also not influenced
by the degradations of the depth interpolation process. That diffuse point field is further
sharpened by multiplying it with the gradient length of wD, resulting in the sharp point
field cp = cs|∇wD|/Ni, where Ni is the number of images. Finally, we compute the sum
m = e1 + cp, yielding the surface indicator m.

In order to compute f2, we first need to determine the gradient vector flow (GVF) [84] of
wD. This is a vector field that corresponds to the gradient ∇wD where that gradient is large,
and that is smooth otherwise. It has been developed in the context of local segmentation
methods, where it has been shown to prevent the locally evolving solution from getting stuck
in smooth regions.

Formally, the gradient vector flow is defined as the vector field h0 : R
3 7→ R

3 that minimizes

EGVF(h) :=

∫

Ω
|∇wD(X)|2|h(X)−∇wD(X)|2 + µGVF

∑

i∈{x,y,z}

|∇hi(X)|2dX. (6.23)

I have performed this optimization using another Jacobi method, analogously to the surface
optimization in Eq. 5.20 on page 53:

hi,X [t+ 1] :=

|∇wD(X)|2(∇wD(X))i + µGVF
1
6

∑
Y ∈N(X)

hi,Y [t]

|∇wD(X)|2 + µGVF
. (6.24)

We are only interested in the direction of h0, so we normalize it safely,

h(X) :=
h0(X)

|h0(X)|+ ǫ
. (6.25)

Using this field h, we can now propagate any value v from the surface, where m > 0, along
the flow by finding a scalar field w that minimizes

EP(w, v) :=

∫

Ω
m
(
w(X)− v(X)

)2
+

(
h(X) · ∇w(X)

)2
dX. (6.26)

Here, the last summand minimizes the slope of w along h. This serves to propagate the value
of v from the surface along the flow field.

In this anisotropic case, the Jacobi method has proven too unstable, so the optimal w is
evolved using a gradient descent method instead:

w(X)[t+ 1] := w(X)[t] + δt

(
2m(v(X)− w(X)[t]) + div(Dh(X)∇w(X)[t])

)
, (6.27)

Dh(X) := h(X)h(X)t. (6.28)

At points where the data weight m is zero, this process is equivalent to anisotropic diffusion
along the rank 1 diffusion tensor Dh.

We use this propagation energy to compute the local surface averages of Gσ2
∗ wD and m

itself:

w
(2)
D := argmin

w

(
EP(w,Gσ2

∗ wD)
)

(6.29)

m(2) := argmin
w

(
EP(w,m)

)
. (6.30)
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The field m(2) indicates whether there is a surface point nearby along h, and if there is, then

w
(2)
D indicates the value of Gσ2

∗ wD at that point.

Analogously to the definition of f ′1, we compute f2 as

f2 := m(2)(θ2 − wD) (6.31)

= m(2)(
w

(2)
D

m(2)
− wD) (6.32)

= w
(2)
D −m(2)wD. (6.33)

Just like f ′1, f2 is positive if the closest surface point exhibits a greater value of wD, and
negative otherwise, while its magnitude indicates its confidence. Unlike degradations of type
1, those of type 2 can be both constructive and destructive. For that reason, both the positive
and the negative range of f2 are required.

6.3.4 Erosion Term

Unlike degradations of types 1 and 2, those of type 3 are always constructive, meaning that
they add matter where there should be empty space. They occur around contours of features
that are seen in front of an untextured background and can be understood as foreground
depth leaking into the background. If the background is untextured, inferring its depth from
photoconsistency is not possible. As a consequence, if the contours seen in the images are
not strong enough, the depth of background pixels is erroneously inferred from the nearest
foreground features, which leads to the formation of sheets around those features.

The corresponding regional term f3 is thus destructive. Its value is non-negative, and it
appears with a negative sign in eq. 6.16. It is computed from observations of surface points
seen behind a given point in space in the sparse depth maps.

In order to define f3, we first define a scalar field wS(X) similarly to wD(X) as the sum of
the confidences of all points in the sparse depth maps that are seen behind X. Practically,
wS(X) is computed by forward-rasterizing the rays corresponding to all points in the sparse
depth maps into a volume. The value of all voxels in the volume is initially set to zero.
For each voxel that is touched in the rasterization process, the sparse confidence ci of that
depth map pixel is added to the value of the voxel. This rasterization process is necessary
for the sparse depth maps, because the sparse points of high confidence might otherwise fall
between the sample points of the voxel grid.

From wS , we can define f3 as

f3 := 1− exp(− 1

σ23
max(0, wS − τ3)

2), (6.34)

where σ3 and τ3 control the tolerance of f3 to noise in wS .

With all the terms computed, the final surface is determined by optimizing eq. 6.1, and
extracting the 0.5-isosurface from the resulting scalar field u using the marching cubes algo-
rithm.

6.4 Experiments

I have captured an image grid of the same cat flea specimen that has been used in the
narrow-baseline experiments. The specimen was prepared by Ken Goldie, who also helped
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me with the use of the FEI Versa 3D Focused Ion Beam (FIB) electron microscope. The
ion beam was not used in the experiments so as not to destroy the specimen. The capture
itself was done through a script that I wrote for the FEI iFast software which enables the
automated capture of large numbers of images.

The image grid consists of 20 evenly spaced rotation angles and 16 tilt angles. The rotation
angles cover the full circle, while the tilt angles range from 0◦ to 60◦. An SE and a BSE
image were captured from each view simultaneously. Twenty of the 320 SE images are shown
in Fig. 6.1 at the beginning of this chapter. The images were captured at a resolution of
6144× 2048 pixels.

The grid was calibrated by manually selecting 70 corresponding points in all 320 frames. This
extremely time-consuming process was aided by a program that I wrote which tentatively
maps points automatically to the nearest frames by considering a small area around the point.
Since that automated process is not completely reliable, the user is required to repeatedly flip
back and forth between the frames and to correct mismatches. When the user flips between
neighboring frames, the program always keeps the on-screen position of the point constant.
This allows the user to ascertain that the two points in the two frames really correspond
to the same surface point by observing the motion of the surface underneath the selected
points. This allows for a calibration at subpixel precision. In spite of my software solution,
this calibration process represents the main bottleneck if my method were to be used for any
practical applications.

The corresponding points were then used to estimate both the projection matrices and a
considerable non-linear lens distortion which was modelled using the very expressive rational
function lens distortion model by Claus and Fitzgibbon [85]. The lens distortion was then
removed by remapping the images onto images that are consistent with a pinhole camera
model.

The calibrated images were used to estimate the radiance-change-robust depth maps de-
scribed in this chapter, using the two closest frames with the same rotation angle (i.e. ±4◦

tilt). The depth costs and probabilites are visualized in Fig. 6.3 and 6.4. A number of
interpolated depth maps are shown in Fig. 6.5. The surface was then reconstructed using
the method described in this chapter. The regional terms are shown in Figs. 6.6, 6.7 and 6.8
and the resulting surfaces in Figs. 6.9 and 6.10.

The following parameter values were used:

Depth interpolation: λS = 0.02 λB = 0.02

Regularizer: τV = 0.01 kC = 2 kP = 10

Regional terms: αc = 0.01 α1 = 0.2 α2 = 1 α3 = 0.01

Certain term: τin = 5 σin = 2 τout = 230 σout = 100

Curved term: µGVF = 500

Erosion term: τ3 = 0.05Ni σ3 = 0.1Ni
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Figure 6.3: Slices through the filtered cost C̄z(x, y) at the y values indicated by the black
lines, corresponding to the energy plots in Fig. 4.3 on page 40. Note the dramatic loss of
quality in the wide-baseline scenario. Since only three images are used for the computation,
the structure of those images is still visible in the cost slices.
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Figure 6.4: Slices through the probabilites pz(x, y) corresponding to the costs in Fig. 6.3.
Note the lower coverage and the increased number of spurious matches compared to the
narrow-baseline scenario in Fig. 4.4 on page 41.
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CHAPTER 6. RECONSTRUCTION FROM IMAGE GRIDS

Slice position. Dense visibility function wD(X).

Thin term f1(X). Curved term f2(X).

Erosion term f3(X). Final regional term f(X).

Figure 6.6: Slices through the computed volumetric terms.
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Slice position. Dense visibility function wD(X).

Thin term f1(X). Curved term f2(X).

Erosion term f3(X). Final regional term f(X).

Figure 6.7: Slices through the computed volumetric terms.
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CHAPTER 6. RECONSTRUCTION FROM IMAGE GRIDS

Slice position. Dense visibility function wD(X).

Thin term f1(X). Curved term f2(X).

Erosion term f3(X). Final regional term f(X).

Figure 6.8: Slices through the computed volumetric terms.
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CHAPTER 6. RECONSTRUCTION FROM IMAGE GRIDS

Figure 6.10: Reconstructed surface shown from different sides.
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Figure 6.11: Additional views of the reconstructed surface.
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6.5 Conclusions

I have presented a method of estimating the shape of an object observed in a medium-baseline
grid of images. The method is based on photoconsistency, so it does not only apply to SEM.
I conclude that thin features can be reconstructed truthfully by this method as long as they
are observed clearly in a sufficient number of images. This is accomplished through a novel
anisotropic regularizer and a novel set of regional data terms. Most of the complexity of
the method lies in the way in which reliable data terms have to be extracted from the often
unreliable dense depth maps. I consider it likely that the surface reconstruction part of the
method could be greatly simplified if more reliable depth maps could be obtained.

In the next chapter, we will leave the idea of photoconsistency behind and examine the way
in which the appearance of a surface changes as a function the viewing angle. In chapter
8 we will revisit the grid-based surface reconstruction problem and apply that appearance
model to obtain a better shape.
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Chapter 7

Shading Model for Scanning

Electron Microscopy Images

The reconstruction methods presented so far were agnostic to the actual imaging modality.
The depths were estimated from an assumption of photoconsistency, while the anisotropic
regularizer was derived from observations of image edges. In the following chapters, I will
examine the question what the values contained in the pixels actually mean, and how that
information can be included in the reconstruction process.

In this chapter, I will propose a novel model of reflectance maps [48] encountered under an
electron microscope. In the first part of the chapter, I will define my reflectance model and
explain the choices that led to it. In the second part, I will describe a practical method for
radiometric calibration, i.e. fitting the model parameters to a given detector setup.

7.1 Model Definition

Every detector attached to the microscope collects electrons of a specific type, and it can
only collect the electrons that can reach it. The number of electrons that can reach a detector
depends on a number of factors.

1. The beam intensity and energy, the time spent irradiating each pixel and the charge of
the detectors. These factors can be controlled, and they only need to be kept constant
during calibration and the capture of a set of images.

2. The angle between the beam and the surface determines the total number and angular
distribution of emitted electrons. These factors have been studied, and approximate
models exist in literature [86]. They are, however, meaningless unless more is known
about the detectors.

3. Matter located between the impact point and the detectors acts a shadow caster. This
factor depends on the surface being observed, so there is no way of calibrating it.

4. The position and shape of the detectors. These vary among microscopes, so they need
to be calibrated for every new detector that is used.

Previous SEM shading models make simplifying assumptions about the reflectance behavior
of electrons and the shape and location of the detectors. The latter are commonly assumed
to be infinitely small and acting as point lights. My reflectance map makes no such prior
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CHAPTER 7. SHADING MODEL

assumptions and is intended to work with arbitrary detector setups. Both the reflectance
behavior and the shape of the detector are contained in the same model.

My formulation aims for practical reversibility, i.e. efficient estimation of normals from ob-
served luminance values. It also allows for the combination of an arbitrary number of detec-
tors of arbitrary type.

According to my model, the surface radiance v takes the following form:

v ≈ amax(0, p · (nx, ny, nz, 1))k, (7.1)

where n ∈ S
2 is the surface normal given in eye-space, a ∈ R is the local albedo and p ∈ R

4

and k ∈ R are model parameters particular to that specific detector. The reader familiar
with computer graphics will recognize the similarity to the reflectance map proposed by
Phong [87] and the BRDFs proposed by Blinn [88] and LaFortune [89].

Under p = (0, 0, 1, 0) and k = −1, my model generalizes to the inverse cosine model for
SE emission that has been applied by Horn [47]. Under p = (lx, ly, lz, 0) and k = 1, it is
equivalent to a Lambertian reflectance under a directional light L(ω) = δω − l.

The main purpose of the model is to compute the most likely normal n and albedo a from
multiple radiance observations vi that are made from different viewing directions. If multi-
ple different types of detectors are used simultaneously, then the surface point will exhibit
different albedos under the different detectors.

In the case of SE emission, the albedo will primarily describe the soft shadowing. SE images
have the appearance of optical images captured under uniform illumination L(ω) = const..
In computer graphics, this corresponds to an ambient occlusion shading model. There, the
degree to which a surface point is shadowed is invariant under rotations of the illumination
environment. The shadowing is therefore modeled as a function of position.

In the case of BSE images, the albedo will describe the material composition. According to
literature [86], materials that contain heavier atoms will produce a greater BSE yield. My
model assumes that the directional distribution of those BSE does not change as a function
of material composition. Its effects are therefore modelled by a scalar albedo. Since the
shadows cast under BSE detectors are much harder than those under SE, BSE shadows are
handled by masking out BSE observations where the observed radiance vi is too low.

7.2 Radiometric Calibration

The calibration procedure that I propose does not require any specific calibration shapes
which could be difficult to obtain or would require a prior estimation of their shape. Instead,
it only needs a cylindrical shape such as a length of copper wire. The calibration process is
performed along the following steps.

1. Data capture.

2. Estimation of a data-based reflectance map rD(φ, θ).

3. Fit of p and k to rD(φ, θ).

These will be discussed in detail in the following.

82



7.2. RADIOMETRIC CALIBRATION

7.2.1 Data Capture

The cylindrical shape is placed horizontally under the microscope and recorded at equidistant
rotation angles around the vertical axis spanning the full circle. This results in a sequence
of images for each detector, since different detectors can be used at the same time. In my
experiments I captured 366 such images at 1◦ angular intervals. This provides an angular
overlap of 6 images that is used to correct for small changes in surface appearance that accrue
during capture time.

7.2.2 Data-Based Reflectance Map

The captured images show locally rough surfaces, so the data needs to be cleaned first. This
is done by computing value histograms along the direction of the cylinder, as follows.

First, the images need to be aligned. I have done this using SE images, but the method should
also be applicable to other modalites. An approximate center of rotation c ∈ R

2 is determined
by averaging all images. This average will show two concentric circles corresponding to the
two edges of the cylinder. If the center of the rotation is located in the middle of the cylinder,
these two circles will coincide.

Next, the angle φi corresponding to each image i is determined through a hierarchical ex-
haustive search. This is done by testing a set of initial angles at an initial spacing, and then
iteratively repeating the testing for a finer-spaced set of angles centered around the best
angle from the previous iteration. A reliable initial angle is given by the capture setup. The
quality of an angle φ is measured as follows.

Let qφ = (cos(φ), sin(φ)) such that it points across the cylinder, i.e. perpendicularly to its
edges in the image. A 1D-average array v̂[q] : N 7→ R is then computed as the average of all
pixels that project onto the same discrete value of q. The resolution of v̂[q] is chosen to be
the image resolution. Then, all pixels near the edge of the cylinder are compared to their
corresponding value in v̂[q], and the squared differences are added up, yielding Cφ, the cost
of the angle. The area near the edge is determined in one initial image and then mapped to
the current one using the center of rotation c and the current angle estimate. A bad angle φ
will lead to a blurry edge in v̂[q] and thus to a large Cφ, while only a very precise angle will
produce a v̂[q] with an edge that is similarly sharp as the one seen in the image. Because the
pixels are projected along the entire length of the image, the theoretical precision limit of this
estimation method is equal to atan(1/s), where s is the resolution of the smaller dimension
of the image (usually the height). For a typical 1024 × 768-image, this corresponds to less
than 0.075◦.

The directional value average v̂[q] computed for the optimal angle φ already contains an
estimate of a slice of our reflectance function, but this estimate is not robust to irregularites
on the cylinder surface. Particularly in the case of SE reflectance, most local irregularities on
the surface lead to excessively bright values, which leads to upward peaks in v̂[q]. In order
to attain increased robustness against such outliers, we now compute a value histogram
analogous to the average.

A 2D-histogram of dimensions wH×hH is allocated, where the width wH is given by the width
of the cylinder in pixels, and the height by the signal resolution of the gray values, i.e. 256 in
most cases. Then, all pixels are again mapped onto their corresponding position along the
q-axis, and the corresponding value bin is incremented. This histogram is smoothed through
a convolution with a Gaussian, and for each q-coordinate, the bin of maximum value along
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the vertical axis is selected as the reflectance value rq for that q. This process is illustrated
in Fig. 7.1.

This histogram-based averaging is essentially equivalent to the occlusion-robust denoising
proposed in chapter 4. The main difference is the fact that the histogram is smoothed with
a Gaussian, while the robust energy in chapter 4 corresponds to a 1D histogram convolved
with a truncated parabola. Also, the lateral (q-axis) component of the Gaussian smoothing
has no correspondence in the pixelwise independent denoising procedure.

Since we have assumed the surface to be cylindrical, each q corresponds to an inclination
angle θ:

θ = asin((q − q0)/R), (7.2)

q0 = (qmax + qmin)/2, (7.3)

R = (qmax − qmin)/2, (7.4)

where qmin and qmax are the positions of the cylinder edges along the q-axis. The azimuth
angle φ is given by the rotation of the image. Together, the reflectance profiles rq of all
images i form a reflectance table rq,φ. The remapping of q to θ is deferred until the next
step to avoid additional resampling errors. The different projections that will be discussed
in the following are illustrated in Fig. 7.2.

The reflectance table rq,φ contains redundant information. First, the azimuth angles φ at
the end of the sequence are repeated. This overlap allows us to compute the ratio tq,φ of the
values observed twice. This ratio is averaged over all q and interpolated linearly over the
range that is observed only once. The result is a reflectance map r′q,φ that wraps smoothly
at φ = 2π. Further investigation would be needed in order to determine the source of the
appearance change which is most prominent in the SE images. Most likely, it is a consequence
of the prolonged exposure of the material to the electron beam.

Next, since φ covers the full circle while the cylinder is laterally symmetrical, every normal
appears in two places in the table. In order to obtain a non-redundant representation, the
corresponding values of r′q,φ are averaged: r∗(θ, φ) := 0.5(r′(θ, φ) + r′(−θ, φ + π)). The
values corresponding to θ < 0 (i.e. the left half of r∗(θ, φ)) are no longer needed, so they
are discarded. The indices q have been replaced by the angles θ to increase legibility. The
mapping from q to θ is defined in Eq. 7.3.

Finally, the north pole, θ = 0, is repeated at the left edge of each row of r∗θ,φ (i.e. the
center of each row of r′θ,φ), because that same frontal normal appears at every azimuth angle
φ. By extension, normals close to the north pole also take up a larger surface area than
normals closer to the equator, which is located at θ = π/2. In order to obtain an equal-area
representation, each entry r∗(θ, φ) is mapped onto its corresponding pixel of a sinusoidal
projection mx,y,

x = sin(θ − π)φ (7.5)

y = θ. (7.6)

The corresponding homogeneous normals n(θ, φ) are defined as

n(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ),− cos(θ), 1). (7.7)
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Figure 7.1: An illustration of the radiance estimation process. Top: an input image with
estimated azimuth angle φ. Center: the directional value average v̂[q]. Bottom: The
estimated reflectance value rq. Note the indicated dimple in v̂[q] that is missing in rq.

7.2.3 Parameter Fit

The two sinusoidal maps thus obtained can now be used to fit the parameters p ∈ R
4 and

k ∈ R of the parametric reflectance model. This is accomplished by finding a p and k that
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Figure 7.2: The different representations discussed in the text. Top left: an input image.
Top right: the initial redundant reflectance table rq,φ. The horizontal line indicates the
position of the displayed image. Bottom left: The non-redundant table r∗(θ, φ). Bottom
right: The sinusoidal, area-preserving projection mx,y.

minimize

C(p, k) :=
∑

x,y

(
mx,y −max(0, p · nx,y)k

)2
. (7.8)

Since C is smooth, this can be done using the Nelder-Mead downhill simplex algorithm [90].
Because C is not convex for |k| < 1, the fitting procedure is repeated for both signs of k as
initial conditions.

7.3 Experiments

I have performed above procedure for two detectors attached to an FEI Versa SEM. First,
an Everhart-Thornley SE detector (ETD) that is located in front and slightly to the right of
the scene from the point of view of the image. The grid voltage of the detector was set to
zero. Second, the lower 120◦ segment of an annular (i.e. ring-shaped) BSE detector (ABS)
mounted around the objective lens.

In both cases, the optimal fit is obtained by a positive k. The optimal parameter values are
as follows:

ABS: p = (0.1616, 0.3225,−0.0276, 0.4565)

k = 1.6470

ETD: p = (0.1240,−0.0471, 0.3269, 0.7423)

k = 1.5933
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Visualizations of the corresponding reflectance maps are shown on the following two pages.
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Figure 7.3: The reflectance of the lower 120◦ segment of an annular BSE detector (ABS).
Top: the measured reflectance map. Bottom: the approximation by my model.

Figure 7.4: Graphs of the reflectance along the indicated θ values. Left: measured data.
Right: model fit.
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Figure 7.5: The reflectance of an Everhart-Thornley SE detector at zero potential (ETD).
Top: the measured reflectance map. Bottom: the approximation by my model.

Figure 7.6: Graphs of the reflectance along the indicated θ values. Left: measured data.
Right: model fit.
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7.4 Conclusions

I have presented a novel empirical shading model for SEM images and proposed a means
of measuring its parameters. Although the model does not fit the measured reflectance
tables perfectly, the approximation appears very similar under cursory visual inspection. In
the next chapter, I will describe how the specific formulation of the model can be used to
efficiently infer the surface normal from a set of observations.
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Chapter 8

Normal Estimation from Shading

Now that we have established a practical shading model, I will show how it can be used to
infer the surface normal and albedos from a set of observations of a point under different
viewing angles and detectors. Recall that the albedo is different under each detector. The
justification for this was provided at the end of 7.1.

In this chapter, I will present an algorithm that combines image depths obtained through
MVS with surface normals inferred from the shading to reconstruct the entire surface. This
is similar in spirit to the algorithms by Ikeuchi [56, 57] and Beil and Carlsen [69] for optical
and SEM images, respectively. The details of the algorithm differ in a number of respects,
however. For one, the MVS part of my algorithm — which was already presented in 6.1
— does not follow a coarse-to-fine scheme, allowing it to estimate the depths of very fine
features that would disappear at coarser scales. More importantly, the normal estimation
is performed using my general shading model formulation, while that of Beil and Carlsen
relies on a symmetrical two-detector arrangement. In addition, my algorithm works on an
arbitrary number of images, while theirs has been developed for exactly two views.

The algorithm described in this chapter is outlined as follows. First, the sparse and dense
depths are estimated as described in 6.1. Then, the surface normals are estimated at the
positions implied by the dense depth maps, yielding normal maps corresponding to those
depth maps. Those normals are then used to integrate new, curved depth maps that conform
to the reliable depth values in the sparse depth maps. From the curved depths, regional terms
are computed as described in 6.3, and a watertight surface is reconstructed. Since the actual
normals are now known for each pixel, the anisotropic regularization tensor D is constructed
from those, instead of the edges.

In chapter 6, we used a TV regularizer for surface reconstruction. The advantage of the
TV regularizer was its ability to preserve sharp boundaries of regions. Since we now know
where the sharp edges are located, as they are visible in the shading and thus in the normal
maps, we now use an L2 regularizer instead. Unlike a TV regularizer, the L2 variant offers
a stronger guarantee that the areas away from those edges will indeed be smooth. The new
reconstruction problem is formulated as follows:

EL2(u) :=

∫

Ω
m(X)(fC(X)− u(X))2 + |DN (X)∇u(X)|2dX, (8.1)

where fC : R
3 7→ {−1, 0, 1} is the regional term derived from the curved depth maps,

m : R 7→ [0, 1] is its weight and DN is the regularization tensor constructed from the
estimated normals. Note that the energy EL2 , unlike energy ETV from Eq. 6.1, does not
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contain a product between f and u. For this reason, there is no longer a need to constrain the
value range of u to the unit interval [0, 1]. The optimal u is found using biased anisotropic
diffusion analogous to Eq. 6.28 on page 68.

In the following, I will describe the individual steps of the algorithm. We assume that sparse
and dense depth maps z∗ and z(D) have been computed as outlined in 6.1. Next, we proceed
to estimate the normals n at the points on the surface of z(D).

8.1 Normal Inference

Recall the observation we made in chapter 4, that estimating a denoised value does not require
a correct depth, because in a smooth area, different depths will lead to similar gray values and
thus to a similar denoised value. In the following procedure, we will apply this observation
to surface normals. The depths in the interpolated, dense depth maps z(D) are reliable near
the observed edges, but they suffer from a planarity bias (i.e. type 2 degradations) in the
smooth areas. Although the depths in those areas are not precise, I assume that they will
still produce similar gray values as the correct depths, and thus allow us to estimate a reliable
surface normal.

Every pixel q in the dense depth map z(D) can be back-projected to its corresponding world-
space position Qw. That position is then projected into all neighboring views i, yielding
an image-space position qi. The gray values vi,d seen at qi in the images captured by all
detectors d are extracted. Furthermore, the dense depth map of i is used to determine the
visibility of qw in that image. To that end, the depth of the projected point is compared to

the corresponding depth in z
(D)
i , the dense depth map of image i. If the point pw is located

behind the surface in i, then we set its occlusion depth δi to the difference between the two
depths. Otherwise, δi is set to zero.

Now, the surface normal n can be estimated from the observations vi,d and occlusion depths
δi. Although we are only interested in the normal itself, the albedos ad of all considered
detectors d also need to be estimated because they are part of the appearance model.

The estimation of the most likely parameters a and n is performed using an alternating least-
squares scheme. First, the normal is estimated as a free R

3-vector nF under an assumed
albedo a = 1. The resulting vector is normalized: n := nF /|nF |. Then, the albedos ad
for all the detectors D are estimated assuming n as the surface normal. The process is
then repeated, using the resulting albedos aD. In my experiments, this led to very quick
convergence, so only few iterations were needed.

Formally, the parameters are estimated as follows. Let pd and kd be the shading parameters
of detector d. Then, we are looking for a minimum,

nF := argmin
n∈R3

∑

i,d

wi,d

(
vi,d − admax(0, pd · V̄i(nx, ny, nz, 1))kd

)2
, (8.2)

where V̄i is the 4 × 4 view matrix of view i with its translational components removed, i.e.
V̄i,1,1 = V̄i,1,2 = V̄i,1,3 = 0 and V̄i,1,4 = 1 and the weights wi,d consist of the shadow weights

w
(s)
i,d and the occlusion weights w

(o)
i,d ,

wi,d := w
(s)
i,dw

(o)
i,d . (8.3)
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The occlusion weights serve to exclude views from which the point is occluded, and are
defined as

w
(o)
i,d := exp(−δi/τδ). (8.4)

The shadow-weights are equal to one for SE images, and for BSE images, they are given by

w
(s)
i,d := 1− exp(−v2i,d/τ2s ). (8.5)

This treatment of shadows has been motivated at the beginning of the previous chapter.

The function in Eq. 8.2 could be minimized using an iterative method, but that would be
very expensive, since we are dealing with millions of pixels in each of the hundreds of images.
Instead, the equation is slightly simplified to allow for a closed-form solution,

nF ≈ n∗F = argmin
n∈R3

∑

i,d

w̃i,dwi,d

(
v
1/kd
i,d − a

1/kd
d pd · V̄i(nx, ny, nz, 1)

)2
. (8.6)

We have introduced two alterations. First, the k-th power has been moved to the left hand
side by transforming both sides by h(x) : x 7→ x1/kd . To account for the reweighting of the
errors due to this nonlinear transformation, new weights w̃i,d are introduced. These are given
by the squared inverse of the derivative of h(x) taken at the observed gray value,

w̃i,d := (h′(vi,d))
−2 = k2dv

2(kd−1)/kd
i,d . (8.7)

Second, the max operation has been removed. To account for this, observations with a
negative (pd · V̄i(nx, ny, nz, 1)) are discarded in the next iteration. Similarly, observations
from views in which the estimated normal n points away from the camera are also discarded.

The simplified function in Eq. 8.6 can be solved linearly,

n∗F = (AtA)−1(Atb), (8.8)

where A is an |i, d| × 3 matrix, each row of which corresponds to an (i, d) combination and
is given by,

Ai,d := w̃i,dwi,da
1/kd
d (V̄ t

i pd)
t
1,2,3. (8.9)

The notation v1,2,3 refers to the first three components of v. The evidence vector b is given
by,

bi,d := w̃i,dwi,d(vi,d − a
1/kd
d pd,4). (8.10)

Once a normal estimate n is available, the estimation of the corresponding albedos can be
accomplished through linear regression. Let nH be the homogeneous normal, i.e. nH :=
(nx, ny, nz, 1)

t. Then,

ad =

(
argmin

a∈R

∑

i

w̃i,dwi,d

(
v
1/kd
i,d − a(pd · V̄inH)

)2
)kd

(8.11)

=
(∑

i w̃i,dwi,d(pd · V̄inH)v
1/kd
i,d∑

i w̃i,dwi,d(pd · V̄inH)2

)kd
(8.12)

After the normal inference procedure is complete for each pixel of image i, we have access to
a normal map ni(x, y). In the following section, I will describe how these normals are used
to obtain a better depth map z(C) that does not suffer from the same fronto-planarity bias
as the interpolated depth z(D).
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8.2 Normal Integration

The estimation of the curved depth map z(C) is analogous to the estimation of z(D) described
in 5.1. Formally, it corresponds to finding a depth map that minimizes,

EC(z
(C)) :=

∑

p

(
cp(z

(C)
p − z∗p)

2 + µC
∑

q∈N(p)

apq(z
(C)
p − z(C)

q + spq)
2
)
. (8.13)

The only difference to Eq. 5.1 are the slope coefficients spq that indicate the surface orien-
tation between pixels p and q. Formally, they are given by

spq =
n̄tpqK

−1
i dpq

n̄pq
z(C)
pq , (8.14)

where n̄pq is the average eye-space normal between p and q,

n̄pq := Ri
m

|m| (8.15)

m := np + nq, (8.16)

Ri is the rotational part of the view matrix Vi, Ki is the camera matrix, dpq is the image-

space vector from p to q, (qx − px, qy − py)
t and z

(C)
pq is the average depth of p and q. In

practice, z
(C)
pq is kept constant at z

(C)
pq = Vi3,4 across the entire scene, since the perspective

foreshortening effect under an electron microscope is always very small. This allows us to
determine the slopes spq once in the beginning and to keep them constant afterwards.

The pairwise pixel-affinities apq are slightly changed from those in Eq. 6.4 (on page 60) to
also incorporate differences in the normal between the pixels p and q:

apq := exp
(
− 1

λ2S
(vS,p − vS,q)

2 − 1

λ2N
(np − nq)

2
)
. (8.17)

Since the normals n are computed from multiple gray values, they are less noisy than the
gray values vS and vB themselves. In turn, the back-scattered gray values vB are no longer
used, since they contain cast shadows that can introduce unwanted edges into the depth
map.

The optimization of Eq. 8.13 is performed analogously to that of Eq. 5.1, using the procedure
defined in Eq. 5.3. I have found the hierarchical approach to be too unstable in this case.
For this reason, the optimization is performed at the highest resolution level directly.

The resulting depth maps exhibit fewer degradations of type 2, so smoothly curved surfaces
are better preserved.

8.3 Surface Reconstruction

The surface reconstruction process is similar to that described in chapter 6, except for the
regional terms fC and m that replace the term f , the regularizer DN that is constructed
from the normals and the cost function itself. The cost function has already been defined in
Eq. 8.1.

In the following, I will define and describe the individual terms m, fC and DN .
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8.3.1 Regional Terms

The new regional terms are constructed by first computing the dense outside field wC from
the new, curved depth maps z(C) analogous to the computation of wD from z(D) in 6.3.1.
From wC , I compute the regional term f as described in Eq. 6.16. Then, fC and m are given
by,

fC(X) =





−1 if f(X) < −ǫ
1 if f(X) > ǫ

0 otherwise

(8.18)

m(X) = fC(X)2. (8.19)

8.3.2 Regularization Tensor

The regularization tensor DN is still computed from a pseudo structure-tensor JN , but JN
is itself determined from the surface normals, and not the edges. It is defined as follows:

JN (X) := GρN ∗
∑

i

exp(− δ̄2i
σ2D

nt(X)n(X)), (8.20)

where δ̄i is the distance between point X and the corresponding surface point in z(C), the
curved depth map of image i, and ni is the surface normal at that point. The normal is
assumed to be given as a column vector, so ntn is a dyadic product, i.e. a 3×3 rank 1 matrix.
GρN ∗ denotes a convolution with a Gaussian.

The construction of DN begins by computing D̃N from JN according to Eq. 6.15. Then,
DN is attenuated in areas where many points are observed,

DN (X) :=
1

cs(X)
D̃N (X), (8.21)

where cs is the confidence-weighted point density as defined in 6.3.3. This way, areas where
few points are observed are reconstructed mostly from the normals, while in the areas around
the observed edges, where many point observations are available, the reconstruction is based
on photoconsistency.

8.4 Experiments

The proposed procedure was applied to the images described and the depth maps computed
in chapter 6. A subgrid of 5× 7 images around the reference view (comprised of 5 tilt angles
and 7 rotation angles) have been considered for the estimation of surface normals. These
normals have then been used to integrate curved depth maps. Comparisons between the
interpolated and the curved depth maps are shown in Figs. 8.2 and 8.3. A comparison of
the two resulting outside fields wD(X) is shown in Fig. 8.1. Recall that these fields indicate
the number of depth maps that see a given point X in front of their respective surface.
Renderings of the final shape are displayed in Figs. 8.4 and 8.5.

The following parameter values were used:
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Normal estimation: τδ = 0.01mm τσ = 0.1

Depth integration: µC = 30 λS = 0.02 λN = 0.2

Regularizer: σD = 0.003mm τV = 3 kC = 2 kP = 15

Regional terms: αc = 0.01 α1 = 0.5 α2 = 0.5 α3 = 0.3

Certain term: τin = 5 σin = 2 τout = 80 σout = 200

Curved term: µGVF = 500

Erosion term: τ3 = 0.05Ni σ3 = 0.1Ni

Figure 8.1: Comparisons of the dense outside fields wD and wC resulting from the flat and
the curved depth maps respectively. Top: position of the slice. Bottom left: flat outside
field wD. Bottom right: curved outside field wC . Note the decrease in type 2 destructive
degradations, i.e. the smaller number of views that erroneously see the inside of the head as
outside. The reason for this are the improvements in the depth maps as shown in Fig. 8.3.
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Figure 8.2: Comparison of the flat, interpolated depth maps z(D) and the curved, integrated
ones, z(C). Top left: the BSE image corresponding to the reference view. Top right: the
corresponding SE image. Bottom left: the flat depth map z(D). Bottom right: the curved
depth map z(C). The bottom images have been rendered under an arbitrary illumination
to showcase the differences in surface orientation. All images are shown from the viewing
direction given by the reference view.
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CHAPTER 8. NORMAL ESTIMATION FROM SHADING

Figure 8.3: Enlarged versions of the renderings from Fig 8.2. Note the depression in the head
of the animal in z(D) (top) that is removed by the integration along the estimated normals
(bottom).
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CHAPTER 8. NORMAL ESTIMATION FROM SHADING

Figure 8.5: Reconstructed surface shown from different sides. The views correspond to those
shown in Fig. 6.10 on page 78
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Figure 8.6: Additional views of the reconstructed surface. The views correspond to those
shown in Fig. 6.11 on page 79
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8.5 Conclusions

I have presented a method that augments the reconstruction procedure presented in chapter 6
through surface normal estimates obtained from the observed shading. As can be seen in the
figures, this leads to visible improvements of the reconstructed shape. First, smoothly curved
areas are reconstructed more faithfully and show fewer spurious edges. Second, the more
reliable dense depth maps allow for a stricter classification of points observed in front of those
depth maps (i.e. points where wC is greater than zero) as outside. This in turn suppresses
the formation of spurious sheets that would otherwise form in empty space between features
(see Fig. 8.4). The method is, however, ultimately limited by unreliable sparse depth maps
that are computed under the assumption of photoconsistency. In the next chapter, I will
propose a depth estimation method that avoids the concept of photoconsistency, and that
aims to estimate the pixelwise depths themselves using the shading model.
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Chapter 9

Depth Estimation from Shading

The reconstruction method presented in the previous chapter exploits the complementarity
between MVS and PS. While MVS allows us to estimate the depth around sharp edges, PS
allows us to interpolate that depth across the smooth areas in-between. This still leaves two
conceptual problems open: first, the depth estimation can only be performed from a small
subset of views, since the surface would undergo an excessive radiance change otherwise.
Second, not all features exhibit sufficiently sharp edges on their surface.

In this chapter, I will discuss the prospect of estimating the depth itself using the shading
model. In place of photoconsistency, we will consider the concept of shading-consistency.
This means that instead of assuming that the point will appear with the same gray value
in the images, and then working around the fact that it does not, we will instead look for a
depth at which the same set of shading parameters n and p explains the maximal number of
observations.

In the first part of the chapter, I will propose a hypothetical algorithm that extends the
denoising depth estimation method from chapter 4. Such an extended algorithm is not
feasible using the computing machines available at the time of this writing. In the second
part, I will describe a less general algorithm that allows us to estimate the depth from the
shading today, although it relies on a specific capture setup.

9.1 Motivation

My previous algorithm uses depth maps obtained through fronto-planar interpolation (which
were first introduced in chapter 5) to determine the points in space at which normals are
estimated. We have made the following explicit assumption: if the interpolation dislocates
a surface point in a smooth area by δz, then that new point will lead to similar gray-value
observations and thus to a similar normal estimate. Although this assumption certainly
holds for small δz, we do not have any guarantee that the fronto-planar interpolation will
not dislocate the point excessively.

As a thought experiment, imagine a perfectly smooth sphere captured by an electron mi-
croscope. The only edge in that image will be a circular outline. Using the concept of a
transient depth established in chapter 5, it is indeed possible to estimate the depth of such
a circular edge. A fronto-planar interpolation of that circle will result in a flat circular disc.

Now consider the point at the center of that disc. In 3D space, it will be located at or near
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the center of the sphere. If that point is then projected into the other views, the observed
normal will always be that of a surface facing the observer. Since all images will thus observe
the same gray value, no sensible estimate of the normal will be possible.

9.2 Infeasible Algorithm

Recall the argument behind the denoising depth estimation from chapter 4: instead of taking
the gray values seen in the reference image at face value, we treat the true gray value as
an additional unknown, and we look for the maximum of the joint likelihood distribution of
depth and gray value. This idea can be extended by replacing the gray value in the above
argument by a set of shading parameters n and ad. This means that we would be looking for
the most likely combination of n, ad and the depth z for each pixel. Since the normal is a
2D quantity, while each detector type requires a separate albedo, under one SE and one BSE
detector, this results in a 5D parameter set. At each assumed depth, we would therefore
need to find the maximum of a 4D-distribution.

One way of doing this would be to use the closed-form normal inference procedure from
8.1. This procedure minimizes an L2 error, however, so it is not robust to occlusion. It
is in fact equivalent to the simplified, non-robust depth estimation that was used for noise
calibration and as a didactic example in 4.2.1. There, we formed averages over all observed
gray values in order to obtain the most likely true gray value. Only few occluded views that
show a vastly different gray value would then suffice to dislocate that estimate. In order to
obtain a robust estimate, it was necessary to consider each plausible gray value hypothesis
separately. Because of a convenient choice of energy function, it was possible to reduce the
set of plausible hypotheses to those within 3 std. deviations of the gray value seen in the
reference view, and to then also limit the set of hypotheses that are influenced by each further
observation. Ultimately, in my experiment, only 32 gray-value hypotheses were considered
at each depth.

If those hypotheses were to represent 4D-combinations of normal and albedo assumptions
instead, then the observations in the reference view would no longer allow us to restrict the
hypothesis space to a small number of possibilities. Instead, for every hypothetical normal
and each detector d, there would be an albedo value ad that would result in the precise gray
value seen in the reference view. For every single normal hypothesis, we would therefore be
looking for a 1D value within a certain range of albedos, and we could sample that range
using 32 albedo hypotheses. The total number of hypotheses would therefore be equal to 32
times the number of normal hypotheses. There would be no additional information in the
reference view with which to further limit the set of plausible normal hypotheses. In order to
obtain a normal resolution commensurate with the signal resolution in the image (typically,
256 values), we would require on the order of 100 × 100 such normal hypotheses.

This corresponds to a 10,000-fold increase in the number of operations. The computation
of one denoised depth map from 51 views by the algorithm from chapter 4 took in excess of
14 hours using my naive implementation running on a single CPU of an Intel Xeon E5-1620
running at 3.6 GHz. The limitation to only 51 views was motivated by photoconsistency
considerations, since allowing for excessive changes in viewing angle would also lead to large
changes in surface radiance for any given point. Since this algorithm would no longer rely
on photoconsistency, one would preferrably use all of the available views, i.e. 320 in my
experiments. This would lead to an additional increase in the number of operations by
a factor of six. Not accounting for the loss in cache performance inherent in managing
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the greater number of hypotheses and the increase in computing power over the years, the
proposed infeasible algorithm would then require more than 95 years to compute one single
depth map.

Although that number may appear daunting at first, the algorithm would still operate on
the pixels independently, so it would be perfectly parallelizable. It is therefore likely that
further advances in computing technology will make such an algorithm feasible at some point
in the near future. Until then, attempts could be made to accelerate the process of fitting
the shading parameters robustly to a set of unreliable observations. One possibility would be
to use the RANSAC algorithm [91] for that purpose. In my attempts, this has not produced
satisfactory results for sufficiently small numbers of random samples, while a larger number
also leads to an excessive computation time.

9.3 Feasible Algorithm

The central problem of the above algorithm is the fact that the observed gray values are
contaminated by outliers caused by occluding surfaces. If all the observations were reliable,
then a linear fit of the unknown shading parameters at each depth would suffice. Fortunately,
the two-angle parametrization of rotations obtainable under probably most scanning electron
microscopes available today provides us with a situation where this is indeed possible. Recall
the precise capture scheme we have been employing starting from chapter 6: the probe can
be tilted by up to 60◦, while an independent rotation angle allows us to view the tilted probe
from different sides. If the tilt angle is set to zero, then, if we neglect the small perspective
effects, different rotation angles all produce in-plane rotations of the same 2D view.

While in the context of MVS these rotations are redundant, they do also rotate the probe
relative to the detectors. This allows us to estimate the shading parameters from the zero-tilt
image sequence alone. Since the sequence shows pure in-plane rotations, all images contain
the same geometry, and no occlusions take place. A similar approach was pursued by Pintus
et al. [72], though they only recorded four 90◦ rotations and then used a shading model
for symmetrical BSE-detectors. My proposed method uses all available views (20 in my
experiments) and both detectors. Furthermore, once the shading parameters are known, my
algorithm then predicts the gray value seen at different tilt angles, and it finds the most
likely depth using robust, 1D gray-value comparisons.

Formally, the algorithm is defined as follows. One of the zero-tilt images is selected as the
reference image i0. The ray corresponding to each pixel of that image is back-projected into
the volume and sampled along discrete intervals, resulting in a set of world-space points
Pz. Each Pz is then forward-projected into each zero-tilt view, resulting in a set of gray
values vi,d, one per image i and detector d. From the vi,d, shading parameters ad and n are
estimated using the linearized estimation from 8.1.

Point pz is then projected into all remaining views j with non-zero tilt, and the observed
gray values vj,d are compared to the simulated gray values ṽj,d that are given by the model,

ṽj,d := admax(0, pd · (V̄jn))k. (9.1)

The difference of the two is then transformed by the Blake-Zisserman energy [76], which
corresponds to a superposition of a normal distribution with a uniform one,

EBZ(x) := − log
(
exp(− x2

σ2BZ

) + τBZ

)
. (9.2)
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The parameters σ2BZ and τ2BZ describe the assumed noise variance and tolerance level. The
energy contributions of all views j and detectors d then constitute the energy Ez at depth z,

Ez :=
∑

j,d

EBZ(ṽj,d − vj,d). (9.3)

The depth of least energy is then selected as the depth of that pixel, a more precise optimum
is determined through quadratic interpolation, and the confidence c of the pixel is computed
analogously to 6.1. Finally, the dense depth map is integrated as described in 8.2.

9.4 Experiments

I have tested the algorithm presented above on the image grid used in the experiments in
chapters 6 and 8. One of the zero-tilt images was chosen as the reference, the shading
parameters at each hypothetical depth were computed from all 20 zero-tilt images, and each
such shading hypothesis was evaluated against all images from all 20 rotation angles and
all 16 tilt angles. Slices through the resulting energy are shown in Figs. 9.1, 9.2 and 9.3.
The resulting sparse depth map was then integrated along the estimated normals. No sky
term (mentioned in 5.1) was applied for depth integration, since there are no other views
that would cancel out its potentially destructive effects on the depth map. Renderings of
the resulting depth map are displayed in Figs. 9.4 and 9.5.

The following parameter values were used:

Normal estimation: τσ = 0.1

Depth estimation: σBZ = 0.04 τBZ = 0.01

Depth integration: µC = 1 λS = 0.02 λN = 0.04
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9.5 Conclusions

As can be seen in the slices through the energy volumes and in the renderings themselves,
among the presented methods this depth estimation approach is the one that leads to the
best results by far. Its drawback is the fact that only a single view can be estimated this
way.
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Chapter 10

Conclusion and Outlook

I have proposed four different approaches to the reconstruction of intricate 3D surfaces from
SEM images. The first approach, discussed in chapters 4 and 5, requires a very dense
sampling of viewing angles and is based on photoconsistency. It is able to reconstruct very
thin and faint surface elements by simultaneously estimating the depth and a denoised gray
value of each pixel. Occlusions are handled through a robust occlusion model, and the
resulting non-convex energy function is optimized efficiently by a novel algorithm designed
specifically for that energy. The limited range of viewing angles that follows from the dense
angular sampling is overcome through a shape model that assumes a locally quadrical surface.
This assumption allows it to reconstruct very thin cylindrical features from a small range of
viewing angles, though it leads to artifacts in smooth areas. The first approach is the only
one that is applicable if a dense image sequence is already given, e.g. if the aim is to colorize
an SEM movie sequence.

The second approach, presented in chapter 6, also assumes photoconsistency, but works on
a much coarser angular sampling of the scene. This allows for a broader range of viewing
angles, but leads to a drastic reduction of the reliability of the estimated depth maps. As
a consequence, a surface reconstruction technique had to be developed that is robust to the
specific degradations present in those depth maps and that can still capture thin surface
elements.

Those first two approaches are not strictly dependent on the SEM imaging modality, which
means that they can be applied as-is to optical images. In chapter 7, I have presented a
novel empirical shading model for SEM images on which the two remaining approaches are
based. This model is specific to SEM, so these approaches are no longer applicable to optical
images. Furthermore, since the parameters of the shading model need to be determined for
every electron detector that is used, only the first two approaches are applicable if no such
calibration can be performed. This could be the case if e.g. the images were captured in the
past, and the microscope is no longer accessible, or if its detectors have been configured in
a different way in the meantime.

The third approach, presented in chapter 8, combines depth estimates obtained as part of the
second approach with surface orientation information obtained through the shading model.
The addition of shading information leads to a significant improvement in the reconstruction
of smoothly curved areas, but the approach is ultimately limited by the unreliable depth
estimates that are part of the second approach.

The fourth approach, proposed in chapter 9, estimates the depths themselves using the
shading model. This leads to the most reliable depth maps that my methods could estimate
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from a coarse angular sampling. The quality of the depth maps does indeed rival that of
the first approach. In contrast to the first approach, the slightly larger number of unknowns
involved in shading-based depth estimation precludes the use of a non-convex, robust energy
function to deal with occlusions. As a consequence, that depth estimation method is currently
only applicable to a single viewing direction that shows the object directly from above, since
that is the only direction from which multiple, in-plane rotated images can be obtained. More
advanced computing hardware or a more advanced numerical method for the optimization of
the non-convex energy would be needed to allow for the estimation of the shading parameters
in the presence of occlusions.

Alternatively, a different capture setup would also make the fourth approach applicable for
other viewing directions. Two such setups are in existence today, though they were not
available for my experiments. First, a stage that allows views to be captured using all six
degrees of freedom would make it possible to obtain in-plane rotated views from any given
direction. The proposed algorithm could then be applied directly to the resulting images.
Second, a more advanced version of the software used to automate the image capture process
would facilitate the recording of more than two detector responses at a time. These could
e.g. be all three ring segments of the BSE detector and the two SE detectors that were
already connected to the microscope I used. These five values would probably allow for the
estimation of the shading parameters from a single view, thereby eliminating the need for
an in-plane rotated subset of the images. Since this would result in an eight-fold decrease
in the number of input variables (1× 5 numbers vs. 20× 2), this latter setup would require
further examination.

As a further alternative, a method could be developed that uses the depth map obtained
through the fourth method as an additional input to the regional terms used by the third
method. This would then probably improve the quality of the shape resulting from the third
method in the areas that are visible in the top view. Special care would have to be taken,
however, to deal correctly with overhanging structures in the depth map. Otherwise, this
would erroneously fill up cavities such as the ears of the flea that I used in my experiments.

Finally, the geometric calibration of the captured image sequences still forms the main bot-
tleneck for all of the proposed techniques. The primary reason for the very involved manual
calibration was the presence of a considerable nonlinear distortion in the images. In my ex-
periments, I used the microscope at or near its lower resolution limit, i.e. to view unusually
large objects. It is possible that this distortion is less pronounced when the microscope is
used to capture smaller objects. In either case, it is likely that the distortion at any given
scale is independent of the object being viewed. If that is the case, then the distortion could
be measured once, and the calibration would then consist in finding a rigid-body alignment
between the views. It is likely that this could be done in an automated way.
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