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Abstract
Introduction: Memory functions are highly variable between healthy humans. The 
neural correlates of this variability remain largely unknown.
Methods: Here, we investigated how differences in free recall performance are associ-
ated with DTI-based properties of the brain’s structural connectome and with grey 
matter volumes in 664 healthy young individuals tested in the same MR scanner.
Results: Global structural connectivity, but not overall or regional grey matter vol-
umes, positively correlated with recall performance. Moreover, a set of 22 inter-
regional connections, including some with no previously reported relation to human 
memory, such as the connection between the temporal pole and the nucleus accum-
bens, explained 7.8% of phenotypic variance.
Conclusions: In conclusion, this large-scale study indicates that individual memory 
performance is associated with the level of structural brain connectivity.
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1  | INTRODUCTION

Much about the group-level neuroanatomical basis of episodic mem-
ory functions is known today from studies in patients with brain lesions 
and from imaging studies investigating brain activations related to 
memory processes in healthy humans (Battaglia, Benchenane, Sirota, 
Pennartz, & Wiener, 2011; Cabeza, Ciaramelli, Olson, & Moscovitch, 
2008; Eichenbaum, 2000; Kragel & Polyn, 2015; Rugg & Vilberg, 2013; 
Uncapher, Hutchinson, & Wagner, 2011; Watrous, Tandon, Conner, 
Pieters, & Ekstrom, 2013). However, large interindividual differences 

in memory performance are observed, even across healthy individuals 
(de Quervain et al., 2003). Little is known about the neuroanatomical 
basis of such behavioral variability. It might be explained, at least partly, 
by individual differences in white-matter properties, given their link to 
memory disorders (Metzler-Baddeley et al., 2012; Pievani, Filippini, 
van den Heuvel, Cappa, & Frisoni, 2014). In this context, previous 
studies related diffusion characteristics such as fractional anisotropy 
(FA) to individual differences in episodic memory performance, both 
for well-known white matter pathways (Rudebeck et al., 2009) or at 
the voxel-wise level (Fuentemilla et al., 2009). However, that approach 
might not be able to characterize how inter-regional connections 
relate to behavior. For this purpose, brain connectomics has proven *Andreas Papassotiropoulos and Dominique J.-F. de Quervain are Co-senior authors.
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to be a relevant approach to studying brain connectivity (Behrens & 
Sporns, 2012), both from functional and structural perspectives. The 
brain is modeled as network, or a graph, where each brain region is 
represented by a node, and the edges of the graph represent inter-
regional connections. These edges can represent both functional or 
structural connections. Complex behavior is associated with a dynamic 
repertoire of functional interactions, so far mainly studied during rest 
(Sporns, 2014), which are related to structural connections. The struc-
tural connectome can be reliably investigated in vivo by using diffusion 
imaging-based tractography (Bassett, Brown, Deshpande, Carlson, & 
Grafton, 2011; Owen et al., 2013). The structural connectome may 
provide a basis to explain interindividual differences in behavior 
(Behrens & Sporns, 2012; Johansen-Berg, 2010, 2012). Interindividual 
variability in the structural connectome has been associated with in-
tellectual performance in healthy young adults (Li et al., 2009) and in 
aging individuals (Fischer, Wolf, Scheurich, & Fellgiebel, 2014). But it 
is not yet known whether or not specific neurocognitive systems, such 
as episodic or working memory, exhibit similar patterns. Furthermore, 
as low sample sizes can be detrimental in obtaining reliable effect size 
estimations (Button et al., 2013), large cohorts are needed in order to 
better understand interindividual variability in complex behavior.

In the present study of a large cohort of 664 subjects, we fo-
cused on relations between the structural connectome and free re-
call performance of previously seen IAPS pictures (Lang, Bradley, & 
Cuthbert, 2008). Even though several mechanisms might be involved 
in successful free recall (Dickerson & Eichenbaum, 2010), this inter-
nally cued retrieval process is thought to depend mainly on recollec-
tion (Squire & Wixted, 2011). Consequently, free recall allows us to 
assess one aspect of the multi-dimensional processes that underlie 
episodic memory. This test can be complemented by tests of cued re-
call or recognition, which inform us about item familiarity. The IAPS 
normalized picture system has been used previously to characterize 
free recall (Heck et al., 2015) as well as emotional memory (Dolcos, 
LaBar, & Cabeza, 2004; Hofstetter, Achaibou, & Vuilleumier, 2012). 
Emotional material is usually better remembered than neutral ma-
terial (McGaugh, 2000), and functional interactions during encoding 
and retrieval have been shown to be affected by emotional valence 
(Hermans et al., 2014; Kark & Kensinger, 2015). However, it is not 
known whether or not structural network properties are related to in-
dividual variability in emotional memory. The stimuli used in this study, 
containing both emotional and neutral pictures, consequently allowed 
us to test the potential impact of emotional valence on brain-behavior 
relationships. An additional working memory task (N-Back) served as a 
non-episodic control task.

Several aspects of brain connectivity were assessed. We first fo-
cused on characterizing inter-regional connections: the average connec-
tion strength of a node to the rest of the network is called degree, which 
can in turn be generalized to a metric called network cost, which is a 
simple estimator of physical wiring cost. We took advantage of this nat-
ural hierarchical representation of inter-regional connections by inves-
tigating their association with memory performance at the whole-brain 
level, at the regional level, and at the region-to-region level. Each higher-
resolution level was investigated only if the lower-level null hypothesis 

was rejected (Duarte-Carvajalino et al., 2012). While this approach 
avoids testing first at high resolutions, where the number of hypotheses 
to be tested can be very large, it can also hide certain effects that are too 
specific. As a consequence, this approach was complemented by the di-
rect investigation of the association between memory performance and 
region-to-region connections in the network-based statistic framework 
(Zalesky, Fornito, & Bullmore, 2010), which aims to identify connected 
components of a graph while controlling for family wise error rate. In this 
context, and given prior findings relating intelligence to the total num-
ber of edges (Li et al., 2009), we hypothesized that cost-related metrics 
would be associated to free recall performance.

We also assessed other network properties, such as measures of 
segregation (e.g. clustering coefficient), centrality (e.g. betweenness 
centrality), or integration (e.g. global efficiency) (Rubinov & Sporns, 
2010). The latter has been positively linked, for example, to individual 
differences in intelligence tests performance (Li et al., 2009). Again, 
those network characteristics were extracted at the global (network), 
regional, or region-to-region level (Duarte-Carvajalino et al., 2012). 
In line with previous findings, we hypothesized that better free recall 
performance would be reflected by more effective networks proper-
ties (e.g. higher centrality and integration measures).

2  | MATERIAL AND METHODS

2.1 | Participants

A total of N = 679 participants of an ongoing study were included 
(275 males, 404 females; 22.85 ± 3.37 years old; dataset status April 
2013). This large-scale and ongoing study serves to address several 
scientific questions, including questions in the field of imaging genet-
ics, where several papers on the dataset have been previously pub-
lished (Harrisberger et al., 2014; Heck et al., 2014). The subjects were 
free of any lifetime neurological or psychiatric illness, and did not take 
any medication at the time of the experiment (except hormonal con-
traceptives). All subjects gave written informed consent before par-
ticipation in the study. The ethics committee of the Canton of Basel, 
Switzerland, approved the study protocol. Complete datasets (behav-
ior and structural imaging) for analysis were available from N = 664 
participants (see below).

2.2 | Episodic memory task

We used a picture free recall task to assess episodic memory. For pic-
ture encoding, 72 pictures, divided into three valence groups (nega-
tive, neutral, and positive), as well as 24 scrambled pictures were 
presented during the MRI scans by using MR-compatible LCD goggles 
(VisualSystem, NordicNeuroLab). On the basis of normative valence 
scores, pictures from the International Affective Picture System (IAPS; 
[Lang et al., 2008]) were assigned to emotionally negative (2.3 ± 0.6), 
neutral (5.0 ± 0.3), and positive (7.6 ± 0.4) groups. Eight neutral pic-
tures were selected from an in-house standardized picture set in 
order to equate the picture set for visual complexity and content (e.g. 
human presence). Examples of pictures are as follows: erotica, sports, 
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and appealing animals for the positive valence; bodily injury, snake, 
and attack scenes for the negative valence; and finally, neutral faces, 
household objects, and buildings for the neutral condition.

Pictures were presented in an event-related design, for 2.5 s in 
a quasi-randomized order so that a maximum of four pictures of the 
same category were shown consecutively. A fixation-cross appeared 
on the screen for 500 ms before each picture presentation. Trials were 
separated by a variable inter-trial period (period between appearance 
of a picture and the next fixation cross) of 9–12 s (jitter). During the 
inter-trial period, subjects rated the presented pictures according to 
valence (negative – neutral – positive) and arousal (low – middle – 
high) on a three-point scale. Four additional pictures showing neutral 
objects were used to control for primacy and recency effects in mem-
ory. The scrambled pictures consisted of a geometrical object in the 
foreground while the background contained the color information of 
all pictures used in the experiment (except primacy and recency pic-
tures), overlayed with a crystal and distortion filter (Adobe Photoshop 
CS3). The object had to be rated regarding its form (vertical, symmet-
ric, horizontal) and size (small, medium, large).

In an unannounced recall task outside of the scanner, subjects 
had to freely recall the previously presented pictures, 10 min after the 
end of picture encoding. An unannounced free recall test was used 
to avoid recall performance to be influenced by interindividual dif-
ferences in learning strategies, potentially reflecting non-mnemonic 
processes. Participants had to write down a short description (a few 
words) of the previously seen pictures. Primacy and recency pictures 
that were remembered as well as training pictures were excluded from 
the analysis. No time limit was set for this task. Two trained investi-
gators independently rated the descriptions for recall success (inter-
rater reliability >98%). No details were required for correct scoring as 
pictures were all distinct from each other. The total number of freely 
recalled pictures was defined as the episodic memory performance 
phenotype.

2.3 | Working memory task

Subjects completed the 0- and 2-back version of the n-back task after 
picture encoding, and before the recall task (Heck et al., 2014). The 
task consists of 12 blocks (six 0-back, six 2-back), in which 14 test 
stimuli (letters) were presented. The 0-back condition required par-
ticipants to respond to the occurrence of the letter ‘x’ in a sequence of 
letters (e.g., N – l – X – g) and served as a non-memory-guided control 
condition, measuring general attention, concentration, and reaction 
time. The 2-back condition required subjects to compare the cur-
rently presented letter with the penultimate letter to decide whether 
they are identical or not (e.g., S – f – s – g). This task requires online 
monitoring, updating, and manipulating remembered information. It is 
therefore assumed to involve key working memory-related processes. 
Performance was recorded as a number of correct responses (accu-
racy). Performance in the 0-back condition (mean accuracy) served as 
the phenotype reflecting attentional processes, and the difference in 
accuracy between the 2-back and the 0-back condition served as the 
phenotype reflecting working memory performance.

2.4 | MRI acquisition

Measurements were performed on a Siemens Magnetom Verio 
3T whole-body MR unit equipped with a twelve-channel head coil. 
A high-resolution T1-weighted anatomical image was acquired 
with a magnetization prepared gradient echo sequence (MPRAGE, 
TR = 2000 ms; TE = 3.37 ms; TI = 1,000 ms; flip angle=8; 176 sagittal 
slices; FOV = 256 mm; voxel size 1 × 1 × 1 mm3). Diffusion volumes 
were acquired by using a single-shot echo-planar sequence, and con-
sisted of 64 diffusion-weighted volumes (b = 900 s/mm2) and one 
unweighted volume (b = 0). Acquisition parameters were as follows: 
TR = 9,000 ms, TE = 82 ms, FOV = 320 mm, GRAPPA R = 2.0, voxel 
size 2.5 × 2.5 × 2.5 mm3.

2.4.1 | Anatomical T1-weighted imaging analyses

After visual inspection, T1-weighted images of fifteen partici-
pants were excluded due to excessive movement or scanner noise. 
Complete datasets (behavior and structural imaging) were available 
from N = 664 participants.

Preprocessing
T1-weighted images were segmented into cortical and subcor-
tical structures by using FreeSurfer v4.5 (Fischl et al., 2002) 
(RRID:SCR_001847). Labeling cortical gyri was based on the Desikan-
Killiany atlas (Desikan et al., 2006), yielding 34 regions per hemi-
sphere. Eighty-two regions (68 cortical and 14 subcortical) were 
subsequently considered as nodes for the network analyses. The 
binary masks defining these nodes were coregistered to the refer-
ence unweighted diffusion volume (b = 0) using FreeSurfer’s bbreg-
ister command, initialized with the spm_coreg command from SPM8 
(RRID:SCR_007037).

Statistical analyses
The association between memory performance and grey matter vol-
umes was determined by Spearman correlation analyses. Memory 
performance was corrected for age and gender. This was achieved 
by considering as a new memory performance variable the residuals 
of a linear model including memory as a dependent variable and age/
gender as independent variables. Similarly, volumes were corrected 
for age, gender and intracranial volume (as estimated by FreeSurfer’s 
total intracranial volume).

2.4.2 | Diffusion-weighted imaging analyses

The processing steps involved in this section are summarized in 
Figure 1a.

Preprocessing
Diffusion-weighted images were pre-processed by using FSL 
v4.1.7 (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) 
(RRID:SCR_002823). Data of 76 participants, for whom slice cor-
ruption due to movement was detected (at maximum 2 directions), 

http://scicrunch.org/resolver/SCR_001847
http://scicrunch.org/resolver/SCR_007037
http://scicrunch.org/resolver/SCR_002823
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were corrected by removing the corrupted directions before further 
processing (Sharman et al., 2011). Images were first coregistered to 
the reference unweighted volume (b = 0) by using an affine transfor-
mation for the correction of head motion and eddy current induced 
image distortion. Voxelwise model fitting of diffusion orientations was 
then performed. The local probability distribution of fiber direction 
was estimated by using bedpostx, allowing for automatic estimation 
of multiple fiber directions within each voxel (at most two). This ap-
proach leads to better sensitivity in the detection of fiber populations 
as compared to single-fiber or deterministic approaches (Behrens, 
Berg, Jbabdi, Rushworth, & Woolrich, 2007).

Structural brain network construction: single subject level, 
weighted connectivity matrix
Each FreeSurfer-segmented region was considered as a node (see 
Figure 1a). Connectivity probability between nodes was estimated 
by using probabilistic tractography as implemented in probtrackx2 in 

FSL v5.0.2 (Behrens et al., 2007). Each node was selected as a seed 
region, and five thousand sample streamlines were drawn from each 
voxel within the seed nodes. Each streamline followed local orienta-
tions sampled from the posterior distribution given by bedpostx. The 
streamline stopped when it reached another node, or was excluded 
when it left the brain or passed through the ventricles. The node-to-
node connection probability was represented in a weighted fashion, 
computed as the number of streamlines successfully reaching another 
node, divided by the total number of drawn streamlines that were not 
excluded (Behrens et al., 2007). We focused our subsequent analyses 
on weighted networks to avoid a potential loss of information when 
studying binary networks, in which case all non-null weights would 
have been set to 1. A whole-brain symmetrical connectivity matrix 
was constructed for each subject by averaging the connectivity prob-
abilities obtained from node i to j and from node j to i (Gong et al., 
2009). In summary, we computed one 82 × 82 weighted connectivity 
matrix per subject that was used for subsequent analyses.

F IGURE  1 Analysis pipeline. 
(a) Summary of the preprocessing steps 
at the single-subject level. Individual 
brain segmentation was used as the basis 
to compute a connectivity matrix from 
which global, regional, and node-to-node 
network characteristics were computed. 
(b) Summary of statistical analyses at the 
population-level. Interindividual differences 
in network characteristics were related 
to memory performance. Association to 
network cost was tested first, followed by 
other topological metrics. Cost-integrated 
metrics were computed if a relation to 
network cost was found. All tests were 
done following a hierarchical scheme, from 
global, to regional, to node-to-node level, 
using an FDR procedure at each level
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Structural brain network construction: population level, 
discarding spurious connections
A common connectivity threshold at the population level was used to 
discard spurious connections. More precisely, those connections Cij 
for which, across subjects, mean(Cij)+2std(Cij) was below a connectiv-
ity value of 0.01 were excluded in all subjects (Gong et al., 2009).

2.4.3 | Diffusion-weighted brain network 
characteristics

For each subject, brain network characteristics were computed with 
the Brain Connectivity Toolbox (Bassett et al., 2011; Rubinov & Sporns, 
2010) (RRID:SCR_004841). G refers to a weighted connectivity matrix, 
i.e. a weighted graph, where R = 82 is the number of nodes in the graph 
and connections between nodes are referred to as edges. The analyses 
steps involved in this section are summarized in Figure 1b.

Network cost
The left side of Figure 1b represents the hierarchical approach relating 
connection strength to network cost. The network cost (or weighted 
network density) is defined as the sum of connection weights in G, 
normalized by the total possible number of edges (R*(R−1)/2) (Latora 
& Marchiori, 2003). This measure is a generalization of the nodal de-
gree (or nodal strength), which is defined as the average connectivity 
of a node, across its R−1 connections. It represents a simple estimator 
of physical wiring cost.

Topological metrics: definitions
The right side of Figure 1b represents the hierarchical approach for the 
other network properties. A set of topological properties (Bullmore & 
Sporns, 2009) were computed in order to further quantify the struc-
tural networks. We furthermore indicate when measures can be gener-
alized at different spatial scale (whole-brain, regional, or node-to-node):

•	 Clustering coefficient: the fraction of a node’s neighbors that are 
also neighbors of each other. This measure can be generalized to 
the whole-brain level.

•	 Characteristic path length: the average shortest path length between 
all pairs of nodes. The value was normalized by the average charac-
teristic path length of 100 comparable random networks (preserving 
the degree distribution, with approximately 20 rewirings per edge).

•	 Global efficiency: the average inverse shortest path length. It can 
be decomposed as the average nodal efficiency, computed on local 
subgraphs comprising neighbors of each node.

•	 Betweenness centrality: the fraction of shortest paths between any 
pair of edges that travel through the node. This measure can be 
generalized to the whole-brain level.

Topological metrics: cost-integrated metrics
It has been shown that differences in topology due to differences in 
cost, or cost-dependency, can confound the comparison of different 
brain networks (Ginestet, Nichols, Bullmore, & Simmons, 2011). A 
proposed solution is to study cost-integrated network characteristics, 

integrating over the whole range of possible costs. We therefore 
computed the cost-integrated versions of the above-mentioned topo-
logical metrics if a significant association was found between network 
cost and memory performance (Figure 1b, labeled I-M metrics). Not 
controlling for differences in network cost might result in spurious 
associations with memory performance (e.g. with the clustering co-
efficient), and lead to a potentially misleading interpretation of the 
findings. One drawback of cost-integrated metrics, on the other 
hand, is that they might fail to capture subtle interindividual differ-
ences that might occur only in a limited density range. Appropriate 
network comparison is still a topic of ongoing discussions (Fornito, 
Zalesky, & Breakspear, 2013; Ginestet et al., 2011; van Wijk, Stam, & 
Daffertshofer, 2010). As anatomical networks are sparse (i.e. not fully 
connected), we did not investigate the whole possible range of cost 
values (in theory between 1/(R*(R−1)/2) and 1), but values between  
1/(R*(R−1)/2) and the smallest common value across all subjects for 
the maximum cost (0.3538). If no association were found between 
network cost and memory performance, we would have computed 
the standard topological metrics (Figure 1b, labeled M metrics).

Statistical analyses
The association between interindividual differences in memory per-
formance and brain network properties was assessed by using linear 
mixed-effects models and Spearman correlation. Spearman correla-
tion is a non-parametric measure of association better suited than 
Pearson correlation for brain-behavior correlation analyses as it is less 
sensitive to outliers (Rousselet & Pernet, 2012). We also report 95% 
percentile bootstrap confidence intervals (CIs) (Wilcox, 2012), which 
are not often reported in such associations and might give important 
information about the reliability of the estimates. We first regressed 
out the effects of age and gender for memory performance and net-
work properties, and additionally the effect of intracranial volume for 
the network properties. We did so by considering the residuals of a 
linear model including them as covariates.

Linear mixed-effect models, as implemented in the R package nlme 
(Pinheiro, Bates, DebRoy, & Sarkar, 2012; R Core Team, 2012), were 
used to test for possible interaction effects between valence (positive, 
negative, and neutral pictures) and network properties on memory 
performance. Subjects were entered as random effect. If no signifi-
cant interaction was present, a Spearman correlation coefficient was 
used to estimate the association between the global memory perfor-
mance (positive+negative+neutral pictures) and the network property. 
Possible interaction effects between gender or age and global network 
properties on memory performance were assessed with linear mod-
els. Finally, to assess the combined effect of multiple connections on 
episodic memory performance, robust linear regression models with 
bisquare weight function, as implemented in the Matlab function 
LinearModel.fit, were employed.

We adopted a hierarchical approach in hypothesis testing, similar 
to the one proposed by (Duarte-Carvajalino et al., 2012). Briefly, the 
brain network characteristics can be arranged in a hierarchical fashion 
from global (one measure per subject, lowest level in the hierarchy), 
to the node level (82 measures per subject), and to the node-to-node 

http://scicrunch.org/resolver/SCR_004841
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level (at most R*(R−1)/2 measures per subject, highest level in the hi-
erarchy). In this framework, higher resolution hypotheses are tested 
with an FDR procedure at each level to control for multiple hypothesis 
testing, but only if the lower-level null hypothesis is rejected (Duarte-
Carvajalino et al., 2012; Yekutieli, 2008). This avoids testing first at 
high resolutions, where the number of hypotheses to be tested can be 
very large. This procedure has the advantage of allowing us to identify 
global effects because of the reduced number of multiple compari-
sons. However, very specific effects may remain undetected if they 
do not impact the global measures sufficiently. In the case of the cost 
analysis, the nodal degree and the node-to-node connectivity values 
were the highest level of the hierarchy. For the topological metrics 
analysis, node-specific characteristics, such as clustering coefficient 
or betweenness centrality, were averaged to create a global value that 
represented the lower level in the hierarchy.

Network-based statistics
The hierarchical approach on the association between node-to-node 
connections and memory performance was complemented by a mass-
univariate approach as implemented in the Network-Based Statistics 
toolbox (NBS) (Zalesky et al., 2010). Starting from the individual con-
nectivity matrices, this approach aims to identify sets of connected 
regions while controlling for family wise error (FWE) rate. It consists 
of four main steps: (1) a test statistic is computed for each link, in 
this case a t-test representing the association between the link and 
memory performance, including age, gender, and intracranial volume 
as covariates; (2) a threshold is selected to construct a set of suprath-
reshold links, and we employed a stringent threshold of p < .0063, 
corresponding to T = 2.5; (3) connected components are identified 
by using a breadth first search algorithm, and the number of links it 

comprises is stored; (4) a permutation-based p-value is assigned to 
each identified component by indexing its size with the null distribu-
tion of maximal component size. Ten thousand permutations were 
computed, and the resulting significant components were identified 
at a cluster-level FWE-corrected p-value of p < .005.

2.4.4 | Data visualization

Results were visualized with the PySurfer software (https://pysurfer.
github.io, RRID:SCR_002524) and the BrainNet Viewer (Xia, Wang, & 
He, 2013) (http://www.nitrc.org/projects/bnv/, RRID:SCR_009446).

3  | RESULTS

3.1 | Global network characteristic

Free recall performance was positively correlated with network cost 
(Figure 2; Spearman r = .102; pnominal=.0086; pFDR=.043; coefficient of 
determination R2=.011; 95% confidence interval [0.02,0.18]). This is 
a measure of global structural connectivity. There were no significant 
interactions with gender, age, or emotional valence of the stimulus 
material on this association (all p ≥ .39). Furthermore, we assessed 
whether or not other cognitive functions, such as attention or work-
ing memory, influenced this association. The relationship remained 
significant after controlling for attention (r = .098; p = .0117) or work-
ing memory performance (r = .097; p = .0125), indicating that the 
reported association does not depend on the assessed non-episodic 
cognitive domains. These measures were themselves not signifi-
cantly associated with network cost (rattention=.015; p = .7 and rworking 

memory=.029; p = .46).

F IGURE  2 Picture recall performance. (a) Distribution of picture recall performance; (b) Association between network cost and picture recall 
performance

https://pysurfer.github.io
https://pysurfer.github.io
http://scicrunch.org/resolver/SCR_002524
http://www.nitrc.org/projects/bnv/
http://scicrunch.org/resolver/SCR_009446
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3.2 | Region-specific level

Next, we proceeded with the hierarchical approach (Figure 1b), and 
investigated nodal degree (i.e. the average connectivity of a node) 
with respect to an association with free recall performance. This re-
vealed seven nodes whose degree was associated with recall perfor-
mance at an FDR-corrected (q < .05) level (Figure 3 and Table 1): the 
left fusiform gyrus, left superior temporal gyrus, left temporal pole, 
left transverse temporal cortex, the left insula, as well as the right fusi-
form gyrus and inferior temporal gyrus (see Table 2 for the complete 
distribution of correlation coefficients).

Based on prior evidence of the influence of hippocampus-related 
white-matter connectivity on memory performance (Metzler-Baddeley, 

Jones, Belaroussi, Aggleton, & O’Sullivan, 2011), and on a post-hoc 
analysis on hippocampal degree, we found a significant association be-
tween memory performance and right hippocampus degree (r = .087; 
pnominal=.024). In total, the degree of 17 nodes were nominally asso-
ciated with free recall, including contralateral regions to the FDR-
corrected nodes (temporal pole, insula, transverse temporal, superior 
temporal; see Table 2 and Supplementary Figure 1). The right hippo-
campus ranked at the 12th position.

3.3 | Region-to-region level

The final level in the hierarchical analysis consisted of investigating the 
node-to-node connectivity profile (i.e. the edges of the connectivity 

F IGURE  3 Recall-relevant nodes. Nodes for which the degree (i.e. average connectivity of a node) was associated with picture recall 
performance at an FDR-corrected level (q < .05). L: left; R: right
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matrix) of the seven FDR-corrected nodes. Out of the possible 551 
edges that represent the connectivity profile of the FDR-corrected 
nodes to all other nodes, 170 of the edges were considered after re-
jection of false-positive connections (see Methods: Structural brain 
network construction: population level, discarding spurious connections; 
Figure 4a). Among these 170 edges, 22 connections were associ-
ated with free recall performance at an FDR-corrected level (q < .05, 
Figure 4b, Table 3). Four of these 22 connections were between the 
seven FDR-corrected nodes, which represent 40% of the existing 
connections between them, whereas the remaining 18 connections 
represented 11.2% of all other edges. A robust multiple regression 
model including individual values of these 22 connections accounted 
for 7.8% of the variance in picture recall performance.

3.4 | Cost-integrated metrics

As a further characterization of structural networks, we investigated 
several key topological metrics. Interindividual differences in mem-
ory performance were related to interindividual cost differences. 
Therefore, we investigated cost-integrated topological values rather 
than standard weighted topological metrics (see Figure 1b) (Ginestet 
et al., 2011). No significant association was found between recall per-
formance and cost-integrated measures, nor did we find any signifi-
cant valence-by-topological metric interaction (Table 4).

3.5 | Network-based statistics

The region-to-region level results were compared to a mass-univariate 
approach working directly at the connection level, provided by the 
network-based statistics toolbox. It identified one connected compo-
nent associated with picture recall performance, at p = .0016 (FWE-
controlled). This component consisted of 23 nodes and 30 edges, and 
included left-sided nodes representing mainly occipito-temporal, in-
sular, and temporo-frontal connections. At the nodal level, there was 
an overlap of 50% between those 23 nodes and the 16 nodes form-
ing the edges in the hierarchical approach, including five of the seven 

TABLE  1 List of nodes associated with picture recall 
performance, at an FDR-corrected level (q < .05)

NODES

Association with picture recall

r p robust CI

Left fusiform .115 .0030 0.04,0.19

Left superiortemporal .149 1.12E-04 0.08,0.22

Left temporalpole .121 .0018 0.04,0.20

Left transversetemporal .124 .0013 0.05,0.20

Left insula .117 .0025 0.04,0.19

Right fusiform .140 2.86E-04 0.07,0.22

Right inferiortemporal .143 2.15E-04 0.07,0.22

The FDR-corrected critical p-value was p = .0032. r: Spearman correlation 
coefficient; p: nominal p-value; CI: 95% percentile bootstrap confidence 
interval.

TABLE  2 Associations between picture recall performance and 
node degree or node gray matter volume

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Left superiortemporal .149 1.12E-04 .008 8.44E-01

Right inferiortemporal .143 2.15E-04 .011 7.75E-01

Right fusiform .140 2.86E-04 .007 8.54E-01

Left transversetemporal .124 1.33E-03 .027 4.88E-01

Left temporalpole .121 1.80E-03 .033 4.02E-01

Left insula .117 2.45E-03 .059 1.30E-01

Left fusiform .115 2.98E-03 .007 8.52E-01

Right temporalpole .113 3.46E-03 .016 6.85E-01

Left Accumbens area .103 7.88E-03 .008 8.28E-01

Right parahippocampal .090 1.98E-02 .067 8.25E-02

Right insula .088 2.30E-02 .046 2.39E-01

Right Hippocampus .087 2.43E-02 .030 4.38E-01

Left isthmuscingulate .083 3.15E-02 .020 6.05E-01

Right 
transversetemporal

.081 3.72E-02 .069 7.59E-02

Right Putamen .080 3.96E-02 .047 2.24E-01

Right lateraloccipital .078 4.56E-02 .016 6.81E-01

Right superiortemporal .077 4.74E-02 .001 9.83E-01

Right precentral .075 5.29E-02 .016 6.87E-01

Left supramarginal .075 5.34E-02 .014 7.25E-01

Left bankssts .073 6.07E-02 .054 1.67E-01

Left Thalamus Proper .072 6.24E-02 .032 4.11E-01

Right inferiorparietal .072 6.30E-02 .019 6.34E-01

Left lateralorbitofrontal .071 6.82E-02 .043 2.65E-01

Right postcentral .069 7.50E-02 .042 2.85E-01

Right Accumbens area .066 8.95E-02 .032 4.04E-01

Left 
caudalanteriorcingulate

.066 9.17E-02 .014 7.23E-01

Right Amygdala .065 9.23E-02 .011 7.75E-01

Left precuneus .065 9.47E-02 .040 3.09E-01

Right bankssts .064 9.75E-02 .040 3.05E-01

Right Caudate .064 1.01E-01 .029 4.55E-01

Left Hippocampus .063 1.07E-01 .016 6.88E-01

Left entorhinal .062 1.08E-01 .102 8.65E-03

Right 
caudalmiddlefrontal

.061 1.15E-01 .078 4.33E-02

Left middletemporal .060 1.23E-01 .043 2.66E-01

Left inferiorparietal .059 1.27E-01 .017 6.60E-01

Right entorhinal .057 1.43E-01 .070 7.18E-02

Left Pallidum .053 1.72E-01 .020 5.99E-01

Left posteriorcingulate .050 1.95E-01 .012 7.55E-01

Right 
rostralmiddlefrontal

.050 2.00E-01 .013 7.42E-01

(Continues)
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FDR-corrected nodes (Table S1). At the connection level, 36.8% of 
the 30 NBS-based connections were identical to those that the hi-
erarchical approach detected (Figure S2 and Table S1). The NBS ap-
proach has been shown to be dependent on the initial cluster-forming 
threshold. We therefore report the results of two additional analyses 
in the Tables S2 and S3, using a more stringent and a more lenient ini-
tial threshold (T = 3 and T = 2, respectively). A single FWE-controlled 
component related to recall performance was identified in both cases 
(p = .0033 and p = .0001, respectively). The more liberal threshold 
component included 140 edges, among which all 22 of the hierarchi-
cal approach. The more stringent threshold component included nine 
edges, focusing on occipito-  and fronto-temporal connections. This 
independent approach supports our findings on the role that connec-
tions in occipito-temporal regions play in explaining interindividual 
variability in memory performance.

3.6 | Brain volumetry

Interindividual differences in memory recall have often been investi-
gated in terms of brain volumetry (Van Petten, 2004). We therefore 
investigated whether or not individual grey matter volumes were as-
sociated with picture recall performance. We did so by means of a 
FreeSurfer-based volumetric approach. We found neither a significant 
association for average volume (r = .05; p = .196), nor for regional vol-
umes (FDR level q < .05; Table 2).

4  | DISCUSSION

The present study revealed that variability of free recall performance 
was associated with variability in network density, a property of 
global connectivity that has been shown to be important not only in 
the characterization of structural networks (Gong et al., 2009), but 
also in functional networks related to memory (Watrous et al., 2013). 
Global structural connectivity has been shown to decrease with in-
creasing age (Gong et al., 2009). This finding led to speculation that 
decreased global connectivity might represent an underlying factor 
for age-related cognitive decline. By demonstrating that picture recall 
is positively correlated with global connectivity in young adults, the 

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Right posteriorcingulate .049 2.10E-01 .010 7.97E-01

Left Putamen .044 2.56E-01 .037 3.44E-01

Left lingual .043 2.66E-01 .052 1.78E-01

Left parahippocampal .039 3.16E-01 .002 9.69E-01

Right precuneus .039 3.17E-01 .043 2.65E-01

Right superiorparietal .038 3.28E-01 .007 8.64E-01

Right middletemporal .038 3.30E-01 .051 1.87E-01

Right 
caudalanteriorcingulate

.037 3.40E-01 .053 1.75E-01

Right paracentral .036 3.55E-01 .041 2.95E-01

Right isthmuscingulate .033 3.98E-01 .044 2.63E-01

Left precentral .033 4.00E-01 .079 4.14E-02

Right parsorbitalis .032 4.15E-01 .029 4.50E-01

Left postcentral .030 4.40E-01 .025 5.17E-01

Left parstriangularis .030 4.44E-01 .045 2.49E-01

Left inferiortemporal .028 4.68E-01 .036 3.56E-01

Right lateralorbitofrontal .027 4.80E-01 .036 3.58E-01

Left paracentral .026 5.03E-01 .028 4.64E-01

Left parsorbitalis .025 5.25E-01 .026 5.00E-01

Right 
medialorbitofrontal

.024 5.44E-01 .007 8.63E-01

Left lateraloccipital .023 5.47E-01 .018 6.41E-01

Left medialorbitofrontal .022 5.77E-01 .013 7.29E-01

Right Thalamus Proper .020 6.07E-01 .049 2.11E-01

Left Amygdala .020 6.09E-01 .062 1.09E-01

Left Caudate .019 6.26E-01 .024 5.41E-01

Left pericalcarine .017 6.59E-01 .066 8.93E-02

Right supramarginal .017 6.62E-01 .041 2.96E-01

Right cuneus .016 6.82E-01 .036 3.57E-01

Left 
rostralanteriorcingulate

.015 7.05E-01 .021 5.93E-01

Left parsopercularis .014 7.18E-01 .008 8.39E-01

Right lingual .013 7.39E-01 .069 7.36E-02

Left caudalmiddlefrontal .012 7.59E-01 .020 6.01E-01

Left rostralmiddlefrontal .011 7.86E-01 .015 6.99E-01

Right parstriangularis .010 7.99E-01 .006 8.76E-01

Right Pallidum .009 8.07E-01 .017 6.57E-01

Left superiorfrontal .009 8.14E-01 .059 1.27E-01

Right parsopercularis .008 8.30E-01 .032 4.06E-01

Left superiorparietal .008 8.44E-01 .020 6.10E-01

Left frontalpole .007 8.55E-01 .027 4.92E-01

Right superiorfrontal .007 8.65E-01 .087 2.46E-02

Right frontalpole .006 8.85E-01 .023 5.47E-01

TABLE  2  (Continued)

(Continues)

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Left cuneus .005 9.06E-01 .094 1.50E-02

Right pericalcarine .001 9.81E-01 .050 2.00E-01

Right 
rostralanteriorcingulate

.000 9.99E-01 .000 9.94E-01

Nodes highlighted in bold are those for which the association between 
memory performance and node degree was significant at an FDR-corrected 
level (q < .05); whereas nodes highlighted in italics were nominally associ-
ated. r: Spearman correlation coefficient; p: nominal p-value.

TABLE  2  (Continued)
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present results support the notion that decreased global structural 
connectivity might be involved in the age-related decline in episodic 
memory performance. Moreover, we found evidence indicating that 
the association between structural connectivity and memory perfor-
mance might be specific to the episodic task, as it did not apply to 
attention or working memory. As Schedlbauer et al. (Schedlbauer, 
Copara, Watrous, & Ekstrom, 2014) found an association between 
global functional network density and successful memory retrieval in 
a spatiotemporal task, these findings also point toward the functional 
relevance of network density in episodic memory. More generally, 
increased functional connectivity in a recollection-specific network 
has also been related to recollection accuracy (King, de Chastelaine, 
Elward, Wang, & Rugg, 2015).

A post-hoc analysis revealed that the degree of the right hippo-
campus, i.e. its average connectivity, was significantly associated with 
recall performance. Such a nominal association was observed for 20% 

of the nodes, reflecting the network density findings. Together with 
the whole-brain hierarchical approach that identified its connection 
with the superior temporal cortex as relevant in explaining interindi-
vidual differences in recall performance, these findings confirm the 
role of the hippocampus as a key region for episodic memory (Milner 
& Penfield, 1955; Schacter & Tulving, 1994; Squire & Alvarez, 1995) in 
healthy young adults.

The whole-brain hierarchical approach additionally allowed us 
to identify seven nodes, mainly located in the temporal lobe, whose 
degree was significantly associated with free recall performance. The 
fusiform gyrus, together with the inferior temporal cortex and the 
temporal pole, are part of the inferior longitudinal fasciculus, a fiber 
bundle that connects the occipital cortex with the anterior tempo-
ral lobe and the amygdala (Catani, Jones, Donato, & ffytche, 2003). 
Connections between these brain regions have been linked to episodic 
memory (Fuentemilla et al., 2009). Furthermore, age-associated white 

F IGURE  4 Recall-relevant edges. (a) Whole-brain connectivity pattern of the seven nodes associated with picture recall performance at an 
FDR-corrected level (q < .05). The seed node is depicted in red. (b) Connections significantly associated with picture recall performance (FDR-
corrected level q < .05). The size of a node is proportional to its degree. Green nodes are those for which degree was significantly associated 
with picture recall performance (Figure 3). L: left; R: right
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matter injuries, as measured by white matter hyperintensities, were 
shown to be negatively associated with episodic memory performance 
in normal aging (Lockhart et al., 2012).

The network-based statistics framework was employed as an in-
dependent confirmation approach. It identified one significant recall-
related component of left-sided regions, including all five left-sided 
nodes of our main analysis. Fourteen edges were identified as com-
mon between the two analyses. The fact that the NBS toolbox has 
distinct assumptions (mass-univariate approach and connectedness 

of the components) offers a refined view on the main analyses. This 
approach highlights the role of connections of the superior tempo-
ral cortex and fusiform gyrus. Overall, these findings strengthen the 
importance of occipito-temporal structural connections for episodic 
memory.

Not only do our results provide more specific information regard-
ing connections previously related to memory performance, they also 
point to less investigated pathways, such as connections between the 
insula and the superior temporal cortex (Cerliani et al., 2012). Whereas 

FDR edges Association with picture recall

FDR node Connecting node r p robust CI

Left fusiform Left superiortemporal .130 7.95E-04 0.05,0.20

Left fusiform Left temporalpole .114 .0033 0.04,0.19

Left fusiform Left middletemporal .107 .0057 0.03,0.19

Left insula Left pericalcarine .133 5.76E-04 0.06,0.21

Left insula Left lateraloccipital .121 .0018 0.04,0.20

Left insula Left accumbens-area .120 .0020 0.04,0.20

Left superiortemporal Left lingual .189 8.87E-07 0.11,0.26

Left superiortemporal Left pericalcarine .145 1.79E-04 0.07,0.21

Left superiortemporal Left accumbens-area .139 3.21E-04 0.07,0.21

Left superiortemporal Left insula .132 6.30E-04 0.06,0.21

Left superiortemporal Left lateraloccipital .130 8.09E-04 0.05,0.20

Left superiortemporal Left lateralorbitofrontal .123 .0015 0.05,0.20

Left superiortemporal Left hippocampus .119 .0021 0.04,0.19

Left superiortemporal Left caudate .105 .0066 0.03,0.18

Left temporalpole Left lingual .145 1.70E-04 0.06,0.22

Left temporalpole Left accumbens-area .134 5.60E-04 0.06,0.21

Left temporalpole Left pericalcarine .122 .0016 0.05,0.19

Left temporalpole Left caudate .112 .0039 0.04,0.19

Right fusiform Right accumbens-area .116 .0027 0.04,0.19

Right fusiform Right inferiortemporal .115 .0030 0.04,0.19

Right inferiortemporal Right superiortemporal .114 .0032 0.04,0.18

Right inferiortemporal Right accumbens-area .106 .0063 0.03,0.18

The FDR-corrected critical p-value was p = .0076. r: Spearman correlation coefficient; p: nominal 
p-value; CI: 95% percentile bootstrap confidence interval.

TABLE  3 List of edges associated with 
picture recall performance, at an FDR-
corrected level (q < .05)

Global cost integrated values 
(over nodes)

Association with picture recall

Overall performance
Valence 
interaction

r p robust CI F p

Global efficiency .013 .73 −0.061,0.086 0.39 .68

Clustering coefficient −.025 .53 −0.093,0.054 0.39 .68

Characteristic path length (a) .057 .14 −0.020,0.133 2.22 .11

Betweenness centrality .013 .73 −0.064,0.090 0.76 .47

No metric survived correction for multiple comparison at an FDR of 5%. r: Spearman correlation coef-
ficient; p: nominal p-value; CI: 95% percentile bootstrap confidence interval.
aComputed on a sub-sampled cost range for computational efficiency, due to the large number of ran-
dom graphs to generate.

TABLE  4 Association between picture 
recall performance and cost-integrated 
topological metrics
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the insula has a well-known role in emotional processing (Craig, 2009), 
findings indicate that insular cortex infarction causes deficits in de-
layed verbal memory recall, which suggests that the insula is also a part 
of a functional network involved in episodic memory (Manes, Springer, 
Jorge, & Robinson, 1999). Furthermore, there is evidence that an ab-
normal insular functional network is associated with episodic mem-
ory decline in amnestic mild cognitive impairment (Xie et al., 2012) 
and the insular cortex is known to be important for memory acquisi-
tion and consolidation in rodents (Bermudez-Rattoni, Ramirez-Lugo, 
Gutierrez, & Miranda, 2004; Miranda & McGaugh, 2004). Our study 
also points to the importance of connections between the temporal 
pole and the nucleus accumbens, potentially mediated by the bed nu-
cleus of the stria terminalis (Avery et al., 2014). Interestingly, studies 
in rodents have shown that the stria terminalis is involved in memory 
modulation (Roozendaal & McGaugh, 1996). So far, nothing has been 
known about the role of the stria terminalis in human memory.

Our results show that interindividual differences in memory per-
formance were not explained by differences in grey matter volumes. 
Whereas grey matter volume differences have been linked to impaired 
memory performance when comparing cognitively impaired to healthy 
populations (Chételat et al., 2003), or young to old populations (Rajah, 
Kromas, Han, & Pruessner, 2010), less is known about the neuronal 
bases of interindividual variations in performance for young healthy 
subjects. Furthermore, in the latter case, the hippocampus has often 
been the main region of investigation (for a review see (Van Petten, 
2004)). But results have been mixed, possibly due to low sample sizes 
or the heterogeneity of experimental protocols (Harrisberger et al., 
2014; Van Petten, 2004). In contrast, our well-powered study on 
whole-brain structural correlates of picture recall provides evidence 
that interindividual differences in recall performance could not be ex-
plained by cortical or subcortical differences in grey matter volumes; 
rather, they can be explained by individual differences in the structural 
connections between grey matter structures.

Although the percentage of behavioral variance explained by 
structural connectivity measures might appear to be low, we think it 
represents a likely effect size, given the sample size of the present 
study (Button et al., 2013) and the dynamic nature of episodic memory 
processes. Structural connectivity represents the basis for the dynamic 
repertoire of functional interactions (Sporns, 2013) that could contrib-
ute to interindividual variability in behavior. Those interactions might 
further explain behavioral variance related to the different dynamic 
processes underlying episodic memory (encoding, consolidation, re-
call). Other factors that were not assessed in this study, such as IQ or 
education level, might also contribute to differences in memory per-
formance. Another limitation is that a single measure of picture recall 
was employed. These points underscore the fact that replication of the 
present results with different episodic memory tasks and populations 
would be of particular interest.

Additional methodological limitations also have to be mentioned. 
The DWI sequence used in this study allowed us to scan a large co-
hort in an acceptable amount of time on a clinical scanner. Recent de-
velopments in terms of multi-band imaging (Feinberg & Setsompop, 
2013) could be beneficial to increase the angular resolution for such 

large-scale studies, without increasing scanning time. Regarding the re-
construction of individual connectomes, we opted to estimate the voxel 
fiber orientations by using a model-based approach (Behrens et al., 
2007). Non-parametric alternatives such as spherical deconvolution 
might refine the estimation in complex sub-voxel fiber configurations 
(Lenglet et al., 2009). Tractography choices, ranging from node defini-
tion (de Reus & van den Heuvel, 2013) to tracking algorithms (Bastiani, 
Shah, Goebel, & Roebroeck, 2012; Girard, Whittingstall, Deriche, & 
Descoteaux, 2014) are also known to have an impact on connectome 
measures. Considering the lack of findings for cost-corrected graph 
metrics, it is possible that the cost integration, combined with the hi-
erarchical approach, masks isolated effects. We nevertheless consider 
this approach important regarding the problematic of correctly disen-
tangling the effects of cost from those of topology in the connectome.

In conclusion, we report that interindividual differences in picture 
free recall performance are related to interindividual differences in 
global structural connectivity and connectivity between specific brain 
regions. Structural connections between the occipital and temporal 
lobes are of known functional relevance for memory processes, while 
connections between the temporal pole and the nucleus accumbens 
represent novel findings. The identification of connectome-based neu-
ral correlates of interindividual differences in memory performance 
demonstrates the usefulness of this novel approach in characterizing 
complex cognitive traits. Such correlates could represent an interest-
ing starting point for human genetic studies, and prove useful as en-
dophenotypes of psychiatric disorders.
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