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Abstract

Strongyloidiasis is a much-neglected soil born helminthiasis caused by the nematode Stron-

gyloides stercoralis. Human derived S. stercoralis can be maintained in dogs in the labora-

tory and this parasite has been reported to also occur in dogs in the wild. Some authors

have considered strongyloidiasis a zoonotic disease while others have argued that the two

hosts carry host specialized populations of S. stercoralis and that dogs play a minor role, if

any, as a reservoir for zoonotic S. stercoralis infections of humans. We isolated S. stercora-

lis from humans and their dogs in rural villages in northern Cambodia, a region with a high

incidence of strongyloidiasis, and compared the worms derived from these two host species

using nuclear and mitochondrial DNA sequence polymorphisms. We found that in dogs

there exist two populations of S. stercoralis, which are clearly separated from each other

genetically based on the nuclear 18S rDNA, the mitochondrial cox1 locus and whole ge-

nome sequence. One population, to which the majority of the worms belong, appears to be

restricted to dogs. The other population is indistinguishable from the population of S. ster-

coralis isolated from humans. Consistent with earlier studies, we found multiple sequence

variants of the hypervariable region I of the 18 S rDNA in S. stercoralis from humans. How-

ever, comparison of mitochondrial sequences and whole genome analysis suggest that

these different 18S variants do not represent multiple genetically isolated subpopulations

among the worms isolated from humans. We also investigated the mode of reproduction of

the free-living generations of laboratory and wild isolates of S. stercoralis. Contrary to earlier

literature on S. stercoralis but similar to other species of Strongyloides, we found clear evi-

dence of sexual reproduction. Overall, our results show that dogs carry two populations,

possibly different species of Strongyloides. One population appears to be dog specific

but the other one is shared with humans. This argues for the strong potential of dogs as
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reservoirs for zoonotic transmission of S. stercoralis to humans and suggests that in order

to reduce the exposure of humans to infective S. stercoralis larvae, dogs should be treated

for the infection along with their owners.

Author summary

Infections of humans with the nematode Strongyloides stercoralis can persist for a very

long time, due to the capacity of this pathogen to undergo an autoinfective life cycle and

re-infect the same host over and over again. Clinical manifestation, known as human

stongyloidiasis, may be fatal and can arise many years and generations of worms after the

initial infection occurred. Although Strongyloides stercoralis has been known as the causa-

tive agent of strongyloidiasis for a very long time, some key questions about its biology

and epidemiology remain open. Here we address two of them. Firstly, it has long been

known that dogs can serve as experimental hosts for S. stercoralis but it is a matter of

debate whether Strongyloides spp. found in dogs in the wild are human pathogenic S. ster-
coralis, and whether dogs therefore are a source of zoonotic transmission of this parasite.

Here we show that dogs carry two genetically different populations of Strongyloides spp.

one of which is shared with humans. This demonstrates that dogs represent a possible res-

ervoir for zoonotic strongyloidiasis. Secondly, the all female, parthenogenetic parasitic

generations may alternate with single facultative free-living generations, which consist

of both females and males. In spite of the presence of both sexes, it had been postulated

that males do not contribute genetic material to the progeny and that sperm are merely

required to trigger parthenogenetic embryonic development. Here we show that the free-

living adults of S. stercoralis reproduce sexually.

Introduction

Soil-transmitted helminthiasis (STH) affects up to one in four individuals in the world, dispro-

portionately impacting impoverished populations with less access to clean water, sanitation,

and opportunities for socioeconomic development [1]. Strongyloidiasis is one of the most

neglected tropical diseases [2,3]. Estimates of the number of people infected with the causative

agent Strongyloides stercoralis vary and go up to 370 million worldwide [2,4,5]. The local pre-

valence can reach more than 40% in some tropical and subtropical countries [3,6]. Factors

such as high temperature, high moisture, poor sanitation and sharing premises with domestic

animals may contribute to high prevalence of S. stercoralis [3,7,8]. S. stercoralis is the major

causative agent of human strongyloidiasis [9] but there are also reports of people infected

with Strongyloides fuelleborni and Strongyloides fuelleborni kellyi, in Africa and in Papua New

Guinea [9]. Based on molecular data, S. fuelleborni kellyi should probably be considered an

independent species rather than a subspecies of S. fuelleborni, [10]. Although S. stercoralis
infection frequently remains asymptomatic, immuno-compromised patients can develop a

systemic infection, which may lead to fatal forms of strongyloidiasis. The medical relevance of

this parasite has probably been grossly underestimated due to difficulty of diagnosis [4,5,11].

Also, it should be noted that Strongyloides is not limited to tropical and underdeveloped areas,

and the presence of S. stercoralis and fatal cases caused by it have also been reported from well-

developed regions with temperate climates such as the European Union and North America

[12–18]. S. stercoralis has a complex, rather unique life cycle (Fig 1) consisting of parasitic and

free-living generations [19–21]. In brief: infective third stage larvae (L3i), which are all females,
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invade a new host by skin penetration and, after migrating through the blood and the lungs, are

coughed up and swallowed and eventually establish in the small intestine of the host. The para-

sitic adult females reproduce by parthenogenesis. The progeny of the parasitic females have four

developmental options: 1) Firstly, they may become female, and develop into infective third

stage larvae (iL3) within the host and re-infect the same host individual (autoinfective cycle); 2)

Secondly, they may become female, but this time leave the host as first-stage larvae, develop into

iL3 and search for a new host (direct/homogonic development); 3) Thirdly, they may become

female and leave the host, but this time develop into free-living, non-infective third stage larvae

and subsequently into adult females (indirect/heterogonic development); 4) Or fourthly, they

become male and leave the host and develop into free-living adult males (indirect/heterogonic

cycle). The free-living adults mate and reproduce in the environment and all their progeny are

females and develop to iL3s. No male iL3s have been reported in any Strongyloides species. For

two species of Strongyloides (Strongyloides ratti and Strongyloides papillosus), it has been shown

that the reproduction in the free-living generation is sexual, in spite of some earlier literature

that had described it as pseudogamic (by sperm dependent parthenogenesis) [22–24]. For S.

stercoralis prior to this report no genetic analysis of the mode of reproduction had been con-

ducted and non-sexual (pseudogamic) reproduction as proposed based on cytological observa-

tions remained an option [25,26]. Whilst all species of Strongyloides may undergo homogonic

or heterogonic development, the autoinfective cycle (option 1) appears to be specific for S. ster-
coralis and maybe a few other less well-investigated species [19]. This autoinfective cycle allows

the parasite to persist in a particular host individual for many years, much longer than the life

expectancy of an individual worm. Usually, healthy individuals tolerate such long lasting infec-

tions well and control them at very low levels [5]. These people have no clinical symptoms and

the infection is unlikely to be detected. However, if such a chronically infected person becomes

immunodeficient due to disease or immunosuppressive treatment (i.e. cancer chemotherapy or

organ transplantation), this may lead to failure to control the infection and consequentially to

Fig 1. The life cycle of S. stercoralis. The life cycle of Strongyloides stercoralis. The numbers refer to the

numbers of the developmental options in the description of the life cycle in the text.

https://doi.org/10.1371/journal.pntd.0005752.g001
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self-enhancing progression of strongyloidiasis (hyperinfection syndrome and disseminated

strongyloidiasis), which is lethal if not treated [5].

Parts of the 18S rDNA (small Subunit, SSU) sequence, in particular the hypervariable

regions (HVR) I and IV, are widely used as nuclear markers for molecular taxonomy of nema-

todes in general (e.g. [27–33]) and Strongyloides spp. in particular [8,34–36]. Whilst some

sequence variation in HVR I within S. stercoralis was reported [35,37], HVR IV appears virtu-

ally invariable within this species. To our knowledge, there is only one report to date of a single

nucleotide difference within this region [38](accession number M84229).

Whilst humans are their natural hosts, dogs, cats, and non-human primates have also been

proposed to be suitable hosts for S. stercoralis [39–42]. To what extent strongyloidiasis is a

zoonotic disease has been the subject of controversy in the literature for several decades. Ori-

ginally Brumpt (1922) [43], later supported by Augustine (1940) [44] split the Strongyloides
of dogs from S. stercoralis and described it as a separate species, called Strongyloides canis.
Recent comparative analyses of the mitochondrial locus cytochrome c oxidase subunit 1 (cox1)

[6,36,38,45] and the whole genome sequence of 33 individual S. stercoralis from Japan and

Myanmar [46] indicated that there is substantial genetic diversity among S. stercoralis isolated

from human hosts and [38] suggested that there might exist human- and dog-specialized sub-

populations. On the other hand, dogs have long been known to be suitable experimental hosts

for human derived S. stercoralis [39,41], and many authors consider Strongyloides in dogs and

humans to belong to the same species, i.e. S. stercoralis. While the more recent literature

appears to favor separation, it remains unclear whether S. stercoralis naturally infecting dogs

and humans belong to the same populations or not, and correspondingly, what the potential is

for dogs to serve as a source for human S. stercoralis infections (recently reviewed by Thams-

borg and colleagues [42]). In order to address this question, we compared individual Strongy-
loides isolated at the same time and location from humans and dogs, which, to our knowledge,

had never been done. In our study area, rural communities in Northern Cambodia, people

share their premises closely with their dogs, and the prevalence of strongyloidiasis is high [3].

We compared the sequences of the nuclear SSU HVR I and HVR IV and, for a selected subset

of worms, the mitochondrial cox1 gene and whole genome sequences. Further, we character-

ized reproduction in the free-living generations of wild and laboratory isolates of S. stercoralis.
Our results show that dogs carry S. stercoralis genetically indistinguishable from the ones in

humans in addition to a dog specific population. Further, we demonstrate that reproduction

in the free-living generation of both wild and laboratory isolates of S. stercoralis is sexual and

not pseudogamic. Overall, our observations strongly support the hypothesis that dogs are a

potential source for human S. stercoralis infection and suggest that in order to reduce the expo-

sure of people to infective Strongyloides larvae, dogs should be treated along with their owners

in settings where people are exposed to dog excrement.

Materials and methods

Study area

Fecal samples were collected from humans and dogs of the same households in the villages

Anlong Svay (AS) and Chom Long (CL) in May 2013 and in Damnak Chin (DC) and Kampot

(KP) in June 2016. All villages are in the Rovieng District (13˚210N 105˚070E) in Preah Vihear

province in Northern Cambodia.

Stool sample collection and S. stercoralis isolation

Human stool samples were collected and S. stercoralis larvae were isolated according to estab-

lished methods [47]. In brief, stool samples were collected for two consecutive days from each

Strongyloides stercoralis in dogs and humans
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member of the household who agreed to participate in this study. In May 2013 all the fecal sam-

ples collected from humans were analyzed within 3 hours after collection using Baermann and

Kato-Katz methods. The sediments of positive Baermann funnels were preserved and trans-

ported to our laboratory in Tübingen in 70% ethanol at ambient temperature. In June 2016 the

fecal samples were mixed with an approximately equal volume of sawdust, moisturized and cul-

tured at ambient temperature for 24–48 hours and analyzed using the Baermann method. From

positive Baermann funnels a portion of the worms were transferred individually into 10 μl of

water or, for those intended for whole genome sequencing, 10 μl of Tissue and Cell Lysis Solu-

tion (component of the MasterPure DNA Purification Kit, Epicenter MC85201) and the re-

maining worms were preserved as batches in 70% ethanol. While the work was ongoing the

samples were stored in the hotel freezer. For transport to our laboratory the samples were refrig-

erated using wet ice but not frozen. In the majority of cases, worms from the 2016 sample come

from those that had been picked individually whilst alive into water or Tissue and Cell Lysis

Solution. If any ethanol preserved specimen from 2016 was used, this is explicitly stated.

Fecal samples were also collected from dogs found in the proximity of S. stercoralis positive

households. The samples were taken directly from the rectum of the animals with the help of

the owners and the field assistants. The samples were further processed like the human sam-

ples except that for some samples, 3 g of feces were placed on NGM agar plates [48] and incu-

bated for 24–48 hours at ambient temperature and emerging S. stercoralis were picked directly

from the plates instead of setting up saw dust cultures followed by baermanization.

Single worm DNA preparation for PCR and whole genome sequencing

For ethanol fixed samples, single worms were picked and washed twice with Phosphate-buff-

ered saline (PBS) and then incubated in 20 μl 1X lysis buffer (20 mM Tris-HCl pH 8. 3, 100

mM KCl, 5 mM MgCl2, 0.9% NP-40, 0.9% Tween 20, 0.02% Gelatine, 240 μg/ml Proteinase K)

at 65˚C for 2h, followed by incubation at 95˚C for 15 min. 2 μl (for SSU) or 4 μl (or single copy

loci) of this lysate were used as template for PCR amplification.

For worms stored in 10 μl water, 10 μl 2x lysis buffer were added, after which the samples

were treated as described above. For samples preserved in Tissue and Cell Lysis Solution, single

worm DNA was prepared using the MasterPure DNA Purification Kit (Epicenter MC85201)

according to the manufacturer’s protocol, and the DNA was stored frozen in 10 μl of TE buffer.

1 μl was used for SSU amplification, and the reminder for sequencing library construction.

PCR for SSU, cox1 and single copy locus genotyping

PCR reactions were done in a total volume of 25 μl (up to 25 μl nuclease-free water, 2.5 μl 10X

ThermoPol Reaction buffer (New England BioLabs), 0.5 μl dNTP’s (2mM each), 0.5 μl 10 mM

forward primer (Table 1, Fig 2), 0.5 μl 10 mM reverse primer (Table 1, Fig 2), 0.3 μl Taq DNA

polymerase (New England BioLabs), 1 μl to 4 μl template as specified above). Thermocycling

program: 94 ˚C for 2 min, followed by 35 cycles of denaturing (94 ˚C for 30 sec), annealing

(temperature given in Table 1 for 15 sec), extension (72 ˚C for time given in Table 1), and a

post amplification final extension (72˚C for 10 min) and cooling to 4 ˚C.

Sequencing of PCR products and sequence analysis

1 μl of the PCR reaction and either one of the PCR primers or, in the case of SSU HVR I, a des-

ignated sequencing primer were used in sequencing reactions using the BigDye Terminator

v3.1 Cycle Sequencing Kit (Applied Biosystems,) according to the manufacture’s protocol. The

reactions were submitted to the in-house sequencing facility at the Max Planck Institute for

Developmental Biology at Tübingen for electrophoresis and base calling. Sequences were

Strongyloides stercoralis in dogs and humans

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005752 August 9, 2017 5 / 21

https://doi.org/10.1371/journal.pntd.0005752


analyzed with SeqMan Pro version 12 (Lasergene package; DNAStar, Inc., Madison, WI USA).

Chromatograms were visually inspected to detect ambiguous signals indicating mixed se-

quences (heterozygous worms). For comparison with published sequences, we used BLAST

against the NCBI nucleotide database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). For the SSU, we

used the GenBank entry AF279916 as reference sequence. All position numbers refer to this

entry. For S. stercoralis cox1, we used the sequence LC050212 as reference. 552 base pairs, of

which 63 were polymorphic, were considered (for the full sequences of the different haplotypes

see S1 Text). For ytPxxx markers, position 1 is the first base of the (non-nested) forward

primer (for the sequences of the markers see S1 Text).

Phylogenetic analysis of the cox1 sequences was done using MEGA7 [49] with default set-

tings. As an outgroup species we used Necator americanus (AJ417719). The Maximum Likeli-

hood tree is shown in Fig 3. For comparison we also reconstructed Maximum Parsimony and

Neighbor Joining trees, which resulted in the same tree topology as far as well-supported

nodes are concerned.

Whole genome sequencing and analysis

DNA of 23 single free-living males S. stercoralis from different hosts (11 males from 9 different

humans and 12 males from 10 different dogs) was prepared as described above. Whole-genome

sequencing libraries were prepared with Clontech Low Input Library Prep Kits (Takara Bio,

USA) following the manufacturer’s protocol. Samples were submitted to in-house sequencing

on an Illumina HiSeq 3000 instrument (150 bp paired-end). An approach similar to a previous

S. stercoralis population study [46] was used to analyze the whole genome data. In brief, raw

reads were trimmed with skewer [50] (version 0.1.123; -q 30 -Q30 -l 60). Trimmed reads were

mapped to the S. stercoralis reference genome (GCA_000947215.1) and the small subunit ribo-

somal RNA (SSU rRNA; AF279916) using bwa mem [51] (version 0.7.12; MEM algorithm with

Table 1. Primers and PCR conditions.

Primer Sequence Ann Ext Prod

SSU HVR I Fw SSU18Aa 5'-AAAGATTAAGCCATGCATG-3' 52˚C 90’’ 863 bp

Rev SSU26Ra 5'-CATTCTTGGCAAATGCTTTCG-3'

Seq SSU9R 5'-AGCTGGAATTACCGCGG-3'

SSU HVR IV Fw 18SP4Fb 5'-GCGAAAGCATTTGCCAA-3' 57˚C 90’’ 712 bp

Rev 18SPCRb 5'-ACGGGCGGTGTGTRC-3'

cox1 Fw TJ5207 5'-TTTGATTGTTACCTGCTTCTATTTT-3' 50˚C 90’’ 650 bp

Rev TJ5208 5'-TTTTACACCAGTAGGAACAGCAA-3'

ytP274 Fw TJ6026 5'-CAGGACCACCTGGACAAGTT-3' 54˚C 90’’ 543 bp

Rev TJ6027 5'-CTTTCCATCCTGATGCCACT-3'

ytP289 Fw ZS6420 5'-TGAAACAGGAAAACACATCTACTGA-3' 49˚C 90’’ 765 bp

Rev ZS6421 5'-AGTGTTCAAGATATTCACGCAG-3'

ytP289 nested Fw ZS6472 5'-AAATGGTTCAAGTTTGGGAC-3' 49˚C 60’’ 431 bp

Rev ZS6473 5'-TGACATACCATTAGCTTCACCA-3'

ytP290 Fw ZS6490 5'-TGCTGCCTCAACAATGTACA-3' 49˚C 60’’ 431 bp

Rev ZS6491 5'-TTATAGGCATCTAAAAGGCTTT-3'

ytP290 nested Fw ZS6448 5'-GCTGTACAGGATGCTTTGGA-3' 49˚C 60’’ 203 bp

Rev ZS6449 5'-TGTGCGATACATAATTTTCTGATGAA-3'

aTaken from [10]
b taken from [35]. Fw forward

Rev reverse; Seq sequencing; Ann annealing temperature for PCR; Ext extension time for PCR: Prod PCR product length.

https://doi.org/10.1371/journal.pntd.0005752.t001
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defaults). Duplicate reads were marked with Picard tools (http://broadinstitute.github.io/

picard) (version 2.2.1; MarkDuplicates with defaults). Variants were called with GATK [52]

(build 2016-09-27-g026f7e8; HaplotypeCaller and GenotypeGVCFs both with defaults) after

Indel realignment (GATK IndelRealigner with defaults) and freebayes [53] (version 1.0.2-

6-g3ce827d, defaults). The intersection of both variant calls was imported into GNU R using

SNPRelate [54] (version 1.8.0; method = "biallelic.only"). Single-nucleotide polymorphism

(SNPs) were recursively removed using a sliding window approach and a Linkage Disequilib-

rium (LD) threshold of 0.05 and or a minimum allele frequency (MAF) of 0.05. The resulting

SNP set was used to calculate the fraction of identity by state (IBS) for each pair of samples.

Results were stored in a genomic identity-by-state relationship matrix and used to estimate a

phylogeny with the BIONJ algorithm implemented in ape [55] (version 4.1; defaults). A second

phylogeny was estimated with a reference-free approach. Trimmed short reads were used to

generate a k-mer count graph with khmer (version 0.2.0; load-into-counting.py with a k-mer

size of 19 otherwise defaults). k-mer counts were used to calculate pairwise distances between

samples using kWIP [56]. The resulting distance matrix was imported into GNU R to estimate

a phylogeny; again using the BIONJ algorithm.

Analysis of free-living females and their progeny

Free-living females were isolated after two days of culture as described above and placed indi-

vidually onto NGM plates seeded with E. coli OP50 [48]. The plates were inspected daily.

Fig 2. The different SSU HVR variants found. The sequence of the portion of the SSU amplified for genotyping of

the two HVRs. Arrows indicate the positions of the primers used for amplification, from top to bottom SSU18A,

18SP4F, SSU26R, 18SPCR (c.f. Table 1). Note that forward primers are above the sequence while reverse primers

are below the sequence. HVR I and HVR IV as defined by Hasegawa and colleagues [35] are boxed. For sequencing

results for both SSU HVR and cox1 for each individual worm see S1 Table.

https://doi.org/10.1371/journal.pntd.0005752.g002
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Females that had produced progeny but presumably had ceased reproduction because they

no longer contained embryos in their uterus were picked and prepared for genotyping as

described above. One day later, larvae from these females were also isolated and processed. For

17 of these families the mothers and the progeny were picked individually and alive into 10 μl

of water and processed as described above. Five more families (Females 7, 8, 14, 15, 16) were

preserved in Ethanol (one tube per family) and the individuals were only separated when they

were genotyped. The mothers and the progeny were genotyped at ytP289 and ytP290 as

described above. ytP289 contains single nucleotide polymorphisms at positions 308 (A/G), 359

(A/G), 416 (C/T) and 566 (C/T). Three different combinations (alleles) existed in our samples.

Allele 1 has the combination G+A+C+C, allele 2 A+G+T+T, and allele 3 A+A+C+C. ytP290
contains single nucleotide polymorphisms at positions 291 (A/C) and 310 (A/G). Two differ-

ent combinations (alleles) existed in our samples. Allele 1 has the combination A+A and allele

2 C+G. For the full sequences see S1 Text.

Fig 3. Gene tree of the mitochondrial gene cox1. Maximum likelihood tree of the 17 different cox1 sequences we

found and representative previously published sequences. The numbers are bootstrap values based on 1000 bootstraps.

For haplotypes isolated in this study the labels have the following format: Haplotype number (accession number) host

country (number of individuals this haplotype was found in). 1For sequences previously published by Hasegawa and

colleagues [36] the label starts with Hasegawa. 2For sequences previously published by Laymanifong and colleagues [6]

the label starts with the cox1 clade this reference assigned the particular sequence to. This is followed by: (accession

number) host country (CAR = Central African Republic). The hosts are also highlighted by red circles (human) and blue

squares (dog). Entries to the right of the tree indicate for each cox1 haplotype the SSU haplotypes it was found together

in the same individual. If a given cox1 haplotype existed in the context of multiple SSU haplotypes, the number of worms

with this particular combination is given in parentheses. Note: the cox1 haplotypes 2 and 3 were found in both hosts and

are included twice in this tree. For the sequencing results for both SSU HVR and cox1 for each individual worm see S1

Table.

https://doi.org/10.1371/journal.pntd.0005752.g003
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Crossing free-living stages of S. stercoralis (laboratory strain)

The UPD strain and PV001 line of S. stercoralis were maintained in immuno-suppressed dogs

and cultured in fecal cultures with charcoal as previously described [41]. Free-living L4 larvae

and young adults (males and virgin females) were isolated from 1-day fecal cultures at 22 ˚C

using Baermann funnels as described [41].

Single virgin females and males were handpicked and transferred in male-female pairs onto

NGM plates spotted with 30 μl of OP50 [48] and 20 μl of water from a Baermann funnel and

incubated at 22 oC for 24 hrs. On the next day, from pairs where the female contained develop-

ing embryos in the uterus, the males were transferred into PCR tubes containing 10 μl of lysis

buffer (see above) and frozen for later use. Once the females contained no embryos any longer

(after three days) they were processed like the males. After all the eggs had hatched, all the

L1/L2 were transferred individually into PCR tubes as described for the parents. Single worm

lysis was performed as described above for ethanol fixed specimens without the PBS washing

step. The parents and eight progeny per cross were genotyped at the marker ytP274 as de-

scribed above. ytP274 has a single SNP (T/C) at position 236. For the full sequence of ytP274
see S1 Text.

Ethics statements

The sampling of material in Cambodia was approved by the National Ethics Committee for

Health Research (NECHR), Ministry of Health, Cambodia and the ethics committee of the

cantons of Basel-Stadt and Basel-Land (EKBB), Switzerland. All participants were informed of

the study procedures and provided written informed consent prior to enrolment. All data han-

dled were strictly confidential. All individuals infected with S. stercoralis were treated with

Ivermectin (single oral dose of 200 μg/kg BW). Co-infections with other intestinal helminths

were treated according the Cambodian treatment guidelines. The experiments requiring cul-

ture of S. stercoralis in host animals were all done at the University of Pennsylvania with the

approval of the University of Pennsylvania Institutional Animal Care and Use Committee

(IACUC). The S. stercoralis UPD strain and PV001 isolate were maintained in prednisolone-

treated dogs according to IACUC protocols 702342, 801905, and 802593. All IACUC proto-

cols, as well as routine husbandry care of the animals, were conducted in strict accordance

with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

No human subjects were used in this part of the study.

Accession numbers

The sequences obtained from this study are available from GenBank (accession numbers

KU724124-KU724129 and KX226367-KX226384 and KY548505).

The whole genome data are available permanently from the FTP server of the Max Planck

Institute for Developmental Biology (ftp://ftp.tuebingen.mpg.de/pub/PLOS_NTD_Jaleta_

2017_whole_genome_data). They have also been submitted to the European Nucleotide

Archive where they will become available under the accession number PRJEB20999.

Results

Prevalence of S. stercoralis in humans and dogs

In May 2013, we collected stool samples from a total of 537 persons from 128 households. Of

these, 177 individuals (32.96%) living in 95 different households were positive for S. stercoralis.
From positive households we obtained rectal fecal samples from a total of 88 dogs. Of these,

78 (88.63%) originating from 44 different households were positive. In June 2016, 20 of 169
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(11.8%) people from 17 out of 62 households tested positive for S. stercoralis. Of the 29 dogs

from 14 households tested, 22 (75.9%) living in 12 different households were positive. It should

be noted that the prevalence in the two hosts cannot be compared directly because of the

biased sampling of dogs.

Multiple SSU HVR I haplotypes among S. stercoralis

Firstly, we sequenced the region around the HVR I of the SSU from individual S. stercoralis iso-

lated from humans and dogs [10,34–36,27–33]. Overall, we found the five different haplotypes

described in Fig 2. The two most dissimilar haplotypes (III and IV) show four differences (2

indels and 2 SNPs). Earlier studies [27–30,35,36] found this fragment to be largely invariable

within species and two or more differences to be fairly reliable indicators of different species.

Therefore, a within species variability as we observed was rather unexpected but not entirely

implausible. In order to obtain additional information, we next sequenced the SSU HVR IV

[35,36].

Dogs carry two different populations of S. stercoralis identifiable by the

SSU HVR IV sequence

Among all Strongyloides individuals from dogs, we found two sequence variants in the SSU
HVR IV as defined in [35]. The two haplotypes differed at three positions (two indels, one base

substitution, Fig 2). One of these variants, from now on referred to as HVR IV haplotype A, is

the one previously described as the HVR IV sequence of S. stercoralis [35], and was found

(Table 2) in 11 (11.5%) out of 96 dog derived worms in the 2013 sample and 39 (31%) out of

126 dog derived worms in the 2016 sample (in total 50 (22.5%) out of 222). This variant was

also found in all human derived worms of both samples (in total 521 worms from a total of 85

host individuals, S1 Table). The other variant, referred to hereafter as HVR IV haplotype B,

has, to our knowledge, not been described previously and was present in 85/96 (88.5%) dog

derived worms in the 2013 sample, and in 87/126 (69%) dog derived worms in the 2016 sam-

ple. Notably, this haplotype was not found in any of the 521 human derived worms. If the two

haplotypes indeed indicate two reproductively isolated groups, which have been separated

for some time in evolution, this should also be reflected in their mitochondrial and nuclear

genomes. Therefore, from the 2013 sample we sequenced a portion of the mitochondrial cox1

gene of 21 dog-derived worms (17 with SSU HVR IV haplotype B and 4 with SSU HVR IV hap-

lotype A) and 57 human derived worms (all with SSU HVR IV haplotype A) [6,36,38]. In total

we identified 17 different cox1 haplotypes. Seven were associated with SSU HVR IV haplotype

A and 10 with SSU HVR IV haplotype B (Fig 3, S1 Table). No haplotypes were shared between

worms with the two SSU HVR IV haplotypes. In a phylogenetic analysis, the cox1 haplotypes

associated with the two HVR IV haplotypes were well separated from each other. From the

2016 sample we selected 23 worms for whole genome sequencing and compared them over

their entire genome using two different approaches (Fig 4). Both methods robustly separated

the worms with SSU HVR IV haplotype B form all worms with SSU HVR IV haplotype A. The

Table 2. SSU HVR IV haplotype distribution in S. stercoralis from humans and dogs.

From dogs From humans

HVR IV haplotype A B % A A B % A

2013 sample 11 85 11.5% 340 0 100%

2016 sample 39 87 31.0% 181 0 100%

Total 50 172 22.5% 521 0 100%

https://doi.org/10.1371/journal.pntd.0005752.t002
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two methods yielded different results on the exact topology of the tree within the two SSU
HVR IV defined groups but provided no indication that the dog derived worms with SSU
HVR IV haplotype A form a group different from the human derived worms. From this we

conclude that dogs in our study area carry two populations of S. stercoralis, which are distin-

guishable by their SSU HVR IV haplotype. One population, to which the majority of the

Strongyloides belong, was not found humans. The other population, however, is shared with

humans, strongly indicating that S. stercoralis with SSU HVR IV haplotype A can shuttle

between the two vertebrate host species.

Different HVR I haplotypes appear not to reflect genetically separated

populations

When we analyzed the region around HVR I of S. stercoralis with HVR IV haplotype A, we

found the same three variants (haplotypes I, II, III c.f. Fig 2) as described by Schär, Guo and

colleagues [37] at various frequencies (Table 3). In combination with HVR IV haplotype B,

which occurs only in dogs, we also found three variants of HVR I (haplotypes I, IV, V c.f. Fig

2). It is noteworthy that only HVR I haplotype I occurred in combination with both HVR IV

Fig 4. Sample relatedness analysis on whole genome data. A) Neighbor joining tree based on a genomic

identity-by-state relationship matrix in cooperating 1326 SNPs (thresholds: LD = 0.05, MAF = 0.05). B)

Neighbor joining tree based on pairwise similarities of the 23 individual genomes estimated using kWIP. The

same samples in the two trees are connected with dotted lines colored in red for human derived worms and in

blue for dog derived worms. ERX044031 indicates the reference genome short read data set [57], which has

HVR I haplotype I and HVR IV haplotype A. The labels contain: [identifier of the worm] | [identifier of the host

individual] | [HVR I haplotype, HVR IV haplotype], with each attribute separated by vertical lines.

https://doi.org/10.1371/journal.pntd.0005752.g004
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haplotypes (c.f. Fig 2) [37]. If the different HVR I haplotypes reflect at least partially separated

populations this should be reflected in the whole nuclear genome and the separation should

also be visible in the mitochondrial genome. However, the mitochondrial cox1 phylogeny is

not correlated with the HVR I differences (Fig 3), indicating that there is mixing of the nuclear

genome between the different mitochondrial matrilinages. In addition, data from whole ge-

nome sequencing (Fig 4) are not consistent with the null hypothesis that worms with the same

HVR I haplotype are more closely related to each other than to individuals with a different

HVR I haplotype. The two methods lead to different tree topologies, none of which correlates

with the HVR I haplotypes. Therefore this analysis provides no evidence for the existence of

genetically isolated subpopulations within the worms with HVR IV haplotype A. The same is

true for the worms with HVR IV haplotype B and different HVR I haplotypes. These results

show that among the worms analyzed, other than SSU HVR IV haplotypes, not every SSU
HVR I haplotype appears to represent its own separate genetically isolated population.

S. stercoralis free-living adults reproduce sexually

As a possible explanation for the absence of hybrids, Schär, Guo and colleagues [37] proposed

that S. stercoralis might not reproduce sexually, either because the free-living generation

undergoes pseudogamy (sperm dependent parthenogenesis) as proposed earlier [25], or

because in the study area the population propagates only through the non-sexual homogonic

cycle. We showed above that the nuclear genome and the mitochondrial genomes, which are

normally maternally inherited, do not evolve in parallel. This argues strongly for at least occa-

sional sexual reproduction. Large numbers of free-living S. stercoralis of both sexes were pres-

ent in our field and laboratory isolates and males were clearly required for reproduction in the

free-living generation. Of a total of 480 females (96 from field isolates and 384 from a labora-

tory isolate) placed individually on plates before they had a chance to mate, none produced

progeny. This result indicates that female autonomous reproduction by parthenogenesis or

self-fertilization occurs rarely or not at all. However, the result is not an argument against

pseudogamy, because, although they do not contribute genetic material to the progeny, males

and their sperm are required to activate embryogenesis in this mode of reproduction. Further,

although mitochondria are normally inherited only from the mother, in other nematodes male

derived mitochondria occasionally fail to be degraded and are incorporated in zygotes [58,59].

This could also happen upon pseudogamic interaction between oocyte and sperm and lead to

a recombination of nuclear and mitochondrial genomes. Therefore, we sought to demonstrate

sexual reproduction more directly.

To this end we genotyped 22 individual mothers (all derived from humans) and several of

their progeny at two single-copy loci (Table 4). These results demonstrate clearly that the prog-

eny were not the product of clonal reproduction because we found larvae with genetic material

absent from the mother but presumably derived from the male and/or larvae that did not have

alleles present in the mother, indicating that the mother passed on only half of its genetic mate-

rial as expected for sexual but not for clonal reproduction.

Table 3. SSU HVR I haplotypes of S. stercoralis with HVR IV haplotype A isolated from humans and dogs, 2013 and 2016.

2013 2016

HVR-I haplotype From humans From dogs From humans From dogs

I 28 5 5 8

II 298 6 153 31

III 14 0 23 0

Total 340 11 181 39

https://doi.org/10.1371/journal.pntd.0005752.t003
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We sought to further solidify this in a fully controlled experiment with known males and a

larger number of progeny. To this end, we set up crosses with single females and males using a

laboratory isolate of S. stercoralis. The results (Table 5) were fully consistent with Mendelian

inheritance with equal genetic contribution by males and females but not with clonal

reproduction.

Are there hybrids between SSU haplotypes?

Given the results above, one would expect to observe animals that are hybrids between the dif-

ferent SSU HVR I haplotypes. However, like in an earlier study [37], we failed to find any

hybrids among the 436 larvae from 97 different host individuals (68 humans 29 dogs) isolated

in 2013. The SSU locus is on the X chromosome in S. stercoralis (information extracted from a

previously published dataset [57]). Therefore, hybrid males could not be detected because they

only contain one X chromosome. However, for [37] and in our 2013 sampling, young larvae

that were the progeny of parasitic worms were analyzed. The sex of these larvae was unknown

but given that the field isolates produced both sexes, it is very likely that a substantial number

of females were among them. In 2016 we tested adult worms and used predominantly males

because, unlike females, they may not contain genetic material from other individuals (sperm,

Table 4. Genotypes of free-living mothers and their progeny.

Female number Host individuala Informative marker and female Genotype2 Progeny genotypes

F1 DC51 ytP289 1/2 2x 1/1, 1x 2/2

F2 DC51 ytP289 1/2 2x 1/1, 2x 2/2

F3 DC51 ytP289 1/2 3x 1/1, 3x 2/2

F4 DC51 ytP289 1/2 1x 2/2

F5 DC51 ytP289 1/1 3x 1/1, 1x 1/2

F6 DC51 ytP289 1/2 3x 1/2, 2x 2/2

F7 DC51 ytP289 1/2 1x 1/1, 3x 1/2, 4x 2/2

F8 DC51 ytP289 1/2 2x 1/1, 3x 1/2, 2x 2/2

F9 KP57 ytP289 1/1 1x 1/1, 2x 1/3

F10 KP57 ytP289 2/3 1x 1/2, 5x 2/3, 4x 3/3

F11 KP57 ytP289 1/3 6x 1/2, 2x 1/3

F12 KP57 ytP289 2/3 1x 2/2, 1x 2/3

F13 KP57 ytP289 2/3 4x 1/2, 1x 1/3, 1x 2/2

F14 DC108 ytP289 1/2 1x 1/1, 2x 1/2

F15 DC108 ytP289 1/2 1x 1/1

F16 DC108 ytP289 1/2 2x 1/2, 3x 2/2

F17* DC69 ytP289 1/2 1x 1/2, 1x 1/1

F17* DC69 ytP290 1/2 3x 1/2, 2x 1/1, 2x 2/2

F18 KP31 ytP290 1/2 3x 1/1, 2x 2/2

F19 KP31 ytP290 1/2 2x 1/1, 8x 1/2, 5x 2/2

F20 KP31 ytP290 1/2 1x 1/1, 6x 1/2, 4x2/2

F21 KP31 ytP290 1/2 2x 1/1, 1x 1/2

F22 KP31 ytP290 1/2 3x 1/2, 1x 1/1, 2x 2/2

aThe host individual is defined by the two-letter code for the village followed by the host individual number.
2ytP289 contains single nucleotide polymorphisms at positions 308 (A/G), 359 (A/G), 416 (C/T) and 566 (C/T).

Allele 1 has the combination G+A+C+C, allele 2 A+G+T+T, and allele 3 A+A+C+C. ytP290 contains single nucleotide polymorphisms at positions 291 (A/C)

and 310 (A/G). Allele 1 has the combination A+A, allele 2 C+G.

*F17 was the only case where both markers were informative.

https://doi.org/10.1371/journal.pntd.0005752.t004
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embryos). Only 30 of the 307 worms from 2016 listed in Table 2 were pre-reproductive

females. None of them was a hybrid.

However, of the gravid females described in Table 4 one (Female 17) and one of its progeny

showed a mixture of HVR I haplotypes II and III. While the mixed signal in the female might

have been caused by sperm and embryos derived from a male with a different haplotype than

the mother, the larva was most likely a true hybrid. This prompted us to test fully mature

females that had been isolated from cultures, after they had a chance to mate, preserved in eth-

anol and separated by host individuals. We analyzed 9 to 23 worms from each of six host indi-

viduals (four humans, two dogs), from which we had already isolated S. stercoralis of different

HVR I haplotypes. In five of the cases we found worms with mixed haplotypes, along with

individuals with only one SSU haplotype (Table 6). Two observations are noteworthy. Firstly,

both dogs had worms with HVR IV haplotypes A and B. In total, 11 out of 21 worms had

mixed HVR I haplotypes but only a single one showed a mixture between the two HVR IV

Table 5. Genotypes of free-living parents and their progeny at ytP274.

Cross Female genotypea Male genotypea Progeny genotypesa

C1 C/T C/T 4x C/T, 1x C/C, 3x T/T

C2 C/T C/T 4x C/T, 2x T/T, 2x C/C

C3 C/T C/C 4x C/C, 4x C/T

C4 T/T C/T 4x C/T, 4x T/T

C5 T/T C/T 4x C/T, 4x T/T

C6 C/C C/T 3x C/C, 5x C/T

C7 C/T C/C 4x C/C, 4x C/T

C8 C/T T/T 3x C/T, 5xT/T

C9 T/T C/T 4xC/T, 4x T/T

C10 C/C C/T 4x C/C, 4xC/T

C11 C/T T/T 4x C/T, 4x T/T

C12 C/T C/T 4x C/C, 3x C/T, 1x T/T

C13 C/T C/T 5x C/T, 1x C/C, 2x T/T

C14 C/T C/T 4x C/T, 1x C/C, 3x T/T

C15 C/T C/C 5x C/C, 3x C/T

C16 C/T C/T 3x C/T, 2x C/C, 3x T/T

C17 C/C C/T 3x C/T, 5x C/C

C18 T/T C/T 6x C/T, 2x T/T

aThe marker ytP274 has a single nucleotide polymorphism (T/C) at position 236.

https://doi.org/10.1371/journal.pntd.0005752.t005

Table 6. SSU haplotypes found in individual gravid females.

Host (species) Non-hybrid genotypes HVR I + HVR IV (number of

individuals)

Mixed genotypes HVR I + HVR IV (number of

individuals)

Mixed/Total

DC44 (Human) II+A (12) - 0/12

DC69 (Human) II+A (6), III+A (3) II/III+A (14) 14/23

KP30 (Human) II+A (3) II/III+A (8) 8/11

KP57

(Human)a
II+A (5) I/II+A (9) 9/14

DC79D2 (Dog) II+A (4), V+B (1) I/II+A (1), V/IV+B (3) 4/9

KP52D2 (Dog) II+A (4), IV+B (1) V/IV+B (6), V/II+A/B (1) 7/12

afrom this host individual we also genotyped 12 pre-reproductive females and 19 males.

All females and 14 males were of haplotype II+A, 5 males were I+A.

https://doi.org/10.1371/journal.pntd.0005752.t006
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haplotypes, which might indicate that males and females with different HVR IV haplotypes

tend to avoid each other. Secondly, from host individual KP57 (human), 9 of 14 worms had

mixed haplotypes. From the same host individual we had also genotyped 12 pre-reproductive

females, none of which was a hybrid. This finding suggests that the females genotyped in this

experiment were not true hybrids but contained sperm and developing embryos derived from

males of the other haplotype detected.

Discussion

In rural communities in Cambodia, many people share their premises with domestic animals

and the general hygenic, water and sanitation infrastructures are precarious [60,61]. Therefore,

the conditions appear very favorable for human to animal and animal to human transmission of

STH including S. stercoralis [3]. In order to find evidence for or against zoonotic transmission of

S. stercoralis under such circumstances, we isolated large numbers of S. stercoralis from humans

and dogs at the same time and in the same households and analyzed individual worms using

molecular genetic markers. To our knowledge there had been no such study of S. stercoralis of

comparable scale undertaken anywhere. It should be noted that our experimental strategy aimed

to sample individuals with a large potential for transfer of Strongyloides spp. between the two

hosts (e.g., only dogs found close to households with positive people were sampled). Therefore

our study was not designed to yield accurate estimates of haplotype frequencies in the entire

population. We also point out that we did not directly demonstrate transmission from dogs to

humans and therefore cannot exclude that the transmission is mostly or exclusively from human

to dog. Nevertheless, our results strongly suggest that there is a considerable risk for dog to

human transmission. This would not be in agreement with conclusions by Takano and col-

leagues [62] who found that humans in households with Strongyloides-infected dogs were not

more likely to be parasitized by S. stercoralis than those with parasite free dogs and concluded

that natural transmission does not occur between humans and dogs. However, this study was

conducted in Japan, in areas with presumably much better sanitary conditions than in the Cam-

bodian villages where the present study was conducted. Consequently, only five Strongyloides
positive dogs were found and none of their owners was infected. Likewise, a study conducted in

Southern China, in a setting probably more comparable to our study area [47], did not identify

the presence of animals as a statistically significant risk factor for human strongyloidiasis. How-

ever, this conclusion was based on only 21 infected individuals (11.7% of the tested), and no

details about the exposure to dogs are given. In rural settings dogs are usually semi-domesticated

and roam freely such that the risk of exposure to contamination by canine feces among people

who do not own a dog themselves might be at approximately equal to the risk among people who

do. Therefore, the lack of statistical significance cannot be taken as evidence against zoonotic

transmission. Interestingly, a later study in a similar setting [63] revealed that anthelmintic treat-

ment of people alone was not sufficient to significantly reduce the prevalence of S. stercoralis.
Overall, the present findings strongly suggest that dogs must be seriously considered as

sources for human strongyloidiasis. Whether dogs are the only non-human carrier of concern

or if other animals also have the same potential remains to be determined. However, our

results also show that at least in our study area, the majority of the Strongyloides present in

dogs is of a genotype that we never found humans. Therefore, the number of Strongyloides spp.

detected in dogs by coproscopic diagnosis might be an inaccurate index of the risk of exposure

to S. stercoralis that dogs pose to humans.

The 18S rDNA HVR IV appears to be diagnostic for the two separate Strongyloides popula-

tions in dogs. This agrees with the findings of Hasegawa and colleagues [35] who found this

region to be invariable within S. stercoralis. Both, the mitochondrial cox1 and whole genome
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sequence analyses confirmed that the two HVR IV variants represent separate phylogenetic

groups. Therefore, our results support the proposal by Brumpt and Augustine [43,44] of a sep-

arate species, Strongyloides canis.
Consistent with [37] we found three different 18S rDNA HVR-I genotypes in human

derived S. stercoralis. Worms of different haplotypes sometimes co-existed in the same host

individual. In comparison with other nematodes [27–33] it is unusual that such differences in

this region of the SSU occur within one species. However, species status can never be inferred

from sequence information alone. Nevertheless, in those examples in nematodes where the

same fragment around the HVR I was used and more rigorous criteria for species separation

(e.g. mating experiments) could be applied, a sequence difference of more than one position

was a safe indicator of a distinct species [28–33]. Most of the time, this region appears com-

pletely invariable within a species and there are several examples where even separate species

do not differ in their HVR I. However, our comparative analyses of the mitochondrial cox1

locus and of whole genome data suggest that in S. stercoralis, different HVR I genotypes do not

indicate separate species, but rather that in S. stercoralis the HVR I is more variable than in

other nematodes. It should be noted that all the well-studied cases mentioned above involve

obligate sexual nematode species, some of which are capable of self-fertilization. Asexual re-

production through the homogonic cycle, which may be a frequent mode of reproduction in S.

stercoralis, might contribute to a higher variability within the species. Nevertheless, although

we show that the different HVR I genotypes are not diagnostic for different species, our results

do not exclude the existence of cryptic species among S. stercoralis. It is striking that, like Schar

et al. [37], we failed to detect hybrids between different HVR I haplotypes among all worms

that were the progeny of parasitic mothers and that were definitely unmated. However, in ma-

ture free-living females and in their progeny, we frequently found mixed signals. While, for

reasons described above, we doubt that these females were true hybrids, their offspring pre-

sumably were. We think that this indicates that adults of different HVR I haplotype do mate, at

least in laboratory fecal cultures, and that at least some of the progeny develop to larval stages.

We can only speculate about why such hybrids are not found in the progeny of the parasitic

generation. It might be that the hybrids, or even the progeny of the free-living generation in

general, are sub-viable and only rarely develop into successful fertile parasitic females. In this

case genetic mixing between subpopulations would occur only rarely. Over long periods of

time, even rare exchange might be significant and cause enough mixing of the genomes that

we were not able to detect genetic differentiation between subpopulations. Alternatively, in the

S. stercoralis populations in our study area there might be very high inbreeding (brother sister

mating) under natural conditions. This would lead to a very high degree of homozygosity in

the population. Both scenarios described above would lead to a very low number of SSU haplo-

type heterozygotes in the population, and we may have simply missed the rare hybrids. In

order to address this, controlled crosses and experimental infections are required. In the con-

text of this study we had no opportunity to do such experiments because, for logistic and for

legal reasons, we were not able to bring live worms into our laboratory.

Our results demonstrate, however, that such crossing experiments are possible. We demon-

strate that in contrast to earlier claims [25], sexual reproduction in the free-living generation of

S. stercoralis does occur and is likely the predominant, if not the only the mode of reproduction

in this generation. With this, the number of species of Strongyloides for which genetic analyses

demonstrated that the reproduction in the free-living generation is sexual rises to four out of

four tested (S. ratti [23,24], S. papillosus [22], S. vituli [64], S. stecoralis, this study). Sexual repro-

duction by S. stercoralis has also been confirmed recently by experimental crossing of free-living

male and female worms harboring discrete reporter transgenes[65]. Although these findings do

not exclude that asexual species or strains might exist, even within what is currently referred to
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as S. stercoralis, they do suggest strongly that sexual reproduction rather than pseudogamy is the

prevailing mode of reproduction in free-living Strongyloides spp.

Conclusions and outlook

Our results provide a compelling solution for the long-standing controversy about whether the

Strongyloides sp. of dogs is identical to the S. stercoralis of humans or not. In fact, both scenarios

appear to be true. Dogs, at least in our study area, host two different populations. These either rep-

resent separate species or well-separated sub-species of Strongyloides spp, and only one of them is

shared with humans. It remains to be determined if the different types of Strongyloides we observed

in humans and dogs also occur in other regions of the world. Among S. stercoralis in humans

there is variability in the rDNA sequence. While we did not find further genomic evidence sup-

porting multiple genetically separate populations in humans the absence of hybrids between the

different SSU HVR I haplotypes is striking. It will be most interesting to ascertain whether different

SSU HVR I types indeed interbreed and, even more importantly, if they might be associated with

different clinical outcomes. Therefore, we suggest using molecular diagnostics for Strongyloides
spp. wherever possible. In order to generate comparable data, we propose following the lead of

Hasegawa and colleagues [35,38], and using the SSU HVRs I and IV and the mitochondrial cox1

locus as primary markers as was done in this study. With respect to strongyloidiasis control and

prevention, this study suggests that dogs should be seriously considered as a source for human S.

stercoralis infection at least in settings similar to our study area. Prevention of human contact with

dog feces and of dog contact with human excrement as well as anthelmintic treatment of dogs are

likely to reduce the exposure of humans to infective S. stercoralis larvae.
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