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Abstract 

Aims: -Hydroxybutyrate (GHB) is used as a treatment for narcolepsy and alcohol 

withdrawal and as recreational substance. Nevertheless, there are limited data on the 

pharmacokinetics and pharmacokinetic-pharmacodynamic relationship of GHB in humans. 

We characterized the pharmacokinetic profile and exposure-psychotropic effect relationship 

of GHB in humans.  

Methods: Two oral doses of GHB (25 and 35 mg/kg) were administered to 32 healthy male 

subjects (16 for each dose) using a randomized, placebo-controlled, cross-over design. 

Results: Maximal concentrations of GHB were (geometric mean and 95%CI): 218 (176-270) 

nmol/ml and 453 (374-549) nmol/ml for the 25 and 35 mg/kg GHB doses, respectively. The 

elimination half-lives (mean ± SD) were 36 ± 9 and 39 ± 7 min and the AUC∞ values 

(geometric mean and 95%CI) were 15,747 (12,854-19,290) and 40,113 (33,093-48,622) 

nmol∙min/ml for the 20 and 35 mg/kg GHB doses, respectively. Thus, plasma GHB exposure 

(AUC0-∞) rose disproportionally (+40%) with the higher dose. -Hydroxybutyrate produced 

mixed stimulant-sedative effects, with a dose-dependent increase in sedation and dizziness. 

It did not alter heart rate or blood pressure. A close relationship between plasma GHB 

exposure and its psychotropic effects was found, with higher GHB concentrations associated 

with higher subjective stimulation, sedation, and dizziness. No clockwise hysteresis was 

observed in the GHB concentration effect plot over time (i.e., no acute pharmacological 

tolerance). 

Conclusion: Evidence was found of a non-linear dose-exposure relationship (i.e., no dose 

proportionality) at moderate doses of GHB. The effects of GHB on consciousness were 

closely linked to its plasma exposure and exhibited no acute tolerance. 
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What is already known about the subject 

 -Hydroxybutyrate (GHB) presents non-linear elimination kinetics at higher doses in 

humans. 

 -Hydroxybutyrate produces mixed stimulant-sedative subjective effects. 

 

What this study adds 

 At moderate doses, GHB exhibited first-order elimination kinetics but a non-linear 

dose-plasma exposure relationship. 

 A close relationship was found between the plasma GHB concentration and 

subjective effects of GHB over time, with no evidence of acute tolerance. 
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Introduction 

-Hydroxybutyrate (GHB) is a GHB and -aminobutyric acid (GABA) receptor agonist 

[1-3] that is used for the treatment of narcolepsy and alcohol withdrawal but also a 

recreational substance [3-6]. Moreover, GHB has been recently proposed as an 

experimental therapeutic for depressive disorders because of its effects on sleep, vigilance, 

and neuroendocrine parameters [7]. 

Several previous small studies investigated the pharmacokinetics of GHB [8-14]. 

These studies provided partly conflicting findings regarding the linearity of the kinetics of 

GHB and mostly did not assess the psychotropic effects of GHB or the relationship between 

plasma GHB exposure and its psychotropic effects. Brenneisen et al. and Brailsford et al. 

both used single doses of GHB (25 mg/kg) in eight and 12 subjects, respectively, without a 

placebo control or assessments of pharmacodynamic effects [10, 13]. Thai et al. 

characterized the pharmacokinetics of a single dose of 50 mg/kg GHB in 16 subjects and 

included a placebo group, but subjective effects were not assessed [14]. The 

aforementioned studies [10, 13, 14] reported first-order kinetics of GHB. In contrast, Palatini 

et al. documented non-linear kinetics of GHB (12.5, 25, and 50 mg/kg) in eight subjects but 

did not include a placebo condition or evaluate dynamic measures [9]. Similar nonlinear 

elimination kinetics and capacity-limited disposition were noted by other studies [15, 16]. 

Abanades et al. assessed both the pharmacokinetic and pharmacodynamics of GHB (40, 50, 

60, and 72 mg/kg) in a total of eight subjects (n = 2-5/dose) using a placebo-controlled 

design and reported dose-dependent and GHB concentration-related mixed sedative-

stimulant effects [11, 12]. Normalized GHB area-under-the-curve (AUC) values were not 

significantly different, except for the 72 mg/kg dose, indicating non-linear kinetics only at 

higher GHB doses [11]. However, the study was too underpowered to draw valid 

conclusions. Therefore, we examined the pharmacokinetics of GHB together with the 

subjective and cardiovascular effects of GHB in a larger sample using two doses of GHB 
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and a placebo condition in 32 healthy male subjects. -Hydroxybutyrate is endogenously 

produced, and the placebo condition also served as a control condition to correct for 

endogenous levels of GHB in plasma. 

The aims of the present study were (1) to characterize the plasma pharmacokinetics of 

GHB using moderate doses of 20 and 35 mg/kg in a large study sample (n = 32), extending 

the previous small studies that used 25, 40, 50, 60, and 72 mg/kg doses of GHB, (2) to use a 

double-blind, placebo-controlled design to correct for endogenous GHB levels and validly 

determine the psychotropic and cardiovascular effects of GHB, and (3) to assess the plasma 

exposure-psychotropic effect relationship for GHB. 

 

Methods 

Subjects and study design 

The effects of oral GHB were assessed in a randomized, double-blind, placebo-

controlled, balanced cross-over study in 32 healthy, non-smoking, male subjects. Sixteen 

subjects, 24 ± 3 years of age (mean ± SD) and weighing 74 ± 8 kg, were administered GHB 

in an oral dose of 20 mg/kg and placebo. Another 16 subjects, 25 ± 5 years of aged and 

weighing 75 ± 9 kg, were administered GHB in a dose of 35 mg/kg and placebo. The range 

of GHB doses that are typically abused is 25-75 mg/kg (~2-6 g) [6, 11]. The study was 

conducted in accordance with the Declaration of Helsinki and approved by the Ethics 

Committee of the Canton of Zurich and Swiss Agency for Therapeutic Products 

(Swissmedic) and registered at ClinicalTrials.gov (NCT02342366). The subjects were 

recruited via online advertisement at the University of Zurich and provided written informed 

consent before participating in the study and were paid for their participation. On the 

experimental days, a peripheral venous catheter for blood sampling was placed at 8:30 AM, 

and GHB (Xyrem® solution in juice) or placebo (salted juice) was given orally at 9:00 AM. 

Each experimental session lasted 225 min, and the inter-session interval was 7 days. The 

subjects had to be fasting during the morning of the experiments. The exclusion criteria were 
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a medical diagnosis, psychiatric disorders, drug dependence, or regular illicit drug use 

(lifetime use of illegal substances > 5 times with the exception of occasional cannabis use) 

as reported previously [17]. In order to ensure drug abstinence on the test days, urine drug 

screening tests were performed using Dimension RXL Max (Siemens, Erlangen, Germany) 

immunoassays. The present study also evaluated the behavioral and endocrine effects of 

GHB for the lower 20 mg/kg dose as reported elsewhere [17]. 

 

Outcome measures 

Pharmacokinetics  

Blood samples (in EDTA-coated tubes) were collected on ice 20 min before and 35, 

60, 100, 135, and 190 min after drug administration. The samples were centrifuged, and 

plasma was stored at 80°C prior to analysis.  

Quantification of GHB in human plasma 

We determined the plasma concentrations of GHB using gas chromatography-mass 

spectrometry as previously reported [17, 18]. GHB (Xyrem®) as analytical standard was 

purchased from UCB Pharma GmbH, Monheim, Germany. GHB-d6 (internal standard) was 

obtained from Sigma-Aldrich, Steinheim, Germany. Standard solutions: Standard solutions 

were prepared in methanol covering a concentration range of 0.001 to 0.5 mg/mL. For 

constructing calibration curves and to evaluate method performance, 10 or 20 µL of standard 

solutions were applied to plasma samples and followed by sample preparation (see below) 

to reach the analytical range of 4.5 to 4500 pg on column. The calibration curve used for the 

analysis of plasma samples was build using 8 calibration points. An aqueous GHB-d6 

solution of 0.2 µg/mL was used as internal standard (900 pg on column). Sample 

preparation and GC-MS analysis: Details about instrumental conditions used for the analysis 

are shown in [17]. The performance of the method was evaluated using external calibrations 

(i.e. spiking calibration solutions (see standard solutions) into plasma and processing as 

stated above (n=6)) and control samples (n=6). The results were analyzed based on the 

peak area ratio between analyte and internal standard. The calibration curves had a 
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correlation coefficient (R2) of 0.9999±0.0001, a slope of 0.0017±0.0002 (CV 12%) and an 

intercept of -0.0156±0.0062. The inter-day variation coefficient (CV) evaluated at 90 and 900 

pg on column (38 and 380 nmol/mL) were 13% and 15%, respectively. Accuracy was 

between 90 and 115% at 90 and 900 pg on column, respectively. The recovery of control 

samples was in the range of 80-100%. The limit of detection (LOD) was 2.5 pg on column (1 

nmol/mL) and the lower limit of quantification (LLOQ) was 4.5 pg on column (2 nmol/mL). 

The specificity of the method was evaluated on blank samples (distilled water) where no 

GHB was found (<LOD). Using our method the endogenous GHB concentrations after 

placebo administration or before GHB administration were below the LLOQ in three subjects 

and therefore set to 0. 

The pharmacokinetic data were analyzed using non-compartmental models 

(WinNonlin 6.4, Pharsight, Mountain View, CA, USA). Prior to analysis, the plasma 

concentrations of GHB after placebo administration (endogenous GHB production) were 

subtracted from the GHB levels after GHB administration for each of the time points and for 

each subject. Maximal plasma concentration (Cmax) and the time to maximal plasma 

concentration (tmax) were obtained directly from the observed concentration-time curves. The 

terminal elimination rate constant (λz) was estimated by log-linear regression after 

semilogarithmic transformation of the data using at least three data points of the terminal 

linear phase of the concentration-time curve, and the terminal elimination half-life (t1/2) was 

calculated using λz and the equation t1/2 = ln2 / λz. 

 

Subjective effects 

For the measurement of acute subjective drug effects, we used four Visual Analogue 

Scales (VASs), ranging from 0-10, to assess general drug effect, sedation, stimulation, and 

dizziness 15 min before and 40, 60, 100, 120, and 180 min after drug administration as 

similarly used by others [11].  
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Vital signs 

Blood pressure and heart rate were repeatedly measured 10 min before and 40, 60, 

100, 135 and 190 min (± 10 min) after drug administration using a Boso Medicus Uno device 

(Jungingen, Germany). Occasionally missing values because of interfering psychometric 

testing were entered as last observations carried forward. 

 

Pharmacokinetic-pharmacodynamic relationship 

To illustrate the pharmacokinetic-pharmacodynamic relationship, the mean subjective 

changes after GHB administration for each time point were plotted against the respective 

plasma concentrations of GHB and graphed as hysteresis curves. The GHB-induced effect 

was determined for each dose as the difference from placebo in the same subject at the 

corresponding time point to control for circadian changes and endogenous GHB production 

(placebo condition). 

 

Statistical analysis 

Statistical analyses were performed using Statistica 12 (StatSoft, Tulsa, OK, USA). 

Repeated subjective and vital sign measures are expressed as peak effects (Emax). Emax 

values were then compared using repeated-measures analysis of variance (ANOVA), with 

drug (placebo vs. GHB) as the within-subjects factor and dose (low dose vs. high dose) as 

the between-subjects factor. A significant main effect of drug indicates a significant 

difference between drug and placebo in the pooled study sample. A significant dose  drug 

interaction indicates a significant difference between the low and high doses (significant 

dose-response). Tukey post hoc tests were based on significant main effects of drug or dose 

 drug interactions. The criterion for significance was p < 0.05. 
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Results 

Pharmacokinetics 

The GHB plasma concentration-time curves for both doses of GHB are shown in Fig. 

1a. The elimination of GHB followed linear kinetics as shown in Fig. 1b. The pharmacokinetic 

parameters for both doses of GHB are shown in Table 1. Tmax and t1/2 values did not differ 

between the two doses. As expected, the 35 mg/kg GHB dose produced significantly higher 

Cmax, AUC190, and AUC∞ values compared with the 20 mg/kg GHB dose (independent t-tests: 

t30 = 5.08, 6.76, and 6.66, respectively, all p < 0.001). Although the 35 mg/kg dose was 1.75-

fold higher than the 20 mg/kg dose, it produced two-fold higher Cmax values and a 2.5-fold 

higher AUC∞ than the 20 mg/kg dose, indicating a non-linear dose-response relationship. 

Statistical comparisons of the dose-normalized AUC∞ values revealed a significant difference 

in exposure to GHB in the two dose groups (t30 = 2.86, p =0.008), which would not be the 

case if the usual linear dose exposure relationship existed. No significant difference in GHB 

Cmax values was found between the two dose groups (t30 = 1.16, p = 0.26). Thus, although 

elimination was relatively linear and no statistically different t1/2 values were observed for 

both doses, greater than expected plasma exposure (AUC∞) following administration of the 

higher dose was found compared with the lower dose (AUC∞ observed compared with AUC∞ 

expected). Plasma levels of GHB after placebo administration (endogenous GHB) were very 

low (typically between the level of detection and quantification, 2-6 nmol/ml) and stable over 

the six time-points (Fig. 1a). GHB Cmax levels after placebo administration were (mean±SD) 

3.8±2.5 nmol/ml (range: 0-8.9) and thus more than 100 times lower than after administration 

of the 35 mg/kg GHB dose.  

 

Subjective effects 

The subjective effects of GHB over time are shown in Fig. 2. Emax values and statistics 

are shown in Table 2. -Hydroxybutyrate produced a significant general subjective drug 

effect and significant sedation, stimulation, and dizziness that lasted 2 h. The higher GHB 
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dose produced significantly greater overall effects, subjective sedation, and dizziness but not 

more stimulation than the lower dose. 

 

Vital signs 

No significant effects of GHB on vital signs were observed (Fig. 3, Table 2). 

 

Pharmacokinetic-pharmacodynamic relationship 

The GHB plasma exposure-effect relationships over time (hysteresis curves) for the 

subjective responses to GHB are shown in Fig. 4. No acute pharmacological tolerance to the 

effects of GHB was observed (i.e., no clockwise hysteresis). Higher concentrations of GHB 

were generally associated with higher subjective effects of GHB (Fig. 4a-d), and maximal 

subjective sedation (Fig. 4b) coincided with maximal plasma levels of GHB 35-60 min after 

drug administration. Maximal stimulation (Fig. 4c) and dizziness (Fig. 4d) occurred at 60 min 

when plasma GHB levels were already declining. This slight counterclockwise hysteresis 

was consistent with the drug distribution. 

 

Discussion 

The present study assessed the pharmacokinetics and pharmacodynamics of two 

acute oral GHB doses using a placebo-controlled study design in a relatively large sample of 

healthy subjects. The study showed first-order elimination for two different moderate doses 

of GHB in healthy subjects, which was consistent with a previous study that similarly used a 

rather low dose (25 mg/kg) [10]. Elimination was rapid, with an elimination half-life of 

approximately 40 min, which was consistent with previous data [10, 11, 13-15]. In contrast, 

other studies found evidence of non-linear elimination kinetics, particularly at higher GHB 

doses (50-60 mg/kg), with slower early elimination and more rapid later elimination and 

convex log-concentration vs. time profiles [9, 16]. The metabolism of GHB has been 

suggested to become saturated if concentrations exceed 25-30 μg/ml (243-291 nmol/ml), 
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thus resulting in zero-order kinetics [16]. In the present study, such higher concentrations 

were observed only at and shortly after Tmax, and the concentration-time curves may also 

reflect continuing absorption and distribution at that time. However, we found that the GHB 

plasma exposure (AUC∞) rose disproportionally with the higher dose compared with the 

lower dose, indicating non-linear dose-exposure, with approximately 40% greater plasma 

exposure at the higher dose than expected and as similarly described previously [9]. In the 

present study, the dose-normalized Cmax and t1/2 values non-significantly increased but were 

17% and 8% greater at the higher dose compared with the lower dose, respectively, 

indicating that the higher plasma exposure to GHB was a result of both disproportionally 

higher Cmax and slower elimination. Similarly, a previous study that evaluated doses of 12.5, 

25, and 50 mg reported significant increases in dose-normalized AUCs and t1/2 [9]. However, 

in contrast to our findings, Tmax values increased and Cmax values decreased with increasing 

doses, suggesting the capacity-limited absorption of GHB [9], an observation that we could 

not confirm. Notably, however, we obtained only a few samples around Tmax because the 

subjects then performed neurocognitive and behavioral tests [17] not allowing for more 

frequent sampling. This is a limitation of the present study and the Cmax and Tmax values 

obtained are therefore not fully reliable.  Altogether, the clinically most relevant finding of the 

present study and a previous study [9] was the evidence of non-linear kinetics already at low 

to moderate doses of GHB in humans. We and all other previous controlled studies that 

used relatively low doses of GHB (25-72 mg/kg) indicate that the rate-limited elimination 

process of GHB likely becomes even more relevant in cases of GHB intoxication at much 

higher doses [16]. -Hydroxybutyrate is metabolized to succinic semialdehyde by GHB 

dehydrogenase [19]. Succinic semialdehyde is then further converted to succinic acid by 

succinic semialdehyde/aldehyde dehydrogenase [20]. The non-linear kinetics of GHB in 

humans is consistent with capacity-limited GHB metabolism by these dehydrogenases, as 

similarly described for ethanol [21, 22], suggesting similar metabolic pathways for GHB and 

ethanol. Ethanol exposure resulted in a 16% higher Cmax and 29% longer t1/2 of GHB, 
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consistent with enhanced bioavailability and reduced clearance caused by ethanol [14], 

which was also observed with the higher GHB dose in the present study. Thus, concomitant 

ethanol use has similar effects on the pharmacokinetics of GHB as an increase in dose, thus 

partially explaining the severe intoxication seen when GHB is used in combination with 

alcohol [4, 6]. Finally, aldehyde dehydrogenase is a polymorphic enzyme that is well known 

to influence the pharmacokinetics and pharmacodynamics of ethanol in humans [21, 22]. 

Similar genetically determined alterations in exposure to GHB and the drug response remain 

to be studied in humans. 

In the present study, we also newly assessed both the psychotropic and 

cardiovascular effects of GHB under placebo-controlled conditions, thereby also determining 

endogenous GHB levels, and described the pharmacokinetic-pharmacodynamic relationship. 

GHB produced weak stimulant effects but also sedation and dizziness that lasted 

approximately 2 h. Notably, sedation and dizziness were dose-dependent, whereas the 

stimulant effects of the higher dose of GHB did not increase compared with the lower dose. 

Dizziness was also reported in other studies that used controlled GHB administration [9, 11, 

12]. A reduction of the level of consciousness and deep coma rather than stimulant effects 

are the consistent hallmarks of GHB intoxication [4, 6, 23, 24]. It was previously reported that 

GHB-induced feelings of euphoria and stimulation were predominant in the first hour, 

followed by sedating effects in the second hour after GHB administration [11, 12]. We did not 

corroborate these results in the present study. Consistent with previous studies in humans 

[10, 11, 14], we found no significant effects of GHB on blood pressure or heart rate. This 

contrasts with the sympathomimetic stimulant effects of GHB in rats [25]. Bradycardia has 

typically been reported in cases of severe GHB intoxication [6]. In the present study, all of 

the subjective pharmacodynamics effects were closely related to plasma concentrations over 

time and exhibited no acute pharmacological tolerance over the time of acute intoxication. In 

contrast, other GABA agonists, such as benzodiazepines, typically show acute tolerance to 

their sedating and psychomotor effects [26-28]. Determining whether the lack of tolerance to 
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GHB is also present with repeated GHB administration, such with the long-term treatment of 

narcolepsy or GHB dependence, will be interesting for future studies.  

Altogether, we observed a non-linear dose-exposure relationship (i.e., no dose 

proportionality) already at moderate doses of GHB. Additionally, the subjective effects of 

GHB on consciousness were closely linked to its plasma exposure and exhibited no acute 

tolerance. 
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Figure 1. Pharmacokinetics of GHB. (A) The data represent the plasma concentrations of 

GHB (mean and SD) after GHB administration at doses of 20 or 35 mg/kg in 16 subjects for 

each dose group. (B) The dashed lines in the semi-log concentration-time plot represent the 

terminal linear elimination rate (z). -Hydroxybutyrate was administered at t = 0 min. 
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Figure 2. Subjective effects of GHB. (A) -Hydroxybutyrate produced significant general 

subjective drug effects and increased VAS scores of (B) sedation, (C) stimulation, and (D) 

dizziness. The higher dose of GHB produced significantly greater sedation and dizziness 

compared with the lower dose. -Hydroxybutyrate or placebo was administered at t = 0 min.  

The data are expressed as mean and SD in 16 subjects per group. 
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Figure 3. Effects of GHB on vital signs. -Hydroxybutyrate had no significant effects on (A) 

heart rate, (B) systolic blood pressure, or (C) diastolic blood pressure. -Hydroxybutyrate or 

placebo was administered at t = 0 min. The data are expressed as mean and SEM in 16 

subjects per group. 
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Figure 4. Effects of GHB plotted against GHB plasma concentrations (hysteresis curves). 

The values are expressed as the mean and SD in 16 subjects per dose group. Separate 

plots are shown for the two doses of GHB. The time of sampling is noted next to each point 

in minutes after drug administration. Close relationships were observed between the plasma 

levels of GHB and its subjective drug effects. (A-D) Overall, higher concentrations of GHB 

were associated with higher subjective effects of GHB. (B) Maximal subjective sedation 

coincided with maximal plasma levels of GHB 35-60 min after drug administration. A slight 

delay was observed for VAS (C) stimulation and (D) dizziness, in which the maximal 

responses occurred at 60 min when plasma levels were already declining. This slight 

counterclockwise hysteresis was likely attributable to drug distribution to the effect 

compartment. No evidence of acute pharmacological tolerance to the effects of GHB was 

found (i.e., no clockwise hysteresis). 
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Table 1. Pharmacokinetic parameters for GHB in 16 healthy subjects per dose group. 

 

 

Cmax 
(nmol/mL) 
geometric 

mean 
(95%CI) 

Cmax 
(nmol/mL) 

(range) 

tmax 
(min) 

median 
(range) 

t1/2 
(min) 
mean 
± SD 

t1/2 
(min) 

(range) 

AUC0-190 
(nmol·min/mL) 

geometric 
mean (95% 

CI) 

AUC0-∞ 
(nmol·min/mL) 

geometric 
mean 

(95%CI) 

GHB (20 mg/kg) 
218 (176-

270) 97-481 
35 (35-

60) 36±9 25-58 

15,126 
(12,331-
18,555) 

15,747 
(12,854-
19,290) 

GHB (35 mg/kg) 
453 (374-
549)### 219-843 

35 (35-
60) 39±7 28-53 

38,039 
(31,646-

45,723)### 

40,113 
(33,093-

48,622)### 

GHB (35 mg/kg) dose 
normalized to 20 mg/kg 

259 (214-
314) 125-482 

   

21,736 
(18,083-

26,127)## 

22,922 
(18,911-

27,784)## 

 

AUC, area under the plasma concentration-time curve; AUC0-∞, AUC from time zero to infinity; 

AUC0-190, AUC from time 0-190 min; Cmax, maximum observed plasma concentration; t1/2, plasma 

elimination half-life; tmax, time to Cmax. ##for P<0.01 and ###for P<0.001 indicate significant 

differences compared with the 20 mg/kg dose (independent t-test). 
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Table 2. Values and statistics of maximal drug effects (geometric means and 95%CIs) in 16 

subjects per group. 

  
Placebo 1 

GHB (20 
mg/kg) 

Placebo 2 
GHB (35 
mg/kg) 

Main effect of 
Drug 

Drug × Dose 
Interaction  

  
F1,30 P= F1,30 P= 

Subjective effects 
(Visual Analog 
Scale, VAS scores) 

 

        

 

General drug 
effect 

2.7 (1.2-
6.0) 

3.5 (2.6-
4.8)* 

2.0 (1.2-
3.6) 

4.8 (3.7-
6.3) 46.22 <0.001 5.14 <0.05 

 
Sedation 

2.1 (1.0-
4.4) 

2.7 (1.6-
4.5) 

1.2 (0.5-
2.9) 

4.1 (2.7-
6.2)***# 34.39 <0.001 6.45 <0.05 

 
Stimulation 

2.1 (1.0-
4.4) 

2.7 (1.6-
4.5) 

3.3 (1.3-
8.4) 

4.2 (2.9-
6.0)** 85.56 <0.001 1.51 NS 

 
Dizziness 

1.6 (0.9-
2.9) 

3.0 (2.1-
4.5) 

1.2 (0.5-
2.9) 

3.9 (2.7-
5.6)***## 28.63 <0.001 7.06 <0.01 

Vital signs 

         

 

Systolic blood 
pressure (mm 
Hg) 

132 (126-
138) 

140 
(132-
150) 

139 (130-
149) 

146 (136-
157) 3.96 0.06 0.04 NS 

 

Diastolic blood 
pressure (mm 
Hg) 

81 (78-
84) 

84 (77-
90) 87 (81-94) 91 (85-98) 1.73 NS 0.00 NS 

 

Heart rate 
(beats/min) 

65 (59-
73) 

63 (58-
69) 69 (63-77) 66 (59-72) 2.02 NS 0.13 NS 

 

Rate pressure 
product (mg Hg ∙ 
beats/min) 

8484 
(7492-
9427) 

8760 
(7969-
9630) 

9406 
(8411-
10520) 

9144 
(8138-
10275) 0.00 NS 0.38 NS 

Emax values were compared using repeated-measures analysis of variance (ANOVA), with drug 

(placebo vs. GHB) as the within-subjects factor and dose (low dose vs. high dose) as the between-

subjects factor. A significant main effect of drug indicates a significant difference between drug and 

placebo in the pooled study sample. A significant dose x drug interaction indicates a significant 

difference between the low and high doses (significant dose-response). Tukey post hoc tests were 

based on significant main effects of drug or dose x drug interactions. *P<0.05, **P<0.01, ***P<0.001 

indicate a significant difference between GHB and placebo (Tukey post hoc test). #P < 0.05, ##P < 

0.01 indicate a significant difference between the 20 mg/kg and the 35 mg/kg GHB dose (Tukey post 

hoc test). NS indicates not significant. 


