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Preface 

 

Just as other organisms, plants are also susceptible to bacterial, fungal or viral diseases. 

Recently, deeper knowledge on the different mechanisms by which plants defend 

themselves against pathogens has come to light, but further research needs to be done to 

clearly understand the plant defense complete network. 

The present work had the aim to gain insight on the molecular events that take place in 

plants during viral infection, particularly related to RNA silencing, that is one of the most 

important plant defense mechanisms against viruses and that is present also in animals. One 

particular interest was also to understand more clearly the molecular strategies that some 

viruses display, like the RNA Oilseed rape mosaic tobamovirus (ORMV) in this case, to 

counteract this type of plant defense response. Oilseed rape infection by ORMV causes 

large losses in oilseed rape crops, one of the most important sources for vegetable oils all 

around the world.  

Along the introduction of the present work, updated information on what is currently known 

about the RNA silencing pathways in plants will be briefly mentioned, including the 

biogenesis of endogenous miRNAs and siRNAs and their function, as well as the production 

of viral siRNAs in infected hosts. The replication mechanism of tobamoviruses in plant cells 

will be described, as well as the production of double stranded RNA viral replication 

intermediates, responsible of triggering the RNA silencing machinery against the virus. Some 

of the currently known strategies employed by different viruses to counteract the RNA 

silencing machinery will also be discussed. Among them, the production of viral silencing 

suppressors and their effect on the plant's defense response at different layers.  

Our findings bring new knowledge about the interaction between plants and viruses during 

infection, and raise new questions about ORMV as plant pathogen, related to its effects on 

the RNA silencing machinery and the immune responses of the host plant, and to the 

mechanisms the virus employs to neutralize them.  
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Abstract 

 

Tobamoviral replicase possesses an RNA-dependent RNA polymerase (RDR) domain and is 

translated from genomic (g)RNA via a stop codon readthrough mechanism at a one-to-ten 

ratio relative to a shorter protein lacking the RDR domain. The two proteins share 

methyltransferase and helicase domains and form a heterodimer implicated in gRNA 

replication. The shorter protein is also implicated in suppressing RNA silencing based 

antiviral defenses. Using a stop codon mutant of Oilseed rape mosaic tobamovirus (ORMV), 

we demonstrate that the readthrough replicase (p182) is sufficient for gRNA replication and 

for subgenomic RNA transcription during systemic infection in Nicotiana benthamiana and 

Arabidopsis thaliana. However, the mutant virus displays milder symptoms and does not 

interfere with HEN1-mediated methylation of viral short interfering (si)RNAs or plant small 

(s)RNAs. The mutant virus tends to revert the stop codon, thereby restoring expression of 

the shorter protein (p125), even in the absence of plant Dicer-like activities that generate viral 

siRNAs. Plant RDR activities that generate endogenous siRNA precursors do not prevent 

replication or movement of the mutant virus, and double-stranded precursors of viral siRNAs 

representing the entire virus genome are likely synthesized by p182. Transgenic expression 

of p125 partially recapitulates the ORMV disease symptoms associated with 

overaccumulation of plant sRNAs. Taken together, the readthrough replicase p182 is 

sufficient for viral replication and transcription but not for silencing suppression. By contrast, 

the shorter p125 protein suppresses silencing, provokes severe disease symptoms, causes 

overaccumulation of unmethylated viral and plant sRNAs but it is not an essential component 

of the viral replicase complex.  
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Introduction 

Section I. RNA silencing pathway 

1.1. RNA silencing  

Viruses are obligate intracellular pathogens which have the capacity to infect most living 

organisms, by taking advantage of the molecular mechanisms that take place in the host 

cells, in order to replicate and spread from cell to cell, and eventually cause disease. Viruses 

trigger defense responses in the host upon infection, once their DNA, RNA or proteins are 

detected by the infected organism.  These mechanisms range from RNA interference (RNAi), 

a mechanism mainly used to eliminate viruses by plants and other eukaryotes including 

protozoa (Trypanosoma), yeast (Candida albicans), nematodes (Caenorhabditis elegans), 

flies (Drosophila melanogaster) and even mammals (mouse embryonic stem cells), to the 

sophisticated interferon-regulated gene response which conforms part of the immunological 

and antiviral response in higher animals (Ding 2010; Csorba et al., 2009; Ding and Voinnet 

2007; Maillard et al., 2013). 

RNAi, also known as RNA silencing, is an eukaryotic gene regulation mechanism. In plants, 

it plays an important role in many biological processes including plant development, 

maintenance of the genome integrity against mobile transposons, stress response and 

notably in antiviral defense. In Arabidopsis, RNAi is initially triggered by double-stranded 

RNAs that are processed by one of the four RNAse III-like DICER enzymes (DCL1, DCL2, 

DCL3 and DCL4), into 21-24 nucleotide small RNAs  that are divided into two different 

classes: small interfering RNAs (siRNAs) that are produced from sequential dicing of perfect 

or near perfect long dsRNA, and microRNAs (miRNAs) which are excised from imperfectly 

folded precursor RNAs (Baulcombe, 2004; Bernstein et al., 2001; Bartel, 2004). As a 

particular feature, all plant siRNAs and miRNAs have a 5' phosphate and a 3'-terminal 2’-O-

methyl group added by the enzyme HUA ENHANCER 1 (HEN1) (Yu et al., 2005; Zhai et al., 

2012) in order to confer them stability. 

Besides the production of endogenous small RNAs like trans-acting siRNAs (tasi-RNAs), 

miRNAs, and natural antisense transcripts siRNAs (NAT-siRNAs) among others, also viral 

siRNAs (viRNAs) can be generated by the RNA silencing machinery, once the dsRNAs 

derived from DNA or RNA viruses are recognized by DICER enzymes in infected plants 

(Blevins et al., 2006). 

Upon DCLs processing, endogenous and viral sRNAs are incorporated into one of ten AGO 

proteins in Arabidopsis to form the RNA induced silencing complex (RISC), which by 

complementarity can target messenger RNAs and induce their post transcriptional gene 

silencing (PTGS) by endonucleolytic cleavage (slicing) or translational repression (Almeida 

and Allshire 2005; Brodersen et al., 2008; Kim et al., 2014). RISC can also induce 

transcriptional gene silencing (TGS) through DNA methylation or chromatin modifications of 

the targeted genes (Law et al., 2010; Creamer and Partridge 2011).  

A more detailed description of the RNA silencing process and some of the its main 

components such as proteins and small RNAs are explained below. 
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1.2. DICER-like proteins 

Dicer RNase-III are endoribonucleases that process long double stranded RNA (dsRNA) into 

small RNA duplexes bearing a 2 nucleotide (nt) 3' overhang and a 5' monophosphate.  

These enzymes possess a DEXD box helicase domain at the N terminus, a domain of 

unknown function (DUF283), a PIWI/ARGONAUTE/ZWILLE (PAZ) domain, two RNAse III 

domains and one or two dsRNA binding domains (dsRBD) (Margis et al., 2006; Fukudome 

and Fukuhara, 2016). It is believed that their small RNA product size are determined by the 

distance separating the PAZ and catalytic domains of each Dicer-like protein (Park et al., 

2011), and by the availability of a determined DCL in a specific tissue or cells.  

Arabidopsis thaliana encodes four DICER paralogues with specialized functions (Baulcombe 

2004). Dicer-like 1 (DCL)-1 produces miRNAs from non coding, imperfect stem-loop 

precursor RNAs (Voinnet, 2009), while 21,22 and 24 nt long short interfering (si)RNAs are 

produced from long, perfectly or nearly perfectly paired double stranded RNAs through the 

action of DCL4, DCL2, and DCL3, respectively (Brodersen and Voinnet, 2006; Vazquez, 

2006; Chapman and Carrington, 2007). DCL4 and DCL2 are redundant and recent reports 

suggest that DCL2 also stimulates the production of secondary siRNAs as well as transitivity, 

which refers to the production of new siRNAs corresponding to sequences located outside 

the primary targeted region of a transcript, while DCL4 is more efficient in synthesizing 

primary siRNAs (Parent et al., 2015). DCL3 mainly produces 24-nt repeat associated siRNAs 

derived from transposons and repetitive elements and is involved in TGS.  

Double stranded RNA intermediates derived from DNA or RNA viruses are also accessible to 

DCLs, and a strong hierarchy can be observed among these enzymes regarding viral small 

RNAs production. DCL4  and DCL2 are involved in the production of 21- and 22-nt siRNAs 

from RNA viruses (Deleris et al., 2006; Donaire et al., 2008; García-Ruíz et al., 2010; Qu et 

al., 2008), while all four DCLs produce 21-nt (DCL4 and DCL1) , 22-nt (DCL2) and 24-nt 

(DCL3) from  DNA viruses (Akbergenov et al., 2006, Blevins et al., 2006).   

 

1.3. AGO proteins 

The AGO family received its name after AGO1 in Arabidopsis thaliana, because the loss of 

this gene leads to a plant exhibiting tubular shaped leaves that resemble small squids 

(Argonautus) (Bohmert et al.,1998). AGO proteins are present in bacteria, archae and 

eukaryotes and it has been observed that the number of AGO family members varies greatly 

among different species. For example, it is known that only one AGO protein is present in the 

yeast Schizosaccharomyces pombe, while there are four AGOs and four PIWIs in humans, 

15 in poplar and 10 in Arabidopsis (Carmell et al., 2002; Morel et al., 2002).  

AGO proteins are effectors of RNA interference in eukaryotes (Meister, 2013). They bind 

small RNAs and guide them to silence target RNA and DNA at a post-transcriptional or 

transcriptional level, respectively. In plants, it is believed that duplication events may have 

given functional diversification of AGOs defining their particular biochemical activities 

(Havecker et al., 2010; Mi et al., 2008). Studies have shown that some of them have a slicer 

activity since they show similarity to RNase H, as is the case of AGO1, AGO2, AGO4, AGO7 

and AGO10 in Arabidopsis (Baumberger and Baulcombe 2005; Qi et al., 2005; Song et al., 

2004; Liu et al., 2004; Carbonell et al., 2012; Qi et al., 2006; Tomari and Zamore 2005; Höck 

and Meister 2008; Montgomery et al., 2008; Takeda et al., 2008; Ji et al., 2011). AGO-sRNA 



3 
 

compexes target endogenous and exogenous genes/transcripts to regulate plant 

development, as well as plant defense against diverse pathogens like bacteria and viruses, 

and some of them seem to be programmed with virus derived siRNAs to directly target viral 

RNA (Schuck et al., 2013, Omarov et al., 2007, Pantaleo et al., 2007).  

 

1.3.1. AGOs domains and loading 

Argonautes in eukaryotes have 4 disctinct domains: a variable amino-terminal (N) domain 

and 3 conserved domains including PAZ (PIWI-ARGONAUTE-ZWILLE), MID (middle) and 

PIWI (Tolia and Joshua-Tor, 2007). While the function of the N domain is not yet clear, the 

PAZ domain harbors an oligonucleotide binding fold that allows AGO proteins to bind single 

stranded nucleic acids (Lingel et al., 2003; Song et al., 2003; Yan et al., 2003). By binding 

the 3' end of the guide strand into a specific binding pocket, the PAZ domain anchors sRNAs 

(Lingel et al., 2004; Ma et al., 2004). The PAZ domain also contributes to the unwinding of 

the duplexes (Gu et al., 2012). 

The MID domain specifically recognizes the 5' nucleotide of small RNA and is responsible for 

the binding preferences of different AGO proteins for small RNAs with different 5' nucleotides 

(Frank et al., 2010, Frank et al., 2012). Indeed, in order to work properly, small RNAs need to 

be correctly sorted into specific AGO complexes and in plants, the identity of the 5' 

nucleotide plays a key role in this process (Mi et al., 2008; Montgomery et al., 2008; Takeda 

et al., 2008). Arabidopsis AGO1 preferentially will bind sRNAs with a 5'U, AGO2 sRNAs with 

a 5'A and AGO5 sRNAs with a 5'C. AGO4 primarily will associate with sRNAs beginning with 

a 5'A.  

The PIWI domain, on the other hand, enables some AGO proteins, but not all, to cleave the 

target RNAs complementary to the bound sRNAs (Song et al., 2004; Rivas et al., 2005). 
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Figure 1.1. Model structure of Nicotiana attenuata AGO1 showing the different domains: N, PAZ, MID, 

PIWI. 

Once the sRNA duplex has been loaded in the AGO protein, the passenger strand of the 

duplex is selectively displaced and degraded while the guide strand is retained to form the 

mature RNA-induced silencing complex (RISC). However, in some cases it has been shown 

that also the passenger strand can be retained in the AGO complex making RISC still 

functional (Manavella et al., 2012; Zhang X. et al., 2011).  

Based on phylogenetic relationships, plant AGO proteins are grouped in three major clades: 

AGO1/5/10, AGO2/3/7 and AGO4/6/8/9. 

 

1.3.2.  The AGO1/5/10 clade 

Arabidopsis AGO1 is the effector protein that bound to miRNAs and ta-siRNAs regulates the 

expression of genes involved in numerous developmental and physiological processes. 

Additionally, AGO1 also functions in defense against some viruses upon loading viral siRNAs 

(Morel et al., 2002; Zhangb et al., 2006; Takeda et al., 2008; Wang et al., 2011). Indeed, 

studies identified AGO1 as the major antiviral AGO against suppressor-defective Turnip 

crinkle virus (TCV) in Arabidopsis (Qu et al., 2008), as well as against Brome mosaic virus 

(BMV) (Dzianott et al., 2012), Cucumber mosaic virus (CMV) (Wang et al., 2011) and Turnip 

mosaic virus (TuMV) (García-Ruíz et al., 2015). 

AGO1 is similar to AGO10 but both have a different pattern of expression. For example, in 

contrast with the ubiquitous expression of AGO1, AGO10 is expressed in provasculature, 

adaxial leaf primordial and the meristem (Moussian et al., 1998; Lynn et al., 1999), playing 

Singh et al., 2015 
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an important role in the maintenance of undifferentiated stem cells present at the shoot 

apical meristem.  AGO10 can also bind viral siRNAs and cooperate with AGO1 to have a 

modest antiviral effect in influorescences as shown in Arabidopsis for Turnip mosaic virus 

(TuMV) (García-Ruíz et al., 2015).  

AGO 5 is confined to megaspore mother cells and promotes megagametogenesis (Tucker et 

al., 2012). It has been shown to bind viral siRNAs of Cucumber mosaic virus, mainly those 

starting with a 5' cytosine (CMV) (Takeda et al., 2008), and its is induced by Potato virus X 

(PVX) infection. Together with AGO2 it is able to restrict PVX infection (Brosseau and Moffett 

2015). 

 

1.3.3.  The AGO2/3/7 clade 

Together with AGO1, Arabidopsis AGO2 plays an important role in antiviral defense and has 

been shown to be required for resistance to a broad spectrum of plant viruses (Harvey et al., 

2011; Jaubert et al., 2011; Wang et al., 2011; Carbonell et al., 2012; Zhang X. et al., 2012; 

García-Ruíz et al., 2015). Its antiviral activity has also been reported in Nicotiana 

benthamiana (Scholthof et al., 2011). AGO2 binds viral siRNAs beginning with a 5' terminal A 

and its catalytic activity is essential for its role in antiviral defense (Carbonell et al., 2012). 

Supporting the former, Schuck et al., (2013) demonstrated that synthetic viral siRNAs loaded 

on AGO2 and AGO3 could target in vitro viral RNAs  for cleavage, thereby inhibiting viral 

replication. Other studies have shown that AGO1 and AGO7 work together to ensure efficient 

clearance of viral RNAs, where AGO1 mainly targets viral RNAs containing complex 

structures, whereas AGO7 favors less structured RNA targets (Qu et al., 2008). 

 

1.3.4. The AGO4/6/8/9 clade  

Arabidopsis AGO4 is the effector protein that bound to 24nt long hc-siRNAs directs DNA 

methylation of the genome through the RNA-directed DNA methylation (RdDM) pathway 

(Pontes et al., 2006; Qi et al., 2006). AGO4 is also thought to be involved in plant defense 

against DNA viruses, since its presence is required in tissues that have recovered from 

infection and where the Beet curly top virus (BCTV) L2 mutant, a L2 RNA silencing 

suppressor mutant, has been found to be hypermethylated (Raja et al., 2008). While AGO4 

is expressed throughout the plant, AGO6 is expressed in shoots and apical meristems 

(Zheng at el 2007; Havecker et al., 2010; Eun et al., 2011), but both are required for DNA 

methylation at most of their target loci. AGO4 and AGO6 have non-redundant roles and it 

has been suggested that they may act sequentially to mediate DNA methylation (Duan et al., 

2015).  
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1.4. RDRs  

In plants there are two classes of siRNAs that can be identified: the primary siRNAs that are 

produced by the cleavage of an initial double stranded RNA trigger by DCLs, and the 

secondary siRNAs  which require an RDR enzyme for their biogenesis (Ruíz-Ferrer et al.,. 

2009; Donaire et al., 2008; Qu F, 2010; Wang et al., 2010; Wassenegger et al., 2006; García 

Ruíz et al., 2010). RDRs convert single-stranded RNAs into dsRNAs by primer independent 

(Tang et al., 2003; Curaba and Chen 2008) or primer dependent mechanisms using a small 

RNA as a primer (Moissiard et al., 2007; Voinnet, 2008; Devert et al., 2015). The dsRNA 

products of RDRs are sliced by DCLs into secondary 20-24 nt siRNA duplexes. 

RDRs own a conserved RNA dependent RNA polymerase catalytic domain and are found in 

RNA viruses, plants, fungi, protists and some lower animals, but are absent in Drosophila, 

mice and humans (Willmann et al., 2011). Arabidopsis thaliana contains six RDRs 

(Wassenegger and Krczal, 2006). RDR1, RDR2 and RDR6 share the C-terminal canonical 

DLDGD motif present in eukaryotes, and RDR3, RDR4 and RDR5 share an atypical DFDGD 

domain whose function has not been determined yet. 

Arabidopsis RDR2 is involved in the production of the 24-nt heterochromatic siRNAs and it 

has been associated to transgene silencing, genome maintanence and female gamete 

formation. RDR6, together with its partner SUPPRESSOR OF GENE SILENCING 3 (SGS3), 

is involved in the biogenesis of endogenous ta-siRNAs (Rajeswaran and Pooggin., 2012) 

and NAT-siRNAs and has been associated with stress responses, pathogen resistance, leaf 

development, self incompatibility, female gamete formation and transgene silencing. Like 

RDR2 and RDR6, RDR1 also has effects on the endogenous populations of Arabidopsis 

small RNAs but still studies need to be done to clarify its function (Kasschau et al., 2007). So 

far, the principle role of RDR1 has been defined in the production and amplification of 

exogenous, virus-derived siRNAs in infected plants. Studies in Arabidopsis rdrd mutants 

infected with mutant viruses deficient in silencing suppression proteins, have recently shown 

that resistance to different positive-strand RNA viruses depends on the production of viral 

secondary siRNAs by RDR1, RDR2 or RDR6 that amplify the antiviral response (Donaire at 

al 2008, García-Ruíz et al., 2010, Wang et al., 2010).  In RNA virus-infected Arabidopsis, 

RDR1 is induced to produce siRNAs from multiple genes; (Yu et al., 2003; Wang XB et al., 

2010).     

 

1.5. HEN1 

The stability and function of small RNAs is affected by various modifications, such as 

methylation, uridylation, adenylation, and RNA editing (Kim et al., 2010, Ji and Chen 2012). 

In plants, the HEN1 protein has been shown to work as a methyltransferase which is specific 

for double stranded sRNAs and whose function is to add a 2’-O-methyl group on the 3’-

terminal nucleotide of template miRNAs and siRNAs (Yu et al., 2005; Yang et al., 2006) . 

Even though HEN1 orthologs are present in other organisms like bacteria and animals (Mui 

Chan et al., 2009), these can only methylate single stranded RNA, in contrast with HEN1 

from plants which methylates only dsRNA duplexes (Yang et al., 2006). In Arabidopsis  it 

was was shown that full methylation of the duplex (guide and passenger strand) is achieved 

via intermediate hemi-methylated states, where the successive methylation of the two 

strands occurs in a non-processive manner (Plotnikova et al., 2013). 
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The loss of HEN1 can have a widespread impact on small RNAs, especially in plants in 

which all known silencing pathways include the methylation activity of HEN1. In contrast to 

animals, it has been observed that nearly all plant miRNA/miRNA* duplexes are methylated 

at their 3′-termini by HEN1, which protects them from the nucleotidyl transferase HEN1 

SUPPRESSOR (HESO1) mediated 3′-end uridylation and subsequent degradation (Zhao Y 

et al., 2012). Studies have shown that HESO1 interacts with AGO1 to uridylate AGO1-bound 

miRNAs in vitro (Ren et al., 2014). It is thought that this U tailing could be the result of 

deprotection, due to the fact that the addition of uridine (U) nucleotide at the 3’ end of sRNAs 

in hen1 mutants by HESO1 has been observed together with increased rates of degradation  

(Li et al., 2005; Yu et al., 2005). Interestingly, RNA gel blot analysis of miRNAs in a hen1 

background, have shown that they display a laddering of length reflecting the 3’ tails, while 

sizes shorter than the wild type have also been detected, suggesting that 3’ truncation also 

occurs. Deep sequencing analysis of miRNAs in a hen1 background have confirmed both 

conditions (Zhai J et al., 2013). On the other hand, the presence of one or few post-

transcriptionally added adenylic residues at the 3' end of plant miRNAs has also been 

observed and experiments in vitro showed that 3' adenylation reduces miRNA degradation 

rate (Lu et al., 2009). 

It has been suggested that the methylation of miRNAs and siRNAs by HEN1 could also 

prevent the action of RNA-dependent RNA polymerases (RdRPs) from using the small RNAs 

as primers. The effect of the methyl group on the ability of RdRPs to use the small RNAs as 

primers would however need to be experimentally evaluated (Li et al., 2005). Within this 

context, Devert and his collaborators recently showed that recombinant and purified RDR2 

and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs 

hybridized to complementary RNA template or by elongation of self-primed RNA template 

(Devert et al., 2015). 

 

Section II. Endogenous and viral small RNAs                                                                                        

2.1. Primary and secondary siRNAs 

In plants, endogenous siRNAs of different size classes are processed by DCL4 (21-nt), 

DCL2 (22-nt) or DCL3 (24-nt) from perfect dsRNA precursors produced by RDRs or from 

overlapping sense and antisense Pol II transcripts. While the RDR6/DCL4-dependent 21-nt 

secondary siRNAs (tasiRNAs and phased siRNAs) silence genes post-transcriptionally, the 

RDR2/DCL3-dependent 24-nt heterochromatic siRNAs silence repetitive DNA sequences or 

transposons by a mechanism known as transcriptional gene silencing (TGS) (Henderson et 

al., 2006; Pontes et al., 2006; Xie et al., 2004). 

Secondary siRNAs are produced when an initiating small RNA (a miRNA or another 

secondary small RNA) targets and cleaves a primary transcript, leading to the recruitment of 

RDR6 that synthesizes the complementary RNA strand, so that DCL4 processes the dsRNA 

into secondary siRNAs. Secondary siRNAs are phased due to the succesive catalytic 

processing by DCL4 from a consistent dsRNA terminus, defined by the initial cleavage by a 

small RNA of the primary transcript. Studies support the idea that both 21-nt and 22-nt 

miRNAs are able to cleave their target but that only the 22-nt miRNAs are the ones able to 

trigger the production of secondary siRNAs (Cuperus et al., 2010). It has been shown for 

example, that Arabidopsis miR168, miR173 and miR472 are able to trigger the production of 
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phased siRNAs from their targets, in their 22 nt form, but not in their 21 nt form (Chen et al., 

2010). 

Secondary siRNAs that are able to act in trans to silence different mRNA targets are called 

trans-acting siRNAs (tasiRNAs) (Allen et al., 2005; Yoshikawa et al., 2005) (Figure 2.1). 

Arabidopsis tasiRNAs biogenesis is initiated by AGO-mediated cleavage of non-coding TAS 

transcripts generated from four families of TAS genes. TAS1a/b/c/ and TAS2  transcripts 

undergo an initial AGO1/miR173 mediated cleavage at their 5' end after which the 3' 

fragment is converted to dsRNA by RDR6 and sequentially processed by DCL4 to produce 

21-nt siRNA duplexes. TAS1 and TAS2 tasiRNAs target genes encoding pentatricopeptide 

repeats (PPR) proteins (Peragine et al., 2004; Vazquez et al., 2004; Allen et al., 2005), which 

are RNA binding proteins involved in post-transcriptional processes such as RNA editing and 

splicing in mitochondria and chloroplasts (Schmitz-Linneweber and Small 2008). Through 

this process, TAS1 and TAS2 tasiRNAs coordinate the repression of this large gene family. 

TAS 4 siRNAs are produced in a similar way as TAS1 and TAS2 siRNAS but the transcripts 

cleavage is guided by AGO1/miR828. In Arabidopsis, it has been shown that tasiRNA TAS4-

3’-D4(−) (an antisense species 4 registers downstream from the miR828 trigger) targets the 

set of MYB transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 

(PAP1/MYB75), PAP2/MYB90, and MYB113, that regulate the anthocyanin and lignin 

biosynthesis pathways (Bhargava et al., 2010; Borevitz et al., 2000). 

In the case of TAS3 transcripts, 2 sites are targeted by AGO7/miR390 in order to produce 

the TAS3 siRNAs. One is cleaved at the 3' end while the other one remains uncleaved at the 

5' end (Axtell et al., 2006; Montgomery et al., 2008; Rajeswaran and Pooggin., 2012), and 

finally the action of RDR6 and DCL4 on the 3' end leads to the tasiRNAs production. TAS3 

tasiRNAs target the mRNAs of Arabidopsis AUXIN RESPONSE FACTORs (ARF3 and 

ARF4), which work together as the tasiR-ARF regulatory module to regulate phase transition 

and lateral root growth (Fahlgren at al 2006; Marin et al., 2010). 

It has also been observed that extensive secondary siRNAs are produced from disease 

resistance genes belonging to the nucleotide-binding site-leucine-rich repeat (NBS-LRR) 

superfamily, triggered by the miR482/miR2118 superfamily of miRNAs in multiple plant 

species, including miR472 in Arabidopsis ( Li et al., 2012; Shivaprasad et al., 2012; Zhai et 

al., 2011). As high expression of NBS-LRRs can have fitness costs and can be lethal to the 

plant cells, it is believed that this miR482/miR2118/miR472 superfamily has the function of 

regulating them by reducing their expression (Tian et al., 2003, Stokes et al., 2002, Boccara 

et al., 2014-2015). During infection, on the other hand, they would be expressed to protect 

the plant. Indeed, studies confirming the latter showed a slightly reduction of miR482 in 

tomato plants infected with Turnip crinkle virus (TCV), that led to the reduction of secondary 

siRNAs synthesis and an increment in the accumulation of NBS-LRR mRNAs, that after 

translation eventually would protect the plant against disease (Shivaprasad et al., 2012). 

 

2.2. Heterochromatic siRNAs 

Heterochromatic siRNas are produced from intergenic and/or repetitive genomic regions, 

they are typically 23-24 nt long, and they play an important role in TGS mainly affecting 

transposons, chromosomal repeats and transgenic inserts (Nishimura et al., 2012). Most 

depend on RDR2 and DCL3 for their biogenesis and on plant-specific RNA polymerases Pol 
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IV and Pol V for their production, amplification and action (Haag and Pikaard, 2011). The 

current model suggests that when one of the short RNA strands from the duplex is loaded in 

an AGO protein from the AGO4 clade (AGO4, AGO6 or AGO9 in Arabidopsis) and 

recognizes a cognate complementary DNA strand, directed RNA dependent DNA 

methylation of the DNA target takes place, through cytosine or H3K9 histone methylation, 

leading to chromatin repression (Figure 2.1). 

 

2.3. NAT-siRNAs 

The dsRNA precursors of NAT-siRNAs are thought to arise from the hybridization of 

separately transcribed, complementary RNAs. The complementarity between the RNA 

strands could be the result of transcription from opposite strands of the same locus, called 

cis-NAT-siRNAs, or transcription from opposite strands present in different locus, called 

trans- NAT-siRNAs. They are 21- 24 nt long and so far, only cis-NAT-siRNAs have been 

described in plants. The biogenesis pathways responsible for their production are quite 

heterogenous (Borsani et al., 2005; Zhang et al., 2012) because they require individualized 

subsets of RDRs, DCLs and other factors for their accumulation (Axtell, 2013). Even though 

studies in Brassica rapa have shown that some NAT-siRNAs are responsive to heat stress 

and that in Arabidopsis some regulate salt tolerance (Borsani et al., 2005), their way of action 

and the identification of their targets still require further investigation.  

 

2.4. miRNAs 

As mentioned before, miRNAs are non coding RNAs of 21-22 nucleotides that regulate, 

through sequence specific recognition, gene expression in diverse eukaryotes. miRNAs elicit 

silencing at the post transcriptional level by several modes of action: mRNA cleavage, mRNA 

decay or degradation and translational repression (Bartel 2004). 

In animals, miRNA genes are transcribed in the nucleus to primary miRNAs (pri-miRNAs) by 

RNA polymerase II (Lee at al., 2004) and therefore, they can be capped by 7-methyl 

guanosine at its 5' end and added a polyadenylated tail at its 3' end (Cai et al., 2004). The 

transcripts are at least 1000 nt long, containing single or clustered double stranded hairpins 

that bear single stranded 5' and 3' terminal overhangs and ~10 nt distal loops (Saini et al., 

2007). Pri-miRNAs are cropped by the microprocessor complex comprising Drosha (RNase 

III endonuclease) and DGCR8 (DiGeorge syndrome critical region gene 8) where the latter, 

by recognition of the pri-miRNA's junction of stem and single stranded RNA, helps Drosha to 

be positioned to perform the asymmetrical endonucleolytic cleavage on both strands of the 

stem, releasing the 60-70 nt pre-miRNA containing a 5' phosphate and a 3' 2 nt overhang 

(Denli et al., 2004; Gregory et al., 2004; Han et al., 2006; Landthaler et al., 2004). Pre-

miRNAs are then transported to the cytoplasm by Exportin-5 and Ran GTP (Yi et al., 2003; 

Lund et al., 2006) where they are processed by Dicer, starting from the end of the hairpin 

structure stem and in a sequential and processive way, 20-22 nt duplexes (mirRNA:miRNA *) 

that are incorporated and unwound into AGO proteins to form a mature and active RISC 

complex, where one strand of the duplex (guide strand) is bound to Argonaute to direct 

silencing while the other strand is discarded (passive or star strand) (Wilson and Doudna, 

2013). 
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In plants, also MIR genes are transcribed to pri-miRNAs  by RNA pol II in the nucleus. The 

pri-miRNA transcripts form one or more stem loop structures through extensive intra-

molecular base pairs that are processed by DCL1, which interacts with HYPONASTIC 

LEAVES 1 (HYL1) for recognition and accurate cleavage of the pri-miRNAs into 

miRNA/miRNA* duplexes (Kurihara et al., 2006). It is assumed that the duplexes are then 

methylated by the nuclear methyltransferase  HEN1 at the 3' terminal nucleotide on its 2'-OH 

group and then exported to the cytosol by HASTY (HST), a member of the importin beta 

family of nucleocytoplasmic transporters (Bollman et al., 2003). Finally, the duplex is 

unwound into a single stranded mature miRNA that enters the RISC complex containing 

AGO1 (or other AGOs), cleaving the target mRNA or inhibiting its translation (Bartel 2004; 

Kidner and Martienssen, 2005; Jones-Rhoades et al., 2006; Mallory and Vaucheret, 2006) 

(Figure 2.1 and Figure 2.2). The presence of mature miRNAs and their complementary 

miRNA (miRNA*) sequences in phloem plant material, suggests that miRNA duplexes, just 

as proposed for siRNAs, can move over long distances before final loading into AGO 

proteins (Buhtz et al., 2008).  

Even though mRNA cleavage and translational repression seem to be present in both animal 

and plants, genetic and biochemical studies suggest that the mechanisms involving miRNA 

mediated silencing are different in the two kingdoms. As AGO proteins have a domain 

homologous to RNase H, when the small RNA is perfectly or almost perfectly complementary 

to the mRNA target, RISC cleaves the target mRNA between the 10 and 11 nucleotide 

positions of the small RNA. This mode of cleavage by RISC is seen in plants in which most 

of the microRNAs are nearly complementary to a single or few mRNAs, predominantly within 

the ORF regions (Jones-Rhoades et al., 2006). In contrast, animal miRNAs recognize their 

target mRNAs through partial base pairing generally at 3' UTRs, especially within the seed 

region at nucleotides 2-7 or 2-8 of the miRNA (Ameres et al., 2013; Bartel et al., 2009).  

Imperfect miRNA-mRNA hybrids with central bulges (nucleotides 9–12) generally account for 

regulation that occurs mostly through translational inhibition and only rarely by slicing. Due to 

these relaxed base-pairing requirements, individual metazoan miRNAs may have dozens of 

target transcripts (Voinnet, 2009). Partial complementarity prevents the cleavage activity of 

animal RISC but it can still silence target genes by recruiting additional proteins, which 

induce translational repression and/or mRNA decay in a manner independent of 

endonucleolytic cleavage (Iwakawa and Tomari 2013, 2015).  

Animal mRNAs can promote mRNA destabilization by recruiting deadenylases to the target 

mRNA (Wu et al., 2006; Braun et al., 2012), through the interaction of AGO1 with the protein 

GW182, a hub protein that is present in animals but not in plants, with the capacity of 

recruiting several factors to the target mRNA including the poly(A) binding protein (PABP) 

and two deadenylase complexes called CCR4-NOT and PAN2-PAN3. This interaction takes 

place due to the recognition of the tryptophan residues present in the N terminal glycine-

tryptophan repeat domain of GW182 by the tryptophan binding pockets present in the PIWI 

domain of AGO (Till et al., 2007; Takimoto et al., 2009). After deadenylation, target mRNAs 

undergo decapping and degradation in the 5' to 3' mRNA decay pathway by XRN1 (Behm-

Ansmant et al., 2006).   

In contrast to animal miRNAs, plant miRNAs cannot promote deadenylation. Instead, they 

direct target cleavage through AGO1 that has a catalytic tetrad in its PIWI domain that 

cleaves the target mRNA with fully or nearly fully complementary sequence to the microRNA.  

In Arabidopsis, after the miRNA mediated endonucleolytic cleavage has taken place, the 5' 
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fragment is urylidated at its 3' end by HEN1 suppresor 1 (HESO1), followed by a probable 5' 

to 3' exonucleolytic degradation by XRN4 (Ren et al., 2014), and the 3' cleaved fragment is 

degraded by the 5' to 3' endoribonuclease XRN4 (Souret et al., 2004), that is the homolog of 

XRN1 in animals. 

Due to the high complementarity between miRNAs and their targets in plants, it was initially 

thought that their way of action on messenger RNAs was through cleavage. However, later 

studies showed that even when they present high complementarity to their targets, plant 

miRNAs can also repress mRNAs translation (Ma X. et al., 2013). Aukerman and Sakai 

proved for example that overexpression of Arabidopsis miR172, with almost perfect 

complementarity to its target, inhibited APETAL2 (AP2) protein accumulation without 

affecting AP2 mRNA abundance (Aukerman and Sakai, 2003). In Arabidopsis it was also 

reported that mir156/157 target the 3' UTR of the SQUAMOSA promoter-binding protein 

(SBP) box gene SPL3, inhibiting SPL3 expression at the protein although not at the RNA 

level, preventing early flowering by translational inhibition in seedlings (Gandikota et al., 

2007). Recent studies in Nicotiana benthamiana also showed that AGO2 seems to be able to 

silence gene expression in a slicing independent way, where mismatches between the 3' end 

of the loaded miRNA guide strand and the 5' end of the target site, enhance gene silencing 

(Fátyol et al., 2016). However, the degree of miRNA-target complementarity necessary to 

support the translational repression activity by plant miRNAs remains unknown. 

Translational repression has been correlated with the presence of miRNAs and AGO1 in 

polysomes (Lanet et al., 2009), supporting the view that plant RISC can remain bound on 

target mRNAs in order to block ribosomes. Recent experiments suggest that target cleavage 

and translational repression by AGO1-RISC in Arabidopsis, may be taking place at the same 

time augmenting the general silencing efficiency (Iwakawa and Tomari 2013). Interesting 

results were obtained by Várallyay et al., (2013) who observed, that the presence of the 

carnation Italian ringspot virus (CIRV) p19 RNA-silencing suppressor triggered the 

accumulation of miR168 in Nicotiana benthamiana, as well as the induction of AGO1 mRNA 

as part of the plant antiviral defense response. However, despite AGO1 mRNA 

accumulation, the protein production was reduced, implying a translational control 

mechanism on AGO1 mRNA mediated by miR168 and suggesting  that plant viruses can 

inhibit the translational capacity of AGO1 mRNA by modulating the endogenous miR168 

level to alleviate the anti-viral function of the AGO1 protein. The clear mechanism, however, 

has not been elucidated. 
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                 RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants 

 

 

 

Figure 2.1.  Endogenous small RNA pathways. PTGS involves the production of miRNAs (21, 

22nt long from imperfect RNA duplexes) and trans-acting siRNAs including the production of 

secondary siRNAs (21 nt long from perfect RNA duplexes) to silence a gene at the RNA level. 

TGS involves the production of heterochromatic siRNAs (24 nt) that through RISC and RNA 

directed DNA methylation, silence a gene at the DNA level. 

   PTGS     TGS 

modified from Szittya and Burgyan 2013 
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Figure 2.2.  miRNA genes are transcribed by RNA polymerase II. These transcripts are capped, spliced 

and polyadenylated. As the mature miRNA is located in a hairpin structure within the primary transcript or 

pri-miRNA, this last one needs to be processed in 2 steps by DCL1. The resulting miRNA:miRNA* duplex 

is then methylated by HEN1 and exported to the cytoplasm by HASTY1. Once there, the mature miRNA is 

loaded into RISC to guide the cleavage or translational repression of its target by base pairing. 

 

2.5. Viral siRNAs 

Evidence supports the role of RNA silencing as an antiviral defense mechanism in plants 

mainly by two reasons. First, because a large number of virus-derived small RNAs are found 

in the infected host plants, indicating that the plant RNA silencing mechanism can target viral 

RNA (Ding and Voinnet, 2007) and second, due to the fact that many plant viruses encode 

silencing suppressors to counteract the host antiviral defense mechanisms based on RNA 

silencing (Burgyán, 2008). 

Current research indicates that viral siRNAs can be produced from viral double stranded 

RNA replication intermediates recognized by DCLs (Blevins et al., 2006; Bouche et al., 2006; 

Deleris et al., 2006) and that are able to guide an antiviral RISC to promote the cleavage of 

more viral transcripts (Pantaleo et al., 2007).The production of siRNAs in Arabidopsis from 

plant RNA viruses is mainly catalyzed first under the action of DCL4 and then DCL2, where 

DCL4 is mainly responsible for the processing of 21-nt long viral siRNAs. In case DCL4 is 

absent or its activity is reduced, DCL2 produces 22-nt long vsiRNAs (Ruíz-Ferrer et al., 

2009; Cuperus et al., 2010; Deleris et al., 2006; Fusaro et al., 2006). Studies have also 

proved the production of viral secondary siRNAs by multiple host RDR pathways in 

Arabidopsis infected by different positive-strand RNA viruses (Díaz Pendon et al., 2007; 

MicroRNA biogenesis and function  in plants 

Yang and Li, 2012. Biology 
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Donaire et al., 2008; García Ruíz et al., 2010; Wang et al., 2010). These secondary siRNAs 

are DCL products and therefore structurally indistinguishable from primary siRNAs (Voinnet, 

2008). Viral siRNAs may also be produced from the processing of highly structured regions 

of viral RNA, rather than from perfectly paired dsRNA intermediates (Molnár et al., 2005; 

Koukiekolo et al., 2009; Szittya et al., 2010), meaning that sometimes, one of the strands, 

positive or minus, will be more efficiently targeted than the other one, suggested by a strand 

bias in the production of viral siRNAs (Pantaleo et al., 2007). 

 

 

 

Figure 2.3. The RNA (+) virus replicase gives place to the minus strand using the genomic RNA positive 

strand as a template to form transient double stranded RNA replication intermediates. The negative 

strand will then become a template for the replicase to form new positive RNA strands, promoting also 

the transient formation of dsRNA intermediates. The replication intermediates are substrate for Dicer 

enzymes that will produce primary viral siRNAs, that when loaded in RISC, have the potential to target 

and cleave the viral genome to generate secondary viral siRNAs. 

 

The replication intermediates belong to RNA viruses (Alquist, 2002) but not to DNA viruses. 

In the case of DNA geminiviruses, it has been proposed that the dsRNA structures may be 

formed formed by the annealing of converging sense/antisense readthrough transcripts 

(Chellappan et al., 2004; Aregger et al., 2012).  

Infection with DNA viruses induces more abundant production of 24-nt viral siRNAs than 21- 

and 22-nt siRNAs in plants through the action of DCL3 (Akbergenov et al., 2006; Blevins et 

al., 2006, 2011; Aregger et al., 2012). It has been hypothesized that these 24-nt viral siRNAs 

Production of small RNAs from RNA(+) virus replication intermediates  
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could potentially be involved in TGS through DNA and histone methylation, and some studies 

have confirmed this hypothesis. For example, Raja et al., showed in Arabidopsis that histone 

H3K9 methyltransferase or cytosin methyl transferases (drm1,2,cmt3,met1) mutated plants 

were more susceptible to infection by the DNA geminivirus Cabbage leaf curl virus than the 

wild-type plants (Raja et al., 2008), and Rodríguez-Negrete et al., (2013) showed that the 

geminivirus replication protein (Rep) can suppress TGS, by reducing CG methylation through 

the decreased expression of the maintenance methyltransferases MET1 and CMT3 in 

Arabidopsis. 

Studies have shown that RNA silencing spreads from the site of initiation to the surrounding 

10-15 neighboring cells and that this cell to cell movement occurs through plasmodesmata. 

The process can be amplified through conversion of target RNAs into dsRNA, by RDR6 and 

the production of secondary siRNAs (Melnyk et al., 2011, Schwach et al., 2005; 

Wassenegger and Krczal 2006), resulting in a more extensive cell to cell spread of silencing. 

Although studies suggest that both 21nt long and 24nt long small RNA duplexes can move 

between plant cells through plasmodesmata and the phloem, and that the 21nt small RNAs 

are effective over short ranges and the 24 nt small RNAs over longer ones, there may be 

circumstances in which the 21-nt long siRNAs could have a role in long-range spreading of 

silencing and the 24-nt-long siRNAs in short-range transfer.  

One hypothesis for the function of small RNAs considers the idea that their ability to move 

between cells may help to target the spread of viruses within the plant. By allowing the viral 

small RNAs to reach uninfected cells, in a quick way the plant could eventually limit the 

spread of the virus throughout healthy cells (Sarkies and Miska, 2014). It is also assumed 

that the cleavage of viral RNAs by Dicers is by itself not sufficient  to suppress virus 

replication and that other components of silencing, such as AGO and RDR are required for 

effective virus silencing (Wang et al., 2011). Indeed, Dunoyer et al., (2005) proposed that 

primary 21 nt siRNAs are short-range silencing signals while secondary 21 nt siRNAs 

generated by RDR6-mediated amplification are long-range silencing signals that are 

responsible for the efficient silencing of the virus at a systemic level. 

Even though studies have shown that there are regions along the viral genomes referred as 

hot spots, from which high amounts of redundant viral siRNAs are produced, this does not 

necessarily mean that these viral siRNAs have an efficient antiviral function in the RNA 

silencing pathway. For example, the viral siRNAs produced from the leader region of the 

Cauliflower mosaic virus (CaMV) in infected plants, mainly have a decoy function to divert 

the silencing machinery from targeting the virus (Blevins et al., 2011). A similar example is 

the one of Cymbidium ringspot virus (CymRSV) where the viral siRNAs produced, most of 

them primary siRNAs, are inefficient to further downregulate the accumulation of viral RNAs 

due to the presence of the p19 viral suppressor that sequesters them (Pantaleo et al., 2007). 
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Section III. Viral RNA silencing suppressors 

3.1. RNA silencing suppressors 

Viruses have developed different mechanisms to avoid the plant antiviral defense. For 

example, those RNA and DNA viruses that carry out their genome replication and 

transcription in the cytoplasm, protect their genome from host defenses within replication 

complexes or organelle-like compartments made out of sheltering membranes, viral 

replication proteins and proteins belonging to the host (den Boon et al., 2010; Ishibashi et al., 

2012).  Additionally, to specifically counteract RNA silencing as the main plant antiviral 

defense, viruses have evolved to produce different types of silencing suppressors (VSR) that 

can interfere with the silencing machinery at different levels (Lakatos et al., 2006). For 

example, plant DNA viruses which replicate in the nucleus of the host and that are targeted 

by TGS, can encode suppressors that target the S-adenosyl methionine (SAM) pathway or 

RdDM pathway to alter the DNA/histone methylation processes in the host (Raja et al., 2008, 

Buchmann et al., 2009, Raja et al., 2010).  On the other hand, RNA viruses which replicate in 

the cytoplasm can encode suppressors that bind dsRNAs of different sizes to interfere with 

the DCL processing of viral siRNA precursors and AGO-viral siRNA complex assembly 

steps, or bind and inactivate the protein components of the RNA silencing machinery. As 

most of the known viral silencing suppressors function at the same time as coat proteins, 

movement proteins, proteases or transcriptional regulators, they can be difficult to identify 

because their mutation can be lethal to the virus. 

A general strategy that is used by several silencing suppressors encoded by different viruses 

is dsRNAs sequestration. P14 is a size-independent dsRNA-binding protein while P19 binds 

predominantly 21-nucleotide ds-sRNAs (Merai et al., 2005). Besides P14, other viral 

suppressors like P38 (Turnip crinkle carmovirus), NSs (Tomato spotted wilt tospovirus, 

Groundnut bud necrosis virus) and NS3 (Rice hoja blanca tenuivirus, Rice stripe virus) have 

been found to bind dsRNA (Merai et al., 2006; Zhai et al., 2014; Shen M. et al., 2010), 

presumably to prevent DCL-mediated production of viral siRNAs duplexes. Besides P19, 

other viral suppressors that can bind siRNAs are Hc-Pro (Tobacco etch potyvirus, Turnip 

mosaic potyvirus Potato Y potyvirus,), P21 (Beet yellows closterovirus), p15 (Peanut clump 

virus), p130/p126/p122 (Tobacco Mosaic Virus), NS3 which also binds microRNAs (Rice 

hoja blanca tenuivirus), 2b (Cucumber mosaic cucumovirus, Tomato aspermy cucumovirus) 

and PNS10 (Rice dwarf phytoreovirus) (Merai et al., 2006; Sahana et al., 2014; Harries et al., 

2008; Hemmes et al., 2007; Goto et al., 2007; Ren at el 2010; Ding et al., 2004). Some of 

these siRNA-binding suppressors also interfere with the siRNAs 3' methylation by HEN1 as 

is the case of Hc-Pro from Potyvirus, P19 from Tombusvirus, P21 from Closterovirus and 

P126 from Tobamovirus (Lozsa et. al 2008).    

Interestingly, christallographic studies have shown that p19 sequesters siRNA duplexes in a 

size dependent, but sequence independent manner, preventing RISC assembly (Silhavy et 

al., 2002, Vargason et al., 2003). And, although p19 has been shown to bind microRNA 

duplexes in p19 transgenic plants, miRNA binding by p19 seems not to be efficient during 

viral infection (Kontra et al., 2016). 
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AGO proteins are essential in antiviral defense against both RNA and DNA viruses (Azevedo 

et al., 2010; Pantaleo et al., 2007; Qu et al., 2008; Raja et al., 2008, 2014; Carbonell et al., 

2012; Harvey et al., 2011; Wang et al., 2011). The effector step of post transcriptional 

silencing against RNA viruses in plants depends mainly on AGO1 and AGO2 activities that 

are required to restrict virus replication and spread. Other AGOs acting in PTGS, such as 

AGO5, AGO7 and AGO 10, have been also implicated in antiviral defense but with minor 

roles. On the other hand, genetic and biochemical evidences support that AGO4, functioning 

in TGS, plays a role against several RNA and DNA viruses (Wang et al., 2011; Carbonell and 

Carrington, 2015). As a counter defense, some viruses have therefore also developed 

silencing suppressors that interfere for example with small RNA loading on AGO1, AGO1 

mRNA translation, AGO1 protein stability, or AGO1 activity (Chapman et al., 2004; Lakatos 

et al., 2006; Zhang X. et al., 2006; Baumberger et al., 2007; Bortolamiol et al., 2007; Csorba 

et al., 2007; Azevedo et al., 2010; Chiu et al., 2010; Várallyay et al., 2010). The best 

described silencing suppressor targeting AGOs is P0 from poleroviruses. 

P0 proteins are divergent among poleroviruses and display diverse levels of RNA silencing 

suppression activity. These proteins do not posses RNA binding activity but they enhance 

the degradation of multiple AGOs (AGO1,2, 4-6,9) through the interaction of their F-Box motif  

with the family of E3 ubiquitin ligases (SKP1-Cullin-F-box complex) for ubiquitination of 

AGOs (Pazhouhandeh et al., 2006). The ubiquitinated AGOs might be then degraded in the 

autophagosome, avoiding the RISC complex to be assembled. Regarding their divergency, 

studies have shown that P0 proteins from Turnip yellow virus (TuYV), Cucurbit Aphid-Borne 

Yellows Virus (CABYV), Potato leafroll virus PLRV (European isolate), Melon aphid-borne 

yellow virus (MABYV) and Beet mild yellowing virus (BMYV) are all silencing suppressor 

proteins of local, but not systemic RNA silencing (Han et al., 2010; Kozlowska-Makulska et 

al., 2010; Pfeffer et al., 2002). On the other hand, the P0 proteins of Sugarcane yellow leaf 

virus (SCYLV), PRLV (Australian isolate), beet yellow dwarf virus-GPV (BYDV-GPV) and pea 

enation mosaic virus-1 (PEMV-1, Enamovirus genus) are suppressors of both local and 

systemic RNA silencing (Fusaro et al., 2012; Liu et al., 2012; Mangwende et al., 2009), while 

no suppression activity has been found in the P0 proteins of 2 isolates of beet yellow dwarf 

virus (BMYV) and of 6 isolates of beet chlorosis virus (BChV).  

Among other suppressors affecting AGOs, the Sweet potato mild mottle ipomovirus 

(SPMMV) P1 has been shown to interact directly with loaded AGO1 through GW/WG-motifs 

(AGO-hook) present at the N-terminal part of P1, necessary for binding and suppressing 

AGO1 function (Giner et al., 2010). The TCV coat protein P38 and CMV 2b, besides binding 

dsRNAs, can also bind to AGO1 and to AGO2 in the case of P38, interfering with their 

function (Azevedo et al., 2010, Zhang et al., 2006, Duan et al., 2012). 

Recent studies have also shown that some silencing suppressors repress the translation of 

AGO1. From the 10 Arabidopsis AGOs only AGO1 and AGO2 seem to be regulated by 

miRNAs. Both miR168 and miR403 target AGO1 and AGO2 mRNA, respectively, and these 

regulations occur though their association with AGO1 (Rhoades et al., 2002; Vaucheret et 

al., 2004; Allen et al., 2005). Induction of AGO1 mRNA accumulation is believed to be a 

general response to viral infection (Zhanget al., 2006; Csorba et al., 2007; Havelda et al., 

2008). However, this induction is generally not accompanied by an increase in AGO1 protein 

accumulation or activity due to the presence of viral suppressors that upregulate miR168. For 

example, the upregulation of miR168 in Arabidopsis has been observed in the presence of 

suppressors like 2b, Hc-Pro, P19, P38 and P126/P130/P122, that leads to the 
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downregulation of AGO1, through translational repression of AGO1 mRNA (Várallyay et al., 

2010). In parallel, induction of AGO2 mRNA and AGO2 protein accumulation in response to 

viral infection has also been reported, presumably as a consequence of AGO1 viral 

inactivation (Lewsey et al., 2010; Endres et al., 2010, Harvey et al., 2011), where 

AGO1/miR403 mediated regulation of AGO2 mRNA would be impaired, leading to AGO2 

protein accumulation. 

The inactivation or inhibition by viral suppressors of other important proteins from the RNA 

silencing pathway like SGS3 and RDR6, both important for the production of secondary small 

RNAs, has also been documented. It is known that the V2 protein of Tomato yellow leaf curl 

virus (TYLCV) and the P2 protein of Rice stripe virus (RSV) interact with SGS3 interfering 

with RNA silencing (Du et al., 2011; Glick et al., 2008), and that the P6 protein of Rice yellow 

stunt virus binds RDR6 to interfere with the production of secondary siRNAs and systemic 

RNA silencing (Guo et al., 2013). Evidence has also showed that the RNA-silencing 

component double-stranded RNA-binding protein 4 (DRB4), which is a partner of DCL4 to 

produce siRNAs and that also plays an important role against bacterial infection, can be 

bound and inhibited by the Cauliflower Mosaic Virus (CaMV) suppressor P6 (Love et al., 

2007; Shivaprasad et al., 2008; Haas et al., 2008; Zhu et al., 2013).  

Other more complex mechanisms developed by viruses to avoid the plant antiviral response 

include for example the deployment of decoy vsiRNAs et al., that distract the RNA silencing 

machinery by keeping it working, but without effectively targeting the viral genome, so that 

the viral replication or coding regions are not affected at all, as in the case of CaMV and Rice 

tungro bacilliform virus (RTBV) (Blevins et al., 2011; Rajeswaran et al., 2014). 

 

 

Section IV. Tobamoviruses  

4.1. Tobamoviruses and ORMV 

The Tobamovirus genus, part of the alphavirus-like superfamily (Hirashima and Watanabe 

2003), includes positive sense single stranded RNA viruses whose genome contain closely 

packed open reading frames (ORFs) as is the case of Tobacco Mosaic Virus (TMV), Tomato 

Mosaic Virus (ToMV) and Oilseed rape mosaic virus (ORMV). The genomic RNA serves as 

template for both translation and negative-strand RNA synthesis for replication (Chujo et al., 

2015; Figures 4.1 and 4.2). The genome is around 6300 nt long and at its 5' end a m7Gppp 

cap is attached to the first nucleotide to protect the genomic RNA from degradation by the 

host exonucleases and to facilitate its translation. The 5' untranslated leader sequence 

(5'UTR) of 69 nucleotides, also known as omega sequence (Ω sequence), promotes the 

efficient translation of the genome (Galliet and Walbot 1992). The tRNA-like structure at its 3' 

end serves as anchor for the viral replicase to form the negative strand which will become a 

template to form new positive strands during the replication of the virus (Figure 4.2). 
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Fig 4.1. ORMV genome. The capped genomic RNA is the template for the 125 and 182 kDa replicase 

proteins. The movement protein (MP) and the coat protein (CP) respectively, are expressed from two 

separate 3' coterminal subgenomic mRNA (modified from Rybicki, 2015).      

                                                                                         

In case of ORMV, the genomic RNA encodes at least 4 proteins (NC_004422.1., Aguilar et 

al., 1996; Figure 4.1). The 125 kDa and the 182 kDa proteins are translated directly from the 

genomic RNA, whereas the 28 kDa movement protein (MP) and the 18 kDa protomers of the 

coat or capsid protein (CP) are synthesized from the respective subgenomic RNAs that are 

3'-co-terminal with the genomic RNA (Grdzelishvili et al., 2000). Just as it has been 

described for TMV, it is believed that p125 and p182 are involved in the replication of the 

virus and p28 or MP in its movement throughout the cells. The capsid made out of several 18 

kDa protomers, wraps the genomic RNA in order to protect it from the host ribonucleases 

and is elongated, rod shaped, straight, and exhibits helical symmetry. 

 

 

 

 

 

 

 

Oilseed rape mosaic virus (ORMV) genome 



20 
 

Model for ORMV replication and translation 

 

 

Figure 4.2. During replication, the RNA positive strand is used as a template to produce the minus strand 

by the viral replicase. The minus strand contains the promoters recognized by the replicase to produce 

the subgenomic RNAs for the movement (MP) and coat (CP) proteins. During translation, the genomic 

and subgenomic RNAs are translated by the host ribosomes. 

 

The 125 kDa protein coding sequence has a leaky stop codon (UAG) that 1 in 10 times leads 

to the translation of the larger readthrough protein of 182 kDa, which constitutes the 

replicase of the virus since it contains the polymerase domain, as observed in other positive 

RNA viruses (Buck, 1996). It is believed that the ORMV p125 contains a methyltransferase - 

guanylyltransferase- like domain (MET) involved in the viral RNA 5' capping in its N- terminal 

region due to its similarity with the p126 of TMV where these functions have been already 

described (Merits et al., 1999). Studies in other alphaviruses have shown that the 

methyltransferase protein is membrane-bound protein that methylates GTP, dGTP and 

GpppG, but not capped RNAs, whereas the eukaryotic capping enzyme is soluble and 

readily methylates capped RNAs, but not GTP or dGTP (Laakkonen et al., 1996; Ahola et al., 

1999). In agreement with the former, Merits' study showed that the p126 of TMV is able to 

form a p126-m
7
GMP complex in presence of S-Adenosyl methionine (AdoMet) as the methyl 

donor in order to constitute the viral cap structure.  

Studies suggest that contemporary DNA ligases, RNA ligases and RNA capping enzymes 

have evolved by fusion of effector domains from an ancestral catalytic module involved in 

RNA repair (Shuman and D Lima, 2004). As all eukaryotic mRNAs contain a cap structure, it 

seems probable that the strong selective pressure from the host defense responses has 
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forced viruses without a 5' cap to develop different strategies to cap their RNA or even repair 

it in order to keep on spreading further in the host (Ramanathan et al., 2016; Ho and 

Shuman, 2002, Yin et al., 2003; Nandakumar et al., 2006).  

TMV p126 also contains an helicase domain which is thought to unwind the duplexed or 

structured RNA that is formed during RNA replication. Interestingly, the direct interaction of  

this helicase - like (HEL) domain with the ATP-bound N resistance protein (TIR-NBS-LRR)  in 

Nicotiana tabacum has also been reported (Ueda et al., 2006). This fact deserves attention 

as it is known that plant resistance proteins (NBS-LRR) and the products of avirulence (Avr) 

genes  present in diverse plant pathogens, are predicted to interact directly or indirectly with 

each other, leading to programmed cell death around the site of interaction, also termed 

hypersensitive response (HR), to restrict further spread of the pathogen in the host (Morel 

and Dangl, 1997).  

  

4.2. Tobamovirus replication organelles 

It is known that during infection, all positive-sense RNA viruses remodel host membranes 

into specialized membranous structures called viral replication organelles or viral replication 

factories. The viral genome is replicated in the lumen of these organelles, which together 

with viral and host proteins create the proper environment to facilitate the replication and 

protection of viral RNAs against degradation by cellular RNases, or detection by cytosolic 

RNA sensors that could trigger antiviral responses (Nagy et al., 2016). Host membrane 

proteins like Tobamovirus multiplication 1 (TOM1) and ADP-ribosylation factor-like 8 (ARL8) 

for example, have shown to be necessary for ToMV replication, suggesting that both are part 

of the replication complex (Ishibashi et al., 2012). 

So far, two classes of host membrane rearrangements have been proposed to be induced by 

the alpha viruses: the invaginated vesicle/spherule type and the double membrane vesicle 

type. In the spherule type model studies have shown that the viral replicases reside in the 

invaginated membrane so that RNA replication takes place in the spherule lumen where a 

neck-like connection to the cytoplasm allows import of the required ribonucleotides and 

export of the newly synthesized RNA destined for translation or packaging into the capsid. 

The double membrane vesicles, on the other hand, are sealed and no connection to the 

cytosol is obvious. As replication still takes place inside these double membrane vesicles, it 

is believed that protein channels or transporters might be involved to link the vesicles interior 

to the cytosol (Paul and Bartenschlager 2013; Figure 4.3).   
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Figure 4.3. Membrane rearrangements proposed for the replication organelles of positive-sense ssRNA 

viruses in the host. A) Vesicle with a neck-like connection to the cytoplasm that allows import of the 

required ribonucleotides and export of the newly synthesized RNA destined for translation or packaging 

into the capsid. B) Closed double membrane vesicle where protein channels or transporters might be 

involved to link the vesicles interior to the cytosol. 

 

Studies in infected plants have shown that TMV p126 and p182 form heterodimers in a 1:1 

ratio to constitute viral replicase complexes that are bound to the membrane of vesicles 

derived from the endoplasmic reticulum (Watanabe et al., 1999; Buck,1999). Besides the 

viral polymerase complex, these vesicles also contain ribosomes and host proteins so that 

both, replication and protein synthesis are taken place in the same site. In addition to the 

heterodimers, a large excess of free p126 has been identified in the plant extracts but its 

biological function has not been yet defined (Watanabe, 1999). Using a TMV p126 mutant 

virus, it was previously shown that p126 is not essential for replication of the virus (Ishikawa 

et al., 1986). Therefore, it was concluded that p126 could control the heterodimer formation 

and that it could be needed at a step in transcription and/or replication after the synthesis of 

the minus RNA strand.  

It is likely that during the early stages of replication of TMV, the positive strands that are 

already acting as translational templates for synthesis of the virus encoded proteins, also 

serve as templates for amplification of the negative strands. During infection, it is known that 

the synthesis of negative strands stops before the synthesis of positive strands (Ishikawa et 

al., 1991), and that later in the replication cycle, once synthesis of the negative strands has 

stopped and much coat protein has been synthesized, most of the progeny positive strands 

Paul and Bartenschlager, 2013 



23 
 

become encapsidated to form virions (Aoki and Takebe, 1975; Palukaitis et al., 1983). As 

mentioned before, the genomic negative strand also serves as template for synthesis of the 

subgenomic mRNAs that code for the movement and coat proteins of the virus.  

Isolated intermediates of replication in TMV infected plants have shown the presence of a 

completely double stranded RNA or replicative form (RF) and a partly double-stranded and 

partly single-stranded RNA or replicative intermediate form (RI) (Buck et al.,1999). If these 

two replicative forms are present in vivo is still unclear.  
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Section V. Resistance and immunity in plants 

The plant immune system by which plants detect and fight a microbial pathogen relies initially 

on a first layer of defense known as pattern triggered immunity (PTI), where conserved 

pathogen associated or microbe associated molecular patterns (PAMPs or MAMPs) are 

recognized by surface receptors better known as pattern recognition receptors (PRR) (Jones 

and Dangl 2006; Boller et al., 2009). It is via this process, for example, that the bacterial 

protein flagellin, through a 22 amino acid peptide, can be recognized by the flagellin receptor 

FLS2 from Arabidopsis (Gómez-Gómez and Boller 2000) and initiate the innate immune 

MAP kinase signaling cascade (MEKK1, MKK4/MKK5 and MPK3/MPK6) that induces the 

expression of several defense genes in the host, resulting in enhanced resistance against 

pathogens (Zipfel et al., 2004). As a counter-defense to avoid PTI, bacteria secrete effector 

proteins in their hosts through the type III secretion system, that allow them to survive and 

further succeed with the infection (Deslandes et al., 2012; Feng et al., 2012). However, these 

effectors can also be recognized and neutralized by the plant's counter-counter defense 

response, constituted by a large class of disease resistance proteins referred as nucleotide 

binding leucine rich repeat receptors (NB-LRRs) for the reason that they contain a nucleotide 

binding domain (NB) and a leucine rich repeat domain (LRR).  

 

 

Fig. 5.1. Zig-zag model for evolution of innate immunity- and silencing-based plant defense against viral and non-viral pathogens (adopted and extended from 

Jones and Dangl 2006 [10]).  In phase 1, plants detect pathogen-associated molecular patterns (PAMPs) and host danger-associated molecular patterns 

(DAMPs) via pattern-recognition receptors (PRRs) to induce pattern-triggered immunity (PTI) and, in the case of viral pathogens, plants additionally detect viral 

double-stranded RNA (dsRNA) to trigger RNA silencing. In phase 2, successful viral and non-viral pathogens deliver effectors/suppressors that interfere with 

both PTI and silencing, resulting in effector-triggered susceptibility (ETS). In phase 3, one effector or suppressor is recognized directly or indirectly by an NB-

LRR protein, activating effector-triggered immunity (ETI), an amplified version of PTI that often passes a threshold for induction of hypersensitive response 

(HR) and programmed cell death (PCD). In phase 4, pathogen isolates are selected that have lost or modified the specifically recognized effector/suppressor, 

and perhaps gained a new effector that can help the pathogen to suppress ETI. A new plant NB-LRR allele is then evolved and selected that can recognize the 

newly acquired effector, resulting again in ETI. 

 
Zvereva & Pooggin 2012, adapted from Jones and 

Dangl 2006. 

Innate Immunity- Silencing Zig Zag Model 
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The activation of such NB-LRR proteins results in an amplified or potent immune response, 

known as effector-triggered immunity (ETI), that frequently is followed by a kind of 

programmed cell death in plants called hypersensitivity response (HR) (Jones and Dangl 

2006; Zipfel et al., 2004). HR has the goal of avoiding further spread of the pathogen within 

the host (Levine at al 1996). Interestingly it has been observed that the overexpression of 

NB-LRRs frequently leads to a constitutive immune response and HR (Zhang Y. et al., 2004), 

even in the absence of the effectors that activate NB-LRRs. 

One of the best characterized host responses to viral infection by a NB-LRR protein is the 

one shown by the gene N derived from Nicotiana glutinosa, which as mentioned before, 

recognizes sequences within the helicase domain of the replicase protein of Tobacco mosaic 

virus (TMV) (Abbink et al., 1998; Erickson et al., 1999; Padgett and Beachy 1993) leading to 

a cascade of defense responses (Baker et al., 1997; Dixon et al., 1994). ). Plants that carry 

the N resistance gene display after 48 hours, localized HR at the site of virus infection and 

the lesions are less than 5mm in diameter. On the other hand, plants which lack the N gene, 

allow TMV to replicate and spread systematically, developing the characteristic mosaic 

phenotype after some days of infection. 

 

An interesting result was obtained by Cole et al., (2004) (Figure 5.2) after infecting with TMV 

two diferent varieties of Nicotiana edwardsonii (N. edwardsonii and N. edwardsonii cv. 

Columbia) which contained an identical sequence of the N resistance gene.  They observed 

that the N. edwardsonii cv. Columbia variety was resistant and able to develop a normal HR 

response against TMV inducing also premature leaf senescence, while the susceptible N. 

edwardsoni variety had an initial HR response but failed to contain the virus, allowing its 

systemic spread accompanied with systemic necrosis. They concluded that the systemic 

movement of TMV in the susceptible plants and the development of systemic necrosis 

indicated that the N gene by itself might not prevent infection in some cases, either because 

some additional defense responses were absent in N. edwardsonii  compared to Columbia, 

or because the N gene itself was defective. Further studies showed that the cv Columbia 

exhibited enhanced resistance to infection by Pseudomonas tabaci and Pseudomonas 

phaseolica, consistent with the idea of a general enhancement of plant defenses in this 

variety. On the other hand, Dinesh-Kumar et al., (2000) showed that point mutations in the P-

loop motif of the N gene 216GMGGVGKT223 in Nicotiana tabacum TMV resistant plants, 

interfered with the wild type N function and that any substitution in the invariant G216 and 

K222 led to loss of resistance to TMV. Interestingly, the substitution of T223S, a conservative 

substitution, led to a partial loss of N function phenotype, where an initial HR could be initially 

detected after TMV infection, but that continued to spread throughout the plant together with 

the virus, resulting in plant death within 5-7 days. It is worth to mention that in these 

experiments the expression of the N protein was never assessed. Further studies have also 

showed that the K207R mutation in the P loop of the resistance protein I-2 from Lycopersicon 

esculentum, failed to induce the HR (Tameling et al., 2006). 
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               MPMI Cole et al., 2004. 

Figure 5.2. A. Necrotic local lesions induced by TMV in a N. edwardsonii leaf (susceptible). B. Necrotic 
local lesions induced by TMV in a "Columbia" leaf (resistant). C. Necrosis associated with the systemic 
movement of TMV in N. edwardsonii from the petiole of the inoculated leaf into the vascular tissue. D. 
Further systemic movement of TMV in N. edwardsonii surrounding the stem, resulting in death of the 
meristem. E. Senescence of a "Columbia" leaf (resistant) inoculated with TMV. 

 

NB-LRR proteins also own an N-terminal domain that can be either a Toll/interleukin 1 

receptor domain (TIR) or a coiled-coiled domain (CNL) (Meyers et al., 2003). Among the NB-

LRRs carrying a coiled-coiled domain are RESISTANT TO P. SYRINGAE 2 (RPS2), 

RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1), RESISTANT TO P. 

SYRINGAE 5 (RPS5), Potato virus X resistance protein (Rx) and Tomato Mi-1 resistance 

protein (Mi). On the other hand, RESISTANT TO P. SYRINGAE 4 (RPS4), RECOGNITION 

OF PERONOSPORA PARASITICA 1 (RPP1), RECOGNITION OF PERONOSPORA 

PARASITICA 5 (RPP5), and Tobacco Mosaic Virus resistance protein (N), contain a TIR 

domain (Dangl and Jones 2001; Staskawicz et al., 1995) (Figure 5.3). Studies have shown 

that the three domains, TIR, NB and LRR, are indispensable for the N-mediated resistance 

response against TMV (Dinesh-Kumar et al., 2000). 

 



27 
 

 

Figure.5.3. Activated nucleotide-binding/leucine-rich-repeat receptors (NB-LRR labeled in bold red) 

trigger Ca
2+

- dependent protein kinases and mitogen-activated protein kinases (MAPK) cascades, reactive 

oxygen species and nitric oxide production, accumulation of the phytohormones salicylic acid (SA) and 

jasmonic acid (JA), sphingolipid release from the endoplasmic reticulum (ER), transcriptional defense 

gene reprogramming and programmed cell death. The Arabidopsis NB-LRRs RPMI, RPS2 and RPS5 

associate with the plasma membrane and are in contact with FLS2 (Qi et al., 2011). Arabidopsis RPS4 

localizes to endomembranes and nuclei and enters the nucleus through nuclear pore complexes. 

 

As mentioned before, recent studies showed that under unchallenged conditions, plant NB-

LRR transcripts can be regulated by 22 nt miRNAs through the production of secondary 

siRNAs or phased siRNAs (phasiRNAs) (Zhai et al., 2011, Li et al., 2012, Shivaprasad et al., 

2012, Boccara et al., 2014-2015, Ouyang et al., 2014), that would deplete the immune 

receptor mRNAs in the absence of pathogens, to prevent an autoimmune response that 

could have  negative consequences on the plant fitness. The process involves the cleavage 

of specific NB-LRR transcripts by 22 nt long miRNAs loaded in AGO1, resulting in 3' 

cleavage products that are subsequently converted into dsRNAs by RDR6 and further 

processed by DCL4 into 21 nt phasiRNAs (Halter and Navarro 2015). These can then act in 

cis or trans and target the transcripts from which they were produced, or other transcripts 

containing the complementary target sequence. Such is the example of the Arabidopsis 

miR472, which as the Nicotiana miR482, targets a specific nucleotide sequence present in 

the P-loop domain of NB-LRR proteins to produce phasi-RNAs. Additional studies in 

Arabidosis also showed that during the pattern triggered immunity response of the plant (PTI) 

upon flg22 treatment, miR472 was down regulated allowing the upregulation of several 

Cui et al., 2015 
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transcripts including the important Arabidopsis plasma membrane RPS5 immune receptor, 

which resides in the same protein complex as the PTI receptor FLS2 (Boccara et al., 2014-

2015, Fei et al., 2013, Qi et al., 2011). RPS5, together with the Arabidopsis RPMI and RPS2, 

associate with the plasma membrane, where they intercept effector activities to initiate 

effector-triggered immunity (ETI) (Axtell et al., 2003, Boyes et al., 1998, Mackey et al., 2003, 

Qi et al., 2012). Furthermore, as mir472 and rdr6 Arabidopsis mutants were more resistant to 

Pto DC3000 expressing AvrPphB, the bacterial effector recognized by RPS5, they concluded 

that miR472 and RDR6 together negatively regulate PTI and ETI. To sum up, upon pathogen 

MAMP detection, miR472 downregulation would be triggered, allowing the accumulation of 

NBB-LRR mRNAs to produce resistance proteins at an early stage of the elicitation (Boccara 

et al., 2014-2015). A list of target genes that accumulate more siRNAs in miR472 

overexpressing transgenic Arabidopsis according to Boccara et al., (2014-2015), is shown in 

figure 5.4. 

 

Figure 5.4. List of target genes in Arabidopsis that accumulate more siRNAs in 

transgenic miR472 overexpressing plants than in WT. (Boccara et al., 2014-2015). 

 

It is important to mention that the conserved P-loop amino acid sequence (GMGGVGKTTL) that 

is recognized by A.thaliana miR472, and that is also present in the N gene of Nicotiana, 

occurs in diverse NB-LRR proteins that are targets of the superfamily of miRs 

miR472/482/2118 (Figure 5.5). Among the resistance proteins in Arabidopsis containing this 

sequence are ADR1-L1, RPS5 and RPP8, involved in resistance responses against the 

oomycete Peronospora parasitica, Pseudomonas syringae expressing the avrPphB effector 

and Turnip crinkle virus (TCV), respectively (Grant et al., 2003; Innes et al., 2005; Cooley et 

al., 2000). 

  

 

RPS5 
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miRNAs Target Conserved Sequences in Members of the NB-LRR Gene Families 

 

 

Figure 5.5. The miR472/482/2118 superfamily is a group of miRNAs that target nucleotides encoding the 

P-loop motif present in NB-LRR proteins. The consensus sequences present either in the miRNAs or their 

targets  demonstrate a high degree of conservation. In the figure, miRNAs from Arabidopsis (ath), tomato 

(sly) and medicago (mtr) are shown in 5' to 3' orientation while the consensus mRNA target sequence is 

shown in 3' to 5' orientation. The conserved amino acid sequence of the P-loop is shown at the lower part 

of the figure.  

 

It is noteworthy to mention that recent studies in Arabidopsis showed a gradual 

overaccumulation of some host miRNA target transcripts during viral infection with ORMV at 

days 7, 14 and 21 post inoculation (Hu et al., 2011). Interestingly, among them were 

transcripts belonging to resistance proteins (NBB-LRRs) regulated by miR472, and 

transcripts from AGO1, AGO2 and chromomethylase (CMT3), regulated by miR168, miR403 

and miR823 respectively, and involved in RNA silencing  (Figure 5.6). 

 

 

 

 

 

 

Fei et al., 2013 
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Figure 5.6. Changes in the level of miRNA target transcripts upon ORMV infection at 7, 14, and 21 dpi. Heatmap shows 

log2-fold change values for the mRNA targets of specific miRNAs. The miRNA reads in mock-treated (m) and ORMV-

infected (inf) plants is shown. Some miRNA targets show increased (red) and decreased (green) levels of expression 

upon infection.                                                                                                                              

AGO1 

AGO2 

NBB-

LRRs 

 

    CMT3 

Hu et al., 2011 
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Section VI. Aim of the present work 

Considering that ORMV is a tobamovirus that can systemically infect Arabidopsis thaliana 

and Nicotiana benthamiana plants and, like other viruses that express RNA silencing 

suppressors, interfere with HEN1-mediated methylation of viral siRNAs and plant sRNAs 

(Akbergenov et al., 2006; Blevins et al., 2006 ), the aim of this work was to find out if a similar 

RNA silencing suppressor could be present in ORMV.  

Even though previous work identified p126 as the silencing suppressor of TMV (Ding et 

al.,2004 ), the precise roles played by the two ORMV replicase components p125 and p182 

during infection have not been determined yet. In the present work, using a wild type and a 

p125-deficient mutant ORMV virus to infect wild type Col-0 and siRNA biogenesis-deficient 

mutant lines of A. thaliana and wild type N. benthamiana, among other approaches, we 

dissect the function of both proteins, employing blot hybridization and deep sequencing of 

sRNAs to characterize their impact on the plant RNA silencing machinery, gaining insight on 

the function of DCLs and RDRs during viral infection, and the innate immunity response of 

the plant.  
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Section VII. Material and methods 

 

7.1. Construction of the ORMV mutant clones 

The plasmid pORMV containing the full-length cDNA of ORMV genomic RNA downstream of 

a T7 promoter and an ampicillin resistant gene was kindly provided by Dr. Fernando Ponz 

(Aguilar et al., 1996; accession NC_004422). Using pORMV (designated here as W) as 

template, a p125 stop codon mutant plasmid (designated as M) was constructed by PCR site 

directed mutagenesis by replacing the p125 amber stop codon TAG with a tyrosine codon 

TAC, in order to produce a mutant viral transcript able to express exclusively the viral 

replicase p182 but not the shorter protein p125 (Figure 7.1). First, using 1ng of pORMV DNA 

in a 50µl reaction in the presence of Vent® DNA Polymerase (NEB), two overlapping PCR 

products, 662 bp and 248 bp long, each containing the tyrosine codon TAC, were separately 

obtained employing the following pairs of primers (0.2 µM final concentration each): 5'- AGG 

TTG TTT ATC GAT GAG GGA TTA ATG CTG -3' (named p180 Cla I_s) and 5’-GTC GAT 

CTG TAA TTG gTA TTG GGT ACC CGA CTC TAC-3’ (named p126_stop_sup_as) for the 

first product , and 5’-TCG GGT ACC CAA TAc CAA TTA CAG ATC GAC ACA GTG-3’ 

(named p126_stop_sup_s) and 5'- GAA AAC CGG CCG TTC TTT CGG CAC TTG CAC -3' 

(named p180 Xma III_as ) for the second product. The thermal cycling conditions were one 

cycle of 95°C for 2 min, 34 cycles of 95°C for 30 sec, 62°C for 40 sec, and 72°C for 1min, 

followed by a final cycle of 72°C for 10 min. Second, the two overlapping PCR products were 

used for "PCR ligation" to get a longer PCR product (881bp) containing the TAC mutation. 

1ng of the 662 bp product and 0.37ng of the 248 bp product were put together in a 50 µl 

reaction in presence of Vent® DNA Polymerase (NEB) and the primers p180 Cla I_s and 

p180 Xma III_as (0.2 µM final concentration). The thermal cycling conditions were 95°C for 2 

min, 34 cycles of 95°C (30 sec), 62°C (40 sec), and 72°C (1 min), followed by a final 

extension at 72°C (10 min).The resulting 881bp product was gel purified, trimmed with Cla I 

and Xma III restriction enzymes (NEB) at sites located in the flanking PCR primers, and 

cloned between ClaI and Xma III sites of pORMV in place of the wild type ORMV sequence. 

The resulting mutant clone M was selected following transformation of E.coli DH5α 

competent cells at 37°C in LB medium with Ampicillin 100mg/L and screening 12 colonies by 

plasmid isolation (Qiagen Miniprep kit) and restriction analysis with ClaI and XmaIII. The 

presence of the mutation TAC was confirmed for one of the clones by DNA sequencing 

(Fasteris SA) and this clone M was used for further experiments. 

 



33 
 

 

Figure 7.1. a) Wild type virus construct producing both p125 and p182 proteins. b) Mutant virus construct 

where the p125 amber stop codon TAG was replaced by the tyrosine codon TAC through site directed 

mutagenesis in order to exclusively produce p182.  

As the available pORMV clone (W) did not display wild type disease symptoms, we 

sequenced sRNAs from Arabidopsis plants infected with wild type ORMV virions and 

reconstructed de novo the 6,303 nt wild-type ORMV genome sequence as a single sRNA 

contig from two independent sRNA libraries (Seguin et al., 2014a; Figure 7.2). The 

reconstructed genome differed from the original pORMV clone W at three positions of the 

ORMV sequence (G-to-A at position 12, A-to-T at position 231, and G-to-T at position 5612). 

To correct these errors, two synthetic DNA fragments and suitable restriction sites were used 

in order to obtain the reconstructed wild type ORMV genome clone, designated W41 

(deposited in the Genbank as KF137561). Briefly, the original clone W was digested with 

EcoNI and NarI in order to replace a 418 bp fragment with the synthetic fragment containing 

an A at position 12 and a T at position 231 (Figure 7.3 and Supplementary Table S1). This 

partially repaired clone was named W4. W4 was then digested with NcoI and PstI to replace 

a second fragment with the 1Kb synthetic fragment containing a T at position 5612 and a NsiI 

site just downstream of the ORMV sequence and upstream of the PstI site, to yield clone 

W41. The fully repaired clone W41 was tested for infectivity in N. benthamiana plants and 

found to be completely biologically active, causing the disease symptoms indistinguishable 

from those of the wild type ORMV sap. In addition, a third partially repaired clone was 

obtained (clone W1) after digestion of the original clone (W) with NcoI and PstI to repair 

exclusively the 1Kb fragment as described before. The same procedure was followed in 

parallel to repair the p125 mutant clone M and get the constructs M4 and M41(Figure 7.3; 

Supplementary Table S1 and Figure 7.4). 

 

 

 

 

 

a 

b 
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Figure 7.2. Maps of viral siRNAs from the original ORMV clone with two mismatches or perfect matching 

to the reference ORMV genome. The graphs plot the number of 20-25 nt viral siRNA reads (redundant and 

non redundant at each nucleotide position of the ORMV genome. Blue bars above the axis represent 

sense reads and red bars below the axis represent antisense reads. Mismatches between the original 

contig and the reference genome are indicated with pink arrows at three positions (G-to-A at position 12, 

A-to-T at position 231, and G-to-T at position 5612).   
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Figure 7.3. The plasmids containing the full-length ORMV genome sequence (W-original or W41-

corrected) behind the T7 promoter are depicted schematically: the restriction sites Pst I or Nsi I, just 

downstream of the genome (located in multiple cloning site; MCS) were used for linearization of the 

plasmids respectively, followed by run-off transcription by T7 polymerase in the presence of a cap 

analog. The resulting in vitro transcripts (ORMV genomic RNA) were taken for mechanical inoculation of 

Arabidopsis or N. benthamiana plants. 
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                                     In vitro transcription of ORMV constructs 

 

Fig. 7.4. Genome organization of ORMV with the expression of p125, p182, movement protein (MP) and 

coat protein (CP). The leaky STOP codon of p126 is shown as linear vertical line in red in the two wild-

type constructs (W41 and W4) and the mutation of p126 STOP codon is shown as a red circle in the two 

mutant constructs (M41 and M4). The T-to-G substitution at position 5612 (mutating the MP stop codon 

and thereby elongating viral MP by an additional 19 amino acids) is shown as a blue circle in the 

constructs W4 and M4. Location of the T7 promoter and the restriction sites (NsiI and PstI) used to 

linearize the constructs before in vitro transcription are shown. 

 

7.2. Gateway expression vectors for ORMV p125, p125/182 and p182 proteins 

In order to express the ORMV proteins transiently in Nicotiana benthamiana 16c plants or 

stably in transgenic Arabidopsis thaliana, the Gateway technology was used to create the 

expression vectors using site directed recombination. 

Using as a template the pORMV clone W, the coding sequences of p125 and p125/p182 

were amplified as attB-PCR products (Gateway Technology) in the presence of Vent® DNA 

Polymerase (NEB) and the following pairs of primers: for p125, 5’-gggg aca agt ttg tac aaa 

aaa gca ggc tAC AcC ATG GCA CAA TTT CAA CAA ACA G-3’(AttB1_Rep_s) and 5’-gggg 

ac cac ttt gta caa gaa agc tgg gtC CTA TTG GGT ACC CGA CTC TAC CT-3’ 

(AttB2_p125_as), and for p125/p182, 5’-gggg aca agt ttg tac aaa aaa gca ggc tAC AcC ATG 

GCA CAA TTT CAA CAA ACA G-3’ (AttB1_Rep_s ) and 5’-gggg ac cac ttt gta caa gaa agc 

tgg gtc TCA AAC AAA AAA CAA ATC TTT AAA CAA CC-3’ (AttB2_p182_as). In order to 

amplify the coding sequence of p182 alone as an attB-PCR product, the mutant ORMV clone 

M was used as a template in the presence of Vent® DNA Polymerase (NEB) and the 

following primers AttB1_Rep_s 5’-gggg aca agt ttg tac aaa aaa gca ggc tAC AcC ATG GCA 

CAA TTT CAA CAA ACA G-3’ and AttB2_p182_as 5’-gggg ac cac ttt gta caa gaa agc tgg 

gtc TCA AAC AAA AAA CAA ATC TTT AAA CAA CC-3’. All three attB-PCR products were 

separately cloned in a Gateway® pDONR™/Zeo Vector, and through a BP Clonase reaction 

(Gateway® BP Clonase® Enzyme Mix from Invitrogen™) three different entry clones were 

obtained. Through an LR reaction (Gateway® LR Clonase® Enzyme mix) and using three 

different destination vectors for each entry clone (pEarleygate binary constructs 100, 201, 

and 202 (Earley et al., 2006), the following expression vectors were obtained 100-p125 , 

201-p125 , 202-p125,100-p182, 201-p182, 202-p182, 100-p125/p182, 201-p125/p182 and  

202-p125/p182. All the expression vectors contained the T-DNA right and left borders, a 
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CaMV 35S promoter and an octopine synthase terminator, as well as kanamycin and 

phosphinotricine (or herbicide BASTA) resistance marker genes for bacterial and plant 

selection, respectively. The 100 vector contained the wild type ORMV protein sequences, 

while the 201 and 202 vectors contained an HA-tag and a FLAG-tag sequence at the N 

terminal end of the ORMV proteins, respectively. All final Gateway plasmids were amplified 

in E.coli DH5α bacteria in the presence of kanamycin (Figure 7.5). 

 

link: http://www.indiana.edu/~pikweb/Vectors%20homepage.html  

Figure 7.5. pEarleyGate vectors used to express p125, p125/p182 and p182 in Agrobacterium tumefaciens. 

 

7.3. Agrobacterium transformation  

Agrobacterium tumefaciens strain GV3101 (rifampicin-resistant strain) was transformed by 

electroporation with the pEarleyGate constructs 100-p125, 201-p125, 202-p125,100-p182, 

201-p182, 202-p182, 100-p125/p182, 201-p125/p182 and  202-p125/p182 (for expression of 

p125, p182, p125/182 and their HA- and FLAG-tagged versions). For each construct, 50µl of 

Agrobacterium competent cells were mixed with 200 ng of purified DNA in a pre-chilled 0.2 

cm cuvette, and electroporated in a Bio-Rad GenePulser at 2.5 kV, 200 Ω, and 25 μF. After 

electroporation, 1ml of LB liquid medium was immediately added to the mix and the culture 

was kept at 28°C for 2 hours. 100 µl of the cell culture were then spread in LB agar medium 

with kanamycin (100 mg/L) and rifampicin (10 mg/L) and incubated at 28°C for 2-3 days until 

colonies could be seen. In order to screen for the colonies carrying the vectors with the 

correct ORMV protein sequences in the correct orientation, 2 colonies from each construct 

were chosen for colony PCR, using the following pair of specific primers: 5’-GTG GAT TGA 

TGT GAT ATC TCC ACT G-3’ (CaMV35Spro_#1) and  5’-AGA TAC TCC AAC TCA AGA 

GTC CTT AGA CCA-3’(Ormv323_as). The Agrobacterium colonies containing the expected 

product size after electrophoresis were considered for further experiments. 
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7.4. Transgenic plants 

Transgenic Arabidopsis plants were obtained by floral dipping transformation with 

Agrobacterium tumefaciens (Zhang et al., 2006). Two month old plants of Arabidopsis 

thaliana (genotype Col 0) at an early bolting stage, grown in soil at 20-25°C in the open 

greenhouse, were cleaned from flowers and left only with closed flower buds, and then were 

dipped in an Agrobacterium tumefaciens suspension for transformation (3 plants per 

construct). Briefly, a single Agrobacterium colony harboring the construct of interest in the 

binary vector, was inoculated in  2 ml of liquid LB medium containing kanamycin (100 mg/L) 

and rifampicin (10 mg/L) and incubated at 28°C for 1 day. This feeder culture was used to 

inoculate 200 ml of the same medium which was grown further at 28°C for 16 hours until 

OD600=0.6. The cells were collected by centrifugation for 10 minutes at 4000g at room 

temperature, and gently resuspended in 200 ml of freshly made 5% sucrose solution. 0.02% 

of Silwet L-77 was added to the bacterial suspension which was placed in a plastic bag and 

immediately after, each plant was completely dipped in the suspension for 10 seconds. After 

removing the excess of liquid present on the plants by draining them on tissue paper, they 

were put on a tray and kept in the dark at 20°C overnight. Next day the plants were put back 

in the light chamber at 20°C until siliques with mature seeds were produced one month later. 

The harvested seeds were put on soil to germinate and the seedlings were sprayed with 

Basta (Bayer CropScience) solution in water (250 mg/L) two times per week. The Basta 

resistant seedlings (T1) were transferred to new pots and grown at 20°C until seeds were 

produced. As we were expecting segregation, these seeds were also put to germinate on soil 

and the seedlings were sprayed with the same Basta solution 2 times per week. The 

resistant seedlings (T2) were transferred to new pots, and the same procedure was repeated 

until Basta-resistant generations T3 and then T4 were obtained. 

 

7.5. Genotyping by PCR 

The transgenic Arabidopsis plants expressing the ORMV proteins 125 and 125/182 were 

identified by selecting the Basta resistant plants after 5 days and PCR genotyping using the 

following specific primers: 5’-GTG GAT TGA TGT GAT ATC TCC ACT G-3’ 

(CaMV35Spro_#1) and  5’AGA TAC TCC AAC TCA AGA GTC CTT AGA CCA-

3’(Ormv323_as), where the thermal cycling conditions were one cycle of 95°C for 2 min, 30 

cycles of 95° for 30 sec, 58°C for 30 sec, and 72°C for 45 sec, followed by a final cycle of 

72°C for 10 min. The transgenic plants expressing protein 182 were also identified by 

selecting the Basta resistant plants and using the following specific primers for PCR 

genotyping: 5’-GTG GAT TGA TGT GAT ATC TCC ACT G-3’ (CaMV35Spro_#1) and 5' 

CGC GTC GAG ATG CTA AAT 3' (Ormv141_as) where the thermal cycling conditions were 

one cycle of 95°C for 2 min, 30 cycles of 95° for 30 sec, 55°C for 30 sec, and 72°C for 40 

sec, followed by a final cycle of 72°C for 10 min. The transgenic lines expressing the wild 

type p125 protein from the 100-p125 transgene showed a strong phenotype which made 

easier their identification.  

 

 

 



39 
 

7.6. Agroinfiltration in Nicotiana benthamiana 

Agrobacterium tumefaciens strains carrying a binary plasmid with the green fluorescent 

protein coding sequence (GFP) or the potyviral helper component proteinase coding 

sequence (HcPro), both under the control of CaMV 35S promoter, kindly donated by D. 

Baulcombe, and Agrobacterium strains harboring the ORMV coding sequences of interest 

also under the control of the CaMV 35S promoter (100-p125 , 201-p125 , 202-p125,100-

p182, 201-p182, 202-p182, 100-p125/p182, 201-p125/p182 and  202-p125/p182), were 

initially grown on LB agar medium supplied with kanamycin (100 mg/L) and rifampicin (10 

mg/L) at 28°C overnight and then in 20ml of liquid LB medium with kanamycin (100 mg/L) 

overnight at 28°C at 180rpm. After centrifugation of the cultures at 1100 g for 10 min, each 

bacterial pellet was resuspended in 40ml of MES (10 mM)-MgCl2 (10 mM) buffer pH 5.6. The 

bacterial suspensions were induced with 150 µM  acetosyringone for 3 hours at room 

temperature and adjusted at OD600 = 0.5 with MES-MgCl2 pH 5.6 buffer before 

agroinfiltration. 

Equal volumes of each cell suspension were infiltrated on the abaxial surface of the leaves of 

Nicotiana benthamiana 16C line with a 1 ml syringe (without needle) after first scratching 

slightly the tissue with a needle. Plants infiltrated exclusively with MES buffer (mock) or the 

Agrobacterium suspension carrying the 35S:GFP construct were used as controls. Mixed 

agroinfiltrations of the same Agrobacterium GFP suspension plus the Agrobacterium carrying 

the putative viral silencing suppressors (35S:GFP + 35S:HcPro or 35S:ORMV constructs) 

were made in a ratio 1:1 on the rest of the plants. Images of the agroinfiltrated leaves under 

UV light were taken at days 5 and 8 post infiltration in order to monitor the GFP transient 

expression in absence or presence of the putative viral silencing suppressors. Nicotiana 

plants were initially grown in soil in the open green house at 20-25°C and then kept under the 

same conditions after agroinfiltration. 

 

7.7. Plant growth and virus inoculation conditions 

Arabidopsis thaliana (ecotype Col-0) plants and its mutant/transgenic derivatives including 

the RNA silencing mutants (rdr126 and dcl234) and transgenic plants p125, p182 and 

p125/182, were grown in soil at 20-25°C in the open greenhouse, or in Sanyo light chambers 

at 20°C under controlled light conditions (12 hours light/12 hours dark cycles). Nicotiana 

benthamiana wild type plants were grown in soil at 20-25°C in the open greenhouse or in 

Sanyo light chambers at 25°C also under 12 hours light/12 hours dark cycles. Upon ORMV 

inoculation, Arabidopsis and Nicotiana plants were kept at 25°C in the open greenhouse 

under 12 hours light/12 hours dark cycles or in Sanyo chambers at the same conditions. 

 

7.8. Plant inoculation 

Arabidopsis Col-0 plants and siRNA-deficient mutant lines rdr126 and dcl234 (3 plants of 

each), at a stage of about 5 weeks post germination, were mechanically inoculated using 

celite 545 (Merck) with the wild type ORMV virions contained in the sap of ORMV-infected 

Nicotiana benthamiana leaves or with in vitro RNA transcripts from the above described 

ORMV clones. The sap was prepared by grinding infected leaves in PBS buffer (10 mM 

Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4). Briefly, 20 µl of sap were 
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distributed on two leaves per plant (10 µl per leave) and mixed with a pinch of celite 545 

(Merck). After rubbing softly with the finger the upper surface of the leaves with the mix, the 

plants were sprayed with water and put back in the light chamber at 25°C under controlled 

light conditions (12hours light/12 hours dark cycles). The in vitro transcripts were obtained 

from the plasmid DNA of pORMV (W) and its derivatives W41, W4, W1, M, M41, M4 and M1 

linearized by NsiI or PstI  digestion (or directly from non linearized plasmids) in a 4 hours 

reaction at 37°C using a T7 Megascript Kit (Ambion) and the cap analog m7G(5')ppp(5')G 

(Ambion) to cap the viral RNA, according to the manufacturer's instructions. Briefly, for a 20 

µl reaction, 2 µl of each 75 mM nucleotide solution (ATP, CTP and UTP) were added to 1 µg 

of pORMV DNA resuspended in 4 µl of DEPC water. Further 2 µl of a 15 mM GTP solution 

and 3 µl of the 6 mM cap analogue solution were added to promote the capping of the 

transcripts, together with  2 µl of 10X T7 reaction buffer, 2 µl of T7 Enzyme Mix (T7 RNA 

polymerase from the kit) and 1 µl of RNase inhibitor (RNasin from Promega 40 units/µl). After 

2 hours of incubation at 37°C, 1 µl of 75mM GTP was added to the mix and left at 37°C for 2 

hours more. Before inoculation, the final volume of the reaction was diluted with DEPC-

treated water in a 1:4 ratio from where 20 µl were used as an inoculum per plant mixed with 

celite  and 20 µl were left for agarose gel analysis. The use of linearized (at the NsiI/PstI site) 

or non-linearized plasmids from each ORMV clone showed no difference on their relative 

infectivity on the plants, suggesting that when non linearized pORMV cDNA is used for 

transcription, different sizes of RNAs are produced and then cleaved, probably by host 3'-5' 

exonucleases, generating the genomic viral RNA (Figure 7.6). 
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Figure 7.6 Diagram illustrating the mechanism by which ORMV genomic RNA containing a 3'-extension is 

probably obtained, by in vitro transcription using a non-linearized vector containg the viral cDNA 

sequence, and presumably processed in the host upon inoculation, by a plant 3'-5' exonuclease into its 

mature form. 
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7.9. Small RNA blot hybridization analysis in Arabidopsis and Nicotiana benthamiana 

For both blot hybridization and Illumina deep-sequencing, the leaf tissue samples from 

ORMV sap-infected and mock-inoculated Arabidopsis plants (Col 0, rdr126 and dcl234) were 

harvested at days 5, 14 and 22 post-inoculation respectively, and frozen in liquid nitrogen. 

Total RNA was isolated from 0.5 g of ground frozen tissue, obtained from a pool of three 

plants, using TRI Reagent (SIGMA) according to the manufacturer's protocol. 30 µg RNA 

were resuspended in 10 µl loading buffer (95% formamide, 20mM EDTA pH 8.0, 0.05% 

bromophenol blue, 0.05% xylene cyanol), heated at 95°C for 2 min and loaded in a 15% 

polyacrylamide-urea gel (with a 19:1 ratio of acrylamide to bis-acrylamide and 8 M urea). The 

gel was run using an SE 600 electrophoresis device (Hoefer, San Francisco, CA) at 300V for 

4 hours and the RNA was then transferred to a Hybond N+ membrane (Amersham) by 

electroblotting (Bio-Rad Trans-Blot Electrophoretic Transfer Cell) in TBE buffer at 10 V 

overnight at 4°C. The RNA was crosslinked to the membrane twice with 1200 μ joules x100 

UV light in a Stratalinker 1800 (Stratagene).Blot hybridization was made at 35°C overnight in 

UltraHyb-oligo buffer (Ambion) using as a probe, one or more short DNA oligonucleotides 

end labeled with P32 gamma ATP (Hartmann Analytic, Germany) by T4 polynucleotide 

kinase (Roche) and purified through MicroSpin G-25 columns (Amersham) according to the 

manufacturer's recommendations. The membrane was washed 3 times with 2X SCC, 0.5% 

SDS for 30 min at 35°C. The signal was detected by a phosphor screen after 1 to 6 days of 

exposure using a GE Typhoon 8600 imager (GE Healthcare Life Sciences). For repeated 

hybridizations the membrane was stripped with 0.5X SSC, 0.5% SDS for 30 min at 80°C and 

then with 0.1X SSC, 0.5% SDS for 30 min at 80°C. The DNA oligonucleotides were designed 

and ordered in Eurofins S.A. 

Total RNA from ORMV infected Nicotiana benthamiana plants was extracted at day 5 and 26 

post inoculation by taking 0.5 g of frozen ground tissue and adding 5 ml of GHCL extraction 

buffer (6.5 M guanidine hydrochloride; 100 mM Tris-HCL, pH 8; 100 mM sodium acetate, pH 

5.5; 100 mM beta-mercaptoethanol). Once the mix was centrifuged at 10000g for 10 minutes 

at 4°C, the supernatant was treated according to the manufacturer's standard protocol with 

TRI Reagent (SIGMA). RNA was quantified with a ND-1000 UV-Vis Spectrophotometer 

(NanoDrop Technologies) and 10 to 30 µg total RNA were used for electrophoresis and blot 

hybridization as described before. 

 

7.10. Long RNA blot hybridization analysis in Arabidopsis and Nicotiana benthamiana 

Total RNA was isolated from 0.5 g of ground frozen tissue, obtained from leaves of individual 

plants or pools of plants, using TRI Reagent (SIGMA) according to the manufacturer's 

protocol. 20 µg RNA were resuspended in 6 µl of DEPC treated water (Diethylpyrocarbonate 

0.1% v/v) and mixed with 6 µl RNA Gel Loading Dye (2X) (Thermo Scientific™), heated at 

65°C for 3 minutes and loaded in a 1.2% denaturing agarose gel (1.2% agarose, 3% 

formaldehyde in MOPS buffer). A RiboRuler High Range RNA Ladder from 200 to 6000 

bases (Thermoscientific) was also loaded into the agarose gel.The gel was run in Sub-Cell 

GT Cell (BioRad) nucleotide  electrophoresis device at 100 V with MOPS buffer (0.02 M 

MOPS pH 7.0, 1mM EDTA, 5mM NaOAc) for 4 hours and then the RNA was transferred to a 

Hybond N+ membrane (Amersham) by capillary transfer in presence of transfer buffer 

(50mM NaH2PO4; 5mM EDTA pH 6.5 in DEPC water) for 24 hours. The RNA was 

crosslinked twice to the membrane  with 1200 μ joules x100 UV light in a Stratalinker 1800 
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(Stratagene) and blot hybridization was made as described before for the small RNA blot 

hybridization. 

 

7.11. β-elimination 

For the β-elimination experiments, 20 µg of total RNA were dissolved in 17.5 µl borax buffer, 

pH 8.6 [4.375 mM borax (Fluka), 50 mM boric acid (Fluka)] and 2.5 µl of freshly prepared 0.2 

M sodium periodate (Fluka) solution. As an internal control of the reaction, 250 pg of 22-nt 

non methylated GFP RNA (5'-uucaccuugaugccguucuucu-3', Dharmacon Inc.) were also 

included. The reaction mixture was incubated for 10 min at room temperature in the dark 

and, after addition of 2 µl glycerol, the incubation was repeated. The mixture was dried using 

SpeedVac, dissolved in 50 µl borax buffer, pH 9.5 (33.75 mM borax, 50 mM boric acid, pH 

adjusted by NaOH) and incubated for 90 min at 45°C. After the treatment, RNA samples 

were purified through lllustra MicroSpin G-25 Columns (GE Healthcare Life Sciences), dried 

and used for RNA blot hybridization as described before. 

 

7.12. Deep sequencing and bioinformatic analysis of viral and plant small RNAs 

Total RNA was isolated from pools of three plants, from Arabidopsis or Nicotiana, using the 

Trizol method as described above. Ten micrograms of total RNA for each sample from mock-

inoculated and ORMV-infected wild-type or mutant plants were taken for preparation of 

sRNA libraries following Illumina's modified protocol for the sRNA library construction kit. The 

19–30 nt RNA fraction from total RNA samples was purified on a 15% TBE–Urea acrylamide 

gel. A 5′-adenylated single-stranded adapter was first ligated to the 3′-end of the RNA using 

T4 RNA ligase without ATP followed by a second single-stranded adapter ligated at the 5′-

end of the RNA using T4 RNA ligase in the presence of ATP. The resulting products were 

purified on a 10% TBE–Urea acrylamide gel before performing the cDNA synthesis and PCR 

amplification. The resulting libraries were sequenced on an Illumina Genome Analyzer 

HiSeq2000 following the manufacturer's protocol. After trimming the adaptor sequences, the 

datasets of all and unique reads were mapped to the reference genomes of Arabidopsis 

thaliana Col-0 (TAIR10), Nicotiana benthamiana (Niben.genome.v0.4.4) and ORMV 

(NC_004422.1), W41 (KF137561.1) or M41 and taken for further bioinformatics analysis. The 

results of bioinformatics analysis of the viral and host sRNA populations are summarized in 

(Supplementary Dataset S1). The mapping to the reference genomes was done using the 

bioinformatics tools Burrows-Wheeler Aligner (BWA) 0.5.9 and MISIS 

(www.fasteris.com/apps; Seguin et al., 2014b). For each reference genome and each sRNA 

size (20 to 25 nt), MISIS counted total number of reads, reads in forward and reverse 

orientation (Supplementary Dataset S2) and thus generated single-base resolution maps 

(Supplementary Dataset S3;) where for each position starting from the 5′ end of the 

reference genome, the number of matches starting at this position in forward (first base of 

the read) and reverse (last base of the read) orientation for each read length is given. 

 

 

 

file:///C:/Users/Ulrich/Desktop/Supplementary%20Dataset%20S1.xlsx
file:///C:/Users/Ulrich/Desktop/Supplementary%20Dataset%20S2.xlsx
file:///C:/Users/Ulrich/Desktop/Supplementary%20Dataset%20S3.xlsx
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7.13. Western analysis 

Leaves from Arabidopsis thaliana or Nicotiana benthamiana were collected and ground with 

liquid nitrogen. 30mg of ground frozen material were resuspended in 150 µl of 6X Laemmli 

SDS-PAGE Sample Loading Buffer (0.35 M Tris-HCl pH 6.8, 22.4% glycerol, 10% SDS, 

0.6M DTT, bromophenol), vortexed briefly and heated for 3 minutes at 95°C. The samples 

were vortexed again briefly and centrifuged at 12 000g for 2 minutes to get a clear 

supernatant. SDS-PAGE was carried out in the discontinuous system described by Laemmli 

(Laemmli, 1970) employing a 9% SDS-PAGE gel and a 4% stacking gel in a Mini-PROTEAN 

Tetra Cell (BIO-RAD). 12µl aliquots from the supernatants were loaded in the gel together 

with 5µl of a pre-stained protein ladder (Thermo Scientific PageRuler Plus Prestained Protein 

Ladder) used as a reference of molecular weight. After 1 hour electrophoresis in Tris-glycine 

buffer pH 8.3 (25 mM Tris-Cl, 192 mM glycine, 0.1% SDS) at 100 V per gel, the proteins 

were transferred to an Amersham Hybond-P PVDF membrane 0.45 µm (GE Healthcare) for 

two hours in the presence of transfer buffer pH 8.3 (25 mM Tris-HCl, 192 mM glycine, 

0.025% SDS, 20% (v/v) ethanol). The membrane was blocked at room temperature with 1% 

BSA (Sigma) in TBS-Tween buffer (25 mM Tris-HCl pH 7.4, 3 mM KCl, 140 mM NaCl, 0.1% 

Tween 20) for 1 hour. After 3 washes with TBS-Tween buffer, the following primary 

antibodies were used according to the different assays in TBS-Tween-1% BSA buffer at the 

indicated dilutions and incubated with the membrane at 4°C overnight: rabbit anti-125/182 

replicase (1:4000) (raised against ORMV p125-specific synthetic peptide, see below), rabbit 

anti-AGO1 from Arabidopsis (1:8000) (Agrisera), rabbit anti-AGO2 from Arabidopsis (1:4000) 

(kindly provided by D. Baulcombe). After washing the membrane 3 times with TBS-Tween 

buffer, a secondary goat anti-rabbit antibody (1:10000) (Agrisera) was added in TBS-Tween-

1% BSA at room temperature for 1 hour. After three additional washes with TBS-Tween 

buffer, the membrane was revealed by incubation at room temperature with the Amersham 

ECL Prime Western Blotting Detection Reagent (1ml of solution A + 1ml of solution B) for 3 

minutes. Images were taken with an Azure c600 Imager.    

In order to detect the ORMV p125 and p182, primary anti-peptide antibodies (Eurogentec sa) 

were raised in rabbits immunized with a synthetic peptide with the amino acid sequence 

GITRADKDNVRTVDS present in the ORMV p125 and p182 replicase. After being purified, 

the antibodies were used at the suggested dilution (1:4000) giving positive results for both 

proteins.  
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Section VIII. Results  

8.1. p125 is a strong RNA silencing suppressor 

As Blevins et al., (2006) demonstrated that ORMV infection interferes with HEN1-mediated 

methylation of plant and viral sRNAs, and Csorba et al., (2007) showed that p122 from TMV 

acts as a potent RNA silencing suppressor by binding siRNA and miRNA duplexes, 

interfering with their 3' terminal methylation, we hypothesized that the analogue protein 

encoded by ORMV, p125, could have a similar silencing suppression function. To test this 

hypothesis, we used the classical assay with transgenic Nicotiana benthamiana (16c line) 

plants expressing the green fluorescence protein (GFP), where p125, p182 and p125/p182 

from ORMV were transiently expressed in the leaves by agroinfiltration, as described in 

Material and Methods, to test their potential to interfere with the local silencing of the GFP 

transgene (Fig 8.1 and 8.2.) 

 

 

 

  

ORMV protein expression 

cassettes 

 

 

 

 

 

Figure 8.1. Schematic representation of ORMV protein expression constructs carrying ORMV p125, 

p125/182 or p182 protein coding sequences (with or without N-terminal HA- or FLAG-tags) under control 

of the CaMV 35S promoter, included in the binary vectors (pEarleyGate vectors) used to transform 

Agrobacterium tumefaciens by electroporation. 
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Figure 8.2. Transient protein expression in N. benthamiana with Agrobacterium. Nicotiana benthamiana 

16c line leaves were infiltrated with 1:1 mixtures of Agrobacterium tumefaciens cells (adjusted to a final 

OD600= 0.5) containing a binary plasmid expressing GFP and a binary plasmid expressing p125, p125/p182 

or p182. Upon agroinfiltration, pGFP expression in the presence of the expressed viral proteins was 

evaluated under UV light at different time points, to identify the viral proteins that could be interfering 

with GFP RNA silencing. 
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The results revealed that p125 but not p182, is a strong suppressor of GFP silencing 

comparable to the viral suppressor HC-Pro (pHC-Pro), even in the presence of the 

hemagglutinin (HA) and flagellin (FLAG) N-terminal tags (Fig. 8.3). Indeed, suppression of 

the GFP transgene silencing could be confirmed by the permanence of the green fluorescent 

spot on the leaves of the plants where p125 was expressed, seen under UV light after 6 and 

8 days post infiltration (dpi). A reduction of the silencing suppressor activity of p125 in the 

presence of p182 was also observed, indicated by the decreased fluorescence on the leaves 

in comparison to the strong fluorescence detected when p125 was only expressed (Fig. 8.3). 

We concluded that p125 is a strong GFP silencing suppressor.  

 

 

Figure 8.3 Effects of the transient expression of p125, p125/182 and p182 constructs on GFP transgene-induced 

silencing in N. benthamiana 16c leaves. In this experiment each construct was expressed on a separate leaf. GFP 

fluorescence images of the leaves under UV light were taken at 6 and 8 days dpi, following infiltration with an agro 

strain carrying a GFP expression cassette in combination with buffer (no suppressor control), an agro strain carrying 

the potyviral pHC-Pro (strong silencing suppressor control), or each ORMV protein expression cassette. The ORMV 

constructs without tag (p125, p125/182 and p182) contain the wild type ORMV protein sequences, while the constructs 

p125-HA, p125/182-HA and p182-HA have an HA-tag and the constructs p125-FG, p125/182-FG and p182-FG have a 

FLAG-tag fused to the N-terminus of the ORMV proteins. 
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Blot hybridization analysis revealed that the strong suppression of GFP silencing by p125 

and pHC-Pro was not associated with a reduced accumulation of GFP transgene-derived 

siRNAs of sense or antisense polarities (Figure 8.4.), which is consistent with previous 

research implicating the duplex sRNA-binding activity of both HC-Pro (Garcia-Ruiz et al., 

2015) and p125 homologs (Kurihara et al., 2007; Csorba et al.,2007) in silencing 

suppression. Further supporting this hypothesis, we found that transient expression of either 

p125 or pHC-Pro increased the accumulation of miR482*, which is normally degraded 

(Figure 8.4.). Note that the addition of an HA tag strongly compromised p125-mediated 

stabilization of miR482*, that neither p182 nor its HA- and FLAG-tagged derivatives were 

able to stabilize miR482*, and that p125 failed to stabilize miR482* when co-expressed with 

p182 (Figure 8.4.), demonstrating that the increased accumulation of miR482* is correlated 

with the strong GFP silencing suppression phenotypes exhibited by p125, p125-FG and 

pHC-Pro. 

 

Figure 8.4. Effects of transient expression of the ORMV p125, p125/182 and p182 constructs on transgene-induced 

silencing (measured as relative GFP fluorescence; see Figure 8.3) and the accumulation of GFP siRNAs and plant 

miRNAs (examined by sRNA blot hybridization at 10 dpi) in N. benthamiana GFP transgenic 16c plants. The sRNA blot 

was successively hybridized with DNA oligonucleotide probes specific for GFP sense and antisense siRNAs and plant 

miR482, mi160 and miR482*. sRNA sizes are indicated. The EtBr-stained gel is shown as a loading control.  
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8.2. p125 transgene expression has an effect on miRNAs and tasiRNAs in Arabidopsis  

In order to investigate the impact of p125, p182 and p125/182 on endogenous small RNAs, 

the same constructs were used to stably express these proteins in Arabidopsis thaliana as 

described in Material and Methods. 

Phenotyping of Arabidopsis transgenic lines carrying each of the nine ORMV replicase 

constructs revealed that the expression of p125 without tags produced strong developmental 

abnormalities, resulting in adult plants exhibiting serration of the rosette leaf margins and 

curling of the stem. This is a phenotype remarkably similar to that produced by ORMV 

infection with the only difference that the latter produces chlorosis in older leaves (Fig. 8.5.) 

 

 

 

 

 

 

 

 

 

 

Figure 8.5. Representative phenotypes of the p125-transgenic plants (T2-plants of line 32) before and after bolting (see 

Fig. 8.8 for other lines and controls), compared to ORMV-infected A. thaliana Col-0 plants (the rosette leaves following 

early inoculation and the stem following late inoculation). 
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Phenotypes of Arabidopsis transgenic plants carrying the wild type p125 

 

Figure 8.6. Phenotypes of Arabidopsis transgenic lines carrying the wild-type p125 expression construct. 

At maturity, seeds from each dipped T0 plant were collected and placed on soil to germinate. Transgenic 

seedlings were identified by their resistance to the herbicide BASTA (see Materials and Methods). The 

typical serrated morphology of the rosette leaves is shown for T2 and T3 plants obtained from 2 different 

T1 events (lines 32 and 33). A "zig-zag" stem curling phenotype can also be observed in T2 plants from 

both lines at the bolting stage. 

 

The severity of the developmental defects exhibited by p125-transgenic lines correlated with 

the accumulation levels of some plant miRNAs (miR168 and miR472) and passenger strands 

of some miRNA (miR472*) and tasiRNA (siR255*) duplexes (Figure 8.7a. lanes 

2,3,4,6,7,14,17,19,21). 
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Small RNA blot hybidization analysis of p125, p182 and p125/182 transgenic lines 

 

Figure 8.7a. sRNA blot hybridization analysis (15% PAGE) of total RNA samples from individual plants of Arabidopsis 

transgenic lines carrying p125 (T3-plants of line 32, lanes 2-3), p125-HA (T3-plants of line 40, lanes 4-5), p125-FG (T3-

plants of line 49, lanes 6-7), p182 (T3-plant of line 1, lane 8), p182-HA (T3-plant of line 2, lane 9), p182-FG (T3-plant of 

line 1, lane 10), p125/182 (T2-plants of line 0, lanes 13-14; T2-plant of line 3, lane 15), p125/182-HA (T2-plants of line 0, 

lanes 13-14; T2-plant of line 3, lane 15), and p125/182-FG (T3-plants of line 1, lanes 16-18) expression constructs, or 

control wild-type plants (Col-0; lanes 1,11-12). The blot was successively hybridized with DNA oligonucleotide probes 

specific for plant miR168, miR403, miR173, miR472*, siR255 and siR255* and for Met-tRNA. sRNA sizes are indicated 

on each scan. The EtBr stained gel is shown as loading control.  
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The presence of HA- or FLAG-tag somewhat compromised the impact of p125 transgene 

expression on these siRNAs (Fig. 8.7a. lanes 4-7), which correlated with much weaker 

developmental abnormalities in p125-HA and p125-FG lines (Fig. 8.8). Likewise, weaker 

developmental abnormalities were observed in some of the transgenic lines carrying 

p125/p182 constructs (Fig. 8.9), in accordance with an intermediate impact on the 

endogenous plant sRNAs (Fig 8.7a, lanes 13,15,16,18,20).  In contrast, transgenic lines 

carrying the p182 constructs, regardless of the flag status, did not exhibit any developmental 

abnormalities or aberrant accumulation of the examined plant siRNAs (Fig. 8.9. and Fig. 

8.7a. lanes 8-10). Taken together, the relative activities of p125, p182 and p125/182 

constructs stably integrated in A. thaliana transgenic plants correlate with the relative 

activities of the corresponding constructs transiently expressed in N. benthamiana leaves, 

indicating that p125 is a strong silencing suppressor that interferes with sRNA biogenesis 

and plant development. In contrast, transient or stable expression of p182 alone did not have 

any apparent effect, although we were not able to obtain transgenic lines where p182 

expression was detectable by Western blotting (Figure 8.7b) 

 

 

 

  

 

 

 

 

Figure 8.7.b. Western blot analysis using a p125/p182 specific antibody , showing the presence of p125 (although not 

p182) in Arabidopsis W41 infected plants (lane 3), and in Arabidopsis p125 transgenics (p125 line 32 and p125-HA line 

45, lanes 4 and 6 respectively). No p182 can be detected in Arabidopsis p182 transgenic plants (lane 5). 
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Phenotypes of Arabidopsis transgenic lines carrying p125 with N-terminal HA or FLAG 

(FG) tags 

 

Figure 8.8. Phenotypes of Arabidopsis transgenic lines carrying p125 constructs with HA- or FLAG (FG)-

tags. Images of the pools and of representative individuals of Basta-resistant T2-plants from two 

independent T1 transgenic events for p125-HA (lines 40 and 45) and p125-FG (lines 50 and 49). Note that 

p125-HA transgenic lines 40 and 45 exhibit almost no serration of the rosette leaves, and line 45 has a 

normal stem. p125-FG transgenic line 50  exhibits a strong serrated leaf phenotype and an aberrant 

silique arrangement at the bolting stage, while line 49 has two different rosette leaf phenotypes. 
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Phenotypes of A. thaliana transgenic lines carrying p182 and p125/182 constructs 

 

Figure 8.9. Phenotypes of A. thaliana transgenic lines carrying p182 or p125/182 transgenes without tag or with HA or 

FG tags. The top panels contain images of the pool and of representative individuals of Basta-resistant T2-plants from 

two T1 transgenic events for each construct: p182 (lines 3 and 2), p182-HA (lines 10 and 5) and p125-FG (lines 3and 4). 

Note that the transgenic T2 plants carrying the p182 constructs, regardless of tag status, exhibit normal rosette leaf 

phenotypes without serration. No stem curling or other inflorescence abnormalities were observed after bolting (not 

shown). The bottom panels show pictures of representative Basta-resistant T2-, T3- and T4-plants from independent T1 

transgenic events for p125/182 constructs with and without tag: p125/182 (line 0), p125/182-HA (lines 5 and 3) and 

p125/182-FG (line 1). Note that some of the T2 plants exhibit slightly abnormal leaf phenotypes but no obvious 

serration or stem curling (not shown). 
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8.3. Infection of Arabidopsis Col 0, rdr126, dcl234 with ORMV M41 or W41. 

To better understand the induction and suppression of antiviral silencing during ORMV 

infection we performed an in-depth molecular characterization of wild-type A. thaliana (Col-0) 

and of the siRNA biogenesis-deficient triple mutant lines dcl234 (dcl2-5 dcl3-1 dcl4-2) 

(Blevins et al., 2006) and rdr126 (rdr1-1 rdr2-1 rdr6-15) (Blevins et al., 2011) at 5, 14 and 22 

days post inoculation (dpi) with wild-type ORMV or a p125 stop codon mutant (UAG-to-UAC) 

derivative expressing p182 but not p125 (Figure 8.10e). The plants were inoculated either 

with ORMV sap or with in vitro transcripts of viral gRNA from wild-type and mutant virus 

clones, designated W41 and M41, respectively (see Materials and Methods Figure 7.4; 

Figure 8.10e). Viral RNAs and proteins were analyzed by Northern (Figures 8.10a and 8.10c) 

and Western (Figure 8.10f) blotting respectively, while viral and endogenous sRNAs were 

analyzed by blot hybridization (Figures 8.10b and 8.10d) and then by Illumina sequencing. 
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Figure 8.10. Blot hybridization analyses of viral and plant long RNAs, small RNAs and proteins in systemic 
(noninoculated) leaves of A. thaliana (Col-0, dcl234, or rdr126) and N. benthamiana (N.b.) plants infected 
with wild-type virus (ORMV, W41) or its p125 stop codon mutant (M41). Panels (A) and (C) show long RNA 
analysis (1% agarose denaturing gel) of ORMV positive-sense RNAs (gRNA, sgRNA-MP, sgRNA-CP) and 
negative-sense RNAs [gRNA(-) and CP(-)], and of A. thaliana AGO1 and AGO2 mRNAs in mock-inoculated 
(-) and virus-infected (+) Col-0, rdr126 and dcl234 plants at 14 and 22 days post-inoculation (dpi) with 
ORMV sap (A), and at 5 dpi with W41 and M41 in vitro transcripts (C). The cropped scans represent the 
blots successively hybridized with DNA oligonucleotide probes specific for the viral CP sense and 
antisense strands and the AGO1 and AGO2 coding strands (sequences for these and all other probes are 
given in Supplementary Table S1). The positions of RNA size markers are indicated on each scan. An 
abundant plant rRNA species cross-hybridized with the viral CP antisense-specific oligonucleotide probe 
is indicated by an asterisk. The question mark (?) indicates a presumptive viral MP(-) RNA species, the 
reliable detection of which is prevented by probe cross-hybridization to a co-migrating plant RNA 
species. EtBr-stained rRNA is shown as a loading control. Panels (B) and (D) show high-resolution sRNA 
analysis (15% PAGE) of the same total RNA samples from panels (A) and (C). The blots were successively 
hybridized with DNA oligonucleotide probes specific for viral antisense siRNAs derived from ORMV p125 
and CP, as well as for plant miRNA (miR168, miR403, miR472, miR173), miRNA* (miR472*), siRNA (siR255) 
and siRNA* (siR255*) species. sRNA sizes are indicated. The EtBr-stained gel is shown as loading 
control. Panel (E) shows the genome organization of ORMV wild-type (W41) and mutant (M41) viruses. 
The ORFs are boxed and the encoded proteins (p125, p182, MP, and CP) are indicated above them. 
Positions of the p125 stop codon (UAG) in W41 and its mutation (UAG to UAc) in M41 are indicated. Viral 
genomic (gRNA) and subgenomic (sgRNA-CP and sgRNA-MP) RNAs are depicted by lines. Panels (F) and 
(G) show Western blots of ORMV p125 and p182 and A. thaliana AGO1 and AGO2 in Col-0, rdr126, dcl234 
and ago2 plants infected with M41 or W41 at 5, 15 and 22 dpi. The membranes were incubated with anti-
p125, anti-AGO1, or anti-AGO2 antibodies, and were stained with Amido Black afterwards to use the 
Rubisco bands as loading controls. The positions of p125 and p182 are indicated with arrows. Note that, 
in this particular experiment, the ORMV p125/p182-specific antibody cross-hybridized to a plant protein 
migrating just above p182 ("Col-0 mock" lane). 
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8.4. Double-stranded intermediates of viral replication are major substrates for DCLs 

At all three time points, viral gRNA and sgRNAs accumulated to higher levels in dcl234 than 

in Col-0 plants (Figures 8.10a and 8.10c), coinciding with lower levels of viral siRNAs 

(Figures 8.10b and 8.10d). This finding is consistent with previous results implicating DCL4 

along with DCL2 and DCL3 in ORMV siRNA biogenesis and antiviral defense (Blevins et al., 

2006). In the rdr126 host, viral gRNA and sgRNAs also accumulated to higher levels than in 

Col-0 (Figures 8.10a and 8.10c). However, despite the absence of three RDRs known to 

generate siRNA precursors, viral siRNA production was not abolished in this background 

(Figures 8.10b and 8.10d). A. thaliana has three additional RDR genes of unknown function 

(RDR3a, RDR3b and RDR3c) (Wassenegger and Krczal, 2006) whose potential contribution 

to viral siRNA biogenesis in rdr126 plants cannot be formally ruled out. However, it would be 

plausible for DCLs to directly generate ORMV siRNAs from intermediate dsRNA forms 

arising during gRNA replication and sgRNA transcription; as a matter of fact, dsRNA species 

with sizes corresponding to viral gRNA and sgRNAs have previously been isolated from 

TMV-infected plants (Palukaitis et al.,1983).  

In agreement with the latter possibility, a genome-sized long antisense RNA (designated 

gRNA(-)) likely functioning as a template for gRNA replication and sgRNA transcription, as 

well as a relatively more abundant short antisense RNA, comparable in size to sgRNA-CP 

and hence designated CP(-), were detected by means of strand-specific ORMV probes 

(Figures 8.10a and 8.10c). Since CP(-) RNA was produced in both Col-0 and rdr126 plants 

and accumulated to levels comparable to those of sgRNA-CP in every case (Figures 8.10a 

and 8.10c), this antisense viral RNA is likely synthesized by the viral replicase using sgRNA-

CP as a template. In both wild-type and mutant plants, gRNA(-) accumulation peaked at 14 

dpi and then decreased at 22 dpi (Figure 8.10a), indicating a decline in viral replication as 

gRNA(+) molecules (copied from gRNA(-) templates) are packaged into virions owing to the 

presence of increasing amounts of viral CP. At 5 dpi, gRNA(-) was detectable only in dcl234 

(Figure 8.10c), suggesting that DCLs are targeting dsRNA viral replication intermediates 

since the earliest stages of viral infection.  

 

8.5. Small RNA sequencing uncovers mechanisms of viral siRNA biogenesis 

Illumina sequencing of the 19-30 nt fraction from total RNA samples of mock-inoculated and 

ORMV sap-infected A. thaliana Col-0, rdr126 and dcl234 plants at 14 and 22 dpi (used for 

Northern analysis in Figure 8.10a) yielded 12 libraries, each containing 3.1 to 7.8 million 

reads (Supplementary Dataset S1). The majority of these reads fell into a size range of 20 to 

25 nts, known to be populated by endogenous plant miRNAs and siRNAs as well as viral 

siRNAs. This size range was selected for further bioinformatics analysis (see Materials and 

Methods). 

  

file:///C:/Users/Ulrich/Desktop/Supplementary%20Dataset%20S1.xlsx
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Figure 8.11. Illumina sequencing counts of endogenous and viral sRNAs in mock-inoculated and ORMV-
infected A. thaliana (Col-0, rdr126, or dcl234) at 14 and 22 dpi. (A) The graph shows the percentages of 
virus- and plant-derived sRNAs that mapped to ORMV or Arabidopsis genome reference sequences with 
zero mismatches in the pool of total 20-25 nt reads. (B) The graphs show the percentages of each size 
class for 20-25 nt virus- or Arabidopsis-derived sRNA reads that mapped to the corresponding reference 
sequence with zero mismatches. 
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Zero-mismatch mapping of the sRNA reads to the 120 Mb A. thaliana TAIR10 reference 

genome and the 6.3 Kb ORMV genome revealed that viral sRNAs represented a large 

fraction (27% at 14 dpi and 23% at 22 dpi) of the 20-25 nt sRNA population in ORMV-

infected Col-0 plants (Figure 8.11a; Supplementary Dataset S1). This proportion was even 

larger in ORMV-infected rdr126 plants (35% at 14 dpi and 31% at 22 dpi) (Figure 8.11.a). 

However, since endogenous siRNA biogenesis is diminished in rdr126, thereby increasing 

the proportion of 21-nt reads (mostly representing miRNAs) within the 20-25 nt Arabidopsis 

reads (Figure 8.11b), we decided to normalize viral reads to the number of 21-nt endogenous 

Arabidopsis reads. The resulting figures were roughly equivalent between rdr126 and Col-0 

at 14 dpi (894,214 vs 908,107) and only slightly higher in rdr126 at 22 dpi (898,249 vs 

792,706) (Supplementary Dataset S1). Moreover, the size profiles of viral reads did not differ 

significantly between rdr126 and Col-0; in both cases, 21-nt reads predominated (67-70% of 

20-25 nt viral reads), followed by 20-nt (13-14%) and 22-nt (7-9%) reads (Figure 8.11b). 

Likewise, no substantial differences in the 5'-nucleotide profile (Supplementary Dataset S1) 

or viral genome distribution (Figure 8.12) of viral reads were observed between Col-0 and 

rdr126 at any time point. Taken together, our findings indicate that RDR1, RDR2 and RDR6 

are not essential for viral siRNA biogenesis.  

The size profile of endogenous sRNAs changed significantly upon ORMV infection: at both 

14 dpi and 22 dpi, 21-nt reads became the most abundant, surpassing the 24-nt reads that 

dominated in mock-inoculated Col-0 plants (Figure 8.11b), (Supplementary Dataset S1). A 

similar shift in sRNA size profiles was previously reported for ORMV-infected A. thaliana at 7 

dpi, where it was found to correlate with the accumulation of many miRNAs as well as 

miRNA* and siRNA* passenger strands (Hu et al., 2012), and at 22 dpi in an earlier study 

(Blevins et al., 2006). We validated these findings for selected miRNAs and tasiRNAs by blot 

hybridization (Figures 8.10b and 8.10d). Notably, the accumulation of miRNAs and miRNA* 

species was generally more pronounced at the later time points (14 and 22 dpi rather than 5 

dpi), and the levels of both miRNA and miRNA* were comparable between Col-0, dcl234 and 

rdr126 plants (Figures 8.10b and 8.10d). The latter finding indicates that endogenous RDRs 

are not involved in the upregulation of miRNA and miRNA* species triggered by ORMV 

infection, and validates the normalization procedure followed here for comparing viral siRNA 

levels between siRNA-deficient mutant lines and Col-0.  

The number of viral sRNA reads was substantially lower in ORMV-infected dcl234 plants 

compared to Col-0 or rdr126 individuals. In this genetic background, viral reads represented 

only 11% and 12% of 20-25 nt reads at 14 and 22 dpi respectively which, when normalized 

per million Arabidopsis 21-nt reads, represents frequencies 4- and 3-fold lower than those of 

the corresponding time points in rdr126 or Col-0 plants (Figure 8.11b; (Supplementary 

Dataset S1). The size profile of viral reads in dcl234 plants was different as well at the two 

time points, with 21-nt reads constituting only 23% of 20-25 nt viral reads, i.e., 3 times lower 

than in rdr126 or Col-0 plants (Figure 8.11b). This is consistent with previous results 

implicating DCL4 in the biogenesis of 21-nt viral siRNAs in ORMV-infected Arabidopsis 

(Blevins et al., 2006). However, our finding that viral siRNA production was not abolished in 

dcl234 plants indicates that in this species the viral siRNA precursors can also be processed, 

although in a less efficient and precise manner, by DCL1 or some other RNase III-like 

endonuclease(s) that produces an sRNA population of broader and more evenly distributed 

size classes, exhibiting comparable numbers of 20-, 22-, 23-, 24- and 25-nt reads in addition 

to the slightly more abundant 21-nt reads (Figure 8.11b). Note that the Illumina protocol used 

file:///C:/Users/Ulrich/Desktop/Supplementary%20Dataset%20S1.xlsx
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in our study only sequences RNA molecules bearing 5'-monophosphate and 3'-hydroxyl 

groups, which are typical of DCL and RNase III cleavage products. 

An inspection of single-nucleotide resolution maps of ORMV-derived 20-25 nt reads revealed 

that viral siRNAs span the entire virus genome in both sense and antisense orientations 

without gaps in any strand (Supplementary Dataset S3; Figure 8.12). No strand bias was 

observed in Col-0 or rdr126 plants (Figure 8.12), supporting our hypothesis that siRNAs are 

processed from RDR-independent dsRNA precursors. In contrast, a strong bias towards 

gRNA(+) polarity was observed in dcl234 plants, where sense reads exceeded antisense 

reads ca. 9-fold at both 14 dpi (324,360 vs 34,565) and 22 dpi (420,344 vs 46,262). 

Interestingly, most antisense reads belonged to the 21-nt size class (Figure 8.12) or the less 

abundant 20-nt size class, while sense reads were more evenly distributed across other size 

classes (Supplementary Dataset S2). This finding implies that in dcl234, viral dsRNA 

replication intermediates are processed into 21-nt siRNA duplexes, presumably by DCL1, 

whereas viral single-stranded RNAs of sense polarity, i.e., gRNA(+) and sgRNAs, give rise to 

single-stranded sRNAs of all sizes, presumably through random cleavage by DCL1 or other 

RNase III-like endonuclease(s). In agreement with this hypothesis, in Col-0 and rdr126 plants 

(possessing all four DCLs) a substantial sense strand bias was only detected among the low 

abundance 23-nt, 24-nt and 25-nt reads (Supplementary Dataset S2; Figure 8.12). 
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Figure 8.12. Single-nucleotide resolution maps of 20-25 nt viral siRNAs from ORMV-infected A. thaliana 

(Col-0, rdr126, or dcl234) at 14 and 22 dpi. For each plant genotype and time point, the histograms plot the 

numbers of total 20-25-nt, 21-nt or 24-nt viral sRNA reads at each nucleotide position of the 6303 bp 

ORMV reference genome sequence (mapped with zero mismatches). The bars above the axis represent 

sense reads starting at each position and those below represent antisense reads ending at the respective 

position. A scaled ORMV genome diagram is shown above the histograms, with the ORFs boxed and their 

nucleotide positions indicated. 
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8.6. p125 is not essential for viral replication or movement but has a strong impact on 

silencing suppression and disease severity 

Viral silencing suppressors can interfere with the antiviral activities of specific components of 

the RNA silencing machinery, which explains why the susceptibility of wild-type plants to 

certain viruses is often undistinguishable from that of mutant plants lacking the targered 

components. For instance, it was only by using suppressor-deficient mutants of Cucumber 

mosaic virus (CMV) and Turnip mosaic virus (TuMV) that the involvement of RDR6 and 

RDR1 in the biogenesis of secondary viral siRNAs and antiviral defense in Arabidopsis was 

demonstrated (Wang et al., 2010; Garcia-Ruiz et al., 2010; Wang et al., 2011).). Therefore, in 

an effort to dissect the involvement of the short and long (p125 and p182, respectively) 

components of the ORMV replicase complex in silencing suppression, we generated a 

mutant virus that can synthesize p182 but not p125 by changing the stop codon of the latter 

from TAG to TAC (which codes for tyrosine, the amino acid normally incorporated at this 

position via translational readthrough in other tobamoviruses) (Figure 8.10e). The mutation 

was introduced into ORMV infectious clone W41, where the 6303 nt consensus viral 

sequence (Seguin et al., 2014a) is placed under control of a T7 RNA polymerase promoter, 

as well as into its W4 derivative, which carries a T-to-G substitution at position 5612  (See 

Material and Methods Fig 7.4), obtaining the mutant clones M41 and M4. The parental 

clones W41 and W4 produce, upon delivery into A. thaliana Col-0 or N. benthamiana plants 

via inoculation of non linearized in vitro transcripts, a disease whose symptoms and severity 

are similar from those appearing after inoculation with wild-type ORMV virions (Figure 8.13 

and Supplementary Figures S1a-S1C).  

 

 

 

rdr126 W41 15dpi rdr126 W4 15dpi 

Col 0 virions 15dpi Col 0 W41 15dpi 
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Figure 8.13. Arabidopsis plants infected with virions or non linearized W41/W4 in vitro transcripts at 15dpi 

and Nicotiana plants infected with virions or non linearized W41/W4 in vitro transcripts at 5dpi. The 

disease symptoms are similar when virions or non linearized in vitro transcripts are used. 

 

Following inoculation into A. thaliana Col-0, rdr126 and dcl234 plants, clones M41 and M4 

exhibited lower virulence than their parental constructs, producing less severe symptoms by 

22 dpi (Supplementary Figure S1C), which correlated with a reduced accumulation of viral 

gRNA(+) (Supplementary Figure S1G). RT-PCR/sequencing analysis revealed that in all the 

M41- and M4-infected Col-0, rdr126 and dcl234 plants of that time point, a p125 stop codon 

had reappeared in most viral gRNA molecules via an UAC-to-UAA reversion, and only a 

small fraction of viral RNA still carried the mutant UAC codon at this position (Supplementary 

Figures S1D-S1F). These results confirm earlier findings in TMV, where a similar UAG to 

UAU mutation at the stop codon was reverted in vivo to UAA (Ishikawa et al., 1986) (Figure 

8.14). 

  

dcl234 W41 15dpi dcl234 W4 15dpi 
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                            Arabidopsis thaliana 12 dpi 

 

 

It is notable that even the impairment in siRNA biogenesis in rdr126 and dcl234 plants (see 

e.g. the tasiRNA siR225 and the repeat-associated siRNA siR1003 in Supplementary Figure 

S1H) did not compensate for the strong selective disadvantage suffered by p125-deficient 

viruses, as evidenced by their displacement by stop codon revertants along the course of the 

infection. However, it should be pointed out that the p125-deficient mutants could replicate 

and move systemically during the early stages of infection, because no p125 expression was 

detected in systemic leaves of M41-infected Col-0, rdr126 or dcl234 plants at 5 dpi (Figure 

8.10f upper blot, lanes 2, 5, 8, figure 8.15a lanes 2 and 5). Accordingly, in both M41 and W41 

infected plants, leaves with primary veins of purple color could be detected at 5 dpi, 

indicating the induction of anthocyanins probably due to systemic infection (Himeno et al., 

2014) (Figure 8.15b). 

  

Figure 8.14. Arabidopsis plants Col-0, 

dcl2/3/4 and rdr1/2/6  infected with 

non linearized M41 and W41 in vitro 

transcripts showing disease 

symptoms at 12dpi.  The original M41 

virus had already reverted at this time 

point upon infection. 
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  Mock 

  W41 
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Figure 8.15a. Western blot analysis of p125 and p182 accumulation in Arabidopsis Col-0 and rdr1/2/6 

plants infected with M41 or W41 at 5dpi, using a ORMV p125/p182 specific antibody. Amidoblack staining 

of rubisco is shown as loading control. The presence of ORMV p182 and p125 can de detected in W41 

infected plants in a ratio of 1:10 as reported by Watanabe et al.,1999. Only p182 and not p125 can be 

detected in M41 infected plants, although in less amount than in W41 infected plants. 
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Figure 8.15b. Early signs of viral infection in leaves of Arabidopsis Col-0, rdr1/2/6 and dcl2/3/4 plants at 

5dpi. Notice the purple color of the primary veins on some leaves of the plants infected with M41 or W41, 

compared to the Col-0 mock whose veins remain white and unaffected. 

 

                                              

 

 

 

Consistently, no reversion of the stop codon was detected by deep sequencing and 

bioinformatic analysis M41 gRNA-derived small RNAs at 5 dpi. The gRNA and sgRNAs of 

M41 accumulated in all these plants, albeit at lower levels than in W41-infected plants 

(Figure 8.10c, compare lanes 2, 5, and 8 with lanes 3, 6, and 9). Notably, mutant virus RNAs 

accumulated to lower levels in rdr126 than in Col-0, indicating that replication and/or 

systemic movement of the p125-deficient virus are not promoted, but restricted in the 

absence of RDR1, RDR2 and RDR6. On the other hand, they accumulated to higher levels in 

dcl234 than in Col-0, indicating that the three DCLs substantially inhibit replication and/or 

systemic movement of the p125-deficient virus, presumably by processing viral dsRNA 

replication/transcription intermediates into siRNAs. Viral gRNA accumulated to comparable 

                  Arabidopsis plants infected with M41 or W41 5dpi 

  Mock   Col-0 M41   Col-0 W41 

  rdr1/2/6 M41   rdr1/2/6 W41 

  dcl2/3/4 M41   dcl2/3/4 W41 

Purple veins on leaves 

of M41 or W41 infected 

plants (Col 0, rdr1/2/6 

and dcl2/3/4) at 5dpi 
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levels in M41- and W41-infected dcl234 plants (Figure 8.10c, lane 8 vs 9), as was the p182 

protein (Figure 8.10f, upper blot, lane 8 vs 9), which, by contrast, could not be detected in 

M41-infected Col-0 and rdr126 plants at 5 dpi (Figure 8.10f, upper blot, lanes 2 and 5), or 

was found in the same samples in less amount than in the W41-infected plants in a second 

Western (Figure 8.15 lanes 2 and 5). Hence, p125-deficient viruses could efficiently translate 

p182 and replicate gRNA only when DCL-mediated viral siRNA biogenesis was impaired. 

To further examine whether p125 might affect viral siRNA biogenesis by inhibiting the activity 

of plant RDR1, RDR2 or RDR6, and whether p182 alone has any influence on the plant 

sRNA-generating machinery, we deep-sequenced sRNAs from Col-0 and rdr126 plants 

systemically infected with M41 or W41 at 5 dpi. Bioinformatic analysis of viral sRNA reads 

revealed no stop codon reversion, confirming that the mutant virus population had not yet 

been overtaken by p125 stop codon revertants at this time point. W41-derived sRNAs 

comprised a large fraction of the 20-25 nt reads in both Col-0 and rdr126, even larger than 

that of endogenous Arabidopsis sRNAs reads (Figure 8.16a). 
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 Figure 8.16. Illumina sequencing counts of endogenous and viral sRNAs in mock-inoculated and virus 

(W41, or M41)-infected A. thaliana (Col-0 or rdr126) at 5 dpi and N. benthamiana (N.b.) at 5 and 26 dpi. (A) 

Percentages of virus- and plant-derived sRNAs (mapped to ORMV and plant genome reference sequences 
with zero mismatches) in the pool of total 20-25 nt reads. (B) Size class percentages for 20-25 nt virus- 

and plant-derived sRNA reads (mapped with zero mismatches to the corresponding reference sequence). 
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When normalized to 21-nt endogenous Arabidopsis reads, the accumulation of viral siRNAs 

was similar in Col-0 (2,800,511) and rdr126 plants (2,852,744) (Supplementary Dataset S1). 

Moreover, an analysis of viral sRNA size classes (Figure 8.16b), single nucleotide resolution 

maps (Figure 8.17; Supplementary Dataset S3; and 5'-nucleotide profiles (Supplementary 

Dataset S1) did not find any significant difference between the ORMV-derived siRNAs of Col-

0 and rdr126 plants, indicating that RDR1, RDR2 and RDR6 do not play a significant role in 

the generation of siRNAs from wild-type virus at 5 dpi and thus extending the scope of our 

above-described findings for 14 and 22 dpi. Mutant (M41) virus-derived sRNAs accumulated 

to much lower levels than W41-derived sRNAs in both Col-0 and rdr126 (Figures 8.16a and 

8.10d), which correlated with the lower amount of viral long RNAs in the corresponding 

samples (Figure 8.10c). Although the normalized numbers of viral 20-25 nt reads for M41 in 

rdr126 (181,155) were 2.5-fold lower than in Col-0 (442,742), which might be interpreted as a 

sign of RDR involvement in the production of secondary viral siRNAs in wild-type plants, as 

argued in earlier studies (Wang et al., 2010; Garcia-Ruiz et al., 2010; Wang et al., 2011), it 

should be pointed out that the amount of M41 long RNAs from which siRNAs are derived is 

also approximately 3-fold lower in rdr126 than in Col-0 (Figure 8.10c, lane 5 vs 6). 

Furthermore, there are no significant differences between the size profiles (Figure 8.16b), 

single-nucleotide resolution maps (Figure 8.17) and 5'-teminal nucleotide identities 

(Supplementary Dataset S1) of mutant virus-derived sRNAs between Col-0 and rdr126. 

Taken together, our data indicate that at the early stages of infection, host RDR activity 

appears to promote the replication of the p125-deficient mutant virus in a manner 

independent of viral siRNA biogenesis, which operates mainly on a population of RDR-

independent primary viral sRNAs. Also, viral p125 does not appear to inhibit the activities of 

any of the three host RDRs during wild-type virus infections, as no differences are apparent 

between the studied RDR-dependent endogenous siRNAs in wild-type or mutant virus 

infections (Figure 8.10d; Supplementary Figure S1H). 
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Figure 8.17 Single-nucleotide resolution maps of 20-25 nt viral siRNAs from virus (W41, or M41)-infected 
A. thaliana (Col-0 or rdr126) at 5 dpi and N. benthamiana (N.b.) at 5 and 26 dpi. For each plant genotype 
and time point, the histograms plot the numbers of total 20-25 nt, 21-nt and 24-nt viral sRNA reads at each 
nucleotide position of the 6303 bp W41 or M41 reference genome (mapped with zero mismatches); the 
bars above the axis represent sense reads starting at each respective position and those below represent 
antisense reads ending at the respective position. A scaled ORMV genome diagram is shown above the 
histograms, with the ORFs boxed and their nucleotide positions indicated. 
  



71 
 

In order to verify and extend the above findings to another host plant species, we tested if 

p125 deficiency also affects ORMV infection in the solanaceous plant N. benthamiana. 

Inoculation of N. benthamiana seedlings with wild-type ORMV virions or with in vitro-

transcribed RNA from W41 or W4 resulted in severe disease symptoms, including stem 

necrosis and tilting at 5 dpi, followed by rapid plant death (Seguin et al., 2014a) 

(Supplementary Figure S1B). In contrast, inoculation with in vitro-transcribed RNA from 

p125-deficient viruses (M41 or M4) did not result in plant death, although disease symptoms 

were observed in upper (systemic) leaves of M41- and M4-infected plants at 26 dpi 

(Supplementary Figure S1B). The accumulation of viral gRNA and sgRNAs at 5 dpi for M41 

and M4 was about 2-fold lower than for W41 and W4, and at 26 dpi the levels of mutant virus 

RNA were significantly lower than those of the wild-type, suggesting that plant defense 

mechanisms dampen virus replication in the absence of p125 (Supplementary Figure S1I). 

 

Importantly, in systemic leaves of the mutant virus-infected plants no reversion of the 

mutated stop codon was observed at 5 dpi, and only a small fraction of viral RNA contained a 

reverted stop codon at 26 dpi (Figure 8.18 and Supplementary Figure S1E). Thus, the p125-

deficient virus is able to replicate and spread systemically in N. benthamiana plants. 

Nonetheless, in one of the three repeated experiments there was detectable reversion of the 

stop codon and restoration of p125 expression in a single M41-inoculated plant 

(Supplementary Figure S1K), and when the sap of M41- or M4-infected plants was used to 

inoculate new individuals, p125 expression was quickly restored, leading to rapid death of 

the hosts. Thus, even though p125 is not essential for ORMV infection in N. benthamiana, 

p125-deficient viruses are eventually overtaken by stop codon revertants, although the 

process takes place at a much slower rate than in A. thaliana. 
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Figure 8.18 Infection of N.benthamiana with in vitro transcripts. The figure shows the disease symptoms 

caused by infection with in vitro transcripts from M41 or W41 ORMV constructs at 26 dpi, using a non-

linearized pORMV vector in both cases. The plant infected with W41 wilted and presented stem necrosis 

already at 5 dpi while the M41 infected was even flowering at 26 dpi. 

 

 

 

 

Deep sequencing of sRNAs revealed that at 5 dpi (before plant death), viral siRNAs are 

highly abundant in N. benthamiana plants inoculated with W41, since viral sequences 

comprise 65% of total 20-25 nt reads (Figure 8.16a). In contrast, p125-deficient virus-derived 

siRNAs accumulated to much lower levels at 26 dpi (9% and 20% of total 20-25 nt reads for 

M41 and M4, respectively) (Figure 8.16a; Supplementary Dataset S1), which correlates with 

lower levels of gRNA and sgRNAs. An analysis of single-base resolution maps of viral 20-25 

nt reads revealed that the two most abundant viral siRNA size classes (21-nt and 22-nt) were 

equally distributed between both strands alongside the entire virus genome, and that siRNA 

hotspot patterns were similar between M41 and W41 (Figure 8.17; Supplementary Dataset 

S3;). Furthermore, 5'-terminal nucleotide frequency in viral reads was also comparable 

between M41 and W41 (Supplementary Dataset S1). Thus, despite substantial differences in 

overall accumulation levels, DCL-mediated processing of viral siRNAs from dsRNA 

precursors does not appear to be influenced by p125 in N. benthamiana, in agreement with 

our findings for A. thaliana. 

 

8.7. p125 interferes with the methylation of viral and endogenous sRNAs during ORMV 

infection 

It has been shown that ORMV interferes with HEN1-mediated methylation of viral siRNAs as 

well as of endogenous siRNAs and miRNAs in A. thaliana (Akbergenov et al., 2006; Blevins 

et al., 2006). To test whether p125 is responsible for this effect, we assessed the methylation 

status of sRNAs from W41- and M41-infected plants by a classical β-elimination method. If 

RNA is not modified at the 3'-terminal nucleotide, β-elimination removes it, leaving a 

truncated RNA with a 3'-phosphate whose mobility in denaturing 15% PAGE is shifted by two 

  Mock   M41 W41 
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nucleotides (Akbergenov et al., 2006) (see non-methylated 22-nt RNA (+) control, Figure 

8.19). HEN1 methylates plant miRNAs and siRNAs at the 2'-hydroxyl of their 3'-terminal 

nucleotide, which blocks β-elimination. As can be observed (Figure 8.19), A. thaliana miR168 

and miR173, A. thaliana siR255 and N. benthamiana miR168 and miR482 are methylated in 

non-infected plants and therefore fully resistant to β-elimination. In contrast, a significant 

fraction of viral siRNAs and endogenous sRNAs in wild-type virus (W41)-infected A. thaliana 

and N. benthamiana was sensitive to β-elimination (Figure 8.19, lanes 4 and 10), while both 

viral and endogenous (miR168 and miR482) siRNAs from N. benthamiana plants infected 

with the mutant virus (M41) were resistant to β-elimination (Figure 8.19, lane 6). This 

indicates that in the absence of p125, the virus is not able to block the methylation of viral 

siRNAs. Taken together, our data indicate that p182, when expressed in the absence of 

p125, does not interfere with HEN1-mediated methylation of viral and endogenous sRNAs. 
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Figure 8.19. β-elimination analysis of viral and endogenous sRNAs in plants infected with wild-type (W41) 
or p125-deficient (M41) virus. Two aliquots were taken from each total RNA sample from N. benthamiana 
(N.b.) systemically infected with W41 (5 dpi) or M41 (26 dpi), or A. thaliana (Col-0) infected with W41 (22 
dpi). One was treated with periodate (+) and the other with buffer (-) and both were analyzed by 15% PAGE 
and blotted. The blot was successively hybridized with DNA oligonucleotide probes specific for viral 
antisense siRNAs derived from ORMV p125 or CP genes, for plant miRNAs (miR168, miR482), miRNA* 
(miR482*), siRNA (siR255) and siRNA* (siR255*) species and for a synthetic non-methylated 22-nt RNA 
(spiked into each total RNA sample as an internal control). sRNA sizes are indicated on each scan. The 
EtBr-stained gel is shown as loading control. 
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Notably, although it has been shown that in A. thaliana HEN1 deficient mutant lines sRNA 

accumulation is impaired (Yu et al., 2005; Yang et al., 2006), such a phenomenon was not 

observed in ORMV-infected plants, where HEN1-mediated methylation is partially inhibited. 

On the contrary, viral siRNAs and many endogenous sRNAs accumulated to much higher 

levels in W41-infected plants compared to M41-infected plants, and plants infected with wild-

type ORMV produced higher-than-normal levels of non-methylated passenger strands from 

endogenous miRNA and siRNA duplexes (Blevins et al., 2006) (Figure 8.19). It has been 

shown that p125 homologs from other tobamoviruses exhibit sRNA duplex-binding activity 

(Kurihara et al., 2007; Csorba et al., 2007), so a plausible explanation for this phenomenon 

would be that p125 is stabilizing non-methylated sRNA duplexes through such an interaction.  

 

8.8. AGO1, AGO2 and RPS5 mRNAs overaccumulate in ORMV infected Arabidopsis 

plants. 

In order to ascertain whether sRNA-mediated cleavage and degradation of target mRNAs is 

affected in ORMV-infected plants, we initially examined the relative accumulation of AGO1 

and AGO2 mRNAs, known to be targeted by miR168 and miR403, respectively. Northern 

blot hybridization analysis revealed that the levels of these mRNAs were higher in 14 and 22 

dpi ORMV-infected plants than in 5 dpi ORMV-infected plants or mock-inoculated controls, 

where these mRNAs could not be detected reproducibly (Figures 8.10a and 8.10c). 

However, a corresponding increase in the levels of the proteins encoded by these mRNAs 

was not detected by Western blot analysis; rather, the levels of AGO1 had decreased 

drastically by 15 dpi (Figure 8.10g). Hence, despite the apparent compromise of miRNA-

directed mRNA cleavage, the translation of target mRNAs appears to be repressed by the 

overaccumulation of their miRNAs. Indeed, the degree of miR168 overaccumulation upon 

ORMV infection is much higher than that of miR403 (Figure 8.10b), fitting with the much 

more pronounced drop in the levels of AGO1, compared to AGO2 protein (Figure 8.10g). It is 

worth noting that ORMV-mediated up-regulation of miR168 depends on p125, as the p125-

deficient virus did not up-regulate this miRNA in A. thaliana (Figure 8.10d) or N. benthamiana 

(Figure 8.19). Considering additional targets, the overaccumulation of RPS5 mRNA was also 

observed at 14 dpi and 22 dpi in infected plants (Figure 8.20b), correlating with the gradual 

increase of miR472 during infection (Figure 8.10b). It is noteworthy to mention that at day 22 

post inoculation, most of the miR472 population is not methylated due to the presence of 

p125 (Figure 8.20c). Interestingly, RPS5 mRNA accumulation was also observed at 5dpi in 

ORMV infected dlc2/3/4 plants (Figure 8.20a), suggesting that RPS5 is induced by M41 and 

W41 at an early stage of the viral infection. No overaccumulation of RPS4 mRNA was 

detected at the late time points of infection, in spite of the similarity between both RPS5 and 

RPS4 genes in the target site sequences for miR472 (Figure 8.20b and 8.21). Although the 

amount of RPS5 protein could not be evaluated in the infected plants at the different time 

points, the results put forward the idea that translation of RPS5 mRNA, as in the case of 

AGO1 and AGO2, is repressed in ORMV W41 infected plants through the increased levels of 

miR472. 
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Figure 8.20. Induction of RPS5 mRNA level is associated with increased miR472 accumulation in W41 

infected Arabidopsis and accumulation of nonmethylated miR472 and miR472*. Systemically infected 

leaves of ORMV M41- or W41-inoculated Arabidopsis thaliana plants (Col 0, rdr1/2/6 and dcl2/3/4) were 

homogenized and used for RNA and protein extractions. The samples were used for: detection of relative 

virus accumulation at 5, 14 and 22 dpi visualized by Northern blot analysis using a viral CP sense-specific 

probe (a and b); detection of relative p125 and p182 accumulation in infected tissue at 5dpi by Western 

analysis using a ORMV p125/p182 specific antibody. Relative gel loadings are indicated by amidoblack 

staining of rubisco (a); detection of RPS5 mRNA expression visualized by Northern blot analysis using a 

DNA probe specific for a region downstream from the miR472 recognition site (RPS5 specific probe) and 

detection of RPS4 mRNA expression as negative control, using a DNA probe specific for RPS4 (a and b); 

sRNA Northern blot analysis using a DNA oligonucleotide probe specific for miR472 and miR472* before 

(-)and after (+) β elimination (c). Relative gel loadings are indicated by ethidium bromide staining of 

ribosomal RNAs (rRNA) (a,b) and rRNA+tRNA in case of the β elimination analysis (c). 
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RPS5 is a target of miR472 

                               P   LOOP                

Ath RPS4     RIIGVVGMPGIGKTTLLK      5'- GGGAUGCCCGGAAUUGGUAAAACCACA- 3' 

AT5G45250                                                     3'-CCAUACCCGCCUCAUCCUUUUU-5' miR472                                  

 

Ath RPS5     ILGLYGMGGVGKTTLLT       5'-GGUAUGGGGGGAGUAGGCAAAACGACA-3' 

AT1G12220                                                                 3'-CCAUACCCGCCUCAUCCUUUUU-5'  miR472 

 

Fig 8.21. In bold blue are shown the shared amino acids within the P-loop from RPS4 and RPS5. In light 

blue and underlined are shown the amino acids and corresponding codons within the P-loop between 

RPS4 and RPS5, which represent a potential target site for miR472. In bold red are shown the mismatches 

between miR472 and the P-loop nucleotide sequence present in RPS4 and RPS5, which show that RPS5 

is a target of mir472 while RPS4 is not. 
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Section IX. General Discussion 

In this work we investigated the roles of proteins p125 and p182 from the tobamovirus ORMV 

in viral gRNA replication, sgRNA transcription and suppression of sRNA-directed antiviral 

silencing during systemic infection in A. thaliana and N. benthamiana. With this purpose we 

constructed a mutant virus expressing exclusively p182 but not p125, by eliminating the stop 

codon preceding the RDR domain of the former, and tested it for infectivity in both, wild-type 

plants and silencing-mutant plants deficient in DCL- and RDR-dependent siRNA biogenesis. 

Furthermore, we examined the effects of both viral proteins, alone or in combination, on the 

plant sRNA-generating silencing machinery during their transient expression in N. 

benthamiana leaves and upon stable constitutive expression in Arabidopsis transgenic lines. 

 Functions of p125 and p182 in viral replication vs silencing suppression  

Our analysis of the p125-deficient mutant virus in systemic leaf tissues of A. thaliana and N. 

benthamiana revealed that p125 is not essential for gRNA replication or sgRNA transcription. 

However, gRNA and sgRNAs of the p125-deficient mutant accumulated to levels lower than 

those of the wild type virus (Figure 8.10c, Supplementary Figure S1I), and stop codon 

revertants often accumulated and overtook the mutant population, restoring p125 expression 

(Figure 8.10f, Supplementary Figure S1K). These findings are consistent with previous 

observations in other tobamoviruses, where mutants expressing exclusively the readthrough 

replicase do replicate in tobacco protoplasts and plant tissues albeit with a reduced 

efficiency, and stop codon revertants restoring expression of the shorter protein appear at a 

high frequency (Ishikawa et al., 1986; Lewandowski and Dawson 2000; Knapp et al., 2001).  

Theoretically, p125 can facilitate viral replication and/or transcription either indirectly through 

its silencing suppressor activity, or directly through the formation of a putative heterodimer 

with p182. In other tobamoviruses, the replicase and guanylyltransferase enzyme activities 

localize to membrane-bound heterodimers of the corresponding p125/p182 homologs 

(Osman and Buck 1996; Watanabe et al., 1999; Hagiwara et al., 2003; Komoda et al., 2007; 

Nishikiori et al., 2012), and leftover p125, which is present at molar excess, forms soluble 

oligomers in the cytoplasm (Watanabe et al., 1999), where it might assume additional roles 

unrelated to viral gRNA replication and sgRNA transcription. Indeed, non-membrane-bound 

heterodimers of the tobamoviral replication proteins have been implicated in silencing 

suppression via their sRNA binding activities (Hagiwara-Komoda et al., 2008). We 

demonstrate here that p125 is a strong silencing suppressor in the classical transient 

expression assay in N. benthamiana 16c plants (Figures 8.3 and 8.4) and that p125 is 

required for the inhibition of HEN1 activity that is observed during ORMV infection (Figure 

8.19). We favor a scenario in which p125 facilitates viral replication and transcription through 

its antisilencing activity. Our data do not support an essential direct role of p125 in ORMV 

replication, as the p125-deficient virus was clearly able to infect systemically the entire plant 

without reverting the stop codon at 5 dpi in A. thaliana (Figure 8.10c and 8.10f) and up to 26 

dpi in N. benthamiana (Supplementary Figures S1D and S1E). Hence, p125 is not essential 

for viral replication, cell-to-cell movement through plasmodesmata or systemic movement via 

vascular tissues.  

Unlike p125, the readthrough replicase p182 does not appear to possess any silencing 

suppressor activity. Indeed, expression of p182 alone did not suppress GFP transgene-

induced silencing in N. benthamiana 16c plants, and failed to affect sRNA biogenesis in 

transgenic Arabidopsis plants. The most compelling evidence for the inability of p182 to 
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suppress antiviral silencing comes from the molecular analysis of virus-derived sRNAs: the 

p125-deficient mutant virus was not able to interfere with HEN1-mediated methylation of viral 

siRNAs and plant sRNAs in systemically-infected plants (Figure 8.19).   

Why is it that p182, containing the entire p125 polypeptide, is not able to suppress silencing? 

The C-terminal RDR domain of p182, which is missing in p125, may plausibly inhibit a 

potential anti-silencing activity residing elsewhere on the protein. On the one hand, p125-

mediated suppression of antiviral silencing likely takes place in the cytoplasm, where free 

p125 may bind sRNA duplexes and interfere with the activity of HEN1, preventing RISC 

assembly. On the other hand, a fraction of p125 is likely sequestered into a membrane-

bound replication/transcription complex through the formation of heterodimers with p182, 

whose RDR portion likely contains the membrane-targeting domain. This would explain the 

inhibitory effect of p182 co-expression on p125 suppressor activities in our transient and 

stable expression assays (Figures 8.3 and 8.9). During viral infection, p125 is produced in a 

ca. ten-to-one molar excess over p182 (Figure 8.10f; Supplementary Figure S1K), which 

would ensure that sufficient p125 is available in the cytoplasm to exert its antisilencing 

activity. Notably, p125 is the first viral protein to be translated from gRNA in a virus-infected 

cell, followed by p182 via p125 stop codon readthrough and then by replication of the gRNA 

from which both p125 and 182 were translated. It is tempting to speculate that the 

overexpression of p125 at the earliest stage of the viral replication cycle has the primary 

objective of ensuring that any primary viral siRNAs arising from the processing of gRNA 

replication and sgRNA transcription dsRNA intermediates by DCL activities are promptly 

bound and sequestered.  

The biogenesis of viral siRNAs in ORMV-infected plants 

Our data from deep sequencing of viral siRNAs (Figures 8.11,8.12,8.16,8.17) and blot 

hybridization (Figure 8.10) support the hypothesis that viral dsRNA replication and 

transcription intermediates, which span the entire ORMV genome, are already targeted by 

DCLs at the earliest stages of viral infection. First, both gRNA and gRNA(-) as well as 

sgRNA-CP and CP(-) accumulate to higher than wild-type levels at 5 dpi in A. thaliana dcl234 

(Figure 8.10c), where viral siRNA generation is impaired. Second, the population of virus-

derived siRNAs in wild-type A. thaliana or N. benthamiana does not exhibit any site 

preference or strand bias throughout the ORMV genome, and this viral siRNA profile remains 

unaltered in Arabidopsis rdr126 plants lacking functional RDR activities (Figures 

8.11,8.12,8.16,8.17). Thus, DCLs appear to use directly dsRNA intermediates of viral gRNA 

replication (and possibly sgRNA transcription) for their processing into siRNAs. A similar 

mechanism whereby DCL directly process viral dsRNA replication intermediates has 

previously been proposed not only for other positive sense plant RNA viruses, such as the 

potyvirus TuMV (Garcia-Ruiz et al., 2010) and the cucumovirus CMV (Wang et al., 2010; 

Wang et al., 2011), but even for a positive-sense RNA virus in Drosophila melanogaster, 

where RDR genes do not exist (Flynt et al., 2009). 

The analysis of the genetic requirements for viral siRNA biogenesis in ORMV-infected A. 

thaliana  [(Blevins et al., 2006) and this study], coupled with viral sRNA profiling by deep 

sequencing in this study, confirms the notion that DCL4 is the primary antiviral dicer 

producing 21-nt viral siRNAs in this host, while DCL2 and DCL3 assume the role of 

secondary dicers producing 22-nt and 24-nt viral siRNAs respectively in the absence of 

DCL4 activity (Xie et al., 2004; Fusaro et al., 2006; Bouche et al., 2006; Blevins et al., 2006). 

Surprisingly, the comparative analysis performed here between ORMV-infected Col-0 and 
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dcl234 plants revealed that DCL1 or another RNase III-like enzyme might contribute to 

ORMV siRNA biogenesis in addition to DCL4, DCL2 and DCL3, although this contribution 

was rather minor in wild-type plants, becoming more pronounced only in a dcl234 

background. The processing of ORMV siRNA precursors in dcl234 plants, whether by DCL1 

or another RNase III-like activity, appears to be less efficient and precise, giving rise to 

sRNAs of a broader size range with a strong positive-strand bias, in addition to 21-nt siRNA 

duplexes (Figure 8.11b; Figure 8.12). DCL1 has previously been shown to be involved in 

viral siRNA biogenesis for the DNA viruses Cabbage leaf curl geminivirus (Blevins et al., 

2006; Aregger et al., 2012) and Cauliflower mosaic pararetrovirus (Blevins et al., 2006; 

Blevins et al., 2011), using A. thaliana triple and quadruple dcl mutants. Notably, in the latter 

case, DCL1 produced a major fraction of 21-nt siRNAs from a viral dsRNA decoy (Blevins et 

al.,2011). A candidate RNase III-like activity that might also process ORMV siRNA 

precursors would be RTL1 and/or other members of the recently characterized A. thaliana 

RTL1 gene family (Shamandi et al., 2015; Elvira-Matelot et al., 2016).). Interestingly, RTL1 

can be induced by viral infection and inactivated by viral silencing suppressors, and its 

transgenic overexpression in A. thaliana interferes with the activity of DCL2, DCL3 and DCL4 

by targeting their endogenous dsRNA substrates (Shamandi et al., 2015). 

A strong sense strand bias has been previously reported for viral siRNAs produced in wild-

type plants infected with some positive sense RNA viruses, leading to the hypothesis that the 

main substrates for DCL4 and other DCLs are secondary structures formed by viral RNAs 

[see e.g., (Molnár et al., 2005)]. Our findings in ORMV-infected wild type plants do not 

support this hypothesis, although dcl234 plants did exhibit a strong positive-strand bias. 

Perhaps the inactivation of the siRNA-generating DCLs by viral suppressors may unmask 

DCL1 or another RNase III-like enzyme that randomly cleaves abundant viral single-stranded 

RNAs of positive-sense polarity, although such bias might also arise from technical issues 

with certain sRNA cloning, sequencing and detection protocols (Smith et al., 2010; Harris et 

al., 2015). 

Our analysis of wild-type and p125-deficient viruses in Col-0 and rdr126 plants suggests that 

neither RDR1, RDR2 nor RDR6 are directly involved in the process whereby viral dsRNA 

gets processed into siRNAs, implying that most ORMV-derived siRNAs are primary, RDR-

independent species. It should be noted, though, that despite the similar viral siRNA profiles 

of Col-0 and rdr126 plants (Figures 8.11,8.12,8.16,8.17), the latter exhibited higher levels of 

wild-type ORMV gRNA by the late stages of infection (Figure 8.10a; Supplementary Figure 

S1G). Earlier studies of suppressor-deficient RNA viruses (Garcia-Ruiz et al., 2010; Wang et 

al., 2011) have suggested that in wild-type plants, RDR-dependent secondary viral siRNAs 

may play a role in restricting viral gRNA replication. In the present case, however, the lack of 

substantial differences between Col-0 and rdr126 plants regarding global and local profiles of 

viral siRNA sizes, 5'-nucleotide identities and hot-spots along the ORMV genome indicates 

otherwise. Presumably the absence of RDR activities facilitates ORMV replication only 

indirectly, through the loss of endogenous plant siRNAs such as tasiRNAs and 

heterochromatic siRNAs that may normally downregulate the expression of gene products 

that facilitate viral replication. Still, it should be noted that replication of the p125-deficient 

virus was not facilitated in rdr126 compared to Col-0 plants (Figure 8.10c).    
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Effect of p125 on the production, modification and activity of viral siRNAs and plant 

siRNAs and miRNAs  

By comparing wild-type and p125-deficient mutant viruses, we demonstrated that p125 does 

not block the production of viral siRNAs; rather, viral siRNAs are produced at much higher 

levels in the presence of p125, concomitant with higher levels of viral gRNA replication, 

sgRNA transcription and increased disease severity. This suggests that virus-derived sRNAs 

are failing to restrict viral replication and transcription. We found that in the presence of p125, 

viral siRNAs become sensitive to β-elimination, although this does not lead to their 

destabilization, as expected based on the fact that endogenous siRNAs become unstable in 

Arabidopsis mutant lines lacking HEN1 (Yu et al., 2005; Yang et al., 2006). The observed 

stability of β-elimination-sensitive viral siRNA during infection with wild-type ORMV may arise 

from the binding of siRNA duplexes by p125, which would in turn prevent HEN1-mediated 

methylation, prevent the formation of RISCs and thus interfere with siRNA-directed cleavage 

and/or translational repression of viral RNAs, as has been proposed for p122, a p125 

homolog from crucifer-infecting TMV (Csorba et al., 2007 and figure 7.21). Still, we do not 

have any direct evidence supporting this hypothesis. On the contrary, what indirect evidence 

we do have, based on the analysis of AGO1 and AGO2 gene expression in ORMV-infected 

plants, indicates that an increased accumulation of miR168 and miR403 actually leads to 

translational repression of their target mRNAs (AGO1 and AGO2, respectively) despite 

higher-than-normal levels of the latter (Figures 8.10a and 8.10g). If the absence of the 3'- 

methyl group in these miRNAs plays additionally an important role to carry out this function, 

needs to be determined, considering that miRNAs without a 3'- methyl group could be 

exposed to trimming and/or addition of nucleotides (Ren et al., 2014; Wang et al., 2015). 

Concomitant increases in the levels of miR168 and AGO1 mRNA accompanied by a drop in 

the levels of AGO1 protein have previously been observed during infections of A. thaliana 

with different RNA viruses, including the cruciferous strain of TMV (Várallyay et al., 2010; 

Várallyay and Havelda 2013), so our data extend these findings to ORMV and demonstrate 

that p125 is responsible for the perturbation of miR168 and AGO1 expression during ORMV 

infection. Our results differ however from those obtained by other groups, that report the 

increase of protein AGO2 upon translational repression of AGO1 in plants infected with TCV 

and CMV (Harvey et al., 2011). Despite AGO2 mRNA overaccumulation during ORMV 

infection, AGO2 protein does not increase. The induction of miR168 and miR403 mediated 

by p125 can be part of a viral counter-defense strategy to repress AGO1 and AGO2 

translation and thus prevent the formation of viral siRNA-AGO1 and viral siRNA-AGO2 

complexes, whose involvement in antiviral defense is well documented (Wang et al., 2011; 

Carbonell et al., 2012; Garcia-Ruiz et al., 2015) (Figure 8.21). The increased accumulation of 

AGO1 and AGO2 mRNAs observed at later stages of ORMV-infection (Figure 8.10a) is likely 

part of a plant counter-counter-defense strategy involving a feedback regulation loop to 

restore and maintain normal levels of AGO1 and AGO2 proteins.  

The analysis of p125-transgenic lines and plants infected with either wild-type or p125-

deficient viruses indicates that in addition to the abovementioned miR168 and miR403, other 

miRNA and miRNA* species are induced in a p125-dependent manner. One particularly 

important example is miR472 (Figures 8.10b and 8.10d) which has been shown to regulate 

plant innate immunity against non-viral pathogens (Boccara et al., 2014-2015). Because 

pattern-triggered immunity (PTI) has been implicated in antiviral defense (Korner et al., 2013; 

Niehl et al., 2016; Nicaise and Candresse., 2016) and a viral silencing suppressor protein 

has been shown to suppress PTI and other immune responses in virus-infected A. thaliana 
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(Zvereva et al., 2016), it is conceivable that p125 may also suppress immune responses. The 

induction of miR472 mediated by p125 could be part of a viral counter-defense strategy to 

repress a broad group of resistance genes, among them RPS5, which has been involved in 

PTI and ETI responses typically aimed at non viral pathogens (Boccara et al., 2014-2015; 

Ade et al., 2007). p125-mediated induction of miR472 would thus downregulate PTI and ETI-

related genes like SUMM2 and RPS5 for example, to contribute to suppress the antiviral 

response (Figure 9.1). The induction of miR472 however, would seem to have an impact only 

on the translation of specific resistance proteins since no overaccumulation of RPS4 mRNA 

could be detected, in spite of containing a P-loop-encoding-RNA-sequence similar to the one 

in RPS5 (Figures 9.2 and 8.21). Whether p125-mediated HEN1 suppression and p125-

triggered perturbations of the plant sRNA-directed silencing pathways (including those that 

regulate immune responses) stem from a significant contribution of PTI or ETI to plant 

defenses against ORMV, and whether p125 is directly involved in PTI or ETI suppression, 

constitute therefore valuable avenues of research. 
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Figure 9.1. miR472 predicted targets in Arabidopsis thaliana. Notice that RPS5-like1, RPS5 and SUMM2 

(Suppressor of MKK1 MKK2 2) miR472 targets are also present in figure 5.4. 
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Figure 9.2. Sequences producing significant alignments with the GMGGVGKTTL amino acid sequence 
present in the P-loop from Arabidopsis resistance protein RPS5 and the resistance protein "N" from 

Nicotiana. 
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Transcriptome profiling of ORMV-infected Col-0 plants at 7, 14 and 21 dpi during a previous 

study revealed a general up-regulation of cellular mRNAs targeted by miRNAs and/or 

tasiRNAs, concomitant with an increased accumulation of their respective miRNAs and 

tasiRNAs (Figure 5.8, Hu et al., 2011). Since in our experiments we also see the 

accumulation of RPS5 mRNA during infection, it is tempting to suggest that AGO1, AGO2, 

RPS5, SUMM2 as well as CHROMOMETHYLASE3 (CMT3) among others, are genes that 

are translationally repressed during infection. This major perturbation of the host miRNA and 

siRNA pathways, triggered by p125 as we established here, may constitute a contributing 

factor for the development of the severe disease symptoms that characterize the later stages 

of ORMV infection. Indeed, our analysis of Arabidopsis transgenic lines carrying p125, p182 

or p125/182 constructs revealed that p125 expression partially recapitulates viral disease 

symptoms, such as serration of the rosette leaves and curling of the stem (Figures 8.5 and 

8.6). This is consistent with previous studies demonstrating that the transgenic expression of 

viral suppressors from different viruses causes developmental abnormalities in Arabidopsis, 

accompanied by major perturbations of its miRNA and siRNA pathways [e.g., (Chapman et 

al., 2004; Shivaprasad et al., 2008)].   

 It is worth pointing out that even in dcl234 and rdr126 plants, where major components of 

the RNA silencing machinery are missing, stop codon revertants where p125 expression is 

restored are quickly selected during infections with p125-deficient ORMV mutants, indicating 

the presence of a selective pressure for this effector imposed by other defense pathways 

such as those of plant innate immunity. In either case, RNA silencing and innate immunity 

work in concert to restrict viral replication and systemic movement (Zvereva and Pooggin., 

2012), so that relieving the selection pressure for p125 expression may require suppressing 

the activities of both, immune responses and the siRNA silencing pathways (Figure 9.3). 
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Figure 9.3. Effect of p125 on the production, modification and activity of viral siRNAs and plant siRNAs 

and miRNAs. a) Transient formation of double-stranded replication intermediates by the viral replicase 

p182, mainly processed by the host DCL4 and DCL2 into viral siRNAs; p125 sequesters viral siRNAs 

duplexes avoiding them to be loaded in AGO proteins and to be 3'-methylated by HEN1, thus preventing 

siRNA-mediating targeting of the viral RNAs. b) p125 induces miR168, miR403 and miR472 expression 

which repress the translation of their respective targets mRNAs AGO1, AGO2 and RPS5 (NBB-LRR), 

causing a simultaneous impact on the RNA silencing machinery and immune responses of the plant. 

× 

 

 

 

 

 

 

a)  b) 

Transient formation of double- 

stranded RNA intermediates 

Massive production 

of siRNAs 

p182 

p182 



87 
 

Section X. References 

Abbink TEM, Tjernberg PA, Bol JF and Linthorst HJM (1998). Tobacco Mosaic Virus 

Helicase Domain Induces Necrosis in N-Gene-Carrying Tobacco in the Absence of Virus 

Replication. MPMI 11: 1242-1246 

Ade J, DeYoung BJ, Golstein C, Innes RW. (2007). Indirect activation of a plant nucleotide 

binding site-leucine-rich repeat protein by a bacterial protease. PNAS 104:2531–36 

Aguilar I, Sánchez F, Martin Martin A, Martínez Herrera D and Ponz F (1996). Nucleotide 

sequence of Chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobamovirus 

infectious on Arabidopsis thaliana. Plant. Mol. Biol. 30:191-197 

Ahola T1, Lampio A, Auvinen P, Kääriäinen L. (1999). Semliki Forest virus mRNA capping 

enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 

18:3164-72. 

Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, 

Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006). Molecular characterization of 

geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34: 462-471 

Allen E, Xie Z, Gustafson AM, Carrington JC. (2005). MicroRNA-directed phasing during 

trans-acting siRNA biogenesis in plants. Cell 121:207–21 

Almeida R and Allshire RC (2005). RNA silencing and genome regulation. Trends in Cell 

Biology 15:251-258 

Alquist P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 

296:1270-3. Review. 

Ameres SL and Zamore PD (2013). Diversifying microRNA sequence and function. Nat Rev. 

Mol. Cell Biol. 14: 475-488 

Aoki S and Takebe I (1975). Replication of Tobacco Mosaic Virus RNA in Tobacco 

Mesophyll Protoplasts Inoculated in Vitro. Virology 65: 343-354 

Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, 

Vazquez F, Blevins T, Farinelli L, Pooggin MM. (2012). Primary and secondary siRNAs in 

geminivirus-induced gene silencing. PLoS Pathog. doi:10.1371/journal.ppat.1002941.   

Aukerman MJ, Sakai H. (2003). Regulation of flowering time and flower organ identity by a 

MicroRNA and its APETALA2-like target genes. Plant Cell  15: 2730-2741 

Axtell MJ (2013). Classification and Comparison of Small RNAs from Plants. Annual Review 

of Plant Biology 64:137-159 

Axtell MJ, Staskawicz BJ. (2003). Initiation of RPS2-specified disease resistance in 

Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–77 

Axtell, M.J., Jan, C., Rajagopalan, R., and Bartel, D.P. (2006). A two-hit trigger for siRNA 

biogenesis in plants. Cell 127, 565–577. 



88 
 

Azevedo J, García D, Pontier D, Ohnesorge S, Yu A, García S, Braun L, Bergdoll M, Hakimi 

MA, Lagrange T, Voinnet  O. (2010) Argonaute quenching and global changes in dicer 

homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24:904-915 

Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997). Signaling in Plant-Microbe 

Interactions. Science 276: 726-733 

Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 

116:281–297 

Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell.136:215-33. 

doi: 10.1016/j.cell.2009.01.002. Review. 

Baumberger, N., and Baulcombe, D.C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer 

that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National 

Academy of Sciences of the United States of America 102, 11928-11933.. 

Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC.(2007). The Polerovirus 

silencing suppressor P0 targets ARGONAUTE proteins for degradation.Curr Biol.17:1609-14. 

Baulcombe D. (2004). RNA silencing in plants. Nature 431:356–363 

Behm-Ansmant I et al., (2006). mRNA degradation by miRNAs and GW 182 requires both 

CCR4:NOT deadenylase and DCP1: DCP2 decapping complexes. Genes Dev. 20, 1885-

1898. 

Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001). Role for a bidentate ribonuclease 

in the initiation step of RNA interference. Nature 409: 363-366 

Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE. (2010). MYB75 functions in 

regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant 

Physiol 154:1428–1438 

Blevins T., Rajeswaran R., Aregger M., Borah B.K., Schepetilnikov M., Baerlocher L., 

Farinelli L., Meins F.Jr., Hohn T., and Pooggin M.M. (2011). Massive production of small 

RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral 

counterdefense. Nucleic Acid Res. 39:5003-5014. 

Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, 

Vazquez F, Robertson D, Meins Jr F, Hohn T and Pooggin M.M. (2006). Four plant Dicers 

mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids 

Research 34:6233-6246.   

Boccara, M., Sarazin, A., Thiébeauld, O., Jay, F., Voinnet, O., Navarro, L., and Colot, V. 

(2014 and correction in 2015). The Arabidopsis miR472-RDR6 silencing pathway modulates 

PAMP- and effector-triggered immunity through the post-transcriptional control of disease 

resistance genes. PLoS Pathog. 10:e1003883 

Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C.(1998). AGO1 defines a 

novel locus of Arabidopsis controlling leaf development. EMBO J. 17:170-80. 



89 
 

Boller T, Felix G: A renaissance of elicitors: perception of microbe-associated molecular 

patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol (2009), 

60:379-406. 

Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS.(2003). HASTY, 

the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. 

Development 130:1493-504. 

Borevitz JO1, Xia Y, Blount J, Dixon RA, Lamb C(2000). Activation tagging identifies a 

conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383-239 

Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K. (2005). Endogenous siRNAs derived 

from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 

123:1279–91 

Bortolamiol, D.,  Pazhouhandeh, M.,  Marrocco, K.,  Genschik, P.,  Ziegler-Graff,  V.,(2007). 

The  Polerovirus F box protein P0  targets ARGONAUTE1 to suppress RNA  silencing. Curr. 

Biol.  17:1615–1621. 

Bouche N, Lauressergues D, Gasciolli V, Vaucheret H.(2006) An antagonistic function for 

Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. 

EMBO J. 25:3347–3356. 

Boyes DC, Nam J, Dangl JL. (1998). The Arabidopsis thaliana RPM1 disease resistance 

gene product is a peripheral plasma membrane protein that is degraded coincident with the 

hypersensitive response. PNAS 95:15849–54 

Braun JE, Huntzinger E and Izaurralde E (2012). A molecular link between miRISCs and 

deadenylases provides new insight into the mechanism of gene silencing by microRNAs. 

Cold Spring Harb. Perspect. Biol.4. 

Brodersen P and Voinnet O. (2006). The diversity of RNA silencing pathways in plants. 

Trends Genet 22:268-280 

Brodersen P, Sakvarelidze-Achard L, Brunn-Rasmussen Marianne, Dunoyer Patrice, 

Yamamoto YY, Sieburth L, Voinnet O. (2008). Widespread Translational Inhibition by Plant 

miRNAs and siRNAs. Science 320: 1185 -1190 

Brosseau, C., and Moffett, P. (2015). Functional and Genetic Analysis Identify a Role for 

Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. The Plant cell 27, 1742-1754. 

Buchmann, R.C., Asad, S., Wolf, J.N., Mohannath, G., Bisaro, D.M., (2009). Geminivirus AL2 

and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions 

in cytosine methylation. J. Virol. 83: 5005–5013 

Buck KW. (1996). Comparison of the replication of positive-stranded RNA viruses of plants 

and animals. Adv. Virus Res 47:159-251  

Buck KW. (1999). Replication of tobacco mosaic virus RNA. Phil. Trans. R. Soc. Lond. B. 

354:613-627 

Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. (2008). Identification and 

characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749  



90 
 

Burgyán J. (2008). Role of silencing suppressor proteins. Methods Mol Biol 451: 69–79 

Cai X, Hagedorn CH, Cullen BR. (2004). Human microRNAs are processed from capped, 

polyadenylated transcripts that can also function as mRNAs. RNA (New York, NY) 10: 1957–

1966. 

Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K.B., Montgomery, T.A., Nguyen, T., 

Cuperus, J.T., Carrington, J.C., (2012).  Functional analysis of  three Arabidopsis 

ARGONAUTES  using slicer-defective mutants. Plant Cell  24,  3613–3629. 

Carbonell A and Carrington JC (2015). Antiviral roles of plant ARGONAUTES. Current 

Opinion in Plant Biology: 27:111-117 

Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. (2002). The Argonaute family: tentacles that 

reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes 

Dev.16:2733-42 

Chapman EJ, Carrington JC (2007). Specialization and evolution of endogenous small RNA 

pathways. Nat Rev Genet 8:884-896 

Chapman, E.J., Prokhnevsky, A.I., Gopinath, Dolja, V.V., Carrington, J.C., (2004). Viral RNA  

silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev.  

18, 1179–1186. 

Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM. (2004). Broad spectrum 

resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. 

Plant Mol Biol. 56:601-11. 

Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC and Wu SH (2010). 22- nucleotide RNAs 

trigger secondary siRNA biogenesis in plants. PNAS 107: 15269-15274 

Chiu, M.H.,  Chen, I.H.,  Baulcombe, D.C.,  Tsai,  C.H.,  (2010).  The  silencing suppressor 

P25 of  Potato virus X interacts with Argonaute1 and mediates its degradation through the 

proteasome pathway. Mol.  Plant Pathol. 11, 641–649. 

Chujo T, Ishibashi K, Miyashita S, Ishikawa M. (2015). Functions of the 5'- and 3'- 

untranslated regions of tobamovirus RNA. Virus Research (in press) 

Cole AB, Király L, Lane LC, Wiggins BE, Ross K, and Schoelz JE. (2004). Temporal 

Expression of PR-1 and Enhanced Mature Plant resistance to Virus Infection is Controlled by 

a Single Dominant Gene in a New Nicotiana Hybrid. Molecular Plant-Microbe Interactions 17: 

976-985. 

Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF. (2000). Members of the 

Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and 

oomycete pathogens. Plant Cell, 12 (5) (2000), pp. 663–676 

Creamer, K.M., Partridge,J.F., (2011). RITS-connecting transcription, RNA interference, and 

heterochromatin assembly in fission yeast. Wiley interdisciplinary reviews. RNA 2,632–646. 

Csorba, T.,  Bovi,   A.,  Dalmay, T.,  Burgyán, J., (2007). The   p122 subunit of  Tobacco 

Mosaic Virus replicase is a potent silencing suppressor and compromises both small  

interfering   RNA-    and   microRNA-mediated pathways.   J.   Virol.  81,11768–11780. 



91 
 

Csorba T, Kontra L, Burgyán J., (2015) viral silencing suppressors: Tools forged to fine-tune 

host pathogen coexistence. Virology 479-480: 85-103. http://10.1016/j.virol.2015.02.028 

Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Adv Virus 

Res 75:35–71 

Cui H, Tsuda K, Parker JE (2015). Effector-Triggered Immunity: From Pathogen Perception 

to Robust Defense. Annu. Rev. Plant Biol. 66:487-511 

Cuperus JT et al., (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-

dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. Biol. 17: 

997-1003 

Curaba J and Chen X (2008). Biochemical Activities of Arabidopsis RNA-dependent RNA 

Polymerase 6. The Journal of Biological Chemistry 283: 3050-3066  

Dangl J.L. and Jones J.D.G.(2001). Plant pathogens and integrated defence responses to 

infection. Nature 411: 826-833 

Deleris A, Gallego-Bartolomé J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006). 

Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 

313:68-71 

den Boon JA, Díaz A, and Ahlquist P (2010) Cytoplasmic Viral Replication Complexes. Cell 

Host and Microbe 8: 77-85 

Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. (2004). Processing of primary 

microRNAs by the Microprocessor complex. Nature 432: 231–235. 

Deslandes L, Rivas S: Catch me if you can: bacterial effectors and plant targets. Trends 

Plant Sci 2012, 17:644-655. 

Devert A, Fabre N, Floris M, Canard B, Robaglia C, Crété P (2015). Primer-Dependent and 

Primer Independent Initiation of Double Stranded RNA Synthesis by Purified Arabidopsis 

RNA-Dependent RNA-Polymerases RDR2 and RDR6. PLOS ONE 10:1-17 

Diaz-Pendon, J.A., Li, F., Li, W.X.,  Ding, S.W.,  (20079. Suppression of antiviral silencing by   

cucumber  mosaic  virus  2b  protein  in  Arabidopsis is   associated with drastically reduced  

accumulation of  three  classes of  viral small interfering RNAs.  Plant Cell  19, 2053–2063. 

Dinesh-Kumar SP, Tham WH, and Baker B. (2000) Structure-function analysis of the tobacco 

mosaic virus resistance gene N. Proc Natl Acad Sci 97:14789-14794 

Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644 

Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426 

Ding, X. S., J. Liu, N. H. Cheng, A. Folimonov, Y. M. Hou, Y. Bao, C. Katagi, S. A. Carter, 

and R. S. Nelson. (2004). The Tobacco mosaic virus 126-kDa protein associated with virus 

replication and movement suppresses RNA silencing. Mol. Plant-Microbe Interact. 17:583–

592. 



92 
 

Dixon, R. A., Harrison, M. J. & Lamb, C. J. (1994). Early events in the activation of plant 

defense responses. A. Rev. Phytopathol. 32, 479-501. 

Donaire L et al., (2008) Structural and genetic requirements for biogenesis of tobacco rattle 

virus-derived small interfering RNAs reveals effective and widespread targeting of viral 

genomes. Virology 392: 203-214. 

Du,  Z., Xiao,  D., Wu, J., Jia, D., Yuan, Z., Liu, Y., Hu,  L., Han, Z., Wei, T., Lin, Q., Wu, Z., 

Xie,   L.,  (2011).  p2 of  rice stripe  virus (RSV)  interacts  with  OsSGS3 and  is  a silencing 

suppressor. Mol.  Plant Pathol. 12, 808–814. 

Duan, C.G., Fang, Y.Y., Zhou, B.J., Zhao, J.H., Hou, W.N.,  Zhu, H., Ding, S.W.,  Guo, H.S., 

(20129.  Suppression of  Arabidopsis  ARGONAUTE1-mediated slicing, transgene- induced  

RNA   silencing, and  DNA   methylation  by  distinct  domains  of   the cucumber mosaic 

virus 2b protein. Plant Cell  24,  259–274. doi: 10.15252/embj.201489453. 

Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, 

Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. (2015). Specific but interdependent 

functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO 34: 

581-592.  

Dunoyer P., Himber C., Voinnet O. (2005). DICER-LIKE 4 is required for RNA interference 

and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell 

silencing signal. Nature Genet. 37:1356–1360. 

Dzianott A, Sztuba-Solińska J, Bujarski JJ. (2012). Mutations in the antiviral RNAi defense 

pathway modify Brome mosaic virus RNA recombinant profiles. Mol Plant Microbe Interact. 

2012 Jan;25(1):97-106. doi: 10.1094/MPMI-05-11-0137 

 

Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K and Pikaard CS. (2006). 

Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal 

45:616-629  

Elvira-Matelot, E., Hachet, M., Shamandi, N., Comella, P., Sáez-Vásquez, J., Zytnicki, M., 

and Vaucheret, H. (2016). Arabidopsis RNASE THREE LIKE2 Modulates the Expression of 

Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation. 

Plant Cell 28:406-425. 

Endres, M.W., Gregory, B.D., Gao,  Z., Foreman, A.W.,  Mlotshwa, S., Ge, X., Pruss, G.J., 

Ecker,  J.R.,  Bowman,  L.H.,  Vance,  V.,  (2010).   Two plant  viral suppressors  of silencing 

require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS  

Pathog. 6,  e1000729. 

Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B. (1999). 

The helicase domain of the TMV replicase proteins induces the N-mediated defence 

response in tobacco. Plant J.18:67-75 

Eun C, Lorkovic ZJ, Naumann U, Long Q, Havecker ER, Simon SA, Meyers BC, Matzke AJ, 

Matzke M. (2011). AGO6 functions in RNA-mediated transcriptional gene silencing in shoot 

and root meristems in Arabidopsis thaliana. PLoS One. 6:e25730. doi: 

10.1371/journal.pone.0025730.  



93 
 

Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. 

(2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects 

developmental timing and patterning in Arabidopsis. Curr Biol. 16: 939-44 

Fátyol K, Ludman M and Burgyán J. (2016). Functional dissection of a plant Argonaute. 

Nucleic Acids Research 44: 1384-1397. doi: 10.1093/nar/gkv1371 

Fei Q, Xia R, Meyers BC (2013). Phased, secondary, small interfering RNAs in 

posttranscriptional regulatory networks. Plant Cell  25:2400-2415. 

Feng F, Zhou JM (2012). Plant–bacterial pathogen interactions mediated by type III effectors. 

Curr Opin Plant Biol 15:469-476. 

Flynt A, Liu N, Martin R, Lai EC (2009). Dicing of viral replication intermediates during 

silencing of latent Drosophila viruses. Proc. Natl. Acad. Sci. USA 106: 5270-5275 

Frank, F., Sonenberg, N., and Nagar, B. (2010). Structural basis for 5'-nucleotide base-
specific recognition of guide RNA by human AGO2. Nature 465, 818-822. 
 
Frank, F., Hauver, J., Sonenberg, N., and Nagar, B. (2012). Arabidopsis Argonaute MID 
domains use their nucleotide specificity loop to sort small RNAs. The EMBO journal 31, 
3588-3595. 
 

 
Fukudome A and Fukuhara T (2016). Plant dicer-like proteins: double-stranded RNA- 

cleaving enzymes for small RNA biogenesis. J Plant Res. DOI 10.1007/s10265-016-0877-1 

Fusaro AF et al., (2006). RNA interference- inducing hairpin RNAs in plants act through the 

viral defence pathway. EMBORep 7:1168-1175 

Fusaro AF, Correa RL, Nakasugi K, Jackson C, Kawchuk L, Vaslin MFS, Waterhouse PM 

(2012) The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic 

RNA silencing through AGO1 degradation. Virology 426: 178-187 

Galliet DR and Walbot V. (1992). Identification of the motifs within the tobacco mosaic virus 

5'-leader responsible for enhancing translation. Nucleic Acids Research 20:4631- 4638 

Gandikota M, Birkenbihl RP, Höhmann S, Cardon, GH, Saedler H and Huijser P (2007). The 

miRNA 156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 

prevents early flowering by translational inhibition in seedlings. The Plant Journal 49:683-693 

García-Ruíz, H et al., (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like 

proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus 

infection. Plant Cell 22:481-496 

García-Ruíz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, 

García-Ruíz MT, McGinn MG, Lowery N, Martínez Baladejo MT, Carrington JC. (2015). 

Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus 

Infection. PLOS Pathogens 11(3): e1004755. doi:10.1371/journal. ppat.1004755 

Giner, A., Lakatos,L., Garcia-Chapa, M.,Lopez-Moya, J.J.,Burgyan,J., (2010). Viral protein 

inhibits RISC activity by argonaute binding through conserved WG/GW motifs. 

PLoSPathog.6,e1000996. 



94 
 

Glick, E., Zrachya, A., Levy,  Y., Mett, A., Gidoni, D., Belausov, E., Citovsky, V., Gafni, Y., 

(2008).  Interaction  with   host   SGS3    is    required   for  suppression   of    RNA silencing 

by tomato yellow leaf curl virus V2  protein.  Proc. Natl. Acad. Sci.  USA 105, 157–161. 

Gomez-Gomez, L. and  Boller,T., (2000). FLS2: an LRR receptorlike kinase involved in the 

perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 

Goto, K., Kobori, T., Kosaka, Y., Natsuaki, T., Masuta, C., (2007). Characterization of 

silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-

binding abilities. Plant Cell  Physiol. 48,  1050–1060. 

Grant JJ1, Chini A, Basu D, Loake GJ. (2003). Targeted activation tagging of the Arabidopsis 

NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact. 

16 669-680 

Grdzelishvili VZ, Chapman SN, Dawson WO, and Lewandowski DJ. (2000). Mapping of the 

Tobacco Mosaic Virus Movement Protein and Coat Protein Subgenomic RNA Promoters in 

Vivo. Virology 275, 177–192  

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar 

R. (2004). The Microprocessor complex mediates the genesis of microRNAs. 

Nature 432: 235–240. 

Gu, S., Jin, L., Huang, Y., Zhang, F., and Kay, M.A. (2012). Slicing-independent RISC 
activation requires the argonaute PAZ domain. Current biology : CB 22, 1536-1542. 
 

Guo, H., Song, X., Xie,  C., Huo, Y., Zhang, F., Chen, X., Geng, Y., Fang, R., (2013).  Rice 

yellow stunt  rhabdovirus  protein  6  suppresses  systemic RNA  silencing  by blocking  

RDR6-mediated  secondary  siRNA    synthesis  Mol.    Plant - Microbe Interact. 26,  927–

936. 

Haag JR, Pikaard CS. (2011). Multisubunit RNA polymerases IV and V: purveyors of non-

coding RNA for plant gene silencing. Nat Rev Mol Cell Biol.12:483-92. doi: 

10.1038/nrm3152. Review. 

Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., Fukuhara, T.,  

Keller, M.,  Voinnet, O.,  (2008). Nuclear import  of  CaMV   P6  is  required  for infection and  

suppression  of   the RNA  silencing  factor  DRB4.   EMBO   J.  27, 2102–2112. 

Hagiwara-Komoda, Y., Hirai, K., Mochizuki, A., Nishiguchi, M., Meshi, T., and Ishikawa, M. 

(2008). Overexpression of a host factor TOM1 inhibits tomato mosaic virus propagation and 

suppression of RNA silencing. Virology 376:132-139. 

Hagiwara, Y., Komoda, K., Yamanaka, T., Tamai, A., Meshi, T., Funada, R., Tsuchiyab, T., 

Naito, S., and Ishikawa, M. (2003). Subcellular localization of host and viral proteins 

associated with tobamovirus RNA replication. EMBO J. 22:344-353. 

Halter T and Navarro L. (2015). Multilayer and interconnected post transcriptional and co-

transcriptional control of plant NLRs. Current Opinion in Plant Biology 26:127-134 

Han J, Lee Y, Yeom KH, Nam JW, Heo I at al (2006). Molecular basis for the recognition of 

primary microRNAs by the Drosha-DGCR8 complex. Cell 125 (5): 887-901 



95 
 

Han YH, Xiang HY, Wang Q, Li YY, Wu WQ, Han CG, Li DW, Yu HI (2010). Ring structure 

amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein. 

Virology 406: 21-27 

Harries, P.A., Palanichelvam,K., Bhat, S., Nelson,R.S., (2008). Tobacco mosaic virus 126-

kDa protein increases the susceptibilityof Nicotiana tabacum to other viruses and its dosage 

affects virus-induced gene silencing. Mol.Plant Microbe Interact. 21,1539–1548.  

Harris, C. J., Molnar, A., Müller, S. Y., and Baulcombe, D. C. (2015). FDF-PAGE: a powerful 

technique revealing previously undetected small RNAs sequestered by complementary 

transcripts. Nucleic Acids Res. 43:7590-7599 

Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, and Baulcombe DC 

(2011). An antiviral defense role of AGO2 in plants. PLoS ONE 6: e14639 

Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, 

Doonan JH, Baulcombe DC. (2010). The Arabidopsis RNA-directed DNA methylation 

argonautes functionally diverge based on their expression and interaction with target loci. 

Plant Cell 22:321–334. 

Havelda Z, Várallyay E, Válóczi A, Burgyán J.(2008). Plant virus infection-induced persistent 

host gene downregulation in systemically infected leaves Plant J. 55: 278-88. doi: 

10.1111/j.1365-313X.2008.03501.x 

Hemmes, H., Lakatos, L., Goldbach, R., Burgyán, J., Prins, M., (2007). The  NS3  protein of 

rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by  efficiently 

binding both siRNAs and  miRNAs. RNA 13, 1079–1089. 

Henderson IR, Zhang XY, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) 

Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and 

DNA methylation patterning. Nat Genet 38:721–725. doi:10.1038/ng1804 

Himeno M, Kitazawa Y, Yoshida T, Maejima K, Yamaji Y, Oshima K & Namba S (2014). 

Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected 

plants. Scientific Reports | 4 : 4111 | DOI: 10.1038/srep04111  

Hirashima K and Watanabe Y (2003). RNA Helicase Domain of Tobamovirus Replicase 

Executes Cell-to-Cell Movement Possibly through Collaboration with its Nonconserved 

Region. J.Virol 22:12357-12362 

Ho CK and Shuman S. (2002). Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family 

of RNA ligases found in all phylogenetic domains. PNAS 99:12709-12714  

Höck  J and Meister G. (2008). The Argonaute protein family. Genome Biology 9:210 

doi:10.1186/gb-2008-9-2-210. 

Hu,  Q., Hollunder, J., Niehl, A., Korner, C.J., Gereige, D., Windels, D., Arnold, A., Kuiper, 

M.,  Vazquez, F., Pooggin, M.,  Heinlein, M.,  (2011). Specific impact of  tobamovirus 

infection on the Arabidopsis small RNA profile. PloS  One 6, e19549. 



96 
 

Innes R and Ade J. (2005). Indirect activation of the Arabidopsis disease resistance protein 

RPS5 by the Pseudomonas effector AvrPphB. 16TH INTERNATIONAL CONFERENCE ON 

ARABIDOPSIS RESEARCH, Duke University, Durham, NC. USA.  

Ishibashi K, Miyashita S, Katoh E and Ishikawa M (2012) Host membrane proteins involved 

in the replication of tomabovirus RNA. Current Opinion in Virology 2:699-704 

Ishikawa M, Meshi T, Motoyoshi F, Takamatsu N and Okada Y. (1986). In vitro mutagenesis 

of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Research 14: 8291-

8305 

Ishikawa M, Meshi T, Ohno T, Okada Y. (1991). Specific cessation of minus-strand RNA 

accumulation at an early stage of tobacco mosaic virus infection. J. Virol. 65:861-868 

Iwakawa H and Tomari Y (2013). Molecular Insights into microRNA- Mediated Translational 

Repression in Plants. Molecular Cell  52: 591-601 

Iwakawa H and Tomari Y (2015). The Functions of MicroRNAs: mRNA Decay and 

Translational Repression. Trends Cell Biol. 25:651-65. doi: 10.1016/j.tcb.2015.07.011. 

Review. 

Jaubert, M., Bhattacharjee, S., Mello, A.F., Perry, K.L., Moffett, P., (2011). ARGONAUTE2 

mediates  RNA-silencing antiviral defenses against potato  virus X in Arabidop- sis.  Plant 

Physiol. 156, 1556–1564. 

Ji L and Chen X (2012) Regulation of small RNA stability: Methylation and beyond. Cell Res 

22: 624-636 

Ji, L., Liu, X., Yan, J., Wang, W., Yumul, R.E., Kim, Y.J., Dinh, T.T., Liu, J., Cui, X., Zheng, 

B., Agarwal, M., Liu, C., Cao, X., Tang, G., and Chen, X. (2011). ARGONAUTE10 and 

ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in 

Arabidopsis. PLoS genetics 7, e1001358. 

Jones JD, Dangl JL (2006). The plant immune system. Nature 444:323-329. 

Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and their regulatory roles in 

plants. Annual Review of Plant Biology 57:19-53 

Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC. 

(2007). Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol.5:e57 

Kidner CA and Martienssen (2005). The developmental role of microRNA in plants . Current 

Opinion in Plant Biology 8:38-44 

Kim YK, Heo I, Kim VN (2010) Modifications of small RNAs and their associated proteins. 

Cell 143: 703-709 

Kim Y.J., Maizel A., Chen X., (2014). Traffic into silence: endomembranes and post-

transcriptional RNA silencing. EMBOJ.33,968–980. 

Knapp, E., Dawson, W. O., and Lewandowski, D. J. 2001. Conundrum of the lack of 

defective RNAs (dRNAs) associated with tobamovirus infections: dRNAs that can move are 



97 
 

not replicated by the wild-type virus; dRNAs that are replicated by the wild-type virus do not 

move. J. Virol. 75:5518-5525. 

Komoda, K., Mawatari, N., Hagiwara-Komoda, Y., Naito, S., and Ishikawa, M. 2007. 

Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication 

complex formation. J. Virol, 81:2584-2591. 

Kontra L, Csorba T, Tavazza M, Lucioli A, Tavazza R, Moxon S, Tisza V, Medzihradsky A, 

Turina M, Burgyán J. (2016). Distinct Effects of p19 RNA Silencing Suppressor on Small 

RNA Mediated Pathways in Plants. Plos Pathogens. DOI:10.1371/journal.ppat.1005935 

Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., 

Heinlein, M., and Hann, D. R. 2013. The immunity regulator BAK1 contributes to resistance 

against diverse RNA viruses. Mol. Plant Microbe Interact. 26:1271-1280. 

Koukiekolo R, Jakubek ZJ, Cheng J, Sagan SM, Pezacki JP.(2009). Studies of a viral 

suppressor of RNA silencing p19-CFP fusion protein: a FRET-based probe for sensing 

double-stranded fluorophore tagged small RNAs. Biophys Chem.143:166-9. doi: 

10.1016/j.bpc.2009.05.001. Erratum in: Biophys Chem. 2009 

Kozlowska-Makulska A, Guilley H, Szyndel MS, Beuve M, Lemaire O, Herrbach E, 

Bouzoubaa S (2010) PO proteins of European beet-infecting poleroviruses display variable 

RNA silencing suppression activity. J. Gen. Virol. 91:1082-1091 

Kurihara, Y., Inaba, N., Kutsuna, N., Takeda, A., Tagami, Y., and Watanabe, Y. (2007). 

Binding of tobamovirus replication protein with small RNA duplexes. J. Gen. Virol. 88: 2347-

2352 

Kurihara Y, Takashi Y, Watanabe Y. (2006). The interaction between DCL1 and HYL1 is 

important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. 

RNA 12: 206-212 

Laakkonen P, Ahola T, Kääriäinen L. (1996). The effects of palmitoylation on membrane 

association of Semliki forest virus RNA capping enzyme. J Biol Chem. 271:28567-71. 

Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4: Nature 227:680 

Lakatos, L., Csorba, T., Pantaleo, V., Chapman, E.J., Carrington, J.C., Liu, Y.P., Dolja, V.V.,  

Calvino, L.F., Lopez-Moya,  J.J., Burgyán, J.,  (2006).  Small RNA  binding is  a common 

strategy to suppress RNA silencing by  several viral suppressors. EMBO J. 25,  2768–2780. 

Landthaler M, Yalcin A, Tuschl T. (2004). The human DiGeorge syndrome critical region 

gene 8 and its D-melanogaster homolog are required for miRNA biogenesis. Curr Biol 14: 

2162–2167. 

Lanet E,  Delannoy E, Sormani R, Floris M, Brodersen P, Crété Patrice, Voinnet Olivier and 

Robaglia Christophe (2009) Biochemical Evidence for Translational Repression by 

Arabidopsis MicroRNAs. The Plant Cell 21: 1762-1768  

Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation 

patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010). 



98 
 

Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN. (2004). MicroRNA genes are 

transcribed by RNA polymerase II. EMBO J 23: 4051–4060. 

Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R. and Lamb, C. (1996) Calcium-mediated 

apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6, 427–437. 

Lewandowski, D. J., and Dawson, W. O. (2000). Functions of the 126- and 183-kDa proteins 

of tobacco mosaic virus. Virology 271:90-98. 

Lewsey,  M.,   Robertson,   F.C.,  Canto,  T.,  Palukaitis,  P.,  Carr,  J.P.,  (2007).  Selective 

targeting of  miRNA-regulated plant development  by  a viral counter-silencing protein. Plant 

J. Cell  Mol.  Biol.  50,  240–252. 

Lewsey, M.G., Murphy, A.M., Maclean, D., Dalchau, N., Westwood, J.H., Macaulay, K., 

Bennett, M.H.,  Moulin, M.,  Hanke, D.E., Powell, G., Smith, A.G., Carr, J.P., (2010). 

Disruption of  two defensive signaling pathways by a viral RNA silencing suppressor. Mol.  

Plant - Microbe Interact. 23,  835–845. 

Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, et al., (2012). MicroRNA regulation of 

plant innate immune receptors. Proc. Natl. Acad. Sci. USA 109:1790–95 

Li J, Yang Z, Yu B, Liu J and Chen X (2005) Methylation Protects miRNAs and siRNAs from 

a 3’ -End Uridylation Activity in Arabidopsis. Current Biology 15: 1501- 1507 

Lingel A, Simon B, Izaurralde E, Sattler M. (2004). Nucleic acid 3'-end recognition by the 

Argonaute2 PAZ domain. Nat Struct Mol Biol 11: 576-577 

Lingel A, Simon B, Izaurralde E, Sattler M. (2003). Structure and nucleic-acid binding of the 

drosophila 

Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-

Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 

305:1437–1441 

Liu Y, Zhai H, Zhao K, Wu B, Wang X (2012) Two suppressors of RNA silencing encoded by 

cereal-infecting  members of the family Luteoviridae. J.Gen. Virol. 93:1825-1830 

Love,  A.J.,  Laird,  J.,  Holt,  J.,  Hamilton,  A.J.,  Sadanandom,  A.,  Milner,  J.J.,  (2007). 

Cauliflower mosaic virus protein P6  is  a suppressor of  RNA  silencing. J. Gen.Virol. 88,  

3439–3444. 

Lozsa, R., Csorba, T., Lakatos, L., Burgyán, J., (2008). Inhibition of 3' modification of 

smallRNAs  in virus-infected plants require spatial and temporal co-expression of small 

RNAs  and viral silencing-suppressor proteins. Nucleic Acids Res. 36,  4099–4107.  

Lu S, Sun Y and Chiang VL (2009). Adenylation of plant miRNAs. Nucleic Acids Res. 

37:1878-1885   

Lund E, Dahlberg JE (2006). Substrate selectivity of exportin 5 and Dicer in the biogenesis of 

microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71:59-66 



99 
 

Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK. (1999). The 

PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping 

functions with the ARGONAUTE1 gene. Development. 1999 Feb;126(3):469-81 

Ma, J.B., Ye, K., and Patel, D.J. (2004). Structural basis for overhang-specific small 

interfering RNA recognition by the PAZ domain. Nature 429, 318-322. 

Ma X, Cao X,  Mo B, and Chen X (2013). Trip to ER. MicroRNA-mediated translational 

reppression in plants. RNA Biology 10: 1586-1592 

Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. (2003). Arabidopsis RIN4 is a target 

of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 

112:379–89 

Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. (2013). Antiviral RNA 

interference in mammalian cells. Science 342: 235-238. 

Mallory AC and Vaucheret H (2006). Functions of microRNAs and related small RNAs in 

plants. Nat Genet 38: S31-S36 

Malpica-López N, Rajeswaran R, Beknazariants D, Seguin, J, Golyaev V, Farinelli L and 

Pooggin MM. Revisiting the roles of tobamovirus replicase complex proteins in viral 

replication and silencing suppression.  Mol Plant Microbe Interact. doi:10.1094/ MPMI-07-17-

0164-R. 

Manavella PA, Koenig D, Weigel D. (2012). Plant secondary siRNA production determined 

by microRNA-duplex structure. PNAS 109:2461-2466 

Mangwende T, Wang ML, Borth W, Hu J, Moore PH, Mirkov TE, Albert HH (2009) The P0 

gene of sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique 

activities. Virology 384: 38-50 

Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, et al., (2006). The evolution and 

diversification of Dicers in plants. FEBS Lett. 580:2442-50 

Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, 

Maizel A (2010). miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE 

FACTOR targets define an autoregulatory network quantitatively regulating lateral root 

growth. Plant Cell 22: 1104-1117 

Meister G (2013). Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 

14:447-459. 

Melnyk CW, Molnar A, Baulcombe DC. (2011). Intercellular and systemic movement of RNA 

silencing signals. EMBO J. 30:3553-63. doi: 10.1038/emboj.2011.274. Review. 

Merai Z, Kerenyi Z, Kertesz S, Magna M, Lakatos L, and Silhavy D. (2006) Double stranded 

RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 

80: 5747-5756 

Merai, Z.,  Kerenyi, Z.,  Molnar, A.,  Barta, E.,  Valoczi, A.,  Bisztray, G.,  Havelda,  Z., 

Burgyán, J., Silhavy, D., (2005). Aureusvirus P14 is an efficient RNA silencing suppressor 

that binds double-stranded RNAs  without  size specificity. J. Virol.79,  7217–7226. 



100 
 

Merits A, Kettunen R, Mäkinen K, Lampio A, Auvinen P, Kääriäinen L, Ahola T. (1999). Virus- 

specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of 

covalent complex p126-m7GMP. FEBS Lett 455(1-2), 45-48 

Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003). Genome-wide analysis of 

NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834. 

Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon 

GJ, Qi Y (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by 

the 5' terminal nucleotide. Cell 133:116–127. 

Moissiard, G., Parizotto, E.A., Himber, C., and Voinnet, O. (2007).Transitivity in Arabidopsis 

can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and 

is compromised by viral-encoded suppressor proteins. RNA 13: 1268-1278. 

Molnár A, Csorba T, Lakatos L, Várallyay E, Lacomme C, Burgyán J. (2005). Plant virus-

derived small interfering RNAs originate predominantly from highly structured single-stranded 

viral RNAs. J Virol. 2005 Jun;79(12):7812-8 

Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, 

Fahlgren N, Allen E, Carrington JC.(2008). Specificity of ARGONAUTE 7-miR390 Interaction 

and Dual Functionality in TAS3 Trans-Acting siRNA Formation.Cell 133:128-141 

Morel JB and Dangl JL. (1997). The hypersensitive response and the induction of cell death 

in plants. Cell Death Differ. 4: 671-683 

Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret 

H.(2002). Fertile hypomorphic ARGONAUTE (ago 1) mutants impaired in post-transcriptional 

gene silencing and virus resistance. Plant Cell 14: 629-639 

Moussian B, Schoof H, Haecker A, Jürgens G, Laux T. (1998). Role of the ZWILLE gene in 

the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO 

J. 17:1799-1809 

Nagy PD, Strating JR, van Kuppeveld FJ (2016). Building Viral replication Organelles: Close 

encounters of the Membrane Types. Plos Pathog 12: 1-6. doi: 10.1371/journal.ppat.1005912. 

eCollection 2016. 

Nandakumar J, Shuman S, D. Lima C. (2006). RNA Ligase Structures Reveal the Basis for 

RNA Specificity and Conformational Changes that drive Ligation Forward. Cell 127: 71-84 

Nicaise, V., and Candresse, T. (2016). Plum pox virus capsid protein suppresses plant 

pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol. Plant Pathol. Jun 

15 [Epub ahead of print]. 

Niehl, A., Wyrsch, I., Boller, T., and Heinlein, M. (2016). Double-stranded RNAs induce a 

pattern-triggered immune signaling pathway in plants. New Phytol. 211:1008-1019. 

Nishikiori, M., Meshi, T., and Ishikawa, M. (2012). Guanylylation-competent replication 

proteins of Tomato mosaic virus are disulfide-linked. Virology 434:118-128. 



101 
 

Nishimura T,  Molinard G , Petty TJ , Broger L , Gabus C , Halazonetis TD , Thore S, 

Paszkowski J. (2012). Structural Basis of Transcriptional Gene Silencing Mediated by 

Arabidopsis MOM1. PLoS Genet 8(2): e1002484. doi:10.1371/journal.pgen.1002484 

Omarov RT, Ciomperlik JJ, Scholthof HB. (2007). RNAi-associated ssRNA-specific 

ribonucleases in Tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-

containing effector complex. Proc.Natl.Acad.Sci. USA. 104:1714–

9.10.1073/pnas.0608117104 PMID: 17244709 

Osman, T. A., and Buck, K. W. (1996). Complete replication in vitro of tobacco mosaic virus 

RNA by a template-dependent, membrane-bound RNA polymerase. J. Virol. 70:6227-6234. 

Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014). 

MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium 

oxysporum. PLoS Pathog 10:e1004464. 

Padgett HS and Beachy RN (1993). Analysis of a Tobacco Mosaic Virus Strain Capable of 

Overcoming N Gene-Mediated Resistance. The Plant Cell 5: 577-586 

Palukaitis P, García-Arenal F, Sulzinski MA, Zaitlin M. (1983). Replication of tobacco mosaic 

virus. VII. Further characterization os single- and double-stranded virus-related RNAs from 

TMV-infected plants. Virology 131:533-545  

Pantaleo V, Szittya G, Burgyán J (2007) Molecular bases of viral RNA targeting by viral small 

interfering RNA-programmed RISC. J. Virol 81: 3797-3806 

Parent, J.S., Bouteiller,N., Elmayan,T., Vaucheret,H., (2015). Respective contributions of 

Arabidopsis DCL2 and DCL4 to RNA silencing Plant J.81,223–232. 

Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, et al.,. (2011) Dicer recognizes the 5' 

end of RNA for efficient and accurate processing. Nature 475:201-205 

Parker, J.S., Roe, S.M., and Barford, D. (2005). Structural insights into mRNA recognition 
from a PIWI domain-siRNA guide complex. Nature 434, 663-666. 
 

Paul D and Bartenschlager R (2013). Architecture and biogenesis of plus-strand RNA virus 

replication factories. World J of Virol 2: 32-48  

Pazhouhandeh, M.,  Dieterle,  M.,  Marrocco, K.,  Lechner, E.,  Berry,  B.,  Brault, V., 

Hemmer, O., Kretsch, T., Richards, K.E., Genschik, P., Ziegler-Graff, V., (2006). F- box-like  

domain  in  the  polerovirus  protein  P0   is   required  for    silencing suppressor  function. 

Proc. Natl. Acad. Sci.  USA 103, 1994–1999. 

Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004). SGS3 and 

SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting 

siRNAs in Arabidopsis. Genes Dev.18:2368-79. 

Pfeffer S, Dunoyer P, Heim F, Richards KE, Jonard G, Ziegler-Graff V (2002) P0 of beet 

western yellows virus is a suppressor of posttranscriptional gene silencing. J. Virol. 76: 6815-

6824  



102 
 

Plotnikova A, Baranauske S, Osipenko A, Klimasauskas S, Vilkaitis G (2013). Mechanistic 

insights into small RNA recognition and modification by the HEN1 methyltransferase. 

Biochem J. 453:281-290 

Pontes O et al., (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway 

involves a nucleolar RNA processing center. Cell 126:79–92. doi:10.1016/j.cell.2006.05.031 

Qi D, DeYoung BJ, Innes RW. (2012). Structure-function analysis of the coiled-coil and 

leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol. 

158:1819–32 

Qi, Y., Denli, A.M., and Hannon, G.J. (2005). Biochemical specialization within Arabidopsis 

RNA silencing pathways. Molecular cell 19, 421-428. 

Qi, Y., He, X., Wang, X.J., Kohany, O., Jurka, J., and Hannon, G.J. (2006). Distinct catalytic 

and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 

1008-1012. 

Qi Y, Tsuda K, Glazebrook J and Katagiri F. (2011). Physical association of pattern-triggered 

immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. 

Molecular Plant Pathology 12: 702-708 

Qu F, Ye X, Morris TJ (2008). Arabidopsis DRB4, AGO1, AGO7 and RDR6 participate in a 

DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. 

Acad. Sci. USA 105: 14732-14737 

Qu, F (2010). Antiviral role of plant-encoded RNA-dependent RNA polymerases revisited 

with deep sequencing of small interfering RNAs of viral origin. Mol Plant Microbe Interact. 

23:1248-1252 

Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008). Viral genome methylation as an 

epigenetic defense against geminiviruses. J. Virol 82: 8997-9007 

Raja P, Wolf JN, Bisaro DM (2010). RNA silencing directed against geminiviruses: Post-

transcriptional and epigenetic components. Biochimica et Biophysica Acta 1799: 337-351 

Rajeswaran R and Pooggin MM. (2012). RDR6-mediated synthesis of complementary RNA 

is terminated by miRNA stably bound to template RNA. Nucleic Acids Research 40: 594-599 

Ramanathan A, Robb GB and Chan SH. (2016). Survey and Summary. mRNA capping: 

biological functions and applications. Nucleic Acids Research doi: 10.1093/nar/gkw551 

Ren, B., Guo, Y., Gao,   F., Zhou, P.,  Wu, F., Meng, Z., Wei, C., Li, Y., (2010). Multiple 

functions of rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J. Virol. 

84,  12914–12923. 

Ren GD, Xie M, Zhang SX, Vinovskis C, Chen XM, et al., (2014). Methylation protects 

microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by 

AGO1 cleavage. Proc. Natl. Acad. Sci. U.S.A. 111:6365-6370. doi: 

10.1073/pnas.1405083111 

Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). 

Prediction of plant microRNA targets. Cell 110, 513-520. 



103 
 

Rivas, F.V., Tolia, N.H., Song, J.J., Aragon, J.P., Liu, J., Hannon, G.J., and Joshua-Tor, L. 
(2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nature structural 
& molecular biology 12, 340-349. 
 
 

Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER and 

Castillo AG (2013). Geminivirus Rep protein interferes with the plant DNA methylation 

machinery and suppresses transcriptional gene silencing. New Phytologist 199:464-475 

Ruíz-Ferrer, V and Voinnet, O. (2009) Roles of plant small RNAs in biotic stress responses. 

Annu Rev. Plant Biol. 60:485-510 

Rybicki E. 2015. A Short History of the Discovery of Viruses. Buglet Press. 

Sahana, N., Kaur, H., Jain, R.K., Palukaitis, P., Canto, T., Praveen, S., (2014). The 

asparagine residue in the FRNK box of potyviral helper-component protease is critical for its 

small RNA binding and subcellular localization. J. Gen. Virol. 95,  1167–1177. 

Saini HK, Griffiths-Jones S, Enright AJ (2007). Genomic analysis of human microRNA 

transcripts. Proc.Natl. Acad. Sci USA 104(45):17719-24 

Sarkies P and Miska EA (2014). Small RNAs break out: the molecular cell biology of mobile 

small RNAs. Nature Reviews Molecular Cell Biology 15: 525-535 

Schmitz-Linneweber C and Small I. (2008) Pentatricopeptide repeat proteins: a socket set for 

organelle gene expression. Trends Plant Sci: 13(12) 663-670 

Scholthof HB, Alvarado VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D, Brosseau C, 

Jaubert M, Zamora A, Moffett P. (2011). identification of an ARGONAUTE for antiviral RNA 

silencing in Nicotiana benthamiana. Plant Physiol. 156:1548-55. doi: 

10.1104/pp.111.178764.  

Schuck J, Gursinsky T, Pantaleo V, Burgyán J, Behrens SE. AGO/RISC-mediated antiviral 

RNA silencing in a plant in vitro system. Nucleic Acids Res. (2013); 41(9):5090–103. 

10.1093/nar/gkt193 PMID: 23535144 

Schwach, F., Vaistij, F.E., Jones, L., Baulcombe, D.C.(2005) An RNA-dependent RNA 

polymerase prevents meristem invasion by Potato virus X and is required for the activity but 

not the production of a systemic silencing signal. Plant Physiol. 138:1842–1852. 

Seguinb J, Otten P, Baerlocher L, Farinelli L, Pooggin MM (2014) MISIS: A bioinformatics tool 

to view and analyze maps of small RNAs derived from viruses and genomic loci generating 

multiple small RNAs. J Virol Methods 195: 120–122 

Seguina J, Rajeswaran R, Malpica-López N, Martin RR, Kasschau K, Dolja VV, Otten P, 

Farinelli L, Pooggin MM (2014). De Novo Reconstruction of Consensus Master Genomes of 

Plant RNA and DNA Viruses from siRNAs. PLOS ONE 9: 1-8 

Shamandi, N., Zytnicki, M., Charbonnel, C., Elvira-Matelot, E., Bochnakian, A., Comella, P., 

Mallory, A. C., Lepère, G., Sáez-Vásquez, J., and Vaucheret, H. (2015). Plants Encode a 

General siRNA Suppressor That Is Induced and Suppressed by Viruses. PLoS Biol. 

13:e1002326. 



104 
 

Shen, M., Xu, Y., Jia, R., Zhou, X., Ye, K., (2010). Size-independent and noncooperative 

recognition of  dsRNA by the rice stripe  virus RNA silencing suppressor NS3.  J. Mol.  Biol.  

404, 665–679. 

Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe DC. (2012). A 

microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other 

mRNAs. Plant Cell 24:859–74 

Shivaprasad, P.V., Rajeswaran, R., Blevins, T., Schoelz, J., Meins, F., Hohn, T., Pooggin, 

M.M.,  (2008). The CaMV  transactivator/viroplasmin interferes with RDR6- dependent trans-

acting and secondary siRNA  pathways in Arabidopsis. Nucleic acid Res.  36,  5896–5909. 

Shuman S and D Lima C. (2004). The polynucleotide ligase and RNA capping enzyme 

superfamily of covalent nucleotidyltransferases. Current Opinion in Structural Biology 14:757-

764.  

Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M.,  Burgyán, J., (2002). 

A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide 

double-stranded RNAs.  EMBO  21, 3070–3080. 

Singh RK, Gase K, Baldwin IT and Pandey SP (2015). Molecular evolution and diversification 

of the Argonaute family of proteins in plants. BMC Plant Biology 15:23 DOI 10.1186/s12870-

014-0364-6 

Smith, N. A., Eamens, A. L., and Wang, M. B. (2010). The presence of high-molecular weight 

viral RNAs interferes with the detection of viral small RNAs. RNA 16:1062-1067. 

Song, J.J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, 

G.J., and Joshua-Tor, L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals 

an RNA binding motif in RNAi effector complexes. Nature structural biology 10,1026-1032. 

Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004). Crystal structure of Argonaute and its 

implications for RISC slicer activity. Science 305:1434–1437 

Souret FF, Kastenmayer JP, Green PJ (2004). AtXRN4 degrades mRNA in Arabidopsis and 

its substrates include selected miRNAs targets. Mol. Cell 15: 173-183 

Staskawicz, B.J., Ausubel, F.M., Baker, B.J., Ellis, J.G. and Jones, J.D. (1995) Molecular-

genetics of plant-disease resistance. Science, 268, 661–667. 

Stokes TL, Kunkel BN, Richards EJ. (2002). Epigenetic variation in Arabidopsis disease 

resistance. Genes Dev. 16:171–182. 

Szittya G, Moxon S, Pantaleo V, et al., (2010). Structural and functional analysis of viral 

siRNAs. PLoS Pathog, 2010, 6: e1000838 

Szyttya G. and Burgyán J. (2013). RNA Interference-Mediated Intrinsic Antiviral Immunity in 

Plants. B.R. Cullen (ed), Intrinsic Immunity, Current topics in Microbiology and Immunology 

371:153-181.  

Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008). The mechanism selecting 

the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell 

Physiol 49:493–500. 



105 
 

Takimoto K et al., (2009). Mammalian GW182 contains multiple Argonaute-binding sites and 

functions in microRNA-mediated translational repression. RNA 15:1078-1089. 

Tameling WIL, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJC 

and Takken FLW (2006). Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis 

cause autoactivation. Plant Physiology 140:1233-1245. 

Tang, G., Reinhart, B.J., Bartel, D.P., and Zamore, P.D. (2003). A biochemical framework for 

RNA silencing in plants. Genes Dev 17: 49-63. 

Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. (2003). Fitness costs of R-gene-

mediated resistance in Arabidopsis thaliana. Nature 423:74–77. 

Till S et al., (2007). A conserved motif in Argonaute-interacting proteins mediates functional 

interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14:897-903 

Tolia NH and Joshua-Tor L (2007). Slicer and the argonautes. Nat. Chem. Biol. 1:36-43. 

DOI: 10.1038/nchembio848  

Tomari Y, Zamore PD (2005). Perspective: machines for RNAi. Genes Dev 19:517–529 

Tucker, M.R., Okada, T., Hu, Y., Scholefield, A., Taylor, J.M., and Koltunow, A.M. (2012). 

Somatic small RNA pathways promote the mitotic events of megagametogenesis during 

female reproductive development in Arabidopsis. Development 139, 1399-1404. 

Várallyay,  E.,  Havelda,  Z.,  (2013).   Unrelated  viral suppressors  of   RNA   silencing 

mediate the control of  ARGONAUTE1 level.  Mol.  Plant Pathol. 14, 567–575.  

Várallyay, E., Valoczi, A., Agyi, A., Burgyán, J., Havelda, Z., (2010). Plant virus-mediated 

induction of  miR168 is associated with repression of  ARGONAUTE1 accumula- tion. EMBO  

J. 29,  3507–3519. 

Vargason, J.M., Szittya, G., Burgyán, J., Hall,  T.M., (2003). Size  selective recognition of 

siRNA  by an RNA silencing suppressor. Cell  115, 799–811. 

Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 

in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant 

development. Genes & development 18, 1187-1197. 

Vazquez F (2006). Arabidopsis endogenous small RNAs: highways and byways. Trends 

Plant Sci 11:460-468 

Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, 

Bartel DP, Crété P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of 

Arabidopsis mRNAs. Mol Cell.16:69-79. 

Voinnet (2008). Use, tolerance and avoidance of amplified RNA silencing by plants. Trends 

Plant Sci. 13(7):317-28. doi: 10.1016/j.tplants.2008.05.004. Epub 2008 Jun 17. 

Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136:669-687 



106 
 

Wang X, Zhang S, Dou Y, Zhang C, Chen X, Yu B, et al., (2015). Synergistic and 

Independent Actions of Multiple Terminal Nucleotidyl Transferases in the 3’ Tailing of Small 

RNAs in Arabidopsis. PLoS Genet 11(4): e1005091. doi:10.1371/journal. pgen.1005091 

Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010). RNAi mediated viral 

immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc. Natl. 

Acad. Sci. U.S.A. 107:484-489 

Wang XB, Jovel J, Udomporn P, Wang Y,Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW 

(2011). The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs 

direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant 

Cell 23, 1625-1638 

Wassenegger M and Krczal G. (2006). Nomenclature and functions of RNA-directed RNA 

polymerases. Trends Plant Sci 11:142-151 

Watanabe T, Honda A, Iwata A, Ueda S, Hibi T, Ishihama A. (1999). Isolation from Tobacco 

Mosaic Virus-Infected Tobacco of a Solubilized Template-Specific RNA-Dependent RNA 

Polymerase Containing a 126K/183K Protein Heterodimer. Journal of Virology 73:2633-2640 

Willmann MR, Endres MW, Cook RT and Gregory BD (2011). The Functions of RNA-

Dependent RNA Polymerases in Arabidopsis. The Arabidopsis Book. e0146. doi: 

10.1199/tab.0146 

Wilson RC and Doudna JA (2013). Molecular Mechanisms of RNA Interference. Annu. Rev. 

Biophys. 42: 217-239. 

Wu  L, Fan J, Belasco JG (2006). MicroRNAs direct rapid deadenylation of mRNA. PNAS 

103: 4034-4039  

Xie ZX et al., (2004). Genetic and functional diversification of small RNA pathways in plants. 

PLoS Biol 2:642–652. doi:10.1371/journal.pbio.0020104 

Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.M. (2003). Structure and 
conserved RNA binding of the PAZ domain. Nature 426, 468-474. 
 

Yang X and Li L. (2012) Analyzing the microRNA Transcriptome in Plants using Deep 

Sequencing Data. Biology 1(2): 297-310 

Yang Z, Ebright YW, Yu B, Chen X (2006). HEN1 recognizes 21-24-nt small RNA duplexes 

and deposits a methyl group onto the 2'OH of the 3' terminal nucleotide. Nucleic Acids Res 

34: 667-675 

Yi R, Qin Y, Macara IG, Cullen BR. (2003). Exportin-5 mediates the nuclear export of pre-

microRNAs and short hairpin RNAs. Genes Dev 17: 3011–3016. 

Yin S, Ho K, Shuman S. (2003). Structure-Function analysis of T4 RNA Ligase 2. The 

Journal of Biological Chemistry 278:17601-17608 

Yoshikawa M, Peragine A, Park MY, Poethig RS. (2005). A pathway for the biogenesis of 

trans-acting siRNAs in Arabidopsis. Genes Dev. 19:2164–75 



107 
 

Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R and Chen X (2005). 

Methylation as a crucial step in plant microRNA biogenesis. Science 307:932-935  

Yu D, Fan B, MacFarlane SA, Chen Z (2003). Analysis of the Involvement of an Inducible 

Arabidopsis RNA-dependent RNA Polymerase in Antiviral Defense. MPMI 16: 206-216 

Zhai, Y., Bag,  S., Mitter, N., Turina, M., Pappu, H.R., (2014). Mutational analysis of two 

highly conserved motifs in the silencing suppressor encoded by  tomato spotted wilt virus 

(genus Tospovirus, family Bunyaviridae). Arch. Virol. 159, 1499–1504. 

Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, 

Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011). 

MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production 

of phased, trans-acting siRNAs. Genes Dev. 25: 2540-2553 

Zhai J and Meyers BC (2012). Deep Sequencing from hen1 Mutants to identify Small RNA 3' 

Modifications. Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXVII 

Zhai J, Zhao Y, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji L, Xie M, Cao X, Yu B, 

Timmermans M, Yang B, Chen X and Meyers BC (2013). Plant microRNAs display 

differential 3' truncation and tailing modifications that are ARGONAUTE 1 dependent and 

conserved across species. The Plant Cell 25: 2417-2428 

Zhanga X, Henriques R, Lin S, Niu Q, and Chua N (2006). Agrobacterium-mediated 

transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:1-6 

Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, et al., (2012). Genome-wide analysis 

of plant NAT-siRNAs reveals insights into their distribution, biogenesis and function. Genome 

Biol. 13:R20 

Zhangb,  X.,  Yuan,  Y.R.,  Pei,   Y.,  Lin,   S.S.,  Tuschl,  T.,  Patel,  D.J.,  Chua,  N.H.,   

(2006). Cucumber mosaic  virus-encoded  2b  suppressor  inhibits  Arabidopsis Argonaute1 

cleavage activity to counter plant defense. Genes Dev.  20,  3255–3268. 

Zhang, X., Zhang,X., Singh,J., Li,D., Qu,F., (2012). Temperature-dependent survival of turnip 

crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that 

requires dcl2, AGO2, and HEN1.J.Virol.86,6847–6854. 

Zhang X, Zhao H, Gao S, Wang W, Katiyar-Agarwal S, Huang H, Raikhel N and Jin H. 

(2011). Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated 

silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366. 

Zhang Y, Dorey S, Swiderski M, Jones JD (2004). Expression of RPS4 in tobacco induces 

an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213-224. 

Zhao Y, Yu Y, Zhai J, Ramachandran V, Dinh TT, Meyers BC, Mo B and Chen X (2012). The 

Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger 

their degradation. Curr. Biol. 22:689-694  

Zheng X, Zhu J, Kapoor A, Zhu JK. (2007). Role of Arabidopsis AGO6 in siRNA 

accumulation, DNA methylation and transcriptional gene silencing. EMBO 26:1691-1701 



108 
 

Zhu, S., Jeong, R.D., Lim,  G.H.,  Yu, K., Wang, C., Chandra-Shekara, A.C., Navarre,  D., 

Klessig,  D.F.,  Kachroo,  A.,  Kachroo,  P.,  (2013).  Double-stranded  RNA-binding protein  

4  is   required  for   resistance  signaling  against  viral  and  bacterial pathogens. Cell  Rep.  

4,  1168–1184. 

Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T: Bacterial disease 

resistance in Arabidopsis through flagellin perception. Nature (2004), 428:764-767. 

Zvereva AS and Pooggin MM, (2012). Review. Silencing and Innate Immunity in Plant 

Defense against Viral and Non-Viral Pathogens. Viruses 4, 2578-2597 

Zvereva, A. S., Golyaev, V., Turco, S., Gubaeva, E. G., Rajeswaran, R., Schepetilnikov, M. 

V., Srour, O., Ryabova, L. A., Boller, T., and Pooggin, M. M. 2016. Viral protein suppresses 

oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on 

virus-infected plants. New Phytol. 211:1020-1034. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

Section XI. Supplementary Material 

 

Supplementary Dataset S1, S2 and S3  (Malpica-López et al, MPMI. doi: 10.1094/MPMI-

07-17-0164-R). 
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Supplementary Table S1. DNA oligonucleotide probes, PCR primers and synthetic gene 

fragments  

Name original                  Detects         (Gene/region)          Sequence (5' to 3')  

 

A. thaliana genome sRNA specific probes: 

 

miR160a_as   miR160      miRNA    TGGCATACAGGGAGCCAGGCA 

miR168a_as  miR168      miRNA   TTCCCGACCTGCACCAAGCGA 

miR173_as  miR173      miRNA      GTGATTTCTCTCTGCAAGCGAA 

miR173*_as  miR173*      miRNA*  CTTTCGCTTACACAGAGAATC 

miR403a_as  miR403      miRNA  CGAGTTTGTGCGTGAATCTAA 

miR472_as   miR472      miRNA   GGTATGGGCGGAGTAGGAAAAA 

miR472*_as    miR472*      miRNA*   GATTTTGCCTACTTCGACCAT 

 

siR255_as  siR255      TAS1a/b/c siRNA   TACGCTATGTTGGACTTAGAA 

siR255*_as  siR255*      TAS1a/b/c siRNA* TATTCTAAGTCCAACATAGCG 
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siR1003 as  siR1003      5S rRNA siRNA     ATGCCTATGTTGGCCTCACGGTCT 

 

Met_tRNA_as  Met-tRNA     tRNA            TGGTATCAGAGCCAGGTTTCGATCC 

 

N. benthamiana genome sRNA specific probes: 

 

miR160a_as   miR160      miRNA    TGGCATACAGGGAGCCAGGCA 

nbmiR482a_as   miR482      miRNA  TAGGAATGGGTGGAATTGGAAA 

nbmiR482a_star_as  miR482*      miRNA*   GCTTTCCAACCCACCAATCCC 

 

N. benthamiana GFP transgene-specific probes 

 

NOSterm_s   3'UTR a/sense siRNAs CAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCG 

NOSterm_as   3'UTR a/sense siRNAs  CGCAAGACCGGCAACAGGATTCAATCTTAAGAAACTTTATTG 

 

β-elimination internal control RNA-specific probe: 

 

GFP_22ntRNA_as  non-methylated GFP RNA  AGAAGAACGGCATCAAGGTGAA 

 

 

ORMV genome-specific probes for long RNA blot hybridization: 

 

OrmvCP_qPCR_s  ORMV CP antisense  GTACCAGTATTTCGCAGCGATGTG  

OrmvCP_qPCR_as  ORMV CP sense   GTATCTCTTGCCGCTTGAGTTTGG 

 

Arabidopsis genome-specific probes for long RNA blot hybridization: 

 

AGO1_as   AGO1 mRNA   CCACTGTCTGATGTCTCTGGCTCCATGTAGAATC  

AGO2_as   AGO2 mRNA   GAGATTACAAATTCGTTTCAACACACCAAAACC 

RPS5_as               RPS5 mRNA                     CTCCACCGCCACCTGGATGAAGGTAAGAAAC 

RPS4_as               RPS4 mRNA                     CTCTGCTTCTTCTTTGGCCGTCCATTATCCATTC 

 

 

ORMV genome specific probes for small RNA blot hybridization: 
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OrmvCP_qPCR_s  ORMV CP antisense siRNAs  GTACCAGTATTTCGCAGCGATGTG  

 

Mixture of 3 oligos ORMV p125 antisense siRNAs 

ormv5_1s      GCACGCTCGAGACGCCCTAAGGTCCAT 

ormv5_2s      AGGCCGTACACTCCCTAGCGGGTGGTC 

ormv5_3s      CGCTGCGCACCTTTTCAAGGGACGCGA 

 

ORMV qPCR primers  

 

OrmvRep_qPCR_s  ORMV p125 sense  TGCCTCATTGTCAGCTACAGTCTC 

OrmvRep_qPCR_as  ORMV p125 antisense  TAACCAGCGTCCTCTTCTCACATC 

 

OrmvMP_qPCR_s   ORMV MP sense   CTGGCTCTGGAGGTGGTTTCTG 

OrmvMP_qPCR_as  ORMV MP antisense  CTTCGACGTTCGGATCATTCACAG 

 

OrmvCP_qPCR_s   ORMV CP sense   GTACCAGTATTTCGCAGCGATGTG  

OrmvCP_qPCR_as  ORMV CP antisense  GTATCTCTTGCCGCTTGAGTTTGG 

    

PCR primers to introduce the ORMV p125 stop codon mutation: 

  

p126_stopsup_s  ORMV p125 stop sense  TCGGGTACCCAATAcCAATTACAGATCGACACAGTG 

p126_stopsup_as ORMV p125 stop antisense GTCGATCTGTAATTGgTATTGGGTACCCGACTCTAC 

p180_ClaI_s  p125 stop sense upstream AGGTTGTTTATCGATGAGGGATTAATGCTG   

p180_XmaIII_as  p125 stop a/sense downstream GAAAACCGGCCGTTCTTTCGGCACTTGCAC 

                                 

                              

Gateway primers to generate vectors expressing ORMV p125 and/or p182 proteins:  

 

AttB1_Rep_s ORMV p125 start sense ggggacaagtttgtacaaaaaagcaggctACAcCATGGCACAATTTCAACAAACAG  

AttB2_p126_as ORMV p125 stop antisense   ggggaccactttgtacaagaaagctgggtCCTATTGGGTACCCGACTCTACCT  

AttB2_p180_as ORMV p182 stop antisense  ggggaccactttgtacaagaaagctgggtcTCAAACAAAAAACAAATCTTTAAACAACC    

 

PCR primers for genotyping transgenic lines: 

 

CaMV35Spro_#1  CaMV 35S promoter  CGCGTCGAGATGCTAAAT 
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Ormv141_as  ORMV p125 ORF   CGCGTCGAGATGCTAAATC 

Ormv323_as  ORMV p125 ORF                 AGATACTCCAACTCAAGAGTCCTTAGACCA 

 

 

Synthetic fragments to repair the pORMV infectious clone: 

 

>Ormv_NarI_EcoNI 

ggcgccTTAATACGACTCACTATAGTTTTATTTTTATTGCAACAACAACAACAAATTACAATAACAACAAAACAAATACAAACAACAACAACATGGCACAATTTCAACAAACAGTAAACATGCAA

ACATTGCAGGCTGCCGCGGGGCGCAACAGCCTGGTGAATGATTTAGCATCTCGACGCGTTTATGATAATGCTGTCGAGGAGCTAAATGCACGCTCGAGACGCCCTAAGGTCCATTTCTCCAAATC

AGTGTCTACGGAACAGACGCTGTTGGCTTCAAACGCTTATCCGGAGTTTGAGATTTCCTTTACTCATACCCAACAGGCCGTACACTCCCTAGCGGGTGGTCTAAGGACTCTTGAGTTGGAGTATC

TCATGATGCAAGTTCCGTTCGGTTCTCTAACGTACGATATCGGTGGTAACTTCGCTGCGCAccttttcaagg 

 

>Ormv_NcoI_PstI 

ccatggTTACTAATAACGTGGTTGTTAAAGGTTTGAGGGAAAAAGTCATCGCTGTGAATGATCCGAACGTCGAAGGTTTCGAAGGTGTGGTTGACGATTTCGTCGATTCGGTTGCTGCATTCAAG

GCGATTGACAGTTTCAGGAAGAAAAAGAAAAGGATTGGAGGAAGGGATGTAAATAGTAATAAGTATAGATATAGACCGGAGAGATACGCCGGTCCTGATTCGTTACAATATAAAGAAGAAAATGG

TTTACAACATCACTAGCTCGAATCAGTACCAGTATTTCGCAGCGATGTGGGCAGAGCCCACAGCGATGCTTAACCAGTGCGTGTCTGCGTTGTCGCAGTCGTACCAAACTCAAGCGGCAAGAGAT

ACTGTTAGACAGCAGTTCTCTAACCTTCTGAGTGCGATTGTGACACCGAACCAGCGGTTTCCAGAAGCAGGATACCGGGTGTATATTAATTCAGCAGTTCTAAAACCGTTGTACGAGTCTCTCAT

GAAGTCCTTTGATACTAGGAATAGGATCATTGAAACTGAAGAAGAGTCGCGTCCATCGGCTTCCGAAGTAGCTAATGCAACACAACGTGTTGATGATGCGACCGTGGCCATCAGGAGTCAAATTC

AGCTTTTGCTGAACGAGCTCTCCAACGGACATGGTCTGATGAACAGGGCAGAGTTCGAGGTTTTATTACCTTGGGCTACTGCGCCAGCTACATAGGCGTGGTGCACACGATAGTGCACAGTGTTT

TTCTCTCCACTTAAATCGAAGAGATATACTTACGGTGTAATTCCGTAAGGGTGGCGTAAACCAAATTACGCAATGTTTTAGGTTCCATTTAAATCGAAACCTGTTATTTCCTGGATCACCTGTTA

ACGTACGCGTGGCGTATATTACAGTGGGAATAACTAAAAGTGAGAGGTTCGAATCCTCCCTAACCCCGGGTAGGGGCCCATGCATctgcag 

 

Supplemental Figure Legends 

Supplementary Fig. S1. Infectivity tests and molecular analysis of the p125-

deficient virus in N. benthamiana, A. thaliana and its mutant lines with impaired 

siRNA biogenesis. 
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Fig. S1a. In vitro transcription of ORMV genome constructs. The top panel 

contains linear diagrams of the genome organization of each ORMV construct, 

depicting the p125, p182, movement protein (MP) and coat protein (CP) ORFs, and a 

diagram of a prototypical ORMV genome construct in the context of a circular 

plasmid (pORMV). The leaky stop codon of p125 is shown as a vertical red line in the 

two p125-expressing constructs (W41 and W4) and the mutated p125 stop codon is 

shown as a red circle in constructs M41 and M4. The T-to-G substitution at position 

5612 (which eliminates the original MP stop codon, elongating the protein by an 

additional 19 amino acids) is shown as a blue circle in constructs W4 and M4. The 

location of the T7 promoter for in vitro transcription and of the restriction sites (Nsi I 

and Pst I) used to linearize the constructs before in vitro transcription are also shown. 

The bottom panel shows an analysis by non-denaturing agarose gel electrophoresis 
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of two in vitro transcription experiments (N1 and N2) using the linearized constructs, 

indicating the positions of the linear template DNA and viral RNA transcripts with 

arrows. The positive control was an in vitro transcription reaction from the linear 

plasmid pTRI-Xef, provided by the kit supplier (Ambion). 

 

Fig. S1b. Infection of N. benthamiana with in vitro transcripts. The figure shows 

the disease symptoms caused by infection with in vitro transcripts from two different 

experiments (N1 and N2). N. benthamiana plants (two per construct) were inoculated 

with in vitro transcripts from wild-type (W41 or W4) or mutant (M41 or M4) ORMV 

constructs. The symptoms of viral infection at 5, 10 and 26 dpi are shown, indicating 

their relative severity. Note that after stem necrosis and tilting at 5 dpi, systemic 

tissue death had occurred in all plants infected with W41 or W4 by 26 dpi (not 

shown). In experiment N2, one of the two plants inoculated with M41 (plant 1) 
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remained asymptomatic up to 26 dpi (not shown), even though plant 2 and both 

plants inoculated with M4 had developed disease symptoms by that date. In both 

cases, the figures shows only plant 2 of both conditions at 26 dpi. 

 

Fig. S1c. Infection of A. thaliana with in vitro transcripts. Disease symptoms 

caused in Col-0, rdr126 and dcl234 plants by infection with in vitro transcripts. Each 

A. thaliana line (two plants per construct) was inoculated with in vitro transcripts from 

wild-type (W41 or W4) or mutant (M41 or M4) ORMV constructs. The figure shows 

the symptoms of viral infection at 22 dpi for one representative plant per construct, 

together with the relative severity of disease symptoms. 
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Fig. S1d. RT-PCR amplification and sequencing of viral RNA to examine the 

stability of the mutated stop codon of p125 in planta. RT-PCR analysis of viral 

RNA prepared from A. thaliana and N. benthamiana plants inoculated with wild-type 

or mutant viral constructs. The top panel shows a diagram of the ORMV genome, the 

positive sense genomic RNA transcribed from the ORMV constructs and replicated in 

infected plants (red line), the location of the primer (short green arrow) used to 

generate the cDNA (black line) and the location of the primers (orange and red 

arrows) used to generate a PCR amplicon containing the p125 stop codon (original, 

mutated, or reverted). The table below summarizes the RT-PCR sequencing results 

(shown in Fig. S1e,f). For each construct (W41, W4, M41, M41) the columns show 

the sequence context of the p125 stop codon (underlined) in the constructs used for 

in vitro transcription and the actual sequence of the codon obtained by sequencing of 

the viral RNA from the infected plants at 22 dpi for A. thaliana (Col-0) and its mutant 
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lines (rdr126 and dcl234) and at 5 and 26 dpi for N. benthamiana (N.b.). Major and 

minor reversions of the p125 stop codon mutation are marked in red and orange. 

 

Fig. S1e. No (or minor) reversion of the mutated stop codon in N. benthamiana. 

Partial sequencing electrophoretograms of cDNA-PCR amplicons from viral RNA of 

N. benthamiana plants inoculated with the mutant ORMV constructs (M41 and M4) at 

5 dpi and 26 dpi. The mutated stop codon of p125 is boxed and the peak showing a 

minor reversion to the stop codon is labeled with an asterisk. 
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Fig. S1f. Major reversions recreating the mutated stop codon of p125 in A. 

thaliana. Partial sequencing electrophoretograms of cDNA-PCR amplicons from viral 

RNA of A. thaliana plants (Col-0, rdr126 and dcl234) inoculated with the mutant 

ORMV constructs (M41 and M4) at 22 dpi. The mutated stop codon of p125 is boxed 

and the peak showing a major reversion to the stop codon is labeled with an asterisk. 
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Fig. S1g. Blot hybridization analysis of 22 dpi viral gRNAs and sgRNAs in A. 

thaliana plants (Col-0, rdr126 and dcl234) inoculated with in vitro transcripts 

from ORMV constructs (W41, W4, M41, M4). The top panels show long RNA 

analysis (in denaturing 1% agarose gels) of total RNA samples from a pool of two 

plants per construct. The blots show viral positive-sense RNAs (gRNA, sgRNA-MP, 

sgRNA-CP) detected by a probe specific for the CP region of the ORMV genome.  

The EtBr-stained gels used for the blots are shown below as loading controls. The 

positions of the gRNA, sgRNA-MP and sgRNA-CP are marked with arrows. Note that 

by 22 dpi, stop codon revertants had overtaken the initial population of mutant 

viruses (M41 and M4) in all the lines (Col-0, rdr126 and dcl234, see Fig. S1f), thereby 

restoring p125 expression (see Fig. 1f). 
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Fig. S1h. Blot hybridization analysis of 22 dpi viral and endogenous sRNAs 

from A. thaliana Col-0, rdr126 and dcl234 inoculated with in vitro transcripts 

from ORMV constructs (W41, W4, M41, M4). The panels show high-resolution 

sRNA analysis (15% PAGE) of total RNA samples from a pool of two plants per 

construct. The blots were successively hybridized with DNA oligonucleotide probes 

specific for viral antisense siRNAs derived from the ORMV p125 region as well as for 

plant miRNA (miR160), rasiRNA (siR1003), miRNA* (miR173*, miR472*) and 

tasiRNA * (siR255*) species. Note that by 22 dpi the stop codon mutation of viruses 

M41 and M4 has been fully reverted (see Fig. S1f), thereby restoring p125 

expression (see Fig. 1f). 
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Fig. S1i. Blot hybridization analysis of 5 and 26 dpi viral long RNAs from N. 

benthamiana plants inoculated with in vitro transcripts from ORMV constructs 

(W41, W4, M41, M4). The top panel shows a long RNA blot (1% agarose denaturing 

gel electrophoresis) of total RNA samples from two experiments: in experiment N2, 

the RNA was extracted from a pool of two plants, while in experiment N3 it was 

extracted from individual plants selected on the basis of the Western blot data shown 

in Fig. S1k (plants indicated with black asterisks). The blots show ORMV positive-

sense RNAs (gRNA, sgRNA-MP, sgRNA-CP) detected by a probe specific for the CP 

region of the ORMV genome. The EtBr-stained gel used for the blot is shown below 

as a loading control. The position of the gRNA, sgRNA-MP and sgRNA-CP species 

are marked with arrows. Note that in experiment N2 one of the two plants of pool 

M41 was asymptomatic (Fig. S1b, plant 1) and had not developed disease symptoms 

at 26 dpi. 
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Fig. S1j. Blot hybridization analysis of 5 dpi viral and endogenous sRNAs from 

N. benthamiana plants inoculated with in vitro transcripts from ORMV 

constructs (W41, W4, M41, M4). The panels show high-resolution sRNA blots (15% 

PAGE) of total RNA samples from experiment N2 (pool of two plants per construct), 

hybridized successively with DNA oligonucleotide probes specific for the viral 

antisense siRNAs derived from ORMV p125 region, plant miRNAs (miR160 and 

miR482) and the * species of miR482 (miR482*). Note that in experiment N2 one of 

the two plants of pool M41 was asymptomatic (Fig. S1b, plant 1) and had not 

developed disease symptoms at 26 dpi. 
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Fig. S1k. Western blot analysis of ORMV p125 and p182 proteins. Total protein 

samples were obtained from upper (systemic) leaf tissues of individual N. 

benthamiana plants at 5 dpi following inoculation with in vitro transcripts of the viral 

constructs M4, M41, W4 or W41 (3 plants per construct) and separated in a 9% SDS-

PAGE gel. ORMV p182 and p125 were detected with a primary anti-p125 antibody 

(see Material and Methods). The AmidoBlack-stained membrane is shown below as 

a loading control. Note that in plants inoculated with W4- and W41-derived 

transcripts, both proteins were present (although p125 constituted the most abundant 

species of the two), while in plants inoculated with M4- and M41-derived transcripts 

only p182 was present, with the exception of plant M41-3 (indicated with red 

asterisks), where stop codon revertants overtook the mutant population and restored 

p125 expression. The black asterisks indicate the individual plants taken for the RNA 

blot hybridization shown in Fig S1i (Experiment N3). 


