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1 Summary 
	
  
	
  

Immunodeficiencies are severe diseases, which are inherited or acquired after 

cytotoxic treatment or radiotherapy. Hematopoietic stem cell transplantation (HSCT) 

has become a common treatment for patients suffering from immunodeficiency, but 

especially the re-establishment of a functional T cell pool is often delayed and 

patients suffer from infections and relapse of malignancies. The generation of an 

adequate T cell pool can be achieved by de novo generation and peripheral 

expansion of donor T cells. However, T cell development after pretransplantational 

treatment is often impaired due to damage of the thymic environment. To improve 

thymic engraftment and preserve the thymic microenvironment, current treatments 

involve application of cytokines, which have often severe side effects. Therefore it is 

important to find alternative ways to improve T cell reconstitution after HSCT. 

LTi cells are members of the family of innate lymphoid cells group 3 (ILC3s), 

which promote lymphoid tissue generation and are involved in tissue remodelling in 

primary and secondary lymphoid organs. In my study, I wanted to investigate the 

impact of ILC3s and secondary lymphoid organs on T cell reconstitution after HSCT. 

Therefore immunodeficient Rag2-/-γc-/- mice, which have reduced numbers of ILC3s 

and severe defects in LN development and K14 TSLP+/- Rag2-/- γc-/- mice with 

increased numbers of ILC3s were compared before and after transplantation with 

hematopoietic stem cells or mature T cells. 

Characterization of the recipient mice showed that TSLP overexpression in   

Rag2-/-γc-/- mice increases the number of double negative thymocytes DN2 and 

DN3s, and improves the thymic architecture with the development of mTECs and 

Aire expression. Reconstitution of the hematopoietic system with fetal liver (FL) 

HSCs from TSLPR-/- mice showed that TSLP overexpression results in an 

accelerated T cell reconstitution in the thymus and peripheral organs. The 

reconstitution of B cells did not differ between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- 

mice, suggesting that the reconstitution itself was equally efficient. 

T cells depend on IL-7, as this cytokine promotes T cell proliferation and survival. 

I could show that the IL-7 expression was significantly higher in the spleen of       

K14 TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice most likely as a result of higher 

numbers of dendritic cells (DCs) expressing IL-7. Finally, I could demonstrate that 

TSLP overexpression increases T cell proliferation in secondary lymphoid organs. 
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Taken together, these data suggest, that TSLP overexpression accelerates T cell 

reconstitution by improving de novo T cell development in the thymus and T cell 

expansion in secondary lymphoid organs. 
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2. Introduction 
 

2.1 The Immune System 
 

The human body is constantly exposed to a variety of potentially harmful 

microorganisms such as bacteria, fungi and viruses and has to discriminate between 

self and non-self cells. To protect the organism, the immune system with an innate 

and adaptive branch has developed, whereas the latter is only found in vertebrates. 

The innate immune system is the first line of defence in all animals and is able to 

react within minutes or hours to pathogen- and danger- associated molecular 

patterns (PAMPs and DAMPs), typical components of microorganisms. Cells of the 

innate immune system include professional (e.g. dendritic cells) as well as non-

professional antigen presenting cells (APC) (endothelial and epithelial cells) and 

phagocytic cells like macrophages (MΦ). The release of cytokines and chemokines 

by innate immune cells and endothelial or epithelial cells is important to recruit and 

activate the second branche, the adaptive immune system. Contrary to innate 

immune cells, cells of the adaptive immune system, namely T and B lymphocytes 

are able to recognize antigens (Ags) due to the expression of highly specific Ag 

receptors, which are generated by random recombination of gene segments. The 

number of B and T cells that recognize a given foreign Ag is small, on the order of 1 

cell per million. The high diversification of the T and B cell repertoire through 

recombination, however, ensures clonal and highly specific immune responses 

towards a broad spectrum of different Ags.  

T and B cells develop in primary lymphoid organs such as thymus and bone 

marrow (BM), respectively. T cells contribute to cell - mediated immune response. 

CD8+ cytotoxic T cells can eliminate intracellular pathogens, whereas CD4+ T helper 

cells help other immune cells through the secretion of cytokines. There are two 

major subsets, T helper (Th) 1 and Th2. While Th1 cells mediate cellular immunity 

by stimulating MΦ and stimulating proliferation of CD8+ cytotoxic T cells, Th2 cells 

support B cell proliferation and antibody (Ab) class switch1. Continuing studies 

identified also new subsets of CD4+ T cells, which include Th9, Th17 and Th22 

named after their key effector cytokine secretion2.  

The recognition of Ags by CD4+ and CD8+ T cells are different. CD4+ T cells 

recognize extracellular Ags presented by MHC class II, whereas CD8+ cytotoxic T 

cells recognize intracellular Ags complexed with MHC class I. CD4+ T cell activation 
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leads to the production of cytokines, which in turn activate other cells of the immune 

system1. B cells on the other hand recognize native Ags and secrete 

immunoglobulins (Ig) Abs with two functional parts: the Fab part of Igs recognizes 

extracellular pathogens, whereas the Fc part activates other host cells Fc receptors 

(humoral immune response). B cell activation and maturation is possible via two 

different pathways: The thymus - dependent (TD) and thymus - independend (TI) B 

cell activation. During TD B cell activation, Th2 cells primed for a specific Ag by 

APCs activate B cells by cytokine secretion, if the B cell presents the same Ag. This 

results in B cell division and maturation into an Ab producing plasma blast. 

A hallmark of the adaptive immune system is the formation of immunological 

memory. Following reactivation with the same Ag peptide, lymphocytes mount a 

faster and more efficient immune response. Important places for lymphocytes are 

secondary lymphoid organs including spleen and lymph nodes (LNs) because they 

provide special niches for mounting an immune response but also for maintenance 

of immune homeostasis. Exposure to most pathogens elicit both innate and adaptive 

immune responses, which help to clear the infection and prevent chronic 

inflammation1,3. 

	
  
	
  
	
  

2.2. Reconstitution of the adaptive immune system 
 

2.2.1 Immunodeficiencies and hematopoietic stem cell transplantation 
 

Immunodeficiency diseases are either inherited or acquired diseases, in which 

the immune system is compromised and fails to fight infections. Inherited or primary 

immunodeficiencies are caused by mutations that control the differentiation and 

activities of immune cells. These mutations can occur on different levels during cell 

development. Mutations in the Ikaros gene, for instance, affect already lymphocyte 

progenitors4, whereas recombination activating gene (Rag) deficiency results in the 

arrest of T and B cell development because of a failure to rearrange the Ag receptor 

genes. Moreover, defects in surface molecules like CD40L or common γ chain or in 

cytokine production can prevent their essential interaction with other immune cells to 

mount an immune response5. Acquired or secondary immunodeficiencies include 

HIV infection and chemotherapy. Hematopoietic stem cell transplantation (HSCT) 

has become a common therapeutic treatment for patients suffering from 

immunodeficiency like severe combined Immunodeficiency or after radiation – and 
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chemotherapy of hematologic malignancies such as different types of leukemia6. It 

involves the transplantation of autologous hematopoietic stem cells (HSC’s from the 

patients themselves) or allogenic stem cells (HSC’s from another donor), which can 

be harvested from BM or umbilical cord blood (UCB). HSCs can also be obtained by 

the mobilization of these cells from the BM into the peripheral blood by treatment 

with granulocyte colony-stimulating factor (G-CSF). 

In 2012, more than 33 000 patients in Europe were reported to receive HSCT, of 

which 42% were performed allogeneic and 58% autologous. The main indications for 

HSCT were lymphoid neoplasias (57%) followed by leukemia (32%), solid tumors 

(5%) and nonmalignant disorders (6%) (Fig. 1)7. 

 

 
 

Figure 1: Proportions of HSCT in Europe in 2012 

(A) Proportion of HSC transplant type in Europe in 2012. (B) Proportions of disease 

indication for HSCT in Europe in 2012. Adapted from Passweg et al., Bone marrow 

transplantation (2014)7 

 

The successful outcome of HSCT depends on several parameters like stage and 

progress of the underlying disease, pretransplantational conditions like chemo- or 

radiation therapy, age of the patient and genetic disparity of donor and recipient7-9. 

The re-establishment of the functional immune system in the patient after HSCT is a 

major clinical issue, and improving the adaptive immune system is crucial for a 

successful outcome of HSCT. 

While the innate immune system including monocytes, granulocytes and natural 

killer (NK) cells recovers quickly after HSCT, the restoration of the adaptive immune 

system is a long - lasting and often insufficient process10-12. Delayed reconstitution of 

adaptive immunity bears, especially in the first two years after HSCT13,14, a high risk 

for opportunistic fungal (aspergillus spp) as well as bacterial and viral infections 

(Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Varizella zoster virus (VZV), 
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influenza) and even relapse of malignancies15. Another high risk for HSCT patients 

are late bacterial infections caused by defective Ab production and defective class 

switch due to failure in B cell development16. The generation of an adequate T cell 

pool can be achieved by either peripheral expansion of donor T cells, which bears a 

higher risk for graft versus host disease (GVHD) or de novo T cell generation. 

However, the development from a hematopoietic precursor into a T cell is insufficient 

after HSCT because treatments like chemo- or radiotherapy damages the thymic 

environment and perturbs normal T cell development. Current immunomodulary 

treatments try to improve thymic engraftment or to preserve the thymic 

microenvironment with cytokines, such as keratinocyte growth factor (KGF)17-19, IL-

220, IL-721, growth hormones22  or blockade of sex hormones23. Other therapies 

involve the transplantation of ex-vivo isolated cells such as T cells 24 or co-

transplantation of mesenchymal stem cells (MSC)25. 

Although there are a number of treatments available to accelerate immune 

reconstitution and to improve the outcome of HSCT, regaining fast and efficient 

immune competence is still a matter of ongoing research. It is therefore essential to 

gain further insights into immunological processes involved in the reconstitution of 

the adaptive immune system after HSCT.  

 

 

2.2.2 Models for reconstitution of the adaptive immune system 

 
As described, there are several difficulties to efficiently reconstitute the adaptive 

immune system after HSCT in humans. However, ethical issues prevent extensive 

research on these obstacles. Therefore, mouse models are needed to provide 

insight into molecular and cellular mechanisms during HSC engraftment. Since adult 

BM and fetal liver (FL) are rich in HSCs, common assays to study murine HSC 

activity and their engraftment is the transplantation of BM or embryonic FL cells via 

intravenous (i.v.) injection into either lethally irradiated wild type (WT) mice or 

immunodeficient mice such as Rag-/- or Rag-/-γc-/-26. However, such immunodeficient 

mutant mice have an abnormal development of thymus and LNs27, which leads to 

less efficient engraftment and function of donor cells. Therefore, new and better 

animal models would be beneficial to study HSC engraftment and to improve HSCT. 
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2.3 Development and differentiation of adaptive immune cells 

 

2.3.1 B cell development in the bone marrow 
 

B cells originate from hematopoietic precursors, which can give rise to lymphoid 

progenitors (CLP) in the BM of adult mice. B cell development requires several 

recombination steps of the gene segments on the immunoglobuline locus V 

(variable), D (diversity) and J (joining) thus leading to randomly arranged B cell 

receptors (BCR). This process is initiated by the expression of Rag1 and Rag2. In 

addition to Rag1 and Rag2, B cell development is coordinated by transcription 

factors such as Pax - 528 and cytokines such as stem cell factor (SCF), fms-related 

tyrosine kinase 3 Ligand (Flt3L) and IL-729-34. Further B cell developmental stages 

are discriminated by the expression of surface molecules shown in Fig. 2. After 

rearranging a functional BCR, B cells undergo selection processes within the BM to 

remove potential auto-reactive B cells. B cells, which recognize self-antigens in the 

BM are clonally deleted35, become anergic36 or start to rearrange their light chain 

locus (receptor editing)37. B cells with a functional and non-auto-reactive BCR leave 

the BM and acquire further maturation in the periphery. 

 

 

Figure 2: B cell development in the Bone marrow. Adapted from Ceredig and Rolink, 

Nature reviews Immunology, (2002)38 
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2.3.2 Peripheral B cells 
	
  

Immature B cells, which leave the BM, enter the blood stream and recirculate 

through peripheral lymphoid tissues. During their migration, B cells undergo further 

maturation processes with the upregulation of IgD and downregulation of IgM. B 

cells in the spleen can be separated into CD21high CD23- marginal zone (MZ) B cells 

and CD21+ CD23+ follicular B (fol B) cells. MZ B cells are located in the marginal 

zone of the white pulp in the spleen. They express polyreactive and therefore less 

specific BCRs and high levels of Toll like receptors (TLR), comparable to DCs39. This 

allows them to react fast to a broad range of blood borne Ags and hence contribute 

to early immune responses. After Ag encounter MZ B cells become activated in a TD 

or TI pathway40. Whereas MZ B cells are exclusively detectable in the murine spleen, 

Fol B cells can also be found in the B cell areas of the LNs and Peyer’s patches (PP), 

the lymphoid follicles in the intestine. Fol B cells mediate TD high-affinity immune 

responses to protein Ags. Thereby, Ags recognized by IgM on the surface of naïve B 

cells are internalized, processed and presented via MHC II to T cells. T cells, which 

were primed by the same Ag produce cytokines which lead to B cell differentiation 

and maturation into Ab-secreting cells. Crosslinking CD40 on B cells with CD40L on 

T cells induces point mutations of the rearranged V region (somatic hypermutation), 

which creates additional diversity within the highly Ag specific B cell clone and 

isotype switch to either IgG, IgA or IgE. Afterwards, fol B cells can further 

differentiate either into short-lived plasma blasts or into plasma cells, which migrate 

to the BM and persist as long-lived plasma cells41.  

B-1 cells are another subtyp of peripheral B cells, which are mainly found in the 

peritoneal and pleural cavities. During their migration through the blood and 

lymphoid organs, they contribute to TI immune responses e.g. against bacterial Ags 

such as phosphorylcholine41.	
  

	
  
	
  

2.3.3 T cell development in the thymus 
 

The thymus is the primary lymphoid organ that is specialized for T cell 

development and generation of a highly diverse T cell repertoire that recognizes 

foreign Ags42. It is organized into a subcapsular region, cortex, cortico-medullary 

junction (CMJ) and medulla, and gives major contribution to cell-mediated immunity 

in the periphery. The thymus needs to be continuously seeded by lymphoid 

progenitors from the blood. These newly immigrating thymocytes migrate through 



 
Introduction 

	
   13	
  

the different thymic regions where they undergo several maturation steps until they 

develop into mature T cells (Fig. 3). 

 

   

         

 

Figure 3: Thymocyte development and trafficking in the thymus. Hematopoietic 

precursors enter the thymus at the cortico-medullary junction. Chemotactic migration guides 

the double negative thymocytes through the cortex. Positive T cell selection in the cortex 

followed by negative selection in the medulla establishes a self-tolerant T cell pool with broad 

antigen specificity, which finally emigrate from the thymus into the periphery (DN: double 

negative; DP: double positive; SP: Single positive; cTEC: cortical thymic epithelial cell; 

mTEC: medullary thymic epithelial cell). Adapted from Takahama, Nature reviews 

Immunology, (2006)43 
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  Thymic stromal compartment 
	
  

The stromal compartment of the thymus is a 3-dimensial network structured into a 

cortical and medullary region, whose stromal cells are phenotypically and also 

functionally different. Thymic epithelial cells (TECs) are the major component of the 

thymic stromal compartment, but it includes also mesenchymal cells and cells of 

hematopoietic origin like DCs and macrophages. This network builds a 

microenvironment essential to promote and support survival, differentiation, 

maturation and selection of thymocytes44,45. Various extra- as well as intracellular 

markers help to discriminate cortical epithelial cells (cTECs) from medullary thymic 

epithelial cells (mTECs). Major markers to characterize the TEC subsets of the 

murine thymus are cytokeratins (CK) such as CK8 and CK18 expressed by cTECs 

and CK5 and CK14 expressed by mTECs. Both cTECs and mTECs share 

expression of epithelial cell adhesion molecule (EpCAM, CD326), MHC II molecules 

and lack CD45, a transmembrane protein expressed by hematopoietic cells. 

Characteristic for cTECs is the surface molecule Ly51 whereas the reactivity with 

Ulex europaeus agglutinin I (UEA-1) is a typical feature of mTECs46,47. In addition, 

mature mTECs express the intracellular transcription factor Autoimmune Regulator 

(Aire). Aire is responsible for the transcription of a broad spectrum of self-Ags, which 

are usually only present in the periphery like e.g. insulin48,49. These so-called tissue 

restricted Ags (TRA) are produced by mTECs and presented to developing 

thymocytes by either mTECs or by thymic DCs via cross-presentation50. This 

mechanism is crucial for central tolerance51, as T cells, which recognize self-Ags are 

potentially auto-reactive and undergo therefore negative selection.  

 

 

   Thymocyte development 
 

After lymphoid progenitors enter at the CMJ, thymocytes pass through the cortex, 

where they progress through intermediate developmental stages. The first stage is a 

CD3- CD4- CD8- triple negative phenotype, which is followed by different expression 

levels of c-kit, CD25 and CD44, characterizing the phenotype of double negative 

states one to four (DN1-DN4). DN1: c-kithigh CD25- CD44+, DN2: c-kithigh CD25+ 

CD44+, DN3: c-kitlow CD25+ CD44-, DN4: c-kitlow CD25- CD44- 38,52. At the DN3 state, 

Rag 1 and 2 are expressed, which catalyse the rearrangement of the β, γ and δ loci. 

Successful rearrangement of the Tcrb locus and later the assembling of the T cell 

receptor β (TCRβ) and pre-TCRα chains result in the expression of the pre-TCR 
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complex on the cell surface and drives the cell further into a CD4+ CD8+ double 

positive (DP) stage. Rearrangement of the α-chain locus leads to a complete 

randomly created, unique Ag-specific TCRαβ receptor. At the DP stage, the TCR is 

tested for its recognition of self-peptide/self-MHC present on cTECs and DCs. 

Current models propose that self-Ag induced positive or negative selection is defined 

by an apparent affinity threshold of the interaction of TCR and co-receptor with a self 

peptide-MHC complex. Thereby cells with a TCR below the threshold undergo 

apoptosis (death by neglect), whereas cells above the threshold, hence having a 

high affinity towards self-MHC become negatively selected53. 
After the first round of selection, only 3-5% of the DP thymocytes have a low-

affinity interaction, and therefore receive survival and further differentiation signals to 

progress to the single positive (SP) stage and to migrate further into the medulla.  

Additional rounds of negative selection to eliminate potential auto-reactive T cells 

from the system accompany the final maturation process. Thereby, TCR with a too 

high affinity for self-Ags, which are presented by mTECs and DCs, are eliminated.  

The medulla is also the site for development of regulatory T cells (Tregs)54. This T 

cell subset is able to suppress an immune response by inhibiting proliferation of 

effector T cells and promotes tolerance to self-antigens. 

T cell development is also associated with distinct transcription factor and 

cytokine ensembles. Transcription factors, such as Ikaros, GATA3 and T-cell-factor 

(TCF) -1 control the expression of important genes and guide the developing 

thymocytes from one stage to the next55. Notch1 signals are required to differentiate 

hematopoietic cells into T cells56 and support Vβ-DJβ recombination57. Important 

cytokines during T cell development are Stem cell factor (SCF) and IL-7 by 

promoting proliferation, differentiation and survival of DNs33,58,59. 

 

	
  
  Thymocyte - TEC interaction 
 

The crosstalk between stromal cells and hematopoietic cells is crucial for the 

development and differentiation of thymocytes. Specifically the CC-chemokine ligand 

21 (CCL21) and 25 (CCL25) were reported to play significant roles in thymus 

colonialization60-62. The presence of CXC-chemokine ligand 12 (CXCL12) or its 

receptor CXC-chemokine receptor 4 (CXCR4) is also involved in thymic seeding but 

to a lesser extend than CCL21 and CCL25 and is rather related to T cell expansion 

during embryogenesis63,64. The migration of thymocytes through the cortex, follows 

defined rules in such a way, that the thymocytes make their developmental changes 
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in distinct cortical regions65. Cortical DP cells show an increase in CCR7 expression, 

whereby mTECs are the major source of its ligands CCL19 and CCL21. Therefore, 

DP thymocytes are attracted by chemotaxis to the medulla, whereas deficiency for 

CCR7 leads to the accumulation of positively selected thymocytes in the cortex. 

Negatively selected DP thymocytes undergo apoptosis irrespectively of chemotactic 

attraction66. Another role of the CCL19-CCR7 axis was discovered by Ueno et al., in 

which CCL19 promotes the egress of mature T cells out of the thymus67, 

emphasizing again the importance of thymocyte - TEC crosstalk for T cell 

development. Beside the requirement of lymphocyte - TEC interaction for thymocyte 

development, TEC development relies also on interaction with thymocytes. It was 

reported that arrest in thymocyte development at stage DN1 leads to a failure of 

normal cortical as well as medulllary compartment68. Furthermore, it was 

demonstrated that mTEC development, differentiation and maturation is strongly 

dependent on signals provided by hematopoietic cells in the thymus69,70. The 

interaction of mTECs with thymocytes is mediated by nuclear factor kappa-light-

chain-enhancer of activated B-cells (NF-κB) signaling71,72. Signals through various 

TNF superfamily members, which are expressed by mTECs, play key roles in the 

maturation and differentiation of mTECs73,74. Rossi and colleagues identified 

receptor activator for NF-κB (Rank) in situ during embryogenesis as an important 

mediator for mTEC development. By the engagement with the ligand (RankL), which 

is present on CD3- CD4+ cells, namely lymphoid tissue inducer (LTi) cells, mTECs 

develop into a mature state concomitant with the expression of CD80 and Aire75. 

However, Rorc-/- mice, which lack LTi cells, also have Aire+ mTECS. This indicated 

the involvement of another cell type in regulating mTEC development during 

embryogenesis. Indeed, γδ T cell progenitors (Vγ5+ dendritic epidermal T cells; 

DETC) express RankL thereby contributing to mTEC growth and maturation76. In 

adults, LTi cells as well as  γδ T cell progenitors are severely reduced in their 

frequency, as αβ T cells outnumber them. As soon as αβ T cells develop, they take 

over the function as mTEC inducer with expression of several other molecules e.g. 

CD40L and lymphotoxin, which were revealed to also regulate the development and 

differentiation of mature mTECs77-81 (Fig. 4). 
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Figure 4: mTEC development and Aire induction/maintenance in fetal and adult 

mice. In fetal mice, receptor activator of NK-kB ligand (RankL) interaction provided by Vγ5+ 

γδ T cell progenitors and LTi cells, induces the development of mature mTECS with 

expression of Aire and CD80. Under steady state conditions in adults, signals like LTα, 

CD40L and RankL are provided by αβ T cells which engage the respective receptor resulting 

in a mature CD80+ Aire+ mTEC.  

	
  

	
  
	
  

2.3.4 Peripheral T cells 
 

The majority of peripheral T cells are positive for αβ TCR and express either CD4 

or CD8. While the effector function of CD8+ T cells is characterized by their 

cytotoxicity against target cells, CD4+ T cells have divers functions as helper T cells 

and are characterized by their production of cytokines. The major Th subsets are 

Th1, Th2, Th17 and Tregs. T helper (Th) 1 cells develop in response to IL-12 and 

IFN82,83  and are described to produce IFN-γ in a positive feedback loop as well as IL-

2 and tumor necrosis-factor (TNF) - β. They are important in protection against 

intracellular pathogens83, but are also involved in unwanted inflammatory diseases 

like rheumatoid arthritis or intestinal inflammation84,85. Th2 differentiation is driven 

mainly by IL-486 and TSLP87,88. Th2 cells produce IL-4, IL-5, IL-9, IL-10 and IL-13 

and are often associated with humoral immune response. Therefore, Th2 immunity 

is important to resist extracellular pathogens such as helminthes or nematodes89. 

However, elevated Th2 responses are also associated with chronic inflammatory 

diseases such as allergy and asthma90.  

Th17 cells produce IL-17 and IL-22 and are associated with autoimmune diseases 

but also with the clearance of bacterial and fungal infections82. Tregs are a subset of 
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CD4+ T cells, which either develop in the thymus (naturally occurring Tregs: nTregs) 

or are generated in the periphery (pTregs) from naïve T cells after TCR stimulation in 

the presence of TGF-β and IL-2. Tregs express forkhead box P3 (FoxP3), are 

immuno-suppressive, and maintain self-tolerance as well as immune homeostasis91. 

To distinguish nTregs from pTregs, the Ikaros family member Helios and Neuropilin-

1 (Nrp1) were suggested as potential markers92-94. 

Peripheral T cells either have a naïve or memory phenotype. Naïve T cells are 

CD44low and express CCR7 and L-selectin (CD62L), an adhesion molecule, which 

enables them to enter LNs via high endothelial venules (HEV). Indeed, the majority 

of naïve T cells are found within secondary lymphoid organs, where they encounter 

foreign Ags followed by differentiation into effector T cells95. Effector T cells migrate 

to peripheral sites where they encounter Ags and mount Ag-specific immune 

responses. The majority of effector T cells undergo apoptosis to maintain immune 

homeostasis. Only a minor subset differentiates into long-lived memory cells, which 

home to lymphoid as well as non-lymphoid tissue where they can be reactivated 

upon recurrent Ag encounter96. Memory T cells have an activated phenotype and are 

identified by CD44high expression97. Survival, proliferation as well as homeostasis of 

naïve T cells are dependent on the interaction of TCR with self-peptide / MHC and 

several cytokines, whereas current studies indicate that maintenance of memory T 

cells does not require TCR / self-peptide interaction. 

Common cytokine receptor γ - chain (γc)-dependent cytokines like IL-2, IL-7 and 

IL-15 support proliferation and survival of naïve as well as memory T cells. While 

both IL-7 and IL-15 control the survival of CD8+ T cells, with IL-7 playing the major 

role98,99, IL-15 is redundant for the proliferation and survival of CD4+ T cells100. IL-7 is 

an important factor to induce slow homeostatic proliferation in CD4+ and CD8+, 

whereas IL-2 and IL-15 lead to rather rapid proliferaton101. In addition to IL-7 and IL-

15, IL-2 is an important cytokine produced by activated T cells for T cell growth and 

proliferation. Especially Treg expansion is heavily depended on IL-2 and mice 

deficient in IL-2 signaling suffer from autoimmune diseases102. 
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2.4 The lymph node  
	
  
	
  

LNs are encapsulated secondary lymphoid organs, which are important to initiate 

immune responses. They are organized into two compartments, the cortex and the 

medulla. The cortex can be further separated into an outer cortical area with B cell 

follicles and the paracortical area with mainly T cells and DCs. 

The medulla contains macrophages, Ab secreting plasma cells and the efferent 

lymphatics through which lymphocytes leave the LNs (Fig. 5)103,104. A dense network 

of reticular fibres and the secretion of their chemokines maintain the 

compartmentalization into B and T cell areas. Follicular dendritic cells (FDC) in the B 

cell zone, which are also present in the spleen, are the major source of B cell 

survival factors such as BAFF and APRIL and secrete CXCL13 to attract and 

preserve B cells105,106. T cells on the other hand are associated with T zone reticular 

cells (TRC), which produce CCL19 and CCL21. These cytokines are recognized by 

CCR7 expressed on naïve T cells and DCs and are important for motility107, survival 

as well as antigen uptake by DCs108. Beside its crucial role in initiating immune 

responses, LNs provide also an environment for lymphocyte homeostasis by 

producing growth and survival factors109, which will be further described in 2.4.1. 

Ags from peripheral tissues and Ag-loaded DCs enter the LN via afferent lymphatic 

vessels. Naïve lymphocytes can enter the LN directly via HEVs and encounter Ags 

expressed by APCs in the respective compartments of the LN. After Ag exposure B 

cells undergo intense proliferation and form germinal centers, in which B cells 

undergo important modifications such as somatic hypermutation, affinity maturation 

and isotype switching. These steps result in the generation of mature high affinity B 

cells. 
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Figure 5: Lymph node architecture: Lymph enters through afferent lymphatic vessels, 

whereas naïve lymphocytes enter the LN via HEVs. Lymph fluid is drained through cortex 

and medulla, where cells of the immune system are activated to mount an immune response 

against foreign antigens. The lymph and lymphocytes leave the LN through efferent 

lymphatic vessels.  

	
  
 
 

2.4.1 Lymph node stromal cells  
	
  

Lymph node stromal cells (LNSC) are cells of mesenchymal origin, which provide 

the network within the LN to sustain immune homeostasis. Four different cell types 

can be identified by the expression of CD31 and the glycoprotein podoplanin (gp38): 

T zone reticular cells (TRC) (also known as follicular reticular cells), which are CD31- 

gp38+, lymphatic endothelial cells (LEC), which are CD31+ gp38+, blood endothelial 

cells (BEC), which are CD31+ gp38-, and finally a subset of double negative stromal 

cells (DNSC)109. BECs and LECs surround blood vessels and lymphatic vessels, 

respectively. They are important for lymphocyte migration from the blood into the LN 

by the expression of chemokines and adhesion molecules. TRC and LECs were 

identified as a main source of IL-7, which promotes survival of naïve T cells109,110. 

Furthermore, IL-7 producing TRCs and LECs were reported to be essential for virus-

induced LN remodelling and LN regeneration after avascular transplantation111. 

Beside IL-7, TRCs produce CCL19 and CCL21, which are recognized by CCR7 

expressed on the surface of naïve T cells. These cytokines are chemoattractants for 

T cells and DCs promoting leukocyte traffic and T cell - DC interactions112. Just 

recently, it was found that IL-15, which is critical for proliferation and maintenance of 

CD8+ T cells as well as NK cells and NKT cells, is expressed not only by BECs but 
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also by TRCs and DNSCs. This suggests a role for IL-15 in T cell homeostasis113. 

The idea that TRC support immune homeostasis is further supported by some 

evidence that they can express and present peripheral Ags to naïve T cells and 

hence may contribute to peripheral tolerance114,115. The function of the forth subset 

of LN stromal cells, the DNSC is not revealed yet116 but their global gene expression 

closely resembles the one of TRCs117. 

 

 

2.4.2 Lymph node development  
	
  

The first LN anlagen emerge early during embryogenesis. It was shown that 

signaling through lymphotoxin β receptor (LTβR) mediated by LTα1β2 is crucial for 

the development of lymphoid tissues, as mice deficient for either LTα or its receptor 

have neither LN nor PP. Similarly, LTβ -deficient mice also lack PP and peripheral 

LN except cervical and mesenteric LNs (mLNs). This suggested that another ligand 

than LTα1β2 is involved in their formation. Indeed, it was found that mice double 

deficient for LTβ  and another LTβR ligand LIGHT had even lower numbers of 

mLN118-120. LTα1β2 and LTβR is the main pathway involved in peripheral LN 

generation. Studies from other genetic mouse models revealed further important 

receptor ligand interactions for LN development. Mice with deficiency for either Rank 

or RankL completely lack LNs, whereas deficiency for CXCR5 or its ligand CXCL13 

just leads to a reduction of LNs. Additionally, intracellular molecules like inhibitor of 

DNA binding 2 (Id2), Ikaros and the transcription factor retinoid related orphan 

receptor γ (RORγt) play essential roles in the formation of LNs. Both factors are 

crucial for LTi cell development and the deficiency of Id2 or RORγt results in 

complete lack of LNs and PPs121-124.  

	
  
	
  
	
  
  Lymphoid tissue inducer cells  

 

LTi cells are cells of the hematopoietic system and first identified as CD4+, CD3- 

and IL-7Rα+ in fetal and newborn blood, LN and spleen125. As they were also found 

as one of the first cells colonizing lymphoid tissues, they were discussed as initiators 

of lymphoid organogenesis. The proof came from two independent transfer 

experiments in mice lacking lymphoid tissue. Adoptive transfer of LTi cells isolated 

from fetal spleen into CXCR5-/- induced PP development126, whereas LTi cells form 
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fetal intestine transferred into Id2 deficient mice resulted in the generation of nasal-

associated lymphoid tissue. These experiments demonstrated that LTi cells are in 

fact capable to rescue lymphoid organogenesis121. However, the mechanism of 

development for the different lymphoid tissues like LNs or PP might differ and 

involves other cellular interactions. 

LN organogenesis relies on the interaction of LTi cells with organizer stromal 

cells127,128. LTα1β2, which is induced on LTi cells by triggering IL-7Rα and Rank129, 

interacts with LTβR on organizer cells and activates NFκB pathways. NFκB 

activation results in the expression of adhesion molecules Vcam, Icam and MadCam 

on stromal cells and the production of CXCL13, CCL19 and CCL21130,131. As LTi 

cells express the respective chemokine receptors, this leads to attraction and 

retention of further LTi cells and amplification of their interaction with stromal cells. 

IL-7 and RankL expression, which are provided by stromal cells induce the 

expression of LTα1β2 on freshly migrated LTi cells, resulting in enhanced LTβR 

triggering on stromal cells, which closes the positive feedback loop132. Recruitment 

and colonialization of other hematopoietic cells to the initial cell cluster leads finally 

to the formation of lymphoid tissue (Fig. 6).  

 

 

 
 

Figure 6: Model for LN development: LTi cells interact with stromal organizer cells via 

LTα1β2  - LTβR. Activated NFκB pathways lead to chemokine secretion and further 

recruitment of LTi cells. Final lymphocyte colonialization leads to the generation of a 

functional LN. Adapted from Mebius, Nature reviews Immunology, (2003)133 
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2.5 The family of innate lymphoid cells 
	
  

2.5.1 ILC subsets 
	
  

Innate lymphoid cells (ILC) are a heterogeneous family of immune cells, which 

recently came into research focus of numerous research groups. ILCs are thought to 

be integrators of the innate and adaptive immune system, orchestrating homeostasis, 

immunity and inflammation134,135. All members of the ILC family share a classic 

lymphoid morphology and lack the characteristical surface-molecule expression of 

other immune cells and are therefore referred to as lineage marker negative (Lin-). In 

contrast to T and B cells, ILCs also lack the expression of Rag and cannot acquire 

Ag specificity136. They express the common cytokine receptor γ chain (γc) and 

depend on cytokines that signal via this receptor. All ILC family members are 

dependent on the transcriptional repressor Id2137 and require different transcription 

factors and cytokines for the development. The function of ILCs is very diverse. They 

play crucial roles in the development of lymphoid tissue, tissue repair, maintenance 

of organ homeostasis and contribute to immunity against pathogens. On the other 

hand, ILCs are also reported to have a role in the promotion of inflammation and 

cancer progression134,135. As ILC subgroups are regulated by transcriptional factors 

and exert effector functions similar to Th subsets, the nomenclature of ILCs is based 

on their Th counterpart. Therefore, ILCs are grouped into i) Group 1 ILC, ii) Group 2 

ILC and iii) Group 3 ILC. 

Group ILC1 consist of the conventional natural killer (cNK) cells and the ILC1s. 

Both cell types are dependent on the T-box transcription factor (T-bet) and are 

capable to secrete IFN-γ . ILC2s are characterized by their developmental 

dependence on IL-7, GATA3, RORα and TCF1 and their production of Th2 

cytokines IL-4, IL-5 and IL-13 upon stimulation. Several studies identified ILC2s as a 

critical mediator of allergic diseases and protective immune cells in helminth 

infections. Group 3 ILCs are dependent on the transcription factors RORγt and 

cytokines such as IL-7, SCF and TSLP138,139135 for their development. ILC3s are 

further subdivided into three different cell types: LTi cells in fetal and neonatal tissue 

and the natural cytotoxicity receptor (NCR) NKp46+ and NKp46- cells, which were 

discovered in adults. While NKp46+ ILC3s are CD4-, CD4+ and CD4- subpopulations 

exist in the NKp46- ILC3 compartment. All ILC3 subtypes can secrete IL-17 and IL-

22 with NKp46- also being able to secrete IFN-γ under certain conditions135 (Fig. 7).  
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Figure 7: Family of innate lymphoid cells: Illustration of the developmental 

requirements and cytokine production of the different ILC subsets. Adapted from Spits et al., 

Nature reviews Immunology, (2013)135 and Artis and Spits, Nature (2015)136 

	
  

	
  
	
  

2.5.2 Immune functions of ILC3s in adults  
 

LTi cells were originally named after their function to induce lymphoid tissues 

during embryogenesis. Several studies described cells with a similar phenotype also 

in the adult system140, named as LTi - like cell141. However, a new nomenclature 

introduced the terminus NCR- ILC3s for adult RORγt+ ILC3s, which lack NKp46 

expression and resemble very likely the LTi - like cells135. Adult ILC3s exert a broad 

spectrum of functions, which range from tissue remodeling142,143 and maintenance of 

immune homeostasis to pathological properties144-147.  

 IL-17 and IL-22 are cytokines not only produced by T cells but also by ILC3s. 

Studies in mice showed an attribution of IL-17 and IL-22 in psoriasisform plaque 

formation, an inflammatory skin disease. Indeed, analysis of Rag2-/-γc-/-, RORγt-/- and 

Rag-/- mice suggest that ILC3s play a substantial role in psoriasisform plaque 
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formation, since Rag-/- mice had more sever inflammatory symptoms than Rag2-/- γc-/- 

and RORγt-/- mice146. Further roles for ILC3s in inflammation were shown in the 

intestine of mice145,147. Here, ILC3s were reported to induce colitis through 

production of pro - inflammatory cytokines IL-17 and IFN-γ, driven by TNF-α and IL-

23 producing DCs. This could be confirmed by Thy1 depletion or IL7R-α blocking 

respectively, since reducing ILC3 numbers abrogated colitis145,147. The role of ILC3s 

in promoting immune homeostasis and tissue repair is often mediated by the 

secretion of IL-22134,144,148. In the intestine IL-22 secretion upregulates anti-microbial 

peptide expression by intestinal epithelial cells149 and improves epithelial barrier 

function, which is involved in immune defence against pathogenic bacterial 

colonialization150,151. Mice deficient for IL-22 show higher susceptibility to intestinal 

pathogens and intestinal inflammation152. In addition, ILC3s were found to interact 

with intestinal CD11c+ DCs via membrane bound α1β2, which is known to be crucial 

for IgA production153. Promoting an immunologically tolerogenic state in the intestine 

is important to prevent unwanted inflammation and ILC3s seem to play a substantial 

role in maintaining tolerance. ILC3s process and present antigens via MHC II to T 

cells154,155. Hepwoth et al. observed that ILC3 depletion resulted in dysregulated 

immune responses against commensal bacteria leading to low - grade inflammation. 

This effect occurred independently of IL-17 or IL-22 and was due to missing MHC - T 

cell interaction between ILC3s and CD4+ T cells154. In contrast, other groups could 

not detect spontaneous inflammation in mice lacking MHC II on ILC3155,156, which 

argues for additional factors such as microbiota for triggering inflammation in these 

mice. A recent study described another mechanism of ILC3s to promote tolerance in 

the intestine by production of GM-CSF, which increases the function of intestinal 

DCs and Tregs157. However, the host protective effects of ILC3s are not limited to 

the intestinal environment, since ILC3s were also an important source of IL-17 in the 

lung to mount an immune response against fungal infections158. Tissue remodelling 

functions like wound healing and repair of damaged tissue is also ascribed to ILC3s. 

In an infection model with lymphocytic choriomeningitis virus (LCMV), infected TRCs 

of the LN were targeted by virus-specific CD8+ T cells. This resulted in the 

destruction of the secondary organ integrity. Restoration of the TRC network was 

due to proliferation of LTi cells and their interaction through LTβR with lymphoid 

stromal cells142. Furthermore, it was reported that IL-22 from ILC3s protects the 

intestinal stem cell niche after pretransplantational conditioning and is critical for 

reducing tissue damage during GVHD159. In line with this, Dudakov et al. observed a 

similar effect in the thymus. After total body irradiation, IL-22 production and 
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upregulation of RankL from radio resistant ILC3s resulted in regeneration of the 

thymic environment in an IL-23 dependent manner160.  

 
 
	
  

2.6 TSLP  
	
  

Thymic stromal lymphopoietin (TSLP) is a member of the Interleukin (IL) -2 like 

cytokine family, which was first discovered in the supernatant of the murine thymic 

stromal cell line Z210R.1. It was shown to promote the differentiation of FL cells into 

B cell lineage and also the growth of pre - B cells in vitro161. Murine TSLP is a protein 

of 140 amino acids (aa) harbouring a four-helix bundle with three potential sides for 

N-linked glycosylation162. Purification of TSLP upon expression in mammalian cells 

resolved a 23-kD major isoform (140aa) and an 18-kD minor species162. 

Human TSLP gene encodes a protein of 159 amino acids and has poor homology 

with murine TSLP (43% amino acid residues)163,164. However, a set of disulfide 

bonds between 6 cysteines is conserved between human and mouse163. TSLP 

exerts similar biological functions in both species. It is predominantly produced by 

cells of non - hematopoietic origin like epithelial cells in lung, skin and 

gastrointestinal tract165-167 and it was shown that multiple cell types of the adaptive 

and innate immune system are capable to respond to TSLP.  

 

 

2.6.1 TSLP receptor and signaling 
 

The TSLP receptor (TSLPR) also known as cytokine receptor - like factor 2 (CRLF2), 

is a heterodimer and consists of the TSLP - receptor chain, which binds TSLP with 

low affinity and IL-7-Receptor α chain. It has a N-terminal region outside the plasma 

membrane, a single hydrophobic transmembrane domain and an extracellular 

domain, which is also the ligand - binding domain168-170. It is likely that alternative 

splicing results in the two observed murine TSLP - receptor forms of 359 and 370 

amino acids169,171,172. 

TSLPR stimulation activates multiple signal transduction pathways via kinases180 

such as Janus and Src kinases. These kinases regulate the activity of signal 

transducers and activators of transduction (STAT) e.g. STAT5, promoting activation 

and cell proliferation173-175. Similar to TSLP, also mouse and human TSLPR share 

only low amino acid identity (39%). The TSLPR is expressed in mouse and man by 
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various cells of the hematopoietic system, like T and B cells, natural killer (NK) cells, 

monocytes, mast cells, basophils, eosinophils and DCs. The various target cells for 

TSLP reflect the potential role of this cytokine in a wide range of diseases, including 

allergy, cancer and intestinal inflammation176. 

 

 

2.6.2 Role of TSLP in lymphopoiesis 
	
  
TSLP was initially described to support murine B cell development161. Further studies 

revealed an effect of TSLP on pre B cells and the support of differentiation from 

uncommitted fetal liver and BM precursor into B cell lineage162,177 as well as their 

further differentiation into mature B220+ IgM+ B cells178. The effect of TSLP on B cell 

maturation was also observed in human and can even substitute the effect of IL-7 

deficiency177,179. In addition to its role in B cell development, TSLP was also 

described to affect T cell development. TSLP can drive thymopoiesis independently 

of IL-7 and favours especially the proliferation of DN1 and DN2 thymocytes in vitro180 

and in situ. In vivo, daily injections of recombinant TSLP in WT and γc
 -/- mice 

resulted in an increase in T cell populations in thymus and periphery181. However, in 

adult TSLPR-/- mice, there is no reduction in DN, double positive or single positive T 

cells. Furthermore, TSLPR-/- mice have neither a deficiency in B cell precursor in the 

bone marrow (BM) nor in the peripheral B cell compartment. Therefore, TSLP seems 

to be redundant in T and B cell development and maintenance under steady state 

coditions181,182, but is essential for their development in the absence of IL-7 180. 

 

	
  

2.6.3 Activity of TSLP on dendritic cells 
 
DCs were identified to be a potent source of TSLP after Toll like receptor (TLR) 

stimulation183,184. On the other hand, several studies in human and mice identified 

myeloid DCs as a major responder to TSLP. Treating DCs with TSLP improved their 

survival and maturation such as upregulation of MHC II and co-stimulatory 

molecules CD40, CD80 and CD86. These TSLP - conditioned DCs can polarize 

CD4+ T cells towards the Th2 subset and can induce homeostatic proliferation of 

naïve CD4+ T cells, which acquire characteristics of a central memory phenotype185. 

Through interaction of TSLP primed DCs, also CD8+ T cells become activated and 

undergo expansion. After co - culture with DCs, stimulated with TSLP and CD40L, 

CD8+ T cells increase IFN-γ production and gain cytolytic potential186. 
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2.6.4 Regulation of TSLP 
 

Numerous studies using primary human epithelial cells were designed to 

understand the regulation of TSLP. It was shown that TSLP expression is induced 

upon stimulation with IL-1β, TNF, different TLR like polyI:C and LPS as well as 

bacterial peptidoglycans. It appeared that the activation of the TSLP promoter after 

IL-1β and TNF-α treatment is mediated by an upstream NFκB site187,188, but could 

also be activated via the MAPK pathway189. TSLP conditioned DCs were shown to 

induce the differentiation of naïve CD4+ T cells into Th2 cells, which produce IL-4, IL-

13 and TNF-α 87,190. TSLP expression can be further induced by the Th2 cytokines 

IL-4 and IL-13 as well as dsRNA. This indicates a positive feedback loop to amplify 

Th2 inflammation e.g. during viral infections 191,192. The nuclear receptor subtypes 

Retinoic X receptors α and  β (RXRα/β) seem to be negative regulators of TSLP, 

since mice deficient for RXR α and RXR β in epidermal keratinocytes expressed 

higher amounts of TSLP and developed cutaneous inflammation193. RXR can form a 

heterodimer with vitamin D receptor (VDR). Application of vitamin D3 results in 

increased TSLP expression in keratinocytes, whereas application of vitamin D3 on 

the skin of RXR-/- mice or mice deficient for VDR does not increase TSLP 

expression194,195. There is evidence that RXR mediates TSLP repression via the 

inhibition of NFκB, rather than direct binding of RXR to the TSLP promoter196. 

Aberrant Notch signaling in the skin results in a loss of barrier function. As a result 

TSLP is systemically released in large amounts leading to atopic dermatitis - like 

symptoms197,198. Taken together, these results suggest, that inflammation, epithelial 

damage and skin barrier dysfunction positively regulate TSLP expression. 
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3 Aim of the study  
	
  
 
Reconstitution of the adaptive immune system after HSCT is a major clinical issue, 

as the re - establishment of a functional T cell pool is delayed and even years after 

transplantation, patients suffer from infections and relapse of malignancies. 

Pretransplantational treatments with cytotoxic drugs and radiotherapy destroy the 

thymic microenvironment, which leads to impaired T lymphocyte development. 

Studies in fetal mice demonstrated that ILC3s as well as γδ T cell progenitors exhibit 

a supportive function in the maturation process of mTECs before birth, which assures 

adequate T cell development75,76. It remains unclear whether ILC3s also indirectly 

play a beneficial role in de novo T cell development in immunodeficient settings. 

Rag2-/-γc-/- mice are devoid of T, B and NK cells and therefore represent a mouse 

model for combined immunodeficiency in humans. In addition, these mice are devoid 

of LNs, PPs and ILCs. In Rag2-/-γc-/- mice overexpressing TSLP (referred to as K14 

TSLP+/- Rag2-/- γc-/-mice) ILC3 numbers are increased and almost all LNs are present. 

In my project, I wanted to investigate the role of increased ILC3 numbers and LNs on 

the reconstitution of the adaptive immune system after HSCT in immunodeficient 

mice. In order to address this question, Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice 

were transplanted with FL cells or mature T cells from TSLPR-/- mice and analysed 

for the efficiency of reconstitution in primary and secondary lymphoid organs. 
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4 Materials and methods  
	
  

4.1 Materials 
	
  

4.1.1 Reagents and chemicals 
	
  
Acetone Sigma-Aldrich 

Agarose Sigma-Aldrich 

Amphotericin B Sigma-Aldrich 

2’-Deoxyguanosine monohydrate Sigma-Aldrich 

2-Mercaptoethanol Gibco 

2-Propanol (CH3CH(OH)CH3) Merck KgaA 

2x SensiMix SYBR Hi-ROX Bioline 

Albumin from bovine serum (BSA) Sigma-Aldrich 

Alum (Aluminium potassium sulphate, AlK(SO4)2) Sigma-Aldrich  

Ammonium chloride (NH4Cl) Sigma-Aldrich 

Anti-CD4 microbeads Miltenyi Biotec 

Anti-PE microbeads Miltenyi Biotec 

4-Bromo-2-chlorophenol Sigma-Aldrich 

Brefeldin A (BFA) Sigma Aldrich 

Calciumchloride Merck KgaA 

Carboxyfluorescein succinimidyl ester (CFSE) Molecular Probes 

Ciproxine Bayer (0.2%) 

Collagenase D Roche 

4’, 6-Diamidino-2-pheylindole (DAPI)  AppliChem 

Deoxyadenosine triphosphate (dATP)  Sigma-Aldrich 

Deoxycytidine triphosphate (dCTP)  Sigma-Aldrich 

Deoxyguanosine triphosphate (dGTP)  Sigma-Aldrich 

Deoxythymidine triphosphate (dTTP)  Sigma-Aldrich 

Di-ethanolamine (C4H11NO2)  Sigma-Aldrich 

Di-nitrophenyl phosphate (dNPP)  Sigma-Aldrich 

Di-potassium hydrogen phosphatate (K2HPO4)   Merck KgaA    

Di-sodium hydrogen phosphatate (Na2HPO4 x 2 H2O)  Merck KgaA 

Di-thiothreitol (DTT)  AppliChem 

DMEM (1x) GlutaMaxTM-I  Gibco 

DNase I  Roche 
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EDTA disodium salt dihydrate  AppliChem 

Fluoromount-G™ eBioscience  

Ethanol (C2H5OH)  Merck KgA 

Fetal calf serum (FCS, heat-inactivated)  Gibco 

D (+) – Glucose monohydrate  Merck 

Gentamycin   Life technologies 

GlycoBlue™  Life technologies 

Hydrochloric acid (HCl)  Sigma-Aldrich 

Insulin Transferrin Selenium  Gibco 

Ionomycin  AxonLab 

Iscove`s modified Dulbecco`s medium (IMDM)  Sigma-Aldrich 

Kanamycin  Sigma-Aldrich 

Liberase  Roche 

Methanol  Merck KgA 

Magnesium chloride hexahydrate (MgCl2 x 6 H2O)  AppliChem 

Nonessential amino acids (NEAA)  Gibco (100 x) 

Nuclease free H2O  life technologies 

O.C.T™  Tissue-Tek® 

Oligo dT   Promega 

Phosphate buffered saline (PBS)  Biochrom AG 

Penicillin Streptomycin (Pen/Step)  Gibco 

Percoll  GE Healthcare 

Paraformaldehyde (PFA)  AppliChem 

Phorbol-12-myristat-13-acetat (PMA, C36H56O8)  Sigma-Aldrich 

Potassium bicarbonate (KHCO3)  Sigma-Aldrich 

Potassium chloride (KCL)  AppliChem 

Primatone  Sigma-Aldrich 

Proteinase K  Roche 

Saponin  Sigma-Aldrich 

Sodium acide (NaN3)  Merck KgaA 

Sodium chloride (NaCL)  AppliChem 

Sodium dodecyl sulfate (SDS)  BioRad 

Sodium hydrogen carbonate (NaHCO3)   Merck KgaA 

Sodium hydroxide (NaOH)  Merck KgaA 

SuperScriptTM III Reverse Transcriptase Invitrogen 

Taq Polymerase  Sigma-Aldrich 

Tris (C4H11NO3)   Carl Roth GmbH 
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TRI-Reagent® Sigma-Aldrich  

Tween-20 AppliChem 

 

4.1.2 Buffers, solutions and media 
 

1x PBS 137 mM NaCl 

 2.7 mM KCl 

 10 mM Na2HPO4 x 2 H2O 

 2 mM KH2PO4 

 in dH2O 

 

1x TE buffer 10 mM Tris 

 1 mM EDTA 

 in dH2O 

      

DMEM (1x) GlutaMaxTM-I (+) 4.5 g/L D-Glucose 

 (-) Pyruvate 

 

dNTP mix 10 mM sATP   

 10 mM sCTP 

 10 mM sGTP 

 10 mM sTTP 

 in nuclease free H2O 

 

ELISA buffer (NP-OVA ELISA) 1 % BSA  

 0.2 % Tween-20 

 in 1x PBS 

 

ELISA wash buffer (NP-OVA ELISA) 0.1 % Tween-20 

 in H2O 

 

Erythrolysis buffer 0.15 M NH4Cl 

 10 mM KHCO3 

 0.1 mM EDTA 

 in dH2O (pH 7.2 – 7.4) 
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Fixation buffer 1x PBS 

 4 % PFA 

 

FACS buffer 1x PBS 

 3 % FCS 

  

IMDM (SF) IMDM (powder) 

 3.02 g NaHCO3 

 1 % Pen/Step 

 1 % Ciproxine 

 0.1 % Kanamycin 

 1 % Insulin Transferrin  Selenium 

 0.3 % Primatone 

 1 % NEAA 

 0.1 % 2-mercaptoethanol 

 

IMDM 5 % FCS IMDM (SF) 

 5 % FCS 

 

IMDM 10 % FCS IMDM (SF) 

 10 % FCS 

 

Lysis buffer  100 mM Tris (pH 8.0) 

(for DNA isolation from mouse biopsies) 200 mM NaCl   

 5 mM EDTA (pH 8.0)  

 0.2 % SDS   

 in dH2O  

 

Permebabilization buffer for intracellular staining 0.5 % Saponin 

 10 mM NaN3 

 in FACS buffer 

 

Stromal cell isolation buffer DMEM (1x) GlutaMaxTM-I 

 2 % FCS 

 1.2 mM CaCl2 

 1 % Pen/Step 
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Substrate buffer (NP-OVA ELISA) 0.1 g MgCl2 x 6 H2O 

 10 mM NaN3   

 10 % C4H11NO2  

 in dH2O (pH 9.8)   

 

Thymus organ culture (TOC) medium IMDM 

 10% FCS 

 10-5 nM β-mercaptoethanol 

 1 % Kanamycin 

  

 

4.1.3 Cytokines, TLR ligands, peptides, proteins 
	
  
IL-7, recombinant Peprotech 

IL-23, recombinant eBioscience 

SCF, recombinant Peprotech 

TSLP, recombinant R&D 

RankL home made 

 

4-Hydroxy-3-nitrophenylacetyl NP- (18)-OVA  Biosearch Technologies Inc. 

 

 

4.1.4 Antibodies (Abs) 
	
  
Abs for flow cytometry analyses (directed against murine proteins) 

 

Specificity Clone 

Aire 5H12 

CD3ε  17A2, 145-2C11    

CD4  RM4-4, RM4-5 and GK1.5 

CD8α 53-6.7      

CD11b  M1/70 

CD11c  N418     

CD19  6D5     

CD21 7G6 

CD23  B3B4 
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CD24 M1/59 

CD25 (IL-2Rα) PC61      

CD31 390 

CD35 8C12 

CD40 1C10     

CD44 IM7  

CD45 30-F11 

CD45R (B220) RA3-6B2     

CD54 (ICAM-1) 3E2 

CD62L  MEL-14      

CD69  H1.2F3  

CD80  16-10A1 

CD86 GL1   

CD90.2 (Thy1.2) 30-H12 

CD103 2E7 

CD106 (VCAM-1) 429 

CD117 (ckit) 2B8 

CD127 (IL-7Rα)  A7R34  

CD196 (CCR6) 140706 

CD278 (ICOS) C398.4A   

CD326 (EpCAM) G8.8     

Foxp3 FJK-16s 

GATA-3 TWAJ 

GmCSF MP1-22E9 

Gp38 (Podoplanin) 8.1.1  

Gr-1  RB6-8C5     

Helios 22F6 

IFNγ  XMG1.2     

IgM II/41 

IL-5 TRFK5 

IL-13 eBio13A 

IL-17 TC11-18H10 

IL-22 1H8PWSR 

Ly51 6C3 

MHC II  M5/114.15.2,  

NKp46  29A1.4 
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NK1.1  PK136 

RORγt  AFKJS-9, B2D 

STAT5 47  

TCRβ  H57-597 

TCRγδ  GL3, UC7-13D5 

TER-119 TER-119 

UEA-1 

 

All reagents were purchased from BD Bioscience, eBioscience, Biolegend, R&D 

systems or Vector Laboratories. Primary monoclonal Abs (mAbs) were conjugated to 

either fluorescein isothycyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), 

Alexa Fluor® 700, brilliant violet 421, 510, or 605 (BV421TM, BV510TM BV605TM,), 

phycoerythrin cyanine 7 (PECy7), peridinin chlorophyll (PerCP)-eFluor 710, Percp-

Cy5.5, allophycocyanin cyanine 7 (APC-Cy7), or Texas Red®. 

Biotin-conjugated primary mAbs were detected using secondary anti-rat polyclonal 

Abs conjugated to Streptavidin/APC-Cy7, Streptavidin/BV421TM, 

Streptavidin/BV510TM or Streptavidin Percp-Cy5.5. Blocking of Fc receptors was 

performed using anti-mouse FcγRII/III mAb (clone 2.4G2, purified supernatant, home 

made). 

 

 

Abs used for ELISA (NP-OVA) 

For coating of plates: 

Purified anti-mouse IgM (unlabeled) M41 (A. Rolink, University of 

 Basel) 

Purified anti-mouse IgG (unlabeled) 15H6 (SouthernBiotech) 

 

For detection: 

Biotin-conjugated goat anti-mouse IgG Caltag Laboratories 

Alkaline phosphatase (AKP) – Streptavidin Roche 
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Abs used for Immunofluorescence 

 

Aire 5H12 

CK5 Rabbit PRB-160B  

  (Covalence, Princeton, NJ) 

CK8-Cy5 TROMA-1 

(Developmental Studies 

Hybridoma Bank, University of 

Iowa)     

goat-αRabbit-Alexa 555  Molecular Probes 

 

 

4.1.5 Primers for quantitative real time PCR (qRT PCR) 
 
 
Primer Sequence 

Aire forward	
   5’TGTGCCACGACGGAGGTGAG3’ 

Aire reverse	
   5’GGTTCTGTTGGACTCTGCCCTG3’ 

β -actin forward 5’CAATAGTGATGACCTGGCCGT3’ 

β -actin reverse 5’AGAGGGAAATCGTGCGTGAC3’ 

CCL19 forward	
   5’CCTGGGTGGATCGCATCATCCG3’ 

CCL19 reverse	
   5’AGAGCATCAGGAGGCCTGGTCCT3’ 

CCL21 forward	
   5’AGCTATGTGCAAACCCTGAGGA3’ 

CCL21 reverse	
   5’TTCCAGACTTAGAGGTTCCCCG3’ 

CCL25 forward 5’GTTACCAGCACAGGATCAAAT3’ 

CCL25 reverse 5’GGAAGTAGAATCTCACAGCA3’ 

CD80 forward 5’CCTGGGAAAAACCCCCAGAA3’ 

CD80 reverse 5’ACAACGATGACGACGACTGT3’ 

CxCL12 forward 5’AAATCCTCAACACTCCAAAC3’ 

CxCL12 reverse 5’GCTTTCTCCAGGTACTCTTG3’ 

EpCAM forward 5’TGAGGACCTACTGGATCATC3’ 

EpCAM reverse 5’TATCGAGATGTGAACGCCTC3’ 

FGF 10 forward	
   5’AGGGGAAACTCTATGGCTCAAAAG3’ 
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Primer	
   Sequence 

FGF 10 reverse 5’GCCACATACATTTGCCTGCC3’ 

IL-7 forward 5’GATAGTAATTGCCCGAATAATGAACCA3’ 

IL-7 reverse 5’GTTTGTGTGCCTTGTGATACTGTTAG3’  

IL-15 forward 5’GACGGGATCCTGCTGTGTTT3’ 

IL-15 reverse 5’AGGTGGATTCTTTCCTGACCTC3’ 

IL-22 forward 5’GAGTCAGTGCTAAGGATCAG3’ 

IL-22 reverse 5’TCAGAGACATAAACAGCAGG3’ 

KGF forward	
   5’CATGCTTCCACCTCGTCTGT3’ 

KGF reverse	
   5’CAGTTCACACTCGTAGCCGT3’ 

PDGFRα forward 5’AAGACCTGGGCAAGAGGAAC3’ 

PDGFRα reverse	
   5’GAACCTGTCTCGATGGCACT3’ 

RankL forward	
   5’CCTGTACTTTCGAGCGCAGA3’ 

RankL reverse 5’CCAGAGTCGAGTCCTGCAAA3’ 

SCF forward 5’AAGGAGATCTGCGGGAATCC3’ 

SCF reverse 5’CGGCGACATAGTTGAGGGTTA3’ 

TBP forward 5’GGCACCACCCCCTTGTACCCT3’ 

TBP reverse 5’ACGCAGTTGTCCGTGGCTCT3’ 

XCL1 forward 5’ATGGGTTGTGGAAGGTGTGG3’ 

XCL1 reverse 5’AGCCGCTGGGTTTGTAAGTT3’ 

	
  
	
  
	
  

4.1.6 Kits 
	
  
Foxp3 staining buffer set  eBioscience    

LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit  Molecular Probes 

RNeasy Micro Kit Qiagen 

RNeasy Mini kit Qiagen 

RT2 HT first strand kit Qiagen 

RT2 PCR Arrays  Qiagen 

SensiMix SYBR Hi-ROX Kit Bioline     

SuperScriptTM III Reverse Transcriptase Invitrogen 

Zombie AquaTM Fixable Viability Kit  BioLegend 
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4.1.7 Tools and instruments 
	
  
Asys Expert Plus Microplate Reader Biochrom 

AutoMACS Pro Miltenyi Biotec 

Cell strainer (70 µm / 100 µm) Falcon 

Cell counter CASY INNOVATIS Roche 

Eppendorf centrifuge 5810 R, 5415 R, 5417 R Eppendorf 

Eppendorf Mastercycler Gradient Eppendorf 

ELISA plate reader ASYS Expert Plus 

Flow cytometer BD FACSAria Ilu BD Bioscience 

Flow cytometer BD FACSCanto II BD Bioscience 

BD LSR Fortessa BD Biosciences 

gentleMACS™ Octo Dissociator Miltenyi Biotec 

MAXI sorb 96 well plates for ELISA Nunc  

Microscope DMI 4000  Leica     

Micro tube 1.3 mL K3E Sarstedt 

Nanodrop 2000c Thermo Scientific 

Nucleopore Track-Etch Membrane Millipore 

(poresize: 0.8 µm) 

Rotorgene RT PCR machine (RG-3000A) Corbett Research 

Zirconia beads BioSpec Products 

 

 

4.1.8 Software 
	
  
FlowJo 9.7.6    

GraphPad Prism 6    

ImageJ   

Microsoft Office for Mac 14.4.3   

 

 

4.1.9 Mice 
C57BL/6 were purchased from Janvier (Saint Berthevin Cedex, France). TSLPR-/-181, 

K14 TSLP+/- Rag2-/-γc-/-180, RORγ-/-199, Rag2-/-200(Jackson), were previously described. 

Rag2-/-γc-/- on C57BL/6 background were provided by Jörg Kirberg,MPI Freiburg, 

Germany. All mice were kept under specific-pathogen free (SPF) conditions. The 
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animal experiments received the approval of the Cantonal Veterinary Office of the 

city of Basel, Switzerland. 
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4.2 Methods 
 

4.2.1 Genotyping  
 

Isolation of DNA 

For isolation of genomic DNA, biopsies were digested in 500 µL lysis buffer 

containing 100 µg/mL Proteinase K (at least 3 h at 55 °C while shaking at 700 rpm on 

a heat block). 500 µL H2O was added for further dilution and stored at 4 ºC. 

 

TSLP PCR 

Primer TSLP Fwd: 5’ GGAGCCTCTTCATCCTGCAA 3’ 

Primer TSLP Rev: 5’ TCCGGGCAAATGTTTTGTCG 3’ 

 

PCR reaction mix: 

2.5 µl  10x buffer  

0.5 µl  TSLP fwd primer (10 µM) 

0.5 µl  TSLP rev primer (10 µM) 

0.5 µl  dNTPs (10 mM)   

0.1 µl    Taq Polymerase (Sigma) 

 20 µl   dH2O 

   1 µl  genomic DNA 

 

PCR program for amplification:  

 

step 1  94 ºC  5’ 

step 2  94 ºC  30” 

step 3  63 ºC  30” 

step 4  72 ºC  30”          step 2 - 4   31 x 

step 5  72 ºC  10’ 

step 6  20 ºC  hold 

 

product length:   

TSLP: ~252 base pairs (bp) 
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4.2.2 Cell isolation  
Lamina propria lymphocytes (LPL) from colon and small intestine (SI) were 

isolated by enzymatic digestion. Briefly, SI was opened longitudinally, feces were 

removed, and SI was cut into 2 cm pieces. After incubation in 25 mL of 30 mM EDTA 

solution in Ca2+- and Mg2+- free PBS for 30’ on ice, the tube was shaken 

vigourously and washed with PBS several times until PBS was clear without debris. 

Tissue was cut in smaller pieces and incubated in pre – warmed DMEM plus 0.025 

mg/mL DNaseI (Roche) and1 mg/mL Collagenase D (Roche) at 37 ºC. After 15 min, 

tissue pieces were pipetted up and down and supernatant was filtered through a 100 

µm filter into a collection tube containing 15 mL DMEM, 5% FCS, 2mM EDTA. 

Incubation steps were repeated 3 times with fresh Collagenase D. After the last 

digestion step, cell suspension was pelleted, resuspended in 5 mL 40 % Percoll, 

underlaid with 3 mL 80 % Percoll and centrifuged for 30’ at 20 ºC (1800 rpm, 

acceleration 4, brake 1). Cells of the interphase were collected and washed once 

with PBS. 

Colon (w/o cecum) was opened longitudinally, feces were removed, and colon 

was cut into 1 cm pieces. Tissue pieces were incubated in 25 mL of 5 mM EDTA plus 

10 mM HEPES solution in Ca2+- and Mg2+- free PBS for 20 min at 200 rpm shaking 

at 37 ºC. Incubation steps were repeated 3 times in fresh EDTA/HEPES solution 

followed by a washing step with DMEM. Tissue was transferred to gentle MACS tube 

with 5 mL pre-warmed DMEM, 0.025 mg/mL DNaseI, 1 mg/mL Collagenase D, 0.25 

mg/mL Collagenase VIII and incubated for 2x 30’ at 37 ºC interrupted by 2 cycles of 

tissue dissociation with gentleMACS™ Octo Dissociator (Miltenyi Biotech). Cell 

suspension was filtered through a 100 µm filter into a collection tube containing 15 

mL DMEM, 5% FCS, 2mM EDTA, peletted, resuspended in 2 mL 40 % Percoll 

underlaid with 1.2 mL 80 % Percoll and centrifuged for 30’ at 20 ºC (1800 rpm, 

acceleration 4, brake 1). Cells of the interphase were collected (total LP 

lymphocytes). 

 

Thymocytes and splenocytes were either gained by mashing the tissue through a 

metal grid (Ø 0.8 mm) in FACS buffer or by cutting the tissue and digesting it 

enzymatically by 4 rounds with DMEM, 0.025 mg/mL DNaseI, 1 mg/mL Collagenase 

D at 37 ºC as described earlier. Erythrocytes were lysed with erythrolysis buffer (2’ at 

RT). 
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Thymic ILC3s were isolated by enzymatic digestion as described. For WT and 

RORγt-/- mice, thymocytes were depleted with a Lin cocktail (CD3ε, CD8α, CD11c, 

B220, CD19 TCRαβ, TCRγδ, GR-1, NK1.1) by MACS before staining for ILC3 marker, 

whereas total thymi were analysed in case of Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- 

mice. 

 

Bone marrow (BM) was recovered by crushing the bones of femurs and tibias in 

FACS buffer. Erythrocytes were lysed with erythrolysis buffer (2’ at RT). 

 

Thymic epithelial cell isolation of K14 TSLP+/- Rag2-/-γc-/- and Rag2-/-γc-/- was 

performed by enzymatic digestion in PBS with 1 Wünsch unit/mL Liberase (Roche), 

0,025 mg/mL DNaseI at 37 ºC. Total cells were used for antibody staining. 

For WT, thymi were isolated and enzymatically digested with 1 Wünsch unit/mL 

Liberase (Roche), 0,025 mg/mL DNaseI at 37 ºC. The enzymatic digests were 

incubated with biotin-conjugated EpCAM (G8.8) followed by anti-biotin magnetic 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) and enrichment of EpCAM+ 

stromal cells by positive selection on an AutoMACS Pro (Miltenyi).  

 

Isolation of stromal cells from spleen and lymph nodes 

Stromal cell populations were isolated according to the protocol adapted from Link 

et al.109. Briefly, spleen and lymph nodes were opened with needles and digested in 

DMEM (1.2 mM CaCl2, 2% FCS, Pen/Strep) plus Collagenase IV (1mg/mL) and 

DNaseI (0.04 mg/mL) to isolate lymphocytes. In a second digestion step with DMEM, 

Collagenase D (1mg/mL) and DNaseI (0.04 mg/mL), stromal cells were isolated and 

analysed by flow cytometry or further sorted to isolate subpopulations. 
 

4.2.3 Flow cytometry and cell sorting 
Cell suspensions were stained with biotinylated or fluorochrome-conjugated Abs (30’, 

4 ºC) in FACS buffer. Fc receptors were blocked by incubation with anti-mouse 

FcγRII/III mAb (clone 2.4G2). Fluorochrome-conjugated streptavidin was added as a 

second incubation step (30’, 4 ºC) for stainings, which included biotinylated Abs.  

Intracellular RORγt staining was performed using Foxp3 staining buffer set 

(eBioscience) after surface molecule staining according to manufacturer’s protocol. 

For intracellular cytokine staining, cells were stimulated for 4h with PMA (50 ng/mL) 

and Ionomycin (2.5 µg/mL) or IL-23 (20 ng/mL) and incubated with BFA (10 µg/mL) 
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for the last 2h at 37ºC. Cells were washed with FACS buffer and fixed with 4 % PFA 

in PBS for 10min on ice, washed twice with FACS buffer and stained for the 

respective Abs in 0.5 % Saponin in FACS buffer. Intracellular Aire staining was also 

performed in 0.5 % Saponin in FACS buffer after fixation with 4 % PFA in PBS. 

Dead cells were identified using LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit or in 

case of non-fixed cells with DAPI.  

Data were acquired with either FACS Canto II or LSR Fortessa and analysed with 

FlowJo software (Tree Star). Cell sorting was performed with FACS Aria Ilu (BD 

Bioscience, >98 % purity). Absolute cell numbers derived from various organs were 

determined by counting cells with the cell counter CASY INNOVATIS (Roche). 

 

4.2.4 Fetal and re-aggregated thymus organ culture (FTOC and RTOC)  
For FTOCs, fetal thymic lobes were isolated from embryonic day 14.5 (E14.5) WT 

embryos and cultured for 5 days on membranes (Millipore) in the presence of 1.35 

mM 2``- Deoxyguanosine in TOC medium (IMDM, 10% FCS, 10-5 nM β-

mercaptoethanol, 1 % Kanamycin) to deplete hematopoietic cells. Membranes were 

transferred to fresh medium for one day followed by application of RankL (home 

made): 10 µg/mL; TSLP (R&D): 25, 50 or 100 ng/mL) for 5 days. Lobes were 

harvested and disaggregated in FACS buffer, 0,025 mg/mL DNaseI, 1 mg/mL 

Collagenase D for 15’at 37 ºC followed by surface molecular staining. 

For RTOCs, fetal thymic lobes were isolated from WT E14.5, disaggregated in 

TOC medium with 0,025 mg/mL DNaseI, 1 mg/mL Collagenase D for 15’at 37 ºC and 

sorted for CD45- TER119-. Sorted cells were re-aggregated in TOC medium 

(supplemented with 0.25 mg/mL Gentamicin, 10µg/mL Amphoterizin, 4000U 

Pen/Strep, 25 ng/mL IL-7 and 20 ng/mL SCF) in a 1 : 2 ratio with DN3s (sorted for 

CD25+ CD44-) or LPL ILC3s (*Lin-, CD90.2+, CD117+) from Rag2-/- mice for 4 days 

and analysed by flow cytometry. (*CD3ε, CD8α, CD11c, CD19, B220, GR-1, NK1.1) 

 

4.2.5 Phosphoflow  
WT tymic epithelial cells were isolated and stained for surface molecules according to 

manufactured protocol; BM cells were recovered as described. Cells were 

resuspendet in appropriate amount of SF-IMDM 5% FCS and allowed to rest for 2h at 

37ºC in 1.5 mL Eppendorf tubes. Cells were then stimulated for 10min at 37ºC with 

either recombinant TSLP (R&D): 25, 50 or 100 ng/mL or IL-7: 20ng/mL (Peprotech) or 

left unstimulated. Cells were fixed for 15 minutes with 2% PFA (AppliChem) at 37ºC. 



Materials and methods 
 

	
   45	
  

Permeabilization was done with 100% methanol on ice for 30 min and phospho - 

STAT5 staining was performed at room temperature (RT) for 30 min. 

	
  

4.2.6 Reconstitution with FL cells and immunization 
Fetal liver (FL) cells from E14.5 TSLPR-/- were isolated. Erythrocytes were lysed with 

erythrolysis buffer (2’ at RT) and 5x106 cells/mouse were injected i.v. into Rag2-/-γc-/- 

or K14 TSLP+/- Rag2-/-γc-/-mice.  

Mice were immunized intraperitoneally (i.p.) with 100 µg alum-precipitated NP-

Ovalbumin (NP (18)-OVA) 6 weeks after FL transfer (day 42) and boosted with 100 

µg alum-precipitated NP-OVA 12 days after the first immunization. Sera were 

collected before immunization (day 42) and 7 days after the second immunization 

(day 61) with NP-OVA. 

	
  

4.2.7 Antibody detection by ELISA  
To detect NP-OVA-specific Abs in the serum of immunized mice, NUNC 

immunoplate Maxisorb F96 plates were coated with 5 µg/mL NP-OVA (Biosearch 

Technologies Inc.) in 1x PBS at 4ºC o/n. Plates were washed (H2O 0.1% Tween-20) 

and incubated with sera for 1 h at RT. After washing, biotin-conjugated goat anti-

mouse IgG (Caltag Laboratories, 1 h, RT) was added and detected by alkaline-

phosphatase (AKP)-conjugated Streptavidin (Roche, 45’, RT). Plates were 

developed with dinitrophenyl phosphate (dNPP, 1 mg/mL, Sigma) in substrate buffer. 

The reaction was stopped with 1 M NaOH (Fluka). The optical density (OD) was 

determined at 405 nm with an ELISA reader (ASYS Expert plus).  

To detect total IgM and total IgG levels in the serum of reconstituted mice, NUNC 

immunoplate Maxisorb F96 plates were coated with either 5 µg/mL purified anti-

mouse-IgM (unlabeled, clone M41) or purified anti-mouse IgG (clone 15H6) in 1x 

PBS at 4ºC o/n, followed by described protocol. 

 

4.2.8 T cell proliferation assay in vivo 
T cells from spleen and lymph nodes of TSLPR-/- mice were magnetically purified 

with αCD4 - beads (LTR4, Miltenyi Biotec) or stained for αCD8 – PE followed by an 

incubation step with αPE -  beads. CD4+ and CD8+ T cells were pooled (ratio 1:2) 

and labeled with 45 µM carboxyfluorescein succinimidyl ester (CFSE) for 8’ at RT in 

the dark. The reaction was stopped with 80% FCS in Ca2+- and Mg2+- free PBS. 
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Cells were washed, resuspended in PBS and 1x107 cells/mouse were injected i.v. . 

For naïve T cell transfer, a magnetic depletion (Miltenyi Biotech) with B220, CD19, 

CD11c, NK1.1 was performed and naïve T cells were sorted for CD4+ respective 

CD8+, CD62L+ and CD44low/- expression (>98 % purity). Sorted naïve CD4+ and CD8+ 

cells were pooled (ratio 1:2), labeled with 45 µM CFSE as described and 2x106 

cells/mouse (ratio 1:2) were injected i.v.  

 

4.2.9 Immunfluorescence 
Organs were frozen in O.C.T™ (Tissue-Tek®) in liquid N2. Sections were cut on a 

cryostat (8 µm), fixed in acetone and rehydrated in PBS. After blocking with 1 % BSA 

in PBS (30’ at RT) in a wet chamber, sections were incubated with fluorochrome-

conjugated or purified Abs (1 h at RT). Secondary Abs were applied (1h at RT or o/n 

at 4ºC) for stainings including purified Abs after washing twice in PBS (5’ at RT). 

After one wash in PBS, sections were embedded in Fluoromount-G™. 

 

4.2.10 RNA isolation, cDNA synthesis and qRT PCR 
For RNA isolation from tissue, tissue pieces were frozen in liquid nitrogen (LiqN2) in 

1.5 mL Micro tubes PP (Sarstedt) containing Zirconia beads (BioSpec Products). 

Tissue was homogenized in 1mL TRI-Reagent® with a FastPrep-24 instrument (MP 

Biomedicals) for 1’ at 6.5 m/s and RNA was isolated according to manufacturer’s 

protocol. For sorted cells or small tissue quantities, homogenization was performed 

through a 25G needle. RNA was isolated according to manufacturer’s protocol with 

the help of GlycoBlue as a co - precipitant. In case of sorted stromal cells, RNA was 

isolated using the RNeasy Micro Kit (Qiagen) according to manufacturer’s protocol. 

RNA quantification and quality assessment were performed on a Nanodrop 2000c 

(Thermo Scientific Inc.). First strand cDNA was synthesized by using SuperScriptTM 

III Reverse Transcriptase (Invitrogen) according to manufacturer’s instructions. 

Quantitative Real –time (qRT) PCR was performed on a Rotor-Gene RG-3000A 

(Corbett research) using SensiMix SYBR Hi-Rox Kit (Bioline, London, UK). Results 

were normalized to the housekeeping gene TATA box binding protein (TBP) or β-

actin, using the comparative threshold cycle method (ΔCT) for relative quantification. 

Data of mRNA levels in the small intestine were obtained by RNA isolation of 3x1 

cm tissue combined from duodenum, jejunum and ileum of the small intestine. RNA 

was isolated with RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions 

followed by first strand cDNA synthesis with RT2 HT First Strand Kit (Qiagen). 
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Custom arranged RT2 PCR Arrays (Qiagen) were performed by T. Dolowschiak, 

Microbiology ETH Zürich. Results were normalized to the housekeeping gene β-actin, 

using the comparative threshold cycle method (ΔCT) for relative quantification. 

 

4.2.11 Statistical analyses 
Statistical analyses were performed using Mann Whitney U test or unpaired Students 

t-test with Prism software (GraphPad Software, Inc.). P values < 0.05 are considered 

to be statistically different. 
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5 Results 
	
  

5.1 Characterization of Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- 

mice 
	
  

Primary and secondary lymphoid organs were characterized in Rag2-/- γc-/- and 

K14 TSLP+/- Rag2-/- γc-/- mice with a particular emphasis on the architecture and 

maturation of the thymus stroma as well as LN stromal cells. 

	
  

 

5.1.1 TSLPtg increases thymus size and thymic cellularity 
 

Macroscopic analysis of 6 - 8 weeks old Rag2-/- γc-/- mice revealed that these mice 

had very small thymi containing cysts compared to K14 TSLP+/- Rag2-/- γc-/- mice and 

WT mice (Fig 8A). Contrary to Rag2-/- γc-/- mice, in which thymocytes accumulate at 

the CD25- CD44+ double negative (DN) 1 stage, K14 TSLP+/- Rag2-/- γc-/- mice 

showed higher thymocyte frequencies in the DN2 and DN3 stage (Fig. 8B). This was 

also reflected by the higher total thymus cellularity (Fig. 8C) as well as the significant 

higher numbers of DN2s and DN3s in K14 TSLP+/- Rag2-/- γc-/- mice (Fig. 8D). These 

results are in line with previous studies demonstrating a role for TSLP on thymocyte 

precursor development180. However, mice with TSLP overexpression do not reach 

DN frequencies of WT controls beyond DN1 (Fig. 8B).  
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Figure 8: TSLPtg increases thymus size and number of DN thymocytes in Rag2-/-γc-/- 

mice. A) Representative photographic picture of thymi from WT (i) Rag2-/- γc-/- (ii) and K14 

TSLP+/- Rag2-/- γc-/- mice (iii). Scale bar represents 1mm. B) Flow cytometry analysis of DN1 

(CD117high CD25- CD44+), DN2 (CD117high CD25+ CD44+) and DN3 (CD25+ CD44-). Numbers 

in dot plots represent frequencies of a representative experiment C) Absolute cell numbers of 

total thymus. D) Absolute cell numbers for DN1, DN2 and DN3; C - D) n = 7 from 2 

independent experiments; median values + interquartile range; n.s. = not significant, 

***P<0.001.  
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5.1.2 TSLPtg expression improves thymic stromal compartment 
 
To investigate whether TSLPtg expression does not only increase the absolute 

number of DN thymocytes but has also an effect on the thymic epithelial 

compartment, WT, Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- thymi were stained with 

αCK5 (medulla marker) and αCK8 (cortical marker). Immunofluorescence analysis of 

WT thymic sections showed a compartimentalization into cortex and medulla (Fig. 9A, 

i and ii), whereas Rag2-/- γc-/- mice showed preferentially CK5 CK8, double positive 

cells and no segregation into compartments (Fig. 9A iii and iv). K14 TSLP+/- Rag2-/- 

γc-/- thymi showed partial segregation of the epithelial cells in CK5 as well as CK8 

single positive cells, beside double positive cells for CK5 and CK8 (Fig. 9A v and vi). 

A feature of medullary thymic epithelial cells (mTECs) is the expression of the 

transcription factor autoimmune regulator (Aire), which is crucial for the 

establishment of central tolerance51. In WT mice, Aire+ cells were confirmed to 

localize in the thymus medulla. No Aire+ cells were detected in Rag2-/-γc-/- mice, and a 

very small number of Aire+ cells were found in the thymi of K14 TSLP+/- Rag2-/-γc-/- 

mice (Fig. 9B). The presence of Aire and the Aire dependent marker xCL1 was 

confirmed by qRT PCR in K14 TSLP+/- Rag2-/-γc-/- mice, whereas these factors were 

undetectable in Rag2-/-γc-/- mice (Fig. 9B). Another marker of mature mTECs is CD80, 

which showed a ~7 times higher expression in K14 TSLP+/- Rag2-/-γc-/- compared to 

Rag2-/-γc-/- mice (Fig. 9B). In summary, the results obtained from histology indicate 

the presence of mTECs in K14 TSLP+/- Rag2-/-γc-/- mice. This observation was 

confirmed by FACS analysis of the thymic epithelial compartment in Rag2-/-γc-/- and 

K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 10).  

In K14 TSLP+/- Rag2-/-γc-/- mice total mTEC numbers were significantly increased 

(~ 200 cells/thymus compared to ~20 cells/thymus in Rag2-/-γc-/- mice). MHC II levels 

were lower in Rag2-/-γc-/- mice compared to WT mice (Fig 10A), indicating an 

immature TEC phenotype. Nevertheless, 38% of mTECs in K14 TSLP+/- Rag2-/-γc-/- 

mice expressed Aire, which argues for mature mTECs. Aire protein expression was 

undetectable in Rag2-/-γc-/- mice (Fig. 10A), which is in line with histology (Fig. 9A iii 

and iv) and qRT PCR data (Fig. 9B). cTEC and fibroblast numbers did not differ 

between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 10B), indicating that TSLP 

overexpression had no significant effect on these cellular subsets of the thymic 

stromal compartment. 
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Figure 9: TSLPtg improves thymic stromal compartment in Rag2-/-γc-/- mice.	
   A) 

Immunohistochemistry was performed on O.C.T™ embedded frozen sections of thymi from 

WT (i and ii), Rag2-/-γc-/- (iii and iv) and K14 TSLP+/- Rag2-/-γc-/- (v and vi) mice and stained for 

Cytokeratin-8 (CK8, green), Cytokeratin-5 (CK5, red) and Aire (blue; Aire was only stained in 

the right panel). Scale bar represents 50µm B) Aire, CD80 and xCL1 expression are shown 

as relative expression to EpCAM; median values + interquartile range; **P<0.01, 

****P<0.0001. 

 

	
  

	
  
	
  
Figure 10: TSLPtg increases mTEC numbers in Rag2-/- γc-/- mice.	
  A) Gating strategy 

for thymic epithelial cells. Numbers in dot plots represent frequencies. B) Absolute cell 

numbers of fibroblasts (CD45- EpCAM- MHC II- Ly51+), cortical epithelial cells (cTECs), and 

medullary epithelial cells (mTECs); n = 9 from 3 independent experiments; median values + 

interquartile range; n.s.= not significant, ****P<0.0001.	
  



Results 
 

	
   53	
  

TECs are sources of many different cytokines and chemokines essential for 

recruitment, growth and survival of thymocyte60-64. To investigate whether improved 

thymic stromal patterning in K14 TSLP+/- Rag2-/-γc-/- mice alters cytokine and 

chemokine expression, qRT PCR analysis was performed on total thymus for IL-7, 

stem cell factor (SCF), CCL21, CCL25 and CCL19. Except for CCL21, which was 

significantly downregulated in K14 TSLP+/- Rag2-/-γc-/- mice, none of the factors was 

affected by TSLP overexpression (Fig. 11). 

  

 
 

	
  
	
  
Figure 11: Cytokine and chemokine expression in total thymus normalized to the 

epithelial marker EpCAM. IL-7, SCF, CCL19, CCL21 and CCL25 are shown as relative 

expression to EpCAM; n = 7-11; median values + interquartile range; n.s. = not significant, 

**P<0.01. 

	
  
Similarly, when mRNA levels were normalized to the fibroblast marker PDGFRα 

instead of EpCAM, there was no difference in transcript level for IL-7, SCF and 

CCL19 between the mouse strains. However, K14 TSLP+/- Rag2-/-γc-/- mice showed a 

9-fold increase in CXCL12, which has a role in thymocyte expansion63 and a 3-fold 

increase in CCL25 (Fig. 12). Also mRNA levels for fibroblast growth factors KGF and 

FGF 10 did not differ between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 12).  

Taken together, TSLPtg expression in Rag2-/-γc-/- mice increases the number of 

DN thymocytes and promotes Aire expression. However, the improved thymic 

stromal patterning in K14 TSLP+/- Rag2-/-γc-/- mice does not alter growth factor 

expression, but has a significant effect on the upregulation of CXCL12 and CCL25 in 

mesenchymal as well as down modulation of CCL21 in epithelial cells.  
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Figure 12: Cytokine and chemokine expression in total thymus normalized to 

fibroblast marker PDGFRα . IL-7, SCF, CCL19, CXL12, CCL25, KGF and FGF 10 are 

shown as relative expression to PDGFRα; n = 7-11, median values + interquartile range;    

n.s. = not significant, *P<0.05, **P<0.01. 

 

	
  
	
  

5.1.3 TSLP has no direct effect on mTEC differentiation and Aire 
expression      

	
  

mTEC development and Aire expression during embryogenesis is dependent on 

LTi cells and γδ T cell precursors via Rank - RankL interaction75,76, whereas mTEC 

maintenance in adults is mediated by signals from αβ T cells77-81. Since K14 TSLP+/- 

Rag2-/-γc-/- mice are T cell deficient, it was investigated whether TSLP overexpression 

has a direct effect on the development and maintenance of mTECs. 

This question was addressed with fetal thymus organ cultures (FTOC). In WT 

mice, mTECs appear around E16201. Therefore, WT E14.5 thymi before the onset of 

mTEC development were used. Culturing of WT thymic lobes without treatment for 
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11 days showed normal cTEC and mTEC development, the latter also expressing 

Aire (Fig. 13A) due to the presence of LTi cells and normal thymopoiesis. To remove 

developing T cells, thymic lobes were treated with 2’-Deoxyguanosine (dGuo) and 

subsequently cultured for 5 days in the presence of RankL, different concentrations 

of recombinant TSLP or left unstimulated. Analysis by flow cytometry showed that 

treatment with dGuo inhibits mTEC development, whereas subsequent treatment 

with RankL initiates mTECs. Treatment with 25, 50 or 100 ng/mL TSLP did not 

increase the frequency of mTECs (Fig. 13B). Another approach to test whether TECs 

are TSLP responsive was monitoring of STAT5 phosphorylation in response to TSLP 

stimulation in situ. The biological activity of TSLP was assessed on BM cells from 

Rag2-/- mice. After stimulation with 50ng/mL TSLP, 9% of CD19+ B cell precursor 

phosphorylated STAT5. This was 3.5 times lower than with the growth factor IL-7 

(Fig. 13C), but confirmed the biological activity of TSLP at low concentrations. 

WT TECs were isolated and stimulated with 25, 50 and 100 ng/mL TSLP. As there 

was no difference in STAT5 phosphorylation of unstimulated and stimulated TECs 

(Fig. 13D), there is no evidence for a direct effect of TSLP on mTEC development. 
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Figure 13: TSLP has no direct influence on mTEC development: A) Flow cytometry 

analysis of the TEC compartment in FTOCs after 11 days of culture. B) Analysis of the TEC 

compartment in dGuo treated FTOCs cultured in the presence of RankL, different 

concentrations of TSLP or without stimulation for 5 days. A-B) Numbers in dot plots represent 

frequencies of a representative experiment from 5 independent experiments.	
  C) Rag2-/- BM 

cells were stimulated with 20 ng/mL IL-7, 50 ng/mL TSLP or left unstimulated. D) WT TECs 

were stimulated with different concentrations of TSLP or left unstimulated. C-D) Levels of 

STAT5 phosphorylation was assessed by flow cytometry analysis; Numbers in dot plots 

represent frequencies of a representative experiment from 2 independent experiments.	
  
 

 

It was reported, that in the absence of T cells Rank - RankL interaction plays an 

important role in mTEC development and Aire induction75,76. Therefore, the 

expression of RankL was assessed by qRT PCR on total thymus of K14 TSLP+/- 

Rag2-/-γc-/- and Rag2-/-γc-/- mice. Indeed, RankL transcript levels were significantly 

higher in K14 TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice (Fig. 14A). Possible 
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candidates, which express RankL in an adult T cell deficient thymus, are ILC3s. 

Therefore, K14 TSLP+/- Rag2-/-γc-/-, Rag2-/-γc-/- as well as WT and RORγt-/- mice as 

controls were investigated for the presence of ILC3s in the thymus. (Fig. 7 B). Since 

ILC3s require γc signaling cytokines such as IL-7 for their development and 

survival136, Rag2-/-γc-/- mice are almost devoid of ILC3s. However, TSLP 

overexpression increased ILC3s in the thymus of Rag2-/-γc-/- mice (Fig. 14B-C) as 

already observed for spleen and mLN138. qRT PCR on total thymus demonstrated 

that in line with the increased numbers of ILC3s, K14 TSLP+/- Rag2-/-γc-/- mice 

showed also an elevated level of IL-22 in the thymus (Fig. 14D). Other cellular 

subsets expressing RankL are DN2s and DN3s (Fig. 14E), but to lower extend than 

ILC3s78. Nevertheless DN2s and DN3s could potentially contribute to mTEC 

development in K14 TSLP+/- Rag2-/-γc-/- mice.  
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Figure 14: ILC3s are increased in K14 TSLP+/- Rag2-/- γc-/- mice. A) RankL expression 

on total thymus shown as relative expression to TBP B) Gating strategy for ILC3s in the 

thymus; Lin includes CD3ε, CD8α, CD11c, CD19, B220, TCRαβ, TCRγδ, GR-1 and NK1.1. 

Numbers in dot plots represent frequencies of a representative experiment C) Absolute cell 

numbers of ILC3s in Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice D) IL-22 expression on total 

thymus shown as relative expression to TBP; A, C-D) n = 7 - 8; median values + interquartile 

range; **P<0.01, ***P<0.001. E) RankL expression of sorted DN2 (CD3ε-, c-kithigh CD25+ 

CD44+) and DN3s (CD3ε-, CD25+ CD44-) of K14 TSLP+/- Rag2-/- γc-/- mice shown as relative 

expression to TBP; mean values. 
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The notion that not only ILC3 but also DN3 numbers were 16 - fold and 

approximately 450 - fold increased, respectively, raised the question whether DN3s 

and adult ILC3s were able to promote mTEC development in the absence of T cells. 

Therefore, CD45- cells from WT E14.5 thymi were re - aggregated at a 1:2 ratio with 

DN3s or with LP derived ILC3s isolated from Rag2-/- mice. Cells were isolated from 

Rag2-/- mice to ensure that DN3s cannot differentiate beyond DN3s. Furthermore 

have Rag2-/- mice higher ILC3 numbers due to the absence of T and B cells. 

Re - aggregated thymus organ cultures (RTOC) of CD45- TER119- cells + DN3s 

and CD45- TER119- cells + ILC3s were cultured for 4d, disaggregated and analysed 

by flow cytometry. Direct analysis of sorted CD45- TER119- cells showed 95% cTECs, 

as mTEC development has not started at E14.5 (Fig 15 upper row). Re - aggregation 

of total disaggregated thymus (CD45- + CD45+ cells) resulted in the development of 

34% mTEC and 62% cTECs (second row). Re - aggregation of CD45- cells with 

DN3s showed maintenance of ~78% cTECs and development of 11% mTECs 

whereas re - aggregation with LPL ILC3s resulted in a strong commitment of mTECs 

(85%). CD80 expression of mTECs was not affected by DN3s or ILC3s, as the 

frequency of CD80+ mTECs was comparable to the control in the second row (Fig 

15). These data indicate that DN3s are able to induce mTEC development but to 

lesser extend than ILC3s, which might be due to different expression levels of RankL 

or by an additional unknown mechanism.  

In summary, TSLP overexpression does not have a direct effect on mTEC 

development. However, ILC3s and to lesser extent DN3s are able to promote mTEC 

development. 
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Figure 15: DN3s and LP derived ILC3s promote mTEC development: Flow cytometric 

analysis of TEC compartment at E14.5 (upper row), after re - aggregation of disaggregated 

total WT E14.5 thymi in 4d RTOCS and 4d RTOCs of WT E14.5 CD45- cells with either DN3s 

or LP derived ILC3s from Rag2-/- mice. Numbers in dot plots represent frequencies from one 

experiment. 

 

 

 

3.1.4 TSLPtg expression increases myeloid cells in peripheral organs 
 

TSLP increases the number of myeloid cells174. DCs respond to TSLP by 

upregulation of MHC II and co-stimulatory molecules CD40, CD80 and CD86164,202. 

Due to the interaction of OX40+ T cells and OX40L expressed by TSLP conditioned 

DCs, TSLP can polarize CD4+ T cells towards the Th2 lineage87. To address the 

question whether TSLP overexpression in Rag2-/-γc-/- mice has an effect on antigen 

presenting cells (APCs), peripheral organs were analysed in Rag2-/-γc-/- and K14 

TSLP+/- Rag2-/-γc-/- mice for total cell numbers of GR1+ CD11b+ cells, CD11c+ DCs, 

CD11c- MΦ and co-stimulatory molecules by CD11c+ DCs. In the spleen, K14 

TSLP+/- Rag2-/-γc-/- mice had significant higher GR1+ CD11b+ myeloid cells (~3.6x106 

cells in K14 TSLP+/- Rag2-/-γc-/- mice and 1x106 in Rag2-/-γc-/- mice) (Fig. 16A-B), 
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whereas the size of the myeloid compartment in the BM did not differ between    

Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 16A-B). Further characterization of 

the myeloid compartment in the spleen by flow cytometry demonstrated that the 

CD11c+ CD11b+ MHC II+ DC subset was 3 times higher in K14 TSLP+/- Rag2-/-γc-/- 

mice, whereas there was no difference in the CD11c- CD11b+ MΦ subsets  (Fig 16C-

D). Using flow cytometry, the expression of the co - stimulatory molecules CD40, 

CD80 as well as CD86 was analysed in CD11c+ MHC II+ DCs and no difference could 

be detected between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 16E). 
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Figure 16: TSLPtg increases myeloid cells in the spleen: A) Gating strategy for 

myeloid cells in spleen and BM. B) Absolute cell numbers for GR1+ CD11b+ cells in spleen 

and BM; n = 7 - 11; median values + range; n.s. = not significant, **P<0.01. C) Gating 

strategy for DCs (CD11c+ CD11b+ MHC II+) and MΦ (CD11c- CD11b+). D) Absolute cell 

numbers for DCs and MΦ; n = 7 - 11; median values + range; n.s. = not significant, **P<0.01. 

E) Representative histograms of co - stimulatory molecule expression of CD11c+ CD11b+ 

MHC II+ subset. A+C) Numbers in dot plots represent frequencies of a representative 

experiment. 
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DC and MΦ  numbers as well as the expression of their co - stimulatory molecules 

were also quantified in the small intestine (SI) and colon. K14 TSLP+/- Rag2-/-γc-/- 

mice showed a small but significant increase in the number of MHC II+ CD11c+ DCs 

in the SI as well as in the colon (Fig. 17A-B, Fig. 18A-B). In the colon this was 

associated with an increase in the number of CD103+ DCs (Fig. 18B). The number of 

CD103low DCs and CD11c- MΦ  as well as the expression of co - stimulatory 

molecules CD40, CD80 and CD86 on CD11c+ DCs did not differ between Rag2-/-γc-/- 

and K14 TSLP+/- Rag2-/-γc-/- mice in the SI and colon (Fig. 17C and 18C).  

Altogether, these results indicate that TSLP overexpression promotes the 

accumulation of myeloid cells in the spleen and to lower extend also in the intestine. 

However, TSLP overexpression in Rag2-/-γc-/- mice has no impact on the expression 

of co - stimulatory molecules on DCs. 
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Figure 17: TSLP increases DC numbers in the small intestine: A) Gating strategy for 

DCs (MHC II+ CD11c+), CD103+ DCs, CD103low DCs and MΦ (MHC II+ CD11c- CD11b+); 

Numbers in dot plots represent frequencies of a representative experiment. B) Absolute cell 

numbers for DC subsets and MΦ; n = 6; median values + range; n.s. = not significant, 

*P<0.05. C) Representative histograms of co - stimulatory molecule expression of CD11c+ 

MHC II+ subset. 
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Figure 18: TSLP increases DC numbers in the colon: A) Gating strategy for DCs (MHC 

II+ CD11c+), CD103+ DCs, CD103low DCs and MΦ (MHC II+ CD11c- CD11b+); Numbers in dot 

plots represent frequencies of a representative experiment. B) Absolute cell numbers for DC 

subsets and MΦ; n = 6; median values + range; n.s. = not significant, *P<0.05.  

C) Representative histograms of co-stimulatory molecule expression of CD11c+ MHC II+ 

subset. 
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3.1.5 TSLPtg expression increases ILC numbers in the intestine 
 
	
  
The intestinal immune system has to keep the balance between tolerating 

commensal bacteria and mounting immune responses against potential pathogens. 

ILC3s in the intestine were reported to give substantial help for the maintenance of 

intestinal immune homeostasis203 by creating an anti - pathological platform146,147,151. 

As a major source of IL-22204, ILC3s can protect intestinal epithelial cells by giving 

survival and proliferation signals159,205 and induce anti - microbial Reg proteins, which 

are targets of IL-22 signaling151. On the other side, NCR- ILC3s are shown to be 

involved in intestinal inflammation by production of IL-17 and IFN-γ 145,206. The role of 

ILC2s under steady state conditions is not clear yet188. However, ILC2s can be 

important Th2 cytokine producers after activation207. To investigate, whether 

increased numbers of ILCs alter the intestinal microenvironment, the intestinal ILC 

subsets and their cytokine profile were analysed.  

Analysis of LP derived ILCs from SI showed that TSLP overexpression resulted in 

a higher frequency of ILC2s and ILC3s in K14 TSLP+/- Rag2-/- γc-/-mice (14% ILC2s, 

67% ILC3s) compared to Rag2-/- γc-/-mice (7% ILC2s, 39% ILC3s) (Fig. 19A). This 

difference in frequencies is also depicted in absolute cell numbers, as K14 TSLP+/- 

Rag2-/- γc-/-mice have an 86-fold increase in ILC2s (Lin- CD90.2+ GATA3+), 18-fold 

increase in NCR- and 36-fold increase in NCR+ ILC3s (Lin- CD90.2+ RORγt+) (Fig. 

19A). In line with higher ILC3 numbers in K14 TSLP+/- Rag2-/- γc-/- mice are qRT PCR 

data on SI tissue, which showed a highly significant increase in RankL (Fig. 19B).  

Approximately 50% of SI - ILC3s showed IL-22 production under steady state 

conditions in both mouse strains. Treatment of ILC3s with IL-23 raised IL-22 

production by at least 20% in Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/-mice (Fig. 19C). 

IL-17 production was lower compared to IL-22 production under steady state 

conditions and did not significantly differ between Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- 

γc-/- mice. However, IL-17 production was upregulated in Rag2-/- γc-/- and K14 TSLP+/- 

Rag2-/-γc-/- mice upon IL-23 treatment (Fig. 19C). ILC3s were also reported to 

produce granulocyte macrophage colony-stimulating factor (GM-CSF), which is an 

important mechanism to promote tolerance in the intestine by increasing DC and 

Treg function152. Upon stimulation with PMA and Ionomycin, ILC3s derived from SI of 

both mouse strains showed GM-CSF and IFN-γ production but did not differ between 

Rag2-/- γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 19D). 
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Figure 19: TSLPtg increases ILC numbers in the SI: A) Gating strategy and 

absolute cell numbers of ILC subsets. Lin includes CD3ε, CD8α, CD11c, B220, NK1.1 and 

GR - 1; numbers in dot plots represent frequencies of a representative experiment; n = 9 - 11; 

median values + interquartile range; ***P<0.001, ****P<0.0001 B) RankL expression is shown 

as relative expression to β-Actin; n = 8; median values, ****P<0.0001. C) Cytokine production 

of ILC3s after 4h stimulation with 20ng/mL IL-23 and incubation with Brefeldin A (10µg/mL) 

for 2h D) Cytokine production of ILC3s after 4h stimulation with 50ng/mL PMA and 2.5µg/mL 

Ionomycin and incubation with Brefeldin A for 2h; C - D) n = 6-8; median values + interquartile 

range; n.s. = not significant. 
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Although ILC3s of K14 TSLP+/- Rag2-/-γc-/- mice did not show a difference in IL-22 

production, the increased number of ILC3s is likely responsible for the significantly 

higher amount of IL-22 transcripts in total SI in K14 TSLP+/- Rag2-/-γc-/- mice (Fig 20A). 

Also the mRNA expression of the natural IL-22 regulator IL-22Rα2 was 39-fold 

increased in SI of K14 TSLP+/- Rag2-/-γc-/- mice as analysed by qRT PCR.  IL-22 is 

known to initiate anti-microbial peptide expression151 and indeed, K14 TSLP+/- Rag2-/-

γc-/- mice showed ~3 fold increase in Reg3β and Reg3γ production in the SI (Fig. 

20B).  

 

 
 

Figure 20: TSLPtg increases IL-22 and anti - microbial peptide expression in 

SI: A) IL-22 and IL-22Rα2 mRNA expression are shown as relative expression to β-Actin; B) 

Reg3β and Reg3γ mRNA expression are shown as relative expression to β-Actin; A-B) n = 8; 

median; **P<0.01, ***P<0.001. 

 

 

 

In the colon, TSLP overexpression favours the increase in frequencies and 

absolute numbers of ILC2s compared to ILC3s. Although there is also an increase in 

the frequency of NCR+ ILC3s, there is no significant difference in absolute cell 

numbers in NCR+ ILC3s and only a minor increase in the NCR- ILC3 compartment 

(Fig. 21A). In Rag2-/-γc-/- mice, there is a prominent cell population, which is Lin- 

CD90.2+ but negative for ILC2 and ILC3 transcription factors GATA3 and RORγt (Fig. 

21A). This cell population could also be observed in the small intestine and might 

indicate an ILC precursor, which has a higher potential to differentiate by TSLP 

overexpression. 
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Taken together, these results demonstrate, that TSLP overexpression in the 

intestine increases the proportion and absolute cell numbers of ILC2s and ILC3s but 

has no effect on IL-22, IL-17, GM-CSF or IFN-γ production. However, increased 

numbers of ILC3s result in higher IL-22 levels and hence, higher amounts of anti-

microbial peptides. 

 

 
 
Figure 21: TSLP increases ILC numbers in the colon: Gating strategy and 

absolute cell numbers for ILC subsets. Lin includes CD3ε, CD8α, CD11c, B220, NK1.1 and 

GR-1. Numbers in dot plots represent frequencies of a representative experiment. n = 6 - 8; 

median + interquartile range; n.s. = not significant, *P<0.05 **P<0.01. 
 
 

 

 

3.1.6 Colonization of BM and spleen in K14 TSLP+/- Rag2-/-γc-/- mice is 
         normal 
 
IL-7 is crucial for the proliferation and differentiation of B-cell lineage cells33,34,206. 

However, in the absence of IL-7, TSLP can rescue the effect of IL-7 and drives 

precursor cells into B cell commitment162,177,178. Due to TSLP overexpression, K14 

TSLP+/- Rag2-/-γc-/- mice accumulate B cell precursors Pro - /Pre - B I (CD19+ 

CD117+) and Pre - B II (CD19+ CD25+) cells in the BM, whereas these cells are 

almost undetectable in Rag2-/-γc-/- mice (Fig. 22A - B). To exclude that some B cell 

precursors had occupied niches for donor HSC in the later transplantation 

experiments, carboxyfluorescein succinimidyl ester	
   (CFSE) - labelled TSLPR-/- BM 

cells were injected into Rag2-/-γc-/- and in K14 TSLP+/- Rag2-/-γc-/- mice. After 24h, BM 

cells were harvested and CFSE+ cells were quantified by flow cytometry. There was 

no significant difference in the number of CFSE+ cells in the BM between both mouse 
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strains (Fig. 22C). Also in the spleen, there was no significant difference in CFSE+ 

cell numbers between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig 22D). This 

indicates that the recruitment of progenitor cells to the BM and the circulation through 

the spleen is not impaired in K14 TSLP+/- Rag2-/-γc-/- mice.  

 

 

	
  
 

Figure 22: Increased numbers of B cell precursors in the BM of K14 TSLP+/- Rag2-/- 

γc-/- mice do not impair recruitment of progenitor cells.	
  A) Gating strategy for Pro - /Pre - 

B I and Pre-B II cells; numbers in dot plots represent frequencies of a representative 

experiment. B) Absolute cell numbers of Pro - / Pre - B I and Pre-B II. C) Analysis of CFSE+ 

cells after 24h in the BM and D) spleen; B-D) n = 5 - 7 median values + interquartile range; 

n.s. = not significant, ***P<0.001, ****P<0.0001. 
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5.2 Reconstitution of the adaptive immune system with FL cells 
	
  
 

To study the previously described effects of TSLPtg expression and the presence 

of LNs on the efficiency of HSCT, Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice were 

reconstituted with FL HSCs. To exclude a direct effect of TSLP on donor cells, 

TSLPR-/- FL HSC were used. The experimental approach included the injection of 

5x106 E14.5 total FL cells and subsequent analysis of the reconstitution kinetics from 

3 - 6 weeks in BM, thymus, spleen, LN and intestine of recipients (Fig. 23). 

	
  

	
  

	
  
	
  
Figure 23: Transplantation model: Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice 

were transplanted with E14.5 TSLPR-/- total FL cells.  

	
  
	
  
	
  
	
  

5.2.1 Efficiency of progenitor cell reconstitution in the BM	
  
	
  
 

As the BM is the primary site for B cell development, several progenitor B cell 

subsets were analysed in reconstituted Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice 3 

to 6 weeks after transplantation. While the total BM cellularity was stable during 

reconstitution and cell numbers did not differ between Rag2-/-γc-/- and K14 TSLP+/- 

Rag2-/-γc-/- mice (Fig. 24A), K14 TSLP+/- Rag2-/-γc-/- mice showed 6 weeks after 

transplantation a significant increase in the myeloid compartment (Fig 24B). In the B 

cell precursor subset was a significant increase in Pro - / Pre - B I and Pre - B II cells 

in K14 TSLP+/- Rag2-/-γc-/- mice 3 weeks after transplantation (Fig. 24C), which is 

likely due to the elevated cell numbers of the recipient. Pre - B II cells did not differ 
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between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice until a significant decline in 

week 5 in K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 24C). Investigation of B220+ IgM+ B cells, 

which include immature and mature B cells in the BM diminished in K14 TSLP+/- 

Rag2-/-γc-/- mice 5 and 6 weeks after transplantation (Fig. 24C).  

 

 
 
Figure 24: Myeloid and B cell subsets in the BM 3 - 6 weeks after transplantation. A) 

Number of total BM cells. B) Number of GR1+ CD11b+ myeloid cells in the BM. C) Number of 

Pro - / Pre - B I (CD19+ CD117+), Pre - B II (CD19+ CD25+) and B220+ IgM+ B cells in the BM; 

A - C) n = 8 - 13; median values + interquartile range; n.s. = not significant, *P<0.05, **P<0.01, 

***P<0.001. 
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5.2.2 Efficiency of thymocyte development after FL HSCT 
	
  
	
  
After transplantation of total FL cells from TSLPR-/- mice, the thymus size 

increased over time in Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice as illustrated in 

Fig. 25A. 

Prior transplantation, K14 TSLP+/- Rag2-/-γc-/- mice had higher numbers of DN 

thymocytes in the thymus compared to Rag2-/-γc-/- mice (Fig. 8D). This could account 

for the higher total cell numbers 3 weeks after transplantation of FL cells (Fig. 25B). 

From week 4 onwards, thymic cellularity of reconstituted mice exceeded the number 

of thymocytes, which indicates the start of T cell development from donor precursors 

(Fig. 25B). 6 weeks after transplantation, there was a 6-fold increase in total 

cellularity, suggesting faster T cell reconstitution in K14 TSLP+/- Rag2-/-γc-/- mice 

compared to Rag2-/-γc-/- mice (Fig. 25B).  
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Figure 25: TSLPtg increases total cellularity in the thymus after HSC transplantation. 

A) Representative photographic picture of thymi from Rag2-/-γc-/- (i) and K14 TSLP+/-         

Rag2-/-γc-/- (ii) mice 3, 4, 5 and 6 weeks after reconstitution. Scale bar represents 1mm. B) 

Absolute cell numbers of total thymus; n = 8 - 13; median values + interquartile range;           

n.s. = not significant, **P<0.01. 
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Flow cytometry analysis of different T cell compartments in the thymi of 

transplanted Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice showed that T cell 

development started between week 3 and 4 and further increased in both Rag2-/-γc-/- 

and K14 TSLP+/- Rag2-/-γc-/- mice. DP T cells were already significantly increased 4 

weeks after transplantation in K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 26A). This was 

followed by a significant increase of CD4+ as well as CD8+ SP T cell subsets 5 weeks 

after transplantation (Fig. 26A). Further discrimination into immature (CD69+) and 

mature (CD69-) CD4+ and CD8+ SP T cells (Fig. 26B-C) showed no specific 

impairment in the regulation of CD69 expression in Rag2-/-γc-/- mice. This indicates 

that the differentiation into mature T cells is possible in both mouse strains but occurs 

more efficiently in K14 TSLP+/- Rag2-/-γc-/- mice. Tregs (TCRβ+ CD4+ CD25+. Foxp3+) 

were detectable in thymi of recipient mice from weeks 3 onwards and were 

significantly higher with TSLP overexpression after week 5 (Fig 26D).  

Together, these data demonstrate that TSLP overexpression in Rag2-/-γc-/- mice 

results in accelerated T cell reconstitution after HSC transplantation compared to 

Rag2-/-γc-/- mice. 
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Figure 26: TSLPtg increases T cell subsets in the thymus after reconstitution: T cell 

subsets 3 - 6 weeks after reconstitution A) Number of double positive (CD4+ CD8+), CD4+ 

(TCRβ+ CD4+ CD8-) and CD8+ (TCRβ+ CD4- CD8+) T cells B) Number of CD4+ immature 

(CD69+) and mature (CD69-) T cells C) Number of CD8+ immature (CD69+) and mature 

(CD69-) T cells D) Number of regulatory T cells (Tregs) (TCRβ+ CD4+ CD25+ Foxp3+); A - D) 

n = 8 - 13; median values + interquartile range; n.s. = not significant, *P<0.05, **P<0.01.	
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5.2.3 Reconstitution of the spleen after FL HSCT 	
  
	
  

 

After adoptive transfer of FL HSCs into Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- 

mice spleens increased in size in both mouse strains (Fig. 27A). In line with the 

organ enlargement is the increase in total number of splenocytes. From week 3 to 

week 6 after transplantation, the total number of splenocytes was higher in K14 

TSLP+/- Rag2-/-γc-/- mice compared to Rag2-/-γc-/- mice, reaching statistical significance 

at week 3 and week 6 (Fig. 27B). 

	
  

	
  
	
  
Figure 27: TSLPtg increases total cellularity in the spleen A) Representative 

photographic picture of spleens from Rag2-/- γc-/- (i) and K14 TSLP+/- Rag2-/- γc-/- (ii) mice 3, 4, 

5 and 6 weeks after transplantation. Scale bar represents 1mm. B) Cell numbers of total 

spleen; n = 8 - 13; median values + interquartile range; n.s. = not significant, *P<0.05. 

 
 
In addition, the total number of natural killer (NK) cells, DCs, GR1+ CD11b+ 

myeloid cells as well as B and T cells was analysed in spleens from Rag2-/-γc-/- and 

K14 TSLP+/- Rag2-/-γc-/- mice after transplantation. While the number of NK cells was 

only significantly increased at 3 weeks after transplantation by TSLP overexpression, 



Results 
 

	
   78	
  

the GR1+ CD11b+ myeloid cells reached statistical significance at 5 weeks after HSC 

transplantation in K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 28A). CD11c+ DCs numbers did 

not differ between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 28A). These 

results demonstrate that NK cells as well as myeloid cells, beside small differences, 

differentiated equally. Hence TSLP overexpression plays no major role in the 

regulation of these cellular subsets. 

In the spleen, B cells can be divided into marginal zone (Mz) and follicular (fol) B 

cells. Mz B cells did not develop earlier than 4 weeks after transplantation. Therefore, 

total CD19+ B cells were compared 3 weeks after transplantation between Rag2-/-γc-/- 

and K14 TSLP+/- Rag2-/-γc-/- mice. The latter had a significant increase in total CD19+ 

cells (Fig. 28B), whereas Mz and fol B cell numbers did not differ between week 4 

and 6 after transplantation in both mouse strains (Fig. 28B). 

In summary, these data suggest that the reconstitution of the B cell compartment 

was equally efficient and not influenced by TSLP overexpression 

 

 
 
Figure 28: Myeloid and B cell subsets in the spleen A) Number of NK cells, CD11c+ 

DCs and GR1+ CD11b+ cells. B) Number of total B cells (week 3) and B cell subsets Mz and 

Fol B cells (weeks 4-6); n = 8 - 13; median values + interquartile range; n.s. = not significant, 

*P<0.05. 
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Although there was no difference beyond 3 weeks of reconstitution in the splenic 

myeloid and B cell compartment of Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice, there 

were significant differences in T cell numbers. 5 weeks after transplantation the 

number of CD4+ and CD8+ T cells was significant higher in spleens of K14 TSLP+/- 

Rag2-/-γc-/- (CD4+: ~ 3.6x107; CD8+: ~ 9.3x107) compared to Rag2-/-γc-/-mice (CD4+: ~ 

0.7x107; CD8+: ~ 1.7x107) (Fig. 29A). Tregs were already detectable 4 weeks after 

reconstitution in both mouse strains with approximately 5-fold increase of Tregs in 

K14 TSLP+/- Rag2-/-γc-/- mice 5 weeks after transplantation (Fig. 29B). Staining for 

Helios, an intracellular transcription factor, which discriminates thymic from 

peripheral induced Tregs94, showed high deviations but no significant difference in 

the frequency of Helios+ Tregs (Fig. 29B). This indicates that Helios- Tregs were 

generated in the periphery of Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice with a 

comparable efficiency (Fig. 29B). Investigation of the memory compartments for 

CD4+ and CD8+ T cells showed no significant difference in the frequency of naïve 

(CD62L+ CD44-) or central memory (CM) (CD62L+ CD44+) T cells and also not in 

CD8+ effector memory (EM) (CD62L- CD44+) T cells. However, a significant decrease 

in the CD4+ EM compartment in the spleen of K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 29C) 

was observed. 
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Figure 29: TSLPtg increases T cells in the spleen after reconstitution. A) Number of 

CD4+ and CD8+ T cells in the spleen of Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice B) 

Number of Tregs and frequency of Helios+ Tregs; C) Frequencies of CD4+ and CD8+ naïve 

(CD62L+ CD44-), central memory (CM) (CD62L+ CD44+) and effector memory (EM) (CD62L- 

CD44+) T cells; n = 6 - 8; median values + interquartile range; n.s. = not significant, *P<0.05, 

**P<0.01, ***P<0.001 ****P<0.0001. 
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5.2.4 Reconstitution of mesenteric lymph nodes 
	
  
	
  
Rag2-/-γc-/- mice have severe defects in LN development due to the lack of LTi 

cells. It was previously described that this defect can be rescued by TSLP 

overexpression138. To investigate the reconstitution of LNs, mLNs were analysed, as 

mLN anlagen are present in most of the Rag2-/-γc-/- mice. mLNs were larger in size 

upon HSC transplantation in both mouse strains (Fig. 30A - B). However, at week 3 

and 4 after transplantation, mLNs showed a significantly higher total cell number in 

K14 TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice (Fig. 30A - B). 

 

	
  
	
  

 
Figure 30: TSLPtg increases total cellularity in mLNs A) Representative photographic 

picture of mLNs from Rag2-/-γc-/- (i) and K14 TSLP+/- Rag2-/-γc-/- (ii) mice 3, 4, 5 and 6 weeks 

after reconstitution. Scale bar represents 1mm. B) Cell numbers of total mLNs; n = 6 - 13; 

median values + interquartile range; n.s. = not significant, **P<0.01, ***P<0.001. 
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Similar to the spleen there was no significant difference in the B cell compartment 

between reconstituted Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 31A). The 

number of CD4+ and CD8+ T cells in mLN increased between week 4 and 6 in both 

mouse strains. However, the rate of this increase appeared to be higher in K14 

TSLP+/- Rag2-/-γc-/- mice (Fig. 31B). Tregs could be found 4 weeks after reconstitution 

and numbers were significantly higher after 5 weeks in K14 TSLP+/- Rag2-/-γc-/- 

(median: 0.47x106 cells) compared to Rag2-/-γc-/- mice (median: 0.064x106 cells). In 

agreement with the observation in the spleen, the frequency of Helios+ cells was 

comparable in both mouse strains (Fig. 31C). Investigation of the memory 

compartment showed neither a difference in CD4+ naïve, CM or EM nor in the CD8+ 

memory subsets (Fig. 31D).  
 

 
Figure 31: TSLPtg increases T cells in the mLN after reconstitution A) Absolute 

number of CD19+ B cells B) Absolute number of CD4+ and CD8+ T cells C) Absolut number of 

Tregs and frequency of Helios+ Tregs; D) Frequencies of CD4+ and CD8+ naïve (CD62L+ 

CD44-), CM (CD62L+ CD44+) and EM (CD62L- CD44+) T cells; n = 6 - 8; median values + 

interquartile range; n.s. = not significant, *P<0.05, **P<0.01, ***P<0.001. 
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5.2.5 Reconstitution of the intestine after FL HSCT  
 

To investigate the effect of TSLPtg expression on the efficiency of lymphocyte 

reconstitution in the intestine, lamina propria lymphocytes (LPLs) were isolated from 

SI and colon 3 - 6 weeks after FL HSC transplantation. Total LPL numbers were 

significantly increased 5 weeks after transplantation in K14 TSLP+/- Rag2-/-γc-/- mice 

compared to Rag2-/-γc-/- mice (Fig. 32A). The difference was also observed in the T 

cells subsets. Here, numbers of CD4+ T cells were approximately 6-fold, CD8+ T cells 

40-fold (Fig. 32B) and Tregs 13-fold (Fig. 32C) increased in K14 TSLP+/- Rag2-/-γc-/- 

mice compared to Rag2-/-γc-/- mice. As seen in other organs, Helios expression did 

not differ between both mouse strains (Fig. 32C). 

In the colon, there was no such difference observed in cell numbers and 

frequency of the different T cell subsets upon HSC transplantation (Fig. 33A - C). 

 

 

	
  
 

Figure 32: T cell compartment in lamina propria of SI after HSC transplantation A) 

Absolute number of total LPLs in SI B) Absolute number of CD4+ and CD8+ T cells C) Absolut 

number of Tregs and frequency of Helios+ Tregs; n = 6 - 8; median values + interquartile 

range; n.s. = not significant, *P<0.05 
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Figure 33: T cell compartment in lamina propria of colon after transplantation A) 

Number of total LP - derived cells in colon B) Number of CD4+ and CD8+ T cells C) Number of 

Tregs and frequency of Helios+ Tregs; n = 6 - 8; median values + interquartile range; n.s. = 

not significant. 

	
  
 

Taken together, TSLP overexpression in Rag2-/-γc-/- mice resulted in faster T cell 

reconstitution in thymus and peripheral organs after FL HSC transplantation from 

TSLPR-/- mice. B cell reconstitution was not significantly different in Rag2-/-γc-/- 

compared to K14 TSLP+/- Rag2-/-γc-/- mice indicating that the reconstitution itself was 

equally efficient.	
  
	
  
	
  
	
  

5.2.6 Immunization with T-dependent antigen after FL HSCT 
	
  
 

The previous described characterization of differences during reconstitution 

showed that the T cell compartment was faster reconstituted in K14 TSLP+/-        

Rag2-/-γc-/- than in Rag2-/-γc-/- mice. To investigate whether these T cells were also 

able to support B cell antibody (Ab) production during an immune response, 

reconstituted Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice were immunized with the T-
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dependent antigen NP-Ovalbumin (NP-(18)-OVA). 6 weeks after transplantation with 

FL HSCs from TSLPR-/- mice, recipient mice were injected intraperitoneally (i.p.) with 

NP-OVA in Alum followed by a second injection 12 days after the initial immunization 

(boost). Total IgM and IgG levels were measured by ELISA in the serum before and 

after immunization. NP-OVA specific IgG was analysed 7 days after second 

immunization (Fig. 34A).  

First, analysis of total IgM and IgG levels 42 days after reconstitution revealed that 

total IgM levels did not differ between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice 

(Fig. 34A). In contrast, TSLP overexpression led to a higher total IgG level (Fig. 34B). 

As a response to NP-OVA injection both mouse strains generated NP-OVA specific 

IgGs in comparable amounts (Fig. 34C). These data suggest that T cells in both 

Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice could support Ag specific IgG production 

and hence give B cell help during an immune response in similar ranges.  
 

 
 
Figure 34: Immunization with NP-OVA after reconstitution A) Scheme of experimental 

procedure B) Total IgM and IgG titers of Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice 6 weeks 

after reconstitution C) NP-OVA specific IgG titers 7 days after boost with NP-OVA in Alum 

(day 61); n = 6 of one experiment; mean + SEM; 
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5.3 The influence of secondary lymphoid organs on peripheral T 
cell homeostasis  

 

5.3.1 Characterization of stromal cell compartments in secondary 
lymphoid organs  
	
  
 

Secondary lymphoid organs are important niches for T cells, as they provide 

cytokines and chemokines for migration, proliferation, and survival. Since TSLPR is 

also expressed by LN stromal cells, we asked whether TSLP overexpression had an 

effect on the stromal environment either directly via higher TSLP - TSLPR interaction 

or indirectly by increasing ILC3 numbers. Therefore, stromal compartments of mLNs 

and spleen were analysed for total cell numbers and cytokine expression. The 

stromal compartment of LNs consists of T zone reticular cells (TRCs: CD45- CD31- 

gp38+), lymphatic endothelial cells (LECs: CD45- CD31+ gp38+), blood endothelial 

cells (BECs: CD45- CD31+ gp38-) (Fig. 35A) and double negative stromal cells 

(DNSCs)109. The role of DNSCs is still unrevealed and were not analysed in this 

study. To investigate the stromal compartment of mLNs, mLNs from 3 Rag2-/-γc-/- 

mice were pooled in order to obtain sufficient cell numbers. There was no difference 

in frequencies of TRCs and LECs and only a minor but significant increase in BECs 

in K14 TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice (Fig. 35B). Total numbers of 

TRCs, LECs and BECs were not significantly different in Rag2-/-γc-/- compared to K14 

TSLP+/- Rag2-/-γc-/- mice (Fig. 35A - B). These stromal subsets were also analysed in 

brachial LNs 4 weeks after transplantation, whereby numbers of TRCs and LECs but 

not BECs were significantly increased in K14 TSLP+/- Rag2-/-γc -/- compared to Rag2-/-

γc -/- (Fig. 36A).  
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Figure 35: Characterization of mLN stromal compartment A) Gating strategy for 

stromal subsets B) Frequency and total numbers of TRCs (CD45- Gp38+ CD31-), LECs 

(CD45- Gp38+ CD31+) and BECs (CD45- Gp38- CD31+) in Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- 

γc-/- mice; n = 7 - 9 from 3 independent experiments; median values + interquartile range;     

n.s. = not significant, *P<0.05. 

 

 

 
 

Figure 36: Stromal compartment of brachial LNs 4 weeks after transplantation: 

Frequency and total numbers of TRCs (CD45- Gp38+ CD31-), LECs (CD45- Gp38+ CD31+) 

and BECs (CD45- Gp38- CD31+) in Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice; n = 8 from 2 

independent experiments; median values + interquartile range; n.s. = not significant, *P<0.05. 

  

 

 
The stromal compartment of the spleen was also analysed for TRCs and BECs. 

There was no significant difference in numbers of TRCs (median: 827 cells / spleen 

in K14 TSLP+/- Rag2-/-γc-/- compared to 548 cells / spleen in Rag2-/-γc-/- mice) or BECs 

(median: 597 cells / spleen in K14 TSLP+/- Rag2-/-γc-/- compared to 195 cells / spleen 

in Rag2-/-γc-/- mice) comparing Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 37A). 
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To test whether splenic TRCs and BECs from both mouse strains differ in their ability 

to produce cytokines for T cell proliferation and survival, TRCs and BECs were 

sorted and analysed for IL-7 and IL-15 transcript levels. There was no difference in 

IL-7 or IL-15 mRNA expression between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice 

(Fig. 37B). However, IL-7 mRNA levels were 4-fold increased in total spleen of K14 

TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice, whereas there was no difference in 

IL-15 mRNA (Fig. 37C). 

 

 
 

Figure 37: Characterization of splenic stromal compartment: A) Gating strategy and 

total number of TRCs and BECs; n = 7 - 9 from 3 independent experiments B) IL-7 and IL-15 

transcript levels normalized to TBP on sorted TRCs and BECs, n = 2 - 4 from 2 independent 

experiments; n.s. = not significant C) IL-7 and IL-15 transcript levels normalized to TBP in 

total spleen; n = 7 - 8 from 3 independent experiments; median values; n.s. = not significant, 

***P<0.001. 

 

 

The results suggest that the stromal compartment did not contribute to the 

significant increase of IL-7 transcripts in K14 TSLP+/- Rag2-/-γc-/- mice. We further 
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asked, which other cell types could express IL-7 leading to the observed difference in 

IL-7 expression in the spleen of K14 TSLP+/- Rag2-/-γc-/- mice. One cell subset, which 

responds to TSLP overexpression by increasing their number, is the DC subset. qRT 

PCR data suggest no difference in IL-7 mRNA between DCs from Rag2-/-γc-/- and K14 

TSLP+/- Rag2-/-γc-/- mice (Fig 38). However, the increased number of DCs in K14 

TSLP+/- Rag2-/-γc-/- compared to Rag2-/-γc-/- mice may account for the 4-fold increase 

of IL-7 transcripts in the spleen of K14 TSLP+/- Rag2-/-γc-/- mice. 

 

 

 
 

 

Follicular dendritic cells (FDCs) found in secondary lymphoid organs are of 

mesenchymal origin and produce survival factors and chemoattractants for B cells208. 

The development of FDCs requires LTβR signaling, which can be provided by LTαβ+ 

B cells209,210. Previous studies also described the requirement of LTi cells for the 

development of FDC precursors (preFDCs) in the absence of lymphocytes211.    

Rag2-/-γc-/- mice are B cell deficient, but TSLP overexpression increases the number 

of ILC3s, which could provide LTαβ. In line with this, analysis of total ILC3s in the 

spleen showed that NCR- ILC3s but not NCR+ ILC3s were significantly increased in 

K14 TSLP+/- Rag2-/-γc-/- mice (Fig 39A). Investigation of preFDCs (CD45- CD140α+ 

CD21/35- CD54+ CD106+) and mature FDCs (CD45- CD140αlow CD21/35+ CD54+ CD106low) 

in Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 39B - C) did not show significant 

differences in numbers (Fig 39C), indicating that FDC development in Rag2-/-γc-/- 

mice was not controlled by TSLP overexpression or ILC3s.  

Figure 38: TSLPtg does not alter 

IL-7 production of DCs: IL-7 

transcript levels normalized to 

β − actin on sorted CD11c+ MHC II+ 

DCs; n = 5 - 6 from 2 independent 

experiments; median values; n.s. = 

not significant. 
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Taken together, TSLPtg expression has no influence on the absolute cell numbers 

of stromal subsets in LNs and spleen before transplantation. However, 4 weeks after 

transplantation, TRCs and LECs were significantly increased in K14 TSLP+/-      

Rag2-/-γc-/- mice (Fig. 36). This effect is likely due to increased T cell numbers in K14 

TSLP+/- Rag2-/-γc-/- mice, since naïve T cells were reported to be sufficient for the 

induction of TRC expansion212. Whether this is the same mechanism for LEC 

expansion or whether LEC numbers are regulated in a different way by TSLP 

overexpression during reconstitution remains to be tested.   

 

	
  	
  

 
 
Figure 39: FDCs are not affected by TSLPtg expression: A) Total numbers of NCR- 

and NCR+ ILC3s in the spleen; n = 8 - 16 from at least 3 independent experiments; median 

values + interquartile range; n.s. = not significant, *P<0.05. B) Gating strategy for i) FDC 

precursor (preFDC; CD45- CD140α+ CD21/35- CD54+ CD106+) and ii) FDCs (CD45- 

CD140αlow CD21/35+ CD54+ CD106low). C) Total numbers of preFDCs and FDCs in        

Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice; n = 8 - 16 from at least 3 independent 

experiments; median values + interquartile range; n.s. = not significant.  
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5.3.2 TSLPtg increases T cell proliferation in secondary lymphoid 
organs 

Previous experiments showed that TSLP overexpression increases IL-7 

expression in the spleen of Rag2-/- γc-/- mice (Fig. 37C). Since IL-7 promotes T cell 

proliferation and survival, T cell proliferation was investigated in Rag2-/-γc-/- and K14 

TSLP+/- Rag2-/-γc-/- mice. In a first approach, CFSE-labelled CD4+ and CD8+ T cells 

from TSLPR-/- mice were injected i.v. in a 1:2 ratio. Total T cell numbers and CFSE 

proliferation was analysed in the spleen, total LNs and BM 4 and 14 days after T cell 

transfer. 

After 4 days, T cells transferred into K14 TSLP+/- Rag2-/-γc-/- mice showed a higher 

proliferation index in the spleen compared to Rag2-/-γc-/- mice (Fig 40A). While 

approximately 14% CD4+ T cells were CFSE low or negative in Rag2-/-γc-/- mice, 43% 

of CD4+ T cells were CFSElow / neg in TSLP overexpressing mice. CD8+ T cells 

proliferated generally faster than CD4+ T cells. However, also here TSLP 

overexpression further enhanced proliferation, since 82% of CD8+ T cells were 

CFSElow / neg in K14 TSLP+/- Rag2-/-γc-/- mice compared to 38% in Rag2-/-γc-/- mice (Fig. 

40A). In contrast to splenic CD4+ T cells, most of the LN CD4+ T cells were CFSE- 

(K14 TSLP+/- Rag2-/-γc-/- : 71%; Rag2-/-γc-/- : 86%) speaking for a higher proliferation of 

CD4+ T cells in LNs compared to spleen. However, the proliferation of CD4+ T cells 

as well as CD8+ T cells did not differ between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- 

mice (Fig. 40A). Absolute CD4+ and CD8+ T cell numbers in total LNs were 

significantly higher in K14 TSLP+/- Rag2-/-γc-/- (CD4+: ~ 0.27x106 cells; CD8+: 3.2x106 

cells) compared to Rag2-/-γc-/- mice (CD4+: ~ 0.02x106 cells; CD8+: 0.1x106 cells) (Fig. 

40B). This difference was most likely due to the fact that LN numbers were increased 

in K14 TSLP+/- Rag2-/-γc-/- mice, hence naïve T cells had a higher chance to enter LNs. 

14 days after T cell transfer, all injected T cells became CFSE- in both mouse strains 

(Fig. 40C), indicating that all injected naïve T cells underwent >8 divisions. Analysis 

14 days after T cell transfer showed an increase in T cell numbers in both mouse 

strains compared to the 4 days time point, suggesting ongoing proliferation. However, 

absolute CD4+ and CD8+ T cell numbers in the spleen and LNs were significantly 

higher in K14 TSLP+/- Rag2-/-γc-/- mice compared to Rag2-/-γc-/- mice (Fig. 40D).  

In summary, TSLP overexpression increases proliferation of T cells leading to 

higher T cell numbers in LNs. This effect must be driven indirectly by TSLP, since T 

cells were derived from TSLPR-/- mice. 
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Figure 40: Increased T cell numbers after adoptive T cell transfer by TSLPtg 

expression. 1x107 CFSE - labeled T cells from TSLPR -/- mice were injected into Rag2-/-γc-/- 

and K14 TSLP+/- Rag2-/-γc-/- mice. Mice were analysed 4 days and 14 days after transfer A) 

Representative histograms of CD4+ and CD8+ T cell proliferation in the spleen and LNs 4d 

after T cell transfer. Numbers represent frequencies of CFSElow/- T cells B) Total cell numbers 

of CD4+ and CD8+ T cells in spleen, LNs and BM 4 days after T cell transfer. C) 

Representative histograms of CD4+ and CD8+ T cell proliferation in the spleen and LNs 14 

days after T cell transfer D) Total numbers of CD4+ and CD8+ T cells in spleen, LNs and BM 

14 days after T cell transfer. A-D) n = 5 - 8 from 2 independent experiments; n.s. = not 

significant, *P<0.05, **P<0.01. 
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To investigate proliferation of naïve T cells, 2x106 sorted naïve (CD62L+ CD44 low) 

CD4+ and CD8+ T cells from TSLPR-/- mice were injected i.v. in a 1:2 ratio into    

Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice. Total T cell numbers were analysed in 

spleen, peripheral LNs, BM and thymus 14 or 28 days after T cell transfer. After 14 

days, T cell numbers were higher in LNs of K14 TSLP+/- Rag2-/-γc-/- mice (CD4+: ~ 

5.5x105 cells; CD8+: ~ 1.3x106 cells) compared to Rag2-/-γc-/- mice (CD4+: ~ 0.5x105 

cells; CD8+: 0.1x106 cells) (Fig. 41A). A difference was also observed 28 days after T 

cell transfer but did not reach statistical significance (Fig. 41B). Although, there was 

no difference in CD4+ T cell numbers neither in the spleen and LNs nor in the thymus 

between Rag2-/-γc-/- and K14 TSLP+/- Rag2-/-γc-/- mice (Fig. 41B), TSLP 

overexpression increased CD8+ T cells in the spleen and thymus (Fig. 41B).  

While naïve T cells undergo homeostasis - driven proliferation in lymphopenic 

hosts, they acquire a memory-like phenotype by down regulating CD62L and up 

regulating CD44212. This was seen 28 days after T cell transfer in the spleen. Beside 

significantly elevated frequencies of effector memory (EM) in Rag2-/-γc-/- mice 

compared to K14 TSLP+/- Rag2-/-γc-/- mice, the majority of CD4+ and CD8+ T cells in 

both mice strains had a memory-like phenotype (Fig. 41C). A similar picture was 

seen for the CD4+ compartment in the LNs, whereas approximately 40% of CD8+ T 

cells resembled a naïve phenotype (Fig. 41D). 

Taken together, TSLP overexpression increased naïve T cell numbers in LNs of 

K14 TSLP+/- Rag2-/-γc-/- mice mainly in the early phase of reconstitution. In contrast, 

TSLP overexpression had only a minor effect on the memory T cell compartment in 

peripheral lymphoid organs.  
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Figure 41: Naïve T cell transfer into TSLPtg mice increases T cell numbers. 2x106 

naïve CFSE - labeled T cells from TSLPR -/- mice were injected into Rag2-/-γc-/- and K14 

TSLP+/- Rag2-/-γc-/- mice. Mice were analysed 14 days and 28 days after transfer. A) Total cell 

numbers of CD4+ and CD8+ T cells in spleen, LNs and BM 14 days after naïve T cell (CD62L+ 

CD44low) transfer B) Total cell numbers of CD4+ and CD8+ T cells in spleen, LNs, BM and 

thymus 28d after naïve T cell (CD62L+ CD44low) transfer. Frequencies of CD4+ and CD8+ 

naïve (CD62L+ CD44-), central memory (CM) (CD62L+ CD44+) and effector memory (EM) 

(CD62L- CD44+) T cells in C) spleen and D) LNs, 28d after naïve T cell transfer; A - D) n = 5 - 

7 from 2 independent experiments; n.s. = not significant, *P<0.05, **P<0.01. 
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6 Discussion 
 
Despite advances in improving transplantation conditions for patients suffering 

from immunodeficiency, the re-establishment of a functional immune system after 

HSCT, which is essential for the patient’s life quality and survival, is still a major 

clinical issue. Especially de novo generation of an adequate T cell pool is dependent 

of pretransplantational conditions. For example, cytotoxic drugs and radiotherapy 

before transplantation damage the thymic environment, hence perturbing normal T 

cell development. There are two different strategies to increase T cell numbers after 

HSCT. Firstly, homeostatic proliferation of donor T cells in the periphery and 

secondly improvement of de novo T cell development in the thymus. Increasing 

peripheral T cell numbers after HSCT is achieved by homeostatic proliferation of 

donor T cells which on one hand keep opportunistic and potential pathogens in check 

but on the other hand increase the risk for GVHD. T cell development in the thymus 

requires bilateral communication of the lympho – stromal compartment. This 

interaction ensures correct T cell development and selection as well as development 

and differentiation of TECs.  

ILC3s play an essential role in the development of LNs and have an effect on 

thymic medulla development before birth. I therefore investigated the effect of a 

cytokine - driven increase in ILC3 numbers and LNs on the reconstitution of the 

adaptive immune system after HSCT in immunodeficient mice. To address this 

question I characterized and reconstituted Rag2-/- γc-/- mice with severe defects in LN 

development and K14 TSLP+/- Rag2-/- γc-/- mice, which show almost full LN restoration 

due to increased numbers of ILC3s.  

I could show that TSLP overexpression in Rag2-/- γc-/- mice increased the number 

of DN thymocytes and improved the thymic epithelium architecture with the 

development of Aire+ mTECs in the absence of T cells. Furthermore, T cell 

reconstitution was accelerated in the thymus and in peripheral organs of K14 TSLP+/- 

Rag2-/- γc-/- mice after transplantation with FL cells from TSLPR-/- mice. Moreover, I 

could demonstrate that K14 TSLP+/- Rag2-/- γc-/- mice had higher T cell numbers in 

secondary lymphoid organs compared to Rag2-/- γc-/- mice. T cells from TSLPR-/- mice 

showed a higher proliferation rate in the spleen of K14 TSLP+/- Rag2-/- γc-/- compared 

to Rag2-/- γc-/- mice. This was associated with higher IL-7 mRNA levels in K14 TSLP+/- 
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Rag2-/- γc-/- mice suggesting that IL-7 promoted the relative enrichment of T cells in 

K14 TSLP+/- Rag2-/- γc-/- either through better survival or proliferation.  

 

 

 

6.1 TSLPtg improves thymic stroma and T cell development 
 

Before reconstitution, Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice were analysed 

in detail to see the effect of transgenic TSLP overexpression in lymphoid organs.  

The characterization of Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- thymi confirmed 

previous published observations that TSLP overexpression in the absence of IL-7 

signaling leads to an increase of DN2 and DN3s180. DNs are involved in the three-

dimensional patterning of the thymus and promote cTEC proliferation and 

maturation68,213. Immunofluorescence analysis in WT showed compartmentalization 

of the thymus in cortex (CK5- CK8+) and medulla (CK5+ CK8-) containing Aire+ 

mTECs. In Rag2-/- γc-/- mice, I found predominantly CK5+ CK8+ cells. This double 

positive cell type was recently reported to be a precursor, which gives rise to CK5- 

CK8+ progeny in the cortex in the presence of DN2s and DN3s214. These data 

suggest that CK5- CK8+ cells in the thymus of K14 TSLP+/- Rag2-/-γc-/- mice are a 

consequence of elevated numbers of DN2 and DN3s compared to Rag2-/- γc-/- mice. 

Analysis of TECs by flow cytometry indicated a 9-fold increase in mTEC numbers in 

K14 TSLP+/- Rag2-/-γc-/- mice compared to Rag2-/-γc-/- mice. Although mature mTECs 

are defined as MHC IIhigh 215 in WT, K14 TSLP+/- Rag2-/-γc-/- mice showed Aire+ 

mTECs with only intermediate expression levels of MHC II, a phenotype, which might 

be linked to missing T cell interaction. Nevertheless, while approximately 40% of 

mTECs in K14 TSLP+/- Rag2-/- γc-/- mice were Aire+, Aire+ mTECs were undetectable 

in Rag2-/- γc-/- mice, which is line with qRT PCR data. These are interesting results 

because many studies showed the requirement of hematopoietic cells such as 

mature single positive thymocytes for the development and maintenance of mTECs 

in the adult system73,77-79,81,216. To exclude a direct effect of TSLP overexpression on 

mTEC development and differentiation in K14 TSLP+/- Rag2-/- γc-/- mice, I performed 

FTOCs with WT E14.5 thymi. Treatment of FTOCs with RankL could initiate the 

development of mTECs as published by Rossi et al.75, whereas FTOCs treated with 

even high concentrations of TSLP gave no evidence for a direct effect of TSLP on 

mTEC development.  
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RankL provided by ILC3s can promote mTEC development75 and indeed, I 

observed higher ILC3 numbers in the thymus of K14 TSLP+/- Rag2-/- γc-/- compared to 

Rag2-/- γc-/- mice. This is in agreement with higher mRNA levels for RankL in total 

thymi of K14 TSLP+/- Rag2-/- γc-/- mice. However, previous studies78 and also my data 

demonstrated that also DN2 and DN3s expressed RankL. To test whether DN3s or 

adult ILC3s have the capacity to induce mTECs, DN3s and LP - derived ILC3s from 

Rag2-/- mice were re - aggregated with sorted CD45- TER119- cells from E14.5 WT 

thymus. LP - derived ILC3s have high RankL expression (unpublished observation F. 

Lehmann) and revealed a higher potency to promote mTEC development than DN3s, 

likely due to higher RankL expression. While RTOCs with LP ILC3s resulted in the 

generation of 10% cTECs and 85% mTECs, RTOCs with DN3s favoured cTEC 

development and induced only 11% mTECs. There are two possible explanations for 

the lack of cTECs in RTOCs with LP - ILC3s. First of all, although the initial steps of 

cTEC development is independent of thymocyte - derived signals217, later cTEC 

stages require DN1 - 3 as these cells are known to provide signals for 

differentiation213. As DNs are absent in RTOCs with LP - derived ILC3s, cTECs might 

die due to missing signals provided by DNs. The second hypothesis involves an 

additional factor on LP - derived ILC3s, which drives the commitment of common 

TEC precursors or even immature cTECs into mTEC lineage. The latter hypothesis is 

supported with my experiments in FTOCs in which RankL application also favoured 

mTEC development, but showed in addition a clear cTEC population.  

In summary, TSLP overexpression does not have a direct effect on mTEC 

development. However, adult ILC3s and to lesser extent DN3s are able to promote 

mTEC development in situ, whereas DN3s preferentially maintain cTECs. Other 

molecules reported to be involved in the terminal differentiation of mTECS are 

LTαβ/LTβR80. Since the ligand is expressed by ILC3s, future experiments will help to 

answer the question whether this pathway is also involved in the improved 

development of mTECs in RTOCs as well as in the thymus of K14 TSLP+/- Rag2-/- γc-/- 

mice.  

Important factors during T cell development are cytokines and chemokines. They 

mediate survival and migration of thymocytes within the thymus and are produced by 

the epithelial and mesenchymal compartment. IL-7 and SCF are important mediators 

of thymocyte precursor proliferation and differentiation52,218. Nevertheless mRNA 

levels of IL-7 and SCF in total thymus did not differ between Rag2-/- γc-/- and K14 

TSLP+/- Rag2-/- γc-/- mice, when normalized to EpCAM or PDGFRα. In contrast, I 

detected higher levels of CCL25 and CXCL12 in the thymus of                                
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K14 TSLP+/- Rag2-/- γc-/- mice. CCL25 is an important chemoattractant for thymocyte 

precursors from the blood60-62, while CXCL12 also favours the expansion of triple 

negative thymocytes and DP T cells63,64. CCL21 is another chemokine important for 

thymic colonialization. The notion that thymic CCL21 mRNA is decreased in         

K14 TSLP+/- Rag2-/- γc-/- mice indicates that this chemokine has no role in recruiting 

more progenitor cells to the thymus of K14 TSLP+/- Rag2-/- γc-/- mice. In line with this, 

24h after adoptive transfer of CFSE - labeled BM cells, equal numbers of donor cells 

were found in thymi of Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice (data not shown). 

CCL21 is also produced by mTECs, which increases the accumulation of positively 

selected thymocytes to the medulla69. A previous study identified CCL21- TECs as an 

immature mTEC precursor, whose differentiation into CCL21+ mTECs might be 

regulated by LTβR and Aire219. Since Aire is present in K14 TSLP+/- Rag2-/- γc-/- mice 

and the ligand LTαβ is expressed by ILC3s129, one would expect higher CCL21 levels 

in thymi of K14 TSLP+/- Rag2-/- γc-/- compared to Rag2-/- γc-/- mice. However, it remains 

to be investigated whether TSLP overexpression has an effect on the CCL21- mTEC 

population, thereby out diluting CCL21 - expressing cells. This could account for the 

significant decrease of CCL21 mRNA in K14 TSLP+/- Rag2-/- γc-/- mice.  

In K14 TSLP+/- Rag2-/- γc-/- mice, I could show increased IL-22 expression in the 

thymus. IL-22 is produced by thymic ILC3s and was reported to promote epithelial 

cell proliferation and survival160. Since IL-22 is exclusively produced by ILC3s in 

lymphopenic mice, the higher IL-22 mRNA level is likely due to the increased number 

of ILC3s in K14 TSLP+/- Rag2-/- γc-/- mice compared to Rag2-/- γc-/- mice and might 

contribute to the improved thymic stromal compartment by acting on TECs as 

proliferation and survival factor. 

Concomitant with the improved thymic architecture, K14 TSLP+/- Rag2-/- γc-/- mice 

had higher numbers of CD4+, CD8+ and naturally occuring Tregs (nTregs) in the 

thymus after HSCT. In addition, K14 TSLP+/- Rag2-/- γc-/- mice had also higher 

expression levels of Aire - dependent xCL1 in the thymus. xCL1 was reported to 

attract tDCs to the medulla. In this study the increasing number of self - antigen 

presenting DCs contributed to nTreg development220. Another mechanism to foster 

nTreg development was described for TSLP by upregulating the co - stimulatory 

molecules CD80 and CD86 on tDCs221,222. In line with this, I found increased mRNA 

levels for CD80 in K14 TSLP+/- Rag2-/- γc-/- mice. However, transcript levels were 

determined on total thymus including not only potential CD80+ tDCs but also CD80+ 

mTECs.  
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5 weeks after adoptive transfer of fetal liver cells thymocyte numbers were 

increased in the thymus of K14 TSLP+/- Rag2-/- γc-/- compared to Rag2-/- γc-/-mice. This 

indicates an accelerated T cell development in mice with increased availability of 

TSLP. Since donor cells were derived from TSLPR-/- mice, this effect must be indirect. 

The improved thymic microenvironment in K14 TSLP+/- Rag2-/- γc-/- mice before 

transplantation might give a reason for the accelerated T cell reconstitution.  

 

	
  

6.2 TSLPtg increases T cell reconstitution in secondary 
lymphoid organs 

 

Besides higher thymocyte numbers in reconstituted K14 TSLP+/- Rag2-/- γc-/- mice, 

I could also detect higher T cell numbers in secondary lymphoid organs of K14 

TSLP+/- Rag2-/- γc-/- mice after HSCT as compared to Rag2-/- γc-/- mice. Like in the 

thymus, Treg numbers were increased in the spleen, mLN and small intestine of K14 

TSLP+/- Rag2-/- γc-/- mice.  

Some in vitro studies described a role for TSLP conditioned DCs in the generation 

and proliferation of Tregs, which was associated with upregulation of co - stimulatory 

molecules on DCs221,222. Characterization of CD11c+ DCs in the spleen and intestine 

before transplantation did not show different expression of co - stimulatory molecules 

CD40, CD80 or CD86. Since also Helios expression on Tregs did not differ between 

Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice, there is no evidence for a difference in 

peripheral Treg induction between Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice. 

Therefore, the increase of Tregs in secondary lymphoid organs of                           

K14 TSLP+/- Rag2-/- γc-/- mice most likely reflects the increase in naturally generating 

Tregs in the thymus. 

Homeostatic proliferation of peripheral donor T cells is an important mechanism to 

restore the T cell compartment directly after HSCT, since de novo T cell development 

in the thymus takes about 3 to 4 weeks223. Analysis of reconstituted mice did not 

allow me to discriminate between expansion of recent thymic emigrants and 

peripheral T cells, which underwent homeostatic proliferation. Therefore, I studied T 

cell proliferation by adoptive transfer of mature TSLPR-/- T cells into Rag2-/- γc-/- and 

K14 TSLP+/- Rag2-/- γc-/- mice. 

It is well accepted, that transferred T cells proliferate in lymphopenic mice224. The 

transfer of CFSE - labelled TSLPR-/- T cells showed a higher proliferation profile of 
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CD4+ and CD8+ T cells in K14 TSLP+/- Rag2-/- γc-/- compared to Rag2-/- γc-/- mice. 

Proliferation of naïve CD4+ T cells in lymphopenic hosts was reported to have two 

different mechanisms of proliferation. While homeostatic proliferation is IL-7 

dependent and T cells divide not more than once every 2 - 4 days, spontaneous 

proliferation is antigen driven, IL-7 independent and faster with more than one 

division per day225. In my adoptive T cell experiments, the majority of injected T cells 

divided >8 times within 14d, indicating that in addition to homeostatic proliferation 

also spontaneous proliferation occurred presumably driven by foreign antigens from 

commensal microbiota226. Homeostatic proliferation of CD4+ T cells is IL-7 dependent. 

Therefore, IL-7 mRNA levels were investigated in Rag2-/- γc-/- and                            

K14 TSLP+/- Rag2-/- γc-/- mice. I could not detect differences in mRNA expression in 

splenic stromal subsets but increased IL-7 mRNA levels in total spleen of               

K14 TSLP+/- Rag2-/- γc-/- mice. Therefore we focused on DCs, since they were 

described as IL-7 producers184,227,228. Sorted CD11c+ MHC II+ DCs from the spleen of 

Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice did not differ in IL-7 mRNA, but the        

4 - fold increase in DC numbers in the spleen of K14 TSLP+/- Rag2-/- γc-/- mice may 

account for the higher IL-7 levels and hence for better homeostatic proliferation of    

T cells. 

CD8+ T cell proliferation and survival is dependent on IL-7 and IL-15. However, in 

my studies IL-15 mRNA was not significantly different between Rag2-/- γc-/- and     

K14 TSLP+/- Rag2-/- γc-/- mice, suggesting that IL-7 and not IL-15 may contribute to the 

higher proliferation profile and increased number of CD8+ T cells in the spleen of     

K14 TSLP+/- Rag2-/- γc-/- mice100,229,230. Moreover, homeostatic proliferation was more 

prominent in CD8+ than in CD4+ T cells, which is also reflected in the approximately 

10 times higher CD8+ than CD4+ T cell numbers 4d after adoptive T cell transfer. As 

reported, this effect is not due to differences in IL-7Rα expression or its downstream 

signaling. It results rather of IL-7 mediated downregulation of MHC II molecules on 

IL-7Rα+ DCs, hence reducing TCR / MHC II interactions and proliferation of CD4+ T 

cells 231. 

CD62L is a molecule essential for the migration of mature naïve T cells to LNs. I 

could show in the adoptive T cell transfer experiments, that K14 TSLP+/- Rag2-/- γc-/- 

mice had higher T cell numbers in total LNs compared to Rag2-/- γc-/- mice. Since 

TSLP overexpression could not directly modulate the expression of surface 

molecules on TSLPR-/- T cells, it is unlikely that this difference is due to changes in 

CD62L levels. Probably, the higher absolute T cell numbers in total LNs of K14 
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TSLP+/- Rag2-/- γc-/- mice can be ascribed to increased LN numbers compared to 

Rag2-/- γc-/- mice. 

Adoptive T cell transfer was repeated with sorted naïve T cells. Naïve T cells, 

which undergo homeostatic proliferation, acquire a phenotype with high CD44 

expression levels and functional properties of memory T cells212. Also with this 

approach, K14 TSLP+/- Rag2-/- γc-/- mice had higher T cell numbers after 14d in 

peripheral LNs compared to Rag2-/- γc-/- mice. However, after 28d only a minor but 

significant increase of CD8+ T cells was seen in the spleen. There was also a 

significant increase of CD8+ T cells in the thymus of K14 TSLP+/- Rag2-/- γc-/- mice, 

compared to Rag2-/- γc-/- mice. These recirculating T cells might play a beneficial role 

under transplantation conditions. Donor T cells could support the re - establishment 

of the recipient thymic microenvironment by maintaining mTECs and presenting 

peripheral antigens to developing thymocytes, hence contributing to positive as well 

as negative selection of thymocytes232,233.  

The frequency of naïve and memory T cells in the LNs between Rag2-/- γc-/- and 

K14 TSLP+/- Rag2-/- γc-/- mice after naïve T cell transfer was equal. While in WT mice 

more than 60% of T cells have a CD44- naïve phenotype234,235, reconstituted      

Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice showed a higher percentage of memory 

cells, which is reported for T cells undergoing proliferation in lymphopenic hosts212,236. 

In the spleen, there was a significant decrease in the CD4+ effector memory 

compartment of K14 TSLP+/- Rag2-/- γc-/- mice. As there was no difference in naïve or 

central memory T cells, it is likely that TSLP overexpression has an effect on a 

memory compartment, which is not described.  

An increase in T cell survival rate could account for the increase of peripheral T 

cells in K14 TSLP+/- Rag2-/- γc-/- mice after HSCT. T cell survival is influenced by 

signals through TCR / MHC interaction and co - stimulatory molecules or through 

cytokines such as IL-2 and IL-7 237,238. Since IL-7 is produced by DCs, I investigated 

DC numbers after reconstitution in Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice. 

However, the number of CD11c+ DCs did not differ between Rag2-/- γc-/- mice and K14 

TSLP+/- Rag2-/- γc-/- mice. This suggests, that TCR / self - antigen driven survival as 

well as increased IL-7 availability due to higher DC numbers do not account for 

higher T cell numbers in secondary lymphoid organs. However, to test directly the T 

cell survival rate, one could consider to inject T cells from a Bcl-2tg mouse on a 

TSLPR-/- background into Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice. With this 

approach, all T cell subsets have the same base line of survival and the role of ILC3s 

and secondary lymphoid organs on T cell survival could be investigated. 
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Taken together, the better peripheral T cell reconstitution in K14 TSLP+/-        

Rag2-/- γc-/- mice after HSC transplantation compared to Rag2-/- γc-/- mice is the 

interplay of several mechanisms. Due to an improved state of maturation and 

architecture of the thymus in K14 TSLP+/- Rag2-/- γc-/- mice, the thymus produces 

faster T cells, which leads to a higher thymic output in week 5 and 6 after HSCT. 

Analysis of brachial LNs in Rag2-/- γc-/- mice and K14 TSLP+/- Rag2-/- γc-/- mice 4 weeks 

after HSCT demonstrated that the absolute numbers of TRCs and LECs were higher 

in K14 TSLP+/- Rag2-/- γc-/- mice. As TRC and LECs are important IL-7 producers109, it 

could be assumed that the overall availability of these cytokines is higher in LNs of 

K14 TSLP+/- Rag2-/- γc-/- mice compared to Rag2-/- γc-/- mice and could account for 

better homeostatic proliferation and survival of T cells. 
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6.3 TSLPtg increases ILC3 numbers in the intestine, which 
provide an anti – inflammatory environment 

 

GVHD is a clinical issue and responsible for increased morbidity and mortality 

after HSCT239. During acute GVHD, alloreactive T cells activated against recipient 

antigens attack several organs such as skin, liver and gastrointestinal tract. In this 

setting IL-22 was reported to have beneficial effects on the intestinal mucosa 

protecting epithelial cells and intestinal stem cells from graft - versus - host mediated 

injury after bone marrow transplantation159. In line with this observation, IL-22 was 

further described to play a protective role in infection models with Citrobacter 

rodentium152,240 and Salmonella enterica241 as well as protect intestinal epithelial cells 

during inflammatory bowel disease (IBD) and colitis by providing a signal for 

epithelial cell survival, proliferation, and wound healing242.  

TSLP overexpression increases the total number of ILC3s in the intestine. ILC3s 

were reported to directly regulate immune homeostasis in the intestine. By 

presenting microbiota - derived peptides via MHC II, ILC3s induce apoptotic cell 

death of commensal bacteria - specific T cells similar to negative T cell selection in 

the thymus243. Besides mediating intestinal selection, ILC3s are important cytokine 

producers. They produce IL-22 but are also able to secrete the pro - inflammatory 

cytokine IL-17. Flow cytometric analysis demonstrated that TSLP overexpression 

had no influence on IL-22 or IL-17 production of ILC3s compared to Rag2-/- γc-/- mice. 

However, associated with increased numbers of ILC3s, IL-22 mRNA level was 24 

times higher in K14 TSLP+/- Rag2-/- γc-/- mice compared to Rag2-/- γc-/- mice. IL-22 is 

also required for the induction of anti – microbial peptide expression in epithelial 

cells151, which have anti - bacterial activity. My data showed that K14 TSLP+/-     

Rag2-/- γc-/- mice have a 2.5 and 3 fold increase in Reg3β and Reg3γ, respectively.  

Besides the beneficial aspects on the intestinal epithelium, IL-22 can also act as 

pro - inflammatory mediator in diseases such as psoriasis and rheumatoid 

arthritis244,245. Collectively, the dual nature of IL-22 likely depends on the tissues, the 

cytokine milieu and the amount and duration of IL-22 presence. Therefore, it is 

important to have regulatory mechanisms, which control IL-22 availability. A natural 

regulator of IL-22 is the soluble receptor IL-22Rα2246,247, which is secreted from a 

subset of immature DCs. It is most prominent under steady state conditions and not 

under inflammatory conditions, as mature DCs downregulate IL-22Rα2 expression248. 

Since K14 TSLP+/- Rag2-/- γc-/- mice have elevated numbers of IL-22 producing ILC3s, 

we analysed the mRNA expression of the IL-22 binding protein IL-22Rα2. The        
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39 - fold increase of IL-22Rα2 mRNA expression in K14 TSLP+/- Rag2-/- γc-/- mice is 

associated with higher DC numbers in the small intestine compared to Rag2-/- γc-/- 

mice. This indicates, that IL-22 is also tightly regulated in TSLP overexpressing mice, 

which reduces the risk for immunopathology. Whether levels of IL-22 and IL-22Rα2 

are still significantly increased in K14 TSLP+/- Rag2-/- γc-/- compared to Rag2-/- γc-/- 

mice or alter after reconstitution remains to be investigated. 

Taken together, increased numbers of ILC3s in K14 TSLP+/- Rag2-/- γc-/- mice 

together with higher Treg numbers in the small intestine, as discussed in 6.2, 

provides an anti – inflammatory environment, which could protect the intestinal 

epithelial cells by reducing the risk of GVHD and bacterial pathogens after HSCT. 

 

 

6.4 TSLP as therapeutic treatment? 
 
Treatments to improve T cell reconstitution after HSCT follows two strategies: 

Either by direct targeting of T cell development and proliferation with cytokines like 

IL-7 or IL-2 or by improving the niches mainly by stimulating the proliferation and 

repair of epithelial cells by e.g. KGF and IL-22249. The beneficial effects of cytokines 

are often limited and accompanied by severe side effects. IL-7 for instance is 

implicated in multiple autoimmune diseases250-252 due to enhanced proliferative 

responses to self - antigens during lymphopenia. With this study I show the potential 

of TSLP as an alternative cytokine to improve the thymic microenvironment as well 

as the niches in secondary lymphoid organs without affecting adaptive immune cells 

directly. This raises the question whether TSLP is a candidate for therapeutic 

treatment after HSCT. My study demonstrates clear advantages of TSLP 

overexpression on de novo T cell development and peripheral T cell proliferation. 

However, there are also pathological issues associated with TSLP expression. TSLP 

is preferentially released by epithelial cells of different organs such as lung, intestine 

and skin and multiple studies assessed an important role for TSLP in triggering 

allergic airway diseases and dermatitis in the presence of antigen 189,202,253-256. Naive 

CD4+ T cells, which were primed by TSLP conditioned DCs polarize towards Th2 

phenotype, hence generating Th2 mediated diseases like allergy and asthma. 

Another cell type, which is associated with allergic diseases and promoting 

inflammation in the intestine are ILC2s, which can be activated by TSLP 257-259.     

K14 TSLP+/- Rag2-/- γc-/- mice have also increased numbers of ILC2 in the intestine. 
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This together with Th2 polarized T cells after reconstitution might increase 

inflammatory conditions. Therefore, future experiments are needed to investigate Th 

cell subsets and the cytokine milieu in different organs to exclude that TSLP 

overexpression creates an inflammatory environment. 

In order to avoid polarization of T cells towards Th2 cells one could consider the 

application of TSLP under sterile conditions after cytotoxic treatment and 

radiotherapy in patients before HSCT. This treatment would probably have the 

potential to amplify ILC numbers in patients with a common γ chain deficiency. In 

mice, ILC3 development from the BM transplants takes about 3 - 4 weeks204. It 

remains to be investigated in humans whether this time is sufficient for therapeutic 

TSLP - mediated improvement of thymus, peripheral lymph node and mucosal 

epithelial cell function. 

Translating results from mouse studies into the human system is subjected to 

limitations because of genetic differences e.g. cell marker expression between these 

two species. To be closer to the human system, there are recent advances in the 

development of humanized mouse models. In these models, human genes or human 

HSCs are introduced into mice, which gives the possibility to study the human 

immune system in a small animal model260. In case of studying the role of ILC3s and 

secondary lymphoid organs on the reconstitution of the adaptive immune system, 

one could engraft human HSCs into Rag2-/- γc-/- and K14 TSLP+/- Rag2-/- γc-/- mice. As 

murine and human TSLP share only 43% amino acid identity, it is unlikely that 

human TSLPR+ cells respond directly to murine TSLP. With this approach I could 

study whether the reconstitution of human T cells is also increased due to the 

restoration of lymphoid niches by TSLP overexpression. This would open a new way 

of pre - transplantational treatment to improve the outcome of HSCT. 
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Abbreviations and symbols 
	
  
	
  
Ab antibody 

Ag antigen 

Aire autoimmune regulator 

Alum aluminium potassium 

APC antigen presenting cell 

BEC blood endothelial cell 

BM bone marrow 

bp base pair 

CD cluster of differentiation 

CFSE carboxyfluorescein succinimidyl ester 

CK cytokeratin 

CM central memory 

CMJ corticomedullary junction 

CRLF2 cytokine receptor - like factor 2  

cTEC cortical thymic epithelial cell 

DC dendritic cell 

dGuo 2'-Deoxyguanosine 

DN double negative 

DNSC double negative stromal cell 

DP double positive 

E embryonic day 

EM effector memory 

ELISA enzyme linked immunosorbent assay 

EpCAM epithelial cell adhesion molecule 

Fab fragment antigen - binding 

Fc fragment crystallizable  

FDC follicular dendritic cell 

FGF fibroblast growth factor 

Flt3L FMS - like tyrosine kinase 3 ligand 

FL fetal liver 
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fol  follicular 

FoxP3 forkhead box protein P3 

FTOC fetal thymus organ culture 

γc common cytokine gamma chain 

GM-CSF granulocyte macrophage colony stimulating factor 

GVHD graft versus host disease 

HEV high endothelial venule 

HSC hematopoietic stemm cell 

HSCT hematopoietic stemm cell transplantation 

Id2 inhibitor of DNA binding 2  

IFN-γ Interferon-gamma 

Ig Immunoglobulin 

IL interleukin 

ILC innate lymphoid cell 

i.p. intraperitoneal 

i.v. intravenous 

KGF keratinocyte growth factor 

LEC lymphatic endothelial cell 

lin lineage 

LN lymph node 

LP lamina propria 

LT lymphotoxin 

LTi lymphoid tissue inducer 

mLN mesenteric lymph node 

MHC major histocompatibility complex 

mLN mesenteric lymph node 

MΦ macrophage 

mTEC medullary thymic epithelial cell 

MZ marginal zone 

NCR natural cytotoxicity receptor 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B	
  cells 

NK natural killer 

NP-OVA  4-Hydroxy-3-nitrophenylacetyl NP- (18)-Ovalbumin 

nTreg naturally occurring Treg 

OD optical density 

OVA Ovalbumin 
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o/n over night 

PDGFRα platelet - derived growth factor receptor α 

PP peyers patch 

preFDC FDC precursor 

pTreg peripheral induced Treg 

RAG recombination activating genes 

Rank receptor activator of NF-κB 

RankL receptor activator of NF-κB ligand 

RegIIIβ/γ regenerating islet - derived protein III beta/ gamma 

RORγt retinoic acid related orphan receptor gamma 

RTOC re - aggregated thymus organ culture 

SCF stem cell factor 

SI small intestine 

SP single positive   

TCR T cell receptor 

TEC thymic epithelial cell 

TD thymus - dependent 

Tg transgenic 

Th T helper 

TI thymus - independent 

TLR Toll - like receptor 

TNF tumor necrosis factor 

TRA tissue restricted antigen 

TRC T zone reticular cell 

Treg regulatory T cell 

TSLP thymic stromal lymphopoietin 

TSLPR thymic stromal lymphopoietin receptor 

UCB umbilical cord blood 

UEA-1 Ulex europaeus agglutinin - 1 

WT wild type 

 

 

% percent 

°C degree celsius 

h hour 

kDA kilo dalton 
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min minutes 

mm milimeter 

ng nanogram 

rpm rounds per minute 

µg microgramm 

µm micromter 

µL microliter 

µM micromol 
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