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ABSTRACT
Simulation is considered as the third pillar of science, following
experimentation and theory. Bridging the native and simulated
executions of parallel applications is needed for attaining trustwor-
thiness in simulation results. Yet, bridging the native and simulated
executions of parallel applications is challenging. This work pro-
poses a methodology for bridging the native and simulated execu-
tions of message passing parallel applications on high performance
computing (HPC) systems in two steps: Expression of the software
characteristics, and representation and verification of the hardware
characteristics in the simulation. This work exploits the capabilities
of the SimGrid [3] simulation toolkit’s interfaces to reduce the effort
of bridging the native and simulated executions of a parallel appli-
cation on an HPC system. For an application from computer vision,
the simulation of its parallel execution using straightforward par-
allelization on an HPC cluster approaches the native performance
with a minimum relative percentage difference of 5.6%.
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1 INTRODUCTION
Bridging the native and simulated execution of parallel applica-
tions denotes creating a connection between the two scientific
approaches, in the sense that each instance (native or simulated)
is representative of the other. If a parameter has a certain effect in
native execution, it should have the same effect in the simulated
execution. Bridging the native and simulated execution of parallel
applications is important as it connects two pillars of science, i.e.,
experimentation and simulation. Bridging native and simulated exe-
cution allows the acceptance of the simulation results with a higher
degree of confidence than otherwise. This work proposes a method-
ology for bridging the native and simulated execution of parallel
applications on high performance computing (HPC) systems.

In this work, the parallel spin-image algorithm (PSIA) [5] is con-
sidered as the application under study. The PSIA is a parallel version
of the spin-image algorithm (SIA) [6]. It converts a 3D object rep-
resentation to a set of 2D images considered as shape descriptor
for that object. The SIA is used in 3D object recognition, catego-
rization, and 3D face recognition [4]. In the PSIA, the generation
of spin-images is equally distributed among the available parallel
processors, i.e., each processor is assigned a certain number of spin-
images to generate. The time to generate a single spin-image is
not constant per and among processors. Therefore, dynamic loop
scheduling (DLS) techniques are needed to balance the generation

of spin-images among the available parallel processors and enhance
application performance.

An overview of the most efficient DLS techniques is given in [1].
Experimenting with the use of all the available DLS techniques
and examining the effects of using each method on the application
performance using native execution may not be feasible, due to the
following limitations: (1) Application execution time can be very
large due to the problem size and (2) It is not feasible to control all
the parameters that affect the execution time in native experiments.

Simulation can alleviate certain limitations encountered in na-
tive experimentation. To enable simulated experimentation, the
SimGrid [3] simulation toolkit is used to represent the simulated
performance of the PSIA application on an HPC system. SimGrid
is a framework to simulate distributed systems with the following
user interfaces: MSG, SimDag, and SMPI. The use of SimDag and
SMPI in this work is described in Section 2.

2 BRIDGING APPROACH
In this work, a methodology for bridging the native and simulated
executions of parallel applications onto HPC systems is proposed,
which involves two steps: (1) Expression of applications; and (2) The
representation and verification of computing systems. The advan-
tages of the proposedmethodology are the reduction of the complex-
ity of the representation and verification process and the separation
of the concerns between software and hardware representation. The
separation of concerns leads to the ease of identifying the source
of inaccurate simulation results and, hence, places more effort into
improving the software and hardware representation.

2.1 Expression of Applications in SimGrid

To enable the simulation of the application of interest on the
system represented in the platform file, the application characteris-
tics need to be expressed in SimGrid-SimDag or SimGrid-MSG. The
SimGrid-SimDag interface has been selected in this work as it has
two simple types of tasks that can represent the PSIA application:
sequential computation tasks (FLOP) and end to end communica-
tion tasks (B). To describe the application in the SimGrid-SimDag
interface, the SimGrid-SMPI interface is used to produce a spe-
cial type of trace of the application’s simulated execution, i.e.,
time independent trace (TiT). In a TiT, the size of each computa-
tion or communication event is specified in FLOP or number of
communicated elements, respectively. As shown in the first step
in Figure 1, the information from the TiT is used to express the
application in the SimGrid-SimDag and obtain the proper values of
each computation and communication tasks.
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Figure 1: Methodology for bridging native and simulated ex-
ecutions of parallel applications on HPC systems.

2.2 Verification of Computing Systems Represen-
tation

The simulation of an unmodified parallel application using the
SimGrid-SMPI interface requires a description of the computing
system hardware in the platform file. By comparing the perfor-
mance of the native execution of the application and the simulated
performance with the SimGrid-SMPI , one can verify the represen-
tation of the computing system in the platform file, as shown in the
second step in Figure 1. In addition, the SimGrid-SMPI calibration
tool [2] is used to modify the network bandwidth and latency in
the simulation according to message sizes and to add function call
overheads for MPI send and receive functions.

3 EXPERIMENTS AND RESULTS
Experiments: The PSIA application is executed to generate 8, 000
spin-images to represent the Ramesses object described in [7]. Gen-
erating spin-images is equally distributed by a master MPI rank
between eight worker MPI ranks. All ranks execute on separate
compute nodes (Intel Xeon Broadwell E5-2640 v4 processor), inter-
connected via a single level fat tree (OmniPath fabric). The master
rank is only responsible for distributing the work among the work-
ers and does not generate spin-images. The same aforementioned
native experimental setting is reproduced in the simulated experi-
mental setting.
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Figure 2: Comparison between the native execution time of
PSIA and its simulated execution time using SimGrid-SMPI
and SimGrid-SimDag. Execution with nine MPI ranks (one
master and eight workers), using straightforward paral-
lelization. Generation of spin-images is equally distributed
by the master rank between the eight worker ranks. Error
bars represent the differences between the native and simu-
lated execution times of 20 runs for each experiment.

Results: The results of the native execution of the PSIA applica-
tion are compared to the results of the simulated execution using
SimGrid-SMPI and SimGrid-SimDag in Figure 2. The simulation re-
sults from both the SimGrid-SMPI and the SimGrid-SimDag follow
the same trend of the native execution within certain differences.
The minimum, the maximum, and the average relative percentage
differences between the results of the native execution and the sim-
ulation using SimGrid-SMPI are 8.1%, 8.7%, and 8.5%, respectively.
For the results of the SimGrid-SimDag simulation, the minimum,
the maximum, and the average relative percentage differences are
5.6%, 7.9%, and 6.9%, respectively. These differences are attributed
to the use of simulation abstractions that do not account for cer-
tain significant computing system properties, such as the memory
subsystem.

4 CONCLUSION AND FUTUREWORK
In this work, a methodology for bridging the native and simu-
lated executions of message-passing parallel applications on HPC
systems is presented. The usage of SimGrid-SMPI to verify a com-
puting system’s representation in a platform file is introduced. The
proposed methodology has the advantages of reducing the effort
of bridging the native and simulated executions of parallel appli-
cations and separating the concerns in software and hardware
representations.

A verified simulation of the application execution can be used to
examine the effects of using different DLS techniques on the PSIA
to enhance its performance on existing or future HPC systems.
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