
 

Development and application of -omics and bioinformatics 

approaches for a deeper understanding of infectious diseases 

systems 

 

 

 

INAUGURALDISSERTATION 

Zur 

Erlangung der Würde eines Doktors der Philosophie 

Vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

Der Universität Basel 

 

 

 

Von 

Pierre H. H. Schneeberger 

Ochlenberg (BE) und Frankreich 

 

Basel, 2017 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 

edoc.unibas.ch



 

2 
 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von 

Prof. Dr. Jürg Utzinger, Dr. Jürg E. Frey und PD Dr. Mauro Tonolla 

 

Basel, den 13. Oktober 2015 

 

Prof. Dr. Jörg Schibler 

Dekan der Philosophisch-Naturwissenschaftlichen Fakultät 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

Acknowledgements 

• My deepest thanks go to my four mentors, Jürg Frey, Jürg Utzinger, Christian Beuret 

and Joël Pothier for giving me the freedom of action as well as the required guidance 

to go through these amazing years. You gave me the opportunity to pursue this PhD 

and allowed me to bring in my own ideas – this was really a golden opportunity given 

to a PhD student! You were always open for discussion and there to provide support 

throughout the various steps of this PhD – sincere thanks for everything. 

• I would especially like to thank my External Referee, Dr. Mauro Tonolla, for accepting 

to review my work in such a short notice. 

• “Mes meilleurs remerciements” to all who contributed significantly within the different 

projects: Dr. Jean-Sebastien Reynard, Prof. Eliézer N’Goran, Dr. Brion Duffy. 

• Special thanks to Sören Becker, Samuel Führimann and Andreas Bühlmann for the 

excellent discussions and collaborations within my different projects. The three of you 

have, all in different ways, positively influenced me and provided me with exceptional 

opportunities to further expand the scope of my thesis. 

• An enormous thank to the people who helped me so much during my laboratory work, 

and this includes mainly, but is not limited to, Markus Oggenfuss, Beatrice Frey, Dr. 

Oliver Engler and Jasmine Portmann. 

• Special thanks to Geoffrey Williams who kindly corrected this document. 

• To all my old long-time friends from the “french” side. 

• A final thank goes to my parents, Christine and Georg and to my sister and brother, 

Séverine and Olivier who have always supported me through sometimes difficult times 

during my research!  



 

4 
 

Table of Contents 

Acknowledgements .................................................................................................................................... 3 

Abbreviations .............................................................................................................................................. 9 

List of tables .............................................................................................................................................. 10 

List of figures ............................................................................................................................................. 11 

Abstract ...................................................................................................................................................... 13 

Résumé ...................................................................................................................................................... 16 

Chapter I. Introduction ............................................................................................................................. 19 

1. Infectious diseases .......................................................................................................................... 19 

a. Definition ....................................................................................................................................... 19 

b. Pathogens ..................................................................................................................................... 19 

c. Diversity of pathogens ................................................................................................................. 21 

d. Pathogenic types ......................................................................................................................... 26 

e. Natural reservoirs of pathogens ................................................................................................ 27 

f. Cumulative burden of coinfections ............................................................................................. 28 

g. Pathogen genomics and associated challenges ..................................................................... 29 

h. Pathogen identification and genetic traits ................................................................................ 29 

2. Challenges in infectious diseases research ................................................................................ 30 

a. Current diagnostic approaches .................................................................................................. 31 

b. Culture-based diagnostics .......................................................................................................... 31 

c. Microscopy .................................................................................................................................... 32 

d. Immunoassays ............................................................................................................................. 33 

e. Molecular-based assays ............................................................................................................. 33 

3. Next-generation sequencing and implication in pathogen diagnostics ................................... 34 

a. Evolution and impact of NGS technologies ............................................................................. 35 

b. NGS technologies in 2015 .......................................................................................................... 36 

c. NGS meta-analyses: targeted, whole-genome and -transcriptome sequencing ................ 37 

4. Overarching goals of the PhD ........................................................................................................ 37 

Chapter II. Development and evaluation of a bioinformatics approach for designing molecular 

assays for viral detection ......................................................................................................................... 40 

1. Abstract ............................................................................................................................................. 41 

2. Introduction ....................................................................................................................................... 42 

3. Methods ............................................................................................................................................. 45 



 

5 
 

a. Hardware and software requirements ...................................................................................... 45 

b. Input Data Used for the Workflow ............................................................................................. 46 

c. Phylogenetic Analyses ................................................................................................................ 46 

d. Viral Samples ............................................................................................................................... 46 

e. Nucleic acid isolation ................................................................................................................... 48 

f. Real-time PCR and LAMP assays ............................................................................................. 48 

4. Results ............................................................................................................................................... 49 

a. Workflow Concept ........................................................................................................................ 49 

b. Genetic Diversity among the Tested Viruses .......................................................................... 51 

c. Workflow Output ........................................................................................................................... 52 

5. Discussion ......................................................................................................................................... 60 

6. Supporting Information .................................................................................................................... 64 

7. Acknowledgements ......................................................................................................................... 64 

8. Author Contributions ........................................................................................................................ 65 

9. References ........................................................................................................................................ 65 

Chapter III. Biological, serological and molecular characterisation of a highly divergent strain of 

GLRaV-4 causing grapevine leafroll disease ....................................................................................... 72 

1. Abstract ............................................................................................................................................. 73 

2. Introduction ....................................................................................................................................... 73 

3. Materials and methods .................................................................................................................... 75 

a. Virus isolates and biological indexing ................................................................................... 75 

b. Virus particle purification and serology ................................................................................. 75 

c. Nucleic acid extraction, RT-PCR amplification and Sanger sequencing ......................... 77 

d. Viral particle enrichment, pyrosequencing, assembly and sequence analyses ................. 77 

4. Results ............................................................................................................................................... 78 

a. Electron microscopy and biological indexing ........................................................................... 78 

b. Molecular characterization by pyrosequencing ....................................................................... 79 

c. Serological characterization ....................................................................................................... 82 

d. RT-PCR assays and GLRaV-4 Ob survey of Agroscope virus collection ........................... 85 

5. Discussion ......................................................................................................................................... 86 

6. Acknowledgments ............................................................................................................................ 94 

7. References ........................................................................................................................................ 94 

Chapter IV. Metagenomic diagnostics for the simultaneous detection of multiple pathogens in 

human stool specimens from Côte d’Ivoire: a proof-of-concept study ........................................... 104 



 

6 
 

1. Abstract ........................................................................................................................................... 106 

2. Background ..................................................................................................................................... 107 

3. Methods ........................................................................................................................................... 110 

a. Ethics statement ......................................................................................................................... 110 

b. Study area and population........................................................................................................ 110 

c. Field and laboratory procedures .............................................................................................. 111 

d. Preparation of nucleic acids ..................................................................................................... 112 

e. Sequencing and data availability ............................................................................................. 112 

f. Databases employed for metagenomics ................................................................................. 113 

4. Results ............................................................................................................................................. 114 

a. Data analysis and patient characteristics ............................................................................... 114 

b. Identified organisms according to different diagnostic approaches ................................... 115 

c. Performance of metagenomics approach .............................................................................. 116 

d. Antimicrobial resistance analysis ............................................................................................ 117 

5. Discussion ....................................................................................................................................... 117 

6. Competing interests ....................................................................................................................... 123 

7. Funding ............................................................................................................................................ 123 

8. References ...................................................................................................................................... 123 

Chapter V. Microbiome profiling for an accurate assessment of microbiological health threats 

along a major wastewater system in Kampala, Uganda .................................................................. 135 

1. Abstract ........................................................................................................................................... 137 

2. Introduction ..................................................................................................................................... 138 

3. Methods ........................................................................................................................................... 140 

a. Sampling strategy ...................................................................................................................... 141 

b. Sample collection procedure, storage and nucleic acid extraction. ................................... 142 

c. Sequencing and data analysis. ................................................................................................ 143 

4. Results ............................................................................................................................................. 145 

a. Sequencing profiles. .................................................................................................................. 145 

b. Spatial relationships. ................................................................................................................. 145 

c. Specificities of the environmental clusters. ............................................................................ 149 

d. Risks associated with wastewater contamination. ................................................................ 151 

5. Discussion ....................................................................................................................................... 154 

6. Conclusions .................................................................................................................................... 159 



 

7 
 

7. Competing interests ....................................................................................................................... 159 

8. References ...................................................................................................................................... 159 

Chapter VI. Discussion and perspectives ........................................................................................... 165 

1. Impact of NGS on the field of infectious diseases research ................................................... 165 

a. A bioinformatics tool to improve accuracy and specificity of molecular assays ............... 165 

b. Identification of a new virus from a complex plant microbiome .......................................... 166 

c. Metagenomics and its application in personalized medicine .............................................. 167 

d. Wastewater microbiota and its impact on human health ..................................................... 168 

2. Future of omics approaches and associated challenges......................................................... 171 

a. The future of NGS ...................................................................................................................... 171 

b. Associated bioinformatics challenges ..................................................................................... 172 

3. General conclusion ........................................................................................................................ 172 

4. References (chapters 1 and 6) .................................................................................................... 173 

Curriculum Vitae ..................................................................................................................................... 190 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pour mes grands-parents, Roswitha et Henri, qui ne sont plus là pour partager ce 

moment, mais qui m’ont donné l’enthousiasme et l’envie d’arriver jusque-là… 



 

9 
 

Abbreviations 

NGS = Next-generation sequencing 

RDT = Rapid-diagnostic test 

DNA = Deoxyribonucleic acid 

RNA = Ribonucleic acid 

Mb = Megabase 

Mbp = Megabase pairs 

Kbp = Kilobase pairs 

PCR = Polymerase chain reaction 

rt-PCR = Real-time polymerase chain reaction 

LAMP = Loop-mediated isothermal amplification 

HIV = Human immunodeficiency virus 

AIDS = Acquired immune deficiency syndrome 

HBV = Hepatitis B virus 

HCV = Hepatitis C virus 

HDV = Hepatitis D virus 

mm = millimetres 

µm = micrometres 

MERS-CoV = Middle East respiratory syndrome  

BLAST = Basic local alignment search tool 

 

 



 

10 
 

List of tables 

Chapter I: 

Table 1-4. Pros and cons of culture-based diagnostics, microscopy-based diagnostics, 

immunodiagnostics and molecular-based diagnostics, respectively. 

Chapter II: 

Table 1. Virus species used for validation of the diagnostic assays 

Table 2. Ambiguity-based comparison of consensus sequences 

Table 3. List of selected targets and real-time PCR primer pairs 

Table 4. List of LAMP primer pairs 

Chapter III: 

Table 1. High-throughput sequencing reads for viral species identified from the Otcha 

bala grapevine using BLASTn analysis 

Table 2. Amino acid sequence identities and the sizes of different genome products 

from viruses of the genus Ampelovirus 

Chapter IV: 

Table 1. Databases employed for metagenomics analyses 

Table 2. Epidemiological and clinical characteristics of four patients with persistent 

diarrhoea 

Table 3. Summary of 36 pathogens screened using the metagenomics approach 

Table 4: Comparison of conventional parasitology, RDTs, Luminex multiplex and 

metagenomics approach 

Chapter V: 

Table 1. Databases use in the metagenomics approach 

 



 

11 
 

List of figures 

Chapter I: 

Figure 1. Areas of infectious diseases research 

Figure 2. Generic lifecycle of a pathogen 

Figure 3. Main groups of helminth parasites 

Figure 4. Subgroups of the protozoa embranchment. 

Figure 5. Bacterial shapes and order of size. 

Figure 6. Various morphologies of viral particles 

Figure 7. Pathogens features and associated bottlenecks in infectious diseases 

research 

Figure 8. Technical characteristics of NGS platforms in 2015 

Chapter II: 

Figure 1. Bioinformatics analysis workflow. 

Figure 2. Real-time PCR assays of members from the Flaviviridae and Bunyaviridae 

families. 

Figure 3. Testing cross-reactions between a set of close relatives from the Flaviviridae 

family. 

Figure 4. Loop-mediated isothermal amplification of Usutu virus and St. Louis 

encephalitis virus. 

Chapter III: 

Figure 1. Leafroll symptoms on Gamay graft-inoculated with Otcha bala accession. 

Figure 2. Sequence coverage and nucleotide positions along the Grapevine leafroll-

associated virus 4 strain Ob genome 

Figure 3. Detection of GLRaV-4 Ob by enzyme-linked immunosorbent assay 



 

12 
 

Figure 4. Immuno-precipitation electron microscopy of GLRaV-4 Ob 

Figure 5. Detection of GLRaV-4 Ob by western blot analysis 

Figure 6. Unrooted phylogram of the genera Ampelovirus and Velarivirus 

Chapter IV: 

Figure 1. Bioinformatics pipeline used to retrieve information relevant to patients’ health 

Figure 2. Comparison of shotgun assembly metrics between four human stool samples 

Figure 3. Assembly comparison of sub-samples of one patient with persistent diarrhoea 

Figure 4. Resistome of four diarrheic human stool samples 

Chapter V: 

Figure 1. Map of the study area 

Figure 2. Sample-to-sample relationships 

Figure 3. Linear regression analysis of E. coli strains and the total number of observed 

strains 

Figure 4. Cluster-related biomarkers 

Figure 5. Prevalence of important waterborne pathogens across the Nakivubo system 

Chapter VI: 

Figure 1. Hierarchical clustering of the bacterial communities from both environmental 

and human samples 

 

 

 

 



 

13 
 

Abstract 

Background: Research in infectious diseases underwent a revolution with the uprising of 

Omics approaches, including, but not limited to, genomics, metagenomics and 

metatranscriptomics. In fact, there are several examples where Omics approaches 

showed their potential to tackle different challenges related to the versatile nature of 

infectious diseases by promoting “studies of one” to “system-wide studies”. In the frame 

of this PhD programme, we focused on the development and validation of Omics 

approaches and bioinformatics workflow aiming at tackling mainly diagnostics but also to 

some extents the treatment of infectious diseases. The four applications presented in this 

thesis had following specific objectives; (i) to develop and validate a bioinformatics 

approach aiming at selecting high quality markers among a large amount of complete 

genomic sequences; (ii) to characterise the viral metagenome of a plant to determine 

aetiology of a disease that could not be identified and/or fully characterised with other 

tools; (iii) to assess the potential of metagenomics in the field of personalised medicine 

and compare its diagnostics accuracy with validated diagnostics tools; and (iv) to make a 

system-wide survey of microbial populations and estimate its potential to cause harm to 

humans. 

Methods: Methodology was specific for each application but as a general rule, we only 

used published bioinformatics tools that have been used and validated in other studies. 

This includes, but is not limited to, the BLAST algorithm for the comparison of sequences 

to various databases and the MIRA assembler to assemble the metagenomics datasets 

obtained within the different projects. 



 

14 
 

Results: For clarity, the results are summarised by project, corresponding to the different 

applications investigated during this PhD. 

Project (i): The developed bioinformatics workflow allowed the selection of highly 

conserved and specific molecular markers among various viral species with inputs of up 

to several hundred complete genomic sequences. The quality of the selected markers 

was successfully validated using several types of molecular assays including real-time 

PCR, LAMP and Sanger sequencing. 

Project (ii): We were able to find the aetiology of a grapevine plant presenting leafroll 

symptoms. A new virus, named Grapevine Leafroll-associated virus 4 Ob, with a thirteen 

kilobases genome was found in the viral metagenome. Other viruses that were co-

identified in the virome were known to be asymptomatic viruses for grapevine, and with 

the help of additional serological experiences, we were able to confirm that this GLRaV-

4 Ob was the causative agent of the Leafroll symptoms. 

Project (iii): The gut pathobiomes from four patients presenting persistent digestive 

disorders were fully characterised using a metagenomics approach. Comparison of 

validated diagnostics tools with this approach showed that the diagnostics rate was in 

favour of the latter for the detection of bacterial and helminths pathogens and in favour of 

the validated tools for the detection of viruses and protozoa. Using the same datasets, 

but compared to a different database, we were also able to screen the stool samples for 

antimicrobial resistance genes and retrieve potential resistance genes that might interfere 

with the treatment of these patients.   
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Project (iv): In this project, a system-wide assessment of the microbial communities of the 

wastewater treatment system was done using a metagenomics approach. We were able 

to demonstrate how closely the genetic diversity of Escherichia coli and the overall 

genetic diversity were linked in this environment. We were also able to map the repartition 

of different pathogenic classes, including bacteria, helminths, intestinal protozoa and 

viruses as well as to show if and how human waterborne pathogens spread throughout 

this ecosystem.   

Conclusion: Omics offer new strategies of how challenges, mainly related to the vast 

diversity within the research area of infectious diseases, can be tackled. Meta-analyses, 

like metagenomics or metatranscriptomics are the applications that benefited most from 

the use of Next-Generation Sequencing technologies, and they now allow system-wide 

studies where previous studies were only focusing on one parameter (one microbe or one 

specific gene for instance). However, these Omics approaches have their limitations, 

mainly due to the bioinformatics challenges they give rise to. As a general conclusion, it 

is foreseeable that, because of the increased amount of results they generate, Omics 

approaches, once matured, will be more widely used and will replace standard 

approaches in the field of infectious diseases. 

 

 

 

 

 



 

16 
 

Résumé 

Contexte : La recherche en maladies infectieuses a subi une révolution avec l’avènement 

des approches Omiques, incluant mais n’étant pas limitées à, la génomique, la 

métagénomique et la métatranscriptomique. Les approches Omiques ont été utilisées 

pour aborder la diversité intrinsèque des maladies infectieuses et ont permis de passer 

des études limitées à un paramètre aux études de systèmes complets. Dans le cadre de 

ce doctorat, nous nous sommes concentrés sur le développement et la validation de ces 

approches Omiques ainsi que des pipelines d’analyse bio-informatique dans le diagnostic 

ainsi que certains aspects du traitement des maladies infectieuses. Le but des quatre 

applications testées durant cette thèse étaient ; (i) de développer et valider une approche 

de bio-informatique capable d’analyser un grand nombre de séquences dans le but de 

sélectionner des marqueurs moléculaires et de les valider à l’aide de différents tests 

moléculaires; (ii) de caractériser le métagenome viral d’une plante pour déterminer 

l’origine d’une maladie; (iii) d’analyser le potentiel de la métagénomique dans le domaine 

de la médecine personnalisée ainsi que de valider son potentiel de diagnostic; et (iv) de 

réaliser l’analyser microbienne complète d’un environnement complexe et d’estimer le 

risque qu’il présente pour la santé humaine. 

Méthodologie : Les méthodes utilisées sont spécifiques pour chaque application mais en 

règle générale, seuls des outils de bio-informatique reconnus et publiés ont été utilisés. 

Ces logiciels incluent, mais ne sont pas limités, à l’algorithme de BLAST pour la 

comparaison de séquences à différentes bases de données ou l’assembleur MIRA qui a 

été utilisé pour assembler les données de métagénomique. 

Résultats : Pour des raisons de clarté, les résultats ont été regroupés par projet. 



 

17 
 

Projet (i) : Le pipeline de bio-informatique a permis de sélectionner des marqueurs 

moléculaires hautement conservés et spécifiques pour différents pathogènes viraux 

parmi un grand nombre de séquences génomiques. La qualité de ces marqueurs a été 

validée en utilisant différents types de tests moléculaires. 

Projet (ii) : Il a été possible de déterminer l’organisme responsable des symptômes 

observables sur un plant de vigne. Un nouveau virus, nommé « Virus de l’enroulement 

de la vigne 4 Ob » ou « GLRaV-4 Ob », possédant un génome d’environ 13 kilobases a 

été détecté dans le métagenome viral. Du fait que les autres virus détectés dans le virome 

sont connus pour ne pas causer de symptômes dans la vigne et à l’aide d’expériences 

supplémentaires, il a été possible de confirmer que le virus GLRaV-4 Ob est l’agent 

pathogène responsable des symptômes observés. 

Projet (iii) : En utilisant une approche de métagénomique, il a été possible de caractériser 

le pathobiome intestinal chez des patients présentant des troubles gastro-intestinaux 

persistants. La comparaison du diagnostic est en faveur de l’approche métagénomique 

pour les pathogènes bactériens ainsi que les helminthes mais les outils de diagnostic 

standard permettent une meilleure identification des pathogènes viraux et des 

protozoaires. 

Projet (iv) : Ce projet a permis, avec l’utilisation d’une approche de métagénomique, de 

caractériser les communautés microbiennes du réseau de traitement des eaux usées de 

la ville de Kampala, Ouganda. Il a été possible de démontrer que la diversité génétique 

d’Escherichia coli est intimement liée à la diversité génétique bactérienne générale dans 

cet environnement. Il a également été possible de répertorier géographiquement les 
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différentes classes de pathogènes ainsi que les principaux pathogènes transmis aux 

humains par contact direct ou ingestion de l’eau. 

Conclusion : Les approches Omiques ont permis le développement de nouvelles 

stratégies permettant l’analyse de la diversité intrinsèque aux maladies infectieuses. Les 

méta-analyses, telle que la métagénomique ou la métatranscriptomique sont les 

applications qui ont le plus bénéficié de l’utilisation du séquençage de nouvelle génération 

et elles permettent maintenant la caractérisation complète de différents systèmes. 

Pourtant, ces approches Omiques ont leurs limitations qui sont principalement liées aux 

analyses bio-informatiques. En conclusion, il est plausible que ces approches Omiques, 

une fois optimisées, seront de plus en plus utilisées jusqu’à remplacer les approches 

actuellement utilisées dans le domaine des maladies infectieuses. 
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Chapter I. Introduction 

1. Infectious diseases 

a. Definition 

Infectious diseases, also known as transmissible diseases or communicable diseases, 

are illnesses resulting from the infection of a host by a pathogenic microorganism. The 

spectrum of pathogenic microorganisms is extremely wide, resulting in the fact that any 

living organism, including plants, animals, as well as microorganisms, can become 

infected and hence, a symptomatic host. An overview of the principal areas in the field of 

infectious diseases research (Anderson et al 1992) is shown in Figure 1.  

 

 

Figure 1. Areas of infectious diseases research. This figure represents the processes 

involved in infection, from the initial infection step to the final treatment step. Research 

focuses are similar for infectious diseases occurring in human, veterinarian and plant 

health. 

b. Pathogens 

The etymology of the word “pathogen” has a negative connotation, literally translating 

from Greek to “suffering producer” (pathos and –genes). A pathogen is a microorganism 
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which has the potential to infect a host organism and cause the symptomatic expression 

of a disease. Pathogens are, however, like any other living organism, only trying to survive 

and replicate (Alberts et al 2002). The strategy adopted by pathogens, as shown in Figure 

2, is quite effective since it consists in using the hosts’ energy or molecular machinery to 

achieve its own survival (Hilleman 2004, Hingley-Wilson et al 2003).  

 

Figure 2. Generic lifecycle of a pathogen. Because of the broad diversity of pathogens, 

there is a wide range of variations and specificities in the lifecycles of each pathogen. 

These variations occur because pathogens need to adapt, among other things, to their 

respective reservoirs, environments, intermediate hosts, and final hosts. 
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c. Diversity of pathogens 

From phylogenetic and phenotypic point-of-views, microbial pathogens are extremely 

diverse. In this brief overview, microbial pathogens have been sorted into five main 

classes, namely; (i) helminth parasites, (ii) protozoan parasites; (iii) bacterial pathogens, 

(iv) viral pathogens, and (v) fungal pathogens.  

Helminths, also commonly known as parasitic worms, are large multicellular 

organisms which can be classified into three main groups, namely Nemathelminths, 

Cestodes and Trematodes as shown in Figure 3. 

 

Source : http://parasite.org.au/para-site/contents/helminth-intoduction.html 

Figure 3. Main groups of helminth parasites. These includes nematodes and flatworms, 

the second being divided into two subgroups, tapeworms and flukes.  

http://parasite.org.au/para-site/contents/helminth-intoduction.html
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Due to their higher complexity, genomes of helminth parasites have not yet been 

extensively sequenced, but estimates indicate that their genome sizes span between 50 

and 500 Mb (Hotez et al 2008). However, their health impact is so important, with 

estimates of over 1 billion infected people, that genomics projects have become more 

and more common (Brindley et al 2009, Hotez et al 2008, Lustigman et al 2012) and high 

quality assembled genomes are expected to become available in the near future for a 

wider range of helminth species. In September 2015, 2’752’593 nucleotide sequences 

were available for flatworms as well as 1’955’922 nematodes sequences in the National 

Centre for Biotechnology Information sequence database, Genbank, which is the main 

sequence repository publicly available (Benson et al 2013). 

Protozoa are unicellular eukaryotes which can be divided into four subgroups, 

based on their locomotion strategies, namely, (i) amoebae, (ii) flagellates, (iii) ciliates, and 

(iv) sporozoa as shown in Figure 4. 

 

Source : http://parasite.org.au/para-site/contents/protozoa-intoduction.html 

Figure 4. Subgroups of the protozoa embranchment. Protozoa are sub-divided in groups 

based on their locomotion strategies. 

http://parasite.org.au/para-site/contents/protozoa-intoduction.html
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The World Health Organisation (http://www.who.int/)  has identified ten major, yet 

neglected, infectious diseases (African trypanosomiasis, Chagas disease, dengue fever, 

lymphatic filariasis, leishmaniosis, leprosy, malaria, onchocerciasis, schistosomiasis, and 

tuberculosis) that are currently being intensively studied to provide control measures or 

even eradication measures for the causative agents. Four of them, namely, African 

trypanosomiasis, Chagas disease, leishmaniosis and malaria are caused by protozoan 

parasites and account for over 1.3 million deaths annually, possibly even more (Ersfeld 

2003). So far, approximately 40’000 protozoa species have been described (Antonello 

2007). The Welcome Trust Sanger Institute provides information on current and past 

protozoan sequencing projects and the genome sizes of completed projects span from 

approximately 8,3 Mb for Theileria annulata to over 62 Mb for Neospora caninum. To 

date, 84’958 protozoa nucleotide sequences are available in the Genbank database. 

Bacteria are present in most of Earth’s habitats and are found in various shapes 

including spheres, spirals and rods. Their size is typically between 0.5 and 5 µm as shown 

in Figure 5 with some species, like Thiomargarita namibiensis reaching up to 0.75 mm 

(Schulz and Jørgensen 2001), making them visible to the naked eye. 

http://www.who.int/
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Source : http://www.ppdictionary.com/ 

Figure 5. Bacterial shapes and order of size. Left panel shows spherical bacteria, middle 

panel shows rod-shaped bacteria and right panel a spiral-shaped bacterium.  

There are currently 15’974 bacterial taxa (Parte 2014) and bacterial genomes range from 

approximately 130 Kbp (McCutcheon and Moran 2012) to over 14 Mbp for Sorangium 

cellulosum (Han et al 2013). With 20’401’838 nucleotide sequences in the Genbank 

database, this is the most extensively sequenced of the five pathogenic classes 

presented here. 

Viruses are the most important biological entities with an estimated 1031 viruses 

on Earth (Breitbart and Rohwer 2005, Edwards and Rohwer 2005). They are found in 

every type of ecosystem on this planet and they are present in a variety of shapes and 

sizes, as shown in Figure 6. 

http://www.ppdictionary.com/
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Source : http://academic.pgcc.edu/~kroberts/Lecture/Chapter%2013/shape.html 

Figure 6. Various morphologies of viral particles. Panel A. Helical-shaped virus. Panel B. 

Aggregates of icosahedral shaped viruses. Panels C and D. Viral particles with random, 

more complex shapes.  

Viruses can infect any other living organism (Koonin et al 2006) and require the 

hosts’ cellular machinery to replicate. Viral genomes can be composed of DNA or RNA, 

be double-stranded or single stranded, and finally, segmented or not segmented. The 

International Committee on Taxonomy of Viruses, which is the reference organisation for 

the taxonomy of viruses, identified a list of 3’186 viral species in its annual report of 2014 

(http://www.ictvonline.org/virusTaxInfo.asp). These species were classified in 505 genera 

distributed into 104 Families. 2’016’112 viral nucleotide sequences were available in the 

Genbank database as of September 2015.  

http://academic.pgcc.edu/~kroberts/Lecture/Chapter%2013/shape.html
http://www.ictvonline.org/virusTaxInfo.asp
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Fungi include both unicellular and multicellular eukaryotic microorganisms. They are 

sorted in the fungi group mainly due to the fact that, unlike plants, bacteria and protozoa, 

their cell walls produce chitin. There is an estimated 1’500’000 fungal species on Earth 

but only 300 have been described as pathogenic for humans (Garcia-Solache and 

Casadevall 2010, Hawksworth 2001). With 5’452’827 available on Genbank, Fungal 

microorganisms are the second most represented pathogenic class in the Genbank 

database. 

d. Pathogenic types 

Pathogenic microorganisms can be either primary pathogens or opportunistic pathogens. 

Primary pathogens are microorganisms that cause symptoms when they cross the hosts’ 

defensive barriers. A good example of primary pathogens are the three main parasitic 

species causing schistosomiasis, Schistosoma mansoni, S. japonicum and S. 

haematobium. The natural reservoirs of schistosomes are various freshwater snail 

species, namely Biomphalaria spp. for S. mansoni, Oncomelania spp. for S. japonicum 

and Bulinus spp. for S. haematobium. Human infections only occur through direct contact 

with water which has been contaminated with cercariae (= infectious life stage of the 

parasite) released by the host snails (Jordan and Webbe 1969, Sturrock et al 1993).  

Opportunistic pathogens are microorganisms which are normally found in the 

environment or in association with various parts of the body. While they usually don’t 

cause disease in healthy individuals, they are able to cause illness in patients with certain 

specific conditions such as immunocompromised individuals. Many examples of 

opportunistic pathogens can be found directly in the human gut microbiome, with the most 
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important being probably Escherichia coli (non-pathogenic strains). In healthy patients, 

E. coli are associated with the degradation of organic matter in the gut and is also closely 

related to other normal functions of the gastrointestinal tract (Chang et al 2004, Isolauri 

et al 2001, Kruis et al 2004). In immunocompromised patients, however, certain E. coli 

strains can cross the gastrointestinal barrier and migrate to the bladder or urinary tract 

and therefore cause various severe symptoms (Kaper et al 2004, Manges et al 2001). 

Another example of opportunistic pathogen is the bacteria Acinetobacter baumanii, often 

associated with nosocomial infections. While it is an almost ubiquitous bacteria in hospital 

settings, it usually only colonizes the human body without causing any symptoms, but, 

might give rise to pulmonary infection, septicaemia and wound infection in weakened 

patients (Camp and Tatum 2010, Fournier et al 2006). 

e. Natural reservoirs of pathogens 

A variety of environments can serve as reservoirs for pathogens. This includes both living 

organisms as well as environmental niches. Recent examples of diseases transmitted to 

humans from their natural reservoirs include bats, acting as the natural reservoir for 

various Ebola outbreaks (Baize et al 2014, Leroy et al 2005) or the Middle East respiratory 

syndrome coronavirus found in dromedary camels (Azhar et al 2014, Raj et al 2014) and 

infecting humans by direct contact. On the plant side, examples of reservoirs include 

xylem feeding leafhoppers for the bacteria Xylella fastidiosa, an important pathogen with 

a major economic impact (Blua et al 1999, Hopkins 1989, Mizell et al 2003). Moreover, 

these same reservoirs can also often harbour multiple pathogens at the same time, hence 

vectoring multiple human, veterinary or plant pathogens. Bats, for instance, are believed 

to be the natural reservoir of approximately 20 % of all mammalian-infecting viruses and 
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is considered as one of the most important reservoir for emerging and re-emerging human 

diseases (Calisher et al 2006, Daszak et al 2000). Similarly, there is intra-reservoir 

pathogen diversity in camels, which, in addition to MERS-CoV were also shown to 

transmit the Camelpox virus to humans by direct contact (Bera et al 2011).  

f. Cumulative burden of coinfections 

In parasitology, coinfection is the simultaneous infection of a host by several parasites. 

Data about coinfections in humans is lacking but it is thought to be extremely common 

(Cox 2001, Pullan and Brooker 2008), sometimes being more prevalent than single 

infections in specific settings (Petney and Andrews 1998). In virology and bacteriology, 

the term coinfection applies for cells infected with two or more viral or bacterial species. 

Several examples involve bacteria and viruses in coinfection events causing serious 

outcomes on human health. These include infections of patients with both the human 

immunodeficiency virus and Mycobacterium tuberculosis, responsible for acquired 

immune deficiency syndrome and tuberculosis, respectively (Pawlowski et al 2012). This 

particular case poses serious public health challenges, due mainly to multidrug-resistant 

strains of Mycobacterium tuberculosis which strive in immunocompromised patients and 

are now widely spread (Streicher et al 2015, Zignol et al 2012). Another bacterial/viral 

coinfection synergy example are patients infected with both Influenza virus and 

pneumonia-causing bacteria. A recent review showed that more than 65’000 deaths per 

year are attributable to influenza and pneumonia occurring together in the United States 

(Chertow and Memoli 2013). A final example of coinfection causing aggravated health 

outcomes is infection with the HIV-Viral hepatitis complex (HBV, HCV, HDV), that is 
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reported to cause sever liver disease and jeopardise the effectiveness of HIV treatment 

(Alter 2006, Casey et al 1996, Kiesslich et al 2009). 

g. Pathogen genomics and associated challenges 

Genomics is, with the advent of next-generation sequencing technologies and future 

sequencing technologies, one of the scientific areas that produces the highest amounts 

of data, with an expected exabase of sequence produced in the next decade (Stephens 

et al 2015). This consequent amount of sequencing data will pertain all types of living 

organisms, but will be mainly focused on human genomes with several hundred 

thousands sequenced genomes along with a few millions of sequenced microbes, for 

which the genome size is, however, smaller than the human genome (Stephens et al 

2015). This large amount of information is two-sided, as, on one hand, it will allow 

researchers to gain new and deeper insights into multiple areas of infectious diseases, 

including, but not limited to, epidemiology, diagnostics, and pathogenesis of infectious 

diseases as well as species-species and species-host interactions (Bessen et al 2014, 

Depledge et al 2014, Feero et al 2011, Rappuoli 2004). On the other hand, however, this 

amount of data also raises questions surrounding data analysis, data safety and 

bioinformatics approaches, which are not developing at the same pace as sequencing 

technologies (Fernald et al 2011, Pop and Salzberg 2008, Stephens et al 2015). 

h. Pathogen identification and genetic traits 

In addition to increase accuracy for pathogen discovery and diagnostics, the amount of 

information accompanying the genomics era also enabled the creation of extensive gene 

databases pertaining different phenotypic characters pathogens. These aspects include 
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mobile genetic elements such as bacterial phages, plasmids, virulence factors and 

antimicrobial resistance genes (Chen et al 2005, Leplae et al 2004, McArthur et al 2013, 

Zhou et al 2007, Zuo et al 2007). The latter is a good example of bioinformatics challenges 

that need to be addressed before these databases make their way to the clinical setting. 

In this case, specific challenges exist, mainly due to the diversity of resistance 

mechanisms adopted by bacterial pathogens. These mechanisms can be either due to 

acquired plasmids carrying resistance genes, point mutations in the antibiotics targets or 

modified expression of genes coding for efflux pumps (Mah and O'Toole 2001, Martínez 

2008, Stewart and Costerton 2001). Therefore, the related bioinformatics challenges in 

this specific context are due to; (i) the fact that plasmid-driven resistance is difficult to 

attribute to one organism as plasmids might be exchanged between bacterial species; (ii) 

the fact that point mutations need a deep sequencing coverage to rule out sequencing 

errors and confirm quality of assembled sequences; and (iii) that bioinformatics analyses 

involving metagenomics or metatranscriptomics approaches need to take quantitative 

information into account when screening for efflux-based resistance (Schneeberger et al 

2015). 

2. Challenges in infectious diseases research 

The aspects of pathogens mentioned in the previous subchapter are all recurrent 

challenges where much remains to be researched. Their respective impact on the field of 

infectious diseases is shown in Figure 7. The focus of this thesis is located mainly 

between diagnostics and treatment as the two main objectives were i) to assess the 

potential of omics in the area of pathogen diagnostics and ii) to use omics techniques in 
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the area of patient treatment to providing advanced molecular characterization of the 

pathogen. 

 

Figure 7. Pathogens traits and associated bottlenecks in infectious diseases research. 

Different dash types of the connectors indicate different impacts, the solid line indicates 

a stronger impact than the dashed line. 

a. Current diagnostic approaches 

Current diagnostic approaches in the field of infectious diseases rely mainly on four 

strategies, namely; (i) culture-based diagnostic approaches; (ii) microscopy diagnostics; 

(iii) immunological diagnostics; and (iv) molecular diagnostic approaches. This 

subchapter summarises the different tools available and their specificities. 

b. Culture-based diagnostics 

Culture-based diagnostics is mainly used in bacteriology (Fischbach and Dunning 2009, 

Washington 1996) and virology (Leland and Ginocchio 2007) and to a lesser extent in 
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parasitology (Visvesvara and Garcia 2002). For bacteria, the diagnostic is based on the 

use of selective mediums that allow the growth of bacterial species with specific 

biochemical properties. Bacterial pathogens are identified based on these phenotypes. 

Diagnosis of viral diseases relies on the isolation of viruses in adequate cell cultures. 

Parasite diagnosis on culture is more complex, since it may require different environments 

for each life stage. 

Pros Cons 

Standardised 

protocols 
Not available for all pathogens 

Accurate 

identification 

Low throughput (one culture = one identification) 

No information about the intra-species genetic diversity 

May require long incubation time for some microbes 

Infectious material, requires specific facilities 

Table 1. Pros and cons of culture-based diagnostics. 

c. Microscopy 

Microscopy is the most common method used both for the detection of microorganisms 

directly in clinical specimens and for the characterisation of organisms grown on culture 

media. Microscopy is defined as the use of a microscope to visually enlarge objects too 

small to be visualised with the naked eye so that their phenotypes can become 

observable. There are four main classes of microscopes used in diagnostic microbiology, 

namely; (i) bright-field microscopes used to identify bacteria, fungi, and parasites; (ii) 

fluorescence microscopes which can be used for any of the five pathogen classes; (iii) 

dark-field microscopes used for the identification of bacteria; and (iv) electron 

microscopes mainly used to diagnose parasites and viruses. 
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Pros Cons 

Optical microscopy is fast and 

inexpensive 

Other microscope types require expensive equipment 

Accurate diagnostics requires an experienced operator 

Complex samples are difficult to analyse 

Accurate identification at low taxonomic level is difficult 

Table 2. Pros and cons of microscopy-based diagnostics (Mabey et al 2004). 

d. Immunoassays 

Immunoassays are protein based assays that allow the detection and/or quantification of 

an antibody/antigen reaction during an infection event. Antibodies are used as probes to 

detect a specific antigen and are linked to a reactive molecule, be it a radiolabel, a 

fluorescent label or a colour-forming enzyme. Immunoassays are available for a wide 

range of microorganisms for each pathogenic class. They are also often available in the 

format of rapid-diagnostics tests, making them an excellent tool for point-of-care 

diagnostics. 

Pros Cons 

Fast and relatively inexpensive 
Specific to one or a group of closely related 

microorganisms 

Highly specific Relies on the immune response of the host 

Ease-of-use (e. G. RDTs) Identification at low taxonomic level can be difficult 

Table 3. Pros and cons of immunodiagnostics (Jacobson 1998). 

e. Molecular-based assays 

Molecular diagnostics is based on the amplification of a specific genomic region of a 

pathogen, also known as diagnostic sequence. Since genetic information is highly specific 
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to each microbial species, these tests are usually very accurate and have a high 

discriminative power. They can be used for the diagnostics of all pathogen classes, 

provided nucleotide sequences are available to select an amplification target. These 

assays include Polymerase Chain Reaction, real-time PCR, Loop-mediated isothermal 

amplification, DNA microarrays, Sanger sequencing and a number of other variations of 

PCR. 

Pros Cons 

Highly discriminative and specific Assay design requires the organism to be sequenced 

Identification at any taxonomic 

level 
 Not possible if intra-taxon genetic diversity is too high 

Low per reaction price  but expensive equipment 

Standardised protocols Quality of the assay depends on input sequences used for 

the selection of the amplification target Allows phylogenetic studies 

Table 4. Pros and cons of molecular-based diagnostics. (Mancini et al 2010, Yang and 

Rothman 2004) 

3. Next-generation sequencing and implication in pathogen diagnostics 

Current diagnostics approaches, except for the specific case of diagnostics microarrays, 

present a shared limitation since they all follow the “one assay = one organism” rule. 

While this is not a problem for studies focusing specifically on e.g. the epidemiology of 

one microorganism, it becomes problematic to understand system-wide dynamics, e.g. 

to study all species-host or species-species interactions, since hosts are rarely colonized 

by a single microorganism. In fact, there are several examples where NGS showed its 

potential to tackle the different challenges related to the versatile nature of infectious 

diseases by providing a tool allowing this research area to upgrade from “studies of one” 
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to “system-wide studies”, or molecular meta-analyses. These new studies include, but 

are not limited to, complete characterisation of microbial populations, or microbiomes as 

well as system-wide characterisation of additional molecular features relevant to gain 

further insights into infectious diseases. 

a. Evolution and impact of NGS technologies 

Next-generation sequencing started a revolution in early 2000 in the field of genomics 

and genome-wide studies with the introduction of the 454-pyrosequencing technology 

(Mardis 2008, Shendure and Ji 2008, Williams et al 2006). The introduction of this 

technological advance, with the 454 FLX instrument from Roche (Dressman et al 2003, 

Margulies et al 2005), allowed the multiplication of the output of Sanger sequencing by a 

factor of 10000, from a thousand base pair to over 100 Mb produced in a single 

sequencing run (Droege and Hill 2008). As a consequence, sequence repositories, such 

as Genbank, have increased dramatically in size and management and storage of this 

massive data amount is currently one of the major challenge (Mohammed et al 2012, 

Stephens et al 2015), along with the flourishing nebula of non-standardised bioinformatics 

tools and pipelines that makes it difficult for biologists without informatics knowledge to 

keep an overview (Fernald et al 2011, Moore et al 2010). The most notable example of 

benefits NGS has brought to the field of genomics is the significant decrease in the price 

of sequencing human genomes, which was roughly around 70’000’000 USD in the pre-

genomics era, 1’000’000 USD at the beginning of the genomics era and is now roughly 

around 1’000 USD (Metzker 2010, Shendure and Ji 2008, van Dijk et al 2014), making 
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the concept of personalised medicine come even closer to reality (Feero and Guttmacher 

2014, Ingelman‐Sundberg 2015, Shukla et al 2015). 

b. NGS technologies in 2015 

There are currently four main NGS technologies used on the market, namely, (i) 

pyrosequencing (454 sequencing); (ii) semiconductor-based sequencing (Ion Torrent); 

(iii) sequencing-by-synthesis (Illumina); and (iv) first generation single molecule 

sequencing (Pacific Biosciences). Technical characteristics of the different sequencing 

platforms are briefly summarised in Figure 8. 

 

Figure 8. Technical characteristics of 

next-generation sequencing platforms in 

2015. Panel A. Maximum read-length at 

the early commercial stages of the 

technologies and current read-length. 

Panel B. Sequencing output at the 

commercialisation of the technology and 

current sequencing output. Panel C. 

Comparison of runtime with early 

protocols and current protocols. 

(Shendure and Ji 2008, van Dijk et al 

2014).
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Next-generation sequencing has now been applied in a variety of studies (Ekblom 

and Galindo 2011, Lee et al 2013, McCormack et al 2013). This includes de novo 

sequencing of new microbes (Yin et al 2014), variant calling (Henn et al 2012), advances 

in transcriptomics (Wang et al 2009) as well as various types of meta-analyses 

(Handelsman 2004, Shi et al 2009, Tringe et al 2005).  

c. NGS meta-analyses: targeted, whole-genome and -transcriptome sequencing 

It is important to notice that the term metagenomics, one type of meta-analysis, is often 

incorrectly used in studies involving targeted sequencing, like 16S rRNA gene sequencing 

(Cénit et al 2014, Sankar et al 2015) as well as for studies involving whole-genome 

sequencing (Qin et al 2012). These different types of studies also generate different types 

of results, one being restricted to a specific class of microorganism, i.e. bacteria when 

16S rRNA genes are analysed, and the latter being an unbiased approach in that 

complete microbiomes are identified, including all viral, bacterial, fungal and parasitical 

microorganisms (Human Microbiome Project 2012). The various applications involving 

metagenomics in the frame of this PhD thesis are of the latter type, as it is believed that, 

once fully developed and matured, this type of approach will allow “true” complete sample 

characterisation. 

4. Overarching goals of the PhD 

The overarching goals of this PhD were (i) to assess and review current molecular 

diagnostics tools; (ii) to develop and optimize approaches that could help improving the 
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molecular diagnosis of infectious diseases; and (iii) to validate these approaches with 

different applications.  

The specific objectives were: 

i) To compare “naïve” molecular diagnostics approaches, including multiplexed 

assays, microarrays and meta-analyses based on next-generation sequencing 

(metagenomics and metatranscriptomics). 

ii) To develop a workflow allowing the selection of highly conserved and specific 

molecular markers among highly diverse taxa, which were further used as 

targets for molecular assays. This included the development of the 

bioinformatics pipeline as well as the validation on a set of selected viruses. 

iii) To develop and conduct a proof-of-concept study showing the potential of 

meta-analyses in the field of molecular diagnostics. This proof-of-concept study 

focused on patients with persistent digestive disorders and the potential of 

metagenomics in the context of the rapidly developing area of personalised 

medicine.  

iv) To apply a metagenomics approach in a larger study including both 

environmental and human samples with the aim to assess the impact of 

exposure to wastewater on the gut microbiome of different population groups. 
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Chapter II.  Development and evaluation of a bioinformatics approach for 

designing molecular assays for viral detection 
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1. Abstract 

Background: Viruses belonging to the Flaviviridae and Bunyaviridae families show 

considerable genetic diversity. However, this diversity is not necessarily taken into 

account when developing diagnostic assays, which are often based on the pairwise 

alignment of a limited number of sequences. Our objective was to develop and evaluate 

a bioinformatics workflow addressing two recurrent issues of molecular assay design: (i) 

the high intraspecies genetic diversity in viruses and (ii) the potential for cross-reactivity 

with close relatives. 

Methodology: The workflow developed herein was based on two consecutive BLASTn 

steps; the first was utilized to select highly conserved regions among the viral taxon of 

interest, and the second was employed to assess the degree of similarity of these highly-

conserved regions to close relatives. Subsequently, the workflow was tested on a set of 

eight viral species, including various strains from the Flaviviridae and Bunyaviridae 

families. 

Principal findings: The genetic diversity ranges from as low as 0.45% variable sites over 

the complete genome of the Japanese encephalitis virus to more than 16% of variable 

sites on segment L of the Crimean-Congo haemorrhagic fever virus. Our proposed 

bioinformatics workflow allowed the selection – based on computing scores – of the best 

target for a diagnostic molecular assay for the eight viral species investigated. 

Conclusions/significance: Our bioinformatics workflow allowed rapid selection of highly 

conserved and specific genomic fragments among the investigated viruses, while 

considering up to several hundred complete genomic sequences. The pertinence of this 

workflow will increase in parallel to the number of sequences made publicly available. We 
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hypothesize that our workflow might be utilized to select diagnostic molecular markers for 

higher organisms with more complex genomes, provided the sequences are made 

available. 

2. Introduction  

The genus Flavivirus (RNA virus) includes several species that cause serious human 

diseases. In Flavivirus infections, the first clinical features observed include, but are not 

limited to, fever, myalgia, headaches, and other nonspecific symptoms (Burke and 

Monath 2001, Gould and Solomon 2008, Leyssen et al 2000, Solomon 2004). These 

nonspecific symptoms complicate the identification of the specific causative agent. 

Importantly, Japanese encephalitis virus (JPEV), West Nile virus (WNV), and St. Louis 

encephalitis virus (SLEV) are responsible for larger outbreaks affecting both humans and 

animals (Erlanger et al 2009, Kopp et al 2013, Petersen and Fischer 2012). Other 

emerging zoonotic Flaviviruses, such as the Usutu virus (USUV), might become important 

threats to human health due to their similarities with other human pathogenic viruses, 

such as WNV (Nikolay et al 2011, Vazquez et al 2011). While potential vectors are 

expanding in the northern hemisphere, resulting in sporadic cases of WNV (Mulatti et al 

2014, Nash et al 2001) and USUV infections in birds (Steinmetz et al 2011, Weissenböck 

et al 2002), these infections remain endemic in low- and middle-income countries. New 

research is needed to develop methods for rapid and accurate identification, and to 

validate these diagnostic tests before wider application. Additionally, while other zoonotic 

arboviruses, such as the Rift Valley fever virus (RVFV) and the Crimean-Congo 

haemorrhagic fever virus (CCHFV) within the Bunyaviridae family, cause serious 

diseases in humans, only a limited number of assays are currently available for their 
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identification and there is a lack of standardization in the assays used in routine 

diagnostics laboratories (Anon. , Hujakka et al 2003). 

Virus neutralization tests (VNTs) are usually considered the ‘gold’ standard for the 

diagnosis of infections by these pathogens (Li 2013). VNTs, however, require a cultivation 

step that must be performed in laboratories with high biosafety measures, which are not 

widely available in low- or middle-income countries. Immunoassays are broadly used in 

clinical-diagnostic settings. However, while immunoassays rely on biochemistry to identify 

the presence or concentration of antibodies or antigens, genomic and phylogenetic 

information to understand the route of transmission and biology of these viruses is 

lacking. Various polymerase chain reaction (PCR)-based assays, including real-time 

PCR, have been used successfully in epidemiologic studies (Burt and Swanepoel 2005, 

Grobbelaar et al 2011, Pepin et al 2010). Yet, this variety of assays introduces a lack of 

standardization in the different routine diagnostic laboratories. It is conceivable that taxon-

specific molecular assays, even though system-wide diagnostics studies become more 

and more common (Schneeberger et al 2016), that are relying on genomic information 

might help clinicians and researchers to obtain more accurate epidemiologic baseline 

data for neglected viral infections (Espy et al 2006, Mackay et al 2002, Sloan et al 2008). 

Within the Bunyaviridae family, viruses from the Hantavirus genus are responsible for 

several recent outbreaks (Hartline et al 2013, Montgomery et al 2012, Roehr 2012), but 

reliable molecular assays to trace transmission pathways and to deepen our 

understanding of viral epidemiology have yet to be developed and more widely 

implemented. 



 

44 
 

Genetic diversity among RNA viruses from the Bunyaviridae and Flaviviridae families 

is high compared with that of DNA viruses, as has been shown by new data produced by 

next-generation sequencing technologies (Beerenwinkel et al 2012, Radford et al 2012). 

While the development of molecular assays is quite straightforward, such approaches are 

mainly based on the pairwise alignments of sequences, followed by selection of the most 

conserved region within the aligned sequences. Although alignment algorithms are 

constantly being improved, computational challenges are still encountered when dealing 

with large numbers of sequences. Such molecular assays are of low priority for organisms 

with slow mutation rates because the overall genetic diversity of these organisms remains 

low and few sequences are sufficient to create an accurate representation. In contrast, in 

rapidly mutating viruses, the method may become restrictive because of the small number 

of sequences, which may not necessarily represent the complete genetic diversity within 

the species. Thus, overall, this alignment approach may give rise to two challenges: (i) 

the selected region is only conserved among a few genetic variants and not among the 

complete taxon and (ii) lack of information about the degree of sharing between the 

selected regions and the sequences of other closely related organisms, potentially 

causing cross-reactions. 

We developed a workflow based on the well-established BLASTn algorithm (Altschul 

et al 1990) to address the aforementioned challenges. Subsequently, the workflow was 

tested on a set of viruses from the Flaviviridae and Bunyaviridae families. Our data may 

be applicable for rapid selection of highly conserved and taxon-specific regions for any 

viral family and, perhaps, for other higher organism for which sufficient genomic data are 
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available. This may further improve various nucleic acid-based molecular tools, such as 

real-time PCR or loop-mediated isothermal amplification (LAMP). 

3. Methods 

a. Hardware and software requirements 

Version 2.2.28+ (64 bits) of the standalone BLAST algorithm was employed in the 

workflow. A backbone script written in PERL was utilized to automate the process and to 

parse and retrieve the intermediate and final result files. The workflow was tested on two 

versions of PERL (versions 5.16 x64 and 5.10 x32). Of note, the script will work with any 

other PERL version compatible with the BioPerl package v.1.6.901 (Stajich et al 2002). 

Version 2.3.4 of the Primer3 package (Untergasser et al 2012) was utilized to select 

primers for the real-time PCR assays. For each species, a subset of highly conserved 

fragments (HCFs; n = 2) selected by the workflow was used to design a primer pair for 

real-time PCR analysis. In order to test different assay configurations, we used the “pick 

primers tool” from Primer3 with a primer size range set to 18–24-mer primers, and a target 

amplification product size set between 300 and 400 bp for members of the Flaviviridae 

family. The same “pick primers tool” was used for members of the Bunyaviridae family; 

however, because of the higher genetic variability, the primer size range was adjusted to 

generate 25–30-mer primers, and the amplification product target size was set between 

100 and 400 bp. 

The same sets of HCFs selected for real-time PCR assays were used as the 

amplification target to test LAMP assays. The HCFs for SLEV and USUV were submitted 

to the online LAMP primer design tool Primer Explorer V4 (Fujitsu, Japan; see: 
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https://primerexplorer.jp/). A set of six LAMP primers (F3, B3, FIP, BIP, LoopF, and 

LoopB) was automatically selected for each of the two species. 

To demonstrate the flexibility of this workflow, two different computer configurations 

were used. Configuration “1” was a conventional notebook, running Windows 7 (x64) with 

8 Gigabyte (Gb) of RAM and an i7 quad core CPU to run up to eight BLASTn instances 

in parallel. Configuration “2” was a more powerful workstation running Windows 7 (x64), 

with 32 Gb of RAM and an i7 hexacore CPU able to run up to 12 BLASTn instances in 

parallel. 

b. Input Data Used for the Workflow 

A file containing all publicly available complete genome sequences was downloaded on 

January 17, 2013 for each tested virus species from GenBank (Benson et al 2013). The 

number of sequences available on this date ranged from only six sequences for USUV 

up to 608 sequences for WNV (Table S1). 

c. Phylogenetic Analyses 

Phylogenetic analysis was performed using MEGA v.6.0 software (Tamura et al 2013). 

The ClustalW pairwise alignment algorithm (Larkin et al 2007) was used with default 

parameters, and the trees were generated from the sequence alignments using the 

neighbour-joining approach (Saitou and Nei 1987) with 700 bootstrap replications. 

d. Viral Samples 

Eight viral species from the Flaviviridae and the Bunyaviridae families were used to test 

the results of the workflow. Two WNV strains (i.e., NY99 and Dakar) were included in this 
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study. For the remaining seven viral species, we included a single species sample and 

did not test various strains. The viral samples were obtained from various European 

collections and cultivated using various methods, as reported in Table 1. Upon receipt, 

each virus was propagated in appropriate cell cultures within a biosafety level 3 (BSL-3) 

facility at Spiez Laboratory (Spiez, Switzerland) and virus titres were measured using the 

respective validated rt-qPCR protocols. An aliquot of each sample was stored at -80°C. 

Taxonomy (family, genus, species) Abbreviation Subtype Cell type Origina 

Flaviviridae             

 Flavivirus      

  St. Louis encephalitis virus SLEV Type 1 Vero E6 NCPV 

  Usutu virus USUV Bologna Vero E6 UNIBO 

  
Tick-borne encephalitis virus TBEV Hanzalova Porcine kidney 

IP 
ASCR 

  Japanese encephalitis virus JPEV Nakayama Vero E6 NCPV 

  West Nile virus WNV NY99 Vero E6 NCPV 

  West Nile virus  WNV Dakar Vero E6 NCPV 
Bunyaviridae       

 Nairovirus      

  

Crimean-Congo hemorrhagic fever 
virus 

CCHFV N.A.b BNI BNI 

 Phlebovirus      

  Rift Valley fever virus RVFV H13/96 Vero E6 NCPV 

 Hantavirus      

  Seoul virus SEOV R22 Vero E6 NCPV 

Table 1. Virus species used for the validation of the diagnostic assays developed with the 

workflow designed in this study. aNCPV, National Collection of Pathogenic Viruses 

(Porton Down, United Kingdom). BNI, Bernhard-Nocht-Institute for Tropical Medicine 

(Hamburg, Germany). IP ASCR, Institute of Parasitology - Academy of Sciences of the 

Czech Republic (Prague, Czech Republic). UNIBO, University of Bologna (Bologna, 

Italy). bN.A., not available. 

The viral titres were measured as follow: SLEV = 8.1×109 PFU/ml, USUV = 1.35×109 

PFU/ml, TBEV = 1.66×109 PFU/ml, JPEV = 5.34×107 PFU/ml, WNV NY99 = 1.5×1010 

PFU/ml, WNV Dakar = 1.61×1010 PFU/ml, CCHFV = 9.6×108 PFU/ml, RVFV = 9.92×107 

PFU/ml, and SEOV = 4.66×107 PFU/ml. 
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e. Nucleic acid isolation 

Prior to extraction, each cell culture supernatant was concentrated from 1 ml to 100 µl 

using 10-kDa AMICON Ultra centrifugal units (Merck Millipore; Billerica, MA, United 

States of America) at 4,000 × g for 4 min. After concentration, RNA was isolated and 

extracted on an EZ1 Advanced XL platform (Qiagen; Hilden, Germany). The EZ1 Virus 

Mini Kit v2.0 (Qiagen) was used, adhering to the manufacturer’s protocol. 

f. Real-time PCR and LAMP assays 

Real-time PCR assays were performed on a ViiA 7 real-time system (Applied Biosystems; 

Carlsbad, CA, United States of America) using the Power SYBR RNA-to-Ct One-Step kit 

(Thermofisher Scientific; Bremen, Germany). Reverse transcription was performed at 

48°C for 30 min, and samples were subjected to 40 cycles of PCR amplification (95°C for 

15 s and 55°C for 1 min) for flaviviruses. The same conditions were used for the members 

of the Bunyaviridae family, except that 52°C was used for the second step of the cycles, 

instead of 55°C. Amplification was performed in a reaction volume of 50 µl, and 

amplification products were detected using SYBR Green staining. Due to higher 

concentrations for the Flaviviridae, 3 µl from the initial solution was used as a template 

instead of 5 µl for CCHFV, RVFV, and SEOV. A final concentration of 0.2 µM was used 

for both the forward and reverse primers for each reaction. The melting curves were done 

with temperatures ranging from 55°C to 95°C with a ramp rate of 0.05°C/s. LAMP assays 

were performed on a 7500 Fast Real-Time PCR System (Applied Biosystems; Carlsbad, 

CA, United States of America). Isothermal MMX (OptiGene; Horsham, United Kingdom) 

was used at a 1× concentration in a 12-µl reaction volume. Primers were used at the 



 

49 
 

following concentrations: F3 and B3, 0.2 µM; FIP and BIP, 2 µM; and loopF and loopB, 1 

µM. 

4. Results 

a. Workflow Concept 

The presented approach consisted of two consecutive BLASTn steps to assess the 

degree of conservation of a sequence among a taxon of interest and to test for its 

specificity towards closely related organisms, as detailed in Figure 1. 
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Figure 1. Bioinformatics analysis workflow. Input sequences were processed through a 

“dual-BLASTn” pipeline in order to select for the most conserved and at the same time 

specific molecular markers. 

Pre-processing of the whole genomic sequences used as input was carried out in two 

steps. Genomic samples were first fragmented to 400 bp. Because consecutive 

fragments shared an overlap of 390 bp, they allowed accurate representation of the 

various genomic regions for the next processing steps. Two additional filtering steps were 

used to remove sequences showing suboptimal thermodynamic parameters from this 

pool of organism-specific fragments (OSFs). The first filter selected only fragments with 

a GC content of 30–70%, and the second filter checked the remaining fragments for 

homopolymers or repeated regions, which are generally considered inappropriate targets 

for molecular assays. In parallel, genomic sequences in GenBank format were converted 

to Fasta format and further converted into an organism-specific database (OSD) using 

the appropriate tool provided within the NCBI software suite. Subsequently, the first 

BLASTn step was carried out to select the HCFs among the taxon of interest. In order to 

perform this action, OSFs were compared to the OSD. The scores resulting from this 

analysis, including the total amount of hits in the OSD, E-values and bitscores, were 

retrieved in order to assess the degree of conservation of each OSF in the taxon of 

interest. Moreover, OSFs were ranked by decreasing number of hits, decreasing sum of 

bitscores, and increasing sum of E-values. A subset (n = 100) of the fragments with the 

best scores was selected for further analysis. 

The second part of this workflow aimed to assess the specificity of the subset of HCFs 

toward the organism of interest, thus providing information on potential cross-reactions 
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with close relatives. This step consisted of an additional BLASTn step against the NCBI’s 

nt database. In contrast to the ranking system from the previous step, HCFs were ranked 

by increasing number of hits, increasing sums of bitscores, and decreasing E-values, thus 

enabling ranking to be carried out in accordance with the complete database. Hence, this 

step allowed us to assess the specificity of each of HCF and served as an assessment of 

the potential for cross-reactions when using the selected HCFs as targets for molecular 

assays. 

b. Genetic Diversity among the Tested Viruses 

The consensus sequences from 10 and 60 segment L complete sequences from the 

CCHFV were generated in order to assess whether using different numbers of sequences 

could influence the selection of a target for identification assays. For the same reason, 

two consensus sequences from 10 and 153 complete JPEV genomes were also 

generated. The results of these alignments are reported in Table 2. The consensus 

generated from 60 CCHFV sequences had 871 additional ambiguities when compared 

with the consensus generated from 10 CCHFV sequences. This represents 

approximately 16% of the overall length of the consensus (5,372 bp). On the other hand, 

the consensus generated from 153 JPEV sequences had only 48 additional ambiguities 

when compared with the consensus generated with 10 JPEV sequences, suggesting that 

only 0.44% of the genome (10,980 bp) represented variable sites. 

 Consensus 

CCHFV 

Consensus 

JPEV 

Consensus 

CCHFV 

Consensus 

JPEV 

Variation 

CCHFV 

Variation 

JPEV 

Sequences 10 10 60 153 N.A.a N.A. 

Length 

(bp) 
5,370 10,979 5,372 10,980 2 1 

GC (%): 38.18 46.33 30.49 46.45 -7.68 -0.11 
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A (%): 28.29 24.98 23.59 25.17 -4.70 -0.19 

C (%): 18.90 20.13 14.99 20.15 -3.92 -0.02 

G (%): 19.27 26.20 15.51 26.30 -3.77 -0.10 

T (%): 22.09 17.68 17.09 17.81 -5.00 -0.14 

Y (%): 5.51 5.16 11.58 5.11 6.07 0.05 

W (%): 0.73 0.44 1.73 0.40 1.00 0.04 

V (%): 0.02 0.00 0.24 0.00 0.22 0.00 

S (%): 0.04 0.30 0.50 0.26 0.47 0.05 

R (%): 4.41 3.96 10.67 3.73 6.25 0.23 

N (%): 0.02 0.15 0.58 0.16 0.56 -0.02 

M (%): 0.34 0.57 1.62 0.53 1.28 0.05 

K (%): 0.24 0.43 0.60 0.36 0.35 0.06 

H (%): 0.04 0.00 0.73 0.01 0.69 -0.01 

D (%): 0.06 0.00 0.35 0.00 0.30 0.00 

B (%): 0.06 0.00 0.24 0.00 0.19 0.00 

Table 2. Ambiguity-based comparison of consensus sequences generated using different 

amounts of Crimean-Congo hemorrhagic fever virus (CCHFV) or Japanese encephalitis 

virus (JPEV) genomes. aN.A., not applicable. 

c. Workflow Output 

While using configuration 1, it was not possible to align all 608 complete WNV genome 

sequences with the ClustalW algorithm or the MUSCLE algorithm (Edgar 2004). Using 

our workflow allowed us to select candidate molecular markers from different numbers of 

complete genome sequences, from as few as six sequences for USUV to as many as 

608 sequences for WNV. Selected molecular markers were used to generate real-time 

PCR primer sets for the detection of viruses from both the Bunyaviridae and Flaviviridae 

families (Table 3). Because of the lack of published LAMP assays and to demonstrate 

that the molecular markers selected using this workflow were multipurpose, we used the 

HCFs for USUV and SLEV to design LAMP primer sets (Table 4). 
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Species Target Forward primer (5’–3’) Reverse primer (5’–3’) 
Sequence 

number 

Size 

(bp) 

JPEV NSP 5 GGTACTACTGGGGCGAATGG CCAAAAGGGGTGGTGTCAGT 153 342 

SLEV PreMP ACAAGACTGACGCTCAAAGC GGATTGCGCAAAACCCAGTT 8 352 

TBEV NSP 5 ACAGCTAAACTTGCCTGGCT ACGGTTTTTCCACTGCTCCA 42 348 

USUV NSP 5 TCATGGAGCGCTTGGAAGTT CAGGTCCGATATGGGTGGTC 6 343 

WNV NSP 1 ACCAGAACTCGCCAACAACA TCTCAAGGATTCCATCGCCC 608 341 

CCHFV Seg.a L GCATCTCTGAAGTAACTGAAACAACA GTTGAGATAGCACCGAGTTTCTTTAG 41 154 

 Seg. M AGAAACAAGCTTATCAATTGAGGCAC TGTCCTTTCTTCCAGCTTCATAATTG 60 175 

 Seg. S GATGAGATGAACAAGTGGTTTGAAGA GTAGATGGAATCCTTTTGTGCATCAT 65 159 

SEOV Seg. L GTCTCACTTAGTACGAGTAAGGTTGA AATTTTTGTCAGACATGCCTATACCG 7 178 

 Seg. M CCTTGCAACAATTGATTCTTTTCAAT ACAAGGATTCTCAGCCAAATTTTCAA 18 160 

 Seg. S GAAGAAATCCAGAGAGAAATCAGTGC ATTTTTGATTGTATTGAAGCTGCGAC 19 161 

RVFV Seg. L ATGATGAATGACGGGTTTGATCATTT AACCTCATACTTAGCGAGTTTAGTCA 86 150 

 Seg. M GGCCCTTAGAGTTTTTAACTGTATCG GGGCTCTCAATGAAAGAAAAGCTATT 91 192 

 Seg. S AACAATCATTTTCTTGGCATCCTTCT ATAATGGACAACTATCAAGAGCTTGC 141 180 

Table 3. List of selected targets and real-time PCR primer pairs designed for different 

viral species employed in this study. aSeg., segment; WNV, West Nile virus; SLEV, St. 

Louis encephalitis virus; JPEV, Japanese encephalitis virus; USUV, Usutu virus; TBEV, 

Tick-borne encephalitis virus; SEOV, Seoul virus; CCHFV, Crimean-Congo hemorrhagic 

fever virus; RVFV, Rift Valley fever virus. 

Species Primera Primer sequence (5’–3’) Input sequences 

SLEV F3 GAGCACTTGATGTGGGAG 8 

 B3 CAATGATTGCCGAATCGC  

 FIP CTTCCATCCGTAATCCAACTCATCCTGACTTGTCAGTTGTAGTGC  

 BIP AACACATTTGTTGTTGATGGACCCGAGTGAACACCATGCCAA  

 LoopF CCAGCTTCTTCAGGCGTC  

 LoopB CAAGGAGTGTCCAACAGCA  

USUV F3 GCTGCCAATGAATACGGA 6 

 B3 TAGTGGAGGGTAGCCAGA  

 FIP GTGAGAACCACTGTGCTCCCTACCCTCCATGAACGCTT  

 BIP TCAGAATACATCACAACATCTCTGGCGTAGGTTGAACAAAGACCCA  

 LoopF GGTCGCAAATCCAATGCC  

 LoopB TTCAATAAGCGCTCAGGC  

Table 4. List of LAMP primer sets designed for Usutu virus (USUV) and St. Louis 

encephalitis virus (SLEV). aF3 and B3, forward outer and reverse outer primers for LAMP, 
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respectively; FIP and BIP, inner LAMP primers; LoopF and LoopR, forward and reverse 

loop primers. 

 The selected primer pairs were tested against a panel of virus species, including 

two WNV (NY99 and Dakar) strains, as shown in Figure 2. CCHFV was amplified with 

an average between the different genomics segments of 21.9 cycles, RVFV with an 

average of 23 cycles, and SEOV a Ct value average of 27.8. SLEV, WNV NY99, USUV, 

and WNV Dakar reached the threshold between 23 and 26 cycles (23.8, 24.1, 25.3, and 

25.4, respectively). TBEV and JPEV were amplified within 27.8 and 28.1 cycles, 

respectively. The efficiency of the reactions was measured between 82% (RVFV 

Segment M) at the lowest and 141% (JPEV) at the highest. The efficiency of 11 of the 

other 13 reactions was comprised between 90% and 110% except for TBEV (115%) and 

CCHFV Segment S (86%). 
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Figure 2. Real-time PCR assays of members from the Flaviviridae and Bunyaviridae 

families. Amplification and melting curves for five different flaviviruses species are shown. 

Each sample was tested undiluted, with a 10-fold dilution and with a 100-fold dilution. (A) 

St. Louis encephalitis virus (SLEV). (B) Usutu virus (USUV). (C) Tick-borne encephalitis 

virus (TBEV). (D) Japanese encephalitis virus (JPEV). (E) West Nile virus (WNV; 2 

strains, NY99 and Dakar). The right half of the panel shows the amplification and melting 

curves of the different genomic segments of the members from the Bunyaviridae family 
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tested in this study. (F) Crimean-Congo hemorrhagic fever virus (CCHFV). (G) Rift Valley 

fever virus (RVFV). (H) Seoul virus (SEOV). NTC, no template control; RFU, relative 

fluorescence units; Ct, cycle threshold; Dil., dilution; Seg., Segment. 

A phylogenetic tree of the Flaviviridae family was generated, as shown in Figure 3, 

in order to test for cross-reactivity between the closest relatives, namely JPEV, USUV, 

and WNV. As previously shown, fragments of all three species were amplified using the 

corresponding primer sets at 28.1 cycles for JPEV, 25.3 cycles for USUV, and 24.1 cycles 

for WNV (NY99). 

There was no cross-amplification when mixing the JPEV template with the primer 

pairs selected for USUV and WNV. Similarly, for WNV, amplification occurred only with 

the corresponding WNV primers and not with the USUV or JPEV primer pairs. However, 

while there was no amplification with the USUV template and WNV primers, there was 

amplification when using JPEV primers around cycle 29. 

In order to make sure that this cross-reaction does not involve the selection of the 

target regions but rather the selection of the primer pairs designed to amplify this region, 

we sequenced the amplicons from the three relevant reactions, namely (i) the JPEV 

template amplified with JPEV primers; (ii) the USUV template amplified with JPEV primers 

and (iii) the USUV template amplified with USUV primers (S1 Supporting Information). 

The obtained sequences were compared to the NCBI database and the USUV template 

amplified with the USUV primers showed 61.8% identity with JPEV genomic sequences 

and 70.3% identity when using the primer pair selected for JPEV. 



 

57 
 

 



 

58 
 

Figure 3. Testing cross-reactions between a set of close relatives from the Flaviviridae 

family. West Nile virus (WNV), Japanese encephalitis virus (JPEV), and Usutu virus 

(USUV) were tested. (A) Phylogenetic analysis of a subset of 6–10 sequences from 

members of the Flaviviridae family. (B) Real-time amplification of viruses with master 

mixes containing different primer pairs. RFU, relative fluorescence units; Ct, cycle 

threshold. 

 Both USUV and SLEV were successfully amplified with corresponding LAMP 

assay primers. Amplification occurred after 46 min for SLEV RNA, including the reverse 

transcription step. The LAMP primer set selected for USUV successfully amplified the 

template within 40 min, also including the reverse transcription step (Figure 4). The 

included controls excluded the formation of primer dimers, which is likely to happen due 

to the nested nature of LAMP assays. 
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Figure 4. Loop-mediated isothermal amplification of Usutu virus (USUV) and St. Louis 

encephalitis virus (SLEV). NTC, no template control; RFU, relative fluorescence units; Ct, 

cycle threshold. 

5. Discussion 

We developed and evaluated a bioinformatics workflow that readily addresses the high 

intra-species genetic diversity of viruses and takes into consideration the potential for 

cross-reactivity between close relatives. These are two key issues that complicate the 

design of molecular assays (Avise 2012, Espy et al 2006). Our workflow allowed for rapid 

selection of highly conserved and specific genomic fragments among the investigated 

viruses, while considering up to several hundred complete genomic sequences. 

With the advent of next-generation sequencing, an increasing number of sequences 

have been, and continue to be, made publicly available (Montgomery et al 2012, 

Stephens et al 2015). Although this has greatly improved our knowledge of the dynamics 

of viral populations, the massive amount of data available also renders bioinformatics 

analysis more complex. In the case of CCHFV, for example, the difference in the 

consensus sequences between analyses utilizing 10 and 60 genomic sequences was 

17.39%, which is a challenge for selecting an appropriate target for a molecular assay. 

For JPEV, the amount of variable positions was much lower, only representing 0.45% of 

the complete genome; nonetheless, 50 additional ambiguities were observed throughout 

the whole consensus. Yet, even such a small difference might still negatively influence 

the performance of a molecular assay by affecting the thermodynamic parameters of the 

reaction, particularly the primer annealing step. 
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Aligning a few genomic sequences is usually straightforward with widely available 

bioinformatics tools (Ferreira et al 2014, Wen et al 2014). In the case of organisms that 

have not been as thoroughly sequenced, alignment may not be an issue at all because 

all available variants may simply be included in the alignment; thus, the overall genetic 

diversity is considered. In the case of extensively sequenced organisms, however, the 

issue of “masked” diversity might rise, since only a subset of all the available sequences 

will be selected for the alignment and finally only a subset of the genetic diversity is taken 

into account for the design of the molecular assay. By using reproducible computing 

scores, including bitscores, E-values, and the number of “hits” in a database, the workflow 

also removed the potential bias that could be introduced by manual selection of an 

adequately amplified region by the user. This workflow allowed us to select highly specific 

molecular markers in less than an hour for all tested viruses using the more powerful 

configuration 2. In order to assess the impact of the hardware, we ran the workflow with 

a single species on both configurations. While the task could be successfully completed 

on both computer platforms, we noted a drop in the time requirement of approximately 

30% from configuration 1 to 2. This drop-in performance was thought to be due to the 

well-optimized parallelization capacity of the BLASTn algorithm. Therefore, we expected 

that the overall runtime could be reduced by increasing the number of CPU cores and 

providing sufficient RAM. In future studies, we will examine the importance of this feature 

in terms of increased sequencing capacity and the increased resulting genomic data 

generated every year (Stephens et al 2015). The performance of this workflow will also 

allow rerunning the analyses when new sequences for a given species of interest become 

available. This would facilitate identification of shifts in the viral population and could 



 

62 
 

reveal whether previously selected molecular markers are still valid (i.e., to keep the 

molecular assay up-to-date and to have it further refined as new data become available). 

In specific cases, if enough sequences are available, this workflow could also be utilized 

to generate strain-specific molecular markers. Having strain-specific assays, particularly 

in the case of neglected tropical diseases, could be a great asset when 

tracking/investigating transmission events and risk factors, in resource-constrained 

settings (Fankhauser et al 2002, Van Belkum et al 2001). This workflow also has the 

advantage of manual design, and hence, it can be entirely customized to the needs of the 

user. In fact, the output from the workflow only depended on the input sequences, and 

the user should be able to select, for example, only geographically related strains to 

design a “geographically specific” assay in order to quickly demonstrate whether 

outbreaks are caused by a new or re-emerging pathogen (Knowles and Samuel 2003). 

All molecular markers that were selected with the workflow could be used as inputs 

for primer design. Real-time PCR assays were all performed successfully, from the single 

amplification target selected for the flaviviruses to the three regions selected for each 

genomic fragment of the members from the Bunyaviridae family. Similarly, the same 

markers selected for USUV and SLEV were successfully used to design LAMP primer 

sets, and the corresponding LAMP assays performed well. These assays confirmed that 

the first BLASTn step of this workflow functioned well for selecting highly conserved 

regions among a pool of species-specific fragments. 

The results generated within this study offer a preliminary overview of the assays 

sensitivity and specificity. However, additional experiments would be required to optimize 

these assays, especially concerning the efficiency of reaction. In general, the melting 
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curves show a high specificity, except for WNV for which some primer-dimers seem to be 

forming. Regarding the suboptimal efficiencies, one lead to optimize could be to remove 

either inhibitors (especially in the case of JPEV and TBEV, which show an increased 

reaction efficiency), test various primer concentrations as well as a range of more 

adapted, reaction-specific, PCR conditions. 

In order to further improve this workflow, we added a second BLASTn step to assess 

the degree of sharing of highly conserved species-specific fragments in a general 

database also containing genomic data from close relatives. The tested cross-reactions 

showed that the primers selected for WNV and USUV were specific for those species, 

whereas the JPEV primers cross-reacted with the USUV template, but not with the WNV 

template. In order to determine whether this cross-reaction occurred because of the 

primers or poor selection of the molecular markers, we used Sanger sequencing to 

sequence the amplicons from the two USUV reactions (both with USUV and JPEV 

primers) and the JPEV reaction (with the JPEV primers). Sequencing revealed that the 

amplified regions (i.e., the selected molecular markers) were highly specific to their 

corresponding species. An online BLASTn of the JPEV primers against USUV sequences 

showed that the forward primer had nine nucleotides matching the USUV virus at the 3′ 

end and 19 common nucleotides on the reverse primer (only one mismatch, data not 

shown). This issue highlights two additional controls that should be performed using this 

workflow after selecting the target regions, namely (i) an additional online BLASTn control 

of the primer selected by the various software programs, be it for real-time PCR or LAMP 

assays, and (ii) since cross-reactions are difficult to predict, the designed assay should 

be tested with a gradient PCR first to ensure that the thermodynamic parameters of the 
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reaction are optimal. However, sequencing of the amplification product is still considered 

the ‘gold’ standard for validating the molecular assay and ensuring high specificity of the 

assay. 

In conclusion, the workflow presented here for viral detection provides a promising 

approach as it addresses the recurrent issue of bioinformatics analysis of large amounts 

of sequencing data, which is expected to be an even greater challenge as publicly 

available data are rapidly increasing. This workflow removes user-introduced bias by 

being solely based on well-established computing scores (bitscore, E-value, and number 

of hits). Hence, our workflow addresses two issues encountered in the manual design of 

a molecular assay, as it takes into account the complete genetic diversity of an organism, 

and provides timely information on potential cross-reactions. We speculate that our 

workflow is applicable to a variety of DNA-based assays, and hence, it should 

theoretically work for higher organisms, such as bacteria or parasites, facilitating the 

selection of future diagnostic markers. 
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Supplementary S1 

>Usutu virus template with JPEV primers 

gaGgagggTTaACCTTGgAAGTGGAACaAGAGCCGTTGGGAAACCCCaGcCACATACC
AACcaGGAGAAGaTTAAAGCcaGGATTCAAAGATTGAAAGAGGAGTATGCAGCCACA
TGGCACCACGATAAGGACCACCCATATCGGACCTGgaCCTACCACGGAAGTTATGA
AGTGAAACCGACCGGTTCAGCAAGCTCCTTGGTCAACGGAGTTGTCCGCCTAATG
AGCAAGCCCTGGgATGCAATTCTCAACGTgaCCACCATGGCGATGACTGACAccaCC
CTTTTGGa 

>Usutu virus template with USUV primers 

tTtcaAccaTGAGatgTACTGGGTCAGTGGAGCTGCTGGCAACatTGTCCACGCAGTGA
ACATGACGAGTCAAGTGCTCATAGGGCGAATGGAGAAGAGAACATGGCATGGACC
AAAATACGAGGAGGATGTTAACCTTGGAAGTGGAACAAGAGCCGTTGGGAAACCC
CAGCCACATACCAACCAGGAGAAGATTAAAGCCAGGATTCAAAGATTGAAAGAGG
AGTATGCAGCCACATGGCACCACGATAAGGACCACcctacgGACCtggaa 

>Japanese encephalitis virus template with JPEV primer 

gtatgagGagaTTCACCTAGGgagCGGAGAGCCGTGGGAAAGGGAGAAGTCCATAGCA
ATCAGGAGAAAATCAAGAAGAGAATCCAGAAGCTTAAAGAAGAATTCGCCACAACg
TGGCACAAAGACCCCGAGCATCCATACCGTACTTGgACATACCACGgaAGCTATGA
AGTGAAGGCTACTGGCTCAGCCAGCTCTCTCGTCAATGGAGTGGTGAAGCTCATG
AGCAAACCTTGGGACGCCATCGCCAACGTCACCACCATGGCCATGACTGACACCa
cCCCTTTTGGa 
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1. Abstract 

The complete genome sequence of a highly divergent strain of Grapevine leafroll-

associated virus 4 (GLRaV-4) was determined using 454 pyrosequencing technology. 

This virus, designated GLRaV-4 Ob, was detected in Vitis vinifera cv. Otcha bala from 

our grapevine virus collection at Agroscope. The GLRaV-4 Ob genome length and 

organization share similarities with members of subgroup II in the genus Ampelovirus 

(fam. Closteroviridae). Otcha bala was graft-inoculated onto indicator plants of cv. Gamay 

to evaluate the biological properties of this new strain, and typical leafroll symptoms were 

induced. A monoclonal antibody for the rapid detection of GLRaV-4 Ob by enzyme-linked 

immunosorbent assay (ELISA) is available, thus facilitating large-scale diagnostics of this 

virus. Based on the relatively small size of the coat protein, the reduced amino acid 

identity and the distinct serological properties, our study clearly shows that GLRaV-4 Ob 

is a divergent strain of GLRaV-4. Furthermore, molecular and serological data revealed 

that the AA42 accession from which GLRaV-7 was originally reported is in fact co-infected 

with GLRaV-4 Ob and GLRaV-7. This finding challenges the idea that GLRaV-7 is a 

leafroll-causing agent. 

2. Introduction 

Similar to other woody perennial crops, grapevines (Vitis spp.) are prone to infection by 

diverse viruses. Currently, more than 60 viruses have been reported to infect grapevines 

(Martelli 2014). Grapevine leafroll disease (GLRD) is one of the most economically 

important viral diseases of grapevines, and its effects on yield and harvest quality have 

been documented for several grapevine cultivars (Komar et al 2010, Lee and Martin 2009, 
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Mannini et al 2012, Spring et al 2012). Cultivars infected with GLRD generally exhibit yield 

reduction and poor fruit quality. For red grape cultivars, one of the primary effect of GLRD 

is lower anthocyanin accumulation, thus resulting in poor berry colour development. For 

white cultivars, GLRD symptoms are visually less evident; however, infected grapevines 

may show chlorotic mottling of leaves toward the end of the growing season. 

GLRD has a complex aetiology associated with different filamentous viruses 

referred to as grapevine leafroll-associated viruses (GLRaVs). All GLRaVs identified to 

date belong to the family Closteroviridae. In total, 5 different GLRaV species have been 

identified: one in the genus Closterovirus (GLRaV-2), three in the genus Ampelovirus 

(GLRaV-1, GLRaV-3 and GLRaV-4) and one in the recently defined genus Velarivirus 

(GLRaV-7) (Al Rwahnih et al 2012). The genus Ampelovirus is further divided into 

subgroup I, consisting of GLRaV-1 and GLRaV-3 and subgroup II, consisting of all the 

genetically divergent GLRaV-4 strains (Abou Ghanem-Sabanadzovic et al 2012). 

According to the most recent taxonomic revision of the genus Ampelovirus, GLRaV-5, 

GLRaV-6, GLRaV-9, GLRaV-Pr and GLRaV-Car were classified as strains of GLRaV-4 

and not, as had been previously assumed, as distinct species in the genus Ampelovirus 

(Abou Ghanem-Sabanadzovic et al 2010, Abou Ghanem-Sabanadzovic et al 2012, 

Maliogka et al 2009, Martelli et al 2012).  

Herein, we report the description of a filamentous virus infecting a grapevine 

accession and showing leafroll symptoms when grafted onto cv. Gamay indicators. We 

present its complete genome sequence, describe the genome organization and 

serological features, and show that this virus is a highly divergent strain of GLRaV-4. 

Finally, using a combination of serological and molecular diagnostic techniques, we show 
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that accession AA42 is co-infected with GLRaV-7 and GLRaV-4 Ob. The implication of 

these findings for leafroll aetiology is discussed. 

3. Materials and methods 

a. Virus isolates and biological indexing 

The primary grapevine materials used for this study were collected from the grapevine 

virus collection at Agroscope in Nyon (Switzerland), which contains more than 600 clones 

of distinct plant accessions (Gugerli et al 2009a). Three cuttings from the Otcha bala 

grapevine accession (Nos. 10,496, 10,497, and 10,498) were used for biological, 

serological and molecular characterization. Additional grapevine accessions used for this 

study included AA42, Y276 and Chiliaki Chjornyj, which were kindly provided by W. 

Jelkmann, O. Lemaire and the National Institute of Agrobiological Sciences (Japan), 

respectively. The accession Chiliaki Chjornyj was shown to be coinfected by GLRaV-7 

and GLRaV-4 strain Ru (Ito et al 2013). Three additional GLRaV-7-infected accessions 

were provided by A. Rowhani from UC Davis: Siar, Takhani and Sultanina rose. Using 

microsatellite analysis, the cultivar identity of the Otcha bala plant accession was verified, 

and grapevine accession AA42 was identified as the grapevine cultivar Sultanine (E. 

Droz, personal communication). 

Otcha bala canes were graft-inoculated onto the leafroll-specific indicator Vitis 

vinifera cv. Gamay Rouge de la Loire. Eight replicates were planted in the field, and 

symptoms were evaluated over a 3-year period. Graft-inoculated GLRaV-1-infected vines 

were grown as positive controls. 

b. Virus particle purification and serology 
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Virus particles were purified from mature leaves as described previously (Gugerli et al 

1984). Purified virus particles were observed using a Philips CM10 transmission electron 

microscope, as described by Gugerli and Ramel (Gugerli and Ramel 2004).  

A cell line producing the monoclonal antibody MAb37a was generated against 

viruses purified from accession Y276 (Rigotti et al 2006). The serological tests used in 

this study consisted of double antibody sandwich enzyme-linked immunosorbent assays 

(DAS-ELISAs), immunoprecipitation electron microscopy (IPEM) and Western blot. 

These tests were performed essentially as described previously (Gugerli and Ramel 

2004).  

Commercially available ELISA kits (GLRaV-1 DAS, GLRaV-2 DAS, GLRaV-3 DAS 

and GLRaV-6 DAS from Bioreba AG, Switzerland) were used to screen for the indicated 

grapevine leafroll-associated viruses according to the manufacturer’s instructions. DAS-

ELISAs using reference antisera and monoclonal antibodies developed at Agroscope 

were used to test for GLRaV-4 infection. Briefly, ELISA plates were first coated with rabbit 

antiserum (1 µg/ml) in carbonate buffer and then incubated with grapevine crude leaf 

extracts for 16 hours at 6°C. Then, the wells were washed, and alkaline phosphatase-

conjugated monoclonal antibodies were added. To detect GLRaV-4, GLRaV-4 strain 5 

and GLRaV-4 strain 9, the following monoclonal antibodies were used: MAb 3-1, MAb 3-

3 and MAb 27-1, respectively (Besse et al 2009, Gugerli et al 2009b). The reaction with 

the chromogenic substrate p-nitrophenyl phosphate was performed at room temperature, 

and the absorbance at 405 nm was read using a spectrophotometer after 3 hours. 

 

 



 

77 
 

c. Nucleic acid extraction, RT-PCR amplification and Sanger sequencing 

Total RNA was extracted from mature leaf petioles using RNeasy Plant Mini Kits (Qiagen, 

Germany). One-step reverse transcription-polymerase chain reaction (RT-PCR) was 

performed using the AMV reverse transcriptase (Promega, Germany) and GoTaq 

polymerase (Promega, Germany) with total RNA as the template. RT-PCR was 

performed with primer pairs specific for each virus using the conditions described in the 

original publications (Supplementary Table 1).  

For sequencing purposes, purified PCR products were cloned into the vector 

pGEM-T (Promega, Germany) and were sequenced at Fasteris SA (Switzerland). To 

sequence the 3’-end of the GLRaV-4 Ob genome, viral RNAs were polyadenylated using 

an A-Plus Poly (A) Tailing Kit (Epicentre Biotechnologies, Madison, USA), and the tailed 

viral RNA was used as the template in a reverse-transcription reaction. Sequences of the 

5’ and 3’ viral termini were obtained using a 5’/3’ RACE kit (Roche). Two independent 

clones were sequenced from each 5’ and 3’ terminus.  

d. Viral particle enrichment, pyrosequencing, assembly and sequence analyses  

Purified viral particles were treated with nucleases (DNase and RNaseA) to remove Vitis 

DNA and RNA contaminants. Then, viral RNA was extracted from purified viruses using 

RNeasy Plant Mini kits (Qiagen, Germany) and randomly amplified using a Whole 

Transcriptome kit (Sigma-Aldrich) for sequencing on a Roche 454 GS Junior platform 

(Roche Diagnostics Corp., Branford, CT). Sequencing libraries were prepared with a 

Rapid Library Preparation kit according to the manufacturer’s protocol and sequenced on 

one PicoTiter plate using Titanium chemistry. Quality control analysis and assembly of 
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the produced reads were performed using DNASTAR’s NGen assembler (Madison, USA) 

with 454-specific parameters. Filtered reads were converted to fasta files and subjected 

to BLASTN analysis (Altschul et al 1997) with the GenBank non-redundant nucleotide 

database using decreasing wordsize options of 400, 200, 100, 50 and 28. 

Gene annotation was performed following a comparison with sequences from 

other leafroll-associated viruses and using GeneMarkS software (Besemer and 

Borodovsky 2005). Amino acid and nucleotide alignments were created using ClustalW 

(Goujon et al 2010). The sequences and accession numbers of the viral species/strains 

used for the amino acid sequence comparisons with GLRaV-4 Ob are provided in 

Supplementary Table 2. The phylogenetic relationships were determined using Molecular 

Evolutionary Genetic Analysis software MEGA version 6 with the best amino acid 

substitution model (Tamura et al 2013). Phylogenetic trees were generated using the 

maximum likelihood algorithm with 500 bootstrap replicates.  

4. Results 

a. Electron microscopy and biological indexing 

Viral particles were isolated from leaf samples of the Otcha bala accession. Electron 

micrographs showed filamentous particles consistent with the family Closteroviridae, with 

the most frequent length being 1600 nm (data not shown). The presence of leafroll 

disease was assessed by biological indexing onto the leafroll-specific indicator cv. 

Gamay. Mild leafroll symptoms, including reddening and down curling of the leaves, were 

observed during the 3 consecutive years following the graft inoculation (Figure 1).  
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Figure 1. Leafroll symptoms on Gamay graft-inoculated with Otcha bala accession: A. 

downward curling o leaf margins and B. interveinal red coloration. 

Original Otcha bala accessions and graft-inoculated Gamay plants repeatedly 

tested negative for GLRaV-1, GLRaV-2 GLRaV-3, GLRaV-4 (and its strains 5, 6, and 9) 

viruses by ELISA, thus justifying further investigation to characterize the cause of the 

disease. 

b. Molecular characterization by pyrosequencing  

RNA isolated from virus particles purified from the Otcha bala grapevine was submitted 

to 454 high-throughput sequencing. The analysis yielded 59,087 high-quality reads with 

an average read length of 430 bp. In total, 13,173 reads were de novo assembled into a 

12,882-nt contig with homology to members of the Closteroviridae family. The coverage 

over this contig ranged from 1- to 1918-fold, as shown in Figure 2. 
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To verify the results provided by deep sequencing, specific primers were designed 

using the pyrosequencing data (Supplementary Table 3). Sanger sequencing of PCR 

products validated the pyrosequencing results. Completion and polishing of the 

sequence’s termini was performed by RACE PCR using Otcha bala cDNA as the 

template. RACE sequencing of viral termini led to the modification of the 12,882-nt initial 

contig’s extremities, resulting in a complete genome length of 12,849 nt. The genome 

sequence was deposited in the GenBank database under accession number KP313764. 

Virus-derived fragments were identified in the total fragment pool based on their 

similarities to the nucleotide sequences archived in GenBank using BLASTN. The 

closterovirus-like virus, which we propose to name GLRaV-4 Ob, was the most prevalent 

species among the 454 dataset (Table 1).  

Virus species Virus family Total hits 

Grapevine leafroll-associated virus 4 

Ob 

Closteroviridae 19,572 reads 

Grapevine fleck virus Tymoviridae 9,002 reads 

Grapevine red globe virus Tymoviridae 2,687 reads 

Grapevine virus A Betaflexiviridae 111 reads 

Table 1. High-throughput sequencing reads for viral species identified from the Otcha 

bala grapevine using BLASTN analysis. 

Three other viruses were also identified in the 454 dataset: two viruses of the family 

Tymoviridae (Grapevine fleck virus [GFkV] and Grapevine red globe virus [GRGV]) and 

one member of the Betaflexiviridae (Grapevine virus A [GVA]). No other closterovirus-

related reads were identified from the 454 run. The presence of these viral species was 

confirmed by specific RT-PCR analysis or ELISA. 
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The GLRaV-4 Ob genome is 12,849 nt in length and contains six putative open 

reading frames (ORFs) (Figure 2).  

 

Figure 2. Sequence coverage and nucleotide positions along the Grapevine leafroll-

associated virus 4 strain Ob (GLRaV-4 Ob) genome. The schematic representation of the 

GLRaV-4 Ob genome organization is presented to scale. Putative open reading frames 

(ORFs) are shown in boxes: ORF1a with corresponding domains: Pro = protease, MET 

= methyltransferase, AlkB = 2OG-Fe(II) oxygenase domain, HEL = helicase; ORF1b = 

RNA-dependent RNA polymerase; ORF2 = small 5 K protein; ORF3 = heat shock 70 

protein homolog; ORF4 = 60 K; ORF5 = coat protein; and ORF6 = 23 K protein. 

The GLRaV-4 Ob genome starts with a short 37-nt-long non-coding region. ORF1a 

encodes a polyprotein (2076 aa). Different domains were identified in ORF1a, including 

a methyltransferase (MET, pfam 01660, Pfam database 27.0 (Finn et al 2014)), AlkB 

(pfam 03171) and helicase (HEL, pfam 01443). Additionally, ORF1a contains a papain-



 

82 
 

like protease domain with the catalytic residues Cys225 and His268 and a predicted 

cleavage site after Gly285 (Peng et al 2001). 

ORF1a terminates with the sequence auguuUAG (the stop codon of ORF1a is 

shown in capital letters, while the start codon of ORF1b is underlined); this sequence is 

presumably involved in a +1 ribosomal frameshift as described for other closteroviruses 

(Dolja et al 2006). ORF1b overlaps the last 8 nt of ORF1a and potentially encodes a 526-

aa-long protein. ORF1b shows high homology to the RNA-dependent RNA polymerase 

(RdRp) domain (pfam 00978). The small ORF2 partially overlaps ORF1b by 26 

nucleotides and potentially encodes a 46-aa-long hydrophobic protein (p5). ORF3 is 

situated downstream of p5 after a 144-bp intergenic region and encodes a 533-aa 

HSP70-homolog (HSP70h) protein similar to other sequenced GLRaV-4s. ORF4 partially 

overlaps the previous ORF and encodes a 546-aa-long protein homologous to the p60 

proteins of other closteroviruses. After a 69-nt-long intergenic region, ORF5 encodes a 

261-aa-long protein corresponding to a viral coat protein (CP). The 3’-end proximal ORF 

(ORF6) encodes a putative p23 protein. ORF6 is in accordance with similarly positioned 

small peptides encoded by other closteroviruses at the genome’s 3’ end (Dolja et al 2006). 

The genome ends with a 131-nt-long 3’ non-coding region. 

c. Serological characterization 

The monoclonal antibody MAb37a reacted with Otcha bala grapevine extracts in a DAS-

ELISA (Figure 3).  
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Figure 3. Specific detection of Grapevine leafroll-associated virus 4 strain Ob (GLRaV-4 

Ob) in crude leaf extracts of different grapevine accessions by homologous double 

antibody sandwich enzyme-linked immunosorbent assays using Mab37a (four samples 

were analysed for each accession; error bars represent standard deviations). Reverse 

transcription-polymerase chain reaction results using GLRaV-4 Ob- and GLRaV-7-

specific primer pairs are shown underneath for each accession (+, specific positive 

amplification: -, no amplification). Leaf extracts from GLRaV-4 strain 9-infected Cabernet 

sauvignon and a healthy grapevine were also tested. The absorbance was read after a 

3-h incubation with the substrate. 
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Otcha bala leaf extracts produced OD values 30 times higher than healthy controls 

after 3 hours of incubation. MAb37a was highly specific because it did not react with other 

GLRaV-4-like viruses (i.e., GLRaV-4, GLRaV-4 strain 5, GLRaV-4 strain 6 and GLRaV-4 

strain 9) from infected grapevines in our collection.  

MAb37a activity was further assayed by immunoprecipitation electron microscopy. 

The filamentous virions of the Otcha bala grapevine were heavily decorated with MAb37a 

(Figure 4). 

 

Figure 4. Immuno-

precipitation electron 

microscopy of Grapevine 

leafroll-associated virus 

4 strain Ob virions 

decorated with Mab37a. 

In Western blot analysis, MAb37a reacted to a dominant protein with an estimated 

molecular mass of approximately 33,000 Da (Figure 5). 
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Figure 5. Detection of the Grapevine leafroll-associated virus 4 strain Ob by western blot 

analysis with Mab37a. M, molecular mass marker in Daltons. 

d. RT-PCR assays and GLRaV-4 Ob survey of Agroscope virus collection 

A DAS-ELISA assay using MAb37a was used to monitor the prevalence of GLRaV-4 Ob 

in our grapevine virus collection. An RT-PCR test targeting the HEL domain of ORF1a of 

GLRaV-4 Ob was developed using GLRaV-4 Ob-F/R primers (Supplementary Table 1) 

to confirm the infection status. Three other accessions from our collection tested positive 

for GLRaV-4 Ob by ELISA and by RT-PCR: Chiliaki Chjornyj, Y276 and AA42 (Fig. 5). To 

ascertain viral infection, amplicons from these accessions were sequenced, yielding 

nucleotide sequences with 88 to 96% identity to GLRaV-4 Ob. The three accessions 
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infected with GLRaV-4 Ob were also tested with the primer set LRamp-F/R reported by 

Abou Ghanem-Sabanadzovic (2012). With this primer set, a fragment with the expected 

size was amplified from all three accessions (data not shown). Amplicons were 

sequenced to verify the specificity of PCR products: amplicon sequence identity varied 

from 88% to 98%. 

Because Ito et al. (Ito et al 2013) reported a mixed infection of GLRaV-4 and 

GLRaV-7 in a grapevine, we decided to evaluate the GLRaV-7 infection status of the 

different materials used in this study. GLRaV-7 infection was assessed by RT-PCR using 

different pairs of specific primers. Each RT-PCR amplification product was sequenced to 

verify its identity. Six accessions tested positive for GLRaV-7 (Fig. 5). The accessions 

Chiliaki Chjornyj, Y276 and AA42 were co-infected with GLRaV-4 Ob and GLRaV-7. The 

Otcha bala accession repeatedly tested negative for GLRaV-7 by RT-PCR using 5 

different primer pairs. 

5. Discussion 

Grapevine leafroll disease has a complex aetiology; different viral species belonging to 

different genera in the family Closteroviridae are associated with the disease (Martelli 

2014). In this study, we described the infection of an Otcha bala grapevine accession 

from our viral collection by clostero-like virus particles. Graft-inoculation of this grapevine 

accession to the leafroll-indicator Gamay resulted in typical leafroll symptoms. To identify 

the virus responsible for the leafroll symptoms, we characterized the virome of the Otcha 

bala accession using a pyrosequencing approach. De novo assembly generated a 

consensus sequence and revealed the presence of a divergent strain of GLRaV-4, which 

we propose to name GLRaV-4 Ob. Four viruses were identified in the diseased Otcha 
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bala grapevine, including GLRaV-4 Ob in the family Closteroviridae. However, GLRaV-4 

Ob was the only closterovirus detected in this vine; therefore, this virus was considered 

to be the agent responsible for the leafroll symptoms observed on the Gamay grapevine.  

Similar to other viruses in the family Closteroviridae, the GLRaV-4 Ob genome possesses 

two large gene modules. One module is responsible for genome replication (MET, HEL 

and RdRp), whereas the other module includes five genes (p5, HSP70h, p60, CP and 

p23) responsible for intercellular transport and virion assembly (Dolja et al 2006). GLRaV-

4 Ob’s genomic organization and size are similar to viruses of subgroup II of the genus 

Ampelovirus (Martelli et al 2012, Thompson et al 2012). For example, the p23 ORF of 

GLRaV-4 Ob does not show any significant homology with CP ORFs and does not contain 

a closterovirus coat protein domain (pfam 01785). Thus, minor CP (CPm) is absent in 

GLRaV-4 Ob, as in all other GLRaV-4 strains (Naidu et al 2014). In contrast, members of 

subgroup I of the genus Ampelovirus, such as GLRaV-1 and GLRaV-3, all possess at 

least one CPm ORF in their genomes (Maree et al 2013). Furthermore, GLRaV-4 Ob 

consistently grouped with viruses of the GLRaV-4 cluster in subgroup II of the genus 

Ampelovirus in phylogenetic analyses performed on the HSP70h gene (Figure 6). 



 

88 
 

 

Figure 6. Unrooted phylogram constructed using a multiple alignment of heat shock 70 

protein homolog amino acid sequences from some members of the genera Ampelovirus 

and Velarivirus. The scale represents 0.2 amino acid substitutions per site. The 

percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test is shown next to the branches. 

Despite sequence similarity with other GLRaV-4 strains, GLRaV-4 Ob has several 

genomic features that differentiate this strain from others. i) This virus contains the 

smallest genome among viruses associated with grapevine leafroll disease. ii) The length 

of the RdRp ORF in GLRaV-4 Ob is larger than that in other GLRaV-4 strains (Table 2).  

 RdRp HSP70h CP 
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Identity 

(%) 

 

Size (aa) 

 

Identity 

(%) 

 

Size (aa) 

 

Identity 

(%) 

 

Size (aa) 

GLRaV-4 Ob  526  533  261 

GLRaV-4 AA42 98 *189 98 *173 93 261 

GLRaV-4 strain Ru1 n.a. n.a. 94 *520 93 261 

GLRaV-4 strain Ru2 n.a. n.a. 94 *520 98 261 

GLRaV-4 74 517 71 533 77 272 

GLRaV-4 strain 5 76 517 69 533 78 269 

GLRaV-4 strain 6 78 517 69 533 76 269 

GLRaV-4 strain 9 76 517 70 533 75 272 

GLRaV-4 strain Pr 77 517 69 533 78 273 

GLRaV-4 strain Car 76 516 68 534 77 267 

PMWaV-1 58 525 59 509 57 257 

PMWaV-3 56 525 60 533 67 262 

PBNSPaV 38 525 50 529 30 325 

GLRaV-3 33 533 33 549 15 313 

Table 2. Amino acid sequence identities and the sizes of different genome products 

from viruses of the genus Ampelovirus. n.a.: not available; *: partial sequence. 

iii) The p5 ORF of GLRaV-4 Ob overlaps the RdRp ORF, whereas other members 

of the GLRaV-4 cluster have an intergenic region between those two ORFs (Abou 

Ghanem-Sabanadzovic et al 2012, Thompson et al 2012). Other ampeloviruses that 

share these features with GLRaV-4 Ob include Plum bark necrosis stem pitting-

associated virus (PBNSPaV) and Pineapple mealybug wilt-associated viruses 1 and 3 

(PMWaV-1 and PMWaV-3) (Melzer et al 2008, Sether et al 2009).  

MAb37a was raised against accession Y276, which was initially thought to be 

infected only by GLRaV-7, and was therefore reported to be specific to GLRaV-7 (Rigotti 
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et al 2006). In this work, the double infection (GLRaV-7 and GLRaV-4 Ob) of the Y276 

source was demonstrated. Western blot analysis indicated that MAb37a reacted to a 

structural protein with an apparent molecular weight of approximately 33 kDa (Fig. 4). 

Coat proteins of other GLRaV-4 strains have been reported to have similar molecular 

weights ranging from 31 to 35 kDa as estimated by SDS-PAGE (Besse et al 2009, Gugerli 

et al 2009b, Rigotti et al 2006). This molecular weight is larger than the expected 

molecular weight calculated from the CP amino acid sequences of GLRaV-4 strains (circa 

30 kDa). However, such differences between theoretical molecular weight and SDS-

PAGE estimates are common (Rubinson et al 1997). MAb37a also reacted with the 

source AA42 (coinfected with GLRaV-7 and GLRaV-4 Ob), but not with the Pinot noir 23 

source (infected only by GLRaV-7) as demonstrated by Western blot (Fig. 4), ELISA (Fig. 

5), and IPEM (data not shown). These two GLRaV-7 isolates have been sequenced, and 

their coat proteins share high amino acid sequence homology (identity: 96.3%, similarity: 

99%) (Al Rwahnih et al 2012, Jelkmann et al 2012). Moreover, three additional 

accessions infected by GLRaV-7, but not by GLRaV-4 Ob, were also tested and they did 

not react with MAb37a. Therefore, common epitopes between GLRaV-4 Ob and GLRaV-

7 do not seem to exist and Mab37a should be considered to be specific to GLRaV-4 Ob 

and not to GLRaV-7, as stated previously. 

The GLRaV-4 Ob sequences determined in this study showed 93-98% identity with 

the previously reported GLRaV-4 Ru sequences at the amino acid level (Ito et al 2013). 

Furthermore, the serological relatedness between GLRaV-4 Ob and GLRaV-4 Ru was 

demonstrated in this study using MAb37a in DAS-ELISA (Fig. 5). GLRaV-4 Ob and the 

published partial sequences of GLRaV-4 Ru1 and 2 are 87 and 88% identical at the 
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nucleotide level, respectively. These two variants share a common epitope recognized by 

MAb37a; however, this epitope is not present in other GLRaV-4 strains because no cross-

reactivity was observed in DAS-ELISA against GLRaV-4, GLRaV-4 strain 5, GLRaV-4 

strain 6 and GLRaV-4 strain 9 (data not shown). 

The serological data were in agreement with the molecular data and strongly 

supported the conclusion of Ito et al. (2013) that GLRaV-4 Ob, is similar to variant GLRaV-

4 Ru, belongs to a distinct strain of the GLRaV-4 species. Furthermore, the amino acid 

identities between taxonomically relevant genes of GLRaV-4 Ob and other members of 

the GLRaV-4 species were between 68-78% (Table 2). The International Committee on 

Taxonomy of Viruses (ICTV) adopted an amino acid divergence threshold of 25% for 

RdRp, HSP70h and CP for the genus Ampelovirus (Thompson et al 2012), making 

GLRaV-4 Ob a highly divergent strain. Therefore, GLRaV-4 Ob should be considered a 

more diverse strain of the GLRaV-4 species. GLRaV-4 strain Car is another example of 

a more diverged member of GLRaV-4 cluster (Abou Ghanem-Sabanadzovic et al 2010).  

A number of studies have utilized different starting materials for deep sequencing, 

including purified viral particles (Melcher et al 2008), total RNA (Al Rwahnih et al 2009, 

Wylie and Jones 2011), small interfering RNAs (Kreuze et al 2009, Seguin et al 2014) 

and double-stranded RNAs (Al Rwahnih et al 2011, Al Rwahnih et al 2012, Coetzee et al 

2010). In this study, virus particles were first purified using ultracentrifugation before 

applying the deep sequencing techniques. This approach allowed us to obtain the 

complete genomic sequence of a closterovirus. The characterization of a new virus or 

strain is particularly tedious and laborious for woody crops due to low concentrations of 

the virus or due to the presence of inhibitors such as polyphenols that may interfere with 



 

92 
 

virus purification and/or nucleic acid amplification techniques (Candresse et al 2013). 

Furthermore, mixed infections and the extreme diversity of viruses infecting grapevines 

represent challenges for studying grapevine viruses. As previously reported (Al Rwahnih 

et al 2009, Giampetruzzi et al 2012, Studholme et al 2011, Wu et al 2010), the results 

presented here demonstrate the utility and value of applying deep sequencing technology 

to characterize new viral pathogens and to study viral disease aetiology. 

Serological and molecular data revealed that three grapevine accessions in our 

collection (Y276, Chiliaki Chjornyj, and AA42) are co-infected with GLRaV-4 Ob and 

GLRaV-7. Grapevines are prone to infection with several viruses and viral variants; thus, 

simultaneous infection by two or more viruses in the same grapevine plant is common (Al 

Rwahnih et al 2009, Goszczynski 2013, Hu et al 1990, Prosser et al 2007, Sharma et al 

2011). For example, Chasselas 8/22 is co-infected with GLRaV-2, GLRaV-4 strain 5, 

GLRaV-4 strain 6 and an unidentified virus with isometric morphology (Gugerli et al 1997, 

Poudel et al 2012). Previously, Chiliaki Chjornyj was reported to be co-infected with 

GLRaV-7 and GLRaV-4 Ru (Ito et al 2013). Importantly, for the first time, our molecular 

and serological examinations of grapevine accession AA42 revealed a mixed infection of 

two members of the family Closteroviridae, GLRaV-7 and GLRaV-4 Ob.  

GLRaV-7 was originally reported in a symptomless white-berried accession from 

Albania (AA42) that induced leafroll symptoms when grafted onto Cabernet Sauvignon 

indicators (Choueiri et al 1996). Because no other closteroviruses were identified in AA42, 

GLRaV-7 was considered the causal agent responsible for leafroll symptoms (Martelli et 

al 2012). However, different authors have reported that GLRaV-7 infections cause no or 

uncertain leafroll symptoms (Al Rwahnih et al 2012, Avgelis and Boscia 2001, Morales 
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and Monis 2007, Rowhani et al 2012). Our findings suggest that the leafroll symptoms 

from the AA42 isolate may not be related to GLRaV-7 infection as reported previously but 

is due to GLRaV-4 Ob. To the best of our knowledge, no case of GLRaV-7 infection 

associated with leafroll symptoms has been reported where co-infection with other 

closteroviruses can be completely excluded. Pinot noir 23 is the only grapevine accession 

in which GLRaV-7 Swi is present as a unique closterovirus (Al Rwahnih et al 2012), and 

this isolate does not induce any leafroll symptoms in Pinot noir and Cabernet sauvignon 

(Al Rwahnih et al 2012). Because GLRaV-7 cannot be conclusively associated with 

symptomatic infection, this virus may not be a leafroll-causing agent. Our findings support 

the proposition made by Al Rwahnhi et al. (2012) to replace the name “GLRaV-7”. 

Interestingly, a situation similar to leafroll disease and GLRaV-7 may exist in 

cherries, another long-lived vegetatively propagated plant species. Little cherry viruses 1 

and 2 are two species of the family Closteroviridae reported to be associated with little 

cherry disease (Jelkmann and Eastwell 2011). LChV-2 from the genus Ampelovirus 

induces typical little cherry disease symptoms in sweet and sour cherries (Jelkmann et al 

2008). In contrast, LChV-1, similar to GLRaV-7 belongs to the newly proposed genus 

Velarivirus; symptoms of LChV-1 infection are milder or absent because some isolates 

may not produce typical symptoms of little cherry disease (Katsiani et al 2014, Matic et al 

2009, Schröder and Petruschke 2010). 

In conclusion, this study describes a new virus that induces leafroll symptoms on 

cv. Gamay indicators. The serological and sequencing data reported here indicate that 

this virus belongs to subgroup II of the genus Ampelovirus. Therefore, we suggest the 

name Grapevine leafroll-associated virus 4 strain Ob (GLRaV-4 Ob) for this virus. This 
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work clearly demonstrates that two closteroviruses are co-infecting the AA42 grapevine, 

the accession from which GLRaV-7 was originally reported. The results presented here, 

together with previous reports of symptomless infection, suggest that GLRaV-7 is not 

associated with leafroll disease of grapevines. Future studies will be necessary to 

evaluate the phenotype of GLRaV-7 infections in grapevines definitively.  
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Chapter IV. Metagenomic diagnostics for the simultaneous detection of multiple 

pathogens in human stool specimens from Côte d’Ivoire: a proof-of-concept study 
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1. Abstract 

Background: The intestinal microbiome is a complex community and its role in influencing 

human health is poorly understood. While conventional microbiology commonly attributes 

digestive disorders to a single microorganism, a metagenomics approach can detect 

multiple pathogens simultaneously and might elucidate the role of microbial communities 

in the pathogenesis of intestinal diseases. We present a proof-of-concept that a shotgun 

metagenomics approach provides useful information on the diverse composition of 

intestinal pathogens and antimicrobial resistance profiles in human stool samples. 

Methods: In October 2012, we obtained stool specimens from patients with persistent 

diarrhoea in south Côte d’Ivoire. Four stool samples were purposefully selected and 

subjected to microscopy, multiplex polymerase chain reaction (PCR), and a 

metagenomics approach. For the latter, we employed the National Centre for 

Biotechnology Information nucleotide database and screened for 36 pathogenic 

organisms (bacteria, helminths, intestinal protozoa, and viruses) that may cause digestive 

disorders. We further characterized the bacterial population and the prevailing resistance 

patterns by comparing our metagenomics datasets with a genome-specific markers 

database and with a comprehensive antibiotic resistance database. 

Results: In the four patients, the metagenomics approach identified between eight and 11 

pathogen classes that potentially cause digestive disorders. For bacterial pathogens, the 

diagnostic agreement between multiplex PCR and metagenomics was high; yet, 

metagenomics diagnosed several bacteria not detected by multiplex PCR. In contrast, 

some of the helminth and intestinal protozoa infections detected by microscopy were 

http://genomebiology.com/authors/instructions/research#formatting-abstract
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missed by metagenomics. The antimicrobial resistance analysis revealed the presence 

of genes conferring resistance to several commonly used antibiotics. 

Conclusions: A metagenomics approach provides detailed information on the presence 

and diversity of pathogenic organisms in human stool samples. Metagenomics studies 

allow for in-depth molecular characterization such as the antimicrobial resistance status, 

which may be useful to develop setting-specific treatment algorithms. While 

metagenomics approaches remain challenging, the benefits of gaining new insights into 

intestinal microbial communities call for a broader application in epidemiologic studies. 

2. Background 

An accurate diagnosis of diseases is crucial to identify the causative pathogen(s) giving 

rise to specific clinical syndromes, and is necessary for targeted treatment and 

personalized patient management (Khoury and Evans 2015, Pawlowski et al 2009). The 

interpretation of diagnostic test results can be straightforward when a specific pathogen 

is detected in a sample obtained from a normally sterile body compartment (e.g., synovial 

fluid in joint infections or cerebrospinal fluid in meningitis). However, diagnosis in 

specimens from the upper respiratory tract or the gastrointestinal tract remains 

challenging, as colonization with various microorganisms commonly occurs and their 

pathogenic potential and virulence may vary considerably (Frickmann et al 2015, Wessels 

et al 2014). 

Diarrheal diseases and related digestive disorders may be caused by more than 40 

different bacterial, parasitic, and viral pathogens (Becker et al 2013). A combination of 

several laboratory procedures has to be performed to cover the most common infectious 

agents with sufficient diagnostic accuracy (Knopp et al 2008). The epidemiology of the 
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causative pathogens is highly setting-specific, e.g., parasitic pathogens (helminths and 

intestinal protozoa) are much more common in tropical and subtropical areas, whereas 

bacteria prevail in industrialized countries (Fagundes-Neto 2013). However, quality data 

from tropical countries are scarce. In recent years, molecular diagnostic techniques, such 

as polymerase chain reaction (PCR) assays, have considerably improved the diagnostic 

yield of microbiologic stool examinations (Halligan et al 2014, McAuliffe et al 2013). In 

parallel, the application of these highly sensitive tools in clinical practice has brought to 

light that co-infection with several pathogens is the rule rather than the exception 

(Frickmann et al 2015, Steinmann et al 2010). Additionally, infectious agents that were 

previously thought to occur exclusively in symptomatic patients have been detected in 

healthy controls (Becker et al 2015b), which calls for the inclusion of asymptomatic 

controls in epidemiologic studies (Becker et al 2015a, Dubourg and Fenollar 2015). Taken 

together, these observations suggest that complex interactions between several intestinal 

pathogens and the ‘normal’ gut microflora rather than the presence of a single infectious 

agent may determine whether or not an individual develops clinical symptoms (e.g., 

diarrhoea) (Kinross et al 2011). However, little is known regarding the exact composition 

of the gut microbiome in patients and asymptomatic controls and its implications for 

human health. 

Conventional diagnostic methods for pathogen detection in human stool samples are 

relatively cheap and easy to use (e.g., stool microscopy for parasites and bacterial stool 

culture), but they are less sensitive than molecular assays (Zboromyrska et al 2014). As 

an alternative, commercially available molecular assays such as the Luminex 

Gastrointestinal Pathogen Panel (GPP) (Wessels et al 2014) for the detection of a broad 
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range of pathogens have been developed. However, flexibility and adaptation of these 

assays with regard to genetic variation and new pathogens remain difficult. The 

emergence of new technologies, such as next-generation sequencing, as well as parallel 

optimization of bioinformatics software bring about opportunities in the field of infectious 

disease diagnostics. The rapidly growing field of metagenomics already provided new 

insights into the gut microflora (Human Microbiome Project 2012, Karlsson et al 2013, 

Sun and Relman 2013) and has deepened our understanding of the importance and links 

of intestinal micro-organisms (De Filippo et al 2010, Proal et al 2011, Scher et al 2013) 

with various health conditions. Metagenomics is a combination of research methodologies 

aimed at characterizing complex microbial communities without isolating or culturing 

organisms (Handelsman 2004). It is a powerful tool to study the complete range of 

pathogenic organisms, the so-called pathobiome, and thus generates highly valuable 

baseline information on rare pathogens, unculturable bacteria and multiple infections, 

which are common in low- and middle-income countries (Phan et al 2014, Steinmann et 

al 2010). Another important application of a metagenomics approach is its potential to 

analyse sequence datasets with several databases, thereby allowing for a distinct 

characterization of pathogens and antimicrobial resistance genes. Hence, this approach 

can provide specific health-relevant information on the patient and may guide the clinician 

toward personalized health care. 

Here, we present a proof-of-concept study using a metagenomics approach to 

investigate the composition of the intestinal bacterial, parasitic, and viral flora in stool 

samples obtained from patients with persistent diarrhoea in Côte d’Ivoire. Additionally, 

the metagenomics data were compared to conventional diagnostic techniques and 
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multiplex PCR. Practical aspects of metagenomics in the field of medical diagnostics and 

public health are discussed. 

3. Methods 

a. Ethics statement 

The stool samples analysed here were obtained during a study on persistent diarrhoea in 

southern Côte d’Ivoire (Becker et al 2015b). The study protocol was approved by the 

institutional research commissions of the Swiss Tropical and Public Health Institute 

(Swiss TPH; Basel, Switzerland) and the Centre Suisse de Recherches Scientifiques en 

Côte d’Ivoire (CSRS; Abidjan, Côte d’Ivoire). The study was cleared by the Directorate of 

the Hôpital Méthodiste in Dabou. The study is registered on Current Controlled Trials 

(http://www.controlled-trials.com; identifier ISRCTN86951400). All participants were 

informed in detail about the aims and procedures of the study and written informed 

consent was obtained before stool collection and any laboratory investigation. 

b. Study area and population 

The study was conducted in October 2012 in Dabou and surrounding villages, located 

some 30 km west of Abidjan, the economic capital of Côte d’Ivoire. The study was 

embedded in a preliminary investigation to identify a suitable setting for a subsequent 

multi-country study on the aetiology of persistent diarrhoea (≥2 weeks) and persistent 

abdominal pain (≥2 weeks) in resource-constrained settings of Africa and Asia (Becker et 

al 2015b, Polman et al 2015). 
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c. Field and laboratory procedures 

Details of the study area, inclusion criteria, patients and asymptomatic controls, and 

clinical and laboratory procedures have been described elsewhere (Becker et al 2015b). 

In brief, fresh stool samples from individuals with persistent diarrhoea as defined by the 

World Health Organization (WHO; ≥3 loose stools per day for ≥2 weeks) were obtained 

and a short clinical questionnaire was administered. The stool samples were processed 

at the laboratory of the Hôpital Méthodiste in Dabou, using the following suite of laboratory 

examinations for parasite diagnosis: (i) Kato-Katz technique for Schistosoma mansoni 

and soil-transmitted helminths (Ascaris lumbricoides, hookworm, and Trichuris trichiura); 

(ii) Baermann funnel concentration for Strongyloides stercoralis and hookworm; (iii) Koga 

agar plate for S. stercoralis and hookworm; and (iv) formalin-ether concentration 

technique applied to fixed stool samples for helminths and intestinal protozoa. 

Additionally, rapid diagnostic tests (RDTs) were used for the detection of Clostridium 

difficile (synonymous: Peptoclostridium difficile), Cryptosporidium spp., and Giardia 

intestinalis. Small aliquots of stool samples were transferred at ambient temperature to a 

reference laboratory in Europe (Institute of Medical Microbiology and Hygiene; Homburg, 

Germany) for post-hoc molecular diagnosis using the Luminex GPP multiplex PCR 

(Becker et al 2015b). Upon arrival in the reference laboratory, samples were stored 

at -20°C pending further examination. For the current study, four purposefully selected 

stool aliquots were sent to Spiez Laboratory (Spiez, Switzerland) for in-depth analysis 

using shotgun metagenomics. 
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d. Preparation of nucleic acids 

From each of the four stool samples, 150 mg were taken to extract nucleic acids in 50 μl 

nuclease-free water using an Isolate Faecal DNA Kit (Bioline; London, UK), following the 

manufacturer’s instructions. Concentrations were measured on a Qubit 2.0 fluorometer 

(Life Technologies; Darmstadt, Germany) using the dsDNA high-sensitivity assay. 

e. Sequencing and data availability 

Data libraries were prepared with 10 μl of each sample using Nextera XT library kits 

(Illumina; San Diego, USA) and the MiSeq platform (Illumina; San Diego, USA) was used 

to sequence the libraries in 2×250 base pairs (bp) paired-end mode. An in-house 

developed Perl pipeline was used to process the sequence datasets. The pipeline 

consists of three main steps: (i) pre-processing and curation of the datasets; (ii) assembly 

of the curated sequences; and (iii) comparison of the assembled sequences to various 

databases. 

Pre-processing was further sub-divided in three steps; namely (i) quality control; (ii) 

filtering of human sequences; and (iii) assembly of the datasets. The tool FastQC 

(Andrews 2010) version 10.1 was used to generate quality reports. The suite ea-utils 

(Aronesty 2011) version 1.1.2 was used to remove reads not passing the proprietary 

CASAVA filter of Illumina. The same software was employed to remove bases with a 

quality score below Q20 both at the 5’ and 3’ ends. Using Bowtie 2 version 2.2.3 

(Langmead and Salzberg 2012) against Homo sapiens reference genomes allowed to 

filter and remove human-related sequences. Of note, no sequences pertaining to the 

human genome were analysed during this study. 
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The remaining reads were assembled using MIRA (Chevreux et al 1999) version 

4.0.2 on an Ubuntu-based 24 cores and 256 GB RAM workstation. MIRA was used in “de 

novo” and “accurate” mode with four assembly passes (nop = 4). 

f. Databases employed for metagenomics 

Three databases were used to characterize the four stool samples: (i) National Centre for 

Biotechnology Information nucleotide (NCBI nt); (ii) genome-specific markers (GSMer); 

and (iii) comprehensive antibiotic resistance database (CARD; McArthur et al., 2013). Key 

features of the three databases are summarized in Table 1. Sequences were compared 

to these databases using the basic local alignment search tool (Camacho et al 2009) 

version 2.2.28 configured with database-specific parameters. 

The NCBI nt database (Benson et al 2013) is the largest sequence repository and is 

widely used for genomic sequences analyses. We employed NCBI nt database to screen 

for pathogenic parasites, viruses, and bacteria focusing on 36 sequenced organisms that 

may give rise to persistent digestive disorders (Becker et al 2013). Due to high 

redundancy of sequences between closely related organisms in the NCBI nt database, 

taxonomic results, including identified strains, serovars, and pathovars, were discarded 

in order to ensure that only highly significant results were kept. Moreover, BLASTn 

parameters were kept rather stringent with four BLAST steps with decreasing wordsizes 

(300, 150, 100, and 50) and an E-value cut-off of 10-5. 

The recently published GSMer database (Tu et al 2014) was utilized to screen for 

bacterial strains with a high accuracy. Briefly, GSMer database contains strain-specific 

markers that were selected using a novel k-mer-based approach. It contains over 2 million 
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50-mers markers for 5,418 bacterial strains. For the screening against this database, the 

filtered reads were used and the BLAST analysis was performed using a wordsize of 50. 

The CARD (McArthur et al 2013) is a curated and well-maintained database 

containing sequences of antimicrobial resistance genes. The CARD was added to 

investigate whether a metagenomics approach might also be suitable for identification of 

additional health-relevant molecular characteristics, such as genes that may confer 

resistance to antibiotics. 

The BLAST algorithm was used with the same parameters as for the screening 

against NCBI’s GenBank database. Results from the three BLAST searches were 

analysed in a sample-specific report file using the BioPerl toolkit (Stajich et al 2002). The 

complete taxonomic information for each BLAST hit was retrieved using the NCBI 

taxonomy identifier (taxid). 

4. Results 

a. Data analysis and patient characteristics 

The conceptual framework of the analysis pipeline employed in the current study is shown 

in Figure 1. All four patients (A-D) whose faecal samples were subjected to a 

metagenomics approach had persistent diarrhoea. Additionally, three of these individuals 

concurrently complained of persistent abdominal pain. Of note, one participant was 

infected with the human immune deficiency virus (HIV). Table 2 summarizes patient 

characteristics. 

 

http://genomebiology.com/authors/instructions/research#formatting-results
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b. Identified organisms according to different diagnostic approaches 

Each metagenomics dataset was screened against 36 pathogens, including 

diarrheagenic bacteria, helminths, intestinal protozoa, and DNA viruses (Table 3). The 

key findings from this metagenomics approach, in comparison to conventional stool 

microscopy, RDTs, and multiplex PCR, are summarized in Table 4. In brief, using 

shotgun metagenomics, we identified between eight and 11 potential pathogen classes 

in the four patients. Some pathogens, including Aeromonas caviae, Escherichia coli 

(represented by 7, 1, 6 and 32 different strains, respectively), Campylobacter spp., and 

microsporidia were found in all four samples. Vibrio parahaemolyticus was only found in 

sample A. One C. difficile strain was observed in samples A and B. Traces of Salmonella 

enterica and Shigella spp. were detected in samples A, C, and D. Entamoeba histolytica 

was found in samples B and D. Mycobacterium abscessus was detected in sample D. 

One Vibrio cholerae strain and Yersinia spp. were found in samples B and D, respectively. 

Sequences belonging to the nematode A. lumbricoides and the trematode S. mansoni 

were found in sample B. 

None of the target organisms were identified in sample A, using standard diagnostic 

tools (microscopy and RDTs) and multiplex PCR. Using microscopy, Entamoeba coli was 

found in samples B and C. In addition, A. lumbricoides, Chilomastix mesnili, and 

G. intestinalis were found in sample B, whilst B. hominis was detected in sample C. Use 

of the dual-strip RDT to concurrently test for G. intestinalis and Cryptosporidium spp. 

revealed a positive reaction in sample B for G. intestinalis and for Cryptosporidium spp. 

in sample D. The presence of G. intestinalis and Cryptosporidium spp. in samples B and 

D, respectively, was confirmed using multiplex PCR. 
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c. Performance of metagenomics approach 

A total of 431, 691, 3,967, and 1,056 million bases (MB) were generated for samples A, 

B, C, and D, respectively. The percentage of reads with more than 70% of bases with a 

Phred quality score over Q20 was 82% for sample A, 86% for sample B, 72% for sample 

C, and 78% for sample D. While it took between 171 and 464 min for three of the samples 

to assemble, sample D was running for 6,406 min for a complete assembly on a 48 cores 

machine using the MIRA assembler. Figure 2 shows the quality of assembly for the four 

samples. 

Subsamples of randomly selected reads among the dataset for sample C were 

selected in order to assess the detection rate of the different parameters with various 

amounts of reads. Five subsamples with 1.1, 3.3, 5.5, 7.7, and 9.9 million reads randomly 

selected from the initial 11 million reads of sample C were generated. Figure 3 

summarizes the number of unique taxonomic IDs, unique antimicrobial resistance genes, 

and several pathogenic classes found in the different subsamples. 

Number of taxonomic IDs identified in the different subsamples started at 309 in 

subsample 1 and reached 921 of identified taxonomic IDs for the complete sample. For 

the pathogenic classes, the range spanned from five identified pathogenic classes for 

subsample 1 to 10 identified pathogenic classes for the full sample. Finally, regarding the 

number of unique antimicrobial resistance genes, it ranged from 33 identified genes for 

subsample 1 and 68 identified genes for the complete sample. The number of assembled 

contigs ranged from 22,233 up to 66,341, while the percentage of hits against the NCBI 

nt and CARD databases ranged from 56.31% to 90.98% and from 0.23% to 3.52%, 

respectively. 



 

117 
 

d. Antimicrobial resistance analysis 

Aiming to identify other important health-related aspects, the samples were screened for 

a host of antimicrobial resistance genes, using CARD. Figure 4 summarizes the potential 

antibiotic resistances based on the detection of the corresponding antimicrobial 

resistance genes. 

Resistance genes for four antibiotics from two different antibiotic classes were 

observed in sample A. For sample B, genes were found for 14 antibiotics from six classes, 

including the recently introduced glycylcycline class (i.e., tigecycline). Patient C provided 

a sample where eight different antibiotics resistances from five classes were found. In 

sample D, genes that could potentially provide resistance to 25 different healthcare-

relevant antibiotics from eight classes were detected. 

5. Discussion 

We present a proof-of-concept using a novel metagenomics approach for the diagnosis 

of a wide range of pathogens that may give rise to persistent digestive disorders. We 

purposefully selected four stool samples from well-characterized patients with persistent 

digestive disorders who presented to the hospital of Dabou, south Côte d’Ivoire. Sample 

A was provided by a 1-year-old female with persistent diarrhoea (≥2 weeks). Using all the 

aforementioned diagnostics methods, including multiplex PCR techniques, did not help 

to diagnose the cause of the clinical symptoms. The metagenomics approach enabled 

the identification of various pathogenic organisms that could potentially have caused the 

symptoms. Samples B and C were obtained from children (aged 5 and 12 years), one 

living in a rural and the other in an urban setting. These two samples were selected 
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because persistent diarrhoea in this age group is more likely to be caused by an infection, 

whereas other non-communicable aetiologies occur more often in older age groups. The 

fourth sample stemmed from a 34-year old female, HIV-infected patient. This sample was 

included to determine whether the spectrum of detected pathogens and resistance genes 

would differ significantly between an immunocompromised patient and other individuals 

from the same setting. Due to the immunocompromised state of this patient, it is 

conceivable that the individual may have experienced multiple previous infections (e.g., 

pneumonia and infective gastroenteritis). Because of the scope of this study, placing 

particular emphasis on diagnostic agreement rate between standard diagnostic tools 

(including microscopy and RDTs), a validated molecular tool (Luminex xTAG), and an 

experimental molecular tool (metagenomics), we did not include stool samples from 

asymptomatic controls. We believe that the results of the metagenomics analysis of a 

non-related stool sample would have limited outcomes since the microbiome itself is 

highly diverse and specific to an individual. The stool samples were examined with a suite 

of diagnostic techniques (i.e., microscopy, RDTs, and multiplex PCR), and subsequently 

subjected to a novel metagenomics approach. With regard to helminth diagnosis, our 

metagenomics approach holds promise. While A. lumbricoides was detected in sample B 

both by classical microscopy and metagenomics, S. mansoni was detected in sample B, 

but only with metagenomics. Of note, the full genome sequence of S. mansoni has been 

published in 2009 (Berriman et al 2009). Our findings suggest that metagenomics, 

provided that complete sequence data are available, has a higher detection capacity than 

currently more widely used methods, most importantly stool microscopy (Utzinger et al., 

2015). 
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For intestinal protozoa, particularly Cryptosporidium spp., G. intestinalis, and 

Entamoeba coli, conventional diagnostic techniques were superior compared to our 

metagenomics approach. Indeed, metagenomics failed to detect these pathogens, while 

they were diagnosed with standard microscopy. On the other hand, our metagenomics 

approach proved useful for bacterial diagnosis and allowed retrieval of detailed taxonomic 

information. In comparison to other diagnostic techniques, which usually require a series 

of specific tests for the detection of various pathogens that may give rise to a clinical 

syndrome (e.g., various selective agar plate media for enteropathogenic bacteria), 

metagenomics can – in a single sequencing run – identify an extensive range of human 

health-relevant bacterial pathogens down to the strain level. Indeed, a very large number 

of bacterial genomes are well assembled and annotated. Possibly explained by the higher 

complexity, thus far, only a limited number of eukaryotic genomes have been completely 

assembled and annotated. While this represents a shortcoming for metagenomics, 

numerous projects aim at providing improved genomic data for higher organisms. In view 

of these developments, we speculate that diagnosis of intestinal protozoa using a 

metagenomics approach will become feasible in the not too distant future. 

In order to standardize and further improve the diagnostic yield of a metagenomics 

approach, the establishment of complete syndrome-specific lists (e.g., persistent 

digestive disorders, persistent fevers, and persistent neurological disorders) (Becker et al 

2013, Yansouni et al 2012, Yansouni et al 2013) as well as the establishment of the 

corresponding sequence databases would facilitate such analyses and would further 

reduce the required time to perform these in-depth diagnostics. Additionally, such 

syndrome-specific databases might allow the generation of pathogen-symptoms profiles 
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that could be compared between patients affected with the same syndrome, but with 

different profiles of signs and symptoms. Thereby, variations in the symptomatology could 

potentially be linked with the presence of multiple pathogens and would provide new 

insights into the complex interactions between multiple enteric pathogens, the intestinal 

microbiome, and arising clinical signs and symptoms (Kinross et al 2011). In particular, 

the impact and combined effects of multiple infections could be studied, which is of critical 

importance, as co-infections are the norm rather than the exception in many tropical 

settings (Raso et al 2004, Steinmann et al 2008, Steinmann et al 2010). Further potential 

benefits at the population-level could be the establishment of comprehensive databases 

that provide setting-specific information on prevailing antibiotic resistance mechanisms 

and could thus guide the adaptation and development of context-sensitive guidelines for 

empiric anti-infective treatment of common clinical syndromes. For individual patient 

management, metagenomics data might be used to provide personalized treatment, e.g., 

following the rapid identification of causative pathogens and their antimicrobial resistance 

profile. For example, we could find an elevated number of antibiotic resistance genes in 

sample D, which might be explained by previous anti-infective treatments, which in turn 

would guide personalized intervention. Such highly targeted treatments may even help to 

monitor and prevent the spread of antibiotic resistance development. 

Nevertheless, our study has several limitations. First, the application of 

metagenomics on only four samples – all selected purposefully – does not allow drawing 

inference that could be more widely extrapolated. However, we conducted this study as 

a proof-of-concept and found that metagenomics indeed provides highly relevant data on 
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the composition of the intestinal flora and other health-related factors that may improve 

our understanding of the aetiology and pathogenesis of diarrheal diseases. 

Second, while metagenomics provides highly accurate data, it requires the use of 

next-generation sequencing techniques, which are currently too expensive to be applied 

in resource-constrained settings and many diagnostic centres also in industrialized 

countries. The combined costs of microscopy, including Kato-Katz thick smear (US$ 2 

per sample) and FLOTAC (US$ 2.5 per sample), RDTs (approximately US$ 4 per 

sample), and multiplex Luminex GPP (~US$ 80 per test) approached US$ 100 per sample 

in this study. Compared to a single sequencing experiment, which now costs 

approximately US$ 250, it is still a factor 2-3 more expensive and therefore not yet 

applicable in most contexts. It should be kept in mind, however that metagenomics 

provides significantly more health-relevant information and if optimized and further 

standardized, it might become the method of choice as it allows multiple pathogen 

identification at once. 

Third, we cannot exclude that the quality of extracted nucleic acids has been 

negatively affected by the interruption of the cold chain from the collection of stool 

samples in the hospital in Dabou until final analysis in a European laboratory (Becker et 

al., 2015c). Hence, some information may have been lost. 

Fourth, the application of further diagnostic techniques such as RNA-based meta-

transcriptomics analyses would have further increased the diagnostic yield, i.e., by 

obtaining even more information on the current status of infections, co-infections, 

‘pathogenic synergies’, infections with RNA viruses as well as phenotypically expressed 

antibiotic resistance patterns. 
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Fifth, our metagenomics approach is directly linked to resistance mechanisms of 

various pathogen species. The fact is that resistances might be acquired by different 

mechanisms, including horizontal DNA transfer (e.g., plasmids), and hence, they might 

result from a single point mutation in a gene or the resistance itself might be directly linked 

to the expression level of the corresponding gene. While a metagenomics approach 

allows to draw a general picture of the resistome, it might require some additional 

improvements (e.g., RNA-sequencing), to be able to link antimicrobial resistances to a 

specific bacterial strain. 

In conclusion, we provide a proof-of-concept that a metagenomic approach is a 

powerful diagnostic tool that holds promise to deepen our understanding of infectious 

diseases and their pathogenesis. A large variety of pathogens could be diagnosed in 

clinical samples that remained undetected despite the use of a suite of sensitive 

diagnostic assays, including commercially available multiplex PCR assays. The 

diagnostic accuracy of metagenomics was high for a wide range of bacteria, but less so 

for the detection of parasitic pathogens, which can be explained by the current 

unavailability of sequence data for many human parasites. Hence, before wider 

application, metagenomics need further improvements pertaining to the duration of 

sample analysis, the high costs associated with sequencing, database content and 

quality, and additional tools for sequence comparison need to become available. 

However, it is conceivable that the insights gained from in-depth diagnostic studies 

employing metagenomics will considerably enhance the etiologic understanding, 

diagnosis, and management of diarrheal diseases and potentially other important clinical 

syndromes on local, regional, and global scales. 
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Table 1. Key features of the three databases employed during a proof-of-concept 

metagenomics approach for the diagnosis of multiple pathogens in human stool samples 

in Dabou, south Côte d’Ivoire in October 2012. bp, base-pair; CARD, Comprehensive 

Antimicrobial Resistance Database; GSMer, Genome-Specific Markers database; N.A., 

Not available; NCBI nt; National Centre for Biotechnology Information nucleotide 

database. 

Database Sequence type Number of 

sequences 

Organism spectrum Sequence 

size (bp) 

NCBI nt Publicly available 

sequences 

182,188,746 Any sequenced 

organisms 

N.A. 

GSMer Bacterial strain-specific 

markers 

>2,000,000 5,418 bacterial 

strains 

50 bp 
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CARD Antibiotic resistance genes 2,993 All bacteria N.A. 

 

Table 2. Epidemiological and clinical characteristics of four patients with persistent 

diarrhoea in Dabou, south Côte d’Ivoire, in October 2012. 

Characteristics Sample A Sample B Sample C Sample D 

Residency Dabou (town) Rural village Dabou (town) Dabou (town) 

Sex Female Male Male Female 

Age (years) 1 5 12 34 

Signs and 

symptoms 

Persistent 

diarrhoea, 

nausea, vomiting 

Persistent 

diarrhoea, 

abdominal pain 

Persistent 

diarrhoea, 

abdominal pain 

Persistent 

diarrhoea, 

abdominal pain, 

weight loss 

Previous anti-

infective 

treatment 

No No No Yes (unknown) 

Comorbidity None None None HIV infection 

 

 

Table 3. Summary of 36 pathogens, including bacteria, intestinal protozoa, helminths 

and viruses screened using the metagenomics approach. 

Bacteria Helminths 

Aeromonas spp.; Campylobacter spp.; 
Clostridium difficile; Escherichia coli; 
Mycobacterium spp.; Plesiomonas 

shigelloides; Salmonella spp.; Shigella spp.; 
Tropheryma whipplei; Vibrio spp.; Yersinia 

spp. 

Ancylostoma duodenale; Ascaris 
lumbricoides; Capillaria spp.; Digenea 

(intestinal flukes); Diphyllobotrhium latum; 
Hymenolepsis spp.; Necator americanus; 

Schistosoma spp.; Strongyloides spp.; 
Taenia spp.; Trichuris trichuria  

Intestinal protozoa Viruses 

Chilomastix mesneli; Cryptosporidium spp.; 
Cyclospora cayetanensis; Cystoisospora 

belli; Dientamoeba fragilis; Entamoeba spp.; 
Giardia intestinalis; Microsporidia; Naegleria 

fowleri; Neobalantidium coli; Toxoplasma 
gondii 

Adenoviridae; Bocavirus; Cytomegalovirus 
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Table 4. Comparison of conventional parasitology, rapid diagnostic tests (RDTs), a 

commercial Luminex multiplex PCR and a metagenomics approach for detection of 

intestinal pathogens in four human stool specimens obtained in Dabou, Côte d’Ivoire, in 

October 2012. 

 

Organism list 
Conventional 

parasitology 

Rapid 

diagnostic 

tests 

Luminex 

GPP 
Metagenomics 

% DNA in 

total 

microbiome 

Sample 

A  

Aeromonas spp.       
A. caviae (1 

strain) 0,006 

Peptoclostridium difficile       1 strain 0,034 

Campylobacter spp.       Positive 0,004 

Escherichia coli       7 strains 0,091 

Microsporidia spp.       Positive 0,010 

Salmonella spp.       1 strain 0,013 

Shigella spp.       Positive 0,038 

Vibrio parahaemolyticus       Positive 0,053 

Sample 

B  

Ascaris lumbricoides Positive     Positive 0,013 

Aeromonas spp.       
A. caviae (1 

strain) 0,010 

Peptoclostridium difficile       1 strain 3,485 

Campylobacter spp.     Positive C. jejuni (1 strain) 0,044 

Chilomastix mesnili Positive         

Entamoeba spp. E. coli     E. histolytica 0,032 

Escherichia coli       1 strain 0,012 

Giardia intestinalis Positive Positive Positive     

Mycobacterium abscessus       Positive 0,002 

Microsporidia spp.       Positive 0,004 

Schistosoma mansoni       Positive 0,118 

Shigella spp.     Positive Positive 0,001 

Vibrio spp.       
V. cholerae (1 

strain) 0,026 

Yersinia spp.       Positive 0,006 

Sample 

C  

Aeromonas spp.       
A. caviae (1 

strain) 0,157 

Blastocystis spp. B. hominis         

Campylobacter spp.       Positive 0,002 

Escherichia coli     ETEC 6 strains 0,054 

Entamoeba spp. E. coli     E. histolytica 0,002 

Giardia intestinalis     Positive Positive 0,001 

Microsporidia spp.       Positive 0,002 

Mycobacterium abscessus       Positive 0,041 

Norovirus GI/GII     Positive     

Salmonella spp.       Positive 0,248 

Shigella spp.       Positive 0,017 
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Sample 

D  

Aeromonas spp.       
A. caviae (1 

strain) 0,008 

Campylobacter spp.       Positive 0,001 

Cryptosporidium spp.   Positive Positive     

Escherichia coli     ETEC 32 strains 2,997 

Mycobacterium abscessus       Positive 0,003 

Microsporidia spp.       Positive 0,001 

Salmonella spp.     Positive 3 strains 0,098 

Shigella spp.       1 strain 0,127 

Vibrio cholerae       1 strain 0,005 

Yersinia spp.       Positive 0,001 

 

Figure captions 

Figure 1. Bioinformatics pipeline used to retrieve information relevant to the patients’ 

health from the metagenomics datasets. This graph summarizes the steps required for 

processing raw sequencing reads until the comparison of the prepared reads against 

three different databases. 

 

Figure 2. Comparison of shotgun assembly metrics between four human stool samples 

that were provided by patients with persistent diarrhoea in Dabou, south Côte d’Ivoire, in 

October 2012. The values are summarized in stacked histograms showing the proportion 

of each parameter from each sample compared to the rest of the samples 

 

Figure 3. Assembly comparison of sub-samples of one patient with persistent diarrhoea 

(sample C) in Dabou, south Côte d’Ivoire in October 2012. (A) Observed abundance of 

taxonomic IDs, antimicrobial resistance genes and pathogenic classes from randomly 

selected subsamples of sample C. (B) Number of assembled contigs from the same 

subsamples of sample C and the percentage having a BLASTn hit against the NCBI 

nucleotide database and the comprehensive antibiotic resistance database. 
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Figure 4. Resistome of four diarrheic human stool samples in Dabou, south Côte d’Ivoire, 

in October 2012. The detected antibiotic resistance genes in the stool specimens are 

indicated by black bars. 

Figure 1. 

 
Figure 2.
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Figure 3.  

 
Figure 4. 
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1. Abstract 

Background: Kampala, the capital city of Uganda, is rapidly growing with annual 

population growth rate of up to 5.6%. Combined with unplanned urbanization, this is 

leading to a lack in wastewater treatment infrastructures for most of the 1.8 million 

inhabitants. Consequently, it is plausible that water streams and natural ecosystems 

around the city are heavily polluted, both with organic and inorganic contamination. 

However, specific data on pathogenic microorganisms, which are potentially arising 

health threats for the population, remain scarce. Hence, we performed an in-depth 

analysis using a metagenomics approach to characterize the Nakivubo system including 

its wastewater channel, the surroundings wetlands, and, to some extent, the inner 

Murchison bay. 

Methods: In October 2013, we obtained water samples from 23 locations distributed 

homogeneously within three ecosystems: the Nakivubo channel itself, the wetland areas 

located around it, as well as four samples collected at the Murchison bay, on Lake 

Victoria. The samples were concentrated on-site using tangential flow filtration and 

transferred to Switzerland, where they were sequenced using Illumina’s technology. A 

total of 1.2 billion sequencing reads were generated and compared either after quality 

filtering to a bacterial strain-specific database (GSMer), or after de novo assembly to the 

NCBI nt database. 

Results: Based on the composition of the bacterial communities in the water samples, 

three clearly differentiated clusters could be identified with regards to their microbial 

diversity. A high correlation between Escherichia coli intra-species diversity and the total 

bacterial strains was identified. Using linear regression analyses, it was possible to find 

http://genomebiology.com/authors/instructions/research#formatting-abstract
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strong correlation of the taxonomic composition with distance of several non-channel 

samples with their closest channel samples, allowing us to highlight potential leakage 

points of the Nakivubo channel. The three environmental clusters harbour several 

significant differences in their respective microbial structure. Several pathogenic 

microorganisms could be strongly correlated with wastewater contamination across the 

system.  

Conclusion: This study is an example of the power of metagenomics approaches to 

perform system wide-characterization of the environment. To our knowledge, it is the first 

of its kind, attempting to characterize the main wastewater system in a booming African 

megapolis and trying to find the potentially related health hazards for the human 

populations. We were able to make important statements concerning the system including 

i) that it has a sub-optimal wastewater treatment capacity, ii) that containment potential 

of the wastewater isn’t sufficient, iii) highlight the potential leakage points, and iv) to 

pinpoint potential risks for human health arising from contamination of the environment 

by wastewater.  

2. Introduction 

Kampala is the capital city of Uganda and is located on the northern shores of Lake 

Victoria, at an altitude of 1140 m above sea level. The climate in Kampala is tropical with 

precipitations throughout the year, mainly concentrated during two rainy seasons, the first 

one occurring between March and May and the second one from October to November. 

With an annual population growth of 5,6% and a population of more than 1.5 million 

inhabitants in 2014, it is among the fastest growing cities in sub-Saharan Africa (Statistics 

2001, Vermeiren et al 2012). Despite its fast demographic and overall economic 
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development, arising social and health-related challenges have not yet been fully 

addressed, as can be seen e.g. in the relatively moderate increase of funding in the field 

of water supply (Okuonzi 2004). Considerable population growth in combination with rapid 

urbanization are putting pressure on existing wastewater infrastructures. Indeed, only 

approximately 10% of Kampala’s total population is connected to a sewer, while the large 

majority is relying on on-site sanitation systems such as pit latrines and septic tanks 

(Fuhrimann et al 2014, Fuhrimann et al 2015, Kansiime and Maimuna 1999). Moreover, 

industrial development and urban farming have led to a reduction of wetland systems 

around the city that have previously served as natural wastewater treatment resources 

(Fuhrimann et al 2015, Kansiime and Maimuna 1999, Mbabazi et al 2010). With a surface 

of 5.29 km2 and a total catchment area of over 40 km2 (Emerton et al 1999), the Nakivubo 

wetland is the largest of a series of 12 wetland areas surrounding the city of Kampala. It 

is divided by an old railway line, with the area located north of the railway being composed 

mainly of drained wetland and the area located south of it composed mainly of floating 

wetlands. The Nakivubo wetland also serves as an agricultural ground, with yams and 

sugar cane being the main cultivated crops. As farmers directly re-use wastewater for 

irrigation purposes, any health threats present in the water will impact on the farmers’ 

health and the safety of agricultural products grown in this area. The Nakivubo wetland 

area is also subjected to flooding events, especially during the rainy season, and this puts 

an estimated 12’000 individuals living in the surrounding slums at risk of direct contact 

with wastewater (Kayima et al 2008, Mbabazi et al 2010). Several studies elucidated the 

potential risk of exposure to waste water on human health (Al-Jassim et al 2015, Becerra-

Castro et al 2015, Lu et al 2015, Youenou et al 2016). The World Health Organization 
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(WHO) recommends to assess and quantify standard indicators of water faecal 

contamination, e.g. by microbiological analysis of the number of faecal bacteria in water 

samples (WHO 2011). A recent study by Fuhrimann et al. (2015) reported that the counts 

of colony-forming units (CFUs) of both Escherichia coli and Salmonella spp. along the 

main wastewater treatment system in Kampala, including the Nakivubo channel and 

wetlands, were above the thresholds set by WHO for unrestricted use for irrigation in 

agriculture (WHO 2011). However, detailed phylogenetic and microbiological information 

on the exact composition of pathogenic organisms is scarce in Kampala and other rapidly 

growing urban areas in sub-Saharan Africa (Bateganya et al 2015, Youenou et al 2016).  

Hence, we employed a shotgun metagenomics approach on a set of water samples 

collected along the Nakivubo channel to characterise the microbiological composition of 

this dynamic environment and to further assess potentially arising health consequences 

for the exposed population.  

The overarching aim of this study was to use an advanced molecular approach in 

a resource-constraint setting, namely, metagenomics, to provide an in-depth 

representation of the effective microbial contamination, and potentially human-health 

specific risks, along the main wastewater treatment network in the city of Kampala. We 

aimed at providing a system-wide analysis of the Nakivubo system by, i) grouping 

samples with regards to their microbial profiles, ii) characterizing each group’s 

specificities and iii) focusing our analysis on the distribution of bacterial, eukaryotic, viral 

and fungal pathogens and their relations with wastewater contamination, in this specific 

context. 

3. Methods 
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a. Sampling strategy 

In the frame of this study, a total of 23 water samples were collected at different locations 

distributed all along the wastewater collection network of Kampala city, as shown in 

Figure 1. The samples were collected within one day, to provide a comparable snapshot 

of the bacterial communities. Sample collection was performed in a relatively dry period 

in October 2013. 

 

 

Figure 1. Map of the study area, including Kampala city, the Nakivubo wetland area and 

the inner Murchison Bay (Lake Victoria). This map shows the sampling locations of the 

22 water samples. Samples collected on the channel are coded with C (1-5), samples 
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collected in the wetlands are coded with W (1-14) and samples collected on Lake Victoria 

are coded with L (1-4).  

The 23 samples were labelled belonging to one of the three ecosystems we 

planned to study, namely, (i) the Nakivubo wastewater channel (Samples C1 to C5); (ii) 

the Nakivubo wetlands (Samples W1-W14); and (iii) the inner Murchison bay of Lake 

Victoria (Samples L1-L4). Two samples from the W series (Samples W13 and W14) were 

collected directly at informal communities’ outlets flowing directly into the wetlands. One 

sample from the L series (L3) was collected directly at the city’s freshwater intake, located 

in Gaba, approximately 5.8 kilometres south from the Nakivubo channel outlet. Sample 

L4, located in the middle of the Murchison Bay, approximately 8.2 kilometres south from 

the Nakivubo outlet, serves as a low human-related contamination control. Of note, one 

tube, which contained sample W5 broke during transportation, therefore this sample could 

not be analysed and no results on this specimen can be reported. Hence, 22 samples 

were used for the final analysis. 

b. Sample collection procedure, storage and nucleic acid extraction.  

At each location, a minimum of one litre of surface water was collected. Upon arrival in 

the local laboratory, the samples were directly stored in a fridge at a temperature of 4°C. 

Each sample was then concentrated using a tangential flow filtration unit into a smaller 

volume of approximately 50 ml. The concentrated samples were frozen at -20°C and 

transferred to Switzerland in a cooling box to avoid microbial growth. Upon arrival in 

Switzerland, the 50 ml samples were further concentrated with Amicon® Ultra Centrifugal 
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Filter Units with a molecular cut off of 10K Daltons (Millipore; Billerica, MA, United States 

of America) into a smaller volume of approximately 150 µl. 

Nucleic acids were isolated from 150 µl of the concentrated samples using a 

PowerSoil DNA isolation kit (MO-BIO; Carlsbad, CA, United States of America) following 

the manufacturer’s instruction except for the elution step that was done in 60 µl purified 

water. Extracted samples were quantified on a Qubit 2.0 fluorimeter (Life Technologies; 

Darmstadt, Germany) using the dsDNA high-sensitivity assay. 

c. Sequencing and data analysis.  

DNA libraries were prepared from 30 µl of the different samples using NEBNext Ultra 

(New England Biolabs; Ipswich, MA, USA) library preparation kits. Samples were pooled 

on an Illumina HiSeq 2500 (Illumina; San Diego, CA, USA) in 2x125 base pairs (bp) 

paired-end mode for sequencing. An in-house developed Perl pipeline was used to 

automatize the dataset analysis in three steps, namely (i) a pre-processing step of the 

raw sequences datasets; (ii) an assembly of the curated datasets; and (iii) the comparison 

of the obtained sequences to various databases. 

 Pre-processing of the raw datasets was further divided into two sub-steps, 

including (i) a quality control; and (ii) a quality filtering of raw sequences. The tool FastQC 

(Andrews) in version 10.1 was used to assess the overall sequencing quality and the 

software suite EA-utils (Aronesty 2011) in its version 1.1.2 was used to remove the reads 

not passing the proprietary CASAVA filter from Illumina. The same tool suite was used to 

remove bases with a quality score below Q20 at both 5’ and 3’ ends. The assembly was 

performed using the MIRA assembler (Chevreux 2007) in its version 4.0.2 in de novo and 

accurate modes with four assembly passes for each sample (nop= 4). Computing-wise, 
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a high-performance cluster running under CentOS 6.5 was used and 24 computing cores 

and >512 gigabyte RAM were allocated to each assembly job. 

 The third step of the analysis was the comparison to two different databases, 

namely (i) the National Centre for Biotechnology Information nucleotide (NCBI nt) 

database (Benson et al 2013); and (ii) the genome-specific markers database (GSMer; 

(Tu et al 2014)). The comparison was performed using the BLAST software in its version 

2.2.28+ (Camacho et al 2009). The features of the comparative analyses against the two 

different databases are summarized in Table 1. The complete taxonomic information for 

each BLAST hit was retrieved using the NCBI taxon identifier (taxid) and the 

corresponding BioPerl (version 1.2.9; (Stajich et al 2002)) features. 

 

Database NCBI nt GSMer 

Sequence type Publicly available sequences 
Bacterial strain-specific 

markers 

Number of 

sequences 
182’188’746 > 2’000’000 

Organism 

spectrum 
Any sequenced organisms 5418 bacterial strains 

Sequence size (bp) N.A. 50 bp 

BLASTn 

parameters 

WS: 300 -> 150 -> 100 -> 50; 

EVC: 10^-5 
WS: 50; EVC: 10^-5 

Sequenced 

compared 
Assembled contigs Curated reads 

Information 

obtained 

Prevalence of non-bacterial 

pathogens with quantitative 

information 

Prevalence of bacterial 

strains with quantitative 

information 

Table 1. Databases used in the metagenomics approach. This table shows the databases 

that were used in the bioinformatics workflow and highlights their characteristics. bp = 

base pairs; WS = Word size; EVC = E-value cut-off. 
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4. Results 

a. Sequencing profiles.  

Measured DNA concentrations ranged from 1.77 ng/µl to 19.2 ng/µl in a volume of 60 µl 

for a total DNA minimum of 106.2 ng and up to a maximum of 1’152 ng per sample. A 

total of 1’240’255’828 reads were sequenced for the twenty-two samples with an average 

of 56’275’265 reads per sample. On average, 22% of the reads were assembled into 

approximately 292’000 contigs with a N50 size of 645 base pairs (bp). Out of these 

~300’000 contigs, approximately one quarter were contigs larger than 500 bp with a N50 

of 1’421 bp. When utilising BLAST analysis, an average 44 % of the assembled contigs 

in each sample had a hit in the NCBI database. With regard to the GSMer database, an 

average of 11’588 matching reads or markers were found for each sample. Detailed 

results are provided in Supplementary Table 1. 

b. Spatial relationships.  

Using the taxonomic profiles derived from the comparison of the datasets with the GSMer 

database, we performed a hierarchical analysis of all samples, as shown in Figure 2. 
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Figure 2. Sample-to-sample relationships. Panel A. Correlation-based hierarchical 

cluster analysis of water samples based on the relative abundance of bacterial strains. 

The tree is constructed using the group average method and a Pearson correlation matrix. 

The dendrogram shows the degree of similarity between the different samples (scale = 

1). The three clusters that were selected for the rest of the study are highlighted in orange 

colour (cluster 1), green colour (cluster 2) and blue colour (cluster 3). Panel B shows the 
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total number of observed strains, per sample. The average cluster diversity is shown in 

dashed lines. Panel C shows the Shannon diversity index, per sample. The average value 

of the Shannon diversity per cluster is shown in dashed lines. Panel D. Radial 

representation of the sample-to-sample correlations coloured by cluster. The thicker the 

connecting line, the stronger the correlation between the samples.  

All samples collected on Lake Victoria (L1-L4) cluster together in the most distant 

ramification, that we named cluster 3. The rest of the samples is separated in two distinct 

branches, namely, (i) the samples collected at the channel locations (C1-C5) together 

with samples collected at six wetland locations (W3, W6, W7, W8, W10 and W13); and 

(ii) the remaining six wetland samples (W1, W2, W4, W11 and W12) that we subsequently 

refer to as cluster 1 and 2, respectively. The average number of bacterial strains found in 

cluster 1 (n = 493.5) was significantly higher than the average number of strains found in 

cluster 2 (p-value = 4.3*10E-4) and cluster 3 (p-value = 0.003). In contrast, the difference 

between cluster 2 and 3 was not significant. Similarly, the mean Shannon diversity index 

(SDI), an indicator taking into account both abundance and evenness within a sample, 

was significantly lower in cluster 2 (p-value = 0.003) and cluster 3 (p-value = 2.2*10E-15) 

than in cluster 1. SDI of cluster 2 and 3 is also significantly different (p-value = 2.4*10E-

7). 

We further used the GSMer derived profiles compare the number of identified E. coli 

strains against the total amount of bacterial strains per sample, using a linear regression 

analysis as shown in Figure 3.  

 



 

149 
 

 

Figure 3. Linear regression analysis of E. coli strains (ECS) and the total number of 

observed strains (NOS). This regression shows the relation between the intra species 

diversity of Escherichia coli and the total diversity. (R2 = 0.958, p-value < 1E10-4). The 

total number of observed species can be estimated along the Nakivubo channel using the 

following equation: NOS = 62.2 + 7.94*ECS. 

 

To assess the effect of distance to channel on the bacterial composition, we 

performed a linear regression analysis to assess the relation between distance and 

taxonomic correlation throughout the Nakivubo channel (Supplementary 1A) as well as 

the relations between the distance to the channel and the composition of the wetland 

samples from cluster 1 (Supplementary 1B-1G). 

c. Specificities of the environmental clusters.  
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Using the Lefse pipeline, we screened the GSMer profiles for bacterial strains that were 

significantly different in relative abundance between the three enviromental clusters. The 

results of this analysis are shown in Figure 4.   

 

 

Figure 4. Cluster related-biomarkers. The cladogram shows the statistically significant 

differences (p-value < 0.01, LDA > 4.0) in abundance of bacterial taxa between the three 

environmental clusters. For clarity purpose, we show here only the significant differences, 

down to the taxonomical level of order. For complete list of identified organisms, see 

Supplementary Table 2. Members from the Archaea and Bacteria domains are shown 

here. FCB_group = Bacteroidetes/Chlorobi group. 
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          The bacterial composition of the clusters harbours various specificities. All results 

discussed in this section which involve taxonomic levels below “order” can be consulted 

in Supplemental Table 2. In brief, abundance differences include gram-positive bacteria 

from the Firmicutes and Actinobacteria phyla, which are over-abundant in samples from 

cluster 1. The differences in Clostridia abundance include species from the Blautia and 

Ruminococcus genera whereas differences in the Bacilli include species from the 

Enterococcus, Streptococcus and Exiguobacterium genera. Escherichia coli and 

Enhydrobacter aerosaccus are also over-represented in cluster 1. Over-abundance of 

Prevotella and Bacteroides genera, within the gram-negative Bacteroidetes phylum and 

of Methanosaeta concilii (Phylum Euryarcaeota) are additional characteristics of cluster 

1 samples. For cluster 2, we highlighted the overabundance of one phylum, namely the 

Proteobacteria. This overrepresentation includes members from the Alpha- 

(Novosphingobium spp.), Beta- (Comamonas testosteroni and Dechloromonas 

aromatica), Delta- (Geobacter spp.) and Gammaproteobacteria classes (Pseudomonas, 

Acinetobacter, Pasteurella and Aeromonas genera). Cluster 3 is characterized by the 

over-abundance of Cyanobacteria, with Microcystis aeruginosa being the main driver of 

this difference. 

d. Risks associated with wastewater contamination.  

To assess the potential risk caused by wastewater contamination on human health, we 

assessed the relative abundances of a set of known waterborne bacterial pathogens 

throughout the Nakivubo system, which we refer to as the “pathobiome” (Figure 5A). We 

expanded this analysis to eukaryotic parasites and viral pathogens (Figure 5B) that were 

identified from the comparison of de novo assembled contigs with the NCBI nt database. 
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Figure 5. Prevalence of important waterborne pathogens across the Nakivubo system. 

Panel A. Bar chart representing the cumulative abundance of bacterial pathogens at the 

different sampling locations. The line indicates the number of pathogenic classes for each 

sample. Panel B. Bar chart representing the cumulative abundances of parasitic, fungal 

and viral pathogens in the Nakivubo system. The line shows the number of pathogenic 

classes found at each sampling location. For clarity, samples are sorted per 

environmental cluster. 

In terms of diversity, the most diverse bacterial pathobiomes are found in samples 

C3, C4 and W3 with seven pathogenic classes (PC) followed by C1 and C5 (PC = 6) and 

samples collected at locations C2, W13, W10, W7 and W14 (PC = 5). The bacterial 

pathobiome represents more than 1% of the total bacteria in seven samples (C1, C4, C5, 

W8, W10, W14, W1) and close to 1% in samples C2 (0.97%) and C3 (0.90%). Using a 

Kruskal-Wallis test, we tested whether the abundance of these bacterial pathogens is 

significantly different between the environmental clusters and found that high abundance 

of agents causing salmonellosis, yersinosis and shigellosis is significantly associated with 

cluster 1 (p-value = 0.018, 0.036 and 0.008, respectively). 

Regarding the remaining organisms composing the pathobiome, including 

parasitic, viral and fungal pathogens, the most diverse pathobiome was found in L1 (PC 

= 9), followed by locations W4 and C2 with 8 pathogenic classes and C2, W4, L2 and L4 

with 7 pathogenic classes. The highest cumulative abundances of these pathogens were 

found in samples obtained from the wetlands (W4>W3>W2>W10>W6). Agents 

responsible for microsporidiosis were significantly more abundant in cluster 1 (p-value = 

0.003), while the mean relative abundance of Giardia intestinalis was higher in samples 
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collected in Lake Victoria (cluster 3). DNA traces of Cryptosporidium spp., Schistosoma 

spp. and Toxoplasma gondii were found homogeneously across all sampling locations 

with a prevalence of 95%, 95% and 81%, respectively. 

5. Discussion 

In this study, we used a metagenomics approach to perform an in-depth analysis of the 

microbial composition of water samples taken along a wastewater channel in Kampala, 

Uganda, in an attempt to characterize and elucidate associated health threats. To our 

knowledge, this is the first study to apply such an approach based on ultra-deep shotgun 

sequencing with subsequent strain-level characterization in a sub-Saharan African 

setting.  

Several findings obtained during this work are worth discussing. First, the 

correlation of the bacterial strain profiles showed a clustering of all samples into three 

different groups, with one group containing all samples from Lake Victoria, while another 

one was not only composed of all samples collected on the Nakivubo channel, but also 

of some of the samples collected directly on the surrounding wetlands. The third group 

represented the majority of wetland samples. The heterogeneous repartition of wetland 

samples in different clusters clearly indicates that contamination of wastewater from the 

Nakivubo channel occurs throughout the wetlands, which might have important 

implications for human health. As the sampling period was performed during a rain-free 

period, we strongly believe that this contamination cannot be explained by, e.g., 

temporary flooding, but rather by permanent leakage around the wastewater channel.  

Second, our results yield interesting patterns regarding the intra-species 

distribution of E. coli strains in the different clusters. Indeed, E. coli plating and counting 
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is used as the standard method to assess the faecal-related contamination of water, and 

it has been shown previously that the counts of total faecal coliforms and E. coli in the 

Nakivubo wastewater system are above the threshold recommended by WHO (means of 

2.9*105 and 9.9*104 colony forming units per 100mL, respectively (Fuhrimann et al 

2015)). Here, we showed that, in addition to such a quantification of E. coli colonies, the 

intra-species diversity of E. coli is also strongly correlated to the total bacterial diversity. 

The establishment of diversity thresholds based on e.g. the average cluster means of E. 

coli strains might be helpful to provide a better description of the microbiological diversity 

of a certain ecosystem and the arising health consequences. 

Third, sampling locations C1 and C2 are located upstream and downstream 

respectively of the Bugolobi sewage treatment facility which is located at the latitude of 

0.3182079° and longitude of 32.6070297°. The number of observed strains decreased 

from 899 to 745 between both samples while the Shannon diversity index decreased only 

slightly from 4.85 to 4.68 indicating a slight effect of the decontamination process on the 

microbial composition. Among this effect, we noticed the apparition of several bacterial 

genera related to the sludge treatment process, including but not limited to the 

Aminobacterium or Aminomonas genera (Baena et al 1998, Baena et al 1999) as well as 

several methanogens. It is worthwhile noticing that some bacterial genera including 

Erysipelothrix or Parasutterella that have been isolated from faecal material (Morotomi et 

al 2011, Wood 1974) are also introduced in the process hinting towards previous and 

potentially permanent contamination of the infrastructure. Shigellosis, salmonellosis, and 

yersinosis causing agents, among others, see their relative abundances decrease. 
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Finally, abundances of several bacteria including some genera commonly known 

to contain human pathogenic species are increasing between both locations. This specific 

aspect, although based on two samples, shows that the microbial treatment capacity or 

process of the Bugolobi sewage treatment facility is sub-optimal.  

To pinpoint the potential leakage points of the Nakivubo channel, we tested 

whether taxonomic correlation is a function of the distance between each sampling points, 

along the Nakivubo channel. We showed that distance explains more than 90% of the 

taxonomic correlation between all samples from the channel. We further compared these 

two metrics between individual wetland samples that grouped with the channel samples 

in environmental cluster 1. For four of the points, namely W6-8 and W10, we found a 

strong correlation between the bacterial composition and their closest sampling points on 

the wastewater channel. W6-8 are spatially closest to C4 while W10 is closest to C5. This 

enables us to hypothesize that containment of wastewater is insufficient around locations 

C4 and C5 on the Nakivubo channel and that leakage happen in the wetlands around 

these points. This approach, combined with additional sampling points to increase 

resolution could help us establish an exact map of the system’s weakness. 

After demonstrating that the Nakivubo channel clearly impacts its immediate 

surroundings, and where this effect is the strongest, we aimed at characterizing the exact 

compositional differences between the three environmental clusters. Samples from 

cluster 1 are characterized by an over-abundance of bacterial strains from the Firmicutes, 

FCB-group, Actinobacteria and Euryarchaeota phylum which are phylum commonly 

found in the human gastrointestinal tract (Eckburg et al 2005, Human Microbiome Project 

2012). Escherichia coli overabundance in samples from cluster 1 also hints towards the 
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same faecal origin. It is worthwhile to notice the overabundance of members from the 

Proteobacteria in cluster 2. This overabundance however doesn’t include any bacteria 

strictly related to the gut microbiota and mainly include known environmental bacteria 

(Shin et al 2015). Samples collected in the inner Murchison bay are characterized by the 

over-abundance of Microcystis aeruginosa, which is commonly found in freshwater and 

under warm temperatures, which correlate with the context of Lake Victoria.   

Fourth, when looking specifically at the bacterial pathobiome in the Nakivubo 

system, there is evidence that a high absolute diversity of pathogens, or number of 

pathogenic classes, is associated with the samples from cluster 1. There is also strong 

evidence that Salmonella enterica, Shigella spp. and Yersinia pestis contamination are 

directly related to wastewater, while other potential bacterial pathogens that we focused 

on aren’t. In the case of Mycobacterium spp. and Vibrio spp., the lack of cluster specificity 

is probably due to the ubiquitous aspect of these bacterial species (Primm et al 2004, 

Raszl et al 2016, Thompson et al 2004) and a more targeted screening of, e.g. virulence 

factors might result in a different picture. It is worthwhile noticing that Listeria 

monocytogenes is present in 4 samples from cluster 1 but that the very low relative 

abundance in three of these samples isn’t sufficient to statistically link the species with 

wastewater contamination. Legionellosis agent is present in a minority of samples from 

each cluster, indicating that the Nakivubo channel isn’t the source of it. The last 

observation we made is about the heterogeneous repartition of pathogenic E. coli strains 

which speaks in favour of past contamination events, as it is present in a vast majority of 

samples from cluster 1 as well as in some samples from cluster 2, in a relatively high 

abundance. This could also be interpreted as the natural treatment function of the 
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wetland, with pathogenic E. coli being the only bacteria in our study that isn’t naturally 

removed over time. 

Regarding parasitic, fungal and viral pathogens, the situation is different, as all but 

two species are not specifically related to wastewater contamination by the Nakivubo 

channel. Microsporidia, a fungal agent that is known as an emerging opportunistic 

pathogen (Curry and Smith 1998, Stentiford et al 2016) causing, among others, 

gastrointestinal-related symptoms, is found to be strongly linked to samples from cluster 

1, indicating a strong effect from the Nakivubo channel on this potentially important 

pathogen. While found in one sample of both clusters 1 and 2, a high relative abundance 

of Giardia intestinalis seems to be correlated with samples from cluster 3, ruling out the 

effect of wastewater contamination in this specific case. It is interesting to notice that three 

of the parasitic pathogens, namely Schistosoma spp., Toxoplasma gondii and 

Cryptosporidium spp. are found in over 80% of the samples, indicating that the Nakivubo 

system is potentially a strong source of contamination with these pathogens. 

To conclude this study, we showed that system-wide characterization is possible, using 

an ultra-deep metagenomics approach and state-of-the-art bioinformatics and that it 

yielded in-depth insights of a complex system such as the Nakivubo system. While the 

resolution of the study is limited by the number of sampling locations and by the lack of 

temporally distinct sampling, the sequencing depth of each samples already allowed us 

to highlight several specificities of the Nakivubo channel, wetlands and of the inner 

Murchison bay. In this specific setting, we are able to draw four main conclusions, namely, 

i) that the system harbours, based on the microbial composition, three distinct 

environmental groups, ii) that the Nakivubo channel has a clear impact on the wetland 
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microbiota in specific locations and that it’s containment potential isn’t sufficient, iii) that 

leakage of wastewater occurs around two sampling locations, in dry periods and iv) that 

several potentially harmful microorganisms for human health are found to be spread by 

wastewater contamination. 

6. Conclusions 

• The bacterial composition in the wetlands is very heterogeneous with some 

hotspots of contamination, which indicates that some wetland areas may pose a 

significant health threat to humans. 

• Intra-species diversity of Escherichia coli is proportional to the total number of 

observed strains. An E. coli diversity assay could be used to estimate the 

contamination status of the wetland with a lower cost and denser resolution. 

• Contamination with several human pathogens around the system is associated 

with wastewater. Leakage points indicate that the containment potential of the 

Nakivubo channel is sub-optimal and poses a threat to human health. 
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Chapter VI. Discussion and perspectives 

1. Impact of NGS on the field of infectious diseases research 

Next-generation sequencing, due to its naïve and relatively unbiased nature, 

revolutionized how studies in the field of infectious diseases are conducted. Major 

examples of how these new approaches influenced the field of infectious diseases 

include, but are not limited to; (i) the unravelling of new insights into the microbial genetic 

diversity (Cirulli and Goldstein 2010, Prosperi et al 2011); (ii) the discovery of new 

pathogenic microorganisms previously unknown (Mardis 2009, Palacios et al 2008); and 

(iii) highlighting worsened symptomatic expression of diseases caused by coinfection 

events as well as gaining insights into dynamics of microbiomes or other complex 

microbial communities (Cho and Blaser 2012, David et al 2014, Koenig et al 2011, 

Salipante et al 2014). This PhD thesis sought to apply these techniques within several 

complex situations, extending their application beyond the established frontier, and 

further developing the optimized usage of these types of studies. 

a. A bioinformatics tool to improve accuracy and specificity of molecular assays 

The first part of this thesis was aimed at developing a bioinformatics workflow that would 

adapt to the challenge caused by the tremendous amount of nucleotide sequences made 

available since NGS was brought on the market. In fact, while increased amounts of 

sequences have offered decisive insights in research on infectious diseases 

(Capobianchi et al 2013, Radford et al 2012), they are also accompanied with challenges, 

one of them being the lack of bioinformatics approaches able to process such datasets. 

We developed a bioinformatics workflow that allowed the selection of highly conserved 
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and specific molecular markers, and we validated it by testing different types of molecular 

assays, including real-time PCR, LAMP and Sanger sequencing assays, using the 

selected markers. The study focused on thirteen neglected viral pathogens from the 

Flaviviridae and Bunyaviridae families that pose a serious threat to human health and 

were responsible for several outbreaks (Aradaib et al 2011, Balogh et al 2010, Lanciotti 

et al 1999, Lvov et al 2000, Spinsanti et al 2008, Woods et al 2002). This approach, based 

on the widely available BLAST algorithm enabled the selection of these markers among 

several hundreds of complete genomic sequences for the most extensively sequenced 

viral species used in this study. This study confirms the usefulness of this tremendous 

amount of sequencing data, provided suitable analysis workflows are available, to 

improve accuracy and specificity of molecular diagnostics. 

b. Identification of a new virus from a complex plant microbiome 

The second part of this thesis was focusing on the discovery and molecular 

characterisation of the microbial organism causing leafroll symptoms in a Vitis vinifera cv. 

Otcha bala plant. This example showed how a metagenomics approach could 

successfully complement standard diagnostic tools. In this case, a preliminary analysis 

using electron microscopy allowed the determination of the origin of the causative agent, 

which was in fact an unidentifiable virus. Leafroll disease in grapevine has a complex 

aetiology since various viral species were usually associated with this disease. The viral 

metagenome present in this sample could be completely characterised using 454 

sequencing and an in-house developed bioinformatics pipeline.  Complete or partial 

genomes from four viral species could be reconstructed, namely (i) the Grapevine fleck 

virus and the Grapevine red globe virus that are both members of the Tymoviridae family, 
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(ii) the Grapevine virus A from the Betaflexviridae family; and (iii) a thirteen Kb long contig 

closely related to Closteroviridae, that we proposed to name Grapevine leafroll-

associated virus 4 strain Ob (GLRaV-4 Ob). Since none of the three first viruses were 

known to cause symptoms in Grapevine, and with the confirmation obtained by additional 

serological tests, we were able to demonstrate that this new viral variant was in fact the 

causative agent of the Grapevine disease. This study confirmed, that omics approaches 

are useful to determine aetiology of a disease that could not be identified and/or fully 

characterised with other tools. 

c. Metagenomics and its application in personalized medicine 

Microbiome characterisation is a powerful tool and one pillar of the rapidly growing field 

of personalized medicine (Collins 2010, Isaacs and Ferraccioli 2011, Nicholson et al 

2005, Nicholson 2006, Tsai and Coyle 2009). The third part of this thesis focused on 

assessing the potential of a metagenomics approach for the characterisation of the gut 

pathobiome (microbiome restricted to pathogenic microorganisms) and for the generation 

of additional individual health-related information. In this proof-of-concept study, stool 

samples from four patients presenting persistent digestive disorders were screened for a 

wide range of pathogenic microorganisms. We were able to demonstrate the consistency 

of this approach for the diagnosis of pathogens associated with this digestive syndrome 

by comparing it with a set of validated diagnostic approaches, including microscopy, rapid 

diagnostics tests and multiplex PCR assays. The detection rate of bacterial pathogens 

and helminths was in favour of the metagenomics approach, which permitted the 

identification of a wider range of species belonging to these pathogenic classes, including 

Mycobacterium spp. and Schistosoma mansoni. However, for viruses and intestinal 



 

168 
 

protozoa, the detection rate was more in favour of the standard tools, mainly for two 

reasons, namely, (i) because the sequencing depth was not sufficient to detect viral 

sequencing reads in this complex sample; and (ii) because there is a lack of sequence 

data for protozoan species. These two issues are only temporary, since sequencing 

technologies are permanently improved and are expected to provide a higher sequencing 

depth making even the rarest organisms clearly identifiable. Also, current protozoa 

sequencing projects will provide additional sequence data for these species, closing up 

the sequencing gap between these and other microorganisms for which more complete 

genomic sequences are available, like helminths (Berriman et al 2009, Park et al 2011, 

Young et al 2012, Zhou et al 2009). In addition to the confirmation of the diagnostic 

potential of this metagenomics approach, we also generated additional health-related 

information by screening the sequence datasets for antimicrobial resistance genes. While 

this approach has several limitations, mainly bioinformatics-wise due to the diversity of 

mechanisms involved in antibiotics resistance in bacteria, it provides important 

information about the resistome and potential resistances that are present or could quickly 

spread in an environment as complex as the human gut microbiome. 

d. Wastewater microbiota and its impact on human health 

The final part of this PhD thesis was to apply a metagenomics approach to enable a 

system-wide microbial survey and to assess the potential risk on human health. In this 

study, we were able to conduct a complete survey of microbial communities present in 

the wastewater network from the city of Kampala, Uganda. We demonstrated how closely 

the diversity of E. coli, which is a standard indicator of faecal contamination recommended 

by the WHO, was linked to the overall diversity of bacteria in different aquatic ecosystems. 
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This is an important result for future studies that could then specifically concentrate on 

analysing the diversity of E. coli in order to assess the impact of human activity on the 

bacterial communities in the surrounding environment. Analysing the overall bacterial 

diversity confirmed the pertinence of our three environmental groups, by clearly 

generating three distinct sample clusters. Using assembled sequences from the 22 

metagenomics datasets also allowed us to characterise the geographical repartition of 

the different pathogenic classes among the Nakivubo wetland. Similarly, we were also 

able to summarise the main waterborne pathogens causing symptoms in humans and 

how they spread through this ecosystem using this metagenomics approach.  

In addition to this environmental assessment, this project included a second part 

with the aim of investigating the impact of wastewater exposure on the human gut 

microbiome. For this purpose, 114 stool samples were collected from different population 

groups around Kampala. We selected three population groups that we expected to be at 

different level of exposure to wastewater from the Nakivubo channel and wetlands. This 

included 38 samples (S001-S038) from what we described as the high exposure group. 

The individuals in this group were directly exposed to water contact on a daily basis due 

to their farming activities in the Nakivubo wetlands. Sample S039 to sample S078 were 

collected from individuals living in the slum areas surrounding the Nakivubo swamps, at 

occasional risk of exposure to wastewater, mainly because of occasional flooding events. 

The last group, including samples S079 to S114 originated from a control population, 

rarely or never coming into contact with the water from the Nakivubo channel/wetlands. 

A first result of the ongoing analyses is shown in Figure 1 where we were able to show 

how the bacterial composition of the environmental samples impacted the gut bacterial 
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microbiomes of the surrounding populations. With this analysis, we were able to 

demonstrate that substantial differences in the bacterial communities exist between the 

three population groups from this study. In fact, 15 out of 18 stool samples clustering 

together with the environmental samples were from Group 1 suggesting that the gut 

microbiomes of this group, in which individuals are exposed to water on a daily basis, are 

deeply impacted by their exposure to wastewater. This is only a snapshot of this study 

and we hope that the aggregation of these data with the answers collected using health 

questionnaires will bring further insights in the impact of wastewater management in 

Kampala on human health. 

 

Figure 1. Hierarchical 

clustering of the bacterial 

communities from both 

environmental and 

human samples. A blue 

gradient indicates the 

number of markers found 

for each bacterial strain. 

The lighter the shade, 

the more markers were 

found. 
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2. Future of omics approaches and associated challenges 

a. The future of NGS 

Next-generation sequencing is rapidly pervading all areas of infectious diseases: 

improving speed, precision, and, last but not least, the breadth of diagnostics. This 

statement is even truer since sequencing technologies are constantly evolving and 

becoming more straightforward and easy to apply to different projects. The field of single 

molecule sequencing through a nanopore is one of the area of NGS which holds most 

promises and interesting applications (Bayley 2015, Feng et al 2015, Garaj 2014, Jones 

2015). Recently, a number of studies involving nanopore sequencing have shown that 

the technology, while it has yet to be optimized, already shows great potential (Kilianski 

et al 2015, Loman and Watson 2015). It is predicted that the omics applications of NGS 

presented in this thesis will be greatly improved by the use of these new nanopore 

sequencing technologies. For instance, studies show early promising results in the 

screening of antimicrobial resistance genes using this technology (Ashton et al 2014, 

Judge et al 2015) 

The other great improvement lies in the miniaturisation of the sequencing devices. 

Until now, NGS instruments could only be used in an equipped laboratory and some, like 

the Pacific Biosciences RSII instrument, even required a specific room due to its massive 

size. The nanopore sequencing instrument from Oxford Nanopore, the MinION, has the 

size of an usb stick and protocols are currently being optimized to allow the direct deposit 

of a sample without pre-purification steps. This improvement will allow to bring this 

handheld device directly to the patient as a point-of-care diagnostics device, allowing 
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cheaper, faster yet more accurate results on-site. In a closer future, we can expect that 

the technical characteristics of current NGS technologies will be continuously improved. 

Current applications, like metagenomics or metatranscriptomics will greatly benefit from 

increased sequencing read-length and deeper coverage for a lower price. 

b. Associated bioinformatics challenges 

Besides many insights, the expected data deluge also brings questions, especially in the 

area of bioinformatics. This includes challenges with handling, processing and moving 

information, challenges that were historically reserved for astronomers and high-energy 

physicists (Marx 2013). Biologists now have to store, analyse, compare and share 

massive amount of sequencing data – which is not a simple task when a single sequenced 

human genome is already 140 gigabytes in size (Marx 2013, Stephens et al 2015). 

Increased computing resources, including additional and faster storage, as well as 

additional computing cores are nowadays a requirement for any laboratory wanting to 

embark in the omics field. There is also a need to find consensuses on the software side, 

with the need of standardised bioinformatics workflows for applications involving NGS. All 

in all, bioinformatics should, with specific educational programs for future scientists, now 

benefit from the same attention and development pace as NGS technologies. 

 

 

3. General conclusion 

Omics approaches, facilitated by the advancements of NGS technologies, have 

revolutionised the way research is conducted in the field of infectious diseases. Many 
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challenges that were mainly due to the vast diversity of pathogenic microorganisms can 

now be approached differently. There are many examples of applications improving 

research in infectious diseases. This includes the field of genomics, which by multiplying 

the number of sequenced genomes by a factor of over 1000 between the years 2000 and 

2015 (Stephens et al 2015), permitted further insights in the genetic diversity of many 

pathogens. Meta-analyses, like metagenomics or metatranscriptomics are the 

applications that benefited most from the use of NGS technologies, and they now allow 

system-wide studies, where previous studies were only focusing on one parameter (one 

microbe or one specific gene for instance). However, these omics approaches have their 

limitations, mainly due to the bioinformatics challenges they give rise to. In conclusion, it 

is foreseeable that these approaches, once matured, due to the increased amount of 

results they allow to generate, will be widely used and will replace standard approaches 

in the field of infectious diseases. 
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