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ABSTRACT 

 

Thymic epithelial cells (TEC) make up a majority of the thymic stroma 

and can be classified into cortical (c) and medullary (m) compartment. TEC 

are responsible for generating a self-tolerant T cell repertoire and thus 

potentially self-reactive thymocytes are induced to undergo apoptosis in the 

process termed negative selection. For this purpose, TEC express over 19,000 

protein-encoding genes to represent almost the entire repertoire of protein-

encoded antigens of the host. Many of these genes are typically expressed 

only in specific organs and are referred to as tissue-restricted antigens (TRA). 

The autoimmune regulator (Aire) facilitates the expression of a subset of TRA 

and these Aire-regulated TRA occupy chromatin regions enriched with the 

trimethylation of 27th lysine on histone 3 (H3K27me3), an epigenetic mark is 

catalysed by the methyltransferase activity of Polycomb Repressive Complex 

2 (PRC2). However, the physiological significance of H3K27me3 in TEC 

biology remains to be elucidated. To address this issue, mice with TEC-

targeted PRC2 deficiency were generated. These mice displayed severely 

hypocellular thymi but yet maintained intact tissue architecture and total TEC 

cellularity. Within the TEC population, mTEC cellularity was drastically 

reduced and the maturation of mTEC was also hindered. Furthermore, the 

decrease in number of early T lineage progenitors recruited correlated with 

the reduced expression of chemokines by the cTEC. The deficiency of PRC2 in 

TEC also interfered with efficiency of negative selection and Treg production. 

Single cell transcriptome and flow cytometric data demonstrated that the 

deficiency of PRC2 activity also provokes mTEC development along a novel 

lineage differentiation path. Taken together, these data provide experimental 

proof that PRC2 plays crucial roles in the regulation of TEC differentiation 

and the capacity to carry out negative selection. 
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1. INTRODUCTION 

 

 1.1. History of Thymus 

 

“Seat of the soul” was what the ancient Greek physicians believed the 

thymus to be due to its close proximity to the heart. As early as 100-200AD, 

descriptions of the thymus have been recorded by Greek physicians Rufus of 

Ephesus and Galen of Pergamum. From the Middles Ages to the Baroque 

Age, the thymus was disregarded and thought by some to be merely a tissue 

filling up the chest cavity (1). The tipping point in unraveling the thymus 

physiology came along in 18th century with the invention of optical 

microscopy, when the anatomists William Hewson and Arthur Hill Hassall 

drew the link between thymus and the lymphatic systems through 

histological studies. By the 1950s, the lymphopoietic role of the thymus was 

well recognised (2). But the significant breakthrough in the understanding of 

the importance of thymus in the context of the immune system came only to 

light in 1961 when Jacques Miller observed the deficiency of a lymphocyte 

population, subsequently named T cells, as a consequence of surgically 

removing the thymus in newborn mice (3). In the following years, 

tremendous and combined efforts by numerous scientists have unravel the 

central role of thymus in processes such as positive selection of developing 

thymocytes (4), negative selection of self-reactive T cells (5) and the 

development of regulatory T cells (Treg) (6). A detailed understanding of the 

thymus physiology has therefore evolved over an extended period of time 

and the ever-growing advances in modern technologies have spurred 

ongoing efforts to discover the yet unknown intricacies of the exact cellular 

and molecular functions of the thymus. 

 



 2 

 1.2. Anatomy of the Thymus  

 

The thymus is a primary lymphoid organ and consists of 2 lobes. It is 

located anatomically in the anterior superior thoracic cavity, anterior to the 

heart and posterior to the sternum. The main bulk of the thymus cellularity 

consists of thymocytes while only a small fraction constitutes the stromal 

compartments. These stromal cells play the crucial role in supporting 

thymopoiesis through the production of both soluble and cell-bound factors 

(7). The stromal cells comprise a group of heterogeneous cell types whereby 

thymic epithelial cells (TEC) form the main bulk and contributions made of 

dendritic cells, macrophages, B cells. 

The thymus can be divided into 2 structurally and functionally distinct 

compartments, a central medullary region surrounded by an outer cortical 

region. Most developing T cells, known as thymocytes, are situated in the 

peripheral cortical region and this compartment is highly dense with cells. 

The cortical thymic epithelial cells (cTEC) have mesh-like architecture thus 

providing an extensive surface area for simultaneous interaction with 

multiple thymocytes (Figure 1). In comparison, the thymic medulla is 

significantly less densely populated as only a small fraction of thymocytes 

survive the developmental processes in the cortex (Section 1.5) and attain the 

capacity to migrate into the medulla. The medullary thymic epithelial cells 

(mTEC) have a less mesh-like structure in comparison to cTEC (Figure 1) and 

express a vast array of tissue-restricted antigens for the final stages of 

thymocyte development (Section 1.5.2). The macrophages present among the 

thymic stroma play an important role of clearing cellular debris generated by 

the programmed cell death (apoptosis) of negatively selected thymocytes (8). 

As professional antigen-presenting cells, the dendritic cells are able to acquire 

tissue-restricted antigens from TEC and present these antigens to developing 

thymocytes (9). The dendritic cells acquire tissue-restricted antigens from 
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either mTEC undergoing homeostatic turnover (10) or exosomes containing 

tissue-restricted antigens released by TEC (11). Collectively, the thymic 

stroma provides a scaffold, and hence microenvironment, crucial for the 

development and egress of thymocytes. 

 

Figure 1. Images of 3D-reconstructed thymic epithelial cells. A schematic representation 

of the thymus, on the left side of the panel, shows the cortical region in the periphery 

(green) and the central medullary regions (red). The 3D-reconstruction of a singular 

cTEC (top right) shows a mesh-like architecture that forms extensive surface area for 

interaction with thymocytes (grey). While the mTEC (bottom right) has a much less 

complex structure and interact with relatively fewer thymocytes. The 3D images of 

the TECs were reconstructed from series of z-stacked confocal images using the 

Imaris®. 

 

 

 

 



 4 

1.3. Thymus Organogenesis  

 

Organogenesis of the thymus in mouse and man follows a series of 

bilateral developmental steps and are intimately tied to the formation of the 

parathyroid (Figure 2). These two organs form at about embryonic day 10.5 

(E10.5) from a single primordium in the ventral aspect of the third pharyngeal 

pouch that is surrounded by neural crest cells that providing signals to 

support the primordium outgrowth. Parallel to this extension, expression of 

Foxhead box protein N1 (Foxn1) begins in the dorso-ventral region of the 

primordium from E11.25 onwards (12). Concurrently, the adjacent aspect of 

the primordium initiates the expression of Glial cells missing 2 (Gcm2). The 

expression of these two distinct transcription factors demarcates the distinct 

segment of the primordium with different developmental potential; Foxn1 

determines the formation of the thymus epithelial scaffold while cells 

expressing Gcm2 are precursors of the parathyroids (13). However, the 

expression of Foxn1 is not necessary to determine thymic fate of the distal 

region as Foxn1 deficient mice (designated nude; nu/nu mice) are still able to 

form a rudimentary thymus anlage visibly segregated from the parathyroid 

glands (13). By E12.5, the organ primordia separate from the pharynx and 

migrate towards the anterior thoracic cavity with guidance from the neural 

crest cells (14). 
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Figure 2. Illustration of the current model of the early thymus organogenesis. The thymus 

and parathyroid develop from a common anlage derived from outgrowths of the 

third pharyngeal pouch. The distal portion of the outgrowth initiates the expression 

of Foxn1 on E11.25 and eventually pinches off to form the thymus. The interactions 

of the thymus organ primordia with various factors from surrounding cells and 

subsequently recruited thymocytes are crucial for the development of a functional 

thymus. (Image from Blackburn et al, 2004) 

 

1.4. Common thymic epithelium progenitor cell 

 

The endodermal origin of TEC was experimentally proven when 

pharyngeal endoderm cells isolated from embryos at E9 and grafted under 

the kidney capsule of nu/nu mice was sufficient to give rise to a functional 

thymus (15). The differentiation of endodermal cells to functionally 

competent TEC requires however signals from the neural crest cells and 

recruited haematopoietic precursor cells and also depends on the intrinsic 

expression of Foxn1 (7) whose regulation of expression is only incompletely 

understood.  

The distinct cTEC and mTEC lineages are derived from a common 

thymic epithelial progenitor cells (TEPC). Clues for the existence of these 

precursor cells came from the presence of cells stalled in an immature state 

found in thymic rudiments of the nu/nu mice (16). These cells are 
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phenotypically identified by their reactivity to either MTS20 or MTS24 

antibodies and compose 50% of the epithelial cells in E12 thymus primordial 

(16). Using histochemistry, the majority of cTEC and mTEC stain positively 

for cytokeratin8 (K8) and cytokeratin5 (K5) respectively. K5 and K8 double 

positive cells are found to be abundant in E12 thymus primordia and also 

preferentially located in the postnatal mice at the cortico-medullary junction 

(17). These K5 and K8 double positive cells have therefore been postulated to 

be TEPC but cell transfer experiments have not yet proven this assumption. 

Nevertheless, the existence of a common source of TEPC was demonstrated 

when immature TEC isolated from E12 were able to contribute to both TEC 

compartments (18, 19). 

The relationship between the seemingly separate cortical and 

medullary TEC lineages was recently further detailed. Ohigashi and 

colleagues showed the expression of β5t in the TEPC and that the TEPC first 

acquire the cTEC phenotype but later diverge via asymmetrical differentiation 

to form also mTEC. β5t is a subunit of the proteasome and is exclusively 

expressed only in the cTEC (Section 1.5.2). Using transgenic mice, TEC that 

have expressed β5t at any stage of their development will be genetically 

marked to express enhanced green fluorescence protein (eGFP) in their 

progeny independent of whether these cells continue to express β5t or not. 

Under these experimental conditions, more than 90% of mTEC express eGFP 

despite the lack of active β5t expression. This suggests that the majority of 

mTEC are indeed derived from β5t-expressing progenitors (20) that may be 

localised in the postnatal thymus at the cortico-medullary junction (21). 

After differentiation of TEPC into either cTEC or mTEC, the immature 

TEC begin to up-regulate MHC-II and CD40 and attain a mature state and 

only in the mTEC is Aire subsequently unregulated (22). The immature mTEC 

pool largely consists of slow cycling fraction while the mature mTEC pool has 

a turnover rate of 3 weeks (23).  



 7 

Figure 3. Illustration of the model of thymic epithelial cell lineage development. An 

endodermal progenitor gives rise to a common β5t-expressing TEC progenitor that is 

also positive for K5, K8, MTS20 and MTS24. This common TEC progenitor is likely to 

be restricted to thymic epithelial cell lineage and subsequently differentiates into 

either cTEC or mTEC. 

 

1.5. Thymic epithelial cell function 

 

1.5.1. T cell development in thymus 

 

 The primary role of the thymus is to support the differentiation and 

selection of T cells. The commitment to a T cell fate within the thymus 

microenvironment and subsequent maturation comprises a series of processes 

and is initiated with the recruitment of blood-borne T cell progenitors, also 

termed thymus-settling progenitors (24). Also the thymus does not contain a 

self-renewing progenitor pool, hence the thymus needs to have a continuous 

progenitor recruitment process to sustain T cell production. These blood-

borne progenitors are rare with about only 200 cells per mouse and are 

lineage negative (markers to exclude B cells, myeloid and red blood cells) 

with high expression of stem cell antigen 1 (Sca1) and c-kit (25). Progenitor 
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recruitment occurs as early as E11.5 and is guided by the expression of CC-

chemokine-ligand 21 (CCL21) and CCL25 in the embryo before 

vascularisation of the thymus (26). The chemokines continue to play a role in 

the recruitment of the T cell progenitors in the adult thymus (27). In addition 

to chemokines, T cell progenitors are also recruited through engagement of 

platelet-selectin glycoprotein ligand 1 (PSGL1) and P-selectin expressed on 

the thymic endothelial cells located mostly in the cortico-medullary junction 

(28). The level of expression of P-selectin on the endothelial cells can be 

regulated to control the rate of progenitor recruitment (29) and this 

receptivity can be influenced by the availability of niche within the thymus 

(30). 

Upon recruitment, the thymus-settling progenitors then give rise to the 

early T lineage progenitor (ETP), a population that constitutes the most 

immature T-cell precursors within the thymus and that is phenotypically part 

of the DN1 sub-population (31). In these early stages, the thymocytes are 

termed double-negatives (DN) due to the lack of expression of two prominent 

T cell co-receptors, CD4 and CD8. The DN population is commonly separated 

into distinct and sequential cell stages based on their expression profile of 

CD44, a surface glycoprotein involved in cell interactions and migrations, and 

CD25, the α-chain of IL2-receptor. The cTEC express Delta-like 4, which 

commits ETP to T cell lineage through the engagement with Notch1-receptor 

on the ETP (32). cTEC also produce interleukin 7 (IL-7) that supports the 

survival of ETP (33). These two signals promote the development of DN1 

(CD44+CD25-) to the DN2 stage (CD25+CD44+), and subsequently DN3 stage 

(CD25+CD44-) as they down-regulate CD44 expression. Thymocyte 

maturation is coupled by the migration of cells towards the capsular region of 

the thymus and the expression of recombination activating genes (RAG) 1 

and 2, which drives the rearrangement of the gene locus encoding for T cell 

receptor β chain (TCRβ). This process forms unique combinations of 



 9 

individual genes of variable (V), diversity (D), and joining (J) gene segments 

within the TCRβ gene locus and thus enables the generation of a sequence 

that encodes TCRβ chains with unique antigen-binding capabilities. At this 

stage, the DN3 express rearranged TCRβ together with a surrogate TCRα 

chain to form a pre-TCR on the cell surface and then complexes with CD3 to 

enable its signaling competency. Only about half of all thymocytes at this step 

manage to rearrange either of their two TCRβ loci to generate a functional 

pre-TCR to receive survival signals. This checkpoint in the early thymocyte 

development is termed as β-selection. Thymocytes passing the β-selection 

checkpoint undergo strong proliferate to expand clones of thymocytes 

expressing functional TCRβ (34). After the pre-TCR is expressed and begins 

signal transduction, the cells down-regulate CD25 and progress to DN4 stage 

(CD25-CD44-). In mice, these cells also being to express CD8 to become 

immature CD8 single positives (ISP) (35) and then later also express CD4 to 

attain a double-positive (DP) phenotype. During this process, the TCRα gene 

locus is being rearranged and the TCRα/TCRβ complex is then expressed on 

the cell surface (36).  

At this stage, the thymocytes are probed for the functionality of their 

TCR by binding to peptide-major histocompatibility complex (MHC) 

complexes (37) expressed on surface of cTEC and also other cells in the cortex. 

This constitutes the second checkpoint in the thymocyte development, 

whereby the avidity of TCR binding to peptide-MHC complex will 

determines the further fate of DP thymocytes and is termed the 

positive/negative selection. Only thymocytes binding with sufficient affinity 

above a certain threshold will be positively selected for further maturation 

into single positives (SP). The vast majority of thymocytes have none or very 

low avidity for the peptide-MHC complexes and will undergo programmed 

cell death due to the lack of TCR-mediated survival signal, a process termed 

“death by neglect” (38). This process ensures that only thymocytes with a 
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functional TCR and capable of eliciting an immune response will proceed in 

the developmental process. Positively selected thymocytes transiently up-

regulate an activation marker, CD69 (39) and then depending on whether the 

thymocytes recognise MHC-class-I (MHC-I) or MHC-class-II (MHC-II), the 

thymocytes further mature into CD8 SP or CD4 SP respectively (40). 

However, thymocytes possessing TCR with a high-avidity are able react 

against self-antigens to induce autoimmunity and thus must be deleted. 

Thymocytes binding to the peptide-MHC complexes on the stromal cells with 

high-avidity will undergo apoptosis in a process named “negative selection” 

(41). The first round of negative selection in the cortex is termed “Wave 1” 

and the cells can be identified by the co-expression of Helios and PD1 (42, 43). 

Thymocytes surviving the first wave of deletion then up-regulate CC-

chemokine-receptor 7 (CCR7) and migrate into the medulla to undergo 

further development. In the medulla, the SP thymocytes undergo further 

negative selection to fine tune the TCR repertoire and delete any self-reactive 

thymocytes that escaped negative selection in the cortex. This second round 

of negative selection is also referred to as “Wave 2” and the cells can be 

identified by the co-expression of Helios and Ox40 (CD134) within the 

medullary (CCR7+) CD4 SP (42, 43). The cellular mechanism of the negative 

selection is dependent on the compartmentalisation of the Ras and mitogen-

activated protein kinase (MAPK) signaling intermediates, which can be 

significantly shifted with small changes in affinity for peptide-MHC 

complexes at the threshold of negative selection (44). This allows the 

conversion of the TCR affinity values into a binary response. The outcome of 

this stringent selection process results in the survival of only about 5% of 

thymocytes with a low to intermediate avidity to proceed with the final stages 

of development (45).  

However the deletion of self-reactive thymocyte is incomplete and 

thus, instead of undergoing apoptosis, undeleted self-reactive thymocytes 
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express Foxhead box protein P3 (Foxp3) and differentiate into regulatory T 

cells (Treg). This constitutes the non-deletional tolerance whereby self-

reactivity is averted via the development of undeleted self-reactive 

thymocytes into thymic-derived Foxp3+ Treg (46). Thymic Treg produced in the 

first 3 postnatal days of the mice is crucial for the prevention of autoimmunity 

(47) and the development of thymic Treg is dependent on the availability of 

niches in the medulla (48). 

It takes ETP approximately 4 weeks to complete their development to a 

post selection stage of mature and functionally competent T cells that are now 

ready to exit the thymus. This is facilitated by the up-regulation of 

sphingosine-1-phosphate receptor 1 (S1P1) that enables the process of egress 

of naïve T cells into the periphery (49). 
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Figure 4. Schematic diagram of T cell development in the thymus. T cell progenitors are 

recruited to the thymus though blood vessels localised near the cortico-medullary 

junction. Guided by chemokines signals, these progenitors migrate to the cortex, 

commit to T cell fate, and initiate TCR gene rearrangement. The initial stages of T cell 

development are double negative for both CD4 and CD8 and hence are termed DN 1 

to DN4. Upon successful TCR rearrangement, the thymocytes receive survival signal, 

up-regulate both TCR co-receptors, CD4 and CD8, and enter the DP stage. However, 

auto-reactive thymocytes with strong avidity to the tissue-restricted antigens 

presented on stromal cells are induced to undergo apoptosis in a process termed 

negative selection. As thymocytes continues to develop, they down-regulate one of 

the TCR co-receptors and enter the SP stage. SP cells then migrate to medullary 

region, where the remaining auto-reactive thymocytes undergo further negative 

selection or develop into Treg cells. Finally, the cells complete the T cell development 

and exit the thymus as MHC restricted and self-tolerant naïve T cells. (Image from 

Klein et al 2014.) 
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1.5.2. Establishment of self-tolerance T cell repertoire 

 

TEC express on their cell surface co-stimulatory and MHC molecules, 

the latter displaying a wide range of peptides including those derived from 

tissue-restricted antigens (TRA). These peptide-MHC complexes are essential 

for shaping the correct TCR repertoire and the TRA are defined as genes that 

are expressed in 5 or less tissues within entire body and contrast the group of 

housekeeping genes that are typically expressed in most if not all tissues (50). 

As a cell population, TEC hold unique capacity (in striking contrast to any 

other somatic cell population) of being able to express over 19,000 protein-

coding genes (50), and are thus able to provide an almost complete range of 

the molecular signature of all cells in the body.  

TEC possess, as professional antigen presenting cells, sophisticated 

cellular processes that allow the presentation of TRA-derived peptides in the 

context of MHC and co-stimulatory molecules (51). However, TEC specific 

mechanisms are in play to generate a uniquely shaped repertoire of self-

peptides. Most notably, cTEC possess proteasomes composed of a unique 

subunit, β5t, which replaces the other components β5 and β5i found in 

proteasomes of all other cell types (52). This cTEC-specific (i.e. β5t-containing) 

proteasome produces peptides with high affinity to MHC-I molecules 

essential in fostering the selection of CD8 T cells (52). Other TEC-specific 

components involved in TRA processing for antigen-presentation by MHC-II 

molecules are Cathepsin L (Ctsl) and the thymus specific serine progease 

(TSSP). Both proteins determine the efficiency by which CD4SP T cells are 

selected (53–55).  

One of the key factors crucial for the regulation of establishing central 

(i.e. thymic) immune tolerance concerns the function of the transcriptional 

facilitator autoimmune regulator (Aire). Expressed within the thymus most 

prominently in a population of mature mTEC (MHC-IIhi CD80+), Aire 
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expression controls in mouse mTEC the expression of 3980 TRA (50). 

Complementary to the role of Aire, FEZ family zinc finger 2 (Fezf2) has 

recently been claimed as a transcription factor in mTEC that drives the 

expression a subset of Aire-independent TRA (56) although this finding could 

not yet be independently verified. Though most of the TRA expression 

appears to be stochastic, genomic single cell and population studies with 

subpopulations of mature mTEC indicate that some co-expression patterns 

may exist, possibly creating non-mutually exclusive sets of TRA patterns in 

specific mTEC populations (57). The underpinning mechanism for this 

observation has been suggested to be based on localised changes in chromatin 

structure on spatially placed adjacent but separate chromosomes creating 3D 

proximity within the nucleus of a single cell. How “fixed” these patterns are 

is at the moment a point of contention (58, 59) and will need to be tested using 

refined chromatin analyses at single cell resolution, a method which is yet to 

be robustly established. 

The exact molecular mechanism by which Aire drives expression of the 

TRA and other proteins remain incompletely defined. The reasons for this 

limited understanding lie, in part, in the complexity of the mechanism itself 

but also in the fact that primary mature mTEC and their Aire expression 

cannot be modeled in in vitro culture systems as Aire expression requires 

“cross-talk” with thymocytes and depends on a 3D-growing environment. 

Nonetheless, advances in technology, such as single cell RNA sequencing, 

have recently revealed intriguing insights into Aire’s molecular mechanisms 

as a transcriptional facilitator.  

 

1.5.3. Role of epigenetics in TRA expression 

 

To elucidate the molecular mechanisms enabling TEC to express a very 

large number of TRA is challenging and TRA expression has to overcome the 
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tissue-specific mechanisms that enforce transcriptional silencing. It is 

therefore not surprising that TRA expression has been linked to epigenetics, 

which describes the heritable modifications to the genetic material without 

changing the underlying DNA sequences. Indeed, epigenetics mechanisms 

determine the temporal and spatial control of gene activity during 

development and therefore co-define cellular identity (60). To initiate and 

sustain epigenetic changes, at least three systems are currently considered 

that may operate in parallel to modify gene expression: DNA methylation, 

histone modifications and non-coding RNA-associated gene silencing (61).  

Aire carries out its function of facilitating TRA gene expression in a 

complex with a large set of proteins that physically associated with it. The 

binding partners fall into four major functional classes: nuclear transport, 

transcription, pre-mRNA processing but also chromatin binding/structure (62, 

63). For example, Aire binds to MBD1 (methyl-CpG-binding domain protein), 

which associates with ATF7ip (activating transcription factor 7-interacting 

protein) and recognises methylated CpG dinucleotides, a repressive 

epigenetic marker enriched in promoters of inactivated genes (64). Thus, Aire 

coopts the normally repressive MBD1-ATF7ip complex and utilises the 

preferential recognition of specific methylated CpGs provided by MBD1 to 

localise and target TRA loci. This preferential recruitment of Aire to sites of 

selective repression likely works in concert with the PHD1 domain-mediated 

recognition of unmethylated 4th lysine residue on the histone H3 (H3K4me0) 

and may also involve other Aire binding partners such as the chromodomain-

helicase-DNA-binding proteins, Chd4 and Chd6. Both of these proteins 

physically associate with Aire (62, 63) and can bind to H3K4me0, 

trimethylated 27th lysine residue on the histone H3 (H3K27me3) and 

trimethylated 9th lysine residue on the histone H3 (H3K9me3) (65–68) to 

influence nucleosome mobilization (69), DNA repair (70), and transcriptional 

regulation (71). Additional evidence suggests that Aire complexes localise to 
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genes encoding TRA by recognizing repressive epigenetic marks (50, refer to 

next section) because the transcriptional start sites of Aire-controlled genes are 

typically (albeit not exclusively) marked by H3K72me3 and H3K9me3 but 

devoid of trimethylated 4th lysine residue on the histone H3 (H3K4me3) (50, 

unpublished data from Holländer lab). Thus, the expression of Aire-controlled 

TRA is very likely to be determined, at least in part, by the recognition of 

post-translational histone modification via Aire itself and its binding partners. 

 

1.6. Histone modifications 

 

1.6.1. Introduction to epigenetics 

 

Epigenetic changes to the genome such as post-translational histone 

modifications, the presence of different forms of non-coding RNA sequences 

as well as DNA methylation constitute the main regulators of gene 

expression. These epigenetic modifications can induce changes in gene 

promoters thus regulating the accessibility for transcription factors and 

consequently transcription of the genes (72). Post-translational modifications 

of amino acid residues in the histone tail by methylation, acetylation, 

phosphorylation, ubiquitylation, and sumolyation play an essential role in 

regulating transcription via structural modifications consequent to changes in 

the state of chromatin compaction. Histone modifications can be broadly 

classified into either permissive (allowing transcription) or repressive 

(inhibiting transcription) marks (73). A typical example of a permissive 

histone mark is the H3K4me3 whereas the comparable modification at 

position 27 of the same molecule (H3K27me3) imposes a repressive mark 

instead. These two histone marks, albeit of opposing function, can co-exist on 

the same histone molecule resulting in a bivalent histone code, a feature 

commonly found with developmental genes where rapidly induced changes 
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in transcription are required in response to developmental cues (74). For 

example, the genes encoding the lineage-defining transcription factors Gata3, 

Tbet, Rorc and Foxp3 are marked with bivalent histone codes, which impart 

CD4 T cells with the plasticity to differentiate into different subsets in 

response to environmental cues (75–77). 

 

1.6.2. Polycomb repressive complex 2 

 

The Polycomb repressive complex 2 (PRC2) is a chromatin remodeling 

complex that mediates silencing of gene expression in the context of cell 

pluripotency and differentiation by establishing H3K27me3 marks. The 

crucial role of PRC2 plays in the control of gene expression is highlighted by 

the observation of early embryonic lethality in mice lacking any of the core 

PRC2 components (78–80). PRC2 is a dynamic complex composed of four core 

components: embryonic ectoderm development (Eed), enhancer of zeste 

homolog 1/2 (Ezh1/2), suppressor of zeste 12 (Suz12), and retinoblastoma 

protein associated protein 46/48 (RbAp46/48). In addition to these core 

components, PRC2 can also interact with other co-factors that modulate its 

activity under specific cell-contextual conditions. One such example is 

jumonji and AT-rich interaction domain 2 (Jarid2) that acts as a demethylase 

regulating enzymatic activity of PRC2 (81). Another example is the adipocyte 

enhancer-binding protein 2 (Aebp2), an evolutionarily well conserved protein 

and isoforms of this protein are expressed in a developmental stage-specific 

pattern. Aebp2 binds to the close proximity to known target loci of PRC2 

suggesting a targeting role for this complex in cells where Aebp2 is co-

expressed with the PRC2 core components (82). Finally, the polycomb-like 

(PCL) proteins compose another group of co-factors of the PRC2 (83, 84). 

PRC2 therefore acts as a holoenzyme with the contributions by additional 

components that procure the complex’s maximum activity (85). However, it is 
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unclear whether the same mechanisms are also involved in the initial 

recruitment of PRC2 to a specific gene locus and maintaining its presence 

there.  

PRC2 maintains the repressive chromatin state via the ability of Eed to 

recognise and bind to pre-existing H3K27me3 and consequently depositing 

more H3K27me3 marks on tails of neighbouring H3 histones (Figure 5) thus 

acting in a “forward” positive feedback mode (86). Furthermore, PRC2 also 

recruits PRC1, which monoubiquitylates lysine 119 of histone H2A 

(H2AK119ub), and jointly these two complexes cooperatively maintain the 

repressive state of the chromatin. Although many evidences have supported 

that recruitment of PRC1 and PRC2 are inter-dependent (87, 88), more recent 

observations argue that neither H3K27me3 nor H2AK119ub are required for 

PRC targeting (89). Thus, the binding of either PRC complex could take place 

independently without any specific hierarchical order. 

The PRC2 imposes a transcriptional repression on many gene loci 

including those that are identified for their role in developmental processes 

(90, 91). This activity is cell-contextual and may therefore differ between 

different cell types. In a mouse embryonic stem cell line, PRC2 is required for 

the silencing of pluripotent factors so as to allow the cell to differentiate (83, 

92). Under other conditions, PCR2 is needed for adipogenesis (93) or 

lymphopoiesis (94), whereas PRC2 inactivation initiates myogenesis (95) and 

epidermis formation (96). 
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Figure 5. Illustration of Polycomb Repressive Complex 2. The holoenzyme PRC2 is 

represented by the 4 core components, Suz12, RbAp, Eed and Ezh1/2. The histone H3 

amino-end tail can have either 27th lysine residue with (red) or without (blue) 

trimethylation modification. The Eed binds to pre-existing H3K27me3 while Ezh1 or 

Ezh2 catalyses the trimethylation of H3K27 of neighbouring histone H3 molecules. 

This mechanism allows PRC2 to deposit H3K27me3 marks on the chromatin in a 

positive feedback mode. 

 

1.6.3. Eed 

 

Eed physically associates with both Ezh1/2 via its WD (tryptophan-

aspartic acid) domain (97) and with H3K27me3 modifications via its second 

WD domain (86, 98). The latter interaction enables Eed to maintain a 

transcriptionally repressed chromatin state as described in the previous 

section (86). Deletion of Eed drastically precludes the trimethylation of 27th 

lysine residue of histone 3 (99). If the deletion of Eed is constitutive, 

embryogenesis is terminated on E9 due to a gastrulation failure and the lack 

of axial structures (node, notochord, somties) (79). These developmental 

defects are already clearly discernable by E8.5 with homozygous mutant mice 

demonstrating smaller and undifferentiated embryonic ectoderm and meager 

embryonic mesoderm. Nevertheless, Eed-deficient embryos have extensive 

development of extra-embryonic structures albeit not completely normal with 

the allantois being larger as compared to the wild types. Moreover, Eed is 

essential for the repression of the Homeobox (Hox) genes (Hoxa4, Hoxa7, 

Hoxb6, Hoxc8) during embryogenesis (90). The de-repression of these Hox 
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genes is also the consequence of the loss of PRC1 function (100, 101) implying 

that both PRC1 and PRC2 possibly regulate the same homeotic genes. The 

function of Eed is not restricted to only early and mid-gestational 

developmental but has also been documented in postnatal life where a loss of 

Eed exhausts adult bone marrow haematopoietic stem cells (HSC) despite a 

normal production of fetal liver HSCs (102). 

 

1.6.4. Ezh1 and Ezh2 

 

 Enhance of zeste (E(z)), or the mammalian homolog Ezh, is one of the 

founding member of the family of SET domain family of proteins. The 

domain’s acronym derives from the identification of conserved structure in 3 

Drosophila melanogaster proteins, namely Suppressor of variegation 3-9, E(z), 

and Trithorax (103–105). The SET domain, within the Ezh subunit, imparts the 

histone lysine methyltransferase activity and requires interaction with Eed for 

its catalytic activity (106, 107). Two homologs of Ezh have been identified in 

mammalian cells, whereby Ezh1 and Ezh2 exert only partial redundancy that 

are not interchangeable (99). Both genes will therefore have to be deleted to 

achieve a complete loss in H3K27me3 marks in many cell types (96, 102, 108). 

The Ezh homologs also have different expression pattern with Ezh1 present in 

both dividing and differentiating cells while Ezh2 expressed only in actively 

dividing cells (109). Ezh1 has a lower methyltransferase activity in 

comparison to Ezh2 (109), which may account for the differential activity of 

PRC2 complex that contain either Ezh1 or Ezh2. This difference in level of 

enzymatic activity has lead to the postulation that PRC2-Ezh2 complex 

establishes the cellular H3K27me3 through the stronger Ezh2-mediated 

methyltransferase activity while PRC2-Ezh1 complex restores and maintains 

H3K27me3 lost after histone exchange or demethylase activity (85). Moreover, 

Ezh1 and Ezh2 exert their individual functions in a differential and age-
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sensitive fashion. For example, Ezh2 is essential in fetal but dispensable in 

adult HSC (110). On the other hand, Ezh1 is critical for postnatal HSCs as 

these proteins control self-renewal, differentiation and apoptosis (102).  

The deletion of both Ezh1 and Ezh2 leads to the loss of Sox2 expression 

and consequently altered the cell fate of the epidermal progenitor cells. Thus, 

this reveals the important role of Ezh1 and Ezh2 for skin epithelial cell 

differentiation (96). In addition, Ezh2 methylates the transcription factors 

Stat3 and Gata4 resulting in a functional activation of the former but a 

repression of the latter (96, 111). The precise role of either of these PRC2 

subunits for thymic development and PGE remains, however unknown and is 

the focus of my research.   

 

1.7. Importance of histone modifications to TRA expression 

 

Experimental evidences linking the Aire molecular structure to the 

recognition of specific epigenetic modifications and TRA expression have 

accumulated to suggest that Aire’s function is mainly related to cues provided 

by specific epigenetic marks present in mTEC. This postulation is supported 

by structural data demonstrating that plant homeodomain 1 (PHD1) domain 

on Aire binds directly and with sufficient affinity to H3K4me0 (112, 113). The 

importance of epigenetic landscape in defining Aire targets was revealed 

when Aire was found to induce expression of different sets of genes when 

etopically expressed in the pancreatic islet β cells as compared to primary 

mTEC (114). The variable severity of autoimmunity observed in Aire-deficient 

human (115) and mouse (116) also highlights the importance of epigenetic, 

and possibly genetic background, in Aire-driven TRA expression. 

Furthermore, the transcriptional start sites of genes transcriptionally 

controlled by Aire are enriched for the repressive histone mark H3K27me3 
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whereas marks indicating a permissive chromatin state such as H3K4me3 and 

H3K79me3 appear to be reduced (50, unpublished data from Holländer’s lab).  

It is therefore conceivable that Aire controls transcription of gene loci 

with a repressive state though the precise molecular mechanism how this 

may be achieved remains not yet defined. Two opposing models have been 

suggested to account for this seemingly contradictory phenomenon (50). The 

first model suggests that Aire is able to recognise repressive marks and “over-

rides” this chromatin configuration due to its non-classical capacity to initiate 

transcription. The alternative model proposed that upon binding of Aire to a 

repressive chromatin configuration the epigenetic landscape of this locus is 

temporarily altered to a permissive state to allow the subsequent transcription 

to occur. Another challenge of elucidating the mechanisms driving TRA 

expression is that analysis of mTEC on population level might result in the 

under-representation of epigenetic marks since an individual TRA is 

expressed only in 1% to 3% of mTEC. Hence, evidence for either model is 

presently missing as analyses at single cell resolution of both transcriptional 

activity at a given locus and its precise histone marks are required to derive 

an unequivocal conclusion regarding the precise mechanism in play. This 

methodological tool is however not yet available rendering any conclusions 

unfounded as to how Aire and repressive epigenetic marks may co-opt for the 

purpose of driving TRA expression.  
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2. HYPOTHESIS AND AIMS 

 

The main catalytic function of PRC2 is the trimethylation of histone 3 

at lysine 27 (H3K27me3), which constitutes a repressive epigenetic mark for 

gene transcription. This modification is preferentially associated in medullary 

thymic epithelial cells (TEC) with transcriptional start sites (TSS) of 

Autoimmune regulator (Aire)-controlled loci. In contrast, H3K27me3 marks 

are lacking at these sites in genes that encode other genes, including Aire-

independent tissue-restricted antigens (TRA). It has remained not only 

unknown but also not further investigated whether this correlation of 

H3K27me3 marks with TSS of Aire-controlled loci is coincidental or, 

alternatively, required for Aire-mediated transcription and thus for the 

molecule’s capacity for TRA expression. 

The hypothesis underpinning the experimental works presented in this 

thesis postulates that PRC2 function is essential for the regular differentiation 

of epithelial precursors into functional competent TEC able of expressing TRA 

in an Aire-dependent fashion. 

 

This thesis addresses specifically the following aims: 

1. The effects of PRC2-deficiency upon the differentiation and 

developmental processes of TEC. 

2. The effects of PRC2-deficiency upon TEC function, including the integrity 

of the negative selection process that is dependent on the expression of 

TRA. 
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3. MATERIALS AND METHODS 

 

3.1. Conditional targeted knockout mouse models 

 

Eedtm1Sho/J (Eedfl/fl) mouse line was obtained from Stuart Orkin 

(Harvard) (102) and Ezh1tm1JnwEzh2tm1Tara (Ezh1KO::Ezh2fl/fl) mouse line was 

obtained from Elena Ezhkova (Mount Sinai) (108) with the permission of 

Thomas Jenuwein and Alexander Tarakhovsky. These 2 mouse lines were 

crossed with the mouse line carrying the transgene β5tCre to achieve TEC-

targeted knockout of the lox-flanked genes, Eed and Ezh2, via the Cre-lox 

system. The heterozygous F1 generation is then crossed amongst littermates 

to obtain a subsequent offsprings homozygous for the lox-flanked transgene 

(either Eedfl/fl::β5tCre or Ezh1KO::Ezh2fl/fl::β5tCre). The Eedfl/fl::β5tCre mouse 

line was further crossed with Cg-t(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J (ZsGreen) 

mouse line to achieve triple transgenic mouse line with Eed targeted 

knockout and ZsGreen expression in cells that have expressed β5tCre 

(Eedfl/fl::β5tCre::ZsGreen). All mouse strains were kept in accordance with 

federal regulations. 

 

3.2. Mouse Genotyping 

 

Toes from the mice were clipped at the age of 1 to 2 weeks old. The 

toes were subsequently lysed using lysis buffer [0.1M Tris adjusted to pH8.5 

(Sigma, St. Louis, USA), 5mM EDTA (Sigma, St. Louis, USA), 0.2M NaCl 

(Sigma, St. Louis, USA), 0.4% SDS (Sigma, St. Louis, USA), 0.1mg/ml 

Proteinase K (Amresco, Solon, Ohio, USA)] and incubation for at least 2 hours 

at 56°C and 750rpm. To purify the DNA, an equal volume of isopropanol 

(Sigma, St. Louis, USA) is added to precipitate the DNA, then spun down at 
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14000rpm for 3min, washed with 70% ethanol (Sigma, St. Louis, USA) and 

subsequently dissolved in TE buffer (Ambrion, Minneapolis, USA). To 

determine the mouse genotype, the PCR reactions were carried out with 

primers at final concentration of 0.4mM, 1x PCR buffer (Sigma, USA), 0.2mM 

dNTP (Sigma, USA) and 0.5U Taq polymerase (Sigma, USA). The reactions 

were then placed in PCR machine (Eppendorf, CH) with a hot start of 94°C 

for 5min, followed by 35 cycles of 95°C for 30sec, 58°C for 30sec, 72°C for 

30sec and finally 72°C for 10min. The resulting PCR reaction products were 

resolved by gel electrophoresis with 1.5% agarose and 90V for 40min. 

 

Table 1. List of primers used for PCR genotyping 

Gene  Forward Primer Reverse Primer 

Cre (β5t) GGCCTTTGAACGCACTGAC GACAGGGCCTTCTCCACAC 

Eed floxed CTACGGGCAGGAGGAAGAG GGGGGAGAGGGAGTTGTC 

Eed deleted CTACGGGCAGGAGGAAGAG CCACATAGGCTCATAGAATTG 

Ezh1 - KO CTCCTGTCCTCATAGCAAGAC GTACTCTTAACCACTGGACTG 

Ezh2 floxed CTGCTCTGAATGGCAACTCC TTATTCATAGAGCCACCTGG 

Ezh2 deleted CTGCTCTGAATGGCAACTCC ACGAAACAGCTCCAGATTCAGGG 

 

3.3. Flow cytometry analysis reagents 

 

For multi-coloured flow cytometry analyses, the monoclonal 

antibodies directed against specific murine antigens are summarised in the 

following table. These antibodies were conjugated to biotin, fluorescein 

isothyocyanate (FITC), phycoerythrin (PE), cyanin 5 (Cy5), allophycocyanin 

(APC), Alexa Fluor® 700, BrilliantViolet® dyes (421, 510, 605, 650, 786) or 

tandem dyes PE-Cy7, PerCP-Cy5.5, APC-Cy7, PE-TexasRed. In cases where 

biotin-conjugated primary monoclonal antibody is used, streptavidin 

conjugated to a specific fluorochrome was used for its detection. While for 

unconjugated primary monoclonal antibody, anti-rabbit IgG conjugated to 

Alexa Fluor® 555 or Alexa Fluor® 647 (Life Technologies, Oregon, USA) was 

used for its detection. 



 27 

Table 2. List of antibodies 
Antigen Clone Isotype Manufacturer  

Thymocytes / T cells 

  

 

CD4 RM4-5 Rat IgG2a, k eBioscience  

CD5 53-7.3 Rat IgG2a, k eBioscience  

CD8a 53-6.7 Rat IgG2a, k BioLegend  

CD19 6D5 Mouse IgA, k Molecular Probes  

CD24 M1/69 Rat IgG2b, k eBioscience  

CD25 PC61 Rat IgG1, λ BioLegend  

CD44 IM7 Rat IgG2b, k BioLegend  

CD62L MEL-14 Rat IgG2ak BioLegend  

CD69 H1.2F3 Armenian Hamster IgG BioLegend  

CD73 TY11.8 Rat IgG1, λ BioLegend  

NK1.1 PK136 Mouse IgG2a, k BioLegend  

TCRβ H57-597 Armenian Hamster IgG BioLegend  

c-kit (CD117) 2B8 Rat IgG2b, k BioLegend  

Foxp3 FJK-16s Rat IgG2a, k eBioscience  

Helios 22F6 Armenian Hamster IgG eBioscience  

PD1 29F.1A12 Rat IgG2a, k BioLegend  

FR4 eBio12A5 Rat IgG2b, k BioLegend  

CCR7 (CD197) 4B12 Rat IgG2a, k BioLegend  

Ox40 (CD134) OX-86 Rat IgG1, k BioLegend  

CD45.1 A20 Mouse IgG2a, k eBioscience  

γδTCR GL3 Armenian Hamster IgG eBioscience  

Lineage markers for Thymocytes staining panel 

 

 

CD11b M1/70 Rat IgG2b, k BioLegend  

CD11c N418 Armenian Hamster IgG BioLegend  

PanNK (CD49b) DX5 Rat IgM, k BioLegend  

CD31 390 Rat IgG2a, k BioLegend  

B220 RA3-6B2 Rat IgG2a, k BioLegend  

F4/80 BM8 Rat IgG2a, k BioLegend  

Gr1 (Ly6G/Ly6C) RB6-8C5 Rat IgG2b, k BioLegend  

NK1.1 PK136 Rat IgG2a, k BioLegend  

TER119 TER-119 Rat IgG2b, k Self-made  

γδTCR GL3 Armenian Hamster IgG eBioscience  

TECs 

   

 

EpCAM G8.8 Rat IgG2a,k BioLegend  

UEA1 - - Reactolab/Self-made  

Ly51 6C3 Rat IgG2a,k BioLegend  

CD45 M1/9.3.3.HL Rat IgG2a Self-made  

IA/IE (MHC class II) M5/114.15.2 Rat IgG2b, k BioLegend  

Aire 5H12 Rat IgG2c eBioscience  

H3K27me3 C36B11 Rabbit IgG Cell Signalling  

Total H3 ab1791 Rabbit IgG AbCam  

IgG2a control - Rabbit IgG AbCam  

Eed ab4469 Rabbit IgG AbCam  
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3.4. Analysis with flow cytometry 

 

For analyses on TEC, thymic lobes were dissected and diced into small 

pieces and then incubated in PBS containing 200μg/ml LiberaseTM (Roche 

Diagnostics, CH) and 30μg/ml DNaseI (Roche Diagnostics, CH) at 37°C for 

60min with occasional pipetting to obtain single cell suspensions.  Due to the 

scarcity of TEC, samples were enriched for TEC using AutoMACS (Miltenyi 

Biotec, USA) according to manufacturer’s protocol. The enriched cell samples 

were then subsequently stained with monoclonal antibodies at 4°C for 45mins 

in PBS containing 2% (w/v) FCS (Perbio, UK). For intracellular staining, TEC 

first stained for surface antigens and thereafter fixed and permeabilised by 

using Cytofix/Cytoperm kit (Becton-Dickson, USA) according to 

manufacturer’s protocol. The fixed cells are then stained with antibodies.  

Single-cell suspension of haematopoietic cell samples were obtained 

from thymus and spleen by smashing the organs in between 2 sheets of nylon 

mesh with pore size of 100μm (Sefar Nitex, CH). The samples were then 

stained with monoclonal antibodies at 4°C for 45mins. For intracellular 

staining, cells were first stained with surface antigens then fixed and 

permeabilised by using Cytofix/Cytoperm Kit (eBioscience, USA) according 

to manufacturer’s protocol.  

Flow cytometric analysis and cell sorting were carried out using FACS 

Aria or FACS Fortessa. Data analyses were subsequently done using FlowJo 

software (Treestar, USA).  

 

3.5. Real time quantitative PCR analysis 

 

 RNA samples were extracted from sorted cells by using RNeasy Micro 

Kit (Qiagen, CH) according to manufacturer’s protocol. The RNA samples 

were then reverse transcribed into cDNA with SuperScript III Reverse 



 29 

Transcriptase (Invitrogen, USA) according to instructions provided by the 

manufacturer. Subsequently, real time quantitative PCR was carried out on 

Rotor-Gene 3000A (Qiagen, CH) using SensiMix SYBR kit (Bioline, USA) to 

ascertain the relative gene expression levels. 

 

Table 3. List of primers used for quantitative PCR 

Gene Foward Primer Reverse Primer 

GAPDH TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG 

Foxn1 TTGTGGAACTGGAGTCCACG TGTTGGGCATAGCTCAAGCC 

Rag2 CTGACTGCCTACCCCATGTT GTGCGTTCTTCCAAATCCAT 

Chemokines 

  CXCL12 AAATCCTCAACACTCCAAAC GCTTTCTCCAGGTACTCTTG 

CCL19 CCTGGGTGGATCGCATCATCCG AGAGCATCAGGAGGCCTGGTCCT 

CCL21 AGAAAGCTTGCTGCCCTCCAA GGCGCATCAGGTTCTGCACCCA 

CCL25 CCACCCTAGGTCATCCCAGG CCTAGGAAGTTCAGGGTATG 

Cytokines 

  IL7 CTTGCTTTTTCCAGCCACGT AGGCATGGCTACCACACATG 

c-kit Ligand CACAAAACCATTTATGTTACCC TTACAAGCGAAATGAGAGCC 

IL15 GAATACATCCATCTCGTGCT CCAGGTCATATCTTACATCTATCC 

TSLP ACGAATTGTACTTGTCCTGGGT ACGAATTGTACTTGTCCTGGGT 

Apoptotic Genes 

 Bax CTCAAGGCCCTGTGCACTAA CACGGAGGAAGTCCAGTGTC 

Bid GACTCTGAGGTCAGCAACGG CCTCCCAGTAAGCTTGCACA 

Bcl-xl CGCCGGAGATAGATTTGAATAACC CCCGGTTGCTCTGAGACATT 

Bak CCAAGATCGCCTCCAGCCTA CACGCTGGTAGACGTACAGG 

Eed deletion 

 Exon1-2 ATGTCCGAGAGGGAAGTGTC TGTGTTTGTGCCACTCTCAA 

Exon3-4 CTGCTCTGAATGGCAACTCC GGACTGCAATAACCGTATCTCC 

Exon5-6 TTTACACTTGTGCATGGACCT CATTTCCATGGCCAACATAG 

Exon7-8 CTCTTGTGGCAATATTCGGA TGCATTTCATCATCCTCTTTGA 

 

 

3.6. Histology and immunofluorescence confocal microscopy 

 

The thymi were isolated and frozen immediately in the Optimal 

cutting temperature compound (OCT) (Cell Path, UK). Tissue sections of 8µm 

were sliced on a cryostat, dried and fixed with acetone (Sigma, USA) for both 

haematoxylin and eosin (H&E) and immunofluorescence staining. For H&E 
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staining, the tissue sections were subsequently dehydrated with increasing 

concentrations of ethanol, 50%, 75%, 95%, 100% (w/v), then stained with 

Mayer’s haematoxylin (Réactifs RAL) and eosin (J.T. Baker). For 

immunofluorescence histology, the tissue sections were first fixed with 4% 

paraformaldehyde (Sigma, USA), then stained with antibodies (refer to Table 

2.3-1) and subsequently detected using anti-IgG antibodies conjugated to 

Alexa Flour® fluorochrome. The section images were subsequently acquired 

with Leica SP5 confocal microscope. 

 

3.7. T cell in vitro proliferation assay 

 

 T cells were first stained with appropriate fluorescence-labelled 

antibodies and then sorted flow cytometer. These cells were then stained with 

2.5µg/ml of CFSE in PBS at room temperature. Following that, the cells were 

then cultured in triplicates with gamma-irradiated (2500cGy) spleenocytes 

extracted from RAG-/- mice and 1µg/ml of anti-CD3 antibody for 72hours in 

IMDM culture medium (Life Technologies, USA) with added 10% fetal bovine 

serum (Hyclone, Perbio, Belgium) and 1% Gentamycin (Life Technologies, 

USA). The supernatant were then aspirated and kept at -20°C until use for 

ELISA assay. To acertain the rate of proliferation, the cells were then stained 

with fluorescence-labelled antibodies and analysed with a flow cytometer for 

the proliferation rates. The proliferative index is calculated by following 

formula, 

Proliferative index = 
                

   
  
 
 
  
 
 
  
 
   

  
  

 

a = number of cellular division as indicated by serial CFSE dilution 
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3.8. ELISA assay 

 

 The ELISA kit from eBioscience (USA) was used to determine the 

concentration of IL2 in the supernatant of the in vitro T cell culture. First, the 

96-well-plates (Corning, USA) were coated with 5µg/well of capture antibody 

(anti-IL2 antibody) overnight at 4°C. The wells were then blocked with 

1xELISASPOT diluent (eBioscience, USA) for 1 hour at room temperature. 

Next, the standards and samples were added to respective wells and 

incubated for 2 hours at room temperature. The biotinylated detection 

antibody was then added to each well and incubated for 1 hour at room 

temperature. 100µl of avidin-HRP (horseradish peroxidase) was then added 

to each well and incubated for 1 hour at room temperature. In between each 

steps, the wells were washed 4 times with PBS-0.05%Tween-20 (Sigma, USA). 

For detection, 50µg/well of TMB (tetramethylbenzidine) substrate solution 

was added and incubate for 15 minutes at room temperature followed by the 

addition of 100µl of 5N sulphuric acid stop solution. The absorbance values of 

each well were then acquired using an absorbance reader at 450nm. 

 

3.9. BrdU Analysis 

 

For analysis of proliferation in TEC, mice were injected 

intraperitoneally (i.p.) with 1mg BrdU (BD Pharmingen, USA) diluted in 

sterile phosphate buffered saline and analysed 16 hours later by flow 

cytometry (Section 3.4).  
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3.10. Fetal thymic organ culture 

 

Thymic lobes were dissected from E15.5 embryos obtained from timed 

mated female mice. The thymic lobes were first placed on a 0.45 micro pore 

size filter (Milipore, USA) floating on culture medium (IMDM culture 

medium (Life Technologies, USA) plus 10% fetal bovine serum (Hyclone, 

Perbio, UK)) with added 1.35mM of 2’-deoxyguanosine (Sigma, USA) for 5 

days to deplete the thymus of thymocytes. The filters were then transferred 

onto fresh medium (without 2’-deoxyguanosine) for 1 day. After that, the 

filters were transferred to fresh culture medium containing 10µg/ml of 

recombinant RANKL (obtained from Finke’s Lab) for an additional 5 days. 

The thymic lobes were then incubated in PBS containing 200μg/ml LiberaseTM 

(Roche Diagnostics, CH) and 30μg/ml DNaseI (Roche Diagnostics, CH) at 

37°C for 60min with occasional pipetting to obtain single cell suspensions. 

The cells were stained with fluorescence-tagged antibodies for FACS analysis. 

 

3.11. Cytospin 

 

Single cell suspension of thymus tissue was obtained using the same 

method as described in Section 3.4. The cells were then stained with 

fluorescence-tagged antibodies for extracellular antigens and fixed with 

Cytofix/Cytoperm kit (Becton-Dickson, USA) according to manufacturer’s 

protocol. The cells were then sorted using the FACS Aria to obtain specific 

cell populations and attached onto glass slides using the Cytospin (Thermo 

Scientific, USA) at 800g for 5min. The cells were then stained with monoclonal 

anti-Eed antibody (Table 2) and incubated overnight at 4°C. Subsequently, 

anti-rabbit IgG antibody conjugated to Alexa Flour® 555 was added to detect 

the anti-Eed antibody and images were acquired using SP5 Leica SP5 confocal 

microscope. 
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3.12. T-cell depletion 

 

Two-weeks-old Eedfl/fl and Eedfl/fl:: β5tCre mice were injected i.p. over 3 

consecutive days with 200µg anti-CD4 (GK1.5), 100µg anti-CD8 (53-67) and 

50µg anti-Thy1.2 (T24) per dose. All antibodies used were homemade and 

tested for the sufficient dosage to peripheral T cell population.  

 

3.13. Statistical analysis 

  

The values of all experimental data presented are mean ± standard 

deviation. The two-tailed unpaired Student’s t-test was performed using 

GraphPad Prism version 5 (San Diego, USA). The p-values are indicated in 

each figures and classified in four categories: p>0.05 (not significant), p>0.01 

(*), p>0.001 (**), p>0.0001 (***). 

 

3.14. Single cell transcriptomic analysis 

 

 Single cells were obtained from 4-weeks-old Eedfl/fl:: β5tCre and wild 

type B6 control mice and sorted into individual wells of a 96-well plate 

containing 2.3µl of lysis buffer (0.2% Triton, 2units/µl RNase inhibitor, 

RNase-free water). The samples were then sent to collaborator for the 

construction of a cDNA library for every individual cell and subsequently 

transcriptomic analysis using the Smart-Seq2 method (117). 

For quality control, cells were eliminated from further analysis if the 

proportion of aligned reads was < 75%; if the number of detected genes was < 

2000 or > 10000; if the proportion of fragments mapping to ERCC (External 

RNA Controls Consortium) spike-ins was > 75% or < 1%; if the proportion of 

fragments mapping to mitochondrial genes was either an outlier or > 20%; if 

the proportion of fragments mapping to rRNA was an outlier; if the cell was 
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classified as an outlier by PCA; if the GC content of the library was < 40% or > 

60%; or if the 5’ to 3’ bias was ≤ 0.2 (as assessed by Picard tools). Outlier 

analysis was conducted in R using the boxplot function. PCA outliers were 

those where the ratio of MAD to median distance from the plate centroid was 

> 2. The proportion of fragments was estimated as Σy1


j / (Σy1


j + Σx1


i), 

where y is the gene set of interest (e.g. ERCC spike-ins), x is the set of protein-

coding genes, j is the number of genes in the gene set of interest and i is the 

number of protein-coding genes. 

The size-factors (i.e. sample amount) were calculated for each cell 

passing quality control on protein-coding genes and ERCC spike-ins using 

DESeq (118). Counts were adjusted by two-factor correction: ([x1...i] / sfx) / 

sfERCC, where sfx is the size-factor of protein-coding genes and sfERCC is the size-

factor of ERCC spike-ins. 

Analysis of the number of detectable genes in different numbers of 

cells was conducted by randomly sampling 100 combinations of cells with 

replacement at each number of cells (apart from 1 cell - at which point all cells 

were analysed separately). Empirical 95% confidence intervals were 

calculated from these sampled data and multiple different FPKM (Fragments 

Per Kilobase of transcript per Million mapped reads) thresholds were used. 

Counts were converted into the absolute number of molecules by linear 

modelling of the amount of ERCC spike-ins against the detected FPKM (with 

the fitted line forced through the origin). 

Clustering was conducted using PCA (principal component analysis) 

and t-SNE (t-distributed stochastic neighbor embedding; implemented in the 

tsne R package). In the case of clustering, genes were included in the model 

only if the standard deviation was > 0 and the gene was expressed in > 20% 

cells. 

Differential expression was analysed using single-cell differential 

expression (scde) analysis package on genes with standard deviation >0 and 
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detectable at >10 reads per cell (119). The level of significance was set at an 

FDR < 0.05. Gene ontology enrichment was estimated using DAVID (120). 
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4. RESULTS 

 

4.1. Introduction to mouse model used in the study 

 

 Deficiency of PRC2 function is lethal to mice in the early embryonic 

stages (79). Therefore, the gene ablation of Eed was achieved conditionally by 

using the Cre-lox system to probe the functional role of PRC2 complex in TEC 

development and function. Tissue specific expression of Cre is achieved by 

placing the coding sequence of Cre under the transcriptional control of a 

tissue specific promoter. The gene to be conditionally ablated is modified by 

recombinant DNA technology so that recognition sequences for Cre, so called 

loxP sites, are placed at the 5’ and 3’ ends of the genomic DNA segment to be 

excised (121). To target the loss of gene functions exclusively to TEC, Cre 

expression was placed under the transcriptional control of Psmb11 that 

encodes β5t, a thymic specific subcomponent of the proteasome complex (52, 

122). The use of Foxn1 transcriptional controlled Cre expression (123–125) was 

omitted as transcript of Foxn1 is also significantly detected in skin 

keratinocytes (123, further eloborated in Discussion). β5t expression is 

initiated at E12.5 in the thymus that, at the early stage, constitutes of TEC 

precursors that eventually give rise to both cortical and medullary lineages 

(122). Hence, the placing of Cre expression under transcriptional control of 

β5t instead of Foxn1 enables the gene deletion specific to only TEC and 

eliminates potential confounding factors to the mouse model phenotype due 

to off target deletion in other organs such as the skin.  

To achieve a loss of PRC2 function specific to TEC, Eedfl/fl::β5tCre 

mouse line was generated whereby exon 3 to exon 6 of the Eed gene locus is 

flanked by to loxP sites (fl) (Figure 6). These exons contain sequences 

encoding the WD domain that enables Eed to interact with Ezh1/2 (97). The 
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presence of Cre recombinase, specifically in TEC, will result in the excision of 

the loxP flanked exons of Eed leading to the functional loss of Eed and 

subsequently PRC2 function. Littermates lacking the β5tCre transgene 

(referred to as Eedfl/fl) will serve as the wild type control mice. 

 

 
Figure 6. Schematic representation of the recombinant Eed and Psmb11 loci used to generate 

Eedfl/fl::β5tCre mice. The lox P sites are inserted into the eed locus flanking the exon 3 to 

6. Upon the co-expression of Cre controlled by Psmb11 locus, the intervening 

sequence of Eed is excised in the genome. 

 

A second experimental model to probe the functionality of PRC2 was 

developed in parallel. For this purpose, mice deficient in the expression of 

either one or both homologs of the catalytic component Ezh were created. 

Mice with a conditional Ezh2 gene locus, with loxP sites flanking exons 16-19 

that encodes the SET domain, were crossed to mice that carry the transgene 

β5tCre and were conventionally deficient of Ezh1 to obtain mice designated 

Ezh1KO::Ezh2fl/fl::β5tCre. The TEC of these mice are devoid of both Ezh1 and 

Ezh2 and thus provide an alternative approach to assess the function PRC2.   

A third mouse model was designed to visualise TEC in Eedfl/fl::β5tCre 

mice that had recombined their loxP modified loci. This was achieved by 

breeding into Eedfl/fl::β5tCre mice a modified Rosa26 locus which expresses 

ZsGreen fluorescence protein in a tissue specific fashion upon removal of a 

stop cassette flanked by loxP sequences. The design of these mice, designated 

Eedfl/fl::β5tCre::ZsGreen, is displayed in Figure 7. Since the Cre recombinase 

mediated process of DNA recombination is irreversible, modifications to the 
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genome will be inherited to all subsequent daughter cells and thus serves also 

conveniently as a lineage tracer tool. 

 

 
Figure 7. Schematic representation of gene construct in Eedfl/fl::β5tCre::ZsGreen. The loxP 

sites flank exons 3 and 6 of the Eed locus and the stop cassette downstream of the 

Rosa26 locus and upstream of transgene encoding ZsGreen. Following Cre 

expression under TEC-specific Psmb11 promoter, both exons 3-6 of Eed and stop 

cassette are deleted by targeted recombination and, as a consequence, the cells cease 

to express Eed and are also rendered green fluorescent. 

 

4.2. TEC Phenotype of Eedfl/fl::β5tCre 

 

4.2.1. Diminished thymus cellularity but unchanged tissue architecture 

 

I first investigated the consequences of a loss of PRC2 function, 

resulting from the deficiency of Eed expression, in TEC for thymus cellularity 

and tissue architecture. Thymus organ size and overall cellularity following 

physical tissue disruption were significantly reduced in Eedfl/fl::β5tCre mice 

when compared to the Cre negative control Eedfl/fl mice (Figure 8A,B). The 

reduction of thymus cellularity was significantly diminished at all time points 

tested between the newborn age and 4 weeks of life (Figure 8B). Progressive 

thymus involution precluded any further analysis beyond 5 weeks of age. 

These results clearly demonstrate that PRC2 function is required for the 

regular development and maintenance of the thymus. 
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Using haematoxylin and eosin (H&E) staining, tissues from control 

Eedfl/fl mice displayed a characteristically segregated, cell-dense cortical and 

less compact medullary region. In contrast, cross section of the thymus of 

Eedfl/fl::β5tCre demonstrated a thymus largely reduced in size (Figure 8A), 

reflecting the overall diminished cell count of the organ (Figure 8B). In 

addition, the cortex was significantly reduced in depth and displayed a 

“broken” appearance with small islands at its periphery that appeared less 

dense with cells. Regions with reduced cellular density, similar to that of the 

medulla, were also observed in the sub-capsular region adding to an overall 

altered appearance of the thymus histological morphology (Figure 8C). 

However, a thymic architecture with segregated cortex and medulla and a 

clearly defined cortico-medullary junction was overall maintained in 

Eedfl/fl::β5tCre mice (Figure 8D).  

 

 
Figure 8. Thymus morphological features. (A) The macropathological analysis of thymic 

lobes from 4-weeks-old Eedfl/fl::β5tCre and control Eedfl/fl mice. (B) Total thymic 

cellularity following physical disruption at the indicated time points: newborn (NB), 

1 and 4-weeks-old (w). (C) H&E staining of thymic lobes isolated from Eedfl/fl::β5tCre 
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and control Eedfl/fl mice at age of 4 weeks. (D) Immunohistology of thymus tissue 

sections of 4-weeks-old Eedfl/fl::β5tCre and control Eedfl/fl mice using antibodies 

specific for β5t (green) and reactivity to UEA1 (blue) identifying cTEC and mTEC, 

respectively. Note, a distinct cortico-medullary junction can be observed in both 

Eedfl/fl::β5tCre and control Eedfl/fl mice. Data are representative of at least 2 

independent experiments with 3 to 5 mice per group. ***p<0.001, two-tailed paired 

Student’s T test. 

 

4.2.2. Decreased mTEC but increased cTEC cellularity 

 

 I next analysed the thymic tissue using flow cytometric analysis to 

characterise the phenotypes of thymic epithelia and quantify their respective 

cellularity.  In this analysis, TEC were positively identified by their expression 

of the cell surface marker EpCAM and their consistent lack of expression of 

the pan-haematopoietc marker CD45. Within this population of epithelial 

stroma (EpCAM+ CD45-) cells, cTEC were identified by their expression of the 

cell surface marker Ly51 whereas mTEC were classified as being reactive with 

the lectin Ulex europaeus agglutinin 1 (UEA1). The frequency of TEC was 

relatively increased in thymic single cell suspensions of Eedfl/fl::β5tCre mice 

(2%) when compared to controls (0.16%) which was approximately 12-fold 

higher than the age-matched controls (Figure 9A). The further analysis of the 

TEC subpopulations in 4-weeks-old Eedfl/fl::β5tCre mice showed that mTEC 

were greatly reduced but cTEC – in contrary to what was expected from the 

H&E analysis – were paradoxically increased consequent to Eed deficiency 

(Figure 9A). To test whether these changes correlated with a change in post-

translational histone modifications resultant from the absence of PRC2’s 

catalytic activity, I measured H3K27me3 marks in the nuclei of cTEC and 

mTEC and related their extent of detection to the overall level of histone H3. 

While a loss of Eed expression did not impact on the global detection of 

histone H3, the H3K27me3 mark was however significantly altered; all cTEC 

displayed an unvarying reduction of H3K27me3 marks revealing a uniform 
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change in this repressive mark (Figure 9B). In contrast, mTEC subjected to the 

same flow cytometric analysis showed two populations, one in which the 

level of H3K27me3 mark was comparable to that observed in Eed-deficient 

cTEC and a second, albeit smaller population, that failed to display such a 

reduction and stained identical to the Eedfl/fl control mice. (The analysis of the 

lesser population of mTEC maintaining seemingly regular H3K27me3 marks 

will be further described in Section 4.4.) Despite the significant reduction in 

overall thymus cellularity in Eedfl/fl::β5tCre mice, TEC absolute cellularity was 

identical to that of Eedfl/fl control mice irrespective of the specific age 

measured within the first 4 weeks of life (Figure 9C). The relative increase of 

TEC without a change in its absolute cellularity implies that a stark reduction 

in thymocytes will have most likely accounted for these observed changes, as 

thymocytes constitute the most abundant cell population in the thymus. 

Within the TEC compartment of Eedfl/fl::β5tCre mice, cells with a medullary 

phenotype (EpCAM+CD45-UEA1+) constituted a minority as compared to cells 

with cortical phenotype (EpCAM+CD45-Ly51+) (Figure 9D, E). These 

differences were most striking at 4 weeks of age and suggested that a loss of 

PRC2 function impacted differentially on mTEC and cTEC; the former was 

reduced in both frequency and absolute cellularity in PRC2-deficient mice at 4 

weeks of age whereas the latter was more abundant for both measures. 

Moreover, the level of MHC-II expression was typically reduced in TEC 

largely independent of their cortical and medullary phenotype (Figure 9F, G). 

However, there was again a subpopulation of mTEC that displayed a cell-

surface MHC-II expression level identical to that of the Eedfl/fl controls. The 

frequency of these cells was similar to that of mTEC that maintained 

unchanged H3K27me3 marks (Figure 9F).   
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Figure 9. Phenotypic TEC analysis. (A) Gating strategy to identify TEC 

(EpCAM+CD45-) using flow cytometry. Forward scatter (FSC), side scatter (SSC). 

Note the differences in cTEC and mTEC between 4-weeks-old Eedfl/fl::β5tCre and 

Eedfl/fl control mice. (B) Detection of H3K27me3 and total histone H3 in TEC nuclei of 

Eedfl/fl::β5tCre and Eedfl/fl control mice. (C-E) Absolute TEC, cTEC and mTEC 

cellularity at different postnatal time points: newborn (NB), 1 and 4-weeks-old (w). 

(F) MHC-II expression and their (G) geometric mean fluorescence intensity (gMFI) 

on cTEC and mTEC of Eedfl/fl::β5tCre and Eedfl/fl control mice. Data are representative 

of at least 2 independent experiments with 3 to 5 mice per group and experiment.   

*** p<0.01, two-tailed paired Student’s T test. 
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4.2.3. Altered mTEC maturation consequent to lack of PRC2 activity 

 

The mTEC maturation was staged by the up-regulation of MHC-II on 

the cell surface and the subsequent expression of Aire in a subpopulation of 

mTEC with high level of MHC-II (23, 126). The frequency of mature mTEC 

(expressing high level of MHC-II; designated mTEChi) was reduced in 

Eedfl/fl::β5tCre mice and also fewer mTEChi expressed Aire (Figure 10A, B). 

Hence, the absence of PRC2 function impeded the regular maturation of 

epithelia in the mTEC lineage. This observed change may either be the direct 

consequence of the loss of PRC2 function that could be required for mTEC 

terminal differentiation, or alternatively, may indirectly be caused by the 

paucity of single positive thymocytes as these cells induce mTEC maturation 

via their expression of lymphotoxinβ, CD40 ligand or receptor activator of 

nuclear factor kappa-B ligand (RANKL) (127). To further interrogate the 

mechanism possibly responsible for the decreased mTEC cellularity in 

Eedfl/fl::β5tCre mice, fetal E15.5 thymic lobes were harvested from mutant and 

control mice, treated with deoxyguanosine to deplete thymocytes and then 

cultured in the presence of exogenously added RANKL to substituted for 

signals otherwise provided by single positive thymocytes (128). RANKL was 

unable to restore in these cultures a normal mTEC (UEA1+) frequency (Figure 

10C) thus demonstrating an intrinsic incompetence of PRC2-deficient TEC to 

respond adequately to a signal typically associated with mTEC maturation.  

The observed decrease in mTEC cellularity in mice with TEC devoid of 

PRC2 function could be the consequence of: i) the decreased cellular 

proliferation; ii) the result of an increased rate of apoptosis in the absence of 

PRC2 function; iii) or, alternatively the change in asymmetrical TEC 

differentiation since fewer mTEC were contrasted by an increased cTEC 

cellularity. To test the first explanation, mice were exposed in vivo to BrdU to 

quantify DNA neo-synthesis in distinct TEC subpopulations (Figure 10D). 
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This analysis revealed that both cTEC and mTEC proliferation were 

significantly decreased in 4-weeks-old Eedfl/fl::β5tCre mice. Given the stark 

reduction in BrdU incorporation in both epithelial compartments, it remained 

unclear why the cellularity of mTEC was reduced while the cTEC increased in 

mice with the TEC-specific loss of PRC2 function (Figure 9D, E). Upon closer 

analysis of the mTEC subpopulations, the proliferation of immature mTEC 

was severely reduced in the mutant mice yet these cells constitute 

approximately two thirds of all mTEC. In contrast, the proliferation of the 

mature mTEC, with upregulated MHC-II expression, was not different to that 

of the controls (Figure 10D). Moreover, the altered frequencies of both cTEC 

and mTEC are unlikely accounted for by difference in rate of apoptosis, and 

for this reason survival rate, as both populations when analysed by qPCR 

displayed a comparable relative expression levels in apoptosis-related genes 

(Bak, Bax, Bid, Bcl-xl; Figure 10E). In addition to these observations, the stark 

reduction of mTEC cellularity (Figure 9D, 10B) despite of an unchanged total 

TEC cellularity (Figure 9C) suggested a shift in the lineage commitment 

towards a cTEC fate. Hence, a likely explanation for the observed changes in 

cellularity for both cTEC and mTEC could be due to the crucial role of PRC2 

at the developmental stage where progenitors, that have attained a cTEC 

phenotype, asymmetrically differentiate to adopt the mTEC fate. In the 

absence of PRC2, cTEC are less likely to assume the medullary (mTEC) 

phenotype. The partial restriction, in turn, impacts on the absolute cellularity 

and maturation of mTEC.  
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Figure 10. Altered mTEC maturation in 4-weeks-old Eedfl/fl::β5tCre mice. (A) Gating 

strategy to analyse mTEC maturation stages with flow cytometry. The immature 

mTEC, defined by the low expression level of MHC-II, matures and up-regulates 

MHC-II and subsequently expresses Aire. (B) Frequency (left panel) and cellularity 

(right panel) of mTEC subpopulations within the medullary epithelia (EpCAM+, 

UEA1+, Ly51-). (C) Inability of in vitro RANKL stimulation to restore mTEC 

cellularity in Eedfl/fl::β5tCre thymus. Thymocyte depleted E15.5 thymic lobes were 

cultured with 10µg/ml of RANKL for 5 days and the frequency of mTEC was 

measured by flow cytometric analysis was then normalised to the frequency of 

mTEC present in the non-RANKL-treated control (left panel). The cellularity of mTEC 

measured per lobe in RANKL treated thymic lobes is presented on the right panel. (D) 

The flow cytometric analysis (left panel) and frequencies (right panel) of various TEC 

subpopulations incorporating BrdU during 16 hours following i.p. injection (1mg per 

mouse). (E) Expression of apoptosis-associated genes (Bak, Bax, Bid, Bcl-xl) in cTEC 

and mTEC of Eedfl/fl::β5tCre and Eedfl/fl control mice. Expression levels of each 

apoptosis-associated gene were normalised to GAPDH expression and fold changes 

in the expression levels of each genes were related to the corresponding gene 

expression level in the Eedfl/fl control TEC, where fold change was set to an arbitrary 

value of 1. Data are representative of at least 2 independent experiments (except E 

which displays data from one experiment) with 3 to 5 4-weeks-old mice per group. * 

p<0.05, *** p<0.001, two-tailed paired Student’s T test. 
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4.2.4. TEC double deficient for Ezh1/2 display comparable defects in TEC 

cellularity and maturation 

 

To ensure that the observed TEC phenotype of Eedfl/fl::β5tCre mice was 

directly related to the loss of the methyltransferase activity of the PRC2, the 

TEC phenotype was also determined in the case of deletion of the subunits 

containing the catalytic domains, Ezh1/2. Therefore, I generated mice that are 

devoid of either one of these PRC2 components (designated Ezh1KO and 

Ezh2fl/fl::β5tCre). Due to partial redundancy of Ezh1 and Ezh2 (108), single 

deletion of either Ezh1 or Ezh2 resulted only in mild phenotypes (Figure 11A, 

C-F). For this reason, double knockout mice were bred in which a constitutive 

loss of Ezh1 was paired with TEC-targeted loss of Ezh2 (designated 

Ezh1KO::Ezh2fl/fl::β5tCre). These double deficient mice, displayed significant 

changes in the frequency and absolute cellularity of mTEC and cTEC, as 

highlighted by a reduction in the former and an increase in the latter (Figure 

11A, E, F). The population of mutant mTEC contained also a small mTEC 

population that seemingly maintain regular level of H3K27me marks (Figure 

11B), a finding comparable to what was observed in mTEC isolated from 

Eedfl/fl::β5tCre mice. In contrast to the unchanged TEC cellularity in 

Eedfl/fl::β5tCre mice, total TEC cellularity was significantly reduced in 4-

weeks-old Ezh1KO::Ezh2fl/fl::β5tCre mice as compared to the controls or single 

mutants (Figure 11D). In Ezh1KO::Ezh2fl/fl::β5tCre mice, the lineage specific 

differentiation into separate mTEC populations was skewed with a lower 

frequency of mTEChi, with or without Aire expression (Figure 11G). The 

striking similarity (albeit not identical) in the phenotype following changes in 

the composition of the canonical PRC2 complex reinforced the conclusion that 

PRC2 function is essential for regular TEC lineage differentiation and 

maintenance.  
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Figure 11. Reduced TEC cellularity and defective mTEC maturation in 4-weeks-old Ezh1KO:: 

Ezh2fl/fl::β5tCre mice result from a loss of the PRC2 catalytic activity. (A) Only the 

combined knockout of Ezh1 and Ezh2 homologs but not the single knockouts altered 

TEC differentiation. (B) Loss of methyltransferase activity of PRC2 reduces 

H3K27me3 marks in all cTEC and the majority of mTEC. (C - F) Plots of the absolute 

cellularity of thymus, TEC and TEC subpopulations in the single knockout mice, 

double knockout and Cre negative control mice. Significant changes in the cellularity 

were observed only in loss of both Ezh1 and Ezh2 expression. (G) Partial 

maturational block of mTEC devoid of Ezh1/2 expression with a decrease in cells 

with a mature phenotype. Data are representative of at least 2 independent 

experiments with 3 to 4 mice per group. ** p< 0.01, *** p<0.001, two-tailed paired 

Student’s T test. 
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4.3. Thymocyte Development 

 

4.3.1. PRC2 is involved in recruitment of early T-lineage progenitors 

 

 The loss of PRC2 function in TEC resulted in a hypocellular thymus 

despite a stromal scaffold composed of TEC that were identical in number to 

that of control mice. I, therefore, investigated next the quality and quantity of 

thymopoiesis in a microenvironment made up of Eed-deficient epithelia. 

Staining B cell-, erythroid and myeloid lineage negative thymocytes for the 

cell surface expression of CD4 and CD8 revealed a normal maturational 

progression as the frequency of DN, CD8ISP, DP, CD4SP or CD8SP remained 

unchanged (Figure 12A). Moreover, a detailed analysis of the individual DN 

subpopulations, using the differential cell surface expression of CD44 and 

CD25, demonstrated normal frequencies for each of these stages in early 

thymocyte development (Figure 12B). Therefore, a specific and especially 

early but partial intrathymic block in thymocyte differentiation could be 

excluded as an explanation for the hypocellularity of thymocytes in the 

thymus of Eedfl/fl::β5tCre mice.  

Since the reduced thymocytes cellularity in Eedfl/fl::β5tCre mice could 

not be explained by blockages in the thymocyte differentiation, earlier stages 

of the thymocyte development were being investigated. The T cell progenitors 

are attracted to the thymus by a set of well-characterised chemokines, 

including CXCL12 and CCL25, typically expressed by the cTEC (27). 

Eedfl/fl::β5tCre mice demonstrated a significantly reduced relative frequency 

and absolute cellularity (2,670 ± 864.2 vs.  50 ± 15.6) of ETP (Lineage-, CD44+, 

c-Kit+) (Figure 12C). This decrease in ETP recruitment correlated with a 

reduced number of transcripts in cTEC for the chemokines CXCL12 and 

CCL25 (Figure 12D), which may have caused the reduced efficiency of Eed-

deficient TEC to recruit ETP into the thymus. As a result, subsequent 
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thymocyte development in Eedfl/fl::β5tCre mice drew from a smaller pool of 

the earliest detectable population of thymocyte precursors.  

 

4.3.2. Unaffected initiation of thymocyte selection 

 

During thymopoiesis, maturational progression beyond the DN stages 

requires the productive rearrangement and expression of a TCRβ chain (34). 

Subsequently, thymocytes acquire the concomitant expression of CD4 and 

CD8 and begin to express a complete TCR complex competent to scan MHC-

peptide complexes and initiate signaling upon the engagement with these 

ligands that is of sufficient affinity (34). Activation of TCR above a 

developmentally set threshold and the consequent selection of these cells for 

further survival and differentiation coincide with the transient expression of 

CD69 (39, 129).  The frequency of CD69-positive thymocytes was comparable 

for Eedfl/fl::β5tCre and Eedfl/fl control mice (Figure 12E) which indicates an 

undisturbed capacity of cTEC to initiate thymocyte selection. 
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Figure 12. Reduced early T-lineage progenitor frequency but unperturbed initial selection of 

thymocytes in 4-weeks-old Eedfl/fl::β5tCre mice. (A) Analysis of major thymocyte 

developmental stages as marked by the expression of CD4 and CD8 on lineage 

negative cells (i.e. B cells, myeloid cells and red blood cells). CD8 SP cells were 

further characterised to distinguish between immature (TCRβ-, CD24+) and mature 

cells (TCRβ+, CD24-). (B) The relative frequency of DN thymocytes. (C) The 

frequency of ETP (c-Kit+, CD44+) among cells excluded of non-lymphoid and Treg cells 

(lineage negative, CD25-). (D) qPCR analysis of cTEC for CXCL12 and CCL25 

transcripts in Eedfl/fl::β5tCre mice when compared to Eedfl/fl control mice where the 

fold change values were set to an arbitrary value of 1. cDNA amounts were 

normalised with housekeeping gene GAPDH.  (E) CD69 and TCRβ expression on 

total thymocytes. Data are representative of at least 2 independent experiments with 

3 to 4 mice per group. *p<0.05, ***p<0.001, two-tailed paired Student’s T test. 
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4.3.3. Defective Negative Selection 

 

 Thymocytes expressing TCR specificities directed against the host’s 

own cells and molecules (self antigens) hold the risk to initiate and maintain 

an autoimmune response to peripheral organs and their products should 

these cells be allowed to mature and exit the thymus without any form of 

selection. A system of TCR quality control is therefore in place during 

intrathymic T cell maturation to secure a repertoire of mature, functional T 

cells that are tolerant to self-antigens but responsive to foreign antigens. This 

process is referred to as thymocyte negative selection which deletes maturing 

thymocytes whose TCRs have a sufficiently high affinity for MHC/self-

antigen complexes presented on surface the cTEC, mTEC, and antigen 

presenting cells (dendritic cells, B cells, macrophages). Cortical thymocytes 

(CCR7-) undergoing negative selection are identified by a co-expression of the 

cell surface markers Helios and PD-1 (42). The frequency of Helios+PD-1+ 

cortical thymocytes was significantly reduced in Eedfl/fl::β5tCre mice (Figure 

13A) and these cells displayed a higher avidity for MHC/self-antigen 

complexes as measured by the geometric mean fluorescence intensity (gMFI) 

expression of CD5 (130). Thus, cTEC rendered deficient of a functional PRC2 

complex displayed a defective capacity for cortical negative selection.   

The cell surface acquisition of CCR7 expression marks the capacity of 

thymocytes to migrate into the medulla where the second opportunity for 

negative selection is provided by interaction with mTEC and other antigen 

presenting cells. Within the population of medullary (CCR7+) CD4 SP cells, 

negatively selected cells are identified by the expression of Helios (42). The 

frequencies of Helios positive thymocytes among medullary immature 

(CD24+) and mature (CD24-) CD4 SP cells were both reduced in 

Eedfl/fl::β5tCre mice when compared to Eedfl/fl control mice (Figure 13A). The 

CD5 gMFI values were also increased in each of these CD4SP population 



 53 

(Figure 13B) indicating the negative selection of cells in Eedfl/fl::β5tCre mice 

that display a higher average TCR avidity. Hence, mTEC lacking PRC2 

activity also fail to enforce normal negative selection.   

To confirm the conclusion that PRC2 function is required for regular 

thymocyte selection of high avidity thymocytes in both the cortex and 

medulla, an alternative approach was also used to quantify negative selection 

in both compartments. Using the differential expression of cell surface 

markers PD1, CD24, and Ox40, two separate waves of negative selection can 

be identified (43). The first wave occurs in the cortex and is characterised by 

the parallel expression of PD1 and CD24 on CCR7-TCRβ+ thymocytes. The 

second wave takes place in the medulla and is marked by the expression of 

Ox40, a member of the tumor necrosis factor receptor superfamily (S. Daley, 

personal communication). The frequencies of cells subject to negative selection 

were decreased in both waves (Figure 13C). Based on two different flow 

cytometric analyses to assess the extent of negative selection, both approaches 

demonstrated that cTEC and mTEC are indeed limited in their capacity to 

induce negative selection in the absence of physiological PRC2 expression as 

in Eedfl/fl::β5tCre mice. 



 54 

 
 
Figure 13. Reduced negative selection of cortical and medullary thymocytes in 4-weeks-old 

Eedfl/fl::β5tCre mice. (A) Detection of negatively selected thymocytes in the cortex 

(CCR7-, TCRβ+) and immature (CD24+) and mature CD4SP cells (CD24-) in the 

medulla (CCR7+) using the co-expression of PD1 and Helios in the former and only 

Helios in the latter. (B) Determination of TCR avidity as per mean fluorescence 

intensity (gMFI) values of CD5 among negatively selected thymocytes in cortex and 

and medulla as per panel A. (C) Cortical thymocytes undergoing negative selection 

are identified by expression of PD-1 while the negatively selected medullary 

thymocytes are identified by the expression of Ox40. (C) Detection of negatively 

selected DP thymocytes in the cortex (CCR7-, Foxp3-, TCRβ+) and medulla (CCR7+ 

CD4SP) using the co-expression of PD1 and CD24 in the former and Ox40 in the 

latter. Data are representative of at least 2 independent experiments with 3 to 5 mice 

per group. *p<0.05, **p<0.01, *** p<0.001, two-tailed paired Student’s T test. 
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4.3.4. Detection of negative selection efficiency 

 

 Effective negative selection of thymocytes requires the expression and 

presentation of a complete repertoire of TRA. Having demonstrated the 

capacity of negative selection is reduced in PRC2-deficient TEC, I seek further 

to demonstrate a direct measure of the functional loss of negative selection by 

PRC2-deficient TEC. Tetramer assay is an efficient way to identify and 

quantify T cells with specific antigen specificity. This method relies on several 

MHC molecules each presenting a known antigenic peptide that are bound to 

a fluorescence-tagged streptavidin to form a multimeric complex that 

displays a high binding avidity to circumvent the problem of dissociation. T 

cells positively stained with these tetramers thus represent cells with TCR 

specificity for the antigenic peptide used in the tetramer complexes. This 

method has been successfully used to quantify the efficiency of thymic 

selection by quantifying the absolute number of antigen-specific (i.e. tetramer-

positive staining) T cells at distinct development stages (46, 131, 132). This 

method is therefore employed to probe the efficiency of negative selection in 

the presence or absence of PRC2 function in TEC. Since Cre is expressed in 

Eedfl/fl::β5tCre mice under the transcriptional control of β5t promoter, all cTEC 

would be positive for the recombinase. On the other hand, a subpopulation of 

mature mTEC in Eedfl/fl::β5tCre mice should also be expressing Cre 

recombinase based on available transcriptomic data that indicated the 

presence of β5t expression in a subpopulation of mature mTEC (unpublished 

data from Holländer lab). Nevertheless, this assumption remained to be 

experimentally proven. Therefore, the Cre recombinase was used as a 

surrogate self-antigen to probe for the efficiency of negative selection(46). The 

frequency of Cre-tetramer+ cortical thymocytes not undergoing negative 

selection (CCR7-PD1-Helios-) was lower in mice that expressed Cre transgene, 

suggesting that the negative selection in cortex is apparently undisturbed for 
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this surrogate self-antigen (Figure 14A). In contrast, and despite a lower 

thymocyte to mTEC ratio, Cre-tetramer+ thymocytes were observed to at a 

higher frequency in Eedfl/fl::β5tCre mice when compared to PRC2-proficient, 

Cre-expressing transgenic mice (Figure 14B). Of note, a higher frequency of 

Cre-tetramer+ thymocytes was also observed in PRC2-proficient Eedfl/fl control 

mice that lack Cre transgene. The absolute cellularity of Cre-tetramer+ 

thymocyte was, however, greatly diminished in keeping with the 

hypocellularity of the Eedfl/fl::β5tCre thymus (Figure 14B). These data 

independently verify that thymocyte negative selection is compromised in the 

absence of Eed expression in mTEC.  

 

 
Figure 14. Compromised negative selection of medullary thymocytes with reactivity to the 

Cre recombinase. (A) Decreased frequencies of cortical (CCR7-) Cre-tetramer+ CD4 SP 

thymocytes in Cre-expressing transgenic mouse lines but unchanged in the absence 
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of PRC2 function. Flow cytometric analysis (left panel) and frequencies (right panel) of 

Cre-tetramer+ CD4 SP thymocytes within the population of non-negatively selected 

(PD1-Helios-) cortical (CCR7-) thymocytes. (B) Increased frequency of Cre-tetramer+ 

CD4 SP thymocytes in PRC2-deficient. The gating strategy of the flow cytometric 

analysis of CD4SP thymocytes for reactivity to Cre tetramers is presented on the left 

panel. CD8 SP cells staining for Cre-tetramer were used as a negative control to set 

the threshold for the gates. The right panel shows the frequency (top) and cellularity 

(bottom) of Cre-tetramer-positive CD4 SP thymocytes in the indicated mouse strains. 

Data are representative of at least 2 independent experiments with 4 4-weeks-old 

mice per group.  *p<0.05, **p<0.01, *** p<0.001, two-tailed paired Student’s T test. 

 

4.3.5. Thymic Treg are reduced in Eedfl/fl::β5tCre mice 

 

Thymocyte negative selection is a mechanism of central T cell tolerance 

induction that is neither sufficiently comprehensive under physiological 

conditions nor fully effective. Therefore, an additional fail-safe mechanism 

needs to be in place to control self-reactive thymocytes that have escaped both 

the cortical and medullary negative selections. The non-deletional mechanism 

in controlling auto-reactive T cells in the periphery (i.e. outside of the thymus) 

relies on the generation of Treg. These cells can either be generated by 

conversion of peripheral T effector cells or, alternatively, are formed in the 

thymic medulla after negative selection has been imposed. The mTEC play an 

essential role in generating Treg by providing necessary developmental niches 

(43). In the thymus of Eedfl/fl::β5tCre mice, an increased frequency but reduced 

cellularity of Treg (Foxp3+CD25+) was observed among CD4SP cells (Figure 

15A). The pool of Treg from the thymus of the Eedfl/fl::β5tCre mice also express 

TCR of unchanged avidity based on the similar level of CD5 gMFI values 

(Figure 15A). However, Treg cells found in the thymus with this phenotype 

can either be derive within the thymus (thymic Treg) or, alternatively, 

constitute a population of Treg that have re-circulated from the periphery back 

to the thymus (recirculating Treg) (133). Recirculating Treg can be 

phenotypically identified as cells that are CCR7- but express high surface 
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level of CD44 (CCR7-CD44high). Applying these markers to the intrathymic 

Treg, both the relative frequency and absolute cellularity of thymic Treg were 

significantly reduced whereas the population of recirculating Treg was 

increased in frequency but unchanged in absolute cellularity in comparison to 

the Eedfl/fl control mice (Figure 15A, B). The TCR avidity of only the 

recirculating Treg pool but not the thymic Treg was increased (Figure 15B). 

These findings suggested that the niches supporting thymic Treg development 

were affected by the paucity of mTEC cellularity and/or the functional 

impairment of mTEC due to a loss of Eed expression.   

 

 
Figure 15. Reduced thymic Treg frequency and cellularity in 4-weeks-old Eedfl/fl::β5tCre mice. 

(A) Frequency and cellularity of total Treg (Foxp3+CD25+CD4SP) in the thymus. The 

TCR avidity of the total Treg is reflected by the mean fluorescence intensity (gMFI) 

values of CD5. (B) Detection of thymic Treg (CCR7+CD44lo) and re-circulating Treg 

(CCR7-CD44hi). TCR avidity values of both Treg subpopulations are reflected by the 

mean fluorescence intensity (gMFI) values of CD5. Data are representative of at least 

2 independent experiments with 3 to 4 mice per group.  **<0.01, *** p<0.001, two-

tailed paired Student’s T test. 
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4.3.6. Thymic hypocellularity of Eedfl/fl::β5tCre mice results in peripheral T cell 

lymphopenia 

 

 The peripheral T cell pool is in mice largely maintained by the efficient 

export of mature naïve T cells from the thymus. Therefore, the extent to which 

the thymic hypocellularity of Eedfl/fl::β5tCre mice had compromised the 

establishment of the peripheral T cell pool was accessed. Analysing the 

spleen, fewer T cells could be recovered while both total splenic and B 

cellularity were not altered (Figure 16A). Hence, a significantly hypocellular 

thymus (Figure 8B) correlated with a contracted peripheral T cell pool 

suggesting a diminished naïve T cell output resulted, at least in part, in 

significantly fewer peripheral T cells.  

The lack of competition in T lymphopenic hosts increases the access of 

naïve T cells to growth factors including interleukin-7 (IL7) and IL-15 and 

heightens the chance to encounter cognate MHC/peptide complexes on 

antigen presenting cells. As a consequence, tonic stimuli are abound to drive 

the homeostatic expansion of naïve T cells that consequently acquire a 

memory phenotype as characterised by an up-regulation of CD44 expression 

(167, 168). Peripheral CD4 and CD8 T cells of Eedfl/fl::β5tCre mice displayed 

significantly higher frequencies of cells with phenotypes of memory cells 

(Figure 16B). Moreover, purified anti-CD3 stimulated naïve CD4 T cells 

displayed in vitro a heightened proliferation response as quantified by the 

faster dilution of CFSE-labeling (Figure 16C, left panel). As a consequence, 

increased IL2 concentrations were recovered from the supernatant of the cell 

culture (Figure 16C, bottom right panel). Taken together, these results 

suggest that both the phenotype and the mitogenic response of T cells had 

changed in Eedfl/fl::β5tCre mice in comparison to Eedfl/fl control mice reflecting 

the animals’ lymphopenic state.  
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Figure 16. Peripheral lymphopenia in 4-weeks-old Eedfl/fl::β5tCre. (A) Absolute cellularity 

of splenic total cells, T cells and B cells. (B) Increased frequencies of peripheral T cells 

with memory phenotype. Flow cytometric analysis (left panel) and frequencies (right 

panel) of spleen cells for the cell surface markers identifying naïve, effector and 

central memory T cells. (C) Increased proliferation rate upon in vitro stimulation with 

1µg/ml of anti-CD3 for 72hours. Flow cytometric analysis on the CFSE signal in CD4 

peripheral naïve T cells displayed the serial dilution after each successive round of 

replication (left panel). The proliferation index (right top panel; refer to Materials and 

Methods section for calculation method) and supernatant IL-2 concentrations (right 

bottom panel; determined by ELISA) of in vitro stimulated peripheral naïve CD4SP T 

cells. The CD4 peripheral naïve T cells were first purified by the flow cytometer then 

cultured for 72 hours in vitro with 1µg/ml of anti-CD3 antibody and irradiated 

splenocytes isolated from Rag2-deficient mice. Data are representative of at least 3 

independent experiments with 3 to 4 4-weeks-old mice per group. **p<0.01, *** 

p<0.001, two-tailed paired Student’s T test. 
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4.3.7. Increased frequency of anergic T cells in the periphery of Eedfl/fl::β5tCre 

mice 

 

Eedfl/fl::β5tCre mice display a defect in their capacity to negatively 

select thymocytes (Figure 17) and were therefore investigated for signs of 

spontaneous autoimmunity, characterised either by premature death or the 

presence of mononuclear organ infiltration. Investigating mice as old as 40-

weeks-old did not reveal any overt signs of ill health and histological analysis 

of tissues that are characteristically targeted by autoimmunity also failed to 

identify cellular signs of organ-related autoimmunity (data not shown). Next, 

to exclude the possibility that a repertoire of Treg selected in the first week of 

life may have dominantly suppressed auto-reactive T cells escaping negative 

selection, T cells were depleted in 2-weeks-old Eedfl/fl::β5tCre and Eedfl/fl 

control mice. This T cell depletion procedure involved 3 doses of in vivo i.p. 

injection with a concoction of complement-activating (anti-Thy1.1, anti-CD4 

and anti-CD8) antibodies resulting in a virtual complete depletion of T cells 3 

days after the final dose (Figure 17B). Following the treatment, peripheral T 

cell pool was subsequently repopulated with cells that were now educated 

and selected in a thymic microenvironment characterised by a progressive 

loss in regular cellular composition and reduced functionality (Figure 9D, E 

& 10B). The mice were then sacrificed 20 weeks after the T cell depletion and 

analysed for histological signs of autoimmunity. Again, both the 

Eedfl/fl::β5tCre and Eedfl/fl control mice failed to display any mononuclear 

infiltration in characteristically targeted by autoimmunity (i.e. eye, salivary 

glands, liver, pancreas, kidney) (Figure 17A, C). Hence, T cell selection in 

Eedfl/fl::β5tCre mice at the age of 2 weeks or older did not result in a repertoire 

of T cells capable of eliciting tissue infiltration. 

Since overt autoimmunity was not be detected in Eedfl/fl::β5tCre mice 

spontaneously or after depletion and recovery of the periphery T cell pool, I 
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next investigated whether an increased frequency of anergic cells could be 

detected in the T cell repertoire of Eedfl/fl::β5tCre mice. T cell anergy 

constitutes an essential mechanism by which lymphocytes are rendered 

functionally inactive to avoid activation of an adaptive immune response 

following the recognition of their cognate antigen. Anergic T cells will be 

hypo-responsive for an extended period of time despite an adequate 

stimulation of their TCR and co-stimulatory molecules upon re-encounter of 

their specific antigen (134). This state of anergy is either attained following 

incomplete T cell activation or, alternatively, is effected in an environment 

lacking adequate co-stimulatory signals or marked by a heightened presence 

of co-inhibitory signals. Given that impaired negative selection of thymocyte 

may result in the survival of auto-reactive T cells, the induction of anergy is 

one of the fail-safe mechanisms to avoid autoimmunity. In this analysis, 

Foxp3- CD4 SP cells were probed for the up-regulation of CD73 (Nt5e) and 

folate receptor 4 (FR4, Izumo1r), two cell surface markers associated with the 

functional state of anergy (135, 136). Eedfl/fl::β5tCre mice displayed a higher 

frequency of CD73+FR4+ CD4 SP T cells in both the naïve and effector memory 

T cell pool when compared to Eedfl/fl control mice (Figure 17E). Overall, these 

results suggested that induction of anergy served as an effective mechanism 

to prevent improperly selected T cells from initiating an autoimmune 

response.  
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Figure 17. Lack of autoimmunity in T cell depleted accompanied with increased frequency of 

anergic peripheral CD4 T cells in Eedfl/fl::β5tCre mice. (A) Representative images from the 

H&E analysis of peripheral tissues of both Eedfl/fl::β5tCre and Eedfl/fl mice. Organs 

were isolated from both mutant and wild type mice 20 weeks after T cell depletion at 

the age of 2-weeks using anti-CD4/CD8/Thy1.1 antibody concoction i.p. injected in 

vivo. (B) Effective depletion of peripheral T cells by triple dosage of anti-

CD4/CD8/Thy1.1 antibody concoction. Analysis of the spleenocytes 3 days after the 

final dosages showed drastically reduced frequency of T cells in the periphery 

(bottom panel). (C) Incidence of lymphocytic infiltrates in selected target tissues of 

Eedfl/fl::β5tCre (n=4) and Eedfl/fl (n=3) mice. Coloured segments indicated 

histologically verified infilatration of an organ indicated in the larger pie chart to the 

right. (D) Frequency of anergic CD4 SP cell were reduced in Eedfl/fl::β5tCre mice. 

Quantification of anergic peripheral CD4 SP T cells based on their expression of both 

FR4 and CD73. Data  in (D) are representative of at least 2 independent experiments 

with 3 4-weeks-old mice per group.  **p<0.01, *** p<0.001, two-tailed paired Student’s 

T test. 
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4.4. Evidences for the presence of β5t-independent mTEC 

 

4.4.1. Detection of an mTEC lineage derived via a β5t-independent 

developmental pathway in Eedfl/fl::β5tCre mice 

 

Tissue targeted gain or loss of function mutations using the Cre-loxP 

system critically depend not only on the “tightness” and efficiency of Cre 

expression under a chosen transcriptional control but are also influenced by 

the chromatin accessibility of the loxP-flanked target sequence. The Cre 

expression driven by the Psmb11 locus, encoding the proteasome component 

β5t, results in a highly efficient (>99%) recombination of loxP sites (122). 

Under physiological conditions, all TEC in cortex and medulla are derived 

from a common precursor in which Psmb11 (β5t) is transcriptionally active 

(21). Therefore, all cortical and medullary TEC are expected to reveal Cre-

mediated deletions of loxP-flanked target genes (21, 122).  

The interrogation of Eedfl/fl::β5tCre mice for their functional loss of 

PRC2-mediated methylation of H3K27me3 revealed a complete loss of these 

marks in the nuclei of cTEC but two different patterns of H3K27me3 marks in 

the mTEC population (Figure 9B). The majority of mTEC (70%) in 4-weeks-

old mutant animals displayed the expected loss of H3K27me3 marks when 

analysed by flow cytometry whereas a minority of mTEC (30%) appeared to 

maintain these post-translational modifications (Figure 18A). Further analysis 

of the “escapees” (i.e. cells that had seemingly not rearranged their 

conditional Eed locus) demonstrated that H3K27me marks were more 

frequently observed in mature vs. immature mTEC (mTEChi: 55% vs. mTEClo: 

20%) inferring an advantage for the process of TEC maturation where 

physiological PRC2 activity is maintained. This finding was mirrored in 

Ezh1KO::Ezh2fl/fl::β5tCre mice where PRC2 function is ablated due to the loss of 
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its catalytically active subunits Ezh1/2. In these mice, as much as 80% of 

mTEC hi maintained a wild type H3K27me3 level (Figure 18B).  

The most probable explanation for the persistence of mTEC with a 

normal H3K27me3 complementation in Eedfl/fl::β5tCre mice implied that these 

cells were derived from a TEC precursor which, contrary to wild type 

conditions, did not express β5t as part of their transcriptome and thus lack 

Cre expression. As a consequence, these cells and their progeny would not 

have deleted the Eed gene locus. However, other reasons to be considered 

including the possibility that Cre was expressed but that the Eed locus was 

inaccessible. To test this assertion directly, a strong green fluorochrome 

ZsGreen transgene was introduced as a reporter into the genetic background 

of Eedfl/fl::β5tCre mice. This allowed TEC and their progeny to express 

ZsGreen from the Rosa26 locus after Cre-loxP driven excision of a stop 

cassette containing multiple stop codons. Again not all mTEC in these triple 

transgenic mice appeared to express Cre with as many as 30% of all mTEC 

lacking ZsGreen expression (Figure 18C) and hence being derived from 

epithelial precursors that had not transcribed Cre from the Psmb11 locus. In 

contrast, more than 99% of cTEC were green fluorescent (Figure 18C). Further 

analysis of immature and mature mTEC demonstrated that, as previously 

observed in double transgenic mice at comparable frequency, a higher 

relative frequency of mature mTEC not expressing Cre (Figure 18D). 

Importantly, the lack of wild type levels of H3K27me3 marks in ZsGreen+ 

cTEC showed that Cre activity had not only successfully removed the stop 

cassette upstream of the ZsGreen transgene but had also deleted exons 3 to 6 

of Eed rendering the catalytic activity of PRC2 inoperative (Figure 18E). 

Conversely, mTEC that remained ZsGreen- retained a wild type H3K27me3 

expression pattern (Figure 18E). The loss of PRC2 activity did not change the 

amount of total histone 3 in both the cTEC and mTEC (Figure 18E). Taken 

together, these data strongly implied the existence of an mTEC lineage 
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derived from precursors that did not express β5t. Moreover, the progressive 

increase in the relative frequency of PRC2 competent mTEC parallel to the 

cells’ maturation would argue for a growth advantage of these cells when 

compared to Eed-deficient mTEC. 
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Figure 18. Psmb11-mediated Cre expression spares a population of mTEC from loss of Eed in 

4-weeks-old mice. (A) Top panels: Flow cytometric analysis of H3K27me3 expression 

in individual TEC subpopulations isolated from 4-weeks-old Eedfl/fl::β5tCre mice. 

Lower panels: Relative frequency of individual TEC subpopulations containing wild 

type level (black) or lacking (white) H3K27me3. (B) Top panels: Flow cytometric 

analysis of H3K27me expression in individual TEC subpopulations isolated from 4-

weeks-old Ezh1KO::Ezh2fl/fl::β5tCre mice. Lower panels: Relative frequency of 
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individual TEC subpopulations containing wild type level (black) or lacking (white) 

H3K27me3. (C) ZsGreen expression in cTEC (Ly51+) and mTEC (UEA1+) of 4-weeks-

old Eedfl/fl:: ZsGreen::β5tCre mice. The lower panels show the relative frequencies of 

each individual phenotype. (D) ZsGreen expression in immature mTEC (expressing 

low MHC-II level, mTEClo) and mature mTEC (expressing high MHC-II level, 

mTEChi) of Eedfl/fl::ZsGreen::β5tCre mice. The lower panels show the relative 

frequencies of each individual phenotype. (E) Flow cytometric analysis of H3K2me3 

(left) and total H3 (right) expression in cTEC and mTEC isolated from 

Eedfl/fl::ZsGreen::β5tCre mice. The individual histograms are colour-coded for the 

expression of ZsGreen (green) or its absence (blue). Data are representative of at least 

2 independent experiments with 3-4-weeks-old mice per group. 

 

4.4.2. Persistence of Eed-expressing mTEC in Eedfl/fl:: β5tCre 

  

I next wished to independently confirm the two separate mTEC 

populations using additional methods. For this purpose, the population of 

mTEC isolated from Eedfl/fl::β5tCre mice was being analysed for their Eed 

expression at genomic, transcriptomic and protein level. Populations with 

and without the expected genomic deletion of exons 3-6 were observed in the 

separate mTEC populations indicating the lack of recombination in a 

significant proportion of both immature and mature mTEC (mTEClo and 

mTEChi, respectively) (Figure 19A). Though the difference in genomic DNA 

excision between these two subpopulations could mirror the flow cytometric 

findings, a precise quantification of the observed loss of Eed exons 3-6 could, 

however not be calculated given the dissimilar kinetics of amplifying genomic 

sequences of different length. At the transcriptional level, changes in the 

detection of Eed exon 3 to 6 were noted whereby cDNA for these targeted 

exons could not be amplified in cTEC but partially detected in the two 

separate mTEC populations (Figure 19B). Again, an exact resolution of the 

relative frequency of TEC with a recombined Eed locus was not possible. 

Nevertheless, the differences in the detection of amplicons for the targeted 

sequences correlated with the results obtained from genomic and flow 

cytometric analyses. Finally, Eed protein expression was analysed with 
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immunohistology of TEC that had been sorted and then cytospun onto glass 

slides (Figure 19C, left panel). The presence of Eed could not be detected in 

any of the cTEC isolated from the Eedfl/fl::β5tCre mice. In contrast, mTEC 

subpopulations contained cells that still expressed the Eed protein. Their 

frequencies (Figure 19C, right panel) were largely comparable to that 

observed by the flow cytometric analysis (Figure 18D). Taken together, the 

deletion of Eed exons 3-6 was complete in cTEC whereas this was only 

partially observed in mTEC further supporting the contention that Eed-

proficient mTEC did not recombine their targeted locus.  

  

 
Figure 19. Analysis of Eed expression at genomic, transcriptomic and protein level in 4-

weeks-old Eedfl/fl::β5tCre mice. (A) Genomic PCR analysis of Eed locus in separate TEC 

subpopulations sorted by flow cytometry. (B) qPCR analysis of the expression of 

separate Eed exons in the indicated TEC subpopulations sorted by flow cytometry 

where the corresponding value was arbitrarily set to 1. cDNA amounts were 

normalised using the housekeeping gene GAPDH.  **p<0.01, *** p<0.001, two-tailed 

paired Student’s T test. (C) Immuno-histology for Eed (red) and anti-keratin 8 or 

UEA-1 reactivity (each in green) in FACS-sorted TEC placed onto glass slides by 

cytospin centrifugation (left panel). The white arrows indicate the cells that lack Eed 

protein detection. Relative frequency of TEC populations expressing (red) or lacking 

(white) Eed protein (right panel). Data are representative of 2 independent 

experiments with 3 4-weeks-old mice per group. 
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4.4.3. Differences in the transcriptome of mTEC proficient or deficient in Eed 

expression 

 

The identification of a subpopulation of mTEC that apparently defied 

Eed deletion under the experimental conditions used in Eedfl/fl::β5tCre mice 

was unexpected but inferred that the genetic pressure of a loss of PRC2 

function allowed for the generation of mTEC via an alternative lineage 

pathway that did not rely on β5t-expressing TEC progenitors. To confirm this 

assertion, single mTEC from Eedfl/fl::β5tCre and Eedfl/fl control mice were 

investigated for their respective transcriptomes. The single cell data set (when 

combined) was observed to show a good correlation in gene expression 

profile to the transcriptome data obtained from bulk cell analysis (50, Figure 

20A). This demonstrated the robust quality of the single cells transcriptomic 

data. Next, the mTEC isolated from Eedfl/fl::β5tCre mice were confirmed to be 

indeed Eed-proficient mTEC with the detection of loxP flanked exons in the 

transcriptome at the same level as the wild type control (Figure 20B). The 

overall pattern of both gene expression and gene copy number (as measured 

by Fragments per kilobase of transcript per million mapped reads, FPKM) of 

expressed tissue-restricted antigens were largely comparable for the PRC2-

proficient mTEC isolated from Eedfl/fl::β5tCre mice and wild type control mice 

(Figure 20C). To further interrogate the differences in expression levels of 

TRA, an analysis combining single transcriptomic data from multiple mTEC 

was carried out. This analysis aimed to recapitulate the nature of TRA 

expression in mTEC whereby individual mTEC expresses incomplete sets of 

TRA and represent the entire TRA repertoire collectively at the population 

level (57). The number of genes with detectable expression (FPKM > 1) was 

determined from the combined transcriptomic data amassed from multiple 

cells. This analysis showed that PRC2 proficient mTEC in Eedfl/fl::β5tCre mice 

expressed fewer Aire-dependent genes per single cell when compared to the 
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wild type mTEC of the same phenotype (Figure 20D). In contrast, the 

expression of all TRA collectively, including the Aire-independent genes, was 

affected to a lesser extend.  

A t-SNE clustering analysis was carried to further investigate the 

differences in expression patterns between the transcriptome of PRC2-

proficient mTEC from Eedfl/fl:: β5tCre and wild type mice. This analysis aimed 

to identify gene expression patterns in multi-dimensional datasets, the 

expression levels of many genes, by reducing them into 2 dimensional 

projections composing of principal component 1 (PC1) against PC2. The PC 

compresses multi-dimensional data in way to highlight their similarities and 

differences. This analysis showed that a distinct group of mTEC isolated from 

Eedfl/fl::β5tCre clustered separately from other mTEC from the wild type 

control within the expression pattern of both Aire-enhanced genes 

(expression up-regulated by Aire) and the other TRA (Figure 20E). However, 

this separate clustering pattern was not observed in the expression pattern of 

Aire-dependent TRA in mTEC from the Eedfl/fl:: β5tCre and wild type mice. 

The differences within the t-SNE clustering patterns of gene expression 

highlighted the innate differences of the biology of the mTEC from the 

mutant and wild type mouse strains.   

Next, a differential gene expression analysis was conducted to probe 

further for differences between transcriptomes of PRC2-proficient mTEC from 

Eedfl/fl::β5tCre and wild type mice. In the PRC2-proficient mTEC isolated from 

Eedfl/fl::β5tCre mice, 144 genes were down-regulated while 408 genes were up-

regulated in comparison to those from wild type controls. Gene annotation 

analyses revealed that PRC2-deficient mTEC of Eedfl/fl::β5tCre expressed 

significant lower levels of genes associated to cell stress and with interaction 

with extracellular matrix (Figure 20F, G). Therefore, the functional 

transcriptomic makeup of PRC2-proficient mTEC in Eedfl/fl::β5tCre mice 

differed from the corresponding cell type in wild type mice. 
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Figure 20. Single cell transcriptomic analysis of β5t-independent mTEC from 4-weeks-old 

Eedfl/fl::β5tCre. (A) Correlation of data from single cell compared to previous bulk 

RNA-sequencing data. The proportion of mTEC with detectable expression from the 

bulk sequencing was plotted against proportion of single mTEC with each gene 

detectable. The genes were classified into Aire-dependent (red), Aire-enhanced 

(green), TRA (blue), and all other genes (grey). (B) All mTEC isolated from 

Eedfl/fl::β5tCre used in this set of analyses retained Eed expression. The exon coverage 

(1 to 12) of Eed gene locus with mTEC from Eedfl/fl::β5tCre (right panel) and wild type 

control (left panel). (C) Plot of mean expression (log2 FPKM) against the proportion 

of cells showing detectable gene expression with mTEC from Eedfl/fl::β5tCre (right 

panel) and the wild type control (left panel).  (D) The mean number of genes 

detectable when combining different number of mTEC. The mean number of genes 

with expression level (FPKM) of at least 1 upon combining different number of cells 

(x-axis) of mTEC from Eedfl/fl::β5tCre (green) and control (blue). Genes are categorised 

into Aire-dependent genes (top left), Aire-enhanced genes (top right), tissue-restricted 

genes (bottom left) or all protein-encoding genes (bottom right). The dotted line 

represented the 95% confidence interval of each corresponding sample. (E) t-SNE 

clustering analysis of mTEC from Eedfl/fl::β5tCre (green) and wild type control (red). 

Genes are categorised into Aire-dependent genes (top left), Aire-enhanced genes 

(top right), tissue-restricted genes (bottom left) or all protein-encoding genes 

(bottom right). (F) Gene ontology analysis of differentially expressed genes. The 

genes expressed in a higher amount in PRC2-proficient mTEC from Eedfl/fl::β5tCre as 

compared to the wild type control are plotted on the right panel and vice versa (left 

panel). Data presented in this figure were obtained from a single experiment and 

included 273 mTEC from Eedfl/fl:: β5tCre and 184 mTEC from the wild type control 

that passed the quality control. Please refer to the Materials and Methods section for 

detailed description of the methodology used for the analyses. 
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5. DISCUSSIONS 

 

Recent progress in the field of thymus biology demonstrated that, 

within the mTEC, regions of chromatin encoding for TRA contained higher 

levels of repressive histone marks. In particular to the interest of this thesis, 

elevated level of H3K27me3 was found to be present at the transcription start 

sites of TRA transcriptionally controlled by Aire in mTEC with high level of 

MHC-II expression (50). Albeit the correlation of epigenetic marks in TRA 

expression, there is a lack of in depth understanding of the functional 

significance of H3K27me3 modification in TEC. This thesis addresses the 

paucity in the knowledge pertaining to the role of H3K27me3 marks in TEC 

differentiation and development, including the capacity of TEC to support the 

negative selection of thymocytes.  

The PRC2 is primarily responsible in creating and maintaining the 

H3K27me3 marks on the chromatin and its core components includes Eed 

and Ezh1/2 (98). Mouse models with specific deletion of Polycomb repressive 

complex 2 (PRC2) in TEC, and hence altered H3K27me3 marks on the 

chromatin, were generated to achieve the aims of this study. Previous studies 

showed that the ablation of Eed precluded the H3K27me3 marks without 

affecting the level of H3K4me3 (102). However, when targeting the other core 

subunits of PRC2, simultaneous ablation of both Ezh1 and Ezh2 are required 

to achieve the same effect as eliminating only Eed due to the partial 

redundancy of the 2 Ezh homologs (94, 102). In this study, β5t promoter is 

chosen as the TEC-specific promoter of Cre recombinase to specifically delete 

the chromatin section encoding the subunits of PRC2, which were modified to 

be flanked by loxP sequences.  
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5.1. Summary of findings 

 

The thymi in the Eedfl/fl::β5tCre mice were severely hypocellular 

despite unaltered TEC cellularity up to the age of 4 weeks (Figure 8B). 

Despite the severe reduction of thymocyte cellularity, TEC cellularity was 

unchanged and the hypocellular thymus also maintained a clear cortico-

medullary segregation (Figure 8C, D). In the mutant mice, the cTEC to mTEC 

ratio was increased (Figure 9D, E) and the maturation of mTEC was also 

hindered (Figure 10A, B). The Eed-deficient cTEC expressed reduced levels of 

chemokines CXCL12 and CCL25 (Figure 12D) that coincided with the 

reduced number of ETP recruited to the thymus (Figure 12C). The reduced 

ETP recruitment most likely led to the drastically reduced thymocyte 

cellularity, as the later stages of thymocyte development were unaffected 

(Figure 12A). Although the lack of Eed did not have any effect on the positive 

selection process, the efficiency of negative selection of potentially harmful 

thymocytes was significantly reduced (Figure 13). The cellularity of thymic 

Treg was also reduced corresponding to the reduced mTEC pool (Figure 15B) 

that provides niches to foster the development of Treg (138). As a consequence 

of the reduced thymocytes cellularity, the mutant mice were lymphopenic in 

the periphery (Figure 16). However, the mutant mice did not develop 

autoimmune diseases spontaneously or upon T cell depletion (Figure 17A). 

This lack of autoimmunity could partially be explained by the increased 

frequency of anergic CD4 T cells in the periphery of mutant mice (Figure 

17D), possibly including the potentially auto-reactive T cells.  

 Another main finding of this study is an unreported mTEC population 

derived from progenitors independent of β5t expression. In wild type mouse 

virtually all TEC are derived from a common progenitor expressing β5t (21, 

122). In this study, the regular mTEC differentiation pathway was disturbed 

by PRC2 deficiency and the alternative mTEC development pathway 
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involving β5t-independent progenitors came into play. In mouse models 

lacking PRC2 function in the majority of the total TEC, this unique mTEC 

population derived from β5t-independent progenitors composed about 30% 

of the mTEC population at the age of 4 weeks (Figure 18A, B) and these cells 

also possessed a unique transcription profile. These mTEC derived from β5t-

independent progenitors expressed fewer TRA and lower expression level of 

genes related to cell stress and extra-cellular matrix (Figure 20).  

 

5.2. Tissue specificity and timing of Cre recombinase expression 

 

The Foxn1 promoter is the conventional choice to achieve TEC 

specificity in Cre recombinase expression (125). However, in addition to the 

thymic epithelial, Foxn1 promoter activity is also significantly active within 

the skin keratinocytes (123). Recently, Foxn1Cre activity was reported in the 

male germ cells and resulted in all offsprings from Foxn1Cre male mice to 

possess recombined loxP flanked gene locus indiscriminately in all tissues 

(139). An ideally designed Cre-lox system achieves specific deletion in only 

the desired cell types so as to determine the physiological effects without 

influences from defects in other organs of the host system. In light of the 

caveats of utilising the Foxn1 promoter to achieve TEC-specific targeting, an 

alternative model was used instead to circumvent these potential problems 

mentioned. β5t is a proteasome subunit expressed in virtually all the TEC 

progenitors and maintained only within the cTEC population (122). As such, 

the β5t promoter activity is highly specific to only TEC with activity found 

only in TEC progenitors and cTEC. Therefore, the Psmb11 (β5t) promoter is 

able to replace Foxn1 promoter and function as the driver of Cre recombinase 

expression specifically only in the TEC (122).  

An important factor to be considered when using Psmb11 (β5t) 

promoter instead of Foxn1 promoter to drive the Cre recombinase is the time 
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point at which the promoter’s activity is initiated. The transcriptional activity 

of Foxn1 locus is detectable by E11.25 (12), while the β5t, a target of Foxn1 

(124), is first expressed in TEC only approximately a day later at E12.5 (140). 

Preliminary data from experiments on Eedfl/fl::Foxn1Cre mice reported that at 

the age of 4 weeks the thymus was highly cystic and the TEC cellularity was 

diminished with a greater effect on the cTEC population (141). In contrast, the 

hypocellular thymus of a 4-weeks-old Eedfl/fl::β5tCre mouse was neither cystic 

nor had a lower total TEC cellularity as compared to control mice (Figure 8). 

The differences in TEC phenotype between the usages of different promoters 

indicated that the timing of deletion of PRC2 has a profound effect on the 

TEC development. On E11.25, besides the up-regulation of Foxn1, another 

hallmark in thymic organogenesis is the initial seeding of haematopoietic cells 

via chemotaxis (24, 142). The time point at which Foxn1Cre induces the 

inactivation of PRC2 coincides with the initial seeding of haematopoietic cells. 

The additional day of development after the initial recruitment of 

haematopoietic cells in Eedfl/fl::β5tCre could provide sufficient time for the 

TEC progenitors to attain a more determined cell fate and thus permit the 

formation of a non-cystic thymus containing unaltered TEC cellularity up to 

the age of 4 weeks. Therefore, this suggests that PRC2 probably plays a 

critical role during the early stages, in particular from E11.25 to E12.5, of the 

thymus development.  

During E11 to E11.5, the thymic primordia detach from the pharynx 

and embryonic TEC proliferate intensively under the support from growth 

factors produced by the mesenchymal cells (7, 143). The development of the 

thymic primordia requires complex signaling pathways involving fibroblast 

growth factors, bone morphogenetic proteins and homeobox proteins (7, 143). 

Since the expression of homeobox proteins is under the regulation of PRC2 

(90), the earlier inactivation of PRC2 initiated by Foxn1Cre could disturb the 

organogenesis to a greater extent by disabling the signaling pathways 
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involving homeobox proteins in less mature thymic primordia. Therefore, the 

differences in the phenotypes resulting from different timing of PRC2 

inactivation highlight the critical role played by PRC2 in the early stages of 

thymus organogenesis.  

 

5.3. Specificity of PRC2 inactivation 

 

The effect of PRC2 deficiency in TEC was mainly studied in the 

Eedfl/fl::β5tCre mice. In addition to this mouse model, the double knockout 

mouse model (Ezh1KO::Ezh2fl/fl::β5tCre) was used to confirm that the 

phenotype observed in Eedfl/fl::β5tCre mice was indeed specifically due to 

PRC2 deficiency. The Ezh1/2 subunit of PRC2 interacts with Eed to activate 

the catalytic SET domain in order to carry out its function (98). Hence, 

deleting only Eed is sufficient to eliminate the catalytic function of PRC2 

completely (102). On the other hand, the partial redundancy of the homologs 

Ezh1 and Ezh2 requires the deletion of both genes to achieve the same effect of 

the single Eed deficiency (94). The deletion of Eed or Ezh1/2 in HSC did not 

change the levels of other post-translational modifications on the histone 3 

(102). Thus, the predominant effect of knocking out PRC2 is the preclusion of 

H3K27me3 mark on the chromatin.  

Besides catalysing the trimethylation of H3K27, Ezh2 methylates both 

Gata4 and Stat3 to repress the function of the former while activating the 

latter (111, 144). While there has been no report of cellular processes 

dependent on Gata4 in TEC, Stat3 was shown to be crucial for the postnatal 

maintenance of thymic architecture and function (111). However, TEC-

specific loss of Stat3 does not result in any observable phenotype in mice 

before the age of 5 weeks (145). In TEC-specific Stat3-deficient mice older than 

5 weeks of age, the thymus is severely hypocellular accompanied by altered 

tissue architecture and a great loss of thymocyte cellularity. This late onset 
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phenotype is beyond the time frame relevant for this study and off-target 

effects should not be significant in young mice. Moreover, in particular to the 

activation of Stat3 via methylation, Ezh2 specifically methylates Stat3 only on 

the lysine residue at the 180th position. This post-translational modification 

increases the activity of Stat3 in cellular signaling specifically within 

glioblastoma cells (111). Thus, the potential contribution of altered Stat3 is 

highly unlikely to influence TEC physiology in Eedfl/fl::β5tCre mice. Therefore, 

the deletion of either Eed of Ezh1/2 would serve as essential tools to 

investigate the physiological outcome of eliminating PRC2 function and 

consequently the lack of H3K27me3 mark on the chromatin. Nevertheless, 

one should keep in mind about the potential pitfalls of off-target effects of 

PRC2 while drawing conclusions. In this study, the concurrence of PRC2-

deficient phenotypes from two independent mouse models (Figure 11) 

demonstrated the specificity of the phenotype to the inactivation of the 

primary function of PRC2 instead of off-target effects that the mouse models 

might inherently habour.  

 

5.4. Defective maturation process of PRC2-deficienct mTEC  

  

 Both the cTEC and mTEC are derived from a common source of 

progenitor cells that first attain a cTEC-like phenotype and later diverge via 

asymmetrical differentiation into mTEC (122, 146). At E12.5, the thymic 

primordia consist of undifferentiated epithelial cells surrounded by a capsule 

of mesenchyme derived from neural crest cells (147). These undifferentiated 

epithelial cells express classical cTEC markers, such as β5t, and are capable to 

give rise to both cTEC and mTEC (20). PRC2 plays a crucial role in the 

regulation of gene expression during both early embryogenesis (90) and the 

process of homeostasis in various tissues. In the context of skin epithelia, the 

double deletion of Ezh1/2 accelerated the differentiation of epidermal 
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progenitor cells into Merkel cells due to the repression of Sox2 expression 

(149). In the intestinal epithelium, PRC2 deficiency resulted in a reduced 

capacity of stress-induced regeneration (148). In these mice, the lack of PRC2 

led to the failure in repressing Cdkn2a within the intestinal stem cell and 

subsequently reduced the ability of the stem cell to differentiate into mature 

intestinal epithelial cells for the process of regeneration. Although the role of 

Cdkn2a has not been investigated in TEC, similar effects on cellular plasticity 

of mTEC progenitors could possibly explain the reduced mTEC 

subpopulation in Eedfl/fl::β5tCre mice. In the Eedfl/fl::β5tCre mice, the 

decreased cellularity of PRC2-deficient mTEC was demonstrated to be an 

intrinsic incompetency and not solely due to the lack of thymocytes. This was 

shown by the failure of in vitro RANKL stimulation to rescue the mTEC 

frequency and cellularity in thymocyte-depleted fetal thymus organ culture 

(Figure 10C). The decreased mTEC frequency was also not due to the 

increased turnover rate of PRC2-deficient mTEC (Figure 10E). In comparison 

to the reported instances of PRC2’s role in the differentiation program of 

other cell types, PRC2 seems likely to also play crucial roles in the regulation 

of mTEC differentiation. Furthermore, the importance of PRC2 in the 

maturation of mTEC is also highlighted by the over-representation (75%) of 

PRC2-deficient mTEC within the mTEClo population (immature phenotype), 

with the remaining 25% being PRC2-proficient. In contrast, only 50% of the 

mTEChi (mature phenotype) are PRC2-deficient (Figure 18D). Therefore, these 

data indicate that PRC2 plays an important role in the differentiation of 

mTEC.  

The development of mTEC involves multiple signaling pathways and 

the signaling mechanisms involved differ at different developmental stages. 

The process of mTEC development depends on the availability of RANKL, 

lymphotoxinβ and CD40L that are provided by single positive thymocytes in 

the thymus (128, 150, 151). The presence of mTEC (UEA1+) is first observed at 
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E15.5 (152) and subsequently Aire+ mTEC appear on E16 (153). However, at 

this stage of thymus development, the single positive (CD4/8+TCRβhi) 

thymocytes are not yet present and the developing mTEC are dependent on 

lymphoid tissue inducer (LTi) cells as a source for RANKL and lymphotoxinβ 

(153, 154). In the postnatal thymus, a population of β5t+ mTEC progenitors 

resides in the cortico-medullary junction and contributes to the mTEC 

population albeit at a reduced rate with increasing age (21). The development 

of Aire+ mTEC is dependent on the availability of RANKL as highlighted by 

the void of Aire+ mTEC in adult RANKL-deficient mice (154). The deficiency 

of CD40, on the other hand, resulted in a reduction of frequency of Aire+ 

mTEC (153). The reduction of Aire+ mTEC indicated that CD40-CD40L 

interaction is not crucial for the development of Aire+ mTEC but probably 

does play a role in regulating the turnover rate of the mTEC.  

In relation to the differences of tissue homeostasis with age, the 

function of PRC2 can be exerted in a differential and age-sensitive fashion. In 

haematopoietic stem cells (HSC), targeted deletion of Eed showed that PRC2 

is crucial for the maintenance of adult bone marrow HSC but has no role in 

the production of fetal liver HSC (102). While the other subunit of PRC2, Ezh2 

is crucial for fetal but dispensable for adult HSC (110). The reduction of 

mTEC cellularity from 1 week to 4 weeks old Eedfl/fl::β5tCre mice (Figure 9D) 

could suggest that PRC2 also plays an important role in the postnatal 

homeostasis of the mTEC pool. 

 PRC2 catalyses the deposition of H3K27me3 mark on histone 3 and, in 

doing so, increases the degree of chromatin compaction. As such, PRC2 is able 

to regulate the chromatin’s accessibility to transcriptional factors thereby 

regulating the expression of genes (155). It is plausible that PRC2 exerts its 

control over mTEC development through regulating the expression of 

proteins crucial to mTEC development. The changes in expression levels of 

genes involved in mTEC development including Aire (154) CD40, CD80 (22), 
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and markers used to define mTEC maturation such as involucrin (156), 

claudin3 and caludin4 (157) could be determined in PRC2-deficient mTEC to 

better understand the molecular mechanisms regulating mTEC development. 

These data could be extracted from single cell transcriptomic data that is 

projected to be completed in the near future. 

 

5.5. PRC2 regulates chemokine production by cTEC  

 

The recruitment of ETP is dependent on the expression of chemokines 

by the cTEC (27). Indeed there was a reduced expression levels of CXCL12 

and CCL25 by the PRC2-deficient cTEC (Figure 12D) that coincided with the 

reduced number of ETP recruited to the thymus (Figure 12C). Defects in 

chemokine expression were also observed in mouse model with defective β-

catenin function in TEC (29, 125, 158). In mutant mice with TEC-specific 

constitutive activation of β-catenin, the recruitment of ETP was restricted due 

to the failure to express sufficient chemokines (CCL25) by the cTEC (125). 

Similarly, a different mouse line lacking β-catenin in the cTEC also presented 

a downregulation of chemokines CXCL12, CCL19, CCL25 (158). Interestingly, 

the mutant mice with β-catenin deficiency within the cTEC have hypocellular 

thymi composed of an increased frequency of cTEC (Ly51+) and decreased 

frequency of mTEC (UEA1+) (158), which resembles the observations made in 

the Eedfl/fl:: β5tCre mice (Figure 9D, E). However, unlike in the Eedfl/fl:: β5tCre 

mice, cTEC with defective β-catenin function are unable to support normal 

thymopoiesis (125, 158). Upon further analysis, both the mutant mice lacking 

normal β-catenin function in cTEC were found to express reduced level of 

Foxn1. Being a master regulator of TEC, Foxn1 regulates the expression of key 

target genes that are essential not only for TEC development but also those 

that enable TEC to support T cell development (124). Recently, it was 

experimentally proven that Foxn1 directly regulates the expression of the 
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chemokines CXCL12 and CCL25 in cTEC (124). To relate these observations to 

the PRC2-deficient mice, the level of Foxn1 expression in PRC2-deficient 

cTEC needs to be determined to ascertain if the reduced chemokine 

expression is caused by insufficient amount of Foxn1.  

Alternatively, the reduced ETP recruitment could be a consequence of 

a reduced T cell progenitor cell pool in the periphery. Even though the 

deficiency of PRC2 is assumed to be restricted to TEC in Eedfl/fl::β5tCre mice, 

the possibility of a reduced cellularity of T cells progenitors in the peripheral 

blood and bone marrow, that are yet to be recruited to the thymus, could not 

be completely eliminated. Further experiments would be necessary to address 

this aspect so as to draw a clearer conclusion to the phenomenon of the 

reduced ETP recruitment in thymus of Eedfl/fl::β5tCre mice. Although there is 

no definite conclusion on the mechanism resulting in the reduced ETP 

recruitment, the deficiency of PRC2 in cTEC was shown to result in reduced 

chemokine expression but without compromising TEC’s ability to support 

thymopoiesis.  

 

5.6. PRC2 regulates the efficacy of negative selection 

 

The process of negative selection deletes thymocytes expressing self-

reactive TCR that are capable of eliciting autoimmunity (115). Deletion of self-

reactive thymocytes constitutes part of central tolerance induction in the 

thymus and is dependent on the expression of TRA that are presented on the 

surface of TEC. The range of TRA expressed by TEC at the population level is 

capable of representing almost the entire repertoire of self-antigens in the 

periphery of the host organism (50). The lack of expression of Aire-dependent 

TRA in Aire-deficient mice resulted in the development of multi-organ 

autoimmunity (159) and defective deletion of auto-reactive T cells (160). One 

possible postulation of the reduced frequency of negatively selected 
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thymocytes in Eedfl/fl:: β5tCre mice (Figure 13) could be that there is an altered 

efficiency of TRA expression in the TEC due to the PRC2-deficiency that 

subsequently altered the H3K27me3 landscape. Alternatively, the expression 

of TRA is also dependent on the maturation of TEC (161). Hence, the 

deficiency of PRC2 in TEC could possibly lead to a reduced expression of 

TRA in mTEC by either disturbing the maturation of mTEC and/or the 

expression of TRA in mature mTEC. Nevertheless, these postulations could 

not yet be verified without the single cell transcriptome data that will provide 

information on the changes in TRA expression by the TEC. 

In the Eedfl/fl::β5tCre mice, the reduction of efficiency in negative 

selection is more apparent in thymocytes residing in the medulla (CCR7+) 

than those in the cortex (CCR7-) (Figure 13C). Since a wider array of TRA is 

being expressed by the mTEC (161), the extent of altered TRA expression as a 

result of PRC2-deficiency could potentially have a stronger impact within the 

mTEC. Therefore, this could consequently result in the negative selection 

being affected to a greater extend in the medulla than the cortex. Similarly, 

the validation of these postulations would require quantification of alteration 

of the TRA expression levels in PRC2-deficient cTEC and mTEC from single 

cell transcriptome data. 

The other factor that could play a part in the reduced negative selection 

of thymocytes is the TEC to thymocyte ratio in the hypocellular thymus of the 

Eedfl/fl::β5tCre mice. Since the thymocyte cellularity was drastically reduced 

while TEC cellularity remained unchanged (Figure 8B, 9C), there was a much 

higher TEC to thymocyte ratio in the mutant mice. Despite a greater 

availability of TEC to provide interaction interface to facilitate the negative 

selection process, the efficiency of negative selection was still reduced. Hence, 

the altered negative selection could not be an attribute of the availability of 

TEC to facilitate the process.  
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Yet another factor to consider would be the presence of PRC2-

proficient mTEC in the Eedfl/fl::β5tCre mice. These PRC2-proficient mTEC 

were however unable to compensate for the reduced functionality of PRC2-

deficient mTEC. These PRC2-proficient mTEC in the Eedfl/fl::β5tCre mice 

expressed reduced number of TRA per cell (Figure 20D) and did not expand 

to completely replace the mTEC cellularity observed in the control mice 

(Figure 9D). Hence, these PRC2-proficient mTEC in the Eedfl/fl::β5tCre mice 

were possibly less efficient in negative selection compared to PRC2-proficient 

mTEC found in wild type mice.  

In addition to the approaches presented in this thesis to demonstrate 

the reduced negative selection efficiency, changes in the quality of negative 

selection can be further interrogated through the analysis of the composition 

of various TCRα/β chains in thymocytes undergoing negative selection in the 

mutant mice. The TCRα/β gene loci undergo gene rearrangement to give rise 

to receptors with unique composition of TCRα/β based on the usage of 

different V(D)J gene segments. The T cell pool generated within individual 

mouse from a given strain contains consistent compositions of TCRα/β chains 

(162). Hence, the specific composition of TCRα/β chains of the T cell pool is 

dependent on the genetic makeup that in turn influences the development of 

thymocytes in the thymus of the host. The analysis proposed here aims to 

detect the shift in compositions of TCRα/β chain in T cells undergoing 

negative selection in the mutant mice. The changes in composition of TCRα/β 

chain within the population of thymocytes undergoing negative selection can 

be determined via gene expression sequencing analysis. Due to the immense 

combinations of various V(D)J gene segments possible in the TCRα/β chains, 

the complexity of TCR V(D)J gene segment usage has to be reduced. This can 

be achieved by transplanting bone marrow from a transgenic mouse strain, 

with a fixed TCRβ-chain transgene (e.g. YAe62β) and only one locus of TCRα 

chain undergoing rearrangement, into lethally irradiated Eedfl/fl::β5tCre mice. 
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Hence, effectively only the TCRα chain composition would be variable and 

the TCRα composition of the thymocytes undergoing negative selection can 

then be determined. This approach would provide a direct qualitative 

measure of the alteration in negative selection in the Eedfl/fl::β5tCre mice. 

 

5.7. Increased anergic peripheral CD4 T cells 

 

Despite the reduced negative selection of thymocytes, there is no onset 

of autoimmune diseases in mice over 20-weeks-old spontaneously or upon T 

cell depletion at the age of 2-weeks-old (Figure 17A). A possible explanation 

for this phenomenon could be the higher frequency of anergic (CD73+FR4+) 

CD4 T cells in the periphery (Figure 17D). These CD4 T cells co-expressing 

CD73 and FR4 are found in higher frequency within the periphery of Aire-

deficient and Bim-deficient mice, both of which exhibit defects in the 

induction of central tolerance (163). The imperfect negative selection in the 

thymus could thus possibly be counteracted by the gain of anergic phenotype 

by the self-reactive cells upon entering the periphery. To further confirm that 

these cells are indeed anergic cells, the CD73+FR4+CD4+ T cells could be sorted 

and stimulated in vitro with anti-CD3 to determine the level of proliferative 

response. If the cell were indeed anergic, the cells should have limited 

proliferation and IL2 production. To further confirm the phenotype of these 

anergic cells, the levels of expression of markers associated with development 

of anergy T cells, such as CBL-B (an E3 ubiquitin-protein ligase) and 

diacylglycerol kinase-α, could be also determined (164, 165). 

The lack of signs of autoimmunity (i.e. lymphocyte infiltration and 

autoimmune diseases) contradicted the reduced efficiency of negative 

selection in Eedfl/fl::β5tCre mice. In the case of Eedfl/fl::β5tCre mice, these 

compensatory mechanisms from the peripheral tolerance appeared to be 

sufficient in counteracting the potential of the onset of autoimmune diseases 
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resulting from declined negative selection unlike in Aire-deficient mice (166). 

One hypothesis would be that the degree of alteration of TRA expression in 

PRC2-deficiency is insufficient to induce autoimmunity. However, this 

hypothesis requires data from single cell transcriptomic analysis of PRC2-

deficient versus PRC2-proficient mTEC. Nevertheless, several independent 

experiments using different approaches demonstrated consistently that 

negative selection is indeed less efficient in Eedfl/fl::β5tCre mice.  

 

5.8. Population of mTEC derived from β5t-independent progenitors 

 

TEC progenitors express β5t and first attain a cTEC-like phenotype but 

some of the cells later differentiate asymmetrically to give rise to mTEC (20). 

In the embryonic thymus, undifferentiated progenitor cells in the thymic 

primordia express β5t as early as E12.5 (20). The TEC progenitors exist also in 

the postnatal thymus residing in the cortico-medullary junction (21). Upon 

TEC differentiation into the mTEC lineage, the expression of β5t is ceased. 

Hence, the utilisation of Psmb11 (β5t) promoter to achieve TEC specific gene 

deletion is possible as virtually all TEC are derived from a common source of 

β5t-expressing progenitors. However, in both Eedfl/fl::β5tCre and Ezh1KO:: 

Ezh2fl/fl::β5tCre mice, approximately 30% of mTEC retain the expression of 

Eed and subsequently contain the same H3K27me3 levels as the typical mTEC 

found in wild type mice (Figure 18E). This phenomenon could be explained 

by either the inaccessibility of Eed gene locus to Cre recombinase or that these 

mTEC are derived from progenitors that have never expressed β5t (β5t-

independent). An aspect supporting the latter is the discrepancy of 

percentage of reported negative cells in Eedfl/fl::ZsGreen::β5tCre and ZsGreen:: 

β5tCre mice. Both mouse lines were generated from the same stock of mice 

carrying the transgene ZsGreen and thus the efficiency of Cre-driven excision 

of stop cassette in the ZsGreen transgene locus should be comparable. Despite 
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this, the ZsGreen::β5tCre mice have less than 1% of ZsGreen- mTEC (20) while 

the absence of PRC2 function dramatically increased ZsGreen- mTEC 

frequency to 30%, (Figure 18A, B). Furthermore, the percentage of ZsGreen- 

mTEC also coincide with the frequency of the lesser population of mTEC in 

Eedfl/fl::β5tCre mice that retaining wild type levels of H3K27me3 (Figure 18A-

C). These scenarios would not have been statistically possible if the presence 

of PRC2-proficieint mTEC in Eedfl/fl::β5tCre mice is merely due to the 

inaccessibility of the Eed gene locus for Cre-driven recombination. The 

increase in the frequency of PRC2-proficient/ZsGreen- mTEC is also unlikely a 

consequence of decreased survival rate of PRC2-deficient/ZsGreen+ mTEC as 

the expression levels of apoptosis-related genes is not elevated in PRC2-

deficient mTEC (Figure 10E). Furthermore, the reduced number of TRA 

expressed per cell and distinct t-SNE clustering pattern (Figure 18D, E) 

indicate a unique biological makeup that would argue for the presence of 

mTEC derived from β5t-independent progenitors. Thus, these observations 

highlight the biological significance and support the hypothesis that these 

PRC2-proficient mTEC in Eedfl/fl::β5tCre mice are most probably derived from 

β5t-independent progenitors.  

Yet, mTEC derived from these β5t-independent progenitors are not 

found in significant numbers, not more than 1%, in the thymus of the wild 

type mouse (20). Similar to the reduced frequency and impaired maturation 

process of PRC2-deficient mTEC observed in this study, the deficiency of 

PRC2 in the intestinal epithelium also impedes the differentiation of the 

epithelial cells (148). With the importance of PRC2 in the differentiation of 

cells, PRC2-deficient mTEC could have a lower efficiency to develop via 

asymmetrical differentiation to diverge from the progenitors that have gained 

the cTEC phenotype. However, β5t-independent progenitors having escaped 

Eed deletion preserve PRC2 function and thus gain developmental 

advantages in filling up the cellular niches. This allows the otherwise 
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negligible mTEC population to expand and make up 30% of the mTEC pool. 

Nevertheless, the frequency and cellularity of the total mTEC is still reduced 

and the functions of mTEC in supporting negative selection (Figure 13) and 

Treg production (Figure 15B) are compromised. Therefore, mTEC derived 

from β5t-independent progenitors are present in elevated frequency probably 

due to greater developmental advantage within the Eedfl/fl::β5tCre mice but is 

insufficient to compensate for the defective mTEC function. 

Unlike the mTEC compartment, there is an absence of any cTEC 

retaining Eed expression (Figure 18, 19). Therefore, PRC2 seems to be 

dispensable in the commitment of TEC progenitors to a cTEC phenotype but 

crucial for the subsequent stage of asymmetrical differentiation to form 

mTEC. Even though the TEC progenitors are able to give rise to the cTEC 

(Ly51+), the efficiency of cTEC to attract ETP and foster the first round of 

negative selection are rendered sub-optimal. 

Using the triple transgenic mouse model (Eedfl/fl::ZsGreen::β5tCre), 

PRC2-deficient mTEC can be conveniently identified based on the positivity 

of the expression of the ZsGreen gene reporter. These cells can be isolated and 

sorted individually and be used for single cell transcriptomic analysis. The 

single cell transcriptomic data are required to demonstrate, if any, the effect of 

PRC2-deficiency upon TRA expression.  

  

5.9. Relevance and Impact 

 

This thesis addresses the functional significance of PRC2 in both TEC 

development and function. With regards to TEC development, this study 

provides experimental data demonstrating the differential role of PRC2 in 

different TEC subpopulations. The deficiency of PRC2 does not affect the 

ability of TEC progenitors to gain cTEC phenotype. But progress of 

development of the progenitors into mTEC lineage and subsequently the 
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maturation of mTEC is significantly hindered in the absence of PRC2. Besides 

TEC development, PRC2 is also needed for TEC to function efficiently. PRC2 

function is important for cTEC to produce chemokines effectively and for 

mTEC to carry out negative selection efficiently. The significance of PRC2 in 

the efficacy of negative selection by the mTEC was consistently demonstrated 

through different approaches in this study.  

Furthermore, a unexpected finding also suggested the existence of a 

previously unreported population of mTEC in Eedfl/fl::β5tCre mice derived 

from progenitors that never expressed β5t. This unique pool of mTEC 

expresses fewer TRA per cell and is unable to compensate for the PRC2-

deficient mTEC derived from β5t-expressing progenitors in the thymus of 

Eedfl/fl::β5tCre mice. Nevertheless, this opens up a new area of investigations 

to gain deeper understanding of the biology, importance, and role of this 

unique mTEC population. 

 The thymus is fundamental in the establishment of a functional but 

self-tolerant T cell repertoire in the host. This study contributes to a better 

understanding in the molecular mechanisms exerted by PRC2 in thymus 

biology and will help unravel the molecular causes of diseases involving 

thymic stromal deficiencies. In addition, a more extensive comprehension of 

the molecular basis of normal thymus organogenesis, maintenance and 

function is equally crucial to develop therapies and treatments to thymic 

defects. Overall, the findings reported in this thesis specifically enhance the 

role of PRC2 in thymus biology and hence provides invaluable knowledge 

that might be applied to both translation and clinical medicine. 
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