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Abstract 

 
A better understanding of the molecular mechanisms that control pluripotency, 

differentiation and epithelial phenotypical plasticity is crucial for the development of 

the current knowledge in many general processes such as cell identity maintenance 

and cell fate decision-making. 

Embryonic stem cells (ESC) pluripotency maintenance and differentiation are of key 

importance to the embryonic development, as well as to the progress in stem cells 

technologies. The role of miR-290-295 cluster members in preserving the pluripotent 

state and differentiation potential of mouse ESC is well established. Nevertheless, the 

precise list of targets translating the microRNAs functionality is incomplete. In our 

study we, firstly, identified and validated miR-290 targets with high confidence. We 

further confirmed the expression variation of IRF2 in response to miRNAs’ depletion 

in ESC. Moreover, we revisited the involvement of nuclear factor kappa-B (NF-kB) 

pathway in the miRNA-dependent regulation in mESCs. Hence, our results provided 

new understanding of the role and mechanistic of miR-290-295 microRNAs 

involvement in ESC pluripotency and differentiation.  

In a similar fashion to ESC pluripotency and differentiation mechanisms, a global 

analysis-approach that compares and combines data from different epithelial to 

mesenchymal transition (EMT) models enabled us to construct a more detailed 

network of regulatory entities implicated in epithelial plasticity. The maintenance and 

plasticity of the epithelial cell phenotype are important events not only during normal 

embryonic development, but also to cancer progression and metastasis formation. 

Comparing this network between mouse and human, we identified a new transcription 

factor (TF) motif TFAP2A/C that is consistently involved in EMT. When applying 

the NMuMG cellular model of TGFβ-induced EMT, we found that the predicted 

activity of the TFAP2A/C is inversely correlated to the Tfap2a mRNA expression 

during the process. We have confirmed that TFAP2A directly binds to the promoter 

of Zeb2, a TF central to EMT. Thus, it regulates the expression of this gene. 

Furthermore, the TFAP2A overexpression in NMuMG cells modulates the cells’ 

epithelial phenotype and induces changes in cell adhesion and morphology. This 
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overexpression was followed by increased mRNA levels of EMT master regulator 

TFs, together with an elevated expression of genes involved in cellular adhesion. 

Therefore, we identified a potentially new role of TFAP2A transcription factor, which 

suggests that elements of its regulatory function during neural crest development 

might operate in mechanisms controlling epithelial plasticity in normal breast and 

tumor tissues.  

Overall, we characterized another facet of microRNAs’ function in pluripotency and 

differentiation in ESC, as well as a new aspect of the implication of TFAP2A in 

epithelial cell state integrity and plasticity. Therefore we contributed to expanding our 

insight of how are regulated at molecular level the cell identity homeostasis and the 

unfolding of cellular phenotypical plasticity. 
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Introduction 

 

Molecular Basis of Cellular Specialization 
 

The development of vertebrate organisms follows a strictly defined program that 

gives rise to a multitude of cell types and tissues from a single cell. A complex 

network of signaling cues, gene expression regulators and epigenetic factors define 

the fate of individual cells within the developing organism. Thus, even though all 

cells in an organism carry the same genetic information, they assume cell fates with 

little overlap in functionality. Terminally differentiated cells generally maintain their 

identity across various conditions and stimuli, but exogenously-driven changes in 

gene expression can reverse, or even drastically change cell fate. In the late eighties a 

pioneering study by Walter Gehring introduced the concept of a selector transcription 

factor, which governs a particular developmental decision (Schneuwly, Klemenz et al. 

1987). In an ingenious experiment, he showed that the exogenous expression of a 

transcription factor, Antennapedia, promotes the development of legs at the place 

where antennae would normally develop in the fly Drosophila melanogaster. In 

another pilot study the overexpression of the transcription factor Myoblast 

determination protein 1 (MYOD1) in fibroblasts resulted in their transdifferentiation 

into myoblasts. These studies strengthen the idea that single genes, also called 

“master regulators”, are at the top of ”regulatory hierarchies” that define precise 

cellular states (Davis, Weintraub et al. 1987). Although the mechanisms that induce 

the differentiation of particular cell types are generally well studied, how cell identity 

is maintained in response to perturbations is not entirely understood. For example, in 

the case of postmitotic neuronal cell types the factors that determine the fate of a 

neuronal cell type are the same responsible for its maintenance: in the absence of 

inductive signal, autoregulatory feedback processes that involve maintenance-

dedicated factors preserve the stability of the differentiated state (Deneris and Hobert 

2014). That the maintenance of cell identity is important for organism function is 

undisputed. Among the various pathologies that are associated with loss of defined 
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differentiated phenotypes, cancer is perhaps the prototype. Many parallels have been 

drawn between cancer and metastasis and pluripotency (Goding, Pei et al. 2014). The 

aim of the project described here was to identify transcriptional and post-

transcriptional regulators that can best explain gene expression changes that take 

place during two paradigmatic processes: embryonic development and epithelial-to-

mesenchymal transition. A better understanding of the molecular circuits that underlie 

the homeostasis and plasticity of cell identity in these circumstances will benefit the 

general understanding of the differentiation programs that operate both in 

development and during pathological conditions. 
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Chapter I. Functions of miR-290 microRNAs in 

embryonic stem cells 

 

Embryonic Stem Cells 

Discovery of Embryonic Stem Cells 

 

After fertilization, the ovum starts traveling through the female reproductive tract, 

taking approximately six days until it reaches the uterus (Figure 1) (Clift and Schuh 

2013). During this time a series of mitotic divisions that do not change the size of the 

embryo take place. In the end of this process, towards the sixteen-cell stage, the 

embryo has a berry-like shape and it is called morula, from the Latin mora, meaning 

mulberry (Alberts 2002). Up to the 8-cell stage, the cells are totipotent, meaning that 

they can divide and give rise to any of the differentiated cells in the entire organism; 

they are identical to each other and mutually replaceable, meaning that when single 

cells are removed, the remaining ones will compensate (Alberts 2002). 

Between the third and the forth cleavage (from the 8-cell to 16-cells stage), the 

previously poorly organized embryo will engage into a compaction process that will 

result in the separation of the cells to an outer and inner set.  

 

 

  

 

 

 

 

 

 

 

Figure 1.  First six days of human embryogenesis.  After fertilization of the oocyte, 

in approximately five to six days, the embryo divides, migrates and forms the 

blastocyst.  Adapted from Fundamentals of Anatomy & Physiology, 7e By Frederic 

H.Martini, Copyright Pearson Education, Published by Benjamin Cummings, 2005. 
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After the compaction, the inner and outer cells will commit to different fates. The 

cells that constitute the wall of the sphere will give rise to extra-embryonic tissues, 

namely the trophectoderm. The cells from the inner cell mass will give rise to all 

tissues and organs of the adult organism (Alberts 2002). An internal fluid-filled cavity 

is created and the embryo is called blastocyst (Figure 1). Following the compaction is 

the gastrulation phase, in which the single layered blastula transforms into a trilaminar 

gastrula, which is composed of three germ layers: ectoderm, mesoderm and 

endoderm. Cells derived from the inner cell mass, also called embryonic stem cells 

(ESCs), can be explanted from the embryo and cultured in vitro (Evans and Kaufman 

1981; Martin 1981). Although murine ESCs (mESCs) are extensively studied 

currently, the path to obtain these cells was quite long. 

In 1954, Stevens and Little described a spontaneous testicular teratoma in mice, a 

complex tumor formation that contains a range of differentiated cells and tissues 

(Stevens and Little 1954). They argued that teratomas are composed of both 

undifferentiated pluripotent embryonic cells, as well as different cells of various 

types. They further determined that the pluripotent cells, which they called embryonal 

carcinoma (EC) cells, are able to give rise both to differentiated cells as well as self-

renew (Stevens and Little 1954). Similarly, when early mouse embryos were grafted 

in adult animals, they generated teratomas (Solter, Skreb et al. 1970). Following these 

initial studies, much effort has been put into optimizing the growth conditions for 

embryonic cells in culture so that their properties and their differentiation in vitro can 

be studied (Evans 2011). In 1975, Minz and Illmensee generated a chimeric mouse by 

injecting EC cells in the mouse blastocyst. However, due to karyotypic abnormalities 

often present in the EC cells, the chimerism was never observed at the germ cells 

level (Mintz and Illmensee 1975).  EC cells were found to have highly similar 

properties to normal non-cancerous cells from the inner cell mass of the blastocyst, 

for instance they are able to form embryoid bodies (EB) in vitro (Martin and Evans 

1975).  This finding paved the way to the isolation and culturing of ESCs (Martin and 

Evans 1975; Evans 2011). The first ESCs from mouse were cultured in the beginning 

of the eighties. (Evans and Kaufman 1981; Martin 1981). However, it took much 

longer until human ESCs were obtained in 1998 (Thomson, Itskovitz-Eldor et al. 

1998).  

ESCs are pluripotent, meaning that they are able to form any of the tissues and organs 

of the entire organism, except those forming the placenta and certain parts of the 
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embryo (Figure 3). Furthermore they are able to differentiate into any of the three 

germ layers. In addition, as any stem cell, they are capable of self-renewal, and thus 

they can also produce additional stem cells (Evans 2011). In contrast to EC cells, 

when injected in the mouse blastocyst, mouse ESCs give rise to chimeric mice, 

including their germ-lines (Robertson, Bradley et al. 1986). As a consequence, the in 

vitro modified genetic material of ESCs can be used to generate fully mutant animal 

by germ-line transmission. This in turns allows the study of target genes functions 

(Evans 2011). Stem cells form a topic of great current interest. They enable basic 

research on understanding the development and function of human cells and are 

expected to have a prospectively important role for testing drugs safety and efficacy. 

In addition they are highly relevant for the future of regenerative medicine, as they 

represent a promising source of tissue and cells in replacement therapies (Evans 2011; 

van Berlo and Molkentin 2014)  

 

Pluripotency Maintenance in Cell Culture 

 

In the years following their discovery, mouse ESC were maintained in culture 

together with a feeder layer of embryonic cells that were treated such that could not 

divide anymore (Evans and Kaufman 1981; Martin 1981). Later studies found that the 

factor that feeder cells provided and was important for maintaining mESC 

pluripotency in vitro is LIF (Leukemia inhibitory factor). When combined with fetal 

calf serum (FCS), LIF bypasses the requirement for feeder cells (Martin and Evans 

1975; Smith, Heath et al. 1988; Williams, Hilton et al. 1988). When LIF is 

withdrawn, mESC still proliferate but their differentiation is induced, suggesting that 

LIF presence in culture media supports mESC’s self-renewal capacity (Smith 2001).  

LIF is a cytokine, member of the interleukin 6 (IL-6) family, and it interacts with its 

corresponding transmembrane receptor Leukemia inhibitory factor receptor (LIFR). 

Upon ligand binding, LIFR dimerizes with Interleukin 6 signal transducer 

IL6ST/gp130 receptor, which further transduces the signal. The effect of LIF on 

mESC pluripotency is subsequently mediated via Janus kinases (JAKs)-dependent 

activation of the transcription factor Signal transducer and activator of transcription 3 

(STAT3) (Niwa, Burdon et al. 1998; Smith 2001) (Figure 2). Furthermore STAT3 

activation alone is sufficient to sustain mESC pluripotency (Matsuda, Nakamura et al. 
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1999). Despite the critical role of LIF-gp130 in maintaining cell cultures of mESC, 

the developing embryo is not dependent on this signaling path prior to gastrulation. 

Instead, this pathway is important in a process named diapause, in which a lactating 

mouse female is fecundated and the embryo development is blocked at the blastocyst 

stage before implantation, until the mother’s hormone levels are reestablished 

(Nichols, Chambers et al. 2001; Smith 2001). To avoid the use of Fetal Calf Serum 

(FCS) which is heterogeneous in composition and therefore an important source of 

variability, the bone morphogenetic protein 4 (BMP4) can be added to the cell culture 

and thus allow the growth of mESC in chemically defined medium (Ying, Nichols et 

al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. LIF signaling maintains the expression of pluripotency genes. Binding 

of LIF to its cellular receptor, which is a homodimer of LIFR and gp130, triggers 

STAT3 phosphorylation and concomitant signal transduction to the nucleus, where 

the expression of pluripotency genes is activated. Adapted from (Arabadjiev 2012) 

 

The optimal culture conditions for human ESC (hESC) are surprisingly different than 

those for mESCs, and human ESCs differ from mouse ESC in their molecular profile, 

morphology and differentiation potential (Nichols and Smith 2009). Neither LIF 

addition, nor STAT3 activation, via gp130 receptor signaling, are sufficient for 

preserving hESC pluripotency in the absence of a feeder layer of mouse embryonic 

fibroblasts (MEF) (Humphrey, Beattie et al. 2004). MEFs can be replaced with 
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Matrigel® or similar secreted gelatinous protein mixtures, in the presence of MEF 

conditioned media (Xu, Inokuma et al. 2001). However, as Matrigel® is produced by 

Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, it has limitations and cannot be 

used when hESC are employed in clinical applications. Matrigel® like substances 

exhibit extensive lot-to-lot variability and can lead to xenogenic contamination (Villa-

Diaz, Ross et al. 2013). Therefore extensive effort is currently being directed towards 

development of feeder-free, chemically defined conditions for the establishment and 

expansion of human pluripotent stem cells (hPSC) (Ludwig, Levenstein et al. 2006; 

Chen, Gulbranson et al. 2011; Rodin, Antonsson et al. 2014). Furthermore, adhesion 

independent suspension culture methods are of high interest for large scale derivation 

and propagation of hESC (Steiner, Khaner et al. 2010).    

 

Pluripotency in Different Embryonic States 

 

The embryonic stem cells that are derived from the cells of the inner cell mass (ICM) 

and are the progenitors of the epiblast, define the naïve pluripotent state (Evans and 

Kaufman 1981; Martin 1981). Shortly after the blastocyst stage the ICM will separate 

into two cell types: the epiblast, from which the embryo proper is formed, and the 

primitive endoderm, which gives rise to extra-embryonic tissues (Najm, Chenoweth et 

al. 2011). In the pre-implantation epiblast of female embryos both X chromosomes 

are active. This property is specific to the naïve pluripotent state. Upon implantation, 

the epiblast is subject to a series of developmental signals that will result in its 

conversion into a layer of epithelium, in parallel with random inactivation in one of 

the X chromosomes in XX epiblasts. Subsequently, the cells of this epithelium are 

subject to location-driven specification. The cells that constitute the post-implantation 

epiblast maintain a high degree of plasticity and their fate can be reoriented at this 

stage (Nichols and Smith 2009).  However, in contrast to cells originating from the 

inner cell mass, post-implantation epiblast cells cannot give rise to chimeras when 

injected into blastocysts (Rossant 2008). Mouse pluripotent cells from the post-

implantation epiblast, EpiSCs, have been already isolated and can be cultured in the 

presence of Fibroblast growth factor (FGF) and Activin instead of LIF (Brons, 

Smithers et al. 2007; Tesar, Chenoweth et al. 2007). Consistent with their 

pluripotency, EpiSC are efficient in teratoma formation (Tesar, Chenoweth et al. 
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2007).  Furthermore, as expected from their origin, double X EpiSCs have one 

inactivated copy of X chromosome. EpiSCs represent the so-called primed pluripotent 

state (Nichols and Smith 2009). Through the exogenous expression of a single 

transcription factor, namely Kruppel-like factor 4 (KFL4), these cells can be 

reprogrammed to the naïve pluripotent state. The transition from mESC to EpiSC is 

achieved with growth factors cues (Guo, Yang et al. 2009). For ethical reasons hESC 

cannot be tested for their ability to form chimeras (Nichols and Smith 2009). 

However they are shown to be able to engraft into mouse blastocyst, and in certain 

cases they can undergo gastrulation and form human/mouse embryonic chimeras 

(James, Noggle et al. 2006). Although hESC have similar embryological origin as 

mESCs, they reassemble in many aspects EpiSC and are considered to be in primed 

rather than in ground pluripotent state (Mascetti and Pedersen 2014). It was recently 

demonstrated that human blastocyst inner cell mass derived cells, when kept in 

NHSM (naïve human stem cell medium), which contains LIF, a combination of other 

growth factors and small molecule inhibitors of core signaling pathways, display 

more similarities to mESC and are thought to preserve their ground state pluripotency. 

Furthermore, ICM-like hESCs significantly outperform the previously derived hESC 

cell lines in their ability to generate interspecies chimeras (Gafni, Weinberger et al. 

2013).  

 

ESC Differentiation 

 

When placed in relevant growth conditions, ESCs can give rise to cells of any of the 

three germ layers (Figure 3). In contrast to mESCs, hESCs can also give rise to a 

population of cells that shares many characteristics with trophoblasts, when 

stimulated with BMP4 (Xu, Chen et al. 2002).  

Different methods exist to promote the differentiation of ESC. The most widely used 

method is aggregation of ESC in suspension that results in the formation of a three-

dimensional (3D) structure known as embryoid body (EB). This strategy was initially 

developed for the culture of EC cells and can also be applied to ESC (Martin and 

Evans 1975). The differentiation of EBs resembles in many aspects the developmental 

program that the ICM cells of the embryo undergo. However, a major difference is 

that the EBs lack a correct axial organization and body plan, and do not have 
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appropriate organization of the three germ layers. A recent improvement of this 

technique combines the growth of the embryoid colony in a 3D fibrin gel with a 

consequent step of cell anchorage to a collagen coated two-dimensional (2D) support, 

which promotes the proper germ layer organization of EBs (Poh, Chen et al. 2014). 

Other approaches consist in co-culturing the ESC on stromal cells that will stimulate 

their differentiation or using a layer of extracellular matrix proteins (Keller 2005). A 

series of cell types originating from any of the three germ layers: the mesoderm, the 

endoderm and the ectoderm can be produced from ESC. The differentiation of 

mesodermal cells gives rise to hematopoietic, vascular, cardiac, skeletal muscle, 

osteogenic, adipogenic, and chondrogenic lineages (Keller 2005; Salani, Donadoni et 

al. 2012; Slukvin 2013; Barad, Schick et al. 2014). With respect to the endoderm, 

pluripotent stem cells (PCS) were used to obtain various cell types from the 

gastrointestinal and respiratory tract, as well as hepatocytes, pancreatic cells and 

thyroid follicular cells (Kadzik and Morrisey 2012; Cheng, Tiyaboonchai et al. 2013; 

Sewell and Lin 2014; Sinagoga and Wells 2015). Concerning ectoderm-derived 

lineages, protocols that establish neuroectoderm and epidermis commitment are well 

defined. The neural differentiation leads to the three major cell types present in the 

central nervous system: neurons, astrocytes and oligodendrocytes. Furthermore, 

engendering of specialized neuronal sub-types such as dopaminergic, cholinergic and 

glutaminergic neurons is also possible (Keller 2005). An exciting recent development 

is the generation of organ-like tissues, named “organoids” through 3D cell cultures 

methods (Shamir and Ewald 2014). Organoids are structurally similar to the model 

organs, can be composed of cells derived from different germ layers and are formed 

from various cell lineages. Eyecup, gut, brain, kidney, liver and lung are amongst the 

successfully produced organoids. These experimental models are instrumental for 

better understanding of organ development and function in healthy, or pathological 

conditions (Shamir and Ewald 2014; Dye, Hill et al. 2015). 
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Figure 3. Embryonic stem cells differentiation potential. Adapted by permission of 

Macmillian Publishers Ltd Nature Reviews Genetics (O'Connor and Crystal 2006), 

copyright 2006. Embryonic stem cells are explanted form the blastocyst. They can be 

maintained in cell culture for indefinitely long periods of time or can be differentiated 

into any of the three germ layer-derived cell types. 

 

Induced Pluripotency 
 

In 2006, a crucial discovery changed the landscape of molecular and cellular biology. 

By expressing a cocktail of four transcription factors: Octamer-binding protein 

4/OCT4, homeobox protein NANOG, transcription factor SOX2 and Myc proto-

oncogenic protein/MYC (OSKM), in mouse fibroblasts Takahashi and Yamanaka 

obtained cells that were in many aspects similar to embryonic stem cells (Takahashi 

and Yamanaka 2006). This finding opened new avenues in stem cell research. The 

rapidly developing technology of generating induced Pluripotent Stem Cells (iPSC) 

promises to offer an alternative solution for disease modeling, drug discovery and 

regenerative medicine (Yamanaka 2012). In 2007 the successful reprogramming of 

human fibroblasts to iPSCs allowed the generation of cells that reassembled but 
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circumvented the ethical issues associated with hESCs. Moreover iPSCs have the 

important advantage of a matched genetic background with the patient from which the 

fibroblasts were initially isolated. iPSCs provide a unique opportunity in disease 

modeling and drug discovery, as they allow for the generation of virtually any cell 

type from a given subject and the use of large number of genetically variable cell lines 

and tissues in drug screening assays (Park, Arora et al. 2008). 

 

Figure 4. Induced pluripotency stem cells technology. Terminally differentiated 

cells can be reprogrammed, using a combination of four reprogramming transcription 

factors. Adapted by permission of Macmillian Publishers Ltd Nature (Loh and Lim 

2013), copyrights 2013. 

 

Indeed, many disease-modeling studies followed. IPSCs derived from people 

suffering of amyotrophic lateral sclerosis (ALS) were used to better understand the 

mechanism of the disease and to test for potential drugs (Dimos, Rodolfa et al. 2008). 

ALS is a devastating neurodegenerative disorder and more than 100 mutations in 

dozens of genes are known to be in its origin. Motor neurons derived from iPSCs of 

patients with different forms of ALS presenting different set of mutations allowed the 

identification of potential general mechanism of the disease. With the application of 

the same methodology an anti-epileptic drug showed promising results and will be 

further studied in clinic (Dimos, Rodolfa et al. 2008; Kiskinis, Sandoe et al. 2014; 

Wainger, Kiskinis et al. 2014). IPSC-derived cardiac myocytes and hepatocytes can 

be used as an alternative to test drug toxic effects (Yamanaka 2009). Another major 

future application of the stem cell technology is in regenerative medicine. In 2007 

autologous iPSCs were used for the first time successfully in the treatment of sickle 

cell anemia in mice (Hanna, Wernig et al. 2007). Currently research is being directed 

towards making the iPSC technology useful in the treatment of macular degeneration, 
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spinal cord injuries, Parkinson’s disease, and platelet deficiency (Takayama, 

Nishimura et al. 2010; Kriks, Shim et al. 2011; Nori, Okada et al. 2011; Okamoto and 

Takahashi 2011). The research on regeneration of cardiac tissue progressed very 

quickly in the last decade. Myocardial infraction (MI) or advanced heart failure, leads 

to the destruction of cardiac tissue and important loss of cardiomyocytes, which are 

leading cause of death. ES and iPS cells based methods currently show the highest 

regenerative potential for therapeutic cardiac regeneration (van Berlo and Molkentin 

2014). Both strategies were tested in animal models and were demonstrated to be 

efficient (Kawamura, Miyagawa et al. 2012; Chong, Yang et al. 2014). However, 

prior to any of these approaches advancing towards the clinic, important safety 

questions related to the technology, namely the long term genetic stability of iPSC 

need to be addressed. Furthermore, proving that every cell in the treatment suspension 

is differentiated enough not to form cancer or teratoma remains challenging (van 

Berlo and Molkentin 2014). 

 

Regulation of pluripotency  
 

The stable pluripotent state results from a balance of signals promoting stemness and 

inhibiting differentiation (Smith 2001). Extracellular and intrinsic signaling are 

integrated by a network of molecules that involves complex interactions between 

transcription factors, RNA binding proteins, small and long non-coding RNAs and 

other regulators of gene expression (Young 2011). This tangled molecular circuitry is 

responsible for maintaining the epigenetic and transcriptional landscape of pluripotent 

stem cells (PSCs) in a ground state.  

 

Transcriptional Control of Pluripotency 

 

Transcription factors are proteins that interact directly or indirectly with DNA and 

thus activate or suppress the transcription of different genes. They can bind to 

elements that are either proximal to the promoter or distal, 100s of kb away (Young 

2011). 
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Core Pluripotency Factors 

 

Three transcription factors are known as the core pluripotency transcription factors 

that are responsible for maintaining stemness of PSC: OCT4, SOX2 and NANOG 

(Young 2011; Theunissen and Jaenisch 2014). 

Murine OCT4 is encoded by Pou5f1 gene and it belongs to the POU family of 

homeodomain transcription factors. Its expression during mouse development is 

restricted to the blastomere before compaction, the pre- and post- implantation 

epiblast and the primordial germ cells (Young 2011). In OCT4-deficient mouse 

embryos, the blastocyst forms, but the ICM cells are not pluripotent and rather 

committed to the trophoblast lineage (Nichols, Zevnik et al. 1998). The OCT4 levels 

regulate ESC’s fate. Increased OCT4 levels induce ESC differentiation towards 

primitive endoderm and mesoderm, while its repression leads to trophectoderm 

specification (Niwa, Miyazaki et al. 2000). OCT4 acts in concert with SOX2 to 

maintain pluripotency and induce mesendoderm determination. SOX2 is a member of 

Sox (SRY-related HMG (High Mobility Group) box) and it is considered as 

transcriptional partner of OCT4. Consistently, the SOX2 expression pattern in the 

early development is highly similar to that of OCT4. The SOX2 protein and mRNA 

are found in the epiblast and primordial germ cells. In contrast, however, to OCT4, 

SOX2 is equally expressed in the post-implantation extra-embryonic ectoderm that 

further develops to mature placenta (Avilion, Nicolis et al. 2003). A further 

confirmation of the synergy between SOX2 and OCT4 is the similarity in the 

phenotype of their knockout in mouse embryo, which in both cases results in a failure 

to establish a pluripotent ICM population (Avilion, Nicolis et al. 2003; Yeo and Ng 

2013). In mouse embryos, NANOG is expressed only in the parietal germ cells and 

the pluripotent cells populations that arise after compaction. Nanog is rapidly silenced 

upon the specification of these lineages. Homozygous Nanog-knockout mice lack 

defined epiblast cells population upon implantation (Chambers, Colby et al. 2003; 

Mitsui, Tokuzawa et al. 2003). In contrast Nanog-null homozygous mESC can self-

renew indefinitely, although with lower efficiency, and without committing into 

EpiSC (Chambers, Silva et al. 2007).  Despite the fact that NANOG is dispensable for 
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mESC pluripotency, it stabilizes their undifferentiated state(Chambers, Silva et al. 

2007).  

The core transcription factors exert their control over pluripotency in a cooperative 

manner. They act in concert to regulate the expression of their own genes and thus 

establish a positive auto-regulatory feedback loop. In addition, they co-regulate the 

genes involved in preserving pluripotency and at the same time contribute to the 

repression of those promoting differentiation (Young 2011).  

 

Extended Network of Transcription Factors. 

  

Though less important, other transcription factors were found to complement 

OCT4/SOX2/NANOG in the regulation of pluripotency. KFL4 and c-Myc/MYC are 

part of the Yamanaka’s cocktail of factors that reprogram fibroblasts to pluripotent 

stem cells similar to ESC and have important roles in ESC pluripotency maintenance 

(Takahashi and Yamanaka 2006). In addition, studies aiming to understand the 

regulators of pluripotency identified more transcription factors to be tightly involved 

in governing this state together with the core transcription factors. A non- exhaustive 

list includes REX1, TCF3, SMAD1, STAT3, ESRRB, ZFX, Ronin/THAP11, KLF2, 

KLF5, SALL4, PRDM14, TCL1, DAX1, NAC1, ZFP281 and others (Chia, Chan et 

al. 2010; Kim, Woo et al. 2010; Young 2011) (Table 1). Some of them, like 

PRDM14, are specific for hESC and are dispensable for mESC pluripotency (Chia, 

Chan et al. 2010). 

A recent systemic study of protein-protein interactions, as well as protein-DNA 

interaction of some of the pluripotency related factors in ESC, concluded that in their 

functional network, three regulatory cores exist (Kim, Woo et al. 2010). The first one 

is composed of the core pluripotency transcription factors and a number of other 

transcription factors, and it is responsible for activation of pluripotency related genes. 

The second one is focused around Polycomb Repressive Complex (PRC) and the 

genes that are part of its regulatory module are repressed in ESC. Finally, the third 

one is centered on MYC and forms a module of transcription factors that act together 

with it to positively regulate a subset of genes involved in PSC self-renewal and 

maintenance (Kim, Woo et al. 2010).  
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Transcription 

factors or 

cofactors 

          Gene function Reference 

      

OCT4 Core circuitry  (Nichols, Zevnik et al. 1998) 

SOX2 Core circuitry 

(Chambers and Smith 2004; 

Masui, Nakatake et al. 

2007)(Avilion, Nicolis et al. 

2003) 

NANOG Core circuitry 

(Chambers, Colby et al. 

2003; Mitsui, Tokuzawa et 

al. 2003)  

TCF3 
WNT signaling to core 

circuitry 

(Cole, Johnstone et al. 2008; 

Marson, Foreman et al. 

2008)  

STAT3 
LIF signaling to core 

circuitry 
(Niwa, Burdon et al. 1998)  

SMAD1 
BMP  signaling to core 

circuitry 
(Ying, Nichols et al. 2003)  

SMAD2/3 
TGFβ/Activin/Nodal 

signaling 

(Beattie, Lopez et al. 2005; 

James, Levine et al. 2005)  

MYC Proliferation 
(Cartwright, McLean et al. 

2005)  

ESRRB Steroid hormone receptor (Ivanova, Dobrin et al. 2006)  

SALL4 Embryonic regulator (Zhang, Tam et al. 2006)  

TBX3 Mediates LIF signaling (Ivanova, Dobrin et al. 2006)  

ZFX Self-renewal 
(Galan-Caridad, Harel et al. 

2007)  
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Ronin Metabolism  (Beattie, Lopez et al. 2005) 

KFL4 LIF signaling (Jiang, Chan et al. 2008)  

PRDM14 ESC identity  (Chia, Chan et al. 2010) 

Mediator Core circuitry 
(Hu, Kim et al. 2009; Kagey, 

Newman et al. 2010)  

Cohesin Core circuitry 
(Hu, Kim et al. 2009; Kagey, 

Newman et al. 2010)  

PAF1 complex 
Couples transcription with 

histone modification 

(Ding, Paszkowski-Rogacz et 

al. 2009)  

DAX1 OCT4 inhibitor 
(Niakan, Davis et al. 2006; 

Sun, Nakatake et al. 2009)  

CNOT3 MYC/ZFX cofactor (Hu, Kim et al. 2009)  

TRIM28 MYC/ZFX cofactor 
(Fazzio, Huff et al. 2008; Hu, 

Kim et al. 2009)  

 

Table 1.  Transcription factors and cofactors implicated in the regulation of 

pluripotency in ESC. (Young 2011). 

 

 

 

Function of MYC in Pluripotency Regulation 

 

Myc transcription factors belong to the family of basic helix-loop-helix (bHLH) is 

composed of three members, namely MYC/c-Myc, MYCN/n-Myc and MYCL/L-

Myc. They are well known oncogenes and are deregulated in many cancers (Luscher 

and Vervoorts 2012). Myc proteins bind to E-box elements in DNA and 
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heterodimerize with a protein named MAX. The interaction with MAX is critical for 

most MYC functions. MAX can also bind to some of the MAX dimerization proteins, 

Mxd/MAD, such as MXD1 MNT, and MGA, and thus MAD proteins antagonize 

MYC (Luscher and Vervoorts 2012).  Different mechanisms are suggested to explain 

how MYC can mechanistically activate gene expression.  In particular, those include 

promoter activation by recruitment of histone acetyl transferases (HATs) such as 

TIP60/KAT5 and GCN5/KAT2A, RNA polymerase II pause release mediated by p-

TEFb, and a recent model, in which MYC is rather amplifying the already existing 

expression of genes than initiating de novo transcription (Cole and Nikiforov 2006; 

Rahl, Lin et al. 2010; Lin, Loven et al. 2012; Nie, Hu et al. 2012). 

In mouse embryonic development, as well as in ESC, Myc deletion did not affect 

pluripotency (Sawai, Shimono et al. 1991; Stanton, Perkins et al 1992; Davis, Wims 

et al. 1993). However, when Myc and Mycn are simultaneously knocked out in ESC, 

the cells switch towards a differentiated state (Varlakhanova, Cotterman et al. 2010). 

Additionally, the overexpression of MYC in mESC replaces the need of LIF addition 

in culture media, which further underlines the importance of these transcription 

factors in supporting self-renewal and pluripotency (Cartwright, McLean et al. 2005).

  

Studies of transcription factors-DNA binding in ESC determined that gene targets 

occupied by core transcription factors differ from those regulated by MYC. Therefore 

it is suggested that MYC, together with other transcription factors, regulates gene 

expression in a regulatory module in the transcription factor network of pluripotency 

(Kim, Woo et al. 2010).  

 

 

Epigenetic Landscape of Pluripotency 

 

In the nucleus, the DNA is embedded together with proteins and RNA molecules in a 

structure called chromatin. The DNA is tightly packed in nucleosomes containing 147 

nucleotides wrapped around a core of histone proteins. The nucleosomes are further 

stacked in complex 3D organisations (Woodcock and Ghosh 2010). Post-translational 

modifications in histones recruit different factors, affect the way nucleosomes are 
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compacted, and can further influence higher-order chromatin structures (Tee and 

Reinberg 2014).   

Epigenetic regulation encompasses various mechanisms that act on the structure and 

accessibility of DNA to modify gene expression. They include DNA methylation, 

histone modification and chromatin remodelling (Tee and Reinberg 2014). Generally, 

in PSCs genes that are involved in commitment decisions are maintained in a silenced 

state, while still responsive to the appropriate signals (Han and Yoon 2012). 

 

Chromatin 

Regulators 
Gene function Reference 

      

Polycomb 
Silencing of lineage-

specific regulators 

(Boyer, Plath et al. 2006; 

Lee, Jenner et al. 2006)  

SETDB1 (ESET) 
Silencing of lineage-

specific regulators 

 (Bilodeau, Kagey et al. 

2009) 

esBAF Nucleosome mobilization (Ho, Ronan et al. 2009)  

CHD1 Nucleosome mobilization 
(Gaspar-Maia, Alajem et al. 

2009)  

CHD7 Nucleosome mobilization 
 (Schnetz, Handoko et al. 

2010) 

TIP60-p400 

 

 

 

Histone acetylation 

 

 

(Fazzio, Huff et al. 2008) 

   

 

Table 2. Chromatin regulators, implicated in the regulation of pluripotency in 

ESC. (Young 2011) 

The input from different signalling pathways can be integrated by changes in 

chromatin structure and in certain cases the signalling molecules directly interact with 

Page 24 of 124



 

 

the chromatin. In mESC JAK kinases, also involved in signalling downstream of LIF, 

can phosphorylate the tyrosine residue 41 of histone H3, and thus impede 

Heterochromatin protein 1α (HP-1α)/CBX5 interplay with chromatin to consequently 

affect the core pluripotency factors expression (Griffiths, Li et al. 2011; Ye and 

Blelloch 2014). In another study, a JNK effector of MAPK pathway was shown to 

phosphorylate histone H3 at serine (Ser3), in the course of ESC differentiation into 

neurons (Tiwari, Stadler et al. 2012). Moreover, a SWI/SNF-like ATP dependent 

chromatin remodelling complex, named esBAF, is essential for mESC maintenance 

and cooperates with LIF signalling by promoting genome-wide STAT3 binding (Ho, 

Ronan et al. 2009; Ho, Miller et al. 2011). A number of other chromatin regulators 

were found to be essential for ESC functionality and among those are 

cohesion/condensin complexes (Young 2011). In addition, histone modifying 

regulators, such as polycomb group protein (PcG) complexes, TIP60-p400 and 

SETDB1, are critical for pluripotency regulation (Table 2) (Young 2011).  

 

RNA Binding Proteins 

 

RNA binding proteins (RBP) participate in a large number of functions related to 

RNA processing, including splicing, poly-adenylation, nuclear export, translation, 

modification of RNA molecules, and degradation. Thus, it is nor surprising that RBPs 

are also associated with the pluripotency network, either promoting the 

undifferentiated state or differentiation along various lineages (Ye and Blelloch 

2014).  The role of different RBPs in pluripotency is reviewed in detail in (Ye and 

Blelloch 2014). An interesting example is that of Mettl3/MTA70 and 

Mettl14/MET14, two mammalian methyltransferases, which transfer the methyl 

group of S-adenosyl-L-methionine to produce N
6
-methyladenosylated RNA (m

6
A 

RNA) (Liu, Yue et al. 2014). When any of these two RBPs is depleted, mESC exhibit 

a reduction in m
6
A RNA methylation and impaired self-renewal (Wang, Li et al. 

2014). Transcripts enriched in this modification correspond to developmental 

regulators with particular chromatin state, where m
6
A incorporation has a 

destabilizing effect on the RNA. MBNL proteins were shown to block ES-cell-

specific alternative splicing and reprogramming and were shown to act in synergy 

with RBFOX2 to create a splicing program into iPSCs differentiation (Han, Irimia et 
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al. 2013; Venables, Lapasset et al. 2013). The Epithelial splicing regulatory protein 1, 

ESRP regulated the expression of pluripotency-associated regulators (Fagoonee, 

Bearzi et al. 2013). These results suggest that RBPs and importantly splicing factors 

are relevant for cell identity determination (Ye and Blelloch 2014). 

 

microRNAs 

 

MicroRNAs are small non-coding RNA of  approximately 22 nucleotides in length 

that play important roles in vertebrate development, as well as in diverse 

physiological and cellular processes (He and Hannon 2004; Bartel 2009; Mencia, 

Modamio-Hoybjor et al. 2009; de Pontual, Yao et al. 2011). In mammals, microRNAs 

are loaded into Ago proteins and in most of the cases the microRNA-guided Ago 

protein will bind to a region in the mRNA 3’UTR that can have as few as 6 

nucleotides complementarity to the 5` bases 2-7 of the microRNA, which is the so-

called “microRNA seed region”. Once the ribonucleoprotein RNA-induced silencing 

complex (RISC) complex, containing the microRNA loaded Ago, is localized on its 

mRNA target, the corresponding mRNA is destabilized, and the expression of the 

corresponding protein decreases (Lingel and Izaurralde 2004; Filipowicz, 

Bhattacharyya et al. 2008; Chekulaeva, Mathys et al. 2011) (Fabian, Sonenberg et al. 

2010).  

MicroRNAs are derived from either independently regulated genes that are 

transcribed by RNA polymerase II or from processing of introns of genes that produce 

protein-coding or non-coding RNAs (Lee, Kim et al. 2004; Borchert, Lanier et al. 

2006; Bortolin-Cavaille, Dance et al. 2009). Different type-III RNases are involved at 

different steps of miRNA biogenesis. Primary microRNA transcripts can be processed 

by Drosha-DGCR8 ribonuclease complex in the nucleus, or in the case of mirtons by 

the splicing machinery, and result in precursor microRNA (pre-microRNA) hairpins 

that are translocated into the cytoplasm by Exportin5 (Yi, Qin et al. 2003; Bohnsack, 

Czaplinski et al. 2004; Han, Lee et al. 2004; Ruby, Jan et al. 2007). In the cytoplasm, 

pre-microRNAs are further processed by the nuclease Dicer to give rise to double-

stranded RNA molecules with 5’ monophosphate and 3’ hydroxyl groups (Hutvagner, 

McLachlan et al. 2001). One of the two strands, named guide strand, is incorporated 
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into the RISC and targets it to complementary messenger RNA (mRNA) (Kai and 

Pasquinelli 2010). 

MicroRNAs (miRNAs) are critical for mammalian embryonic development, and this 

is exemplified by the lethality of Dicer and DGCR8 knockouts (Bernstein, Kim et al. 

2003; Wang, Medvid et al. 2007). In PSC, a set of microRNAs is specifically 

associated with the undifferentiated cellular state. The list of microRNAs specifically 

enriched in the pluripotent state includes the clusters of miR-17-92, miR-302-367, 

hsa-miR-371-373, and its mouse orthologue mmu-mir-290-295, the miR-200 family, 

as well as the miR-106 and miR-195 miRNAs. A particular case is the C19MC cluster 

of embryonic microRNAs, encoding the miR-520 family that is only represented in 

human and primates (Suh, Lee et al. 2004; Bar, Wyman et al. 2008; Laurent, Chen et 

al. 2008; Morin, O'Connor et al. 2008). Interestingly, individual microRNAs or 

clusters, such as miR-17, miR-106, hsa-miR-372/mmu-miR-290, miR-302, and miR-

520, have the same or very similar seed sequence that might differ in one nucleotide 

despite the fact that some of them have different evolutionary origin. As the seed 

sequence is critical for target recognition this observation suggests that there is 

important number of mRNA that are regulated by all of the above-mentioned 

microRNAs (Leonardo, Schultheisz et al. 2012). Some of the embryonic microRNAs, 

including miR-17-92, miR-106a-25, mmu-miR-290/ hsa-miR-372, miR-302-367, and 

miR-200, promote reprogramming, when expressed together with reprogramming 

factors (Leonardo, Schultheisz et al. 2012; Wang, Guo et al. 2013). Moreover, it has 

been reported that lentiviral expression of mmu-miR-302-367 or transient transfection 

of all three hsa-miR-200c, hsa-miR-302, and hsa-miR-363 are sufficient to reprogram 

respectively mouse or human fibroblast to iPSC (Anokye-Danso, Trivedi et al. 2011; 

Miyoshi, Ishii et al. 2011). Consistently, it has been argued that core pluripotency and 

OSKM reprogramming transcription factors promote the undifferentiated state partly 

by inducing the expression of microRNAs. For instance, OCT4, SOX2 and NANOG 

bind to the promoter of miR-106a-363, mmu-miR-290 and miR-302-367 in mESC 

(Marson, Levine et al. 2008). Myc is equally shown to transactivate the expression of 

miR-17-92 (O'Donnell, Wentzel et al. 2005). 

Another set of miRNAs that belong to the let-7 family are related to various 

differentiation pathways and can negatively affect pluripotency. For instance, they 

inhibit reprogramming by stimulating the expression of prodifferentiation factors 

(Worringer, Rand et al. 2014).  
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Embryonic specific miRNAs are known to functionally enforce ESC cell cycle and 

glucose metabolism, to regulate mesenchymal to epithelial transition (MET) during 

reprogramming, to control DNA methylation in ESC, to influence m
6
A modification 

of RNA and to affect PSC apoptosis (Miyoshi, Ishii et al. 2011; Leonardo, 

Schultheisz et al. 2012; Cao, Guo et al. 2015).  

ESCs have a particular cell cycle, with a shortened G1 phase. ESC depleted in 

components of miRNA biogenesis pathway, and therefore, deficient in miRNAs, 

exhibit a cell cycle defect, which can be partially reversed by the transfection of 

mmu-miR-290 family members in mouse or hsa-miR-372 and hsa-miR-195 in hESC 

(Wang, Baskerville et al. 2008; Qi, Yu et al. 2009).  MiRNAs from miR-290 family 

were shown to regulate self-renewal of mESC by regulating MYC, Lin28 and Sall4, 

while the let-7 family members controlled the same genes in an opposite manner 

(Melton, Judson et al. 2010). Surprisingly, a recent study of DGCR8-null mESC 

found that the mutant embryonic cells resemble ground state pluripotent stem cells 

cultured in 2i +LIF, a medium in presence of inhibitors of Extracellular regulated 

kinases ERK/MAPK and Glycogen synthase kinases GSK3, suggesting that 

microRNAs might not be critical for the ground state pluripotency (Kumar, Cahan et 

al. 2014). Furthermore, wild type ground state pluripotent stem cells express let-7 

family members together with miR-290-295, suggesting that the two miRNA families 

might act synergistically to maintain this state. However, miRNA depletion in mECS, 

led to higher heterogeneity in the stem cell population, in agreement with previous 

studies that suggest a role of miRNA in controlling the noise in gene expression 

(Kumar, Cahan et al. 2014). 

In mESCs, the miR-290-295 cluster miRNAs are among the most abundantly 

expressed (Houbaviy, Murray et al. 2003; Leung, Young et al. 2011). Moreover, 

homozygous deletion of this cluster in mice results in partially penetrant embryonic 

lethality and compromised fertility in females. Nevertheless, surviving male miR-290-

295
-/-

 mice are phenotypically normal (Medeiros, Dennis et al. 2011). This 

observation can probably be explained by the expression of microRNAs with same or 

similar seed that might compensate in certain cases the absence of miR-290-295. 

Alternatively, the fact that microRNAs deficient DGCR8-null mESCs do not impede 

the ground state pluripotent stem cells state might also be related to the partial 

penetrance of the miR-290-295 knock-out phenotype (Kumar, Cahan et al. 2014).  
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The important role of miRNAs in maintenance and differentiation of PSC is well 

accepted (Leonardo, Schultheisz et al. 2012). However, the targets and the mechanism 

of miR-290-295 cluster function in ESCs are not well understood (Leonardo, 

Schultheisz et al. 2012). To fill this gap, we have carried out an extensive analysis of 

data sets derived from mESCs that either expressed or were deficient in expression of 

miR-290-295 cluster miRNAs. We aimed to identify reproducible, high confidence 

and direct transcription factor targets of the miRNAs that propagate and perhaps 

amplify the effects of these miRNAs in the pluripotency network. Indeed, an initial 

computational analysis of these data carried by another PhD student in the group 

pinpointed a number of transcription factors that appeared to be involved in 

differentiation processes and to be directly regulated by the miR-290-295 cluster. We 

have followed up these results, constructing and testing luciferase reporters in a 

mouse cell line. In collaboration with other group members we have confirmed the 

expression variation of IRF2 in response to miRNAs depletion in ESC and we have 

validated the involvement of nuclear factor kappa-B (NF-kB) pathway in the miRNA-

dependent regulation in mESCs. Overall, this study complements the current 

knowledge on the manner miR-290-295 regulates pluripotency, and proposes a new 

insight into its involvement in cell cycle, innate immune response, and chromatin 

modification in mESC.  
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ABSTRACT

The findings that microRNAs (miRNAs) are essential
for early development in many species and that em-
bryonic miRNAs can reprogram somatic cells into
induced pluripotent stem cells suggest that these
miRNAs act directly on transcriptional and chromatin
regulators of pluripotency. To elucidate the transcrip-
tion regulatory networks immediately downstream of
embryonic miRNAs, we extended the motif activity
response analysis approach that infers the regula-
tory impact of both transcription factors (TFs) and
miRNAs from genome-wide expression states. Ap-
plying this approach to multiple experimental data
sets generated from mouse embryonic stem cells
(ESCs) that did or did not express miRNAs of the
ESC-specific miR-290-295 cluster, we identified mul-
tiple TFs that are direct miRNA targets, some of
which are known to be active during cell differentia-
tion. Our results provide new insights into the tran-
scription regulatory network downstream of ESC-
specific miRNAs, indicating that these miRNAs act
on cell cycle and chromatin regulators at several lev-
els and downregulate TFs that are involved in the
innate immune response.

INTRODUCTION

Embryonic stem cells (ESCs) originate from the inner cell
mass of mammalian blastocysts. Due to their ability to self-
renew as well as differentiate into various specialized cell
types, they hold the promise of medical applications, such
as stem cell therapy and tissue engineering. Therefore, the
regulatory mechanisms behind pluripotency, stem cell fate
and renewal are of great interest.

MiRNAs are short (∼22 nt long), single-stranded RNAs
that post-transcriptionally regulate the expression of target

genes (1). Computational and high-throughput studies sug-
gest that a single miRNA can regulate hundreds of target
genes (2,3) and that the majority of human mRNAs are reg-
ulated by miRNAs (4). Several studies found that the ex-
pression of ESC-specific miRNAs is required for initiation
of stem cell differentiation and normal embryonic develop-
ment (5–7). The ESC-specific miR-290-295 cluster accounts
for ∼50% of the miRNA population of mouse ESCs (8–11)
and its expression is downregulated relatively rapidly dur-
ing differentiation (9,12). Interestingly, three of the seven
miRNAs that are co-expressed from the miR-290-295 clus-
ter, namely, miR-291a-3p, miR-294 and miR-295, are suffi-
cient to force a G1→S transition (13) and promote induced
pluripotency (14). All of these miRNAs, as well as those of
another ESC-specific miRNA cluster, miR-302-367 (12,15),
have the same sequence ‘AAGUGCU’ at positions 2-8 (also
called the ‘seed’) which defines a family of miRNAs with
related targets (4).

In contrast to the miR-290-295 cluster, miR-302-367 is
also present in human and has been used to reprogram fi-
broblasts into induced pluripotent stem cells (iPSCs) (16).
The reprogramming of differentiated cells into pluripotent
stem cells by the ESC-specific miRNAs entails large gene
expression and phenotypic changes that are likely to be due
to regulatory cascades that involve several regulators. To
identify transcriptional regulators that are immediate targets
of the AAGUGCU seed family miRNAs, we analyzed data
obtained in several previous studies that aimed to uncover
the function of the miR-290-295 cluster.

These data consist of microarray-based measurements
of mRNA expression in ESCs that were either deficient
in miRNAs or expressed subsets of ESC-specific miR-
NAs (Supplementary Table S1). Sinkkonen et al. (17) an-
alyzed mRNA expression of ESCs that express miRNAs
(Dicer+/ −), ESCs that do not express miRNAs (Dicer−/ −)
as well as Dicer−/ − ESCs transfected with the miR-290-
295 cluster miRNAs (miR-290, miR-291a-3p, miR-292-
3p, miR-293, miR-294 and miR-295 mimics). The study
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showed that the expression profile of ESCs can be restored
to a large extent in Dicer−/ − ESCs through transfection of
miR-290-295 cluster miRNAs, and that these miRNAs are
important for appropriate de novo DNA methylation in dif-
ferentiating ESCs. Hanina et al. (18) profiled mRNA ex-
pression in Dicer−/ − ESCs as well as in Dicer−/ − ESCs
transfected with miR-294. Combining these expression data
with a biochemical approach to isolate Argonaute 2 (Ago2)-
bound mRNAs, the study identified miR-294 targets in
ESCs. It further concluded that miR-294 regulates a subset
of genes that are also targeted by the Myc transcriptional
regulator and that some of the effects of miR-294 expres-
sion may be due to the indirect upregulation of pluripo-
tency factors, such as Lin28. Employing mRNA expression
profiling of Dgcr8−/ − ESCs, as well as miR-294-transfected
Dgcr8−/ − ESCs, Melton et al. (19) showed that self-renewal
and differentiation of ESCs is regulated in an antagonis-
tic manner by miR-294 and let-7. Finally, Zheng et al.
(11) profiled mRNA expression of miRNA expressing ESCs
and Dicer−/ − ESCs and uncovered a pro-survival, anti-
apoptotic function of the miR-290-295 cluster of miRNAs.

Altogether, these studies provide five separate experimen-
tal data sets that can be used to investigate the function of
AAGUGCU seed family miRNAs in ESCs. They all deter-
mined mRNA expression profiles of ESCs with impaired
miRNA expression (due to knockout of either Dgcr8 or
Dicer components of the miRNA biogenesis pathway), as
well as of ESCs that expressed miRNAs of the AAGUGCU
seed family. The latter were either ES cells which expressed
the full complement of miRNAs, or miRNA-deficient ESCs
that were transfected with either miRNAs of the miR-290-
295 cluster, or only miR-294. Although it has been observed
that these studies resulted in sets of miRNA targets that are
only partially overlapping (10), a meta-analysis that com-
bines these data sets to identify the pathways that are most
reproducibly targeted by the AAGUGCU miRNAs has not
been performed.

In our study, we aimed to infer transcriptional regu-
lators that are directly and consistently targeted by the
AAGUGCU family of miRNAs, the pathways that these
regulators control and the interactions that they have with
each other. Toward this end, we modeled genome-wide
mRNA expression in terms of computationally predicted
target sites of both transcription factors (TFs) and miR-
NAs. This approach allowed us to identify a number of tran-
scriptional regulators whose activity is consistently altered
by miRNAs of the AAGUGCU seed family and that could
contribute to the maintenance of pluripotency. Through re-
porter assays we validated these regulators as targets of
AAGUGCU seed family miRNAs. Employing Dicer−/ −
mouse ES cells we showed that the expression of the IRF2
TF is strongly upregulated in the absence of miRNAs and
that the nuclear concentration of the RelA component of
the nuclear factor kappa-B (NF-�B) pathway upon stimula-
tion with tumor necrosis factor � (TNF-�) is also increased.
Our results give new insights into the functions of miRNAs
in the regulatory circuitry of ESCs.

MATERIALS AND METHODS

Experimental data sets

Supplementary Table S1 summarizes the data sets that
we obtained from the Gene Expression Omnibus (GEO)
database of the National Center for Biotechnology Infor-
mation (NCBI) and that we have used in our study. Each
data set covers at least two distinct experimental conditions,
with three replicates per condition. The first condition of
every data set corresponds to an ESC line deficient in ma-
ture miRNAs due to Dicer- or Dgcr8-knockout. The sec-
ond condition corresponds to either an ESC line expressing
the entire complement of embryonically expressed miRNAs
or the knockout cell line transfected with miR-294 or with
mimics of the miR-290 cluster miRNAs (mir-290, mir-291a-
3p, mir-292-3p, mir-293, mir-294 and mir-295).

Microarray analysis

Computational analysis of Illumina MouseWG-6 v2.0 Ex-
pression BeadChips from Hanina et al. (2010). We down-
loaded the processed data from the GEO database of NCBI
(accession no. GSE20048). Probe-to-gene associations were
made by mapping the probe sequences (provided by the au-
thors) to the set of mouse transcript sequences (downloaded
2011-02-19 from the UCSC Genome Bioinformatics web
site).

We computed average gene expression levels as weighted
averages of the signals of all probes that perfectly matched
to at least one transcript of the gene. Whenever a probe
mapped to multiple genes, a weight of 1/n was assigned to
each of the n genes that the probe matched. For a given repli-
cate experiment, the log2 expression fold change of each
gene was then determined by subtracting the log2-average
expression of the gene in the first condition (control) from
the log2-average expression in the second condition (treat-
ment).

Computational analysis of Affymetrix Mouse Genome 430
2.0 chips from Sinkkonen et al. (2008) and Zheng et al.
(2011). We downloaded the data from the GEO database
(accessions GSE8503, GSE7141 and GSE30012) and an-
alyzed the CEL files with the R software (http://www.R-
project.org) using the BioConductor affy package (20). We
used the GCRMA algorithm (21) for background correc-
tion and the MClust R package (22) to fit a two-component
Gaussian mixture model to the log2-probe intensities and
classify probes as expressed or not expressed. A probe was
considered for further analysis if it was consistently clas-
sified as expressed in all three replicates of at least one
of the two experimental conditions. The remaining probes
were quantile normalized across all conditions and repli-
cates of a particular experiment. Probe-to-gene associa-
tions were made by mapping probe sequences (provided
on the Affymetrix web site, http://www.affymetrix.com)
to mouse transcript sequences (as used by motif activ-
ity response analysis (MARA), downloaded from UCSC
Genome Bioinformatics web site as described above). We
then computed log2-gene expression fold changes as de-
scribed for Illumina Expression BeadChips (see above).
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Computational analysis of Affymetrix Mouse Gene 1.0 ST
chips from Melton et al. (2010). We downloaded the data
from the GEO database (accession no. GSE18840) and
analyzed the CEL files with the R Bioconductor oligo
package (23). We used the Robust Multi-array Average
(RMA) algorithm (24) for background adjustment. The rest
of the analysis, including the classification of probes into
expressed/not expressed, the quantile normalization, and
the calculation of log2 gene expression fold changes, was
carried out as described above.

Proportions of AAGUGCU miRNA seed family targets
among genes that are consistently downregulated in multiple
experiments. For each gene and each experiment, we cal-
culated the standard error in its log2 fold change across the
replicates. A gene was considered significantly downregu-
lated when it was down-regulated more than 1.96 standard-
errors. We then determined the intersection set of signif-
icantly downregulated genes for every possible subset of
the experiments S={MeltonDGCR8KOVs294, Sinkkonen-
DicerKOVs290, SinkkonenDicerKOVsWT}. Subsequently,
for every obtained intersection set, the proportion of
AAGUGCU miRNA seed family targets (TargetScan ag-
gregate PCT score predictions (4)) was determined and plot-
ted against the size of the corresponding intersection set.

Combined MARA of TFs and miRNAs. We carried out
the MARA (25) separately for each experimental data set.
MARA relates the expression level E driven by individ-
ual promoters (measured by microarrays) to the number of
binding sites N that various regulators have in the promot-
ers using a simple linear model

Eps = c̃s + cp +
∑

m

Npm Ams, (1)

where cp is a term reflecting the basal expression of pro-
moter p, c̃s reflects the mean expression in sample s, and
Ams is the (unknown) activity of binding motif m in sample
s (where with ‘sample’ we refer to any individual replicate of
any condition of a data set, see section ‘Experimental data
sets’ above). That is, using the predicted site-counts Npm and
the measured expression levels Eps we used an approxima-
tion (1) to infer the activities Ams of all motifs across all sam-
ples by ridge regression. In our analyses, we considered a
curated set of 189 TF binding motifs (for detailed informa-
tion about the motifs and the corresponding TFs see Sup-
plementary Table S7). Furthermore, we included the bind-
ing sites in the 3’UTRs of mRNAs of 85 miRNA families
by incorporating aggregate PCT scores as provided by Tar-
getScan (4) (predictions downloaded on the 27th of March
2012 from the TargetScan web site, http://www.targetscan.
org). miRNAs are grouped into families by their seed se-
quences and in particular the AAGUGCU seed family corre-
sponds to the following miRNAs: mmu-miR-291a-3p, mmu-
miR-294, mmu-miR-295, mmu-miR-302a, mmu-miR-302b
and mmu-miR-302d. An aggregate PCT score was assigned
to a promoter by averaging the aggregate PCT scores of tran-
scripts associated with this promoter.

For a given motif m, MARA provides for each sample s
motif activities A∗

ms and associated errors �ms. More specif-
ically, marginalizing over all other motifs, the likelihood

P(D|Ams) of the expression data D given the activity of a
given motif is proportional to a Gaussian

P(D|Ams) ∝ exp
[
−1

2
(Ams − A∗

ms)2

σ 2
ms

]
. (2)

Given that all analysed experiments were performed in
multiple replicates we were interested in averaging motif ac-
tivities across replicates and we used the following Bayesian
approach. For each motif m separately, we assumed that the
activities across a group g of replicates belonging to a spe-
cific condition of an experiment (see section ‘Experimental
data sets’ above) are normally distributed around some (un-
known) mean Āmg with (unknown) variance σ 2

mg

P(Ams |Āmg, σmg) = 1√
2πσmg

exp

[
−1

2

(
Ams − Āmg

)2

σ 2
mg

]
.(3)

By combining the prior from Equation (3) with the likeli-
hood from Equation (2) for each replicate sample s ∈ g and
integrating out the (unobserved) true activities Ams in each
of the replicates, we obtained the probability of the form

P(D|Āmg, σmg)

=
∏
s∈g

1√
2π (σ 2

mg + σ 2
ms)

exp

[
− (A∗

ms − Āmg)2

2(σ 2
mg + σ 2

ms)

]
. (4)

Formally, we would next integrate out the unknown stan-
dard deviation of activities in the group �mg of this likeli-
hood. Unfortunately, this integral cannot be performed an-
alytically. We thus approximated the integral by the value
of the integrand at its maximum, i.e. we numerically found
the value of �mg that maximizes expression (4). Assum-
ing an uniform prior over mean activity Āmg, we find that
P(Āmg|D) is again a Gaussian with mean

Ā∗
mg =

∑
s∈g

A∗
ms

(σ ∗
mg)2+(σms )2∑

s∈g
1

(σ ∗
mg)2+(σms )2

, (5)

and error

σ̄ ∗
mg =

√√√√ 1∑
s∈g

1
(σ ∗

mg)2+(σms )2

. (6)

where σ ∗
mg is the maximum likelihood estimate of Expres-

sion (4). We call the quantities defined in (5) and (6) aver-
aged activities and averaged errors, respectively.

To identify motifs that consistently change in their activi-
ties across experiments, we wanted to further average motif
activities across these experiments. However, because of the
inherent differences in the scale of expression variation in
the different experiments, the motif activities also varied in
scale across the experiments. Thus, before averaging we first
standardized the motif activities across the two conditions
a and b. That is, for a given experiment we defined a scale L

L =
√(

Ā∗b
mg

)2 + (
Ā∗a

mg

)2

2
, (7)
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and rescaled the activities

Ã∗
mg = Ā∗

mg

L
(8)

and their errors

σ̃ ∗
mg = σ̄ ∗

mg

L
. (9)

These condition-specific, averaged and rescaled activities
(Ã∗

mg) and errors (σ̃ ∗
mg) from the different experiments were

then combined into two groups, i.e. the group of a condi-
tions and the group of b conditions, and for each group we
again averaged the activities exactly as described above for
the replicates.

To rank the activity changes between two different exper-
imental conditions (presence/absence of miRNAs) we de-
termined a z-value for every motif m by dividing the change
in averaged activities between the two different conditions
a and b by the averaged errors as follows

z = Ã∗b
mg − Ã∗a

mg√(
σ ∗b

mg

)2 + (
σ ∗a

mg

)2
. (10)

Consequently, from the results of Equation (10) we ob-
tained a global z-value-based ranking of the motifs.

Motif–motif interaction network. To uncover which TFs
were targeted by a particular motif m, we focused only on
those TF genes, whose promoters were consistently (in all
experiments) predicted by MARA to be targets of motif m.
MARA computes a target score S for each potential target
promoter of motif m. S corresponds to the log-likelihood ra-
tio of the data D assuming the promoter is indeed a target,
and assuming the promoter is independent of the regulator,
i.e.

S = log
[

P(D|target)
P(D|nottarget)

]
. (11)

Assuming a uniform prior of 1/2 that the promoter is in-
deed a target, the posterior probability p that the promoter
is a target given the data is

p = 1

1 + 1
es

. (12)

To obtain a combined probability pc that a gene is a tar-
get of a particular motif across N different experiments the
probability product was calculated by multiplying the prob-
abilities pn obtained in individual experiments n, i.e.

pc =
N∏

n=1

pn. (13)

Evaluating miR-294 targets with luciferase assays

Cloning, cell culture and luciferase assay. We polymerase
chain reaction (PCR)-amplified 3′UTR fragments of the
putative target genes from Normal Murine Mammary
Gland (NMuMG) genomic DNA and cloned them into

pGEM-T Easy vector (Promega; A1360). We used site-
directed mutagenesis and the QuickChange II kit (Strata-
gene; 200524-5) to generate deletion mutant constructs
that differed in a few nucleotides in the miR-294 seed-
matching region from the wild-type construct. All con-
structs, wild-type and mutated, were verified by sequenc-
ing and then subcloned into the empty psiCHECK-2 vec-
tor (Promega; C8021) at XhoI - NotI restriction sites. The
sequences of the primers used for cloning and mutagenesis
can be found in Supplementary Tables S9 and S10, respec-
tively. NMuMG cells were reverse-transfected with Lipofec-
tamine2000 reagent (Invitrogen; 11668019), and the corre-
sponding psiCHECK-2 constructs in the presence of 50nM
Syn-mmu-miR-294-3p mimic (QIAGEN; MSY0000372),
or 50 nM of non-targeting negative control siRNA (Mi-
crosynth). Between 36 and 48 h post-transfection cells were
collected and both Renilla and firefly luciferase activities
were measured using Dual Glo Luciferase Assay System
(Promega; E2940).

For each gene, expression was measured for both con-
structs in 3 separate experiments, and each experiment con-
tained 3 technical replicates.

Analysis of the luciferase data. We denote by wir the loga-
rithm (base 2) of the expression level of the luciferase con-
struct containing the wild-type 3′UTR in experiment i repli-
cate r and by mir the analogous expression for the mutant
construct. For each gene the data thus consist of 9 values
w and 9 values m. We took into account two sources of
variability, namely, true expression variability across exper-
iments and ‘measurement noise’ between replicates. We first
describe the measurement noise. Assuming the true expres-
sion of the wild type was wi, we assumed that the proba-
bility to measure expression level wir (in a given replicate r)
follows a Gaussian distribution with a certain variance � i

P(wir |wi , τi ) = 1

τi
√

2π
exp

[
−1

2

(
wir − wi

τi

)2
]

, (14)

thus allowing for the possibility that each experiment i has a
different level of noise � i between replicates. The probability
of the wild-type data of experiment i, assuming that � i is
given, is simply the product of expressions P(wir|wi, � i) over
the three replicates r = 1 through 3. Using 〈wi〉 and var(wi)
to denote the mean and variance of the measurement across
the replicates, we can rewrite this as

P({wir }|wi , τi )

∝ 1

τ 3
i

exp

[
−3

2

(
wi − 〈wi 〉

τi

)2

− 3
2

var(wi )

τ 2
i

]
. (15)

Integrating over the unknown variable � i from 0 to infinity
with a scale prior P(� i)∝1/� i we obtain

P({wir }|wi ) ∝
(

1 + (wi − 〈wi 〉)2

var(wi )

)3/2

. (16)

Approximating this Student’s t distribution by a Gaussian,
that is, approximating the probability of the data in experi-
ment i by a Gaussian with mean 〈wi〉 and variance var(wi),
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we have

P({wir }|wi ) ≈
√

3
var(wi )

exp
[
−3(wi − 〈wi 〉)2

2var(wi )

]
. (17)

Since the variability between replicates is much smaller than
the variability across experiments, this approximation will
have a negligible effect on the final outcome.

For the true variability between experiments, we denote
by w the ‘true’ average expression of the wild-type con-
struct. We assume that the deviation of the level wi in ex-
periment i from the mean w follows a Gaussian distribution
with variance σ . We thus have

P(wi |w, σ ) = 1

σ
√

2π
exp

[
−1

2

(
wi − w

σ

)2
]

. (18)

To obtain the probability of the data given w we multiply
P({wir}|wi) by P(wi|w, σ ) and integrate over the unknown
expression level wi. We then obtain

P({wir }|w, σ )

∝ 1√
σ 2 + var(wi )/3

exp
[
− (〈wi 〉 − w)2

2(σ 2 + var(wi )/3)

]
. (19)

The interpretation of this formula is straightforward. The
deviation between the mean 〈wi〉 of the observations in ex-
periment i, and the average level w is Gaussian-distributed
with a variance that is the sum of the variability σ 2 across ex-
periments, and the variability var(wi)/3 associated with es-
timating wi from the 3 replicate measurements due to mea-
surement noise.

For the measurements of the mutant construct in experi-
ment i we obtain an analogous equation

P({mir }|m, σ̃ )

∝ 1√
σ̃ 2 + var(mi )/3

exp
[
− (〈mi 〉 − m)2

2(σ̃ 2 + var(mi )/3)

]
, (20)

where we have introduced the variability σ̃ of the true ex-
pression of the mutant construct across replicates. What we
are interested in is the difference w − m in log-expression of
the wild-type and mutant construct. To this end, we define
μ = w − m and y = (m + w)/2 and integrate over y. We then
obtain

P({wir }, {mir }|μ, σ, σ̃ ) ∝
1√

σ 2 + σ̃ 2 + var(wi )/3 + var(mi )/3
exp

[
− (〈wi 〉 − 〈mi 〉 − μ)2

2(σ 2 + σ̃ 2 + var(wi )/3 + var(mi )/3)

]
. (21)

This is again a Gaussian with mean 〈wi〉 − 〈mi〉 and a vari-
ance that is the sum of all variances σ 2, σ̃ 2, var(wi)/3 and
var(mi)/3.

Clearly, although both σ 2 and σ̃ 2 are unknown, the only
variable that enters in our equations is their sum. We thus
simplify the notation by defining this sum as

γ 2 = σ 2 + σ̃ 2. (22)

Similarly, we redefine the variance associated with mea-
surement noise as

t2
i = var(wi )/3 + var(mi )/3, (23)

which leads to

P({wir }, {mir }|μ, γ )

∝ 1√
γ 2 + t2

i

exp
[
− (〈wi 〉 − 〈mi 〉 − μ)2

2(γ 2 + t2
i )

]
. (24)

We now combine the data from the different experiments
and remove the final unknown variable γ . The probability
of all data given the variable of interest μ and unknown vari-
ability parameter γ is simply the product

P(D|μ, γ ) =
3∏

i=1

P({wir }, {mir }|μ, γ ). (25)

To obtain the probability of the data D given μ we multiply
this expression with a scale prior for γ , i.e. P(γ ) = 1/γ , and
integrate over γ

P(D|μ) =
∫ ∞

0
P(D|μ, γ )

dγ

γ
. (26)

We performed the integration numerically with Mathemat-
ica to obtain P(D|μ), and used Bayes’ theorem to compute
the posterior distribution of the parameter �, P(μ|D) as
P(D|μ)/

∫ ∞
−∞ P(D|μ)dμ. Finally, we determined the 5 per-

centile, the 25 percentile, the median, the 75 percentile and
the 95 percentile of this distribution again with the Mathe-
matica software.

Mouse ESC (mESC) culture

The generation of Dicer(DCR)flox/flox and DCR−/ − mouse
ES cell lines has been described elsewhere (26). The cells
were routinely screened for both pluripotency and differen-
tiation markers (see Supplementary Figure S4). Both mES
cell lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco; 41966-029) supplemented with
15% of a special batch of fetal bovine serum tested for opti-
mal growth of mESCs. In addition, the DMEM contained
1000 U/ml of a homegrown recombinant LIF (a kind gift of
Thomas Grentzinger), 0.1mM 2�-mercaptoethanol (Milli-
pore; ES-007-E), 1x L-Glutamine (Gibco; 25030-024), 1x
Sodium Pyruvate (Gibco; 11360) and 1x Minimum Essen-
tial Medium, Non-Essential Amino Acids (MEM, NEAA)
(Gibco; 11140-35). The cells were grown on gelatin-coated
(Sigma; G1393) dishes. The medium was changed daily, and
the cells were subcultured every 2–3 days. To induce NF-�B
signaling, mESCs were treated with 20 ng/ml TNF-� (Cell
Signaling Technology; 5178) for 24 h.

Quantitative reverse transcriptase-PCR (qRT-PCR)

Total RNA was extracted from mESCs using Tri Reagent
(Sigma; T9424) following the supplier’s protocol. Con-
taminating DNA was removed using the RQ1 RNase-
Free DNase kit (Promega; M6101). The resulting DNA-
free RNA was then purified using the RNeasy MinElute
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Cleanup kit (Qiagen; 74204) and quantified using Nan-
odrop. Superscript III (Invitrogen; 18080) was then used
to create cDNA following the manufacturer’s recommenda-
tions. The cDNA was finally purified using QIAquick PCR
Purification kit (Qiagen; 74204), quantified using Nan-
odrop and diluted to 8 ng/�l. Each qRT-PCR reaction was
run using 2 �l of the purified cDNA in triplicate (n = 3) us-
ing Power SYBR Green PCR Master Mix (Applied Biosys-
tems; 4367659) on a StepOne Plus RT-PCR System (Ap-
plied Biosystems). The following primer pairs were used in
this study:

� Mouse IRF2 Fwd: 5′-CTG GGC GAT CCA TAC AGG
AAA-3′

� Mouse IRF2 Rev: 5′-CTC AAT GTC GGG CAG GGA
AT-3′

� Mouse E2F5 Fwd: 5′-GTT GTG GCT ACA GCA AAG
CA-3′

� Mouse E2F5 Rev: 5′-GGC CAA CAG TGT ATC ACC
ATG A-3′

� Mouse c-Myc Fwd: 5′-GTT GGA AAC CCC GCA
GAC AG-3′

� Mouse c-Myc Rev: 5′-ATA GGG CTG TAC GGA GTC
GT-3′

� Mouse GAPDH Fwd: 5′-CAT CAC TGC CAC CCA
GAA GAC TG-3′

� Mouse GAPDH Rev: 5′-ATG CCA GTG AGC TTC
CCG TTC AG-3′

qRT-PCR data were normalized using glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) expression and evalu-
ated using the 2−��Ct method (27). Significant changes in
gene expression were identified based on Student’s t-test.

Western blots

To extract total proteins from mESCs, radioimmunopre-
cipitation assay buffer supplemented with 1x Complete,
ethylenediaminetetraacetic acid (EDTA)-free protease in-
hibitor cocktail (Roche; 11873580001) was used to lyze cell
pellets. Cytosolic and nuclear protein fractions were en-
riched using a series of lysis buffers as follows:

� Lysis Buffer 1 (LB1): 50 mM Hepes-KOH, pH 7.5; 140
mM NaCl; 1 mM EDTA, pH 8.0; 10% v/v Glycerol; 0.5%
v/v NP-40; 0.25% v/v Triton X-100.

� Lysis Buffer 2 (LB2): 10 mM Tris-HCl, pH 8.0; 200 mM
NaCl; 1mM EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0.

� Lysis Buffer 3 (LB3): 10mM Tris-HCl, pH 8.0; 100
mM NaCl; 1 mM EDTA, pH 8.0; 0.5 mM EGTA,
pH 8.0; 0.1% v/v Na-Deoxycholate; 30% v/v N-
Lauroylsarcosine.

All lysis buffers were supplemented with the protease in-
hibitor cocktail immediately before use. The cytosolic frac-
tion was extracted by lyzing the cell pellets in LB1 that leaves
the nuclear membrane intact. The nuclei were then pelleted
(1,350 x g; 4◦C; 5 min), washed with LB2, pelleted once
more and finally lyzed with LB3 to release the nuclear con-
tents. All protein lysates were quantified using the BCA Pro-
tein Assay kit (Pierce; 23227). The following antibodies (di-
lution 1:1000) were used in this study:

� Anti-IRF2 (Center) rabbit IgG (Abgent; AP11225c)
� Anti-NF-�B p65 (D14E12) XP rabbit IgG (Cell Signal-

ing Technology; 8242)
� Anti-GAPDH (6C5) mouse IgG (Santa Cruz Biotech-

nology; sc-32233)
� Anti-Histone H3 (C-16) goat IgG (Santa Cruz Biotech-

nology; sc-8654)
� HRP-conjugated Polyclonal swine Anti-Rabbit (Dako;

P0217)
� HRP-conjugated Polyclonal rabbit Anti-Mouse (Dako;

P0260)
� HRP-conjugated Polyclonal rabbit Anti-Goat (Dako;

P0449)

Western blot signals were visualized with the enhanced
chemiluminescence blotting detection reagents (GE Health-
care; RPN2106). Cytosolic enrichment was confirmed via a
postive GAPDH signal, while nuclear enrichment was con-
firmed by Histone H3. Western blot quantifications were
performed using the ImageJ software by quantifying the
pixels of each band and normalizing against a housekeeper,
such as Histone H3.

RESULTS

General relationship between data sets

A common, though perhaps naive expectation is that com-
bining data from experiments that have been independently
performed in different labs, with different experimental pro-
cedures, allows one to identify essential properties of the
system that are invariant with respect to details of the ex-
perimental approach. In our case, in any given experiment,
confounding effects may have led to some genes being spu-
riously identified as targets of AAGUGCU miRNAs (false
positives), and true targets of AAGUGCU miRNAs be-
ing missed (false negatives). For example, because it is un-
clear whether the miRNA processing enzymes solely func-
tion in this pathway, it is important to analyze data from
ESCs in which the miRNA biogenesis has been impaired
at different levels (Dicer in the studies of Sinkkonen et al.
(17) and Hanina et al. (18) and Dgcr8 in the study of
Melton et al. (19)). Furthermore, although ESCs express-
ing the full complement of miRNAs provide the most phys-
iological reference point for the function of the miR-290-
295 cluster miRNAs in normal, unstressed cells, the effect
of these miRNAs in these cells is confounded by the ef-
fects of other co-expressed miRNAs. Similarly, if the pro-
filed cell population was heterogeneous with respect to the
pluripotency/differentiation status, the let-7 miRNAs may
have masked the effect of miR-294, because these miRNAs
have antagonistic effects (19).

Requiring targets to show consistent downregulation
across multiple data sets can reduce the number of false
positive miR-294 targets. On the other hand, requiring per-
fect consistency across a large number of experiments is
likely to lead to too many false negatives, simply because
different experiments have different levels of accuracy or
confounding effects. Thus, we first investigated the relation-
ship of gene-level expression changes between ESCs that
did or did not express embryonic miRNAs in all pairs of
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Figure 1. Overview of the mRNA expression data sets––(a) Data sources.
(b) Matrix of scatter plots (below diagonal) and Pearson’s correlation co-
efficients (above diagonal) of per-gene log2 fold changes in pairs of exper-
iments. The names of the individual data sets are shown on the diagonal.
(c) Proportion of predicted targets of the AAGUGCU seed family of miR-
NAs (TargetScan aggregate PCT score based predictions (4)) among genes
that are consistently downregulated in all three (orange), pairs (green) or
individual data sets (blue) (indicated by the labels, key given in the ‘Abbr.’
column of the table in panel (a)), plotted against the number of genes that
are consistently downregulated in all of the considered data sets.

experiments. Although pairwise Pearson’s correlation co-
efficients were as low as 0.11 (Supplementary Figure S1),
three of the five experimental data sets (Figure 1a), cover-
ing all described conditions (expression of miR-294, miR-
290-295 cluster miRNAs or the entire complement of em-
bryonically expressed miRNAs in a miRNA-deficient back-
ground) gave reasonably high pairwise correlation coeffi-
cients (Figure 1b). We therefore focused our discussion on
these data sets, and for completeness, we present the re-
sults of a similar analysis of all five data sets in the Sup-
plementary material (Supplementary Figure S2 and Tables
S5 and S6). Of the ∼4000–5000 genes that were downreg-
ulated in a single experiment, a little less than 2000 genes
were downregulated in all three experiments. Importantly,
the proportion of predicted AAGUGCU seed family tar-
gets among downregulated genes increased when intersect-
ing an increasing number of data sets (Figure 1c), indicating
that the approach of a combined analysis of these data sets
does have the potential to reveal important regulators that
are immediately downstream of the AAGUGCU family of
miRNAs. 252 of the genes downregulated in all three exper-
iments were predicted AAGUGCU seed family targets (4)
(Supplementary Table S2).

The transcriptional network regulated by the miRNAs of the
AAGUGCU seed family in ESCs

As mentioned in the Introduction, the main aim of our
study was to identify transcriptional regulators that are tar-
geted by the AAGUGCU seed family and at the same
time can account for the largest fraction of gene expres-
sion changes that are observed in cells that do or do not
express the miRNAs. We therefore built on the MARA ap-
proach (28) that we recently made available in the form of
an easy-to-use web application (25). In contrast to standard
transcriptome analyses that strive to find genes (including

transcription regulators) whose expression changes signif-
icantly between conditions, MARA aims to infer changes
of the regulatory impact (also referred to as ‘activity’) of
binding motifs. This is achieved by modeling gene expres-
sion as a linear function of the number of regulatory mo-
tif binding sites occurring in the promoter (for TFs) and
3′UTR (for miRNAs) of the gene and the unknown ac-
tivity of each motif. The change in activity of a specific
binding motif (e.g. of the Irf2 TF) in a specific condition
(e.g. transfection of miR-294) is inferred from the expres-
sion changes of all (predicted) targets of this motif (deter-
mined by transcriptome profiling), taking into account the
occurrences of sites for other regulators in these targets.
For example, a decrease in Irf2 activity is inferred when
the predicted Irf2 targets consistently show a decrease in
expression that cannot be explained by the occurrence of
binding sites for other regulatory motifs in the promoters
or 3′UTRs of these targets. This means that MARA can
uncover gene expression changes that are due not only to
changes in the mRNA expression level of a regulator, but
also to changes in the active form (e.g. for TFs through post-
translational modifications, such as phosphorylation) of the
regulator. MARA was initially developed for the character-
ization of transcription regulatory networks (28), and we
have recently extended it to also model miRNA-dependent
changes in mRNA stability (25). For this study we further
extended the MARA approach to identify regulators whose
activity not only changes most significantly between sam-
ples but also reproducibly across multiple data sets. Our ap-
proach is described in detail in the Materials and Methods
section.

To verify that MARA can indeed uncover the key reg-
ulator in these experiments, namely, the miRNAs of the
AAGUGCU seed family, we first applied MARA taking
into account all TFs and miRNA seed families (see Sup-
plementary Table S4). In subsequent analyses, however, we
performed the MARA analysis with only the AAGUGCU
seed family motif added to the full complement of TF mo-
tifs. This was because when all miRNAs are included in the
analysis, MARA will also infer non-zero activities for other
miRNAs, e.g. those with significantly overlapping sets of
targets (29).

MARA quantifies the extent to which the activity of each
motif varies across conditions by a z-statistic, that roughly
corresponds to the ratio between the average deviation of
the motif activity from zero and the standard deviation of
the motif activity (see Materials and Methods). Supplemen-
tary Table S3 shows all motifs ranked by their absolute z-
values.

MARA also predicts which promoters or 3′UTRs are tar-
geted by each motif, quantifying the confidence in each pre-
dicted motif-target interaction by a posterior probability
(see Materials and Methods). We used these probabilities
to construct a regulatory network of motif–motif interac-
tions (Figure 2) that provides a synthetic view of the regu-
latory impact of the AAGUGCU seed family of miRNAs
on the transcriptional network of pluripotent stem cells. An
arrow was drawn from motif A to motif B whenever motif A
was predicted by MARA to regulate a TF b whose binding
specificity is represented by motif B. Only motif-TF inter-
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Figure 2. The transcriptional network inferred to be affected by the miR-
NAs of the AAGUGCU seed family (represented by miR-294)––A di-
rected edge was drawn from a motif A to a motif B if A was consistently
(across data sets) predicted to regulate a TF b whose sequence specificity
is represented by motif B. The thickness of the edge is proportional to the
product of the probabilities that A targets b. For the clarity of the figure,
only motifs with absolute z-values >5 and only edges with a target prob-
ability product >0.3 are shown. The intensity of the color of a box repre-
senting a motif is proportional to the significance of the motif (the corre-
sponding z-values can be found in Supplementary Table S3). Red indicates
an increase and green a decrease in activity, corresponding to increased and
decreased expression, respectively, of the tagets of the motif when the miR-
NAs are expressed. The full motif names as well as the corresponding TFs
are listed in Supplementary Table S7.

actions that were predicted in all data sets and that involved
motifs with high significance (|z-value| > 5) are shown.

The motif corresponding to the AAGUGCU seed family
(represented by the dark green ‘miR-294’ motif in Figure 2)
is by far the most significantly changing motif (see also Sup-
plementary Table S3). Its negative change in activity upon
miRNA expression is consistent with the destabilizing effect
of the miRNA on its targets.

The motif with the second most significant change in ac-
tivity, ‘IRF1,2,7’, is bound by the interferon regulatory fac-
tors. MARA predicts that this motif is directly targeted by
miR-294, in line with previous suggestions that the inter-
feron regulatory factors are targets of the miR-290 cluster
miRNAs (18). We present a more detailed analysis of this
motif in the next section.

A second motif whose activity decreases significantly
upon miRNA expression is ‘FOX{I1,J2}’ (Figure 3a). Of
the TFs associated with this motif, Foxj2 is predicted within
all data sets to be directly regulated by miR-294 (Figure 2).
Consistently, Foxj2 is downregulated upon miRNA expres-
sion on the mRNA level (Figure 3b). In order to validate
that Foxj2 is a direct target of the miRNAs, as predicted by
both ElMMo (30) and TargetScan (Figure 3b), we cloned
the 3′UTR of Foxj2 downstream of a luciferase reporter
and co-transfected this construct together with miR-294 in
the murine mammary gland cell line NMuMG. For com-
parison, we generated a construct in which the presumed
miRNA-294 target site was mutated and we performed sim-
ilar co-transfection experiments. The results of this experi-
ment clearly show that Foxj2 is indeed a functional target
of miR-294 (Figure 3c). We carried out similar transfection
experiments with control siRNAs, that do not target the re-
porter, and a standard analysis of these data is presented in
Supplementary Figure S3. Little is known about the func-
tion of Foxj2 in cell fate. It appears to be expressed very
early in development (31), but its overexpression has a neg-

Figure 3. Foxj2 is a direct target of miR-294––(a) The ‘FOX{I1,J2}’ mo-
tif shows a negative change in activity in the presence of miR-294. (b)
Foxj2 mRNA log2 fold changes (±1.96*SEM; n = 3) in the Melton
et al. Dgcr8−/ − versus miR-294 transfection (yellow), Sinkkonen et al.
Dicer−/ − versus miR-290-295 cluster transfection (dark brown) and
Dicer−/ − versus Dicer+/ − (light brown) data sets, as well as the predic-
tion scores for these genes as targets of miR-294 as given by ElMMo (30)
(dark red) and TargetScan (aggregate PCT) (4) (light red). (c) A luciferase
reporter construct carrying the 3′UTR of Foxj2 is downregulated upon co-
transfection with miR-294 relative to a construct carrying the Foxj2 3′UTR
but with a mutated miR-294 target site (n = 9).

ative effect on embryogenesis (32). Our results suggest that
the AAGUGCU seed family of miRNAs contributes to the
maintenance of an adequate expression of Foxj2 in pluripo-
tent stem cells. The third most significant changing motif,
basic-helix-loop-helix (referred to as ‘bHLH..’ in Figure 2),
can be bound by many TFs (reviewed in (33)), some of
which are predicted direct targets of miR-294.

To further elucidate the transcription regulatory network
downstream of the AAGUGCU seed family of miRNAs,
we analyzed in-depth the TFs whose associated motif had
the most significant activity change (|z-value| > 5) and that
were consistently predicted by MARA to be direct targets of
the miR-294 seed family miRNAs across the multiple data
sets (Table 1).

We found that the majority of these direct target TFs fall
into three categories that have previously been associated
with pluripotency: NF-�B-related interferon response fac-
tors that control NF-�B signalling, cell cycle regulators and
epigenetic regulators.

AAGUGCU seed family miRNAs modulate Irf2-dependent
transcription

The ‘IRF1,2,7’ motif shows the second strongest activity
change upon changes in miR-294 expression (Figure 4a
and Supplementary Table S3). Of the individual factors
associated with this motif, Irf2 is the one that was con-
sistently predicted by our analysis to be a direct target
of the AAGUGCU seed family miRNAs across data sets
(Table 1), consistent with the predictions of both ElMMo
and TargetScan (Figure 4b). Irf2 was downregulated at
the mRNA level across all analyzed data sets (Figure 4b).
Consistently, we found that Irf2 is strongly downregulated
in DCRflox/flox compared to DCR−/ − ESCs, both at the
mRNA level (Figure 4c) as well as at the protein level (Fig-
ure 4d). To validate Irf2 as a direct target of miR-294, we
conducted luciferase assays as described above for Foxj2.
Our results demonstrate that Irf2 is indeed targeted by miR-
294 (Figure 4e). Although relatively little is known about
the function of this factor in ESCs, a recent study showed
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Table 1 TFs consistently predicted by MARA to be direct targets of miR-294 and whose absolute motif activity z-value is >5

Name Motif
Motif
Abbreviation

Activity
z-value

Irf2 IRF1,2,7.p3 IRF1,2,7 -16.29
Mxd3 bHLH family.p2 bHLH.. 13.00
Clock bHLH family.p2 bHLH.. 13.00
Arnt2 ARNT ARNT2 BHLHB2 MAX MYC USF1.p2 ARNT.. 11.60
Arnt2 AHR ARNT ARNT2.p2 AHR.. 8.39

BAF170
DMAP1 NCOR{1,2} SMARC.p2 ..SMARC -6.98

E2f5 E2F1..5.p2 E2F1..5 6.62
Foxj2 FOX{I1,J2}.p2 FOXI1,J2 -5.62

Figure 4. miR-294 targets the Irf2 TF and modulates ‘IRF1,2,7’ and
‘NFKB1 REL RELA’ activities––(a) The activity of the ‘IRF1,2,7’ motif
is strongly decreased in the presence of miR-294. (b) The expression of Irf2
is downregulated within all analysed data sets (±1.96*SEM; n = 3) and Irf2
is predicted by ElMMo and TargetScan to be a direct target of miR-294
(color scheme as in Figure 3). Low levels of Irf2 mRNA (c) and protein (d)
in DCRflox/flox ES cells compared to miRNA deficient DCR−/ − ESCs are
observed with qRT-PCR and western blot, respectively. qRT-PCR exper-
iments were run in triplicate (± SEM; n = 3). (e) The luciferase reporter
construct carrying the Irf2 3′UTR shows a strong response to miR-294 co-
transfection compared to a similar construct but with a mutated Irf2 target
site (n = 9). (f) Sequence logo of the ‘NFKB1 REL RELA’ motif that is as-
sociated with the canonical NF-�B pathway and that exhibits a significant
decrease in activity in the presence of miR-294. (g) Western blots of RelA,
GAPDH and Histone H3 in nuclear and cytoplasmic fractions in ESCs
that do and do not express miRNAs. The densitometric quantification in-
dicates an increased level of nuclear RelA in the DCR−/ − ESCs compared
to DCRflox/flox ESCs (± SEM; n = 3). (h) Proposed model of the inhibitory
effect of miR-290-295 cluster miRNAs on the canonical NF-�B pathway
in pluripotent stem cells. Regulatory motifs are denoted by colored rectan-
gles and individual genes by ovals. See text for the evidence of individual
interactions.

that Irf2 overexpression causes differentiation of ESCs (34).
The strong impact of AAGUGCU miRNAs on Irf2 lev-
els and the relatively large impact of the ‘IRF1,2,7’ motif
on gene expression suggest that this regulatory connection
plays an important role in maintaining ESC pluripotency.

Like the ‘IRF1,2,7’ motif, the ‘NFKB1 REL RELA’
motif also exhibits a significantly lower activity when
the embryonic miRNAs are expressed (Figure 4f). West-
ern blot confirms that after stimulation with TNF-�,
DCRflox/flox ESCs have lower levels of nuclear NF-�B

pathway-associated marker RelA compared with miRNA-
deficient DCR−/ − ES cells (Figure 4g). This observation is
consistent with a decreased activity of the canonical NF-�B
signalling pathway in the presence of the miRNAs, which
has been shown to be important for maintaining ESCs in
a pluripotent state yet poised to undergo differentiation
(35,36). Indeed, the Nanog pluripotency factor directly in-
teracts with components of the NF-�B complex, inhibiting
its transcriptional activity (35). Combining our results with
recent reports that link the expression of the miR-290-295
cluster to signalling through the canonical NF-�B pathway
and the latter to Irf2, the following model of the involve-
ment of the miR-290-295 cluster in the regulation of NF-
�B signalling emerges. Expression of the RelA component
of the NF-�B complex is repressed post-transcriptionally by
the miR-290-295 cluster members miR-291b-5p and miR-
293 both of which do not belong to the AAGUGCU seed
family of miRNAs (36). In humans, RelA recruitment to
the nucleus, which is a pre-requisite for NF-�B complex-
dependent transcription, appears to depend on IRF2 (37),
whose knockdown interferes with transcriptional activation
via NF-�B (37). Here we found that in mouse, IRF2 expres-
sion is also repressed by other members of the miR-290-295
cluster, namely, the AAGUGCU family of miRNAs. Thus,
the miRNAs of the miR-290-295 cluster may act in con-
cert to inhibit the canonical NF-�B signalling in ESCs (Fig-
ure 4h).

miRNAs of the AAGUGCU seed family impact the cell cycle
at multiple levels

AAGUGCU seed family members of the miR-290-295
cluster were previously shown to accelerate the G1→S
transition and promote proliferation of ESCs by target-
ing the cyclin E-Cdk2 regulatory pathway (13). Consis-
tently, we found that these miRNAs increase the activ-
ity of transcription regulatory motifs associated with ac-
tivation of the cell cycle (Figure 5a), in particular, the
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’ motif that
is bound by Myc. This TF was previously found to increase
upon miR-294 transfection (19). How the miRNAs, with in-
trinsically repressive function, increase the Myc activity on
its targets is unknown. Our analysis suggests a few hypothe-
ses.

Specifically, luciferase assays show that three cell cycle-
associated TFs, namely, Mxd3 (also known as Mad3), E2f5
and Arnt2 are not only predicted but also experimentally
confirmed direct targets of the AAGUGCU seed family
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Figure 5. miR-294 impacts cell cycle regulation at multiple levels––(a) MARA analysis reveals that miR-294 induces positive activity changes
of multiple motifs involved in cell cycle regulation. Shown are the sequence logos of these motifs: the Myc- and Arnt2-associated motif
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’, the putative Myc-regulating ‘E2F1..5′ motif and the Mxd3-associated ‘bHLH-family’ motif. (b) log2
mRNA fold changes (±1.96*SEM; n = 3) of Myc, Arnt2, E2f5 and Mxd3 (color scheme as in Figure 3) in the analyzed data sets. (c) Luciferase constructs
carrying the 3′UTR of Arnt2, E2f5 or Mxd3, respectively, are downregulated upon co-transfection with miR-294 relative to constructs carrying the same
3′UTRs but with mutated miR-294 binding sites (n = 9). (d) qRT-PCR shows decreased expression of Myc and increased expression of E2f5 in DCR−/ −
ESCs relative to DCRflox/flox ESCs. qRT-PCR experiments were run in triplicate (±SEM; n = 3). (e) Proposed model of miR-294-dependent regulation of
the Myc-Max/Mxd-Max network. Shapes scheme is as in Figure 4. Green or red shapes represent negative or positive changes (in motif activities or gene
expression fold changes), respectively. Dashed lines indicate indirect and solid lines direct regulatory links between motifs/genes.
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miRNAs (Figure 5b and c and Table 1). Mxd3 is one of the
so-called ‘Mad’ partners of the Max protein (reviewed in
(38)). In contrast to Myc, which forms a heterodimeric com-
plex with Max in proliferating cells (39), the Mad factors
Mad1, Mad3 (i.e. Mxd3) and Mad4 are primarily expressed
and form complexes with Max in differentiating, growth-
arrested cells (40). Mxd3 was further shown to specifically
regulate the S-phase (41).

Second, we found that E2f5, one of the TFs associated
with the ‘E2F1..5′ motif, was consistently downregulated at
the mRNA level in all analyzed data sets (Figure 5b) and lu-
ciferase assays further confirm that E2f5 is a target of miR-
294 (Figure 5c), albeit with a small response to the miRNA.
Consistently, E2f5 expression is increased in DCR−/ − ESCs
compared to DCRflox/flox ESCs (Figure 5d). The positive ac-
tivity change of the E2F1..5 motif in the presence of the
miRNAs (Figure 5a) suggests that this TF acts predomi-
nantly as repressor (as proposed before, reviewed in (42)).
Notably, Myc is among the predicted targets of E2F1..5,
providing an indirect path to the upregulation of Myc upon
the presence of the miRNAs (Figure 5b and d).

Finally, Arnt2, a TF associated with the
‘ARNT ARNT2 BHLHB2 MAX MYC USF1’ motif,
but also with the ‘AHR ARNT ARNT2’ motif that corre-
sponds to the complex of Arnt2 and Ahr, is also a predicted
direct target of the AAGUGCU seed family which we
validated in a luciferase assay (Figure 5c). This TF forms
heterodimers with the aryl-hydrocarbon receptor (AHR)
(43) and appears to be involved in the differentiation of
ESCs into endothelial cells under hypoxic conditions (44),
but otherwise little is known about its function. Given
that Arnt2 and Myc (45) share the same binding motif,
an interesting hypothesis is that Arnt2 competes with
Myc for binding to targets and that its downregulation
by AAGUGCU miRNAs allows Myc to act at promoters
which would otherwise be bound by Arnt2. This hypothesis
is again consistent with a positive Myc activity in ESCs, in
which these miRNAs are expressed.

The model that we propose based on these results is that
miRNAs of the AAGUGCU family regulate the cell cycle
and the G→S transition through multiple pathways that
come together in the increased expression of the crucial Myc
regulator (Figure 5e). The miRNAs are able to downregu-
late the Mxd3 antagonist of Myc, the E2f5 repressor which
would in turn result in the increased expression of E2f5 tar-
gets including Myc, and can downregulate Arnt2 which may
compete with Myc for binding to regulatory sites.

miRNAs of the AAGUGCU seed family control multiple epi-
genetic regulators

As TFs, epigenetic regulators are also enriched among the
targets of miRNAs (46). A role for the miR-290-295 cluster
in epigenetic regulation was already proposed by Sinkkonen
et al. (17), who found that expression of retinoblastoma-like
2 (Rbl-2) protein, a known repressor of the de novo methyl-
transferases, is controlled by these miRNAs. Through our
analysis we found that the AAGUGCU miRNAs directly
target the epigenetic regulator BAF170 (Smarcc2), a com-
ponent of ATP-dependent, BAF (BRG1-associated factor)
complexes (also known as SWI/SNF complexes) that re-

Figure 6. The BAF170 (Smarcc2) component of the dBAF chromatin re-
modeling complex is a direct target of miR-294––(a) MARA analysis re-
veals a negative activity change of the ‘DMAP1 NCOR{1,2} SMARC’
motif in the presence of miR-294. (b) Expression of BAF170 (Smarcc2) is
consistently downregulated in the presence of miR-294 in all considered
experimental data sets (±1.96*SEM; n = 3; color scheme as in Figure 3).
(c) A luciferase construct carrying the BAF170 3′UTR is downregulated
upon co-transfection with miR-294 relative to a construct carrying a mu-
tated 3′UTR (n = 9). (d) Model of the possible involvement of miR-294
in the maintenance of the ESC-specific chromatin remodeling complex es-
BAF. The miRNA-induced reduction in BAF170 levels may contribute to
the maintenance of appropriate levels of esBAF complexes in ESCs thereby
maintaining self-renewal and proliferation (48). Color, shapes and lines
scheme is as in Figure 5.

model the nucleosome structure and thereby regulate gene
expression (reviewed in (47)). The activity of the BAF170
motif changed significantly upon AAGUGCU miRNA ex-
pression in miRNA-deficient ESCs (Figure 6a, Table 1),
accompanied by consistent downregulation of BAF170
mRNA (Figure 6b). Comparing constructs with and with-
out the putative miR-294 binding site in the BAF170
3′UTR in a luciferase assay we found that BAF170 is sig-
nificantly downregulated by miR-294 (Figure 6c), indicat-
ing that BAF170 is indeed a direct target of miR-294.

Recently, it was shown that BAF170 is downregu-
lated during miR-302-367-based reprogramming and that
BAF170 knockdown increases the number of iPSC colonies
in somatic cell reprogramming (49). As miRNAs of the
miR-302-367 cluster share the seed sequence with miR-294,
it is likely that miR-294 has similar effects on BAF170 ex-
pression and pluripotency.

The model that emerges from these studies is that the
AAGUGCU family of miRNAs may play a role in the re-
modeling of BAF complexes. In ESCs, the BAF complex
(esBAF), which contains a BAF155 subunit, shares a large
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proportion of target genes with the pluripotency-associated
TFs Oct4, Sox2 and Nanog (50) and is required for the
self-renewal and maintenance of pluripotency in mESCs
(48). Consistently, overexpression of esBAF components
was found to promote reprogramming (51). In differenti-
ated cells, however, the so-called differentiated cell BAF
complex (dBAF) (52), contains the BAF170 and not the
BAF155 subunit (48). The fact that induced BAF170 ex-
pression in ESCs decreases the level of BAF155 protein
suggested that BAF170 can displace BAF155 from esBAF,
thereby increasing its degradation rate (48). By preventing
expression of BAF components that are specific to differ-
entiated cells and that antagonize embryonic state-specific
BAF (Figure 6d), the AAGUGCU family of miRNAs may
promote an ESC-specific epigenetic state.

DISCUSSION

It has been established that ESC-specific miRNAs that
share an AAGUGCU seed region are among the regula-
tory factors that are necessary to maintain a pluripotent
ESC state. Strikingly, overexpression of a cluster of ESC-
specific miRNAs was found sufficient for inducing repro-
gramming of differentiated cells into iPSCs. This suggests
that the miRNAs can set into motion an entire regulatory
cascade that leads to cell reprogramming. Several studies
determined the gene expression profiles of ESCs that did
and did not express AAGUGCU family miRNAs. An in-
sight emerging from these studies was that miR-290-295
miRNAs regulate the cell cycle and apoptosis, either di-
rectly or indirectly.

To better understand how the direct regulatory factor tar-
gets of these miRNAs contribute to pluripotency, we made
use of a recently developed method, called MARA, that
models gene expression in terms of computationally pre-
dicted regulatory sites. The approach originates in regres-
sion models that were first proposed by Bussemaker et al.
(53) for inferring regulatory elements from gene expression
data. However, MARA’s goal is different. It uses predicted
regulatory sites in combination with a linear model to infer
from gene expression data the activities of transcriptional
regulators. The first application of MARA (28) to the re-
construction of the core transcriptional regulatory network
of a differentiating human cell line, demonstrated that the
method can successfully infer key regulatory interactions ab
initio. Notably, it was found that MARA accurately infers
the activities of the key regulatory motifs, in spite of com-
putational predictions of regulatory sites being error-prone,
and of gene expression likely being a much more complex
function of the regulatory sites. The power of the method
stems from the fact that motif activities are inferred from
the statistics of expression of hundreds to thousands of pu-
tative target genes of each regulatory motif. Here we have
used an extended version of the MARA model, which also
includes predicted miRNA binding sites, to infer both tran-
scriptional and post-transcriptional regulators of mRNA
expression levels. A similar approach was recently applied
by Setty et al. (54) to reconstruct the regulatory networks
in glioblastoma.

The TF targets of the AAGUGCU miRNAs that we
identified with the extended MARA model had the follow-
ing properties:

(i) The activity of their corresponding motif changed sig-
nificantly upon expression of the AAGUGCU miR-
NAs, meaning that the predicted targets of these
regulators showed, on average, consistent expression
changes.

(ii) Their expression was consistently downregulated at the
mRNA level upon expression of the AAGUGCU miR-
NAs.

(iii) They were predicted as direct targets of the
AAGUGCU family of miRNAs by miRNA tar-
get prediction programs.

(iv) They were consistently (i.e. within every analyzed data
set) predicted by MARA to be directly regulated by
the AAGUGCU seed family of miRNAs on the basis
of the dependence of their expression changes on the
presence of the miRNA binding sites in their 3′UTRs.

(v) They could be confirmed as AAGUGCU miRNA tar-
gets with luciferase assays.

Altogether, these lines of evidence firmly establish
these transcriptional regulators as direct targets of the
AAGUGCU seed family miRNAs, forming the first layer
downstream of this miRNAs in the regulatory network of
pluripotency.

First, our analysis suggests that AAGUGCU miRNAs
target the cell cycle, and in particular the G1→S transition,
through multiple pathways. By targeting the repressive cell
cycle regulator E2f5, the miRNAs might directly promote
the G1→S transition. In addition, the miRNAs seem to in-
crease the activity of the proliferation-associated TF Myc
through multiple indirect routes, including shifting the bal-
ance between Myc and its antagonist Mxd3 within tran-
scription regulatory complexes that act on Myc target genes.
Second, we found that the AAGUGCU miRNAs may af-
fect the balance between chromatin remodeling complexes
that are active in ESCs and in differentiated cells, a func-
tion probably important for keeping specific genomic re-
gions from being silenced through heterochromatin forma-
tion. Third, we found that the AAGUGCU miRNAs di-
rectly target the interferon regulatory factor Irf2, whose ex-
pression is strongly increased in DCR−/ − cells, consistent
with a significant change in the regulatory impact that we
inferred for this factor. Finally, our analysis uncovers a few
transriptional regulators that have previously not been con-
nected to the transcriptional network of pluripotent stem
cells, including Foxj2, whose expression is strongly affected
by the miRNAs and the Clock (circadian locomotor output
cycles kaput) TF. Interestingly, circadian oscillations are not
present in mouse ES cells, but are switched on during differ-
entiation, and then disappear again upon reprogramming
of differentiated cells into iPSCs (55). It is thus tempting to
speculate that circadian oscillations in ESCs may be actively
suppressed by the AAGUGCU miRNAs and that downreg-
ulation of these miRNAs during development may be nec-
essary for the establishment of circadian rhythms. However,
the response of the 3′UTR of Clock in luciferase assays was
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very variable in our hands, and we were not able to unam-
biguously validate it as a direct target of miR-294.

As mentioned before, the AAGUGCU seed motif is not
unique to miRNAs of the mouse-specific miR-290-295 clus-
ter. It also occurs in the miR-302 family of miRNAs that
is present in human and in a shifted version (at positions
3–9 instead of 2–8) it occurs in the miR-17/20a miRNAs
of the oncogenic miR-17-92 cluster. Although miR-19 has
been reported to be the key oncogenic component of this
cluster (56), the strong effects that AAGUGCU miRNAs
exert on the cell cycle raise the question of whether miR-
17 and miR-20a may not play a role similar to miR-294 in
malignant cells.

In summary, our analysis demonstrates that combining
accurate predictions of regulatory elements with analysis
of transcriptome-wide mRNA expression changes in re-
sponse to specific manipulations is a general and power-
ful approach to uncovering key regulators within gene ex-
pression networks. In the future, incorporation of measure-
ments of miRNA expression as well as of predictions of TF
binding sites in miRNA genes will enable identification of
feedback loops between miRNAs and TFs that are known
to operate in many systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We thank the members of the Zavolan group for feedback
on the manuscript.

FUNDING

Swiss National Science [#31003A 127307]; European Re-
search Council Starting Grant [to M.Z.]. Werner Siemens
fellowship at the Biozentrum [to A.J.G.]. Source of open ac-
cess funding: Biozentrum, University of Basel.
Conflict of interest statement. None declared.

REFERENCES
1. Bartel,D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism,

and function. Cell, 116, 281–297.
2. Lim,L.P., Lau,N.C., Garrett-Engele,P., Grimson,A., Schelter,J.M.,

Castle,J., Bartel,D.P., Linsley,P.S. and Johnson,J.M. (2005)
Microarray analysis shows that some microRNAs downregulate large
numbers of target mRNAs. Nature, 433, 769–773.
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Chapter II. Implication of TFAP2A in Epithelial 

Plasticity in Breast Cancer and Development 

 

Epithelial Plasticity 
 

Epithelial to mesenchymal transitions (EMT) describes a transition that epithelial 

cells undergo, progressively losing their epithelial characteristics, and acquiring a new 

mesenchymal phenotype. Elizabeth Hay and colleagues observed and documented 

such changes for the first time, in the primitive streak formation of chicken embryo 

(Trelstad, Hay et al. 1967). The process is reversible, the term mesenchymal to 

epithelial transition (MET) being used to describe the opposite process (Lamouille, 

Xu et al. 2014). Incomplete EMT may also exist (Bryant and Mostov 2008). 

The epithelial organization is evolutionary older than Metazoa. Simple, non- 

cadherin-based, and polarized epithelial structures are already found in the fruiting 

body formed by the unicellular Dictyostelium discoideum (Dickinson, Nelson et al. 

2011). In multicellular organisms the epithelial tissue fulfills the function of creating a 

barrier between two different media, frequently segregating internal from external 

environments (Rodriguez-Boulan and Macara 2014). Characteristic of epithelial 

organization is the close contact in between adjacent cells, but also their apico-basal 

polarity, stabilized by adherens junctions, desmosomes and tight junctions (Bryant 

and Mostov 2008).  The epithelium is separated from neighboring tissues by basal 

lamina, an assembly of extracellular proteins and glycoproteins (Thiery, Acloque et 

al. 2009).  In contrast, the connective tissue surrounding epithelia is formed from 

unconfined mesenchymal or stromal cells, embedded in a 3D extracellular matrix 

(Thiery, Acloque et al. 2009).   

A number of specific events occur during EMT, including the disassembly of 

epithelial junctions, loss of apico-basal cell polarity, cell morphological changes, 

cytoskeleton rearrangements, and increased cell motility (Spano, Heck et al. 2012). 

EMT is a critical process during embryonic development; it also participates in 

normal and pathological mechanisms such as wound healing, fibrosis and tumor 

metastasis. Moreover, ECS differentiation and reprogramming of somatic cells to 
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iPSC, involve respectively EMT and MET steps (Goding, Pei et al. 2014). In addition, 

EMT is also suggested to associate to the origin of cancer stem cells (Mani, Guo et al. 

2008) 

All of these processes, which involve complete transition or partial modification of 

epithelial phenotype, are collectively referred to as epithelial plasticity.  

 

Epithelial Plasticity During Embryonic Development 

 

EMT is fundamental process that is part of the embryonic development in vertebrates. 

The majority of adult organs and tissues are formed in result of a sequence of 

successive EMT and MET transitions. The mesenchymal cells formed from the 

primary EMT can undergo the reverse process that is MET, and thus form transient 

epithelial structures. For instance, the heart is formed after three consecutive rounds 

of EMT and MET (Thiery, Acloque et al. 2009). The successive cycles of conversion 

in between the epithelial and mesenchymal cell state, involved in embryonic cells 

differentiation and organogenesis, are named primary, secondary and tertiary EMT, 

respectively (Thiery, Acloque et al. 2009).  

The first EMT event described in early embryogenesis is the formation of the 

primitive endoderm from ICM cells that later contributes to extra-embryonic tissues 

(Figure 5) (Thiery, Acloque et al. 2009).  Another example of profoundly investigated 

EMT process is in the course of gastrulation, which leads to the segregation of three 

germ layers (Figure 5) (Nakaya and Sheng 2008). The EMT conversion is involved in 

the formation of a structure of cells that arises from the epiblast, and constitutes the 

primitive streak. Cells from the epiblast migrate towards the internal part of the 

embryo along the primitive streak to form the definitive endoderm and later the 

mesoderm layers of the embryo (Arnold and Robertson 2009; Thiery, Acloque et al. 

2009).   

The neural crest cells (NCC) population arises from the ectoderm, surrounded by the 

neural plate and prospective epidermis. NCCs gain extensive migratory capacity and 

separate from the neuroepithelium through a complete or partial EMT, the process is 

referred as delamination (Figure 5). Afterwards they migrate in the embryo and due to 

their multipotent nature are at the origin of a variety of cell types, including certain 

neurons, glial cells, constituents of the peripheral nervous system, cardiac structures, 
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endocrine cells, smooth muscle and others (Thiery, Acloque et al. 2009; Theveneau 

and Mayor 2012).  

 

Figure 5.  Primary EMT during Embryonic Development. Primary EMT starts 

before implantation of the embryo with the formation of the parietal endoderm. Next, 

after implantation, the mesodermal progenitors also undergo EMT during 

gastrulation. The neural crest delamination is a later event, following the 

embryogenesis. Reprinted from (Thiery, Acloque et al. 2009) with permission from 

Elsevier. 

 

Epithelial Plasticity During Cancer Progression 

 

The activation of invasion and metastasis is considered a hallmark in human tumors 

and it is a major contributor to cancer related mortality (Hanahan and Weinberg 2011; 

Slattum and Rosenblatt 2014) (Bill and Christofori 2015). The metastasis formation is 

considered as a multistep mechanism. It starts with tumor cells, invading the 

surrounding tissues, followed by their extravasation into neighboring blood and 

lymph vessels. After transit in the circulatory system, the cells undergo extravasation 

towards the parenchyma of distant tissues, which then they colonize (Fidler 2003; 

Hanahan and Weinberg 2011; Bill and Christofori 2015). EMT is related to increased 

migration and invasiveness, and it is thought to be involved in cancer malignancies, 

where epithelial tumor cells escape the initial tumor site, by invading nearby stroma 

and reaching the circulatory system (Bill and Christofori 2015). Furthermore, 

cooperation between cancer cells and platelets in blood vessels might contribute to 

lung metastasis by induction of EMT in the tumor cells (Labelle, Begum et al. 2011). 
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On the other hand MET is suggested to be important for the colonization step, which 

involves the metastatic outgrowth in the secondary cancer site (Brabletz 2012). 

Moreover, it has been proposed that EMT may play a role beyond metastatic 

formation, regulating processes like tumor initiation and drug resistance, by 

promoting the cancer stem cells phenotype (Mani, Guo et al. 2008; De Craene and 

Berx 2013; Plaks, Kong et al. 2015).  

It is well established that certain cancer cell lines undergo EMT in vitro upon 

exogenous expression of EMT master regulators or stimulation with different factors, 

such as TGFβ. However, the clinical relevance of EMT in tumor formation and 

progression is still debated mainly because the evidence of EMT in the tumor are to 

certain extent speculative (De Craene and Berx 2013; Bill and Christofori 2015). In 

support of the involvement of EMT, the loss or down regulation of E-cadherin 

(CDH1), an epithelial adherens junction protein and hallmark of the transition, in 

carcinoma cells is frequently related to a malignancy progression (Cavallaro and 

Christofori 2004; Yilmaz and Christofori 2010). Nevertheless, the link between EMT 

and metastasis remains controversial in the lobular breast carcinoma, which is due to 

an inactivating mutation of CDH1, but has also well delineated epithelial features 

(Lombaerts, van Wezel et al. 2006). Aggressive breast cancer cell lines and tumors 

subtypes, such as basal B and claudin-low, were related with an EMT transcriptomic 

signature (Neve, Chin et al. 2006; Herschkowitz, Simin et al. 2007; Hennessy, 

Gonzalez-Angulo et al. 2009). Despite the fact that an EMT transcriptomic signature 

does not correlate with survival and it is not informative of poor outcome, specific 

regulators of EMT such as SOX4, PRRX1 and LXH2 do show such relationships 

(Ocana, Corcoles et al. 2012; Tiwari, Tiwari et al. 2013; Kuzmanov, Hopfer et al. 

2014; Bill and Christofori 2015). It is not clear, however, if those tumors undergo 

EMT, at what stage they do and if this is essential for metastasis formation (Bill and 

Christofori 2015). 

 

Gene Regulatory Networks Involved in EMT 

 

A number of transcription factors were shown to be master regulators of EMT and to 

be able to induce it in different contexts. Among those are snail family zinc finger 1 

and 2 (SNAI1 and 2), twist family bHLH transcription factor 1 and 2 (TWIST1 and 
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2), zinc-finger E-box binding homeobox 1 and 2 (ZEB1 and 2) (Table 3) (Lamouille, 

Xu et al. 2014).  Beyond these transcription master regulators, epithelial plasticity is 

regulated at a number of distinct levels, including splicing and miRNA-dependent 

silencing, by interconnected regulatory networks (Figure 6) (De Craene and Berx 

2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. EMT is controlled by interconnected regulatory networks. ZEB, SNAI1 

and TWIST1 are key EMT-inducing transcription factors and have a central role in 

the regulatory network. miRNAs form negative feedback loops with these 

transcription factors. Adapted by permission of Macmillian Publishers Ltd Nature 

Reviews Cancer (De Craene and Berx 2013), copyright 2013 

 

EMT is associated with important changes in genes expression and large number of 

genes is affected (Lamouille, Xu et al. 2014). Among the epithelium-specific genes, 

changes are observed in those encoding epithelial tight junction and desmosome 

complexes, including claudins, occludin, desmoplakin and plakophilin, respectively 

(Lamouille, Xu et al. 2014).  E-cadherin deserves a particular attention as its down-

regulation is considered a hallmark of the transition (Yilmaz and Christofori 2010). 

Furthermore, the down-regulation of E-cadherin is often coupled with the up-

regulation of N-cadherin, and therefore, mesenchymal adherens junctions replace the 

epithelial adherens junctions, in a phenomenon known as “cadherin switch” 

(Wheelock, Shintani et al. 2008; Yilmaz and Christofori 2010). Other adhesion 

Epithelia Mesenchyme 
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molecules are unregulated upon EMT, for instance neural cell adhesion molecule 

(NCAM) expression increases during the transition and it participates in focal 

adhesion assembly and cell migration (Lehembre, Yilmaz et al. 2008). In additions, 

the expression of genes involved in the formation of cytoskeleton, such as cytokeratin 

and vimentin is modified (Lamouille, Xu et al. 2014).  

EMT is also coupled with changes in the way cells interact with components of the 

extracellular matrix (ECM) (Lamouille, Xu et al. 2014).  Fibronectin (FN1) is found 

in the stromal ECM of breast tumors (Christensen 1992).  Its expression is 

upregulated during the transition and its interactions with mammary epithelial cells 

promote EMT (Park and Schwarzbauer 2014). In the course of the transition cells 

down-regulate epithelial integrins and up-regulate those that enforce EMT and 

invasion (Yilmaz and Christofori 2009). For example, in Madin-Darby canine kidney 

(MDCK) cells the expression of SNAI1 induced up-regulation of αvβ3 integrin, 

recognized for its role in cancer invasion (Haraguchi, Okubo et al. 2008; Yilmaz and 

Christofori 2009).  

 

Transcription Level Regulation of Epithelial Plasticity 

 
Firstly, the SNAI1 transcription factor was identified to regulate EMT by interacting 

with CDH1 promoter and thus repressing its expression (Batlle, Sancho et al. 2000; 

Cano, Perez-Moreno et al. 2000). Consequently, a number of other transcription 

factors including SNAI2, ZEB1, ZEB2, E47, Kruppel-like factor 8 (KLF8) and 

Brachyury were reported to directly repress E-cadherin expression together with other 

epithelial junction proteins and thus promote an EMT phenotype. Another 

continuously growing set of transcription factors, such as SOX4, paired mesoderm 

homeobox 1 (PRRX1), TWIST1, some of the Forkhead box protein, for instance C2 

(FOXC2), high mobility group A2 (HMGA2), goosecoid, E2-2 (TCF4), certain 

GATA proteins and SIX1 were equally described to control the process without 

directly regulating E-cadherin promoter (Tiwari, Gheldof et al. 2012; De Craene and 

Berx 2013; Lamouille, Xu et al. 2014). A non-exhaustive list of transcription factors 

implicated in EMT is presented in Table 3. It is important to note that despite the 

multitude of transcription factors controlling the transition like ZEB, SNAIL and 

TWIST, have been described to be consistently involved in EMT (Peinado, Olmeda et 

al. 2007; De Craene and Berx 2013). Their expression or activity is activated in the 
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early steps of the process. Furthermore, the EMT inducing transcription factors exert 

their action on same or related pathways and are frequently part of interconnected 

regulatory network (Taube, Herschkowitz et al. 2010; De Craene and Berx 2013). 

They repress epithelial genes, while also activating the mesenchymal ones. In many 

cases they act in synergy and they regulate mutually their expression (De Craene and 

Berx 2013). Often transcription factors outside ZEB, SNAIL and TWIST would 

rather ease EMT and/or feed to those core factors (Table 3) (De Craene and Berx 

2013). 

 

Transcription 

Factor 
     Function in EMT Reference 

    

SNAI1 and 2 
Zinc-finger protein, 

transcriptional repressor 

(Batlle, Sancho et al. 2000; 

Cano, Perez-Moreno et al. 

2000; De Craene, van Roy et 

al. 2005) 

ZEB1 and 2 
Zinc-finger protein, 

transcriptional repressor 
(Tiwari, Gheldof et al. 2012) 

KLF8 

Zinc-finger protein, 

transcriptional repressor and 

activator 

(Wang, Zheng et al. 2007; 

Lahiri and Zhao 2012) 

Brachyury Transcriptional activator 
(Fernando, Litzinger et al. 

2010) 

TWIST1 and 2 bHLH factors (Peinado, Olmeda et al. 2007) 

FOXD3 Neural crest specifier (Dottori, Gross et al. 2001) 

FOXQ1  

Repressed expression of the 

core EMT regulator e-

cadherin 

(Zhang, Meng et al. 2011) 

FOXO3A  Notch regulator Gopinath et al.(2014 
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FOXC2 Transcriptional activator (Mani, Yang et al. 2007) 

Goosecoid Homeobox protein (Hartwell, Muir et al. 2006) 

E2-2/TCF4 Class I bHLH factor (Peinado, Olmeda et al. 2007) 

SIX1 Homeobox protein 

(McCoy, Iwanaga et al. 2009; 

Micalizzi, Christensen et al. 

2009) 

PRRX1 Homeobox protein (Ocana, Corcoles et al. 2012) 

GATA4 and 6 

 

Downregulation of 

junctional dE-Cadherin 

(Campbell, Whissell et al. 

2011) 

HMGA2  
Co-regulates SNAI1 

expression 
(Thuault, Tan et al. 2008) 

SOX9  
Co-regulates SNAI2 

expression 
(Sakai, Suzuki et al. 2006) 

CBFA–KAP1  Transcriptional activator (Venkov, Link et al. 2007) 

ZNF703 /Zeppo1  Represses E-Cadherin (Slorach, Chou et al. 2011) 

PRX1  Regulates BMP2 and TGFβ 
(Makrodouli, Oikonomou et al. 

2011) 

SOX4 Controls EZH2 expression (Tiwari, Tiwari et al. 2013) 

E47/TCF3 bHLH factor (Peinado, Olmeda et al. 2007) 
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Table 3.  Transcription factors and cofactors implicated in the regulation of 

EMT. Adapted by permission of Macmillian Publishers Ltd Nature Reviews Cancer 

(De Craene and Berx 2013), copyright 2013 

SNAIL Transcription Factors 

 

In mammals two out of three SNAIL proteins, namely SNAI1 and SNAI2, are 

involved in EMT.  Mouse Snai1 gene is expressed in the prospective mesoderm as 

well as at the edge of the neural plate (Cano, Perez-Moreno et al. 2000). During 

embryonic development SNAIL gene family are essential for gastrulation, left-right 

patterning and affect neural crest delamination (Alberga, Boulay et al. 1991; Nieto, 

Sargent et al. 1994; Carver, Jiang et al. 2001; Murray and Gridley 2006). In the adult, 

SNAI1 presence is restrained to mesenchymal cells of lung, dermis and cartilage as 

well to wound-healing activated fibroblasts and mesenchymal stem cells (Franci, 

Takkunen et al. 2006; Batlle, Alba-Castellon et al. 2013).  SNAIL is also expressed in 

human and mouse invasive tumors and it represses E-cadherin expression. (Batlle, 

Sancho et al. 2000; Cano, Perez-Moreno et al. 2000).  

SNAIL transcription factors are conserved in metazoans and possess a particular 

domain organization (Barrallo-Gimeno and Nieto 2005). At their C-terminus they 

contain from two to six zinc-fingers, which confers them the capacity to specifically 

recognize the DNA E Box element (CTGGTG) (Nieto 2002). The N-terminus 

sequence of SNAIL proteins is more divergent (Nieto 2002). Traditionally SNAIL 

transcription factors are considered as transcriptional repressors, but they have been 

also demonstrated to activate certain target genes (Barrallo-Gimeno and Nieto 2005; 

Lamouille, Xu et al. 2014). In order to repress the expression of E-cadherin, SNAI1 

interacts with distinct proteins and complexes that control histone modifications 

(Lamouille, Xu et al. 2014). Among those are Polycomb repressive complex (PRC2), 

SIN3A and histone deacetylases HDAC1, 2 and 3, and lysine specific demethylase 1 

(LSD1) (Lamouille, Xu et al. 2014). It was also demonstrated that SNAI1 cooperates 

with ETS1 and SMAD3-SMAD4 complexes to govern the expression of EMT 

associated genes. SNAI2, on its side, recruits different repressor complex together 

with HDAC1/3 and C-terminal binding protein (CTBP) to promote EMT in a similar 

manner (Tiwari, Gheldof et al. 2012). 
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A variety of signaling pathways regulate SNAIL expression. The list of those that can 

activate SNAI1 activity and expression includes receptor tyrosine kinases (RTK), 

tumor growth factor (TGF), WNT, Notch, integrins, phosphatidylinositol 3 kinase 

(PI3K)-AKT, mitogen activated protein kinase (MAPK) and nuclear factor kB 

(NFkB) signaling (De Craene, van Roy et al. 2005; Tiwari, Gheldof et al. 2012; 

Lamouille, Xu et al. 2014). Most of those pathways are known to regulate SNAI1 at 

transcription level (De Craene, van Roy et al. 2005). However, the activity and 

stability of the transcription factor are also controlled by post-translational 

modifications. Glycogen synthase kinase 3b (GSK3β) can phosphorylate SNAI1 at 

Ser97 or Ser101 and protein kinase D1 (PKD1) at Ser11, which in both cases 

promotes its translocation to the cytoplasm (Zhou, Deng et al. 2004; Yook, Li et al. 

2006; Du, Zhang et al. 2010). Additionally, GSK3β phosphorylates SNAI1 at Ser108, 

Ser112, Ser116 and Ser120 in its turn can stimulate the SNAI1 ubiquitin-mediated 

degradation (Zhou, Deng et al. 2004; Yook, Li et al. 2006). WNT, PI3K-AKT, NFkB 

and Notch signaling interfere with GSK3β phosphorylation of SNAI1 and thus lead to 

increased stability and activity of the transcription factor (Yook, Li et al. 2006; 

Lamouille, Xu et al. 2014). On the other hand, phosphorylation of SNAI1 at Ser246 

and Thr203, respectively by PAK1 or large tumor suppressor 2 (LATS2), can 

stimulate the nuclear retention of the protein and therefore its activity (Yang, Rayala 

et al. 2005; Zhang, Rodriguez-Aznar et al. 2012). Finally Lox and lysyl oxidase-like 2 

and 3 (LOXL2/3) stabilize SNAI1 protein (Tiwari, Gheldof et al. 2012). 

 

ZEB Transcription Factors 

 

The ZEB family consists of two transcription factors ZEB1 and ZEB2, which have 

overlapping functions, but not always overlapping expression patterns (Peinado, 

Olmeda et al. 2007). Both ZEB proteins induce EMT and cell migration (Tiwari, 

Gheldof et al. 2012). They are expressed in human fetal and adult tissues, including 

central nervous systems, heart, skeletal muscle and hematopoietic cells (Funahashi, 

Sekido et al. 1993; Genetta, Ruezinsky et al. 1994; Sekido, Murai et al. 1994; Postigo 

and Dean 2000). In addition, knockout of mouse Zeb1 resulted in severe T-cell 

developmental impairment and various skeletal abnormalities, while knockout of 

Zeb2 is embryonically lethal with delamination arrest and lack of TFAP2A positive 

Page 54 of 124



 

 

migrating neural crest cells (Higashi, Moribe et al. 1997; Takagi, Moribe et al. 1998; 

Van de Putte, Maruhashi et al. 2003). 

ZEB1 and ZEB2 share important structural similarities (Postigo and Dean 2000). 

They possess two clusters of zinc-finger domains at both the C-terminal and N-

terminal ends, and a homeodomain in the central part (Peinado, Olmeda et al. 2007).  

They recognize bipartite E Box DNA elements (CACCT and CACCTG) via their 

zinc-finger clusters and present similar sequence specificities (Postigo and Dean 

2000; Peinado, Olmeda et al. 2007).  

ZEB1 and ZEB2 form repressive complexes with SMAD proteins, CTBP or via 

BRG1 protein with Switch/Sucrose nonfermentable (SWI/SNF) complex (Tiwari, 

Gheldof et al. 2012; Lamouille, Xu et al. 2014). ZEB1 can also function as an 

activator by interacting with p300/CBP via PCAF and p300, and is potentially 

involved in histone demethylation via binding of LSD1 (Lamouille, Xu et al. 2014).  

Signaling cascades downstream of TGFβ, WNT and RAS-MAPK pathways induce 

the expression of ZEB proteins (Peinado, Olmeda et al. 2007; Tiwari, Gheldof et al. 

2012; Lamouille, Xu et al. 2014). Furthermore SNAI1 and TWIST1 were 

demonstrated to directly activate ZEB1 promoter (Dave, Guaita-Esteruelas et al. 

2011).  Both of the ZEB factors participate in a regulatory loop with miR-200 family 

of microRNAs, which antagonizes TGFβ-induced EMT (Gregory, Bert et al. 2008; 

Korpal, Lee et al. 2008; Park, Gaur et al. 2008). PRC2 inhibits the activity of ZEB2 at 

post-translational level by sumoylation (Tiwari, Gheldof et al. 2012).  

 

bHLH Transcription Factors 

 

Helix-loop-helix (HLH) proteins have a common structural organization consists of 

two amphipatic α-helices and middle loop linker involved in dimerization (Peinado, 

Olmeda et al. 2007). In certain HLH proteins supplementary basic domain exists 

therefore named bHLH, while others such as the Id proteins have no additional 

structural elements (Massari and Murre 2000). They can form hetero- or homo-dimers 

and in the case of bHLH recognize an E Box DNA consensus sequence (CANNTG) 

(Massari and Murre 2000). With respect to EMT, a number of HLH proteins are 

implicated, including TCF3, TCF4, TCF12, TWIST1,2 and the Id proteins (Peinado, 

Olmeda et al. 2007). TCF3, with its two isoforms E12 and E47, and TWIST 1 and 2 

Page 55 of 124



 

 

directly regulate E-cadherin expression and are essential inducers of EMT (Tiwari, 

Gheldof et al. 2012).  The Id proteins are devoided from DNA binding domain but 

can still dimerize with other HLH factors.  In this way they inhibit their action and 

therefore EMT (Kondo, Cubillo et al. 2004). Upon TGFβ1 induced EMT, Id1 protein 

is downregulated and the decrease of its expression correlates with that of E-cadherin, 

while expression of Id2 and Id3 can inhibit the transition (Tiwari, Gheldof et al. 

2012). 

 

microRNA Regulation of EMT 

 

Non-coding RNAs and in particular microRNAs are critical modulators of 

developmental processes (Stefani and Slack 2008). Their abnormal expression is 

related to pathological conditions such as cancer (Nicoloso, Spizzo et al. 2009). In the 

recent years a large number of microRNAs that are involved in EMT, cancer 

progression and metastasis formation were identified (Nicoloso, Spizzo et al. 2009). 

For instance, miR-200 family members form a double-negative feedback loop with 

ZEB transcription factors (Figure 7). Five different microRNAs (miR-200a, miR-

200b, miR-429, miR-200c, miR-141), encoded in two separate clusters are part of 

miR-200 family (Altuvia, Landgraf et al. 2005; Bracken, Gregory et al. 2008). The 

microRNA seed is critical for target recognition, and the members of the microRNA 

family comprise highly similar and conserved seed sequences. Therefore, this 

suggests that they also share important number of target genes (Lewis, Shih et al. 

2003; Lewis, Burge et al. 2005). In the case of miR-200 family two seed sequences 

with a single nucleotide difference do exist: AAUACU, contained in miR-200bc/429, 

and AACACU found in miR-200a/141 (Feng, Wang et al. 2014). In the 3’UTR of 

ZEB1 and ZEB2 miR-200 family members have between 5 and 8 binding sites that 

allow a tight control over the transcription factors (Gregory, Bert et al. 2008; Park, 

Gaur et al. 2008). On the other hand ZEB represses the expression of the microRNA 

clusters by directly interacting with their promoters (Bracken, Gregory et al. 2008; 

Burk, Schubert et al. 2008). In this manner elevated miR-200 levels safeguard the 

epithelial state, whereas upon the transition ZEB increases and blocks the expression 

of miR-200 (Gregory, Bert et al. 2008). Ectopic expression of miR-200 in the 

mesenchymal cell state is sufficient to revert the process (Gregory, Bert et al. 2008). 
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Furthermore low levels of miR-200 family members are associated with aggressive 

tumor progression, metastasis formation, cancer stem cell stemness potential and 

chemoresistance (Feng, Wang et al. 2014). Additional targets of miR-200 family, 

such as SUZ12 and BMI, also contribute to the microRNAs anti-metastatic potential 

and their role in promoting the epithelial cellular state (Wellner, Schubert et al. 2009; 

Iliopoulos, Lindahl-Allen et al. 2010). Other microRNAs-TF interactions have also 

been described in the context of EMT. For example, several microRNAs, including 

miR-29b, miR-30a and miR-34 family members directly target SNAI1, while miR-1 

and miR-200b repress SNAI2 (De Craene and Berx 2013; Lamouille, Xu et al. 2014).  

SNAIL transcription factors might control the expression of miR-200, miR-1 and 

miR-34 thus establishing a double-negative feedback regulation similar to the one 

described between ZEB TFs and miR-200 family members (Figure 7) (De Craene and 

Berx 2013). Downregulation of miR-335 is a hallmark of EMT and tumor 

progression, and it is mechanistically explained by the microRNA control over SOX4 

and tenascin-C mRNAs (Tavazoie, Alarcon et al. 2008; Tiwari, Gheldof et al. 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. MicroRNAs-transcription factors feedback loops in EMT. TGFβ and 

other growth factors or extracellular stimuli induce EMT promoting transcription 

factors from the ZEB and SNAIL families, which on their turn activate EMT 

phenotypical changes, stemness and drug resistance. miR-200 and miR-34 family 

members form a double negative feedback loop with the EMT promoting TFs. ZEB 

and SNAIL block the transcription of the microRNAs, while miR-200 and miR-34 
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negatively regulate the expression of the TFs. In addition, p53 can induce the 

expression of both miRNA families, thus promoting the epithelial state. Adapted by 

permission of Macmillian Publishers Ltd Nature Reviews Cancer (Brabletz 2012), 

copyright 2012. 

Apart from regulating the expression of master TFs microRNAs can also modulate 

EMT by controlling genes characteristic either of the epithelial or mesenchymal cell 

state (Lamouille, Xu et al. 2014). In mammary carcinomas miR-9 levels can be 

elevated and confer mesenchymal and invasive features to the tumors by targeting E-

cadherin gene (Ma, Young et al. 2010).  Another interesting example of a microRNA 

that promotes EMT and metastasis is miR-22. In mouse xenograft models it triggers 

EMT and stimulates metastasis formation, whereas in patients it correlates with poor 

clinical outcome. It is suggested that it indirectly contributes to the silencing of tumor 

suppressor miR-200 by targeting an enzyme, Ten eleven translocation (TET), 

involved in the miR-200 promoter demethylation (Song, Ito et al. 2013).   

 

Splicing Factors in EMT 

 

Alternative splicing is a regulatory mechanism of gene expression that leads to the 

formation of different proteins from a single gene and it is involved in cancer 

formation and EMT (Tiwari, Gheldof et al. 2012). The RNA binding proteins, ESRP1 

and ESRP2 promote the epithelial state by inducing the splicing of epithelial-specific 

isoforms of certain EMT associated genes such as CD44, FGFR2 and CTNND1 

(Warzecha, Sato et al. 2009; Warzecha, Jiang et al. 2010; Brown, Reinke et al. 2011). 

On the contrary RBFOX2 can regulate both epithelial and mesenchymal splicing and 

stimulate tissues invasiveness (Braeutigam, Rago et al. 2014).  CELF, MBNL and 

hnRNP splicing factors were also associated with EMT (Shapiro, Cheng et al. 2011). 

 

TFAP2A Transcription Factor 
 
Transcription factor TFAP2A (also named AP-2α) belongs to the AP-2 family of 

transcription factors(Hilger-Eversheim, Moser et al. 2000; Eckert, Buhl et al. 2005). 

In 1987, Mitchell et al. were the first to discover and further designate TFAP2A as 

binding partner of the SV40 enhancer elements in HeLa cells (Mitchell, Wang et al. 
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1987). In human and mice there are five AP-2 transcription factors that share 

significant sequence similarity between 56 and 78 %, which are TFAP2A, TFAP2B, 

TFAP2C, TFAP2D and TFAP2E, or AP-2α, AP-2β, AP-2γ, AP-2δ and AP-2ε, 

respectively (Eckert, Buhl et al. 2005). They present a specific domain structural 

organization featuring an N-terminal prolin and glutamine rich trans-activation 

domains, a central basic region and very well conserved helix-loop-helix C-terminal 

region, involved in DNA binding and dimerization.(Williams and Tjian 1991) The 

protein can function as a hetero-or homo- dimer(Eckert, Buhl et al. 2005).  In mice, 

Tfap2a gene is composed from 7 exons and it is expressed as four different isoforms; 

the first three (1a,1b and 1c) differ in the first exon and the forth isoform lacks the 2
nd

 

exon due to alternative splicing event(Meier, Koedood et al. 1995; Eckert, Buhl et al. 

2005). 

SELEX (Systemic Evolution of Ligand by EXponential Evolution) based, in vitro 

binding site enrichment assays, have determined that TFAP2A binds to a palindromic 

motif GCCN3GGC and its variations GCCN4GGC, GCCN3/4GGG (Mohibullah, 

Donner et al. 1999). In more recent chip-seq experiments it was shown that human 

AP-2γ and AP-2α have consensus binding site of respectively SCCTSRGGS and 

SCCYSRGGS (S = G or C, R = A or G and Y = C or T)(Woodfield, Chen et al. 2010; 

Rada-Iglesias, Bajpai et al. 2012) (Bogachek, Chen et al. 2014) . 

 

Mode of Action and Control 

 

AP-2 family of proteins canonically functions as transcriptional regulators in the 

nucleus, where it regulates the expression of certain targets (Eckert, Buhl et al. 2005). 

They were shown to activate genes involved in apoptosis, cell growth, proliferation 

and differentiation (CDKN1A, TGFA, ESR1, ERBB2/HER-2/neu, FOXA1)(Bosher, 

Williams et al. 1995; Wang, Shin et al. 1997; Zeng, Somasundaram et al. 1997; 

Woodfield, Chen et al. 2010). In addition, it was shown that they can also repress the 

expression of many genes, including MYC, cyclin-D2, c/EBP- α /CEBPA, 

MCAM/MUC18.(Gaubatz, Imhof et al. 1995; Jean, Gershenwald et al. 1998; Jiang, 

Tang et al. 1998; Yu, Hitchler et al. 2009)  In the promoter region of cyclin-D2, the 

TFAP2A binding site is found in close vicinity to MYC responsive E-Box element, 

therefore creating a mutually exclusive interaction (Hilger-Eversheim, Moser et al. 
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2000). Apart from its function as transcription factor, it has been demonstrated that 

TFAP2A participates in WNT signaling pathway by forming complex with 

adenomatous polyposis coli protein (APC) and -catenin, disrupting the interaction 

between -catenin and the transcription factors TCF and thereby blocking its effector 

function (Aqeilan, Palamarchuk et al. 2004). The activity of TFAP2A can be 

regulated by protein-protein interactions or by post-translational modifications 

(PTMs) (Eckert, Buhl et al. 2005). For instance TFAP2A binding to the PC4 

transcription factor reduces its transcriptional self-interference and stimulates its 

transactivation potential (Zhong, Wang et al. 2003). TFAP2A can be sumoylated, 

inducing its degradation and suppressing its activity (Eloranta and Hurst 2002; 

Berlato, Chan et al. 2011). Equivalently, a phosphorylation by PKA at Ser239 of 

TFAP2A regulates its transactivation potential and oxidation of conserved cystein 

residues in TFAP2A DNA binding domain shifts its capacity to interact with DNA 

(Huang and Domann 1998; Garcia, Campillos et al. 1999; Grether-Beck, Felsner et al. 

2003). It has been also proposed that TFAP2C sub-cellular localization can be 

regulated by an interaction of with WWOX  that sequesters the transcription factor in 

the cytoplasm (Aqeilan, Palamarchuk et al. 2004). In addition, the different isoforms 

of TFAP2A were shown to differ in activity suggesting that TFAP2A activity can be 

further regulated at gene level by alternative splicing and/or alternative promoter 

usage (Buettner, Kannan et al. 1993; Berlato, Chan et al. 2011).  

 

AP-2 Transcription Factors in Development and Cancer 

 

In the developing embryo, AP-2 transcription factors are implicated in trophectoderm 

development, neural crest formation, as well as in the differentiation of numerous 

tissues and cell types (Eckert, Buhl et al. 2005). TFAP2A expression in the mouse 

embryo becomes apparent at day 8 in the lateral head mesenchyme and shortly after 

that in the neural tube and the primitive mesenchyme. The expression of -, - and -

variants follows the same pattern between day 8-10. After day 11 on and in later 

stages they start to be expressed in different tissues(Moser, Ruschoff et al. 1997). The 

knockout of Tfap2a in mice results in a range of cranio-facial deformations 

originating from neural tube closure defect, as well as sensory organs and cranial 

ganglions abnormalities (Schorle, Meier et al. 1996; Zhang, Hagopian-Donaldson et 
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al. 1996). In humans, mutations in TFAP2A are linked to another developmental 

defect, namely the Branchio-Oculo-Facial Syndrome (BOFS) (Milunsky, Maher et al. 

2008). Within the normal adult mammary tissue, TFAP2A is expressed in virgin and 

pregnant mice mammary gland. It is detected at the terminal end buds and also in the 

ductal epithelium, predominantly in the luminal cell population (Zhang, Brewer et al. 

2003). Targeted overexpression of TFAP2A and TFAP2C in the mouse mammary 

gland results in lactation deficiency, increased proliferation and apoptosis, reduced 

alveolar budding and differentiation (Jager, Werling et al. 2003; Zhang, Brewer et al. 

2003). Knockout of TFAP2C, a TFAP2A paralogue, in mouse mammary luminal 

cells, results in an increased number of terminal end buds with reduced distal 

migration (Cyr, Kulak et al. 2014).  

Aberrant expression of TFAP2A has been observed in various cancers. In human 

nasopharyngeal carcinoma it is overexpressed and it is involved in tumorigenesis by 

targeting the HIF-1α/VEGF/PEDF pathway (Shi, Xie et al. 2014). On the contrary, 

reduced TFAP2A expression was reported to be associated with poor prognosis in 

gastric adenocarcinoma (Wang, Lv et al. 2011). The loss of TFAP2A is connected 

with the acquisition of the malignant phenotype in melanoma through regulation of 

cell adhesion molecules (ALCAM) (Melnikova and Bar-Eli 2008). In breast cancer, 

TFAP2A expression was found to be less organized than in normal mammary gland 

and it is associated with HER2/ ErbB-2 and ERα expression (Pellikainen, 

Naukkarinen et al. 2004). More recently TFAP2A and TFAP2C activation by loss of 

sumoylation in breast cancer was associated with the luminal breast cancer phenotype 

and it was suggested to interfere with EMT (Bogachek, Chen et al. 2014; Cyr, Kulak 

et al. 2014). 
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TFAP2A is a component of the ZEB1/2
network that regulates TGFB1-induced
epithelial to mesenchymal transition
Yoana Dimitrova1, Andreas J. Gruber1, Nitish Mittal1, Souvik Ghosh1, Beatrice Dimitriades1, Daniel Mathow3,
William Aaron Grandy1, Gerhard Christofori2 and Mihaela Zavolan1*

Abstract

Background: The transition between epithelial and mesenchymal phenotypes (EMT) occurs in a variety of contexts.
It is critical for mammalian development and it is also involved in tumor initiation and progression. Master
transcription factor (TF) regulators of this process are conserved between mouse and human.

Methods: From a computational analysis of a variety of high-throughput sequencing data sets we initially inferred
that TFAP2A is connected to the core EMT network in both species. We then analysed publicly available human
breast cancer data for TFAP2A expression and also studied the expression (by mRNA sequencing), activity (by
monitoring the expression of its predicted targets), and binding (by electrophoretic mobility shift assay and
chromatin immunoprecipitation) of this factor in a mouse mammary gland EMT model system (NMuMG) cell line.

Results: We found that upon induction of EMT, the activity of TFAP2A, reflected in the expression level of its
predicted targets, is up-regulated in a variety of systems, both murine and human, while TFAP2A’s expression is
increased in more “stem-like” cancers. We provide strong evidence for the direct interaction between the TFAP2A
TF and the ZEB2 promoter and we demonstrate that this interaction affects ZEB2 expression. Overexpression of
TFAP2A from an exogenous construct perturbs EMT, however, in a manner similar to the downregulation of
endogenous TFAP2A that takes place during EMT.

Conclusions: Our study reveals that TFAP2A is a conserved component of the core network that regulates EMT,
acting as a repressor of many genes, including ZEB2.

Reviewers: This article has been reviewed by Dr. Martijn Huynen and Dr. Nicola Aceto.

Keywords: Epithelial-to-mesenchymal transition, EMT, Transcription regulatory network, TFAP2A, ZEB2, TGFb1,
NMuMG

Background
The epithelial to mesenchymal transition (EMT) is de-
fined as the process in which cells that display predom-
inantly epithelial features transition to a state in which
they exhibit mesenchymal characteristics. EMT has well-
established and important roles in different stages of em-
bryonic development: it is observed during gastrulation, in
the generation of the primitive mesoderm, during neural
crest (NC) formation, and in the development of many

organs such as heart valves, skeletal muscle, and the palate
[1]. EMT-like phenomena were also described in adult or-
ganisms, as part of normal developmental changes, as well
as during pathological processes [2]. For example, during
breast development, an EMT-like program referred to as
epithelial plasticity is thought to be part of branching
morphogenesis, which leads to the formation of the com-
plex ductal tree [3]. Recent findings suggest that an EMT
program may increase the “stemness” potential of epithe-
lial cells [4].
The mammary gland epithelium is composed of an

internal luminal layer, and an external, basal layer of
myoepithelial cells. Recent studies suggest that these
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different cell types derive from a common stem cell,
through a process that involves epithelial plasticity [5, 6].
Whereas this process is very well coordinated in normal
development, its dysregulation in cancer leads to out-
comes that are difficult to predict [3]. While the majority
of experimental results indicate that manipulating EMT
also affects cancer metastasis, recent reports on cancer
cells circulating in the blood stream or resulting from
genetic lineage tracing have questioned a critical role of
EMT in the formation of metastases, but have demon-
strated a role in chemotherapy resistance [7–9]. In
breast cancer, it is believed that EMT affects the basal
epithelial phenotype and is responsible for an increased
metastatic potential [10].
The TFAP2A transcription factor (TF) is expressed

early in embryogenesis, where it contributes to cell fate
determination in the formation of the neural crest and
the epidermis. The knockout of Tfap2a in mouse is
lethal due to neural crest formation defects [11]. In
humans, mutations in TFAP2A have been linked to the
developmental defects in the Branchio-Oculo-Facial
Syndrome (BOFS) [12].
TFAP2A is a member of the AP-2 family of TFs, which

in humans and mice is composed of five members,
TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E, or
AP-2α, AP-2β, AP-2γ, AP-2δ and AP-2ε, respectively.
These proteins share important sequence similarities
and have a specific structural organization with a proline
and glutamine-rich trans-activation domain located at
the N-terminus, a central region with positively-charged
amino acids, and a highly conserved helix-loop-helix
region at the C-terminus. The last two domains are in-
volved in DNA binding and dimerization, the proteins
being able to form hetero- or homo-dimers [13]. The
TFAP2A gene is composed of seven exons. In mice, four
different isoforms have been described [14]. Systemic
Evolution of Ligand by EXponential enrichment (SELEX)-
based, in vitro assays, have determined that AP-2α binds
to the palindromic motif GCCN3GGC and to some
close variants, GCCN4GGC, GCCN3/4GGG [15]. More
recent ChIP-seq experiments inferred SCCTSRGGS and
SCCYSRGGS (S =G or C, R = A or G and Y =C or T) as
the consensus sites for human AP-2γ and AP-2α, respect-
ively [16].
In the adult mammary gland, TFAP2A is expressed

in virgin and pregnant mice. Its mRNA and protein
are detected at the terminal end buds and also in the
ductal epithelium, predominantly in the luminal cell
population [17]. Targeted overexpression of TFAP2A
and TFAP2C in the mouse mammary gland results in
lactation deficiency, increased proliferation and apop-
tosis, reduced alveolar budding and differentiation
[17, 18]. Knockout of the TFAP2C paralog of TFAP2A in
mouse mammary luminal cells results in an increased

number of terminal end buds with reduced distal migra-
tion [19].
Aberrant expression of TFAP2A has been observed in

various cancers. It is overexpressed in human nasopha-
ryngeal carcinoma and is involved in tumorigenesis by
targeting the HIF-1α/VEGF/PEDF pathway [20]. In
contrast, reduced AP-2α expression was reported to be
associated with poor prognosis in gastric adenocarcin-
oma [21]. The loss of TFAP2A is connected with the ac-
quisition of the malignant phenotype in melanoma
through regulation of cell adhesion molecules (ALCAM)
[22]. TFAP2A expression was found to be less organized
in breast cancer compared to normal mammary gland
and it is associated with HER2/ErbB-2 and ERα expres-
sion [23].
To define conserved EMT regulatory networks, we

started by analyzing seven mouse and human datasets
obtained from EMT systems, altogether containing
thirty-six mRNA sequencing samples. We found that
TFAP2A is one of the factors that contribute most
significantly to mRNA-level expression changes that
take place during embryonic stem cell (ESC) differen-
tiation to mesoderm or to NC cells, during normal
mammary gland development, and most importantly,
in breast cancer models. To investigate TFAP2A’s in-
volvement in EMT we used mouse mammary gland
epithelial cell line NMuMG, a well-known model of
EMT [24]. We demonstrate, for the first time, that
the expression and activity of Tfap2a are modulated
during TGFβ1-induced transdifferentiation of these
cells. We further show that TFAP2A directly binds to
the Zeb2 promoter, modulating its transcriptional out-
put. TFAP2A overexpression in NMuMG cells results
in increased levels of EMT-inducing TFs, and pro-
motes an EMT-like phenotype. Our study sheds a
new light on the role of TFAP2A in processes that
involve EMT, including breast cancer, and it contrib-
utes to a deeper understanding of the molecular and
cellular mechanism of cancer development and
metastasis.

Methods
Expression vectors and constructs
Mouse TFAP2A cDNA was kindly provided by Prof.
Qingjie [25]. The TFAP2A-FLAG fusion was subcloned
into pDONR201 plasmid, using a Gateway® BP Clonase®
II Enzyme mix (#11789-020, Life Technologies) and it
was further subcloned into pCLX vector, using Gateway®
LR Clonase® II Enzyme mix (#11791-020, Life
Technologies).

Cell culture
We used a subclone of NMuMG cells that was gener-
ated as previously described (NMuMG/E9) [24]. Cells
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were cultured in Dulbecco's modified Eagle's medium
(DMEM #D5671, Sigma Aldrich) with high glucose and
L-glutamine, supplemented with 10% fetal bovine serum
(#f-7524, Sigma-Aldrich) and where indicated were
treated with 2 ng/ml TGFβ1 (#240-B, R&D Systems).
Transient transfection was done using Lipofecta-
mine2000 (#11668-019, Life Technologies) according to
the manufacturer's instructions. For time course experi-
ments, cells were grown in six well plates for up to
14 days and treated with 2 ng/mL TGFβ1. In addition,
NMuMG pCLX-TFAP2A or NMuMG pCLX-GFP
cells induced with 2 μg/mL of doxycycline for 6 days,
and further treated or not treated with TGFβ1 for
72 hours were used to study the effect of TFAP2A
overexpression.

Lentiviral infection
Stable populations of NMuMG cells expressing the
blasticidine-resistant marker together with TFAP2A-
FLAG under a doxycycline-inducible promoter were ob-
tained with the pCLX expression system [26]. Lentiviral
particles were produced in HEK293-LV cells using the
helper vectors pMDL, pREV and the envelope-encoding
vector pVSV. For infection, viral supernatants were added
to target cells in the presence of polybrene (#TR-1003-G,
Millipore) (1 μg/ml). Cells were further incubated at 37 °C
under 5% CO2 in a tissue culture incubator for 72 h, prior
to selection with blasticidine at 10 μg/ml (#15205-25 mg,
Sigma-Aldrich).

Light microscopy and immunofluorescence
Cells were treated with doxycycline or TGFβ1 for the
indicated times, and were grown on gelatin coated glass
coverslips. Cells were fixed with 4% paraformaldehyde in
1x PBS for 15 min (Fig. 2a, b). They were later perme-
abilized and blocked for 30 min with 0.1% Triton X-100
(#T8787, Sigma-Aldrich), 10% goat serum (#16210072,
Gibco®, Life Technologies), and 1% BSA (#A9647, Sigma-
Aldrich) in PBS (#20012-019, Gibco®, Life Technologies).
Afterwards, the coverslips were incubated with the indi-
cated primary antibodies overnight at 4 °C, and then with
Alexa Fluor 488,647 conjugated secondary antibodies,
(Molecular Probes, Life Technologies), for one hour at
room temperature. Where appropriate, Acti-stain™ 555
(#PHDH1, Cytoskeleton) diluted 1:200 was added together
with secondary antibody stain. The coverslips were
mounted with VECTASHIELD™ DAPI Mounting Media
(Vector Laboratories) on microscope slides and imaged
with a confocal microscope (Zeiss LSM 700 Inverted).

Quantitative real-time reverse transcription PCR
Total RNA was extracted with TRI Reagent® (#T9424,
Sigma-Aldrich) and further purified with Direct-zol™
RNA MiniPrep kit (#R2050, Zymo Research). Reverse

transcription was performed with SuperScript® III
Reverse Transcriptase (#18080-044, Life Technologies)
according to the manufacturer’s instructions. For qPCR,
8 ng of cDNA was used in a reaction with Power SYBR®
Green PCR Master Mix (#4367659, Applied Biosystems).
Gene expression changes are normalized to the expres-
sion of the house-keeping genes Gapdh and Rplp0.

mRNA sequencing
For the mRNA-seq library preparation, a well of a 6-well
plate of NMuMG cells was used, either treated with
growth factor and/or doxycycline, or with control re-
agents for the indicated times. mRNA-seq libraries were
prepared as already described [27].

Chromatin immunoprecipitation (ChIP), sequencing
library preparation and data analysis
The ChIP protocol was adapted from [28]. Cells were
crosslinked in fixing buffer (50 mM HEPES pH 7.5,
1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 100 mM
NaCl, 1% formaldehyde) for 10 min with continuous
rocking at room temperature (RT), and then quenched
with 125 mM glycine for 5 min. Cells were washed three
times with cold PBS and collected by scrapping. Nuclei
were isolated, and lysed to obtain crosslinked chromatin.
Simultaneously, the antibody was coupled with protein
G magnetic beads (#88848, Pierce™) by incubating 100 μl
of protein G beads with 10 μg of TFAP2A-specific anti-
body (Novus) and 10 μg of rabbit IgG (#PP64, Millipore)
as a negative control, for minimum 1 h at RT with
continuous rotation. A probe sonicator was then used in
cold conditions to reduce heating, for six cycles of 30 s
pulse-on at amplitude value of 60 and 1 min and 15 s
pulse-off to obtain chromatin fragments of 100–500 bp
followed by centrifugation at 20,000 g for 10 min at 4 °C
to get rid of nuclear debris. Further, 3% chromatin was
kept as input control from each sample and an equal
amount (around 750–1000 μg) of chromatin was incu-
bated with magnetic beads-coupled antibody at 4 °C
overnight with continuous rotation. Immuno-complexes
were washed with 1 mL of wash buffers as described in
the original protocol. Samples of washed immuno-
complexes along with the input were further treated
with RNase and then with proteinase K followed by
overnight reverse crosslinking at 65 °C with continuous
shaking at 1400 rpm in a thermoblock with heating lid.
DNA was purified using Agencourt AMPure XP
(#A63880, Beckman Coulter) beads as detailed in the
reference. The enrichment of specific target genes was
quantified by qRT-PCR, comparing the TFAP2A-ChIP
with the IgG negative control.
Libraries of ChIPed and input DNA were prepared ac-

cording to the instruction manual of NEBNext® ChIP-
Seq Library Prep Reagent Set for Illumina. In brief, end
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repair of input and ChIPed DNA was done by incubat-
ing with T4 DNA Polymerase Klenow fragment and T4
PNK enzyme at 20 °C for 30 min. The reaction was puri-
fied using Ampure beads according to the instruction
manual. An A nucleotide overhang at the 3’ end was
produced by treating the end repaired DNA with dATP
and Klenow Fragment (3´→ 5´ exo−) at 37 °C for
20 min followed by DNA purification. Double stranded
DNA adapters were ligated to dA overhang DNA by T4
DNA ligase reaction at 37 °C for 30 min followed by
DNA purification and size selection as described in the
instruction manual. Size selected DNA was PCR-
amplified for 16 cycles using NEBNext® High-Fidelity 2X
PCR Master Mix with Illumina universal forward primer
and indexed reverse primer, that enabled multiplexing of
samples for sequencing. Amplified DNA was finally
purified and sequenced on an Illumina Hiseq2500 in-
strument. The obtained sequencing reads were mapped
to the genome and visualized within the clipz genome
browser (www.clipz.unibas.ch).

Antibodies and reagents
We used primary antibodies against the following pro-
teins: TFAP2A (#sc-12726, Santa Cruz Biotechnology) for
Western Blot (WB) and TFAP2A (#NBP1-95386, Novus
Biologicals, Bio-Techne) for immunofluorescence and
immunoprecipitation, actin (#sc-1615, Santa Cruz
Biotechnology), E-cadherin (#610181, BD Transduction
Laboratories), N-cadherin (#610921, BD Transduction La-
boratories), Fibronectin (#F3648, Sigma-Aldrich), GAPDH
(#sc-32233, Santa Cruz Biotechnology), vimentin (#v2258,
Sigma-Aldrich). Recombinant human TGFβ1 was ob-
tained from R&D Systems.

Electrophoretic Mobility Shift Assay (EMSA)
TnT® T7 Quick Coupled Transcription/Translation
System (#L1171, Promega) was used to express in vitro
translated TFAP2A from the pcDNA3-TFAP2A
construct. Double-stranded oligonucleotide probes were
end-labeled with 32P and purified on autoseq G-50
columns (#27-5340-01, Amersham). Binding reactions
containing probe, TFAP2A protein, poly (dI-dC) (#81349,
Sigma-Aldrich) non-specific competitor in gel retention
buffer (25 mM HEPES pH 7.9, 1 mM EDTA, 5 mM DTT,
150 mM NaCl, 10% Glycerol) and electrophoresis were
carried out as described previously [29].

Combined motif activity response analysis
The datasets used in the following analysis are listed in
Additional file 1: Table S1. We applied the ISMARA tool
to each dataset as previously described [30]. Briefly, the
Motif Activity Response Analysis (MARA) infers the
activity of regulatory motifs from the number of binding
sites of each motif m in each promoter p (Nm,p) and the

genome-wide expression driven by these promoters p in
samples s (Ep,s):

Ep;s ¼ ~cs þ cp þ
X

m

Nm;pAm;s

where ~cs represents the mean expression in sample s, cp
is the basal expression of promoter p, and Am;s is the
(unknown) activity of motif m in sample s. To identify
motifs that consistently change in activity across datasets
we used a computational strategy as previously described
[31]. In brief, first we obtained the average activities over
the replicates of each condition in every dataset. Next, be-
cause the range of gene expression levels and consequently
the motif activities varied across datasets, we re-centered

and then standardized the averaged motif activities A
�
m;g

and corresponding errors σ �
m;g , belonging to a specific con-

dition g. To standardize the activities in a given dataset
with the epithelial-like condition labeled as a and the
mesenchymal-like condition by b we defined a scaling fac-

tor S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�b
m;g

� �2
þ A

�a
m;gð Þ2

2

r

, and then rescaled the activities

~A
�
m;g ¼

A
�
m;g

S and the corresponding errors ~σ �
m;g ¼

σ �
m;g

S .

Subsequently, we separated the condition-specific, aver-

aged and rescaled activities ( ~A
�
m;g ) and errors ( ~σ �

m;g ) ob-

tained from different datasets into two groups, depending
on whether they originated from epithelial-like cells (a) or
mesenchymal-like cells (b). We averaged activities belong-
ing to the same group as done for sample replicates before
(see above and [31]). Finally, to rank motif activity changes
during EMT we calculated for every motif m a z-score by
dividing the change in averaged activities by the averaged
errors:

z ¼ A
�b
m;g−A

�a
m;gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�σ�bm;gÞ2 þ ð�σ�am;gÞ2
q

Constructing motif-motif interaction networks
ISMARA predicts potential targets for each motif
m by calculating a target score R as the logarithm of
the ratio of two likelihoods: the likelihood of the
data D assuming that a promoter p is a target of the
motif, and the likelihood of the data assuming that it
is not:

R ¼ log
P Djtarget promoterð Þ

P Djnot target promoterð Þ
� �

The posterior probability p that a promoter is a target
given the data and assuming a uniform prior of 0.5 is
given by p ¼ 1

1þ 1
eR
. To construct motif-motif interactions,

we focused on those transcription regulators, whose
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regulatory regions were consistently (within all datasets)
predicted by ISMARA to be targeted by motifs of other
regulators. We obtained a combined probability pcomb

that a regulator is a target of a particular motif m across
I different datasets by calculating the probability product
of the probabilities obtained from individual datasets:

pcomb ¼
YI

i¼1

pi

GOBO analysis
The top 100 target genes of the TFAP2 {A,C}.p2 motif as
derived by applying ISMARA to the Neve et al. data set
[32] were analyzed with the Gene Expression-Based
Outcome for Breast Cancer Online (GOBO) tool [33].
For each gene only the promoter with the highest
ISMARA target score was considered for the analysis.

Estimating gene expression log2 fold changes from mRNA
sequencing data
For each sample s the expression values driven by each
promoter of a gene g (determined by ISMARA, see above)
were summed up to estimate the expression of gene g in
sample s. Log2 gene expression fold changes were then
calculated for TGFβ1-treated pCLX-GFP (pCLX-GFP +
TGF-beta), pCLX-TFAP2A (pCLX-TFAP2A), and for
TGFβ1-treated pCLX-TFAP2A (pCLX-TFAP2A+ TGF-
beta) cell lines relative to the pCLX-GFP (pCLX-GFP)
control cells.

Results
TFAP2A/C motif activity increases upon EMT in both
mouse and human systems
Aiming to identify major regulators of EMTand to further
construct a conserved network of their interactions, we
used the Motif Activity Response Analysis (MARA) ap-
proach, which combines high-throughput measurements
of mRNA expression with computational prediction of
regulatory elements [30]. The published ISMARA tool
[30] allows not only the automated analysis of individual
data sets, but also the inference of motifs that most gener-
ally explain gene expression changes across multiple
experiments.
The results from the combined MARA analysis of

different EMT mRNA expression datasets from breast
epithelial cell lines of mouse and human, and from the
differentiation of human pluripotent stem cells into NC
cell and mesoderm (Additional file 1: Table S1) are
shown in Fig. 1 [34–40]. How much a given motif
contributes to the observed gene expression changes is
quantified in terms of a combined z-score, which in our
case represents the significance of the motif activity
change between the epithelial and mesenchymal cell

types (denoted by the intensity of the color in Fig. 1a
and b and listed in Additional file 1: Tables S2 and S3).
Based on the genome-wide computational prediction of
binding sites for transcription regulators we can further
infer motif interaction networks. In Fig. 1, an arrow is
drawn between two motifs A and B when any of the reg-
ulators that recognizes motif B is a predicted target of
motif A. The motif interaction networks derived from
mouse and human EMT models suggest that only a
small fraction of the TFs has a highly conserved and sig-
nificant role in both species. The core transcriptional
network of EMT, containing the TFs Zeb1, Zeb2 and
Snai1, is conserved, as expected. The motifs that corres-
pond to these factors have negative activity changes dur-
ing EMT (represented by the blue color on the scheme)
which indicates that the expression of their targets
decreases, as expected from their known repressive func-
tion during the process [41]. The TFAP2A/C motif is
also a conserved component of both mouse and human
EMT networks. Its target genes are upregulated during
EMT (reflected by the red color in the figure) and thus
the motif itself is predicted to have a highly significant
positive change in activity. Furthermore, in both human
and mouse systems, the TFAP2A/C motif is predicted to
target both Zeb1 and Zeb2 TFs (Fig. 1a and b).

TFAP2A expression and activity changes in EMT and
breast cancer
We made use of the murine mammary gland cell line
NMuMG to further investigate the role of the AP-2 fam-
ily members TFAP2A and TFAP2C in EMT. Upon in-
duction with TGFβ1, NMuMG cells undergo EMT,
which manifests itself through E-cadherin downregula-
tion, formation of actin stress fibers and an elongated,
mesenchymal-like cell shape (Fig. 2a, b and [36]).
mRNA-seq revealed that of the five members of the AP-
2 family, only Tfap2a is expressed in this system, with
reads covering all its exons (Additional file 1: Figure S1).
Immunofluorescence staining of endogenous TFAP2A
demonstrated that the protein has a predominantly
nuclear localization (Fig. 2a, b). 48 h after the TGFβ1
stimulation we observed that Tfap2a mRNA levels
decreased moderately and further declined during the
14 days time course, while the common EMT markers
such as E-cadherin, Fibronectin and Vimentin followed
the expected trend (Fig. 2c).
We next generated mRNA-seq data from a 14 days

time course of NMuMG cells stimulated with 2 ng/mL
TGFβ1. Applying ISMARA to these data revealed the
dynamics of TFAP2A activity during the entire length of
the time course (Fig. 2d). As the paralogous TFAP2A
and TFAP2C bind similar sequences, we therefore refer
to their shared binding motif as TAFP2 {A,C}. In con-
trast to its mRNA expression (Fig. 2c), the TFAP2A
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transcriptional activity, reflected in the behavior of its
targets, increases during EMT (Figs. 1 and 2d). This in-
dicates that TFAP2A probably acts as a repressor in this
context. Despite the fact that Tfap2a transcript levels
and the TAFP2{A,C} motif activity exhibit a clear nega-
tive correlation, we observed the highest increase in ac-
tivity in the first 6 h of treatment, while the changes in
Tfap2a mRNA were delayed until a later time point.
This may indicate that Tfap2a is regulated at the protein
level. Considering that a rapid reduction of the active
form of a regulator (here within 6 h) can only be
achieved by post-translational mechanisms such as phos-
phorylation and/or targeted protein decay, the delayed
response at the mRNA level appears coherent [42, 43].
Consistent with the changes observed at mRNA level,
TFAP2A protein levels tend to decrease in the first 72 h
after the TGFβ1 treatment (Fig. 2e and f).
To gain further insight into the relationship between

TFAP2A expression and activity, we examined the
mRNA expression data that was previously generated
from human breast cancer cell lines [32]. The Neve et al.
data set contained 51 samples that were separated in three
categories according to their transcriptomic signature.
Using the GOBO online tool we found that TFAP2A ex-
pression is reduced in the basal B breast cancer cell lines
(Fig. 3a), which have a higher expression of the mesenchy-
mal markers compared to the basal A type cell lines

(Additional file 1: Figure S6). This is consistent with our
observations in the mouse cell line [33]. We also analyzed
the Neve et al. dataset [32] in ISMARA to identify the
most significant TFAP2{A,C} targets, based on their
ISMARA-provided z-score. Using the top 100 TFA-
P2{A,C} targets as input for the GOBO tool, we found that
their expression is significantly increased in the basal B
sub-type (Fig. 3b). Thus, we found a strikingly consistent
negative correlation between TFAP2A mRNA and the
expression of its transcriptional targets in the Neve et al.
dataset, as well as in the data that we obtained in the
NMuMG model. Remarkably, in a large panel of breast
tumor datasets originating from more than 1500 patients,
the expression of TFAP2A mRNA is also downregulated
in the basal sub-type cancer category (Fig. 3c) [33]. More
generally, using mRNA expression data from The Cancer
Genome Atlas, we found that the expression of TFAP2A
is positively correlated with that of epithelial markers and
negatively correlated with that of mesenchymal markers,
in normal breast tissue samples as well as in samples from
breast tumors (Additional file 1: Figure S7).

TFAP2A binds directly to the Zeb2 promoter region
In addition to the significant activity change of the TFA-
P2{A,C} motif activity in human and mouse EMT
systems (Fig. 1a and b), the interaction of the TFA-
P2{A,C} and ZEB1,2 motifs was also conserved in the

Mouse

Human

Fig. 1 The transcriptional networks inferred from different EMT systems. Motif–motif interaction networks derived from mouse (a) and human (b)
datasets. An arrow was drawn from a motif A to a motif B if motif A was consistently (across datasets from the corresponding species) predicted
to regulate a transcriptional regulator b that is known to bind motif B. The probability product that A targets b is reflected by the thickness of the
line. For readability, only motifs with an absolute z-score > 2.0 and having at least one interaction with another such motif (with a target probability
product > 0.35 for human and > 0.15 for mouse) are depicted. The color intensity of the nodes representing motifs is proportional to the significance
of the motif given by its z-score. Red indicates increased and green indicates decreased activity upon EMT
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EMT networks of both species. Our analysis predicted
that TFAP2{A,C} controls the expression of ZEB1 and
ZEB2 genes in both systems. The Zeb2 target has a
higher score than Zeb1 in NMuMG cells (target scores
from the initial ISMARA analysis were 0.7 for ZEB1 and
0.51 for ZEB2 in human, and 0.18 and 0.52, respectively
in mouse). To validate the interaction between
TFAP2A and the Zeb2 promoter we performed an
Electrophoretic Mobility Shift Assay (EMSA). From
the SwissRegulon database of transcription factor
binding sites that were predicted based on evolutionary
conservation (www.swissregulon.ch), we found that the re-
gion around the second exon of the Zeb2 gene, in which
the ATG start codon resides, contains seven clusters of
consensus binding sites for TFAP2{A,C} with a relatively

high posterior probability. The corresponding region is
represented in Fig. 4a. Two transcription start sites (TSS),
annotated in the SwissRegulon, based on cap analysis of
gene expression (CAGE) data [44], are in close proximity
to the TFAP2{A,C} binding sites, in the intronic region
between the first and the second exon (Fig. 4a) [44]. To
confirm that the TFAP2A TF binds to the predicted sites,
we carried out EMSA with radiolabeled oligonucleotides,
each spanning one of the predicted binding sites (Fig. 4a
and b). In the presence of the broad competitor poly-dI-
dC, most of the probes give a shift upon addition of
TFAP2A. The addition of an excessive amount of cold
probes containing the same binding sites (Wt), results in a
reduction of the shifted radiolabelled oligonucleotides, in-
dicating competition for specific binding. This is further

Fig. 2 TFAP2A expression and activity profile in the NMuMG EMT model. a-b NMuMG cells were treated with 2 ng/mL of TGFβ1 for 72 h and
were stained for TFAP2A and F-Actin (a) and TFAP2A and E-cadherin (b). The merged panels represent colocalization of the imaged markers with
the nucleus which was stained with DAPI and compared to controls. Scale bar represents 50 μm. c NMuMG cells were treated for 14 days with
2 ng/mL of TGFβ1. Quantitative RT-PCR of Tfap2a during the time course of this treatment indicates that Tfap2a mRNA levels are reduced upon
EMT. The EMT markers E-cadherin (Cdh1), Fibronectin (Fn1), Occludin (Ocln), and Vimentin (Vim) follow the expected trend. d Two mRNA-seq
samples from independent wells were prepared from a time course of NMuMG cells treated for 14 days with 2 ng/mL of TGFβ1, and the data
was consequently analyzed with ISMARA [30]. The figure depicts the dynamics of TFAP2A/C transcriptional activity during the time course. The
sequence logo of the TFAP2A/C binding motif is also indicated. e-f Lysates from NMuMG/E9 cells treated with 2 ng/mL of TGFβ1 for 72 h were
probed for TFAP2A, GAPDH and Lamin B expression by WB and their levels compared with the expression levels of Actin and also to the
Ponceau-stained membrane (e). The bar plot represents the densitometric quantification of the TFAP2A protein levels upon treatment compared
to the control (f) ** indicates a p-value < 0.01 in the paired t-test (P = 0.0014)
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demonstrated by the fact that only few probes, indicated
with red arrows, restored their shift in the presence of
cold competitors that contained mutated versions of
TFAP2A binding sites (M) (Fig. 4b).
To validate this regulatory interaction in NMuMG cells

we have generated a stable cell line in which the overex-
pression of TFAP2A can be induced with doxycycline (see
Methods; Additional file 1: Figure S2). As a control we
established a similar cell line using an expression construct
in which the TFAP2A coding region (CDR) was replaced
by green fluorescent protein (GFP) CDR. Using an anti-
body that recognizes the endogenous TF we further con-
firmed that TFAP2A binds to the Zeb2 promoter region by
TFAP2A-chromatin immunoprecipitation (ChIP) followed
by quantitative PCR: the Zeb2 promoter was significantly
enriched in the TFAP2A-ChIP from cell lines expressing
either exogenously-encoded TFAP2A (p = 0.005). Cells ex-
pressing only endogenous TFAP2A also showed an enrich-
ment of the the Zeb2, albeit not to the same level of
significance (p = 0.06) (Fig. 4c).
Visualization of ChIP-seq data that we also obtained in

this system, with the CLIPZ genome browser (www.clip-
z.unibas.ch) [45], confirms the presence of a peak in the
predicted binding region that is only present in the
TFAP2A-ChIP sample, but not in the Input controls
(Fig. 4d) or the IgG (not shown). Overall, these results
confirm that TFAP2A directly interacts with the Zeb2
promoter, both in vitro as well as in the NMuMG cell line.

TFAP2A overexpression in NMuMG modulates epithelial
plasticity
Finally, we used the above-mentioned cell lines to investi-
gate the consequences of perturbed TFAP2A expression.

Induced expression of TFAP2A, but not GFP, in untreated
NMuMG cells led to morphological changes visible in
phase contrast microscopy (Fig. 5a); compared to GFP-
expressing cells, TFAP2A-expressing cells lose their epi-
thelial polygonal cell shape and disperse on the plate.
Consistently, qRT-PCR showed that adhesion-related
genes were specifically deregulated upon TFAP2A induc-
tion (Additional file 1: Figure S3a and S3b). As expected,
the treatment of GFP-expressing cells with TGFβ1 for
3 days leads to the induction of EMT markers Snai1, Zeb2
and Vim. The expression of endogenous Tfap2a decreases
upon the treatment of GFP-expressing NMuMG cells with
TGFβ1. However, the induction of TFAP2A expression in
the absence of TGFβ1 treatment appears to promote the
expression of core EMT TFs such as Snai1, and Zeb2
(Fig. 5b and Additional file 1: Figure S3c), without
affecting the expression of E-cadherin at the mRNA level
(Additional file 1: Figure S3a).
To better understand the effect of TFAP2A overexpres-

sion, we carried out transcriptional profiling of these four
cell populations, namely untreated and TGFβ1-treated
GFP-expressing cells, and untreated and TGFβ1-treated
(for 72 h) TFAP2A overexpressing cells. The Tfap2a
expression is increased upon doxycycline induction
(Fig. 5b), but it decreases upon TGFβ1 treatment of GFP-
expressing control cells (as we have observed before).
Notably, the MARA analysis of these data reveals an
increased activity of the TFAP2{A, C} motif in TGFβ1-
induced, GFP-expressing cells, as we have initially
observed in wild-type NMuMG cells, but also in
TFAP2A-overexpressing cells treated with the growth fac-
tor when compared to GFP-expressing cells (Fig. 5c). The
TGFβ1 treatment of TFAP2A-overexpressing cells further
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increases the TFAP2A activity. Thus, the exogenously in-
troduced TFAP2A has an opposite transcriptional activity
relative to the endogenous form.
The activity of the SNAI1 motif decreases upon

TGFβ1 treatment while its mRNA level increases, as
expected from its known repressive activity in mesenchy-
mal cells [41] (compare Fig. 5b and c). However, the >4-
fold increase in Snai1 mRNA that occurred upon TFAP2A
overexpression was followed only by a small decrease in
SNAI1 motif activity. Interestingly, the TGFβ1-induced
decrease of SNAI1 activity is less pronounced when the

TGFβ1 treatment is carried out in TFAP2A-overexpress-
ing cells (Fig. 5b and c). These results indicate that overex-
pression of TFAP2A perturbs the course of TGFβ1-
induced EMT in NMuMG cells.

Discussion
Metastasis is the leading cause of death among breast can-
cer patients and a deeper understanding of the process is
necessary for the development of treatment strategies [46].
The development of malignancy has been related to epi-
thelial plasticity, and unsurprisingly, regulatory modules
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ard deviations. The one-tail paired t-test indicates that TFAP2A is significantly enriched at the Zeb2 (** for p < 0.01). d ChIP-seq libraries from TFAP2A
ChIP or input chromatin were generated and the coverage of the genomic region spanning the second exon of Zeb2 by reads is shown in a mouse
genome browser (www.clipz.unibas.ch and [45]). The results of two independent experiments are presented. The TFAP2A ChIP-seq the Zeb2 promoter
region previously assessed by qPCR is enriched with respect to the input control sample. Mapping, annotation and visualization of deep-sequencing
data was done with the ClipZ server [45]
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and networks that are involved in normal human develop-
ment are hijacked during tumorigenic processes [41].
Although the regulatory network behind EMT has been in-
tensely studied, by integrating data from multiple systems,
recently developed computational methods can continue
to provide new insights. In this study we have compared
data from both developmental processes and cancer
models of epithelial plasticity aiming to identify key regula-
tors that are evolutionarily conserved. We found only a
small number of motifs that have a significant activity
change upon EMT in both human and mouse systems. Of
these, SNAI1..3 and ZEB1..2 correspond to TFs that form
the core EMT network [35]. We did not explicitly recover
motifs for GSC, TWIST and FOXC2/SLUG. However, only
the last factor has a specific motif represented in ISMARA.

Motifs for miR-200 and the TGFβ1-related TGFI1 were
only identified from the human samples. A novel insight
derived from our analysis was that the motif corresponding
to the TFAP2A and/or TFAP2C TFs also has a significant
contribution to the expression changes that occur upon
EMT in both species (Fig. 1a and b). The mechanistic link
between TFAP2A/C and EMT was so far unknown, al-
though TFAP2A was previously found important for neural
crest formation and implicated in the activation of EMT
inducing factors [47]. Furthermore, TFAP2A and TFAP2C
have been implicated in mammary gland tumorigenesis
and metastasis formation [16, 19]. Our data demonstrates
that TFAP2A activity dynamically changes in the early time
points of the TGFβ1 induced EMT in NMuMG cells, and
thus suggests that TFAP2A regulates early steps in this
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visible in phase contrast microscopy upon TFAP2A expression. Scale bar: 50 μm. b Gene expression log2 fold changes of EMT markers (TFs) were
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treated with TGFβ1 alone (light blue). The EMT-inducing TFs have increased expression upon TFAP2A induction. * indicates a p-value≤ 0.05 and
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from mRNA-seq data as described in (b). The two replicates from each condition are plotted next to each other
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process (Fig. 2c). Although our analysis of the EMT time
series indicated that the expression of Tfap2a is negatively
correlated with the expression of its targets (reflected in
the motif activity, Additional file 1: Figure S4), overexpres-
sion of TFAP2A induces changes that are similar to those
occurring upon Tfap2a downregulation during EMT. This
observation can have multiple causes. One is that TFAP2A
activity is regulated post-translationally, similar to the core
EMT TFs [41]. For instance, the SNAI1 protein has a rapid
turn-over and its stability and activity are regulated by
post-translational phosphorylation, lysine oxidation and
ubiquitylation [41]. Indeed, it has been demonstrated that
the sumoylation and phosphorylation of the TFAP2A pro-
tein can affect its transcription activation or DNA binding
functions [48, 49]. Therefore, it is possible that during
EMT, the activity of TFAP2A on its targets changes from
repressive to activating and its mRNA levels may decrease
due to a feedback regulatory mechanism. A regulatory step
at the protein level is also suggested by the fact that the
highest increase in TFAP2A activity is observed in the first
6 h of treatment whereas the changes in the Tfap2amRNA
are delayed to a later time point (Fig. 2c and d). Alterna-
tively, TFAP2A may activate some of its targets and repress
others, so that which effect dominates overall will depend
on other factors or on TFAP2A expression levels. The dual
transcription activity of TFAP2A has also been reported
before [16]. Yet another possibility is that depending on its
mode of expression and of post-translational modifications,
TFAP2A may form distinct complexes with other factors
to activate or repress its targets. Additional experiments
will be necessary to address these possibilities. Neverthe-
less, our data provides evidence for a direct regulatory link
between TFAP2A/C and the core EMT regulators ZEB1
and ZEB2 in both human and mouse. In mouse, we found
that TFAP2A binds to the Zeb2 promoter (Fig. 4), and that
Zeb2 levels increase when TFAP2A is overexpressed
(Fig. 5b). These results indicate that TFAP2A regulates
EMT-inducing factors transcriptionally. Although we have
not investigated it in detail here, our TFAP2A-ChIP-seq
data suggests that other critical regulators of EMT such as
Snai1, Sox4, Ezh2 and Esrp2 may also be targets of
TFAP2A (Additional file 1: Figure S5). This further
strengthens the hypothesis that TFAP2A is part of a
densely-connected network of genes that are essential for
EMT [50–52]. Consistent with exogenous TFAP2A-
induced activation of EMT markers, the NMuMG cells
that overexpressed TFAP2A underwent phenotypical
changes that were indicative of the acquisition of a mesen-
chymal phenotype (Fig. 5a). Furthermore, an EMT signa-
ture of positively regulated genes was significantly
represented among genes that were up-regulated in
TFAP2A-overexpressing NMuMG cells compared to con-
trol, GFP-expressing cells (Additional file 1: Table S4) [35].
Genes involved in cellular adhesion and glycosphingolipid

metabolism, which has been recently suggested to regulate
cellular adhesion via St3gal5 and, more upstream, Zeb1
[53], seems to also be affected by TFAP2A overexpression
(Fig. 5b; Additional file 1: Figure S3b and S3c). Cell adhe-
sion is concomitantly affected (Fig. 5a). Thus, our results
support the link between TFAP2A and ZEB TFs, although
overexpression of TFAP2A leads to cellular that are ob-
served upon TGFβ1-induced down-regulation of endogen-
ous TFAP2A. One cannot exclude that the observed
induction of an EMT response upon TFAP2A overexpres-
sion is due to a phenomenon similar to the so-called
‘squelching effect’ [54]. The activity of TFAP2A does not
appear to be sufficient for the induction of a complete
EMT phenotype in the absence of TGFβ1 (Fig. 5a, c). Pre-
viously, ChIP-chip-based measurements of SMAD2/3
binding in human keratinocytes upon TGFβ stimulation
indicated that SMAD2/3 binding sites co-occur with those
for TFAP2A/C TFs, leading to the hypothesis that TFAP2A
is involved in mediating the TGFβ signaling [55]. However,
maintaining a high TFAP2A level in the context of TGFβ
signaling may interfere with the activity of EMT TFs
(Fig. 5c), consistent with our observation that EMT factors
such as SNAI1 have less repressive activity when TFAP2A
is overexpressed during TGFβ1-induced EMT. This in turn
could be the rationale for the moderate downregulation in
Tfap2a levels that we observed in the later phases of the
TGFβ1-induced EMT time course (Fig. 2c). Consistent
with previous studies that suggested that TFAP2A activa-
tion is connected with the luminal breast phenotype, thus
promoting the epithelial state [16], here we found that
endogenously-encoded TFAP2A is down-regulated upon
TGFβ1-induced EMT. Interestingly, PRRX1, another TF
that promotes EMT in a developmental context, was found
to both induce the transition, and reduce the metastatic
potential in tumors [56]. This suggests that the two pro-
cesses are not always coupled and that a tumor suppressor
can also activate EMT. This may be the case with TFAP2A
as well; while it mediates the initiation of EMT, its sus-
tained expression may interfere with EMT signaling. Our
data thus connects TFAP2A to the core regulatory network
that orchestrates the epithelium-to-mesenchyme transition
in normal development as well as in cancers.

Conclusions
Applying recently developed computational methods to
a set of epithelial plasticity datasets we have construct a
conserved transcription factor motif interaction network
that operates during the epithelium-to-mesenchyme
transition. Our analysis recovered the known core EMT
TFs and further linked the TFAP2A/C motif to this core
network. Employing the NMuMG model cell line we
provided further evidence that TFAP2A is involved in
EMT, most likely in the early stages. We found that
TFAP2A binds to the promoter of the Zeb2 master
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regulator of EMT and that TFAP2A overexpression in
NMuMG cells induces an increase in Zeb2 expression.
Finally overexpression of TFAP2A in NMuMG cells pro-
moted the expression of EMT markers and of cellular
features related to the acquisition of a mesenchymal
phenotype. Overall, our data links TFAP2A to the core
TF network that is regulating EMT in normal develop-
ment as well as in cancers.

Reviewers’ comments
Reviewer’s report 1: Dr. Martijn Huynen, Nijmegen Centre
for Molecular Life Science, The Netherlands

Reviewer comments
The manuscript describes an elegant computational ana-
lysis of the regulatory motifs associated with the EMT
transition, followed by the experimental validation that a
new factor, TFAP2A, plays an important role in this
process. In general I do find the first part of the paper
very convincing, it computationally identifies the factor,
confirms the results in independent data, and confirms
binding of the factor to a predicted target. I do get a bit
confused by the results of the overexpression of
TFAP2A, and the arguments used to make these results
consistent with the first part of the paper.
Author’s response:We thank the reviewer for the positive

assessment of our computational analysis. Although we
did find publicly available data that supports our conclu-
sions about the involvement of TFAP2A in EMT, we never-
theless sought to validate its role ourselves. We tried to
explain better the rationale and the results in the revision,
even though some results remain paradoxical.
Does Fig. 1 contain the complete set of motifs that are

predicted to be "differentially active" in the transition? If
so, is it a coincidence that they are all connected to each
other?
Author’s response: We have described the selection of

the motifs that we show in the legend of the Figure.
Briefly, we only showed motifs with an absolute z-score >
2 and arrows that represent predictions with probabil-
ities larger than a threshold (0.35 for human and 0.15
for mouse). For the readability of Fig. 1, only motifs that
have at least a predicted interaction with another motif
at the mentioned thresholds are considered. However,
realizing that motifs with significant activity that are not
connected to other motifs may also be of interest, we have
now included the full tables of motif activity changes
upon EMT as Additional file 1: Tables S2 and S3.
I am surprised by the low level of conservation

between the species. Are there some motifs from e.g. hu-
man that are just below a threshold? The authors argue
"The motif interaction networks derived from mouse
and human EMT models suggest that only a small frac-
tion of the TFs has a highly conserved and significant

role in both species." How reliable are those species-
specific predictions, and how reliable is the absence of a
signal in these analyses, with these data.
Author’s response: Although we selected sequencing

data sets obtained from systems where EMT presumably
occurs for both species, we unfortunately did not have
matching systems available for human and mouse. So in-
deed, the precise scores of the different motifs depend on
the data sets that we used and given sufficient data,
other motifs may emerge as having similar behaviour in
mouse and human EMT systems. Nevertheless, we found
it reassuring that the core EMT factors that were exten-
sively studied so far, such as SNAI and ZEB emerged
from our analysis. That the TFAP2A,C motif also has a
conserved function was unexpected and prompted us to
study it further.
If I understand the manuscript correctly, the downregu-

lation of TFAP2A is associated with the epithelial to mes-
enchymal transition. Why then overexpress TFAP2A?
Even is this has to do with technical limitations, I would
like to see that mentioned explicitly to better understand
the logic of the approach.
Author’s response: Our initial analysis indicated that

the expression of TFAP2A is down-regulated during EMT
(Fig. 2), while its motif activity increases, suggesting that
TFAP2A may function as a repressor. Therefore, we over-
expressed TFAP2A, reasoning that this should perturb
the process of TGFb1-induced EMT. Indeed, this is also
what we observe. However, analysis of the sequencing
data obtained after TFAP2A overexpressionoverexpres-
sion also revealed some paradoxical results, which we
addressed in our discussion.
I find the discussion why "overexpression of TFAP2A

induces changes that are similar to those occurring upon
Tfap2a downregulation during EMT" lengthy and un-
convincing. The authors first perform a very thorough
quantitative analysis of gene expression and motif occur-
rence data, based on the simplifying but defendable as-
sumptions of their linear model, confirm their findings
in independent breast cancer data (Fig. 3). Then they
use a large number of ad-hoc arguments to explain the
inconsistencies in their results. They may all be true, but
they are not convincing. Given the apparent contradict-
ory results of the overexpression, I am surprised by the
sentence "Finally, we confirm that overexpression of
TFAP2A in NMuMG cells modulates epithelial plasticity
and cell adhesion" in the abstract as those results do not
confirm a specific hypothesis based on the results of the
quantitative analysis.
Author’s response: We have revised the discussion to

hopefully make it more streamlined. We agree with the
reviewer that the initial computational analysis sug-
gested a clear picture of TFAP2’s involvement in EMT.
However, as we tried to go deeper into the mouse model,
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the results that we obtained were more complex than we
anticipated. We felt it was important to show the unex-
pected overexpression results, but in the revision we have
included only the initial characterization of this cell line,
without following it into the phenotypic analysis. We
hope that our revised description of the results makes it
clear what we have learned from the different systems
about the behaviour and role of TFAP2A.
In Fig. 5c there is a line connecting the various

constructs. I take it this is not meant to implicate some
sort of continuity? I do fully support publication once
these issues have been handled.
Author’s response: Thank you for pointing this out. We

have removed the lines to prevent the illusion of continu-
ity of the data points.
editorial: The legend with Fig. 3 could use some work

"ABasal" or "Basal A"?
Author’s response: We thank the reviewer for pointing

this out. We have fixed this issue and made the labels
easier to read.
TFAP2A expression was found to be less organized in

breast cancer compared to normal mammary gland. - >
glands
Author’s response: We think that the original formula-

tion is correct.
what is "substantially expressed"
Author’s response: We have explained that only

Tfap2a (and not the other family members) has read
coverage in all exons.
It would be nice to specify which TFs of the core EMT

network of ref 33 are retrieved and which are not.
Author’s response: We have expanded the text

accordingly.
"transcriptional" can often be replaced by "transcrip-

tion", e.g. in "transcriptional regulation" page 18,
Author’s response: We have changed the term in all

places where we thought it makes sense.
line 20 "the interactions of the TFAP2{A,C}" appears

redundant.
Author’s response: We removed the redundancy.
page 22. "in untreated NMuMG cells lead to morpho-

logical changes" – > "led"
Author’s response: Fixed.
"an EMT signature of positively regulated genes were

significantly represented" – > "was"
Author’s response: Fixed.

Reviewer’s report 1: Dr. Nicola Aceto, Department of
Biomedicine, University of Basel, Switzerland

Reviewer comments
Dimitrova et al. present a manuscript in which they high-
light the transcription factor TFAP2A as a novel EMT
regulator. They suggest that TFAP2A target genes, such as

ZEB2, are upregulated during EMT in the NMuMG mouse
model. Further, they conclude that the interaction between
TFAP2A and ZEB2 promoter affects ZEB2 expression,
hence modulating the EMT process itself and providing
evidence for a role of TFAP2A in cancer progression.
Altogether, this is an interesting manuscript yet requiring a
few modifications and clarifications to convincingly argue
in favor of TFAP2A’s role in cancer progression.
(1) Introduction: the authors write their introductory

paragraph arguing that e.g. “cancer progression, metasta-
sis and chemotherapy resistance have all been linked to
EMT”. However, the role of EMT for each of these pro-
cesses is highly debated in the field, and I would suggest
the authors to provide a more balanced introduction,
where it is clearly stated (and referenced) that the role/
requirement of EMT in all these processed has still to be
fully understood, especially in clinically-relevant settings.
Author’s response: We have rephrased and provided

additional references to make the introduction more
balanced.
(2) Fig. 2a: I remain unconvinced about the degree of

EMT that is triggered by TGFb in NMuMG cells. For
instance, why only a small fraction of control cells ex-
press E-cad (roughly 30%)? Looking at the TGFb-treated
cells, this ratio appears to remain the same (3/9 cells, i.e.
roughly 30%). TFAP2A-positive vs negative cells in con-
trol vs TGFb also do not seem to change much, and nei-
ther does actin. I would suggest the authors to provide
more quantitative data here (% of positive cells for each
marker, or signal intensity) that comprise several fields
of view.
Author’s response: To answer the reviewer’s questions,

we have redone the experiment, and imaged the cells
with higher magnification. The results in the revised Fig.
2 clearly show that TFAP2A is abundantly expressed
and nuclearly localized in control cells, while this stain-
ing pattern is abrogated upon TGFb1 treatment. In
almost all control cells, the expression of E-cadherin is
clearly visible, as is its localization close to the plasma
membrane, features which are also abrogated by the
TGFb1 treatment. E-cadherin levels estimated by West-
ern blot (Fig. 2e) also indicate down-regulation upon
TGFb1 treatment.
(3) Fig. 2c: how relevant is a Z-value of 3, with an

activity range varying from -0.02 to 0.01? Looking at
Fig. 1 (Z-values ranging from -19 to +19), can the
authors convincingly state that TFAP2 target genes (and
TFAP2 activity, respectively) significantly change upon
TGFb treatment in NMuMG cells?
Author’s response: Please note that Fig. 1 was generated

based on multiple data sets and that is why the z-scores
cover a much larger range. Based on a standard normal
distribution of z-scores we consider values larger than 2 (in
absolute value) significant.
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(4) Fig. 2d: somehow related to the previous point.
Changes in TFAP2A protein levels are not very impres-
sive. Is the change statistically significant? Control does
not seem to have any error bar, was it repeated more
than once?
Author’s response: We have repeated this experiment as

well, using three biological replicates, adding an additional
control (actin, in addition to lamin and GAPDH) and also
Ponceau staining (current Fig. 2e). Although the overall
protein levels are similar between conditions, TFAP2A’s ex-
pression decreases upon TGFb1 treatment (as apparent
also from the immunofluorescence staining, Fig. 2a). The
controls that we initially used, lamin and GAPDH, also
decrease to some extent upon TGFb1 treatment, which is
probably why the relative change in TFAP2A in our initial
figure was not very impressive. However, relative to the
total protein level as well as to actin, TFAP2A expression is
clearly reduced by the TGFb1 treatment.
(5) Fig. 3: The authors observe a correlation between

low TFAP2A expression and basal type of breast cancer.
Two questions arise here: (a) is basalB more EMT-like
than basal-A?
Author’s response: In the original publication (Ringner

et al. PLoS One, 6:e17911, 2011), the basal B type is
considered “more stem like”.
(b) how are TFAP2A target genes behaving in the

larger dataset with 1500 samples?
Author’s response: Unfortunately we could not carry

out this analysis on the GOBO web server.
(6) Fig. 5: could the authors elaborate more about their

conclusion “TFAP2A perturbs the course of TGFb-
induced EMT in NMuMG cells”? It seems here that
TFAP2A mRNA expression and activity are somewhat
disconnected here, yet in previous experiments they seem
to be going along quite well (e.g. see Fig. 2b-c and Fig. 3).
Author’s response: The reviewer, as reviewer #1 as well,

rightly points out that the TFAP2A that is expressed from
the exogenous construct seems to behave differently than
the endogenously-encoded gene. This is also apparent
from the quantification of TFAP2A expression in TGFb1-
treated control cells, that only express endogenously
encoded TFAP2A (which is down-regulated by the
treatment) and in TFAP2A overexpressionoverexpres-
sion (where the expression is up-regulated, as
expected, Fig. 5b). We discuss possible causes for this
discrepancy in our manuscript (Discussion section). Al-
though we did not identify the precise cause for it, we felt
that it was important to show these results.
(7) Fig. 6: In some instances (i.e. in TGFb-treated

samples), actin staining seems to extend to regions that
do not display any Hoechst staining. For example, in
TFAP2A + TGFb sample, actin staining shows cells on
the lower right corner of the image, but those cells do
not show up in the Hoechst staining.

Author’s response: We think that this had to do with
the intensity of the signal. However, we removed this
figure from the revised version of the manuscript.
(8) Differences in the aggregation index are not very

impressive, and when taken per se would not be a strong
argument of the involvement of TFAP2A in EMT. In-
stead, what would be the effect -in terms of EMT genes
expression- of depleting TFAP2A in NMuMG cells
treated with TGFb?
Author’s response: Because endogenous TFAP2A is

down-regulated upon TGFb1 treatment, we initially
sought to perturb the course of EMT by overexpressing
TFAP2A and we carried out most of the experiments
with this construct. It turned out that the overexpression
of TFAP2A leads to similar molecular signatures as the
downregulation of endogenous TFAP2A that takes place
upon TGFb1-induced EMT. We agree with the reviewer
that presenting the results with this construct as well as
with the siRNAs makes the interpretation very difficult.
We therefore decided to remove this figure and close the
study at the point where the exogenous construct showed
paradoxical results.
The authors show in Additional file 1: Figure S3 some

EMT genes, but it seems that genes such as Vim and
Ocln are missing.
Author’s response: We have regenerated panel b in Fig. 5

based on the mRNA-seq samples that we used to infer the
motif activities shown in panel c of the figure and we have
included also Ocln, aside from Vim, whose expression we
also estimated by qPCR. Both of the markers behave as
expected in EMT. The additional qPCR validations are
now shown in Additional file 1: Figure S3c.
Also, what is the TFAP2A knockdown level with the

siRNAs?
Author’s response: As we explained above, because the

results of perturbing TFAP2A expression were difficult to
interpret, we decided to not pursue too far the perturb-
ation experiments. Therefore, we removed Fig. 6 and we
did not include the siRNA quantifications in the revised
manuscript.
(9) Generally, it would be great to show some func-

tional assays related to EMT (e.g. Boyden chamber, etc.)
to reinforce the involvement of TFAP2A in this process
Author’s response: We agree with the reviewer that it

would be exciting to carry out these studies. However, as
the reviewer probably appreciates, this regulatory net-
work is very complex and the perturbation experiments
did not turn out as we expected. We therefore decided to
follow the suggestion of reviewer #1, concentrating on the
comparative analysis of the different systems that yielded
consistent results and not trying to resolve the specific
mechanism of TFAP2A, which likely depends on the
precise form of the protein that is expressed from the
endogenous locus.
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Reviewer’s report 2: Dr. Martijn Huynen, Nijmegen Centre
for Molecular Life Science, The Netherlands

Reviewer comments
This reviewer provided no additional comments.

Reviewer’s report 2: Dr. Nicola Aceto, Department of
Biomedicine, University of Basel, Switzerland

Reviewer’s comments
Dimitrova et al. present a revised version of the manu-
script that addressed and discussed some of the initial
concerns. While I find the manuscript worthy of publi-
cation, a few points are still worth mentioning: (1) In an
answer to my previous question #5 (see 1st review) the
authors argue that Basal B is considered more stem-like
(therefore more mesenchymal) than Basal A. However,
EMT and stem-like are two very different features of
cancer cells as well as normal tissues, which may or may
not overlap depending on a variety of factors. For instance,
a number of tumor cell lines that are fully epithelial can
display stem-like features (tumor initiation, self-renewal,
differentiation). My original question was more whether
by looking at gene expression data of Basal B, this tumor
type expresses significantly more EMT markers than Basal
A. This would reinforce their conclusions.
Author’s response: To answer the reviewer’s question we

have used the GOBO tool to compare the expression levels
of various epithelial and mesenchymal markers in Basal A
and Basal B tumor types. As shown in the new Additional
file 1: Figure S6, epithelial markers have higher expression
in Basal A tumors, whereas mesenchymal markers have
higher expression in Basal B tumors. This is in line with
the concept that Basal B tumors are more mesenchymal.
(2) Regarding patient data it would be more convincing

to check the expression of TFAP2 (as well as its target
genes and EMT markers) in several independent datasets
to reinforce the conclusions of the authors.
Author’s response: To answer the reviewer’s second ques-

tion, we have used yet another data set, namely expression
profiles of tumors and normal tissue samples from The
Cancer Genome Atlas, to further examine the relationship
between the expression of TFAP2A and that of various epi-
thelial and mesenchymal markers. These results, summa-
rized in the new Additional file 1: Figure S7, show that the
TFAP2A expression is positively correlated with that of epi-
thelial markers and negatively correlated with that of mes-
enchymal markers. This is again consistent with the results
we obtained in our experimental system (Fig. 2).

Additional file

Additional file 1: Supplementary information. (DOCX 19403 kb)
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Table-S1. Datasets used for the generation of Figure 1. 

 

Accession Species Description Reference 

GSE44727 human 
iPS cells vs iPS derived neural 

crest cells 
1

 

GSE23833 mouse 

NM18 cells transfected with 

25nm scrambled siRNA for 48hrs 

vs transfected with 25nm 

scrambled siRNA for 48hrs and 

treated with TGFβ1 for 40hrs 

2
 

GSE49151 mouse 

NMuMG/E9 cells treated with 

Control siRNA 1 or Control 

siRNA 1  and TGFβ1 

3
 

GSE21668 human 

Undifferentiated embryonic stem 

cells, H9 vs mesodermal 

progenitor population 

4
 

GSE9691 human 
HMLE cells untreated vs TGFβ1 

treated 
5

 

GSE55711 

 
mouse 

Py2T untreated vs 

Py2T 5 days TGFβ 
6

 

GSE55964 mouse Neuroepithelim vs neural crest 
7
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Table-S2. Motif activity changes derived from human EMT models (sorted by 

absolute z-scores). 
Motif Z-Score 

SNAI1..3.p2 -24.288498 

ZEB1.p2 -15.499399 

TFAP2{A,C}.p2 13.229919 

bHLH_family.p2 -9.973254 

ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 -9.771872 

ATF6.p2 9.291562 

HBP1_HMGB_SSRP1_UBTF.p2 9.226859 

MAFB.p2 9.049806 

UCCAGUU 8.346224 

TGIF1.p2 8.153858 

AAUACUG 8.008944 

GTF2I.p2 7.767217 

ZNF238.p2 7.406887 

TFEB.p2 7.375766 

GAGGUAG 6.920853 

NR4A2.p2 -6.870112 

IKZF2.p2 6.531350 

ESRRA.p2 -6.402536 

ZNF384.p2 6.350658 

XBP1.p3 6.286392 

FOX{I1,J2}.p2 6.271248 

HNF4A_NR2F1,2.p2 -6.229455 

ZNF423.p2 -6.162108 

HOX{A6,A7,B6,B7}.p2 6.099096 

SREBF1,2.p2 6.086621 

CUCCCAA -5.966596 

KLF12.p2 5.946872 

RFX1..5_RFXANK_RFXAP.p2 5.541792 

CRX.p2 -5.209987 

TEAD1.p2 5.085874 

MYOD1.p2 -5.075488 

SRF.p3 5.044129 

GUAAACA 5.000653 

UCACAGU 4.838087 

RXR{A,B,G}.p2 4.822125 

FOXN1.p2 4.817176 

TFAP4.p2 4.809295 

IKZF1.p2 -4.799092 

NKX3-1.p2 -4.792145 

POU5F1_SOX2{dimer}.p2 -4.723304 

NR6A1.p2 -4.421826 

UGUGCUU -4.412173 

DBP.p2 4.382192 

NFE2L1.p2 4.332266 

REST.p3 -4.301219 

TFDP1.p2 4.187116 

PAX5.p2 -4.168027 

FEV.p2 4.160352 

NFE2L2.p2 -4.136635 

MTF1.p2 -4.071565 

GAUUGUC 4.043714 

PITX1..3.p2 -4.039921 

HLF.p2 -4.017240 
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PBX1.p2 4.008166 

MYBL2.p2 3.965618 

HAND1,2.p2 -3.960443 

TCF4_dimer.p2 -3.950222 

GGAAUGU 3.914362 

STAT2,4,6.p2 3.882966 

AACACUG 3.866572 

UUUUUGC -3.861829 

SPIB.p2 3.848118 

LHX3,4.p2 -3.825488 

GAGAUGA 3.706771 

BPTF.p2 3.694402 

AAGUGCU 3.625894 

NHLH1,2.p2 3.563439 

ESR1.p2 -3.563007 

POU6F1.p2 3.556815 

SRY.p2 -3.501360 

FOX{D1,D2}.p2 3.460886 

NR1H4.p2 -3.444054 

AGUGGUU 3.428867 

UUGGCAC 3.428561 

POU1F1.p2 -3.427446 

AHR_ARNT_ARNT2.p2 -3.402815 

ACAGUAU 3.396875 

SOX17.p2 3.388932 

ZIC1..3.p2 3.380114 

EN1,2.p2 -3.358870 

PRRX1,2.p2 3.351237 

GATA6.p2 3.313266 

AGCACCA 3.258944 

AGCAGCG -3.188248 

PAX4.p2 3.186388 

SOX5.p2 -3.159007 

STAT1,3.p3 3.158086 

YY1.p2 -3.150770 

NFKB1_REL_RELA.p2 3.142962 

UUGGCAA 3.116745 

CACAGUG 3.073683 

SPZ1.p2 3.050127 

NKX2-3_NKX2-5.p2 -3.014212 

TFAP2B.p2 -2.951623 

AGCAGCA 2.933069 

GUAACAG 2.918261 

HOXA9_MEIS1.p2 -2.883912 

ZBTB16.p2 -2.880101 

UCACAUU -2.879964 

CUUUGGU 2.874260 

RBPJ.p2 -2.843359 

UUGGUCC 2.837260 

ETS1,2.p2 -2.824302 

HES1.p2 -2.801785 

MSX1,2.p2 -2.768325 

NRF1.p2 2.764340 

EHF.p2 -2.747095 

GUAGUGU 2.740297 

AAGGUGC 2.704792 
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TBP.p2 2.627495 

UUGUUCG 2.612341 

ACAUUCA 2.609181 

HNF1A.p2 -2.574668 

RORA.p2 -2.552431 

CDC5L.p2 -2.543031 

UCAAGUA 2.485514 

EP300.p2 2.478716 

TBX4,5.p2 2.452506 

SOX{8,9,10}.p2 2.443552 

CREB1.p2 -2.429477 

JUN.p2 2.416194 

CEBPA,B_DDIT3.p2 -2.399835 

FOX{F1,F2,J1}.p2 -2.253559 

HIF1A.p2 -2.245699 

GCAGCAU 2.223872 

RXRA_VDR{dimer}.p2 -2.208193 

PATZ1.p2 -2.199593 

GFI1.p2 2.060710 

ZNF148.p2 -2.056085 

MYB.p2 2.050658 

UGCAUAG 2.024762 

AGGUAGU 1.984808 

POU3F1..4.p2 -1.981746 

CDX1,2,4.p2 -1.969056 

LEF1_TCF7_TCF7L1,2.p2 1.949589 

ZBTB6.p2 -1.941322 

FOXP3.p2 -1.914797 

TFCP2.p2 1.888318 

EOMES.p2 1.885703 

MEF2{A,B,C,D}.p2 -1.881713 

TAL1_TCF{3,4,12}.p2 -1.876640 

AACAGUC 1.861035 

CAGUGCA 1.830254 

CCUUCAU 1.823326 

NANOG{mouse}.p2 -1.809389 

UCCCUUU 1.803226 

GUGCAAA 1.799525 

BACH2.p2 -1.778019 

GGCUCAG 1.772541 

CTCF.p2 1.734880 

GGCAAGA 1.734210 

EBF1.p2 -1.724006 

GCUACAU 1.657170 

ZFP161.p2 1.629917 

NFY{A,B,C}.p2 1.620166 

HMX1.p2 -1.605599 

FOXL1.p2 1.586486 

AUGGCUU 1.583830 

CCAGCAU -1.563745 

NFIX.p2 -1.550922 

T.p2 -1.545058 

ONECUT1,2.p2 -1.463027 

AGCUGCC -1.446600 

FOXD3.p2 -1.313682 

NKX2-2,8.p2 1.311760 
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MAZ.p2 1.311673 

PAX6.p2 -1.307375 

AACCUGG -1.306978 

AUGGCAC 1.279688 

ARID5B.p2 -1.251386 

UAAGACG 1.223018 

CCAGUGU 1.199163 

AIRE.p2 1.197368 

ZNF143.p2 -1.163473 

ADNP_IRX_SIX_ZHX.p2 1.112200 

CAGCAGG -1.112018 

AGUGCAA 1.106508 

GCUGGUG 1.105037 

AAUCUCU -1.096328 

DMAP1_NCOR{1,2}_SMARC.p2 -1.088310 

FOXO1,3,4.p2 1.083276 

UAAGACU 1.079116 

HSF1,2.p2 1.069167 

ELF1,2,4.p2 1.041648 

NKX2-1,4.p2 -1.019541 

RXRG_dimer.p3 0.998680 

STAT5{A,B}.p2 0.989426 

AR.p2 -0.987129 

HOX{A4,D4}.p2 -0.963680 

ACUGCAU -0.961381 

CGUGUCU -0.915790 

FOXA2.p3 -0.889308 

UAAUGCU 0.882457 

ATF4.p2 -0.880505 

LMO2.p2 -0.852996 

CUACAGU -0.851979 

TLX2.p2 0.838461 

AUGACAC -0.836765 

NR3C1.p2 0.830968 

GGAGUGU -0.802679 

ACCCUGU -0.777607 

NFIL3.p2 -0.769865 

ACAGUAC 0.769100 

PAX2.p2 0.761529 

NFE2.p2 0.736988 

ALX1.p2 -0.736058 

FOXQ1.p2 -0.692554 

GGAAGAC 0.671442 

CGUACCG 0.656731 

GAUCAGA 0.656140 

PDX1.p2 0.650568 

HIC1.p2 0.635679 

EGR1..3.p2 0.629637 

GGACGGA -0.612295 

ACUGGCC -0.610809 

POU2F1..3.p2 -0.610074 

AAUGCCC -0.584786 

GATA1..3.p2 0.581988 

NFATC1..3.p2 0.581690 

SMAD1..7,9.p2 -0.561780 

NKX3-2.p2 0.551091 
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NKX6-1,2.p2 0.543763 

NR5A1,2.p2 -0.534370 

ATF2.p2 -0.522030 

FOX{C1,C2}.p2 0.519247 

GZF1.p2 0.514649 

AGCUUAU 0.509781 

PPARG.p2 0.485195 

IRF1,2,7.p3 -0.472821 

VSX1,2.p2 0.470825 

EWSR1-FLI1.p2 -0.452944 

UAUUGCU -0.435356 

E2F1..5.p2 0.425908 

UGAAAUG -0.412954 

UGCAUUG -0.406212 

AAUCUCA -0.403747 

AUGUGCC 0.398050 

UGUGCGU -0.380793 

GFI1B.p2 -0.379048 

AAAGUGC -0.378342 

SOX2.p2 -0.378160 

ELK1,4_GABP{A,B1}.p3 0.340488 

GAGAACU 0.334635 

CCCUGAG 0.306717 

GTF2A1,2.p2 -0.297972 

AACGGAA -0.286985 

MZF1.p2 0.286773 

GLI1..3.p2 0.268608 

GGCAGUG -0.258552 

GUCAGUU -0.257585 

TP53.p2 -0.220073 

PRDM1.p3 -0.216004 

RREB1.p2 -0.206545 

AACCGUU -0.202728 

AAGGCAC 0.200079 

EVI1.p2 0.198591 

KLF4.p3 -0.184265 

HOX{A5,B5}.p2 0.176179 

PAX8.p2 -0.161384 

FOSL2.p2 0.138129 

POU5F1.p2 0.137880 

AUUGCAC -0.119868 

PAX3,7.p2 -0.115442 

NANOG.p2 0.104343 

ATF5_CREB3.p2 0.094706 

GAUAUGU -0.084700 

SPI1.p2 -0.081698 

TLX1..3_NFIC{dimer}.p2 0.080810 

UGACCUA 0.076086 

MYFfamily.p2 0.069070 

FOS_FOS{B,L1}_JUN{B,D}.p2 0.068486 

HMGA1,2.p2 0.055254 

CUX2.p2 -0.036901 

RUNX1..3.p2 -0.033572 

SP1.p2 -0.023642 

ACCCGUA 0.014366 
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Table-S3. Motif activity changes derived from mouse EMT models (sorted by 

absolute z-scores). 
Motif Z-Score 

HNF1A.p2 -18.319605 

TFAP2{A,C}.p2 13.139745 

HNF4A_NR2F1,2.p2 -10.316133 

SNAI1..3.p2 -9.802821 

NFY{A,B,C}.p2 -9.260140 

NFIL3.p2 -9.153861 

PATZ1.p2 9.037959 

GTF2A1,2.p2 8.129773 

E2F1..5.p2 -8.107501 

XBP1.p3 7.993492 

SOX{8,9,10}.p2 7.578368 

JUN.p2 7.391577 

ESRRA.p2 -7.092741 

ZEB1.p2 -6.970979 

ZFP161.p2 -6.773266 

RUNX1..3.p2 6.677799 

GAGGUAG 6.640954 

TFCP2.p2 6.502995 

RXR{A,B,G}.p2 6.232599 

HBP1_HMGB_SSRP1_UBTF.p2 6.211917 

ZBTB16.p2 -6.189857 

GATA1..3.p2 6.074720 

GUGCAAA 5.968291 

SMAD1..7,9.p2 5.715875 

HES1.p2 -5.703150 

GUAAACA 5.658502 

DBP.p2 -5.514266 

FOXA2.p3 -5.288262 

FOSL2.p2 5.275215 

EN1,2.p2 -5.001922 

STAT2,4,6.p2 4.958305 

YY1.p2 -4.954490 

AGCACCA 4.928008 

SOX2.p2 4.919780 

PRDM1.p3 4.820454 

TLX2.p2 4.812390 

MYB.p2 -4.762636 

ATF6.p2 4.710928 

bHLH_family.p2 4.694504 

ZNF238.p2 4.656929 

PAX2.p2 -4.622154 

RFX1..5_RFXANK_RFXAP.p2 -4.531748 

UAUUGCU 4.389541 

MYFfamily.p2 4.378652 

KLF12.p2 4.358762 

ZNF423.p2 4.227038 

NR1H4.p2 4.225841 

LMO2.p2 -4.188487 

NFATC1..3.p2 4.178978 

HOX{A6,A7,B6,B7}.p2 -4.123296 
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GLI1..3.p2 4.085050 

AGCUGCC -4.051388 

ESR1.p2 3.971369 

MEF2{A,B,C,D}.p2 3.903434 

NKX2-2,8.p2 3.857453 

IRF1,2,7.p3 3.845818 

FOXL1.p2 3.817527 

NR5A1,2.p2 3.787010 

ACAGUAC 3.741890 

NFE2L2.p2 3.715022 

CEBPA,B_DDIT3.p2 3.686488 

POU1F1.p2 -3.601421 

EBF1.p2 3.576447 

PAX5.p2 -3.448711 

GFI1.p2 -3.441597 

CCCUGAG 3.391263 

ZBTB6.p2 -3.359916 

ZIC1..3.p2 3.355679 

AAGUGCU -3.342459 

AGGUAGU -3.290403 

AUGGCAC 3.285942 

UUGUUCG -3.273784 

CCAGUGU 3.246929 

FEV.p2 3.164132 

UCACAUU -3.154298 

AGUGCAA -3.125763 

UUGGUCC 3.098766 

EGR1..3.p2 -3.096638 

AGCAGCA 3.094618 

SPIB.p2 3.082550 

FOX{I1,J2}.p2 -3.035529 

UGUGCUU 2.945159 

TFDP1.p2 2.916955 

RORA.p2 -2.858638 

GGCAGUG 2.851382 

TLX1..3_NFIC{dimer}.p2 -2.774303 

NANOG{mouse}.p2 -2.761615 

TFAP2B.p2 2.759048 

BPTF.p2 -2.699265 

EP300.p2 2.671825 

EOMES.p2 -2.609712 

CTCF.p2 2.570247 

NKX3-2.p2 -2.518638 

IKZF1.p2 -2.497992 

ARID5B.p2 2.487411 

CREB1.p2 -2.472282 

AUUGCAC -2.444454 

REST.p3 2.442849 

GGAAUGU 2.441918 

MTF1.p2 2.431261 

SOX5.p2 -2.409517 

FOX{D1,D2}.p2 2.387016 

AAGGUGC 2.379286 

NKX2-3_NKX2-5.p2 2.367255 

ALX1.p2 -2.352391 

UGCAUAG 2.323399 
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ZNF148.p2 -2.252424 

UCACAGU -2.232014 

HIC1.p2 2.222399 

PBX1.p2 -2.212457 

ATF5_CREB3.p2 -2.152149 

KLF4.p3 -2.127946 

ACAGUAU -2.127841 

EHF.p2 -2.110093 

IKZF2.p2 2.100513 

GAUUGUC -2.083073 

DMAP1_NCOR{1,2}_SMARC.p2 -2.044785 

SPZ1.p2 2.036622 

MYOD1.p2 -2.020948 

AAUACUG 2.010256 

FOX{F1,F2,J1}.p2 1.951040 

STAT5{A,B}.p2 1.944012 

UGAAAUG -1.941875 

ELK1,4_GABP{A,B1}.p3 -1.931232 

LHX3,4.p2 1.906492 

SRY.p2 1.894688 

ZNF384.p2 -1.824031 

AGUGGUU 1.818739 

MYBL2.p2 1.784815 

GATA6.p2 -1.762058 

TFAP4.p2 1.760603 

TAL1_TCF{3,4,12}.p2 1.682352 

AGCUUAU -1.675293 

ONECUT1,2.p2 -1.633590 

UCAAGUA 1.596472 

FOX{C1,C2}.p2 -1.549272 

FOXD3.p2 1.515649 

UUGGCAA -1.504195 

HLF.p2 1.501009 

HMX1.p2 -1.489057 

ADNP_IRX_SIX_ZHX.p2 -1.482936 

UCCAGUU -1.457275 

SRF.p3 1.452882 

PRRX1,2.p2 1.451130 

NANOG.p2 1.449412 

NKX6-1,2.p2 1.447207 

NFIX.p2 -1.431007 

AHR_ARNT_ARNT2.p2 -1.397611 

ZNF143.p2 -1.383203 

ACUGGCC -1.362517 

HSF1,2.p2 -1.360968 

UCCCUUU -1.357800 

TBX4,5.p2 -1.348500 

NFE2L1.p2 1.343626 

GCAGCAU 1.331934 

CAGUGCA 1.306031 

STAT1,3.p3 1.298060 

AACAGUC 1.292869 

HAND1,2.p2 1.287578 

UUUUUGC -1.280302 

GFI1B.p2 -1.267603 

FOXQ1.p2 -1.246515 
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GZF1.p2 1.202089 

ELF1,2,4.p2 1.198595 

NRF1.p2 -1.197642 

T.p2 1.190501 

GGACGGA 1.116742 

CUX2.p2 -1.071701 

HOXA9_MEIS1.p2 -1.064329 

LEF1_TCF7_TCF7L1,2.p2 1.056026 

TGIF1.p2 -1.034514 

UAAUGCU -0.996918 

HOX{A4,D4}.p2 -0.983296 

POU5F1.p2 -0.980397 

PPARG.p2 -0.965255 

AIRE.p2 0.924218 

GUAACAG 0.910750 

NFKB1_REL_RELA.p2 -0.905472 

NR6A1.p2 0.882506 

CDC5L.p2 -0.862852 

TEAD1.p2 0.852762 

GGAGUGU -0.843095 

FOXP3.p2 -0.838785 

AUGACAC -0.812233 

GCUGGUG 0.807405 

CUCCCAA 0.798569 

RXRA_VDR{dimer}.p2 0.780997 

AR.p2 0.736254 

BACH2.p2 -0.736097 

AACCUGG -0.734849 

TP53.p2 -0.723473 

UAAGACU -0.715628 

SPI1.p2 0.704271 

GUAGUGU -0.702330 

RREB1.p2 -0.698246 

HOX{A5,B5}.p2 0.693836 

GTF2I.p2 0.678249 

MSX1,2.p2 0.626156 

POU5F1_SOX2{dimer}.p2 0.624742 

AAUCUCU -0.614284 

UGCAUUG -0.601594 

ATF2.p2 -0.587577 

MAZ.p2 -0.569641 

GCUACAU -0.562374 

UAAGACG -0.562314 

AGCAGCG 0.559258 

AUGGCUU 0.542322 

CGUGUCU 0.538620 

GUCAGUU 0.505634 

FOS_FOS{B,L1}_JUN{B,D}.p2 0.498148 

CRX.p2 -0.489037 

ACUGCAU -0.478429 

POU6F1.p2 -0.463786 

CCAGCAU 0.459199 

TCF4_dimer.p2 0.445521 

MAFB.p2 0.424878 

AACACUG -0.405680 

TFEB.p2 -0.371070 
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CDX1,2,4.p2 -0.369270 

TBP.p2 0.349531 

CGUACCG -0.336247 

SP1.p2 0.333897 

GAGAUGA 0.331195 

PAX6.p2 -0.323456 

EWSR1-FLI1.p2 -0.319026 

GGCUCAG 0.318037 

AACGGAA 0.309046 

POU2F1..3.p2 0.299161 

AAUCUCA -0.293698 

GAUCAGA 0.292939 

CACAGUG 0.279905 

PAX8.p2 -0.271819 

ATF4.p2 -0.259694 

GAUAUGU 0.255698 

AAGGCAC -0.242607 

HIF1A.p2 -0.238108 

PAX4.p2 0.236628 

CUUUGGU -0.231595 

NKX2-1,4.p2 -0.226075 

NKX3-1.p2 0.225196 

UGACCUA -0.218150 

PDX1.p2 0.209241 

GGCAAGA -0.203007 

PAX3,7.p2 -0.200453 

POU3F1..4.p2 0.190423 

MZF1.p2 0.186999 

FOXO1,3,4.p2 -0.166946 

GGAAGAC 0.161723 

AACCGUU -0.161281 

GAGAACU -0.154159 

PITX1..3.p2 -0.139404 

VSX1,2.p2 -0.132444 

SOX17.p2 -0.122967 

UGUGCGU 0.122439 

NFE2.p2 0.119513 

ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 -0.105121 

ACCCUGU -0.094109 

UUGGCAC 0.088067 

EVI1.p2 -0.087064 

CUACAGU 0.079026 

RXRG_dimer.p3 -0.061463 

RBPJ.p2 -0.057384 

AAAGUGC -0.054632 

ACCCGUA -0.043866 

ACAUUCA 0.043493 

NHLH1,2.p2 -0.033172 

HMGA1,2.p2 -0.032751 

ETS1,2.p2 0.031012 

AAUGCCC -0.025423 

CCUUCAU 0.019178 

CAGCAGG 0.016615 

SREBF1,2.p2 0.010177 

FOXN1.p2 -0.009457 

NR3C1.p2 -0.006974 
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Table-S4.  Fisher test of EMT signature genes represented in differentially 

expressed genes in response to TFAP2A overexpression. 

 

EMT 

Signature 

Set
5
/Tfap2a 

EMT Sign. 

Genes: 

Changing 

EMT Sign. 

Genes:  Not 

Changing 

All Genes: 

Changing 

All Genes: 

Not 

Changing 

Pval 

Up/Up 18 42 2007 12798 0.0007559 

Up/Down 6 55 1538 13267 0.6181231 

Down/Down 19 87 1538 13267 0.0130989 

Down/Up 27 79 2007 12798 0.0008046 
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Figure-S1: Expression Profile of AP-2 family members. mRNAseq libraries from 

the following conditions NMuMG CTRL cells or cells treated for 14 days with 

growth factor, were generated and read coverage of the genomic region spanning  the 

genes from the family of AP-2 transcription factors is shown in a mouse genome 
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browser (www. clipz.unibas.ch 
8
). High densities of the reads (reads per million unit) 

are only present for the Tfap2a gene, while sporadic reads can be assigned to the other 

family members suggesting they have no or little expression. Mapping, annotation 

and visualization of deep-sequencing data was done with the CLIPZ server 
8
. 

 

 

 

 

 

 

 

 

 

Figure-S2: Overexpression of TFAP2A protein is detected by Western Blot. 

Lysates from NMuMG cells stably transduced with pCLX-TFAP2A or pCLX-GFP 

treated for 72 hours with 2 μg/mL doxycycline (Dox) or not (Nox) were probed for 

TFAP2A expression by WB. GAPDH is used as normalization control. 

Overexpression of TFAP2A is detectable only in the pCLX-TFAP2A doxycycline- 

induced cells.  
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Figure-S3: TFAP2A overexpression in NMuMG modulates epithelial plasticity. 

Quantitative RT-PCR of EMT markers on extracts from the doxycycline induced 

pCLX-TFAP2A or pCLX-GFP cell lines, treated or not with 2 ng/mL of TGFβ1 for 

72 hours. The results represented in the figure are the mean values from three 

experiments for cells non-treated with growth factor (light and dark green) and two 

independent experiments in the case of TGFβ1-induced samples. a) EMT markers that 

do not show differential expression upon TFAP2A induction. b) Set of genes 

(Stg3gal5, Tln1, Tnc, Zyx) involved in focal adhesion that are unregulated in both 
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TGFβ1-induced EMT and upon TFAP2A induction. In addition, the St3gal5 gene that 

was recently involved in cell adhesion downstream of TGFβ1 signaling and Zeb1 is 

also significantly changing in both conditions 
9
. The genes that displayed significant 

enrichment in the TFAP2A cell line versus the GFP cell line, as estimated from the 

performed one-tail paired t-test, are indicated with asterix (*) for p<0.05 and (**) for 

p < 0.01, respectively. (c) Quantitative RT-PCR of EMT markers (TFs) in extracts 

from the doxycycline-induced pCLX-GFP and pCLX-TFAP2A cell lines, treated or 

not with 2 ng/mL of TGFβ1 for 72 hours. Shown are the means from three 

experiments on cells not treated with growth factor (light and dark green) and two 

independent experiments in TGFβ1-induced cells. TFAP2A expression in TGFβ1-

induced cells was only measured once. TFAP2A overexpression is apparent in both 

TFAP2A-induced samples (dark green and dark blue) but is not induced in cell treated 

with TGFβ1 alone (light blue). The EMT-inducing TFs have increased expression 

upon TFAP2A induction. 
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Figure-S4: Correlation between TFAP2A/C activity and mRNA expression levels 

during EMT time course.  mRNA-seq samples in two replicates form independent 

wells were prepared from a time course of NMuMG cells treated for 14 days with 2 

ng/mL of TGFβ1, and the data was consequently analyzed with MARA 
10

. The figure 

emphasizes the correlation between TFAP2A/C transcriptional activity and mRNA 

expression levels during the time course.  
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Figure-S5: TFAP2A binds directly to crucial regulars of  

EMT. ChIP-seq libraries from TFAP2A ChIP or Input  were generated and the 

coverage of the genomic region spanning Snai1 (a), Ezh2 (b), Esrp2 (c), Sox4 (d) 

genes by reads is shown in a mouse genome browser (www.clipz.unibas.ch and 
8
). 

The results of a representative experiment are presented. Mapping, annotation and 

visualization of deep-sequencing data was done with the ClipZ server 
8
. 
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Figure-S6: EMT marker expression in breast cancers. 

Box plots of marker gene expression in a panel of breast cancer cell lines 

grouped in the basal A (red), basal B (grey) and luminal (blue) subgroups based 

on the annotation from Neve et al. 11  All plots were generated with the GOBO 

online tool 12. 
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Figure-S7: Correlation of log2 expression values of TFAP2A and EMT marker 

genes in normal and tumor breast tissues.  

The plots show the correlation of TFAP2A expression with the expression of the 

indicated epithelial and mesenchymal markers in normal breast tissue samples 

(n = 98) and of breast cancer samples (n = 1080). Normalized expression values 

of the indicated genes were obtained from The Cancer Genome Atlas project in 

Breast Invasive Carcinoma (TCGA-BRCA), more specifically from the Broad 

Institute TCGA Genome Data Analysis Center (2016): Analysis-ready 
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standardized TCGA data from Broad GDAC Firehose 2016_01_28 run. Broad 

Institute of MIT and Harvard. Dataset. https://doi.org/10.7908/C11G0KM9). 

 

 

Supplementary methods 

 

 

Analysis of mRNA-Sequencing data 

 

Mapping and annotation of sequencing reads was done using the CLIPZ webserver 
8
. 

Differential gene expression analysis was conducted using the Bioconductor DESeq 

package 
13

, whereat genes with an adjusted p-value < 0.05 were considered 

differentially expressed. Gene ontology (GO) analysis of differentially expressed 

genes was done with the topGO package 
14

 using the ”weight01” algorithm with a 

node size of one and ”Fisher” statistics. 

 

Analysis of EMT signature genes enrichment 

 

 

The differentially expressed genes between NMuMG cells that overexpress TFAP2A 

and NMuMG cells that overexpress GFP were compared to the EMT signature set of 

up- or downregulated genes 
5
. Those with an adjusted p-value < 0.05 and following 

the defined direction of modulation (Up or Down) were considered as changing, 

whereas those with an adjusted p-value > 0.05 or not following the defined trend were 

defined as non-changing.  In this manner four categories of genes sets comparing the 

signature gene set vs the genes differentially expressed upon TFAP2A overexpression 

were created  Up/Up, Up/Down, Down/Down and Down/Up and for each category 

the number of genes Changing and Not-Changing is calculated. A Fisher statistics 

was used to calculate the enrichment of the genes in each of the four categories as 

Page 103 of 124



compared to all genes up- or downregulated upon TFAP2A overexpression 

(http://www.quantitativeskills.com/sisa/statistics/fisher.htm), the one sided p-value 

p(O>=E) is represented. 
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Discussion and Perspectives 

 
During embryonic development cells with initially epithelial charachteristics gain 

mesenchymal and migratory capacities, due to phenotypical plasticity events (Thiery, 

Acloque et al. 2009). Epithelial to mesenchymal transition is involved in normal 

development; wound healing or pathological conditions such as tumor progression, 

metastasis and invasiveness, and fibrosis (Lamouille, Xu et al. 2014). A highly 

complex program at transcriptional, post-transcriptional and post-translational level 

ensures that cells expressing epithelial features will acquire mesenchymal phenotype 

during the transition (Tiwari, Gheldof et al. 2012; De Craene and Berx 2013).  

With the aim to identify conserved regulatory modules that operate in both cancer and 

normal development, we analyzed and compared several transcriptomics datasets 

from mouse and human EMT models, including neural crest differentiation, 

mesoderm specification and breast cancer. We used MARA (Motif Activity Response 

Analysis), an online tool that models the predicted regulatory sites for transcription 

factors (motifs) that explain the measured genome-wide expression changes in the 

input datasets (https://ismara.unibas.ch/fcgi/mara) (Balwierz, Pachkov et al. 2014). 

Further, we have constructed motif-motif interaction networks of both mouse and 

human EMT models. Next, we identified that TFAP2A/C motif increased activity is 

conserved between mouse and human and it has a central place in both EMT motif–

motif interaction networks. Moreover, the interaction between TFAP2A/C and ZEB 

motifs is also maintained in between the two mammalian networks. Consequently, to 

validate the predicted observations we used NMuMG cells; mouse breast cancer cell 

line that is widely used as an in vitro model of TGFβ induced EMT. Performing 

MARA analysis on transcriptomics data from this model we confirmed that 

TFAP2A/C motif changes are reproducible and in line with the previous observations. 

In addition, in the course of the transition the expression levels of Tfap2a mRNA are 

negatively correlated with the TF predicted activity change. What is more, we have 

demonstrated that TFAP2A directly interacts with Zeb2 promoter in vitro as well as in 

NMuMG cells.  The overexpression of TFAP2A in NMuMG cells, followed by its 

increased activity, is translated in altered cells epithelial phenotype.  TFAP2A 
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induced: i) changes in cellular morphology and cytoskeleton rearrangements; ii) a 

decrease in cellular adhesion, iii) increased mRNA levels of EMT master regulator 

TFs and iv) elevated expression of genes implicated in focal adhesion. Overall our 

results support a role of TFAP2A as a general modulator of EMT, which promotes the 

transition and it is probably involved in the initial step of the process. Those results 

are in a contradiction with recently published reports suggesting that TFAP2A and its 

homologue TFAP2C both govern the luminal cell phenotype and hence the epithelial 

cell state in breast cancer. Both studies from Weigel laboratory demonstrate that 

TFAP2C and/or TFAP2A modulate the expression of certain luminal genes, such as 

CD44 and ESRα (Bogachek, Chen et al. 2014; Cyr, Kulak et al. 2014). In addition, 

they show that TFAP2A activation by sumoylation inhibition abrogates the tumor 

formation capacities of breast cancer cell lines in xenografts, and leads to an increase 

in CD24
hi

/CD44
low

 cells population (Bogachek, Chen et al. 2014). However the 

CD24
low

/CD44
high

 phenotype and  tumor formation capacity of breast cancer cell lines 

are not directly related with EMT (Ocana, Corcoles et al. 2012). A recent study 

identified that increased expression of PRRX1 is a potent EMT inducer in cancer, 

while in the same time leading to reduction of the cancer stem cells population 

(CD24
low

/CD44
high

) thus uncoupling cancer stem cells formation and EMT (Ocana, 

Corcoles et al. 2012). A loss of function/ gain of function study of the roles of 

TFAP2A and TFAP2C in cancer cell lines confirmed that both TFs reduced the 

proliferation, but instead increased cells migration and invasion properties (Orso, 

Penna et al. 2008). Furthermore, TFAP2A knockdown led to increased adhesion, 

while the TF overexpression had the inverse effect (Orso, Penna et al. 2008). 

Therefore the results described by Weigel and colleagues can be mostly explained by 

the TFAP2A and TFAP2C effect on proliferation and depletion in cancer stem cell 

population, rather than directly relating them to the EMT phenotype. Furthermore our 

observations are also in line with previously described role of TFAP2A in neural crest 

specification, where it controls the expression of EMT, inducing transcription factors 

such as SNAIL and ZEB (Rada-Iglesias, Bajpai et al. 2012).  

In a perspective, TF luciferase reporters will be used to further confirm the predicted 

changes of TFAP2A activity. The most intriguing part of our results is the negative 

correlation between the mRNA levels of Tfap2a and its activity, suggesting that the 

TF either functions predominantly as repressor or that a negative auto-regulatory 

feed-back loop is operational. In both cases the luciferase reporters will be 
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instrumental to elucidate the precise mode of action of TFAP2A. In the case of auto-

regulatory loop one can further hypothesize that post-transcriptional or post-

translational mechanisms activate TFAP2A, to allow it directly or indirectly inhibit its 

own expression. Different splicing isoforms of TFAP2A were shown to have 

variations in transcriptional activity, as well as post-translational modifications, 

including ubiquitylation and phosphorylation, which are known to modulate its 

activity (Garcia, Campillos et al. 1999; Bogachek, Chen et al. 2014). For example, a 

K10R mutant of TFAP2A might be overexpressed in parallel together with wild-type 

TFAP2A in NMuMG cells and consequently observe for any phenotypical 

differences. Proteomic analysis by mass spectrometry can identify phosphorylated 

residues in the transcription factor and their relative proportion can be estimated with 

high precision using Single Reaction Monitoring/Multiple Reaction Monitoring 

(SRM/MRM) label-free method (Wolf-Yadlin, Hautaniemi et al. 2007). In addition, 

the link between TFAP2A expression levels and NMuMG adhesion properties needs 

to be studied in more detail, in order to confirm that the genes significantly affected at 

mRNA levels are also changing at protein level. Next, the siRNA-induced depletion 

of TFAP2A and the consequent effect on adhesion and EMT-TF in the presence or 

absence of TGFβ also needs to be addressed. Last but not least, results obtained in 

NMuMG cells needs to be validated in other EMT models ideally of both mouse and 

human and thus to confirm the general applicability of the model.  

A similar computational approach was applied to elucidate the mechanism by which 

miR-290-295 cluster functions in maintenance and differentiation of ESCs (Leonardo, 

Schultheisz et al. 2012). To better define the direct targets of miR-290-295 

microRNAs, we have carried out an extensive analysis of data sets derived from 

mESCs that either expressed or were deficient in expression of miR-290-295 cluster 

miRNAs. In this manner, we determined direct and reproducible transcription factor 

targets of the miRNAs that mediate the effects of these miRNAs in pluripotency. An 

initial computational analysis of these data predicted a set of miR-290 transcription 

factors that might be involved in the differentiation processes. The computationally 

predicted targets were validated with luciferase reporters in a mouse cell line. Finally, 

we demonstrated the expression variation of IRF2 in response to miRNAs depletion 

in ESC and, importantly, the involvement of nuclear factor kappa-B (NF-kB) pathway 

in the miRNA-dependent regulation in mESCs. This study provided a deeper 

understanding of the mechanism, by which miR-290 regulates pluripotency, and also 
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propose a extended vision of how microRNAs are implicated in cell cycle, innate 

immune response, and chromatin modification in mESC.   

Pluripotency maintenance and embryonic stem cells differentiation, as well as 

epithelial tissues homeostasis and plasticity, are complex processes that are regulated 

by inter-connected networks at transcriptional, post-transcriptional and post-

translational level.  An intensive research effort was dedicated in understanding the 

molecular mechanisms that operate in both networks. Recent advances in 

computational biology and systemic approaches allow for a new more explicit and 

accurate models of the regulatory organization of those processes.  Therefore the 

improvement and application of the newly emerging strategies will lead to 

identification of new entities that reproducibly and faithfully control critical 

circuitries in ESCs pluripotency maintenance or in EMT. 

  

Page 109 of 124



 

References 
 
 
Alberga, A., J. L. Boulay, et al. (1991). "The snail gene required for mesoderm formation 

in Drosophila is expressed dynamically in derivatives of all three germ  in    layers." 

Development 111(4): 983-992. 

Alberts, B. (2002). Molecular biology of the cell. New York, Garland Science. 

Altuvia, Y., P. Landgraf, et al. (2005). "Clustering and conservation patterns of human 

microRNAs." Nucleic acids research 33(8): 2697-2706. 

Anokye-Danso, F., C. M. Trivedi, et al. (2011). "Highly efficient miRNA-mediated 

reprogramming of mouse and human somatic cells to pluripotency." Cell stem 

cell 8(4): 376-388. 

Aqeilan, R. I., A. Palamarchuk, et al. (2004). "Physical and functional interactions 

between the Wwox tumor suppressor protein and the AP-2gamma transcription 

factor." Cancer research 64(22): 8256-8261. 

Arabadjiev ( 2012). "Of mice and men-differential mechanisms of maintaining the 

undifferentiated state in mESC and hESC." Biodiscovery 3(1). 

Arnold, S. J. and E. J. Robertson (2009). "Making a commitment: cell lineage allocation 

and axis patterning in the early mouse embryo." Nature reviews. Molecular cell 

biology 10(2): 91-103. 

Avilion, A. A., S. K. Nicolis, et al. (2003). "Multipotent cell lineages in early mouse 

development depend on SOX2 function." Genes & development 17(1): 126-140. 

Balwierz, P. J., M. Pachkov, et al. (2014). "ISMARA: automated modeling of genomic 

signals as a democracy of regulatory motifs." Genome research 24(5): 869-884. 

Bar, M., S. K. Wyman, et al. (2008). "MicroRNA discovery and profiling in human 

embryonic stem cells by deep sequencing of small RNA libraries." Stem cells 

26(10): 2496-2505. 

Barad, L., R. Schick, et al. (2014). "Human embryonic stem cells vs human induced 

pluripotent stem cells for cardiac repair." The Canadian journal of cardiology 

30(11): 1279-1287. 

Barrallo-Gimeno, A. and M. A. Nieto (2005). "The Snail genes as inducers of cell 

movement and survival: implications in development and cancer." Development 

132(14): 3151-3161. 

Bartel, D. P. (2009). "MicroRNAs: Target Recognition and Regulatory Functions." Cell 

136(2): 215-233. 

Batlle, E., E. Sancho, et al. (2000). "The transcription factor snail is a repressor of E-

cadherin gene expression in epithelial tumour cells." Nature cell biology 2(2): 84-

89. 

Batlle, R., L. Alba-Castellon, et al. (2013). "Snail1 controls TGF-beta responsiveness and 

differentiation of mesenchymal stem cells." Oncogene 32(28): 3381-3389. 

Beattie, G. M., A. D. Lopez, et al. (2005). "Activin A maintains pluripotency of human 

embryonic stem cells in the absence of feeder layers." Stem cells 23(4): 489-495. 

Berlato, C., K. V. Chan, et al. (2011). "Alternative TFAP2A isoforms have distinct 

activities in breast cancer." Breast cancer research : BCR 13(2): R23. 

Bernstein, E., S. Y. Kim, et al. (2003). "Dicer is essential for mouse development." 

Nature genetics 35(3): 215-217. 

Bill, R. and G. Christofori (2015). "The relevance of EMT in breast cancer metastasis: 

Correlation or causality?" FEBS letters 589(14): 1577-1587. 

Bilodeau, S., M. H. Kagey, et al. (2009). "SetDB1 contributes to repression of genes 

encoding developmental regulators and maintenance of ES cell state." Genes & 

development 23(21): 2484-2489. 

Page 110 of 124



 

Bogachek, M. V., Y. Chen, et al. (2014). "Sumoylation pathway is required to maintain 

the basal breast cancer subtype." Cancer cell 25(6): 748-761. 

Bohnsack, M. T., K. Czaplinski, et al. (2004). "Exportin 5 is a RanGTP-dependent 

dsRNA-binding protein that mediates nuclear export of pre-miRNAs." RNA 

10(2): 185-191. 

Borchert, G. M., W. Lanier, et al. (2006). "RNA polymerase III transcribes human 

microRNAs." Nat Struct Mol Biol 13(12): 1097-1101. 

Bortolin-Cavaille, M. L., M. Dance, et al. (2009). "C19MC microRNAs are processed 

from introns of large Pol-II, non-protein-coding transcripts." Nucleic Acids Res 

37(10): 3464-3473. 

Bosher, J. M., T. Williams, et al. (1995). "The developmentally regulated transcription 

factor AP-2 is involved in c-erbB-2 overexpression in human mammary 

carcinoma." Proceedings of the National Academy of Sciences of the United 

States of America 92(3): 744-747. 

Boyer, L. A., K. Plath, et al. (2006). "Polycomb complexes repress developmental 

regulators in murine embryonic stem cells." Nature 441(7091): 349-353. 

Brabletz, T. (2012). "EMT and MET in metastasis: where are the cancer stem cells?" 

Cancer cell 22(6): 699-701. 

Brabletz, T. (2012). "To differentiate or not--routes towards metastasis." Nature reviews. 

Cancer 12(6): 425-436. 

Bracken, C. P., P. A. Gregory, et al. (2008). "A double-negative feedback loop between 

ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal 

transition." Cancer research 68(19): 7846-7854. 

Braeutigam, C., L. Rago, et al. (2014). "The RNA-binding protein Rbfox2: an essential 

regulator of EMT-driven alternative splicing and a mediator of cellular invasion." 

Oncogene 33(9): 1082-1092. 

Brons, I. G., L. E. Smithers, et al. (2007). "Derivation of pluripotent epiblast stem cells 

from mammalian embryos." Nature 448(7150): 191-195. 

Brown, R. L., L. M. Reinke, et al. (2011). "CD44 splice isoform switching in human and 

mouse epithelium is essential for epithelial-mesenchymal transition and breast 

cancer progression." The Journal of clinical investigation 121(3): 1064-1074. 

Bryant, D. M. and K. E. Mostov (2008). "From cells to organs: building polarized tissue." 

Nature reviews. Molecular cell biology 9(11): 887-901. 

Buettner, R., P. Kannan, et al. (1993). "An alternatively spliced mRNA from the AP-2 

gene encodes a negative regulator of transcriptional activation by AP-2." 

Molecular and cellular biology 13(7): 4174-4185. 

Burk, U., J. Schubert, et al. (2008). "A reciprocal repression between ZEB1 and members 

of the miR-200 family promotes EMT and invasion in cancer cells." EMBO 

reports 9(6): 582-589. 

Campbell, K., G. Whissell, et al. (2011). "Specific GATA factors act as conserved 

inducers of an endodermal-EMT." Developmental cell 21(6): 1051-1061. 

Cano, A., M. A. Perez-Moreno, et al. (2000). "The transcription factor snail controls 

epithelial-mesenchymal transitions by repressing E-cadherin expression." Nature 

cell biology 2(2): 76-83. 

Cao, Y., W. T. Guo, et al. (2015). "miR-290/371-Mbd2-Myc circuit regulates glycolytic 

metabolism to promote pluripotency." The EMBO journal 34(5): 609-623. 

Cartwright, P., C. McLean, et al. (2005). "LIF/STAT3 controls ES cell self-renewal and 

pluripotency by a Myc-dependent mechanism." Development 132(5): 885-896. 

Carver, E. A., R. Jiang, et al. (2001). "The mouse snail gene encodes a key regulator of 

the epithelial-mesenchymal transition." Molecular and cellular biology 21(23): 

8184-8188. 

Page 111 of 124



 

Cavallaro, U. and G. Christofori (2004). "Cell adhesion and signalling by cadherins and 

Ig-CAMs in cancer." Nature reviews. Cancer 4(2): 118-132. 

Chambers, I., D. Colby, et al. (2003). "Functional expression cloning of Nanog, a 

pluripotency sustaining factor in embryonic stem cells." Cell 113(5): 643-655. 

Chambers, I., J. Silva, et al. (2007). "Nanog safeguards pluripotency and mediates 

germline development." Nature 450(7173): 1230-1234. 

Chambers, I. and A. Smith (2004). "Self-renewal of teratocarcinoma and embryonic stem 

cells." Oncogene 23(43): 7150-7160. 

Chekulaeva, M., H. Mathys, et al. (2011). "miRNA repression involves GW182-mediated 

recruitment of CCR4-NOT through conserved W-containing motifs." Nat Struct 

Mol Biol 18(11): 1218-1226. 

Chen, G., D. R. Gulbranson, et al. (2011). "Chemically defined conditions for human 

iPSC derivation and culture." Nature methods 8(5): 424-429. 

Cheng, X., A. Tiyaboonchai, et al. (2013). "Endodermal stem cell populations derived 

from pluripotent stem cells." Current opinion in cell biology 25(2): 265-271. 

Chia, N. Y., Y. S. Chan, et al. (2010). "A genome-wide RNAi screen reveals 

determinants of human embryonic stem cell identity." Nature 468(7321): 316-

320. 

Chong, J. J., X. Yang, et al. (2014). "Human embryonic-stem-cell-derived 

cardiomyocytes regenerate non-human primate hearts." Nature 510(7504): 273-

277. 

Christensen, L. (1992). "The distribution of fibronectin, laminin and tetranectin in human 

breast cancer with special attention to the extracellular matrix." APMIS. 

Supplementum 26: 1-39. 

Clift, D. and M. Schuh (2013). "Restarting life: fertilization and the transition from 

meiosis to mitosis." Nature reviews. Molecular cell biology 14(9): 549-562. 

Cole, M. D. and M. A. Nikiforov (2006). "Transcriptional activation by the Myc 

oncoprotein." Current topics in microbiology and immunology 302: 33-50. 

Cole, M. F., S. E. Johnstone, et al. (2008). "Tcf3 is an integral component of the core 

regulatory circuitry of embryonic stem cells." Genes & development 22(6): 746-

755. 

Cyr, A. R., M. V. Kulak, et al. (2014). "TFAP2C governs the luminal epithelial 

phenotype in mammary development and carcinogenesis." Oncogene. 

Dave, N., S. Guaita-Esteruelas, et al. (2011). "Functional cooperation between Snail1 and 

twist in the regulation of ZEB1 expression during epithelial to mesenchymal 

transition." The Journal of biological chemistry 286(14): 12024-12032. 

Davis, A. C., M. Wims, et al. (1993). "A null c-myc mutation causes lethality before 10.5 

days of gestation in homozygotes and reduced fertility in heterozygous female 

mice." Genes & development 7(4): 671-682. 

Davis, R. L., H. Weintraub, et al. (1987). "Expression of a single transfected cDNA 

converts fibroblasts to myoblasts." Cell 51(6): 987-1000. 

De Craene, B. and G. Berx (2013). "Regulatory networks defining EMT during cancer 

initiation and progression." Nature reviews. Cancer 13(2): 97-110. 

De Craene, B., F. van Roy, et al. (2005). "Unraveling signalling cascades for the Snail 

family of transcription factors." Cellular signalling 17(5): 535-547. 

de Pontual, L., E. Yao, et al. (2011). "Germline deletion of the miR-17[sim]92 cluster 

causes skeletal and growth defects in humans." Nat Genet 43(10): 1026-1030. 

Deneris, E. S. and O. Hobert (2014). "Maintenance of postmitotic neuronal cell identity." 

Nature neuroscience 17(7): 899-907. 

Dickinson, D. J., W. J. Nelson, et al. (2011). "A polarized epithelium organized by beta- 

and alpha-catenin predates cadherin and metazoan origins." Science 331(6022): 

1336-1339. 

Page 112 of 124



 

Dimos, J. T., K. T. Rodolfa, et al. (2008). "Induced pluripotent stem cells generated from 

patients with ALS can be differentiated into motor neurons." Science 321(5893): 

1218-1221. 

Ding, L., M. Paszkowski-Rogacz, et al. (2009). "A genome-scale RNAi screen for Oct4 

modulators defines a role of the Paf1 complex for embryonic stem cell identity." 

Cell stem cell 4(5): 403-415. 

Dottori, M., M. K. Gross, et al. (2001). "The winged-helix transcription factor Foxd3 

suppresses interneuron differentiation and promotes neural crest cell fate." 

Development 128(21): 4127-4138. 

Du, C., C. Zhang, et al. (2010). "Protein kinase D1 suppresses epithelial-to-mesenchymal 

transition through phosphorylation of snail." Cancer research 70(20): 7810-7819. 

Dye, B. R., D. R. Hill, et al. (2015). "In vitro generation of human pluripotent stem cell 

derived lung organoids." eLife 4. 

Eckert, D., S. Buhl, et al. (2005). "The AP-2 family of transcription factors." Genome 

biology 6(13): 246. 

Eloranta, J. J. and H. C. Hurst (2002). "Transcription factor AP-2 interacts with the 

SUMO-conjugating enzyme UBC9 and is sumolated in vivo." The Journal of 

biological chemistry 277(34): 30798-30804. 

Evans, M. (2011). "Discovering pluripotency: 30 years of mouse embryonic stem cells." 

Nature reviews. Molecular cell biology 12(10): 680-686. 

Evans, M. J. and M. H. Kaufman (1981). "Establishment in culture of pluripotential cells 

from mouse embryos." Nature 292(5819): 154-156. 

Fabian, M. R., N. Sonenberg, et al. (2010). "Regulation of mRNA translation and stability 

by microRNAs." Annu Rev Biochem 79: 351-379. 

Fagoonee, S., C. Bearzi, et al. (2013). "The RNA binding protein ESRP1 fine-tunes the 

expression of pluripotency-related factors in mouse embryonic stem cells." PloS 

one 8(8): e72300. 

Fazzio, T. G., J. T. Huff, et al. (2008). "An RNAi screen of chromatin proteins identifies 

Tip60-p400 as a regulator of embryonic stem cell identity." Cell 134(1): 162-174. 

Feng, X., Z. Wang, et al. (2014). "MiR-200, a new star miRNA in human cancer." Cancer 

letters 344(2): 166-173. 

Fernando, R. I., M. Litzinger, et al. (2010). "The T-box transcription factor Brachyury 

promotes epithelial-mesenchymal transition in human tumor cells." The Journal 

of clinical investigation 120(2): 533-544. 

Fidler, I. J. (2003). "The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis 

revisited." Nature reviews. Cancer 3(6): 453-458. 

Filipowicz, W., S. N. Bhattacharyya, et al. (2008). "Mechanisms of post-transcriptional 

regulation by microRNAs: are the answers in sight?" Nat Rev Genet 9(2): 102-

114. 

Franci, C., M. Takkunen, et al. (2006). "Expression of Snail protein in tumor-stroma 

interface." Oncogene 25(37): 5134-5144. 

Funahashi, J., R. Sekido, et al. (1993). "Delta-crystallin enhancer binding protein delta 

EF1 is a zinc finger-homeodomain protein implicated in postgastrulation 

embryogenesis." Development 119(2): 433-446. 

Gafni, O., L. Weinberger, et al. (2013). "Derivation of novel human ground state naive 

pluripotent stem cells." Nature 504(7479): 282-286. 

Galan-Caridad, J. M., S. Harel, et al. (2007). "Zfx controls the self-renewal of embryonic 

and hematopoietic stem cells." Cell 129(2): 345-357. 

Garcia, M. A., M. Campillos, et al. (1999). "Transcription factor AP-2 activity is 

modulated by protein kinase A-mediated phosphorylation." FEBS letters 444(1): 

27-31. 

Page 113 of 124



 

Gaspar-Maia, A., A. Alajem, et al. (2009). "Chd1 regulates open chromatin and 

pluripotency of embryonic stem cells." Nature 460(7257): 863-868. 

Gaubatz, S., A. Imhof, et al. (1995). "Transcriptional activation by Myc is under negative 

control by the transcription factor AP-2." The EMBO journal 14(7): 1508-1519. 

Genetta, T., D. Ruezinsky, et al. (1994). "Displacement of an E-box-binding repressor by 

basic helix-loop-helix proteins: implications for B-cell specificity of the 

immunoglobulin heavy-chain enhancer." Molecular and cellular biology 14(9): 

6153-6163. 

Goding, C. R., D. Pei, et al. (2014). "Cancer: pathological nuclear reprogramming?" 

Nature reviews. Cancer 14(8): 568-573. 

Gregory, P. A., A. G. Bert, et al. (2008). "The miR-200 family and miR-205 regulate 

epithelial to mesenchymal transition by targeting ZEB1 and SIP1." Nature cell 

biology 10(5): 593-601. 

Grether-Beck, S., I. Felsner, et al. (2003). "Mitochondrial cytochrome c release mediates 

ceramide-induced activator protein 2 activation and gene expression in 

keratinocytes." The Journal of biological chemistry 278(48): 47498-47507. 

Griffiths, D. S., J. Li, et al. (2011). "LIF-independent JAK signalling to chromatin in 

embryonic stem cells uncovered from an adult stem cell disease." Nature cell 

biology 13(1): 13-21. 

Guo, G., J. Yang, et al. (2009). "Klf4 reverts developmentally programmed restriction of 

ground state pluripotency." Development 136(7): 1063-1069. 

Han, H., M. Irimia, et al. (2013). "MBNL proteins repress ES-cell-specific alternative 

splicing and reprogramming." Nature 498(7453): 241-245. 

Han, J., Y. Lee, et al. (2004). "The Drosha-DGCR8 complex in primary microRNA 

processing." Genes & development 18(24): 3016-3027. 

Han, J. W. and Y. S. Yoon (2012). "Epigenetic landscape of pluripotent stem cells." 

Antioxidants & redox signaling 17(2): 205-223. 

Hanahan, D. and R. A. Weinberg (2011). "Hallmarks of cancer: the next generation." Cell 

144(5): 646-674. 

Hanna, J., M. Wernig, et al. (2007). "Treatment of sickle cell anemia mouse model with 

iPS cells generated from autologous skin." Science 318(5858): 1920-1923. 

Haraguchi, M., T. Okubo, et al. (2008). "Snail regulates cell-matrix adhesion by 

regulation of the expression of integrins and basement membrane proteins." The 

Journal of biological chemistry 283(35): 23514-23523. 

Hartwell, K. A., B. Muir, et al. (2006). "The Spemann organizer gene, Goosecoid, 

promotes tumor metastasis." Proceedings of the National Academy of Sciences of 

the United States of America 103(50): 18969-18974. 

He, L. and G. J. Hannon (2004). "MicroRNAs: small RNAs with a big role in gene 

regulation." Nat Rev Genet 5(7): 522-531. 

Hennessy, B. T., A. M. Gonzalez-Angulo, et al. (2009). "Characterization of a naturally 

occurring breast cancer subset enriched in epithelial-to-mesenchymal transition 

and stem cell characteristics." Cancer research 69(10): 4116-4124. 

Herschkowitz, J. I., K. Simin, et al. (2007). "Identification of conserved gene expression 

features between murine mammary carcinoma models and human breast tumors." 

Genome biology 8(5): R76. 

Higashi, Y., H. Moribe, et al. (1997). "Impairment of T cell development in deltaEF1 

mutant mice." The Journal of experimental medicine 185(8): 1467-1479. 

Hilger-Eversheim, K., M. Moser, et al. (2000). "Regulatory roles of AP-2 transcription 

factors in vertebrate development, apoptosis and cell-cycle control." Gene 260(1-

2): 1-12. 

Page 114 of 124



 

Ho, L., E. L. Miller, et al. (2011). "esBAF facilitates pluripotency by conditioning the 

genome for LIF/STAT3 signalling and by regulating polycomb function." Nature 

cell biology 13(8): 903-913. 

Ho, L., J. L. Ronan, et al. (2009). "An embryonic stem cell chromatin remodeling 

complex, esBAF, is essential for embryonic stem cell self-renewal and 

pluripotency." Proceedings of the National Academy of Sciences of the United 

States of America 106(13): 5181-5186. 

Houbaviy, H. B., M. F. Murray, et al. (2003). "Embryonic stem cell-specific 

MicroRNAs." Developmental cell 5(2): 351-358. 

Hu, G., J. Kim, et al. (2009). "A genome-wide RNAi screen identifies a new 

transcriptional module required for self-renewal." Genes & development 23(7): 

837-848. 

Huang, Y. and F. E. Domann (1998). "Redox modulation of AP-2 DNA binding activity 

in vitro." Biochemical and biophysical research communications 249(2): 307-312. 

Humphrey, R. K., G. M. Beattie, et al. (2004). "Maintenance of pluripotency in human 

embryonic stem cells is STAT3 independent." Stem cells 22(4): 522-530. 

Hutvagner, G., J. McLachlan, et al. (2001). "A cellular function for the RNA-interference 

enzyme Dicer in the maturation of the let-7 small temporal RNA." Science 

293(5531): 834-838. 

Iliopoulos, D., M. Lindahl-Allen, et al. (2010). "Loss of miR-200 inhibition of Suz12 

leads to polycomb-mediated repression required for the formation and 

maintenance of cancer stem cells." Molecular cell 39(5): 761-772. 

Ivanova, N., R. Dobrin, et al. (2006). "Dissecting self-renewal in stem cells with RNA 

interference." Nature 442(7102): 533-538. 

Jager, R., U. Werling, et al. (2003). "Transcription factor AP-2gamma stimulates 

proliferation and apoptosis and impairs differentiation in a transgenic model." 

Molecular cancer research : MCR 1(12): 921-929. 

James, D., A. J. Levine, et al. (2005). "TGFbeta/activin/nodal signaling is necessary for 

the maintenance of pluripotency in human embryonic stem cells." Development 

132(6): 1273-1282. 

James, D., S. A. Noggle, et al. (2006). "Contribution of human embryonic stem cells to 

mouse blastocysts." Developmental biology 295(1): 90-102. 

Jean, D., J. E. Gershenwald, et al. (1998). "Loss of AP-2 results in up-regulation of 

MCAM/MUC18 and an increase in tumor growth and metastasis of human 

melanoma cells." The Journal of biological chemistry 273(26): 16501-16508. 

Jiang, J., Y. S. Chan, et al. (2008). "A core Klf circuitry regulates self-renewal of 

embryonic stem cells." Nature cell biology 10(3): 353-360. 

Jiang, M. S., Q. Q. Tang, et al. (1998). "Derepression of the C/EBPalpha gene during 

adipogenesis: identification of AP-2alpha as a repressor." Proceedings of the 

National Academy of Sciences of the United States of America 95(7): 3467-3471. 

Kadzik, R. S. and E. E. Morrisey (2012). "Directing lung endoderm differentiation in 

pluripotent stem cells." Cell stem cell 10(4): 355-361. 

Kagey, M. H., J. J. Newman, et al. (2010). "Mediator and cohesin connect gene 

expression and chromatin architecture." Nature 467(7314): 430-435. 

Kai, Z. S. and A. E. Pasquinelli (2010). "MicroRNA assassins: factors that regulate the 

disappearance of miRNAs." Nature structural & molecular biology 17(1): 5-10. 

Kawamura, M., S. Miyagawa, et al. (2012). "Feasibility, safety, and therapeutic efficacy 

of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine 

ischemic cardiomyopathy model." Circulation 126(11 Suppl 1): S29-37. 

Keller, G. (2005). "Embryonic stem cell differentiation: emergence of a new era in 

biology and medicine." Genes & development 19(10): 1129-1155. 

Page 115 of 124



 

Kim, J., A. J. Woo, et al. (2010). "A Myc network accounts for similarities between 

embryonic stem and cancer cell transcription programs." Cell 143(2): 313-324. 

Kiskinis, E., J. Sandoe, et al. (2014). "Pathways disrupted in human ALS motor neurons 

identified through genetic correction of mutant SOD1." Cell stem cell 14(6): 781-

795. 

Kondo, M., E. Cubillo, et al. (2004). "A role for Id in the regulation of TGF-beta-induced 

epithelial-mesenchymal transdifferentiation." Cell death and differentiation 

11(10): 1092-1101. 

Korpal, M., E. S. Lee, et al. (2008). "The miR-200 family inhibits epithelial-

mesenchymal transition and cancer cell migration by direct targeting of E-

cadherin transcriptional repressors ZEB1 and ZEB2." The Journal of biological 

chemistry 283(22): 14910-14914. 

Kriks, S., J. W. Shim, et al. (2011). "Dopamine neurons derived from human ES cells 

efficiently engraft in animal models of Parkinson's disease." Nature 480(7378): 

547-551. 

Kumar, R. M., P. Cahan, et al. (2014). "Deconstructing transcriptional heterogeneity in 

pluripotent stem cells." Nature 516(7529): 56-61. 

Kuzmanov, A., U. Hopfer, et al. (2014). "LIM-homeobox gene 2 promotes tumor growth 

and metastasis by inducing autocrine and paracrine PDGF-B signaling." 

Molecular oncology 8(2): 401-416. 

Labelle, M., S. Begum, et al. (2011). "Direct signaling between platelets and cancer cells 

induces an epithelial-mesenchymal-like transition and promotes metastasis." 

Cancer cell 20(5): 576-590. 

Lahiri, S. K. and J. Zhao (2012). "Kruppel-like factor 8 emerges as an important regulator 

of cancer." American journal of translational research 4(3): 357-363. 

Lamouille, S., J. Xu, et al. (2014). "Molecular mechanisms of epithelial-mesenchymal 

transition." Nature reviews. Molecular cell biology 15(3): 178-196. 

Laurent, L. C., J. Chen, et al. (2008). "Comprehensive microRNA profiling reveals a 

unique human embryonic stem cell signature dominated by a single seed 

sequence." Stem cells 26(6): 1506-1516. 

Lee, T. I., R. G. Jenner, et al. (2006). "Control of developmental regulators by Polycomb 

in human embryonic stem cells." Cell 125(2): 301-313. 

Lee, Y., M. Kim, et al. (2004). "MicroRNA genes are transcribed by RNA polymerase 

II." EMBO J 23(20): 4051-4060. 

Lehembre, F., M. Yilmaz, et al. (2008). "NCAM-induced focal adhesion assembly: a 

functional switch upon loss of E-cadherin." The EMBO journal 27(19): 2603-

2615. 

Leonardo, T. R., H. L. Schultheisz, et al. (2012). "The functions of microRNAs in 

pluripotency and reprogramming." Nature cell biology 14(11): 1114-1121. 

Leung, A. K., A. G. Young, et al. (2011). "Genome-wide identification of Ago2 binding 

sites from mouse embryonic stem cells with and without mature microRNAs." 

Nature structural & molecular biology 18(2): 237-244. 

Lewis, B. P., C. B. Burge, et al. (2005). "Conserved seed pairing, often flanked by 

adenosines, indicates that thousands of human genes are microRNA targets." Cell 

120(1): 15-20. 

Lewis, B. P., I. H. Shih, et al. (2003). "Prediction of mammalian microRNA targets." Cell 

115(7): 787-798. 

Lin, C. Y., J. Loven, et al. (2012). "Transcriptional amplification in tumor cells with 

elevated c-Myc." Cell 151(1): 56-67. 

Lingel, A. and E. Izaurralde (2004). "RNAi: finding the elusive endonuclease." RNA 

10(11): 1675-1679. 

Page 116 of 124



 

Liu, J., Y. Yue, et al. (2014). "A METTL3-METTL14 complex mediates mammalian 

nuclear RNA N6-adenosine methylation." Nature chemical biology 10(2): 93-95. 

Loh, K. M. and B. Lim (2013). "Stem cells: Close encounters with full potential." Nature 

502(7469): 41-42. 

Lombaerts, M., T. van Wezel, et al. (2006). "E-cadherin transcriptional downregulation 

by promoter methylation but not mutation is related to epithelial-to-mesenchymal 

transition in breast cancer cell lines." British journal of cancer 94(5): 661-671. 

Ludwig, T. E., M. E. Levenstein, et al. (2006). "Derivation of human embryonic stem 

cells in defined conditions." Nature biotechnology 24(2): 185-187. 

Luscher, B. and J. Vervoorts (2012). "Regulation of gene transcription by the oncoprotein 

MYC." Gene 494(2): 145-160. 

Ma, L., J. Young, et al. (2010). "miR-9, a MYC/MYCN-activated microRNA, regulates 

E-cadherin and cancer metastasis." Nature cell biology 12(3): 247-256. 

Makrodouli, E., E. Oikonomou, et al. (2011). "BRAF and RAS oncogenes regulate Rho 

GTPase pathways to mediate migration and invasion properties in human colon 

cancer cells: a comparative study." Molecular cancer 10: 118. 

Mani, S. A., W. Guo, et al. (2008). "The epithelial-mesenchymal transition generates cells 

with properties of stem cells." Cell 133(4): 704-715. 

Mani, S. A., J. Yang, et al. (2007). "Mesenchyme Forkhead 1 (FOXC2) plays a key role 

in metastasis and is associated with aggressive basal-like breast cancers." 

Proceedings of the National Academy of Sciences of the United States of 

America 104(24): 10069-10074. 

Marson, A., R. Foreman, et al. (2008). "Wnt signaling promotes reprogramming of 

somatic cells to pluripotency." Cell stem cell 3(2): 132-135. 

Marson, A., S. S. Levine, et al. (2008). "Connecting microRNA genes to the core 

transcriptional regulatory circuitry of embryonic stem cells." Cell 134(3): 521-

533. 

Martin, G. R. (1981). "Isolation of a pluripotent cell line from early mouse embryos 

cultured in medium conditioned by teratocarcinoma stem cells." Proceedings of 

the National Academy of Sciences of the United States of America 78(12): 7634-

7638. 

Martin, G. R. and M. J. Evans (1975). "Differentiation of clonal lines of teratocarcinoma 

cells: formation of embryoid bodies in vitro." Proceedings of the National 

Academy of Sciences of the United States of America 72(4): 1441-1445. 

Mascetti, V. L. and R. A. Pedersen (2014). "Naivete of the human pluripotent stem cell." 

Nature biotechnology 32(1): 68-70. 

Massari, M. E. and C. Murre (2000). "Helix-loop-helix proteins: regulators of 

transcription in eucaryotic organisms." Molecular and cellular biology 20(2): 429-

440. 

Masui, S., Y. Nakatake, et al. (2007). "Pluripotency governed by Sox2 via regulation of 

Oct3/4 expression in mouse embryonic stem cells." Nature cell biology 9(6): 625-

635. 

Matsuda, T., T. Nakamura, et al. (1999). "STAT3 activation is sufficient to maintain an 

undifferentiated state of mouse embryonic stem cells." The EMBO journal 

18(15): 4261-4269. 

McCoy, E. L., R. Iwanaga, et al. (2009). "Six1 expands the mouse mammary epithelial 

stem/progenitor cell pool and induces mammary tumors that undergo epithelial-

mesenchymal transition." The Journal of clinical investigation 119(9): 2663-2677. 

Medeiros, L. A., L. M. Dennis, et al. (2011). "Mir-290-295 deficiency in mice results in 

partially penetrant embryonic lethality and germ cell defects." Proceedings of the 

National Academy of Sciences of the United States of America 108(34): 14163-

14168. 

Page 117 of 124



 

Meier, P., M. Koedood, et al. (1995). "Alternative mRNAs encode multiple isoforms of 

transcription factor AP-2 during murine embryogenesis." Developmental biology 

169(1): 1-14. 

Melnikova, V. O. and M. Bar-Eli (2008). "Transcriptional control of the melanoma 

malignant phenotype." Cancer biology & therapy 7(7): 997-1003. 

Melton, C., R. L. Judson, et al. (2010). "Opposing microRNA families regulate self-

renewal in mouse embryonic stem cells." Nature 463(7281): 621-626. 

Mencia, A., S. Modamio-Hoybjor, et al. (2009). "Mutations in the seed region of human 

miR-96 are responsible for nonsyndromic progressive hearing loss." Nat Genet 

41(5): 609-613. 

Micalizzi, D. S., K. L. Christensen, et al. (2009). "The Six1 homeoprotein induces human 

mammary carcinoma cells to undergo epithelial-mesenchymal transition and 

metastasis in mice through increasing TGF-beta signaling." The Journal of 

clinical investigation 119(9): 2678-2690. 

Milunsky, J. M., T. A. Maher, et al. (2008). "TFAP2A mutations result in branchio-oculo-

facial syndrome." American journal of human genetics 82(5): 1171-1177. 

Mintz, B. and K. Illmensee (1975). "Normal genetically mosaic mice produced from 

malignant teratocarcinoma cells." Proceedings of the National Academy of 

Sciences of the United States of America 72(9): 3585-3589. 

Mitchell, P. J., C. Wang, et al. (1987). "Positive and negative regulation of transcription 

in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen." Cell 

50(6): 847-861. 

Mitsui, K., Y. Tokuzawa, et al. (2003). "The homeoprotein Nanog is required for 

maintenance of pluripotency in mouse epiblast and ES cells." Cell 113(5): 631-

642. 

Miyoshi, N., H. Ishii, et al. (2011). "Reprogramming of mouse and human cells to 

pluripotency using mature microRNAs." Cell stem cell 8(6): 633-638. 

Mohibullah, N., A. Donner, et al. (1999). "SELEX and missing phosphate contact 

analyses reveal flexibility within the AP-2[alpha] protein: DNA binding 

complex." Nucleic acids research 27(13): 2760-2769. 

Morin, R. D., M. D. O'Connor, et al. (2008). "Application of massively parallel 

sequencing to microRNA profiling and discovery in human embryonic stem 

cells." Genome research 18(4): 610-621. 

Moser, M., J. Ruschoff, et al. (1997). "Comparative analysis of AP-2 alpha and AP-2 beta 

gene expression during murine embryogenesis." Developmental dynamics : an 

official publication of the American Association of Anatomists 208(1): 115-124. 

Murray, S. A. and T. Gridley (2006). "Snail family genes are required for left-right 

asymmetry determination, but not neural crest formation, in mice." Proceedings 

of the National Academy of Sciences of the United States of America 103(27): 

10300-10304. 

Najm, F. J., J. G. Chenoweth, et al. (2011). "Isolation of epiblast stem cells from 

preimplantation mouse embryos." Cell stem cell 8(3): 318-325. 

Nakaya, Y. and G. Sheng (2008). "Epithelial to mesenchymal transition during 

gastrulation: an embryological view." Development, growth & differentiation 

50(9): 755-766. 

Neve, R. M., K. Chin, et al. (2006). "A collection of breast cancer cell lines for the study 

of functionally distinct cancer subtypes." Cancer cell 10(6): 515-527. 

Niakan, K. K., E. C. Davis, et al. (2006). "Novel role for the orphan nuclear receptor 

Dax1 in embryogenesis, different from steroidogenesis." Molecular genetics and 

metabolism 88(3): 261-271. 

Page 118 of 124



 

Nichols, J., I. Chambers, et al. (2001). "Physiological rationale for responsiveness of 

mouse embryonic stem cells to gp130 cytokines." Development 128(12): 2333-

2339. 

Nichols, J. and A. Smith (2009). "Naive and primed pluripotent states." Cell stem cell 

4(6): 487-492. 

Nichols, J., B. Zevnik, et al. (1998). "Formation of pluripotent stem cells in the 

mammalian embryo depends on the POU transcription factor Oct4." Cell 95(3): 

379-391. 

Nicoloso, M. S., R. Spizzo, et al. (2009). "MicroRNAs--the micro steering wheel of 

tumour metastases." Nature reviews. Cancer 9(4): 293-302. 

Nie, Z., G. Hu, et al. (2012). "c-Myc is a universal amplifier of expressed genes in 

lymphocytes and embryonic stem cells." Cell 151(1): 68-79. 

Nieto, M. A. (2002). "The snail superfamily of zinc-finger transcription factors." Nature 

reviews. Molecular cell biology 3(3): 155-166. 

Nieto, M. A., M. G. Sargent, et al. (1994). "Control of cell behavior during vertebrate 

development by Slug, a zinc finger gene." Science 264(5160): 835-839. 

Niwa, H., T. Burdon, et al. (1998). "Self-renewal of pluripotent embryonic stem cells is 

mediated via activation of STAT3." Genes & development 12(13): 2048-2060. 

Niwa, H., J. Miyazaki, et al. (2000). "Quantitative expression of Oct-3/4 defines 

differentiation, dedifferentiation or self-renewal of ES cells." Nature genetics 

24(4): 372-376. 

Nori, S., Y. Okada, et al. (2011). "Grafted human-induced pluripotent stem-cell-derived 

neurospheres promote motor functional recovery after spinal cord injury in mice." 

Proceedings of the National Academy of Sciences of the United States of 

America 108(40): 16825-16830. 

O'Connor, T. P. and R. G. Crystal (2006). "Genetic medicines: treatment strategies for 

hereditary disorders." Nature reviews. Genetics 7(4): 261-276. 

O'Donnell, K. A., E. A. Wentzel, et al. (2005). "c-Myc-regulated microRNAs modulate 

E2F1 expression." Nature 435(7043): 839-843. 

Ocana, O. H., R. Corcoles, et al. (2012). "Metastatic colonization requires the repression 

of the epithelial-mesenchymal transition inducer Prrx1." Cancer cell 22(6): 709-

724. 

Okamoto, S. and M. Takahashi (2011). "Induction of retinal pigment epithelial cells from 

monkey iPS cells." Investigative ophthalmology & visual science 52(12): 8785-

8790. 

Orso, F., E. Penna, et al. (2008). "AP-2alpha and AP-2gamma regulate tumor progression 

via specific genetic programs." FASEB journal : official publication of the 

Federation of American Societies for Experimental Biology 22(8): 2702-2714. 

Park, I. H., N. Arora, et al. (2008). "Disease-specific induced pluripotent stem cells." Cell 

134(5): 877-886. 

Park, J. and J. E. Schwarzbauer (2014). "Mammary epithelial cell interactions with 

fibronectin stimulate epithelial-mesenchymal transition." Oncogene 33(13): 1649-

1657. 

Park, S. M., A. B. Gaur, et al. (2008). "The miR-200 family determines the epithelial 

phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and 

ZEB2." Genes & development 22(7): 894-907. 

Peinado, H., D. Olmeda, et al. (2007). "Snail, Zeb and bHLH factors in tumour 

progression: an alliance against the epithelial phenotype?" Nature reviews. Cancer 

7(6): 415-428. 

Pellikainen, J., A. Naukkarinen, et al. (2004). "Expression of HER2 and its association 

with AP-2 in breast cancer." European journal of cancer 40(10): 1485-1495. 

Page 119 of 124



 

Plaks, V., N. Kong, et al. (2015). "The cancer stem cell niche: how essential is the niche 

in regulating stemness of tumor cells?" Cell stem cell 16(3): 225-238. 

Poh, Y. C., J. Chen, et al. (2014). "Generation of organized germ layers from a single 

mouse embryonic stem cell." Nature communications 5: 4000. 

Postigo, A. A. and D. C. Dean (2000). "Differential expression and function of members 

of the zfh-1 family of zinc finger/homeodomain repressors." Proceedings of the 

National Academy of Sciences of the United States of America 97(12): 6391-

6396. 

Qi, J., J. Y. Yu, et al. (2009). "microRNAs regulate human embryonic stem cell division." 

Cell cycle 8(22): 3729-3741. 

Rada-Iglesias, A., R. Bajpai, et al. (2012). "Epigenomic annotation of enhancers predicts 

transcriptional regulators of human neural crest." Cell stem cell 11(5): 633-648. 

Rahl, P. B., C. Y. Lin, et al. (2010). "c-Myc regulates transcriptional pause release." Cell 

141(3): 432-445. 

Robertson, E., A. Bradley, et al. (1986). "Germ-line transmission of genes introduced into 

cultured pluripotential cells by retroviral vector." Nature 323(6087): 445-448. 

Rodin, S., L. Antonsson, et al. (2014). "Clonal culturing of human embryonic stem cells 

on laminin-521/E-cadherin matrix in defined and xeno-free environment." Nature 

communications 5: 3195. 

Rodriguez-Boulan, E. and I. G. Macara (2014). "Organization and execution of the 

epithelial polarity programme." Nature reviews. Molecular cell biology 15(4): 

225-242. 

Rossant, J. (2008). "Stem cells and early lineage development." Cell 132(4): 527-531. 

Ruby, J. G., C. H. Jan, et al. (2007). "Intronic microRNA precursors that bypass Drosha 

processing." Nature 448(7149): 83-86. 

Sakai, D., T. Suzuki, et al. (2006). "Cooperative action of Sox9, Snail2 and PKA 

signaling in early neural crest development." Development 133(7): 1323-1333. 

Salani, S., C. Donadoni, et al. (2012). "Generation of skeletal muscle cells from 

embryonic and induced pluripotent stem cells as an in vitro model and for therapy 

of muscular dystrophies." Journal of cellular and molecular medicine 16(7): 1353-

1364. 

Sawai, S., A. Shimono, et al. (1991). "Embryonic lethality resulting from disruption of 

both N-myc alleles in mouse zygotes." The New biologist 3(9): 861-869. 

Schnetz, M. P., L. Handoko, et al. (2010). "CHD7 targets active gene enhancer elements 

to modulate ES cell-specific gene expression." PLoS genetics 6(7): e1001023. 

Schneuwly, S., R. Klemenz, et al. (1987). "Redesigning the body plan of Drosophila by 

ectopic expression of the homoeotic gene Antennapedia." Nature 325(6107): 816-

818. 

Schorle, H., P. Meier, et al. (1996). "Transcription factor AP-2 essential for cranial 

closure and craniofacial development." Nature 381(6579): 235-238. 

Sekido, R., K. Murai, et al. (1994). "The delta-crystallin enhancer-binding protein delta 

EF1 is a repressor of E2-box-mediated gene activation." Molecular and cellular 

biology 14(9): 5692-5700. 

Sewell, W. and R. Y. Lin (2014). "Generation of thyroid follicular cells from pluripotent 

stem cells: potential for regenerative medicine." Frontiers in endocrinology 5: 96. 

Shamir, E. R. and A. J. Ewald (2014). "Three-dimensional organotypic culture: 

experimental models of mammalian biology and disease." Nature reviews. 

Molecular cell biology 15(10): 647-664. 

Shapiro, I. M., A. W. Cheng, et al. (2011). "An EMT-driven alternative splicing program 

occurs in human breast cancer and modulates cellular phenotype." PLoS genetics 

7(8): e1002218. 

Page 120 of 124



 

Shi, D., F. Xie, et al. (2014). "TFAP2A regulates nasopharyngeal carcinoma growth and 

survival by targeting HIF-1alpha signaling pathway." Cancer prevention research 

7(2): 266-277. 

Sinagoga, K. L. and J. M. Wells (2015). "Generating human intestinal tissues from 

pluripotent stem cells to study development and disease." The EMBO journal 

34(9): 1149-1163. 

Slattum, G. M. and J. Rosenblatt (2014). "Tumour cell invasion: an emerging role for 

basal epithelial cell extrusion." Nature reviews. Cancer 14(7): 495-501. 

Slorach, E. M., J. Chou, et al. (2011). "Zeppo1 is a novel metastasis promoter that 

represses E-cadherin expression and regulates p120-catenin isoform expression 

and localization." Genes & development 25(5): 471-484. 

Slukvin, II (2013). "Hematopoietic specification from human pluripotent stem cells: 

current advances and challenges toward de novo generation of hematopoietic 

stem cells." Blood 122(25): 4035-4046. 

Smith, A. G. (2001). "Embryo-derived stem cells: of mice and men." Annual review of 

cell and developmental biology 17: 435-462. 

Smith, A. G., J. K. Heath, et al. (1988). "Inhibition of pluripotential embryonic stem cell 

differentiation by purified polypeptides." Nature 336(6200): 688-690. 

Solter, D., N. Skreb, et al. (1970). "Extrauterine growth of mouse egg-cylinders results in 

malignant teratoma." Nature 227(5257): 503-504. 

Song, S. J., K. Ito, et al. (2013). "The oncogenic microRNA miR-22 targets the TET2 

tumor suppressor to promote hematopoietic stem cell self-renewal and 

transformation." Cell stem cell 13(1): 87-101. 

Spano, D., C. Heck, et al. (2012). "Molecular networks that regulate cancer metastasis." 

Seminars in cancer biology 22(3): 234-249. 

Stanton, B. R., A. S. Perkins, et al. (1992). "Loss of N-myc function results in embryonic 

lethality and failure of the epithelial component of the embryo to develop." Genes 

& development 6(12A): 2235-2247. 

Stefani, G. and F. J. Slack (2008). "Small non-coding RNAs in animal development." 

Nature reviews. Molecular cell biology 9(3): 219-230. 

Steiner, D., H. Khaner, et al. (2010). "Derivation, propagation and controlled 

differentiation of human embryonic stem cells in suspension." Nature 

biotechnology 28(4): 361-364. 

Stevens, L. C. and C. C. Little (1954). "Spontaneous Testicular Teratomas in an Inbred 

Strain of Mice." Proceedings of the National Academy of Sciences of the United 

States of America 40(11): 1080-1087. 

Suh, M. R., Y. Lee, et al. (2004). "Human embryonic stem cells express a unique set of 

microRNAs." Developmental biology 270(2): 488-498. 

Sun, C., Y. Nakatake, et al. (2009). "Dax1 binds to Oct3/4 and inhibits its transcriptional 

activity in embryonic stem cells." Molecular and cellular biology 29(16): 4574-

4583. 

Takagi, T., H. Moribe, et al. (1998). "DeltaEF1, a zinc finger and homeodomain 

transcription factor, is required for skeleton patterning in multiple lineages." 

Development 125(1): 21-31. 

Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from mouse 

embryonic and adult fibroblast cultures by defined factors." Cell 126(4): 663-676. 

Takayama, N., S. Nishimura, et al. (2010). "Transient activation of c-MYC expression is 

critical for efficient platelet generation from human induced pluripotent stem 

cells." The Journal of experimental medicine 207(13): 2817-2830. 

Taube, J. H., J. I. Herschkowitz, et al. (2010). "Core epithelial-to-mesenchymal transition 

interactome gene-expression signature is associated with claudin-low and 

Page 121 of 124



 

metaplastic breast cancer subtypes." Proceedings of the National Academy of 

Sciences of the United States of America 107(35): 15449-15454. 

Tavazoie, S. F., C. Alarcon, et al. (2008). "Endogenous human microRNAs that suppress 

breast cancer metastasis." Nature 451(7175): 147-152. 

Tee, W. W. and D. Reinberg (2014). "Chromatin features and the epigenetic regulation of 

pluripotency states in ESCs." Development 141(12): 2376-2390. 

Tesar, P. J., J. G. Chenoweth, et al. (2007). "New cell lines from mouse epiblast share 

defining features with human embryonic stem cells." Nature 448(7150): 196-199. 

Theunissen, T. W. and R. Jaenisch (2014). "Molecular control of induced pluripotency." 

Cell stem cell 14(6): 720-734. 

Theveneau, E. and R. Mayor (2012). "Neural crest delamination and migration: from 

epithelium-to-mesenchyme transition to collective cell migration." 

Developmental biology 366(1): 34-54. 

Thiery, J. P., H. Acloque, et al. (2009). "Epithelial-mesenchymal transitions in 

development and disease." Cell 139(5): 871-890. 

Thomson, J. A., J. Itskovitz-Eldor, et al. (1998). "Embryonic stem cell lines derived from 

human blastocysts." Science 282(5391): 1145-1147. 

Thuault, S., E. J. Tan, et al. (2008). "HMGA2 and Smads co-regulate SNAIL1 expression 

during induction of epithelial-to-mesenchymal transition." The Journal of 

biological chemistry 283(48): 33437-33446. 

Tiwari, N., A. Gheldof, et al. (2012). "EMT as the ultimate survival mechanism of cancer 

cells." Seminars in cancer biology 22(3): 194-207. 

Tiwari, N., V. K. Tiwari, et al. (2013). "Sox4 is a master regulator of epithelial-

mesenchymal transition by controlling Ezh2 expression and epigenetic 

reprogramming." Cancer cell 23(6): 768-783. 

Tiwari, V. K., M. B. Stadler, et al. (2012). "A chromatin-modifying function of JNK 

during stem cell differentiation." Nature genetics 44(1): 94-100. 

Trelstad, R. L., E. D. Hay, et al. (1967). "Cell contact during early morphogenesis in the 

chick embryo." Developmental biology 16(1): 78-106. 

van Berlo, J. H. and J. D. Molkentin (2014). "An emerging consensus on cardiac 

regeneration." Nature medicine 20(12): 1386-1393. 

Van de Putte, T., M. Maruhashi, et al. (2003). "Mice lacking ZFHX1B, the gene that 

codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell 

defects in the etiology of Hirschsprung disease-mental retardation syndrome." 

American journal of human genetics 72(2): 465-470. 

Varlakhanova, N. V., R. F. Cotterman, et al. (2010). "myc maintains embryonic stem cell 

pluripotency and self-renewal." Differentiation; research in biological diversity 

80(1): 9-19. 

Venables, J. P., L. Lapasset, et al. (2013). "MBNL1 and RBFOX2 cooperate to establish a 

splicing programme involved in pluripotent stem cell differentiation." Nature 

communications 4: 2480. 

Venkov, C. D., A. J. Link, et al. (2007). "A proximal activator of transcription in 

epithelial-mesenchymal transition." The Journal of clinical investigation 117(2): 

482-491. 

Villa-Diaz, L. G., A. M. Ross, et al. (2013). "Concise review: The evolution of human 

pluripotent stem cell culture: from feeder cells to synthetic coatings." Stem cells 

31(1): 1-7. 

Wainger, B. J., E. Kiskinis, et al. (2014). "Intrinsic membrane hyperexcitability of 

amyotrophic lateral sclerosis patient-derived motor neurons." Cell reports 7(1): 1-

11. 

Page 122 of 124



 

Wang, D., T. H. Shin, et al. (1997). "Transcription factor AP-2 controls transcription of 

the human transforming growth factor-alpha gene." The Journal of biological 

chemistry 272(22): 14244-14250. 

Wang, G., X. Guo, et al. (2013). "Critical regulation of miR-200/ZEB2 pathway in 

Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent 

stem cell generation." Proceedings of the National Academy of Sciences of the 

United States of America 110(8): 2858-2863. 

Wang, W., L. Lv, et al. (2011). "Reduced expression of transcription factor AP-2alpha is 

associated with gastric adenocarcinoma prognosis." PloS one 6(9): e24897. 

Wang, X., M. Zheng, et al. (2007). "Kruppel-like factor 8 induces epithelial to 

mesenchymal transition and epithelial cell invasion." Cancer research 67(15): 

7184-7193. 

Wang, Y., S. Baskerville, et al. (2008). "Embryonic stem cell-specific microRNAs 

regulate the G1-S transition and promote rapid proliferation." Nature genetics 

40(12): 1478-1483. 

Wang, Y., Y. Li, et al. (2014). "N6-methyladenosine modification destabilizes 

developmental regulators in embryonic stem cells." Nature cell biology 16(2): 

191-198. 

Wang, Y., R. Medvid, et al. (2007). "DGCR8 is essential for microRNA biogenesis and 

silencing of embryonic stem cell self-renewal." Nature genetics 39(3): 380-385. 

Warzecha, C. C., P. Jiang, et al. (2010). "An ESRP-regulated splicing programme is 

abrogated during the epithelial-mesenchymal transition." The EMBO journal 

29(19): 3286-3300. 

Warzecha, C. C., T. K. Sato, et al. (2009). "ESRP1 and ESRP2 are epithelial cell-type-

specific regulators of FGFR2 splicing." Molecular cell 33(5): 591-601. 

Wellner, U., J. Schubert, et al. (2009). "The EMT-activator ZEB1 promotes 

tumorigenicity by repressing stemness-inhibiting microRNAs." Nature cell 

biology 11(12): 1487-1495. 

Wheelock, M. J., Y. Shintani, et al. (2008). "Cadherin switching." Journal of cell science 

121(Pt 6): 727-735. 

Williams, R. L., D. J. Hilton, et al. (1988). "Myeloid leukaemia inhibitory factor 

maintains the developmental potential of embryonic stem cells." Nature 

336(6200): 684-687. 

Williams, T. and R. Tjian (1991). "Characterization of a dimerization motif in AP-2 and 

its function in heterologous DNA-binding proteins." Science 251(4997): 1067-

1071. 

Wolf-Yadlin, A., S. Hautaniemi, et al. (2007). "Multiple reaction monitoring for robust 

quantitative proteomic analysis of cellular signaling networks." Proceedings of 

the National Academy of Sciences of the United States of America 104(14): 

5860-5865. 

Woodcock, C. L. and R. P. Ghosh (2010). "Chromatin higher-order structure and 

dynamics." Cold Spring Harbor perspectives in biology 2(5): a000596. 

Woodfield, G. W., Y. Chen, et al. (2010). "Identification of primary gene targets of 

TFAP2C in hormone responsive breast carcinoma cells." Genes, chromosomes & 

cancer 49(10): 948-962. 

Worringer, K. A., T. A. Rand, et al. (2014). "The let-7/LIN-41 pathway regulates 

reprogramming to human induced pluripotent stem cells by controlling expression 

of prodifferentiation genes." Cell stem cell 14(1): 40-52. 

Xu, C., M. S. Inokuma, et al. (2001). "Feeder-free growth of undifferentiated human 

embryonic stem cells." Nature biotechnology 19(10): 971-974. 

Xu, R. H., X. Chen, et al. (2002). "BMP4 initiates human embryonic stem cell 

differentiation to trophoblast." Nature biotechnology 20(12): 1261-1264. 

Page 123 of 124



 

Yamanaka, S. (2009). "A fresh look at iPS cells." Cell 137(1): 13-17. 

Yamanaka, S. (2012). "Induced pluripotent stem cells: past, present, and future." Cell 

stem cell 10(6): 678-684. 

Yang, Z., S. Rayala, et al. (2005). "Pak1 phosphorylation of snail, a master regulator of 

epithelial-to-mesenchyme transition, modulates snail's subcellular localization 

and functions." Cancer research 65(8): 3179-3184. 

Ye, J. and R. Blelloch (2014). "Regulation of pluripotency by RNA binding proteins." 

Cell stem cell 15(3): 271-280. 

Yeo, J. C. and H. H. Ng (2013). "The transcriptional regulation of pluripotency." Cell 

research 23(1): 20-32. 

Yi, R., Y. Qin, et al. (2003). "Exportin-5 mediates the nuclear export of pre-microRNAs 

and short hairpin RNAs." Genes & development 17(24): 3011-3016. 

Yilmaz, M. and G. Christofori (2009). "EMT, the cytoskeleton, and cancer cell invasion." 

Cancer metastasis reviews 28(1-2): 15-33. 

Yilmaz, M. and G. Christofori (2010). "Mechanisms of motility in metastasizing cells." 

Molecular cancer research : MCR 8(5): 629-642. 

Ying, Q. L., J. Nichols, et al. (2003). "BMP induction of Id proteins suppresses 

differentiation and sustains embryonic stem cell self-renewal in collaboration 

with STAT3." Cell 115(3): 281-292. 

Yook, J. I., X. Y. Li, et al. (2006). "A Wnt-Axin2-GSK3beta cascade regulates Snail1 

activity in breast cancer cells." Nature cell biology 8(12): 1398-1406. 

Young, R. A. (2011). "Control of the embryonic stem cell state." Cell 144(6): 940-954. 

Yu, L., M. J. Hitchler, et al. (2009). "AP-2alpha Inhibits c-MYC Induced Oxidative 

Stress and Apoptosis in HaCaT Human Keratinocytes." Journal of oncology 

2009: 780874. 

Zeng, Y. X., K. Somasundaram, et al. (1997). "AP2 inhibits cancer cell growth and 

activates p21WAF1/CIP1 expression." Nature genetics 15(1): 78-82. 

Zhang, H., F. Meng, et al. (2011). "Forkhead transcription factor foxq1 promotes 

epithelial-mesenchymal transition and breast cancer metastasis." Cancer research 

71(4): 1292-1301. 

Zhang, J., S. Brewer, et al. (2003). "Overexpression of transcription factor AP-2alpha 

suppresses mammary gland growth and morphogenesis." Developmental biology 

256(1): 127-145. 

Zhang, J., S. Hagopian-Donaldson, et al. (1996). "Neural tube, skeletal and body wall 

defects in mice lacking transcription factor AP-2." Nature 381(6579): 238-241. 

Zhang, J., W. L. Tam, et al. (2006). "Sall4 modulates embryonic stem cell pluripotency 

and early embryonic development by the transcriptional regulation of Pou5f1." 

Nature cell biology 8(10): 1114-1123. 

Zhang, K., E. Rodriguez-Aznar, et al. (2012). "Lats2 kinase potentiates Snail1 activity by 

promoting nuclear retention upon phosphorylation." The EMBO journal 31(1): 

29-43. 

Zhong, L., Y. Wang, et al. (2003). "Functional characterization of the interacting domains 

of the positive coactivator PC4 with the transcription factor AP-2alpha." Gene 

320: 155-164. 

Zhou, B. P., J. Deng, et al. (2004). "Dual regulation of Snail by GSK-3beta-mediated 

phosphorylation in control of epithelial-mesenchymal transition." Nature cell 

biology 6(10): 931-940. 

 

 

 

Page 124 of 124


	02_ChapterI_27.10.2017.pdf (p.5-30)
	03_Nucl. Acids Res.-2014-Gruber-9313-26.pdf (p.31-44)
	04_ChapterII_27.10.2017.pdf (p.45-62)
	05_TFAP2A_paper.pdf (p.63-79)
	06_Supplementary Material.pdf (p.80-105)
	07_Discussion and Perspectives_27.10.2017.pdf (p.106-124)

