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Summary  
Malaria remains a threat to the lives of millions of children in tropical and subtropical 

countries. It is still a disease of public health significance, because of its role as a major cause of 

morbidity and mortality among the vulnerable group, specifically children under the age of five 

in the endemic countries. Although, substantial progress has been made in the control and 

prevention of the disease especially during the past 15 years due to multilateral commitment to 

malaria control, and this has led to reduction in the burden attributed to the disease. During the 

same period, financial resources for malaria prevention and control have been like up to twenty-

fold increase, which led to widespread scale-up of coverage of the core malaria control 

interventions: insecticide-treated nets (ITNs), indoor residual spraying (IRS), and prompt 

treatment of clinical malaria cases with artemisinin-based combination therapy (ACT).  

High resolution disease risk distribution is essential information in successful control 

activities, because of its versatility in cost effective planning, surveillance, and evaluation of 

such activities. Spatial statistical modelling provides rigorous inferential framework for high 

resolution disease risk mapping. It is a data-driven approach, which is used to build mathematical 

relationship between geo-referenced disease data and potential predictors (environmental and 

socio-demographic factors). Such model always includes the location specific random effect to 

explain the spatial correlation in the disease data that are due to common exposure in 

neighbouring locations. Geostatistical model are highly parameterized, nevertheless, a Bayesian 

geostatistical framework provides flexible and rigorous inferential methods for modelling such 

data. Computation tools such as simulation based Markov chain Monte Carlo (MCMC) or 

numerical approximation approach as integrated nested Laplace approach (INLA) are mostly 

engaged for such model fit.  

Nigeria is one of the countries in sub-Sahara Africa with high prevalence of malaria and its 

related morbidity and mortality among children under the age of five years. Contemporary high 

resolution estimates of malaria prevalence needed for control activities are lacking. Also the 

precise nature of malaria transmission and all-cause mortality remains unclear. Furthermore, 

spatial analysis of the effect of malaria intervention on the risk of the disease at the national and 

sub-national level is not yet done. Moreover, anaemia prevalence in Nigeria is high; however, its 

relationship with malaria burden among children under the age of five is not fully understood, 
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coupled with lack of high resolution estimates of the spatial distribution of the risk in the 

country. 

This thesis aims to address these knowledge gaps by developing data driven Bayesian 

geostatistical models for analyzing spatially referenced data and also to provide tools for malaria 

and its related morbidity control programmes in the country. The analysis in this work is based 

on data from the contemporary nationwide survey which are malaria indicator survey (MIS) and 

demography and health survey (DHS). Roll back malaria initiative in its global effort of 

coordinating malaria control developed the MIS to collect malaria related burden data on 

children under the age of five, and it is always conducted during the high transmission season. 

MIS is standardized in terms of survey design, questionnaire and implementation time.  

In chapter 2, we implemented a Bayesian geo-statistical model to analyze the first nationally 

representative malaria parasitaemia prevalence data in Nigeria to produce high resolution risk 

estimates of spatial distribution of malaria prevalence in the country, and also derived number of 

infected children at the sub-national level. Rigorous Bayesian variable selections were 

incorporated in the spatial models in order to select the best environmental predictors of malaria 

and its functional form. The approach identifies important risk factor to build Bayesian model of 

malaria risk in Nigeria. Also, various interventions coverage indicators were derived to assess 

their effect on malaria risk. The high resolution estimates show that malaria risk varies between 

19.6% and 47.7% in Lagos and Osun state, respectively. However, household coverage 

indicators of intervention did not indicates association with malaria risk. 

Chapter 3, present the assessment of the spatial effect of ITN use by children less than five 

years on the malaria parasitaemia prevalence at the first administrative, after adjusting for 

climatic and socio-demographic factors. Bayesian geostatistical model with spatial varying 

coefficient at the sub-national level was used to explore the malaria risk-intervention 

relationship. Smooth map of intervention effect was produced based on the parameter estimates 

of ITN use at the first administrative level.    

  In chapter 4, we employed a joint Bayesian geo-statistical Cox model with log constant 

baseline hazard and binomial geostatistical logistic regression models to relate mortality with 

malaria prevalence, and take into account spatial misalignment between DHS and MIS datasets, 

to evaluate the contribution of malaria prevalence to all-cause mortality among children less than 

five year of age. The mortality model was implemented separately for infant 0-6 months, 7-11 
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months, and older children. The model adjusted for socio-demographic factors known to be 

associated with risk of death among this vulnerable group. We also produced smooth map of 

residual variation not accounted for by the factors in our model.  

Chapter 5 presents the geostatistical analysis of haemoglobin level/anaemia risk. The study 

assessed malaria burden on anaemia risk among the children after adjusting for helminthiasis and 

schistosomiasis, and socio-demographic factors. We make use of some of these factors as 

available at individual level, and also use the predicted prevalence of those that were not directly 

obtained with the haemoglobin data, which led to the implementation of Bayesian geostatistical 

models (Gaussian and logistic) with measurement error, to incorporate the uncertainty in the 

predicted estimates. The predictive models were used to obtain high resolution estimates of 

geographical distribution of anaemia risk/haemoglobin level concentration in the country. The 

population adjusted prevalence show that approximately every 7 out of 10 children under the age 

of five years are anaemic in the country. 

The work in this thesis contributes improved Bayesian statistical methods for generating 

reliable estimate of disease burden (malaria parasitaemia prevalence, anaemia prevalence and 

number of infected children) at high spatial resolution. It also adds to the evidence of improve 

method of evaluating the effect of malaria interventions on disease prevalence. Furthermore, the 

generated model based risk maps constitute important information to national malaria control 

programme, because of its resourcefulness in right targeting of high risk area to achieve disease 

reduction, and eventually elimination. Finally, our work provides essential yardstick on which 

newer estimates could be compared as new data becomes available and control efforts continue.    
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Chapter 1 Introduction 

1.1   Rationale 

Recent years have witnessed exceptional surge in investment for malaria control due to 

renewed interest among the international health communities and donors on the possibility of the 

disease elimination. Global finance for malaria control has increased from million to billions of 

dollars within the last decade as a result of improvement in donation from various donors 

agencies of the world wealthiest countries coupled with the political willingness on the part of 

the government of the endemic countries. Intervention coverage is increasing, and also childhood 

morbidity and mortality is on the decline  in so many Asia and sub-Saharan African countries  

(Crawley et al., 2010).  

Achieving high returns on investment in disease prevention and control will necessarily 

require availability of reliable disease risk estimation. Risk maps represent vital tools in 

identifying area of high disease prevalence, and can inform for optimal apportionment of control 

interventions. They are very essential tools that could help control programs fast-track reduction 

in disease burden, and ultimately disease elimination. This information will find application in 

various stages of control activities, namely planning, execution, and evaluation of impact of such 

control program. 

Nationwide surveys are mostly designed to produce disease estimates at the country, regional, 

and first administrative level, but not at local scale appropriate for identification of focal clusters 

of high risk areas.  Spatial statistical modelling, an established rigorous inferential approach can 

be used to identify important predictors of a particular disease, and as well generate high 

resolution disease map. The high resolution risk estimates can be overlapped with the population 

surface, to derive the number of infected persons, at the required administrative level, which 

could serves a very important input, in the design and implementation of disease control 

activities.   

The thesis focus on the Geostatistical modelling of malaria risk and the effects of control 

intervention coverage on the disease prevalence, evaluation of malaria burden on anaemia 
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prevalence, relationship of the parasitaemia prevalence with all-cause mortality. Added to this is 

the application and development of appropriate methodology for the risk estimations.     

1.2 Disease characteristics 

1.2.1 Malaria  

Malaria is the disease caused by infection with Plasmodium parasites. The parasites are 

transmitted from an individual to another, through the bite of an infected female mosquito of the 

genus Anopheles. The human malaria parasite needs female mosquito and human to complete its 

life cycle. The mosquito and human serves as the definitive and intermediate host, respectively. 

There are five species of Plasmodium parasite  which cause human malaria and they are 

P.falciparum , P. Vivax, P. Ovale, P. knowlesi and  P malariae, but  the two most common are  

P.falciparum and  P. Vivax. As regard the dominant Plasmodium species in the endemic regions 

of the world, P.falciparum is the most common in sub-Saharan Africa and it is responsible for 

the most lethal form of the disease; P. Vivax is the predominant in Asia and Latin America, and it 

is associated with chronic but less severe form of the disease.   

1.2.1.1 Malaria Vector 

The distribution and abundance of different anopheles species determines to a great extent the 

malaria parasitaemia distribution. More than 400 species of Anopheles mosquitoes are known, 

however between 30 and 40 of this are considered to be malaria vector of public health 

significance (http://www.cdc.gov/malaria/about/biology/mosquitoes/index.html). Among these, 

the most usually associated vectors of malaria transmission in Africa are An. gambiae complex, 

and An. funestus. The two most commonly found species of   An. gambiae complex in the Africa 

south of Sahara are An. gambiae senso stricto and An. arabiensis. These species differs in their 

feeding and resting behaviours, and ecological condition preference. For instance, An. gambiae s. 

s. prefers rain dependent pools and temporary puddles for its breeding site; it rest indoors and 

feeds on humans.  An. funestus breed in marshy and swampy areas, a combination of permanent 

water bodies with vegetation; it also rest indoors, but feed mainly on human either outdoor or 

indoor. Because of this affinity for large water bodies, increase rainfall also come with rapid 

increase of vector density, which fall of more slowly as rain ceases  (Kweka et al., 2013; Munga 

et al., 2005). An. arabiensis breeds in smaller temporary water, feeds both on human and 
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animals; it basically feed and rest outside, and it is also able to tolerate dry environment, which 

makes it the dominant vector  at the onset of raining season (Kent et al., 2007; Sogoba et al., 

2007). The understanding of this spatial and temporal variation in the distribution of the vector 

population, which influences malaria transmission dynamics, is very central to malaria control 

effort and ultimately elimination (Mharakurwa et al., 2012).    

1.2.1.2 Global malaria burden 

According to the latest world malaria report (World Health Organization et al., 2015a), 

between 149 and 303 million of malaria cases, and about 438 000 deaths, are estimated globally. 

Compared with death due to malaria in the year 2000, this estimate represents a 48% decline in 

global malaria death. The highest percentage (88%) of these cases is homed in sub-Saharan 

Africa. The bulk (approximately 70%) of malaria deaths occur among children under five. 

Children under five and pregnant women are at greater risk, due to partial immunity in the 

former and suppressed immunity in the later. Malaria infection during pregnancy could have 

undesirable effect on both the mother and fetus.  

Malaria still represent major killer of sub-Saharan children due to the fact that a child dies 

every two minutes as a result of the disease infection in the region (World Health Organization et 

al., 2015a). Also, the most recent global burden of disease study reports that malaria account for 

3.3% of the 2.49 billion estimated global disability adjusted life years (DALYs), which represent 

an increase of about 19% to the value obtained a decade earlier. Economic-wise, it is estimated 

that at least $12 million represent the direct cost lost (for instance, illness, treatment and 

premature mortality) to malaria annually, and the cost due to retarded economic growth is 

substantially greater than this (https://www.cdc.gov/malaria/malaria_worldwide/impact.html).  
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 Figure 1.1:  Global Malaria distribution 2014 (Source: World malaria report 2014) 

1.2.1.3 Diagnosis and Symptom 

The symptoms of malaria are very similar to many other febrile illnesses which make the 

clinical diagnosis to be of lower specificity. This has resulted in over-prescribing of malaria drug 

with the accompanied drug resistance (Leslie et al., 2014; Yacoub et al., 2005). The gold 

standard for malaria diagnosis is thin film blood microscopy. Other specialized tests like 

serology and polymerase chain reaction (PCR) (Wongsrichanalai et al., 2007) are also employed 

for confirmatory and to determine the parasite species.  In the recent times, rapid diagnostic test 

(RDT) is also being used for diagnosis so that cases can be managed effectively and also with the 

advantage that it can be use even in remote areas where laboratory facilities are non-existing 

(D’Acremont et al., 2009).  

1.2.1.4 Measures of Transmission 

The most widely accessible measure of malaria transmission intensity is the prevalence and it 

quantifies the risk and endemicity.  It is easily estimated through the use of community-based 

survey data such as malaria information survey (MIS) and demographic health survey (DHS) by 

calculating the proportion of individuals with positive blood slide. Another measure which is 

also extensively employed is the entomological inoculation rate (EIR), and it is an estimate of 

number of infective bite an individual will probably be exposed to over a certain period of time. 
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It is a product of two rates which are sporozite rate (SR) (proportion of infectious mosquitoes) 

rate and human biting rate (number of mosquitoes bites a person received per unit time).  

Sporozite rate denotes fraction of mosquitoes with sporozites in their salivary glands among 

those dissected and examined.  The number of new cases diagnosed to be infected with malaria 

in a population within a specified period of time known as malaria incidence is another 

transmission intensity measure but it is difficult to obtain this data. Health management 

information system (HMIS) which collates data from health facilities often serve as repositories 

for incidence data, and this data may not reveal the true level of infection in the populace but 

only a representative of those who can access these facilities.  

1.2.1.5 Mapping of malaria transmission 

The resourcefulness of disease risk distribution in informed and helpful decision making, and 

also its importance in the assessment of impact of control programmes have made the map of 

malaria burden a topic of research for several decades. The first global assessment of malaria 

endemicity pattern was made by Lysenko and Semashko (Lysenko and Semashko, 1968).  This 

map synthesized data from various disparate sources such as historical records, documents, 

cartographic records of numerous malariometric indices (disease records, presence and absence 

of vector, human biting rate, sporozites rate, spleen rates, sickle cell incidence and parasite rates) 

to archive malaria endemicity during the period between the commencement of 20th century and 

late 1960's. The synthesized data were interpolated to produce a global malaria risk map by the 

engagement of heuristic approach such as expert's opinions, global increase and climatic 

suitability. The map reveals heterogeneity of malaria endemicity in Africa, Americas (central and 

south), Asia, the Mediterranean region and Oceania. Sequel to this, the Mapping Malaria Risk in 

Africa (MARA) project initiated in 1997 emphasized the need for the disease risk mapping at 

continental scale. This initiative led to generation of climatic suitability map (Craig et al., 1999) 

for sub-Sahara Africa and some model based map (Gemperli et al., 2006; Gosoniu et al., 2009) at 

sub-continental level.   

 In furtherance to this, the Malaria Atlas Project (MAP)  have sequentially generated two 

model based map (Gething et al., 2011; Hay et al., 2009) depicting global distribution of   P. 

falciparum malaria, which is shown to have predominance in sub-Saharan Africa. Also the 

availability of data through multilateral initiatives such as Demographic and Health Survey and 
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Multiple Indicators Cluster Survey in combination with application of spatial statistical models 

has generated estimates of malaria risk distribution at the national level (Giardina et al., 2012; 

Riedel et al., 2010). Also, the application of model based techniques to these multiple time point 

cross-sectional survey data has availed the malaria epidemiologist community the opportunity to 

map malaria risk both spatially and temporally and thus detecting the changing risk between the 

time points. Giardina et al. in a model based analysis estimated the changes in malaria risk 

distribution using two times data for six countries (Angola, Liberia, Rwanda, Mozambique, 

Senegal and Tanzania) in Sub-Saharan Africa (Giardina et al., 2014).  More so, two model- 

based changing risk maps of P. falciparum malaria (Bhatt et al., 2015; Noor et al., 2014) were 

recently generated for the continent of Africa.  These studies which refer to year 2000 as the base 

year depict the evidence of the malaria parasitaemia decline in all the endemic countries, though 

there are variations between and within countries.  

1.2.1.6 Risk Determinants 

1.2.1.6.1 Environmental/climatic factors 

Malaria transmission is known to be associated with suitable environmental /climatic 

conditions which modulate the biological parameters of the vector and also the parasite 

lifecycles. Environmental factors such as rainfall, temperature, humidity, vegetation, altitude, 

surface wetness/water bodies are important determinants of the abundance and distribution of 

parasite and mosquito population. Temperature and humidity influence the developmental period 

of the parasite in the mosquito also known as extrinsic incubation period (EIP), specifically, the 

temperature between 25
0
C and 30

0
C provide best favourable conditions for the EIP, but with 

decreasing temperature the EIP lengthens, and the cycle will terminate at temperatures below 

16
0
C. It also affects the time between blood meal and egg-laying known as gonotrophic cycle. 

More so the rates of developing from the larva to adult mosquito, as well as the survival of the 

vector at full maturity are influenced by these factors. On average at 31
0
C, it takes 7days for 

mosquito to develop from an egg to an adult while it take approximately 20 days to complete this 

same cycle at 20
0
C.  

 Rainfall is a very important determinant of malaria transmission because it provides the 

needed breeding sites for mosquitoes and also the moisture requirements for egg to develop into 

an adult mosquito, which in effect increase the density of the vectors. However the duration and 
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also the amount of rain is very crucial in this relationship.  A lower bound of around 80mm per 

month rainfall for five consecutive months is believed (Craig et al., 1999) to be sufficient to 

sustain transmission in most countries of the sub-Sahara Africa. However, very high intense 

rainfall could wash away mosquito breeding sites resulting in larval mortality and thereby 

reducing vectorial capacity and malaria risk. At higher altitudes high extreme rainfall could lead 

to decrease temperature which might negatively impact malaria transmission.    

Vegetation availability is very crucial for malaria transmission because it creates micro-

climatic condition in the form of suitable temperature and humidity preferred by the vector. Also 

it influences the availability of human host which translate to immediacy of blood meal. Altitude 

(Elevation above sea level) influences malaria transmission indirectly by modulating the 

temperature.  Temperature decreases as altitude increases and it is very difficult for the vector to 

multiply or the parasite to develop within the mosquito at very high altitude.   

Availability of satellite in space gathering environmental information at finer spatial and 

temporal resolution provides us proxies for these data which are processed using standard 

geographic information systems. These satellite source data are employed in studying the 

relationship of these factors with many infectious disease risks such as malaria and soil 

transmitted helminth (STH) using spatial modelling. 

1.2.1.6.2 Socio-Demographic Factors 

Malaria transmission is not only influenced by climatic factor; there are non-climatic factors, 

which plays important role in malaria transmission, such as household socioeconomic status, 

urbanization, and literacy attainment. Living in well planned urban areas comes with qualities 

that make the population less vulnerable to malaria risk. Urban dwellers for instance, have higher 

literacy level, which could translate to better housing and access to control interventions 

compared to their rural counterparts (Lowe et al., 2013). In addition, the level of pollution in 

urban area could negatively impact the mosquito habitat and lifecycles. More so, the higher 

population density in the urban setting might lead to lower biting rates (Robert et al., 2003). In 

comparison, the materials used in construction of houses among the rural settlers predispose 

them to higher vulnerability of contact with the disease vector (Mmbando et al., 2011).  Malaria 

is mostly mentioned as disease associated with poverty, because the disease may increase 

poverty, and poverty could also aggravate malaria transmission. It could increase poverty 
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because it might prevent the infected from engaging in the means of livelihood and thus 

paralyzing economic emancipation of the individual. Poverty in turn would increase malaria 

transmission because access to effective treatment and disease prevention might not be at the 

reach of the poor. These socioeconomic factor or their proxies are always accommodated in most 

of the standard disease survey designs such as demographic health and survey (DHS) and 

malaria indicator survey (MIS).   

1.2.1.7 Interventions 

The mass coverage of the population at risk with insecticide treated net, prompt diagnoses and 

effective management of cases and indoor residual spraying represents the cornerstone of 

prevention and control of malaria transmission. Increase in funding support from financing 

partners such as Global Fund, Gates Foundation, World Bank, Presidential Malaria Initiative has 

resulted in scaling up of these control interventions in many of the malaria endemic country. 

Also, the proliferation of nationwide surveys in many of the endemic countries especially the 

DHS and MIS provide reliable data suitable for the assessment of spatio-temporal effects of 

these interventions on the malaria morbidity and mortality. To standardize this assessment, the 

Roll Back Malaria partnership came up with intervention coverage indicators that are derived 

from household surveys.  The derived indicators are related to ITN ownership and use, coverage 

of household with IRS, and proportion of malaria cases receiving appropriate treatment in the 

population. Also, therapeutic intervention which targets the definitive host factors necessary for 

parasite invasion of the erythrocyte is being developed and it has demonstrated potency in 

humanized mice for all parasites strain tested (Zenonos et al., 2015). More so  the RTS S /AS01 

P. falciparum malaria vaccine is been considered for inclusion in the set of control tools for the 

disease provided the efficacy it demonstrated in the phase 3 clinical trials is achieved in the large 

scale implementation project (World Health Organization et al., 2015a) 
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1.2.1.8 Malaria transmission and mortality 

A great proportion of children mortality in high malaria transmission areas is often linked 

with the malaria parasitaemia infection, to the extent that all-cause mortality rate for children less 

than five years of age is widely used as an important indicator of the impact of malaria control 

(Korenromp, 2004). Malaria intervention coverage has been on increase in the recent years, and 

it has been associated with decline in transmission intensity in many of the endemic countries 

(Giardina et al., 2014). Also children under five mortality has been declining, but many countries 

in sub-Saharan and south Asia have not met the MDG target of reducing 1990 mortality value by 

two-third in 2015 (Unicef, 2015). The accelerated decline could be made possible in these 

regions also, by increasing the deployment of   interventions that target factors attributed to those 

deaths. Association between variation in malaria transmission intensity and mortality among 

children has been established in randomized trials (D’Alessandro et al., 1995). However, efforts 

(Gemperli, 2004; Smith et al., 2001) that has study this relationship using surveys data from 

diverse sources have been marred with contrasting evidences. It is therefore very important to 

know if surveys data free from these encumbrances could capture this same relationship 

demonstrated in the field trial. Malaria information survey data, and mortality data from 

complete birth history survey such as demographic and health survey, with application of 

appropriate modeling approach, allows the opportunity to conduct such analysis.  The derived 

information in such analysis will serve a useful tool during malaria control planning and 

implementation; it will also find applications, in the evaluation of the impact of control activities, 

and progress towards the MDG. 

1.2.2 Anaemia 

Anaemia is the health state characterized by sub-optimal healthy red blood cells with 

accompanied decrease haemoglobin levels and subsequent impairment in meeting the oxygen 

demands of body tissues.  

1.2.2.1 Anaemia Burden 

Anaemia affects a quarter of world population (Balarajan et al., 2012). According to a recent 

estimate (Kassebaum et al., 2014a), it causes annual loss of between 40.98 and 107.54 million 

DALYs globally. Greater proportion of anaemia burden is concentrated in Africa and Asia with 

the highest prevalence occurring among preschool-aged children and pregnant women 
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(Organization and others, 2015).  Among children, it is associated with increased risk of death, 

susceptibility to infection, and impaired growth and cognitive development (De-Regil et al., 

2011).  With pregnant women, it is often linked with preterm labor, low birthweight, child and 

maternal death, and impaired immune function (Haider et al., 2013; Peña-Rosas et al., 2015) . 

Figure 1.2 shows the global distribution of anaemia.  

 

 

 

 

 

 

 

 

1.2.2.2 Risk factors of anaemia 

Anaemia has various factors that could independently occur, but usually co-occur, to 

precipitate its occurrence (McLean et al., 2009). These risk factors could be divided into 

nutritional, infectious (acute and chronic), genetics, and also socioeconomic. Deficiency of iron, 

vitamins and minerals (folic acid, vitamin A, vitamin B12 and copper) constitute the nutrition 

factors. Infectious risk factors includes malaria parasitaemia, soil transmitted helminthiasis that 

is, hookworm, Ascaris lumbricoides and Trichuris Trichiura infection, Schistosomiasis 

(hematobium and mansoni infection), Tuberculosis and Human Immunodeficiency Virus 

infection /Acquired Immune Deficiency Syndrome. The genetic components mainly include 

those related to sickle cell disorder and thalassaemias.  

Figure 1.2:  Global anemia prevalence among preschool children, 2011 (Source: WHO 2015) 
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1.2.2.3 Diagnosis and Assessment of Anaemia 

Assessment and diagnosis of anaemia are carried out using various hematological and 

biomedical indices. Anaemia status can be evaluated through any of the following: haemoglobin 

concentration, haemoglobin electrophoresis, haematocrit  or pack cell volume, mean cell volume, 

blood film analysis and blood reticulocyte count (Balarajan et al., 2012). Other tests which assess 

iron status includes corpuscular volume, mean corpuscular haemoglobin, serum ferritin,  

transferrin  saturation, erythrocyte photoporphyrin, transferrin  receptors and  bone marrow iron 

stain. Field surveys often employed haemoglobin level measurements obtained through the use 

of  Hemocue Haemoglobinometer (Hemocue AB, Angeholm, Sweden)  to determine the 

population prevalence of anaemia (Crawley, 2004a) . This method is preferred because the 

testing equipment is field friendly and also economical.  

1.2.2.4 Anaemia prevention and control 

Control efforts on anaemia are always targeted on the etiology. For instance, improvement in 

dietary intake, food fortification, supplement with iron and other essential micronutrients are the 

advocated mitigation strategies for nutritional deficient anaemia (Crawley, 2004a; Soares 

Magalhães and Clements, 2011).  In malaria endemic areas, interventions that reduce malaria 

transmission such as increasing the population ITN coverage, and case management with ACT 

are the suggested measures that could reduce anaemia prevalence (World Health Organization et 

al., 2015a). Periodic application of anti-helminth drugs is the recommended control measure in 

areas with high prevalence of helminthiasis (World Health Organization, 2010). Added to this, 

are interventions that could sustain the achievement of preventive chemotherapy such as health 

education, increased access to safe water, and improved sanitation in the population (Grimes et 

al., 2015).       

1.3 Spatial statistical model 

Geostatistical modelling represents the most rigorous inferential approach to deal with 

spatially structured data. Spatial data are correlated in space because observations at close 

geographical proximity are likely to share similar exposure which could translate to having 

comparable risk. Geostatistical models are employed to capture the relationship between disease 

outcome and the explanatory factors while adjustment is made for spatial dependence in the 

disease data.  
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Spatial model are highly parameterized and Bayesian inferential approach provides the 

appropriate method to handle such because of its flexibility in decomposing the joint model of 

the data, process and the parameters into different hierarchical levels (Carlin et al., 2009; 

Gelman, 2014). The available spatial information determines the chosen model of the correlation 

matrix. For areal data, the covariance matrix is commonly structured as conditional 

autoregressive (CAR) (Besag et al., 1991) model. In the case of geostatistical data, the 

correlation structure is modeled as parametric function of Euclidean distance between the 

observed locations. The parameter function could take the form such as exponential and Matérn 

suggesting decrease of spatial dependence with increasing distance. When Gaussian priors are 

assumed for the remaining parameters of fixed component and even the non structured random 

parts, then we model latent Gaussian process. Analytical solutions of the posterior distribution of 

Geostatical models parameters are intractable. The simulation based method such as Gibbs 

sampler and Metropolis- Hasting algorithm refers to as Markov Chain Monte Carlo (MCMC) 

conducts estimation of model parameters through iterative sampling of the marginal posterior 

distribution of the parameters. The iterative process in MCMC start at an arbitrary point after 

which it generate a Markov structure until it reaches a convergence point whose distribution is 

that of the parameters of interest (Gelfand and Smith, 1990). 

 Implementing MCMC algorithm for highly parameterized spatial model could be very slow 

to get to the convergence point, and also it could be computationally demanding due to repeated 

inversion of matrix involved with the covariance matrix leading to what is generally referred to 

as big n problem, where the n represent the number of locations. An approximate Bayesian 

inferential  known as Integrated Nested Laplace approach (INLA) (Rue H. et al., 2009a) is one of 

the recently developed method to circumvent this problem. The approach consists of 

representing the likelihood of the latent spatial process, which is a Gaussian Random Field with a 

Gaussian Markov Random Field (GMRF) through stochastic partial differential equation 

approach (Lindgren and Rue, 2013).  The GMRF are defined by sparse matrices which allow for 

efficient computational properties. Adopting INLA algorithm to do Bayesian inference on 

GMRF gives additional computational advantage.   Several other methods also exist to overcome 

the big n challenge.  The data dimension reduction such as Gaussian predictive process (Banerjee 

et al., 2008; Finley et al., 2009; Xia and Gelfand, 2005) which project the spatial process to a 

lower subspace represent one of the methods.  Also the covariance tapering (Furrer et al., 2006)  
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in which  zeroes are introduced in the covariance matrix for locations that are almost spatially 

independent based on a set value is another approach for achieving faster computation.  A 

thorough overview of current state of art methods is given by Lasinio and colleagues (Jona 

Lasinio et al., 2013). 

1.3.1 Misalignment and measurement error 

 Some epidemiologic studies involves data obtained  from diverse sources whose location 

information do not match  such that they represent  measures from  different samples, but spatial 

dependency exist in those locations from different sources. In such settings, a simplistic 

approach will be to use the predicted values of the factor in the outcome-response relationship. 

Such predictions contain measurement error because the predicted value does not account for 

uncertainty. However, if measurement error is ignored parameter estimates and confidence 

interval could be attenuated couple with the fact that loss of power for detecting important 

signals of connection between variables may result, and significant effects may be mask (Muff et 

al., 2015). A joint modelling approach that incorporates distribution of prediction would proffer 

solution in such situation.   

1.3.2 Variable Selection 

Selection of optimum important predictors from large numbers of available potential 

covariates is a major step in spatial modelling and needs careful consideration. Disease mapping 

make use of environmental predictors that are often spatially dependent, and this necessitate use 

of variable selection approach that gives parsimonious model. The selected model could also 

determine the accuracy of risk predictions.   

In many instances (Clements et al., 2009; Raso et al., 2012; Soares Magalhães et al., 2011)  

spatial correlation is often neglected when determining variable to be included for final model fit 

in the process of doing disease mapping. The approach mostly adopted is to do it independently 

of the spatial model fit. Multivariate stepwise regressions are often used to select covariates to be 

included in the spatial model fit based on a predefined threshold of significance. This selection 

method has been faulted by Chammartin and colleague (Chammartin et al., 2013). They 

demonstrated that it could most likely lead to important predictors' exclusion and wrong 

covariate estimate. This thesis adopted Bayesian variable selection which account for spatial 

dependence in the data while exploring all possible models in order to get a parsimonious model. 
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The hierarchical approach of Bayesian modelling allows incorporation of variable selection 

component in the prior, likelihood or both depending on the adopted Bayesian variable selection 

methods. For discussion on available Bayesian variable selection, O Hara et al. (O’Hara and 

Sillanpää, 2009) provided a well documented review.  

1.4 Objectives of the thesis 

The overall goal of this thesis is to assess the contribution of malaria burden on children 

anaemia and mortality in Nigeria, and develop tools to support the disease control.  

1.4.1 Specific Objectives: 

(i) assess the geographical distribution of malaria risk and calculate the population adjusted 

prevalence per state in the country.  

(ii) obtain spatially explicit estimates of the effects of coverage of control interventions on the 

geographical distribution of malaria among preschool-aged children.  

 (iii) evaluate the effects of malaria prevalence on the hazard of mortality among children under 

the age of five years. 

(iv) assess the effects of malaria burden on the spatial distribution of anaemia among preschool-

aged children. 
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Abstract 

Background: In 2010, the National Malaria Control Programme with the support of Roll Back 

Malaria partners implemented a nationally representative Malaria Indicator Survey (MIS), which 

assembled malaria burden and control intervention related data. The MIS data were analysed to 

produce a contemporary smooth map of malaria risk and evaluate the control interventions 

effects on parasitaemia risk after controlling for environmental/climatic, demographic and 

socioeconomic characteristics. 

Methods: A Bayesian geostatistical logistic regression model was fitted on the observed 

parasitological prevalence data. Important environmental/climatic risk factors of parasitaemia 

were identified by applying Bayesian variable selection within geostatistical model. The best 

model was employed to predict the disease risk over a grid of 4 km
2   

resolution. Validation was 

carried out to assess model predictive performance. Various measures of control intervention 

coverage were derived to estimate the effects of interventions on parasitaemia risk after adjusting 

for environmental, socioeconomic and demographic factors. 

Results: Normalized difference vegetation index and rainfall were identified as important 

environmental/climatic predictors of malaria risk. The population adjusted risk estimates ranges 

from 6.46% in Lagos state to 43.33% in Borno. Interventions appear to not have important effect 

on malaria risk. The odds of parasitaemia appears to be on downward trend with improved 

socioeconomic status and living in rural areas increases the odds of testing positive to malaria 

parasites. Older children also have elevated risk of malaria infection. 

Conclusions: The produced maps and estimates of parasitaemic children give an important 

synoptic view of current parasite prevalence in the country. Control activities will find it a useful 

tool in identifying priority areas for intervention. 
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2.1 Introduction 

Malaria represents a substantial public health challenge in Nigeria and is a major cause of 

morbidity and mortality. The country accounts for up to 25% of malaria burden in sub-Saharan 

Africa, which is globally the highest burden region for malaria (National Population Commission 

(NPC) [Nigeria], 2012). In terms of morbidity, around 110 million of clinically diagnosed cases, 

30 percent of health care facilities admission and 60 percent of outpatient visits are attributed to 

the disease each year (Mouzin and Global Partnership to Roll Back Malaria, 2012). Malaria is 

also responsible for 300,000 childhood deaths and 11% maternal deaths annually (Kyu et al., 

2013; Mouzin and Global Partnership to Roll Back Malaria, 2012; National Population 

Commission (NPC) [Nigeria], 2012).  

Control of malaria is hinged on key global strategies, which include prompt and effective case 

management, intermittent preventive treatment (IPT) of malaria in  pregnancy and integrated 

vector management (IVM) comprising the use of insecticide-treated nets (ITN), indoor residual 

spraying (IRS), and environmental management (EM). The National Malaria Control Programme 

(NMCP) with the support of Roll Back Malaria (RBM) partners is keying into these strategies 

which form the basis of its National Malaria Control Strategic plan (2009-2013) (National 

Population Commission (NPC) [Nigeria], 2012). Long-lasting impregnated net (LLIN) 

possession was scaled up by mass distribution of more than 24 million LLIN in 14 states of the 

country as of August 2010 through a campaign supported by the partners (Kyu et al., 2013). 

Prior to this campaign, more than 600,000 LLINs have been distributed in Cross River State 

between late 2008 and early 2009 to children under the age of five by the United State Agency 

for International Development (USAID) and the Canadian Red Cross (Kyu et al., 2013). These 

efforts contributed to about 42 percent of households having at least one ITN [1]. Between 2008 

and 2010, 70 million rapid diagnostic tests (RDTs) were distributed to all heath facilities in the 

country to allow for free diagnosis of all suspected malaria cases (Mouzin and Global 

Partnership to Roll Back Malaria, 2012). In 2008, 5% of these cases were screened with RDTs 

(Mouzin and Global Partnership to Roll Back Malaria, 2012). Pregnant women receiving 

preventive therapy during their routine antenatal care reached 13 percent in 2010, which may 

reflect low turnout for antenatal visit and at the same time health care-seeking behaviour. At the 

end of the same year IRS coverage was two percent in the entire country (Mouzin and Global 

Partnership to Roll Back Malaria, 2012). 
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 Effective malaria control strategies call for reliable and comprehensive maps of the spatial 

distribution of the disease risk and estimates of infected people. These are important tools in 

guiding efficient resource allocation for planning and implementation of intervention 

programmes and evaluation of their impact (Gemperli et al., 2006; Giardina et al., 2012; Gosoniu 

et al., 2012, 2010; Riedel et al., 2010). Various maps depicting the geographical distribution of 

malaria risk in Nigeria are presently available at regional, continental, and global scale. The 

earlier map of malaria risk in Nigeria was a climatic suitability map estimated by the mapping 

malaria risk in Africa (MARA) project (Craig et al., 1999). This effort was followed up by 

empirical mapping using historical survey data from the MARA database to produce a regional 

map of West Africa (Gemperli et al., 2006). Different Bayesian geostatistical modelling 

approaches were employed to these historical data attempting to improve the model-based 

prediction of malaria risk. Sequel to this the Malaria Atlas Project (MAP) in 2007 and 2010 

generated a geostatistical model-based global malaria risk map from historical survey data 

(Gething et al., 2011; Hay et al., 2009). More recently, geostatistical model-based spatio-

temporal malaria endemicity maps of Africa were obtained through analysis of data assembled 

from parasite prevalence surveys adjusting for environmental factors effect (Noor et al., 2014). 

Analyses that are based on historical survey data suffer from methodological issues due to data 

heterogeneity that may contribute to less accurate estimates (Giardina et al., 2012; Gosoniu et al., 

2012, 2010; Riedel et al., 2010) and do not reflect the current situation of the disease in the 

country.  

In 2010, Nigeria conducted the first nationally representative MIS which assembled 

information on malaria related burden and the coverage of key interventions among children 

below the age of five. The survey was implemented by the National Population Commission 

(NPC) and NMCP with the technical assistance of ICF International and other RBM partners. In 

this study, the MIS data were analysed in order to identify environmental/ climatic, demographic, 

and socioeconomic and control intervention factors associated with malaria risk and produce a 

contemporary risk map of malaria among children under the age of five. Bayesian geostatistical 

models fitted via Markov Chain Monte Carlo (MCMC) simulation were employed for parameter 

estimation and predictions. Gibbs variable selection incorporating spatial dependency was used 

in identifying the most parsimonious model. 
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2.2 Methods 

2.2.1 Study area 

Nigeria, the most populous country in Africa, is in the west sub region of Africa with a total 

land mass of 923,768 square kilometers. The recent census estimates the country population at 

140,431,790 people, 32.8% of which are urban settlers (National Population Commission (NPC) 

[Nigeria], 2012). The country has tropical climate with two seasons (wet and dry season) which 

are associated with the movement of two dominant winds: the rain bearing south westerly winds, 

and the cold, dry and dusty north easterly wind generally referred to as the Harmattan. The wet 

season occurs from April to September, and the dry season from October to March. The annual 

rainfall ranges between 550mm in some part of the north mainly in the fringes of Sahara desert 

to 4,000 mm in the coastal region around Niger delta area in the south. The temperature in 

Nigeria oscillates between 25°C and 40°C. The vegetation that derives from these climatic 

differences consists of mangrove swamp forest in the Niger Delta to Sahel Savannah in the north. 

The geographic location of Nigeria makes suitable climate for malaria transmission throughout 

the country and it is all year round in most part of the country.  

The most prevalent malaria parasite species is Plasmodium falciparum (>95%) and it is 

responsible for most forms of the severe disease (Mouzin and Global Partnership to Roll Back 

Malaria, 2012; National Population Commission (NPC) [Nigeria], 2012). The other types found 

are Plasmodium malariae and Plasmodium Ovale (Mouzin and Global Partnership to Roll Back 

Malaria, 2012). Malaria transmission intensity, duration and seasonality vary among the 

country’s five ecological strata (mangrove swamps, rain forest, guinea savannah, Sudan 

savannah and Sahel savannah) that extend from south to north(National Population Commission 

(NPC) [Nigeria], 2012). Considering population density and distribution of risk areas, an 

estimated 3%, 67% and 30% live in very low to low, moderate, and high to very high 

transmission intensities area, respectively (Mouzin and Global Partnership to Roll Back Malaria, 

2012). Also the duration of transmission season increases from north to south, from 

approximately three months in the north area bordering Chad to perennial in the most southern 

part (Mouzin and Global Partnership to Roll Back Malaria, 2012).  
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2.2.2  MIS Data 

The data were collected using the standard malaria indicator questionnaires developed by the 

RBM and the demographic health surveillance programme. The dataset consists of malariometric 

information, demographic characteristics and socio-economic status on a nationally 

representative sample of around 6,000 households from about 240 clusters of which 83 are in the 

urban areas. These clusters were derived from a stratified two-stage cluster design. Detail 

description of the sampling strategies is well-documented in the final report of NMIS 2010          

(National Population Commission (NPC) [Nigeria], 2012). Blood samples were only taken from 

239 clusters due to security challenges in one of the clusters in the north (National Population 

Commission (NPC) [Nigeria], 2012). Prevalence from two diagnostic methods (RDT and 

microscopy) were recorded in the data, but the statistical analysis in this work is based on the 

blood slide microscopy readings which is believed to be the gold standard of malaria diagnosis 

(Wongsrichanalai et al., 2007). The geographical representation of the clusters involved and 

observed prevalence in the NMIS is displayed in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

                      

Figure 2.1:  Malaria prevalence observed among children less than 5 year at 239 locations of NMIS 
2010 
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2.2.3 Environmental/climatic data 

Environmental and climatic predictors were obtained from satellite sources. The acquired 

factors used in this analysis are Land Surface Temperature (LST), Normalized Difference 

Vegetation Index (NDVI), altitude, rainfall and distance to permanent water bodies. Weekly and 

biweekly values of LST and NDVI, respectively, covering the period from October 2009 to 

October 2010 were extracted from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) database (http://reverb.echo.nasa.gov/reverb/). Decadal rainfall data for the same 

period was downloaded from the Africa Data Dissemination Service database 

(http://earlywarning.usgs.gov/fews/). Annual averages at each location (observed or predicted) 

were derived for the above predictors. Data on permanent water-bodies was obtained from the 

HealthMapper database of the World Health Organization (WHO). The minimum distance 

between the centroid of each cluster to the nearest body of water was calculated in ArcGIS 

version 9.3 (ESRI; Redlands, CA, USA). 

The Urban-rural extent grid data was acquired from the Global Rural Urban Mapping Project 

(GRUMP) database. Details about the sources, spatial and temporal resolution of these data is 

shown in Table 2.1. The coordinates of the clusters in the MIS was used to link malaria data with 

these datasets. 

 

Table 2.1:  Sources, spatial and temporal resolution of model predictors, and population data 

Data Source  Period Spatial 
   resolution 

Land surface temperature (LST) MODerate resolution Imaging Spectroradiometer 2009-2010 1 × 1 km2 

for day and night (MODIS) http://reverb.echo.nasa.gov/reverb  

    

Normalized difference 
vegetation index 

MODerate resolution Imaging Spectroradiometer 2009-2010 0.25 × 0.25 km2 

(NDVI) (MODIS) http://reverb.echo.nasa.gov/reverb  
    
Rainfall Africa Data Disseminating Services 2009-2010 8 × 8 km2 

 http://earlywarning.usgs.gov/fews/  
    

Digital elevation model 
(Altitude) 

Shuttle Radar Topographic Mission(SRTM) 2000 1 × 1 km2 

 http://glcfapp.glcf.umd.edu/data/srtm/  
    
Urban rural extent Global Rural and Urban Mapping Project na 1 × 1 km2 

 http://sedac.ciesin.columbia.edu/data/set/grump-v1-population/data-download  
    

Permanent water bodies Health mapper na 1 × 1 km
2 

    
Human population density grid http://www.worldpop.org.uk/data/ 2010 100 ×100 m2 

 

http://reverb.echo.nasa.gov/reverb
http://reverb.echo.nasa.gov/reverb
http://earlywarning.usgs.gov/fews/
http://glcfapp.glcf.umd.edu/data/srtm/
http://sedac.ciesin.columbia.edu/data/set/grump-v1-population/data-download
http://www.worldpop.org.uk/data/
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2.2.4 Intervention data 

Data on measures for preventing malaria, including the possession and use of ITN /LLIN and 

implementation of IRS were collected in the NMIS. These data were used to generate the 

following indicators of intervention coverage as recommended by Roll Back Malaria-

Measurement and Evaluation Reference Group (RBM-MERG) (DHS, 2013; Kilian et al., 2013) : 

(i) the proportion with access to ITN in the household, (ii) proportion in every household that 

slept under an ITN during the previous night to the survey, (iii) proportion of children under 5 

who slept under an ITN during the night preceding survey. 

2.2.5 Socioeconomic data 

Information on socioeconomic status (SES) was measured by a wealth index, which was 

present in the NMIS. It was derived through Principal Component Analysis as a weighted sum of 

household assets. SES was included in the analysis as a categorical covariate with categories 

corresponding to the quintiles. 

2.2.6 Population data 

Population density grid data for the year 2010 was extracted from Worldpop    

(http://www.worldpop.org.uk/data/).  

Population structure for the same year was obtained from international database of United 

State census bureau (https://www.census.gov/population/international/data/idb/region.php) to 

calculate the number of children less than five years.  

 

2.2.7 Bayesian geostatistical modelling 

Bayesian geostatistical logistic regression models were applied to identify important 

predictors of malaria parasite risk, produce a contemporary malaria risk map, and obtain 

estimates of number of children less than five years old infected with malaria parasites. Variable 

selection was carried out during the geostatistical model fit. All possible combinations of 

covariates resulting in 65536 models were fitted to obtain a parsimonious model. Prediction was 

carried out using Bayesian Kriging (Diggle et al., 2002) based on the model with the best 

predictive ability. Model validation was performed on the first two models with the highest 

probability of having generated the data among those considered. In particular, the models were 

fitted on a random sample of 85% of the locations and used the remaining locations to compare 

http://www.worldpop.org.uk/data/
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model-based predictions with observed prevalence by calculating the Mean Absolute Error 

(MAE). A regular grid of 231,865 pixels at 4 km
2
 spatial resolution covering the whole country 

was generated to predict the parasitaemia risk at un-sampled locations and produce a high-

resolution risk map. Population data on the number of children under five years of age was 

combined with spatially explicitly predicted parasitaemia risk to estimate the number of infected 

children. The analysis was carried out in Win-BUG1.4 (Imperial College and Medical Research 

Council London, United Kingdom). Bayesian kriging was implemented in FORTRAN 95 

(Compaq Visual FORTRAN Professional 6.6.0) using standard numerical libraries (NAG, The 

Numerical Algorithm Group Ltd). Details on Bayesian model selection, model fit and validation 

are provided in Appendix (see subsection 2.6) 

2.3 Results 

The study included 5,043 children under five years old with complete parasitological and 

malaria intervention data collected over 239 geo-located clusters. Figure 2.1 show the observed 

malaria prevalence in the surveyed clusters. The overall prevalence using thick blood smear 

results was 38%. On average, one ITN is available for every four children or for every five 

individuals in the household and only 26% of the children less than age of five slept under an 

ITN during the night preceding the survey. The IRS coverage is 1.02% in the entire country. 

Table 2.2 shows that the highest model posterior probability was 0.45, that is 45% of the fitted 

models included rainfall and NDVI in linear forms (Model 1), followed by the one including the 

above covariates in addition to LST and altitude (posterior probability 0.08).  

Model validation results depicted in Table 2.2  indicate that both models have similar MAE 

estimates in terms of predictive ability, confirming that the LST and altitude did not improve 

predictions; therefore, inferences were based on Model 1. Posterior estimates of the parameters 

of (Model 1) as well as the model which includes environmental/climatic, socio-economic, 

demographic, and intervention covariates (Model 2) are given in Table 2.3. Higher vegetation 

index is associated with high parasitaemia while increased rainfall reduces malaria risk. A 

monotone decrease of malaria risk was observed with better socio-economic status which 

becomes important in the stratum of least poor with an odds ratio of 0.51 (95%BCI: 0.35 – 0.75). 

Older children have elevated odds of being infected. Moreover, living in rural areas puts children 

at higher risk. Furthermore, variation in intervention coverage appears not to be associated with 
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parasitaemia risk. The estimates of the range parameter shows that spatial correlation is present 

within an ~3.0 km (95% BCI: 1.50 km - 45.00 km) distance which implies that malaria risk at a 

given location is affected by risk in neighbouring areas up to a distance of approximately 3.0 km. 

Results of a sensitivity analysis showed that the estimates of the spatial parameters were not 

sensitive to the choice of the priors. The predicted parasitaemia risk map is depicted in Figure 

2.2.   

The maps of the lower 2.5% and upper 97.5% credible intervals of the posterior distribution 

are also displayed in Figure 2.3. The distribution of predicted parasitaemia risk varies in Nigeria 

between 0.4% and 91%. Parasitaemia prevalence is relatively low in the southern-most and the 

south-east region of the country particularly in Anambra state where the risk of testing positive 

to parasitaemia is below 20%. It is only in Abia and Edo states within those regions that the 

parasitaemia risk respectively went above 30% and slightly above 40%. The south-west, with 

exception of Lagos state shows relatively higher risk, however the highest prevalence in the 

country (~48%) was predicted for Osun state within this region. The situation in the central north 

is similar to the south-west with Kwara and Benue states having the highest (42.4%) and lowest 

(29.7%) risk in this region, respectively. Most of the state in the north-east and north-west 

exhibit similar patterns with the exception of Yobe state with parasitaemia risk of approximately 

40%. Estimates of the population adjusted prevalence and number of parasitemic children under 

5 year aggregated at the state level are given in Table 2.4. Overall 7,104,079 children were 

estimated to be infected with malaria parasites distributed across regions as follows: 16.5% 

north-central, 15.6% north-east, 26.7% north-west, 9.80 % south-east, 13.1% southern-most, and 

18.4% south-west. 

 

Table 2.2:  Model predictive performance in terms of Mean Absolute Error (MAE), based on 
climatic/environmental factors. 

Model Posterior probability Mean absolute error 

Rainfall and NDVI 45% 0.005 

Rainfall, NDVI, LSTN and Altitude 8% 0.005 
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Table 2.3:  Posterior median and 95% Bayesian Credible Intervals (BCI) of Model 1* and Model 2** 

  *Model 1 **Model 2 

Variables OR(95% BCI) OR(95% BCI) 

NDVI 2.01 (1.56, 2.60)     1.56 (1.21, 1.99) 

Rain 0.57 (0.44, 0.75)     0.72 (0.57, 0. 91) 

Area type     

rural  1 

urban       0.43 (0.28, 0.65) 

Socioeconomic 

Index     

Most poor  1 

Very poor       1.12 (0.86, 1.44) 

Poor       1.19 (0.89, 1.59) 

Less poor       1.00 (0.72, 1.39) 

Least poor       0.51 (0.35, 0.75) 

Age     

0-1       1 

1-2         1.35 (1.05, 1.76) 

2-3         1.93 (1.50, 2.50) 

3-4         2.34 (1.82, 3.02) 

4-5         2.76 (2.15, 3.55) 

Proportion with 

access to ITN in the 

household   

 

       0.86(0.51,1.48)  

 

Proportion of children 

aged 0–59 months who 

slept under an ITN the 

night before the survey   

 0.91(0.57, 1.47)  

 

Proportion of people 

who slept under an ITN 

in the night before the 

survey 

 

 

        0.92(0.50, 1.67) 

 

Spatial 

Parameters 

Posterior  median 

Model 1 
95% BCI 

Posterior median 

Model 2 
95% BCI 

 

 
 

1.56 (1.20, 2.04) 1.34 (1.02, 1.76) 

Range(km) 5.87 (1.54, 60.00)            2.14 (1.12, 45.00) 

 

*Model of malaria risk based on environmental/climatic predictors.  

**Model of malaria risk inclusive of intervention after adjusting for climatic/environmental 

socioeconomic and demographic factors. 
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Figure 2.2:  Predicted risk map of parasite among children under five years in Nigeria: Estimates are 

based on model 1 and indicate median posterior distribution over a grid of 231865 pixels. 

Figure 2.3:  The 2.5 % (left) and 97.5 % (right) percentiles of the predicted posterior distribution 

of malaria prevalence estimated from Model 1. 
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2.4 Discussion 
 

This work present a geostatistical analysis of the NMIS data to identify important predictors 

of malaria parasite risk, produce a contemporary malaria risk map, and obtain estimates of 

number of children less than 5 years old infected with malaria parasites. It is noteworthy that this 

study generated the first spatially referenced parasitaemia risk estimates and maps in Nigeria 

from contemporary, geographically-representative data collected in a standardized way across 

the country. Previous mapping efforts embedded Nigeria within regional, continental and global 

scale (Gemperli et al., 2006; Gething et al., 2011; Kleinschmidt et al., 2001; Noor et al., 2014) 

maps making use of historical surveys that may not characterize the current malaria situation in 

the country. The produced maps and the estimates of the number of infected children illustrate an 

important synopsis of prevalence of malaria in the country. Therefore they can serve as a 

resourceful tool in planning interventions and a reference point in evaluating their impact in 

space and time. 

Risk factor analysis was carried out using Bayesian variable selection within a geostatistical 

setting. This modelling approach identified not only the most import-ant risk factors but also 

their functional form in order to build a parsimonious model with the best predictive ability. 

Bayesian variable selection has been implemented in malaria risk modelling by Giardina et al. 

(Giardina et al., 2012) and Diboulo et al. (Diboulo et al., 2015). Chammartin et al. (Chammartin 

et al., 2013) introduced Bayesian geostatistical variable selection for identifying functional forms 

of covariates in modelling neglected diseases however, to our knowledge rigorous modelling of 

covariate functional forms have not been used in the area of malaria mapping. The result 

indicated that in Nigeria, rainfall and NDVI are the most important drivers of malaria risk while 

temperature and altitude do not improve our ability to predict the risk. The geographical 

distribution of the malaria risk estimates illustrated relatively high prevalence in every region of 

the country. The geostatistical model predicted higher disease risk (>40%) in some states both in 

south-west and in north central regions. Both regions have similar rainfall characteristics which 

create shallow water pockets, suitable breeding sites for Anopheles gambiae, the dominant 

mosquito vector in the country. Further-more, in both regions there are many water bodies that 

are surrounded by vegetation, providing suitable habitat for Anopheles funestus, the second 
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prevalent species in Nigeria. Malaria risk is relatively lower in the southern-most part of the 

country, which may be due to more rain in the region that could clear away breeding sites of the 

vector. The distinct heaps of relatively high predicted parasitaemia risk around the survey 

locations might be explained by the weak spatial correlation in the observed prevalence which 

resulted in reduced smoothing of the predicted map. The predicted risk map was compared to a 

previous mapping effort across West Africa by Gemperli, et al. (Gemperli et al., 2006). There 

were similarities in prevalence for most part of the southern Nigeria with the exception of Lagos 

where lower prevalence is obtained in this study which might be linked to more urbanization and 

ongoing interventions. Differences are present in the central north and northwest regions where 

higher and lower estimates were obtained respectively in this study. The malaria endemicity map 

produced by the malaria atlas project (MAP) (Gething et al., 2011) shows similar patterns to the 

present map especially in the north, apart from some areas in the north-east. In the south, MAP 

predicted higher risk in some parts of the southern-most regions principally around Cross river 

state. This might be connected to the inclusion of older children (2-10 years) in the MAP 

analysis. The estimates derived from this study when compared with the recently generated 

malaria endemicity map of Abdisalan et al. (Noor et al., 2014) shows re-semblance in most part 

of the country aside the Lake Chad area in the northeast and small fringes of Niger state in the 

central north where we predicted higher malaria risk. 

The study findings indicated an increasing gradient of malaria risk with age, with the older 

children having the highest risk. The estimated negative association between socioeconomic 

status and malaria risk also confirms earlier reports (Giardina et al., 2012; Gosoniu et al., 2012, 

2010). The analysis showed that variation in the bed net coverage indicators across the country is 

not related to variation in the parasitaemia risk. However only data from one survey was 

available, therefore, changes in parasitaemia risk could not be estimated at a given region 

associated to intervention coverage levels. A limitation of the survey is that it was carried out 

after the rainy season and, therefore, estimates may not reflect malaria risk during the highest 

transmission season. Rolling MIS (Roca-Feltrer et al., 2012) that adopt the standard cross-

sectional evaluation tool into continuous monitoring can provide timely, accurate, sub-national, 

and district level burden estimates throughout the year. It was considered as a promising tool for 

monitoring short-term control progress in the course of its implementation in a district in 

Malawi; however its feasibility is unclear at national level. 
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Table 2.4:  Estimates of the number of children under five years of age with parasitaemia at state level 

Region State Prev. A Population of 

under 5 children 

Estimated number 

of infected 

children 

95% CI Prev. B 

North Central Benue 29.73% 784875 222340 (200190, 244491) 28.33% 

 
Kwara 42.37% 449638 151621 (131421, 171821) 33.72% 

 

Kogi 41.50% 561582 213304 (188056, 238552) 37.98% 

 
Nasarawa 37.56% 340392 119592 (102802, 136383) 35.13% 

 
Niger 39.11% 735787 256231 (233893, 278568) 34.82% 

 
Plateau 31.88% 608271 150934 (142149, 159720) 24.81% 

 
FCT 34.31% 233252 60270 (53799, 66741) 25.84% 

North East Adamawa 28.51% 566017 147375 (135450, 159299) 26.04% 

 
Bauchi 33.92% 915634 281832 (251864, 311799) 30.78% 

 
Borno 33. 01% 760560 329545 (318480, 340610) 43.33% 

 

Gombe 29.74% 415270 108147 (94212, 122082) 26.04% 

 

Taraba 26.02% 413337 95666 (88832, 102500) 23.14% 

  Yobe 39.90% 408299 143671 (117597, 169744) 31.54% 

North West Jigawa 32.61% 743497 245984 (201408, 290560) 33.08% 

 
Kaduna 30.00% 1087823 306971 (274214, 339727) 28.22% 

 
Kano 32.98% 1661333 413643 (359266, 468019) 24.90% 

 
Katsina 31.31% 1037799 312991 (269742, 356240) 30.16% 

 

Kebbi 33.17% 547728 178198 (155795, 200601) 32.53% 

 
Sokoto 29.23% 758304 241214 (196928, 285499) 31.81% 

  Zamfara 30.24% 662075 195519 (167378, 223658) 29.53% 

South East Abia 34.34% 552137 170719 (131633, 209805) 30.91% 

 
Anambra 18.95% 753168 116883 (99151, 134615) 15.52% 

 
Ebonyi 25.50% 440488 117079 (81696, 152462) 26.58% 

 
Enugu 28.30% 638279 144983 (120597, 169370) 22.71% 

  Imo 24.23% 777127 149944 (116532, 183355) 19.29% 

South South 

Akwa 

Ibom 24.71% 777083 183459 (148354, 218564) 23.61 

 
Bayelsa 28.11% 293027 73662 (61359, 85965) 25.14% 

 

Cross 

River  21.84% 508781 113384 (94271, 132496) 22.29% 

 

Delta 25.40% 838073 178389 (153985, 202794) 21.29% 

 
Edo 41.85% 609027 216539 (190803, 242276) 35.55% 

  Rivers 22.39% 835356 160600 (237741, 261026) 19.23% 

South West Ekiti 41.24% 522684 175495 (140018, 210972) 33.58% 

 
Lagos  19.63% 1765136 114114 (94296, 133933) 6.46% 

 
Ogun 33.50% 778465 180659 (153966, 207352) 23.21% 

 

Ondo 40.98% 553129 211170 (181103, 241236) 38.18% 

 

Osun 47.74% 655875 276857 (222237, 331476) 42.21% 

  Oyo 38.78% 977540 345095 (291686, 398504) 35.30% 

Prev. A:  Population unadjusted prevalence; Prev. B:  Population adjusted prevalence. 
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2.5 Conclusion 
 

In conclusion, the predictive prevalence map depicts that malaria morbidity is still high in the 

entire country and variation in malaria intervention coverage indicators is not associated with 

variation in parasitaemia risk across the country. The coverage of key malaria interventions is 

still low and needs scaling up, which requires an increase of health expenditure by the federal 

government and an increase of awareness by the population on the benefit of bed net use. 
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2.6 Appendix 

2.6.1 Geostatistical Model formulation  

Let Yij indicate the malaria parasites status in child i at location sj (j=1, …, n).Yi j is assumed to 

follow a Bernoulli distribution, that is Yij ~Be (   ) , where     corresponds to parasitemia risk.  

Also let    = (   
   
    

   
     

   
)

 T 
be the vector of predictors observed at location sj..We 

model the relationship between malaria risk and its potential predictors on the logit (   ) =         

+  , where     are the regression coefficients. The spatial dependence was taken into account by 

location-dependent random effect  =           
 which were considered to arise from a 

multivariate normal distribution with mean 0 and variance covariance matrix 

   =  
           , where     is the Euclidean distance between locations sj and sk,   

  

represent the spatial variance known as partial sill and   is a smoothing parameter that controls 

the rate of correlation decay with increasing distance. The range which defines the minimum 

distance at which spatial correlation between locations is below 5% is calculated by     . We 

provide the estimate of the range parameter in km considering that 1 degree corresponds to 

111.12km. 

Bayesian variable selection(Chammartin et al., 2013; Dellaportas et al., 2002, 2000; Ishwaran 

and Rao, 2005; O’Hara and Sillanpää, 2009) was used to identify the most important  predictors 

of parasitemia risk after taking into account the spatial correlation in the data at cluster level. 

This was done by introducing an indicator variable    suggesting the presence or absence of the 

corresponding     covariate that is,   =         where     measure the effect size of      . We 

assume a priori equal inclusion probabilities for all variables that is        
 

 
   and a mixture of 

normal distribution for     that is,                       
 )+   (0,  ). The parameter    is a 

predetermined large variance (i.e. 1000) and   is a small constant that shrinks    towards zero 

when the covariate is not selected. We also introduce a separate indicator      to select from 

linear or categorical form of the climatic factors. We assume     and      represent the 

coefficients corresponding to the linear and categorical forms of the j predictor respectively, that 

is,   =      + (1−  )      with    assuming a Bernoulli distribution. The selected model was 

fitted assuming a vague normal prior distribution for    
that is,    N (0,100).  
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Prior distributions were assigned to   
   and     to complete the model specification. Inverse 

Gamma distribution was chosen for spatial correlation parameter   
    that is, p (  

 ) = Gamma 

(0.001, 0.001). Uniform prior distribution assuming spatial correlation lower than 0.05 as 

negligible was chosen for  , that is p ( ) = Uniform (-log(0.05)/dmax,-log<(0.05)/dmin) where dmax  

and dmin are the maximum and mininum (non-zero) Euclidean distance between the survey 

locations. To assess sensitivity of the estimates to the prior distributions of the spatial 

parameters, we re-fitted the models using a more informative prior distribution for   
 , that is p 

(  
 ) ~ Gamma (2.01,1.01) and the following prior for  , p (  ) = Uniform(-log(0.01)/dmax,-

log<(0.01)/dmin).The model was fitted in WinBUG1.4 (Imperial College and Medical Research 

Council London, United Kingdom) using Markov Chain Monte Carlo (MCMC) simulation. 

Linear predictors were centered to obtain well-behaved correlation structure and reduce the 

computation time of MCMC algorithm(Banerjee et al., 2004). The variable selection was carried 

out only for the environmental/climatic predictors to identify the most important predictors.  

Assessment of predictive performance of models were made by calculating the Mean Absolute 

Error (MAE) which provides information on model accuracy using the average of absolute 

distances between observed and predictive posterior distribution values, that is MAE 

 

 
           

 
   

 
     where k is no of test locations and m is the size of sample drawn from the 

posterior predictive distribution at the test site. Also      is the j sample of the predicted posterior 

distribution at the test site and     is the observed prevalence at the test site.  
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Abstract 

Malaria burden reduction in so many endemic countries of sub-Saharan Africa has been 

attributed to vector control. However, the coverage of this intervention is not homogeneous even 

among the different regions of some of these nations, and so also the effect on malaria 

prevalence.  Malaria information survey gathers information on malaria parasitaemia infection 

and intervention coverage among other things, which can be use in evaluating malaria risk and 

intervention coverage relationship. We analysed the first national malaria information survey in 

Nigeria, to assess the effect of coverage of intervention among children under five on 

parasitaemia prevalence at national and first administrative level of the country.  We used 

Bayesian geostatistical model to estimate the effect of coverage of insecticide treated bednet on 

the risk of malaria at the national and states level, after controlling for environmental and socio-

demographic factors related to malaria parasitaemia prevalence.  The result shows that the use of 

insecticide treated net was not associated with malaria risk when considered nationally. However 

the analysis at the first administrative level shows intervention coverage to be importantly related 

to the reduced malaria risk in two states (Adamawa and Taraba) within the north east region, 

which coincidentally has the highest proportion of insecticide treated net use by the children 

under five in the country.  The produced effect map couple with other epidemiological tool like 

malaria prevalence map can serve as vital instrument in enhancing malaria control in the country. 
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3.1 Introduction 

The vector control measure, insecticide treated nets,  either singly or in combination with 

other prevention/control strategies has demonstrated to be very efficient and also cost effective 

against malaria parasite transmission(Giardina et al., 2014; Larsen et al., 2014; Lengeler, 2004). 

The malaria burden reduction in most of the endemic country of the sub-Saharan Africa has been 

linked to the extended application of this control intervention. Advocacy for their use have been 

based on evidence from community based randomized trial (Binka et al., 1998; Phillips-Howard 

et al., 2003) with confirmation through large scale implementation (D’Alessandro et al., 1995) 

and systematic reviews(Gamble et al., 2007; Lengeler, 2004).   

The roll back malaria partnership in its coordination of global fight against malaria advocated 

the scaling up of this intervention and others such as, prompt and effective case management, 

intermittent preventive therapy during pregnancy, and indoor residual spraying, that had proven 

to bring down malaria transmission (World Health Organization et al., 2015b). It has also 

developed malaria information survey which gathered malaria related burden data that could 

provide a clear-cut yardstick to monitor the impact of those control interventions over space and 

time on malaria risk.  

  Increase funds for malaria control in the recent years due to overseas development assistance 

couple with political commitment of the government of the endemic countries has lead to 

scaling-up of these interventions (Noor et al., 2014, 2009). The massive expansion of ITN 

distribution in most malaria endemic country of sub-Saharan Africa has shown to be beneficial 

nationally in many of the countries (Bhatt et al., 2015; Giardina et al., 2014; Mharakurwa et al., 

2012; Noor et al., 2014). However, the effect of this intervention on malaria risk across space of 

some of the country national borders demonstrated spatial heterogeneity even with the same 

level of coverage (Snow, 2015; Snow and Marsh, 2010) .  

Geostatistical models have been employed to study the relationship between vector control 

intervention and malaria risk with adjustment made for environmental and socio-demographic 

factors. Some of these studies found effect while others could not found any significant 

association of ITN intervention coverage with malaria prevalence at the country level. For  
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instance, an analysis of Angola MIS 2006-2007 data (Gosoniu et al., 2010) relating malaria risk 

to intervention was able to established decrease malaria prevalence with increased ITN in the 

household. Also, another study in Senegal (Giardina et al., 2012) found that having one ITN to 

two people is negatively associated with parasitaemia prevalence.  However in Tanzania study 

(Gosoniu et al., 2012) no apparent relationship could be established between malaria prevalence 

and the intervention measures. 

The effect of intervention coverage on malaria risk might vary in space within a country due 

to dissimilar level of transmission across the areas in the country. Various measure of coverage 

has been suggested by RBM-MERG to track the progress of intervention coverage on malaria 

burden reduction and they can be easily derived from the intervention variables recorded in the 

MIS.  The potential derivative specifically for insecticides treated bednet coverage includes those 

measuring ownership, and usage by the vulnerable groups.  

Recently a study (Giardina et al., 2014) carried out an analysis to study the effect of some 

intervention coverage in space for six countries in sub-Saharan Africa and found that some of 

interventions were not importantly related to malaria risk at the national level in four of the 

countries. However, when considered at sub-national level, by incorporating spatially varying 

coefficient at the defined areal level, several of the effect became significant at some of the sub-

national level. Moreover, another study (Diboulo et al., 2016) deployed the same method to 

assess the spatial effect of intervention coverage at health district level in Burkina- Faso using 

MIS data, and demonstrated that malaria prevalence is negatively associated with ITN use by 

children under the age of five in some of the district. Nigeria, one the country in Africa with high 

malaria burden,  just reach 42% household  access to one ITN in 2010 (National Population 

Commission (NPC) [Nigeria], 2012) . Despite lagging behind in terms of universal coverage; 

there is also geographical dissimilarity as regard the usage by the highly vulnerable group in 

different parts of the country.  

Model based spatial representation of intervention effect on malaria prevalence is a vital tool 

that can inform the malaria control programme on how different area of the country is faring 

regarding malaria control. In our previous work (Adigun et al., 2015), we did an evaluation of 

household ITN coverage on the risk of malaria at the country level and it appears malaria risk 

was not associated with any of the indicators considered. However, in this study we assess the 
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spatial heterogeneity of ITN use by the children and its association with malaria parasitaemia 

among this vulnerable group across the first administrative level in Nigeria with model 

formulation that adjusted for environmental and socio -demographic characteristics of the 

households.  We considered the use of ITN only because the value represents the most direct 

indicator of both individual and communal protection (Killeen et al., 2007) and it is therefore the 

more useful determinants of epidemiological impact (Korenromp et al., 2003).  

3.2 Methods 

3.2.1 Country context 

The dominant malaria vectors in identified across Nigeria include An. gambiae s.s, An. 

arabiensis and An. funestus. Also Plasmodium falciparum represent the most prevalent malaria 

parasite specie in the country and it is responsible for about 95% of malaria infection in the 

country. Most area of the country has climate condition that is suitable for malaria transmission 

throughout the whole year. Administratively, Nigeria is divided into 36 states and the federal 

capital territory (FCT Abuja) among six geopolitical zones (south-west: 6 states, south-east: 5 

states, south-south: 6 states, north-central: 6 states and FCT, north-west: 7 states, and north-east: 

6 states. The uptake of ITN in the country has not been very impressive, as at 2003 household 

access to an ITN was just only 2% and this possession rose to about 17% in 2008 and later to 

42% in 2010 due to overseas development assistance in some of the states in the country.   

3.2.2 Intervention coverage data 

The coverage of bednet intervention at the first administration level were evaluated  using the 

bednet information provided in the MIS following  the approach described in Household Survey 

indicators for malaria control document (DHS, 2013). Proportion of children under five year who 

slept under ITN during the night before the survey was the indicator of coverage derived for 

analysis in this study. 

3.2.3 Environmental data  

In order to control for the effect of environmental factors known to be associated with malaria 

parasitaemia in the country (Adigun et al., 2015), Rainfall estimates with spatial resolution of 

8km×8km and 10 days temporal resolution was obtained from the archives of Africa data 

dissemination services (ADDS) (http://earlywarning.usgs.gov/fews). Also the measure of 
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greenness, normalized difference vegetation index data with spatial and temporal resolution of 

250m×250m and 16 days, respectively was downloaded from the moderate resolution imagine 

spectro-radiometer (MODIS) database (http://reverb.echo.nasa.gov/reverb/). The values of these 

climatic covariates were extracted to the survey coordinates using ArcGIS 10.2 spatial analyst 

tool (ESRI Redlands, CA). The calculated averages over a year period preceding the survey was 

used in the analysis. 

3.2.4 Socio-demographic data  

Clusters were defined as either rural or urban based on the information provided by socio-

economic data and applications centre of the centre for international earth science information 

network (CIESIN) (http://sedac.ciesin.columbia.edu/). The available information in the MIS on 

household socio economic status in the form of quintiles ranging from poorest to the least poor 

which was derived from application of principal component analysis on household possession of 

certain assets was employed in this study. Also the children age in months was classified into 

five categories with the strata separated by equal interval.  

3.2.5 Statistical Analysis 

We first fitted a Bayesian geostatistical model to assess the effect of intervention coverage 

(use of ITN by childrenU5) on malaria parasitaemia prevalence at the country scale, adjusting for 

the socio-demographic characteristics of the household and climatic factors. Secondly we model 

the intervention coverage level on malaria parasitaemia prevalence at the states level also 

adjusting for aforementioned covariates in the initial model fit. These models included the spatial 

random effect, which account for the correlation in the response variable, and it was assumed to 

follow a zero-mean multivariate normal distribution with variance-covariance defined as 

exponential function of the distances between any pair of locations. The spatial correlation at the 

first administrative level was modeled as conditional autoregressive (CAR) effect.  In the CAR 

model, neighbours are defined as the adjacent areas, and this was used to generate spatial 

weights matrix, which assigned value one to areas that shares border and zero if they do not. 

Further details on model formulation are given in the appendix.  
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3.3 Results 

The NMIS 2010 was carried out in 239 locations and a total of numbers of 5137 children 

under the age of five years were examined for malaria parasitaemia by the use of blood smear 

microscopy. Figure 3.1 shows the proportion of children under that sleeps under ITN in the 

surveyed clusters of the NMIS.  The measure of bednet coverage analysed in this study is 

proportion of children under five who slept under an ITN in the night preceding the survey. 

Table 3.1 shows the summary of the ITN use by children less than the age of five years, for the 

36 states and the federal capital territory (FCT), Abuja.  It shows heterogeneity in various states 

in the country. Overall the average proportion of children use of ITN in the country is 

approximately 12% and ranges between 0% in Osun state and FCT, and 25% in Kebbi state. The 

proportion of ITN use by children under five is relatively very low in all the states of the 

Figure 3.1:  Proportion of children under five years of age that sleeps under ITN in the surveyed locations 



 

56 
 

southwest region of the country. It ranges between 0% and 11% in Osun and Ogun state, 

respectively. The south east region shows that Anambra state has highest proportion of use of 

treated bednet by the children reaching around 16% percent while Abia state has lowest with 

only 3% of the children using ITN to sleep.  In the south-south Bayelsa has the minimum 

proportion (3%) of children use of ITN while Rivers state, the immediate neighbour has the 

highest percentage (25%) of usage in this zone. Within the north-central, only Niger state had a 

little above 20% of children sleeping under ITN while most of other states are having less than 

9% of the children to have slept under ITN during the night prior to the survey. Among the states 

in the northwest Zamfara and Katsina state has very low utilization of ITN by children compare 

to the other states. The proportion of children that slept under ITN reach at least 20% in most 

state of the north east with the exception of Bauchi which has slightly lower proportion.   

In comparison, the observed malaria prevalence is high in the south west zone with exception 

of Lagos which has malaria parasitaemia prevalence of about 10%, also Osun state which has 

63% parasitaemia prevalence is the highest in this region. In the south east, the observed malaria 

prevalence is between 14% in Anambra state and 39.8% in Abia state. Among the states in the 

South- south Edo state has the highest proportion of parasitaemic children which is about 61% 

while river state has the lowest proportion of malaria infection in this region.  The parasitaemia 

prevalence in most state of the north central zone is high and it ranges between 32 and 66%.  

Also the states in the northwest zone are generally of high parasitaemic prevalence with only 

Sokoto having prevalence that is less than 40%. Most states in north east zone have 

comparatively less malaria prevalence than states in the other zone of the country with the 

exception of Yobe and Bauchi states that has malaria prevalence above 40%.  The analysis 

shows that, the measure of greenness, NDVI is associated with increased malaria risk, and also 

higher rainfall has a protective effect on malaria prevalence.  The results also show that living in 

rural area comes with increase risk of malaria infection. In terms of socio-demographic factors, 

malaria risk is importantly lower among children from the least poor household, and likewise, 

the odd of malaria infection among the children decreases significantly with the increase level of 

literacy among mothers.  Although the cluster level usage of ITN by the children under five 

years is negative with malaria risk but this relationship appears not to be important as shown in 

Table 3.2.  
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Table 3.1:  Summary of observed malaria prevalence and insecticide net use among children by states 

States 
Number of survey 

clusters 
ITN use by children (%) 

Observed malaria 

prevalence (%) 

Lagos 13 2% 10% 

Ogun 4 11% 56% 

Oyo 8 0.5% 43% 

Osun 5 0% 63% 

Ondo 5 0.6% 54% 

Ekiti 4 8% 40% 

Anambra 

 

9 16% 14% 

Enugu 8 5% 25% 

Imo 10 3% 25% 

Abia 7 2% 40% 

Ebonyi 6 7% 32% 

Edo 

 

6 5% 61% 

Delta 8 7% 28% 

Bayelsa 4 3% 24% 

Rivers 9 25% 20% 

Akwa Ibom 8 12% 32% 

Cross 

Rivers 

5 13% 41% 

Kwara 5 2% 59% 

Kogi 7 7% 40% 

Nasarawa 4 3% 35% 

FCT 3 0% 32% 

Niger 7 21% 66% 

Benue 8 3% 57% 

Plateau 6 8% 32% 

Sokoto 5 20% 38% 

Zamfara 3 4% 67% 

Kebbi 3 25% 72% 

Kano 10 19% 40% 

Katsina 7 3% 52% 

Jigawa 4 23% 42% 

Kaduna 8 17% 28% 

Bauchi 9 19% 44% 

Gombe 5 22% 23% 

Yobe 5 23% 18% 

Borno 9 20% 25% 

Adamawa 7 22% 20% 

Taraba 5 9% 18% 

 



 

58 
 

Table 3.2:  Posterior median and 95% Bayesian credible interval (BCI) estimates of ITN use at cluster and state 

level   adjusting for socio-demographic and environmental variables 

 Model    A Model  B 

Variables OR (95%  BCI) OR (95%  BCI) 

   

Rainfall 0.84 (0.66, 1.11) 0.77 (0.61, 0.98) 

NDVI 1.41 (1.15, 1.75) 1.35 (1.11, 1.65) 

   

Place of residence   

Urban 1 1 

Rural 2.27 (1.55, 3.38) 2.36 (1.61, 3.52) 

   

SES   

Most Poor 1 1 

Poor 1.12 (0.88, 1.43) 1.11 (0.87, 1.41) 

Middle 1.20 (0.91, 1.58) 1.18 (0.90, 1.56) 

Richer 1.07 (0.78, 1.47) 1.04 (0.76, 1.41) 

Richest 0.64 (0.43, 0.93) 0.60 (0.41, 0.88) 

   

Age categories (Years)   

0-1 1 1 

1-2 1.35 (1.06, 1.72) 1.35 (1.06, 1.73) 

2-3 1.93 (1.52, 2.46) 1.93 (1.52, 2.45) 

3-4 2.25 (1.78, 2.85) 2.25 (1.77, 2.85) 

4-5 2.55 (2.02, 3.24) 2.55 (2.02, 3.24) 

   

Literacy level of mother   

Illiterate 1 1 

Primary 0.79 (0.64, 0.97) 0.78 (0.64, 0.96) 

Secondary 0.78 (0.62, 0.97) 0.77(0.62, 0.96) 

Higher 0.37 (0.21, 0.61) 0.36 (0.21, 0.60) 

   

ITN use by childrenU5 0.70 (0.15, 3.77)  

Spatially varying ITN use by childrenU5  0.05(0.004, 0.527) 

Spatial Parameters   

Range(km) 32.30 (25.10,  90.27) 22.89 (2.87, 61.12) 

Variance 0.76 ( 0.57, 1.00) 0.85 (0.64, 1.14) 

Model A:  included ITN use by children at the clusters level  

Model B: included ITN use by children as spatially varying at the states level 

NDVI: normalized difference vegetation index 

SES: socio-economic status 
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The spatially structured coefficient of intervention estimated from model B allowed the 

evaluation of the effect of use of ITN at the state level. Figure 3.2 shows the different coverage 

among the states, and Figure 3.3 depict the effect of this coverage estimated from model B. The 

result of spatially structured model of malaria risk on children ITN usage, which also adjusted 

for environmental, and socio-demography factors, shows that increase proportion of children 

sleeping under net is associated with lower malaria parasitaemia in two neighbouring states 

Adamawa and Taraba, within northeast region of the country. Likewise, the effect is negative 

though not significant in most of the other states where the neighbours have comparable level of 

utilization of ITN by the children.   

 

 

 

 

 

 

 

 

 

 

 

              

 

 

 

Figure 3.2:  Insecticide treated net use by children under five at the state level. 
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                                                                       Important effect. 

 

3.4 Discussion  

We have explored the effect of coverage of intervention in space on the distribution of malaria 

parasitaemia prevalence among children under the age of five in Nigeria. The analysis was 

carried out at both national and sub-national level because of the fact that systematic 

underestimate of the true efficacy of ITN may result if community effect is not considered 

(Hawley et al., 2003). The assumptions in our modelling approach are that effect of intervention 

in neighbouring areas should be similar, area located further away from each other should have 

dissimilar effect due to differing level of endemicity, malaria vector resistance and people's 

protective behaviour varies in space. We assess the effect of intervention in space using the states 

in the country as our unit of analysis. Environmental and socio-demographic covariates were 

adjusted for in our model fit.  

Figure 3.3: Posterior median estimated effect of ITN use intervention. 
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Nationally, place of residence (urban/rural), household socioeconomic status and mother 

education is associated with reduced malaria risk and this is in harmony with well known 

relationship with malaria parasitaemia. Also increase parasitaemia infection found among older 

children is in concert with documented evidences (Giardina et al., 2012; Gosoniu et al., 2012; 

Riedel et al., 2010). Contrariwise, ITN use by under five measured at the cluster level seems not 

to be associated with parasitaemia risk at the country scale, and this may probably be due to the 

fact that only  small proportion of the children do sleeps under treated bednet. Similar result had 

been obtained in a study which looks at the effect of intervention coverage on changing malaria 

risk in six countries of sub-Saharan Africa (Giardina et al., 2014)  and also in a similar study in 

Burkina-Faso (Diboulo et al., 2016) . 

 Our analysis show that intervention effect varies in different zones of the country. In the 

north-east, intervention coverage is indicative of negative effect in most states within this zone 

and only become importantly related with malaria risk in two states of this zone.  This result 

confirm the findings by other studies (Barnes et al., 2005; Chizema-Kawesha et al., 2010) from 

Africa that higher coverage of intervention in areas with relatively low malaria burden is highly 

effective in malaria transmission reduction. This might explained the reduced malaria risk 

associated with relatively higher use of treated bednet among children in these two states of the 

north-east zone. Moreover most states within the region have comparable proportions of ITN use 

by children which suggest that communal effect of ITN especially when every area has 

reasonable level of coverage is stronger than individual area effect (Hawley et al., 2003) .   

Studies in various part of Africa have also documented similar evidence found this study. For 

instance, the multi-country analysis (Lim et al., 2011) of ITN coverage and its effect on malaria 

risk in seven countries in Africa show intervention coverage was related to malaria risk in four of 

these countries, and the spatial heterogeneity in the relationship was suggested to be probably 

due to different level of malaria transmission intensity in the various countries.  More so, another 

study (Apinjoh et al., 2015) in Cameroon show that communities with more possession of ITN 

have reduced risk of parasitaemia in comparison with other community with lower coverage.  

The mechanism through which this increase ITN use confers this community effect is by 

reducing the mosquitoes' population either by affecting their feeding cycle or killing them and 

thereby reducing the vectorial capacity, and in effect malaria prevalence. 
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However, similar effect was not found in any of the states that have comparable coverage like 

states in the north-east.  This might be explained by other factors such as endemicity level prior 

to scale up of ITN use, emergence of resistance to pyrethroid by the malaria vector, variability in 

vector composition, and the physical condition of bednet especially presence of holes. More so, 

most of these states where we could not get important effect of ITN coverage on malaria 

prevalence would pass for an high transmission settings and it has been shown through 

mathematical model that in high transmission setting, higher coverage and longer time range will 

be required to achieve similar gains that could be attained in short space of time with moderate 

coverage in low prevalence areas (Griffin et al., 2010). The indicated spatial variability regarding 

the effect of ITN use strengthens the suggestion by Giardina et al. 2014 of the needs to evaluate 

the effect of intervention coverage on malaria risk at sub-national level.   

This study provides an important guide that could be use in intervention planning in the 

country and the derived intervention effect map could serve a strong empirical basis to inform 

national strategic plans for the control activities.  It shows that most of the states in the country 

are still far from meeting the target of covering the vulnerable group with the essential tool 

required to alter the transmission level. However our analysis demonstrate that achieving high 

coverage of intervention could have great impact in reducing the burden of malaria in the 

country especially when every states high attained the coverage of  this high risk group.   

The findings in this work show that recent scale up effort in the country is already paying off, 

and also support the need for aggressive scale up of ITN in most part of the country.  Therefore, 

continued coordinated effort of all stakeholders in the fight against malaria in the country are 

required, to make sure that ITNs are reaching all the population at risk of malaria in the country.  

In addition, there may also be the need for mass drug administration especially in the highly 

endemic states of the country to bring down parasitaemia prevalence in those places.  There may 

also be the need for targeting of some mosquitoes species that the present intervention is least 

successful, particularly the An. arabiensis responsible for significant proportion of malaria 

infection in the drier part of the north, which feed mostly outdoor, by killing the developing 

mosquito at source in their larva habitat. More so a study on pyrethroid resistance in Africa 

anopheline mosquitoes implicated Nigeria to be one of the countries where An. gambiae 
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populations are developing resistance to the insecticides that is being use in the treatment of bed 

nets /indoor residual spraying (Awolola et al., 2009; Ranson et al., 2011). Therefore, there may 

be need to incorporate resistance management into control activities and also non-insecticidal 

methods should be sought wherever practicable.   
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3.5 Appendix 

3.5.1 Model Formulation  

At the locations                
  we consider the binary outcome      which takes value 1 or 

0 to indicate that child   at the location    is found with malaria parasitaemia or not, respectively. 

A Bayesian logistic regression was used to relate the malaria risk to its predictors, and it is given 

as:             =             .  In the formulation     denote the parasitaemia risk,    represent 

the vector of regression coefficient and    are the set of covariates.  

                          accounts for the spatial correlation in malaria risk and it was 

assume to have a zero mean multivariate normal distribution that is,               .      

represent the variance-covariance matrix and defines the function which shows decay in 

correlation between any pair of location with distance. We choose the exponential covariance 

function in this analysis, that is,                          , where    represent  the variance of 

the spatial process,   is the smoothing parameter which control the rate of correlation decay  with 

increasing distance.  

 We carried out the model fit through the implementation of Markov Chain Monte Carlo 

simulation. The formulation of this hierarchical Bayesian model was completed by specification 

of prior distributions for the remaining model parameters. Non informative   Normal prior 

distribution were assigned to the intercept and the regression coefficient, that is,       

         .  Inverse gamma distribution was chosen for spatial variance       that is,       

        with the value of   and   specified such that the distribution has mean of 1 and the 

precision 0.01. Uniform distribution was assumed for the smoothing parameter       that is, 

                      ,                   . Also                are the minimum (>0) and 

maximum Euclidean distance between the survey locations.   

In order to evaluate the intervention effect at the first administrative level, the model above 

was adjusted by introducing the conditional autoregressive structure of the coefficients at area 

level and it was expressed as:              =     +      
               

  +          where       
   

represent the intervention effect at the area    
   . The Conditional Autoregressive (CAR) spatially 

random term       
   was formulated as composed of two parts with a part capturing homogeneity 
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across  the areas and the other one which capture heterogeneity among areas , that is       
   

=   
    

       . The conditional prior distribution   
    

   |  
    

             
 

  
   

    
       

 

  
  

was assigned to the first part, where     represent the number of neighbours for area    and   is 

the variance, that is inversely proportional to the number of neighbours.  Also the prior     

        
 

  
    was assigned to the other independent random part.   
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Abstract 

Estimating the association between malaria prevalence and child mortality is very important for 

assessing the disease burden from routine survey data. We investigated the relationship of 

malaria endemicity to all-cause mortality across different age strata in children under the age of 

five years in Nigeria, linking the two most recent national surveys, the Malaria Indicator Survey 

(MIS) and the Demographic and Health Survey (DHS). Joint, Bayesian piecewise Cox 

proportional hazard and binomial geo-statistical models were developed to relate mortality to 

malaria risk and take into account the spatial misalignment in the survey locations. The results 

reveal that a unit increase in malaria risk on the logit scale is associated with a 25% and 17% 

increase in mortality hazard among infants of 7-11 months and children respectively. Malaria 

endemicity was not associated with mortality during infancy at the first six months of life. These 

findings indicate that routine MIS data can be used to quantify the malaria related mortality and 

therefore improve estimate of the disease burden. 

Keywords: Bayesian; Cox proportional hazard; geostatistical; INLA; malaria parasitaemia; 

mortality; spatial misalignment. 
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4.1 Introduction 

Malaria continues to be a threat to survival of children under the age of five in many countries 

of Sub- Saharan Africa. The most recently available statistics shows that 90% of global malaria 

deaths occur in this region, out of which 78% were among the children under the age of five 

(World Health Organization, 2014). Also, in another report, it was estimated that 7% of deaths 

within this age category  in malaria endemic countries are caused by the disease (World Health 

Statistics 2015., 2015). Apart from being a direct cause of death from an overwhelming acute 

infection presented as severe malaria, the disease predisposes the children to many other causes 

of illnesses such as severe anaemia and acute respiratory infection which substantially increase 

the risk of death  (Murphy and Breman, 2001). In addition, low birth weight, which is a risk 

factor of infant mortality especially in the earlier months of life frequently results from malaria 

infection in pregnancy (Gemperli, 2003; Murphy and Breman, 2001; Steketee et al., 2001). 

Malaria prevalence and all-cause mortality in children remains very high in Nigeria. In 2014, 

The current global statistics has it that the country alone is responsible for 13%  of global under 

five mortality, which represents the highest in Africa (World Health Statistics 2015., 2015). 

Also, the National Malaria Information Survey  (NMIS) showed  a malaria prevalence of around 

42% for children  less than the age of five (National Population Commission (NPC) [Nigeria], 

2012). It is therefore very pertinent to assess malaria-related burden on all-cause children deaths.  

Various efforts using different approaches have related malaria transmission with all-cause 

child mortality and obtained contrasting results. A meta- analysis of  all-cause mortality and 

Entomological Inoculation  Rates (EIR)  data compiled from reviewing published and 

unpublished literature found a significant increase in mortality rate with elevated EIR among 

infants but not any clear trend with children aged between 12 and 59 months in sub-Saharan 

Africa (Smith et al., 2001). A Bayesian geostatistical model linking Demographic and Health 

Survey (DHS) dataset with Mapping Malaria Risk in Africa (MARA) historical survey data 

could not find any apparent relationship between malaria endemicity and all cause mortality 

among children under five in Mali (Gemperli, 2003). However, the MARA database reports data 

covering different age group of the population across survey locations. Bhattarai et al. (Bhattarai 

et al., 2007) analysed data from cross-sectional surveys and hospital records of a district in 

Tanzania and suggested that the deployment of malaria interventions over years had led to the 
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decline in all-cause mortality. Kleinschmidt and colleagues (Kleinschmidt et al., 2009) in their 

estimates of  the association of malaria interventions on changes in malaria related health in 

Bioko island  indicated that the reduction in parasite prevalence and the increased  child survival 

could be attributed to an increased deployment of control interventions. A meta-analysis of the 

relation between  reported health impact and coverage of  malaria control interventions  found a 

decrease  in child mortality as a result of scaling malaria control interventions across Africa 

(Steketee and Campbell, 2010).  A predictive model applied on systematically collated data of 

key predictors of malaria mortality such as Plasmodium falciparum prevalence, vector control 

and first line  anti-malaria  drug resistance showed that  rapid reduction in  malaria mortality in 

Africa could be ascribed to increased deployment of control interventions in the region (Murray 

et al., 2012).  The Malaria Transmission Intensity and Mortality in Africa (MTIMBA) project 

collected data on EIR, malaria intervention and some demographics characteristics of households 

across few health demographic surveillance sites (HDSS) that routinely monitor mortality. 

Results from an analysis of  this data from an HDSS in Tanzania (Rumisha et al., 2014) could 

not establish any important relationship between all-cause mortality and malaria transmission 

intensity after adjusting for malaria interventions and spatio-temporal variations in transmission. 

The present study, further explores the contribution of malaria risk on all-cause under five 

child mortality, by analyzing the most recent DHS and NMIS data in Nigeria. The surveys were 

close in time but the locations were not aligned. This necessitates the use of geostatistical 

survival and binomial logistic models to link the two datasets and also take into account 

prediction uncertainty of the malaria risk estimated at the mortality location. 

4.2 Methods  

4.2.1 Children mortality data 

All-cause, under-5 mortality data were obtained from the DHS database. The data was 

generated from a nationally representative household survey carried out between February and 

June 2013 in Nigeria. Birth histories on 31,482 children at 862 survey locations with relevant 

information on maternal demographics (education, mother birth date, interview date, preceding 

birth interval in months), household characteristics (wealth index quintiles, drinking water 

source, type of toilet facility, number of children age 5 and under in the household) and 

individual child factors (age in months, birth order number, size of child at birth, place of 
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delivery gender and vital status) were obtained. The drinking water source and type of toilet 

facility were further used to derive indicators of improved drinking water source and sanitation 

respectively based on definitions provided by the  WHO/UNICEF joint monitoring programme 

(JMP) (UNICEF et al., 2006). Preceding birth intervals and mother's age at birth of the indexed 

child were grouped into categories with cut-offs chosen based on previous studies (Gemperli, 

2003; Rutstein, 2005). Likewise, place of delivery and size of child at birth were regrouped into 

two (homes and health facilities delivery) and three categories (small, average and large) 

respectively. Rural-urban gridded data extracted from the Global Rural and Urban Mapping 

Project (http://sedac.ciesin.columbia.edu/) was used to classify the locations as rural/ urban 

residence. 

4.2.2 Malaria prevalence data  

The NMIS implemented between October and December in 2010 collected data over 239 

locations using the standard MIS survey design. Malaria parasitaemia was diagnosed using blood 

slide microscopy and a rapid diagnostic test (RDT). In our study we estimated parasitaemia 

prevalence using the microscopy results.  

4.2.3 Environmental data 

The associated factor of malaria risk in Nigeria (Adigun et al., 2015), rainfall and normalized 

difference vegetation indices (NDVI) were obtained from remote sensing data sources. Decadal 

rainfall estimates at 8×8km
2
 spatial resolution, extracted from the African Data Dissemination 

Service (www. earlywarning.usgs.gov/fews) was used to derive annual averages for both the 

NMIS and predicted locations. Likewise, biweekly NDVI values, measuring vegetation 

greenness were obtained at 250×250 m
2
 resolution from the Moderate resolution imaging 

spectro-radiometer (MODIS) database (http://reverb.echo.nasa.gov/reverb/) and summarized by 

their annual averages at the locations.   

4.2.4 Statistical analysis 

A Bayesian geostatistical Cox model with piecewise log constant baseline hazard (Breslow, 

1974) through data expansion and Poisson regression (Holford, 1980; Laird and Olivier, 1981; 

Martino et al., 2010) was used to assess the relationship of malaria risk with child mortality after 

adjusting for household socio-demographic and individual child characteristics. Separate 

analyses were carried out for different age strata (that is, 0-6 months, 7-11 months and 12-59 
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months). The malaria prevalence was modeled on the logit scale at the mortality locations via a 

binomial geostatistical logistic regression model using the environmental predictors of malaria 

that we identified to be important  in  our previous work (Adigun et al., 2015). We used a joint 

modeling formulation, where the logit of malaria risk entered as a covariate in the hazard model.. 

The use of the joint specification allows appropriate incorporation of the malaria prevalence 

prediction uncertainty. Approximate Bayesian inference was performed using the integrated 

nested Laplace approximation(INLA)  (Rue H. et al., 2009b) and the stochastic partial 

differential equations(SPDE) (Lindgren and Rue, 2013) approach using the R-INLA package 

(available at www.r-inla.org) . Further details are provided in the appendix. 

4.3 Results 

Table 4.1 provides a summary of malaria prevalence and the number of deaths per thousand at 

the sub-national level among infant and children less than five years. The unadjusted average 

malaria prevalence ranges between 10% and 72%. The number of deaths per thousand among 

infant is between 28 and 121 while is between 13 and 137 among older children. The overall 

mortality rate (not shown) in children under five years old was 128 per 1000 live births and the 

infant deaths accounted for 70% of the total deaths. Table 4.2 shows that more than half of the 

total deaths were recorded in households with mothers lacking formal education, and more than 

75% of the children deaths occurred in the rural areas. Children under five mortality risk was 

higher for women with short preceding inter-pregnancy interval than women with longer inter-

pregnancy duration (13% vs. 7%,    =149, P<0.05). Fewer deaths were recorded in households 

with improved socioeconomic status relative to those in the lower asset index quintile. 

Additionally, 78% and 57% of the households, where these deaths occurred, do not have access 

to improved drinking water source and sanitation respectively. Overall, the parasitaemia 

prevalence estimated by microscopy is 42%.  Figure 4.1 shows the observed malaria prevalence 

at the 239 clusters of the MIS and the crude mortality rate at the 862 DHS clusters. Figure 4.2 (A 

and B) show the scatter plot and linear fit of the observed malaria prevalence and children 

mortality rate per thousand.  

The frequency distribution of different risk factors, as shown in Table 4.2, does not differ 

between the three age groups.  Parameters estimated from the fitted joint Cox model with 

piecewise log constant baseline hazard and binomial logistic model are shown in Table 4.2. The 

http://www.r-inla.org/
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posterior median of the hazard ratio shows that the association between malaria risk and  infant 

mortality is not important during the first six months of life (HR=1.02, 95% Bayesian Credible 

Interval (BCI) : 0.90, 1.15). 

Table 4.1:   Malaria prevalence, and infant and children mortality per thousand by first states in Nigeria 

           Malaria data                                             Children mortality data 

States No of 

clusters 

Number of 

Children 

Screened 

Malaria 

prevalence 

% 

Number of 

clusters 

Number 

of infants 

Number of 

infant deaths 

per thousand 

Number 

of older 

Children 

Number of  older 

children deaths 

per thousand 

 

Abia 

 

7 

 

98 

 

39 

 

23 

 

136 

 

79 

 

345 

 

36 

Adamawa 7 141 20 23 284 90 700 55 

Akwa-Ibom 8 205 32 24 143 61 400 22 

Anambra 9 134 14 22 119 61 353 26 

Bauchi 9 250 44 24 381 88 993 137 

Bayelsa 4 123 24 22 198 48 563 39 

Benue 8 207 57 24 170 80 475 41 

Borno 9 146 25 20 116 27 470 39 

Cross river 5 121 41 23 138 44 372 37 

Delta 8 184 28 24 162 65 496 27 

Ebonyi 6 117 32 23 219 87 492 75 

Edo 6 132 61 23 145 33 436 23 

Ekiti 4 65 40 23 144 44 367 24 

Enugu 8 146 25 22 131 74 367 36 

FCT, Abuja 3 53 32 23 106 48 380 31 

Gombe 5 151 23 23 299 71 820 88 

Imo 10 144 25 24 142 80 318 47 

Jigawa 4 104 42 24 348 87 1011 116 

Kaduna 8 229 28 24 204 41 656 28 

Kano 10 289 40 39 574 72 1438 78 

Kastina 7 277 52 24 362 60 999 131 

Kebbi 3 93 72 22 339 90 767 97 

Kogi 7 125 40 24 117 40 351 32 

Kwara 5 85 59 23 176 57 488 24 

Lagos 13 107 10 40 249 63 668 18 

Nasarawa 4 116 35 22 181 64 453 41 

Niger 7 180 66 24 211 52 699 28 

Ogun 4 45 56 24 134 60 382 20 

Ondo 5 79 54 24 175 71 458 43 

Osun 5 62 63 24 132 46 415 13 

Oyo 8 127 43 24 160 44 491 36 

Plateau 6 121 32 23 178 67 468 26 

Rivers 9 192 20 24 134 61 384 31 

Sokoto 5 168 38 24 362 82 939 115 

Taraba 5 96 17 23 336 78 871 63 

Yobe 5 123 42 20 245 60 748 74 

Zamfara 3 102 67 23 429 121 908 116 
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However, infants' 7-11months age experience significantly increased mortality with elevated 

prevalence of malaria parasitaemia (HR=1.25, 95% BCI: 1.04, 1.50). Moreover, an increase in 

mortality was associated with an increase in malaria parasite risk among older children 

(HR=1.02, 95% BCI: 1.17, 1.36).  The hazard of mortality is reduced by 62%, 53% and 36% 

respectively in younger infants, infants aged 7-11 months and children aged 12-59 months for 

birth intervals of 2 to 5 years and by 69%, 83% and 34% respectively for birth intervals greater 

than 5years compared to preceding birth interval of less than two years. The mortality hazard rate 

among children born to mothers with at least secondary education is lower compared to women 

without formal education. Being female child is associated with important lower mortality rate in 

Figure 4.1:  Geographical distribution of the observed malaria parasite prevalence and crude mortality ratio 
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the first six months of life; however this association becomes unimportant with the older 

children. Having mature mothers in terms of their age at birth is related with lower mortality in 

infants up to six months old and in children but this relationship becomes not important for older 

infants (7-11months). Moreover, children and younger infants who were born heavier than 

average have marked reduced hazard of death, however this association is not important in older 

infants. Death among younger infants is not related to the socio economic status of the household 

but the mortality rates are lower for senior infants born in the middle socio economic status 

households. The mortality hazard for children is lower for household at higher socio-economic 

level. Rural/ urban disparity appears not to importantly affect the hazard of death among children 

and infants aged 7-11 months old but living in urban areas significantly reduces the hazard of 

death among younger infants. Multiple births predispose the children to higher mortality risk. 

With regards to the number of children under the age of five in the family, the analysis shows 

that the more the children in the households, the better the survival.  Contrariwise, every 

additional birth into the household predisposes the born child to lower survival across all ages. 

Improved drinking water source, better sanitation and delivery at health facilities are not 

associated with child survival. Figures 4.3(A-F) depict the estimated mean of the posterior 

predictive distribution of spatial random effects and the associated standard deviation in the 

various age groups. 

    A)                                                                                       B) 
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Figure 4.2: Scatter plots and linear fit of the observed malaria prevalence with the number of deaths per 1000 for infant 

(A) and 12-59months (B) 



 

75 
 

Table 4.2:   Raw data frequency and parameter estimates (posterior median and 95% BCI) of a joint geostatistical 

Bayesian piecewise constant Cox proportional hazard and binomial logistic model. 

Variables    Infants  0-6 months  (N=5,099) 

 Freq.(%)       HR             95% BCI 

    Infants  7-11 months  (N=2,947) 

  Freq.(%)     HR             95% BCI 

    Children 12-59 months (N=22,381) 

Freq.(%)         HR              95% BCI  

 

Malaria Risk (logit scale) 

  

1.02           0.90, 1.15 

  

    1.25           1.04, 1.50 

  

1.17              1.02, 1.36 

 

Gender 

Female 

Male 

 

 

51.9 

48.1 

 

 

1.00  

1.33           1.19 ,1.48 

 

 

49.0 

51.0 

 

 

 1.00  

     1.02            0.81, 1.28 

 

 

50.6 

49.4 

 

 

1.00 

1.13              0.98, 1.30 

Place of delivery 

Homes 

Health Facilities 

 

63.9 

36.1 

 

1.00  

1.05            0.90, 1.21 

 

61.5 

38.5 

 

     1.00 

     0.82            0.58, 1.16 

 

63.2 

36.8 

 

1.00  

0.82              0.65, 1.02 

Multiple birth 

Single 

Twin 

 

93.8 

6.2 

 

1.00  

9.39            7.62, 11.57 

 

97.3 

2.7 

 

     1.00 

     2.30            1.30, 4.09 

 

   97.1 

 2.9 

 

1.00  

2.14              1.52, 3.00 

Size at birth 

Smaller than average 

Average 

Bigger than average 

 

18.8 

40.4 

40.8 

 

1.00  

0.88             0.76, 1.02 

0.71             0.61, 0.83 

 

14.9 

41.0 

44.1 

 

     1.00 

     0.97            0.70, 1.35 

     0.76             0.54, 1.06 

 

   13.8 

   41.7 

   44.5 

 

1.00  

0.85               0.69, 1.03 

0.75               0.62, 0.92 

 

Mother Education 

No formal education 

Primary 

Secondary 

Post Secondary 

 

 

 

47.1 

20.4 

26.7 

5.9 

 

 

1.00  

1.05              0.90, 1.24 

0.63              0.52, 0.76 

0.58              0.41,0.83 

 

 

45.7 

18.3 

30.0 

5.9 

 

 

 1.00 

 0.58             0.40, 0.84 

 0.40             0.25, 0.63 

     0.60             0.27, 0.63 

 

 

 

47.2 

20.7 

26.0 

6.5 

 

 

1.00  

0.92                 0.74, 1.14 

0.73                 0.55, 0.97 

0.31                 0.14, 0.70 

Preceding birth interval 

<2years 

2-5years 

>5years 

Firstborn 

 

17.2 

54.7 

8.0 

20.1 

 

1.00  

0.38               0.33, 0.44 

0.31               0.24, 0.40 

0.88               0.72, 1.08 

 

14.0 

57.3 

7.9 

20.8 

 

 1.00  

 0.47            0.36, 0.62 

 0.17            0.08, 0.37 

 0.54            0.35, 0.84 

 

19.3 

54.7 

6.9 

19.1 

 

1.00  

0.64                  0.54, 0.75 

0.66                  0.46, 0.93 

0.77                  0.59, 1.00 

 

Mother age at birth 

 

<=19years 

20-29years 

30-39years 

40-49years 

 

 

10.5 

49.9 

32.7 

7.0 

 

 

1.00  

0.58               0.48,0.70 

0.53               0.41,0.68 

0.52               0.37,0.73 

 

 

11.8 

53.1 

29.6 

5.5 

 

 

 1.00  

     0.67             0.45, 0.99 

 0. 61           0.37, 1.04 

 0.47           0.21, 1.05 

 

 

12.5 

51.8 

30.4 

5.4 

 

 

1.00  

0.70                  0.55, 0.88 

0.61                  0.44, 0.84 

0.62                  0.39, 0.98 

 

Socio-Economic Status 

Poorest 

Poorer 

Middle 

Richer 

Richest 

 

 

22.8 

25.4 

19.9 

17.9 

14.0 

 

 

 

1.00  

0.96                0.81, 1.13 

0.96                0.78, 1.19 

1.17                0.91, 1.51 

1.12                0.81, 1.55 

 

 

22.4 

22.3 

20.1 

19.1 

16.1 

 

 

 1.00  

      0.99            0.73, 1.33 

  0.53            0.35, 0.80 

      0.65            0.39, 1.07 

      0.56          0.27, 1.13       

 

 

22.4 

23.3 

19.9 

18.6 

15.8 

 

 

1.00  

1.13                  0.95, 1.36 

0.71                  0.55, 0.92 

0.70                  0.50, 0.97 

0.59                  0.37, 0.94 

 

Birth order 

  

1.10                1.06, 1.13 

 

 

 

 1.08           1.01, 1.16 

  

1.07                  1.02, 1.15 

                                                               Continue on next page 
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Abbreviations: HR: Hazard Ratio; BCI: Bayesian Credible Interval 

 

These maps indicate the estimates of the geographical variation in the mortality hazard that is 

not captured by the adopted socio-demographic covariates. They therefore represent the marginal 

burden of mortality among children under five that may be due to other unmeasured ecological 

variables. There are striking differences in the maps across the ages especially in the smoothness 

as we traverse the categories.  

The map of early infant life shows very weak smoothness, however, the smoothness improves 

with the senior infants. These maps avail us the opportunity to identify high mortality hazard 

areas, specifically in the south-east extending to some part in the south-south and in the 

northwest as well as some areas in the north-east which share border with Cameroon. Also the 

map of children shows the region with distinct lower survival that extends from Sokoto State in 

the northwest region to Gombe including fringes of Borno State in the northeast. More so, in the 

south, higher mortality hazard is found in the south-eastern states. Estimates of the prediction 

error illustrate lower uncertainty at those areas of close proximity to the observed mortality data.   

 

 

 

 

 

 
          Infants  0-6 months 

 Freq.(%)         HR         95% BCI 

     Infants  7-11 months 

Freq.(%)         HR         95% BCI  

    Children 12-59 months 

Freq.(%)          HR             95% BCI) 

Children less than  

the age of five 

< = 3 

>    3 

 

 

86.8 

13.2 

 

 

1.00  

0.27         0.21, 0. 34 

 

 

87.5 

12.5 

 

 

1.00  

0.45         0.29, 0.67 

 

 

87.1 

12.9 

 

 

1.00  

0.46          0.36, 0.58 

Residence 

Rural 

Urban 

 

69.2 

30.8 

 

1.00  

0.76          0.61, 0.93 

 

67.0 

33.0 

 

1.00  

1.40         0.98, 2.00 

 

67.0 

33.0 

 

1.00  

0.80             0.63, 1.0 

Improved Water Source 

No 

Yes 

 

75.7 

24.3 

 

1.00  

0.95           0.83, 1.10 

 

74.7 

25.3 

 

1.00  

0.96          0.69, 1.32 

 

74.8 

25.2 

 

1.00  

0.99             0.82, 1.20 

Improved Sanitation 

No 

Yes 

 

53.8 

46.2 

 

1.00  

1.05            0.90, 1.21 

 

50.3 

49.7 

 

1.00  

1.19          0.90, 1.55 

 

51.4 

48.6 

 

1.00 

1.04              0.88, 1.23 

                                     

Spatial Parameters 

Range (km) 

 

 

 

0.64            0.44, 0.95 

15.56          8.49, 25.88 

 

 

 

0.07          0.01,  0.29 

70.42      18.27, 337.37 

 

 

 

0.12                0.05, 0.25 

165.91          34.26, 890.35 



 

77 
 

 

            

                      A and B      Infants  0-6months 

                          C and D      Infants  7-11months         

                          E and F       Child     12-59months 

A 

 

B

) 

 

C 

 

D 

 

E 

 

F 

 

Figure 4.3: Predictive posterior distribution of the spatial random effect: posterior mean (left) and standard deviation 
(right). 
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4.4 Discussion 

The study represents the first effort that linked MIS and DHS data to assess the contribution 

of malaria parasitaemia prevalence to all-cause mortality across the different age strata in 

children less than five years. We developed a rigorous Cox model with piecewise log constant 

baseline hazard geostatistical model which relates mortality to malaria risk, adjusts for socio-

demographic and child characteristics and takes care of the spatial misalignment in the datasets. 

Separate analyses were conducted for infants 0 to  6 months, 7 to 11 months and children to 

capture the varying relationship with age (Kanté et al., 2014).  

Our analysis shows that malaria risk is associated with increased hazard of death among 

children whose age are at least seven months, after taking into account  the individual child and 

maternal characteristics. The study results also appear to indicate that malaria risk is not related 

to early infant death in the country. This lack of association between malaria risk and younger 

infants mortality may be due to the latent  transferred immunity and physiologic protection 

during the earlier months of life (Kazembe et al., 2007). Another  reason might be other 

unmeasured competing risk factors especially birth asphyxia, preterm birth complications and  

infectious diseases such as pneumonia, sepsis and meningitis (Black et al., 2010; Liu et al., 2012) 

that could have stronger associations than malaria risk. Nevertheless, we cannot rule out the 

indirect consequences of malaria on the mortality hazard of this age group mostly known to 

manifest in low birth weight and preterm delivery which are often associated with  maternal 

malaria in pregnancy (Desai et al., 2007). 

The estimated fixed effects of the mortality hazard confirmed well-known factors linked to 

child mortality. The positive association between lower birth weight and increased risk of death 

especially in the earlier months of life confirmed previous findings (Akinyemi et al., 2015; Class 

et al., 2014). In the same vein,  mother’s education is known to negatively impact child mortality 

because some appreciable level of educational attainment could probably bring on considerable 

health awareness, higher purchasing power perhaps through better paid employment and 

utilization of health facilities which might transform to the improvement in childhood survival 

(Kanté et al., 2014; Kazembe et al., 2007; Liu et al., 2012). Previous studies (Althabe et al., 

2012; Hong, 2006) have also linked  multiple births  to  higher early childhood death especially 

when the births are pre-termed coupled with  low birth weight  and birth defects. Moreover urban 

/ rural survival disparities especially among the younger infants might be linked to variation in 
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the availability of  basic medical services and health care provision in which the rural  infants  

are disadvantaged (Jimenez-Soto et al., 2014; Van de Poel et al., 2009). Likewise, lack of 

survival advantage among the children born in the health facilities compare to those in various 

homes could be explained by a considerable frequency of high risk deliveries in the health 

facilities. The reported protective advantage of longer birth spacing on children survival 

strengthens the existing knowledge on this relationship from previous study (Kozuki and Walker, 

2013; Ronsmans, 1996).  More so, the findings of  higher mortality  hazards for younger infants 

born to teenage mothers is not at variance with existing literature and this has been mostly 

associated with physiologic immaturity, premature birth complications and lack of experience on 

caring for newborn (Selemani et al., 2014; Sharma et al., 2008).  The non-important association 

between socio economic status and survival advantage of the younger infants is already reported 

in literature. At this stage of age, mortality is rather influenced by endogenous factors  and less 

likely by exogenous ones such as the household socio economic status (Sartorius et al., 2010). 

Nevertheless, the importance of this association among the older age could be due to externally 

derived factors which the parent can substantially manipulate to reduce the hazards of mortality 

(Manda, 1999).  

The map of spatial random effects reveals the higher foci of unexplained correlation in the 

mortality which coincides with areas of low uptake of immunization in some parts of the north 

(data not shown) and that of relatively low consultation of health care provision for the 

management of childhood illness in some states in the south east and partly south-south. This 

calls for intensification of health education through various media on the importance of child 

immunization against the aforementioned vaccine preventable diseases and also on programmes 

that could improve health care seeking behavior. The study uses mortality data, which is not 

cause-specific; however, this is the first study showing a relation between malaria endemicity 

and mortality across different age groups of children under five years old. These results indicate 

the potentials of using MIS data to estimate the malaria related burden on child mortality.  
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4.5 Appendix 

4.5.1 Mortality model  

    Let the locations of the observed mortality be              
  and the exposure time that 

each child   in location    lived before death or censored be divided into piecewise continuous   

time intervals      . We also consider the death indicator      , where        if the child    dies 

in interval    and      =0 otherwise. We fitted a piecewise proportional hazards model as if      

are independent Poisson observations with means       =        where      is the hazard for 

child   at location    in the interval  .  

We modeled                          
                  , where         is the known 

offset in the model,    is the log of  baseline hazard at interval   which is assumed piecewise 

constant that is,               ,        is  the malaria prevalence on the logit scale and 

       represent row vectors of associated covariates,    are the coefficients of the individual 

specific covariates.   is the coefficient of the malaria prevalence covariate. The spatial 

correlation was incorporated into the model via location specific spatial random term   

   ,…,       where   = log    .    is assumed to arise from multivariate Gaussian that is,  

            with Matérn covariance matrix     =  
       

 
  (κ    )/(      

    .    
   

represent the spatial process variance,   is the smoothing parameter with the value fixed to 1 in 

this application,   is the scaling parameter,    is the modified Bessel function of second kind and 

order        is the Euclidean distance between two locations    and  , The spatial range  =  κ  

is the distance in which correlation become negligible (<0.1).  

4.5.2 Malaria prevalence model and prediction at mortality locations 

     We assume     (  
    

 ,…    
 ) are the locations with observed malaria data different from 

observed mortality locations. Also let    and    be the number found with malaria parasite and 

number examined respectively at location   
 .    is typically assumed to have come from binomial 

distribution with probability    at location   
  that is       (     ). The relation between     

   

and ф(  
 ), the vectors of location specific environmental/climatic covariates is modeled through  

          
          

       
      where    is the spatial random effect which is assumed to 



 

81 
 

arise from a multivariate Gaussian process as specified in the mortality model that is     
     

MVN(     ) ,where            =  
         

 
  (κ     )/(      

     . 

     Let       =                      
  be the malaria environmental covariates at the 

mortality location.  The predicted malaria prevalence                           
 
 at the 

mortality location conditional on      =      
       

         
       and on the covariance 

parameters of the malaria spatial process at those locations could be written as      = 
         

    where     is a vector of the predicted malaria random effects at the mortality locations    .  

To complete the Bayesian model specification, we adopt priors for the models parameter. We 

specify non informative Gaussian distribution priors for regression coefficients, that is       and 

             , log-normal   priors were used for hyperparameters   and    that is log 

(            (0,100) and log               (0,100), with    
           

    and 

=  κ .  
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Abstract 

Background: Anaemia burden in Nigeria among children under five year of age is high, but the 

contribution of various risk factors is not fully understood. Also, estimates at high spatial 

resolution appropriate for control are non- existing. We aimed to provide the model based 

estimate of anaemia risk and the number of anaemic children per state.    

Methods: We implemented hierarchical Bayesian measurement error model, using the nationally 

representative malaria burden dataset, the predicted estimates (on logit scale) of soil transmitted 

helminth, Schistosoma, and nutritional indicators, to determine associated anaemia risk factor 

and generate high resolution map of haemoglobin level and anaemia risk.  

Findings:  The analysis reveals that exposure to increase prevalence of Ascaris lumbricoides is 

associated with increase anaemia risk. It also shows that malaria infection and relatively low 

socio-economic status predisposes the children to elevated anaemia risk. More so, the population 

adjusted prevalence of anaemia in the country is approximately 64% (95% Bayesian Credible 

Interval 47 to 79), and the estimated number of anaemic children is around 17 million (95% 

Bayesian Credible Interval: 12 to 21 million). Adamawa state in the northeast has the lowest 

population adjusted prevalence, which is 46.9% (95% Bayesian Credible Interval: 26.8, 67.5), 

and Jigawa state in the northwest with population adjusted estimate of 84.8% (95% Bayesian 

Credible Interval: 69.7, 93.1) was the highest. 

Conclusion:  We provide estimates of spatial distribution of anaemia risk, contributing factors, 

and number of children affected, which can help programme managers in proficient allocation of 

interventions. 
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5.1 Introduction 

Globally, anaemia represents a public health problem (McLean et al., 2009).  About a quarter 

(1.62 billion) of the world population is at risk, importantly the children under five and pregnant 

women are susceptible to higher risk (Balarajan et al., 2011).  The recent world health 

organization(WHO) reports estimated that about two-third (67.6%) of children under five years 

of age, and around 57.1% pregnant women are anaemic in Sub-Saharan Africa (Balarajan et al., 

2011; De Benoist et al., 2008). Anaemia in the early childhood especially during the age between 

birth and the first 59 months of life could have an unfavorable long term effects. Anaemia is 

being implicated in increased susceptibility to infection, defective cognitive development, 

retarded growth and increased mortality among the preschool and school-going age children 

(Crawley, 2004b; Kassebaum et al., 2014b; Soares Magalhães and Clements, 2011).  

As it is with many public health problem, anaemia has been well reported to be of multi-

factorial aetiology which are often interrelated (Balarajan et al., 2011; Brooker et al., 1999; 

Schellenberg et al., 2003), and the  contributory factors stratifies into infectious, and non-

infectious causes. Infectious causes include malaria, intestinal helminth and HIV/AIDS while the 

non-infectious causes comprise nutritional deficiency (iron, vitamin A, vitamin C, vitamin B12 

and folic acid), and genetic characteristics (heamoglobinopathies and thalassaemias) (Balarajan 

et al., 2011; Brooker et al., 1999; Crawley, 2004b).  

Anaemia control is often targeted on its aetiology. For instance, improvement of dietary 

intake, food fortification, supplement with iron and other essential micronutrients are being 

advocated  for nutritional deficiency anaemia (Crawley, 2004b; Soares Magalhães and Clements, 

2011).  Also, the control strategies for malaria promotes the application of proven measures 

discussed elsewhere (Balarajan et al., 2011; Crawley, 2004b; Soares Magalhães and Clements, 

2011), which has noticeably contributed to the reduced burden of the diseases, and in effect 

anaemia. Likewise, quarterly deworming of the vulnerable group is the recommended strategy, 

in area of higher prevalence of intestinal helminthes. Also, a study in West Africa (Soares 

Magalhães and Clements, 2011) suggested that control of infectious diseases such malaria and 

intestinal helminthes, and given of micronutrient supplements to the people in high risk area 

could contribute to reduction in anaemia burden.  
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Nigeria, one of the country in the sub-Sahara Africa with high burden of anaemia (De Benoist 

et al., 2008), is also having high malaria parasitaemia prevalence (World Health Organization et 

al., 2015a). Furthermore, intestinal helminthes still represent public health problem in the 

country (Lai et al., 2015; Oluwole et al., 2015). Moreover, malnutrition prevalence among 

children under five years extracted from nationally representative surveys (DHS 2008 and 2013) 

is shown to range between 3 and 31 % in the country. More so, the country bears the greatest 

burden of sickle cell disorder in sub-Saharan Africa. The carrier prevalence is between 20 and 

30%, while the disease prevalence is between 2 to 3% in the populace (Adewoyin, 2015).  

However, no study has looked at the relationships of anaemia with malaria, malnutrition, 

STH, and Schistosoma among children under the age of five years in Nigeria. Also, high 

resolution estimates depicting the geographical variation of anaemia risk, and the number of 

children affected in the country is not available.  

Gayawan et al. (Gayawan et al., 2014)  used the national malaria information survey (NMIS) 

(National Population Commission (NPC) [Nigeria], 2012) data, to examine the socio-

demographic factors associated with haemoglobin concentration and anaemia risk. Fever within 

two weeks prior to the survey was use as proxy of malaria infection in their analysis, and they 

generated residual spatial variation estimates of anaemia risk among children under five years, at 

the first administrative level in the country. More so, another attempt (Adebayo et al., 2016) 

employed the same data, to study the influence of socio-demographic factors on malaria and 

anaemia risk among children under five years of age in Nigeria. However, exposure to 

Schistosoma/helminth parasite which may contribute to increase anaemia risk was not 

considered in any of this study. More so, while the residual spatial variation estimates derived 

from their analyses could be employ for control activities, a finer resolution estimate will 

improve better targeting of area with high anaemia prevalence, due to high heterogeneity in the 

risk that might exist within the first administrative level. 

In this study, we aimed to assess the infectious determinants, socio-demographic, and 

malnutrition correlates of haemoglobin concentration and anaemia risk, in addition, predict the 

spatial distribution of anaemia risk, and mean haemoglobin concentration, and as well provide 

estimates of number of anaemic children under the age of five years per state in the country. 
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We made use of the assembled malaria burden information, which includes haemoglobin 

concentration and socio-demographic characteristics derived from the NMIS, the Kriged 

malnutrition proxy from the demographic and health survey,  and the distribution of risk surfaces 

of Schistosoma and soil transmitted helminthes obtained from geostatistical analysis of  Nigeria 

data (Lai et al., 2015; Oluwole et al., 2015). Because of misalignment in the datasets, we 

implemented hierarchical Bayesian classical measurement error model, in relating the 

haemoglobin concentration and anaemia risk to the socio-demographic characteristics, malaria 

parasitaemia, and the risk surfaces of the ecological factors (intestinal helminth, and malnutrition 

proxy), to account for uncertainties in the employed ecological covariates.  

5.2 Methods 

5.2.1 Data sources 

Haemoglobin concentration, malaria parasitaemia, and socio-economic data were obtained 

from the Nigeria 2010 Malaria Indicator Survey (MIS) (National Population Commission (NPC) 

[Nigeria], 2012) which was carried out at 239 locations across the country.  The survey used the 

hemocue blood haemoglobin test to assess the haemoglobin level in the capillary blood sample 

obtained by heel prick of the children.  The malaria infection data we extracted were based on 

the microscopy test. We used as a socio-economic proxy, the household asset index which was 

available in the MIS.  Estimates of S. mansoni and S. haematobium, hookworm, Trichuris 

Trichiura and Ascaris lumbricoides risk at a given location were extracted from disease risk 

surfaces obtained from geostatistical analyses described in (Oluwole et al., 2015) and (Lai et al., 

2015). Information on age, weight and height was extracted from the Demographic Health 

Surveys (DHS) of 2003, 2008 and 2013 and used to generate nutritional indices (z-score of 

weight adjusted for age (WAZ), an indicator of underweight; z-score of weight adjusted for 

height (WHZ), an indicator of wasting; and z-score of height adjusted for age (HAZ), an 

indicator of stunting). The anthropometric z-scores were calculated in  Stata 12.1 software 

(Statacorp.) using the zscore06 module which is  based on the 2006 WHO child growth standards 

(Onis, 2006; Weltgesundheitsorganisation et al., 2006).  The population proportion of children 

younger than the age of five and the gridded human population per           spatial 

resolution for the year 2010 were obtained from the international database of United States 

census bureau (https://www.census.gov/population/international/data/idb/region.php) and the 
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Worldpop database respectively (www.worldpop.org.uk). The gridded human population data was 

aggregated to the pixel size of the predicted anaemia prevalence using the aggregate module of 

spatial analyst extension in ArcGIS 10.2.1. Information on the type of geographical location (i.e. 

urban/rural) was based on extracted gridded data from Global and Urban Rural Mapping Project 

(http://sedac.ciesin.columbia.edu/data/collection/grump-v1). 

5.2.2 Geostatistical modelling 

Bayesian geostatistical models were fitted on the haemoglobin concentration and anaemia 

status of each child. The included predictors are individual level information on demographic 

characteristics (i.e. age, gender) and Malaria parasitaemia status, household socio-economic 

status, and location type, as well as estimates of malnutrition, hookworm, Ascaris lumbricoides, 

Trichuris Trichiura, Schistosoma mansoni and Schistosoma hematobium prevalence at the 

cluster level of geographical location. Apart from the location type data, other location level 

information were misaligned (i.e. available at different set of locations) than the outcome data. 

To address the misalignment, a joint modelling formulation was considered between a 

geostatistical Gaussian model of hemoglogin outcome and geostatistical binomial models for the 

prevalence-type predictors at the misaligned locations. These formulations allowed geostatistical 

binomial models to be fitted on the predictors and then use their predictions at the outcome 

locations as covariates with measurement error.  The spatial correlation in the data was modeled 

using isotropic Matern covariance correlation function of distance between two points.  

Approximate Bayesian inference was performed using the integrated nested Laplace 

approximation(INLA) and the stochastic partial differential equations(SPDE) (Lindgren and Rue, 

2013) approach implemented in the R-INLA package (available at www.r-inla.org). 

Supplementary Appendix provides comprehensive model formulation.  

Children were classified as either anaemic or not based on the available altitude adjusted 

continuous haemoglobin concentration level. Specifically, a child was defined as being anaemic 

when the Hb level is less than 11g/dl.  

The models were employed to predict the haemoglobin concentration and anaemia risk on a 

       grid of 229123 pixels covering the country. The predicted anaemia risk surface was 

spatially joined with the population of children less than five years of  derived from the gridded 

population density and the census based population proportion to calculate the population 

adjusted prevalence. 

http://www.r-inla.org/
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5.2.3 Model Validation  

The model was fitted on a random subset of around 85% of the locations and the predictive 

performance was assessed using the  hold out dataset by calculating the Mean Absolute Error 

(MAE) applying 
 

 
          
 
   , where    and     respectively indicates the  observed and  

median of the posterior distribution of anaemia prevalence at the test location    In addition, the 

proportion of observations being correctly predicted within the 95% Bayesian credible intervals 

(BCI) of the posterior predictive distribution was also calculated. 

 

 

 

 

 

 

 

 

 

 

                          

                             

                

5.3 Results 

5.3.1 Descriptive analysis 

The dataset analysed  has complete information on 4597 children within 227 surveyed 

clusters, which include individual characteristics (haemoglobin measurements, malaria 

parasitaemia, demographic and socio-economic factors) and the model based estimates of  STH, 

Schistosoma and malnutrition proxy. The spatial distribution of the observed clusters mean 

heamoglobin is depicted in Figure 5.1. The mean altitude adjusted haemoglobin concentration 

among the study population was estimated to be 9.96 g/dl (95% CI: 9.92, 10.01). Overall, 71% of 

 Figure 5.1: The spatial distribution of the observed mean haemoglobin concentration 
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the children had some degree of anaemia that further stratifies into 4.52% severe, 41.61% 

moderate, and 29.12% mild condition, based on WHO cut-off classification for defining 

anaemia. The model based prevalence of hookworm, Ascaris lumbricoides, and Trichuris 

Trichuria was 7% (CI: 1 - 23%), 4% (CI: 0.1 - 75%), and 0.1% (0.01 - 1%), respectively. 

Likewise, estimated prevalence of Schistosoma heamatobium and Schistosoma mansoni was 

14% (0.02 - 53%) and 1.3% (CI: 0.01 - 33%), respectively. Also, the estimated malnutrition 

prevalence among children under the age of five was 9.3% (2.7- 31%).  

5.3.2 Bayesian hierarchical regression model of haemoglobin concentration with measurement 

error  

The result of Geostatistical Bayesian regression model of haemoglobin level is presented in 

Table 5.1. Haemoglobin concentration level has important relationship with all the individual 

level covariates considered in the model. Specifically, our analysis indicates that testing positive 

to malaria parasitaemia decreases mean haemoglobin concentration level to about 0.80 g/dl (95% 

CI: 0.67, 0.86). Likewise being a male child is associated with reduced haemoglobin level of 

0.17 g/dl (95% CI: 0.08, 0.26) compare to their female counterpart. Also, the analysis indicates 

that children mean haemoglobin level gets enhanced with increase age. Likewise, the result 

demonstrated that children mean haemoglobin level gets better with improved living conditions 

in the household. 

Surprisingly, exposure to different prevalence of STH and Schistosoma appears not to have an 

important relationship with disparity in haemoglobin levels among the children. In the same way 

variation in malnutrition risk does not suggest association with heterogeneity in haemoglobin 

level among the study population.  

 We obtained the MAE value of 4.76 for the mean haemoglobin model validation, based on 

15% subset of the locations; also, about 65% of the observed mean haemoglobin concentrations 

are contained in the 95% BCI of the predictive distribution of the estimated haemoglobin. 
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          Table 5. 1:   Parameter estimates of the model of haemoglobin concentration 

Variable Median 95% Bayesian credible 

 interval 

 

Intercept 

 

107.65 

 

(104.27, 111.02) 

Gender 

Male(versus Female) 

 
-1.71 

 
(-2.67, -0.82) 

 

Age in months 

 

0.22 

 

(0.19, 0.25) 

   

 

Malaria Infection 

Infected( Not Infected) 

 

 

-7.56 

 

 

(-8.59, -6.53) 

 

 

SES Quintiles(versus least poor) 

Less poor 

Middle 

Poorer 

poorest 

 

 

 
-3.26 

-4.79 

-4.81 

-5.16 

 

 

 
(-4.82, -1.69) 

(-6.60, - 2.99) 

(-6.82, -2.79) 

(-7.40, -2.93) 

 

Schistosoma Hematobium risk 

 

-1.06 

 

(-3.15, 1.01) 

Schistosoma Mansoni risk -0.70 (-2.82, 1.73) 

Hookworm risk -0.18 (-2.40, 2.15) 

Ascaris lumbricoides risk -1.10 (-2.80, 0.78) 

Trichuris Trichiura risk 1.12 (-1.11, 3.34) 

Malnutrition risk 1.23 (-0.98, 3.58) 

 

Spatial random effect 

Range(km) 

 

 

145.33 

 

 

(84.93, 235.69) 

Variance 44.42 (27.83, 64.79) 

 

 

Figure 5.2 (a) and (b) shows the map of posterior predicted mean haemoglobin level and 

standard deviation of the predicted error generated from the model with wealth-index estimates 

and malaria risk, which are covariates shown to be importantly  related to the haemoglobin 

concentration among the children.                      
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              a)                                                                                  b) 

 

 

                            a)                                                                                     b) 

 

 

 

 

    

 

5.3.3  Bayesian logistic measurement error model of anaemia risk 

Table 5.2 presents the hierarchical Bayesian logistic measurement error model of anaemia 

risk. It shows that all the individual level covariates are importantly associated with the risk of 

anaemia.  Malaria infection and socio-economic status are positively related to increase anaemia 

risk. Conversely, our analysis reveals that decreasing anaemia risk was associated with 

increasing age. We also noted that the risk of anaemia among the male children is higher than 

their female counterpart. With respect to the ecological covariates, only exposure to increase 

Ascaris lumbricoides risk is associated with increase prevalence of anaemia. However, 

heterogeneity in the risk surfaces of the other soil transmitted helminth and Schistosoma 

covariates appear not to have important relationship with anaemia risk. More so, the range of 

spatial correlation distances of the anaemia risk covers between 81.0km and 234.0km.  

 

 

 

 

 

  Figure 5.2:   Estimates of the geographical distribution of mean haemoglobin level (a), and standard 

deviation of the predictive error (b). 
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Table 5. 2:   Parameter estimates of the logistic model of anaemia risk 

Variable 

 

Coefficients   95% Bayesian 

Credible Interval 

Intercept  -0.146   (-0.547, 0.255) 

Gender 

Female 
Male 

 

- 
0.286 

 

 
(0.137, 0.426) 

 

Age in months 

 

-0.028 

 

(-0.033, -0.024) 

   

 

Malaria Infection 

Not Infected  
Infected 

 

 

- 
0.978 

 

 

 
(0.811, 1.145) 

 

Wealth Quintiles 
Least Poor 

Less poor 

Middle 

Poorer 
Poorest 

 

 
- 

0.436 

0.634 

0.630 
0.690 

 

 
 

(0.210, 0.661) 

(0.381, 0.894) 

(0.347, 0.914) 
(0.382, 0.997) 

 

Schistosoma Hematobium risk  

 

0.146 

 

(-0.151, 0.380) 

Schistosoma Mansoni risk  -0.308 (-0.575, 0.064) 

Hookworm risk  0.129 (-0.133, 0.523) 

Ascaris lumbricoides risk  0.287 (0.040, 0.514) 

Trichuris Trichiura risk  0.126 (-0.070, 0.301) 

Malnutrition 0.081 (-0.113, 0.232) 

 

Spatial random effects 

Range(km) 

 

 
144.75 

 

 
(104.20, 202.28) 

Variance 0.31 (0.21, 0.50) 

 

The model validation based on 15% of the survey locations resulted in MAE of 0.10. Also it 

reveals that around two-third (71%) of the of the observed anaemia prevalence were 

appropriately estimated within 95% BCI of the predicted posterior distribution of anaemia. 
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            a)                                                                                     b) 

 

 

    

 

 

 

 

 

 

 

 

 

The map of anaemia risk estimates as shown in Figure 5.3(a) reveals that  prevalence is high 

in the entire country with extended higher risk cluster in the most part of Jigawa, some part of 

Kebbi and Kano in the Northwest , central part of Kwara in the North central. In the Southwest 

elongated foci of higher predicted risk were found in Osun, Ondo, and Ogun States. In the 

Southernmost part of country, Akwa-Ibom has the larger foci of higher risk.  

Moreover, the population adjusted predicted estimate of the anaemia stratified by state is 

presented in Table 5.3. The estimated population adjusted median anaemia risk varies between 

47% (95% BCI: 27, 68) in Adamawa State to 85% (95% CI: 70, 93) in Jigawa State. Overall, 

there are about 17 million children under the age of five (95% BCI: 12, 21) that are anaemic, in 

the country. 

 

 

 

 

 

 

  Figure 5.3:    Estimates of the geographical distribution of anemia risk (a), and standard deviation of the predictive error (b). 
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Table 5. 3:   Population Adjusted prevalence of anaemia risk and the number of anaemic children. 

States Children 

Population 

Number Anaemic  

(95% BCI) 

Population adjusted 

prevalence (95%BCI) 
Abia 541743 406997 (341583, 457322) 0.75 (0.63, 0.84) 

Adamawa 525969 246608 (140840, 355088) 0.47 (0.27, 0.68) 

Akwa-Ibom 713030 589458 (507753, 644401) 0.83 (0.71, 0.90) 

Anambra 777794 458974 (352566, 557050) 0.59 (0.45, 0.72) 

Bauchi 883761 588060 (427456, 715830) 0.67 (0.48, 0.81) 

Bayelsa 312545 238927 (183175, 274625) 0.76 (0.59, 0.88) 

Benue 804607 442624 (281805, 593741) 0.55 (0.35, 0.74) 

Borno 744032 390739 (223833, 545863) 0.53 ( 0.30, 0.73) 

Cross-River 550349 397641 (299189, 469824) 0.72 (0.54, 0.85) 

Delta 766769 526169 (408142, 619833) 0.69 (0.53, 0.81) 

Ebonyi 394455 292807 (234447, 335977) 0.74 (0.59, 0.85) 

Edo 653789 476174 (377235, 551814) 0.73 (0.58, 0.84) 

Ekiti 425077 244764 (177976, 306159) 0.58 (0.42, 0.72) 

Enugu 597748 374963 (293293, 446646) 0.63 (0.49, 0.75) 

FCT 242101 129795 (83663, 1736630) 0.54 (0.35, 0.72) 

Gombe 474525 226028 (144987, 306658) 0.48 (0.31, 0.65) 

Imo 725800 507076 (422467, 577397) 0.70 (0.58, 0.80) 

Jigawa 824515 698959 (574441, 767510) 0.85 (0.70, 0.93) 

Kaduna 1135155 588644 (377160, 789271) 0.52 (0.33, 0.70) 

Kano 1748004 1268813(102612, 1454044) 0.73(0.59, 0.83) 

Katsina 1076591 806165 (621841, 933152) 0.75 (0.58, 0.87) 

Kebbi 632264 494812 (353157, 575720) 0.78 (0.56, 0.91) 

Kogi 634682 309438 (191677, 425389) 0.49 (0.30, 0.67) 

Kwara 456922 304940 (206135, 378913) 0.67(0.45, 0.83) 

Lagos 1883622 905553 (607499, 1209897) 0.48 (0.32,0.64) 

Nassarawa 354094  221757(149472, 281527) 0.63(0.42, 0.80) 

Niger 729654 434941 (278050, 562663) 0.60(0.38, 0.77) 

Ogun 670347 414118 (282360, 524360) 0.62(0.42, 0.78) 

Ondo 622839 443066 (327524, 528188) 0.71(0.53, 0.85) 

Osun 730224 477923 (354801, 580574) 0.65 (0.48, 0.80) 

Oyo 1134624 711672 (516417, 875548) 0.63(0.46, 0.77) 

Plateau 597910 292356 (175026, 405622) 0.49(0.29, 0.68) 

Rivers 881090 618099 (501286, 712842) 0.70 (0.57, 0.81) 

Sokoto 675491 458480 (322192, 558022) 0.68 (0.48, 0.83) 

Taraba 425162 225755(118521, 319910) 0.53 (0.28, 0.75) 

Yobe 437165 295997 (196731, 367846) 0.68(0.45, 0.84) 

Zamfara 602236 440149 (304070, 527735) 0.73 (0.50, 0.88) 
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5.4 Discussion 

We have conducted an analysis of the contribution of individual, household, and cluster level 

factors on the mean haemoglobin concentration and anaemia risk among children less than five 

years of age in Nigeria, through the implementation of rigorous geostatistical hierarchical 

Bayesian measurement error model. The modelling approach adopted in our analysis accounted 

for uncertainties in the covariates obtained at the cluster level. The method was chosen because 

of the fact that if measurement error in the ecological effects are disregarded, important effect of 

the covariates measured either with or without uncertainty may not be detected (Muff et al., 

2015). More so, we estimated the model based finer resolution anaemia risk and haemoglobin 

concentration, and as well calculated population adjusted prevalence, which we aggregated to 

produce estimates for the states in the country. The estimated prevalence shows that anaemia is 

still a severe public health problem in the country, according to World Health Organization 

grouping of anaemia prevalence.  

 The spatial analysis reveals that malaria infection plays a very pivotal role in the increased 

prevalence of anaemia. The relation between malaria parasitemia with reduced Hb level/anaemia 

risk is well documented (Foote et al., 2013; Glinz et al., 2015; Kassebaum et al., 2014a; 

Koukounari et al., 2008; Magalhães et al., 2013; Ngesa and Mwambi, 2014; Pullan et al., 2013). 

Likewise household socioeconomic status that was associated with elevated anaemia risk in this 

study  broadens confidence in earlier studies (Goswmai and Das, 2015; Schellenberg et al., 2003) 

which explained that purchasing capacity of the household is linked to affordability  of  

preventive and curative measures. Previously, increased anaemia risk has been associated higher 

ascaris lumbricoides infection in a rural setting of Nigeria (Osazuwa et al., 2011). The 

mechanism through which  this occur has been suggested that  Ascaris lumbricoides infection 

often leads  to  reduced appetite, nutrient uptakes and mal-absorption  of  Vitamin A and other 

nutrients which could predispose to being anaemic (Staudacher et al., 2014). The gender 

difference in anaemia risk which favors the female children in terms of having lower risk has 

also been observed in other studies and attributed it to genetics factors (El Kishawi et al., 2015).  

Clear association of anaemia risk /haemoglobin level with hookworm exposure was not 

identified in this study. Although studies which assessed this relationship has hitherto yielded 

non-consensus results, with some demonstrating association while some could not suggest 

relationship. For instance, a study among Kenya school children indicated that hookworm 
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infection was not associated with anaemia risk/ haemoglobin level and low intensity of 

hookworm in that area was given as the very likely reason why clear relationship could not be 

established. Also in another study (Adish et al., 1999) among preschool Ethiopian children, 

where hookworm parasite prevalence was around 0.4%, the result of the analysis could not show 

a clear association between anaemia risk and hookworm infection among the studied population. 

Another study that examine iron status between pre and post treatment with anti-helminth drug 

among school age children in Ivory coast demonstrated that hookworm infection does not reduce 

dietary iron absorption or the systemic iron utilization (Glinz et al., 2015) and in effect was not 

associated with anaemia risk in that population. In contrast, a study in Mozambique 

demonstrated an inverse relationship between haemoglobin level and hookworm infection, 

however, the level of parasitaemia in that setting reach above 30% of the school children 

examined. In addition, the study in the three contiguous West Africa state (Ghana, Burkina-Faso, 

Mali) using spatial analytical approach also positive anaemia risk relationship with increased 

hookworm prevalence, however the estimated prevalence in that study is higher than our setting. 

We opine that generally low hookworm burden in the country might be a reason why anaemia 

risk was not associated with hookworm prevalence in this study.  

Likewise, Trichuris Trichiura prevalence which does not suggest association with anaemia 

risk/ haemoglobin level in this study  could probably be linked to its generally very low 

prevalence in the country (Pullan et al., 2014) and this finding is not at variance with similar 

earlier studies using ecological approach (Magalhães et al., 2013) and as an individual level 

factor (Koukounari et al., 2008). Also, the association of Trichuris Trichiura with lower 

haemoglobin level/anaemia is often related to intensity of infection/endemicity in the population. 

Most studies (Ezeamama et al., 2008; Osazuwa et al., 2011; Sorensen et al., 2011) that have 

found no evidence have also demonstrated low prevalence in the study settings while those that 

indicated association (Quihui-Cota et al., 2010; Ramdath et al., 1995; Robertson et al., 1992) also 

reported moderate to high infection intensity/high prevalence.     

Similarly, our model has not identified important relationship between anaemia risk and the 

model based exposure surface of Schistosoma mansoni and Schistosoma heamatobium; this 

might be related to possibly  the low prevalence (Ekpo et al., 2013) in most part of the  of the 

country.  Related evidence that was observed in an extensive study (Befidi-Mengue et al., 1993) 
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carried out among school children in Cameroon, to assess the effect of Schistosoma hematobium 

infection on anaemia,  also documented  low parasite load among the studied population . In 

comparison, studies (Ayoya et al., 2009; Bustinduy et al., 2013; Koukounari et al., 2007) which 

had demonstrated important relationship between anaemia risk and these intestinal helminth also 

reported heavy infection / high parasite prevalence among the group studied. Also, Schistosoma 

mansoni is often linked with iron deficiency anaemia (IDA) especially with heavy infection 

(Butler et al., 2012), but the data we have analyzed is not IDA specific and this might also be a 

reason why Schistosoma mansoni is not associated with anaemia risk in this study.  More so, the 

predicted risk surfaces used in our model fit are derived from age heterogeneous data and it may 

not be representatives of the risk among preschool children. Also, the tendency of children in this 

age range to have less exploration of their environment, which could result in limited contact 

with infective materials, might also be a reason why most of the Schistosoma prevalence 

relationship with anaemia risk appears not to be significant in this study. 

Moreover, the positive association between haemoglobin and age can probably be linked to 

childhood physiology of balance between iron ingestion and requirement (Ewusie et al., 2014; 

Gao et al., 2013), that is, as the children advances in age, the iron intakes and requirement  

increases and reduces, respectively.   

Undernutrition effects might be better captured at smaller scale, because large within to 

between cluster variation could confound haemoglobin and malnutrition relationship. 

Consequently, the programme planners need to make optimum use of the MIS platform by 

ensuring that information on all components of nutrition indicators are taken during the 

collection of MIS data, to allow assessment of between individual variations of this measure to 

the risk of anaemia.   

 Our work extends the evidence on the contribution of exposure to malaria parasitaemia and 

Ascaris lumbricoides to the prevalence of anaemia, and also generated important epidemiological 

resources that could be adopted for targeted control of anaemia in the country. The predicted risk 

estimates provides the public health managers with important decision-support instrument that 

could be used to guide the allotment of control interventions based on severity of prevalence 

among this susceptible group in various part of the country. Added to this is that the control 



 

98 
 

managers could utilize the predicted map in future surveys planning and as well employ it as the 

reference in the assessment of effectiveness of control programme.  

The computational challenge of the measurement error modeling approach restricted us to the 

use of median predictive prevalence of the important parasite exposure instead of their 

distribution that was used in the model fitting which could have probably improved the precision 

of predicted estimates of the anaemia risk/ mean haemoglobin.  Also, we could not estimate the 

population attributable fraction of anaemia, contributed by important infectious factors (malaria 

parasitaemia and Ascaris lumbricoides) in our model, because the risk surface of the latter was 

used on logit scale in our anaemia risk modelling.  

Despite all the limitation of using ecological factor, the study suggest that  in the absence of 

individual level covariates, we can resort to ecological proxy, and combine with appropriate 

modelling strategy, to identify important determinants and  area with high anaemia risk. 
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5.5    Appendix 

5.5.1 Anaemia Measurement Error Model 

The anaemia status     of child   at the location   considered as 1 if the child was anaemic and 

0 otherwise is assumed to have arise from Bernoulli distribution, that is    ~Bern     . The 

probability of being anaemic is given as:          ) =  +   +Z  +    where    denote the 

intercept, Z are the vectors of observed covariates and     are the corresponding coefficient. 

Instead of the true covariates  , the surrogates W were sampled distribution of the Schistosoma, 

soil transmitted helminthes and nutrition proxy on the logit scale , such  that W=    , where 

  represent the error vector and are assumed to be Gaussian  with 0 mean and precision   . We 

assumed classical homoscedastic measurement error with independent exposure model (that is   

is independent of observed Z) for the unobserved    and the first level of our model involve 

three models: 

         ) =  +   +Z  +    

0= -X+  1     ,  ~ N (  1,      , and 

W=          W ǀ    θ ~ MVN (       ) which are regression, exposure and error model 

respectively. W is the stacked vectors of sampled distributions.   is of the dimension 50× . The 

second level of the model formulation is the latent field   =              
    and the unknown 

hyperparameters   = (           ) where    represent all additional parameters of the 

regression models. Prior distribution were assigned to the components of   , specifically 

                     . Also    was fixed at mean 0 and precision 1 because of the centering 

of W.  More so for hyperparameters    and    , we specified                   and  

               as suggested in Roos et al. (Roos and Held, 2011).   

The spatial random effect Ψ was modeled as multivariate normal distribution with mean zero 

and Matérn covariance function between two locations, that is               where  

       =   
         

 
 
  (κ       )/ (           ,   

  is the spatial process variance,        is 

the distance between locations    and   ,   is the scale parameter and    is the modified Bessel 

function of second kind and order  .  
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5.5.2 Haemoglobin level model 

The notation is as detailed in the anaemia model and it is only the distribution of the response 

variable that changed, that is: The haemoglobin level     of child   at the location   is assumed to 

come from normal distribution, that is,     ~ N            . The mean haemoglobin level is 

given as:     =  +   +Z  +  . Also we specify Gamma prior for the precision    that is,   

=            . 
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Chapter 6 Discussion and Outlook 
 

This PhD thesis contributes to the field of malaria epidemiology with data-driven Bayesian 

statistical methods for the analysis of spatio-temporal survey data, and provides a better 

understanding of the effects of malaria interventions coverage on the geographical distribution of 

the disease risk and of the relation between malaria burden with child mortality and anaemia risk 

in Nigeria. This thesis is organized in journal-article format and four manuscripts are produced. 

Each chapter provides detailed methodologies, results and discussion. In this section we report a 

summary of most important contributions and findings of our work, the implications for the 

disease control, and give suggestions for further extensions.  

6.1 Significance of the work 

6.1.1 Contribution to spatial modelling of malaria and its related co-morbidity risk 

A number of environmental, socio-economic, intervention and health system related factors 

can predict the geographical distribution of malaria risk and they are often correlated.  Selection 

of parsimonious models with the best predictive ability is an important step in risk mapping.   In 

chapter 2 we extended the geostatistical variable selection to the inclusion of the functional form 

of the environmental covariates. To our knowledge, this is the first attempt to introduce the 

functional form of the covariates in the selection of predictors in malaria risk modelling.  

Measurement error (ME) can sometimes occur in epidemiologic studies linking data from 

different sources. In the mortality-malaria hazard model considered in chapter 4, the mortality 

and malaria data were observed at dissimilar spatial locations. The approach that is often used is 

to predict the covariate at the location of the outcome and employ the mean/median  predicted 

value in the model fit without adjusting for uncertainty in the prediction. In such circumstance 

where ME is not considered, estimated parameters and confidence interval could suffer serious 

biases (Carroll, 1998; Muff et al., 2015) . Also, important effect of some other covariates 

measured with or without error may not be detected. To address this we developed a joint model 

formulation in order to allow for prediction uncertainty of malaria risk in the assessment of 

mortality hazard-malaria prevalence relation. Implementation of survival model with 

measurement error is computationally demanding and the widely used Markov Chain Monte 
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Carlo algorithms are known to converge slowly. We employed integrated nested Laplace 

approach (INLA) (Rue H. et al., 2009b) and stochastic partial differential equation (SPDE).  The 

SPDE approach approximates the spatial process, a Gaussian Field by Gaussian Markov random 

field (GMRF). The GMRF are defined by sparse matrix, which enjoy numerical computational 

properties (Cameletti et al., 2013) and this allows INLA to estimate model parameters at a very 

pragmatic computational time.  This has been applied in chapter 4 to assess malaria-mortality 

relation, and estimate malaria burden on the geographical distribution of anaemia in chapter 5.  

6.1.2 Contribution to malaria epidemiology and implication for control interventions 

Our work provides important tools for the activities of the national malaria control 

programmes in the country by obtaining contemporary high spatial resolution estimates of 

malaria (Chapter 2) and anaemia risk (Chapter 5) in the country. The generation of these risk 

estimates was motivated by the availability of the first nationwide malaria information survey 

that could provide more accurate estimates and the actual disease distribution in the country and 

the first high resolution map of anaemia risk. These maps are based on national survey data 

collected using the same methods and including the same age groups of the population. These 

survey data are free of encumbrances (collection over different season, diverse diagnostic 

procedures/tools, overlapping age-group across study sites) of historical surveys data that have 

been employed in some of the previous maps (Gemperli et al., 2006; Gething et al., 2011; 

Gosoniu et al., 2009) of malaria risk. The model based malaria risk estimates (Chapter 2) 

indicates vital information that most states of the country are in the intermediate risk envelope 

(between 5% and 40%). The produced model based malaria distribution map will aid in 

effectiveness of malaria control in the country because it delineates areas at high risk, which 

could guide efficient spatial allocation of control/prevention resources.  Our findings which 

indicate that household level coverage of ITN is not associated with malaria risk in the country 

could possibly due to small proportion of children sleeping under impregnated nets. 

 We further explored the community effect of ITN use on the prevalence of malaria in the 

country in chapter 3 of this thesis. Though our model indicated that the proportion of ITN use is 

not associated with malaria risk at the country level, however a spatially varying coefficient 

model assessing the effects of ITN use in space show that ITN use is associated with the reduced 

risk of malaria in two neighbouring states that is (Adamawa and Taraba) within the north east 
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part of Nigeria. This increases our confidence that the ongoing scaling up of control 

interventions is already yielding positive results. It is therefore important for the country to strive 

to meet the target of universal coverage of core malaria interventions for all population at risk.  

A clear understanding of factors associated with anaemia risk and knowledge of its 

geographical distribution is important in developing effective strategies for anaemia control and 

prevention. In chapter 5, we provided the first high resolution estimates of the spatial distribution 

of anaemia risk in Nigeria.   The model based estimates show that overall; approximately every 7 

out of 10 children under the age of five years are anaemic. It shows that Jigawa state in the 

northwest has the highest prevalence (85%) of anaemia in the country, and Lagos, Adamawa, 

Gombe, Kogi and Plateau have the lowest levels which are close to 50%. Our findings show that 

malaria infection and Ascaris lumbricoides prevalence are the main infectious factors associated 

with anaemia prevalence; furthermore economically disadvantaged children are at increased risk 

of anaemia.  Our estimated anaemia risk map can guide national control managers a decision 

support tool for delivery of ancillary micronutrient supplementation and fortified food with the 

aim of reducing iron deficiency anaemia. Likewise, it could be use in evaluation of impact of 

intervention programmes.   

Understanding of the relation between malaria prevalence and mortality among the vulnerable 

group in the population is essential in measuring the impact of malaria control. In chapter 4, we 

assessed the contribution of malaria prevalence to all-cause mortality among children under five 

in Nigeria after adjusting for socio-demographic factors mostly linked to mortality in this age 

group.  Several efforts (Gemperli, 2004; Smith et al., 2001) have been made to evaluate the 

above mentioned relation. However, those attempts in various parts of the malaria endemic 

region of sub-Sahara Africa have not been able to draw a general pattern on the malaria risk and 

mortality relationship among children, possibly due to some shortcoming such as the data used 

and methodology limitation. We embraced joint model formulation so that uncertainties are 

incorporated in the predicted malaria prevalence at the mortality locations, because the two data 

sets we used are spatially misaligned. Our finding shows that malaria prevalence is associated 

with increased mortality hazard for children above the age of six months. The modelling 

approach and the datasets employed give us the confidence that the result of our analysis may 

reflect malaria risk and all-cause mortality relationship in Nigeria.   
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All this affirms that malaria is still of public health significance in the country and that the 

country need to aggressively scale up the coverage of malaria interventions.  

6.2 Limitations 

Malaria transmission is mostly affected by prevailing environmental/climatic conditions and 

the prevalence is known to vary by season, because the vector population which transmits the 

parasite is determined by the climatic condition during the various season of the year. The cross-

sectional nature of MIS data analysed in this work could not allow us explore seasonality in 

malaria transmission in the country.  The estimates of the relative contribution of various risk 

factors of anaemia are very important to determine the optimum combination of interventions 

that can maximally reduce the disease burden. In our anaemia risk analysis, the soil transmitted 

helminthiasis, schistosomiasis, and malnutrition data were available on the logit scale at the 

cluster level that could not be used to derive the odd of anaemia associated with these risk 

factors, which is an input in the calculation of attributable fractions. Therefore, we could not 

calculate the proportion of anaemia that could have been averted if those factors associated with 

anaemia risk in our model is reduced to the alternative exposure level.  Also in this same study 

the effect of risk factors were assumed not to vary over the areas. However, the disease-risk 

factor relationship may exhibit variation across space probably due to some unmeasured factors 

such as heterogeneous intervention level, and disparities in health-system performance across 

regions/states in the country.  Spatially varying coefficient model could have been be used to 

assess the effect of the risk factors at sub-national scale.  

The malaria prevalence and mortality relationship is often assumed to be non-linear. It is 

believed that mortality hazard associated with malaria is higher at intermediate transmission 

level and plateau or even reduced at higher transmission (Snow et al., 1999). However, the joint 

modelling approach employed in our geostatistical model of malaria risk-mortality hazard 

relation, in order to incorporate prediction uncertainty in the predicted malaria prevalence could 

not allow the assessment of the non-linearity in this relationship.   

The MIS locations are always displaced from the initial collection points to keep some 

anonymity so that individual privacy of health information is maintained and it is not well known 

whether this have impact on the parameter estimate and the interpolated surfaces .  
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The assumption of the latent spatial process in the models used in this work has been that of 

stationarity and isotropy, by which the underlying spatial process only depends on distance 

between locations, and not on direction and geographic position. However, some factors like 

ecological variation, heterogeneous coverage of control effort in space and inequality in health 

system effectiveness can introduce local spatial dependency which will violate this assumption 

especially in disease-risk factor relation analysis over large geographical area.  The application 

of a non-stationary model to malaria-risk factor analysis especially in regions with large 

disparities in environmental conditions has been suggested to give more accurate result than their 

stationary counterparts (Gosoniu and Vounatsou, 2011; Lawson et al., 2016) but these models 

are computationally intensive especially when the area of study is large. 

6.3  Extension of this work 

Contemporary malaria information surveys are available for many other malaria endemic 

countries in sub-Saharan Africa. The methodology generated in this thesis can be applied to 

those data in order to also produce contemporary risk estimates for these countries.  Additionally 

the high resolution estimates generated in this thesis can also serve an input in the burden of 

disease estimation. 

The measure of malaria transmission used in this work has been based on prevalence because 

it is the most readily available complete data. However parasite prevalence measures suffer from 

the setback of being subject to seasonal variation (O’Meara et al., 2007). The health management 

information system data, which are collated monthly, can be modeled also using appropriate 

methodology and compare with the estimates from this work.  It would also enabled temporal 

variation in malaria transmission to be assessed, and incidence maps to be produced can guide 

control activities in timelier manner.   

 Also the newly conducted MIS data, when it is made available, can be combined with the 

data used in this work, to see the change in malaria risk over time and also the effect of 

interventions on this change can also be study.  

 Furthermore, the Bayesian Geostatistical models with measurement error applied to spatially 

misaligned data in this thesis can be further applied to others diseases.  
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6.4 Conclusion 

The past decades has witness exceptional surge in international funding and political 

commitment for malaria control.  Coverage with existing control interventions is increasing and 

various endemic countries are recording decline in malaria related morbidities and mortality.  

This decline has led to renew interest in malaria elimination and eradication, however many of 

the endemic countries need high resolution estimates of contemporary prevalence that can be 

used to track the impact of intervention over time. This PhD thesis was born out of the need for a 

better understanding of malaria burden effects on children health and mortality risk in Nigeria. 

We have evaluated the effects of intervention on malaria risk distribution, assessed the malaria 

burden relationship with children mortality, and provided the model based high spatial resolution 

estimates of malaria risk and anaemia prevalence in Nigeria. The derived estimates can serve as a 

benchmark in the monitoring of the impact of ongoing control intervention on malaria related 

morbidities and mortality.  
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