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"While Occam's razor is a useful tool in the physical sciences, it can be a very 
dangerous implement in biology. It is thus very rash to use simplicity and 
elegance as a guide in biological research. While DNA could be claimed to be 
both simple and elegant, it must be remembered that DNA almost certainly 
originated fairly close to the origin of life when things were necessarily simple 
or they would not have got going. Biologists must constantly keep in mind that 
what they see was not designed, but rather evolved." 
 

---- Francis Crick in 'What mad Pursuit' (1988) ---- 
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1. Summary 
 

Eukaryotic transcription factors (TFs) are key determinants of gene activity, 

yet they bind only a fraction of their corresponding DNA sequence motifs in 

any given cell type. Chromatin has the potential to restrict accessibility of 

binding sites; however, in which context chromatin states are instructive for 

TF binding remains mainly unknown. This thesis explores the contribution of 

DNA methylation to constrained TF binding by studying CTCF as a known 

methylation-sensitive TF and applying a genome-wide approach to identify 

further sensitive factors in mouse stem and differentiated cells. 

CTCF is perhaps the most prominent example for a TF that can be 

prevented from binding by DNA methylation in vivo. However, it is restricted 

by methylation only at a subset of its genomic binding sites, such as the 

H19/Igf2 imprinting control region (ICR). In order to understand this context-

dependency of CTCF methylation sensitivity, we compared CTCF binding in 

isogenic mouse stem cells with and without DNA methylation. Two features 

distinguish the fraction of sites that are bound only in the absence of DNA 

methylation: CpG-containing variants of the canonical CTCF motif as well as 

higher CpG density in the flanking regions. The H19/Igf2 ICR indeed fulfils 

these criteria and we show that CTCF methylation sensitivity there is 

independent of the complete ICR sequence, the chromosomal context and 

H3K9me3 marks.  

In order to go beyond CTCF and identify more methylation-sensitive TFs 

a priori, we mapped DNase I hypersensitive sites, as an indicator of TF 

binding, in mouse stem cells with and without DNA methylation. Methylation-

restricted sites are enriched for TF motifs containing CpGs, especially for 

those of NRF1. In fact, NRF1 occupies several thousand additional sites in the 

unmethylated genome, resulting in increased genic and non-genic 

transcription. Restoring de novo methyltransferase activity initiates 

remethylation at these sites and outcompetes NRF1 binding. Even strong 

overexpression of NRF1 is unable to prompt binding at methylated regions. 
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This suggests that binding of methylation-sensitive TFs relies on additional 

determinants to induce local hypomethylation. In support of this model, 

deletion of neighbouring motifs in cis or of a TF in trans causes local 

hypermethylation and subsequent loss of NRF1 binding. This competition 

between DNA methylation and TFs in vivo reveals a case of cooperativity 

between TFs that acts indirectly via DNA methylation. 

Nevertheless, the vast majority of TF binding events do not change upon 

removal of DNA methylation in stem cells. To investigate whether more TFs 

are affected in differentiated cells, for which DNA methylation is essential, we 

generated methylation-deficient neuronal cells that survive for several days in 

culture. Changes in genic transcription and chromatin accessibility are 

surprisingly limited in the absence of DNA methylation, although again a 

subset of TF motifs are enriched in methylation-restricted sites, such as NRF1 

and HNF6. While this closely resembles the situation in stem cells, we 

observe a striking activation of specific classes of endogenous retroviruses 

(ERV) only in the differentiated methylation mutant. Several lines of evidence 

indicate that methylation-sensitive TF binding at the cAMP-responsive 

element (CRE motif) is responsible for ERV activation in differentiated 

methylation mutants including mouse cortex, which might provide a link to the 

ensuing cell death. 

Taken together, only a low percentage of TF binding events are restricted 

by DNA methylation in stem or differentiated cells. However, a subset of 

factors is methylation-sensitive at CpG-containing motifs. These factors rely 

on other TFs to keep their motif in an unmethylated state and their aberrant 

binding can have devastating consequences by repeat activation.  

Understanding the influence of DNA methylation on TF binding 

constitutes one step towards better interpretation of the rapidly growing 

number of epigenetic and TF binding maps. The success of the approach 

taken here suggests that it can be applied to other chromatin components and 

modifications, which should enable comprehensive prediction of TF binding 

and ultimately gene expression in development and disease.  
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2. General introduction 
 

2.1 Eukaryotic transcription factors bind a fraction of their 

target sites 

Dynamic regulation of gene expression enables prokaryotes to adapt to 

external conditions and multicellular eukaryotes to form diverse cell types in 

spite of a largely invariant DNA blueprint. The ability to turn genes on and off 

is central to every life form and all biological processes. How genes are 

regulated has thus been a fundamental question in biology ever since their 

discovery. Early work in prokaryotes identified a new type of gene product, the 

'regulator', which interacts with the DNA immediately upstream of genes and 

controls their expression (Jacob and Monod; 1961). In eukaryotes such 

'regulators', or transcription factors (TFs), bind to the DNA in a sequence-

specific manner not only at gene-proximal promoter regions as in prokaryotes, 

but also at distal enhancer elements (Banerji et al., 1981; Maniatis et al., 

1987; Moreau et al., 1981). In the 1980s several eukaryotic TFs were cloned 

and biochemically characterised, leading Johnson and McKnight to declare 

that 'a major effort is now under way to identify sequence-specific DNA-

binding proteins, to match them to their cognate sites within or around 

eukaryotic genes, and to elucidate how the binding of such proteins results in 

increased or decreased transcription of the associated gene' (Johnson and 

McKnight, 1989). 

 

Nearly three decades later, extensive progress has indeed been made in 

the identification and cataloguing of various eukaryotic TF classes (Weirauch 

and Hughes, 2011); however, matching TFs to their genomic binding sites 

remains a challenge that has been surprisingly difficult to tackle. In contrast to 

prokaryotic TFs that bind highly defined sequence motifs in a predictable 

manner, TFs in higher eukaryotes recognise short highly degenerate DNA 

sequences (Fig. 2-1a) (Wunderlich and Mirny, 2009). As a result, the 

consensus sequences for each factor are extremely common in the genome, 
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and in fact occur frequently in and around most genes (Biggin, 2011; 

Wunderlich and Mirny, 2009). Only a miniscule fraction of these target sites is 

actually occupied by the TF in any given cell type (Fig. 2-1b) (Biggin, 2011). 

Even if the in vitro binding specificity of the factor is known, predicting which 

of the seemingly identical sites are bound in a cell thus remains an unsolved 

problem and presents a substantial barrier in our path towards understanding 

eukaryotic gene regulation (Biggin, 2011; Slattery et al., 2014; Todeschini et 

al., 2014). Yet within the crowded nucleoplasm, TFs somehow manage to 

bind to defined DNA sites and regulate gene expression in a highly 

reproducible and cell type-specific manner. 

 

 
Figure 2-1. Information content of eukaryotic TF motifs is not sufficient to specify their 
binding sites in a large genome.  
a) Comparison of required and actual information content of TF binding motifs in bacteria and 
multicellular eukaryotes. Shown is the minimum required information content Imin = log2(N) 
needed to specify a unique address in a genome of size N (light blue), and the mean 
information content of actual TF binding motifs for roughly 100 bacterial and multicellular 
eukaryotic motifs (dark blue). The error bars represent the standard deviation, which for the 
required information content is due to the range of genome sizes. Graph adapted from 
Wunderlich et al., 2009. b) Example of the fraction of high-confidence motif sequences bound 
in a given cell type for the pioneer TF FOXA1. High-stringency FOXA1 motifs were called with 
MotifLocator. Of these sites, FOXA1 only occupies 1.2% in MCF7 cells as measured by ChIP-
seq (~ 12,000 peaks, 1% FDR). Adapted from Lupien et al., 2008. 
 
 

2.2 Role of chromatin in binding site restriction 

The organisation of eukaryotic genomes into complex nucleoprotein structures 

that are absent in their smaller prokaryotic counterparts was first attributed 
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only to the need for compaction. However, chromatin soon emerged as the 

most likely candidate for restricting the access of TFs to specific regulatory 

sites (Voss and Hager, 2014). Accessibility of the DNA within chromatin, as 

measured by susceptibility to DNase digestion, was recognised as a unifying 

feature of active regulatory regions in eukaryotes (Elgin, 1981; Weintraub and 

Groudine, 1976; Wu et al., 1979) that is highly cell type-specific (Thurman et 

al., 2012). While TFs tend to show a similar principal motif preference on both 

naked and chromatinised genomic DNA, binding locations differ considerably 

between the two templates (Liu et al., 2006). The occupancy levels of many 

different classes of TFs in vivo correlate well with the degree of accessibility of 

those regions (Biggin, 2011). Accordingly, predictions of TF binding based on 

accessibility data are a vast improvement over pure sequence-based models 

(Pique-Regi et al., 2011). These observations raise the question how 

differential chromatin accessibility and TF binding are connected and which 

aspects of chromatin are involved in the binding site restriction of TFs.  

The existence of at least two different chromatin states was described 

nearly a century ago in moss (Heitz, 1928). In recent years an ever more fine-

grained distinction of chromatin states, which differ in the transcriptional 

activity of the contained genes, has been proposed based on location of 

chromatin proteins or post-translational modifications of histones (Ernst and 

Kellis, 2012; Filion et al., 2010). Indeed many eukaryote-specific chromatin 

components correlate or anticorrelate with TF occupancy in vivo (Fig. 2-2). 

Nevertheless, whether a specific chromatin state is simply permissive to TF 

binding, actively directs TF binding, or is a result of TF binding is often 

unclear, and with it the sequence of events that connect chromatin states and 

gene activity (Slattery et al., 2014). The setting and removing of chromatin 

features in the context of transcription, as well as their interplay with each 

other and with TFs or chromatin-modifying enzymes is a dauntingly complex 

system to disentangle. In the following I will briefly present three of the most 

promising candidates for chromatin-mediated TF binding site restriction: 

nucleosomes themselves, post-translational modifications of their histone 

tails, as well as methylation of the underlying DNA.  
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Figure 2-2. Chromatin states differ at bound and unbound TF motifs.  
Nucleosomes, repressive histone modifications and DNA methylation have all been 
associated with binding site restriction of TFs in vertebrate genomes. The transition from an 
unbound inactive (top) to a TF-bound active (bottom) regulatory region involves changes in 
nucleosome occupancy and positioning, chromatin remodeling activity, changes in histone 
modifications and DNA methylation as well as differential recruitment of epigenetic readers. 
However, it remains unclear which of these chromatin features have an instructive role in 
shaping cell type-specific TF binding patterns and thus gene regulation and which are 
adopted downstream of TF binding. Sensitivity to chromatin states likely varies across TFs, 
but these differences can be masked at co-bound sites. 
 

2.2.1 Nucleosomes and transcription factor binding 

The basic unit of chromatin is the nucleosome, in which a DNA stretch of 

147 bp length is tightly wrapped around an octamer of histone proteins 

(Richmond and Davey, 2003). Early in vitro reconstitution experiments and 

observation of glucose-mediated nucleosome loss at the yeast Pho5 promoter 

implied that transcription initiation is impeded in the presence of nucleosomes 

(Han and Grunstein, 1988; Knezetic and Luse, 1986). On the other hand, the 

yeast TF GAL4 was shown to be capable of displacing nucleosomes over its 

binding site in vitro (Workman and Kingston, 1992). In vivo, occupied TF 

binding sites are indeed devoid of nucleosomes (Yuan et al., 2005), but the 

sensitivity of different TFs to nucleosomes covering their motifs varies 

broadly. Today the accepted view is that some TFs, termed pioneer TFs, are 

capable of engaging their target sites in closed chromatin (Iwafuchi-Doi and 

Zaret, 2014). This has been suggested to occur through binding of partial 

motifs displayed on the nucleosome surface, ultimately leading to nucleosome 

displacement (Soufi et al., 2015). While pioneering activity has been attributed 
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to roughly a dozen TFs (Iwafuchi-Doi and Zaret, 2014), it remains unclear for 

most factors to which extent they are restricted in their binding by nucleosome 

occupancy. The majority of TFs are likely unable to initially breach the 

nucleosome barrier on their own and require exposure of their binding sites 

through other means (John et al., 2011; Svaren and Hörz, 1997). These could 

involve a combination of spontaneous unwrapping and rebinding of the 

histone octamer (Bucceri et al., 2006; Li et al., 2005; Polach and Widom, 

1995), the action of ATP-dependent chromatin remodelers (Lorch et al., 2010) 

and cooperative TF binding competing with nucleosomes for access to DNA 

(Adams and Workman, 1995; Miller and Widom, 2003; Spitz and Furlong, 

2012). The presence of nucleosomes has thus been suggested to 

substantially contribute to the binding site selectivity of most TFs, with pioneer 

TFs being an important exception (Slattery et al., 2014). Nonetheless, even 

known pioneer factors only bind a fraction of their sequence motifs in a cell 

type-specific manner (Fig. 2-1b) (Iwafuchi-Doi and Zaret, 2014; Lupien et al., 

2008), so other layers besides nucleosome occupancy must contribute to 

binding site restriction. 

 

2.2.2 Histone modifications and transcription factor binding 

Beyond the mere absence or presence of nucleosomes, certain post-

translational modifications of the contained core histone proteins are positively 

or negatively associated with TF occupancy (Fig. 2-2) (Ernst and Kellis, 

2013). An estimated 60% of nucleosomes are substantially modified on their 

histone tails in mammals (Ho et al., 2014). The facultative or constitutive silent 

heterochromatic state is characterised by low levels of acetylation and high 

levels of specific methylated (H3K9, H3K27, and H4K20) and ubiquitinylated 

(H2A) sites (Kouzarides, 2007; Li et al., 2007).  

H3K9me3 is the hallmark of constitutive heterochromatin as found for 

example in pericentric regions of the chromosome. When a transcriptionally 

active gene is brought near pericentric heterochromatin, the gene can become 

silenced. This phenomenon was first discovered in the fruit fly Drosophila 
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melanogaster when studying position-effect variegation of X-ray induced 

chromosomal rearrangements and has been attributed to spreading of the 

H3K9me3 mark into active chromatin (Girton and Johansen, 2008; Tschiersch 

et al., 1994). In vitro studies demonstrated that the interaction of 

Heterochromatin Protein 1 (HP1) with H3K9 methylated histones mediates 

dose-dependent repression of transcription (Loyola et al., 2001). Facultative 

heterochromatin is mainly characterised by H3K27me3 and H2A119ub1 

marks set by the Polycomb-group of proteins, which are critical for repression 

of key transcriptional regulators during development (Shilatifard, 2006).  

For both types of heterochromatin, it is currently unclear how gene 

silencing is actually brought about in vivo and to which extent histone 

modifications are set upstream or downstream of changes in TF binding and 

transcription (Shilatifard, 2006; Zhang et al., 2015). While it has been 

suggested that even pioneer TFs are blocked from binding by the presence of 

repressive histone marks (Iwafuchi-Doi and Zaret, 2014), experimental 

evidence for this model is still lacking. For example, access of specific TFs 

and the transcription machinery does not seem to be blocked by H3K27me3, 

yet transcription initiation is inhibited (Dellino et al., 2004). The sensitivity of 

different TFs to various histone modifications thus remains unclear to date 

and with it the mechanisms underlying gene repression in heterochromatin.  

 

2.2.3 DNA methylation and transcription factor binding 

Apart from nucleosomes and the posttranslational modification of their histone 

tails, modifications of the DNA itself could affect TF binding. In particular, 

methylation of cytosines in the context of CpG dinucleotides has long been 

associated with gene repression (Cedar, 1988). Since TF binding site 

restriction by DNA methylation is the main focus of this thesis, this mark will 

be discussed in more detail in the following paragraphs in terms of evolution, 

genomic distribution and interplay with TF binding. 
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2.2.3.1 Evolution of cytosine methylation and repeat silencing 

Methylation of the fifth carbon on cytosine is an ancient DNA modification that 

is catalysed by the same enzymatic superfamily in bacteria, archaea, and 

eukaryotes (Goll and Bestor, 2005). DNA methylation likely arose as a sort of 

'genomic immune system', to defend the host against the invasion of virus 

DNA and transposable elements (TEs) (Bestor, 1990). TEs threaten the host 

genome not only through potentially deleterious insertional mutagenesis, but 

can also induce rearrangements through homologous recombination of non-

allelic repeats, produce neomorphic chimeric transcripts with host genes and 

overload the host with the sheer amount of their transcripts (Bestor, 2003). 

Recognizing and methylating these foreign DNA sequences enables their 

transcriptional repression and prevents their further replication within the host 

genome. Inactivated TEs are riddled with mutations over time, further 

depriving them of transcriptional competence, with C to T transitions by 

deamination of methylated cytosines being a substantial contributor (Cooper 

and Youssoufian, 1988; Lander et al., 2001).  

The development of such an effective silencing mechanism of TEs 

allowed for their accumulation in the host genome. This is thought to account 

for the strong correlation between genome size, repeat content and DNA 

methylation observed across organisms (Bestor, 1990; Bird, 1995; Lechner et 

al., 2013). In fact an astounding 50 to 70% of the human genome is made up 

of such repetitive elements (Lander et al., 2001; Padeken et al., 2015). It has 

been proposed that the presence of TEs in our genomes is in fact a 'penalty' 

of sexual reproduction (Bestor, 2003). In asexual organisms, a harmful 

transposon is dependent on the survival of the host genome and reduces the 

fitness of the host and itself in a similar manner, preventing it from spreading 

through the population. In sexual organisms on the other hand, TEs can 

spread quite rapidly due to their ability to colonise new genomes during 

zygote formation. Even harmful TEs become fixed in a population if they 

reduce host fitness by anything less than one half (Hickey, 1982). Indeed 

there is a good agreement between transposon aggressiveness and the 
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extent of sexual out-crossing that occurred during the evolution of closely-

related species (Bestor, 2003).  

Intriguingly, cytosine methylation has been lost several times in the 

course of animal evolution, such as in the invertebrate lineages leading to 

Drosophila and the nematode Caenorhabditis elegans (Zemach and 

Zilberman, 2010). It is also uncommon in fungi such as saccharomycetes and 

most species of green algae (Suzuki and Bird, 2008; Zemach and Zilberman, 

2010). This loss could be due to the fact that their unicellular ancestors 

primarily reproduced asexually and thus could dispense with the ability to 

silence TEs by DNA methylation. Today's invertebrate lineages likely similarly 

evolved from a primarily asexual state that had lost the ability to use 

methylation to silence TEs. Instead they came to rely on alternative repressive 

pathways upon sexual reproduction, such as histone modifications or piRNAs 

(Aravin et al., 2007; Korf et al., 1998). While some invertebrate genomes thus 

contain DNA methylation, it is not necessarily targeted towards TEs as 

observed in the sea squirt Ciona intestinalis, and there is no evidence it is 

involved in silencing amongst these lineages (Feng et al., 2010; Zemach et 

al., 2010). At the same time, the loss of the ancestral methylation-dependent 

TE silencing pathway in early animal evolution implies that the vertebrate 

lineage independently 're-evolved' the use of methylation for TE defence but 

could in addition build on the existing methylation-independent silencing 

mechanisms from invertebrate ancestors. This makes vertebrates less 

dependent on strictly maintaining high methylation levels at all times. Land 

plants on the other hand, whose use of methylation for TE silencing goes 

back in an uninterrupted line to ancestral eukaryotes (Zemach et al., 2010), 

do not show any major fluctuations in methylation during their life cycle 

(Zemach and Zilberman, 2010). 

 

The presence of other repeat silencing pathways could explain why 

vertebrates can undergo periods of global low methylation in the germline. 

This allows them to reset their (epi)genome to a basic, totipotent state before 

establishing sex-specific and germ cell-specific epigenetic signatures and 
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transcription profiles (Messerschmidt et al., 2014). At the same time, however, 

transcription and transposition in the germline is the way to evolutionary 

success for TEs, since activity in somatic cells would harm the host fitness 

without increasing the copy number of the TE in the host's descendants. 

Indeed there is measurable transcriptional activity of ERVs, the evolutionarily 

youngest endogenous retroviruses, in both the mouse and human germline 

(Brûlet et al., 1983; Dupressoir and Heidmann, 1996; Göke et al., 2015; Grow 

et al., 2015; Seisenberger et al., 2012; Tang et al., 2015).  

The host is faced here with the challenge of not only silencing existing 

copies of these TEs, but also recognizing new transposition events, while at 

the same time not impeding transcription at older insertions that have been 

co-opted to have regulatory functions. The piRNA pathway, the primary repeat 

silencing strategy in Drosophila, seems to function as an immediate de novo 

silencing response in the vertebrate germline, using the transcripts generated 

by TEs as a targeting mechanism (Molaro and Malik, 2016). In an alternative 

and evolutionary slower response, KRAB zinc-finger proteins (KZFPs) can 

recognise defined sequence elements through a unique combination of zinc 

fingers and globally repress elements of the same family without need for their 

expression (Molaro and Malik, 2016). These proteins make up the largest 

single family of transcriptional regulators in mammals and are abundantly 

expressed in the germline (Ecco et al., 2016). Long an understudied group of 

proteins, very recently hundreds of KZFPs could be assigned to their targets 

within specific TE families in humans (Imbeault et al., 2017; Schmitges et al., 

2016). In an 'arms race' between host and TEs, retroelements have been 

suggested to change their sequence to evade KZFP binding, whereas KZFPs 

counteract this development by gene duplication and diversification (Molaro 

and Malik, 2016). Indeed the speed of KZFP gene duplication mirrors that of 

retroelement family diversification (Thomas and Schneider, 2011). Both the 

piRNA and the KZFP pathway are thought to ultimately lead to deposition of 

the repressive H3K9me3 mark at TEs (Padeken et al., 2015), which is 

essential for silencing in the hypomethylated vertebrate germline (Liu et al., 

2014).   
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2.2.3.2 Distribution of CpGs and methylation in vertebrate genomes 

In vertebrates, DNA methylation is set by the de novo methylating enzymes 

DNMT3a and 3b in the context of CpG dinucleotides and maintained upon cell 

division by DNMT1 (Hermann et al., 2004). Methylation levels can be reduced 

either passively through cell divisions (Chen et al., 2003), or actively by the 

TET family of enzymes (Tahiliani et al., 2009). Apart from the brief phases of 

global demethylation in the germline however, vertebrate genomes are unique 

in that they are characterised by almost blanket methylation, suggesting this is 
the default state. Most (∼90%) 5-methylcytosine residues in human DNA lie 

within TE repeats (Yoder et al., 1997). Deamination of methylated CpGs leads 

to their progressive loss over time, and this cost of the genome defence is not 

limited to repetitive regions (Cooper and Youssoufian, 1988). Accordingly, the 

CpG dinucleotide occurs at only 20% of the expected frequency in vertebrate 

genomes. Exceptions to this rule are CpG islands (CGIs) that overlap 

frequently with promoter regions (Bird, 1986). These regions are able to 

maintain their expected CpG content, since they tend to be unmethylated in 

the germline apart from some exceptions (Smallwood et al., 2011).  

Methylation of CGI promoters has been shown to cause robust 

transcriptional repression (Busslinger et al., 1983; Schubeler et al., 2000) and 

is at the basis of the two established incidents of long-term mono-allelic 

silencing (Illingworth and Bird, 2009): X chromosome inactivation (Jaenisch 

and Bird, 2003; Panning and Jaenisch, 1996) and genomic imprinting 

(Bourc'his et al., 2001; Li et al., 1993). Although methylation of CpGs was thus 

primarily evolved for repeat defence, this silencing mechanism has likely been 

co-opted by vertebrates for other means. Of note, the retrotransposons that 

are still transcriptionally competent and rely on methylation for their silencing 

in differentiated cells (Jähner et al., 1982; Walsh et al., 1998) similarly have 

high CpG content (Fig. 2-3a). Another feature these three prime examples of 

DNA-methylation mediated silencing have in common is that silencing is 

essentially irreversible over the life span of the organism. Thus DNA 

methylation has been suggested to 'lock down' inactive sequences and 

commit them to long-term silencing even in the presence of all factors needed 



 13 

for their activation (Bestor et al., 2015; Jones, 2012). DNA methylation and 

silencing of CpG-rich regions often go hand in hand with accumulation of the 

H3K9me3 mark, not only at repeats (Dong et al., 2008).  

 

Figure 2-3. Unequal distribution of CpGs and DNA methylation in the vertebrate 
genome. 
a) High CpG content can be found at unmethylated regions and evolutionarily young repeats. 
Segmenting the genome of mouse embryonic stem cells into fully methylated regions (FMR), 
lowly methylated regions (average 30%, LMR) and unmethylated regions (UMR) reveals a 
clear correlation of methylation and CpG content. Most of the genome, including repeat 
regions, consists of FMRs. The vast majority of CGIs are UMRs, which frequently lie close to 
gene transcription start sites. LMRs mostly reside distal to gene transcription start sites and 
overlap with distal regulatory regions/ enhancers. While repeats/ TEs generally have a low 
CpG content in line with other FMRs, promoter regions of the evolutionarily youngest and 
most active group in rodents (IAPLTRs) still retain a high CpG content in spite of being fully 
methylated. For details on UMRs, LMRs and FMRs see Stadler et al., 2011. Boxplots show 
median (black line), 25th and 75th percentiles (boundaries), minimum and maximum 
(whiskers). b) Vertebrate genomes are characterised by local dips in otherwise blanket 
methylation (mCpG) over active enhancers, CGIs and active CpG-poor promoters. Schematic 
representation adapted from Schübeler, 2015. 
 
 

In spite of the clear link between cytosine methylation and gene silencing 

at CGIs, surprisingly few of them actually change their methylation state 

during development. Apart from germline-specific genes that require DNA 

methylation for their silencing in somatic cells, most CGI promoters remain 

unmethylated in all tissue types regardless of their activity (Borgel et al., 

2010). Instead they acquire the Polycomb-group-mediated H3K27me3 mark 



 

 14 

when silent (Fig. 2-3b) (Lynch et al., 2012; Tanay et al., 2007). However, 

perturbations of their methylation state are frequently observed in diseases, 

especially in cancer, where methylation of CGI promoters for tumour 

suppressor genes has been reported (Jones, 2012). 

 

The advent of bisulfite and next-generation sequencing enabled genome-

wide mapping of DNA methylation at nucleotide resolution across different cell 

types (Lister et al., 2009; Stadler et al., 2011; Ziller et al., 2013). This revealed 

that not only CGIs but also other active regulatory regions are characterised 

by low methylation levels (Fig. 2-3b). These CpG-poor regulatory regions 

include roughly one quarter of promoters, regulating for the most part tissue-

specific genes, and the vast majority of enhancers (Bestor et al., 2015). In 

contrast to CGI promoters, CpG-poor regulatory regions tend to have higher 

levels of methylation when inactive (Fig. 2-3b) (Schübeler, 2015). The majority 

of dynamic methylation changes observed between cell types, tissues or 

individuals occurs at distal enhancers and is matched by both differential TF 

occupancy and gene activity (Zhang et al., 2013a). It is tempting to attribute 

these observations to an instructive role of DNA methylation in tissue-specific 

gene silencing, by regulating binding of TFs. 

However, recently it was shown that certain TFs such as REST, CTCF 

and several other factors are able to bind methylated CpG-poor regulatory 

regions and induce their local demethylation (Boller et al., 2016; Boulard et al., 

2015; Han et al., 2001; Stadler et al., 2011; Wang et al., 2015). It is currently 

unclear how this local reduction in methylation levels is brought about, but it 

likely involves a component of active demethylation (Feldmann et al., 2013). 

Thus dynamic changes in methylation patterns at CpG-poor regulatory 

regions across cell types could also be a mere consequence of differential TF 

binding. Indeed there is currently no experimental evidence for methylation-

dependent silencing occurring at CpG-poor regions (Bestor et al., 2015; 

Schübeler, 2015). Interestingly, TF binding has been implicated in maintaining 

the unmethylated state even at CGIs (Brandeis et al., 1994; Krebs et al., 

2014; Macleod et al., 1994). In the following I will review the existing evidence 
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for an instructive role of DNA methylation in regulating TF binding both in vitro 

and in vivo. 

 

2.2.3.3 DNA methylation and transcription factor binding in vitro 

TF binding is associated with absence of DNA methylation at regulatory 

regions genome-wide (Baubec and Schübeler, 2014; Gal-Yam et al., 2008; 

Naveh-Many and Cedar, 1981). This raises the question if methylation 

patterns are the cause or the consequence of differential TF binding 

(Fig. 2-4a). Given the ability of methylation to silence inserted DNA (Jähner et 

al., 1982; Stein et al., 1982) the historic view was that methylation patterns 

directly determine the activity of genes (Cedar et al., 1983). However, even for 

the long-established examples of methylation-dependent silencing such as TE 

repression, it remains unclear how this effect is actually achieved by the 

cytosine modification. There are two popular explanations (Fig. 2-4b): On the 

one hand, methylation could block TF binding in an indirect manner through 

methyl-CpG-binding domain proteins (MBDs) recognizing dense arrays of 

methylated CpGs and recruiting histone deacetylases (Nan et al., 1998; 

1996). This would lead to chromatin compaction and thus exclusion of TFs 

independent of their sequence motifs. However, in vivo evidence for this 

model on a genome-wide level is still lacking. Deletion of individual MBDs 

does not affect gene expression (Hendrich et al., 2001; Tudor et al., 2002), 

although it cannot be excluded that different MBD family members can 

compensate for each other. On the other hand, methylation of cytosines within 

a sequence motif could directly obstruct binding by affecting the shape and 

base readout of the matching TF (Dantas Machado et al., 2015). Such 

sensitivity of TFs to methylation of their binding site was indeed observed in 

vitro for USF, c-MYC, NF-κB, E2F and CTCF as well as for an undefined 

factor at the cAMP-responsive element (CRE), which all preferentially bound 

to an unmethylated stretch of DNA in gel shift assays (Bednarik et al., 1991; 

Campanero et al., 2000; Iguchi-Ariga and Schaffner, 1989; Prendergast and 

Ziff, 1991; Watt and Molloy, 1988). Crystal structures to support a direct 

disruptive effect of the methyl-group on these protein-DNA interactions are still 
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missing. For other factors there has been conflicting evidence. For example, 

SP1 binding has been reported to be indifferent to methylation (Höller et al., 

1988), to be blocked by methylation (Clark et al., 1997) or to prevent 

methylation from accumulating at CGIs (Brandeis et al., 1994).  

 

 

 
Figure 2-4. Absence of a simple rule for the relationship between DNA methylation and 
TF binding. 
a) Possible scenarios to explain the genome-wide anticorrelation between DNA methylation 
and TF binding outside of CpG islands. TFs could be methylation-insensitive, capable of 
binding methylated sites and inducing local demethylation, thus shaping cell type-specific 
methylation patterns (top). Alternatively, TFs might be methylation-sensitive and require an 
unmethylated state to enable their binding, giving DNA methylation an instructive role 
(middle). These two extreme scenarios could apply differently across factors and even 
sequence contexts. Insensitive factors might induce demethylation and thus enable other 
sensitive factors to bind the same region (bottom), but this differential behaviour would not be 
apparent from measuring steady-state methylation and TF binding profiles. b) Suggested 
mechanisms of DNA methylation-based repression. DNA methylation could directly impede 
TF binding by steric influence of the methyl-CpG group in the DNA sequence motif on the 
protein-DNA interaction (left). Alternatively, methyl-CpG binding domain proteins (MBDs) 
have been proposed to bind arrays of methylated CpGs and induce chromatin compaction by 
recruiting histone deacetylases (HDACs), thus indirectly blocking TF binding independent of 
specific sequence motifs (right). c) Methylation sensitivity of CTCF is context dependent. 
CTCF is unable to bind the methylated paternal allele of the H19/Igf2 ICR (top). On the other 
hand, binding of CTCF can occur in the presence of methylation at a reporter construct and 
induce local hypomethylation, as shown in Stadler et al., 2011 (bottom). 
 
 

Technology development has enabled large-scale studies of the effect of 

DNA methylation on in vitro TF binding in recent years. Spruijt et al. used 
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mass spectrometry to identify proteins in nuclear extracts from mouse 

embryonic stem (ES) cells that bind an immobilised methylated or 

unmethylated DNA template (Spruijt et al., 2013). This study identified some 

TFs that preferentially bound the unmethylated template, including two of the 

TFs listed above, NF-κB and ATF/CREB factors that normally bind the CRE 

motif. However, in fact only one DNA sequence template consisting mostly of 

ACG repeats was used in this study, which conflicts with the sequence-

specific binding nature of TFs. In an alternative approach Hu et al. spotted 

1,321 human TFs on a protein microarray and measured binding to 

synthesised in vitro methylated templates in competition with unmethylated 

templates (Hu et al., 2013). While this study interrogated 154 CpG-containing 

TF motifs, it only reports factors that preferentially bind methylated sites and 

thus the findings cannot be systematically compared with Spruijt et al. or the 

gel shift experiments. Of note, Hu et al. describe several factors that alter their 

motif preference in the presence of DNA methylation. Mann et al. performed 

the inverse experiment and used a double-stranded in vitro methylated or 

unmethylated DNA microarray with 65,536 octamers which they incubated 

with eight mouse bZIP TF family members (Mann et al., 2013). While they 

observed preferential binding to methylated sequences for some factors, 

others were blocked by DNA methylation, e.g. CREB. A recent study in the 

flowering plant Arabidopsis thaliana avoided synthesis of DNA oligomers and 

instead used fragments of genomic DNA, thus obviating the need to methylate 

in vitro (O'Malley et al., 2016): 1,812 in vitro-expressed TFs were bound to 

beads and incubated with naked genomic DNA fragments. Comparison with 

largely unmethylated DNA fragments generated by PCR nominated roughly 

180,000 TF binding sites occluded by DNA methylation. Fewer sites were 

gained and cytosine content of TF motifs correlated with binding sensitivity to 

5-methylcytosine. Of note, Arabidopsis genomes are methylated at cytosines 

also outside of the CpG context and thus contain more than twice as much 

methylation as vertebrate genomes (Cokus et al., 2008; Schmitz et al., 2013).  

Additional studies to investigate in vitro binding preferences of TFs in the 

presence of DNA methylation are underway. Perhaps most prominent is the 
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adaption of the systematic evolution of ligands by exponential enrichment 

(SELEX) method for methylated DNA templates, which relies on affinity-

tagged DNA-binding domains, barcoded selection of bound oligonucleotides, 

and multiplexed sequencing (Jolma et al., 2010).  

Interestingly, the main focus of these large-scale studies in vertebrates in 

recent years has been to identify TFs that preferentially bind methylated DNA, 

since a negative effect of methylation on TF binding is largely taken for 

granted. However, apart from the single-factor/ single-locus examples 

mentioned above, there is currently no evidence for widespread binding-site 

restriction by DNA methylation in vertebrates.  

 

2.2.3.4 DNA methylation and transcription factor binding in vivo 

Large-scale in vitro studies of TF methylation sensitivity are valuable starting 

points and will hopefully be expanded in coming years. However, it is 

becoming increasingly clear that TF binding depends to a large part on the 

sequence-, chromatin- and cellular context and these factors will need to be 

considered if we want to reach the ultimate goal of predicting genome-wide TF 

binding and gene activity. For example, DNA methylation seems to have 

disparate effects at CpG-dense versus CpG-poor regions. Many additional 

factors come into play within a cell that are not captured in in vitro binding 

experiments, such as the presence of DNA methylation readers and writers, 

e.g. MBDs, co-factors and other TFs as well as various other chromatin 

components mentioned above. In addition, binding affinities measured in vitro 

can be in a realm that is not naturally relevant within cells in terms of DNA 

binding site and protein concentration. Of note, just because a factor is 

sensitive to methylation in a certain sequence context does not mean the TF 

is actually restricted in its binding by this mark in a cell, e.g. if high affinity 

sites are all unmethylated in the first place or inaccessible for other reasons. 

Accordingly, transferring observations of TF binding behaviour and 

methylation sensitivity from in vitro to in vivo binding site predictions has been 

difficult. For example, in vitro blocking of CREB binding at the Tat promoter 

sequence suggested that methylation would be responsible for regulating 
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binding at this site. However, removal of methylation was unable to induce 

binding in a cell type that is normally inactive for this gene and where CREB is 

highly expressed (Weih et al., 1991).  

Currently there are no studies that systematically investigate the influence 

of DNA methylation on binding site restriction in vivo. This is likely in part due 

to the fact that DNA methylation is essential for cell survival in most tested 

mammalian cells (Chen et al., 2007; Liao et al., 2015), making loss of function 

effects hard to study. At the same time this means that in spite of the largely 

correlative nature of the DNA methylation and gene expression relationship, 

this mark has a crucial role in cell survival. Cell death has been attributed in 

turn to misregulation of critical genes (Jackson-Grusby et al., 2001) or 

activation of repeats (Walsh et al., 1998; Yoder et al., 1997) and was linked to 

DNA damage response (Shaknovich et al., 2011) and mitotic catastrophe 

(Chen et al., 2007). To date it remains unclear to which extent it is driven by 

differential TF binding or other global responses.  

 

2.2.3.5 Example CTCF 

The CCCTC-binding factor CTCF is likely the most prominent example for a 

methylation-sensitive TF and is one of the few cases that has indeed been 

shown to bind in a methylation-sensitive manner not only in vitro but also in 

vivo. This factor nicely illustrates the complex relationship between DNA 

methylation and TF binding and how far we are from fully understanding it in 

spite of a wealth of experiments.  

Over the past fifteen years, the relationship between CTCF binding and 

DNA methylation has been studied in detail at the imprinting control region 

(ICR) of the H19/Igf2 locus, resulting in more than a hundred publications on 

this topic and region. CpG methylation in the core motifs was shown to 

prevent CTCF binding in vitro (Bell and Felsenfeld, 2000; Hark et al., 2000; 

Renda et al., 2007). In vivo, CTCF binds and acts as an insulator only at the 

unmethylated maternal allele but not at the methylated paternal allele, giving 

rise to allele-specific gene expression (Fig. 2-4c) (Szabó et al., 2000). 

Demethylation of the H19/Igf2 ICR by treatment with 5-Aza-deoxycytidine 
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leads to biallelic binding and expression (Ito et al., 2013), whereas mutation of 

CTCF binding sites in the ICR results in gain of methylation at the maternal 

allele (Schoenherr et al., 2003; Szabó et al., 2004).  

While the exact mechanism that repels CTCF from the methylated allele 

remains to be elucidated, these observations have led to the belief that 

methylation within the core motif is generally instructive for CTCF binding 

(Filippova, 2008). Indeed, on a genome-wide level, an inverse relationship 

between CTCF binding and methylation was found in many cell types 

(Mukhopadhyay et al., 2004; Wang et al., 2012a). However, these studies do 

not address whether DNA methylation itself prevents binding in vivo or 

whether bound sites become hypomethylated as a secondary effect. Indeed it 

has been demonstrated that CTCF binding itself can create reduced 

methylation states, by binding to a methylated CpG-poor region and leading to 

local demethylation (Fig. 2-4c) (Stadler et al., 2011). In stem cells without 

DNA methylation (DNA methyltransferase triple knockout cells, TKOs) 

(Tsumura et al., 2006), CTCF binding was not drastically altered on a 

genome-wide level, with the notable exception of several imprinted regions 

including the H19/Igf2 ICR (Stadler et al., 2011). These findings argue against 

a general role for DNA methylation in preventing CTCF binding in vivo and 

stand in stark contrast to the methylation sensitivity observed at the H19/Igf2 

ICR (Fig. 2-4c). It is currently unclear how to reconcile these findings and 

which factors influence CTCF methylation sensitivity in the cellular context. 

 

2.3 Studying binding site restriction of transcription 

factors in vivo 

The difficulty to find a unifying rule for how different chromatin components 

impact TFs has made it increasingly clear that their influence on binding is 

likely both factor and context specific (Slattery et al., 2014): For each 

chromatin component a whole spectrum of sensitivities could exist among the 

various TFs and sequence context can contribute to further distinguish 
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otherwise identical binding sites for an individual TF, e.g. by impacting DNA 

shape or co-factor binding (Levo and Segal, 2014; Slattery et al., 2014).  

Removing individual chromatin components and assessing the impact on 

TF binding across the whole genome in vivo would thus be invaluable for 

gaining insights into the complex role these features have in TF binding site 

restriction and to tease apart causation and correlation (Fig. 2-5). Indeed 

methods to measure genome-wide binding of specific TFs, such as ChIP-seq, 

or chromatin accessibility as an indicator of the entire cellular TF binding 

landscape, such DNase- or more recently ATAC-seq, are well developed 

(Levo and Segal, 2014). The removal of individual repressive chromatin 

components is less straightforward, since they are generally essential for cell 

survival. DNA methylation has two advantages that make it a prime candidate 

for a proof-of-concept study and thus the focus of this thesis: First, it can be 

mapped to nucleotide resolution by bisulfite sequencing. Second, mouse ES 

cells have been shown to survive in its absence (Tsumura et al., 2006), 

providing us with an ideal model system to study the influence of DNA 

methylation on TF binding. 

 

 
Figure 2-5. Studying binding site restriction by chromatin. 
Hypothetical experimental approach for studying the influence of individual chromatin features 
on TF binding site restriction. Individual chromatin features such as nucleosomes, repressive 
histone marks or DNA methylation could be genetically removed or depleted. Determining 
genome-wide chromatin accessibility with DNase-seq or ATAC-seq as indicator for TF binding 
in each of these mutants would allow identification of sites only bound in the absence of a 
given modification. Sequence analysis of these sites should nominate candidate TFs that are 
otherwise blocked from binding by this mark. Importantly, gene expression changes need to 
be limited in mutants to allow assignment of differentially accessible sites to loss of binding 
site restriction rather than secondary effects.   
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2.4 Open questions and scope of this thesis 

Taken together, we currently lack an understanding of how and to which 

extent different chromatin features influence TF binding. DNA methylation is a 

mark that is comparatively easy to manipulate and measure at base-pair 

resolution. Nonetheless, its influence on TF binding remains unclear in spite 

of a vast array of literature that has been amassed on this subject over the 

past more than three decades.  

Some of the key open questions in the field are: Can DNA methylation 

have an instructive role in TF binding site restriction in vertebrate cells or are 

methylation patterns only generated downstream of TF binding? If yes, for 

which factors among the large TF family does DNA methylation block 

binding? Does this occur at all motifs for candidate factors or only in certain 

chromatin or sequence contexts? How is binding site restriction actually 

brought about: Is it due to indirect changes in chromatin environment or by 

direct steric alterations in the sequence-specific DNA-protein interaction? 

Finally, which role does TF binding site restriction play in the essential nature 

of DNA methylation?  

In view of the exploding number of epigenetic and TF binding maps being 

collected across species, tissues, developmental and disease stages, 

answering these questions would bring us one step closer towards predicting 

dynamic TF binding and ultimately gene regulation during development and 

disease. 

 

For this thesis, I addressed these open questions by investigating the 

influence of DNA methylation on TF binding in the cellular context. First, we 

focused on understanding genome-wide CTCF methylation sensitivity. This 

TF is the most prominent example for a methylation-sensitive TF, yet it 

remains unclear in which sequence contexts DNA methylation restricts its 

binding. Second, we aimed to identify further methylation-sensitive TFs by 

comparing genome-wide TF binding in mouse ES cells in the presence and 

absence of DNA methylation. For the identified factors, we investigated 

possible mechanisms of binding site restriction and studied the interplay 
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between TFs and DNA methylation. Third, since DNA methylation is essential 

for cell survival only in differentiated cells and is thus expected to have a 

larger impact there, we expanded this approach to a differentiated cell state in 

the form of methylation-deficient neurons. Apart from analysing differential TF 

binding in this context, we also explored the impact of DNA methylation loss 

on expression and cell survival. 
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3. Results 
 
 

3.1 Methylation sensitivity of the transcription factor CTCF 
 

3.1.1 Abstract 

CTCF plays a key role in the three-dimensional organisation and 

transcriptional regulation of vertebrate genomes. Binding of this TF has been 

shown to be sensitive to DNA methylation at the H19/Igf2 imprinting control 

region (ICR), yet it is not restricted by DNA methylation at the vast majority of 

genomic sites. In order to understand this apparent context-dependent 

influence of DNA methylation, we compared CTCF binding in isogenic mouse 

stem cells with and without DNA methylation. We find that the couple hundred 

CTCF sites only bound in the absence of DNA methylation are characterised 

by CpGs at certain positions in the motif as well as a higher CpG density in 

the flanking regions. Of note, these features also hold true at the H19/Igf2 

ICR. In addition, we show that methylation sensitivity at this well-studied 

region is indeed encoded in the sequence and not dependent on the 

chromosomal location or allele-specific enrichment of H3K9me3. Comparing 

CTCF binding at ectopically inserted methylated and unmethylated sequence 

libraries is a means to test the impact of these and other sequence features 

on CTCF methylation sensitivity. Clonal variability in methylation states was 

observed for ectopic genomic insertions of the H19/Igf2 ICR fragments. 

However, we suggest several strategies to overcome this issue and to 

comprehensively decode the context-dependent influence of DNA methylation 

on CTCF binding, thus facilitating the interpretation of epigenomic and 

topological maps. 
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3.1.2 Introduction 

CTCF is one of the best-studied and most frequently cited examples for a 

methylation-sensitive TF, making it the natural starting point for elucidating the 

influence of DNA methylation on TF binding. This essential and highly 

conserved zinc-finger protein has been implicated in a myriad of biological 

processes (Ohlsson et al., 2001). By mediating long-range intrachromosomal 

interactions, CTCF is thought to demarcate the boundaries of topologically 

associated domains (Ghirlando and Felsenfeld, 2016), i.e. chromosome 

neighbourhoods which frequently interact within but not between each other. 

Thus, this 'Master Weaver of the genome' (Phillips and Corces, 2009) limits 

interactions across its binding site and acts as an insulator (Bell et al., 1999; 

Hark et al., 2000).  

The influence of DNA methylation on CTCF binding has been studied in 

detail at the imprinting control region (ICR) of the H19/Igf2 locus, which 

contains four CTCF binding sites in mice. CTCF only binds at the 

unmethylated maternal allele, but not at the methylated paternal allele (Szabó 

et al., 2000). The vast majority of CTCF sites however are not restricted by 

DNA methylation in ES cells (Stadler et al., 2011). In contrast, CTCF was 

shown to be able to bind a methylated CpG-poor region and induce its 

demethylation. It is currently unclear how to reconcile these observations and 

in which genomic contexts methylation indeed affects CTCF binding. 

The impact of altered CTCF binding can be substantial, even if it occurs 

only at few genomic sites. Aberrations in methylation states and CTCF 

binding and thus enhancer looping have been linked to misexpression of 

H19/Igf2 in Beckwith-Wiedemann and Russell-Silver growth defect syndromes 

(Herold et al., 2012) as well as more recently to oncogene activation in glioma 

(Flavahan et al., 2016). Being able to predict which CTCF sites are impacted 

by methylation changes is therefore crucial in order to interpret the growing 

number of genome-wide epigenetic and topological maps. To this end, we 

aimed to investigate the context-dependent influence of DNA methylation on 

CTCF binding in a systematic manner and to determine the sequence 

features involved in its methylation sensitivity.  
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3.1.3 Results 

In order to investigate which sequence parameters influence methylation 

sensitivity of CTCF in the cellular context, we planned to compare binding at 

differentially methylated sequences in an otherwise controlled environment. 

This is achieved by inserting sequence variants into the same ectopic 

genomic site via Cre recombinase-mediated cassette exchange (RMCE) 

(Feng et al., 1999; Lienert et al., 2011). The sequences can be methylated in 

vitro prior to insertion and integrated in the methylated as well as in the 

unmethylated state (Fig. 3-1, right). This strategy enables measurement of 

CTCF binding at an identical sequence and chromosomal location that only 

differs in the methylation state. Comparison of sequences that are bound by 

CTCF regardless of methylation levels and those that are only bound in the 

unmethylated state should elucidate which parameters are required for 

methylation-sensitive binding. Hundreds of sequences can be inserted in 

parallel in a library approach and methylation status and CTCF binding at 

these different inserts can be read out in the same experiment (Krebs et al., 

2014; Barisic et al. unpublished). This makes it feasible to systematically test 

the influence of many sequence parameters in a high-throughput fashion. 

 

 
Figure 3-1. Overview of experimental approach for studying CTCF methylation 
sensitivity. 
Comparison of CTCF binding measured by ChIP-seq in cells with (WT) and without (Dnmt 
TKO) DNA methylation can identify putative methylation-restricted CTCF binding sites only 
occupied in the TKO (left). Characteristic sequence features of these sites are tested for their 
contribution to CTCF methylation sensitivity using a genomic editing approach (right): The 
same sequences are inserted unmethylated and premethylated (using M.SssI) into an ectopic 
genomic site in mouse ES cells (mESC) by recombinase-mediated cassette exchange 
(RMCE), using rounds of positive and negative selection. Maintenance of methylation state 
and CTCF binding at the inserts are monitored by bisulfite sequencing and ChIP-qPCR. 
Insertion of a complex plasmid library of sequence variants in a methylated and unmethylated 
state would allow measurement of relative CTCF binding at differentially methylated but 
otherwise identical sequences for hundreds of variants in parallel in a single experiment. 
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3.1.3.1 A subset of CTCF binding events occur only in the absence of 
DNA methylation 

In order to reduce the sequence search space and have a starting point for 

library design, we first sought to identify potential sequence features that 

might be involved in methylation-sensitive CTCF binding (Fig. 3-1, left). We 

compared CTCF binding in cells with and without DNA methylation to identify 

binding sites that are restricted by DNA methylation. This was already 

previously performed by our lab in an ES Dnmt TKO cell line generated by 

traditional mouse genetics and a wildtype ES cell line of a different strain 

background (Stadler et al., 2011). However, overall low fold-changes made it 

difficult to distinguish sites that were differentially bound due to methylation 

loss or due to biological and experimental variability.  

To minimise clonal and strain influence and enable confident detection of 

subtle differences, we compared CTCF binding by high-coverage ChIP-seq in 

WT and isogenic Dnmt TKO ES cell lines generated by CRISPR genome 

editing (Domcke et al., 2015) (Fig. 3-2a,b). Variation was slightly larger 

between cell lines than between replicates (Pearson correlation coefficient of 

0.89 vs. 0.94, Fig. 3-2a,b,c), implying that some sites are indeed bound in a 

methylation-dependent manner. However, overall there were few TKO-

specific CTCF sites and a similar amount of WT-specific sites. To validate 

these cell line-specific sites by independent means, we analysed high-

coverage DNase-seq data at all low-confidence CTCF motifs in both cell lines 

(Domcke et al., 2015). When comparing changes between TKO and WT, we 

observe correlation for ChIP-seq and DNase-seq signal (Fig. 3-2d). 

Importantly, TKO-specific sites show higher correlation in these measures 

than WT-specific sites, which are largely not shared between the methods. 

Sites with at least two-fold change in both ChIP-seq and DNase-seq were 

selected for further analysis (Fig. 3-2e). The 202 TKO-specific sites called 

with this cut-off are fully methylated in WT, in contrast to the 69 WT-specific 

sites, implying that they might indeed be methylation-sensitive binding events 

(Fig. 3-2f).  
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Figure 3-2. Identification of putative methylation-sensitive CTCF sites and their 
sequence characteristics. 
a, b) Comparison of CTCF binding in WT (a) or TKO (b) ES cells for two biological ChIP-seq 
replicates. PCC = Pearson correlation coefficient. c) Comparison of CTCF binding in WT and 
TKO ES cells as measured by ChIP-seq (mean of replicates). d) Comparison of differential 
CTCF binding and chromatin accessibility between TKO and WT ES cells in a 300 bp window 
around CTCF motifs. e) Example for chromatin accessibility measured by DNase-seq and 
CTCF binding measured by ChIP-seq at a 'TKO-specific' CTCF site (chr6: 29,042,850-
29,043,500). f) WT methylation levels measured by whole-genome bisulfite sequencing in 
300 bp CTCF peak regions bound either in both WT and TKO ES cells or only in one of the 
two cell lines. Boxplots show median (black line), 25th and 75th percentiles (boundaries), 
minimum and maximum (whiskers). g) Top enriched motifs identified by de novo motif 
enrichment in TKO-specific (top; found in 48% and 20% of regions; p-value 1e-94 and 1e-38) 
or shared and WT-specific peaks (bottom; found in 68% of shared and 59% of WT-specific 
regions; p-value 1e-25356 and 1e-21), compared to remaining sites overlapping CTCF motifs. 
h) Enrichment of dinucleotides in flanking regions (excluding the CTCF motif) of TKO-specific 
over shared peaks (CG observed/expected = 0.3 in TKO-specific, 0.2 in shared sites). 
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3.1.3.2 TKO-specific sites contain more CpGs in the motif and the 
flanking regions 

Next we asked whether there are some sequence features that set the TKO-

specific sites apart from the majority of constitutive CTCF sites. De novo motif 

enrichment found CTCF motifs to be highly enriched in the called peaks, in 

line with how the original set of regions was selected. Interestingly, the two 

most strongly enriched motifs found in nearly three quarters of the TKO-

specific sites are two non-canonical CTCF motifs (Fig. 3-2g). These motif 

variants both contain a central CpG, in contrast to the canonical CTCF motif 

found in more than two thirds of the non-changing sites, as well as in most of 

the WT-specific sites (Fig. 3-2g). Two recent studies reporting methylation 

sensitivity of CTCF at single loci also focus on motifs containing CpGs at just 

these positions: The motif in the Pou5f1 locus that was artificially methylated 

by targeting a dCas9-DNMT3a fusion protein by Liu et al. closely matches the 

first variant (Liu et al., 2016), whereas the motif in the insulator of the Pdgfra 

oncogene studied by Flavahan et al. corresponds to the second variant 

(Flavahan et al., 2016). In contrast, the motif inserted into a methylated CpG-

poor sequence that was bound by CTCF and demethylated is the best match 

to the canonical CTCF motif (Stadler et al., 2011).  

In addition to the motif itself, flanking regions could also impact 

methylation sensitivity (Levo and Segal, 2014). Analysis of the sequence 

composition of flanking regions revealed that CpG dinucleotides are enriched 

in the surroundings of TKO-specific sites (Fig. 3-2h). Of note, motifs 

containing CpGs are more likely to occur in regions with overall higher CpG 

density, so these two features might be linked.  

The H19/Igf2 ICR can serve as a positive control for sequence features 

involved in methylation-sensitive CTCF binding. As expected, we observe a 

two-fold increase in CTCF ChIP-seq and DNase-seq signal at this region 

(Fig. 3-3a) and the binding sites fall within our TKO-specific peak set. The ICR 

indeed contains the CpG-variant forms of the CTCF motif (Fig. 3-3b). In 

addition, it has a higher CpG density than the rest of the genome (CpG 

content observed/expected = 0.4 versus 0.2 for regions with constitutive 
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CTCF binding). Thus, CpG density of the flanking region and CpGs at certain 

positions in the motif are likely features contributing to context-dependent 

CTCF methylation sensitivity.  

 

 
Figure 3-3. CTCF binding sites in the H19/Igf2 ICR. 
a) DNase-seq and ChIP-seq signal at the H19/Igf2 ICR in WT and TKO ES cells for two 
biological replicates each. Triangles mark the position of the CTCF motifs in the ICR. b) 
Comparison of motifs identified in the majority of TKO-specific CTCF binding sites (PWM, top) 
and the first two CTCF sites in the H19/Igf2 ICR (bottom). CpGs are found in similar positions 
of the motif as in the most (black) or second most (grey) enriched TKO-specific motifs.  
 
 

3.1.3.3 Methylation sensitivity of CTCF can be recapitulated at an 
ectopic site  

Having identified possible methylation-sensitive CTCF sites and some of their 

key sequence features, we next wanted to validate these by inserting 

unmethylated and premethylated sequence variants into an ectopic genomic 

site and measuring relative CTCF binding by ChIP-qPCR. As a proof of 

principle, we decided to first insert fragments of the H19/Igf2 ICR to probe 

whether its known methylation sensitivity is indeed purely sequence and not 

location dependent and can be recapitulated at an ectopic genomic site. First 

we tested seven differently sized fragments for their ability to maintain both 
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the methylated and unmethylated state by profiling methylation post-insertion 

with targeted bisulfite sequencing (Fig. 3-4). Long (~ 2 kb) ICR fragments 

containing all four CTCF sites can indeed maintain both the methylated and 

the unmethylated state after insertion in the ectopic site (Fig. 3-4, i). This is 

also the case for one short fragment containing the first CTCF binding site 

(Fig. 3-4, i), but not for the other tested fragments containing one or two CTCF 

motifs (Fig. 3-4, ii and iii).  

 
 

 
Figure 3-4. Methylation state of fragments of the H19/Igf2 ICR after insertion into an 
ectopic genomic site. 
Fragments of the H19/Igf2 ICR (top; vertical bars = position of CpGs, numbered triangles = 
CTCF motifs) of different length containing different CTCF sites (coloured horizontal bars) 
were inserted by RMCE into an ectopic genomic site. The same fragments were inserted both 
unmethylated (– M.SssI) and fully premethylated in vitro (+ M.SssI). For the individual 
fragments shown on the left, methylation levels were then measured after insertion. Results 
are shown in the same order as the indicated fragments once for the unmethylated and once 
for the premethylated version. Every line of boxes corresponds to a sequenced bisulfite PCR 
amplicon (black box = methylated CpG, white box = unmethylated CpG). Average methylation 
of these amplicons is summarised in percent. While some sequences can maintain a 
differential methylation state upon insertion (i), others lose (ii, + M.SssI) or gain (iii, – M.SssI) 
methylation. 
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Nonetheless, in all cases CTCF binding measured by ChIP-qPCR 

anticorrelates strongly with the methylation state, as expected for methylation-

sensitive binding events (Fig. 3-5a). Thus, methylation-sensitive CTCF 

binding can be recapitulated at an ectopic genomic site. 

 

 
Figure 3-5. Methylation-sensitive CTCF binding is recapitulated at an ectopic genomic 
site. 
a) Anticorrelation between CTCF binding and DNA methylation at both ectopic ICR fragments 
(left) and the endogenous ICR (right) across clones with different inserts. Clones named after 
inserted CTCF sites and pre-insertion methylation state (+/–). PCC = Pearson correlation 
coefficient. c) Methylation levels (left) and CTCF and H3K9me3 enrichment (right) at three 
exemplary fragments of the H19/Igf2 ICR inserted unmethylated (– M.SssI) or premethylated 
(+ M.SssI) into the ectopic site. Methylation after insertion was measured by bisulfite 
sequencing (bars represent individual CpGs coloured according to average methylation level). 
CTCF (green) and H3K9me3 (purple) enrichment was measured by ChIP-qPCR (dark, ect.) 
and compared to the levels at the endogenous H19/Igf2 ICR (light, end.). For the methylated 
short fragment, CTCF binding could not be detected at the endogenous site (middle, *). 
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3.1.3.4 CTCF binding is independent of H3K9me3 in the ectopic site 

H3K9me3 is present in an allele-specific manner at the endogenous H19/Igf2 

locus (Singh et al., 2011) and was also removed in experiments where 

methylation was reduced by 5-Aza-deoxycytidine, leading to CTCF binding at 

the paternal allele (Ito et al., 2013). Therefore, this heterochromatic mark 

could be responsible for preventing CTCF binding rather than DNA 

methylation itself. To test this, we measured H3K9me3 enrichment at the 

inserted fragments and found that only the longest methylated ICR fragment 

could recruit this mark (Fig. 3-5b). Since we also observe loss of CTCF 

binding at the short methylated fragments in the absence of H3K9me3 

(Fig. 3-5b), CTCF repulsion at these sequences is likely truly DNA methylation 

dependent. 

 

3.1.3.5 Methylation levels of inserted sequences vary between clones 

When measuring CTCF binding at the fragments inserted in the ectopic site, 

enrichments at the endogenous H19/Igf2 ICR on chromosome 7, as well as at 

other unrelated CTCF binding sites in the genome, were used as positive 

controls. To our surprise, we were unable to measure enrichment at the 

endogenous ICR for the short methylated fragment that is unable to bind 

CTCF in several attempts, although ChIP enrichments at other unrelated 

genomic regions were strong (Fig. 3-5b). When we profiled methylation at the 

endogenous ICR we surprisingly observed an increase in methylation to 

almost 100%, rather than the expected 50%, in line with the absence of CTCF 

binding (Fig. 3-6a). Upon measuring methylation and CTCF binding at the 

endogenous ICR for all clones, we observed that it always matched the 

ectopic site, both in terms of DNA methylation and CTCF ChIP enrichment 

(Fig. 3-6a,b,c).  
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Figure 3-6. Comparison of DNA methylation and CTCF enrichment for ectopic 
fragments of the H19/Igf2 ICR and their endogenous counterpart. 
a) Bisulfite sequencing results of ectopic and matching endogenous ICR sequences within the 
same ES cell clone. Fragments containing one or two CTCF sites were inserted into the 
ectopic genomic site either unmethylated (– M.SssI) or premethylated (+ M.SssI); ES cell 
clones (large grey boxes) are named accordingly. For each ES cell clone, methylation levels 
at the ectopic (left) and endogenous (right) site are shown: Every line of boxes corresponds to 
a sequenced bisulfite PCR amplicon (black box = methylated CpG, white box = unmethylated 
CpG, grey box = NA). Average methylation of these amplicons is summarised in percent. b,c) 
Strong correlation of DNA methylation levels (b) and CTCF enrichment (c) at the ectopic site 
and the endogenous counterpart across clones with different inserts. Methylation was 
measured by bisulfite sequencing, CTCF enrichment by ChIP-qPCR. ES cell clones are 
named after CTCF binding sites inserted in the ectopic site and pre-insertion methylation 
state (+/–). PCC = Pearson correlation coefficient. 
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We hypothesised that the observed changes in DNA methylation at the 

endogenous ICR might be an artefact of the bisulfite sequencing method, 

since conversion of cytosines in mixed populations can lead to preferential 

amplification of one of the alleles in the subsequent PCR step. Accordingly we 

performed methylation-sensitive restriction digest coupled to qPCR on 

unconverted material to determine the methylation status of central CpGs in 

the constructs, thereby avoiding this amplification bias (Fig. 3-7a). The results 

were identical to those of the bisulfite sequencing, implying that the change of 

methylation at the endogenous imprinted region is indeed present and not a 

methodological artefact (Fig. 3-7b).  

 

 
Figure 3-7. Methylation state of the H19/Igf2 ICR varies between ES cell clones. 
a) Methylation-dependent restriction digest allows quantitative analysis of DNA methylation 
using real-time PCR (qAMP), without the need for bisulfite conversion. qAMP delivers the 
expected results for the methylation level of the H19/Igf2 ICR in ES cell clones that did not 
undergo RMCE. b) Similar methylation levels are measured for H19/Igf2 ICR fragments 
containing one or two CTCF sites at the ectopic and endogenous site using qAMP and 
bisulfite sequencing (BS-seq), regardless of previous treatment of inserts with methylase 
M.SssI (+/–). c) Methylation levels at the endogenous H19/Igf2 ICR measured by qAMP for 
different ES cell clones after insertion of a fragment containing the first (left) or the first two 
(right) CTCF sites of the H19 ICR. Methylation levels are independent of insert direction or 
methylation levels prior to insertion (+/–). 
Error bars: standard deviation for levels measured with four different restriction enzymes. 
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To test how frequent this change in methylation state is, we redid 

insertions of some of the ICR fragments and analysed a larger number of ES 

cell clones (Fig. 3-7c). We observed clear clonal differences for the 

methylation state at the endogenous ICR. These always matched the ectopic 

site, but were not linked to the insert direction or the methylation level of the 

fragments prior to insertion. Since the ectopic site is actually on the same 

chromosome as the endogenous H19/Igf2 ICR, we wondered whether there 

could be cross-talk between the two locations that could explain the 

agreement observed in all tested cases for methylation levels and CTCF 

binding between the ectopic and endogenous site. Therefore, we repeated the 

insertions in a different cell line, where the RMCE site is in a different genomic 

location. Again we observed strong variation in the methylation level of the 

endogenous ICR (Fig. 3-8a). In addition, we removed the inserts in a new 

round of RMCE and measured methylation of the endogenous ICR before and 

after insert removal (Fig. 3-8b). Methylation levels were not influenced by 

removal of the insert, but rather stably maintained.  

 
 

 
Figure 3-8. Variable methylation states of the endogenous H19/Igf2 ICR sequence do 
not depend on the genomic location or presence of an ectopic insert. 
a) Variability in methylation state of the endogenous ICR between ES cell clones with ectopic 
inserts does not depend on the location of the ectopic site. In the HA36CB1 cell line, the 
RMCE site is in a different genomic location than in the cell line used for previous targeting 
experiments (TC-1). Fragments containing the first or first two CTCF sites of the ICR were 
inserted there. After insertion, methylation levels were measured by qAMP at the endogenous 
H19/Igf2 ICR. Levels above 100% are due to differences in Ct values from undigested control 
(see Methods). b) Aberrant methylation levels are maintained after insert removal. 
Methylation levels at the endogenous H19/Igf2 ICR measured by qAMP before and after 
removal of the inserted ICR fragments (CTCF1 or CTCF12) from the ectopic site.  
Error bars: standard deviation for levels measured with four different restriction enzymes. 
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These two findings argue against cross-talk between the endogenous and 

ectopic site. Rather, they imply that sequences from imprinted regions can 

adapt fully methylated or unmethylated states in our ES cell culture and clonal 

selection conditions, which vary from clone to clone but are identical for the 

same sequence within the same cell, regardless of the genomic location. 

Once established, these levels are then stably maintained over many 

generations within a clonal population (Fig. 3-8b). In agreement with these 

observations, it has been previously reported for human ES cells that in vitro 

culture can lead to alterations in methylation levels at ICRs (Frost et al., 

2011). These findings require adaptations to the experimental approach since 

variability in methylation states for identical sequences is not compatible with 

use of the planned library scheme. As a consequence, this line of experiments 

was not explored further in the scope of this thesis.  
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3.1.4 Discussion 

We identified several hundred putative methylation-sensitive CTCF binding 

sites in ES cells that are only occupied in the absence of DNA methylation. 

These contain motifs with CpGs at certain positions and lie in CpG-denser 

regions of the genome, setting them apart from the vast majority of CTCF 

binding sites.  

Of note, a recent study comparing CTCF binding in WT and Dnmt1/3b 

hypomorph HCT116 cell lines observed increased CTCF binding at a subset 

of sites in the cell line with reduced methylation levels (Maurano et al., 2015). 

Many of these sites contained a CpG in critical positions of the motif and were 

located in CpG-dense regions, in line with our findings. Overall we observe 

fewer cell line-specific sites compared to said study, although DNA 

methylation is completely removed, not only reduced, in our system. This 

might in part be due to our isogenic approach, which uses cell lines that are 

very similar in terms of cell culture age etc., thus minimizing variability not 

directly linked to DNA methylation loss.  

CTCF methylation sensitivity can be recapitulated at an ectopic site and is 

independent of the H3K9me3 mark, implying that this behaviour is indeed 

dependent on the local sequence context and DNA methylation state. 

However, the methylation level of inserted ICR fragments (and their 

endogenous counterparts) showed strong clonal variability. This complicates 

the planned use of the library approach to further test and validate sequence 

parameters involved in methylation-sensitive CTCF binding. Differences in 

methylation state for cells with the same inserted sequence would make it 

difficult to link them to the correct ChIP enrichment. To circumvent this issue, 

it is feasible to instead perform NOMe-seq on inserted libraries (Jessen et al., 

2004; Kelly et al., 2012). This method uses GC methyltransferase footprinting 

and bisulfite sequencing to measure both DNA methylation and TF occupancy 

on the same single molecule and can thus also be applied to heterogeneous 

cell populations.  

It is possible that the clonal variability we observe is a special feature of 

imprinted regions. Given their unique allele-specific methylation in vivo, these 
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sequences might be 'metastable' and more likely to adapt binary methylation 

states in contrast to other genomic regions, which show less clonal variability 

in our experience. At the same time, other sequences are even less likely to 

maintain an 'imposed' methylation state after insertion (data not shown). 

Inserting libraries into WT and TKO cells instead of premethylating the inserts 

could circumvent the difficulty of maintaining the methylation state after 

insertion. The sequences of interest are mostly methylated in the WT cell and 

would likely acquire this state after insertion, especially since inserted 

sequences are more likely to gain methylation than to lose it compared to their 

endogenous state (Krebs et al., 2014). Binding could thus be compared to 

their unmethylated counterpart in TKO cells. 

The sequences profiled in a library approach could include the 202 

putative methylation-sensitive sites identified here, as well as variations in 

motif and flanking region CpG density, or other regions which are not 

methylated in ES cells but are of interest due to their sequence composition or 

methylation state in other cell types. Further possible sequence parameters to 

vary would be motif strength, neighbouring TF motifs or scanning point 

mutations. It will be particularly interesting to dissect the H19/Igf2 ICR by 

replacing the CpGs in the motifs or reducing CpG density in the surroundings, 

in order to test which of these manipulations affect methylation sensitivity at 

this well-studied sequence. 

Of note, many regions with the described characteristics remain unbound 

also in the TKO cell line. This is in line with the general observation that only a 

very small fraction of TF motifs are actually bound in any condition (Wang et 

al., 2012b) and makes it clear that other factors besides DNA methylation and 

CpG content regulate CTCF binding. In agreement with this notion, 

'reactivated' CTCF sites identified in methylation-deficient HCT116 cells were 

found to coincide with sites that are bound in one of the 40 other profiled cell 

types (Maurano et al., 2015), rather than constituting a novel binding site 

repertoire. Since more than 90% of CTCF binding sites are shared across cell 

types (Chen et al., 2012), it is not likely that many more sites are restricted by 

DNA methylation in other cell types. It should be noted however, that while we 
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do not observe a major role for DNA methylation in CTCF binding site 

restriction in ES cells, we cannot exclude that CTCF is methylation-sensitive 

at sites which are already bound and unmethylated in WT ES cells. 

Taken together, CTCF binding is restricted by DNA methylation only at a 

subset of sites in ES cells. These sites tend to contain more CpGs both in the 

motif and the flanking regions. The targeted genomic editing approach 

suggested here – modified to account for heterogeneity in methylation levels – 

would provide clear experimental evidence for the contribution of these 

sequence features to CTCF methylation sensitivity. This in turn would facilitate 

the prediction of effects of epigenetic alterations on genome topology and 

gene expression.  
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3.2 Binding site restriction by DNA methylation in 

embryonic stem cells 

 

3.2.1 Abstract 

It is currently unclear to which extent DNA methylation influences TF binding 

in the cellular context. In order to identify methylation-sensitive TFs a priori, 

we compared DNase I hypersensitivity, as an indicator of TF binding, in 

mouse embryonic stem cells with and without DNA methylation. While most 

sites remain unchanged, a subset of sites is indeed only accessible in the 

absence of DNA methylation and is enriched for CpG-containing TF motifs, 

most prominently of NRF1. This TF occupies several thousand additional sites 

in the unmethylated genome, resulting in increased transcription. Restoring de 

novo methyltransferase activity initiates remethylation at these sites and 

outcompetes NRF1 binding. Even strong overexpression of NRF1 is unable to 

prompt binding at methylated regions. Together, this suggests that binding of 

methylation-sensitive TFs relies on additional determinants to induce local 

hypomethylation. In support of this model, removal of neighbouring motifs in 

cis or of a TF in trans causes local hypermethylation and subsequent loss of 

NRF1 binding. This competition between DNA methylation and TFs reveals a 

case of cooperativity between TFs that acts indirectly via DNA methylation. 

Methylation removal by methylation-insensitive factors enables occupancy of 

methylation-sensitive factors, a principle that rationalises hypomethylation of 

regulatory regions. 

 

 

3.2.2 Published manuscript 
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Competition between DNA methylation and 
transcription factors determines binding of NRF1
Silvia Domcke1,2*, Anaïs Flore Bardet1*, Paul Adrian Ginno1, Dominik Hartl1,2, Lukas Burger1,3 & Dirk Schübeler1,2

Eukaryotic transcription factors (TFs) are key determinants of 
gene activity, yet they bind only a fraction of their corresponding 
DNA sequence motifs in any given cell type1. Chromatin has the 
potential to restrict accessibility of binding sites; however, in 
which context chromatin states are instructive for TF binding 
remains mainly unknown1,2. To explore the contribution of DNA 
methylation to constrained TF binding, we mapped DNase-I-
hypersensitive sites in murine stem cells in the presence and absence 
of DNA methylation. Methylation-restricted sites are enriched 
for TF motifs containing CpGs, especially for those of NRF1. In 
fact, the TF NRF1 occupies several thousand additional sites in 
the unmethylated genome, resulting in increased transcription. 
Restoring de novo methyltransferase activity initiates remethylation 
at these sites and outcompetes NRF1 binding. This suggests that 
binding of DNA-methylation-sensitive TFs relies on additional 
determinants to induce local hypomethylation. In support of this 
model, removal of neighbouring motifs in cis or of a TF in trans 
causes local hypermethylation and subsequent loss of NRF1 binding. 
This competition between DNA methylation and TFs in vivo reveals 
a case of cooperativity between TFs that acts indirectly via DNA 
methylation. Methylation removal by methylation-insensitive 
factors enables occupancy of methylation-sensitive factors, a 
principle that rationalizes hypomethylation of regulatory regions.

Methylation of DNA at cytosines within CpG dinucleotides has the 
potential to block TF binding either directly through interference with 
base recognition or indirectly through recruitment of methylation- 
specific binding proteins3. DNA methylation has been reported to 
block binding of some TFs in vitro3. However, this does not necessarily  
translate to a similar effect in vivo4,5. In addition, sensitivity in vivo 
can be highly locus-specific as observed for the TF CTCF, which only 
responds to methylation at a very limited set of chromosomal loci6–9. 
Intriguingly, some TFs such as REST and CTCF have been shown to 
bind methylated regions and trigger their demethylation8,10,11. Thus, 
although it is established that active regulatory regions are bound by 
TFs and generally display low levels of DNA methylation8,12, it remains 
contentious whether this relationship reflects the cause or consequence 
of altered TF binding13,14. Determining factor-specific sensitivity of 
binding events in a cellular context is therefore imperative for under-
standing how DNA methylation affects gene expression and to func-
tionally interpret epigenomic maps. To identify TFs that are restricted 
in their binding by DNA methylation in vivo, we mapped DNase-I-
hypersensitive sites (DHSs), an indicator of TF binding, in wild-type 
murine embryonic stem (ES) cells and upon global removal of DNA 
methylation (Fig. 1a).

DNA methylation is essential for mouse development and sur-
vival of most tested mammalian cell types, with the exception of 
murine ES cells15. Therefore, these cells provide an opportunity to 
compare TF binding in the presence and absence of DNA methyla-
tion. To reduce genetic or clonal variability we used CRISPR/Cas9 to 
generate genetic deletions of both de novo DNA methyltransferases  

Dnmt3a and Dnmt3b and the maintenance enzyme Dnmt1 in the 
ES cell line 159 (see Methods) for which we previously performed 
base-pair-resolution methylation profiling8 (Extended Data Fig. 1a). 

1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland. 2University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland. 3Swiss 
Institute of Bioinformatics, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.
*These authors contributed equally to this work.

Figure 1 | DHSs that form upon removal of DNA methylation are 
enriched for specific TF motifs. a, Wild-type (WT) methylation, and 
wild-type and TKO DNase-seq signal at a representative genomic region 
(chr17: 25,920,000–25,972,499). b, DNase-seq signal at all DHSs in wild 
type and TKO. Black dots mark DHSs significantly enriched in wild type 
(n = 2,837) or TKO (n = 1,543). PCC, Pearson correlation coefficient.  
c, Average wild-type methylation of CpGs within all wild-type, wild-type-
specific (the subset of wild-type DHSs that are not present in TKO DHSs) 
or TKO-specific DHSs. Boxplots show median (white line), 25th and 75th 
percentiles (boundaries), minimum and maximum (whiskers). d, Motif 
occurrences in TKO-specific DHSs compared to all wild-type DHSs. 
Blue colouring illustrates motif CpG content. e, Representative genomic 
regions showing shared (left, chr6: 31,189,871–31,190,470) and TKO-
specific (right, chr1: 51,483,272–51,483,871, chr6: 48,413,300–48,413,899 
and chr10: 62,623,300–62,623,899) DHS footprints. Motif locations are 
highlighted in grey.
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The resulting triple knockout (TKO) cells showed no detectable DNA 
methylation by several measures (Extended Data Fig. 1b, c) and lim-
ited changes in global expression patterns, as previously reported for 
a TKO cell line generated by classical mouse genetics15,16 (Extended 
Data Fig. 1d, e).

Hypersensitivity to digestion by DNase I is an indicator of TF binding  
that does not require a priori knowledge of the TFs involved17. We 
mapped DHSs with high coverage in both wild-type cells and the 
isogenic TKO cells and observed that the vast majority of DHSs remain 
unchanged (Fig. 1a, b, Extended Data Fig. 2a–d and Extended Data 
Table 1). This suggests that the binding patterns of most TFs expressed 
in murine ES cells are not altered upon global removal of DNA  
methylation. In addition, we observed a fraction of DHSs that are spe-
cific to each cell state in a reproducible manner (Fig. 1b and Extended 
Data Fig. 2e). These DHSs are preferentially located distal to tran-
scriptional start sites (TSS) and within CpG-poor regions (Extended 
Data Fig. 2f, g). In contrast to wild-type-specific DHSs (the subset of  
wild-type DHSs that are not present in TKO DHSs), newly formed 
sites in the TKO cell line lie within regions that were methylated in the 
wild-type cells, indicating that they could be methylation-dependent 
(Fig. 1c and Extended Data Fig. 2h).

Searching for known TF motifs and hexamer sequences enriched 
in TKO-specific DHSs resulted in a small number of candidate  

methylation-sensitive TFs including NRF1, GABPA and MYCN  
(Fig. 1d, Extended Data Fig. 3a and Supplementary Table 1). These 
factors are expressed at similar levels in both cell lines and probably  
form TKO-specific DNase I footprints (Fig. 1d, e and Extended Data 
Fig. 3b, c). In contrast, motifs enriched in wild-type-specific DHSs do 
not reveal footprints limited to this cell state (Fig. 1b and Extended 
Data Fig. 3c, d). Notably, TKO-specific DHSs are enriched for motifs 
containing CpG dinucleotides, even though they reside within 
regions that are generally CpG-poor (Fig. 1d, Extended Data Fig. 2g 
and Supplementary Table 1). The most prominently enriched motif 
in TKO-specific DHSs contains two CpGs, consistent with a direct 
inhibition by DNA methylation, and belongs to the highly conserved 
TF nuclear respiratory factor 1 (NRF1)18 (Fig. 1d, e). Previous in vitro 
experiments with NRF1 suggested that DNA methylation blocks bind-
ing19,20, but also that it preferentially binds to methylated sequences21. 
Given its strong signal and because only one factor has been reported 
to bind this motif, we focused on further analysis of NRF1.

Chromatin immunoprecipitation of NRF1 followed by sequencing 
(ChIP-seq) revealed that more than 7,000 sites, in addition to those 
already occupied in wild-type cells, show reproducible increased NRF1 
binding in the absence of DNA methylation (Fig. 2a, b, Extended 
Data Fig. 4a–d and Extended Data Table 1). Newly bound NRF1 sites 
correlate with TKO-specific DHSs, validating the comparative DHS 

Figure 2 | NRF1 binds several thousand new sites in the unmethylated 
genome. a, Wild-type methylation, and wild-type and TKO DNase-seq, 
NRF1 ChIP-seq, H3K27ac ChIP-seq and RNA-seq signal at a TKO-specific 
distal genomic region (chr4: 99,235,857–99,236,456). The NRF1 motif 
location is highlighted in grey. b, Wild-type and TKO NRF1 ChIP-seq 
signal at all peak regions. The thick black dot represents the region in a. 
c, Changes in NRF1 binding and DNase-seq signal between wild type 
and TKO at all NRF1 peak regions. d, Distance of all wild-type (top; 
n = 8,835) or TKO-specific (bottom; n = 7,205) NRF1 peaks to the nearest 
transcriptional start site (TSS). Cutoff between proximal and distal sites  
is 2 kb. e, Average sequence conservation (PhastCons score) of all  

wild-type or TKO-specific NRF1 peak regions. Boxplots show median 
(white line), 25th and 75th percentiles (boundaries), minimum and 
maximum (whiskers). f, Expression change (in reads per kilobase per 
million (RPKM)) of genes closest to shared and TKO-specific NRF1 peaks.  
P value from a Wilcoxon test. g, Change in NRF1 binding between TKO 
and wild-type at all peak regions grouped according to their average 
methylation. Blue boxes represent changes within entire peak regions, grey 
boxes only those within NRF1 motifs. n > 800 in all groups. h, Wild-type 
methylation, and wild-type and TKO NRF1 ChIP-seq signal at a genomic 
region with no additional CpGs within 1.8 kb around the motif (grey line).

b 15

0

5

10

TK
O

 N
R

F1
 (l

og
2)

0 15105

WT NRF1 (log2)

PCC = 0.77 c PCC = 0.525

0

–5

TK
O

 / 
W

T 
D

N
as

e 
(lo

g 2)

1050–5

TKO/WT NRF1 (log2)

a

d

f

WT NRF1

Distance peak to TSS

TKO-specific
NRF1

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y Proximal Distal

0

200

400

0

200

400

TKO

Proximal Distal

TKOWT

3

0

1

2

–1

–2

–3

TK
O

/W
T 

R
N

A
 (l

og
2)

P < 10–76

0.3

TKO
DNase

40

WT
NRF1

WT CpG
methylation

100%

WT
DNase

0.3

40

TKO
NRF1

4
WT

H3K27ac

4
TKO

H3K27ac

2

WT
RNA

2
TKO
RNA

100 bp

g h10

–5

0

5

TK
O

 / 
W

T 
N

R
F1

 (l
og

2)

0–20 20–40 40–60 60–80 80–100

WT CpG methylation (%)

10

WT NRF1

WT CpG
methylation

100%

1 Kb

10

TKO NRF1

NRF1 peak regions

NRF1 motifs

e 0.8

0

0.4

0.2

0.6

S
eq

ue
nc

e 
co

ns
er

va
tio

n
TK

O-s
pec

ific

NRF1

Sha
re

d N
RF1

TK
O-s

pec
ific

NRF1

W
T N

RF10 10 bp 100 bp 1 kb 10 kb 100 kb 1 Mb 10 Mb

0 10 bp 100 bp 1 kb 10 kb 100 kb 1 Mb 10 Mb

© 2015 Macmillan Publishers Limited. All rights reserved



2 4 / 3 1  D E C E M B E R  2 0 1 5  |  V O L  5 2 8  |  N A T U R E  |  5 7 7

LETTER RESEARCH

approach (Fig. 2a, c). They occur distal to genes (Fig. 2d) in regions of 
low CpG content (Extended Data Fig. 4e) and poor sequence conser-
vation (Fig. 2e), suggesting that a large fraction could represent non- 
functional sites otherwise blocked by DNA methylation. Nevertheless, 
increase of NRF1 binding is matched by a significant increase in expres-
sion of the nearest genes, indicative of an impact on transcription  
(Fig. 2f). Additionally, for some TKO-specific sites, lysine 27 acetylation 
of histone H3, a mark of active regulatory regions, appears and aberrant 
NRF1-dependent transcripts are initiated directly at the binding sites 
(Fig. 2a and Extended Data Fig. 4a, f–j).

TKO-specific NRF1 sites mostly contain a high confidence motif 
with at least one but usually two CpGs (Extended Data Fig. 4k and 
Supplementary Table 2). These motifs display intermediate to full 
methylation in wild-type cells, yet increased NRF1 binding in TKO is 
strongest at highly methylated motifs, suggesting that methylation of 
the core motif directly prevents binding in wild-type cells (Fig. 2g and 
Extended Data Fig. 4l). TKO-specific binding of NRF1 is independent 
of the density of methylated CpGs in the surrounding region, strongly 
arguing against an involvement of indirect repression through methyl-
CpG binding-domain proteins22 (Extended Data Fig. 4m–o). This is 
exemplified at a locus that harbours no CpG within 1.8 kb around the 
motif (Fig. 2h); despite this absence of additional CpGs, NRF1 binds 
in a strictly methylation-dependent manner.

In the experiments described so far, ES cells were cultured in the 
presence of serum and LIF, which recapitulates the genome-wide 
methylation observed in the postimplantation epiblast23. Culturing 
in the presence of two kinase inhibitors (2i) is an alternative regime 
that mimics the inner cell mass of the blastocyst and coincides with 
downregulation of the de novo Dnmts24,25. Here it provides the oppor-
tunity to measure NRF1 binding at physiological levels of low methyl-
ation and without genetic alteration of the Dnmt genes. Transferring 
wild-type cells cultured originally in serum to 2i conditions leads to 
increased NRF1 binding at the vast majority of previously identified 
TKO-specific sites (Fig. 3a, b and Extended Data Fig. 5a–c). Similarly, 
this coincides with hypomethylation of these sites in 2i conditions 
as revealed by whole-genome, as well as high-coverage amplicon,  
methylation profiling (Fig. 3a and Extended Data Fig. 5d–f). Small 
differences in NRF1 binding between 2i and TKO conditions are readily 
explained by remaining levels of methylation at a subset of sites in 2i 
(Extended Data Fig. 5c, g). These include examples where the motif 
remains methylated and unbound even though the surrounding region 
is demethylated (Extended Data Fig. 5h), providing additional sup-
port for our observation that methylation of the core motif alone is the  
critical determinant of NRF1 binding in vivo.

To test if NRF1 binding to these new sites inhibits their de novo 
methylation, we transferred ES cells cultured in 2i back to medium 
with serum. This leads to transcriptional upregulation of the de novo 
Dnmt genes and genomic remethylation over time25. Profiling of NRF1 
binding, as well as whole-genome and amplicon methylation, revealed 
that the majority of methylation-dependent sites become remethyl-
ated and that NRF1 binding can no longer be detected (Fig. 3a, c and  
Extended Data Fig. 5h–m). This shows that de novo methylation can 
outcompete binding of NRF1, implying that binding and creation of a 
DHS is not sufficient to protect against de novo methylation for this TF.

Although levels of Nrf1 expression remained mostly unchanged 
between the tested conditions (Extended Data Fig. 3b and Extended 
Data Fig. 5a), we assessed if variations in NRF1 protein abundance 
could account for differential occupancy. Therefore we overexpressed 
NRF1 at least tenfold and profiled its genomic binding in wild-type 
cells (Extended Data Fig. 6a). This revealed an increase in binding at 
previously occupied sites but also novel sites (Fig. 3a and Extended 
Data Fig. 6b, c). The latter, however, do not overlap with methylation- 
dependent sites and contain weak NRF1 motifs, reflecting less spe-
cific binding to regions of open chromatin (Fig. 3a and Extended Data  
Fig. 6d, e). This shows that methylation of individual core motifs, and 
not NRF1 protein levels, determines genomic occupancy.

To test if cell-type-specific methylation patterns could similarly 
explain differential binding of NRF1, we differentiated ES cells into 
neuronal progenitors and investigated NRF1 binding. We found 
that the gain of methylation at NRF1 motifs in neuronal progenitors 
coincides with loss of NRF1 binding (Extended Data Fig. 7a–c) and 
matching lower expression of neighbouring genes (Extended Data  
Fig. 7d, e). This tight link between DNA methylation, NRF1 binding 
and transcription holds true beyond the murine system, as seen by 
genomic profiling of NRF1 in human normal breast cells (HMEC) and 
a breast cancer cell line (HCC1954)26 (Extended Data Fig. 7f–i), as well 
as in other cell type comparisons (H1hESC and GM12878)27 (Extended 
Data Fig. 7j–m). Thus, data from different organisms and cellular states 
including cancer may indicate that methylation-dependent binding of 
NRF1 is a general phenomenon that affects gene regulation.

We next sought to test the methylation sensitivity of NRF1 with-
out global reduction of DNA methylation, by using reporter con-
structs inserted into a defined chromosomal locus of ES cells by Cre  
recombinase28. NRF1 sites with 400 bp of their surrounding genomic 
sequence were inserted either unmethylated or premethylated at CpGs 
in vitro (Extended Data Fig. 8a–c). As expected, this revealed reduced 
binding to the premethylated compared to the untreated template 
(Extended Data Fig. 8b). Thus, sensitivity of NRF1 to methylation of the 
underlying motif can be recapitulated in an ectopic site. We previously 
showed that CTCF can bind a motif added to a premethylated reporter 
and cause local reduction of methylation8. When we exchanged the 
CTCF motif with that of NRF1, we did not observe NRF1 binding or 
loss of methylation. Only upon forced demethylation is NRF1 capable 
of binding this minimal sequence context (Fig. 4a). Therefore NRF1 can 
bind its motif autonomously, but only if unmethylated. Genome-wide 
binding and single-locus reporter experiments indicate that NRF1 is 

Figure 3 | De novo methylation outcompetes NRF1 binding. a, Wild-
type methylation, wild-type and TKO DNase-seq, and NRF1 ChIP-seq 
signal in wild-type under different culture regimes, in TKO and in wild-
type cells overexpressing NRF1 at representative genomic regions. Left, 
TKO-specific site (chr12: 82,788,342–82,794,341). Middle, shared site in 
wild-type and TKO, with increased binding upon overexpression (chr5: 
148,104,611–148,105,210). Right, site only bound upon overexpression 
(chr18: 36,030,688–36,036,687). Grey lines indicate the location of the 
NRF1 motif. b, Change of NRF1 ChIP-seq signal between wild-type and 
TKO or 2i culture (after culture with serum) at all NRF1 peaks regions. 
c, Change of NRF1 ChIP-seq signal between TKO and wild-type versus 
between culture with 2i (after culture with serum) and culture with serum 
(after culture with 2i) at all NRF1 peak regions.
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sensitive to DNA methylation of its motif and that it cannot protect it 
from de novo methylation. This leads to the prediction that NRF1 relies 
on other features that keep its motif in an unmethylated state.

As some TFs, such as CTCF, can locally mediate low methylation 
levels8,28,29, we hypothesized that such factors could direct NRF1 
binding in wild-type cells. Consistent with this model, constitutive 
NRF1 binding sites reside in regions that are co-bound by many TFs, 
as reflected by broad DHSs and overlap with existing TF localization 
maps (Extended Data Fig. 9a, b). To experimentally test this hypothesis 
we inserted reporter constructs harbouring an endogenous promoter 
sequence including a NRF1 motif (Extended Data Fig. 9c). Deletion 
of the CTCF and RFX motifs within this construct leads to its hyper-
methylation28 but notably also to decreased NRF1 binding (Fig. 4b). 

This establishes a dependence of NRF1 in cis on motifs of TFs that 
mediate local hypomethylation. To further explore this hierarchical 
model, we assessed whether removal of a demethylating TF affects 
NRF1 binding. We previously showed that REST (also known as 
NSRF) creates regions of low methylation at its binding sites in CpG-
poor regions, which become remethylated when REST is genetically 
removed8,10. Even though REST and NRF1 have not been functionally 
linked, we identified a few sites where NRF1 binds adjacent to REST 
(Extended Data Fig. 9d), enabling us to monitor NRF1 occupancy as a 
function of REST. At sites that occur within CpG-poor low-methylated 
regions, we observe de novo methylation upon deletion of REST that 
extends well into the NRF1 motif and coincides with loss of NRF1 
binding in both cases tested (Fig. 4c). Of note, the absence of REST does 
not affect proximal NRF1 binding within a CpG island, as it remains 
hypomethylated regardless of REST occupancy, possibly because CpG 
islands are bound by additional factors that confer hypomethylation29 
(Fig. 4c). Thus, NRF1 binding in vivo critically relies on the local DNA 
sequence context in cis and TFs in trans to ensure a hypomethylated 
binding site (Fig. 4d).

This study proposes several TFs that might be restricted by DNA 
methylation but also suggests that the majority of factors expressed in 
mouse ES cells do not respond to global loss of DNA methylation. A 
critical question remains whether differentiated cells, for which DNA 
methylation has been shown to be essential, express a larger set of  
methylation-sensitive factors.

Our study of NRF1 binding in different and dynamic methylomes 
establishes an example of genome-wide, methylation-sensitive TF 
binding in vivo. Combined with site-specific genetic and epigenetic 
perturbation, it provides a proof of principle for a model whereby DNA 
methylation can guide TF binding in a highly factor- and context- 
specific manner (Fig. 4d).

NRF1 has previously been proposed to be a pioneer factor based 
on its ability to form a DHS de novo30. We show that NRF1 only 
bears canonical hallmarks of a pioneer factor2 in the absence of DNA  
methylation, where it indeed can bind autonomously and form a DHS. 
In the presence of DNA methylation, it behaves as a ‘settler’ TF, as it 
requires the assistance of superordinate TFs to ensure hypomethylation 
of its motif. This suggests that the ability to mediate a hypomethylated 
state upon binding could be an additional relevant characteristic for a 
pioneer TF in vertebrates. Notably, we show that NRF1 binding to an 
unmethylated site does not protect against de novo methylation. This 
provides clear evidence for competition between TFs and DNMTs, 
and argues that active demethylation and/or efficient obstruction of 
de novo methylation is required not only for the establishment of NRF1 
binding, but also for its maintenance. This exemplifies the idea that 
TF hierarchies can be mediated via a local epigenetic mark—DNA  
methylation removal by methylation-insensitive factors enables occu-
pancy of methylation-sensitive factors in a form of indirect coopera-
tivity that does not require physical interaction between both TFs1. It 
illustrates that TF binding patterns at enhancers and promoters are both 
guided by and actively shape the balance between active demethylation 
and de novo methylation (Fig. 4d). This supports a model in which 
the role of DNA methylation in restricting genomic binding of TFs is 
dependent on the specific factor, the local activity of methylating and 
demethylating enzymes, and the genomic context of individual motif 
occurrences.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The investigators were not blinded to allocation during experiments and outcome 
assessment.
Cell culture. Mouse ES cells HA36CB1/159-2 (denoted hereafter as 159) derived 
from mixed 129-C57Bl/6 background blastocysts22, TC-1 cells and REST knockout 
and corresponding wild-type cells31,32 were cultivated without feeders on 0.2% 
gelatine-coated dishes in DMEM, supplemented with 15% fetal calf serum, 1× 
non-essential amino acids, 2 mM l-glutamine, LIF and 0.001% β-mercaptoethanol 
(37 °C, 7% CO2). Serum-free cultivation was performed in N2B27 medium, sup-
plemented with 1× non-essential amino acids, 2 mM l-glutamine, LIF and 0.001% 
β-mercaptoethanol, as well as MEK inhibitor PD0325901 (1 µM) and GSK3 inhib-
itor CHIR99021 (3 µM), together known as 2i. For switching between culturing 
conditions, cells were cultured for at least three weeks under the new conditions 
before performing downstream experiments. Mouse 159 ES cells were differenti-
ated to neuronal progenitors as previously described33. HMECs were purchased 
from Lonza (CC-2551), cultivated according to the supplier’s instructions and 
collected after two passages. HCC1954 cells were cultured in RPMI 1640 medium 
supplemented with 10% fetal calf serum, 1× nonessential amino acids and 1× 
l-glutamine (37 °C, 5% CO2).
Generation of isogenic DNMT TKO cell lines. Mouse 159 ES cells were  
co-nucleofected with three plasmids expressing mammalian-codon optimized  
Cas9 and sgRNAs targeting the region coding for the active PCQ/N loop in  
Dnmt1, Dnmt3a, and Dnmt3b (parental vector pX330, guide oligo sequences:  
Dnmt1 (CACCTGTGGTGGGCCACCCTGCCA, AAACTGGCAGGGTGG 
CCCACCACA), Dnmt3a  (CACCGACAATGGAGAGGTCATTGC, 
AAACGCAATGACCTCTCCATTGTC), Dnmt3b (CACCCGTTAGAGAG 
ATCATTGCAT, AAACATGCAATGATCTCTCTAACG)). A plasmid conveying 
resistance against puromycin was co-transfected. Puromycin selection (2 µg ml−1) 
was carried out one day after transfection for 48 h. After five days of recovery, indi-
vidual colonies were picked and genotyped by methylation-sensitive HpaII digest, 
using methylation-insensitive MspI digest as control. For clones in which loss 
in methylation was observed, Dnmt genes were sequenced to confirm successful 
targeting of all six alleles. Global 5-methylcytosine and 5-hydroxy-methylcyto-
sine levels in positive TKO clones were measured by Zymo Research (http://www.
zymoresearch.com), using high-pressure liquid chromatography coupled to mass 
spectrometry.
RNA isolation. RNA was isolated with the RNeasy mini kit (Qiagen) with on- 
column DNA digestion. For RNA-seq, two micrograms of total RNA from three 
independent cultures were depleted from ribosomal RNA using the Ribo-Zero 
rRNA removal kit (Epicentre).
DNase footprinting. DNase treatment of wild-type and TKO cells was performed 
essentially as previously described, with some modifications34. Briefly, intact nuclei 
were extracted using 0.03% NP-40 in an isotonic buffer. After NP-40 removal, 
batches of 5 million nuclei were incubated for 4 min at 37 °C with a range of  
DNase I (DPRF, Worthington) concentrations in the presence of Ca2+. The diges-
tion was stopped by addition of EDTA and SDS and the samples were treated with 
proteinase K and RNase A. Phenol-chloroform extracted DNA was separated on 
a 5–30% sucrose gradient by ultracentrifugation for 24 h and fractionated with a 
Gilson fraction collector FC 203B. Fractions were precipitated with ethanol and 
resuspended in TE buffer. Both successful digestion and size separation were  
verified by agarose gel electrophoresis. In addition, qPCR for amplicons within or 
outside known DHSs was used to confirm enrichment of DHSs in DNase-treated 
versus untreated and size-selected versus total DNA (primer sequences available 
upon request). Low-coverage sequencing of a barcoded pool of samples derived 
from different fractions of the sucrose gradient and treated with different DNase 
concentrations was used to select the sample with the highest information con-
tent. Based on this, the fraction of the gradient containing the shortest fragments 
(1–100 bp) was chosen for high-coverage sequencing.
Chromatin immunoprecipitation. Chromatin immunoprecipitation (ChIP) was 
carried out essentially as previously described35, using a monoclonal antibody 
against NRF1 (Abcam, ab55744) and a polyclonal one against H3K27ac (Abcam, 
ab4729). ChIP–qPCRs were performed on at least three independent ChIP repli-
cates according to standard protocols. Primer sequences are available upon request.
Knockdown by siRNA. TKO cells were reverse transfected with four prese-
lected siRNAs targeting Nrf1 (Qiagen, FlexiTube GeneSolution, GS18181) and 
Lipofectamine RNAiMax (Life Technologies) in three biological replicates, using 
the supplier’s positive and negative controls (Qiagen, AllStars Mm Cell Death 
Control siRNA, SI04939025, AllStars Negative Control siRNA, SI03650318). 
To test knockdown efficiency, RNA was isolated after 72 h, reverse transcribed 
(PrimeScript, Takara) and Nrf1 and Gapdh levels were determined according 
to standard protocols using predesigned TaqMan probes (Applied Biosystems, 
4331182 and 4448489). Protein levels were measured by western blot on nuclear 

extracts. The most efficient siRNA targeting Nrf1 (Mm_Nrf1_7 FlexiTube siRNA, 
SI05183738) and the negative control siRNA were used for RNA-seq experiments.
Transient overexpression. For transient overexpression, NRF1 was placed under 
the control of the CAG promoter. Nrf1 cDNA was amplified from a random hex-
amer reverse transcription cDNA library (Superscript III, Invitrogen) generated 
from total RNA extracts and cloned into pL1-CAGGS-bio-MCS-polyA-1L22. 
Primer sequences are available upon request. This plasmid was reverse trans-
fected into mouse 159 ES cells using Lipofectamine 2000 (Invitrogen). ChIP was 
performed 12 h after transfection. Overexpression was verified by western blot 
on nuclear extracts.
Recombinase-mediated cassette exchange. DNA fragments to be inserted into 
the ectopic genomic site in TC-1 cells were amplified from genomic DNA and 
cloned into a plasmid containing a multiple cloning site flanked by two inverted 
L1 Lox sites. We inserted two endogenous NRF1 binding sites (chr8: 113,271,870–
113,272,282 and chr8: 123,020,293–123,020,670 for Extended Data Fig. 8) as well as 
part of the Mrap promoter (chr16: 90,738,245–90,738,944 for Fig. 4a), into which 
we integrated an NRF1 motif with Quickchange PCR mutagenesis by replacing the 
T at position chr16: 90,738,825 with CATG. Primer sequences are available upon 
request. Both unmethylated plasmids and plasmids that were in vitro methylated 
with M.SssI (NEB) were used for the recombinase-mediated cassette exchange 
reaction36. Complete in vitro methylation of the plasmids was confirmed by diges-
tion with HpaII/MspI. Recombinase-mediated cassette exchange was performed 
in TC-1 ES cells as previously described28,35. Single clones were picked 12 days 
after nucleofection and tested for successful insertion events by PCR. To remove 
methylation after insertion, clones were treated with 25 nM 5-Aza-2′-deoxycytidine 
(Sigma) for 4 days. For analysis of wild-type and mutated fragments of the 
Gtf2a1l promoter, we used previously described clones that were generated in the  
same way28.
Targeted amplicon bisulfite sequencing. For high coverage amplicon bisulfite 
sequencing of NRF1 binding sites target regions containing the highest confi-
dence NRF1 motif (CGCATGCG) were selected based on high NRF1 ChIP 
enrichments in the TKO cell line, absence of enrichment in the wild-type and 
wild-type methylation levels of at least 80%. Primers for 200–400 bp ampli-
cons were designed using our AmpliconBiSeq R package (https://github.com/
BIMSBbioinfo/AmpliconBiSeq) and 56 pairs were randomly selected from this 
set. In addition, primers for 6 NRF1 motifs that were unbound in the TKO cell line,  
9 unmethylated regions (UMRs), 9 fully methylated regions (FMRs), 9 consti-
tutive REST/CTCF LMRs and T7/lambda were included as controls, resulting 
in 96 primer pairs in total (Supplementary Table 3). Primers were commercially 
synthesized in a 96-well plate format (Microsynth). Genomic DNA was isolated 
at the same time point as collection for ChIP. Bisulfite conversion was performed 
on 2 µg of the RNaseA-treated DNA mixed with 3.2 pM M.SssI methylated T7 and 
unmethylated lambda DNA as conversion controls (EpiTect Bisulfite kit, Qiagen). 
Bisulfite-converted DNA was amplified in a 96-well format with the designed  
specific primers using the following cycling conditions: 20 touch-down cycles from  
55 to 50 °C with 30 s at 95 °C, 30 s at 55/50 °C and 30 s at 72 °C, followed by 36 cycles 
of 30 s at 95 °C, 30 s at 50 °C and 30 s at 72 °C and a final 5 min extension step at 
72 °C. Then 5 µl of each individual PCR reaction were combined and the pool 
was size-selected using Agencourt AMPure XP beads (Beckman Coulter) before 
library preparation. Methylation profiling for insertions as well as REST motif- 
containing LMRs/UMR was performed with the same settings (genomic coordi-
nates and primers in Supplementary Table 3).
Library preparation and next-generation sequencing. DNase-seq libraries 
were prepared essentially according to standard Illumina protocols, using 40 ng 
of the precipitated fractions of the sucrose gradient as starting material. To reduce 
amplification bias, end-repaired, A-tailed and adaptor ligated DNA was amplified 
in 6 cycles of PCR with KAPA HiFi Hot Start polymerase. Adaptor dimers were 
subsequently removed with Agencourt AMPure XP beads (Beckman Coulter). 
For sequencing of total RNA, strand-specific RNA-seq libraries were prepared 
from rRNA depleted samples using the ScriptSeq v2 protocol (Epicentre). Libraries 
for ChIP-seq were prepared according to standard Illumina library preparation 
protocols, with matching input sequenced for each IP. Twelve cycles of PCR (NEB 
Q5 Hot Start HiFi PCR) were performed on end-repaired, A-tailed and adaptor- 
ligated DNA before gel size-selection. Libraries for whole genome bisulfite sequenc-
ing were prepared essentially as previously described8. Briefly, 5 µg of sonicated 
genomic DNA were end repaired and 3′-end adenylated using the Illumina TruSeq 
DNA LT Sample Preparation kit (Illumina 15025064). Paired-end adapters were 
ligated to the DNA fragments and adaptor-ligated DNA was purified by 2% agarose 
gel electrophoresis. The gel-purified DNA was converted with the EpiTect bisulfite 
kit (Qiagen). Converted libraries were enriched by 10 cycles of PCR using PfuTurbo 
Cx Hotstart DNA Polymerase (Agilent) and purified using AMPure XP beads. 
For amplicon bisulfite sequencing, libraries of purified PCR pools were prepared 
according to standard Illumina library preparation protocols using 12 cycles of 
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PCR (NEB Q5 Hot Start HiFi PCR). Quality of the libraries and size distribution 
was assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies). For RNA-
seq, DNase-seq benchmarking, ChIP-seq and amplicon bisulfite sequencing, three 
to six samples with different barcodes were mixed at equimolar ratios per pool. 
Sequencing was performed on an Illumina HiSeq 2500 machine (DNase-seq, RNA-
seq, ChIP-seq: 50 bp read length, single-end; whole-genome bisulfite sequencing: 
100 bp read length, paired end) or a MiSeq machine (DNase-seq benchmarking: 
25 bp read length, paired end; amplicon bisulfite sequencing: 250 bp read length, 
paired end) according to Illumina standards.
Sequencing data processing. RNA-seq reads were mapped to the mouse 
reference transcriptome (NCBIM37.67) using TopHat37 version 1.3.1 with  
parameter–no-novel-juncs. DNase-seq reads were trimmed for Illumina adaptors. 
DNase-seq and ChIP-seq reads were mapped to the mouse reference genome (mm9 
only chromosomes 1 to 19, X, Y and M) or human reference genome (hg19 only 
chromosomes 1 to 22, X, Y and M) using Bowtie38 version 1.0.0 with parameters 
-v 3 -m 1–best–strata. Whole-genome Bis-seq reads were processed with QuasR39 
and positions covered by at least 10 reads were used. Amplicon bisulfite sequencing 
samples were analysed with the AmpliconBiSeq R package (https://github.com/
BIMSBbioinfo/AmpliconBiSeq). Amplicons with at least 100× (TKO-specific NRF1 
sites) or 30× (insertions) coverage were selected for downstream analysis.
Visualization of read densities. We used the first bp (5′-end) of the DNase-seq 
reads (DNase I cut site), the ChIP-seq reads extended to 200 bp (average estimated 
fragment length) and split RNA-seq reads to calculate the read density normal-
ized to one million reads in the library for each genomic position (BigWig files). 
Screenshots of genomic regions were taken using the UCSC genome browser40.
Identification of enriched regions. DHSs were identified as regions with enriched 
DNase I cuts using a sliding window approach. The mean read density for each 
region of 51 bp was calculated by steps of 10 bp within mappable regions and  
outside ENCODE blacklisted regions27. Regions with a mean density of 0.001 
(about 10 DNase I cuts) and at least 10 bp covered were merged and kept if their 
length was at least 100 bp. Enriched ChIP-seq regions over corresponding input 
were identified using the peak calling software Peakzilla41 with default parameters.
Correlation of read counts. We used the first bp (5′-end) of the DNase-seq reads 
(DNase I cut site), the ChIP-seq reads extended to 200 bp (average estimated frag-
ment length) and split RNA-seq reads to calculate raw read counts for regions of 
interest (merged DNase-seq or ChIP-seq enriched regions or genes). The R pack-
age DESeq42 was used to normalize the raw read counts and identify differential 
regions using a fold change threshold of 2 and an adjusted P value threshold of 
10−3 for DNase-seq and ChIP-seq regions and 10−5 for RNA-seq data sets. We 
generated scatterplots and calculated Pearson correlation coefficients (PCC) from 
the normalized read counts using R.
Functional analyses. Germline-specific imprinted regions were used from ref. 43. 
Peaks were assigned to their closest gene transcriptional start site (TSS) using the 
mouse reference transcriptome (NCBIM37.67) and human reference transcrip-
tome (GRCh37.71). The conservation rate of regions was calculated using the 
PhastCons 11 way placental mammals44.
Motif-enrichment analysis. We searched DHS regions for known motifs from 
JASPAR45, ref. 46 and UniPROBE47 using MAST48 (from the MEME suite 
programs version 4.1.1) with a P value threshold of 2.44 × 10−4 ((0.25)6) (see 
Supplementary Table 1). The statistical significance of the differential motif enrich-
ment was assessed by a hypergeometric P value.
Published data sets. RNA-seq data sets in J1 mouse ES cells were obtained from 
GEO with the accession numbers GSM727427 and GSM727428 (ref. 16), in mouse 
ES cells cultured in serum from GSM590126, GSM758167 and GSM758168  
(ref. 49), and 2i from GSM758168, GSM590128 and GSM590129 (ref. 49), in neu-
ronal progenitors from GSM778489 and GSM778490 (ref. 50), in HMEC cells from 
GSM721141 (ref. 26), in HCC1954 cells from GSM721140 (ref. 26), in h1hESC 
from GSM758566 (ref. 51) and in GM12878 from GSM758559 (ref. 51). DNase-
seq data sets in mouse ES cells were obtained from GSM1014159 (ref. 51). Bis-seq 

data sets in mouse ES cells were obtained from GSM748786 (ref. 8), in neuronal 
progenitors from GSM748788 (ref. 8), in HMEC cells from GSM721195 (ref. 26), 
in HCC1954 cells from GSM721194 (ref. 26), in H1-hESC from GSM1002649 
(ref. 27) and in GM12878 from GSM1002650 (ref. 27). ChIP-seq data sets were 
obtained for NRF1 in H1-hESC from GSM935308 (ref. 27) and in GM12878 from 
GSM935309 (ref. 27), in mouse ES cells for MeCP2 from GSM972976 (ref. 22), 
for CTCF from GSM747534 (ref. 8), for REST from GSM671094 (ref. 52), for 
ZFX from GSM288352 (ref. 53), for KLF4 from GSM288354 (ref. 53), for ESRRB 
from GSM288355 (ref. 53), for cMYC from GSM288356 (ref. 53), for nMYC 
from GSM288357 (ref. 53), for OCT4 from GSM307137 (ref. 54), for SOX2 from 
GSM307138 (ref. 54) and for NANOG from GSM307141 (ref. 54).
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Extended Data Figure 1 | Characterization of an isogenic DNMT TKO 
cell line created with CRISPR/Cas9. a, Frameshift deletions (brown) 
introduced at the active PCQ/N loops of the three DNA methyltransferases 
by CRISPR/Cas9 genome editing. b, Levels of 5-methyl-C and 5-hydroxy-
methyl-C in the wild-type, isogenic (mouse ES cell line 159) and 
traditional (J1) TKO cell lines as determined by mass spectrometry.  
c, Average CpG methylation in wild-type and TKO cell lines determined 
by whole-genome bisulfite sequencing. Methylation in the TKO cell line 
is comparable to background levels represented by the methylation in 
chromosome M. d, Gene expression levels (RPKM) in isogenic wild type 
and TKO (159). Black dots represent significantly differentially expressed 

genes in wild type or TKO, with expected unpregulation of germline 
genes16. The Dnmt genes are among the most downregulated genes 
(purple), while the majority of genes that reside within imprinted domains 
are upregulated roughly twofold (orange). Prominent marker genes of 
ES cells (Oct4, Sox2 and Nanog, blue) remain unaltered. e, Hierarchical 
clustering of gene expression correlations for three independent 159 ES 
cell line wild-type and TKO replicates, and published J1 wild-type and 
TKO RNA-seq samples16. Overall, gene expression clusters by strain rather 
than presence of DNA methylation. This reflects the strong influence of 
genetic background on the global gene expression program and supports 
our approach of focusing further analysis on the isogenic TKO.
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Extended Data Figure 2 | Characteristics of DNase-hypersensitive sites.  
a, DNase-seq signal in our 159 ES cell line (wild-type) and an ENCODE 
WW6 ES cell (wild-type) DNase-seq sample27 using a tiling window 
(500 bp) over the whole genome in mappable regions not blacklisted by 
ENCODE, illustrating that our protocol for genome-wide detection of 
DHSs matches available data sets in mouse ES cells. PCC was calculated 
on all DHSs. b, c, DNase-seq signal and PCC at all DHSs for independent 
biological replicates of wild type (b) and TKO (c). d, Wild-type 
methylation and replicates for DNase-seq signal in the 159 ES cell line 
(wild-type and TKO) and ENCODE WW6 (wild-type) at the genomic 
region from Fig. 1a (chr17: 25,920,000–25,972,499), illustrating that 
most DHSs remain unchanged upon removal of DNA methylation, in 
agreement with the overall similarity in gene expression. e, Change in 

DNase-seq signal and PCC between wild type and TKO using different 
replicate samples, illustrating a high reproducibility of quantitative DHS 
changes between wild type and TKO. f, Distance of all wild-type,  
wild-type-specific or TKO-specific DHSs from closest gene transcriptional 
start site (TSS). Proximal and distal separation is at 2 kb. g, Change in 
DNase-seq signal between TKO and wild-type as a function of CpG 
content for all wild-type and TKO DHSs, illustrating that most changes 
occur in CpG-poor regions. h, Change in DNase-seq signal between 
TKO and wild-type versus average CpG methylation of all wild-type and 
TKO DHSs matching Fig. 1c, showing that TKO-specific DHSs (right) 
lie in regions with high methylation in wild type. Black dots represent 
significantly enriched DHSs (see Methods) in wild type (n = 2,837) or 
TKO (n = 1,543) from Fig. 1b.
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Extended Data Figure 3 | Motif enrichment in cell-line-specific DNase-
hypersensitive sites. a, Occurrence of all possible hexamers in TKO-
specific DHSs compared to all wild-type DHSs. Blue colouring illustrates 
hexamer CpG content. Hexamers representing the NRF1 motif are 
highlighted by a circle. Most strongly enriched hexamers are labelled (only 
one of two reverse complements). b, Gene expression levels (RPKM) of 
candidate methylation-sensitive TFs in wild type and TKO indicating that 
differential abundance does not account for DHS formation upon loss of 
DNA methylation. Error bars are standard deviation from three biological 
replicates. c, Footprints of candidate TF motifs enriched in TKO-specific 

(NRF1, MYCN, GABPA) or wild-type-specific (SOX2, TEAD1) DHSs 
shown as metaplot of wild-type (brown) or TKO (red) DNase-seq signal 
for all motifs in all wild-type and TKO (left), TKO-specific (middle) and 
wild-type-specific (right) DHSs. Number of regions is indicated above 
each metaplot. A DNase footprint is apparent at the NRF1 motif and, to 
a lesser extent, at MYCN and GABPA motifs specifically in TKO-specific 
sites in the TKO sample, whereas footprints at SOX2 and TEAD1 motifs 
in wild-type-specific sites are less unique to that cell state. d, Motif 
occurrences in wild-type-specific DHSs compared to all wild-type DHSs. 
Blue colouring illustrates motif CpG content.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Characteristics of NRF1 binding sites.  
a, Wild-type methylation, and wild-type and TKO DNase-seq, NRF1 
ChIP-seq, H3K27ac ChIP-seq and RNA-seq signal also upon Nrf1 and 
mock knockdown in TKO at TKO-specific distal (left, chr4: 99,235,170–
99,237,170; from Fig. 2a) and proximal (middle, chr5: 31,409,700–
31,411,700; right, chrX: 70,341,500–70,343,500) genomic regions. The 
transcripts initiated directly at the NRF1 binding sites in TKO cells are 
specifically reduced upon knockdown of Nrf1, implying that they are 
indeed NRF1-dependent. b, c, NRF1 ChIP-seq signal at all NRF1 peak 
regions for independent biological replicates of wild type (b) and TKO (c).  
d, Change in NRF1 ChIP-seq signal and PCC between wild type and 
TKO using different replicate samples, illustrating a high reproducibility 
of quantitative NRF1 changes between wild type and TKO. e, Change in 
NRF1 ChIP-seq signal between TKO and wild type versus CpG content of 
all wild-type and TKO NRF1 peak regions, illustrating that most changes 
occur in CpG-poor regions. f, RNA expression levels (RPKM) in wild  
type and TKO at all wild-type and TKO NRF1 peak regions, illustrating 
the appearance of a few aberrant TKO-specific transcripts directly at  
NRF1 binding sites. g, H3K27ac ChIP-seq signal in wild type and TKO 
at all wild-type and TKO NRF1 peak regions, illustrating appearance of 
TKO-specific acetylation at a few NRF1 binding sites. h, Knockdown 
efficiency for the pool of three siRNAs and most efficient single siRNA 
targeting Nrf1 in TKO cells. Mean of three independent biological 
replicates normalized to GAPDH; error bars reflect standard deviation. 
Genetic deletion of Nrf1 with CRISPR/Cas9 was lethal (data not shown). 
i, Reduction in nuclear NRF1 levels upon siRNA knockdown with pool of 
three siRNAs and most efficient single siRNA targeting Nrf1 as measured  

by western blot. Blot was cropped for clarity, all samples were loaded on 
the same gel (for uncropped gels see Supplementary Fig. 1). j, Expression 
change (in RPKM) of genes closest to shared and TKO-specific NRF1 
peaks between TKO cells treated either with negative control siRNA or  
the most efficient single siRNA targeting Nrf1, showing highly significant 
loss in expression after knockdown. P values from Wilcoxon tests.  
k, Number of CpGs in NRF1 motifs closest to peak summit in all wild-type 
(top) or TKO-specific (bottom) NRF1 peaks, illustrating that motifs in 
TKO-specific NRF1 peaks contain at least one CpG. l, Change in NRF1 
ChIP-seq signal between TKO and wild type versus average methylation 
in wild type at all NRF1 sites corresponding to Fig. 2g, illustrating that 
increased NRF1 binding in TKO occurs at regions that were methylated 
in wild type. m–o, Average wild-type MeCP2 ChIP-seq signal22 (m), wild-
type methylation in NRF1 peak regions or in NRF1 motifs closest to peak 
summits (n) and change of NRF1 signal between wild type and TKO (o) 
within 500 bp regions around TKO-specific NRF1 peak summits grouped 
according to CpG density (0–5 CpGs, n = 3,680; 5–10 CpGs, n = 2,477; 
>10 CpGs, n = 680). If indirect repression could contribute to differential 
NRF1 binding, we would expect a more pronounced increase of NRF1 
binding at sites with higher CpG density upon demethylation of the 
genome, as methyl-CpG binding domain proteins (MBDs) such as MeCP2 
bind preferentially to regions with a high density of methylated CpGs 
rather than fully methylated regions with low CpG density. TKO-specific 
binding of NRF1 is independent of CpG density and MeCP2 enrichment 
in the methylated genome, strongly arguing against an involvement of 
indirect repression in NRF1 binding site restriction.
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | NRF1 binding in different culture conditions. 
a, Nrf1 gene expression levels (RPKM) in 2i and serum culture 
conditions49. b, NRF1 ChIP-seq signal in wild-type cells adapted to 2i 
culture conditions (after culture with serum) for two biological replicates. 
c, NRF1 ChIP-seq signal in wild-type cells adapted to 2i (after culture with 
serum) and TKO. d, Methylation in wild-type cells cultured in serum and 
2i (after culture with serum) at all NRF1 motifs. e, Methylation in serum 
and 2i (after culture with serum) measured by amplicon Bis-seq for fully 
methylated (FMR), low methylated (LMR), unmethylated (UMR) controls, 
6 unbound NRF1 sites and 56 TKO-specific NRF1 sites. f, Comparison 
and PCC of DNA methylation levels by amplicon Bis-seq and whole-
genome Bis-seq upon culture in 2i (after culture with serum). g, Average 
2i (after culture with serum) methylation in NRF1 peak regions or NRF1 
motifs within peaks versus change in NRF1 signal between TKO and 2i 
(after culture with serum) at all NRF1 peaks, illustrating that reduced 
NRF1 binding in 2i compared to TKO can be explained by residual 
methylation. h, Methylation in wild-type cells cultured in serum, cultured 
in 2i (after culture with serum) and cultured in serum (after culture in 2i) 

and NRF1 ChIP-seq signal in wild type, TKO, cultured in 2i (after culture 
with serum) and cultured in serum (after culture with 2i) at TKO-specific 
regions with higher 2i methylation in NRF1 motifs (grey lines) than 
surrounding region (left, chr10: 66,251,100–66,251,700; middle, chr4: 
15,976,050–15,976,650; right, chr19: 55,833,420–55,834,020). NRF1 is 
unable to bind if CpGs in the motif remain methylated in 2i, even if  
the surrounding region is unmethylated. i, NRF1 ChIP-seq signal in  
wild-type cells adapted back to serum (after culture with 2i) for two 
biological replicates. j, Methylation in wild-type cells cultured in serum 
and adapted back to serum (after culture with 2i) at all NRF1 motifs.  
k, Methylation in wild-type cells cultured in serum and adapted back to 
serum (after culture with 2i) measured by amplicon Bis-seq for FMR,  
LMR and UMR controls, 6 unbound NRF1 sites and 56 TKO-specific 
NRF1 sites. l, NRF1 ChIP-seq signal in wild-type cells adapted back to 
serum (after culture with 2i) and original serum conditions. m, NRF1 
ChIP-seq signal in wild-type cells adapted back to serum (after culture 
with 2i) and adapted to 2i (after culture with serum).
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Extended Data Figure 6 | Overexpression of NRF1 is unable to induce 
binding to TKO-specific sites. a, Transient overexpression of NRF1  
under control of the CMV (middle) or CAG promoter (right, used for 
ChIP experiments) leads to strong increase in nuclear NRF1 protein  
levels compared to endogenous levels (left) as measured by western blot 
(for uncropped gel data see Supplementary Fig. 1). The overexpressed 
protein contains a protein tag accounting for the higher molecular weight. 
b, NRF1 ChIP-seq signal upon transient NRF1 overexpression for two 

biological replicates. c, NRF1 ChIP-seq signal in wild type and upon 
overexpression. d, NRF1 ChIP-seq signal in TKO and overexpression 
conditions only at TKO- and overexpression-specific NRF1 peak regions, 
illustrating that TKO-specific NRF1 sites are distinct from overexpression-
specific sites. e, Change in NRF1 ChIP-seq signal between overexpression 
and wild type versus the score (MAST position P value) of NRF1 motifs 
closest to the summit, illustrating that sites gaining most NRF1 upon 
overexpression do not contain high-confidence motifs.
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Extended Data Figure 7 | Cell-type-specific binding of NRF1 correlates 
with methylation and expression changes. a–e, Comparison of NRF1 
binding in ES and neuronal progenitor cells. Methylation in ES and 
neural progenitors8 at all NRF1 motifs (a), NRF1 ChIP-seq signal in ES 
and neuronal progenitors at all NRF1 peaks (b), neuronal progenitor 
minus ES methylation of peak regions or NRF1 motifs in ES-specific 
(n = 4,934) and shared (n = 4,951) NRF1 peaks (negligible number of 
neuronal-progenitor-specific peaks) (c), expression of the genes50 closest 
to ES-specific and shared NRF1 peaks (d), selection of gene ontology 
(GO) biological functions enriched in genes closest to ES-specific and 
shared NRF1 peaks (e). P values from Wilcoxon tests. f–i, Comparison of 
NRF1 binding in HMEC and HCC1954 cells. Methylation in HMEC and 

HCC195426 at all NRF1 motifs (f), NRF1 ChIP-seq signal in HMEC and 
HCC1954 at all NRF1 peaks (g), HCC1954 minus HMEC methylation of 
peak regions or NRF1 motifs in HMEC-specific (n = 2,726), HCC1954-
specific (n = 2,685) and shared (n = 12,180) NRF1 peaks (h), expression of 
the genes26 closest to HMEC-specific, HCC1954-specific and shared NRF1 
peaks (i). j–m, Comparison of NRF1 binding in H1-hESC and GM12878 
cells. Methylation in H1-hESC and GM1287827 at all NRF1 motifs (j), 
NRF1 ChIP-seq signal in H1-hESC and GM1287827 at all NRF1 peaks (k), 
GM12878 minus H1-hESC methylation of peak regions or NRF1 motifs in 
H1-hESC- (n = 618), GM12878-specific (n = 561) and shared (n = 3,198) 
NRF1 peaks (l), expression of the genes27 closest to H1-hESC-specific, 
GM12878-specific and shared NRF1 peaks (m).
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Extended Data Figure 8 | NRF1 binding to the unmethylated motif can 
be recapitulated at an ectopic site. a, Wild-type and TKO DNase- 
seq and NRF1 ChIP-seq signal for two biological replicates at the 
endogenous counterparts of the inserted regions profiled in Extended 
Data Fig. 8b (left, chr8: 123,019,920–123,021,030) and Extended Data  
Fig. 8c (right, chr8: 113,271,460–113,272,690). b, Methylation (amplicon 
Bis-seq, left, coloured lines indicate position and methylation status 
of CpGs) and NRF1 binding (ChIP-qPCR, right) for an endogenous 
methylation-dependent NRF1 site (chr8: 123,020,293–123,020,670) and 
upon insertion of this region into a defined ectopic genomic locus. The 
position of the two NRF1 motifs containing two CpGs each is indicated  
in blue. The reporter construct was inserted either unmethylated or  
in vitro premethylated with M.SssI. In the untreated construct one motif 
becomes completely methylated upon insertion, whereas the other only 
gains roughly 50% methylation, and NRF1 binding is detected. The pre-
methylated construct maintains at least one CpG with almost complete 
methylation in both core motifs present and shows strongly reduced NRF1 
binding by comparison. Thus, the methylation sensitivity of NRF1 can 

be recapitulated in an ectopic site even in the absence of global changes 
in DNA methylation. As expected, forcing complete demethylation of 
both core motifs in the premethylated insert by treatment of the cells with 
5-aza-2′-deoxycytidine leads to further increased NRF1 binding compared 
to the untreated template. ChIP–qPCR enrichments are the mean of three 
independent biological replicates; error bars reflect standard deviation. 
See Supplementary Table 3 for methylation source data. c, Methylation 
(amplicon Bis-seq, left, coloured lines indicate position and methylation 
status of CpGs) and NRF1 binding (ChIP–qPCR, right) for an endogenous 
methylation-dependent NRF1 site (chr8: 113,271,870–113,272,282) and 
upon insertion of this region into a defined ectopic genomic locus. The 
untreated template gains full methylation in the core motif (blue) and  
does not show detectable NRF1 binding. Forcing complete demethylation  
by treatment with 5-aza-2′-deoxycytidine enables NRF1 to bind the site  
in the ectopic locus. ChIP–qPCR enrichments are mean of three 
independent biological replicates; error bars reflect standard deviation.  
See Supplementary Table 3 for methylation source data.
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Extended Data Figure 9 | Constitutive NRF1 sites are co-bound by  
other TFs. a, Change in NRF1 ChIP-seq signal between TKO and wild 
type versus size of DHSs overlapping NRF1 peak regions, illustrating  
that wild-type NRF1 sites tend to overlap with larger DHSs. b, Overlap  
of wild-type and TKO-specific NRF1 peak regions with published ChIP-
seq peak regions from other TFs expressed in ES cells8,53,54, illustrating 
that wild-type NRF1 sites coincide with other TF binding events.  
P values from hypergeometric tests. c, Wild-type methylation, wild-
type and TKO DNase-seq, and NRF1 and CTCF8 ChIP-seq signal for 

two biological replicates at the endogenous Gtf2a1l promoter (chr17: 
89,067,600–89,068,350). The region used for the insertion experiments 
in Fig. 4b is indicated below. d, Wild-type methylation, wild-type and 
TKO DNase-seq for two biological replicates and NRF1 and REST52 
ChIP-seq signal at adjacent NRF1 and REST binding sites (left, chr15: 
100,703,260–100,704,500; middle, chr2: 180,152,200–180,153,150; right, 
chr2: 118,604,800–118,605,900). Regions profiled with amplicon Bis-seq 
in REST wild-type and REST KO cells in Fig. 4c and the position of the TF 
motifs are indicated below.
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Extended Data Table 1 | Number of raw and mapped reads and enriched regions for all high-throughput sequencing samples
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3.2.3 Addendum 

To assess NRF1-dependence of transcripts arising at TKO-specific NRF1 

sites, we performed CRISPR/Cas9-based targeted mutagenesis of the Nrf1 

gene in ES TKO cells. We obtained 20% cutting efficiency for the best guide 

RNA, when measured on the pool of cells, and genotyped 86 cell clones. 

However from the 21 detected unique insertions/ deletions most were in-frame 

(3 to 36 bp). Thus in spite of isolating 13 lines mutated on both alleles, all of 

these clones harboured at least one apparently functional copy of the gene. 

This led to substantial residual NRF1 levels in TKO clones homozygous for 

CRISPR-induced mutations in the Nrf1 gene (Fig. 3-9). The exclusive 

recovery of mutants that still express a functional protein implies a strong 

negative selection against knockouts and in turn argues that Nrf1 is an 

essential gene in ES cells. Therefore we proceeded with partial siRNA-

mediated knockdown of Nrf1 (see Chapter 3.2.2). 

 

 
Figure 3-9. Residual NRF1 levels in six ES TKO cell lines homozygous for CRISPR-
induced Nrf1 mutations.  
Western Blot was performed on nuclear extracts, using TBP as loading control. NRF1 levels 
in cells containing the wildtype Nrf1 gene are shown as comparison. 
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3.3 Binding site restriction by DNA methylation in 

differentiated cells 

 

3.3.1 Abstract 

DNA methylation is not required for large-scale restriction of TF binding or cell 

survival in mouse ES cells. In contrast, it is essential in differentiated cells. 

This raises the possibility that more TF binding events are affected in these 

cells upon removal of DNA methylation. To test this assumption, we 

generated a differentiated cell type without DNA methylation by inducible 

expression of the neuronal TF Neurogenin2 (NGN2) in Dnmt TKO ES cells. 

The resulting TKO neurons survive for ten days in culture and closely 

resemble their WT counterparts in terms of morphology and gene expression, 

with the exception of upregulated germline-specific genes. Chromatin 

accessibility measured by ATAC-seq is remarkably similar between neurons 

with and without DNA methylation, although a subset of sites is only 

accessible in the TKO. These sites are enriched for different CpG-containing 

TF motifs, including those of HNF6 and NRF1, a methylation-sensitive TF we 

already described in ES cells. In contrast to the limited changes observed for 

chromatin accessibility and gene expression, specific long terminal repeat 

(LTR) retrotransposons, the intracisternal A particles (IAPs), are derepressed 

by several orders of magnitude in TKO neurons. Sequence comparison of 

activated and silent elements of the same IAP subtype reveals that the 

presence and strength of the cAMP-responsive element (CRE motif) within 

the LTR is highly predictive of the level of activation in TKO neurons. We 

suggest that DNA methylation is required to block binding of TFs at the CRE 

motif in neurons and thus prevents the potentially lethal derepression of 

transposable elements. Importantly, the same transposon family is activated 

in methylation-deficient fibroblasts and postnatal mouse cortex. This raises 

the possibility that the mechanisms we describe here are general responses 

to loss of DNA methylation in differentiated cells both in culture and in vivo. 
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3.3.2 Introduction 

Only a small subset of sites (~ 3%) show differential chromatin accessibility, 

an indicator of TF binding, in mouse ES cells upon removal of DNA 

methylation (see Chapter 3.2.2). This finding is not entirely surprising given 

the limited gene expression changes observed in stem cells lacking DNA 

methylation and the fact that these Dnmt TKO ES cells have no proliferation 

or morphology defects (Domcke et al., 2015; Tsumura et al., 2006). Indeed 

since mouse ES cells are isolated from preimplantation blastocysts, whose 

genomes are globally demethylated (Auclair and Weber, 2012), mechanisms 

need to be in place at this developmental stage to ensure cell survival in spite 

of low DNA methylation levels. That said, TKO ES cells are unable to 

differentiate (Jackson et al., 2004; Tsumura et al., 2006) and are the only 

mammalian cell type known to survive without DNA methylation. Deletion of 

Dnmt1 in differentiated cells or even human ES cells, which are thought to 

represent a later stage of development than their murine counterparts (Nichols 

and Smith, 2009), leads to rapid cell death (Chen et al., 2007; Liao et al., 

2015) (Fig. 3-10).  

 

 
Figure 3-10. DNA methylation is essential in differentiated cells. 
Mouse ES cells are able to survive complete loss of DNA methylation by deletion of the three 
Dnmts (1). However, these TKO ES cells are unable to differentiate (2). Deletion of Dnmts in 
differentiated cells leads to cell death (3). To nonetheless study the impact of DNA 
methylation on TF binding in differentiated cells, we attempted to generate a committed cell 
state without DNA methylation by forced and fast neuronal differentiation of TKO ES cells (4). 
This would enable us to compare chromatin accessibility and thus TF binding with WT cells of 
the same developmental stage, before the ensuing cell death. 
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This cell death has been attributed in turn to misregulation of critical 

genes (Jackson-Grusby et al., 2001) or activation of repeats (Walsh et al., 

1998; Yoder et al., 1997) and was linked to the induction of DNA damage 

(Shaknovich et al., 2011) and mitotic catastrophe (Chen et al., 2007). The 

disparate effect of DNA methylation loss in stem cells and differentiated cells 

raises key questions regarding the role of DNA methylation in influencing TF 

binding and development: First, are more TF binding events affected by DNA 

methylation in differentiated cells compared to ES cells? Indeed a different TF 

repertoire is expressed and gene regulatory regions vary in methylation states 

in a tissue-specific manner (Ziller et al., 2013). Second, is differential TF 

binding responsible for the cellular lethality observed in methylation mutants 

or does methylation loss impair cell survival independent of TF methylation 

sensitivity? It has been inherently challenging to study these critical questions, 

for the exact reason that DNMTs are essential in differentiated cells. Here we 

attempt to address these questions by generating a differentiated cell state 

without DNA methylation and comparing expression and genome-wide TF 

binding to the isogenic WT counterpart (Fig. 3-10).  
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3.3.3 Results 

 

3.3.3.1 Differentiated cells lacking DNA methylation 

To study the role of DNA methylation in regulating TF binding in differentiated 

cells, we first sought to generate a differentiated cell state without DNA 

methylation. Although TKO ES cells are reportedly unable to differentiate 

(Jackson et al., 2004; Tsumura et al., 2006), we nevertheless tested the ability 

of our TKO ES cells to form glutamatergic pyramidal neurons. In addition to 

yielding reproducible homogeneous populations, neurons have the advantage 

that they are morphologically distinct and we have previously characterised 

their transcriptome and epigenome in great detail (Mohn et al., 2008; Stadler 

et al., 2011; Tippmann et al., 2012). First we tried an established protocol 

based on retinoic acid treatment of non-adherent cell aggregates that forms 

first neuronal progenitors (NPs) and then terminal neurons (TNs) in the course 

of three weeks (Bibel et al., 2007). TKO ES cells can indeed produce 

embryoid bodies and NPs with this protocol, but they die shortly after 

dissociation of the cell aggregates around day nine and before reaching the 

TN stage (Fig. 3-11a). We reasoned that a protocol that generates neurons 

faster might allow us to test if this lethality is not only dependent on the 

neuronal cell fate but also reflects time in culture following loss of 

pluripotency. Thus we tested if TKO ES cells might be more amenable to the 

rapid and efficient neuronal differentiation induced by ectopic expression of 

the neural TF Neurogenin2 (NGN2), which generates functional glutamatergic 

neurons already five days after induction (Thoma et al., 2012; Zhang et al., 

2013b). Using CRISPR-Cas9 gene editing we made several Dnmt TKO 

clones in an ES cell line containing a stable insertion of Ngn2 under the 

control of pTRE-tight, thus allowing dox-inducible NGN2 expression 

(Fig. 3-11b). The TKO clone with the highest differentiation potential indeed 

adopted neuronal morphology, formed axonal networks similar to the WT and 

survived around nine to ten days before cell death ('TKO neurons') 

(Fig. 3-11c). Absence of DNA methylation in this clone was confirmed by 
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mass spectrometry (Fig. 3-11d). Of note, absolute cell survival time is similar 

for the two tested differentiation methods. However, only the faster NGN2-

expression protocol reaches the neuron stage already within this time span. 

This implies that the time spent in culture rather than the actual cell fate might 

be relevant for cell lethality in differentiated cells lacking DNA methylation. 

 

 
Figure 3-11. Neuronal morphology, genotype and methylation levels of TKO cells. 
a) Non-adherent differentiated TKO cell aggregates generated by LIF withdrawal for four days 
followed by four days of retinoic acid treatment (”neuronal progenitors”, NPs) according to 
Bibel et al., 2007. TKO cells do not show an obvious morphological phenotype compared to 
WT at this stage, although aggregates tend to be somewhat smaller. TKO cells die shortly 
after aggregate dissociation and plating and do not form terminal neurons using this 
differentiation protocol. b) Frameshift deletions (red) introduced by CRISPR/Cas9 genome 
editing at the active PCQ/N loops of the three Dnmt genes in the ES TKO clone with inducible 
Ngn2 expression that showed the highest differentiation potential. For Dnmt3a and Dnmt3b 
only one mutated allele and no WT allele could be detected when sequencing the genotyping 
PCR product, even using high-coverage (> 10,000x) Illumina sequencing. c) Morphology of 
WT and TKO neurons. Both WT and TKO ES cells were differentiated by dox-inducible NGN2 
expression and are shown on day 8 after induction. d) Comparison of levels of methylated 
cytosine (5mC) between WT ES cells and different Dnmt mutants as measured by mass 
spectrometry. Dnmt mutants were generated by traditional mouse genetics (Dnmt1 KO and 
Dnmt3a/b DKO values from Le et al., 2011, Dnmt TKO J1) or CRISPR-Cas9 gene editing 
(Dnmt TKO 3b10 used in Chapter 3.2.2, Dnmt TKO iNgn2 clone used for neuronal 
differentiation with inducible NGN2 expression). 
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3.3.3.2 Limited changes in gene expression in TKO neurons 

Apart from the neuronal morphology, we asked whether the differentiated 

TKOs also resemble neurons in terms of gene expression. We collected RNA 

from several differentiation batches and performed total RNA-seq in four 

replicates. The genes that are most upregulated in TKO neurons compared to 

the ES stage are almost exclusively involved in neuronal functions 

(Fig. 3-12a), confirming that the methylation-deficient differentiated cells we 

generated have indeed key neuronal features. 

 

 
Figure 3-12. Gene expression changes in TKO neurons compared to ES stage and WT 
neurons. 
a) Gene ontology (GO) categories overrepresented among 200 most differentially expressed 
genes between TKO ES and TKO neurons generated by inducible expression of NGN2 (day 
8-9), as measured by RNA-seq. The ten GO categories with the lowest p-value are shown 
(hypergeometric test). b) Exonic gene expression levels (RPKM) in isogenic WT and TKO 
neurons generated by inducible NGN2 expression. Black: differentially expressed genes (at 
least 2-fold change, adjusted p-value < 1e-5). 
 
 

In order to identify methylation-sensitive TF binding events by comparing 

chromatin accessibility between WT and TKO neurons, it is crucial that gene 

expression changes are limited and highly reproducible. Drastic gene 

deregulation would introduce many secondary effects and thus make it 

inherently difficult to identify those accessible sites that derive directly from 

methylation-sensitive binding events. We therefore compared gene 

expression in WT and TKO neurons in more detail. In line with the repressive 

effects of DNA methylation, more genes are upregulated than downregulated 
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in TKO neurons compared to WT (Fig. 3-12b). Gene ontology term analysis 

revealed strong enrichment of gamete-specific genes within the upregulated 

set (Fig. 3-13a,b). The CpG-rich promoters of these genes are unique in that 

they are normally highly methylated in somatic cells (Weber et al., 2007) and 

activation of these germline-specific genes has been previously reported in 

TKO ES cells (Karimi et al., 2011). Indeed we observe activation of the same 

gene class already in our ES and NP TKO cell lines (Fig. 3-13a,b).  

 

 
Figure 3-13. Germline genes deregulated in TKO neurons are already upregulated 
before differentiation. 
a) Hierarchical clustering of 200 most differentially expressed genes across neuronal 
differentiation stages of WT and TKO cells. WT and TKO ES were differentiated either with 
retinoic acid treatment into neuronal progenitors (NP) and terminal neurons (TN, only WT) 
according to Bibel et al., 2007 or directly into neurons by inducible expression of NGN2. 
Regularised-logarithm (rlog) transformation was applied to normalised read counts for all 
samples. The gene cluster that shows most differential expression between the WT and TKO 
neurons generated by inducible expression of NGN2 (green bar) shows upregulation also in 
NP and ES TKO compared to matching WT stages. b) Gene ontology (GO) categories 
overrepresented in the gene cluster that is upregulated in TKO cells across various neuronal 
differentiation stages (annotated by green bar in (a)). The twenty GO categories with the 
lowest p-value are shown (hypergeometric test), revealing many germline-specific genes. 
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Strikingly, we did not detect an enrichment of genes involved in apoptosis 

or cell stress among the upregulated group that could be linked to a global 

genic response and the ensuing cell death. Overall, gene expression changes 

between TKO and WT neurons are remarkably limited, with only 1.7 times as 

many genes upregulated compared to the ES stage. WT and TKO neurons lie 

in close proximity in a principal component analysis of genic RNA-seq 

(Fig. 3-14). In fact, WT inducible-NGN2 neurons resemble the TKO neurons 

more closely than WT neurons generated by the other differentiation protocol 

(Fig. 3-14), although both methods yield the same subtype of glutamatergic 

neurons. Taken together, WT and TKO neurons are very similar in terms of 

morphology and gene expression, implying that these cells can indeed serve 

as a model system to identify methylation-sensitive TF binding in 

differentiated cells. 

 
Figure 3-14. TKO neurons resemble WT neurons in gene expression. 
Principal component analysis of total gene expression across the differentiation stages 
described in Figure 3-13a (colour code), showing three or four biological replicates 
(normalised exonic read counts).  
 
 

3.3.3.3 A subset of sites are only accessible in TKO neurons 

DNase-seq enables measurement of differential TF occupancy at high 

resolution (Domcke et al., 2015; Neph et al., 2012). However, it requires 

millions of cells per condition, which can be challenging to obtain in 

differentiation protocols. ATAC-seq has the advantage that it can be 
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performed on a few thousand cells and the workflow requires substantially 

less time (Buenrostro et al., 2013), but its sensitivity has not been compared 

to DNase-seq in detail. Therefore, we first determined whether these methods 

can be used interchangeably to identify differential TF binding at high 

sensitivity and specificity.  

Accessibility measured by ATAC-seq in WT ES cells is indeed in good 

agreement with DNase-seq (Pearson correlation = 0.83), with high replicate 

reproducibility (Pearson correlation = 0.96) (Fig. 3-15a,b). 

 
Figure 3-15. Comparison of DNase-seq and ATAC-seq in WT ES cells. 
a) Comparison of ATAC-seq and DNase-seq signal in WT ES (mean of two replicates 
normalised to library and region size) at all accessible regions identified with at least one of 
the two methods (n = 267,538). PCC = Pearson correlation coefficient. b) ATAC-seq signal 
(normalised to library and region size) for two biological replicates of WT ES cells at all highly 
accessible regions identified with ATAC-seq (n = 65,564). c) Metaplot of ATAC-seq and 
DNase-seq signal over bound CTCF motifs (called based on CTCF ChIP-seq in WT ES, see 
Chapter 3.1.3; n = 30,422) for long (> 100 bp, dark) and short DNA fragments (<= 100 bp, 
light). In DNase-seq longer fragments are experimentally removed prior to sequencing 
whereas they are still present in ATAC-seq and inform on nucleosome positioning. 
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While ATAC-seq and DNase-seq libraries were sequenced to a similar 

depth (~ 200 mio. reads) it should be noted that more reads fall into the 

genomic background for ATAC-seq compared to the DNase-seq protocol, 

since the latter only sequences the fraction of sequences that correspond to 

TF binding sites in terms of size. Nonetheless, both methods reveal clear 

footprints at TF binding sites (Fig. 3-15c). Sequence bias of the enzymes is 

likely responsible for the different footprint shapes.  

 

 
Figure 3-16. Comparison of ATAC-seq in TKO and WT ES cells as indicator of 
differential TF binding. 
a) Comparison of ATAC-seq signal (normalised to library and region size) for TKO and WT at 
all highly accessible regions identified with ATAC-seq in ES cells (n = 65,564). 
PCC = Pearson correlation coefficient. b) Comparison of changes in ATAC-seq and DNase-
seq between TKO and WT at all accessible regions identified in at least one method and cell 
line (n = 267,538). c) Occurrence of all possible hexamers in the 500 ATAC-seq sites that 
show most accessibility gain in TKO ES over shared sites (abs(log2 fold-change TKO/WT 
ES) < 0.3) (see Methods for details). Hexamers representing the NRF1 motif are coloured in 
red. d) Known TF motifs enriched in TKO-specific ATAC-seq sites in ES cells compared to 
shared sites. Motifs representing the NRF1 motif are coloured in red. P-values are from a 
binomial test. See Methods for details. 
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As with DNase-seq, changes between WT and TKO ES are limited and 

occur to a similar extent in both cell lines (Fig. 3-16a). This differential 

accessibility correlates for the two methods (Fig. 3-16b). Searching for 

hexamer sequences or TF motifs enriched in TKO-specific ATAC-seq sites 

compared to shared sites yielded NRF1 as the top candidate, as we already 

observed with DNase-seq in Chapter 3.2.2 (Fig. 3-16c,d). Taken together, 

these results imply that differential TF binding can be detected with either 

method and the identification of factors is not majorly distorted by the 

sequence or other preferences of the respective enzymes.  

 

 
Figure 3-17. Profiling chromatin accessibility by ATAC-seq in neurons. 
a, b) ATAC-seq signal for two biological replicates of WT (a) or TKO (b) neurons at all highly 
accessible regions in neurons (n = 26,972). PCC = Pearson correlation coefficient. c) 
Fragment size distribution of all sequenced ATAC-seq libraries in neurons (top) or ES cells 
(bottom) showing differential nucleosomal spacing. Dotted grey lines mark summit positions 
of the distribution in ES cells. Ten base pair periodicity is likely due to background cuts of the 
transposase in DNA wrapped around nucleosomes. d) Chromatin accessibility measured by 
ATAC-seq or DNase-seq in WT and TKO neurons and ES cells at a representative genomic 
region (chr19: 27,517,485-33,736,294). 
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Accordingly, we profiled chromatin accessibility in WT and TKO neurons 

by ATAC-seq and called accessible sites (Fig. 3-17a,b). Interestingly, both 

WT and TKO neurons showed a shorter nucleosomal spacing, as has been 

previously observed in neurons (Pearson et al., 1984), and overall fewer 

highly accessible sites than ES cells (26972 vs. 70609; Fig. 3-17c,d). These 

differences could in part be due to the fact that neurons are postmitotic, 

whereas ES cells represent a heterogeneous mixture of cells in different 

stages of the cell cycle.  

 

 
Figure 3-18. Characterisation of TKO-specific ATAC-seq sites in neurons. 
a) ATAC-seq signal in WT and TKO neurons at all 26,972 sites reproducibly accessible in at 
least one of the two cell lines. The mean of two replicates was normalised to peak size and 
across samples with DESeq2. Sites that are differentially accessible (at least twofold change, 
adjusted p-value < 0.05) are marked in black (436 TKO-specific, 18 WT-specific). 
PCC = Pearson correlation coefficient. b) Comparison of CpG density (top), region size 
(middle) and distance to nearest TSS (bottom) for TKO-specific (red, n = 436) and all (grey, 
n = 26,972) ATAC-seq sites identified in neurons. c) Expression change between TKO and 
WT neurons for genes whose TSS is closest to shared or TKO-specific ATAC-seq peaks. P-
value results from a two-sided Mann-Whitney test. 
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Similar to the observation in ES cells, changes between TKO and WT 

neurons were limited but highly reproducible (Fig. 3-18a). As observed in ES, 

TKO-specific sites tend to have lower CpG density, be further away from TSS 

and less broad than shared sites (Fig. 3-18b). This is in line with most 

changes occurring at distal regulatory regions or non-functional sites which 

are methylated and un-occupied in WT conditions. Interestingly however, 

changes are more unidirectional than in ES cells, with the vast majority of 

accessible sites being gained in TKO neurons. This is in line with a repressive 

effect of DNA methylation and in good agreement with the tendency towards 

upregulation in differential gene expression (Fig. 3-12b). The genes closest to 

differentially accessible neuronal sites indeed show a significant increase in 

expression in TKO neurons compared to genes next to constitutively open 

regions (Fig. 3-18c).  

 

3.3.3.4 HNF6 is a candidate methylation-sensitive TF 

Next we sought to identify the TFs responsible for the observed gain in 

accessibility in TKO neurons. To this end, we asked which TF motifs are 

enriched in the TKO-specific ATAC-seq peaks compared to the shared sites. 

The top three most significantly enriched known TF motifs identified by 

homer2 are NRF1, NFY and HNF6 (p-value < 0.01), with several further 

motifs showing slighter yet still significant enrichment (Fig. 3-19a). Unbiased 

enrichment analysis of all possible hexamers revealed that the top enriched 

hexamers can all be assigned to these same three motifs (Fig. 3-19b). 

Importantly, the factors reported to bind to these motifs are expressed at 

similar levels in WT and TKO neurons (Fig. 3-19c). One of the top candidates, 

NRF1, accounted for the majority of TKO-specific sites in our study in ES cells 

and was found to indeed bind in a methylation-sensitive manner there, as 

validated e.g. by ChIP-seq (see Chapter 3.2.2). In contrast to the situation in 

ES cells, differential NRF1 binding is able to explain only a small percentage 

of TKO-specific sites in neurons. The absolute enrichments are low for all 

identified motifs, implying that many TFs contribute slightly to the differences 

in chromatin accessibility. That said, several of the significantly enriched 
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motifs appearing in the neurons besides NRF1 also belong to the most 

enriched motifs in ES cells, such as ARNT/ HIF1A, ETS1 or CRE-like motifs 

(Fig. 3-19a and Domcke et al., 2015).  

 

 
Figure 3-19. Candidate methylation-sensitive TFs in neurons. 
a) Known TF motifs enriched in TKO-specific ATAC-seq sites in neurons compared to shared 
sites. Motifs that are significantly enriched with a p-value of less than 0.01 are marked in red 
and labelled. P-values are from a binomial test. See Methods for details. b) Occurrence of all 
possible hexamers in TKO-specific neuronal ATAC-seq sites compared to shared neuronal 
ATAC-seq sites (see Methods for details). The top enriched hexamers could be manually 
assigned to three TF motifs (blue, red, yellow). c) Change in gene expression levels (RPKM) 
for different isoforms of candidate methylation-sensitive TFs identified in (a) and (b) between 
TKO and WT neurons. d) Change in gene expression levels (RPKM) for different isoforms of 
candidate methylation-sensitive TFs identified in (a) and (b) during neuronal differentiation. e) 
Position-weight matrix for the HNF6 motif variant enriched in TKO-specific ATAC-seq sites in 
neurons. 
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HNF6 (also known as ONECUT1), one of the top candidates in neurons, 

is an especially interesting case. This factor is not expressed in ES cells – and 

accordingly was not among the methylation-sensitive factors identified there – 

but is strongly upregulated in the neuronal lineage (Fig. 3-19d). It is expressed 

upon differentiation in several tissues and is considered a key regulator for 

gene expression in liver, pancreas and the nervous system (Audouard et al., 

2013). Interestingly, the motif enriched in TKO-specific neuron ATAC-seq 

sites is only the second most commonly bound motif for this factor in ChIP-

seq experiments: This particular motif variant contains a prominent CpG 

(Fig. 3-19e), in contrast to the canonical motif found at most HNF6 binding 

sites (Ballester et al., 2014; Wang et al., 2014). Likely with HNF6 we have 

thus identified another methylation-sensitive TF, although this needs to be 

further validated by ChIP-seq in WT and TKO neurons. 

 

3.3.3.5 Specific retrotransposons are strongly activated in TKO neurons 

The chromatin accessibility differences between WT and TKO neurons 

suggest that some TF binding events are restricted by DNA methylation. 

Nevertheless overall changes in chromatin accessibility are rather limited, 

which is in line with the modest gene expression changes, but at odds with 

the ensuing cell death. Of note, while gene expression is remarkably similar, 

unique mapping efficiencies for RNA-seq samples in TKO neurons were 

drastically lower than in WT (0.56 vs. 0.85), since many reads aligned to 

multiple regions in the genome. Given this observation and the known 

importance of DNA methylation for silencing repeats (Walsh et al., 1998), we 

analysed non-genic transcripts from repetitive regions of the genome. To this 

end, we re-sequenced the RNA-seq samples using 100 bp paired-end reads, 

which increased unique mapping efficiency, especially for the TKO sample 

(0.68 vs. 0.88). We observed a striking deregulation of repetitive elements in 

TKO neurons (Fig. 3-20a), especially of the intracisternal A particles (IAPs) 

(Fig. 3-20b,c). An estimated 15% of all RNA transcripts within TKO neurons 

stems from this repeat type. This is in line with a landmark study reporting 

strong IAP derepression in DNMT1-deficient embryos (Walsh et al., 1998). A 
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recent paper argued that the strong activation in Dnmt1 -/- embryos is the 

result of UHRF1 binding hemimethylated DNA and thus impeding SETDB1 in 

setting of H3K9me3 (Sharif et al., 2016). Of note, this is unlikely to be the 

case here since TKO neurons are generated from stable TKO ES cells, which 

do not contain any hemimethylated DNA. 

 

 
Figure 3-20. Strong activation of IAP elements in TKO neurons. 
a, b) Ratio of 100 bp paired-end RNA-seq reads mapping to repeats over genes (a) or IAP 
elements over all repetitive elements as annotated by RepeatMasker (b). Reads mapping at 
multiple locations were randomly assigned to one position. Error bars represent standard 
deviation of three biological replicates. c) Comparison of 100 bp paired-end RNA-seq reads 
uniquely mapping to IAP elements in WT and TKO neurons. The mean read count of three 
biological replicates was normalised to element and library size. 
 
 

IAPs belong to the evolutionarily youngest family of ERV-K endogenous 

retroviruses and are the most active repeat type in rodents (Maksakova et al., 

2006). Transcription starts within the long terminal repeats (LTRs), which flank 

internal viral genes or occur as solo LTRs. In addition to being transcribed 

themselves, these elements have also been reported to be able to drive 

strong overexpression of downstream host genes by forming chimeric 

transcripts (Karimi et al., 2011), as we also observe here (Fig. 3-21a,b).  
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Figure 3-21. Gene expression changes next to activated IAPLTRs in TKO neurons. 
a) Example of a gene that is activated in TKO neurons and lies immediately downstream of a 
transcribed IAP element. Only uniquely mapping 100 bp paired-end RNA-seq reads are 
shown. b) Comparison of expression changes in TKO neurons and ESET KO brain samples 
versus matching WT at genes that were previously found to form chimeric transcripts with 
IAPs (Tan et al., 2012). Expression in neurons was measured with RNA-seq and in brain 
tissue by microarray (data from Tan et al., 2012). 
 
 
3.3.3.6 Comparison of repeat activation with other chromatin mutants 

Silencing of ERV-K elements has been attributed to both DNA methylation 

and H3K9me3 pathways (Rowe and Trono, 2011). We wondered how the 

derepression we observe quantitatively compares to previously published 

datasets in mutants for these pathways. To this end, we compared total RNA-

seq reads from repetitive elements across different samples, allowing for 

multiple mappers and collapsing reads to family level (see Methods for 

details) (Fig. 3-22).  
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Figure 3-22. Comparison of repeat activation across mutants in the DNA methylation 
or H3K9me3 pathway. 
Hierarchical clustering of expression change in all repeat families for different chromatin 
mutants compared to the matching WT. Dnmt TKO cells at various differentiation stages 
(underlaid with light grey boxes) were compared to available published data sets in other cell 
lines or tissues deficient in the DNA methylation (purple) or H3K9me3 (green) pathways (see 
Methods for details and sources of published data sets). The ERV-K family (arrow) contains 
the IAP elements. MEF = mouse embryonic fibroblast, NPC = neural precursor cell. 
 
 

We do not observe strong upregulation either in methylation-deficient 

stem cells or mutants of the H3K9me3 pathway in differentiated cells. In 

contrast, methylation mutants in differentiated cells as well as Setdb1 cDnmt1 

DKO ES cells show pronounced derepression mainly of the ERV-K family, 

reminiscent of what we observe in the TKO neurons. The extent of 

derepression is however clearly strongest in TKO neurons. This is likely due 

to the fact that these are the only differentiated cells that have completely lost 

DNA methylation, whereas the other cell lines and tissues all still contain 

functional DNMTs. In TKO neurons, transcripts can be detected especially at 

the best-conserved IAPLTR1 and 1a types within the ERV-K family 

(Fig. 3-23a). Importantly, the same elements are also upregulated in other 
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methylation mutants in differentiated cells, including a recently published 

conditional Uhrf1 KO in postnatal mouse cortex (Ramesh et al., 2016) 

(Fig. 3-23b). This implies that the repeat activation we observe is not a clonal 

or tissue culture artefact but also occurs in vivo upon methylation loss. 

Therefore, our system provides an interesting cellular model to study the 

effects of DNA methylation loss on repeat activation and an opportunity to 

understand the mechanisms underlying specific activation of a subset of 

repetitive elements. 

 

 
Figure 3-23. Activation of different IAP subtypes across mutants in the DNA 
methylation or H3K9me3 pathway. 
a) Enrichment of different IAPLTR subtypes in activated (log2 fold-change > 1 in TKO/WT 
neurons) over silent elements (abs(log2 fold-change in TKO/WT neurons) < 0.3). b) 
Expression change of the IAPLTR subtypes most enriched in (a) (IAPLTR1 and IAPLTR1) as 
well as their internal viral genes (IAPEz-int) compared to the matching control for the different 
chromatin mutants analysed in Figure 3-22. 
 
 

The observed derepression in different chromatin mutants is in line with 

the current thinking of how repeat repression is accomplished in ES and 

differentiated cells. In stem cells, silencing is thought to be mediated mainly 

by the H3K9me3-machinery through KRAB zinc-finger protein-mediated 

recruitment of KAP1 and SETDB1 (Karimi et al., 2011; Rowe et al., 2010). In 

differentiated cells on the other hand, DNA methylation rather than H3K9me3 

is deemed necessary for silencing (Leung and Lorincz, 2012). In line with 

H3K9me3 losing importance as a silencing mechanism, the proteins involved 

in setting this mark are downregulated upon neuronal differentiation 
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(Fig. 3-24a). Accordingly, H3K9me3 is lost at repetitive elements including 

IAPs, as is observed when comparing H3K9me3 enrichment during ES to NP 

differentiation (Fig. 3-24b) (Bulut-Karslioglu et al., 2014). Of note, this loss 

occurs to a similar extent at elements that are activated and silent upon 

methylation removal (Fig. 3-24b,c). Differential H3K9me3 levels are therefore 

unlikely to be the explanation for dissimilar activation levels of repeat 

elements, although this still needs to be experimentally tested in our model 

system. 

 

 
Figure 3-24. The H3K9me3 mark is reduced at IAPLTRs during differentiation. 
a) Gene expression changes during neuronal differentiation for enzymes involved in setting 
methylation of histone H3 at lysine 9. EHMT2 mono- and dimethylates H3K9, SETDB1 and 
SUV39H1/2 trimethylate, KAP1 (aka TRIM28) recruits SETDB1 and ZFP281 is an exemplary 
KRAB zinc-finger protein that interacts with KAP1 and is involved in repressing IAP elements 
in stem cells (Tan et al., 2013). The mean of three biological RNA-seq replicates is shown. b) 
MA plot showing changes in H3K9me3 ChIP-seq signal between neuronal progenitor cells 
(NP) and ES cells at 1 kb windows centred on all repetitive elements (data from Bulut-
Karslioglu et al., 2014). Regions changing significantly (adjusted p-value < 0.05) are marked 
in grey, IAPLTR1/1a elements activated in TKO neurons in purple and IAPLTR1/1a elements 
that remain silent in TKO neurons in orange. Samples were normalised with DESeq2, see 
Methods for details. c) H3K9me3 ChIP-seq signal in NPs at IAPLTR1/1a elements activated 
in TKO neurons and IAPLTR1/1a elements with the same CpG and GC content that remain 
silent in TKO neurons (data from Bulut-Karslioglu et al., 2014; normalised with DESeq2 and to 
region size). P-value from a Mann-Whitney test. 
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3.3.3.7 The CRE motif is highly predictive of transposon activation 

While the necessity of DNA methylation rather than H3K9me3 for repeat 

repression in differentiated cells has been proposed previously (Leung and 

Lorincz, 2012), it remains unresolved how DNA methylation actually silences 

repeats. In principle, this could occur in an indirect way by recruitment of 

histone deacetylases through methyl-CpG binding domain proteins (MBDs), 

leading to chromatin compaction (Nan et al., 1996; 1998). Another appealing 

hypothesis is that methylation of motifs within the LTRs directly inhibits 

binding of TFs that would otherwise drive repeat expression. Importantly the 

two models are not mutually exclusive. We hypothesised that comparing LTR 

sequences of activated and silent repeats of the same subtype might identify 

features linked to methylation-dependent repression. 

First, we asked whether TF motifs are enriched in the IAPLTRs that are 

activated in TKO neurons compared to those that remain silent (Fig. 3-25).  

 

 
Figure 3-25. The CRE motif is strongly enriched in IAPLTRs that are activated in TKO 
neurons. 
Uniquely mapping 100 bp paired-end RNA-seq reads from WT and TKO neurons were 
counted in all IAPLTRs in the genome and normalised for library size. Enrichments of known 
TF motifs in activated (log2 fold-change TKO/WT > 1, n = 3,948) over silent (abs(log2 fold-
change TKO/WT) <= 0.3, n = 5,025) LTRs with matching CpG content were calculated using 
homer2. Motifs that closely resemble the cAMP-responsive element (CRE) are marked in red 
and labelled. P-values are from a binomial test. See Methods for details. Counting RNA in 
windows downstream of the LTR rather than the LTR itself gave the same results (data not 
shown). 
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Strikingly, several TF motifs are strongly and highly significantly enriched 

in the activated IAPLTRs. Among the top six enriched motifs, five belong to 

the same motif family, the cAMP-responsive element, or CRE. It has indeed 

been previously reported that in vitro binding of unknown TFs at this element 

is impeded by DNA methylation (Iguchi-Ariga and Schaffner, 1989). When we 

compared the location and strength of the CRE motif in activated and silent 

members of the same repeat subtype, we observed that the CRE motif is less 

conserved in silent repeats (Fig. 3-26a,b).  

 

 
Figure 3-26. The CRE motif is more conserved in members of the IAPLTR1a/1 subtype 
that are activated in TKO neurons. 
a, b) CRE motif location and score in activated (green) and silent (grey) elements of the 
IAPLTR1a (a) and IAPLTR1 (b) subtype. All silent IAPLTR1a/1 elements and a random 
sample of the same number of activated IAPLTR1a/1 elements were aligned to the repeat 
reference sequence using the coordinates given by RepeatMasker. Both groups were 
scanned for the best match to the JASPAR CREB1 PWM; the position and the absolute score 
are annotated in shades of red. The consensus PWM was built over these regions for all 
elements of a group. 
 
 

This raises the question whether silent repeats are generally less 

conserved, thus losing their transcriptional competence, or whether local loss 

of conservation at the CRE motif is associated with silencing. To address this 
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issue, we compared the identity to the repeat reference sequence across both 

activated and silent repeats. Interestingly, the sequence is locally less 

conserved over the CRE motif in silent members (Fig. 3-27). This is true for 

both IAPLTR1 and 1a types, whereas many other local dips in conservation 

are not shared between the two subtypes (e.g. around the TSS). In contrast to 

most TF motifs detected in these LTR sequences, the CRE motif also falls 

within the region found to be required for transcriptional activity in reporter 

assays (Christy and Huang, 1988).  

 

 
Figure 3-27. Local differences in sequence conservation between active and silent 
IAPLTR1a/1 elements. 
The percent identity of activated IAPLTR1a (left)/ IAPLTR1 (right) elements to the repeat 
reference sequence at each position was calculated from a multiple sequence alignment and 
subtracted from the value for silent elements. Accordingly, values below zero mean this 
position is less conserved in the silent group. The positions of TF motifs from the JASPAR 
database that have at least a relative score of 95% in the reference sequence are annotated 
in grey. The region of the IAPLTR found to be required for driving expression in a transient 
reporter assay (Christy and Huang, 1988) is marked on top as a black line. The location of 
core promoter elements within this region (CAAT-box, TATA-box and TSS) as well as of the 
CRE motif are indicated as coloured boxes. 
 
 

So far the analysis divided the IAPLTRs into two binary categories of 

activated and silent repeats depending on an arbitrary cut-off (at least twofold 

upregulation in TKO neurons). We asked if we could also quantitatively predict 

the level of expression in TKO neurons purely from the sequence of the LTR. 

Therefore we constructed a linear model for all IAPLTR1 and 1a elements in 
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the mouse genome, using the scores for all 134 TF motifs from JASPAR that 

have at least a weak match in the reference sequences as input. In addition 

we included the CpG content, the GC content and the number of insertions, 

deletions and mismatches to the reference sequence for each LTR. After 

performing elastic net regression with fivefold cross-validation for selection of 

the tuning parameter, 20 non-zero coefficients remained: 19 TF motifs and the 

number of mismatches to the reference sequence (Fig. 3-28a).  

 

 
Figure 3-28. The CRE motif score is highly predictive of IAPLTR1/1a expression in TKO 
neurons. 
a) Hierarchical clustering of the correlated regressor matrix for the 20 non-zero coefficients 
output by the linear model. The model predicts IAPLTR1/1a expression changes between 
TKO and WT neurons (R2 = 0.53). See Methods for details. Regressor weights are annotated 
on the left. The names of the coefficients with the highest absolute weights are marked in 
green. b) JASPAR PWMs for the TF motifs with the highest absolute weights from (a). 
 
 

This model performs very well, with predicted and actual expression 

levels of the IAPLTRs correlating at R = 0.73 (R2 = 0.53). Strikingly, the five 

motifs with the highest positive weight in the model are all slight variations of 

the CRE motif (Fig. 3-28b). Other positively weighted TF motifs include SRY, 

PRRX2 and BSX, which resemble the CAAT box core promoter element. As 

expected, the number of mismatches receives a negative weight in the model, 
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so repeats with more mismatches are less likely to be transcriptionally active. 

Importantly however, the absolute value is lower than for the CRE-like motifs, 

implying that the score of the CRE motif is highly predictive of the degree of 

expression in TKO neurons, more so than the overall conservation of the 

element.  

The CRE element has been reported to be bound by homo- or 

heterodimers of CREB, CRE-BP (also known as ATF2), ATF factors and 

JUN/FOS (AP-1) (Hai and Hartman, 2001). While CREB and ATF2/4/6 are 

already highly expressed in stem cells, ATF5, JUN and FOS are upregulated 

during differentiation both in WT and TKO neurons (Fig. 3-29a,b).  

 

 
Figure 3-29. Expression of candidate binding factors and accessibility of the CRE 
motif. 
a, b) Gene expression changes during neuronal differentiation (a) and for TKO compared to 
WT neurons (b) for all TFs that have been reported to bind the CRE motif and are 
substantially expressed in neurons, as measured by RNA-seq. ATF1 and CREM are further 
factors that can bind the CRE motif but are not expressed in neurons. c, d) ATAC-seq signal 
at all exact CRE motifs (TGACGTCA) in the genome. ATAC-seq reads were counted in a 
400 bp window around the CRE motif, using random assignment of multiple mappers (c) or 
only uniquely mapping reads (d). Normalisation was performed with DESeq2; significantly 
differential sites (log2 fold-change TKO/WT > 1, adjusted p-value < 0.05) are marked in black.  
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As a first step towards analysing differential TF binding at the CRE motif 

in WT and TKO neurons and to further verify our findings, we analysed 

chromatin accessibility at all CRE motifs in the genome, either counting 

randomly assigned multiple mappers or only uniquely mapping reads 

(Fig. 3-29c,d). We observed an increase in accessibility around the CRE motif 

in TKO neurons, especially at repetitive regions (Fig. 3-29c), implying that 

there is indeed differential TF binding at these sites. A random sequence motif 

with similar occurrence in IAPLTRs did not show such differences in 

chromatin accessibility (data not shown). Importantly, the CRE motif is also 

the sixth most enriched motif in all TKO-specific ATAC-seq sites (Fig. 3-19a), 

implying that methylation sensitivity is not limited to repetitive regions. 

Differential accessibility is not as apparent at non-repetitive regions however 

(Fig. 3-29d), likely because the majority of CRE motifs that are not in IAPLTRs 

fall into unmethylated CGI and promoter regions and thus do not contribute to 

a strong TKO-specific signal (Smith et al., 2007). 

Taken together, different lines of evidence point towards TF binding at the 

CRE motif being crucial for IAP activation, yet highly sensitive to DNA 

methylation.  
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3.3.4 Discussion 

For this part of the thesis, we generated a differentiated cell state completely 

devoid of DNA methylation, in the form of TKO neurons. To our knowledge, 

such a system has not been previously described and thus it provides an 

interesting opportunity to investigate the role of DNA methylation in TF binding 

and repeat silencing in differentiated cells. Similar to our work in ES cells 

(Chapter 3.2.2), we observe overall limited changes in gene expression and 

chromatin accessibility in TKO neurons. However, the changes are more 

unidirectional than in ES cells, in line with a repressive effect of DNA 

methylation. Whereas one motif, NRF1, explained the majority of TKO-

specific accessible sites in ES cells, in neurons many motifs seem to 

contribute slightly to the differential regions. Cell death in methylation-deficient 

differentiated cells is likely due to the striking upregulation of certain repeat 

families, especially IAP elements. Within the IAP family, we find the CRE motif 

to be a strong predictor for activation. 

These differences in repeat activation across repeat families and 

differentiation stages could be explained by the following hypothesis 

(Fig. 3-30): In pluripotent cells, endogenous retroviruses are recognised by 

KRAB zinc-finger proteins or the piRNA pathway and are both H3K9 as well 

as DNA methylated. Even when undergoing a period of low methylation, as 

occurs naturally after fertilisation and in primordial germ cells (PGCs), or upon 

complete loss in TKO ES cells, the repeats remain mostly silent. Nonetheless, 

IAP elements are in fact those regions in the genome that are most resistant 

to methylation loss during preimplantation development and in PGCs (Hajkova 

et al., 2002; Lane et al., 2003; Popp et al., 2010). Since IAPLTRs are 

activated upon simultaneous loss of both DNA methylation and H3K9me3 in 

ES cells (Sharif et al., 2016), it is likely that the TFs responsible for driving the 

expression are already expressed at this stage, but prevented from binding 

through H3K9me3. During differentiation, H3K9me3 is depleted at repeats, 

but these are still silenced since DNA methylation prevents binding of TFs, 

e.g. at the CRE motif. If DNA methylation is removed at these elements, due 

to genetic manipulation or disease, TFs can bind and induce transcription.  
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Figure 3-30. Proposed model for regulation of IAP expression in stem and 
differentiated cells. 
In stem cells, IAPLTRs are recognised by KRAB-zinc finger proteins (KZFP), which recruit 
KAP1 and SETDB1, leading to deposition of the repressive H3K9me3 mark (left). Thus, 
elements are silenced even upon loss of DNA methylation and in presence of activating TFs 
associated with binding the CRE motif (e.g. CREB). During differentiation, the H3K9me3 mark 
is depleted but elements remain silent, since DNA methylation prevents binding of TFs at the 
CRE motif (middle). Upon loss of methylation in differentiated cells, TFs can bind the CRE 
motif and trigger high levels of IAP expression (right). 
 
 

Although DNA methylation has long been associated with repeat 

repression (Walsh et al., 1998), it remarkably remains unclear to date how this 

is actually brought about. Since DNA methylation likely evolved as a means to 

repress repetitive elements, gaining mechanistic insight into this process 

would also educate us on how and whether methylation-mediated silencing 

might have been co-opted at other regulatory regions. Repression by cytosine 

methylation has been suggested to act directly, by interfering with sequence-

specific DNA-TF interactions, or indirectly e.g. through MBD binding at CpG-

dense regions and chromatin compaction (Klose and Bird, 2006). Of note, a 

combination of the two models could also be at work, since they are not 

mutually exclusive. Differential activity of IAPs in TKO neurons is strongly 

linked to the presence of a CpG-containing CRE motif, which argues for direct 

blocking of binding. However, if the TEs rely mainly on this motif for driving 

their expression, this observation would also be in line with indirect 

repression. While the CRE motif does also come up as a methylation-

sensitive candidate in CpG-poor regions outside of repeats, it should be noted 

that IAPLTRs are relatively CpG-rich sequences and thus could feasibly 

recruit MBDs. The MBD MeCP2 has in fact been shown to bind the Moloney 

murine leukaemia-based provirus (Lorincz et al., 2001). Genome-wide 

mapping of MBDs in mouse ES cells recently revealed low enrichment at 
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repetitive elements in general, but increased enrichment at CpG-rich repeats 

including IAPLTRs (Baubec et al., 2013). Within the IAPLTR group however, 

CpG density is not predictive of the extent of activation upon DNA methylation 

loss. Also, there is currently no conclusive evidence that MBD binding at 

repeats is actually responsible for their repression. The issue of direct or 

indirect repression will be discussed in more detail in the final chapter of this 

thesis in the context of our other findings.  

One might speculate that it is even advantageous for a transposable 

element (TE) to be regulated by a methylation-sensitive TF. It is only 

beneficial for a TE to replicate in the germline. Strong activation in somatic 

cells is deleterious for the host without enhancing virus survival, rather 

increasing the selective pressure on virus removal out of the population. 

Indeed ERV families are active to some extent in both mouse and human 

germlines, which undergo periods of low methylation. Being regulated by a 

methylation-sensitive TF would thus ensure just this kind of expression 

pattern: active in the germline but silent in somatic cells. It would also enable 

use of a ubiquitously expressed strong activator such as CREB without having 

deleterious effects in somatic cells and might be one reason why IAP 

elements are the most successful TEs in mouse genomes (Maksakova et al., 

2006). In fact, these elements are so active that inbred mouse strains only 

share roughly 40% of their IAP insertions (Ray et al., 2011). A comparison of 

IAPLTR sequences across strains which are being sequenced as part of the 

Mouse Genomes Project might provide insight into the importance of the 

conserved CRE motif for successful spreading of an ERV. Apart from strong 

and broad activation of IAPs, individual elements from other repeat families 

are also upregulated in TKO neurons. In contrast to rodent-specific IAPs, 

these elements are likely found in more species, enabling cross-species 

comparisons. This could reveal whether they, too, contain characteristic 

methylation-sensitive TF motifs in contrast to the majority of other family 

members and whether this feature is indeed associated with evolutionary 

success. 
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It will be interesting to experimentally test the importance of the CRE motif 

for repeat activation and how TF binding there is impacted by DNA 

methylation and H3K9me3 marks during differentiation. To this end, we are 

currently performing reporter assays integrating the wildtype IAPLTR1a 

reference sequence and one where the CRE motif has been deleted into the 

same ectopic genomic site in ES cells. Measuring relative activity of these 

constructs in WT and TKO ES cells as well as neurons should shed light on 

the importance of the CRE motif for repeat activation. Since these elements 

are likely to be silenced in ES cells, their relative activity can be tested after 

reducing H3K9me3 levels by knockdown of enzymes setting this mark 

(Maksakova et al., 2011). Should these experiments confirm the importance of 

the CRE motif for repeat activation, it would be exciting to identify the actual 

bZIP protein binding there by ChIP-seq of likely candidates in the different cell 

lines. One of the most promising candidates is CREB1, which is expressed in 

both ES cells and neurons and is known to bind highly conserved palindromic 

CRE motifs as a homodimer (Benbrook and Jones, 1994). Knowledge of the 

exact factor(s) responsible for IAP activation would enable us to knockdown 

this TF and assess whether this can rescue repeat activation and ultimately 

perhaps even survival of TKO neurons.  

The mechanisms we derive in TKO neurons likely also apply in other cell 

types and species. Although neurons have been described to have distinctive 

DNA methylation profiles compared to non-neuronal cells (Iwamoto et al., 

2011), we importantly see upregulation of the same elements not only in 

mouse cortex but also in the other methylation-deficient differentiated cell line 

we analysed, namely fibroblasts. Thus we anticipate that our findings can be 

transferred to other cell types. While IAP elements do not exist in humans, the 

larger family of ERV-K elements has a human counterpart, the HERVK LTR 

retrotransposons. This is indeed the only ERV family member that has 

continued to replicate in the human population (Marchi et al., 2014). It is lowly 

but detectably expressed during normal human embryogenesis as well as in 

many cancers, some autoimmune/ inflammatory diseases and HIV-infected 

cells (Grow et al., 2015; Wildschutte et al., 2016). Interestingly, several human 
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LTR retrotransposons contain CRE motifs, and CREB or ATF/AP-1 factors 

have been implicated in driving expression of human ERVs, Human T cell 

leukaemia virus type 1 and HIV (Caselli et al., 2012; Grant et al., 2006; 

Toufaily et al., 2015). CRE methylation has also been associated with 

promoter silencing of the Epstein-Barr virus genome (Tierney et al., 2000). 

Insights into how retroviruses are repressed and what leads to their activation 

could therefore be highly valuable in a broader context, not only for 

understanding the evolutionary origins of methylation-mediated silencing but 

also for human disease. 
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4. General discussion 
 

The goal of this thesis was to investigate the influence of DNA methylation on 

TF binding in the cellular context. Our findings reveal that most TF binding 

events are not restricted by DNA methylation in either stem or differentiated 

neuronal cells. However, DNA methylation is likely capable of preventing 

binding for a subset of factors at CpG-containing motifs, such as CTCF, 

NRF1, HNF6 or CREB/ATF. We validate this in detail for NRF1, which binds 

twice as many sites in the absence of DNA methylation and relies on other 

TFs to keep its motif in an unmethylated state. While loss of DNA methylation 

has an overall modest impact on chromatin accessibility and gene 

transcription in both cell types, it initiates a vast and potentially lethal 

derepression of endogenous retroviruses in neurons. This appears to be 

linked to methylation-sensitive binding of TFs to the CRE motif within viral 

LTRs. 

 

 

4.1 Extent of binding site restriction by DNA methylation 

The vast majority of accessible sites bound by TFs do not change upon 

removal of DNA methylation in either ES cells or neurons. In both cases, only 

2-3% of all detected sites are specific to either the cell line with or without 

methylation. Whereas NRF1 binding accounts for the majority of differential 

sites in ES cells, other top TF motifs that are enriched in ES TKO-specific 

sites have indeed been linked to methylation-sensitive binding in historic in 

vitro gel shift experiments. These include USF, E2F, MYC and CREB, with 

only NF-κB from these reports not showing any enrichment in our study 

(Bednarik et al., 1991; Campanero et al., 2000; Iguchi-Ariga and Schaffner, 

1989; Prendergast and Ziff, 1991; Watt and Molloy, 1988). In neurons, none 

of the enriched motifs explains a large portion of differential sites: In contrast 

to ES cells, many factors seem to contribute to a small subset of differential 

sites. Still there is agreement with factors identified in ES cells, namely for 
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NRF1, NFY and CREB, with the other most strongly enriched motifs belonging 

to neuron-specific HNF6 as well as CTCF.  

Although the small change in chromatin accessibility observed in both cell 

types is in line with the overall limited changes in gene expression, it stands in 

contrast to the substantial number of TFs suggested to be prevented from 

binding by DNA methylation based on in vitro studies (O'Malley et al., 2016; 

Spruijt et al., 2013). Importantly, while we observe good agreement with in 

vitro studies for the top identified TFs, there are several reasons that could 

explain the smaller number of methylation-sensitive factors called with our 

approach. First, the general lack of binding site restriction by DNA methylation 

observed here does not preclude methylation-sensitive binding behaviour of 

TFs in other contexts that cannot be tested in this setup, e.g. at CpG-rich 

sequences occurring in unmethylated CGIs. In order to be enriched in our 

approach, a motif needs to occur many times in a methylated state in the 

genome. This could explain why more factors are reported to be methylation-

sensitive at certain motifs in vitro. In fact, apart from the TF motifs that are 

strongly enriched in TKO-specific accessible regions and that were studied 

here in more detail, many additional motifs are slightly enriched. Thus the 

matching factors could be restricted by DNA methylation in some contexts, as 

is the case for CTCF. This TF motif is not enriched in TKO-specific accessible 

sites in ES cells, yet CTCF known to occasionally bind in a methylation-

dependent manner, e.g. at imprinted regions. Second, differential sites are 

most likely to be detected for TFs that have characteristics of pioneer factors, 

in that they can bind on their own to previously closed chromatin, thus 

creating an accessible site de novo. Such behaviour has indeed been 

assigned to most of the top factors identified here, namely NRF1, CTCF and 

CREB (Sherwood et al., 2014). Factors that are unable to create new 

accessible sites upon removal of DNA methylation, rather leading to 

broadening or deepening of existing sites or requiring the presence of certain 

co-factors, are much harder to detect in this context. Third, some TF binding 

events might not form highly accessible sites as measured by DNase-/ ATAC-

seq due to sequence or other bias of the enzymes used in these methods 
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(Madrigal, 2015). Both independent chromatin accessibility measures yielded 

similar results in ES cells, so enzyme sequence bias is likely not a major 

distorting factor. However, the ability of some TFs to form particularly strong 

DNase-/ ATAC-seq sites and defined footprints has been associated with 

longer residency time on the DNA (Sung et al., 2014). NRF1 is the poster 

child for such a factor generating strong sites (Neph et al., 2012), which likely 

contributed to the high enrichment of this motif in TKO-specific sites. 

Of note, recent in vitro studies have also reported several TFs that 

preferentially bind methylated sites (Hu et al., 2013; Spruijt et al., 2013). We 

did not observe a strong enrichment of any TF motifs in WT-specific 

accessible sites. Indeed WT-specific sites are nearly non-existent in neurons 

and not heavily methylated in ES. However, we cannot exclude that some TFs 

preferentially bind methylated sites and induce their demethylation.  

In spite of these limitations, the results obtained in this thesis argue that 

DNA methylation is unlikely to have a key role in determining most TF binding 

events in both pluripotent and differentiated cells.  

 

 

4.2 Comparison of identified methylation-sensitive 

transcription factors 

Notable exceptions to this rule are the factors discussed in more detail here, 

namely NRF1, HNF6, CRE-binding factors such as CREB and to some extent 

CTCF. This raises the question whether these methylation-sensitive TFs have 

something in common that sets them apart from other members of the TF 

family. In the following I will compare these proteins in terms of function, 

structure and motifs. 

 

4.2.1 Comparison of expression and target genes 

NRF1 (Schaefer et al., 2000), CREB (Mayr and Montminy, 2001) and CTCF 

(Nakahashi et al., 2013) are all ubiquitously expressed proteins, whereas 

HNF6 is only found in a small subset of tissues including liver, pancreas and 
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brain (Audouard et al., 2013). In line with these expression patterns, HNF6 

regulates developmental genes during differentiation in these tissues 

(Audouard et al., 2013), whereas NRF1 binds the promoters of several house-

keeping genes, including those of the respiratory chain (Evans and Scarpulla, 

1990). CREB regulates a vast array of biological processes, with some target 

genes involved in specialised processes such as neurotransmission and 

others more generally in metabolism and signal transduction (Lonze and 

Ginty, 2002). CTCF has multiple roles in transcriptional regulation, including a 

key function in the three-dimensional organisation of the genome (Holwerda 

and de Laat, 2013). Accordingly, CTCF, NRF1 and CREB deletion are all 

lethal at the peri-implantation, embryonic or perinatal stage (Bleckmann et al., 

2002; Huo and Scarpulla, 2001; Moore et al., 2012), whereas HNF6-null mice 

are viable (Jacquemin et al., 2000). Aberrant binding of these factors in the 

absence of methylation differs in terms of scale and effect. TKO-specific sites 

with NRF1 and HNF6 motifs occur largely distal to gene transcription start 

sites and although the differences in TF occupancy upon methylation removal 

are substantial at least for NRF1, most of these binding sites are likely non-

functional. Differences in CTCF binding are so minimal that they are only 

confidently detected in an isogenic setting and using several independent 

methods. Nonetheless, given the crucial role of CTCF in chromatin looping, 

altered binding due to methylation changes e.g. at the H19/Igf2 ICR is 

associated with growth disorders and other diseases in humans (Herold et al., 

2012). In turn, methylation-sensitive binding at CRE motifs in repeat regions 

has potentially devastating effects by activating these TEs. Interestingly, both 

CREB and NRF1 are known as especially strong transcriptional activators 

(Ernst et al., 2016; Mayall et al., 1997). 

 

4.2.2 Comparison of DNA-binding domains 

The largest TF families in vertebrates are C2H2 zinc-finger proteins, followed 

by the homeodomain and the basic superfamily, which includes the leucine 

zipper (bZIP) and helix-loop-helix (bHLH) families. Together they account for 

more than 80% of TFs (Weirauch and Hughes, 2011). Each of these classes 
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is suggested to have arisen from a single common ancestral protein followed 

by multiple rounds of duplication and divergence (Weirauch and Hughes, 

2011). The TFs found to be methylation-sensitive here represent all three 

major classes: CTCF is a zinc-finger protein that binds divergent long motifs 

by combinatorial clustering of its eleven zinc fingers (Nakahashi et al., 2013), 

HNF6 is a homeodomain protein that binds DNA through both its 

homeodomain and a cut domain (Iyaguchi et al., 2007), whereas CREB/ATF 

are classical bZIP proteins (Schumacher et al., 2000) and NRF1 has a novel 

DNA-binding domain that is not shared by any other known TF (Schaefer et 

al., 2000; Virbasius et al., 1993). NRF1 and CREB/ATF factors dimerise to 

bind palindromic motifs, while CTCF and HNF6 bind on their own to non-

palindromic sequences (Benbrook and Jones, 1994; Gugneja and Scarpulla, 

1997). Crystal structures of the protein in complex with (unmethylated) DNA 

are available for CREB1 (Schumacher et al., 2000) and HNF6 (Iyaguchi et al., 

2007), although the latter template does not contain a CpG. Both proteins 

interact mainly with the major groove of the DNA, where the methyl-group of 

the cytosine is positioned (Dantas Machado et al., 2015). Few crystal 

structures of DNA stretches with methylated CpGs have been reported, but 

they imply that the methyl group leads to widening of the major groove and 

thus might impact specific protein interactions there (Tippin and 

Sundaralingam, 1997). Interestingly, HNF6 homologs share distinct residues 

involved in the interaction with the DNA major groove that set them apart from 

all other known homeodomains (Lannoy et al., 1998). For CREB1 the 

interaction between a certain arginine residue and the CpG was found to be 

crucial for high-affinity binding (Schumacher et al., 2000). Indeed CREB1 is 

unable to bind a motif variant where the central cytosine is replaced with a 

thymidine (TGATGTCA), in contrast to other closely related bZIP proteins 

capable of binding this CRE variant (Benbrook and Jones, 1994). Of note, 

methyl-cytosine closely resembles thymidine. For NRF1 and CTCF no crystal 

structures are available, although other C2H2 zinc-finger protein-DNA 

interactions have been characterised. Some of these are indeed capable of 

differentiating between methylated and unmethylated DNA, as seen for Kaiso. 
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This methyl-CpG binding protein has been crystallised in complex with 

methylated DNA (Buck-Koehntop et al., 2012). 

 

Since the TFs identified here all have very different structures, 

methylation sensitivity likely did not arise from a common DNA-binding 

domain or common evolutionary ancestor. This raises the question how 

methylation sensitivity of these TFs evolved. The DNA-binding domain of 

NRF1, while unique within the TF family, is highly conserved between 

Drosophila and human and recognises the exact same motif in both cases, 

although the remaining part of the amino acid chain is quite divergent (Fazio 

et al., 2001). For HNF6 the DNA-binding cut and homeodomains are 

conserved more than 80% between homologs in species with and without 

DNA methylation (Poustka et al., 2004). Drosophila CREB has 88% identity to 

mammalian CREB in the bZIP domain (Yin et al., 1995), while the activator 

domain is less conserved, and indeed CRE-binding factors go as far back as 

yeast (Nehlin et al., 1992). The Drosophila homolog of CTCF also contains 

eleven zinc fingers highly similar to the vertebrate version (Moon et al., 2005). 

This high conservation of DNA-binding domains observed for all identified 

methylation-sensitive factors in organisms without DNA methylation raises the 

question whether their invertebrate homologs are methylation-sensitive or not 

(Fig. 4-1a). Answering this question might provide valuable insight on whether 

methylation sensitivity at regulatory regions has only evolved in vertebrates as 

part of the co-option of methylation for other means than TE silencing. For 

instance, it is feasible to replace the mouse DNA-binding domain of NRF1 

with the Drosophila homolog and measure binding in WT and TKO murine ES 

cells. If the Drosophila homolog is indeed insensitive to DNA methylation, it 

would be interesting to identify and determine methylation sensitivity of the 

common vertebrate and invertebrate ancestor TF, to learn whether 

methylation sensitivity was lost in invertebrates or gained in vertebrates.  
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Figure 4-1. Differences in methylation sensitivity across species, regions and factors. 
a) Evolution of methylation sensitivity. Expressing homologs with highly conserved DNA-
binding domains from species without DNA methylation in WT and TKO mouse ES cells 
(mESC) to determine their methylation sensitivity might educate us on how this feature 
evolved. b) Methylated CpG island (CGI) promoters are generally stably repressed. It is 
unclear how and whether TF binding site restriction differs here from CpG-poor regions. In 
contrast to CpG-poor regions, methylation-insensitive TFs do not seem to induce dynamic 
local hypomethylation at methylated CGIs. c) DNA methylation mediates TF hierarchies. 
Methylation-sensitive TFs can only bind unmethylated sequences, which are mainly found in 
CpG islands (CGI) (left). However, methylation-insensitive TFs can bind methylated CpG-poor 
regions and induce their local demethylation (middle). This enables downstream binding of 
sensitive TFs to distal CpG-poor regulatory regions that are active in a given cell type (right). 
 

4.2.3 Comparison of methylation-sensitive motifs 

The nature and conservation is not only of interest for the DNA-binding 

domains of methylation-sensitive TFs but also for the sequence motifs they 

interact with. With the exception of the NFY motif, a core promoter element 

known as CCAAT box, all top identified methylation-sensitive motifs in this 

study contain at least one prominent CpG.  

CTCF binds degenerate motifs that do not necessarily contain CpGs in 

vertebrates but mostly do in Drosophila (Ni et al., 2012; Stadler et al., 2011). 

In fact, the consensus CTCF motif in Drosophila is more defined and closely 

resembles one of the CpG-containing methylation-sensitive motif variants 

identified here. In contrast to Drosophila, where CTCF motifs lie mostly in 

promoter regions (Ni et al., 2012), the majority of canonical CTCF motifs in 

vertebrates reside in intergenic regions, in line with their CpG-poor nature 

(Kim et al., 2007). Interestingly, as for HNF6, the canonical vertebrate CTCF 

motif closely resembles a deaminated version of the CpG-containing 
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methylation-sensitive variant. CpGs might have been lost in most CTCF 

motifs in vertebrates to circumvent binding obstruction by DNA methylation, 

as a means to achieve the high agreement of robust CTCF binding profiles 

observed across cell types (Chen et al., 2012). However, this remains pure 

speculation without a closer look at the evolutionary constraints underlying 

changes in CTCF motif preference. 

In contrast to CTCF, CRE and NRF1 motifs belong to the most commonly 

found TF motifs in mammalian promoters (Weirauch and Hughes, 2011; 

Zhang et al., 2005). Both have a strong positional bias, in that their distribution 

peaks shortly upstream of the transcriptional start site in different vertebrate 

species from fish to human (FitzGerald et al., 2006; Smith et al., 2007). 

Although CREB and NRF1 bind the same highly specific motifs in both 

vertebrates and invertebrates, a preferential enrichment or positional bias is 

not observed for either motifs in promoters of species without blanket 

methylation, such as Drosophila melanogaster, Caenorhabditis elegans or 

Ciona intestinalis (Smith et al., 2007). This is not the case for all CpG-

containing motifs, since some, such as the E-box, can have positional bias 

and enrichment within both mammalian and Drosophila promoters (FitzGerald 

et al., 2006). For NRF1 and CRE motifs however, deamination of methylated 

CpGs likely contributed to depletion of existing motifs outside of unmethylated 

CGI promoters and an increasingly unequal genomic distribution in 

vertebrates. Indeed the human genome only contains 25% of the expected 

number of CREs, with 62% of them occurring in CGIs (Smith et al., 2007). 

Interestingly, around 10% of the roughly 28,000 fully conserved CRE motifs in 

mice reside in IAPLTRs, which in contrast to CGI promoters are methylated at 

almost all times. These distributions imply that there is no strong selection to 

maintain methylation-regulated motifs at regulatory regions outside of CGIs, 

although it would be necessary to compare the exact rate and location of CpG 

loss in these motifs with other CpG-containing sequences. 

Deamination of CpGs is indeed rather frequent in TF binding sites 

genome-wide, as was observed when comparing human, chimp and rhesus 

genomes (Zemojtel et al., 2011). In fact based on position frequency matrices 



 103 

an estimated 85% of human TFs recognize a motif containing TpG, whereas 

25% of TF motifs in the JASPAR database contain a CpG (Blattler and 

Farnham, 2013; Zemojtel et al., 2011). Amongst this latter group, the CpG is 

only crucial for recognition in barely a dozen cases (Blattler and Farnham, 

2013). Of note, most of these motifs are either strongly (NRF1, CREB) or 

slightly (USF, HIF1A/ ARNT, ETS and E2F factors) enriched in our approach. 

Indeed both NRF1 and CREB depend on the presence of a central CpG for 

high affinity binding (Benbrook and Jones, 1994) and are thus likely 

methylation-sensitive at all strong motifs. Importantly, these observations 

imply that methylation could restrict many more binding events in genomes 

that contain methylation but are not yet depleted of CpGs, such as in the 

African clawed frog Xenopus laevis.  

 

Taken together, the identified methylation-sensitive TFs do not share a 

mutual function or structure. While their DNA-binding domains are remarkably 

conserved across species without DNA methylation, their CpG-containing 

motifs are depleted over time. In-depth evolutionary comparisons of factors 

and motifs involved in methylation sensitivity might indicate when and how 

this feature evolved independently in different TF families and which selective 

pressures are acting on it. 

 

 

4.3 Direct or indirect blocking of binding by DNA 

methylation 

A key question in the field is whether binding site restriction by DNA 

methylation is a direct process, where methylation in the motif interferes with 

the DNA-TF interaction (Dantas Machado et al., 2015), or an indirect process, 

by recruitment of MBDs and chromatin compaction independent of specific TF 

motifs (Nan et al., 1996; 1998). As detailed above, the methylation-sensitive 

TFs identified here contain prominent CpGs in their motif. This is particularly 

striking for CTCF and HNF6, for which only CpG-containing motif variants are 

enriched in TKO-specific accessible sites, in contrast to the canonical motifs. 
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As far as can be conjectured from the existing crystal structures, it is feasible 

that the methyl-group directly impacts the interaction between the identified 

TFs and the major groove of the DNA. We find that NRF1 occupancy is 

reduced at a sequence that has locally higher methylation levels in the CpGs 

of the motif but is otherwise identical in terms of chromosomal location and 

overall methylation levels. These observations all point towards direct 

blocking of binding by DNA methylation within the motif. However, it cannot be 

excluded that indirect mechanisms are also involved and the two are not 

mutually exclusive. MBDs are supposed to preferentially bind regions with 

dense and methylated CpGs (Baubec et al., 2013). Indeed increased CpG 

density of the flanking regions characterises TKO-specific CTCF sites. It is 

unclear to which extent this is linked to a higher likelihood of encountering a 

CpG-containing CTCF motif variant in regions of higher CpG density. 

Genomic editing approaches as suggested in Chapter 3.1.4 could shed light 

on the relative importance of CpGs within the motif and the flanking regions 

for methylation-sensitive CTCF binding. Importantly, we do not observe an 

influence of CpG density on methylation-sensitive binding of NRF1. Indeed, 

the vast majority of TKO-specific accessible sites in both ES cells and 

neurons fall into CpG-poor regions. This is likely due to the fact that most 

CpG-dense regions are already unmethylated in the WT cells. Nonetheless, it 

represents one of the first descriptions of methylation having an inhibitory 

effect on transcription in CpG-poor regions of the genome.  

Thus, while direct repression is a likely scenario at least in CpG-poor 

regions, this question still warrants further study. Of note, it also remains 

unclear if different mechanisms mediate repression at methylated CGIs 

(Fig. 4-1b). For example, simultaneous deletion of all MBDs should reveal if 

these proteins are indeed involved in the repression of methylated CGIs and 

repeats. In addition, crystal structures of methylation-sensitive TFs in complex 

with methylated and unmethylated DNA would provide further insight into the 

mechanism of repression. Again, comparison with DNA-binding domain 

structures of closely related proteins from species without genome 
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methylation could be very valuable to understand which evolutionary 

constraints act at key amino acids involved in the DNA interaction. 

 

 

4.4 Transcription factor hierarchies mediated by DNA 

methylation 

In principle, DNA methylation-mediated TE silencing mechanisms could have 

been co-opted by vertebrates to introduce another layer in gene regulation. 

Here we present evidence for a TF hierarchy, where methylation-insensitive 

TFs can bind CpG-poor methylated regulatory regions and induce their 

demethylation, thus enabling binding of methylation-sensitive TFs like NRF1 

(Fig. 4-1c). In this scenario, methylation mediates cooperativity between TFs 

but in a remarkably indirect manner. This cooperativity does not depend on 

direct interaction between TFs or even on sequence context in terms of 

specific co-occurring motifs, but rather only on the ability of some TFs to 

remove methylation around their binding sites. Indeed NRF1 sites bound in 

WT cells are strongly enriched for co-binding of all tested TFs compared to 

TKO-specific sites. This makes NRF1 binding unlikely to depend on a certain 

factor for demethylating its motif rather than just on the presence of an active, 

unmethylated region. In this manner, especially TFs that are expressed 

ubiquitously across tissues, such as NRF1 or CREB, could be guided to 

regulatory regions that are active in a given cell type, independently of their 

expression level. This might be especially important for TFs that act as strong 

transcriptional activators and in principle can bind closed chromatin on their 

own. DNA methylation could thus provide an additional layer of regulation for 

certain pioneer factors, which are otherwise thought to bind independently of 

chromatin conformation.  

However, both NRF1 and CREB lose high affinity binding when their 

central CpGs are deaminated (Benbrook and Jones, 1994). Comparison with 

ancestral genomes reveals ongoing depletion of these and other CpG-

containing motifs (Smith et al., 2007; Zemojtel et al., 2011). Those methylated 

NRF1 motifs that still contain central CpGs and are bound in the TKO cells lie 
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in lowly conserved regions compared to WT. Together this suggests that 

methylation-protected sites are being eroded over evolutionary times, further 

raising the question which of these regions are actually functional in other cell 

types. Analysing the conservation of methylation-restricted TF binding sites in 

more detail might inform on whether these regions are likely to have important 

roles in gene regulation or whether methylation prevents binding mostly at 

non-functional sites. Of note, this could still have an effect on gene regulation, 

by avoiding dilution of free TF levels through binding at thousands of irrelevant 

sites. 

 

 

4.5 DNA methylation and cell survival  

It is currently unclear if the essential nature of DNA methylation in 

differentiated cells is driven by aberrant gene expression (Jackson-Grusby et 

al., 2001) or repeat activation in its absence (Walsh et al., 1998; Yoder et al., 

1997). Both might be linked to mitotic catastrophe, which has been suggested 

to be at the centre of rapid cell death in the absence of DNA methylation 

(Chen et al., 2007). Of note, TKO neurons are in fact postmitotic for several 

days before dying, making such a direct link to a cell cycle checkpoint 

unlikely. Since gene expression is remarkably similar between WT and TKO 

cells, our results imply that repeat activation is at the core of the matter. 

Repeat activation is also the key feature that distinguishes TKO neurons, 

which are unable to survive for many days, from TKO ES cells, which do not 

show any obvious phenotype. Activation of TEs can potentially induce cell 

death in several ways, e.g. by sheer transcriptional load or insertion of active 

ERVs into genes or promoter regions, thus producing mutants or high levels 

of chimeric transcripts (Bestor, 2003). Interestingly, although we were unable 

to generate TKO neurons with a retinoic acid-based differentiation protocol, 

we in fact observed deregulation of the same repeat families and cell death on 

the same time-scale (~ 10 days) as for the rapid NGN2-induced neuronal 

differentiation protocol. Of note, cell death for deletions of Dnmt1 in human ES 

cells, which represent a slightly more differentiated stage than mouse ES cells 
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(Nichols and Smith, 2009), cancer cells and even mouse embryos occurs on a 

similar temporal scale (Chen et al., 2007; Li et al., 1992; Liao et al., 2015). 

This implies that cell death in the absence of DNA methylation is not 

dependent on reaching a specific differentiated cell state but might be due to 

activation of endogenous retroviruses and accumulation of either their 

transcripts or genomic insertions over time. It will be interesting to test this 

hypothesis in other cell types and to align these observations with temporal 

changes in H3K9me3 enrichment at repetitive regions during differentiation. 

 

 

4.6 Transferability of the approach to studying other 

chromatin features 

At least for the methylation-sensitive TFs identified here, the ability to predict 

binding will markedly improve if DNA methylation profiles in a given cell type 

are taken into account. Twice as many NRF1 motifs representing an exact 

match to the consensus sequence are bound in the absence of DNA 

methylation. This is a striking increase, although it will be less pronounced for 

factors that are not affected by methylation at all of their strong binding sites, 

such as CTCF. That said, roughly one third of these high-confidence NRF1 

motifs remain unbound in TKO cells, so that other factors must contribute to 

binding site restriction even for this TF. 

This raises the question if the approach applied here can be transferred 

to other chromatin components potentially involved in binding site restriction, 

such as nucleosomes and histone modifications (Fig. 4-2a). The crucial point 

here will be to find conditions that allow altering these chromatin features 

without leading to rapid cell death and massive transcriptional changes. 

Certain histone modifications were found to be dispensable in ES cells and 

their removal leads to limited changes in gene expression, as observed for 

H3K27me3 (Riising et al., 2014). This mark is likely less important for 

silencing of TEs than DNA methylation (with the exception of murine 

leukaemia virus elements) and thus the observed cell death upon 

differentiation could indeed be due to differential TF binding at crucial regions 
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(Leeb et al., 2010). Applying a similar approach to study binding site 

restriction by Polycomb-group proteins is thus possible. While ES cells have 

also been at least partially depleted of H3K9me3, full removal has been 

reported to be lethal (Dodge et al., 2004; Matsui et al., 2010; Peters et al., 

2003; Walter et al., 2016). Still it is conceivable to generate complete 

knockouts of all H3K9 methylating enzymes with CRISPR that at least survive 

for a certain amount of time. If gene expression changes are not too drastic, 

this could still be informative, as seen here for methylation mutants of 

differentiated cells similarly reported to be lethal.  

 

 

 
Figure 4-2. Complementary strategies for investigating the role of chromatin in binding 
site restriction. 
a) Global exploratory approach. Comparing chromatin accessibility measured by DNase-seq/ 
ATAC-seq as an indicator of TF binding in WT cells and cells mutant for a chromatin feature 
(e.g. DNA methylation/ histone modification) can reveal regions that are only bound in the 
absence of this mark. This approach relies on the ability of the cell to survive global depletion 
of the chromatin feature and subsequent identification of sensitive TFs by sequence analysis 
of differentially accessible regions. b) Context-specific approach. Chromatin features can also 
be interrogated locally at one specific site in the genome. Libraries of sequence variants can 
be inserted into the same ectopic site by RMCE and TF binding compared between modified 
and unmodified states. These chromatin states can be achieved by inserting differentially 
modified sequences (as for DNA methylation) or by locally recruiting modifying enzymes post-
insertion (as for histone marks). This approach controls for chromosomal context and 
changes due to global loss of a certain chromatin feature. c) Factor-specific approach. 
Expression of TFs in non-native contexts and measurement of resulting TF binding and 
changes in chromatin profiles can educate on which chromatin states are instructive for 
binding and which are adopted downstream. For example, a TF might be only able to bind 
sites not possessing a certain repressive histone mark. This approach can be applied in 
either WT or mutant cells and has the potential elucidate the relative importance of different 
chromatin features and their combinations in binding site restriction. 
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Depleting cells of nucleosomes is likely more complicated. While a 

reduction of nucleosome levels has been observed in some settings, such as 

in HMGB1 mutant MEFs (Celona et al., 2011), complete removal is not 

feasible and the reproducibility of nucleosome positions for a partial removal 

is questionable. Investigating binding site restriction by nucleosomes thus 

requires an alternative strategy. Rather than depleting repressive features 

genome-wide (Fig. 4-2a), one could focus on modifying chromatin at one 

controlled locus and assaying many sequences/ TF motifs there (Fig. 4-2b). 

Such an approach was recently taken in yeast to study the effect of 

nucleosomes on binding of TFs with a massively parallel reporter assay 

(MPRA) of nucleosome-favouring or -disfavouring sequences, using NOMe-

seq as a readout to simultaneously call nucleosome positions and TF binding 

(Levo et al., 2017). It is feasible to study the impact of not only nucleosomes 

but also repressive histone modifications in vertebrates in a similar manner. 

This could be achieved by either integrating a library of TF motifs into WT and 

mutant cells, choosing heterochromatic and euchromatic regions as 

integration site or actively recruiting the histone mark in question to the 

sequence library by tethering modifying enzymes in the vicinity. While 

conceptually appealing, we learnt the limitations of such an approach when 

studying the influence of DNA methylation on CTCF binding. It was 

exceedingly difficult to maintain differential methylation states for the same 

sequence within cells. This caveat might also apply to other chromatin 

modifications, making it challenging to investigate the impact of a certain mark 

at the exact same sequence and location. That said, we were nevertheless 

able to use this strategy to compare NRF1 binding at identical sequences in 

WT ES cells that only differed in core motif methylation levels. The sensitivity 

to methylation of CpGs in the core motif observed here strongly supported our 

findings in TKO ES cells, especially since it was independent of global 

changes in methylation levels.  

In a reverse approach, instead of locally tampering with chromatin 

modifications, it is also possible to express individual TFs in non-native 

contexts and study how existing chromatin modifications restrict their binding 
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(Fig. 4-2c). For example, overexpression of NRF1 in WT cells revealed 

binding to many weak motifs in unmethylated regions of the genome but not at 

strong methylated sites. A cursory analysis was unable to identify those 

chromatin features that prevent binding at the roughly one third of high-

confidence NRF1 motifs that remain unbound even in the absence of DNA 

methylation. However, expressing NRF1 in different cell types with variable 

well-annotated chromatin landscapes and employing more sophisticated 

analytical strategies such as machine learning might uncover which features 

besides DNA methylation restrict binding of this factor.  

A major drawback to both local sequence variations as in MPRAs or 

ectopic expression of individual TFs is that they only educate us on a single 

genomic context or factor. We anticipate that the relationship between TF 

binding and chromatin modifications is on the contrary highly factor and 

context dependent, since we observe a remarkable variety in structure and 

sequence-dependency for DNA methylation-sensitive TFs in this study. As 

Slattery and colleagues put it, 'the only common thread in the world of TF–

DNA interactions and transcriptional regulation is that no single model is 

sufficient to explain all the mechanisms used to achieve regulatory specificity' 

(Slattery et al., 2014). Thus, combining genome-wide exploratory approaches 

as employed here with more in-depth and high-resolution factor- and context-

specific studies can complement each other and will be necessary to reveal 

the complex rules determining TF binding in the context of chromatin. The 

ability to modify regulatory sequences and create gene knockouts with 

CRISPR has opened up unprecedented avenues to explore this fascinating 

interaction. In the future, this should enable us to markedly improve our 

predictions of TF binding in a given cell type and represent a substantial 

advancement in the quest for understanding and predicting gene regulation in 

eukaryotic development and disease.  
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5. Materials and methods 
 

Cell culture 

Mouse ES cells were cultivated without feeders on 0.2% gelatine-coated 

dishes in DMEM, supplemented with 15% fetal calf serum, 1× non-essential 

amino acids, 2 mM L-glutamine, LIF and 0.001% β-mercaptoethanol (37°C, 

7% CO2). For insertion of H19/Igf2 fragments, TC-1 cells with a RMCE site in 

the beta-globin locus (Lienert et al., 2011) were used. Mouse HA36 ES cells 

(mixed 129-C57Bl/6 strain) with a stable integration of the Neurogenin2 gene 

under control of pTRE-tight were a kind gift from the Jeff Chao lab (FMI). The 

three DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b were deleted in 

these cells by CRISPR-Cas9 gene editing as previously described (Domcke et 

al., 2015) to generate a TKO line without DNA methylation. Dnmt genes were 

sequenced to confirm successful targeting of all six alleles and residual 

methylation levels were measured by Zymo Research 

(www.zymoresearch.com), using high-pressure liquid chromatography 

coupled to mass spectrometry. 

 

Neuronal differentiation 

ES cells HA36 were differentiated into embryoid bodies and neuronal 

progenitors using LIF withdrawal and retinoic acid treatment as previously 

described (Bibel et al., 2007). For lines containing the pTRE-Ngn2 construct, 

differentiation was carried out by inducing expression of NGN2 with 1 µg/mL 

doxycycline as previously described (Thoma et al., 2012). Neurons were 

harvested 8 or 9 days after induction. 

 

Recombinase-mediated cassette exchange 

Fragments of the H19/Igf2 ICR to be inserted into the ectopic genomic site in 

TC-1 cells were PCR amplified from genomic DNA and cloned into a plasmid 

flanked by two inverted L1 Lox sites. Fragments contained one to four CTCF 
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sites (coordinates in Table 5-1). For the RMCE reaction we used both 

unmethylated plasmids and plasmids that were in vitro methylated with M.SssI 

(NEB) (Schubeler et al., 2000). Complete in vitro methylation of the plasmids 

was confirmed by digestion with HpaII/MspI (NEB) and gel electrophoresis. 

RMCE was performed in TC-1 ES cells as previously described (Jermann et 

al., 2014; Lienert et al., 2011). Clones were picked 12 days after the 

nucleofection reaction and tested for successful insertion events by PCR. For 

removal of inserts, RMCE was performed with a plasmid containing the hytk 

(hygromycin-phosphotransferase thymidine kinase fusion gene) expression 

cassette under the control of the Pgk promoter; clones that had exchanged 

the insert were selected with hygromycin. 
 
Table 5-1. Genomic coordinates of ICR fragments inserted into the ectopic site. 
 

Name Type Start End Width 
(bp) 

H19 ICR ICR chr7: 149,765,874 chr7: 149,768,737 2,863 
CTCF motif 1 CTCF motif chr7: 149,766,211 chr7: 149,766,230 19 
CTCF motif 2 CTCF motif chr7: 149,766,666 chr7: 149,766,685 19 
CTCF motif 3 CTCF motif chr7: 149,767,692 chr7: 149,767,711 19 
CTCF motif 4 CTCF motif chr7: 149,767,936 chr7: 149,767,955 19 
CTCF1234 ICR fragment insert chr7: 149,766,016 chr7: 149,768,088 2,072 
CTCF12 ICR fragment insert chr7: 149,766,129 chr7: 149,766,765 636 
CTCF34 ICR fragment insert chr7: 149,767,567 chr7: 149,768,089 522 
CTCF1 ICR fragment insert chr7: 149,766,020 chr7: 149,766,387 367 
CTCF2 ICR fragment insert chr7: 149,766,465 chr7: 149,766,830 365 
CTCF3 ICR fragment insert chr7: 149,767,567 chr7: 149,767,842 275 
CTCF4 ICR fragment insert chr7: 149,767,818 chr7: 149,768,081 263 
 

 

Bisulfite sequencing 

Bisulfite conversion was performed on 2 µg of the RNaseA-treated genomic 

DNA (EpiTect Bisulfite kit, Qiagen). Converted DNA was amplified with the 

designed specific primers using following cycling conditions: 20 touch-down 

cycles from 55 to 50°C with 30 s at 95°C, 30 s at 55/ 50°C and 30 s at 72°C, 

followed by 36 cycles of 30 s at 95°C, 30 s at 50°C and 30 s at 72°C and a 

final 5 min extension step at 72°C (AmpliTaq Gold, Thermofisher). PCR 

products were gel-purified and cloned into OneShot E. coli using blue⁄white 
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colony screening for selection of recombinants (Topo TA, Thermofisher). For 

15 to 20 positive bacterial colonies per PCR reaction, DNA was isolated and 

amplified using rolling circle amplification (Templiphi, GE Healthcare) and the 

inserts were sequenced with Sanger sequencing. Reads were analysed with 

BISMA (Rohde et al., 2010). Identical bisulfite sequencing reads were 

discarded in the analysis, since they are likely to be PCR duplicates. 

 

Methylation-sensitive qPCR 

For bisulfite-independent measurement of DNA methylation states, genomic 

DNA was isolated using the DNeasy Blood & Tissue kit (Qiagen) and 2 µg 

were homogenised by passing through a 27 1/2-gauge needle at a 

concentration of 12.5 ng/µL. The homogenised sample was split into 40 µL 

reactions. Four of these aliquots were digested for 5 h at 37°C with 25 units of 

either HpaII/HhaI (cut at unmethylated site) or MspI/McrBC (cut at methylated 

site). A fifth aliquot without enzyme was used as mock control and otherwise 

treated in the same manner. Digestion reactions were performed in triplicates. 

After the incubation step, each sample was diluted eightfold with water and 

standard qPCR was performed with 2.5 µL template DNA. Validated primer 

sequences for the endogenous H19/Igf2 ICR were used (Oakes et al., 2009), 

which amplify a region that is not inserted in the ectopic site for the tested 

clones. The mean Ct values of the triplicate digested samples were 

subtracted from the mean Ct value of the mock-digested sample to produce a 

deltaCt value for each digest. From this the percentage of methylation of a 

given CpG site within the amplicons was calculated (Oakes et al., 2009).  

 

Chromatin immunoprecipitation 

Chromatin immunoprecipitation (ChIP) was carried out essentially as 

previously described (Jermann et al., 2014), using a polyclonal antibody 

against CTCF (SantCruz, sc-15914) and H3K9me3 (Abcam, ab8898). CTCF 

ChIP-seq libraries were prepared according to standard Illumina library 

preparation protocols using 12 cycles of PCR (NEB Q5 Hot Start HiFi PCR) 
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and sequenced on an Illumina HiSeq 2500 machine (50 bp read length, single 

end). ChIP-qPCRs were performed according to standard protocols using one 

primer within the insert and one outside of the L1 sites for insert-specific 

detection and a primer pair that extends into a non-inserted region of the 

H19/Igf2 ICR for endogenous-specific detection. 

 

RNA-seq 

For neuronal progenitors, cellular aggregates were pelleted eight days after 

starting LIF withdrawal and after four days of retinoic acid treatment. Neurons 

generated by NGN2 induction were collected by removing most of the 

medium, scraping the cells off the plate with a cell scraper and centrifuging 

briefly to remove cell debris before proceeding directly with RNA isolation. 

RNA was isolated from the cell pellets with the RNeasy mini kit (Qiagen) using 

on-column DNA digestion. For RNA-seq, two micrograms of total RNA from 

three to four independent cultures were depleted from ribosomal RNA using 

the Ribo-Zero rRNA removal kit (Epicentre). Strand-specific total RNA-seq 

libraries were prepared from rRNA depleted samples using the ScriptSeq v2 

protocol (Epicentre). Libraries were sequenced on an Illumina 2500 HiSeq 

with 50 bp single-end reads. Three neuron replicates per cell line were 

resequenced with 100 bp paired-end reads to allow better mapping at 

repetitive regions. 

 

ATAC-seq 

ATAC-seq was performed essentially as previously described (Buenrostro et 

al., 2015). For neurons, nuclei were isolated directly from scraped cell pellets 

(see above) and different cell numbers (10-100,000) were tested on a low-

coverage MiSeq run. Since profiles for these conditions were very similar, 

50,000 cells were used for further experiments, as for ES cells. Libraries were 

PCR amplified for 10 cycles using the NEBNext Q5 Hot Start HiFi PCR Master 

Mix and sequenced on an Illumina 2500 HiSeq with 50 bp paired-end reads. 
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ChIP-seq and DNase-seq data analysis 

For identification of differential CTCF sites, ChIP-seq and DNase-seq samples 

were aligned single-end to the mm9 mouse genome using bowtie (-m 1 --best 

--strata) (Langmead et al., 2009). ChIP-seq peaks were called with peakzilla 

with default parameters (Bardet et al., 2013). For comparison of fold-changes 

between ChIP-seq and DNase-seq data, the ChIP-seq reads extended to 

200 bp (average estimated fragment length) and the first bp (5’-end) of the 

DNase-seq reads (DNase I cut site) were used to calculate raw read counts in 

300 bp windows around 391,862 low confidence CTCF motifs, excluding CpG 

islands, and normalised to library size. Motif enrichments within TKO-specific 

sites (log2 TKO/WT > 1 for both ChIP-seq and DNase-seq signal) were 

calculated using homer2 (Heinz et al., 2010). 

For analysis of H3K9me3 enrichment at repetitive regions in ES cells and 

NPs, 36 bp paired-end ChIP-seq data was retrieved from GEO and aligned 

with bowtie allowing for multiple mappers and randomly assigning them to one 

location (-m 300 --best --strata) (Langmead et al., 2009). Reads were counted 

in 1 kb windows centred on repeat instances annotated by RepeatMasker and 

samples were normalised using DESeq2 (Love et al., 2014).  

 

RNA-seq analysis of genes and repeats 

For gene expression analysis, single-end 50 bp RNA-seq reads were aligned 

to the mm9 genome using QuasR (splicedAlignment=T, bowtie parameters -m 

1 --best --strata) (Gaidatzis et al., 2015). Reads were counted in all exons and 

normalised across samples with DESeq2 (Love et al., 2014). Genes were 

considered differentially expressed if they changed more than two-fold with an 

adjusted p-value of p < 1e-5. Overrepresentation of gene ontology categories 

in selected gene sets was analysed using the GOstats R package (Falcon 

and Gentleman, 2007). 

To measure expression at repetitive elements, 100 bp paired-end RNA-

seq data were aligned using STAR (--outFilterMultimapNmax 

300 --outMultimapperOrder Random) (Dobin et al., 2013). Repeat locations in 
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the mm9 genome were downloaded from the RepeatMasker track in the 

UCSC table browser (http://genome.ucsc.edu/) (Karolchik et al., 2004). For 

quantification of total RNA transcribed at repeats, multiple mappers were 

taken into account, but randomly assigned to only one region (i.e. quality 

score < 255). For comparison of published datasets, all of our own and 

published total RNA-seq samples were trimmed to 50 bp read length and 

aligned single-end using bowtie allowing up to 300 matches for reads, but with 

random assignment of multiple mappers to only one position in the genome 

(-m 300 --best --strata) (Langmead et al., 2009). Since individual repeat 

occurrences can then no longer be distinguished, repeats were collapsed to 

the family or name level for further analysis. Counts were normalised to library 

size and to the number of bases per repeat family that are mappable with 

these alignment parameters. Enrichment of transcript counts in repeat families 

was calculated for each chromatin mutant compared to the matching WT 

using the mean of all available replicates. Only uniquely mapping 100 bp 

paired-end reads (i.e. quality score = 255) were considered for comparing 

activated and silent IAPLTRs in neurons. Uniquely mapping RNA-seq reads 

were counted in all 13,810 IAPLTR occurrences in the genome and 

normalised to LTR width and library size. LTRs with a log2 fold-change 

(neurons TKO/WT) of more than 1 were considered activated, those with a 

log2 fold-change of less than 0.3 were considered silent. Reference 

sequences of IAPLTRs were downloaded from repbase (Bao et al., 2015). For 

calculation of conservation of IAPLTRs, we performed a multiple sequence 

alignment with kalign (-gapopen 1200.0 -gapextension 25.0 -tgpe 

100.0 -bonus 283.0) (Lassmann and Sonnhammer, 2005) and calculated the 

percent identity to the reference sequence at each position. The JASPAR2016 

and TFBSTools R packages were used to analyse the position and scores of 

TF motifs in the repeat reference sequences (Mathelier et al., 2016; Tan and 

Lenhard, 2016).  
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ATAC-seq data analysis 

50 bp paired-end reads were trimmed for Illumina adapters using skewer and 

aligned to the mm9 genome using bowtie with the options -m 1 --best --strata 

(Jiang et al., 2014; Langmead et al., 2009). Accessible regions were called 

with MACS2 in paired-end mode (Zhang et al., 2008), using two replicates of 

WT and TKO each. A q-value cutoff of 10-9 or 10-8 was used to identify 

significant peaks in ES and neuron ATAC-seq, respectively. DESeq2 was 

used to normalise samples and identify significantly differential peaks 

between conditions (at least twofold change, adjusted p-value < 0.05) (Love et 

al., 2014). ATAC-seq signal and DNase-seq signal were compared across all 

regions identified either as ATAC-seq peaks called by MACS2 or as DNase 

hypersensitive sites called with a sliding window approach as described 

previously (Domcke et al., 2015). For analysis of chromatin accessibility at 

CRE motifs (TGACGTCA), samples were realigned with bowtie allowing up to 

300 matches for reads, but with random assignment of multiple mappers to 

only one position in the genome (-m 300 --best --strata), to retrieve signal in 

repetitive regions. 

 

Motif and hexamer enrichment 

De novo and known TF motifs in TKO-specific ATAC-seq sites were identified 

by homer2 using shared sites (abs(log2 fold-change TKO/WT) < 0.3) that 

contain the same CpG content as the TKO-specific sites as background 

(Heinz et al., 2010). For IAPLTRs, activated IAPLTRs were used as 

foreground and all silent IAPLTRs (abs(log2 fold-change TKO/WT) < 0.3) with 

matched CpG content were used as background. 

For identification of enriched hexamers in TKO-specific ATAC-seq sites, 

the background was defined as a random sample of four times as many 

accessible regions that are shared between WT and TKO (abs(log2 fold-

change TKO/WT) < 0.3). These regions were selected to have identical CpG 

and GC content as the foreground sequences.  

 



 

 118 

Linear model 

TF motifs present in the IAPLTR1 and 1a reference sequences were identified 

with the TFBStools and JASPAR2016 R packages (score > 90%, 

absScore > 6) (Mathelier et al., 2016; Tan and Lenhard, 2016). For these 134 

TF motifs the sum of the score of all motif occurrences with a score of at least 

75% was calculated for each of the 3,456 LTR instances. We also tested 

using the maximum score or the number of occurrences of each motif, but 

these models performed slightly worse than with the sum of the score. The 

number of mismatches, deletions and insertions relative to the reference 

sequence were downloaded from the UCSC table browser (Karolchik et al., 

2004), the CpG and GC content were calculated and these values were 

added to a 139 x 3,456 regressor matrix. Elastic net regression was 

performed using the glmnet R package (Friedman et al., 2010), with an alpha 

of 0.5. Five-fold cross-validation was used to choose the tuning parameter 

lambda. 

 

Published data sets 

Whole genome bisulfite sequencing data was downloaded from GEO for WT 

ES cells (GSM748786) (Stadler et al., 2011). The following total RNA-seq 

datasets were obtained from GEO: terminal neurons (GSM687306) 

(Tippmann et al., 2012), ES cSetdb1 cDnmt1 KO (GSM2059172/3) and 

matching WT (GSM2059170/1) (Sharif et al., 2016), ES Kap1 KO 

(GSM1032183) and matching WT (GSM1032182) (Rowe et al., 2013), NPC 

Kap1 KO (GSM1119765/6/7) and matching WT (GSM1119762/3/4) (Fasching 

et al., 2015), PGC E13.5 Setdb1 KO (GSM1477419/20) and matching WT 

(GSM1477414) (Liu et al., 2014), MEF Tp53 Dnmt1 KO (GSM1089794) and 

MEF Tp53 KO (GSM1089793) (Reddington et al., 2013), P5 mouse cortex 

cUhrf1 KO (GSM2241736/9) and matching heterozygote (GSM2241735/7/8) 

(Ramesh et al., 2016). The following ChIP-seq data sets were obtained from 

GEO: H3K9me3 in ES (GSM1375155) and NP (GSM1375164) (Bulut-

Karslioglu et al., 2014).   
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