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Abstract

In this thesis we are concerned with the rigorous analysis for an evolution problem
arising in mathematical physics: the nonlinear Schrodinger equation with power-
type nonlinearity involving the fractional Laplace operator (fractional NLS). We
are particularly interested in the long-time dynamics of this nonlocal equation, and
study three basic problems of fundamental importance.

First, we shall deduce sufficient criteria for blowup of radial solutions of the
focusing problem in the mass-supercritical and mass-critical cases. The conditions
are given in terms of inequalities between a combination of the (kinetic) energy
and mass of the initial datum, and that of the ground state for the corresponding
elliptic equation. Using a new method to deal with the nonlocality of the fractional
Laplacian, a localized virial argument enables us to conclude blowup in finite and
infinite time, respectively.

Second, we consider a special class of nondispersive solutions of the focusing
fractional NLS: the traveling solitary waves. Introducing an appropriate variational
problem, we establish the existence of their stationary profiles (boosted ground
states). In order to deal with the lack of compactness, we use the technique of
compactness modulo translations adapted to the fractional Sobolev spaces. In the
case of algebraic (even integer-order) nonlinearities, we derive symmetries of boosted
ground states with respect to the boost direction, relying on symmetric decreasing
rearrangements in Fourier space. Moreover, we show a non-optimal spatial decay of
these profiles at infinity.

Third and finally, we concentrate on the asymptotics of global solutions of the
defocusing problem. To have a full range of Strichartz estimates available, we re-
strict to the radially symmetric case. We construct the wave operator on the radial
subclass of the energy space, and show asymptotic completeness. Thus we infer
that any radial solution scatters to a linear solution in infinite time. Similarly to the
blowup theory, this is done in the spirit of monotonicity formulae: taking a suitable
virial weight and using the favourable sign of the defocusing nonlinearity, we develop
a lower bound for the Morawetz action. The resulting decay estimates permit us to
build a satisfactory scattering theory in the radial case.
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1 Introduction

1.1 Motivation

Nonlinear Schrodinger Equation

The nonlinear Schréodinger equation (NLS) with focusing power-type nonlinearity

{i@tu = —Au — |u[*u (NLS)

u:[0,T) xR" - C, u=u(tzx),

arises as a fundamental model in many-body quantum mechanics, as well as in
nonlinear optics. In the context of nonlinear optics, one is concerned with the
propagation of highly intense laser beams, the electric fields of which are assumed to
be linearly polarized. Under suitable approximations and assumptions on the nature
of the medium, (NLS) can then be derived rigorously from Maxwell’s equations of
electrodynamics. From the point of view of nonlinear optics, (NLS) thus represents
the leading-order model for the propagation of intense linearly polarized continuous-
wave laser beams in a homogeneous Kerr medium, and its solution is the slowly-
varying amplitude of the electric field of the beam [Fib15]. Since Maxwell’s equations
are classical, (NLS) does not have an immediate quantum-mechanical interpretation
in this respect, as one might expect upon hearing the name Schrodinger.

Assuming the laser beam to be propagating in the z-direction say, and polarized
in the transversal (z,y)-plane (say, in z-direction), the nonlinear optics model also
leads to the standard physical case of plane dimension n = 2 and cubic nonlinearity
o = 1, and hence the L?(R?)-critical (NLS). One then often writes z instead of the
time variable ¢, and —A is the Laplacian in the transversal (z,y)-plane.

The monographs [SS99] and [Fib15] provide excellent references to NLS in this
research area. Let us also mention that [Caz03] covers all aspects of the known NLS
theory in great mathematical detail.

One is particularly interested in conditions for solutions u of (NLS) to become
in some sense singular in finite time ¢ (at finite distance z), a phenomenon called
optical collapse in the language of optics (blowup in PDE language). It turns out
that a crucial role for the analysis is played by so-called ground states for (NLS).
These are functions () which arise as minimizers of a certain Weinstein functional,
and satisfy the equation

~AQ+Q—|Q*Q =0 inR" (1.1)
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In another light, considering the standing wave (stationary state/localized solution)
ansatz u(t,r) = e®Q(x) for a solution to (NLS), the previous equation reappears,
this time as a condition for the profile ) of the solitary wave solution u. Due to a deep
theorem of Gidas, Ni and Nirenberg [GNN&1], it is known that any positive decaying
C? solution of (1.1) is necessarily radially symmetric about some point xy € R, and
monotonically decreasing in r = |z — xo|. Moreover, a positive radial and decaying
solution @ to (1.1) is necessarily unique due to a result by Kwong [Kwo89]. The
radial symmetry of ) turns (1.1) into the ordinary differential equation

_Q”_ (n;l)Q/+Q_Q20+1 =0.

This justifies that in a certain terminology one can speak of the ground state of
(NLS). [See also [Caz03, proof of Theorem 8.1.4, p. 266] and [Rapl3, p. 272| for
precise statements about the uniqueness of the ground state.|

The decisive role of the ground state for the blowup analysis is illustrated for
instance with the L?(R")-critical (NLS), where o = 2. In fact, Weinstein [Weig3]
proved the sharp criterion that its solutions extend globally in time if the initial data
has mass below the mass of the ground state (), while on the other hand blowup
can occur as soon as [ugl3. = |Q|3. (indeed, minimal mass blowup solutions can
be constructed by the lens transform or pseudo-conformal symmetry).

Fractional Nonlinear Schrodinger Equation

The present thesis is concerned with analytic investigations on the nonlocal version
of (NLS), called fractional nonlinear Schrédinger equation (fNLS). Replacing the
Laplace operator —A by the fractional Laplacian (—A)® leads us to the initial-value
problem

{i&tu = (—A)*u =+ [u[*u (INLS)

u(0,z) = up(x) € H*(R™), w:[0,T) x R* — C.
Here n > 1 is the space dimension, s € (0,1) is a fractional parameter, ¢ > 0 deter-
mines the strength of the power-nonlinearity, and ug is a given initial datum lying
in an appropriate function space like H*(R™). (fNLS) is called focusing (attractive)
or defocusing (repulsive), depending on whether the minus or plus sign appears in
front of the nonlinearity above, respectively. The well-posedness of (fNLS) has been
analyzed by Hong and Sire [[IS15b].

We will use the fractional Sobolev spaces [Caz03, p. 13]
H*?"(R") = {ue &' (R"); F'[(1 + [£]*)2 (Fu)] € LP(R")} .

In the Hilbert space case p = 2, we write H*(R") = H*?(R"). We will mostly work
with the fractional Laplacian (—A)® given as a Fourier multiplier

(=A)"u = FIE[* (Fu)].
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We refer to [DNPV12] for an exposition of various, partly interconnected, definitions
of the fractional Sobolev spaces and the fractional Laplacian and their relations to
each other.

The Cauchy problem (fNLS) arises for instance as an effective equation in the
continuum limit of discrete models with long-range interactions. In [[KLS13] Kirk-
patrick, Lenzmann and Staffilani refer to models of mathematical biology, specifically
for the charge transport in biopolymers like the DNA. The DNA strand is modeled
by a one-dimensional lattice hZ of mesh size h > 0, the base pairs sitting at the
lattice points x,, = hm with m € Z. One then considers a discrete wave function
up - R x hZ — C satisfying

.d Uh(ta xm) - uh<t7 ZL’n) 2
zauh(t,xm) = hn;n P + [un(t, o) |"un(t, 2m).

The complex twisting of DNA in 3 dimensions is a plausible reason for the base pairs
interacting with all the others. This is accounted for by the sum above with the
kernel decaying like an inverse power of the distance between the pairs, reminiscent
of the singular integral given by the fractional Laplacian. The second term on the
right side represents a cubic self-interaction of the base pair. The authors show
rigorously that, as the mesh size h > 0 of the lattice shrinks to zero, the solution of
the discrete equation tends to a solution of (fNLS) in a weak sense provided that the
decay of the kernel above is not too strong (otherwise, the long-range interactions
cannot survive in the limit, but rather the usual (NLS) accounting for short-range
interactions appears).

Numerous applications of fractional NLS-type equations in the physical sciences
could be mentioned, ranging from the description of Boson stars [['JL07]| to water
wave dynamics. The fractional Laplacian also appears as a natural operator when
considering jump processes [Val09], which makes it valuable for Lévy processes in
probability theory with applications in financial mathematics.

As in the case s = 1, also for s € (0,1) one is interested in the notion of ground
states for (fNLS). They arise as minimizers @) € H*(R™)\{0} of the Weinstein
functional [FLS16]

30 - M@l QU™

|Ql75
and equivalently satisfy with equality the corresponding Gagliardo-Nirenberg-Sobolev
inequality

no
S
L2

20+2—%

1Q175%: < Coptll(=2)2Q| 12 |Q1 12
Up to a suitable rescaling @ — aQ(5-), @ can be shown to satisfy the equation
(-A)Q+Q—|QFQ=0 mnR" (1.2)

Minimizers for J can be constructed by Lions’ concentration-compactness method
[Lio84]. In [FLS16] Frank, Lenzmann and Silvestre show that there exists a non-
negative minimizer @ = 0, ) # 0 for J, which solves (1.2). Furthermore, they show

no
S
L2
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that any solution ) € H*(R") with @ > 0 and @ # 0 is necessarily radial about
some point zg € R™, i.e. Q(- — x¢) is radial, and moreover positive, strictly decreas-
ing in |z — xo| and smooth. They completely resolve the question of uniqueness of
such positive radial solutions and give a positive answer: the ground state is unique
[FL.S16, Theorem 3.4]. Frank and Lenzmann had previously shown the uniqueness
in n = 1 dimension in their paper [F'L13].

Similarly as before, it is known that for the L?*(R™)-critical focusing (fNLS),
where 0 = %, one has global existence in H*(R"™) provided one has mass below the
ground state |ug|zz < |@]z2 [HHS15b, Theorem B.1]. Global existence in turn gives
rise to the question of the asymptotic behaviour of the solution.

The analysis of (fNLS) constantly makes use of the following two quantities
which are conserved in time t.

M[u(t)] = u(t)]z- (L*-mass)

1 s 1 -
Blu(t)] = 31(-A)u(0)ls + 5 ()27 (energy)
Fundamental questions for (fNLS), which shall be answered in this work, are the
following;:

e Can we identify assumptions under which solutions to the focusing problem
blow up in finite or infinite time?

e Can we prove the existence of traveling solitary wave solutions of the form
u(t,z) = e“'Q,(x —vt) in the focusing case? Do the associated boosted ground
states (), possess certain symmetry, regularity and decay properties? Here
v e R" is a velocity, w € R a phase parameter.

e Do solutions to the defocusing problem exhibit an asymptotically free be-
haviour, i.e., do they scatter to solutions of the linear fractional Schrodinger
equation as t — o0?

We summarize our main answers to these questions in the subsequent sections.

1.2 Blowup Result

Concerning the existence of blowup solutions for (NLS), one of the early approaches
is due to Glassey [G1a77], and proves the blowing up of negative energy solutions to
(NLS) in H'(R"™) norm without any symmetry assumption, but under the technical
assumption that the solution u be of finite variance (., [z[*|u(t, z)|* dz < 0.

Dropping the negative energy assumption, sharper conditions were found by
Kutznetsov et al. [KRRT95] in supercritical cases o > %, namely in terms of in-
equalities between the kinetic, respectively full energies of the given initial datum
up and the ground state @ having the same mass |u|?, = N as the initial datum.

However, the finite variance hypothesis remained.
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In any case, these results heavily rely on the variance identity discovered by
Vlasov, Petrishchev and Talanov which is not available when working with the
nonlocal operator (—A)*, as will be pointed out in Chapter 2.

On the other hand, Ogawa and Tsutsumi [OT91] generalized Glassey’s results
to solutions with possibly infinite variance, but at the cost of assuming radially
symmetric initial data in return. It is their strategy of so-called localized virial
arguments that enables us to identify sufficient blowup conditions for (fNLS) in
the L?(R")-critical and supercritical cases o > % In Chapter 2 we will prove the
following blowup result. (We express the mass (super-)criticality by the condition

s. = 0 with the scaling index s, = § — 2.)

Theorem (Blowup for (super-)critical focusing fNLS with radial data [BHL16]).

Letn =2, se(1,1), 0<s. <s with o < 2s. Assume that uw € C([0,T); H*(R™))

is a radial solution of the focusing (fINLS). Furthermore, we suppose that either
E[UO] <0

or, if Elug] = 0, we assume that

{E[uO]SCM[uo]S_SC < E[Q]* M[Q]*,
[(=A)2uo] 3% Juol32% > [(—A)2Q]5:

L2

Q72"

Then the following conclusions hold.

(i) L*-Supercritical Case: If 0 < s. < s, then u(t) blows up in finite time in
the sense that T' < 400 must hold.

(ii) L*-Critical Case: If s. = 0, then u(t) either blows up in finite time in the
sense that T' < +o0 must hold, or u(t) blows up in infinite time such that

I(=A)2u(t)|| 2 = Ct*,  for all t > t,,
with some constants C' > 0 and t, > 0 that depend only on ug, s and n.

Note that 7" < +oo does not imply that ||(=A)2u(t)|2 — +o0 ast 1 T, as we
do not necessarily have a blowup alternative. Rather, the solution ceases to be in
H?$(R™), since the proof shows that the virial quantity does not exist indefinitely in
time.

To prove this theorem, we will introduce a suitable radial cutoff function ¢ :
R™ — R and study the time evolution of the localized virial quantity

M, [u(t)] = f WV Vulr)d.

However, since (—A)® changed the character of the equation to a nonlocal one, we
cannot immediately adapt the estimates known in the local case. To deal with the
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nonlocality, we will apply Balakrishnan’s formula known from semigroup theory,
which is the representation formula

(CA) = sin s JOO " —A dm.
T Jo —A+m

This will enable us to proceed in the spirit of Ogawa and Tsutsumi. We refer to
Chapter 2 for the proof.

1.3 Boosted Ground States and Traveling Solitary
Waves Results

Making the traveling solitary wave ansatz u(t,x) = e¢“'Q,(x — vt) for solutions to
focusing (fNLS), it is necessary and sufficient that the profile @, is governed by the
equation

(=A)Q, +iv-VQ, +wQ, — |Q,[*Q, = 0. (1.3)

This equation is intimately connected with interpolation estimates of Gagliardo-
Nirenberg type, whose best constant can be expressed by the optimizers of an associ-
ated functional. We therefore introduce a variational approach and solve a minimiza-
tion problem, based on the following Weinstein functional g3 , : H*(R")\{0} — R:

(Tl + (DI

e

Here, T, is the pseudo-differential operator T, := (—=A)® 4+ iv - V. Minimizers @,
of g5, on the class H*(R™)\{0} then render equation (1.3) as their Euler-Lagrange
equation (up to a suitable rescaling which leaves the functional g3, invariant). We
call them boosted ground states in view of the appearing boost velocity v € R™. In
Chapter 3, we prove the following existence theorem.

Inw(f) = (1.4)

Theorem (Existence of traveling solitary wave solutions). Letn > 1 and s € [1,1).

Let v € R™ be arbitrary for s > %, and |v| < 1 for s = % Then there exists a

number w, € R such that the following holds. For any w > wy, there exists a profile
Q. € H*(R")\{0} such that

gfjw v) = lnf gzw .
(@) feHs(RM)\{0} )

More generally: any minimizing sequence is relatively compact in H*(R™) up to
translations. Furthermore, modulo rescaling Q, — aQ,, Q, solves equation (1.3)
and thus gives rise to the traveling solitary wave solution

u(t, ) = e“'Q,(z — vt)

of focusing (INLS).
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We prove this theorem by adapting a compactness modulo translations argu-
ment due to Frank, Bellazzini and Visciglia [BEF'V14]. These authors generalized
a fundamental compactness lemma due to Lieb to the fractional Sobolev spaces,
which states that under appropriate assumptions a minimizing sequence admits a
subsequence converging weakly to a nonzero limit after suitable translations. See
also [Len06] for an adaption of Lions’ concentration-compactness method [Lio84] to
a constrained variational problem in order to construct boosted ground states for
the Boson star equation (which corresponds to the half-wave case v/—A on R® with
a convolution nonlinearity incorporating a Newtonian gravitational potential).

The existence theorem above will be formulated for a general pseudo-differential
operator L, which is self-adjoint on L*(R™) with dense domain and satisfies appro-
priate growth conditions. The fractional Laplacian L = (—A)® with s € (0,1) is
then a particular instance; see Chapter 3 for more information.

We are interested in deriving symmetries for boosted ground states (),,. Boulenger
and Lenzmann [BL15] have recently introduced a technique to prove the existence
of radially symmetric ground states for biharmonic NLS, which was previously un-
known. Their method uses Schwarz rearrangement = on the Fourier side, defining
the symmetrization Qf = F~1((FQ)*).

In our case, we might expect the existence of boosted ground states exhibiting
symmetries with respect to the boost velocity v € R™. Assuming v € R"™ to point
into 1-direction, we define the symmetrization Q% = F~1((FQ,)*'), where #; is the
symmetric decreasing rearrangement of a function in the last n—1 variables, keeping
the first variable fixed. For n = 1, we use the symmetrization Q, = F~1(|FQ,|).
Then indeed we obtain the following result.

Theorem (Existence of symmetric boosted ground states for integer-powers). Let
n =1, and s € [1,1). Let v e R" be arbitrary for s > 5, and |v| <1 for s = 3.
Suppose that o € (0,04) is an integer. Then:

(i) Case n = 2: There exists a cylindrically symmetric minimizer of the Wein-
stein functional (1.4), i.e., there exists a boosted ground state @, € H*(R™)\{0}
such that Q, = Q%. In addition, Q, = Q% is continuous and bounded and
has the higher Sobolev regularity Q% € H*(R™) for all k > 0. In particular,
Q% e C*(R™) is smooth. Moreover, the functions R — R, a1 — Re Q% (z1, 1)
and R — R, x1 — Im Q% (x1,2') are even and odd, respectively, for any fized
x' e Rv1,

(ii)) Casen = 1: There exists a minimizer of the Weinstein functional (1.4), i.e. a
boosted ground state @, € H*(R)\{0} such that Q, = @; In addition, Q, = @;
is continuous and bounded and has the higher Sobolev reqularity @; e H*(R)
for all k > 0. In particular, @VU e C*(R) is smooth. Moreover, the functions
R - R, 2 — Re@(m) and R - R, xz; — Im@;(x) are even and odd,
respectively.

The crucial hypothesis here is the algebraic assumption that o > 0 is an integer.
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This allows us to use the Convolution Theorem in conjunction with the Brascamp-
Lieb-Luttinger Inequality for the symmetric decreasing rearrangement in order to
deduce that the Weinstein functional cannot increase under symmetrization. The
proof is then based on an iterative argument to guarantee that FQ, lies in L'(R");
again see Chapter 3 for more information.

Finally, we establish algebraic decay at infinity for solutions to the Euler-Lagrange
equation (1.3), which reads as follows.

Theorem (Decay of boosted ground states for the fractional Laplacian). Letn > 1
and s € [1,1). Let v € R™ be arbitrary for s € (3,1), and [v] <1 for s = L. Let
Q, € H*(R")\{0} be a solution of the Euler-Lagrange equation (1.3). Then @, is
continuous on R™, and there exists some constant C' > 0 such that the following

polynomial decay estimate holds:

C
Q. ()] < 5 o for all x € R™. (1.5)

In particular, any boosted ground state Q, € H*(R™)\{0} decays polynomially ac-
cording to (1.5).

The proof rests on the Slaggie-Wichman method [His00], used to establish de-
cay of eigenfunctions of Schrédinger operators, and then proceeds by a bootstrap
argument; see Chapter 3.

1.4 Scattering Result

Concerning the behaviour of global solutions to (fNLS) as ¢ — +00, one is interested
in situations in which nonlinear effects become asymptotically negligible. We provide
a result concerning the long-time dynamics of solutions of defocusing (fNLS). To
simplify the exposition, we will focus on the case of cubic nonlinearity ¢ = 1 in
dimension n = 3. More specifically, we construct the so-called wave-operator €2,
on the radial subclass H; ,4(R?), and prove that it maps this class bijectively to
itself. Thus all radial solutions in the defocusing case scatter to a solution of the
linear equation, i.e., these solutions exhibit an asymptotically free behaviour. The
sense of "free" depends on the topology in which we measure the approximation
to the solution of the linear equation, and according to that choice one is led to
different scattering theories [Caz03]. Here we focus on the scattering theory on the
radial subclass of the energy space H:(R"). In Chapter 4, we will show the following
result.

Theorem (Radial scattering and asymptotic completeness for defocusing fNLS).
Letn = 3 and 0 = 1. Let s € [so,1), where sp = (7 —+/13) ~ 0.849. Then
for every uy € H .,(R®) there exists a unique ug € Hj ,4(R?) such that the global

x,rad
solution u € C(Ry; HS 4(R3)) of defocusing (fNLS) with initial value uqy satisfies

x,rad

lu(t) — e A 0y | gs = [ ™ u(t) —up|gs — 0,  ast — 4oo. (1.6)
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Consequently, there exists an operator Q. : HS o (R®) — H (R?), uy — uo.
Furthermore, the operator Qy is a continuous bijection H; ., (R*) — H3 . 4(R?); in

particular, conversely for every ug € Hj .4(R®) there exists a unique u, € H . 4(R?)
such that the global solution u € C(Ry; Hj ,4(R?)) of defocusing (fNLS) with initial
value ug satisfies (1.6).

The reason for our hypothesis of radiality is that we want to use a full range of
Strichartz estimates without loss of regularity; see also [HS15b]. This was established
by Guo and Wang |[GW14] in the radial case (Knapp counter-example for non-radial
functions), and is valid for the fractional Schrodinger equation under the assumption
that the powers of the fractional Laplacian are restricted to 55 < s < 1 withn > 2.
For n = 3, this means % < 5. On the other hand, the development of the scattering
theory requires the exponent o to be neither too small nor too large: for the L?*(R?)-
supercritical exponent o = 1 the H*(R3)-subcriticality condition o < 33823 means
% < s. Both requirements are thus guaranteed for % < s < 1. For technical reasons,
in order to avoid a continuity argument for the Strichartz norms involved, we make

the further restriction s > sy above.

Next to the Strichartz estimates, scattering theory relies on decay estimates.
The key to the latter is provided by the so-called Morawetz inequality; see [LS78].
To establish a Morawetz inequality for (fNLS), we will work out a monotonicity
property for the virial of the solution by resorting to the extension problem related
to the fractional Laplacian [C'S07]; see Proposition C.6.

As for the focusing problem, we refer to the new scattering results of [GZ17]
and [SWYZ17] below the energy-mass threshold and initial mass-fractional-gradient
bound of the above blowup theorem in the fractional radial case; see also the results
[HRO8] and [DHROS] in the radial and non-radial local NLS cases, respectively. A
scattering result for a Hartree type fractional NLS can be found in [Chol7]. We
refer to Chapter 4 for more information.

1.5 Structure of the Thesis

This thesis is structured in three main chapters, each followed by an appendix. In
each chapter we provide an introduction into the subject we treat, state the main
results and give an outline of the course of the chapter. Many auxiliary results and
technical details are given in the appendices.

Chapter 2

In chapter 2, we prove our radial blowup theorem for focusing (fNLS). Appendix A
contains various important estimates, for instance the fractional Strauss inequality,
as well as Pohozaev identities for fractional ground states.
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Chapter 3

In chapter 3, we prove our existence theorem of boosted ground states and traveling
solitary waves for focusing (fNLS), as well as the existence of symmetric boosted
ground states. Moreover, we show properties such as regularity and spatial decay.
The results of this chapter are partly formulated for a general pseudo-differential
operator L satisfying appropriate conditions; we will emphasize when we restrict
ourselves to the special case L = (—A)®. Appendix B contains important theorems
we use in this chapter, such as the compactness modulo translations method to solve
the variational problem. We also examine the operator (—A)* 4 v - V.

Chapter 4

In chapter 4, we prove our radial scattering theorem for defocusing (fNLS). In
Appendix C we collect the Strichartz estimates available in the radial case, introduce
the relevant function spaces and prove Morawetz’s inequality.
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Abbreviations

Cr(R")
7 (R)

<" (R")
C(X;Y)

L/(R"), L2(R)

g
LILT (I x R)

Hs,p(]Rn)

H(R)

Space of smooth functions f : R® — C with compact support
Schwartz class of smooth functions f : R — C whose deriva-
tives of arbitrary order are rapidly decreasing

Space of tempered distributions (topological dual to . (R"))
Space of continuous functions f : X — Y, where X and Y
are normed spaces

Space of measurable functions f : R" — C with |f].» < oo,
equipped with the p-norm

1
1l = (Sgn lu(@)[Pdz)?, 1< p <o,
es5 SUD (2], P = 0

Inner product on L*(R"): (f, g) = 5. f(z)g(z)dz
Space of measurable functions f : I — LI(R™), where I < R
is a time interval, equipped with the mixed space-time norms

= (SI Hf(t)Hq;(Rn) dt) ! , Q<0

Li(I) ess sup;er | f ()| ey, g =0

sz = |1 iscen

Fourier transform of f with the convention

1
(2m)2

(FNHIE) = fla)e ™ du
R’ﬂ
Inverse Fourier transform of f, i.e.

1
(2m)?

(7)) = vy | S de

Inhomogeneous Sobolev space of distributions f € .#/(R")
with .
F+[EP)2Tf] e LP(R™),

equipped with the norm

| flee = [T+ [€2)2F £l

Hilbert space H®?(R")






2 Blowup for Fractional NLS

2.1 Introduction and Main Result

In this chapter, we derive general criteria for blowup of solutions u = wu(t, z) to the
initial-value problem for the fractional nonlinear Schrodinger Equation (fNLS) with
a focusing power-type nonlinearity:

{ i0u = (—A)u — |u|*"u

u(0,2) = ug(x) € H*(R"), forxeR" u:[0,T)xR" — C. (ENLS)

Here n > 1 denotes the space dimension, the operator (—A)® stands for the fractional
Laplacian with power s € (0,1), defined by its symbol |£|** in Fourier space, and
o > 0 is a given exponent such that o < o, if s < 7 and o < 0, otherwise, where

2s : n
_ s ifs<g, 2.1
T - { +00 otherwise. (2.1)

The number o, = 04(n,s) is called the H*-critical exponent for (fNLS) in n di-
mensions. The local well-posedness theory! for (fNLS) and our range of s € (0, 1),
n = 1, and exponents o > 0 is not fully understood yet - see, e.g., [GHI1], [HS15b],
[GWT1]; see also [GSWZ13| for well-posedness results in the energy-critical case
under the assumption of radiality. For this reason, we shall work with sufficiently
regular solutions, namely we will assume that u € C([0,T); H*(R")).

In analogy to classical NLS (i.e., s = 1), we have the formal conservation laws
for the energy E[u] and the L?-mass M[u] given by

1 1

Elu] = §J [(—=A)2u*dx — o & 2f lu|**?dz, M[u] = f lul*dz.  (2.2)

Scaling Behaviour of (fNLS) and Notions of Criticality

Note that when u(t, z) solves (fNLS), then?? so does the rescaled version

ux(t, z) = Aeu(A\*t, Ax), A > 0 a dilation factor.* (2.3)

1See [Len07] for the case of Hartree-type nonlinearities.

2Use the definition (—A)%uy(t,z) = 3"*1[\§|25u/>\’(t,\')] (z), the behaviour of the Fourier transform
under dilations (see, e.g., [LP09, eq. (1.5)] and the change of variable 7 := §

3The initial datum is considered simultaneously transformed, ug — A= ug ().

4(2.3) says in particular that time has 2s times (twice in the NLS casel s = 1) the dimensionality

of space; see [Tao06, p. 114].
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Equation (fNLS) is called H7(R™)-critical if the scaling (2.3) leaves the homoge-
neous H”(R") Sobolev norm invariant, i.e. (since a calculation shows |lux(t,-)[%, =
AT 2|y (A2, %), iy = 5 =2 (see also [KSM14, eq. (1.8)]). Defining therefore
the scaling index

n s
ci=— — —, 2.4
Sei=g = (2.4)

we have [ux(t, )| gse = (A2t )| ., that is, (fNLS) is H* (R™) critical. Reflecting
the scaling properties of (fNLS) and the conservation of M|u], the cases s. < 0,
s. = 0 and s. > 0 are referred to as mass-subcritical, mass-critical and mass-
supercritical, respectively. The case s, = 0 corresponds to the exponent o = 28

n
(equivalently, to the dispersion rate s* = Z¢).%

The second conserved quantity, F|u], gives rise to a second notion of criticality.
Namely, the case s, = s is referred to as energy-critical; in this case the kinetic
energy |(—A)2u|zz = |ullg. of the solution is indeed a scale-invariant quantity of
the time evolution [KSM14], as seen in the above computation. The energy-critical
case corresponds to the endpoint case ¢ = o, = nESQS in n > 2s dimensions (cf.
also [BL15, p. 2|), equivalently, to the dispersion rate s, = 2(5—21) The cases
Sc < S, s. = s and s, > s are called energy-subcritical, energy-critical and energy-
supercritical, respectively. Note that the energy-critical index is always smaller than

the mass-critical one, s, < s*.

One can expect blowup for (fNLS) in finite or infinite time only in the mass-
supercritical and mass-critical cases s. = 0. Namely, in the mass-subcritical case
s. < 0, one can use the conservation laws for the energy E[u] and mass Mu]
together with the sharp fractional Gagliardo-Nirenberg inequality (A.12) to obtain
an a-priori bound (depending only on the given parameters n, s, o and the conserved
quantities E|ug] and M|ug]) on the H*(R™) norm of any H*(R")-valued solution

u(t):

1 . 1 .
Eluo] = Elu(t)] = 5(=2)2u(®)]z2 - 5~ n 5 w7572
1 El 2 Cnscr El L 20+2—22
> = _ ) y — 19, _ 3 52 R s 2‘5
> Dt - Syt e 29)

1 s s ng
= SI(=2)2u(®)]zz = C(n, 5,0, Mluo]) [(=A)2u(®)] 2
This gives

s

[(=A)2u(®)[Z> < 2E[uo] + 2C(n, 5,0, M[ug])[(=A)

@

no
s

L2

|

u(t)
< 2E[ug] + C(n, 5,0, Muo]) + }9|<—A>5u<t>ri2,

(2.6)

SClassical NLS (s = 1) is thus L?(R")-critical for o = 2/n; for instance: cubic NLS in 2 dimen-
sions, and quintic NLS in 1 dimension; cf. [KKSM14].
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by Young’s inequality (ab < I%ap' + %b’”), after defining the number p = %, which

is greater than 1 due to s, < 0. Now indeed there follows the claimed a—prisori bound

H<_A)%u(t)”%2 gn7S7J,M[u0],E[u0] 1. (27)

Hence (the L? norm is conserved) a local-in-time solution u € C([0,T); H*(R"))
(with some T' < ) has no chance of blowing up in H*(R™) as ¢t 1 T.

Ground States

Furthermore, one expects in analogy to classical NLS theory that sufficient con-
ditions for blowup may be found in terms of quantities of so-called ground states
Q € H*(R"). These are optimizers of the Gagliardo-Nirenberg inequality (A.12)
(equivalently, minimizers of the associated Weinstein functional; see Appendix A.4
for more details) and satisfy the Euler-Lagrange equation

(-A)PQ+Q-1Q"Q =0 nR" (2.8)

in the energy-subcritical case s. < s. In the energy-critical case s = s, (which
requires n > 2s), the relevant object @) € H*(R") is the ground state, which is the
optimizer for the Sobolev inequality (A.18), normalized such that it holds

(—A)Q—Q~

Uniqueness (modulo symmetries) of ground states @) € H*(R"™) for (2.8) and all
s < s and any n > 1 was recently shown in [FFL13, LS16]. On the other hand,
uniquenss (modulo symmetries) of ground states @ € H*(R™) for (2.9) is a classical
fact due to Lieb [Lie83].

50 =0 inR~ (2.9)

Our Theorem: Sufficient Blowup Criterion

The above mentioned sufficient blowup criteria in terms of quantities of ground
states for fractional NLS indeed exist, as the following main result clarifies.

Theorem 2.1 (Blowup for (super-)critical focusing fNLS with radial initial data).
Letn>2, se(3,1),0<s.<s witho < 2s. Assume that u € C([0,T); H*(R"))
is a radial solution of (INLS). Furthermore, we suppose that either

Elug] <0

or, if Elug] = 0, we assume that

{E[quScM[uo]w < E[Q]*M[Q]"*,
[(=A)3uo 35 uol52% > [(—A)3Q);3

c
L2

Q72"

Sc
LQ

Then the following conclusions hold.



CHAPTER 2. BLOWUP

(i) L*-Supercritical Case: If 0 < s. < s, then u(t) blows up in finite time in
the sense that T < +o0 must hold.

(ii) L*-Critical Case: If s. = 0, then u(t) either blows up in finite time in the
sense that T' < +0o must hold, or u(t) blows up in infinite time such that

I(=A)2u(t)||2 = Ct°,  for all t > t,,
with some constants C' > 0 and t, > 0 that depend only on ug, s and n.

Remark 2.2. Let us make the following remarks:
(1) The condition o < 2s is technical; see the proof of Theorem 2.1 for details.

(2) In the energy-critical case s = s, it may happen that Q ¢ L*(R") and thus
M[Q] = +o0; see Appendix A.4 below. In this case, we use the convention
(+0)? = 1. Hence the second blowup condition above becomes

{E[uO] < E[Q]
[(=A)3ugl 2 > [(~A)3Q) 2

when s = s..

(3) In the L-critical case s. = 0, the second blowup condition stated above is void,
since we then get M[ug] < M[Q] and M[ug] > M[Q], which is impossible.
Thus for s, = 0 the only admissible condition is E[ug] < 0 (i.e., energy below
the ground state energy, see Remark A.9).

(4) The exclusion of the half-wave case s = % is due to the lack of control for the

pointwise decay of a radial function u € H2 (R") with n > 2. In fact, the radial

Sobolev inequality (Proposition A.4) is a central ingredient in our estimates,

but it assumes s € (%, %) This also prevents us from going down to n = 1.

(5) The idea of using the scale-invariant quantity E|ug]®* M[ug]*~* for blowup for
classical NLS comes from [HRO7].

Remark 2.3. Let us mention that a blowup result can also be established for frac-
tional NLS posed on a bounded star-shaped domain 2 < R™ with smooth boundary
0f. In this setting, one imposes the exterior Dirichlet condition on R™\{2. One is
able to go down to n = 1 dimension, and does not have to impose any symmetry
condition on the solution u. Under the sole assumption of negative energy, one
can then conclude finite-time blowup in the L?-supercritical cases 0 < s. < s. See
[BHL16, Theorem 2| for details.

Remark 2.4. In the framework of classical NLS (s = 1), it was Ogawa and Tsutsumi
[OT91] who proved finite-time blowup under the assumptions of radial symmetry
for the initial datum ug € H'(R") and negative energy E[ug] < 0. They thereby
generalized (in the radial case) the blowup results of Glassey |Gla77] which hypoth-
esized finite variance for the initial datum, i.e., §g. [2]|*|uo(2)|* dz < +00. See also
[SS99] for a textbook discussion.
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Comments on the Proof and the Virial Identity

By integrating (fNLS) against i(z - V + V - 2)u(t) on R", we make the observation
that any sufficienty regular and spatially localized solution u = wu(t,z) of (fNLS)
satisfies the following virial identity

% <2 ImJ ) u(t)x - Vu(t) dx) = donE[ug] — 2(on — 25)|(=A)2u(t)[|?.. (2.10)

To see this, we integrate by parts: we have
(—=i(z -V + V- 2)u,iduy = i {{x - Vu,icguy + {V - (zu),i0uy}
=1 {(x - Vu,iduy — (u,x - Vidgu)} ,
and
(=i(x -V + V- -2)u,(—A)uy =i{{z - Vu, (=A)°uy + (V- (zu), (—A)*u)}
=i {2s(~A)%u| 2},
where we used (z - Vu, (—A)*uy = (252) [(—=A)2ul?, and dive = n. As for the

nonlinear part, we obtain

—{—=i(x -V + V- 2)u, [u|*?u) = —i {(x -V, [ul*7u) + (V- (zu), |u|20u>}

n
= {@ -V, [u*7uy — u*7u, 2 - V) + UZ . |u\i‘;:i}

by using the identity ~5V(|u[*’*?) = V(Ju[**)[u|*. Thus

(x - Vu,idu)y — (u, - Vi) + {zx - Vu, [ul*?u) — {u*?u, z - Vu)

s on - s
=2s(=A)2ulg: - — ] [ul755% = 20nE[uo] — (on — 25)[(=A)2u| 7.

(2.11)

Let us use (fNLS) once again in order to rewrite the last two inner products on the
left side, namely

{ul*u, z - Vuy = ((=A)u, x - Vu) — (idu, x - Vu)
- (37 -0y

2, — (idyu, x - Vu),

and, by conjugation,

28 —n

(x - Vu, [ul*u) = < 5 ) [(=A)2u|2s — (z - Vi, idu).

Now (2.11) simplifies to

(i, - Vu) — (u, @ - Vidyu) = 20nE[ug] — (on — 25)|(—A)2ul2s,
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that is,
d S
— ZE@’ x - Vu) = 20nEfug] — (on — 28)[(=A)zul|7.. (2.12)
Conjugating the last equation, we also have
d —_— S
+ ZE@’ x - Vu)y = 20nEfug] — (on — 28)[(=A)zul|7.. (2.13)

Now, if we sum (2.12) and (2.13), we see that (2.10) holds.

The virial identity (2.10) does not give us enough information to deduce singu-
larity formation for solutions with negative energy E|ug] < 0 in the L?-critical and
L?-supercritical cases when o > % Historically, there have been two methods which
successfully yielded blowup results. They are described in the following subsections.

2.1.1 Coupling to a Variance Law

For classical NLS (i.e., when s = 1), we have the Variance-Virial Law, which can be
expressed as

%% UR \xmu(t);?dx) =2Im (Jnﬂ(t)x - Vu(t) daz) (2.14)

provided that the variance (g, [z|*|ug|*dz < 400 is finite. To see this, pull the
time-derivative under the integral sign and insert classical NLS to get

d 2 . 2 . 2
(el w) = Cu, [i(=4), 27w = iy, [[2]7, V- V]u).

Now, use [A, BC| = [A, B]C + B[A, C] and compute the remaining commutators
to obtain

d ) .
ey = =20 {Cu - V) + (V- (wu))}

from which (2.14) follows by the final integration by parts

(u, V- (zu))y =—| Vu(t) zudr = —(u,z - Vu).
Rn

By combining (2.10) and (2.14), one obtains Glassey’s celebrated blowup result for
classical NLS with negative Hamiltonian E[ug] < 0 and finite variance (see, e.g.,
[5S99, Theorem 5.3] for a proof and textbook discussion). In fact, this combination
yields

1 d2

2 de?
where the second term on the right side vanishes precisely in the L?-critical case. In
the L2-critical or L2-supercritical case, this gives

1 d°
2 dt?

Cu(t), lz[*u(t)) = 4onE[u] — 2(on — 2)[Vu(t)|72,

(u(t), |z)*u(t)) < donElue],
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—— inverted parabola

| | |
0 1 2 T.
Time ¢

Figure 2.1: Variance lies below an inverted parabola

so that by integrating in time twice, we get (abbreviating V (¢) := {(u(t), |z[*u(t)))
0 < V(t) < 4onEfuot* + V'(0)t + V(0).

If the energy is negative, the right side in the last inequality becomes negative in
finite time (see figure 2.1). However, the variance V(¢) is nonnegative, hence the
solution cannot extend to all times (see also [Rapl3]).

But Glassey’s argument breaks down in the nonlocal situation s # 1, since
the identity (2.14) fails in this case, as one readily checks by dimensional analysis.
Indeed, if s = 1, the quantity (u, [i(—A), |z|*]u) scales like length to the power 0,
as required by the virial quantity on the right side of (2.14), where we note that
x - V scales in the same way. If however s # 1, the quantity {(u, [—i(—A)%, |z|*]w)
scales like length to the power —2s 4+ 2 # 0. Therefore the law (2.14) fails to hold
for s # 1.

Rather, it turns out the suitable generalization of the variance for fractional
NLS is given by the nonnegative quantity [BL15]

1—s

VO [u(t)] = Jnﬂ(t)x (=AY Erut) do = |2(—A) T u(t)|7e. (2.15)

This can be justified by formal computations in the following way. Given any suffi-
ciently regular and spatially localized solution u(t) of the free fractional Schrodinger
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equation id,u = (—A)*u, a calculation yields the following relation of V®)[u(t)] to
the virial:

1 d -
s’ ()] =21m ABz - V() do. (2.16)

Indeed, similarly as before, we obtain by inserting the free fractional NLS that

d s _ . s 1-s
V()] = (w,[i(-A), - (~A)*a]w

wp (=)' a]u)

<u |§|25 Za§k|§|2 (1=s Zafk]u>

Bl
i

after transforming to Fourier space with x/,:f (&) = 10, f (£). Using the above com-
mutator rule, one checks that [|£]2%,idg, |£|?32)ide, | = 25 (£40¢, + O¢,&x). Inserting
this into the previous equation and transforming back to physical space gives

d

dtv [ ()] = —2si {u,x - Vuy + (u, V - (zu))),

from which (2.16) follows by a final integration by parts as before. Note however that
when one considers the nonlinear equation, then for s = 1 the appearing commutator
[Ju]??,|z|?] clearly vanishes, while for s # 1 the appearance of [|u|?*?,z - (—A)!'~*z]
significantly complicates the situation. Namely, in the latter situation, identity
(2.16) breaks down and the correct equation acquires highly nontrivial error terms
due to the nonlinearity. In particular, for s € (0,1), these error terms seem very
hard to control for local nonlinearities f(u) = —|u|**u, even in the class of radial
solutions. So far, the cases where the application of V®)[u(t)] has turned out to be
successful to prove blowup results for fractional NLS deal with radial solutions and
focusing Hartree-type nonlinearities, e.g., f(u) = —(|z|™ = |u|?)u with v > 1; see,
e.g., [FLO7]. In the context of biharmonic NLS (s = 2) with local nonhnearlty, a
localized version of V®)[u(t)] has been used to prove blowup results, by using some

1-s

smoothing properties of (—A)2 when s > 1; see [BL15].

2.1.2 Localized Virial Law

In the context of classical NLS (s = 1), Ogawa and Tsutsumi [OT91] argued that
it is reasonable to drop the finite-variance assumption and pass from the space
HY(R™) n L?(R"; |z|> dz) to the more natural energy space H'(R™). They were able
to prove blowup for radial negative-energy solutions with infinite variance of L*-
supercritical and L?-critical focusing classical NLS. Their method by-passes the use
of a variance-type quantity, and replaces the unbounded function x by a suitable
cut-off function ¢ such that Vpg(z) = x for |z| < R and Vpg(z) =0 for |z| » R.
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It is their strategy of so-called localized virial identities that we implement for
fractional NLS to prove Theorem 2.1. However, when one tries to directly apply the
arguments in [OT91] to study the time evolution of the localized virial M., [u(t)]
for fractional NLS, one encounters severe difficulties due to the nonlocal nature of
the fractional Laplacian (—A)®. In particular, the nonnegativity of certain error
terms due the localization, which are pivotal in the arguments of [OT91], seem to
be elusive. To overcome this difficulty, we employ the representation formula

o]

sin s —-A
~A) = =12 g 2.1
(o) = = e, (217)

valid for all s € (0, 1), which is also known as Balakrishnan’s formula used in semi-
group theory (see formula (2.1) in [Bal60, p. 420]). In fact, by means of (2.17), we
are able to derive the differential estimate

d

EMW[”@)] < donFElug| — 25“(_A)%U(t)”%2

(Z)+) (2.18)

on(1) (14 (-850
for any sufficiently regular and radial solution u(¢, ) of (fNLS) in dimensions n > 2
and s € (%, 1). Here § = on — 2s > 0 is a strictly positive constant in the mass-
supercritical case s, > 0, and the error term og(1) tends to 0 as R — oo uniformly
in time ¢. With the help of the key estimate (2.18), we can then apply a standard
ODE comparison argument to show that u(t) cannot exist for all times ¢t > 0 under
the assumptions of Theorem 2.1. For the mass-critical case s. = 0, we have § = 0,
and the differential estimate (2.18) needs to be refined and leads only to the weaker

conclusion of possible infinite time blowup as stated in Theorem 2.1 (ii).

Furthermore, we can exploit the idea of using Balakrishnan’s formula (2.17)
to obtain Morawetz-Lin-Strauss estimates for fractional NLS and thereby establish
scattering results for defocusing (repulsive) fractional NLS. This is done in chapter
4.

2.2 Localized Virial Estimate for Fractional NLS

In this section, we derive localized virial estimates for radial solutions of fractional
NLS. First, we derive a general formula for solutions u(t, ) that are not necessarily
radial. Then we sharpen the estimates in the class of radial solutions.

2.2.1 A General Virial Identity

Letn>1, se [%, 1), and o > (0. Throughout this section, we assume that

we C([0,T); H*(R") n L***(R"))
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is a solution of (fNLS). Note that, at this point, we do not impose any symmetry
assumption on the solution u(t, z). Note also that for u(t) € H**(R"), conservation
of mass M|u] and energy E[u] follows directly by integrating (fNLS) against @(¢)
(and taking the imaginary part [Caz03, p. 56]) and ¢,u(t) (and taking the real part
[Caz03, p. 56]), respectively. There is no need for an approximation argument in
order to have well-defined pairings.

If the exponent o is not H?*-supercritical (in particular if s. < s), the con-
dition v € C([0,T); L**2(R™)) is redundant by Sobolev embeddings. Further-
more, we remark that the following localized virial identities could be extended
to u € C([0,T); H*(R™)), provided we have a decent local well-posedness theory
in H*(R"). However, as pointed out before, we prefer to work with strong H?:-
valued solutions for (fNLS) in order to guarantee that the following calculations are
well-defined a-priori.

Let us assume that ¢ : R” — R is a real-valued function with Vi € (W3*(R™))".
We define the localized virial of u = u(t, z) to be the quantity given by

Molu(t)] :=2Im | w(t)Ve-Vu(t)dr = 2Im | @(t)drpdyu(t) dz. (2.19)
R™ R™
The localized virial M[u(t)] is well-defined, since u(t) € H*(R") with s > 3 and

Lemma A.1 immediately gives the bound

(Mo[u®)]] < C (V| e, [Ap] o) [ult)

[zt

The idea is now to study the time evolution of the localized virial. To do that, we
introduce the auxiliary function u,, = u,(t,z) defined as

1 B u(t,§) )
() = cs———u(t) = ¢, F 1 =2 th 0, 2.20
U (1) C—A—i—mu() c (\§]2+m> with m > (2.20)
where the constant
sin s
L= 2.21
c - (2.21)

will be a convenient normalization factor. By the smoothing properties of (—A +
m)~!, we have that wu,,(t) € H*"2(R") holds for any ¢ € [0,T) whenever u(t) €
H*(R™).

Lemma 2.5 (General virial identity). For any t € [0,T), we have the identity

d «© S
EMcp[u(t)] = J mSJ {40kum (0 0) O — (A*@)|um|?} dzdm
O n
_ 20 2042
00 | @ouprra,

where Uy, = uy(t, x) is defined in (2.20) abowve.
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Remark 2.6. (1) If we make the formal substitution and take the unbounded func-
tion p(z) = Ix\ , so that V() = =, we have 0%p = 1 and A%p = 0. By applying
the identity

f f\wm\?dxdm—su A)sula,

valid for any u € H*(R™) (see (2.33) below), we recover the formal virial identity
(2.10) by an elementary calculation.

(2) From the proof given below (see (2.32)) and Lemma A.2, we deduce the bound

{40kum (0 0) O — (A@)|um|?} dzdm

SIVEl= [ (=A)2ulZe + |A%0] 50 [ Al [ule < ClulFs,

where C' > 0 only depends on ||V|ys.c.

(3) The usage of the auxiliary function u,, and Balakrishnan’s representation for-
mula (2.17) for the fractional Laplacian (—A)® is inspired by the joint work
[KLR13] of Krieger, Lenzmann and Raphaél.

Proof of Lemma 2.5. Given ¢ : R" — R, let us define the (formally) self-adjoint

operator
I'y:=—i(Vep-V+V-Vp) (2.22)

acting on functions via
Tof = —i(Ve - Vf +div((Ve)f) = —2iV¢ - Vf — i(Ap) f. (2.23)
Integrating by parts, we readily check
Mo[u(®)] = Cult), Toult)).

By taking the time derivative and using that wu(t) solves (fNLS), we get

M u(t)] = Cult), [(~A) T Ju(r)) + Cult), [ T Jut))| (2:24)

where [X,Y] = XY — Y X denotes the commutator of X and Y. Indeed, as I, is
time independent and linear, u(t) solves (fNLS), (—A)* is self-adjoint and |u|?? is
real, it follows that

M [u(t)] = G, Ty + ot Tyt

= i{(=A)u = [u]*u, Tpuy — iu, Ty (= A) u — [u|*u))

= i AP T  uu T) = (Tl A) ) + o Tyl

= i [-80 Tol) — a [l,T o
— [~ A), 1T Juy + Gy [ Tl
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[Alternatively, directly use the self-adjointness of I',, to get

d

EJ\@, [u(t)] = (O, Typuy + (u, T'youy = (Ou, T'pyuy + c.c.

Then also use the self-adjointness of (—A)* and the real-valuedness of |u|** to derive
(2.24).]

In the language of quantum mechanics, (2.24) can be seen in the light of Heisen-
berg’s formula, which states that the evolution of the expectation of a quantum-
mechanical observable A is related to the expectation of the commutator of that
observable with the Hamiltonian H of the system by

d . 0A
7 ult), Au(t)) = iCult), [H, Alu(t)) + Cu(t), —-u(t))

whenever u(t) satisfies the Schrodinger equation idyu = Hu; cf. [Gri95, p. 123].
In our case, the expectation of the time-independent operator I'y, is precisely the
virial My [u(t)], and we have the Hamiltonian H = (—A)® 4+ V with the nonlinear
potential V' = —|u|?.

By our regularity assumptions on u(t), we have (—A)*u(t) € L*(R") and I'ju(t) €
H*7Y(R") ¢ L*(R") for s > 1. In particular, the terms above are well-defined a-
priori. We discuss the terms on the right side of (2.24) as follows.

Step 1 (Dispersive Term). For s € (0, 1), we have the so-called Balakrishnan’s

formula:

sinws (¥ —A
—A)* = sTl——  dm. 2.25

(=2) i L "OTA +m m (225)
This formula follows from the spectral calculus applied to the self-adjoint operator
—A and the formula® z* = sinzs {* m*~ ' —I—dm valid for any real number z > 0

and s € (0,1). The following commutator identity valid for operators A > 0 and B
(with m > 0 a positive number) is easily verified:

A m 1 1 1
Bl=|1- B|=— B| = A, B .
[A+m’ ] l A+m’ ] mlA—i—m’ ] mA—i—m[ ’ ]A—i—m

(2.26)
SIndeed, a consequence of the Residue Theorem is the formula [FB00, Satz 7.12]
“ m
J m* tR(m)dm = — Z Res(f;a), where f(2) := (—2)*"'R(2), (%)
0 sin A weC,

whenever A > 0,A ¢ Z, R(m) = % (with @ # 0 on Ryg) is a rational function such

that R(0) # 0 and lim,, ., m*|R(m)| = 0. Here C; = C\{z € R;z > 0} is the complex
plane slit along the positive reals. For us, the hypotheses are satisfied for A = s € (0,1)
and R(m) = —£-. We see that R and hence f has a simple pole at —z € C, with residue

r+m

Res(f; —x) = lim,_,_,(z — (—x)) f(2) = «*.
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Combining (2.25) and (2.26) with A = —A, we obtain the formal commutator
identity
sinws [ 1 1
—A)*, B] = feoeo——|-A, B|———— dm. 2.27
(8B = T [ A B (220)

Next, we apply this identity to B = iI', and we use that
[—A,iT,] = —40k(Ghp)0 — A% (2.28)

(apply the commutator to a test function and verify this equality by a direct calcu-
lation”). Let us now apply the formal identities above to the situation at hand. We
first assume that v € C°(R™) holds. We claim

wlariindw = [ mt [ {isuetonm, - %P} dvan, @20

where u,, = cs(—A + m)~'u with m > 0 and the constant ¢, > 0 defined in (2.21).
Indeed, for u € CP(R™), we can apply Balakrishnan’s formula (2.25) (where the m-
integral is a convergent Bochner integral) to express (—A)*u. Using (2.27), Fubini’s
theorem and (2.28), we obtain

s . sinws (1 _ 1
L=y = (o (B [P A )
sinws [* 1 1
- Cu, ————[~A,il )| ————u )d
- L m<u,_A+m[ ) ¢]_A+mu> m
= Joo m®( ¢ ! u, [—A,il,]e ! u ydm
B 0 S—A—l—m ’ e S—A—i—m

= JOOO m’ J ) {tm (—40,((030)Ortm) — (A%Q)un) } dzdm

o0
— J mSJ {46kum(8£l¢)é’lum — (A2g0)|um|2} dx dm,
0 n

integrating by parts in the last step. This yields (2.29) for u € C(R™).

The next step is to extend (2.29) to any u € H*(R") by the following approxi-
mation argument. Let (u;)jen © C°(R") be a sequence such that u; — u strongly
in H**(R™). We have

Cuj, [(=A)% il Ju;) — (u, [(=A)%, 0 Ju). (2.30)
To see this, write

s [(=A)% il Jug) = Cu, [(=4)°, 0 Ju)
=Cuj = u, [(=A)% il Juj) + Cu, [(=A)*, il [(u; — u)),

"We have [—A,il, ] = —A(V - (V)¥) + Vg - Vi) + V - (VpAr) + Vi - VAY.
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and show that both terms on the right side tend to zero as j — co. Namely, using
the self-adjointness of (—A)® and Iy, the first term reads

(uj —u, [(=A), i Ju;) = (=A)"(u; — u), ilpu;) + Gl (u; — u), (—A)%u;).
Hence for the first term the Cauchy-Schwarz inequality gives

[Cuy = u, [(=A)% il uy)l
<I(=2)*(uj — w2 ]ilpu;l 2 + [T (u; — w) |2 [ (=A)"u; L2
Sluj = wllgzsujl 2 < Ju; — ul e — 0.
Here we also used that the linear operator il', is bounded H*¥(R") — L?*(R"™),

which follows from Holder’s inequality, the regularity Vi € (Wh*(R"))" and the
continuity H*(R") — H*(R") for s > 1:

lilofllze < [V - Ve + [(Ap) fz
S Vel Ve + [Ag] =] f] 22
< C(IVelwra)flm < CUVelwreo) | flzzs,  for all fe H2(R™).

Analogously, the second term is estimated by

|<u7 [(_A>Sa irw](uj - U)>| < HUHH25

uj — ul g2 < Juj; — ullg2s — 0.
Now (2.30) follows, and this yields the left-hand side of (2.29). Next we claim

lim Gluj, u;] = Glu, u] (2.31)

J—©

where we define the bilinear form
o0
G[f,9] = J msj 6kfm(0,§lgo)8lgm dzdm
0 n

with f, = ¢s(=A +m)~'f and g, = ¢s(—=A +m)~'g. Since u; — u strongly in
H?$(R™), the convergence (2.31) follows from

GLf 9]l < [0 le | (=A)2 2] (—A)2g

To prove (2.32), first note that, by using Plancherel’s and Fubini’s theorem,

o0 : o0 Sd ~
[ [ P anam = [ ([ R ag

T Jo (€2 +m)

= | (SRR de = sl-8)E 15

2.8 (2.32)

(2.33)

SWrite Glu;, u;] — Glu, u] = Glu; —u, u;]+ Glu, u; —u] and use the strong convergence u; — u in
H?*(R™) (in particular the boundedness sup;-; [[(—A)2u;|| > < 1) to see that (2.32) is sufficient
for (2.31).
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for arbitrary f e H $(R™).Y Next, we introduce the bilinear form

H[f gl := G[f, g] + ps N f(=A)’gdz  with g := ess-sup,epa [ (050)(x)],

where |A| denotes the operator norm of a matrix A € R"*". Thus from (2.33) and
by using the pointwise lower bound 0, f, (030) 01 frn = — |V frn]? we get

HUA)Z = [ [ V£ dedm = s (-A) ] = 0

that is, the positive semidefiniteness of H[f, g]. On the other hand u < [0%4| 1
and thus

LT <GS s | T2 fae

Q0

<MJ msf IV fml?dodm +us | f(=A)*fda
0 n an

< |l I(=2)2 £

Since H|[f, g] is positive semidefinite, we have the Cauchy-Schwarz inequality |H|[ f, g]| <
v Hf, flv/H][g, g]. Consequently, we deduce

GLf. 9]l < VHLf, fINVHIg, 9] + us|(=A)2 f|l 2] (—A)2g
< | 0uel e [ (—A)2 fll 2| (=A)2g

which is the desired bound (2.32).
To complete the proof of (2.29) for u € H?*(R"), it remains to show that

|2

|L27

lim Kuj,u;] = K[u, u] (2.34)

Jj—=©

for the bilinear form
w [
K(f g]:= J msf (A%¢) firnGm da dm.
0 n

But, by following the proof of Lemma A.2, we obtain

[KLf, 9]l < [8%]50 | Ap] o1 2219 2,

from which we immediately deduce (2.34).

9Apply (*) in footnote © - but this time with A = s + 1 € (1,2) and R(m) = W Since R,
hence f has a pole of order 2 at —|¢|?, we have [FB00, Bemerkung 6.4] that Res(f;—[¢]?) =
FO(=[e?), with £(2) = (= + [¢[*)2f(2) = (=2)°, so that Res(f;—[¢[*) = —s[¢[**~2. Together

with sinmA = —sin7s, the claimed formula follows from ().
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Step 2 (Nonlinear Term). This part of the proof is analogous to the classical
NLS. In fact, we compute

Cu, [=[u*?, iTpJuy = =Cu, [[ul*, Vo - V + V- Voluy = 2¢u, Voo - V([ul*)u)

20
A 20+2d
2 | @ouprras,

=2| Ve V(jul*)|ufdz = -
Rn

where the last step follows from integration by parts after inserting the identity
V(|u[**2) = 24V (Ju|*) |uf?, which is easily verified.'® The proof of Lemma 2.5 is

now complete. O

2.2.2 Localized Virial Estimate for Radial Solutions

In this subsection, we will apply the general virial identity Lemma 2.5 for the local-
ized virial M[u(t)] when ¢ is a suitable approximation of the unbounded function
a(z) = %|z|* and hence Va(z) = z. This choice will result in a localized virial
identity that will be exploited to prove blowup for radial solutions of (fNLS).

Let ¢ : R® — R be as above, that is ¢ is a real-valued function such that
Ve € (W3*(R"))". In addition, we assume that ¢ = (r) is radially symmetric
and satisfies

2
L for r <1
ry=<2’ and  ¢"(r) <1forr = 0. 2.35
2) {Const. for r = 10 i) ( )
For given R > 0, we define the rescaled function ¢ : R® — R by setting
r
or(r) = R%p <E) . (2.36)
The following inequalities hold:
1—¢gh(r)=0, 1-— #r(r) >0, n—Apgr(r)=0 forallr=0. (2.37)

r
Indeed, the first inequality follows from ¢} (r) = ¢” (%) < 1, while the second
inequality follows by integrating the first inequality on [0, ] and using ¢'(0) = 0.
Finally, the third inequality follows from n—Agg(r) = 1—90’}’3(7")4—(71—1){1—@} >
0 thanks to the first and the second inequality.

For later use, we record the following properties of ¢g, which can be easily
checked:

( x forr <R
\Y4 =Ry (%)% = L
#r(r) 4 (R> 2] {0 for r = 10R
3 HV]()ORHLw < R*77 for 0 < j < 4, (238)
: {|z| < 10R} for j=1,2
supp(V/? c .
pp(V'¢r) {{R < |v] < 10R} for3<j<4

\

OIndeed, from V(|u|??)|u|?

= o(|[u®)? IV (Jul?)|ul* = olul??V(Ju]?), we see that V(|jul?7+?) =
V([ulP) ul® + [u?7V(|ul?) = (1

(1+3) V(|uP)lul*.
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For such a radial ¢, we prove the following differential inequality for the time
evolution of the localized virial My, [u(?)].

Lemma 2.7 (Localized radial virial estimate). Let n > 2, s € (%, 1), and assume
in addition that v = u(t, x) is a radial solution of (fNLS). Then

d .
EMSOR [U(t>] < 40nE[u0] — 2(0‘n — 23>H<—A)

ol

u(t)|z2

+ O (3—28 4 OR-IM=D%es| (A1)

Zte
L2 Y

—(2521)0. Here C' > 0 s some constant that depends only on

for any 0 < e <

Mluol,m, s,0 and ¢.

Remark 2.8. We assume the strict inequality s > % in order to have the radial
Sobolev (generalized Strauss) inequality (2.39). In the limiting case s = 3, this
inequality is no longer valid, and we cannot control the error induced by the non-

linearity.

Proof of Lemma 2.7. We shall often omit the time variable ¢ in the argument of
u(t,z) for notational convenience. First, recall the Hessian of a radial function
f :R" - C may be written as

arf TRy

+_
r 72

Ty

A - (- 2)

o2y
Thus, we can rewrite the first term on the right-hand side of Lemma 2.5 as follows!!
0 0] 0
4J m® J Ortm (030R) Oty Az dm = 4J m® J (20R)|Vity|* dz dm.
0 n 0 n
From (2.33) and the first inequality in (2.37) we thus deduce

o0
4 J m’ Ortiyn (03,0 R) Oyl dz dm
0 Rn

s (=AY su()[2 — 4J mJ (1 2pp) [V |2 da dm
0 n
< 45|~ A)Eult)

Moreover, from Lemma A.2 we have the bound on the Bi-Laplacian term

Q0
[Fwe | <A2wR>\umr2dxdm'sA%anwmsoRzzﬂu&gsR-%,
0 n

"Recall that, by hypothesis, u(t) is radial. Hence, so is u, and we have Qjtup, = Optim 2L, Optiy =

a5
-

Ortm
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where in the last estimate we used the conservation of mass, i.e., |u(t)|?2 = |uo|3-,
and the properties (2.38) of ¢r. The last term on the right-hand side of the general
virial identity Lemma 2.5 is handled by Apg(r) —n =0 on {r < R}, which gives

20 20n
A 20+2 de = — J 20+2 d
a+1JRn( er)lu S [ v

20
oc+1

J (Apgr — n)u[**da.
|z|=R

Next, we recall the fractional radial Sobolev (generalized Strauss) inequality [CO09)
(restated in Proposition A.4 here)

sup |z[2 % u(w)| < C(n, a)|(—A)2uf 2 (2.39)
2eR™\ {0}
for all radially symmetric functions u € H “(R™) provided that % < a < 5. Now,
let 0 < ¢ < @ and set o = %+5%, which implies that % < a<s<
5. From the interpolation inequality [BCD13, Proposition 1.32] ||(—=A)2u|z: <
177 [e3

Jull 2 (=2)2ul 72 < [(-4)3 (2.39), we
deduce

jl | a7 de < fulsful g < C(n,a,e) R ()| (=) Su)%3
x|=

< O(n, 0, 6) R (5| (—a)du
— C(n, 0, e) RO (—A) 3 5.

Collecting all previous estimates, we realize that we have shown |[recall also the
property n — Apgr = 0 from (2.37), as well as the properties (2.38), namely that
|Apg|lLe <1 and Apr =0 for r = 10R)]

d s 2 20m 20+2
< —A)2 2 —
T oalu(0] <5l (ROl — 5 [ pult. o) o

# O (R CR D =)l )
:4gnE[u0] — 2(0'71 — 2S)H<—A>%’U/(t)H%2
+C- <Rf2s + CRfa(nfl)ﬁssH(_A>%UHE2+€> :

forany 0 < e < @, with some constant C' > 0 that depends only on M[ug], n, e, s

and 0. In the last step, we inserted the definition of energy E[u(t)] and used its
conservation, i.e., E|u(t)] = E[ug]. The proof of Lemma 2.7 is now complete. [

For the proof of part (ii) of Theorem 2.1 (blowup in the L?-critical case) one
needs to use the following refined version of the localized radial virial estimate
Lemma 2.7 involving the nonnegative (see (2.37)) radial functions

Vip(r)i=1—0%0p(r) =0 and Py r(r) :=n— Apg(r) = 0. (2.40)
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Lemma 2.9 (Refined localized radial virial estimate). Under the hypotheses of

Lemma 2.7 and additionally o = %, we have that

d n
el < 858w 4 [ [ {oun = ctnudi} (Tun Pz am
+O((1+n )R> +n(l+R>+R™),

for every n >0 and R > 0, where c(n) = 5= and 3 = = 25

Proof, see [BHL16, Lemma 2.3]. For notational convenience, we write ¢ = 1 g
and 19 = 1 g in the following. Recall ¢» = 0 on {r < R}. Inspecting the proof of
Lemma 2.7, we see that

oo
M, [u(t)] = 8sE[us] — 4 J mt [ 1|V 2 dm da
0 Rn

d

dt
4s

n + 2s

0
T2 g —f mSJ (A%0R) [ty |* dz dm
0 n

Volu
RTL

0
= 8sE[ug] — 4J m® | 1| Vuy|* dmd

0 R"

(2.41)

4s
n+2s Jg

Uolu| " T2 da + O(R™2).

We divide the rest of the proof into the following steps.

Step 1 (Control of Nonlinearity). Recall that supp ¢» < {|z| = R}. We

apply the radial Sobolev inequality (2.39) to the radial function ¢5*u € H5(R") and
use that |u|zz < 1, which together yields

4s
¢2|UI"S+2d:E=J (3" [ul) ¥ [uf* dz < 3" U\\Loo|x|>RHUHLz

|z|=R

—2s(p_2s E % .
S okl VNI O 0 (242)

s i — —2s 2s
<nl(=A) @ u)lfe + O PR), B = ——.

Rn

where in the last step we used Young’s inequality ab < naq+7f§bp with %4—5 = 1 such
that ¢ = -, 8 = %’, and n > 0 is an arbitrary number. For notational convenience,

let us define x := 2% . From the identity (2.33) we recall that

Al = [ [ [F0af? dedm, 2.3)

where we denote .

(XU)m = csm(xw
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for m > 0 and ¢, as in (2.21) above. To estimate the right-hand side of (2.43), we
split the m-integral into the regions {0 < m < 1} (low frequencies) and {m > 1}
(high frequencies), respectively.

To estimate the contribution in the low-frequency region, we notice that

1
)
0 n
where we make use of the bounds |- VerHLzﬁy <m~z, and | x|z~ < 1. To control

the right-hand side of (2.43) in the high-frequency region, we need a more elaborate
argument worked out in the next step.

2 1
dzdm < f m* Y xul7. dm < 1, (2.44)
0

L( w)
—A+m X

Step 2 (Control of High Frequencies m > 1). Note the commutator iden-

tity [ﬁ, x] = - A1+m [A, x]- A1+m, which in fact follows by inserting the identity
operator and then using the distributive law for operators:
1 1 1 1
- -~ V(—A _ _A -
[—A—i—m’X] —A—i—mX( +m)—A+m —A—i—m( +m)X—A—l—m
1 1 1 1
- V(A
—A—i—mX( )—A+m+m—A+mX—A+m
1 1 1 1
- (A _
—A—i—m( )X—A—i-m m—A—i—mX—A—i-m
1 1

A :

—A + m[ X —A+m

From this identity, we conclude

Vi = eV (——(w) ) =¥ (| x| ut x5 —
Xm =GV A TA T ) =% Arm XA AT

1
[Av X]Um’

= V(Xum) + CSV lm, X

}u=xVum+qum+m

with ¢, = /327 defined in (2.21). Thus we get

00]
< \Y
L m Jn A B Xum

0

<[ w1
1
0

< [ vt + A an <
1

2

o0
mmnsfnﬁWVwaﬁrwﬁwﬂéﬂm
1

2

<

—A+m

L2
V|7 N |AX|F 0
1—s 2—5 "’

where we used that [A, x] = 2(Vx)-V+Ax as well as the estimates | —7'— HL2HL2 <
1 1

— +mH 1o g2 S and conservation of mass in the last line. Similarly,

* V|3
J msf VXU |? dz dm < m

m~2 and H
we get
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Recalling that y = @Dz‘% with ¥y = n — Apg, the properties (2.38) are seen to imply
that Vx| < B! and |Ax|ze < R™?. Thus we can summarize the estimates
found above and (2.44) to conclude that

s (—A)2 (xu)|2: = f J | Vup?dedm + O(1 + R + R7Y). (2.45)
Step 3 (Conclusion). If we now combine (2.45) with (2.42), we obtain

@/)2

T2y = J J 2| V| dz dm

PR +n(1+ R2+R™)).

By inserting this back into (2.41) and setting c(n) = ;—5-, we complete the proof of
Lemma 2.9. O

2.3 Radial Blowup in R": Proof of Theorem 2.1

In this section, we prove the blowup Theorem 2.1. We start with the proof in the
case (i), i.e., the L*(R™)-supercritical case s, > 0 (equivalently, o > 2%).

2.3.1 Proof of Theorem 2.1, Case (i)

Let n > 2 and s € (%, 1). We consider the L2-supercritical case 0 < s, < s and
impose the extra (technical) condition that o < 2s holds (see below for details on
this condition). Recall that we suppose that

ue C([0,T); H*(R"))

is a radially symmetric solution to (fNLS). Let pg(r) with R > 0 be a radially
symmetric cutoff function on R™ as introduced in subsection 2.2.2. We shortly write

Ma[u(t)] := M [u(t)]

for the localized virial of u(t).

Case of negative energy: E|ug] <0

We will now exploit the localized radial virial estimate Lemma 2.7. As in that
Lemma, for any 0 < ¢ < M, we have a := l +e5- € (%, %) and hence that
—o(n—1)+es=—20 (% - O‘S < 0. Thus the number

—v :=max{—2s,—c(n —1) +es} <0
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is strictly negative and therefore we obtain for the error term in Lemma 2.7
) S B (L I-A) k)] )
for all R > 1. Now we define the (by L?-supercriticality s. > 0) positive number

0 :=on—2s > 0. Since R77 — 0 as R — +00, we can write down Lemma 2.7 in
the form (with og(1l) — 0 as R — 400 uniformly in time ¢)
%-i—a)

(2.46)

C - <R—25 + C«R—a(n—l)—i-asH(_A)gu(t)

—Mg[u(t)] < 4onEu] — 20[(=A)2u(t)|72 + or(1) - (1 + 1(=2)2u(t)
< 20nE[ug] — 6 (=A)2u(t)|?., forall te[0,T),

provided that R » 1 is taken sufficiently large. In the last step, we used the strict
negativity Efug] < 0, Young’s inequality, and that 2+¢ < 2 when e > 0 is sufficiently
small. [This explains the condition o < 2s, since such an € > 0 exists precisely in
this case.'?

Estimate (2.46) is the key inequality for adapting the strategy of Ogawa-Tsutsumi
[OT91] to the setting of fractional NLS with focusing L*-supercritical nonlinear-
ity. Suppose now by contradiction that u(t) exists for all times, i.e., we can take
T = +o0. From (2.46) and Efug] < 0 it follows that SMpg[u(t)] < —c with some
constant ¢ > 0. By integrating this bound, we conclude that Mg[u(t)] < 0 for all
t > t; with some sufficiently large time ¢; » 1. Thus, if we integrate (2.46) on [t1, ],
we obtain

m \

J I(=A)2u(r)|2dr <0 for all t > (2.47)

On the other hand, from Lemma A.1 and L?-mass conservation we deduce
1 1
Ma[u(®)]] < Clon) (IVFu®l3: + [V 1u(t)12)

é 5 (2.48)
< Clen) (I(-)3u®)l 2 + | (-2)Fu(t) |3

where we also used the interpolation estimate [BCD13, Proposition 1.32] ||V]2u 2 <

I
H(—A)%uHiQHuHILQ 2 for s > 3. Next, we claim a lower bound on the kinetic energy:

I(=A)2u(t)||2 =1 forall t > 0. (2.49)

12\We estimate

2

or(1) + CaoR(l)(%+E) +6](=A)Fu(t)|7-
—2n0Eug] + 6[(=A) 2u(t)[2.

or(1) + or(1)|(=A)2u(t)| 1.

<
<

for R » 1 sufficiently large. The first inequality uses Young’s inequality ab < Csa? + 6bP, for
which we need that p = Zis [up] < 0.
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Indeed, suppose this bound was not true. Then we have that ||(—A)2u(t)|z2 — 0
for some sequence of times t; € [0, 00). However, by L?-mass conservation and the
Gagliardo-Nirenberg inequality (A.12), this implies that ||u(tg)|/p20+2 — 0 as well.
Hence Efu(ty)] — 0, which is a contradiction to E|u(t)] = E[ug] < 0. Thus (2.49) is
true. [If s, = s, we conclude with the same argument that (2.49) holds, but without
using L?-mass conservation, and we replace the Gagliardo-Nirenberg inequality by
the Sobolev inequality (A.18).]

If we now combine the lower bound (2.49) with (2.48), we find
. 1
(Me[u(®)]] = Cler)|(=A)2u(t)] .. (2.50)

Thus we conclude from (2.47)

s

f [(=A)2u(r)[72 dr < —Cl(pr J (Mg[u(r)][**dr for all t >t
(2.51)

This nonlinear integral inequality serves as the basis for a standard ODE comparison
argument. Indeed, the ODE

v = Cv*,
{U(tl) = _MR[U(t1)] =a>0 (2.52)

has the exact solution

_1

olt) = a (1 - aQS—lc(zi —1)(t— tl)) o

which satisfies

u(t) > 400, ast T+ oz

1 .
mz.t*>0.

In other words, w(t) := —uv(t) is the exact solution to the ODE

{w = —O(~w)* = f(w).
w(ty) = Mglu(ty)] <0

and it satisfies

w(t)—>—oo, astTt1+W(zs_l)=:t*>O.

But since

S Nalu(®)] < ~0] (~A)su(t)| % < —6C (o) > Meau(t)]*

dt
= —6C(pr) "= (~Mg[u®)])® = f(Mz[u(t)])
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by (2.46), (2.50) and (2.47), and initially Mg[u(t;)] < w(t;), we conclude from
Growall’s Lemma A.6 that Mg[u(t)] — —oo as t 1 t, for some finite t, < +oo.
Hence the solution u(t) cannot exist for all times ¢t > 0 and consequently we must
have that T' < +00 holds. '

Case of nonnegative energy: Efug] >0

Suppose that E[ug] = 0 and that we have

f bl < PO
I(=A)sual s oz > 1(~A)F QU IQI"

Sc s
L2 L2

(2.53)

Recall our convention that for the energy-critical case s. = s, we set M[Q]*~* =
M[Q]° = 1 although, the ground state Q may fail to be in L*(R") for s = s.; see
Appendix A.4 below. Recall also (2) of Remark 2.2.

From the conservation of energy F[ug] and L?-mass M|ug] combined with the
Gagliardo-Nirenberg inequality (A.12) (when s. < s) or Sobolev’s inequality (A.18)
(when s = s.), we get

1
20 + 2

Bluo) = Blu(t)] = 31(~A)3u(t)[3 -

u() 7527

1 s Chso ot1_ne s ne (2,54
> Sl R - 2 Mlual ™5 [(-a) k() s 35
= F(I(=A)>u(®)| ),
where the function F': [0,00) — R is defined by
1 C fed 20s
F(y) = sy — =% Mug) s syt 2.
(y) = 5y" = 55 Muo] ye (2.55)

and C,, s » > 0 denotes the optimal constant for the Gagliardo-Nirenberg inequality
(A.12) if s < s. or Sobolev’s inequality (A.18) if s, = s. One checks that F(y)
attains a unique global maximum!*

Sc
F(ymaX) = Eyfnax (2'56)

at the point

ES s 2 1)\ 2
Ymax = KnSsoMug]” ¢ with K, ., = (M> : (2.57)
’ noCh s.o

13Tn fact, this shows that the localized virial Mpg[u(t)] blows up at the latest at time t, < 400
defined above. By (2.50) then, so does the kinetic energy [[(—A)2u(t)|2,, provided it exists up
to that time.

YUE@y) = ay? — ,By2+% with s, > 0 satisfies Fl(y) > 0asy | 0and F(y) > —o0 asy — . F is

differentiable (in particular, continuous) on (0, 00) and we have F(y) > 0 for small y > 0 (take
(o]

y > 0 such that y°%° < %). Thus F has a global positive maximum. But F'(y) = 0 if and
only if ¥ = Ymax-
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F (ymax )

Figure 2.2: The function F(y)

The constant K, ;. is expressed by the Pohozaev identities of Lemma A.7, namely

_Sc

Kuso = [(=8)3QI5 Q5" = (%)~ BlQI* M[Q]F*

S
L2

[Note that also the correct formulae appear in the energy-critical case s. = s; see
Proposition A.11.] Thus hypotheses (2.53) read

{mw<mex

[(=A)3u0] 22 > Yama-

This initial barrier on the kinetic energy can never be crossed. Namely, by a
continuity-in-time argument, we deduce that

I(=A)2u(t)|z2 > Ymax, for all t e [0,T). (2.58)

Indeed, suppose this bound was not true. Then there must be some ¢ € (0,7 such
that [(—A)2u(f)|r2 < Ymax > and it follows from u € C([0,T); H**(R")) that there

exists some t, € (0,%] such that |(—A)2u(ty)|r2 = Ymax. Consequently

Fltm) > Elug] 2 F(|(~A)2u(t)]22) = F(Yrma).

a contradiction. Therefore the lower bound (2.58) holds.
Next, we pick n > 0 so small that still

Bluol* Muo* ™ < (1 - n)* B[Q)" M[Q)**

15The case ¢ = 0 cannot occur due to the hypothesis |[(—=A)Zug|z2 > Ymax-
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From (2.58), we then obtain by an elementary calculation that
26(1 —n)|(=A)2u(t)|22 = 4onFE[ug] for all t € [0,T),

where we recall that 6 = on — 2s > 0. By inserting this bound into the differential
inequality of the localized radial virial estimate Lemma 2.7, we get (with og(1) — 0
as R — oo uniformly in )

CMR[u(0)] < d0nB[uo] — 25 (~A)u(t) 3 + 0x(1) - (1 + 1(-)Tu(n)] )

< =20m| (=A)2u(t) |72 + or(1)| (—A)2u(t)
< =(0n + or(1))[(=2)2u(t)[72 + 0r(1),

5+ or(1)

(2.59)

for R » 1 large enough, where we have chosen & > 0 small enough such that Z+¢ < 2
(which is possible, since o < 2s by assumption) and used Young’s inequality similarly
as before.' Choosing R » 1 sufficiently large and using (2.58) again [that is, the

estimate op(1)(1 = [(=A)2u(t)[72) < 0r(1)(1 = ¥hae) < Fmax < FN(=A)2u(t)]7,
for R » 1 large enough]|, we thus Conclude

d J s

S Me[u(®)] < —ZH(=2)5u()]3> for all t e [0,7). (2.60)
Suppose now that 7' = +o0 holds. Since |(—A)2u(t)|p2 > Ymax > 0 for all t = 0, we
see from (2.60) by integration that Mg[u(t)] < 0 for all ¢ > ¢; with some sufficiently
large time t; » 1. Hence, by integrating (2.60) on [t1,t], we obtain

l\’l

M J Su(r)Badr <0 forallt >4

By following exactly the steps after (2.47) above (now, the lower bound (2.58) on the
kinetic energy is the substitute of the lower bound (2.49) from before), we deduce
that u(t) cannot exist for all times ¢ = 0.

The proof of Theorem 2.1, case (i) is now complete. O

Tndeed, the last estimate in (2.59) can be written as

or()]|(~A)3u(®)] 1" + or(D)|(=A)Fu(t) |32 < onll(—2) Fu(®)[3. (%)

Taking p = 23_8

of (%) from above by

CyporV + (5 + 0r () -8 Fu(O)l.

Now taking R » 1 so big that both og(1) < %’7 and C%OR(l)p/ < 2142 the previous
2

1 Ymaxs
expression is bounded from above by dn||(—A)2u(t)||?.. Hence (x).



CHAPTER 2. BLOWUP

39

2.3.2 Proof of Theorem 2.1, Case (ii)

Let n > 2, s e (1 1), and we consider the L?(R™)-critical exponent o = ?n—s We

29
assume that
ue C([0,T); H*(R"))
is a radially symmetric solution of (fNLS) with negative energy

Elug] < 0.

Let pgr(r) with R > 0 be a radially symmetric cutoff function on R" as introduced
in subsection 2.2.2. Recall the definitions of the functions ¢; r(r) and 19 g(r) from
(2.40), depending on the function g(r). As in Lemma 2.9, define c¢(n) = —5-. As
shown in Appendix A.4 below, we can choose pg(r) and n > 0 sufficiently small

such that

UY1.r(1) — c(n)(War(r))z =0 for all 7> 0,
and for all R > 0.

Thus if we choose 7 « 1 small enough to achieve this, and then R » 1 large

enough, we can apply Lemma 2.9 to deduce that
d
EMR[u(t)] < 4sE[ug] forall t e [0,T), (2.61)

where we write M, [u(t)] = Mg[u(t)] again for notational convenience. Now sup-
pose that u(t) exists for all times ¢t > 0, i.e., we can take 7' = 4+00. From (2.61) we
infer that (by negativity of energy E[ug])

Mpglu(t)] < —ct for all t >t (2.62)

with some sufficiently large time ¢, > 0 and some constant ¢ > 0 depending only on
s and E[ug] < 0. On the other hand, if we invoke Lemma A.1, we see that

Malu()]] < Clon) (IV1u(t)a + Jult)] 2191 u(e) 2
< Clen) (IVBu®) e + Jut)| 22 + 119/ Fu(t) 32 (2:63)
< Clon) (IIVIFu®) B +1) < Clon) (I(=8)Fu()];, + 1),
where we also used the conservation of L?-mass of u(t) together with the interpola-

FIT
% “H1L2 % for s > 1. By combining (2.63) and

tion estimate |||V]2u]2 < [[(—A)zu
(2.62), we get

ot < —Mafu(t)] = Me[u(®)]] < Cler)l(—A)su(t)f + Clor) forall t > to.

Thus

<@>t < (I-a)5u();
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using also the inequality (a + b)° < a® 4+ b® for 0 < s < 1. Since the left side tends
to +00 as ¢ — +00, so does the right side. Hence there must exist ¢, > ?o such that
for all t > t,, we have 1 < |[(=A)2u(t)| 2. It follows that

Ct* < [(—A)2u(t)|gz for all t > t,

with some sufficiently large time ¢, > 0 and some constant C' > 0 that depends only
on ug, s and n.

The proof of Theorem 2.1, case (ii) is now complete. O



A Blowup

A.1 Various Estimates

Lemma A.1 (Bound on localized virial). Let n > 1, and suppose ¢ : R" — R is
such that Vi € (WE?(R™))". Then, for all u e H2(R™), we have the estimate

[, Vo - )| < C (195l + ul 2V 1Fulsz ) (A1)

with some constant C' > 0 that depends only on |V w10 and n. In particular,
this yields a bound on the localized virial My[u(t)] = 2Im (g, u( uw(t)Vg - Vu(t)dz of
a solution u € C([0,T); H*(R")) to (fNLS) with s = %, namely

27

Mo [u®)]] < C(IVelwre)u®)]? 4

Proof. We rewrite the gradient as V = |V|% |§‘ |V|% and use the Cauchy-Schwarz
inequality to estimate (¢ is real-valued)
s = [(9E (v |V|zu>]

| @9 v
< IV (Tl | V1o

< NIVIE(Ve)u) 221V |2l
where in the last step we used the fact that the Riesz projector is a bounded operator
(multiplier) on L?(R"); in fact (see [LP09, Exercise 2.11, page 41] or [Ste93]), more
generally

L2

< GCplgllr, 1<p< .

Now we claim that
1 1
IV (Veh)lez < [Vlwree (I1V1Fulze + ) (A2)

This estimate is a consequence of the fact that V¢ is bounded with bounded deriva-
tives and u € H2(R"). In fact, the proof of [LLO1, Theorem 7.16| can be adapted
as follows. Recall the relation of the homogeneous Sobolev norms to the Gagliardo
semi-norms, i.e., | - ||z = C[]us, where C' > 0 is some constant depending only on
n and s. Note the inequality

1
jab—cd|” = Zl(a=c)(b+d)+(a+e)(b=d)I* < la—cl*(bI*+|d]*) + (|a* +|c[*) [p—d|* !

Tt is clear by the elementary inequality |z + w|? < 2(|2]? + |w]?).
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Now estimate [also use the symmetry of some of the appearing integrals in = and y
and Fubini’s Theorem]|

1 Vo(x y)u(y)[?
IV (Tl = Clvontty = [ [ | |x_ W” W 47y
2 ulx 2
LL\W |2| |( T) |n<+1| dxdy+fnfnlvso (Mﬂ;f%dxdy
2
< Vol f f u@) = wWI 4 4, 1 922 f f L u@)Pdeay
n n ‘ ‘ 1’ y|<1 "Z. ’

+V%0|%oojf| | WW(OE)Fdxdy
z—y|>1

1
< IVl (1191wl + uls ) -

Taking the square root proves (A.2) and hence the lemma. O

Lemma A.2 (Bound on Bi-Laplacian term). Let n > 1, s € (0,1), and suppose
0 R" > R with Ap € W2*(R"). Then, for all u € L*(R™), we have

n

(A2) 2 d dm\ < 1A20]50| A ful .

Remark A.3. A direct application of Holder’s inequality yields the bound

(A%0) [ |* d dm' < A% e[V ul 2,

n

by using that S27s {* |£‘2+m m = s|¢|**7? as in (2.33). However, such a bound in

terms of the negatlve order Sobolev norm ||u

7s—1 would be of no use to us.

Proof of Lemma A.2. This is an extension of the proof of [KLR13, Lemma B.3] to

n > 1and s € (0,1). Let us split the m-integral into Sé\ R SZO ..., where A > 0
will be fixed in a moment. For the first part, we integrate by parts in z twice and
use Hélder’s inequality to find

A
m® J (A2) |y, | dz dm‘

(A) {(ATm) U, + 2V, - Vi, + T (Auy,)} dedm
" (A.3)

S IAsOILwJ M ([ At 2t 22 + [Vt [72) dm
0

A
< [A@l e ul 72 (f ms‘ldm) < [A@] e ul 7.
0
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Here, we have also used the bounds
_1 _
[Av |2 < Julz, [ Vumlz € m72 )z, Jum]e < m 2,

which immediately follow from the definition u,, = ¢, - (=A + m)~!u (as in (2.20),
(2.21) above) and Plancherel’s Theorem. For the second part, we find

o0
< 1A2p], ( [t dm)
A
o0
< 1A20] 1 JulZs ( [Fme dm) < 1A20] e 22 AT,

0
J msf (A20) |t |* dz dm
A n

(A4)

Combining (A.3) and (A.4) yields the estimate

S (|Ag]oA® + A% o A [ullZ2 (A.5)

f m’ J (A20) |t |* dz dm
0 n

for arbitrary A > 0. Minimizing this bound with respect to A gives the optimal
2
choice A = =2 ”HAA;p”HLL;O. By evaluating (A.5) with this particular A the lemma is

proved. O

A.2 Fractional Radial Sobolev Inequality
Let H:,(R") := {u e H*(R"); u is radially symmetric}. Cho and Ozawa have
proved the following inequality; see also [Str77, Radial Lemma 1, p. 155] for the
original inequality due to Strauss.

Proposition A.4 (Generalized Strauss inequality; see [CO09]|). Let n > 2 and
s € (%, g) . Then there exists some constant C(n,s), depending only on n and s,
such that

sup [z]2 "fu(z)] < C(n, s)|(—A)2ul2, Vue Hi,
zeR™\{0}

(R™). (A.6)

Proof (see [CO09]). Tn [Taylla, p. 264, formula (6.8)]% it is argued that the Fourier
transform of a radial function f on R™ can be represented in terms of Bessel functions
J, by

TFE) = J¢[E f F(0) 731 (ol€l) 0% do. (A7)
Let u € HS ,(R™). We obtain
ulz) = |3 f 2(0) 731 (elz])o? do. (A8)

2See also [Gra0s8, Appendix B.4/B.5].
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Hence, by Cauchy-Schwarz,

0
2|2 |u(z)| < |x\1sf0 (o)l 5 -1 (elx])] o7 de

< 1-s ” Jn_ 2,125 9 )2 ( * o~ 2 2s+(n—1)d )2
<a] (j gatelaie=>ae) ([ atore 0
o 3 (T (n) 2
([ rmopran) (8 [ e ac)
0 ™2 Jo

= C(n,s)|(=A)%u] .

3

Here, we substituted 9 = p|z| and noticed that

1 R .
f (o) |?* "V do = J f u(o)[Po* dSde = f a(é)?|¢[* dg
nwny 639(0) nwny n

_ 27
r(3+1) o

using polar coordinates, and w,, =

SIS

). The constant is

1

Cln,s) = <¥ F ,lewzﬁlgsdﬁy _ <F(2s— D0 (2 —s)T (%)>2,

0 22720(s)2T (2 — 1+ s)

using that [Wat95, p. 403, formula (2)]

0 I‘ n _
J ‘J%71<19>’2191723 dy = (n(Z ) ]
0 n

925~ 1F —1+s)

A.3 ODE Comparison Principle

Lemma A.5 (Gronwall’s Inequality in differential form [Fva97, p. 624]). Letn be a
nonnegative, absolutely continuous function on [to, T|, which satisfies for a.e. t the
differential inequality

N(t) < o(t)n(t) + (1),

where ¢(t) and 1(t) are nonnegative, summable functions on [tg, T|. Then

" t
n(t) < o9 (77(150) ~|—J P(s) ds) forallty <t <T.
to

Proof [Fva97]. The claim follows from

% (77(8)6_Sf0 ¢(T)d7“> _ 6_820 ¢(T)d7"<7-7<8) B (b(S)n( )) < 6_St0 dr¢(8) < ¢(8)

and integration on [tg, t]. O
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Lemma A.6 (A version of Gronwall’s inequality). Let f(t,u) be continuous in t
and Lipschitz continuous in u. Suppose that u(t),v(t) are C for t =ty and satisfy

u(t) < f(tu(t), o) = f(E (1))
and initially u(ty) < v(tg). Then u(t) < v(t) for all t =ty
Proof. Assume by contradiction that w(7") > v(T") for some T > t,, and set
t1 = sup{t; to <t <T and u(t) < wv(t)}.

By continuity of u — v, we have to <ty < T, u(ty) = v(ty), and u(t) > v(t) for all
T >t >ty. Thus for t; <t < T, we have |u(t) — v(t)| = u(t) — v(t), and hence

%(U(t) —o(t) < f(tu(t) = f(t0(t) < Liu(t) —v(t)] = L(u(t) — o(t))

by Lipschitz continuity of f(¢,u) in u. Applying Lemma A.5 with the nonnegative
functions n = u — v, ¢ = L, ©» = 0 and the interval [t1,T] gives u(t) — v(t) <
et (u(t;) — v(t1)) = 0 on [t1,T], a contradiction. O

A.4 Ground States and Cutoff Functions

Let n > 1, s€ (0,1) and o > 0. Recall the definition of the scaling index s. = 5 —

s
o

A.4.1 Pohozaev ldentities: the Energy-Subcritical Case s, < s

Making the solitary wave solution ansatz u(t, z) = e“'w2 Q(wzz) [FL13, p. 263, it
is easily checked that u solves (fNLS) if and only if the profile ) solves the stationary
problem

(-A)PQ+Q-1Q"Q =0 nR" (A.9)
[simply use the behaviour of the Fourier transform F when acting on dilations and
a change of variable to see that ((—A)*f)(z) = w((—A)*Q)(w=z), where f(z) :=
1
(0,1 Q)() := Qwzz) ]

Pohozaev-type identities show that the energy-subcriticality condition s. < s
is necessary for (A.9) to possess nontrivial solutions Q € H*(R") n L?>*T2(R"); see
Remark A.8 below and also [FL.S16, p. 1681]. Conversely, s. < s is also sufficient
for the existence of such nontrivial solutions @ [FLS16, p. 1681|. Indeed, solutions

can be constructed variationally, namely by considering the associated Weinstein

functional
20’+2— e

[(=A)5ul s Jul

Jul 75

W lu] = (A.10)



46

APPENDIX A. BLOWUP

and solving the corresponding minimization problem

Crag = inf W2 [u]. (A.11)

8% " oueHs (Rn)

The infimum is attained, thus some nontrivial solution @) exists, and moreover, () is
also unique modulo symmetries [FLS16]. Therefore C,, 5, > 0 is the sharp constant
for the Gagliardo-Nirenberg inequality?

o 2042— s n
[ 552 < Crsoll(—2)2ul 2 ul 72 , ue H*(R"). (A.12)

Nontrivial optimizers @@ € H*(R™)\{0} of (A.12) (they turn (A.12) into an equal-
ity), equivalently, nontrivial minimizers @) € H*(R")\{0} of the Weinstein functional
(A.10) are called ground states. From the invariance of the Weinstein functional un-
der the rescaling ) — uQ(\-), it can be checked that any ground state () necessarily
solves the Euler-Lagrange equation (A.9) after being rescaled in this way with some
appropriate constants g and A. Moreover, as shown in [FLL13, FLS16], the function
@ is smooth, and we can choose @ = Q(|z]) > 0 to be radially symmetric, strictly
positive, and strictly decreasing in |z|.

We have the following identities for real-valued solutions of (A.9) and the ground
state () [BHL16, Proposition B.1]; see also [BL15, Proposition A.1] and [Caz03,
Lemma 8.1.2] for Pohozaev identities in the context of biharmonic and classical
NLS, respectively.

Proposition A.7 (Pohozaev-type identities for s, < s). Let n > 1, s € (0,1) and
0 < o < o, (equivalently, s. < s). Then any real-valued solution @ € H*(R") of
(A.9) necessarily satisfies the Pohozaev identities

[(=2)2Q| 7= + |Ql7= — 1QI75E = (A.13)

(25 =n)[(=2)2Q| 7= — n]Q|Z2 +

2 + 2 HQH%UQ;F‘EQ = (A14)

and consequently

-8R = (g ) 108 = (5 )10l (19

3In classical (s = 1) NLS theory one makes use of the classical Gagliardo-Nirenberg inequality,
namely

[ul252, < Coo [Vl 0252777, we HY(R™), 0 <0 < —— forn > 2;

n—
see, for example [Wei83, inequality (I.2)].

4Note that when n > 1, s € (0,1), and o > 0 are fixed numbers, the hypotheses s. < s and
0 < 0y are equivalent in any of the cases s < §, s = § (ie., n=1and s = %), and s > § (i.e.,
n=1ands> 3).
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If moreover Q) € H*(R™) is a ground state, then

_ 8¢

m = (%) 7 BRI MIQI (A.16)

Kn,s,a = H(_ ) n

where

Koo = (M) | (A.17)

noCh, s.o

Proof. Integrating (A.9) against @) gives (A.13). Next, integrating (A.9) against
z - VQ yields (A.14): one uses that (z - VQ, (—A)*Q) = (252) [(-A)2Q|3,, and
(z-VQ,Q) = —2|Q|3-, and again the identity Z2V(|Q|*)|Q* = V(|Q[*’*?) to
handle the nonlinearity.

To see the former, note that the commutator identity [FLS16, p. 1703] [z
V, (—=A)*] = —2s(—A)*® immediately implies
(x-VQ,(=AyQ) ={(-A)3(z- VQ),(-A):Q)
= —([z-V,(=A)2]Q, (=A)2Q) + (z - V(=A)2Q, (-A)7Q)
= 8| (~2)5 QI3 — SI(-2)3Q.

N|w

The commutator identity itself is easily seen on the Fourier side via the identification

zf(x) o i&gf({), 0. f(z) < iff(f), so that for ¢ € #(R™) we have (sum over j)

F(lw -V, (~A)10)(E) = idg,(ig1€1) — lef* (id,i&;9))
— —2s€[€[* 720 = ~25[¢[* = —25F((~A)*6)(€).

Combining (A.13) and (A.14), the equalities (A.15) immediately follow. Finally,
using that a ground state @ turns the Gagliardo-Nirenberg inequality (A.12) into

an equality and expressing | Q2312 in this equality through |[(—A)2Q|2%, via (A.15)

yields the first equality in (A.16). Expressing |Q[3%:% in the definition of the energy
E[Q] again through | (—A)2Q|2, via (A.15) immediately implies the second equality

n (A.16). This completes the proof of Proposition A.7. O

Remark A.8 (No nontrivial solutions in H*(R") n L?**"2(R") for 0 > o). Let
n =1 s€(0,1), and o > 0. We mention that the condition o < o, (i.e., s. < s)
is necessary for the existence of nontrivial solutions Q € H*(R") n L?***2(R") to
equation (A.9). In fact, let @ be such a solution. If o > o, (this can only happen
if s < &, since otherwise o, = 40, and it is equivalent to s, > s), identities (A.13)
and (A.14) of Proposition A.7 remain valid and are combined to give ||Q|z2 = 0, so
that Q = 0.

Remark A.9 (Ground state energies). From (A.15), observe the negativity, vanish-
ing, and positivity of the ground state energy F[Q] in the mass-subcritical, mass-
critical and mass-supercritical cases s, < 0, s. = 0 and s, > 0, respectively.
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A.4.2 Pohozaev ldentities: the Energy-Critical Case s. = s

Let us consider the energy-critical case s, = s, i.e., 0 = 0, := —2_. which requires
n—2s’

that we are in space dimension n > 2s. In this case we are lead (see how the expo-
nents of the Gagliardo-Nirenberg inequality (A.12) above collapse to the following
ones) to the Sobolev inequality

lull 7352 < Csll(=2)2ul 2" (A.18)

valid for all u € H*(R"™), where C, , > 0 denotes the best constant.

Existence and uniqueness (modulo symmetries) of optimizers for (A.18) are clas-
sical facts. In fact, for the dual problem of optimizing the weak Young inequality
(Hardy-Littlewood-Sobolev inequality), the set of optimizers are known in closed
form [Lie83].

Lemma A.10 (Explicit form of HLS-optimizers). For n > 2s, Q) € HS(R”) opti-
mizes (A.18) if and only if

n—2s

Q = Qxpalr) = X <;> 2 (A.19)

P+ |z —al?

with some parameters A € C\{0}, > 0, and a € R™.

Without loss of generality we can take a = 0 and choose A real-valued and
positive and pick p > 0, so that Q(x) = Q(|x|) > 0 is a radial and positive optimizer
of (A.18).

Observe that any optimizer of (A.18) solves the Euler-Lagrange equation (pos-
sibly after a suitable rescaling Q@ — a(Q)

(-A)Q—|QP*Q@ =0 inR"
Indeed, let us define the functional

[(—=A)2 Q35+
1QI2%%2,

Let @ be an optimizer, and let ¢ € CP(R") and i(e) := W[Q +¢]. Then necessarily

4 ._o#(e) = 0, which leads to

WIQ] =

_ _ s _ 204 _ W[Q]
O - R‘e<( A) Q 5‘@’ Q7¢>7 Where /8 - H(_A)%QHiGQ* > 0

Testing this equation with i¢ instead of ¢ and using Re{(v,i¢) = —Im{3, ¢) gives
the same formula for the imaginary part. Thus, by arbitrariness of ¢,

(—A)Q — BlQI**Q =0, in R".



APPENDIX A. BLOWUP

49

£ > 0 can easily be scaled away. Namely, since W is clearly invariant under the
~ 1
rescaling @) — a@), with a > 0, we see that () := 2+ () is still an optimizer, but it
solves L N
(-A)'Q—QP*Q =0, inR"
In particular, when @ is chosen as above, i.e., Q(x) > 0, and suitably rescaled, we
get

(—A)*Q — Qw2 =0, inR™. (A.20)

Furthermore, having merely n > 2s, an optimizer ) may fail to be in L*(R"), since

we have @ € L*(R") if and only if n > 4s. To see this, note that (A.19) implies by
changing variables z = z — a that

) ) 1 n—2s o) 1 n—2s -
|Q72 = Al o\ 22 dz = C+cy N 0" de

Let n > 4s. We use ﬁ < Q% and see that the integral at infinity is majorized

by the integral §;” o™"***~!dp, which converges for n > 4s, so that @ € L*(R").
Conversely, let Q € L?*(R"), so that the integral at infinity must converge. But since

there exist C' > 0 and R > 0 such that ﬁ > 0%)2 for all p > R, we have

OO 1 e 1 OO 4s—1
- Qn— dQ Z J Q—n-i- s— dQ
Lz (M2 + Q2> R

and the last integral does not converge for n < 4s.

Proposition A.11 (Pohozaev-type identity for s. = s). For the Sobolev optimizer
Q € H*(R"™) as above, we have

n—2s

S

Koo = 1-8)3Q15 = () 7 BIQUE with Koo = () T

Proof. If we integrate (A.20) against @, we find [(—A)2Q[2, = Q3% % with
Ox = ni‘zs Since ) optimizes (A.18), we insert the previous identity into (A.18)
(with equality sign) to get the first claimed identity K, s = [(—A)2Q|$,. Finally,
by definition of energy

s 1 1 s
~A):Q|% = 2F o = 2F —A)2Q|3.
[(=A)>Q]% Q] + p— 1@z Q] + p 1122 QlE,
from which the second claimed identity follows by respecting s = § — é O

A.4.3 Cutoff Function for the L2-Critical Case

To construct a suitable virial function ¢(r) for the L2-critical case, we can adapt
the choice made in [OT91, p. 325] used for classical NLS. Let g € W3*(R") be a



20

APPENDIX A. BLOWUP

radial function such that

r for 0 <r <1,
r—(r—1)3 for 1 <r<1+ -1,
g(r) = r=1) . V3 (A.21)
g(r) smooth and ¢'(r) <0 for 1 + 2= < r <10,
0 for r > 10.

We define the radial function ¢(r) by setting

o(r) = Jr g(s)ds. (A.22)

It is elementary to check that o(r) defined above satisfies assumption (2.35) of
Subsection 2.2.2. Recall that we set pr(r) = R*p (%) for R > 0 given. Furthermore,
recall the definitions of the nonnegative functions ¢y g(r) = 1 — d2pg(r) = 0 and
Yo r(r) =n — Apg(r) = 0 from (2.40). Let c¢(n) = 5. for n > 0. We claim that if
n > 0 is sufficiently small, and R > 0 arbitrary, we have

Y1 r(r) — c(n)(@bg,R(T))% >0 forallr>0. (A.23)

To prove (A.23), we argue as follows. First, by scaling, we can assume R = 1 without
loss of generality.” Let us put ¢1(r) = 11 g=1(r) and ¥s(r) = 13 g—1(r). Note that
1 r(1) = Y g(r) = 0 for 0 < r < R and hence (A.23) is trivially true in that region.
Next, we observe that

Pi(r)=1=4¢'(r) =1, |ao(r) =|n—Ap(r)|<C forr>=1+ \/%

with some constant C' > 0 [recall that Ap(r) = ¢'(r) + =2g(r), as well as the
smoothness of ¢g(r) in this region and that g(r) = 0 for r > 10]. Thus we can choose
n > 0 sufficiently small such that (A.23) holds for r > 1+ \/Lg Finally, a computation
yields that

di(r) =3(r = 1% [¥a(r)

with some constant C' > 0. Herein, we computed

n
s

2%:]n—Ago(r)%<C(r—1)

0=t == (26t + 2L p(r)) == (500 + 220

r—1
r

z(r—1)2(3+(n—1) ><C(r—1)2 forlérélﬁ—\%.

Since 2 > 2, we deduce that (A.23) holds in the region 1 <7 < 1+ —=, too, provided

that n > 0 is sufficiently small. Indeed, if r = 1, then ¢ (1) = 1

-

3

—~

1) = 0, so any

>

®That is, we have 97 1 (%) = 91 r(r) and 121 (’ﬁ) = 1)9 g(r). Hence, once (
R =1, it follows for arbitrary R > 0.

.23) is proved for
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7 > 0 can be chosen. On the other hand, if 1 <r <1+ \/Lg, we see from the previous
compuations that (A.23) follows in the region 1 <r < 1+ \/ig if we choose 1 > 0 such
that c(n) < 2(r—1)27% forall 1 <r < 1+\/A§. But since 2 > 2and 0 <7 -1 < \/L?
we have 2(r —1)>7% > 2(+/3)57%2 =: ¢ > 0. Thus we conclude by taking n > 0 so
small that ¢(n) < ¢é.






3 Boosted Ground States and
Traveling Solitary Waves

3.1 Introduction and Main Results

In this chapter, we consider NLS-type equations with focusing power-type nonlin-
earity
i0u = Lu — |[ul*?u, (t,z)eR xR" (3.1)

in n > 1 spatial dimensions. Here, L is a pseudodifferential operator defined by its
symbol m(§) in Fourier space. For the real-valued function m : R” — R we make
the general assumption that there exist constants A, A, B > 0 such that

A+ [P <m(&) + A< B(1+[¢)* forall { e R™.! (A)

The magnitude of the power-nonlinearity is given by a number o € (0,0,) in the

H*(R™)-subcritical regime, i.e. 0, = -2~ if s < % and 0, = +o0 if s > 2.
Evidently, by the Cauchy-Schwarz inequality, the function £ — (m(&) — v - &)

is bounded from below, provided that s > 1 and v € R” arbitrary, or s = % and

2 )
lv] < A.?

Existence

We will prove the existence of a special class of solutions to equation (3.1), namely
the class of traveling solitary waves of the form

u(t, ) = “'Q,(x — vt), (3.2)

where v € R" is a given velocity parameter and w € R is a phase parameter. By
pluggin the ansatz (3.2) into (3.1) we see that u = u(t,x) of the form (3.2) solves
(3.1) if and only if the profile @, solves the pseudo-differential equation

LQy+ i VQy +wQy — |Qu[*Q, = 0. (3.3)
! Assumption (A) is easily verified if L = (—=A)%, i.e. m(£) = |¢|?*, with s > 0; see page 82. In
J€1%° +X

this case it is necessary that A < 1, since e 1 as |¢] — oo.

2In fact, if L = v/—A, ie. s = %, we may let A = 1; see page 82.
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For n = 1 space dimension, cubic (¢ = 1) nonlinearity and L = (—A)® being
the fractional Laplacian, the existence of traveling soliton solutions to (3.1) within
the range s € (%, 1) of fractional parameters has recently been shown by Hong and
Sire [HHS15a]. In their paper, they overcome the lack of Galilean invariance of frac-
tional NLS by introducing an ansatz function arising from so-called pseudo-Galilean
transformations under which fractional NLS is almost invariant (i.e. invariant up to
some controllable error term).

Our approach here is based on variational arguments involving the Weinstein
functional J; , : H*(R")\{0} — R defined by

(s Twf) + wlf, )7

e ’

where T, is the pseudo-differential operator

Inu(f) = (3-4)

Tewi=L+w-V.

Our first main result gives the existence of traveling solitary wave solutions.

Theorem 3.1 (Existence of traveling solitary wave solutions). Let n > 1, s > %,

and L be a pseudo-differential operator satisfying assumption (A). Let v € R"™ be

arbitrary for s > %, and |v| < A for s = L. Then there exists a number w, € R such

2
that the following holds. For any w > w,, there exists a profile Q, € H*(R™)\{0}

such that

st)w v) = i f gls)w .
(@) fems (@m0} O ()

More generally: any minimizing sequence is relatively compact in H*(R™) up to
translations.  Furthermore, modulo rescaling @, — aQ,, @, solves the pseudo-
differential equation (3.3) and thus gives rise to the traveling solitary wave solution

u(t,z) = e“'Q,(z — vt)
of (3.1).

The number w, appearing above is defined by —w, = infeegn(m(§) — v - &).2
Note that for w > w,, the expression {f,7;,f) + w(f, f) in the numerator of the
Weinstein functional (3.4) is always positive when f # 0.

Reflecting the fact that the functions (), arise as minimizers of the functional
d;., incorporating a velocity v, we often refer to them as boosted ground states and
to the corresponding solitary waves as traveling (ground state) solitary waves.

Note that when L = (—A)®, in the unboosted case v = 0 and for fractional
parameters s € (0, 1), we can immediately construct a solitary wave solution to (3.1)

3When L = (—A)?, % < s < 1, is the fractional Laplacian, this is precisely the Legendre transform
[Evad7, p. 121] of the convex function & — |£|?¢ evaluated at the point v € R"; see Lemma B.8.
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as follows. As in [FLS16], a related variational problem has a ground state solution
Q € H*(R™)\{0} which solves the equation

(-A)Q+Q-|QPQ =0.

Existence of such () can be established by concentration-compactness arguments.
Frank, Lenzmann and Silvestre [FL.S16] prove uniqueness up to symmetries. Using
the invariance of (3.1) under the rescaling

U — ug(t,z) = aru(a®t, ax), o >0,

we see that Qu_o(2) 1= w2 Q(w2z) solves (3.3) with v = 0 and thus gives rise to
the solitary wave solution u(t, z) = “!Q,—¢(x) of (3.1).

Symmetries

Our second main result establishes symmetry properties of boosted ground states
for s = 3. The method of proof is due to Boulenger and Lenzmann [BL15|. Under
the assumption that the exponent ¢ > 0 in the power-nonlinearity is an integer, the
authors are able to prove radiality of (unboosted) ground states for biharmonic NLS
(L = A?%). Their idea is to use the symmetric decreasing rearrangement = (Schwarz
symmetrization) in Fourier space, that is, to define the well-behaved operation £ by
QF = H((FQ)).

Similarly, we obtain existence of cylindrically symmetric boosted ground states
in n > 2 dimensions for integer 0. The symmetry axis is induced by the boost
velocity v. Up to a rotation of the coordinate system, we can assume v to point into
1-direction, v = (v1,0,...,0). Then the symmetric decreasing rearrangement with
respect to the last n — 1 variables =, (Steiner symmetrization in codimension n — 1)
in Fourier space is the appropriate notion. That is, we define the operation f; by
Q" = FH(FQ,)*). In that context, we will often write (£,,¢') € R x R™! for a
vector £ € R™. We refer to section 3.5 for precise definitions and notations.

In n =1 dimension the operation f#; loses its meaning. Instead, we consider the
symmetrization @, := F1(|FQ,|). Our method yields the existence of a boosted
ground state @, € H*(R)\{0} such that @, = Q,, whose real-part is an even, and
whose imaginary part is an odd function, respectively.

When working with a general operator L as above, as a further technical ingre-
dient we assume the following "monotonicity property" in n > 2 dimensions:

m(&, &) =m(&,n), g =[]0 (B)

Theorem 3.1 has already established existence of a minimizer of the functional g3 ,
on the class H*(R™)\{0}. Our symmetry results described above are valid under

4Assumption (B) is clear for L = (—A)?, i.e. m(€) = [£]?® with s > 0 (see Remark 3.13).
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the additional assumption that there is a minimizer which belongs also to L*(R™).
In the case s > 7, this assumption becomes redundant by Sobolev’s embedding
H*(R") — L*(R").

We can now state our second main result.

Theorem 3.2 (Existence of symmetric boosted ground states for integer-powers).
Letn >1, s = %, and L be a pseudo-differential operator satisfying assumptions
(A) and (B). Let v € R™ be arbitrary for s > 3, and |v| < A for s = . Suppose
that o € (0,04) is an integer. Furthermore, assume that there exists a minimizer of

dy., on the class H*(R™)\{0} which is also in L*(R"). Then:

(i) Case n = 2: There exists a cylindrically symmetric minimizer of the Wein-
stein functional (3.4), i.e., there ezists a boosted ground state @), € H*(R™)\{0}
such that Q, = Q%. In addition, Q, = Q% is continuous and bounded and
has the higher Sobolev regularity Q% € H*(R™) for all k > 0. In particular,
Q% e C*(R™) is smooth. Moreover, the functions R — R, a1 + Re Q% (z1, 1)
and R — R, x1 — Im Q¥ (x1,2') are even and odd, respectively, for any fized
¥ e Rn1,

(ii)) Casen = 1: There exists a minimizer of the Weinstein functional (3.4), i.e. a
boosted ground state @, € H*(R)\{0} such that Q, = @\; In addition, Q, = @,
is continuous and bounded and has the higher Sobolev regularity @; e H*(R)
for all k > 0. In particular, @\; e C*(R) is smooth. Moreover, the functions
R —> R, z— Re@;(x) and R - R, z; — Im@;(:c) are even and odd,

respectively.

Note the range of application of Theorem 3.2 for given s > % If s > % (in
particular, in n = 1 dimension), any ¢ € N can be chosen, while if s < 2, we can

2
take any o € N such that o < -2

n—2s

As a direct application of Theorem 3.2, we get the analogous statement for the
fractional Laplacian L = (—A)® with 1 < s < 1. In this case, (A) and (B) are
automatically fulfilled. Moreover, we will explicitly verify that any H*(R™)-solution
of (3.3) automatically belongs to L*(R™); see section 3.6 for the details. Thus we can
drop the additional hypothesis of Theorem 3.2 and formulate the following result.

Theorem 3.2" (Version of Theorem 3.2 for the fractional Laplacian). Let n > 1,
s€(3,1), and L = (—A)*. Let v e R™ be arbitrary for s > %, and |v| <1 for s = %
Suppose that o € (0,04) is an integer. Then the conclusions of Theorem 3.2 hold.

Note the range of application of Theorem 3.2" for given s € [%, 1):

Dimension n | Permitted nonlinearities 0 € N | Corresponding s € [%, 1)

1 allc e N allse[%,l)
2 o € N such that o < 1% s> 5
3 only o = 1 (cubic) s> 2

4 and higher none none
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For n = 2 we can thus take o € N as large as we like provided that s < 1 is
sufficiently close to 1.

Decay at infinity

Focusing on the case of the fractional Laplacian L = (—A)*, % < s < 1, we prove a
decay result for critical points of the functional g; ,. The Euler-Lagrange equation

(3.3) may be written in the form

Qu = Ry, ,(—w)(|Qu]*Qu)-

Here, the resolvent Ry, (—w) = (T, +w) " is well-defined by the spectral properties
of the operator Ty, = (—A)* +iv-V; see Appendix B.2. Equivalently, we may write
down the integral equation

Qu = G8, * (|Qu*Qu), (3.5)

where G\, is the fundamental solution (Green’s function) associated to (3.3), which
is a kernel with the Fourier representation

1
RN

FGLL(E) (3.6)

In section 3.6, we prove that G&;il decays like |z|~*V). In section 3.7, we show that

at infinity, any critical point of the functional J; , decays in space at least as fast as
the Green’s function. In particular, this is true for any boosted ground state.

Our third main result reads as follows.

Theorem 3.3 (Decay of boosted ground states for the fractional Laplacian). Let
n=1,sel[i 1), and L = (—~A)*. Let v e R" be arbitrary for s € (3,1), and |[v] < 1
for s = 5. Let Q, € H*(R")\{0} be a solution of the Euler-Lagrange equation (3.3).
Then @, is continuous on R™, and there exists some constant C' > 0 such that the
following polynomial decay estimate holds:

C
‘QU(I)’ < W, fOT all v € R™. (37)

In particular, any boosted ground state Q, € H*(R™)\{0} decays polynomially ac-
cording to (3.7).

However, the optimal rate is expected to be |Q,(x)| < (1 + |2["™2*)7!; see also
Remark 3.23.



o8

CHAPTER 3. BOOSTED GROUND STATES

Outline of chapter 3

In section 3.2 we introduce the relevant variational problem. We define an equivalent
norm on the Sobolev space H*(IR™), which will be useful in the proof that the infimum
is attained. Also, this norm equivalence immediately yields the strict positivity
of the infimum. Section 3.3 gives the Euler-Lagrange equation associated to the
functional appearing in the variational problem, which any minimizer necessarily
must satisfy after a suitable rescaling. In section 3.4 we prove Theorem 3.1 with the
help of compactness modulo translations in H*(IR"), thereby obtaining the existence
of boosted ground states and traveling solitary wave solutions to (3.1). In section
3.5 we find that boosted ground states exhibit symmetry properties with respect to
the boost axis given by the boost velocity v, proving Theorem 3.2. From section 3.6
on, we focus on the case L = (—A)* of the fractional Laplacian. We give the proof
that solutions to the Euler-Lagrange equation are in L*(R™). Then Theorem 3.2
follows as a corollary of Theorem 3.2 and Theorem 3.1. Finally, in section 3.7 we
justify the decay estimate of Theorem 3.3.

3.2 The Variational Problem

3.2.1 An Equivalent Norm on H*(R")

For later use, let us observe that the operator T, induces an equivalent norm on
H?*(R™) via its symbol in Fourier space. For w > w,, we define

IW:H%WUHRWfHLﬂﬁﬁf%r=JLJﬂOPWWD—%€+Md§

Remark 3.4. The condition w > w, guarantees that du(§) = (m(§) —v- & +w) d¢
is a positive measure. Clearly, | - || maps H*(R") to R due to

\m2<Bf|ﬂaﬁi+m%%@wm \ﬂoma%+wf|ﬂ®F%

n R”L n

< B|fls + Wl f 72 + wlflZe < 1]

using assumption (A) on the symbol m, the Cauchy-Schwarz inequality, Plancherel’s
Theorem, and the embedding H*(R") — H'?(R") for s > 1. Moreover, | - |
clearly defines a norm on H*(R"™) by linearity of the Fourier transform and the
norm properties of |||z

2
Hs»

Lemma 3.5 (An equivalent norm on H*(R")). Let n > 1, s = 3, and L be a
pseudo-differential operator satisfying assumption (A). Let v € R™ be arbitrary for
s> 1 and|v] < A for s = 5. Suppose w > w,. Then the norms | - | and ||
equivalent on the Hilbert space H*(R™), i.e., for any f € H*(R™) we have

Cillfllas < [f] < Col flas

Hs are
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for some constants Cy = Cy > 0 independent of f.
Proof. We show that p(§) := m(§) — v - £ + w satisfies
(1+[€7)° < p(&) < (1 +EP)"

Indeed, on the one hand, by assumption (A) and Cauchy-Schwarz we have

o(©) ollg] + o lle]
— > < B+-—>—— < (B — <1,
T+ <P ey ST e
using that
< g 1 ifs=
\Il = - S I .
T T () {0, .

and the continuity of ¥ : R” — R to get the last boundedness. Conversely, we
estimate

o(©) (X~ Jolle|
T =4 ey

where

w— A tlooo | —|v|, ifs=1,
= — — 0|U s 2
For s = %, the hypothesis |v| < A thus guarantees that we can find R > 0 so large
that, say, A + (&) = A_T‘UI for all |£| = R, while for s > 1 we can find R > 0 so
large that, say, A+ ¢(£) > 4 for all |{| > R. Thus in any case (s = 1 or s > 1),
there exists R > 0 and some positive constant C' > 0 such that

U%%$>C for all |¢| = R.

On the ball Bg(0) however, we have the positive lower bound

() W — Wy LW W
in

> > min .
(L+[E)P) — A+ (€3 eemroy (1 + [€]2)°

The proof of Lemma 3.5 is now complete. O

3.2.2 The Weinstein Functional

With the operator T, and w > w, as above, let us consider the Weinstein functional
J;. + H*(R")\{0} — R given by

(S Toud) + w0 )M

I £1Z5%s

&nu(f) = (3.8)
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This functional is well-defined on H*(R™)\{0}. Indeed, in the H*(R™)-subcritical
regime 0 < o < o, that we consider, Sobolev embedding guarantees that for f €
H*(R™")\{0} we have f € L20+2(Rn) with | f] pze+2 < 0 and ||f| 2042 # 0 as f # 0.
Furthermore, by Lemma 3.5 we have® {f,Ts,f) + w(f, f) = [|f|* < | f||F:- Hence
Jy.(f) < 0, as claimed. Next, let us show that that J; , is bounded from below by
a strictly positive constant. Namely, for f € H*(R™)\{0}, Sobolev embedding gives
| flzze+2 < Csobl f|ms, where Csor, > 0. On the other hand, by Lemma 3.5 there
exists C'y > 0 such that

S Tswf) +wlf, £ = IfI* = CTI S Ie-

Combination of these facts yields the strictly positive lower bound

s o WP ( G )2(”2
Ll =g 2 \Gaw)

We wish to solve the following (unconstrained) minimization problem on the nonempty
admissible class H*(R™)\{0}:

o = nf{d; ,(f); f € H*(R")\{0}}. (3.9)

By the consideration above, J;7, > 0. Finding that this infimum is attained will in
particular establish the validity of the corresponding Gagliardo-Nirenberg-Sobolev
(GNS) inequality (involving a boost term)

| 17557 < Copt((f, Tow ) +w{f, )7, fe H(R). (3.10)

Here, Cop > 0 is the sharp constant for this inequality, which is given by the
optimizers @, € H*(R™)\{0} of (3.9), namely

1
Copt

=30,(Qu), i35 ,(Qu) =33k (3.11)

However, by the scaling property d; (o f) = 35 ,(f), @ > 0, it is clear that problem
(3.9) is equivalent to the (constrained) minimization problem

inf{d;,,(f); f e H'(R"), | fI75% = A}, A>0. (3.12)

We let without loss A = 1 and are therefore concerned with the (constrained) mini-
mization problem

gt = if{d; ,(f); f € H(R™), | f75:7% = 1}. (3.13)

®Recall also that by w > wy and Plancherel, {f, T, f) + w{f, f) > 0 for f # 0.
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3.3 The Euler-Lagrange Equation

Lemma 3.6 (Euler-Lagrange equation). Let Q € H*(R")\{0} be a minimizer of the
functional 33, on the class H*(R")\{0}, i.e.

32,(Q) = nf{g; ,(f); fe H*(R")\{0}}.
Then @ necessarily solves the Euler-Lagrange equation (3.3), i.e.

LQ+iv-VQ +wQ — |Q*Q =0,

1

possibly only after the suitable rescaling Q) — aQ), where o = (%) .,

Proof. For any ¢ € C(R"), we have

3i,w(Q + h(P) - Hf},m(@)
h .

d .
0= &Hv,w(Q + 6@) . - }ILIE)%

Respecting chain and product rule for the Fréchet derivative, and using the self-
adjointness of the operator T, = L+iv-V, which follows from Plancherel’s Theorem
and the real-valuedness of m(§), we deduce

(@, (Ts +w)Q)" Redyp, (Tsp + w)Q) — 337% Relp, [QQ) = 0.
Dividing by (Q, (Te, +w)Q)7 = (3575) 771 |Q3%+2 > 0 gives
B 0
@Q, (Tow +w)Q)°

Testing the last equation with iy instead of ¢ and using Re(—iz) = Imz for z € C
yields the analogous statement for the imaginary part:

doe

(@, (Tsp +w)@)”

Re(p, (T +w)Q IQI*°Q) =0, for all p € C*(R™).

1QI*Q) =0, for all p € C*(R™).

Im<‘;07 (‘Ts,fu + W)Q -

Hence () solves
B 0
(Q, (Tew +w)Q)°

Recall the invariance of our functional J; ,(f) under rescaling f — af, a > 0.
Therefore (cf. [Weis3, p. 571]) the rescaled version @ defined by

(T +w)@Q |Q|2OQ = 0.

Jv% 2
<<Q, Ton w)@U) “

is still a minimizer, but satisfies the Euler-Lagrange equation (T, —i—w)@ — |@\2"C~2 =
0, as claimed.

Q=

U
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3.4 Traveling Solitons: Proof of Theorem 3.1

Let (u;)jen be a minimizing sequence for J5*, that is

VW)

uj € HS(RR)’ HUJHEU&TEZ =1 v.] € N7 gh—{roé Hf},w<uj) = 315)’,?:) € (07 OO) (314)

Then necessarily we have the boundedness sup oy [(u;, Tsou;) + wluj, uj)| < 1, ie.,
supjey |us]l < 1. Thanks to Lemma 3.5 this means that (u;)jen is also bounded in

(HR), |-, ie.
sup |uj|ps <1 (3.15)
jeN
or equivalently
sup (|l g + lujlz2) < 1. (3.16)
jeN

The proof now proceeds in three steps.

Step 1: Application of the pqr Lemma. We take p = 2, ¢ = 20 + 2 and the
number 7 > 20 + 2 given as follows. By Sobolev’s embedding H*(R") < L**(R")

[we let 2* = 22 for s < 5, 2" = o for s > 7, and in case of s = 7, we replace

n—2s
2* by a fixed number « € (20 + 2,0) in the following argument|, and of course
H*(R") — L?(R"). Thus by interpolation H*(R") — L?°"2(R") for all H*(R")-

subcritical 0 < 0 < o,. Interpolation between L?***2(R") and L*"(R") thus gives

[l < | flGaoea fI5¢ forall fe H*(R"), where ; = 5% + 45

In particular, for our minimizing sequence with normalized L?***2(R™) norms

e <1, wherel=_f-+1f (317

sup [|u; 2012

L < sup HujHlL;f < sup ||u;
jeN jeN JeN

using Sobolev’s embedding and (3.15) in the last two estimates, respectively. Take
now 20 + 2 < r < 2*. Then (3.16), the fact that |u;|2-+2 = 1 for all j and (3.17)
yield the existence of constants Cy, Cy, 49, C,. > 0 such that for all j

lujlrz < Ca,  ugjlpzoee = Coora,  |ujlr < G
From the pqr Lemma B.2 follows the existence of constants 77, c¢ > 0 such that

inf [{z e R"; |u;(z)] > n}| = c. (3.18)
jeN

Step 2: Application of generalized Lieb’s compactness. According to (3.16)
and (3.18) our minimizing sequence (u;)jen, u; € H*(R")nL*(R™) = H*(R") satisfies
the hypotheses of the generalized Lieb Lemma B.1. Consequently there exists a
sequence of vectors (z;)jey < R" such that the translated sequence (4;);en, Where
Uj(x) := uj(x + z;), has a subsequence that converges weakly in H*(R") to some
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nonzero function u € H*(R")\{0}.¢ The function u is a candidate for a solution to
our minimization problem.

Step 3: Proof that u # 0 minimizes J; . Since (u;);ecy is still a minimizing
sequence for g% in the sense of (3.14) and the functional J; , is invariant with
respect to translations, also () ey is minimizing:

@ e HRY), |G25% =19 e N, Jim g,(0) = 835 (319)

We may therefore assume w.l.o.g. that z; = 0 for all j and rename (;) jen to (%;) jen-
From (3.19) we obtain

lim (Cuy, Tootty) + wlug, up)) = (F55) 7. (3.20)

j—0
Up to extracting a further subsequence, we may assume that (due to Corollary B.4)

lim uj(x) = u(z) ae. zeR™ (3.21)
j—®
Corollary B.4 was applicable because the embedding H*(R") — Hz(R") is continu-
ous, so from u; — u weakly in H*(R") we get u; — u weakly in H 2(R™); similarly, we
get u; — u weakly in L*(R™). Since the u;’s are uniformly L**2-bounded functions,
(3.21) allows us to apply the Brézis-Lieb improvement of Fatou’s Lemma, Theorem
B.5.7 This theorem implies (when inserting |u;|3357 = 1 for all j), written in little
‘0’ notation,
Jus — w222 + Jul223 = 1+ o(1). (3.22)

We claim:
Cuj—u, T p(wj—u) ) +wlu;—u, uj—uy+u, T pu)+wlu, uy = (Hsz)ﬁrl +o(1). (3.23)

To prove (3.23), notice that after expanding the scalar product and exploiting (3.20)
it is sufficient to show

A; + Bj = ((u, Tspu) — Reuy, Tspw)) + w (Cu, uy — Re(uj, uy) = o(1).
Indeed, by u; — u weakly in H5(R"™), (L*(R"))* < (H*(R™))* and (u, -y € (L*(R™))*,

we have (u,u;) — (u,u), and hence B; = o(1). As for A; we argue as follows.
Consider L2 (R") with the measure p given by du(§) = (m(§) —v - & +w) d€. The
linear operator F : H*(R") — L?(R") is continuous due to the estimate

|F ez = 171 < Cal f]

where the constant Cy > 0 is independent of f € H*(R"); see Lemma 3.5. Clearly,
if € (L,(R™))* then ¢ o F e (H*(R™))*. Since u; — u weakly in H*(R"), we get

Hs,

6We continue to call the index j when passing to further subsequences.
"See also [B1.83], where it is pointed out how this result can be used in the calculus of variations
to prove existence of optimizers in cases in which compactness is not available.
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(o F)(u;) = (poT)(u) for all p € (L2(R™))*. Again, since (L*(R"))* < (H*(R"))*
and (@, )z € (L7 (R"))*, this gives (@, @)z — (U, @)rz. Equivalently by Plancherel
this means (u;, T, ,uy — (u, T, ,,uy, and hence A; = o(1). This proves (3.23).

With the operator H := T, + wld (which is positive by our choice w > w,) we
shortly write this as

Cuj =, H(u; —u)y + (u, Huy = (335)77 + o(1), (3.24)
From (3.22) and (3.24) it follows that
35 { g — ul752% + Jul 7502 + o(1)} = 335 - 1
= {Cuy —u, H(w; — u)) + (u, Huy + o(1)}7"
>(uy — u, H(uy — u))" ™ + (u, Hu)®™ + o(1)

2oy — 7575 + (u, Huy™ ! + o(1).

(3.25)

In the second to last step in (3.25), we used the elementary inequality (see Lemma
B.7)
(a+B) T = o + 57" fora,B,0 =0,

which is applicable by positivity of H. In the last step of (3.25) the definition of
dy% was inserted. Simplifying in (3.25) and taking the limit j — oo, it follows that
355 [ul 3252 = (u, Hu)?**, which gives with u # 0 that

<u Hu>o+1
e Z ey = Oy (W)

vw =
HUHL2U+2

The converse inequality g% < d; ,(u) is clear by v € H*(R")\{0}. Thus u is mini-
mizing, as desired. The proof of Theorem 3.1 is now complete. n

Remark 3.7. The above proof actually shows that all minimizing sequences (u;)jen
for g;% are relatively compact in H*(R") up to translations.

Proof. Let (u;);en be a minimizing sequence as in (3.14), and let v € H*(R")\{0}
be as above, namely, up to translation and passing to subsequences if necessary,
u; — u weakly in H*(R") and u minimizes the functional g3, on H*(R")\{0}. Let
o = ||ul|p20+2. Since lim; . J5 ,(u;) = Jy% = 35, ,(v), we have

J +
lim Hf)’w(uj)%ﬂ — {u, S7Uu> i w<u,u>.
Iz a

In other words, using |u;||f20+2 = 1 for all j, we have lim; H{L\J”LZ = HéaHLﬁ By

[LLOL, Theorem 2.11|, we get u; — g strongly in LZ(R”). Thus from Lemma 3.5 it

follows that

1

.
< —

Hs =
¢

Uj — — — 0.
«

2
Ly

Ju; - =] u - o =
(67 (0%

1
Gy
This proves the remark. O
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3.5 Symmetries

3.5.1 Schwarz and Steiner Symmetrization

We begin by recalling some important notions of symmetrization of a given function;
see in particular the textbook references [LLOI, Chapter 3] and [KesO6]. For w :
R"™ — C measurable and vanishing at infinity in the weak sense that

dy(t) == [{x e R"; |u(x)| > t}| <oo forallt >0,

we define its (n-dimensional) Schwarz symmetrization, also called its symmet-
ric decreasing rearrangement (with respect to n variables), to be the function

u*(x) = LOO X{jul>ty* () dt. (3.26)

Here, a rearranged level set {x € R"; |u(x)| > t}* is defined to be the open ball
Bg,(0) of radius R, centered at the origin, where R; > 0 is chosen such that

{lul > t}] = |Br,(0)] = wn R}

(with the understanding By(0) = ). Here w, is the volume of the n dimensional
unit ball. We call d, () the distribution function of u. Clearly, d, : (0,0) — R,
is non-negative (because the measure is so), non-increasing (because the measure is
monotone) and continuous from the right (because the measure is continuous from
below); cf. also [[Hun66].

Definition 3.8 (Equimeasurability). Let f,g : R® — C be measurable and van-
ishing at infinity. f and g are called equimeasurable on R" if they have the same
distribution function, i.e.,

de(t) = d,(t), forallt>0.

Recall some basic properties of the (n-dimensional) Schwarz symmetrization u*
(we refer to [Kes06, p. 17] and [LLO1, p. 81| for proofs and further details):

1. u* is nonnegative, radially symmetric as well as radially decreasing in R",

2. the level sets of u* are the rearranged level sets of |ul, i.e.
{xeR"; u*(x) >t} ={xeR"; |u(x)| > t}*,

and, as consequences [the balls {|u| > t}* are open by definition and the family
A = {(a,0);a > 0} < Pot(R, ) generates the Borel o-algebra on R, |

3. u* is measurable and lower semi-continuous,

4. u* and |u| are equimeasurable, in particular we have ||u*|z» = |u]z» for all
1<p<oo,
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*

5. if ¢ : Ry — R, is nondecreasing, then (¢ o |u])* = ¢ ou* (see [Kes06,

Proposition 1.1.4] for the proof of an analogous statement).
In particular, for equimeasurable functions f, g the balls {| f| > t}* and {|g| > t}* are
equal for all ¢ > 0. Thus also the Schwarz symmetrizations are equal, i.e. f* = g*,

since
o0

f*(a) = f st (@) i = f Ngpoays () dE = g7(2)

As a second notion, for n > 2 and a function u as above, we introduce the Steiner
symmetrization in codimension n — 1, denoted u*' : R" — R, as follows (see
also [Capl4]). For a vector z € R", let us write z = (z1,2’) € R x R*"!. Then
the value of u*' at x is defined to be the value of the (n — 1)-dimensional Schwarz
symmetrization of the function u(xy,-) : R"! — C at 2/. In formulae,

u R xR S Ry, u* (m, ) = u(ag, ) *(2), (3.27)

where * is to be understood as the (n — 1)-dimensional Schwarz symmetrization.
Note that u*! is a nonnegative function because for any z; the function u(zy,-)* is
nonnegative. We list some elementary properties of Steiner symmetrization.

Lemma 3.9 (Elementary properties of #;). Letn = 2 and u : R" — C be measurable
and vanishing at infinity. Then the following holds:

(i) Steiner symmetrization =, preserves the L norm, i.e., if u € LP(R™), then also
u*t e LP(R™) with |u*'| e = |uLe.

(i) The Steiner symmetrization u*' of u is cylindrically symmetric with respect to
1-axis, i.e., for any (xq,2'), (x1,vy') € R x R"™ we have

u (2, a) = w1y, if | =1y

Proof. (i) follows from Fubini’s Theorem and the fact that for any z; € R the
functions |u(z,-)| and u(zy,-)* are equimeasurable on R"~!. That is, we check

[ ?, f f (i, ) ()P day da’ — J J (i, ) ()P A’ day
Rr—1 JR R JRn-1

= f f lu(zy, 2")|P da’ dzy = J J \u(zy, 2")|P day da’ = |ulff,.
R JRn—1 Rn—1 JR

(ii) is clear, since the (n — 1)-dimensional Schwarz symmetrization of w(zy,-) is
radially symmetric on R"™! hence for |2| = |y/| we have

u (zy, 7)) = u(zy, ) () = ulzy, ) (YY) = u* (21, 7). O

3.5.2 Properties of Steiner Symmetrization in Fourier space

Recently, in [BL15], n-dimensional Schwarz symmetrization » in Fourier space has
been used to prove existence of radially symmetric ground states for biharmonic
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NLS. Here we are concerned with boosted ground states with boost velocity v € R,
where v (up to rotations of the coordinate system) can always be assumed to point
into 1-direction. In this situation Steiner symmetrization *; in codimension n — 1
gives rise to the analogous operation, i.e.,

uft = F((Fu)*), provided that n > 2. (3.28)

Analogously this will enable us to establish cylindrical symmetry of boosted ground
states with respect to the cylinder axis given by v, at least provided that o > 0 is
an integer.

The operation f#§; makes sense only if n > 2. If n = 1 we consider the modulus
of the Fourier transform. More precisely, we work with the operation
o= F (|Ful), provided that n = 1. (3.29)
Some properties of #; are inherited on the Fourier side and give the following
properties of .
Lemma 3.10 (Properties of #;). Let n = 2 and u : R" — C be measurable and
vanishing at infinity. Then the following holds:

(i) #1 preserves the L* norm, i.e., if u € L*(R"), then also u* € L*(R™) with
[uft] e = ful 2.

(i) The function u™ is cylindrically symmetric with respect to 1-axis, i.e., for any
(z1,2), (21,9') € R x R" we have

uht (@, 2) = WP (21,y), if 2] = |-

(iii) For u with the additional assumption that Fu € L'(R™), we have that u™ is
bounded and continuous, and the following properties hold:

u (—2) = ubr(z), VreR", (3.30)
u*(0) = |ut(x)], VreR" (3.31)

Proof. (i) follows immediately from Lemma 3.9 (i) and Plancherel’s Theorem, namely
[uft |72 = 1571 (F) ™)z = [(Fu)™ 72 = [(Fu)lZ> = JulZ-.

(ii) follows directly from the fact that u* is the inverse Fourier transform of the (ac-
cording to Lemma 3.9 (ii)) with respect to l-axis cylindrically symmetric function
(Fu)*'. In detail, let 2/, 3 € R*! with |2/| = |¢/|. Choose an orthogonal transfor-
mation R € O(n — 1,R) of R"! such that Rz’ = 3. Denote R' its adjoint.® By
Fubini’s Theorem

1
(2m)

1

= ix1€1 1 N i€ et
(2m) f <fRn_1<?“> (&,€)e ds)d&.

8Since R is orthogonal and real, we have R~! = R = R =R

uh (21,2") =

| e agae
Ro-1 JR

w3

(3.32)

wl3
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We compute the inner integral, using 2’ = Ry’ and the change of variables ¢(¢') =
RE'. Since |DetJ(¢;&')| = |DetR| = 1 for the Jacobian determinant, we obtain

r

(Fu)* (&, €)e ¢ de’ = J (Fu)* (&1, €)™V € ag
JRn—1 Rr—1

r

= <?u>*l<§1,£'>eiy"Rf’df’=f (Fu)* (&, R p(€))e @) [DetJ (¢; )| d¢’

JRn—1 Rn—1
[ .y oo

) (Fu)™ (&, R™Hp)e ™ dn' = J (Fu)™ (&, m)e™ ™ dny',
Rr-1 Rn—1

(3.33)

where the last equality is due to the cylindrical symmetry of (Fu)** with respect to
l-axis. Putting (3.33) into (3.32) and applying Fubini again gives

uﬁl(xl,:c’) = uﬁl(acl,y’).

(iii) follows from Bochner’s theorem (e.g. [RS75]). First, by Fubini’s Theorem, the
definition of the Steiner symmetrization in codimension n — 1 and the equimeasura-
bility of the functions |Fu(&;, )| and Fu(&y, -)* on R"™!, we see that the hypothesis
Fu € LY(R") is equivalent to (Fu)* € L'(R"). But (Fu)*' € L'(R"™) is a nonneg-
ative function on R™. Bochner’s Theorem then implies that F~1((Fu)*1) = u™ is
a positive definite function. This means that (see [BL15, p. 32| or also [Str03, p.
131]) it is a bounded and continuous function with the following property:

m

YmeN, Vo', ... 2™ eR": ZtU,ﬁ(lC = Z ut (' — 29)G¢ =0, YCeC™. (3.34)
ig=1
The matrix Uf' = (u*(2* — 27)). ._ is associated to x = (z!,...,2™) € R™™,
X i,j=1,....m

Taking m = 1, 2! = v € R" arbitrary (e.g. # = 0) and ¢ = 1 yields that u* (0) > 0,
in particular 4*1(0) must be real. Proceed now as in [B1.15]: take m = 2 with 2! = 0,
2? = x € R" (arbitrary). Then (3.34) reads

(1G> + 1G)u™ (0) + Géuf (—2) + GGuP () 2 0, V¢ = (G,¢) € C* (3.35)

We draw several conclusions from (3.35).
1. Let ¢ = u*(x) - (1,7) = (uP*(2), 7u" (x)) € C2. Then (3.35) gives

[ (2)]? {20 (0) + i(u* (—2) — u* (2))} = 0.

Since uf(0) € R, this implies [u® (2)|? Im[i(u* (—2) — u* (z))] = 0, which yields
(Im[iz] = Rez for z € C)

lut (z)* Re v (—2) = |uf* (z)* Reu™ (2). (3.36)
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2. Let ¢ = uf(z) - (1,1) = (v (z),u" (z)) € C2 Then (3.35) gives
uf (z)]? {20 (0) + u™ (=) + u*' (2)} > 0.
Since u*(0) € R, this implies [u* (z)|? Im[u* (—x) + uf(z)] = 0, that is
ju® ()] Tmu? (—2) = —|u® (2) ] Tm u® (z). (3.37)
From (3.36) and (3.37) it follows that
[uf (2)Puf (—2) = [u (2) Pubr (2). (+)

From (), we deduce (3.30) provided that u*(z) # 0. However, if u®(x) = 0,
we repeat the previous derivation with the vectors ¢ = (u*(—x),iu* (—z)) and
¢ = (u*(—x),u* (—x)) instead, and arrive at the similar formula

[uh (—a)[Put (—z) = [uf (—2)Pubr (2). (x+)

Since uf1(x) = 0, (++) reads u* (—x) = 0, hence we also get (3.30).

3. Finally, it remains to prove (3.31). If u*1(x) = 0, then (3.31) is clear by u*(0) >
0. If u(z) # 0, we let (see [KatO4, p. 150]) ¢ = <_|Z$Eg ,1) € C%. Then
(3.35) gives, after inserting (3.30), that (3.31) holds. (Notice that by (3.30) the
assumption uf!(z) # 0 is equivalent to u®'(—z) # 0.) The proof of Lemma 3.10
is now complete. ]

3.5.3 Symmetrization Decreases the Kinetic Energy

In this subsection we investigate how our symmetrization affects the energy terms
appearing in the Weinstein functional. First, consider the functional

-1 1

S, L) >R, Gufu) = — f (0Ol de.

As s = L we have H*(R") «— H'Y*(R"), so G, is well-defined on H*(R"). Also,
by Lemma 3.12 below, u € H*(R") gives u*t € H*(R") (respectively, & € H*(R") if
n = 1), so that G,(uf') (respectively, G, (%) if n = 1) is well-defined. Let us confirm

that this boost term is invariant under our symmetrization.
Lemma 3.11 (Invariance of boost term under symmetrization). Let n > 1 and
ue H*(R™). Then:

(i) If n =1, then G,(a) = G,(u).
(ii) If n =2 and v = (v1,0,...,0) points into 1-direction, then G,(u*) = G,(u).



70 CHAPTER 3. BOOSTED GROUND STATES

Proof. (i) is clear. To prove (ii), we understand again = as the decreasing rearrange-
ment in the last n—1 variables. We know that the functions Fu (&, -)* and |Fu(&, -]
are equimeasurable on R"~!, for any fixed & € R. It follows that

9.(0) = =5 | (el (©) dg
- fea ([ 1o0m@orae) a
JR JRn—1

1 [ *(¢1\|2 /
-5 fea ([ 1ou@r@ra) a

1 [ N2 ,
-3 fea ([ 1oue @k a) ae

=L e e = Su(w). =

Second, we consider the functional

TR <R, T) =g | m(@a) de

n

By our general assumption (A), we have

Al

2o, ue H*(R™),

e < | (i) + DA ds < Bl

so T is well-defined on H*(R™).

Lemma 3.12 (Kinetic energy decreases under symmetrization). Let n > 1 and
ue H*(R™). Then:

(i) If n =1, then T(a) = T(u).
(11) If n =2 and we suppose the "monotonicity property” (B), i.e.,
m(&, &) = m(&,n), i €=, (3.38)

then
T(uh) < T(u). (3.39)

Remark 3.13. If L = (—A)® with s > 0, then clearly (3.38) is true:

2s

2s
m<51,§'>=(\/§%+|§'|2) >(x/§%+wr2) = (), i 1€] = .

In this case T(u) = 1 (.. [€*[Q(&)]*d¢ = L[ (—A)2u

2
L2
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Proof (cf. [BL15, Proof of Lemma A.1]). (i) is clear. We prove (ii). Since u €
L*(R™), so is Fu and thus (Fu)*'. Consequently, by definition of u*' as the inverse
Fourier transform of an L? function, we have u* e L?(R") with F(u*) = (Fu)*:.
It is a fundamental property of the symmetric decreasing rearrangement that if
¢ : R, — R, is nondecreasing, then (¢ o |g|)* = ¢ o g* for any Borel measur-
able function g : R"™! — C vanishing at infinity (see [LLO1, p. 81|). Hence (take
o(x) = 2?) we have (|g|*)* = (g*)% This means (|h(&,)2)* = (h(&,-)*)?, ae.
& € R, for h : R® — C measurable and vanishing at inifinity; in other words,
(Jh|?)** = (h*1)? a.e. Thus (take h = Fu), claim (3.39) is equivalent to

Tty = 2 [ mie)lFuw () ae
2 Jon

1

=5 monEnena<; [ mowoere

It is therefore sufficient to prove

Jnm(g)h*l(ﬁ) d¢ <J m(§)h(§) dg

n

for any nonnegative measurable function A : R™ — R vanishing at infinity. By defi-
nition of =y, this is equivalent to (* is again the symmetric decreasing rearrangement

on R"1)

[ ([ meemerea)aas| ([ meemeerae) .
R Rn—1 R Rn—1

(3.40)
Therefore, it suffices to prove

| maom @ < [ mieeme ), ae qeR, @41

Rn—1

and then integrate this inequality over R to get (3.40). Let us prove (3.41). By the
layer-cake representation, write h(£1,¢') = SSO X{n(er,)>13 (&) dt for ae. & e R*™!. By
this, (3.26) (in dimension n — 1) and Fubini’s theorem, it is clear that it suffices to
show

| miegmon@)ag < | mieale) ag (3.42)
for any measurable set A < R"~! of finite measure. Here A* is the rearrangement
of A, i.e., the open ball Bg(0) in R"™! centered at the origin with measure u(A),
where p shall denote the measure (with the convention that A* = ¢ if u(A) = 0).
By additivity of the measure, we have p(A\A*) = u(A) — u(An A*) and p(A*\A) =
w(A*) — pu(A* N A). Subtracting these two equations from one another and using
1(A) = u(A*) (by definition of rearrangement of a set) yields u(A\A*) = p(A*\A).
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Thus, by using the monotonicity property (3.38), letting ' = (R,0,...,0) € R""1,
| menerae = [ mien)dg = mignana
A\A* A\A*

= m(E (AN = [ (e dg

A¥\A

> [ ).
A¥\A
since ¢’ ¢ A* if and only if [¢'| = R. Therefore

fm(&@')d&’{ mlEn,€) e+ f m(E,€) de’
A A\A*

AnA*

> L*\A m(&, &) dg + LmA* m(&,&)dE = L* m(&p, &) de.

This is exactly (3.42), from which (3.41) and hence (3.39) follows. The assertion
uft € H*(R") follows from the estimate

e = | 0 EPYIE©F e < 5 [ (mie) + NIEOF dg

|

T(w) + Ml < Julge,

1
=Z‘T(um) + Muf)2s <

o |

using assumption (A), Plancherel, (3.39) and Lemma 3.10 (i), and again assumption
(A). The proof of Lemma 3.12 is now complete. ]

3.5.4 Symmetrization Increases the Potential Energy

In the next step, we show that the potential energy goes into the right direction
under our symmetrization, at least provided that o > 0 is an integer. We keep in
mind that p = 20 + 2 is then even. In the case of non-even p, their may or may not
exist counterexamples to the following behaviour of potential energy.

Lemma 3.14 (Potential energy increases under symmetrization). Let n > 1 and
o = 0 be an integer. Let u € L*(R") n L?**T2(R") and suppose that Fu € L'(R").
Then

uh e L2H2(RY) ifn > 2,
GeL*?2R)  ifn=1,

and we have the estimate

HUHL2J+2 < Huﬂl ||L2a+2 Zf n = 2,
<|

HUHL2‘7+2 ‘ﬁ”L20+2 Zf n=1.
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Preliminary Lemmata

To prove Lemma 3.14, we shall make use of the Brascamp-Lieb-Luttinger inequality,
which reads as follows (see [BLL74] and also [LLO1]).

Theorem 3.15 (Brascamp-Lieb-Luttinger inequality; see [LLOI, Theorem 3.8]).
Let n,m = 1 and uy, us, ..., u, : R® — R, be non-negative measurable functions
vanishing at infinity. Let k < m and B = (b;;) be a k x m matriz (with 1 <i <k,
1 < j <m). Define

m k
L[ug, ... ] ;:J J Huj(Zbijyi> dy' - dyF. (3.43)
" " =1 i=1

Then
Lfuy, .. up]| < Lful,. .. ur].

' m

The following lemma shows how an (m — 1)-fold convolution evaluated at zero can
be related to a Brascamp-Lieb-Luttinger quantity I,,_; like in (3.43).

Lemma 3.16. Let n,m > 2. For functions uy,...,u, and x = (x1,2') € R" we
have

(ug * - * up)(x) = fn...fnﬁuj(yj)um(x_zlyi) dy' - dy™ !

[ { [ - Ln_l ’ﬁuj(yg,yjf) (3.44)

m—1 m—
x um( Z yi,w Z )dy” ym‘“} dyp -~ dy" .

In particular, at x = 0, we have that

1% x um ) (0)

U

ml (3.45)
f f n— l[ul y17' 7"‘7um—1(y{n17’)7um<_ Z yia):| dy% dy717’L*17

i=1

where I,y is defined according to (3.43) with the (m — 1) x m matriz

10 - 0]-1
01 0|-1
00 - 1]|-1

Here, the matriz in the left block is the (m — 1) x (m — 1) unit matriz.
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Proof. The second equality in (3.44) is Fubini’s Theorem, while the first equality
follows by induction on m. Indeed, for m = 2, the formula is correct by definition of
convolution of two functions. For the inductive step, assume the formula is correct
for m e N. For m + 1 € N, we have by hypothesis

(et # e )(0) = [ ) 27) 2

n

m—1 m—1
:J {J J Huj(yj)um<2m— yz> dyl--' dyml}um+1(x—zm)dzm
Rn Rn n j=1 "
m—1 ‘ m—1 ‘
:f f uj(y]) {f Um<2m— yz>um+1(x_zm)dzm} dyl dym—l7
RTL n . n .

7j=1

the last equality by Fubini’s Theorem. Changing variables y™ = 2™ — Z:;l Yy’
yields for the inner integral

m—1 m

J U, (zm — Z yi> U1 (z—2T)dz™ = J U (Y™ ) U 41 (;1:—2 yl> dy™. (3.47)
! =1 " i=1

Inserting (3.47) into (3.46) and using Fubini again yields (3.44) for m+1eN. [O

Corollary 3.17. Let n,m = 2. For non-negative measurable functions uy, us, ..., Uy, :
R™ — R, wanishing at infinity, we have
(11 %% ) (0) < (i + - %l ()

m

Proof. Using (3.45), Brascamp-Lieb-Luttinger (Theorem 3.15), the definition of
Steiner symmetrization in codimension n — 1 and (3.45) again, we get

(ur * -+ % ) (0)
. m—1 '
:J [n,1 ul(yiv'%'-'vum1(y§n17')’um(_ 2 yi,)] dy% dy{nil
R JR

" S\
ng o [n,1 ul(yia ')*7' .. 7um1(y;nl")*’um< a Z yi’ > ]dy% . dy{nil
R J i

- m—1 '
_JR [n—l uikl(yia')a'-->u:11—1(y?ln_17')’u:2(_ y17):|dy} dyin_l
J ‘
=(uyt * - *ugt ) (0). O

We need one more technical lemma which will be applied in the proof of Lemma
3.14.

Lemma 3.18 (Some rearrangement relations). Let n = 2 and g,u : R" — C be
measurable functions vanishing at infinity. Then:
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I6)

(i) For fized x1 € R, the functions g(x1,-) and |g(x1,-)| are equimeasurable on
R""L. Consequently, their Steiner symmetrizations coincide, i.e. |g|*' = g*'.
In particular, we have |Ful*' = (Fu)*' and |Fu|** = (Fu)*.

(i) The functions g and G are equimeasurable on R™. Consequently, they have the
same Schwarz rearrangements, i.e. g* = g*.

(i1i) The functions g and g(—-) are equimeasurable on R™. Consequently, they have

the same Schwarz rearrangements, i.e. g* = g(—-)*.

(iv) We have |Fu|** = (Fu)* (—), i.e.
|Ful™ (&) = (Fu)* (=), for a.e eR"

Proof. (i) and (ii) are clear.

(iv) immediately follows from (i), (ii) and (iii) via the formula

Fg(¢) = Fg(—9). (3.48)
Namely,
Fu* (&,6) L (Fu) (6, ¢) = Fuale, ) () "2 Fu(=&, =) (¢)
D Fu(—&, =€) Y Fu(—&1, () = (Fu)* (=&, )
= (Fu)* (=&, =),

the last equality by cylindrical symmetry of (Fu)*! with respect to 1-axis (Lemma 3.9
(ii)). Here, the particular case of (i) with Fu was used and (ii) and (iii) were applied
with the decreasing rearrangement = on R"! to the function g = g¢, = Fu(—&;, —)
depending on n — 1 variables.

It remains to show (iii). To this matter, we note that

yelyeRY [g(—y)| >t} = —ye{yeR"; |g(y)| > t}.

In other words, the set {y € R"; |g(—y)| > t} is just the reflection of the set
{y e R"; |g(y)| > t} at the origin 0 € R", i.e.,

{yeR"; [g(=y)| >t} = Ro({y e R"; |g(y)| > t}),

where Ro(S) := {Roy;y € S} for a set S < R™ with the linear operator Ry = —Id.
Lebesgue measure is invariant under transformations y — a + Ty with a € R™ and
T € O(n,R), in particular under the reflection y — Ryy, Ry € O(n,R). Thus the
sets {y € R"; [g(y)| > ¢} and Ro({y € R™; [g(y)| > t}) = {y € R"; |g(~y)| >
t} have equal measure. Therefore g and g(—-) are equimeasurable and thus their
Schwarz rearrangements coincide. This proves (iii). The proof of Lemma 3.18 is
now complete. O
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Proof of Lemma 3.14 (cf. [BL15, Lemma A.1])

We proceed in two steps.

Step 1: u*t € L**2(R"). Let first n > 2. By Plancherel, Fu € L*(R"), hence
by Lemma 3.9 (i) (Fu)*' € L*(R™). Since we suppose Fu € L'(R"), Lemma 3.9 (i)
gives that also (Fu)* € L'(R"). Hence (Fu)** € L'(R") n L*(R"), which implies
(F~': L' — L* is bounded and F~' : L? — L? is isometric) that F~1((Fu)*!) =
uft € L*(R™) n L*(R™). By interpolation, u* € L**2(R").

Let now n = 1. Similarly as above, we obtain from Plancherel and the hypothesis
Fu e L' (R) that Fu e L' (R)n L*(R). Equivalently, [Fu| € L*(R)n L?(R). As above,
this implies U = F1(|Ful) € L*(R) n L*(R) = L**2(R).

Step 2: Conclusion with Brascamp-Lieb-Luttinger inequality. The con-
volution theorem in our convention of the Fourier transform reads [RS75, Theorem

IX.3]
F(f *g) = 2m)2F(f)F(g),

and conversely,

F(fg) = 2m) 2 F(f) » F(g). (3.49)
We have
Jul 352 = (2m)2 F((u)*1)(0) = (2m)2 (2m) 2% (F(utr) * - - - « F(um))(0)
= (2m) 2 (27) 27 (27) "2 (Fu « Fu* - - * Fu x Fu)(0) (3.50)

< (2m) 7" (1Ful * |Ful + - -« [Ful » [Fu])(0)

by definition of the Fourier transform, applying the convolution theorem (3.49) o
times (here, the condition that o is an integer enters), and then again on each of
the remaining o + 1 factors F(uu). Using Corollary 3.17, we see that

(IFul = [Ful » - -« [Ful + [Ful)(0) < ([Ful™ « [Fa[** * - [Fu[* « [Fu[*)(0)
=((Fu)™ > (Fu)™ (=) » - - x (Fu)™ * (Fu)™ (=) (0).

Here, the second step uses statements (i) and (iv) of Lemma 3.18. By definition
of uf, we have (Fu)* = F(u*'). Finally observe that (Fu)*'(—-) = F(uh), since
in general by the definition of Fourier transform one has Fg(§) = Fg(—¢). Conse-
quently

F(ui)(€) = Fubr (=€) = (Fu)*1 (=€) = (Fu)™ (=€),

where the last step uses the fact that ¢g*' is real-valued for any function g. Using
these last facts and applying the convolution theorem backwards, we finally get

i Hi‘éifg < (2m

() % Fuh) e Fuh) x F(uh))(0)
T7(2m) B (F ()« x TP ) (0)
77 (2m) 2 (2m) 27T ((uF ui )7 (0)

2m) 2T ((uf uh )7 1) (0) = [lu 75,75

(3.51)
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This completes the proof in the case n > 2.

Let now n = 1. Again, by the convolution theorem, we have as above (see
(3.50))

Jul75% < (2m) 7" (1Ful * [Fa] - * |Ful « [Fa])(0)
= (2m)7"(F (@) » [Ful » - -- = F (@)  [Fa])(0),

where we inserted the definition % = F'(|Fu|). Now notice that

F(@)(€) = F(@)(-¢) = [Fu(=¢)| = [Fu(=¢)| = [Fu(-E)| = |Fu(S)!.
Hence (applying the convolution theorem backwards as in (3.51))
lull 52 < 2m) ™" (F (@) * F(@) + -+ F(@) = F(@)(0) = |a]752.

The proof of Lemma 3.14 is now complete. O]

3.5.5 Proof of Theorem 3.2

We come to the proof of Theorem 3.2. Recall that we suppose that ¢ > 0 is an
integer. Let @, € H*(R™) be a boosted ground state, whose existence is guaran-
teed by Theorem 3.1. Furthermore, when L is a general pseudo-differential operator
satisfying assumption (A) and the monotonicity property (B), we make the addi-
tional assumption that @, € L*(R™).2 All of this is true for the fractional Laplacian

L= (-A), % < s < 1, and in this case we prove @, € L*(R") in the next section.

Now we give the proof of Theorem 3.2 in four steps.

Step 1: For o > 1 an integer, , € H*(R") for all k € N. Recall that up to
rescaling (), satisfies the equation

Qu=(L+iv-V+w) ' (|Qu*Qy).

The operators
(—=4)°
L+iwv-V+w

are bounded multipliers L?*(R™) — L*(R"), since for p(§) = m(§) —v-&+w > 0
(w > wy) we get the boundedness

, (L+iv-V+w)t

e e 1 1
CScocarEpr <t "Sco S arepr <t

f 5 > 5, this is automatically fulfilled by Sobolev’s embedding H*(R™) < L*(R").
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from the proof of Lemma 3.5. Consequently, for each v € R, (L + iv -V + w)™!
defines a smoothing H?(R™) — H7*?(R"). Indeed, if f € H?(R"), then

(L 400V + @) ez = [(A)F (L +iv-V 4+ w) " f 12
_ (A
Sl ot G

S I(=2)2 flze = 1/

and
(L +iv-V+w) fllee < ]2,

so that (L + v -V + w) | grses < | f|ar < 0.

In case of s > % there is an algebra structure on H*(R") (see [LP09, Theorem
3.4]), so that for Q, € H*(R") also (Q,Q,)’Q, € H*(R"). Using Q, € H*(R") and
the algebra and above smoothing properties, we’d be done in case of s > 7.

In the case s < %, we exploit @ € L*(R") and a Moser inequality. Namely, it

is still true that for fixed integer k € N, the space H*(R") n L*(R") has an algebra
structure as it holds that [Tay11b, Proposition 3.7, p. 11|

I gl < [ lee gl + 11 lgle, i £, g € H*R™) A L= (R).

For any fixed k € N, one easily uses this to show by induction that (Q,Q,)’Q, €
H%(R™) n L®(R") for all o € N, provided that Q, € H*(R") n L*(R™). This in turn
implies the assertion by the following iteration. By Lemma 3.19 below we know that
Q, € H*(R™) n L*(R™). By the previous argument (Q,Q,)’Q, € H*(R") n L*(R").
Since the operator ((—A)*+iv-V +w) ™! defines a smoothing H?*(R™) — H?*"?5(R"),
we conclude that @, € H*(R"), since s > 1. Hence Q, € H*R") n L*(R").
Continuing this iteration, we deduce that @Q, € H*(R") for all k € N. In particular,
by Sobolev embedding [Str03, Theorem 8.1.2] @, is smooth, @, € C*(R™). [See also
[LBI6, p. 727] for similar reasoning.|

Step 2: FQ, € L'(R"). Pick k € N such that k > %. This is sufficient for
€ — (&)7% to be in L}(R"). By step 1, Q, € H*(R"). Now Hélder’s inequality gives

~ 1 2 E |5
o = | @l as

< [ 226 Qulze < KO Qullz2 = 1Qull i < 0.
Step 3: Existence of a symmetric boosted ground state. As ), € H*(R") —
L?>T2(R"™), we have Q, € L*(R") n L***2(R") and by step 2, FQ, € L'(R"). By
Lemma 3.14
Qe L¥T2(R") ifn > 2,
Q€ L*¥*2(R) ifn=1,
and we have the estimate

{HQULW i :|Q§f oz if > 2, (3.52)

”QUHLQ(’*? |QuHL2v+2 ifn=1.
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From
o+1

o oo 2T +280(f) +wlfIZ:)
duw(f) = s :
(e
(3.52) and the preceding Lemmata 3.11 and 3.12 it follows that

5;.,(Q1) <8;,(Q.) ifn>2
J5,(Qy) <37 ,(Q,) ifn=1

Hence Q%! respectively @\;, is minimizing, too.

Step 4: Additional symmetries of boosted ground states. It remains
to verify the additional symmetry properties of a symmetric ground state given by
step 3. Let first n = 2. We know from Lemma 3.10 (iii) that Q% is continuous, and
bounded with the estimate

Q1 (0) = |Q% (x)|, for all z € R™.

Now, by definition of the inverse Fourier transform and the fact that (FQ,)*' is

real-valued, we have

Qi (x) = FH(FQ)™)(x) = FH(FQu)™)(2) = FH(FQu)™)(—) = Q¥ (—).

Comparing real and imaginary parts in this equation, Q% (z) = Qb (—x), we find
Re Q! (x) = Re @} (—x)
ImQ} (z) = — Im Q3 (—x)

Finally, using the fact that Q' is cylindrically symmetric with respect to 1-axis
yields: for any 2’ € R"!

the function R — R, x; — Re Q% (z1,2') is even,
the function R — R, z; +— Im Q% (71, 2’) is odd.
This completes the proof of Theorem 3.2 for n > 2.

Let now n = 1. Since |FQ,| € L'(R"), we know by Fourier inversion that
Q. € Co(R™) A L*(R") is continuous and bounded, vanishing at infinity. [Co(R")
denotes the space of functions f vanishing at infinity in the sense that for all t > 0
the set {x € R™;|f(z)| = t} is compact; see [Wer(O7, p. 6].] Since |FQ,| is real, we
get analogously to the above

Qul@) = TH(FQuN)(x) = T ([FQu) (@) = T(TQ.N) (=) = Qu(—2).

Comparing real and imaginary parts in this equation, @;(:c) = @\;(—x), we find

the function R — R, z +— Re Q,(x) is even,
the function R — R, z — Im Q, () is odd.

The proof of Theorem 3.2 is now complete. O
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3.6 Regularity

Provided that L = (—A)* is the fractional Laplacian with § < s < 1, this section
will provide the outstanding proof that solutions to the Euler-Lagrange equation
(3.3) are essentially bounded.

3.6.1 Higher Sobolev Regularity

However, for the moment, we still let L be a general pseudo-differential operator
satisfying our standard assumptions. We first give a conditional result that under
the essential boundedness condition a higher Sobolev regularity holds.

Lemma 3.19 (Higher Sobolev regularity). Let n > 1, s = 3, and L be a pseudo-

differential operator satisfying assumption (A). Let v € R™ arbitrary for s > %,

and [v| < A for s = 3. Let Q, € H*(R") n L(R") solve the Euler-Lagrange

equation (3.3) with w > w,. Then the higher Sobolev reqularity Q, € H?*T(R"™)
holds, consequently Q, € H*(R™). In particular, any minimizer Q, € (H*(R™)\{0})n
L*(R™) of problem (3.9) is likewise regular.

Directly from the Euler-Lagrange equation, this can be shown similarly to [FL13,
Lemma B.2] as follows.
Proof. Step 1: Q, € H*(R"). According to the Euler-Lagrange equation (3.3),
Qv=(L+iv-V+w (Q,7Q,), w> w. (3.53)
Note that Q, € L*(R") n L*(R"™) gives @, € LY by interpolation. In other words,
Q. Q, € L*(R™). Thus
(=4)°

. — _ s g — 20 y < 20 ,
@l = 1) Qulie = =0 (1@ Qe < 10l

since (—=A)*(L +iv -V + w)~! is a bounded multiplier L*(R™) — L?(R") (see the
first step in the proof of Theorem 3.2). Holder’s inequality gives

[1Qul*Qullz2 < |Qul7% | Qullre,
hence |Q,] 72s < 0. Since @, € L*(R™), we find Q, € H*(R™).

Step 2: Q, € H*™(R"). Since s > 1, we have H*(R") — H'(R"), thus
Q, € H'(R") by step 1. Then

. — (= S+% 5 = _ % 20 )
[@ulaens = H-AY 3@l = | 20— (- A) Q@)

S I=2)2(1QuQu)llze < [V(IQul*Qu) 22
Check that |[V(|Q.]*?Q.)] < (20 + 1)|Q,]*|VQ,| almost everywhere in R™. Then
Holder’s inequality gives
IV(1Qul*Qu)lz2 < 1Qul 2% IV Qo] 2,
hence ||Q, | j2s41 < 0. Since Q, € L*(R"), we find Q, € H*T(R"). O

(=A)°

(3.54)

NI
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3.6.2 A Proof for ), € L*(R")

The above proof of higher Sobolev regularity was shown under the additional hy-
pothesis that @, € L*(R"), which we have yet to verify. Observe that (3.53) reads

Qv = (L +iv-V 4+ w) Q] Q)
—1 L 20 _ —1 l * 20
-5 [ sareen)| -5 2 - nere) 555
- | 66w Q) dy

1/¢ is the multiplier in Fourier space associated to the resolvent (L + v -V +w) ™!,

where ©(¢) = m(€) — v - € + w. The integral kernel G, = F-1[1/¢] denotes the
associated Green’s function.
There are now three cases:

n

Case s > 5: We directly conclude from Sobolev’s embedding H*(R")
L*(R") (see [Caz03, Remark 1.4.1, (v)]) that @, € L*(R") holds.
Case s = 2: Since (1 + |£]*)® < ¢(€), we have

S 1 1
0 < (FGLL)(E) = o(€) s (1+ &)

so that FG), € L*(R"). Moreover, this estimate implies that FG) € L*<(R") for
all € > 0. Indeed, an integration with polar coordinates shows

|FGELIE, = f FCELO)P dE + j FCU ()P de

B1(0) R\ B1(0)

s<1’

Q0
§1+f Ld§g1+f p 2Pl dp < oo
R\B, (0) |€]%P 1

provided that —2sp+n = —np+n < 0,1i.e. p > 1. Thus ?Gq(fgj e L'*¢(R") n L*(R")
for all ¢ > 0. Hence the Hausdorff-Young inequality (see [L.LP09, Theorem 2.3]) yields
that G}, € L (R™) for all 2 < p < o0. On the other hand, since H*(R™) continuously
embeds into L¥*2(R") for o € (0,0,) subcritical, we have |Q,|¥Q, € L2+ (R").
Since ¢q := ggﬁ € (1,2), we may let p = ¢’ € (2,0) be its dual, and conclude from
(3.55) and Young’s inequality (see [LP09, Theorem 2.2|) that @, € L*(R") holds.

Case s < 5: This final case will be established by an iterative argument using
the weak Young inequality; see Proposition 3.24 below. We first develop some
preliminaries in the following exhibition.

Introduction of a Kernel

Fix some 0 < ¢y < —wy + w and define a(&) := p(§) — co. We observe that there
exists ¢ > 0 such that
a(é) = cl¢*®,  for all £ e R™. (3.56)
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Indeed, since (&) = (1 + [£]*)® = |£|**, there is C > 0 such that ¢(&) = C|¢]* for
all £ € R". Let R > 0 be so big that £ R* > ¢y, and hence

C
a(€) = p(6) — co > CIE — co > SIEP, forall f¢] > R

Let then ¢; > 0 be so small that %1‘”_60 > R?®, and hence

a(€) = (&) —co = —wy +w—co = R* = ¢1|¢]*, for all |¢| < R.

Take ¢ = min{c;, £} to verify (3.56). From Sgo e dt = % for v > 0, we have

1 o]
- J e teo g—tal) dt,
W(g) 0

or by functional calculus

0

(L+iv-V+ w)’l = J e tco g —t(L+iv-V+w—co) qt.
0

Hence
1 , 1 “
G(s) :?—1 _ _ iz de = —tcop(s) ’ d, )
) = 5 el(0) = gy [ g ae [T @

where we used Fubini and defined the kernel

e | esemae
T2 n

P®) (x,t) :=

v,w

Pointwise Bounds on the Kernel

The next lemma establishes pointwise bounds on the kernel PU(SJ In the proof we
differentiate a(¢). To do this and make things explicit, from now on we look at the
particular case L = (=A)*, i.e. m(§) = [¢*, with § <s < 1.

Assumption (A) is clearly true for the fractional Laplacian L = (—A)® with
s > 0. Namely, we simply fix some A > 0 and consider the continuous positive
function
%+ A
(1+ 22)s
f satisfies f(z) — A asx | 0, and f(z) — 1 as x — o0, so that by continuity
and positivity the numbers B = sup,-, f(z) and A = inf,>o f(x) > 0 exist. The
limit f(x) — 1 as © — o also clarifies that (A) can only be true if A < 1. In the
case s = 5, we recall that the condition |v] < A is sufficient for & — (|¢|* — v - €)
to be bounded from below. We can choose the least restrictive of these sufficient
conditions, namely A = 1. Indeed, since (1 + ]§|2)% < [€] + 1, we can take A = 1,
any A > 1 and then determine B as above to see that (A) holds.

f:]0,00) > Reg, f(z):=
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Lemma 3.20 (Pointwise bounds on the kernel P for L = (—A)®). Letn = 1,
se [ 1), and L = (=A)*. Let v € R™ be arbitrary for s € (3,1), and |v| < 1 for
5 = % Then we have the pointwise bound

[P (@, )] < Cmin{t ™3, |z| ™} (3.58)
with some constant C > 0 depending only on n,s, v and w.

Proof. From (3.56) we see that the kernel PU(SUZ obeys the pointwise bound

o0}
|P1E‘2($, t)‘ Sn,sow J eictm% d¢ Snys,ow J J Gictgzs dSdp
’ R™ 0 JoB,(0)

e} 0
Shsvw J e 0" M dp Sppspw t 2 f e "uz ! du (3.59)
0 0
gnsthigisr (2) Snsthigisv
199y 28 199 My
where we switched to polar coordinates and substituted v = cto*. Now, let j =
1,...,n be fixed. Using z;e™¢ = —idg,(e"*), an integration by parts reveals
(z; — itv;) PO (x,t) = e Z)n f et e (25t €2 + tuy) dE — itv; P (2, 1)
k) 7.‘. 5 n k2
1 rf —ta : s
- o f e €O (25t 2€;)) dE.
(3.60)
Consequently
(3.56) .
x; it ; qusu)J Dl <t ta(§) 6 2s 1d€ <t ct|€| 523 1d€
’ n R
oe} o0
< tf efctQQS 923+n72 dQ < tlg—sn J efuu1+"2—;171 du
0 0
1—n n — ]. 1-n
gt%r(1+ )gtgs_
2s
We claim that this holds more generally:
z; —itv,)FPY) (z,t §tk2_Tn, k=1,...,n. 3.61
J J v,w
Once this is proved, we get in particular (k = n)
[(z; — itvj)”quig(x,t)\ <1, foralj=1,...,n, (3.62)
thus
z|"|PY) (2, 1) < x; — itv; P@) (2.t
v,w J J v,w
j=1 (3.63)

n (3.62)
< (n ‘max |:1:j—itvj|) |Pv(503(x,t)| < L

ij=1,...n
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From (3.63) and (3.59) it follows that the pointwise bound (3.58) holds, which proves
the lemma. We have thus reduced the lemma to claim (3.61), which we prove now.
Namely, introduce the map

f—K; Kp(z,t):= f e tetald) £(€) de. (3.64)

(2m)3

Mimicking the computation of (3.60), we see that

(zj — itvy) Ky (x, 1) = ) JR eSO (—i(2st|€[*72E; — dg,) F(€)} dE
- K{—i(25t|5\23_2€j—5£j)}f('CE’ t)

which immediately implies by induction that

(I‘j - itvj)ka(x, t) = K{fi(25t|§|23—2£j76§j)}kf(xa t), for all k£ € N. (365)

Notice that Ki(z,t) = Pv(iZ(a:,t), so that letting f =1 in (3.65) gives

(l’j - itvj)kP(s)(x, t) = K{—i(2st|§\25*2§j—6§j)}kl(xa t), k= 1, 2, che

v,w

To use this formula for an estimate, let us analyze the behaviour of the expression
on the right side, i.e., {—i(2st|¢|**72¢; — d,)}*1. Setting

fO = 1a fk’ = {_Z(2St|€|28_2€] - a&j)}fk—h k= 1727 CII)
we may write

(z; — itv;)* P (x,t) = Ky, (x,1), k=1,2,.... (3.66)

v,w

Writing down more of the fi.’s, we observe that the pattern is the following':

k
2o t’ Zif:g ayel &P HE T + Zfzgﬂ W [ o

k+1
ZE v Z?:% ay{,f|23u—2£§jzé—k + Zﬁ:%ﬂ g lezy ay£|§|2su—2e§2£—k7
(3.67)
for any even k > 2 and any odd k > 3, respectively. The coefficients a,, depend on
s. Therefore

fr =

(3.67) &
|fol Sek DS EIEPYTF = tgPP R A PR, R =1,2,0 (3.68)
v=1

0That (3.67) is true can be proved by induction. The coefficients a,, depend on s.
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Let now k£ = 1,...,n be fixed. Then

(3.66) (3.64)

Knt) 5 [ e O] de

3.56
( < ) f ectlel*

6 2s sy—
$ f el ‘§|2 kd§ (3.69)

v=1

k o0
Z J —ctgzs 251/ k+(n—1) dQ

v=1

|(z; — itv;)F P (a,1)] |

v,w

Ju(t, €)1 dg

N

k
<t 3T (y— _n) <t
v=1
Here, we substituted v = ctp* as before and noted the convergence of the I'-
expression, since k € {1,...,n} and v € {1,...,k}. The proof of Lemma 3.20 is
now complete. O

Remark 3.21 (Extension and pointwise bound for Green’s function in the strict

case s > 1). Inspecting the proof of Lemma 3.20, we see that if s > 1 then (3.61)

still holds in the case k = n + 1, that is,

(2 — ito,) POz, )| S t7, k=1,...,n+ 1. (3.70)

Indeed, fixing k € {1,...,n+ 1}, nothing changes in estimate (3.69): we still deduce
( Lk p(s) hen k—n kn

xj —itv;)" Py (w, )| St I;F (1/ -5 ) <t (3.71)

because if s > %, then k <n+1 impliesy—k;—sn > y—% >0 forall ve{l,... k}.

This is no longer true in the limiting case s = % in which the previous estimate fails

(take kK = n + 1 and v = 1). Thus the hypothesis s > % is crucial. Having now
proved (3.70), we deduce in a similar fashion as getting (3.63) above that

n n+1 n+1
\x!”*llpéi),(x,t)\ < (Z ‘:L‘ﬂ) ’stsw (Z ‘$] Zt'UJ|> !Rf,i);(x,t)\
j=1

< (n max |z; — itvj|> 1P (2,8)] < s
7j=1,..., ’
This pointwise bound |Pv(sw(x,t)\ < t2s 2|~ implies a corresponding bound for
the Green’s function GSJSL(QJ) (substitute 6 = cyt):

(3.57)
Gl S a0 |

0
< ||~ (DD (1 + i) < Ja| 7Y,

© 1 ®© 1
e~z dt < |x|7 (Y J e %02 do
0 (3.72)

2s
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The following kernel-estimates are analogous to [Mar02, Lemma 7].

Lemma 3.22 (LP-estimates on the kernel GE), of. [Mar02, Lemma 7|). Letn > 1,

se[11), and L = (—A)*. Let v e R" be arbitrary for s € (1,1), and [v| < 1 for

s = 5. Then:
(i) If n =2 (i.e. s <%), we have

x|~ for 2] < 1,
G < 3.73
Gra@)l = {]x|_(”+1) for x| =1 (3.73)

Ifn=1ands=1 (ie. s=1) we have

—log|z| +1 for x| <1,
GEL(x) <4, ) (3.74)

|z for |z] =1

Ifn=1ands> 1 (ie. s> %), the kernel G%(a;) is continuous and bounded,
and we have

! (3.75)

(ii) |z|" PGS (x) € LP(R™) and for 1 < p < o0 we have |z]*GS)(x) € LP(R")
provided that

2 D, (3.76)

=

{(n—Qs)—%<a<n+1—% forn =2 and se[3,1),

—2<a<n+l-12 forn=1andse|

p 2

In particular, GS,SZ, e LP(R"™) provided that

L forn=>=2andse[3,1),

1
1 o0 form=1and s = (3.77)
1 o0

NN N
hvT T
NN A

1
27
2

1.

(11i) Furthermore, if n = 2, then G, is in L ®(R™) ("weak-Lw "),

forn =1 and s € (

Proof. (i) Let n = 2. We have by Lemma 3.20

0
|G (@) <f \Pgiz(a:,t)ydtsf min{t~ %
0

0

|I
SJ
0

If s> 3 strictly, we obtain the estimate \Gvsw( )| < 2|~ from Remark 3.21. If

x|} dt
(3.78)

|2s

o (s<%)
]:z:]‘”dt+J tadt < |o| T2,
|

I|25

however s =z and n > 1, we use the explicit formula
(s) — t t
G (x) C’nJ e — dt.
o 0 (12 + (x — itv)Q)%l
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This formula follows from G$)(z) = F! [}D] (z) = § e F (e 1) (z) dt

(use Fubini as in (3.57)), together with the explicit formula for the inverse Fourier
transform of e7*¢l on R™ (see [Str03, p. 54]), that is,

t
n+tl

F e () =Cp—mF—
(e™) () ERE

plus an analytic continuation for dealing with the additional term e!*¢, which cor-
responds to a shift x — z —itv (i.e. T~ (e M=) (2) = F~ (e ) (2 — itv)).

Since z := t? + (x — itv)? = (1 — v}t + |z|? — 2itv - x and |2| = |Re 2|, we get

0 " 1 o 1
IG®) ()| < f e ——dt < —lf e tdt < —
’ 0 (1 —02)e2 + [z]2)" [+t o ||+

[Note that w > 0, since w > w, and w, > 0; see Lemma B.8. Hence the previous
integral converges.] We have thus proved (3.73) and the second estimates in (3.74),
(3.75), respectively.

Let now n = 1 and s = 2. We have for |z <1

s OO —tw t
Goo(@)< | e

dt
0 (1= v?)t? + [a?

1 Q0
— 518 (—log |z|? + wf e “log((1 — vH)t* + |z|?) dt>

0

<

A 1
log |x| + —f e it dt < 1 log x| + 1,

1 — 02 2 Jo —v?

where we first integrated by parts and then used the elementary inequality log((1 —
V)2 + |z]?) < log((1 — vH)#2 + 1) < (1 — v?)t2. This proves the first estimate of
(3.74) |notice that its constant blows up as |v| 1 1].

1

€[22 —v-Etw
—_—

in L'(R™). [Simply recall (1 + [€]2)* < ©(€).] Hence GSL(z) = (F1GEL)(z) =

—_

—

Finally, when n = 1 and s > %, it is easy to check that GSJSQJ = s

(?GS,SL)( —x) is bounded and continuous, proving the first estimate of (3.75).
(ii) is an easy consequence of (i). For instance, use |z|*(—log|z| + 1) — 0 as
|z| — 0 to see that |2|2GS)(z) € L®(R), and use

1

1 1
J |a:|ap(—log\x|+1)pdng |x|ap(—log|x|)pdx+J 2] da
—1 —1

together with

1 1 o
J |l"0€p(* log |l’|)p dr = QJ l’ap(* lOg l‘)p dr = QJ ype—y(1+ozp) dy
1 0 0

2 foo 2P d 2 I'(p+1)
= — e “Fde = ——m———
(14 ap)rtt J, (1 +appt P
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to see that |x|aG1(,SU)J(x) € LP(R) if the mentioned conditions on « hold. Then (3.76)
is clear. (3.77) immediately follows from (3.76) [recall that in the case n = 1 and

s> 3, qus?u@) was continuous and bounded, hence p = 0 also appears in (3.77)].

It remains to prove (iii). Let n > 2. Abbreviate h(z) = |z|~("2), p = 2.
Observe

dp(t) == [{x e R™; |h(z)] > t}| = wat "% = w,t ™,  where w, = |B;(0)].

We deduce

1

Iz = sup (dn(t)5t) = wi < 0,
t>0

so that h e LP®(R").11 By (3.78), there exists C' > 0 such that |GS0(z)| < C|h(z)]

for all x, which implies
{z e R ]fofu(x)] > Ct} < {x e R"; |h(z)| >t} forallt>0.

Hence

d . (Ct) < dp(t), forallt>D0,

G,

by monotonicity of the measure. It follows that

HGSBJHLp,oo = sup (daﬁl (t)%t> = sup <dG7€SZJ(Ct>%Ct) < Ciug <dh(t)%t> = C||h pp.o-
> ’ ’ >

t>0

The proof of Lemma 3.22 is now complete. O

Remark 3.23. In the case n > 2 (i.e. s < §) Lemma 3.22 shows

s =2 f [ < 1
Goo(@)] < { [~ D if (2] > 1. (3.79)

In particular, this gives GQSZ, e L'(R™). By explicit formulae for the inverse Fourier
transform of el ¢+« and analytic continuation, with techniques as in [BC60],
[P0123], it may be possible to improve the bound (3.79) up to the following optimal
one:

o 2| =02 if o] < 1,
<

Proposition 3.24 (Q, € L*(R") for L = (=A)*). Let n > 1, s € [3,1), and
L = (=A)*. Let veR"™ be arbitrary for s € (3,1), and |v| <1 for s = 5. Suppose
that Q, € H*(R™) solves the Euler-Lagrange equation (3.3). Then @Q, € L*(R"). In
particular, any minimizer Q, € H*(R")\{0} of problem (3.9) is likewise in L™ (R™).

" This is analogous to the general argument that |z|~* € L™**(R™) (cf. also [LLO1, p. 106]).
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Remark 3.25. Recall the convolution (integral) equality (3.55):

Qv = GYL* (1Qu[*7Qu). (3.81)
The idea of the proof is to iterate (3.81) finitely many times, using the (weak) L?

estimates on the Green’s function G&SBJ from Lemma 3.22 and the (weak'?) Young
inequality. We make essential use of the method in [Caz03, p. 256]; see also [F'LS16],
[FL13].

Recall also that we have already proved (), € L*(R") in the cases s >  and
s = 4; see page 81.
Proof of Proposition 3.24. As mentioned, it remains to treat the case s < § (i.e.
n=2). Let q := 5222 € (1,0). Then
o 1 1 2s
Q, € L"(R") for any ¢ < r < oo satisfying — > - — — (3.82)
r q n’

To see this, let r like this be given. Define % =1+ % — %. It is then clear that

;=2 and o <1, in other Words 1< p I~ Since GY), e LP*(R") by Lemma
3 22, ]QUPUQU e LI(R"), 1 ste =1+ W1th 1 < p,qr < oo, (3.81) and the weak
Young inequality imply @, € L"(R").

Note that the endpoint » = oo cannot be reached by (3.82). Similarly to [Caz03,
p. 256], now define the sequence (r;);en, by

1 : 1 S S
— =(20+ 1) -t | .
r; (20 +1) (20 +2 on  on(20+ 1)1)
The H*(R™)-subcriticality assumption o < o, = -2~
satisfies 6 > 0.'® Keeping this in mind we check that

1 1 )
= (20+1Y5< 4,

Tj+1 T

23— 5

2042 n

therefore (%)jeNo is strictly decreasing with % < —jo + % J, 0. Since % > 0,

there exists some k > 0 such that

1
— >0 for0<j<k, but
] Tk+1
Let us now show that @, € L™(R"). Note |Q,[**Q, € LI(R") = L%(Rn). But,
if @, € L"(R") for some 0 < j < k — 1," then also Q, € L+ (R"). Indeed,
analogously to the deduction of (3.82), we deduce (weak Young inequality)
T 1 _20+1 2s 1

< r < o satisfying — > —— = — (3.83
20+ 1 Y gr T n Tj+1 ( )

<0.

Q, € L"(R") for any

12For the statement of weak Young inequality, see, e.g., [Gra08, Theorem 1.4.24] or also [LLLO1
p.107, inequality (9)] and [Lie83, p. 351, inequality (1.8)].

I3This also holds for s = 5, where o, = +00.

14We can assume k > 1, since in case k = 0, we already know @, € L™ (R") = L2?T2(R").
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Taking r = r;,; in (3.83) gives @, € L+ (R"), as claimed.'® With this argument,
we conclude in finitely many steps that indeed @, € L™ (R™) holds:

j=0<k—1 ‘:1<k—1 g k—1<k—1

Q,e L™ (R”) = Q,elL"™ (R”) =  Q, € L™R").

Now |Q, o) Uw € LP(R") for any 1 < p < ",
hence (3.81) and the usual Young 1nequahty imply that
1 2 1 2 1
Q, € L"(R™) for any Tt _o<r<w satisfying — > orl s L (3.84)
20+ 1 r Tk n Tei1

We know m < 0. If T < 0, the choice r = o is allowed in (3.84) and we

are done. Otherwise —— = 0, and we fix ;%= < r < o in (3.84) so large that
k+1 o+1

vi=22 2 o gand 1 < ;5. Since |Q,|¥Q, € L7 (R") with 1 < 325 <

and Gyw € LP(R™) for any 1 < p < applying the usual Young inequality once
more yields

n2’

N 1 20+1 2
Q, € L"(R") for any 5 : N < 7 < o satisfying = > UT - f =7. (3.85)

In (3.85) we can now choose the endpoint 7 = o0. The proof of Proposition 3.24 is
now complete. O

3.7 Spatial Decay

The aim of this section is to prove the spatial decay estimate of Theorem 3.3, namely
that at infinity solutions @, of the Euler-Lagrange equation (3.3) decay polynomially

like
1

Qu()] < T4 ot

3.7.1 A Preliminary Convolution Lemma

We exploit the behaviour of the Green’s function G4 vw in the following lemma. Recall

1 1
(&) P -v-Etw
Lemma 3.26 (Convolution Lemma, cf. [Len06, Lemma A.9]). Letn > 1, s € [3,1),

v e R"™ arbitrary for s € (3,1), and [v| <1 for s = 5. Let f be a measumble function
satisfying

(FGE) =

c
1+ |z|o’

|f(z)| < for all x € R"

15( 1 )JeNo is decreasing, SO % < T07

and by assumption Ti > 0 (since j < k — 1), hence indeed
J
1 <

5T < 20’+1 < 00. Moreover, from j + 1 < k we have T >0and 1 <rj4q <o0.
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with some fixed constants ¢ = 0 and n + 1 = o = 1. Then there exists a constant
C > 0, depending only on n,s,v,w and a, such that for all x € R™

5 _v
G+ NI < 57
Remark 3.27. The proof of Lemma 3.26 makes use of the following two facts. First,
the condition o > 1 guarantees the convexity of the function ¢ : (0,00) — (0,00)
defined by ¢(t) := |t|*. Second, the condition n + 1 > « guarantees the existence of
some 3 > 0 satisfying n+1—a = > n—a. Note that when @ > n+2ssucha >0
obviously does not exist (since s > 3). The lemma would hold up to n + 2s > a,
if one proved the optimal bound (3.80). This would result in a better decay in

Theorem 3.3, namely |Q,(z)] < (1 + |z|"**)~! instead of |Q,(z)| < (1 + |z|**)~1.
Proof of Lemma 3.26 (cf. [Len06]). From Lemma 3.22 (i), we recall the estimate
]Gq(fzj(xﬂ < z|~™Y for |z = 1. (3.86)

Fix any x € R" and consider the disjoint partition R" = ST u S5 U S§ with the sets

1
Sti={yeR% |z —yl <1}, S3:={yeR% |z —y[>1, glal <lyl},

€T n 1
S5 ={yeR" |z —y|l>1, §|x\ > |yl}.
We have )

for all y € SY. 3.87
e 1 (350

<
T+ ||

Indeed, the triangle inequality and the definition of S¥ give |x| < |x—y|+|y| < 1+]y],
thus
[ < (T4 [y)™ = 1+ Jy[|* =: (1 + [y]).

By convexity of ¢ : (0,00) — (0,00), ¢(t) = |t|*,

1 1
o1+l =0 (52 5 -2l) <27 (1 ).

It follows that 1 + |z|* < 1+ 21 (1 +|y|*) < (1421 (1 + |y|*), which gives
(3.87) with a constant C, > 1 + 297116 Note that C, does not depend on z.

For y € S5, we have |z| < 2|y, thus

L+ |z|* <14 2%y[* <2% (1 + |y|7).

16We could have also simply estimated

L]z <14 (14 y)* <1+ (2max{l, [y[})* < 1T+2%(1 +Jy[*) < (1+2%)(1 + [y|*).
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This and (3.87) give

1

<a , for all 1 V5. :
T S T e or all y € ST U 5% (3.88)

From (3.88), it follows by using the hypothesis on f that

| ee-virwiws [ ieRe-n

STUSE 1+ |y

_C
1+ |z|o’
(3.89)

388) (.,
<
1+ |z|®

s Ca s
f GOz — y)| dy < f GO,y dy <
SEUSE 1+ [z]* Jgn

because G € L*(R™) by Lemma 3.22 (ii). The constant C' > 0 only depends
on n,s,v,w and o. Finally, if y € 5§, then {z| < |z — y| < 2|z, where the first
inequality results from the reversed triangle inequality. This implies
1 1 1
Sn )
1+ |z —y[*! 1+ |z|n =81 + |y|8

forallye S7,0< 5 <n+1. (3.90)

Indeed, if 0 < 8 < n + 1, we check that
(L4272 (L4 [yl7) = 14 a0+ fyl? + a0yl
ol o=y o =yl + o -y -yl
Sn 1 + |.13 o y|n+1’
using |z| < 2|z —y|, |y| < i|z| and |z —y| = 1. By Remark 3.27, we may pick 8 = 0

such that « + > nand n +1 — 8 > «. Then from (3.90) and (3.86) it follows
that '

GO (o — d <j GO (5 — )| —E
J loe i< | ee v

dy

(3.86) 1 1 (3.90) C 1 1
< cf dy < J dy (3.91)
sz |z —y["t 1+ [yl Lt |2[r 70 Jge T+ [yl 1 + [yl
_ c f L C __c
ST a8 e Ty Y S T ot S 1 o]

The last inequality in (3.91) holds by boundedness of (z) = ——2— on R" (¢ is

14]z|n+1-
continuous on the compact set {|z| < 1}, whereas for |z| > 1 one‘ }|1as that ¢(z) <1
if and only if n + 1 — 8 > «a). Now, (3.91) and (3.89) imply the claim, since z
was arbitrary and C' > 0 does not depend on x. The proof of Lemma 3.26 is now
complete. O

1"Note also that from |z — y| = 1 we have

1 1 1 1 1
|z —y[**! = §|~T -y i‘x —y["t > B + §|$ —y|"tt = 3 (1+ ]z - y|n+1)
1 1
and thus oy < TH oy T
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Remark 3.28. Note that the above proof actually shows the stronger estimate

C
(s) <
(Gral* D) < 1= e

3.7.2 Proof of Theorem 3.3

Let us now prove Theorem 3.3. We proceed in three steps.

Step 1: The spectrum of the associated Schrodinger operator. The state-
ment that @, € H*(R")\{0} n L*(R") solves the Euler-Lagrange equation (3.3) is
equivalent to saying that @, € H*(R")\{0} is an eigenfunction (with correspond-
ing eigenvalue —w) of the operator H : D(H) — H *(R") defined on the domain
D(H) = H*(R") n L*(R") by H := T, + V, with the Schrédinger operator T, :=
(=A)* +4v -V (recall s = 3) and the nonlinear potential V = —|Q,|* € L*(R"),

HQ’U = (‘J’s,v + V)QU = _WQU

see also [HS96]. Observe that T, cannot have an eigenvalue. Indeed, suppose E is
an eigenvalue of Ty, and f € ker(T;, — F), f # 0 a corresponding eigenfunction,
i.e., on the Fourier side, we have the eigenvalue equation

(1€ —v-€) F(&) = EF(©).

If f = 0, Fourier inversion gives [ = ?_lf = 0, a contradiction. So ]? % 0, and
we consider the set N := {¢ € R"; f(£) # 0}. Defining g(¢) := |{/* —v - & — FE
and M := g7 '({0}) = {¢ € R%;a(§) = 0}, we have N ¢ M. But M isann — 1
dimensional submanifold of R", hence of measure zero. In particular N has measure
zero, which gives f = 0, a contradiction. Consequently, the discrete spectrum of
T, s empty, so its spectrum equals its essential spectrum, namely

Uess(Ts,v) = U((*Ts,v)\o'd<(:rs,v) = [_W*y OO) .

Here the bottom of the essential spectrum is the number

=0 ifv=0,
_W*:|£*|28_U'€* =0 ifs=%and0<\v\<1,
<0 ifs>4andv#0,

where

0 ifv=0,
o = 0 ifs=41

2

Bu ifs> bandv 0, where § = A(silol) = & ()7

and 0 < |v| < 1,

2 2s
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See Lemma B.8 for the fact that [£]** —v-& > —w,, with equality if and only if £ = &,.
Since —w < —w,, we can rewrite the above equation (Ts, — (—w))Q, = =V Q, with
the resolvent Ry, (1) := (Typ — ) as Q, = — Ry, (—w)(VQ,). In other words,

Qu = G+ (1Q,177Q,), ie.

Qo) =~ | GLL -9Vl dy (3.92)

Step 2: Adapting the Slaggie-Wichmann method, cf. [His00]. We claim
there exists some constant C' > 0 such that

C

|Qu(@)] < e (3.93)

Define the functions

)= [ (14 b = aDIGEL e - )V )
_ |Qu(y)]
m(z) = 56%3 e P— (3.94)
By (3.92),

|Qu(2)| < m(z)h(z). (3.95)

We claim that h is continuous on R™ and vanishes at infinity in the strong sense
that
Ve >0 3R, >0 VreR" with |z| > R.:  |h(x)| <e.

To see this, let us observe that h is the convolution of two functions in dual LP(R"™)
spaces, so that the claim follows from [[LL1.O1, Lemma 2.20|. Let p > 1 be given. The

function h(z) := (1 + |z|)|GSL(x)| satisfies
(@)l < 2271 (|GEL()P + [2P1GEL (2)P) -

By Lemma 3.22 (ii), we know that Gﬁf&(a;) and |ZE|G5;83;(ZE) are in LP(R™) for p > 1
sufficiently close to 1. Hence h € LP(R") for p > 1 sufficiently close to 1. On the
other hand, we know that as a member of H*(R") and simultaneously a solution
to the Euler-Lagrange equation, @, belongs to L?(R") n L*(R"). By interpolation,
V] = |Q,|* € Lz=(R") for all 2 < ¢ < c0. Picking p > 1 close enough to 1, we thus

guarantee that both h € LP(R") and |V| € LY (R") with p/ = —£- > 2. Hence the
P

conclusion follows from h = h + |V|. Using the integral equation (3.92), we deduce
by the same argument that @), is continuous on R™ and vanishes strongly at infinity
in the above sense.

It is an obvious consequence of the triangle inequality that

1 1
sup < .
ern (L+ |z —2[)(1+y—z[)  1+|z—y|

(3.96)
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Thus
sup B e {Sup |Qu(y)] }
ke 1+ |7 — 2 zekn (yekr (14 |2 —2[)(1 + |2 — y|)
1Qu(y)] }
= su su 3.97
w${£$<r+u—zm1+W—zD (3.97)
(3.96) ; '
< sup QW) e m(z).

yern 1 + |$_y|

Since h vanishes strongly at infinity, (3.95) allows us to choose R > 0 so large that

1
|Qu(2)| < §m(a:), for all z € R with |z| > R.
Therefore
) 1
wer 1=yl " 2ysrl+le—yl  yerltlr—yl
m(y) (3.97)

< sup < m(z),

yern 1 + |x—y[

provided that M := supj,.x % > 0. [Note that the assumption M = 0 yields

m(y) = 0 for all y € R™ with |y| > R, hence the definition of m(y) gives @, = 0, and

there is nothing to prove (claim (3.93) is evident).] Thus we see that m(z) is strictly

greater than sup,.p Jféf)yn and this implies that m(z) is really a supremum over

the ball {y € R"; |y| < R}. It follows that

m(z) = sup @)l < ¢ : (3.98)
wi<r L+ [ —y[ 14|z

using continuity of @, on the compact set {y € R™; |y| < R} and the triangle
inequality 1+ |z| < 14|z —y|+|y| < (1+ R)(1+ |z —y|) to bound the denominator.
Inserting (3.98) in (3.95) and recalling the boundedness of h on R" (h € C(R") and
vanishes strongly at infinity) proves the claimed decay (3.93).

Step 3: A bootstrap argument. From |V (z)| = |Q,(z)|?** and (3.93) we get

(3.93) C C

v < < . 3.99
We start a bootstrap argument, using always the potential bound (3.99).
(1) Using the bounds (3.99), (3.93) in the integral equation (3.92) yields
1
$) (¢ — )| ———
Q)| < C | 168 =l (3.100)
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1+‘y|n+l
1TH[y[IT2e = C

on all of R™ (the continuity of ¢; yields an upper bound on the closed unit ball,
and outside the condition 1 4+ 20 > n + 1 yields that ¢; is bounded from above
by 1), (3.100) implies

If 1 + 20 > n+ 1, the theorem is proved. Indeed, since ¢;(y) :=

Qo)< | 168w -y

Applying Lemma 3.26 (more precisely, Remark 3.28) with a = n + 1 to (3.101)
proves |Q,(z)] < C/(1 + |z|**1).

If 1 +20 <n+1, applying Lemma 3.26 with v = 1 + 20 to (3.100) gives a new
bound o

Qu(@)l < T P (3.102)

Using the bounds (3.99), (3.102) in the integral equation (3.92) yields

M%@M<CJ|Q3®—MI Ly

. 1+ [y|r2@)
We conclude like in (1) above: if 1 +2-(20) > n + 1, the theorem is proved; if
1+2-(20) <n+1, we deduce a new bound |Q,(z)| < C/(1 + |z|'*2()), which
initiates a next step.

Continuing like this, we complete the proof with the v,;,-th step, where

Vmin = min{r e N; 1+ v-(20) >n+ 1}.

The proof of Theorem 3.3 is now complete. O



B Traveling Solitary Waves

B.1 Used Theorems

Lemma B.1 (Compactness modulo translations in H*(R"); see [BEV14]). Let s >
0,1 <p<w and (u;)jen < H*(R™) n LP(R™) be a sequence with

sup ([lugll s + ;) < o0,
jeN

and, for some n,c >0 (with |- | being Lebesque measure)

inf [{x € R"; |u;(x)] > n}| = ¢
jeN

Then there exists a sequence of vectors (x;)jen < R"™ such that the translated se-
quence (0;)jen, where Gj(x) := u;(x + x;), has a subsequence that converges weakly
in H*(R™) n LP(R™) to a nonzero function u % 0.

Proof (see [BFV1/, Lemma 2.1]). The proof rests on refined! Sobolev inequalities
by means of homogeneous Besov spaces B/ 0 of negative smoothness in the form (see
[BCD13, Theorem 1.43] and its proof; and [C MO97, Théoréme 2| for the original)

C , .
ol pox < ————lull. ,n/z* Zox|u H with 2% = 20, (B.1)

(2r—-2)= ’

for 0 < s < Z. Herein, || - [ 3-5 is a homogeneous Besov norm,* given for § > 0 and
tempered distributions u € .#/(R") through the expression (‘thermic description’)

Jull s i= sup A" PO(A) % e, (B2)
’ A>0

1By a refinement of the Sobolev embedding H*(R™) — L**(R"), 2% = —22_ one understands

n—2s’
the existence of some Banach space X such that H*(R") embeds continuously in X and, for
some 0 < 9 < 1 and C > 0, the inequality

lullpox < Cllulf.ul™”,  Yue H(R™) ()

is valid. Such an inequality and the continuity of the embedding H *(R™) — X immediately
imply the Sobolev embedding
|ul| ox < Clulg., Yue H*(R™). (+%)

and therefore (x) is called a refinement of (xx). See the article [PP14, p. 801].
2Changing variables, it is easy to check that the Besov norm | - | ¢ has the following behaviour
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where 0 € ./ (R") is a Schwartz function the Fourier transform of which is compactly
supported, 0 e C*(R™), such that 0 = 1 near the origin 0 € R™ and 0 < 0 < 1. With
estimate (B.1), the proof is established with a technique of low and high frequency
localization, see [BF'V14] for more details. O

Lemma B.2 (pqr Lemma; see [FLLSG|). Let (2,3, 1) be a measure space. Let
1 <p<gqg<r < wandletC,C,C, > 0 be positive constants. Then there
exist constants n,c > 0 such that, for any measurable function f € L%(Q) n L;,(€2)
satisfying

I£12, < Coo 1F1% = Cov 1, < C

1t holds that

dr(n) == p({z e [f(z)| > n}) = c
The constant n > 0 only depends on p,q,C,, C, and the constant c > 0 only depends
on p,q,r,Cp, Cy, Ci.

Proof (see [FLLS6, Lemma 2.1]). By monotonicity of the measure p the distribu-
tion function dy is monotone non-increasing. Moreover, we have

e}
Il =» | dsoraes

These two facts imply
0 n yl
C, > pf dp(t)tP~ 1 dt = pJ e (t) dt = df(n)pf =l dt = nPd;(n),
0 0 0

in other words,

ds(n) <n7PC, forall n> 0. (B.3)

Similarly,
de(n) <n"C, forall n > 0. (B.4)

under dilations u(x) — ux(x) = u(Ax) :

. — )\ B .
Hu/\HB;of*m =A HUHB;BOO

Since |uallze = A7 [ullze, [ualge = A% |ulz. = A2 |ul 4., one observes the invariance
of (B.1) under dilations. Moreover though, as stated in [BCD13, p. 33|, it can be checked
that the homogeneous Besov norm | - | 43— is invariant under multiplication by a character,

u(z) — e “u(z), - in contrast to the homogeneous Sobolev norm ||| 5. (see [BCD13, p. 30]
for a counterexample) - and that the whole inequality (B.1) is invariant (up to an irrelevant
constant) under multiplication by a character.

3Clearly, we have |f(z)[P = Sl)f(z)l A dt = pg(‘)f(z)l tP=1dt. Since X(yeq;|f(y)>4}(x) = 1 if and
only if t < [f(z)| and Xx{yeq:|f(y)>#} () = 0 if and only if ¢ > |f(x)|, we have |f(x)|P =
P S(O)O X{yeQs| f(y)|>} (x)tP~1 dt. Integration of this identity over x € £ and using Fubini’s Theorem
gives the claimed formula || (7, = p SSO dg(t)tP~1 dt. See also the layer-cake principle (see [LLO1,
Theorem 1.13]). ’
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Define S and T through the equations

4CpST7 = 3(q - p)Cy,
qC, T = 1(r — q)C,.
From (B.3) it follows that
g | dplmn™dn < qCy | 4P dn =G, (B.5)
0 0
Similarly, from (B.4) it follows that
” oy (B P 1
q| dimn*dny < qG | " dp = G (B.6)
T T

(B.5) and (B.6) imply that S < T, since, if S > T, we infer

1 S B 0
3Gz a [ st ansa [ aginan = [t an = 11y >

contradictory to C, > 0. From (B.5), (B.6) and S < T we conclude

0

1 S B _
5Ca >qf dy(mn? 1dn+qf dg(mn**dn
0 T

0 T
= qf de(mn*dn - qu dg(n)n®"dn
0
T
~ 151ty —a [ sty
S

T
=Cy—q L dg(n)n®*dn,

in other words .
_ 1
I:= qJ de(n)n®dn = §Cq.
S

de(S)|T? — S%, again since dy is monotone non-increasing. This reads
7 L g = Q‘chj ] proving the lemma with the f-independent constants

n:=S and c:= %, which obviously have the claimed dependencies. O]

Theorem B.3 (Weak convergence implies strong convergence on small sets; see
[LIC 1]) Assume that (uj)jen < H:(R™) is a sequence converging weakly to some
we Hz(R") in the sense that for every v e Hz (R")

i [ [ Lt y))(v(z) o) 44,

L ix—)ﬂ?_@> drdy.

Under the assumption
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o p< 2 whenn =2,

n—1

e p < w0 and additionally u; — u weakly in L*(R) when n =1

the following conclusion holds: for any set A < R™ of finite measure
XAU; — Xau  strongly in LP(R™).
Proof. See |LLLO1, Theorem 8.6]. O

Corollary B.4 (Weak convergence implies a.e. convergence; see [LLO1]). Let (u;)jen
be any sequence satisfying the assumptions of Theorem B.3. Then there exists a
subsequence n(j), such that (ung)(x))jen converges to u(x) for almost every x € R™.

Proof (see [LLO1, Corollary 8.7]). Consider the following sequence of sets with fi-
nite measure: By := By (0), balls centered at the origin with radius £ = 1,2,.... By
Theorem B.3 xp,u; — xp,u strongly in LP(R™) for the p’s given there. Equivalently
u; — wu strongly in LP(B;). Thus (e.g., by [Alt06, Lemma 1.20{1), p. 56|, or by
[LLO1, Theorem 2.7, p.52|, or by [AF03, Corollary 2.17, p. 30]) for a subsequence
(n1(4)) of (j)jen We get uy, (;y(x) — u(x) a.e. x € By. Applying the same argument
again, there is a subsequence (n9(j)) en of (n1(7))jen such that wu,,;)(z) — u(z) a.e.
x € By. Continuing inductively, by construction,

VkeN: . ;(x) > ulr) ae xe by, (B.7)

say, for all € By\N), where N = {z € By;un,(j)(x) - u(x)} is a set of measure
zero. It is clear that the diagonal sequence (un,(j))jen satisfies up, ;) () — u(z) a.e.
xr € R™. Indeed, let x € R", say, x € By and suppose x ¢ N = U Ng. Then, since
(nj(€))een < (nk(£))een for j = k, we have n;(j) = ny(€) for some £ = £(j). Of course,
as j — o0, also £ = £(j) — oo and we conclude from (B.7) (z ¢ Nj) that

(B.7) n
un].(j)(l') = unk(g(j))(x) — u(x) VreR \N Il
Theorem B.5 (Brézis-Lieb improvement of Fatou’s lemma; see [BL83|). Let (2, %, )
be a measure space and let (f;)jen be a sequence of complex-valued p-measurable
functions. Suppose that the f;’s converge pointwise p-almost everywhere to some
function [y and that they are uniformly bounded in LE (€2, %) for some 0 < p < o0,
i.e.

J0<p<ow: 3C>0: sup|fylee <C,  fi(x) > f(z) p-a.e. z€Q. (BI)
jeN

Then
tim {1512, — 1f = filty } = 1512y (B.9)

“We have n;(j) = ni(£(4)) < n;j(€(j)) by j = k, and so £(j) = j.
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Remark B.6. Note that (B.9) follows from the stronger claim

iy [ |I5@)F = 176@) - HE@P - f@Pdutz) 0. (B10)

Jj—©

Proof. See |LLLO1, Theorem 1.9]. See also the proof of the more general Theorem
[BL&3, Theorem 2|, implying this theorem via example (a) in [BL83, p. 488].

For convenience, let us repeat the proof of (B.10) as in [LLO1, Theorem 1.9, p.
21f] here, adding some details. Assume first® that for any ¢ > 0 there is a constant
C. such that for all numbers a,be C

lla + bP — [b]P| < e]b]? + ClafP. (B.11)
Write f; = f + g;; then by hypothesis g;(z) — 0 for pg-a.e. x € Q. The quantity®
G5 = ([If + 951" = g;|" = || = elgl?)

is now shown to satisfy lim;_,q SG; = (. To see this, note first that by the triangle
inequality on R and (B.11)

(B.11) N
f + gilP = lgil? = 1FIP) < |If + g5 = lgs[P| + 1FIP < elgl? + (C + )| 17,

which immediately gives G5 < (C.+1)|f|P. Also, since g; — 0 p-a.e., it is clear that
G5 — 0 pra.e. The dominated convergence theorem” now implies lim;_,, SG; = 0.
Observe®

e e I e (5.13)
Let us show that {|g;[P is uniformly bounded. Indeed,
[l = [165=sp <2 [ (sP+ 10 <2010 (B.14)

where we used the hypothesis (B.8) as well as (B.12) in the second inequality, and
the estimate

2+ wl” < (2] + [w])? < 2max{[z], [w[})" = 27 max{|z[", |w["} < 2°(|z" + |w[")

5The proof of this is given in a moment.

6As usual, hy(z) := max{h(z),0} denotes the positive part of a function h : Q — R.

"Note that (C. + 1)|f|? is an integrable (dominating) function, since fi — [ pae. implies
|f(z)|P = liminf;_,o | f;(z)” p-a.e. z, and thus Fatou’s lemma yields

(B.8)
| 1@ du@) <tmint | (@1 dute) < e (B.12)
Q I=0 Jo

¥Indeed, h$ = ||f + g;|P — |g; " — | F|?| —elg; [P satisfies h§ < (h5)4 = G5, thus {hs < [ G5, which
is precisely inequality (B.13).
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in the first inequality. From (B.13), the subadditivity of limsup, the fact that
lim;_,,, { G5 = 0 and (B.14), we obtain

iimsup [ 17 + g5~ [~ 77| < hmsup(f b+ | G§>
- J—0

511msupf|g]|p+hmsupf

=00 =00
el
Letting € | 0, we get limsup,_,., §[|f + g;|P — |g;|P — |f|?| = 0. Since the quantities
a;j = {||f + gjIP — |g;|* — | f|?| are nonnegative, this means lim; ., a; = 0, which is
precisely claim (B.10).
We come to the remaining proof of (B.11): clearly, g(t) :=t*, t > 0, is a convex
function for p > 1 (in fact, ¢”(t) > 0 on all of R, ) and therefore

<(1-X)g (%) + Ag (’ ’) (1= X)'PlalP + AP [b|P

for any 0 < A < 1. In the case p > 1, let us set A = (1 + n)_ril € (0,1), with n > 0,
which gives

(B.15)

L\ 1-
a4 b7 — o7 < oo + Cylal?, Gy = (1= (4 7T) (B.16)

(B.16) coincides with (B.11) (choosing n = ¢) provided that |a + b[P — [b|P = 0. If
otherwise |a + b|P — |b|P < 0, let us write ' + b := b and ¥/ := a + b (that is, define
a' = —a,b' :=a+b) and apply (B.15) to get

(B.16)
b]P = |a +b]P = |a" + P = [V'|P < nl'|P+Cla']P
< n(lal + [b])" + Cylal?

(B.15) (B.17)
<

1 (Cylal? + (14 n)[b|P) + Cylal?
=n(1+ )b + C,(1 +n)lal”.

Combining results (B.17) and (B.16) (increase 1 to n(1 +n) and C, to C,,(1 +n) on
the right side of (B.16)!), we have found

__1\1l-»p
la b7 = 0] < n(1+ Wbl + Cy(1+mlal’, Cy= (1= (1 +m) 1) ", (BIS)

for any n > 0. Now, given any ¢ > 0, pick some 7 > 0 such that n(1 +7) < € and
set C. := C,(1 + 1) to deduce from (B.18) the validity of (B.11) in the case p > 1.
In the case 0 < p < 1, we have (by inequality (B.22) below)

B.22)
la + bJP — \b]p la|P <elb|P +1-|al? (B.19)
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for all a,b e C. On the other hand, defining again a’ := —a, b’ := a + b, we have

B —la+ b — | + 0P — [P = P+ |

(B.22) B.2
=cla+bP +|aff < e(|lal’ +|bP) + |a|’ (B-20)

= ¢|b|” + (e + 1)]al?.

Combining (B.20) and (B.19) (increase the constant 1 to C. := (¢ + 1) on the right
side of (B.19)!), we have proved

||a + 0P — \b|p} < elblP + C~'5|a|p
also in the case 0 < p < 1. O
Lemma B.7 (An elementary inequality). For o, = 0 and o = 0 we have
(@+B)7 = a4 g7l (B.21)

Proof. If 0 = 0 or if a or f3 is zero, the inequality is clear (understanding 071 = 0).
Assuming ¢ > 0 and «, 8 > 0, the inequality is equivalent to

1
(a““ + B"H) L a+ .
The last inequality follows from the elementary inequality
z+wlP <P+ |wf, 0<p<l, zweC, (B.22)

by setting p = ﬁ, z=a’" w= 3" We show (B.22). By the triangle inequality
|z + wlP < (|z| + |w])P. Set f(t) := (1 +t)» —1—t", t = 0 and note that f'(t) =
p(1+4)P~L —ptP=1 < 0 for t € (0, 20), since p < 1. Since f(0) = 0, this yields f(t) < 0
on t € (0,0), because assuming there existed some t, > 0 such that f(t,) = 0 leads
with the mean value theorem of differentiation to the existence of some 7 € (0, t,)
such that

f/(n) _ f(t*>t: f(()) _ f(ti*) > 07

a contradiction. Let |z|,|w| > 0 (otherwise, the claim is clear again) and = % >0

to obtain
|z|+|w|)p <rz|)p
0o 1 (ELE) (K1Y
O =" 0]

which is equivalent to (|z| + |w|)P < |z|P + |w|P. O
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B.2 The Operator (—A)° +iv -V

Lemma B.8 (Explicit lower bound —w, in the case of L = (—A)®). Let n > 1,
s> 3, veR" arbitrary for s > 5, and [v| <1 for s = 5. Define g, ,(§) == [§]* —v-¢

27

(with gs,(0) :=0) and —w.(n, s,v) := infeepn g5, (). Then

=0 ifv=0,
—wi(n,5,0) =0 ifs=3 and 0 < |v| <1,
<0 ifs>3 andv#0.

Explicitly, for s > 1 and v # 0

2

1—s 2s 1—s
1 1\ -1 1 1\ =1 9
_w*(n7 S,U) - gs,v(g*) == <% <@> ) — % <@) |'U 2s—1 < O

We have gs,(§) = —ws(n, s,v) with equality if and only if

0 ifv=20,

g=¢ =40 ifs=3and 0 <|v| <1,
1
2

and v # 0, where = B(s,|v]) = QL <%> T

S

Remark B.9. Note the following:

(i)

(i)

(iii)

We have wy(n, s,v) = supgegn (v-§ — |€]%), that is, w, is precisely the Legendre
transform of the function & — |£]*) evaluated at v. [Note that & — [£]?* is
always convex for s > 3|

If s = 1 and |v| > 1, the boost term becomes dominant over the dispersive

term, namely g%’v(f) is neither bounded from below nor from above. Indeed,
taking £ = av with a > 0 leads to g%m(f) = —alv|(Jv] = 1) > —0 as a T w0,
while taking £ = av with o < 0 leads to g1 ,(§) = —afv[(1 + |v|) — +00 as
a | —oo. The latter also shows that 9L is not bounded from above when
|v| = 1. In this case, 91, 1s however bounded from below by 0 and this value
is attained (namely if and only if £ = 0 or £ # 0 and (by Cauchy-Schwarz) &, v
are linearly dependent and satisfy v - £ > 0).

When s = 3, one needs the condition [v] < 1 to ensure the positivity [KLR13]
f [uv—Au +u(iv- V)u] dz >0 for u # 0.

Indeed, assuming for example |v| > 1, and taking u # 0 such that supp u < C,
lies in the cone C, := {£ € R";cos £ (v, &) = 1/|v]}, gives

| e1=o-onaterras = | 10 ol cos g i) P <o
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Proof of Lemma B.8. If v = 0, we check all the claims immediately. We let v # 0
1

in the following. Let first s = 5. Since |v| < 1, one has g1 ,(§) = [¢{| —v-& =
€] (1 — |v]) — o0 as |{] — co. Thus by continuity the infimum exists and is really
a minimum. Since g1 ,(§) > [§|(1 — |v[) > 0 and g1,(0) = 0 it is clear that
—wy(n, 3,v) = 0. This also shows that &, = 0 satisfies the equality case g%,v(g*) = 0.
Conversely, assume there exists £ # 0 such that the equality case géyv(f ) = 0 holds.

is differentiable at & # 0, necessarily Vg%ﬂ}(f) — 0, which reads & = v.

Since 91, H

v
But then |v| = 1, a contradiction.

Let now s > % Differentiation of g5, with respect to & gives

Vgs(€) = 28€[*7% — v,
from which we see
1 [ 02\21
Vgsu(§) =0 <= & = fv, where § = % (4_52) '
The function gs, possesses a local minimum at the point £ = fv € R™\{0} (see
below), with value

L NE\T 1 1\
s—1 s—1
Gsw(&s) = (2_5 (4_32) ) ~ % (4—32> v

Since &, € R™\{0} is the only point for which the gradient of g,, vanishes and g,
is continuous on R™ with ¢, ,(§) — +o0 as |[{] — «© and gs,(§) — 0 as |[{] — 0,
we conclude that the local minimum gs,(&,) is also a global one, that is g, (&) =
—wy(n, s,v). Furthermore, since &, is the unique global minimum of g,

2s
21 < (),

Gsp(§) = —ws = =&,

It remains to verify that £, = [v is a local minimum point. Indeed, the Hessian of
gs,» evaluated at &, is positive definite: we have

D2g,,(6) = (25163 {25 — 266 + |P6u}), ., for £ R\ (0},
hence for any £ # 0 we get £ - D?g,,(&)€ > 0. Namely, by s > 1, if £- & # 0 (i.e.
¢ £ v), we have

£ D?g,0(6)€ = 25(25 — 2) |62 THE - &l + 2s) P2 e
> —25]€|2TYE - Eul? + 2s]L P T2E)?
> —2s|& [P T &P 17 + 2s]€ T2l
=0,
whereas if £ - £, =0 (i.e. £ L v) we also have
5 ’ D2gs,v<§*)§ = 25<2S - 2)’5*’28_4|5 ’ f*’2 + 23|§*|25_2|§|2
= 2s[€[*?[¢)* > 0
because &, &, # 0. [






4 Scattering for Fractional NLS

4.1 Introduction and Main Result

This chapter deals with the scattering problem for the fractional nonlinear Schrodinger
equation in the defocusing case. That is, we consider the initial value problem
{i(?tu = (=A)*u + F(u), (ENLS)
uw(0) =wupe H*(R"), wu:[0,T)xR*—C
with defocusing nonlinearity F(u) = +|u|?*’u. To clarify the exposition, we restrict
ourselves to the case of cubic nonlinearity ¢ = 1 and three spatial dimensions n = 3.
Supposing 3 < s < 1, we guarantee that the nonlinearity o = 1 is H*(R?®)-subcritical.
By Sobolev’s embedding we have H*(R?) — L% (R®) with 2¢ = =% in particular
H*(R?) < L*(R?) n L* (R?) = L*(R?). We then recall the conservation laws for the
mass M|u] and energy F[u], that is

M[u(t)] = [u(t)|L> = M[uo],

Blu(t)] = 51~ A)ud)ls + {lu(t) [} = Bluo],

and therefore notice an apriori bound on the H*(R?*)-norm of the solution of (fNLS)
thanks to the defocusing sign of the equation:

lu(®) s = Ju®)] 2 + [[VIut)] 2

< Ju(t)] e + \/2 (3191rutolE: + gl )

= v/ M[uo] + \/2E[to] <juglys 1.

where the last step follows from the Gagliardo-Nirenberg inequality for this H*®(R?)-
subcritical equation. The solution wu(t) is thus global.

We are interested in the asymptotic behaviour of u(t) as t — +oo, and will show
that the nonlinearity becomes asymptotically negligible, meaning that as ¢t — 4o0,
the solution u(t) behaves like a solution to the linear (free) fractional Schrédinger
equation. The corresponding linear problem for a given initial datum u, € H*(R?)

reads
idu = (—A)%u, (41)
u(0) =wuy € H(R?), u:RxR3— C.
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Using the Fourier transform, we see that the solution to (4.1) is determined by the
propagator e *“=2)° namely

ult,r) = F e AT () (@) = e u (),
Supposing the data u, is Schwartz (cf. also [OR13, p. 166]), we can write this as

1
(2m)2

alt,x) = f ¢ T (6) de.

Let us introduce some terminology to state our problem and result. We formulate
everything for the asymptotics ¢ — 400 (the case t — —oo is analogous thanks to
time reversal symmetry).

Scattering States and Wave Operators

Definition (cf. [Tao06, p. 163]). Let u € C(Ry; H:(R?)) be the global solution
of defocusing (fNLS) with initial condition ug € H:(R?). We say that u scatters in
H?(R?) to the solution e~ #(=2)°y of the linear equation (4.1) (with initial condition
uy € H:(R?)) as ¢t — +o0 provided that

Jut) = e " uy g = e u(t) — uyl

s — 0, ast— +oo. (4.2)
In this case, we call u, the scattering state of uy at +oo (cf. [Caz03, p. 211]).

Equality in (4.2) holds because e *(=2)° is a unitary operator on H3(R*)2 In-

deed, one can shift the multiplier on the Fourier side and obtain

@ v = [ TSR EFo©)( + 67 de

JR"?

— [ Fa@e Foe)1 + 6Py a

- | T o+ ek ag
= (u,e

AT
so that (e7#(=8)")* = ¢+it(=A)" hut etH=A)" = (¢=*(=A)")~1 n particular, e *(~4)°
defines an isometry on H:(R?).

By (4.2), a scattering state u, € H(R3) of ug € H(R?) at +o0 is necessarily
unique (hence we speak of the scattering state). However, it is not clear whether

LCompare this to the notion in [RS79, p. 3].
2In fact, {e"*(=2)"} ;g is a continuous one-parameter group on H3(R?), in particular (by conti-
nuity), given ¢ € H3(R?), u defined by u(t) := e~ (=2)" satisfies u € C(R; H:(R?)).
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to a given initial state ug there exists an associated scattering state u, in the first
place. In other words, it is not clear whether uy belongs to the set

R, = {up € H(R?); 3 scattering state u, € H3(R?) of ug at +o0 }, (4.3)
to which we associate the (by uniqueness of scattering states well-defined) mapping
U, : Ry — HAR?), ug— Upug = uy. (4.4)

Moreover, even if to given initial state ug there exists an associated scattering state
uy (that is, up € Ry and Ujug = uy ), it is not clear whether ug is unique among
all initial states having the scattering state w,; there may be more than one initial
datum wug such that the corresponding solution u to (fNLS) scatters to e =)y,
as t — c0. In other words, it is not clear whether U, given by (4.4) is injective. [This
issue is different from the previous assertion that to given initial datum ug, there
can be at most one u, such that the nonlinear solution u scatters to e =)y | If
this was the case however, one may invert U, on the image U, (R, ), leading to the
following definition.

Definition (Wave Operator). If for each u, € U, (R, ) there exists a unique initial
datum ug € R, such that the corresponding solution of (fNLS) scatters to e (=),
as t — oo (in other words, if each state u, € U, (R,) is the scattering state of one
and only one uy € R, at +0), we define the wave operator:

QJ,_ = U_:l : U+(:R+) — R-‘r @ H;(Rn)7 Uy —> Q+U+ = U, (45)

where ug € R, is the unique initial datum such that the corresponding solution u of

(fNLS) satisfies (4.2).

Scattering theory is concerned with two fundamental tasks:

1. Proof of existence of the wave operator €2, (i.e., injectivity of the map U, ).
In case of existence, the wave operator Q2 : U, (R} ) — HZ(R"™) is assured to
be injective by the well-posedness theory.

2. Proof of surjectivity (hence bijectivity) of the wave operator. This means that
R,y = HZ(R™), thus every up € H(R™) is also in R, hence for any initial
condition wug the associated global solution u to (fNLS) scatters in H3(R™).
This property is called asymptotic completeness.

. : 3
Our Theorem: Scattering on H; ;(R°)
We shall solve the problem above in the radial subclass of H2(R?). More precisely,
we prove the existence of the wave operator 2, on the subspace H? _,(R?) of radial

x,rad
H3(IR?) functions and show that it is a continuous bijection H; . 4(R?*) — H3 4 (R?).

z,rad



110 CHAPTER 4. SCATTERING

Theorem 4.1 (Scattering on H; 4 (R*)). Let n = 3 and 0 = 1. Let s € [so,1),

where sg = $(7—+/13) ~ 0.849. Then for every u, € H  ((R?) there exists a unique
uy € Hj,,a(R?) such that the global solution u € C(Ry; Hy ,q(R*)) of defocusing

(INLS) with initial value ug satisfies

|u(t) — e A 0y | ge = [ ™ u(t) —up|gs — 0, ast — 4oo. (4.6)
Consequently, there exists an operator Q. : HJ 4(R®) — Hj . (R?), uy — uo.
Furthermore, S0, is a continuous bijection H .,(R*) — HZ  4(R®); in particular,
conversely for every uo € Hj ,q(R?) there exists a unique uy € H . 4(R®) such that

the global solution u € C(Ry; Hy ,.4(R?)) of defocusing (fNLS) with initial value ug
satisfies (4.6).

The further restriction of s > % to s = so with sy as above is for technical reasons,
in order to avoid a continuity argument in the proof of the strong space-time bound
below; see also the proof of the weak space-time bound below.

Due to the existence of solitary wave solutions for the focusing problem, which
do not scatter to a linear solution, the question of asymptotic completeness is only
relevant in the defocusing case. [Solitons represent a perfect balance between the
focusing forces of the nonlinearity and the dispersive forces of the linear component
[HRO8].] The answer relies on the validity of certain decay estimates for the solution,
giving a decay in L spaces as t — +00. This is in the spirit of Morawetz-Lin-Strauss
estimates; the Morawetz inequality (see Proposition C.6) expresses the decay in a
time-averaged sense. We will always use the mixed space-time Lebesgue and Sobolev
norms H-||L§L§(IX]R3), ||-||L§W£,T(IX]R3) for certain admissible pairs (g, 7).

Let us mention that in the focusing case, Guo and Zhu [GZ17] have obtained
the sharp threshold of scattering for the general power-type fractional NLS in the
L? supercritical and H? subcritical range, in the sense that if 0 < s, < s, and

[(=2)2uo 72 uol 72" < [(=2)2Q|3Ql =",

then the radial solution u(¢) is global and scatters in H?, while if

[(=A)2uo 2 uolz2™ > [(=2)2Q|3Q1 =",

we know from chapter 2 that u(¢) blows up in finite time. See also the work of Sun,
Wang, Yao and Zheng [SWYZ17] who also show the scattering below this threshold.
Building on the fractional virial identities developed in the blowup chapter, they are
able to use a method of Dodson and Murphy [DM17] in order to fulfill a sufficient
scattering criterion due to Tao [Tao04, Theorem 1.1|. They also prove scattering for
the defocusing problem based on the virial identity.
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Outline of Chapter 4

The strategy presented here is an elaboration of the arguments in the book of Tao
[Tao06]. In section 4.2, we provide a weak space-time bound, which follows from
the radial Sobolev inequality in conjunction with the decay estimates. The key
to the latter is provided by the Morawetz inequality, proved in Proposition C.6 of
Appendix C, which indeed gives decay of the solution to defocusing (fNLS) in a
time-averaged sense (the solution cannot concentrate at the origin for a long period
of time [Tao06]). The weak space-time bound implies a strong space-time bound in
an appropriate Strichartz norm, which in turn will be sufficient to get asymptotic
completeness.

Relying on a backwards-in-time fixed-point method, we prove the existence of
the wave operator ), in section 4.3, and show its continuity. The combination of the
fixed-point scheme with Strichartz estimates is responsible for the argument being
reminiscent of techniques used in the local existence theory. After the construction
of 2, , we turn to the asymptotic completeness, and thus finish the proof of Theorem
4.1. Finally, in section 4.4 we construct the inverse U, = Q.

We refer to Appendix C for the definition of the relevant Strichartz spaces, the
Strichartz estimates and the Morawetz estimate.

4.2 Weak and Strong Space-Time Bounds

Lemma 4.2 (Weak space-time bound). Let n =3 and 0 = 1. Let s € [sg, 1), where
so = (7 —/13) ~ 0.849. Then for every radial initial datum ug € HZ, ,(R®) the

x,rad
associated global solution u € C(R; Hj ,q(R?)) to defocusing (fNLS) obeys the weak
space-time bound

+00
HUH%?I = J |u(t)|a dt < 400,  where a 1= 2. (4.7)

—00

Proof. This is a combination of the radial Sobolev inequality and Morawetz’s in-

equality. Indeed, for any 5 € (3,2) n [0, s], Proposition A.4 gives

N|wy

I 2 5u(t Mee < 1(=8)2u(t)2 < 1(=2)2u(®)]ss

ol

<2 (HCiuel, + e, ) (43

— \2E[u(t)] = v/2E[uo),

where we used § < s and then the defocusing sign and conservation of energy. (4.8)

bounds the quantity || - ]%’gu(t, )|z uniformly in time ¢. Writing o = 4 + 3%2;
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with a = ‘(’”“Si, it follows that

r+owo

lulfy, = | ] Juta) o dedt
—00
rto t 4 - o5
_ [ut, 2)|" (135t ))) ™ dadi
J—oo JR3 ’23‘
N T L I (4.9)
< | [P dt
J—o || LL i
@8 u(t, )|t
SS,E[uo] f T dt S“‘;7Hu0||1,%7E|:1’40] 1’
—o0 Ll h

where we used Holder’s inequality in space = and finally Proposition C.6.

However, this argument used that
~ 3 1 3 s 13
5—5—Q_4—§—3_%6(55>“Wﬂ'

The first condition 5 € (%, %) is true for all % < s < 1, while the second condition
5 < s reads

(s— 1(7—\@)) (3— i(”\/ﬁ)) <0,

4
which is true if and only if 1(7—+/13) < s < (7++/13). This explains the restriction
sg < s < 1; see also Figure 4.1. O]

Lemma 4.3 (Strong space-time bound). Given the hypotheses of Lemma 4.2, the
following strong space-time bound holds:

55 (RxR3) S 1- (4.10)

Proof. Step 1: Partitioning the time axis. Let ¢ = e(M|ug], E[ug]) > 0 to
be fixed later. We claim there exists some partition R = uév:ll ; of finitely many
(N € N) intervals I; c R (I; n I}, = J for j # k) such that

Ju

||u||(z?¢,T(IJXR3) < 8, j - 17 e 7]\[. (4.11)

This is a direct consequence of the monotone convergence theorem (see e.g., [S505,
p. 65] and also [Alt06, p. 88, Lemma 1.17, (2)|). That is, given € > 0, by the
weak space-time bound (4.7) there exists a set of finite measure - for example a ball
(=R, R) for R > 0 sufficiently big - such that

—R +00
| ol a<e | ol <<

—0

Moreover, by (4.7) there exists § > 0 such that § |u(t)]¢. dt < & whenenver |E| <
d. Therefore, let us partition the remaining set (—R, R) by a finite number of
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0.9 -

0.85 - 75:3[):%(77\/13)

0.8 |

0.75 =

0.7 - =

0.75 0.8 0.85 0.9 0.95 1

Figure 4.1: Restriction s > sg for the weak space-time bound
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disjoint intervals I;, j = 1,..., N, such that |[;| < § for all j. The collection
(Ih,...,In, (=00, R],[R,0)) gives the required partition.

Step 2: Estimating the nonlinearity in the dual Strichartz space. Now
fix one of the intervals from the preceding step, w.l.o.g.® I = [tg,#;]. Since u €
C(R; H; ,a(R?)) solves (fNLS) with initial condition ug € H; ,4(R?) at time 0, by

global well-posedness it also solves (fNLS) with initial condition u(ty) € H; ,.4(R?)
at time ty. By Duhamel’s principle

t
u(t) = eIt Ay 40y — zf e DA py(r)) dr. (4.12)

to

We estimate the Strichartz norm | g.(;gs) = [tgorxrsy + |Vl s0(rxps) as fol-
lows. For any (¢,7) € SA we have by the homogeneous Strichartz estimate (C.8)

» (C.8)
e mto)=2)"y, o)l gy rumsy < Julto)las-
Since the fractional derivative |V|* commutes? with the semigroup {e (%)}, g

i G
IV e 0 1) | gy = IV ulto)s.

Thus

He_i(t—to)(—A)su(to) (4.13)

ssrxpsy S lulto)lcz + [IVIPulto) |z < [ulto)|u

Similarly, by the inhomogeneous Strichartz estimates (see [Tao06, estimate (3.26)
on p. 135])

S [F(w)]

Ss(IxR3)

t
J e Blu(r)) dr

to

N (xR - (4.14)

Consequently, from (4.12), (4.13) and (4.14) there results a unified Strichartz esti-
mate

we + [F(u)]

[u Ns(IxR3) - (4.15)

By construction (see (C.13)), the N* norm is controlled by L{ W#" norm, for any
(q,7) € SA. Notice that (¢,q) € SA implies ¢ = M, equivalently ¢ = (33:42;).
Note 2 < ¢ < o0, equivalently 1 < ¢’ < 2. As F(u) = \u\Qu we have

Ns(IxR3) Z [ (fuf*u) HN01><R3)\ 2 [V (Jul*w) HL‘? (IxR3) °
ke{0,s} ke{0,s}

Ss(IxR3) ~ < Ju(to)|

Il

(4.16)

3If I is an interval of the form (—o0, ], (—00,t0), [to, ), (to, 0) or an interval of the form (¢, 1),
[to,t1), (to,t1] with to,¢; € R, this does not change the following argument.
4See also [Ta006, p. 75].
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The elementary formula

ey = ([ 1700 dw) 1
gives

HEPp oy = (f\lf \ﬁHLP(mdt) (f 11 dt) 110 1y

Define p by 1/p = 1/¢’—1/q. Note that from 1 < ¢’ < 2 < ¢ < oo we have 1 < p < o0;

-1
in fact p= (& — 2 = 325 By Holder, first in space z, then in time ¢, we check
q q 2s

Pl = ([ I 1)
< ([ o1zt o)
< ([ nutorr, dt);’ (] oz, dt);

= IRl rrey Il rcms)

1
Py

(4.17)

HUHL2P P (IxR3) HUHL L(IxR3)

This gives the estimate for the first (K = 0) summand in (4.16). To estimate the
second (k = s) summand, we use the fractional chain rule,” namely

Lemma 4.4 (Fractional Chain Rule; see [GW11, p. 33]). Let F € C'(C), s e (0,1],
and 1 <r,ri,ry < o0 such that % = % + % Then

IIVIPE@)ly < [F @) IVl 2.

By applying the fractional chain rule With L — —+ , Where ¢ = (3+2s) , = %7
q = 2%3&2;) are the numbers above and by using HF’( )H < |uf?, we get the estimate

1

l

-
(191 (aP0)] o (g psy = ( VPP u)ly, de
i J

s(iur\u(wﬁmurvr Olsz)” )

< ([ nwcoriz, o) ([ i, a)

- H|u\2!!Lf@(,xR3) IR

1
Py

=

(4.18)

2
= HUHLfg(IxRB) H|V|SUHL3@(IxR3) :

®See also [CW91, p. 91] for the original and proof.
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Inserting (4.18) and (4.17) back into (4.16) yields

2
H|u|2u{ NS (IxR3) S HUHLff'w(IxRif) (”UHLgI(IxRi%) + H|V|SUHL§{I(1xR3))

(4.19)

2
S HUHLfg(Ixm) [u S5(IxR3) >

where the last inequality follows from the admissibility (¢, q) € SA. Then, putting
(4.19) into (4.15), we obtain

So(IxR?) (4.20)

However, since precisely 2p = «, in view of (4.11) this reads

2
[llss rxmsy = lulto)las + ulpz (gyps) v

2
Hs + Ea ||uHSs(I><R3) .

HUHSS(IxRS) < Jlu(to)]

Choosing ¢ > 0 sufficiently small, we conclude the proof of Lemma 4.3. O]

4.3 The Wave Operator (), and its Continuity

4.3.1 Existence of the Wave Operator (2,

Applying e(=2)° to u(t) represented by Duhamel’s principle (C.5) gives
t
1D (1) — g — zf D) Py (7)) dr. (4.21)
0
Then by definition (4.2), the solution u(t) of (fNLS) with initial condition ug €
H?(R?) scatters in H2(R?) to the solution e~y of the free equation (4.1)
(with initial condition u, € H:(R?)) if and only if

t
||(U() - u-‘r) - ZJ eiT(_A)SF(u(T>) dT‘ Hs — 07 as t — o0,
0

i.e., if and only if the improper integral zSé " A F(u(r))dr is convergent in
H:(R?) as t — oo with the H?(R3) limit ug — u:
t

z'tlim TEA P(u(r))dr = up —uy,  in the H3(R®) sense.

The scattering state can thus be written

Q0
Uy = Uy — zf TR F(u(r)) dr. (4.22)
0

Provided the mentioned improper integral converges in H:(R?), let us define u, €
H:(R?) by the formula (4.22). One can view the solution u(t) as the backwards-in-
time evolution of the scattering state u, imposed as an initial condition at infinite
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time t = +o0: indeed, subtracting (4.22) from (4.21) in order to eliminate u, and
thereafter applying the linear propagator e=*(-=2)" yields

o0
u(t) = e "™y, 4 ZJ e R By(r))dr
L (4.23)
— e Ay, — zf e TR Bu(r))dr.
e @]
[Indeed, this can be interpreted as the Duhamel representation of the solution u(t)
to the (fNLS) problem with intial value u(+o0) = u, at t = +o0.

Let us define an operator I',, by

Q0
Ty, u(t) = e Ay, + ZJ e IR By(r))dr (4.24)
t

< J
v~

:(DF(u) (t)

Our goal is to show that this operator can be defined on a suitable complete metric
space (X, d), mapping X into itself and having the contraction property. The unique
fixed point © € X is then by construction a solution of this backwards-in-time
evolution problem.®

Solving the Asymptotic Problem 'From ¢ = +o to Some Finite T’

Let us use (4.23) instead of the usual Duhamel formula (C.5). Fix some state
uy € H ,4(R?) with the a priori estimate |u |gzs < A for some A > 0. Similarly as
before, one has a unified Strichartz estimate (4.15) and concludes with continuity

arguments as before that”

Hefit(fA)S

Uy <al. (4.25)

S5 (RxR3)

Hence the linear term in (4.24) is bounded with respect to || g g ,gs) norm. We want
to make this norm not only bounded, but small, by restricting time t. However, S*
norm contains type L{® components, which do not necessarily shrink when restricting
time to some interval [T, o0); thus we must proceed more carefully (cf. [Tao06, p.
163]). Namely, let us introduce the following smaller controlling norm

[l s (rmsy = lulp2e (1 umsy + HUHLS«%QW;,@UXW) ;
3+ 2s (4.26)
S HUHL;"Q(MRS) +lullgsrxgey, P = 9s
6In other words, v € X solves the problem
1wy = (—A)*w + F(w),
"w(4+0)”  =uy e HE(R?).

"Indeed, v(t) := e~ =2y, solves the free equation (4.1), i.e. F = 0, with initial value u, at
time 0, thus by unified Strichartz (4.15) one has [v]g. ([, 1,1xrs) < [v(to)|lms = [us|m=.
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respecting the admissibility (¢,q) € SA, for ¢ = 2(3;25)

quirement (2p,7) € SA® implies 7 = 7(p,s) = 3;9;;2}275 <: 3.5’31(;’;;278282). Notice that

in the last line. The re-

2<7<4m?

We compute the critical Sobolev exponent 7} =
th

3r 3-2p ) _
Tos = p-0s) 5" Sobolev’s embed

ding states tha
HUHLZ;; ®) < |lulysrgsy, provided that 1 <7 < oo and 0 < s < 3 (4.27)

We interpolate the bound (4.27) with the bound [ul;; @s) < [u]ys7gs) to obtain
lell sy @sy < lulwergsy, ¥y elr . (4.28)

We use (4.28) for v = 2p; see figure 4.2.1 Thus

—it(=A (‘26) et —it(—A)®

e "y &% (RxR3) )SU+HL3$(RXR3) e t 5 (RxR?)

(4.28)

< He—it(—A —it(~A)* (4.29)

y T He 55 (RxR3)

R P |
Ut || L2ryysm (RxR3 U+

(4.25)

(2p,F)eSA
<
Ss(RxR3) ~A L.

T g feri-ary,|

Hence the linear term in (4.24) is also bounded with respect to |-|
—it(=A

&+ (RxR3) NOTTIL. By
s (mxgs < 1 and the definition of the norm || g.xgs

(which is a sum of Lebesgue-Sobolev space-time norms with exponents strictly < o),
it follows from elementary integration theory that for given ¢ > 0, there exists
T = T(uy,e) > 0 appropriately large such that

this estimate |e P uy |

€

K;Lj = He_it(_A)su‘*‘HGS([T/@O)X]R3) < 57 VT/ = T(u+75)' (430)

That is, K7 — 0 as 7" — . Observe at this point that when T is chosen such

that (4.30) holds, then in a full H} . ,(R*)-neighborhood Bs(u) N HE .q(R?) of u,
we still get
Kif <e, Vv € Bs(uy) n HS q(R?), VI =T. (4.31)

8Note that 2p > 2.
9Indeed, from p > 1 and 3 > 25 we have 3p —2s > 3 —2s > 0, so that ¥ > 2 is equivalent to s > 0.
10Sobolev’s embedding theorem is applicable because s < % follows from

3-2 —2s def. of
4 Bpé>o 3p— 25> 2ps <— b 852 <9
3p —2s

3>sr<=3>s

and the latter is clear when s < 1.

By definition of 7 and p, the inequality 2p > 7 holds if and only if 1 > %, which is precisely the
L? (super-)criticality condition for cubic nonlinearity in three dimensions. From s < 1 it’s clear
that this holds. On the other hand, p(3—2s) —2s > 0 (since by definition of p, this is equivalent
to 852 < 9 again, which is clear when s < 1) and this implies that the other inequality 2p < 7*
holds if and only if 1 < %, which is precisely the HS (sub-)criticality condition for cubic
nonlinearity in three dimensions. By s > %, it’s clear that this also holds.
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Figure 4.2: Applying Sobolev’s embedding
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To see this, note first that by Sobolev’s embedding and Strichartz estimates arguing
as in (4. 29) we have for f e H; ,4(R?)

—it(—A)* <20 He—it(—A)sf

le (4.32)

& ([T,00) xR3) S5 ([T,00) xR3) *

where C' > 0 only depends on the exponents involved in Sobolev’s embedding and
Strichartz estimates, but not on the concrete interval [T, c0). However, the function
g(t) := e~ f obviously solves the linear problem

iwy = (—A)sw
w(T) =e TR fe HARY), w:[T,0) xR — C.

Applying the unified Strichartz estimate (with inhomogeneity F' identically zero)
(4.15) on the right side of (4.32) and then using the unitary group property gives

—it(—A)® —it(—A)®
He f‘ &5 ([T,00)xR3) <20 He f Ss([T,00) xR3) (433)
<Clg(T)|u= = C|lf|us, C>0.
Let now 6 = 5= and let vy € Bs(uy) n H; ,4(R?). Then
|Kr" — Kp'| = ’Heiit(iA)S/U+‘GS([T,OO)XR3) - Hefit( = “+‘es [T,00) x R3)
_Z (4.33)
He H(=A)? (U+ - 'LL+) s([T,00) xR3) CH’U.;,_ - u-i—HHS
e €
<C— =,
2C 2
(4.30)

hence K" < $+ K;" < e. Since K;' is decreasing in T', this completes the proof
of (4.31).12

A Fixed-Point Argument

Recall the fixed numbers p = 3225 ¢ = (3;:23 The state uy € H; ., 4(R?) was fixed

and it was our goal to show that the operator I',, defines a contraction on some
complete metric space. For T' > 0, we consider the Banach spaces

(X1, Hy) 1= (LW (IT,00) B, [l pgiynqry s )
(Vi) = (27 0) B, gz grmpess)

Let € > 0 be a number to be fixed later. Let then T = T'(uy,e) > 0 be a fixed
positive number so large that (4.30) is true. Introduce

BE,T = {UGXTK\YT; HU‘

&5 ([T,00) xR3) S 25} :

12We refer to (4.31) shortly by saying that the time 7' can be chosen to be uniform under small
H? . 4(R3)-perturbations in u thanks to the Strichartz estimates (cf. [Ta006, p. 165]).

x,rad
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equipped with the metric

d(u,v) := |u — v &5 ([T,00) xR3)

Note the nesting B.r < B, 7 for all T > T. Let us remark that the pair (B.r,d)
defines a complete metric space.

Proof of completeness. According to [BL76, p. 24]), the pair (X7 0 Y7, |5, ~y.)
with |uf x .y, 1= max{|u|x_,|uly,} is a Banach space. Since

[l mye < Nl oy sy = lulx, + luly, < 2fulx, Ay,

for all w € X7 Yr, the norms |-y .y, and || gs (7,00) xr3) are equivalent on X7 Yr.

By continuity of the norm || &5 ([T,00) xR3) : XrnYr — R, we get that B, 1 is a closed
subset of X7 n Yr. Since (X1 n Y7, d) is complete, so is (B.r, d). O

Now we claim that

Fu : (Bs,Ta d) - (BE,Ta d)

+

defined by 4
Fu+u(t) = e_“t(—A)SuJr + 1P p ) (t)

is a contraction for € > 0 chosen appropriately.

Proof of contraction. Step 1 (self-mapping): Let u € B. 1 be arbitrary. Then

HF ‘ —it(—A)*®

<|e s [ ®rl, + [®ra

< Kpt + | ®r

&5 ([T,00) xR3) &% ([T,00) xR3) HYT

+ | Pre

), )y,

<=+ |2rwl, + [@rwly,

But using Strichartz and then Hélder combined with the fractional chain rule as in
(4.18), we see

H(PF H(I)F Hqusq([Too)xR?r)

< C|F(u)

M, =

HLg’ijq’([T,oo) xR3)

N

2 2
C ”UHLff;([T,oo)xm) Hu”L‘gng’q([T,oo)xR3) = Clully, ulx,

3 3
Clully,nyy < Clulgsqromyxrs

C(2¢)®.

NN

Similarly, using Sobolev embedding, then Strichartz and then estimating as before,

[@raly, = 1®rac2n 0y c)

<C HCDF(U)HL,%ngf([T,oo)st)
< C||F(u)

< C(2¢)%.

HL?'Wj"I’ ([T,00) xR3)
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Thus, choosing a posteriori £ > 0 small enough to ensure |2C(2¢)* < | (and then
T = T(uy,e) > 0 as to guarantee (4.30)), we get [Ty, ul &5 ([T.00) xRY) S
less than 2e. Hence the operator I',, maps the set B, r to itself.

3¢, which is

Step 2 (contraction property): Let u,v € B.p be arbitrary. Then, using
Strichartz, the fractional chain rule and the pointwise bound from Lemma C.7 for
the nonlinearity, we get

ITusu—Tu vy = [Prew — Prwly, = [Prw-rwlx,
- Hq)F(“)*F(”)HL?Wj’q([T,oc)x]I@)
< O[F) = FO) oy (17,00) cm9)
<C {Huuiff;([T,oo)xRi“) + HUHifg([T,oo)xRB)} lu— v”LfWi’q([T,oo)xH@)
= C{Jluly, + 0I5, } lu —vlx,
R —
< 2C(2e)? |u — v|

N

2
GS([T,OO)XR3)} |lu — vl &5 ([T,00) xR3)

&5([T,00)xR3) »
where we used w,v € B, r in the last estimate. Similarly, using Sobolev, Strichartz
and then proceeding as before, we get

[Tusw = Tuvfy, = [@rw — Proly, = |2rw-roly,

c H(I)F(U)*F(v) HLf”ij([T,oo) xR3)
< C|F(u) — F(v)
< 2C(2¢)? |u — v|

HLg’ij‘Z’([T,oo) xR3)

&5 ([T,00)xR3) *

Consequently, choosing a posteriori € > 0 small enough to ensure |4C' (28)2 < — |, we

>~ =

get
1

&5 ([T,00) xR3) S 4 |

HPMU—FM’U‘ u— v

&*([T,00) xR3) »

in other words

1
ATy, u, Ty, v) < Zd(u, v).
It follows that I, : (B.r,d) — (B:r,d) defines a contractive self-mapping provided
that first some € > 0 is chosen small enough to ensure the above two boxed conditions
and then some 7' = T'(u4,€) > 0 is chosen as to guarantee (4.30). O

Note that the above time T' = T'(uy,e) > 0 is stable under small I ,(R?)-
perturbations in u,, that is, taking any v, in a sufficiently small neighborhood
Bs(uy) N H; ,q(R?) of uy (6 > 0 so small as to guarantee the validity of (4.31)), the
above contraction proof still goes through for the operator I',, : B, — B r with
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the same T' = T'(uy, ). [Because we still had ¢ "room" in the above self-mapping
proof.]

By Banach’s Fixed Point Theorem, there exists a unique u € B, p such that
Ly u=u,ie.:

0
u(t) = e Uy i@ p (1) = e Ay, 4 ZJ e R Py(r))dr. (4.34)
t

Recall first that
e 1y € ORe; Hpua (RY)) 0 LIWSEA([T,0) x B¥), ¥(,p) € 54,

x,rad
Indeed, continuity follows from the fact that {e_it(_A)s}teR defines a continuous one-
parameter unitary group on H(R3), and the L] W2* regularity follows from homoge-

neous Strichartz estimate combined with the commutation of the Fourier multiplier

|V|* with the semigroup operators e~**(=*)° namely
e (©8)
He A U+HL§L5([T,oo)xR3) < s,
s, —it(—A)*® —it(—A)® s (C8) s
[IVIe U+HL3L;’([T,oo)xR3) = e V| “+HL7L§([T,oo)xR3) < [IVIPus ez,

hence

e A sy ey S sl < 0.

Recall second that the map ¢ — ®p(,)(t) satisfies
Crw) € O[T, 0); H 10a(R?)) 0 LIWL4([T, 0) x R?),  ¥(y,p) € SA. (4.35)

z,rad z,rad

We conclude that the fixed point u from (4.34) satisfies
ue C([T,0); Hy 10a(R?)) 0 LYWL 4([T, 0) x R?), ¥(y,p) € SA.

z,rad z,rad
In particular ¢ := u(T) € H; ,4(R?) makes good sense.

Solving the Local Problem 'From Finite 7" to 0’

We have found a unique solution u € C([T,0); H?

5 raa(R?)) of the asymptotic prob-
lem (4.34), in particular ¢ = u(T) € H;rad(R?))' By semigroup properties, we now
check that

0

u(t+T) 434 e DAYy 4 zf e_i(HT_T)(_A)SF(u(T))dT
t+T

T

+o +o
—1 <f e_’(t+T_T)(_A)SF(u(T)) dr — f e_l(tJ“T_T)(_A)SF(u(T)) dT)

T t+T

+00
= ¢~ H=A) (e_iT(_A)Su+ + zJ e_i(T_T)(_A)SF(u(T)) dT)

¢
= e A Yy (T) — zf e~ A P y(r + T)) dr
0
¢

= MRy J e CIEA P u(r + 1)) dr,
0
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o0]

where in the third equality, we changed variable 7/ = 7 —T and then used SSC — St =

Sé. Therefore, by Duhamel’s principle, u solves the problem

{iwt = (—-A)*w + F(w), (4.36)

w(T) =veH; 4R, w:[T,+0) xR —C.

But by global well-posedness, the solution w € C(Ry; H; ,4(R?)) to this problem
is unique and global; since w(T") = ¢ = u(T"), we obtain w = u and thus u(0) €
H: (R3) is well-defined.

z,rad

The Global Nonlinear Solution u(t) Scatters to the Given Linear Solution

Next, we prove that the global solution u € C(Ry; Hj ,4(R?)) constructed above
actually scatters in H?(R?) to the solution e~
Recall from (4.2) that this means

A, of the free equation as t — 0.

(4.34

it A )
Ju(t) — e T3 uy s =7 [ @ pg (1))

s — 0, ast— . (4.37)
Proof of (4.37). We see from (4.35) that

(I)F(u) € C([Tv 00)7 H;

z,rad

(B%)) n LW (T, 0) x B), VT > T,¥(y,p) € SA.

x,rad

By Strichartz, there exists a constant C' = C(v, p,¥, p, s) (independent of time T)
such that (see estimate (C.16) in Corollary C.5 or analogously the last estimate in
[Caz03, Corollary, 2.3.6, p. 37])

< C|F(u)

H(I)F(U) HLZWQf’”([T,oo)x]I@ ‘|L?/W5’5/([T,OO)XR3) :

In particular, there exists C' = C(0,2,q,q, s) = C(s) such that for ¢t > T

[P ren (2]

Hs S H(I)F(u)HC([T,oo);H;(R3)) = Hq)F(u)HL?OW;J([]?’OO)XRS)
<C ”F(u)‘|LZIW£"1/([T,OO)><R3) (438)

9 -
<C ||u||L§f;([T,oo)xR3) HUHwazs’q([T,oo)xRi‘) , t=T.

Since u € B.r © Njor B, 7, we have the uniform bounds

HUHLfg([T,oo)xRS) = HUHYT~ < Hu|es([T,oo)xR3) < 2%

&5 ([T,00) xR3) S 2€-

[l oz o0y ey = Il <

Hence both [[ul ;20 (7 0y xrsy = 0, |t paweo (7,00 xra) — 0 s T — oo and the result
follows from (4.38). O
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Uniqueness

We have deduced that for every u, € H?

x,rad

(R?) there exists ug € H ,,q(R?) such

that the corresponding global solution u(t) scatters to e =)y, in H3(R?) as
t — co. It remains to show uniqueness of uy. Then the wave operator exists:

Qp H: (R — HE(R?), uy > u, (4.39)

x,rad x,rad

where ug € Hj ,4(R?) is the unique initial datum whose corresponding global solu-
tion u € C(Ry; H3(R3)) scatters to e *(=)y, in H3(R?) as t — oo.

Proof of uniqueness. Let 4 € C(RR; Hgf,md(R?’)) be another global solution such that

@(t) scatters to e =2y, in H*(R®) as t — co. By the characterization of the
beginning of Section 4.3 (see (4.23)), we necessarily have

(t) = e Ay, +iDpe (), VEeR.
Since also u(t) satisfies
u(t) = e O™y 4+ i®p (1), Vte [T, o),
we have
u(t) —u(t) = i®Ppuy-—r@(t), Vtel[T, o).

Similarly to the contraction proof above, we estimate

lu—ilx, = [®rw-rax. = [2rw-r@ | Lomweo@F.m s
< C[F(u) — F(a)

HL?’W&Q’([T,oo)xR?))
2 ~ 2 ~
<C {HUHLfg([T,w)XW) + ”u”Lil;([T,oo)xR3)} lu — u”Lij’q([T,oo)xR?’)
1
2 ~ 112 ~ ~
= C{lul}, + 1l =l < 7 lu—ily,

and
1

Jlu — aHYT S 1 lu — aHes([T,oo)xRS») 5

provided that T is large enough. Thus u = @ in X7 n Yz for T large enough. It
follows that u(t, z) = a(t, z) for a.e. x € R® and some large t. Therefore u(t) = a(t)
in H:(R3) for that large t. By uniqueness of the Cauchy problem at finite time ¢,
we conclude u = @, hence u(0) = a(0). O

The wave operator Q : H3 ,(R*) — H; ,(R?) is necessarily injective. Indeed,
let uy,uy € Hj 4(R?) such that Q u, = Quu3. Let u(t) be the global solution
corresponding to ug := Q,uy = Q,uy. Then, by definition of {2, , we have

A

s < Hu+ . eit(fA)Su(t)’Hs + Heit(,

HU+—{I/\;‘ U’<t>_{j’\;HHs _)07 aSt—>OO,

so that u, = u3.
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4.3.2 Continuity of the Wave Operator (),

In this subsection, we show that € is a continuous operator H; ., 4(R?) — H; 4 (R?).
Let uy € H ,4(R?) be a given state. We prove the continuity of € in u, by show-

ing that in a H? _(R3)-neighborhood of u, the operator 2, can be written as the

x,rad

. : 0T T
composition of two continuous operators, ., = Q)" o Q.

Indeed, fix some ¢ > 0 which satisfies the (a posteriori) conditions of the above con-
traction proof'® and fix some T' = T'(u,e) > 0 such that (4.30) holds. Furthermore,
fix some § > 0 such that still (4.31) holds.

Step 1 (evolving continuously from o to T): Let ¢* > 0 be given. We show
there exists 6* > 0 such that if v, € Bss(uy )N H 4(R?) then |[u(T) — v(T)|gs < €.
Let vy € Bs(uy) n HE  4(R3). Let u,v € B.r be the corresponding fixed points of

x,rad

the operators'* I, , T',, mapping the set B. r to itself, respectively (they are global
solutions of (fNLS) with initial values «(0),v(0) € H? _,(R3)). Then we have the

' xrad
estimate
[u(T) = o(T) 1 = ™" iy (T) — e TN 0y — i (T)
< Jus = viflme + [ @pw-re) (1) ae
< Jug —vg s + H(I)F(“)*F(U)HL?OWQf’Q([T,oo)x]R%
< s = vels + CIE () = FO)] gyt 700y (4.40)
< Jus — vy ]ms +2C(22)% fu - Vllgs ([7,00) xR

1
< Jus —villas + 1 lu— v &5 ([T,00) xR3) »
where from the second to last line on, we estimated again as in step 2 of the above
contraction proof. However, using the definition v = I',, v, v = Iy, v, then arguing
as in (4.33) for the homogeneous term, and finally using the estimates in step 2 of
the above contraction proof again, we obtain

—it(—A)S(

Ju =]

&#([T,00) xR?) S He Uy — U'*')‘ &3 ([T,00) xR3) + H(I)F(U) o (I)F(U)‘ &3 ([T,00) xR3)

< Clus —vilgs + |[rw-ro x, + |Prew-roly,

s +4C(22)? |u — v

< Cfluy — vy & ([T,50) xR3)

Y
Hs 4U (Y

< Cluy — vy &3 ([T,00) xR3) »

which implies
1
n
Inserting (4.41) into (4.40) there results an estimate of the form

|t = o ((7,00) xR3) < §HU+ — V4[| h=. (4.41)

[u(T) = (D) < Cluy — vy ]as,

13That is, € > 0 must be so small that 2C(2¢)?*! < e and 4C(2¢)? <

1
14 . . Z'
That is, u,v € By with I'y, v = u, I'y, v = v.
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which holds for any v, € Bs(uy) n H; ,4(R?). Picking now 0 < 6* < min{J, %} we
have proved that

U_;,_ € B(S*(u+) M HS

x,rad

(R*) = v(T) € B.«(u(T)).

In a full H?

5 raq(R?)-neighborhood Bs(uy) of uy we can therefore define a map

QY . Bs(uy) n H?

x,rad

(RY) —

x,rad

(R?), vy = 0(T),
v is defined as the unique element of B, r such that I',, v = v
(such v is a global solution to (fNLS)),

and we have just proved that it is continuous in u, .

Step 2 (evolving continuously from 7' to 0): This is a consequence of the
continuous dependence of strong H?(R3)-solutions to (fNLS) on the initial data,'
which says: if ¢ — o7 in Hi(R?) and if u",u € C(R; H(R?)) denote the global
solutions of

{mt = (=A)w + F(w), (04

w(T) =wre HY(R?), w:RxR>—C.

with initial value wr € {©}, o1} at some fixed finite time T € R, respectively, then
necessarily u” — w in L*(Ry; H¥(R?)). In particular, for any e* > 0 there exists
0* > 0 such that |u(0) — «"(0)||gs < €* whenever |7 — @} |gs < 6*. There exists
therefore another map

{wywmewwxmwww

w is the unique global solution to (4.42) with initial value wy at time T

which is continuous in u(T) := Q5% (u,) € H(R?).
Step 3 (Conclusion): We glue together step 1 and step 2 to obtain that
Q, = Q%" o Q7 By(uy) n H?

x,rad

(RS) - H;,rad(R3)7 Uy = U(O)7
v is defined as the unique element of B, s such that I',, v = v

(such v is a global solution to (fNLS)),

is continuous in u, . O

4.3.3 Asymptotic Completeness

We need to show that €, is surjective (hence bijective), i.e., R, = H?

x,rad(R3)7 i'e'7
for any ug € Hj ,q(R?) the associated global solution u € C'(R; H; ,4(R?)) scatters

T

15A strong solution to defocusing (fNLS) is global and it is irrelevant if we impose initial data at
time 0 or at any other finite time T € R.
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in H3(R3). It is sufficient to prove that for given ug and associated global solution u,
the integral {; """ F(u(r)) d7 converges in H2(R?); indeed, once this is proved,
one can then define u, € Hj .,(R®) by the formula (4.22) and it is clear that
u scatters in H3(R?) to the solution e*(~2)y, (with initial condition u,) of the
free equation (4.1). [Recall the equivalences in the derivation of (4.22)!] Asymptotic
completeness is implied by the strong space time bound (4.10) as follows (cf. [Tao06,

p. 166]). We have

b (4.14)
J e TR P u(r)) dr < 1F W) ys@ursy = H|u‘2u‘NS(RXR3)
0 Ss(RxR3)
(4.19) 9 Sobolev 2 4.43
Sl sy [tlsemensy S Iulpzewer @ors) [l ss@xms) o

(2p,F)eSA o (4.10)
< u S (RxR3) > L,

using successively an inhomogeneous Strichartz-type estimate analogous to (4.14),
the bound on the power-nonlinearity in the dual Strichartz norm (4.19), the Sobolev
embedding LW (R x R?) < L% (R x R?), the admissibility (2p,7) € SA and fi-
nally the crucial strong space-time bound (4.10). Estimate (4.43) shows that the
nonlinearity is bounded in the dual Strichartz norm ||y, gygs). However, this is

sufficient, since this norm also controls the H3(R?) norm, namely via the dual ho-

mogeneous Strichartz estimate (cf. [Tao06, p. 74|, estimate (2.25) there)

| e pumyar < 1w
R L2(R)

Y(q,7) € SA. (4.44)

HL?’L;’(RXW) ’

Postponing for a moment the proof, we see that this implies (using a uniformed

boundedness of the appearing constants C'(q,r) and going to the infimum over all
(q,7) € SA)

+o0
J 6+ZT(—A)SF(U(T)) dr < HF<U)HN0(RXR3) )

0 L2(R3)
and
+0o0 ) . 400 ' .
'|V|SJ e+z7’(—A) F(U(T))dT _ J 6+’L7’(—A) |V|5F(U(T))d7'
0 rzws)  IJo 12(R?)
< H|V|3F(u)”NO(RXR3)7
and thus

+00
\L TN (u(r) A7 e < 1F ()] oy + VI F (@)l oz ey

S [F(w)]

Ns(RxR3) *

Hence indeed the bound (4.43) is sufficient for asymptotic completeness. It remains
to show the dual homogeneous Strichartz estimate:

16(1/g,1/r) varies in a compact set for n > 3.
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Proof of (4.44). Using TT* argument, let us write

JR TR F(u(r)) dr

_ L ( JR gir(~A)" F(u(T))dT> < JR emA)SF(u(%))d%) dz

_ L ( JR emwmdf) ( fR eﬁ(A)SF(u(?))d?) dz
_ | fR e—iﬂ—msmURem—A)sF(u(%))d%} dr dx

RS

) [R <6m_A)SF (u(r). J; TS (u(7) d%> da

L2(R)

_ L <F(u(7-)), JR ei<%><A>SF(u(%))d%> de

L2(R)

(-

(-

(&

_( fR W{ JR eiﬁ—ﬂ(—msF(uﬁ))d%} dr dz

JR3

| JR W(T)){ JR e“*—T)(—A)SF(u(%))d%} dadr

JR

dr
Ly (R9)

J ei(%’T)(’A)SF(u(?)) d7
R

< L\F<u<r>>\Lg<Rg>

J

< [F(u)

f e_i(T_%)(_A)SF(u(?)) d7
R

HLq'LT.' RxR3
e L ) LILT (RxR3)

2
< HF(U’> HL?L;’(RXR‘?) :

We used (T f,T*g)r2m) = {f,TT*g)r2r) With operator T" = e~T(=2)" " The last
estimates used Holder in x, then Hélder in ¢ and finally the inhomogeneous Strichartz
estimate (C.9) (with integral taken over (—oo, +00) instead of (0,t)). O

4.4 The Inversion U, = Q!

We have seen that for any u, € Hj . 4(R?) there exists a unique ug € H; ,4(R?)
such that u, is the scattering state of uy at +00. This enabled us to define the
wave operator by Q,u, := ug. We have seen that (2, is continuous and injective.
Subsection 4.3.3 showed that €2, is also surjective. By bijectivity of €2, it is clear
that conversely for any initial datum uy € H? _ (R?) there exists a scattering state

x,rad
uy € H? (R of ug at +o0.

x,rad

Theorem 4.5. Every ug e H?

x,rad

at +00. That is, for every ug € H;

(R3) has a unique scattering state u, € H?

3
m,rad(R )
(R?) there exists a unique uy € Hj . 4(R?) such

;rad
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that

() = e uy e = [ u(t) — s

gs— 0, ast— +o0,

where u € C(Ry; HE

s aa(R?)) denotes the global solution to defocusing (fNLS) with
mitial value ug.

Proof. The uniqueness is clear by uniqueness of limits in H3 4 (R3). To prove exis-

tence, let ug € Hj ,4(R?) and denote by u € C(Ry; H} ,4(R?)) the global solution to

defocusing (fNLS) with initial value ug. Recall the representation

t
u(t) = e A gy — zf e UIEA P(y(r))dr for t e R,
0

in other words (applying the propagator e**(=2)° to both sides)

t
D (1) = g — i J T Flu(r)) dr for t € R. (4.45)
0

We know already that the limit

o t
J e+iT(7A)SF(U,<T)) dT = hm e+iT(7A)S F(u(T)) dT

0 =% Jo
exists in Hj ., 4(R?) - see Subsection 4.3.3 on asymptotic completeness; the radiality
follows from the radiality of w, which in turn follows from the radiality of uy,. We
can thus define the H? _ (R?)-element

z,rad

o0
Uy 1= ug — zf TR P u(r)) dr
0

The statement i {* e*72) F(u(7)) dr — ug — uy in H¥(R3) as t — o0 means
0 x

t

e U2 (uo — uy) — J et By (7)) dr|
0

— 0 ast— oo. ]

e u(t) — s

HS

Remark 4.6. We can thus define the operator

U+:HS

z,rad

(&%) — H;

x,rad(R3)7 Ug — Uy,

mapping initial states to the associated scattering states, by

uy = Usug :=ug — ZSSO €+”(_A)SF(U(T)) dr,

where u € C(R; Hf .,4(R?)) is the global solution to (fNLS) (4.46)

T

with initial datum wuy.
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Observe that Uy oy = Q, oUy = Idps  (rs), In other words, U, = Q7. Indeed,

ad
the mappings €, and U, are now characterized as follows'":

Vuyug = e uy, (1) — uyl

VugIluy = e uy, () — uy |

s — 0;  define Q uy = uy. (4.47)

gs — 0; define U ug := u,. (4.48)

Let now u, € H;,md(R3). We show U, (Q uy) = uy. Take ug := Q u, from (4.47),
ie. et u, (t) —uy|gs — 0. But by (4.48), there exists only one v, = U, ug
such that [~ u,, (t) — vi|gs — 0. Hence vy = u,, that is uy = vy = Upug =
U (Quy).

Conversely, let ug € H; ,4(R?). We show Q. (Uiug) = ug. Take uy = Ujug
from (4.48), i.e. [e® 2w, (t) —ui|ms — 0. But by (4.47), there exists only
one vy = Q u, such that [~ u, (t) —uy|gs — 0. Hence vy = ug, that is
uy = vg = Qyuy = Qy (Uyup). This proves U, = Q3

74, denotes the global solution to (fNLS) corresponding to initial value ug.






C Scattering

C.1 Strichartz Estimates in the Radial Case

Definition C.1 (see [GW11, p. 23]). Let n = 2. The exponent pair (g, r) is called
n-D radial Schrodinger admissible provided (g, 7) € [2, 0] x [2,00] and

4n+2< <% d2+2n—1< 1
< < an - SN — =
2n — 1 q q r 2
or (C.1)
4 _
9 < n+2 ndg 2n—1 _1
2n —1 q r 2

Proposition C.2 (see [GW11, p. 26]). Let n = 2 and u,ug, F' be spherically sym-
metric in space and satisfy (INLS). Then

ll Loy + vl @i = Twolgs + 1F @) a0 s (C.2)

if v € R, both (¢q,7) and (¢,7) are n-D radial Schrédinger admissible, (q,7,n) #
(2,00,2), and (q,7,n) and (4, 7,n) satisfy the ’gap’ condition

2 1 1 2 1 1

Corollary C.3 (Strichartz Estimates Without Loss of Derivatives; see [GW11, p.

26]). Letn > 2, 35 < s < 1, and u,ug, F' be spherically symmetric in space and

satisfy (fNLS). Then
Il oy + vl o2y < luolee + [F (@) a0 s (C.4)

if both (g,7) and (q,7) € {(q,7) € [2,0] x [2,00): 25 = n (5 —;)} and (§,7,n) #
(2,00,2).
Proof of Corollary C.3. (q,r) (resp., (¢, 7)) satisfy the gap condition (C.3) with v =

0, from which it is clear that ¢ = oo if and only if » = 2; in this case, one has the
equality case 2/q + (2n — 1)/r = n — 1/2 in the n-D radial admissibility condition

C.3
(C.1). In the other case (2 < ¢ < ®© E9 9 o4 < o) one verifies (C.1) by the
restriction on the powers s of the fractional Laplacian, namely

2 2n—1@syn 1 1 2n —1 2n—-1/1 1 2n —1 1
-+ =" —(z——]+ <n - —— ]+ =n-—=. [
q r s\2 r r n 2 r r 2
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C.2 Duhamel’s Principle and Strichartz Estimates

When u solves (fNLS), then Duhamel’s principle gives the representation

¢
u(t) = e =AYy — zf e_i(t_T)(_A)sF(u(T)) dr. (C.5)

0

The first part u,(t) := e =2y solves the homogeneous problem [free (F = 0)
fractional Schrodinger equation]|

{z’ut = (—A)%u, (C.6)

u(0) = wy,
and the second part wu,(t) := —i {; e "4 F(u(7)) dr solves the inhomogeneous
(fNLS)
vy = (—A)u+ F(u), )
u(0) =0.

If the solution u of (fNLS) given by (C.5) together with ug and F' are spherically
symmetric in space, then so are the solutions u, to (C.6) together with uy and 0
as well as w, together with 0 and F. Applying Corollary (C.3) to (ug,ug,0) and
(up, 0, F') yields the homogeneous Strichartz estimates

LAY 4)
”ug”LgL;‘ = HG (=4 UOHLEL; < HUOHL%a (CS)

and the inhomogeneous Strichartz estimates

(©

f e A (7)) dr §4) | F(w) (C.9)

0

HupHLng = ||L;7'L;’ .

LiLr,

C.3 Definitions of Strichartz Spaces

For (q,r) € [2,0] x [2,0] such that (¢,r,n) # (2,00,2), we say (¢,7) € SA
(Strichartz admissible) provided that (¢, r) satisfies both the n-D radial Schrodinger
admissibility condition (C.1) and the gap condition (C.3) with v = 0.

Note that for n > 3, the set SA is always compact. Indeed, writing z = é,

Yy = %, and rewriting the n-D radial Schrodinger admissibility condition and the gap
condition with v = 0 with z and y, we see that'

11 1 2s 1
(;,;)ESA@<.T,y)—<I7§—E$), $€[O,§]

IThe restrictions

sn < 8 < 1, n > 2 guarantee that y lies in the correct range.



APPENDIX C. SCATTERING 135

0.5 T T T T
——line of admissible pairs for n =3, s =4/5
0450 ——line of admissible pairs for n =2, s =1 |
0.4 4
0.35 - —
0.3 - —
<o0.25- .
—
0.2 B
0.15 - —
0.1+ _
0.05 - —
0 | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1/r
Figure C.1: Line of admissible pairs
As ¢ : 0, %] — R?, p(x) = (m, % — %x), is continuous and [0, %] is compact, the set
% ([0, % ) < R? is compact, and hence SA; see figure C.1. The compactness does not

hold for n = 2 and s = 1 (take a sequence z; — 1,z; < 1, hence (z;,y;) := (7,3 —

z;) — (3,0) and (miyi) € SA, but (2,0) ¢ SA since Strichartz-admissibility
forbids the case (q,r,n) = (2, 0,2)).

We define (cf. [Tao006, p. 134]) the Strichartz space S°(I x R™) as the completion
of the Schwartz functions with respect to the norm?

HUHSO(Ian) = sup HUHL;?L;(Ian)- (C.10)
(g,r)eSA

Similarly, define S*(I x R™) to be the completion of the Schwartz functions under
the norm

[u Ss(IxRm) = ”UHSO(Ian) + H‘v’suHSO(IxR")? (C.11)

where |§|?u(§) ;= |¢]*a(€). By construction, the space S°(1 x R™) is a Banach space.
We consider its topological dual N°(I x R") := S°(I x R™)*. Then by construction

ZMore precisely, we consider space-time Schwartz functions, .#(R x R™)|,, gn, restricted to the
space-time domain I x R™. It is clear that |-|go(;«gn) defines a norm on 7 (R x R™)|/, pn-
The completion of .%'(R x R")[;, . With respect to the Strichartz norm || go s, gn) is then a
Banach space, denoted S°(I x R™).



136 APPENDIX C. SCATTERING

(cf. [Tao06, p. 135]) the following estimates hold:
||UHL;1L;(Ian) S H“HSO(Ian)v V(g,r) € SA, (C.12)
as well as the corresponding dual estimate

HUHNO(IXR") < HuHLg/L;/(IXR”) ’ v(Qu T) € SA. (013)

C.4 Consequences of Strichartz Estimates

We frequently use the following results, which are analogous to [Caz03], Theorem
2.3.3 and Corollary 2.3.6 (see p. 33, p. 37 there).

Theorem C.4. The following properties hold:

(i) For every ug € HE . ,(R™), the function t — e~ (=2 uqy belongs to

z,rad
LiW,raa(R x R™) 0 C(R; H ,q(R"))
for every admissible pair (q,r) € SA. Furthermore, there exists a constant C
such that
He’it(’A)suo}‘sz;,r(men) < Cllug|gs  for every ug € Hy | 4(R™).

(ii) Let I be an interval of R (bounded or not), J =1, andtye J. If (v,p) € SA is
admissible and f € LZ/W;’f;d(I xR™), then for every admissible pair (q,r) € SA
the function

t
t— @p(t) := f e EA f(ydr fortel (C.14)

to

belongs to LW (I x R™) n C(J; H} ,o(R™)). Furthermore, there exists a

z,rad T

constant C' independent of I such that
||¢f||L§W§”(1an) <C HfHLZ/Wj"’,(IxR") for every f e L] W;”fad(] x R™).
(C.15)

Corollary C.5. Let I = (T, ) for some T > —0 and let J = I. Let (v,p) € SA
be an admissible pair, and let f € L] wer (I x R™). It follows that the function

x,rad

00
t— Dp(t) = f e EIER f()dr for every t e J

t

makes sense as the uniform limit in H; ,(R"), as m — oo, of the functions

DY (t) 1= L e IEA £y dr for every t € J.
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In addition for every admissible pair (q,r) € SA, we have &y € LIW>" (I x R™) n

xz,rad
C(J; Hy .a(R")). Furthermore, there exists a constant C' such that

Hq)fHLngs,T(Ian) <C HfHLZ/WzS’p/(IXR") for every f € LV W;r”ad([ x R™). (C.16)
Proof of Corollary C.5. Let j, m be two integers, T' < 7 < m. For every t € J,
|PF(t) = @F(1)|me = e O (@F (1) — DL(1))

—J‘ SmmDEA (1) dr e

Hs

using the H? isometry and the semigroup property of the propagator. By (C.15),
there exists a constant C' such that

(C.15)

m J J
H‘I’f (t) — q’f(t) H f”LgOWQ;S’2((j,oo)><R”) < C”fHLZ'W;*”'((j,oo)xR")

<|[ef -
—0 as(m>)j — .

[We used 7/ < oo for (v,p) € SA and the hypothesis HfHLWIWS,p/(Ian) < 0.
+ x

Thus (®7F)men is a Cauchy sequence in LEW?2 (I x R™)), with all members in

x,rad

C(J; H; ,q(R™)) according to the previous theorem. The uniform limit ® 7 is there-
fore also in C (J; Hj .q(R")), and we have the estimate
H(I)fHL;’OWQf’2(I><R") hm H(I)mHLwW“(Ian) <C Hf”L;’/Wj’P/(Ix]Rn) (C.17)

[equality holds since ®F — @ strongly in LFW?(I x R"), and the inequality
follows from the estimates “q)?HLfW;’2(I><R") < O”fHLzle”’/(lan) given by (C.15)

above|. Finally, given any admissible pair (q,r) € SA, it follows from (C.15) that
there exists a constant C' such that

H(I)?Hngj”‘(Ian) <C HfHLg’W;vP’(szn) . (C.18)

For j e N, j > T, define fjeLVWSp (I x R"™) by

x,rad

) f@) ift<y
L“y_{o if t > j.

By dominated convergence (e.g., [CH98, Cor. 1.4.15, p. 8|), we have f; — f in
L) Ws# (I x R"); indeed, abbreviating X = W5 (R") and denoting || + its norm,
we define g; : I — R by g¢;(t) := | f;(t) — f(t)H}(/ We have (7' = 1)

g1 < (15O + 1F D) <y 151 + 1F % = h(t), ae. tel,
where

| neyat <2071 < 40
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due to f € LZ/WJf’p'(I x R™). In particular, (g;)jen is a sequence of integrable
functions I — R and h : I — R an integrable dominating function. Since by
definition of the f;’s we clearly have g;(t) — 0 for a.e. t € I, we conclude from

dominated convergence that 0 = lim;_, §, g;(¢) dt = lim;_, | f; — fHZ;,(I;X), giving
JIL% Hf] - f“L?’W;’p/(IXRn) = 0
From this and (C.17) we deduce that
¢y — @y in H3(R") uniformly in t € J. (C.19)

To see this, note that by definition

m

q)}r; (t) B q)?(t) _ J;m eii(th)(fA)Sfj@_) dr — Jt efi(tf’r)(*A)sf(T) dr
- f eTUTEAS (f5(m) = (7)) dr = T _4(1),

That is, ®7 — @ = @} _,, where as before (CID?;_ #)men is a Cauchy sequence in
LEWE2 (I x R*) with limit ®;,_; € C(J; H(R")), and according to (C.17) we

x,rad
have the estimate

H(I)fj_fHLgoWi’Q(IxR”) <Clf; - f”Lz'Wj*”'(lan) :

Note (abbreviating for a moment ||| pooyys2 7 gy by [-])

H(I)fj - cbf” < Hq)fj - q)?j‘

wop ] + oy —a.
where
H(I)?;—f” < H‘D?}—f - (I)fj—fH + 2]
<|@p_s = ss| + O = Pl

Let now € > 0 be given. There exists N € N such that for all j > N it holds

Clf;— fHLz/W;,p/(Ian) < §. Let now j > N be arbitrary, but fixed. From the

known limits
L R ST e Y

we see that fixing m = m(j) € N large enough, we obtain
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Hence for all € > 0 there exists N € N such that for all j > N we have HCij — (IDfH <
g, and (C.19) is proved. By definition of the f;’s, note that for m > j, ®'7 does not

depend on m (in fact, in that case ®(t) = @‘}j (t) = ®4,(t)). From (C.18),

|®y, (C.20)

HL?W;’T(IXR") <C HfjHLZlW;’p/(IXR”) <C Hf||LZ/W£”’/(I><R“) )

we therefore have ®; € LiW2>" (I x R™). Furthermore, when T' < j < k, we deduce
from the definition of the f;’s that @y, (t) — @y, (t) = @} _, (¢), hence by (C.18)

(C.18)
H(I)fj — Oy < C ”fj - fk”L;”Wj"’/(IxR")

(o = | ®*
LIWy " (IxRn) fi—Tk LIWS™ (IxR™)

- O”f”[ﬂ WSP ((j,k] xR™)

But the right side goes to 0 as (j, k) — (20, 00) by elementary integrability reasons,
and so (®y,)jen is a Cauchy sequence in L{W3"(I x R"), which possesses a limit
U e LIWS"(I x R") such that

' (C.20)
”\IJHLEWQ?T(IXR") = ]h_{& ”(I)fj HL?W;”'([XRn) < C ”fHL?IWS’p/(IXR") . (021)

In particular, since now ®;, — W in L{W7" (I x R"), and moreover ®; — &, in
LEWE2(I xR™) by (C.19), there exists a subsequence (still denoted (®y,)) such that
for a.e. te I,

{qm (1) - W(t) i W (R"), "

(1) > Bp(t)  in WE(RY).

Abbreviate Y = WE"(R"), Z = WH*(R") and denote the norms by ||y, ||,
respectively. We claim that W(t) = ®¢(¢) in Y n Z for a.e. t. Indeed, denote N <
the set of measure zero outside of which (=) is valid and let ¢t € I\N. The sequence
(®y,)jen is by () a Cauchy sequence in both (Y, |-|,) and (Z,]|:|,), hence also in
the space (Y N Z, |||y~ ), where |||y, = max{|-|y, ||} By completeness of the
latter space, there exists x(¢) € Y n Z such that

H(I)fj (t)

zS)HYmZ - 0’

but this implies both |y, (£) — x(t)|,, — 0, |y, (t) —
limits in Y and Z, we conclude from (x) that U(t) =
was arbitrary, we have found

O By uniqueness of
P f(t). Since t € I\N

A@t—
\_/

U(t) = $p(t) in W (R") n WS2(R™) for ae. tel.

Thus (C.21) gives |y ayer(fypny < C HfHLZIWQf’”/(IxR")' The proof of corollary C.5
is now complete. O
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C.5 Morawetz’s Estimate

Proposition C.6 (Morawetz’'s Estimate). Let n > 3 and 3 < s < 17 Ifu €
C(Ry; H*(R™)) solves defocusing (INLS), then we have the global space-time bound

+00 t 2042
f f % dzdt < C(n, s, 0, |uo| 2, Euo]) < +o0. (C.22)
o Jrn T

There is a classical proof in case s = 1; see also [Caz03, Corollary 7.6.6, p.
238]. For 0 < s < 1, we can use Balakrishnan’s formula as in Chapter 2 to treat
the dispersive part in (C.23) below. We give an alternative proof via the extension
problem for the fractional Laplacian [CS07].

Proof of Morawetz’'s Estimate via s-Harmonic Extension

As in Chapter 2, let us define the localized virial of the solution w ("Morawetz
action" [CIKXS*04]) by the quantity

Malu(®)] := Cult), Tau(t)).

Here, a : R® — R is a given virial weight function which will be chosen adequately,
and I', is the formally self-adjoint differential operator

I'y:=—i(V-Va+Va-V)
acting on functions via
Lof :=—i(Va-Vf+div((Va)f)) = —2iVa - Vf —i(Aa)f.

As in (2.24), we compute

%Ma[U(t)] = Cu(t), [(=A)" iTau(t)) + Cu(t), [[uf*”, iTa]u(t)). (C.23)

We discuss the terms on the right side of (C.23) as follows.

Step 1 (Dispersive Term): As T, is self-adjoint (I'* = T',), clearly I, is skew-
adjoint ((iI',)* = —il';). This plus the self-adjointness of the fractional Laplacian
(—A)* gives

<u7 [(_A)S7 ZPa]u> = <u7 (_A)S(Zrau)> - <u’ Zra((_A)Su)>
= {((=A)’u,ilquy + Glu, (—A)°u) (C.24)
= 2ReGl yu, (—A)%u).

3In particular, this implies 0 < s < 5, which guarantees the applicability of Hardy’s inequality

(cf. [BCD13, p. 91]). The cases n = 3,s = 1 are also allowed; use a classical proof of Morawetz
inequality, since Balakrishnan’s formula holds for 0 < s < 1.
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As in [CS507], we consider the extension problem related to the fractional Laplacian.
That is, we consider a function U(xz,y) defined on the upper-half space R"*! =
{(z,y);z € R" y > 0} solving the elliptic Dirichlet boundary value problem

(C.25)

div,, (y*=2*V,,U) =0 in R}
U(z,0) = u(x) on R,

The fractional Laplacian of u is then characterized (up to a multiplicative constant)
as the Dirichlet-to-Neumann operator in the sense that [FLS16, p. 1684]

ou I'(s)

- : 1-2s7~ __ s — 92s—1
ds Zlll_r)r(l)y 2 (—A)*u, where ds; =2 Ti—s) > 0. (C.26)
From (C.25) and integration by parts, we obtain
0= f iFaUdiV%y (yl_QSVzﬁyU) dx dy
R1+1
= f iL Uy "%V, U - vdS(z,y) — V. (i0,0) -y 2V, U dz dy.

oR7 T R

Asv = —e, = (0,...,0,—1) is the outer unit normal to dR*!, this implies (when in-

serting the boundary conditions from (C.25) and the relation (C.26) in the boundary
integral) that

1 _
d—<irau, (—A)uy = — JRW Voy(i0U) -y 72V, U dz dy.
8 +

Thus

1 —
— Re(ilyu, (—A)*u) = —Re V.(i0,U) -y %V, U dz dy

ds R7_'7:+1
—Rej i(z'FU) I‘QSEU dedy =: (1) + (II)
w oy I\ gy v '
+

We claim (1) = 0 and (/) = 0 (thus the dispersive part has a definite sign). To see
this, recall that by skew-adjointness of the operator iT", the numbers (—il', f, f) € iR
must be purely imaginary (or zero).* Since I', does not depend on y, we get indeed

oU\ oU
I z—ReJ (f <iFa—)—dx) 1=2s ¢
(1) o\ o ) y y
oU oU
= — Re(—ily—, —»y' "> dy = 0.
L>o\ < 0y @y%y Y

=0

iClearly, GiUof, f) = {f, (iTa)*f) = {f,—iluaf) = —(iTuf, ), hence Re(il, f, f) = 0.
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As for (I), we integrate by parts in = to observe (notice again v* = (—e,)¥ = 0 for
k=1,...,n for the outer unit normal to JR"*!) [Einstein summation convention|

(I) = —Re J L, Uy 2 0, Uv® dS(x,y) — J iL,Uy' 2002 Uda dy
aRTL+1 \T/ Rzﬂ

_ +Rej (=iLU (-, y), AU (- y)yy' > dy

_ J(U =80, TG JU (- )y dy,

where the last equality used

1 1
Re(—iloU, AU = 5 (=i0aU, AU + (AU, ~iTU)) = (U, [~ A0, iTJU)

by skew-adjointness of iI', and self-adjointness of A,. Collecting the above results
and going back to (C.24), we have found for the dispersive part the following ex-
pression remarkably only containing local differential operators:

Cu, [(~A)* iTaJu) = d, j W) [~ A TJUC )y >y, (C.27)

As in (2.28), we have

[~ Ay, iTy] = —40,, (62, a)dy, — Ala.

TrT] T

Integrating by parts gives

<U('7y)’ [_Amira]U('7y)> = +4 5$kU(ZE,y)62 (JZ)@Z,ZU(ZL’,y) dz

— fn A2a(x)|U(z,y) > dz =: (1) + (II)'.

Now we specify to a(x) = |x| (we consider the Morawetz action centered at 0). We
easily check 07 , a(z) = <5kl — M) > and we obtain

|=[?

- f (A () (5 5) )

_ +4f V.U

|

Herein, for a function f : R" — C, the (by Cauchy-Schwarz on C" non-negative)

quantity
2

ZV.f] =0

Vo1 = Vaf -
]
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is called angular part of the gradient of f.°> Therefore (I) > 0. As for (IT)', first
observe that for a(z) = |z| we have A a(x) = %‘1 and —A2q(z) = =DE=8 (5 2 (),

[2[3
The function
1 1

n(n — 2)w, |z|*=2’

O(z) = n=3 z#0 (C.28)

is the fundamental solution to Laplace’s equation, i.e., —A,® = §p in R™ in the sense
of distributions. When n = 3 then A a(z) = % = 6w3®P(z) (z # 0) and therefore

—AZa(r) = 6wsdy in R? in the sense of distributions. It follows that

6ws|U(0,y)|*> = 0, n=3,

(1) = (1=1)(n3) 2 (C.29)
SRnT]U(:E,y)] dez >0, n=>4.

[Notice that for n > 4 the function g(x) = # is integrable in a neighborhood

around zero, g € L{ _(R™), so the singularity there poses no problem.| Inserting

(I)',(II) = 0 back into (C.27), we conclude that the dispersive part is nonnegative:
(u, [(=A)% il ]uy = 0. (C.30)

Step 2 (Nonlinear Term): Now we turn to the nonlinear term {u, [|u|?**,iT,]u).
By definition of 1", and

div(Va(|u|*u)) = div(uVa)|u|* + uVa - V(|u|*)

and V(|u|?**u) = V(Ju|**)u + |u|*’ Vu, we obtain by a direct calculation that

G, [l T, Jud = —2 fR 2Va - V(|ul) dz
20

_ X 20+2
= U+1J]RnVa V(|ul*™) dz

2 2042
— = (n—1) J [u dz.
|

o+1 " |z

=:Cn,o>0

In the last equality, an integration by parts was performed and it was used that for
a(x) = |x| the Laplacian is given by Aa = ”|T_‘1; the middle equality uses the identity
V([u[**2) = 22V (|u*?)|ul?, which one easily verifies. Hence

‘U’20+2

(u, [|ul, il Ju)y = cn,gf dzr, ¢ > 0. (C.31)

Nt

°Note that if f = f(|z|) is a radial function, then V,f = (arf)ﬁ and hence the angular part
vanishes: )
x

||

T x

||

2

V. f|* = 10, f2 — |0, f] = 0.

(@rf)
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Step 3 (Conclusion): Putting (C.31) and (C.30) into (C.23), we conclude the
monotonicity

SNafu®)] = Cut), (=AY, TuJu(®)) + Cue), [l i u(t)

dt
|u|20+2
= C”"’J 2] dz, c¢po > 0.

By time integration®

LT [ [l < L {<U<T>,rau<T>> - <u<0>’FaU<0>>}

2] Cn,o
2
sup [(u(t), Lqu(t))]
Cn,o te{0,T}

Sne sup [(u(t), Tau(t))|
te[0,00) (032)

<

(%)
Sno sup [u(t)
te[0,00)

2-1 s 1
Sno sup [u(®)|z. [[VIu(t)]
te[0,00)

P

< C(n, 0,5, |uoll 2, Eluo])

for any 7" > 0. In the second to last step, we have once again used the exact
interpolation inequality [BCD13, Proposition 1.32]

1-6
H#0

0
Hsl Y

[l s < ] g 1 §=(1—=0)so+ 051

with § = %, so = 0, s; = s. In the last step, we recalled conservation of L? mass
and total energy and noted that in the defocusing case, the kinetic energy is a priori
bounded by the total energy as seen in

[V u®)]z: < 2 (%HV\SUU)%Q + U(t)Hi"aifz) = 2B[u(t)] 5 Eluol.

(C.33)
It remains to show (*), which follows from a Hardy inequality plus some interpolation
argument. Indeed, from

20 + 2

-1
Fou = —2iVa - Vu —i(Aa)u = —2@'{% Vu+ o }

2af
we get
[Cu(t), Cau(t))] <n <U(t),é—,-Vu> + <u(t),%>‘- (C.34)

6We hypothesized global wellposedness, i.e. u e C(R; H(R™)) for the solution.
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For the second term, Hardy’s inequality” (see e.g. [BCD13, Theorem 2.57] or [Tao06,
Lemma A.2|) states

ult), @>\ - [ MO g < o, (C.35)

For the first term, we conclude from the momentum estimate [Tao06, Lemma A.10],

taking v = u there, that
x;
Cult), = 0jult )>‘ <n Ju®)I - (C.36)

%'W»' Z 2]

Putting (C.36) and (C.35) back into (C.34), we see that () holds. Thus (C.32) is
now legitimate. By arbitrariness of T" > 0 and by a similar argument for 7" < 0, we
prove Morawetz’s estimate

f Jn t " |20+2 C(n,s,0, |uol 1z, Euo]).

The proof of Proposition C.6 is now complete. O

Cu(t),

C.6 Elementary Pointwise Bound for the
Power-Nonlinearity

Lemma C.7 (Elementary Pointwise Bound for the Power-Nonlinearity.). For a > 0,
we have the pointwise bound

12172 = Jw|*w| < C(J2|* + [w|*) [z —w],  z,weC, (C.37)

with a constant C' depending only on .’ In particular, the function §: C — C,

- |z|%2, 2z #0,
z) =
9(2) {0’ i 0,

is Lipschitz-continuous on bounded subsets of C.?

"Since 0 < s < 2 5 for 0 < s <1 and n > 3, this is applicable.

8For instance, C = 3(a + 1) is sufficient, as shown in the proof.

9As in [("‘II%’, p. 55|, a function f : X — X, (X,| -||) an underlying Banach space, is called
Lipschitz-continuous on bounded subsets of X, if for any M > 0 there exists some constant
L(M) such that

If(x) = F) < L(M)|z —y|, for all z,y € Ba(0), (C.38)
where Bps(0) := {z € X; ||z|| < M} is the (closed) ball of radius M centered at the origin.



146 APPENDIX C. SCATTERING

Proof (cf. [Caz03, p. 60]). Consider the function g : R — R given by

(2) = |z|*z, x #0,
g 0, xz =0.

It satisfies

g(0) = 0. (C.39)
Since a > 0, we have
h) — hl®h o
h—0, h#0 h h—0,h#£0 R h—0,h#0

hence the derivative of ¢ at 0 exists with ¢/(0) = 0. Thus g is differentiable (in
particular continuous) on all of R with derivative

+ D]z|*, z#0
/l' — (Oé 9 9
9(w) {0, —

Note that ¢ satisfies
l9(z) —g()| < (a+ (l2|* + [y|*)|z —yl, z,yeR. (C.40)

Indeed, given z,y € R, x # y, by the mean value theorem of differentiation there
exists £ € (min{x, y}, max{z,y}) such that

‘g(x) —9(y)
x—y

' = 19(€)] < (@ + DI < (a+ 1) (|2l + [y]*),

where we used [£] < max{|z|,|y|} to get the last inequality.!® Now we extend g to
the complex plane C by defining the function g : C — C,

3(z) = {%'g“z')’ =70, (C.41)

0, z=0.
Note that g(z) = |z|*z for z € C\{0}. From (C.41), (C.39) and (C.40) we have

C.A1) (C.39)

3w)] LY Jg(lw)] Y gl —g(0)] < (@t Dlwlw], weCw £ 0. (CA2)

Let now z,w € C\{0} (for z = 0 or w = 0, the claim (C.37) is clear by (C.41) and
(C.42)). From (C.41) one computes

|2l|w|§(z) — Gw)) BV Jwlzg(|2]) — |2lwg(|w])

= |wlz(g(|z]) = g(jw])) + (jw]z = |z|lw)g(|w])
= |wlz(g(|z]) = g(jw])) + {(Jw] = [2])z + |2[(z = w)} g(|w)),

From |¢| < max{|x|, [y[} we obtain [§]* < max{|z|® [y|*} < [x|* + [y]*.
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so taking the modulus gives

2l l§(z) — 3w)] < [wllzllg(lzl) — gl + (ol — J2l]12] + 211z — w]) gl
< lwllzllg(|=]) — g(lw])] + 2/z — w]lz]g(uw])
7 Lollallg2D) — gl + 212 — wljzl(e + Dwlw]
(C.40

-40) @ @ «a
< Jwllz] (e + 1)([2]* + [w|*)]]2] = [w]| + 2|z = w||z[(a + 1)w]*[w]
< 3lw||z|[z — wl(a + 1) ([2]* + [w]*).

Dividing by |z||w| proves the claim (C.37) with constant C' = 3(«+1). In particular,
g is Lipschitz-continuous on bounded subsets of C, since for given M > 0, one can
choose L(M) :=2CM®“ (where C'is the constant from (C.37)) and verify that (C.38)
holds. ]
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