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Biogeography 

Until Wallace’s pivotal contribution in 1876, our understanding of animal and plant species distribution 

was generally based on non-scientific principals. With Wallace (1876), the distribution of organisms 

could be understood from a historical perspective and this contribution heralded the birth of the science of 

biogeography. Since its original conception, biogeography has broadened its understanding from a purely 

historical science to incorporate current determinants of the patterns of species distribution. Biogeography 

seeks to answer the questions of why species are distributed where they are or put simply, why some 

areas have more species than others. Patterns of diversity distributions are determined by a number of 

factors, both current as well as historical. For example, environmental and geological history of an area 

(Crowe & Crowe, 1982; Fjeldsaå & Lovett, 1997; Ricklef, 2003; Dornelas, et al., 2006; Dimitrov et al., 

2012), individual species ecology and physiology determines the ranges and abundance of species in an 

area (Duellman & Trueb, 1986; Hamilton, 1982; Hugget, 2004). Understanding patterns of species 

diversity also include taking into consideration dispersal ability and adaptability of species to past 

changes in the environment and how this influences the distribution of species through time (Farrel et al., 

1992; Latham & Ricklefs, 1993). Therefore, historical and ecological processes both contribute to our 

understanding of biogeographic patterns. 

The biogeographic field that focuses on historical causes of biodiversity patterns is known as 

historical biogeography. It is concerned with evolutionary processes spanning millions of years back in 

time. More recent historical determinants of biodiversity patterns at the intra-specific level can also be 

investigated, and this is called phylogeography (Avise et al., 1987). Phylogeography is a branch of 

historical biogeography that deals with the analysis of the relationship between population genetic 

structure and geography (see also Avise, 2000; Arbogast & Kenagey, 2001; Avise, 2004). 

Phylogeographic studies aim to characterise the roles played by recent environmental and historical 

factors that shaped the present diversity patterns (Zink, 2002; Lomolino et al., 2004). Such studies employ 

the use of molecular markers to examine both recent and deeper phylogeographic history of a species or 

an area (Avise, 1987, Avise, 2000; Zink, 2007). Phylogeographic studies were previously based on 

mitochondrial molecular markers as these genes are rapidly evolving and hence suitable for examining 

events in the recent past (Avise, 1987). However latest advances in the discipline of molecular biology 

has seen a rise in the use of other markers, from partial sequences such as chloroplast from plants and 

nuclear genes which are slow evolving and better suited for deeper phylogeographic history (Janzen et al., 

2002), to genome wide comparisons (Davey & Blaxter, 2010; Macher et al., 2015). Phylogeographic 

studies may be conducted on single wide ranging species to understand how genetic diversity is 
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distributed within its range (Zink, 2000) while the study of genetic diversity of several wide ranged co-

occurring species constitute comparative phylogeography (Bermingham & Moritz, 1998). Comparative 

phylogeography investigates if members of a community have responded in concert to historical 

biogeographic factors and therefore if present genetic patterns can be explained by particular geographic 

processes (Zink, 1996; Avise, 2004). Further, the availability of information on the evolution rates of 

various molecular markers has made it even possible to estimate dates of population separations, thus 

through comparative phylogeography, it is possible to reconstruct the recent biogeographic history of an 

area (Bermingham & Moritz, 1998). 

For a long time phylogeography has been the main method through which genetic patterns within 

species has been investigated. However advancements in other related fields such as bioinformatics and 

molecular biology has seen the incorporation of other tools such as spatial data in phylogeographic 

analysis. The advancements in the field of Geographical Information System (GIS) for example have seen 

the incorporation of spatial information in various fields of studies where previously this was not 

possible. One such area is the application of Species Distribution Modelling (SDM) in phylogeographic 

interpretations (Carstens & Richards, 2006; Chan, et al., 2011). Species distribution models also known as 

bioclimatic models, estimate potential species distributions by deriving environmental envelopes from 

distributions and projecting into an interpolated potential climate of an area (Pearson, 2007; Waltari & 

Guralnick, 2009). These models are based on the assumption that the ecological niche of a species 

determines its distribution (Nogués-Bravo, 2009). Species distribution models are produced by combining 

current environmental parameters and known occurrence data of a species fitted to a model to predict 

current distributions (Hugall, et al., 2002; Elith & Leathwick, 2009). When projected to past climates, 

SDM can also be used to generate potential suitable habitats in past climatic conditions, i.e., the paleo-

distributions of species (Hugall, et al., 2002; Carstens & Richards, 2007). Paleo-distribution modelling 

have proved useful as alternative ways of establishing historical factors determining the current genetic 

structuring in species (Elith & Leathwick, 2009). This is true especially in taxa that lack good fossil 

representation like amphibians. Paleo-distribution modelling has been used extensively to provide a priori 

hypotheses or validate results from phylogeographic analysis. Paleo-distribution models shed light on the 

effects of past climatic conditions on the current patterns of species distribution therefore providing 

independent means to understand the current phylogeographic patterns of a species or an area (see 

Carstens & Richards, 2007; Waltari et al., 2007; Buckley et al., 2010; Ahmadzadeh et al., 2013). In 

addition, for studies involving co-distributed species, concordance in phylogeographic structures are often 
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interpreted to mean a concerted response to a similar vicariance events with the assumption that the 

species must have also been co-distributed in the past and therefore SDM provides ways to test such 

assumptions (Guissan & Thuiller, 2005; Miller, 2010). 

 

Amphibians as exemplar taxa for understanding phylogeographic history 

Amphibians are favourable candidates for phylogoegraphic studies because of a number of physiological 

and ecological reasons. They are less vagile and have high affinity/philopatry to their breeding sites 

leading to populations with highly structured genetics over short geographical distances (Avise, 2004; 

Zeisset & Beebee, 2008). Amphibians are sensitive to small changes in the climate which may be 

attributed to divergence within some species (Graham et al., 2004; Buckley & Jets, 2007) and have 

diverse physiological adaptations (Duellman & Trueb, 1986) that enable them to respond 

idiosyncratically to environmental and geologic processes. Additionally amphibians are relatively 

common and easily sampled in breeding sites during the wet periods (Duellman & Trueb, 1986). 

Moreover amphibian phylogeography has been demonstrated as suitable for understanding historical 

aspects of species distribution (Zeisset & Beebee, 2008). Specifically for this study amphibians were 

selected due to the presence of wide spread species in our study site and adjacent areas which are 

important in establishing the historical genetic exchange among the sites or areas. In addition the 

apparently mixed assemblages of amphibians recently reported in Shimba Hills of Kenya-SHK (Bwong et 

al., in press) make them good model taxon for understanding the biogeographic history of Shimba Hills. 

 

The Shimba Hills 

The Shimba Hills of Kenya (here after SHK) is geographically located at the cross roads of two major 

biodiversity hotspots; the Coastal Forests of Eastern Africa (hereafter CFEA) and the Eastern 

Afromontane Biodiversity Region (here after EABR) specifically the neighbouring Eastern Arc 

Mountains (here after EAM) (Myers et al., 2000; Mittermier et al., 2004; Bwong et al., 2014) (Figure 1). 

SHK biodiversity has been associated with both the coastal forests (Azeria, et al., 2007; Burgess & 

Clarke, 2000) and also the Eastern Arc Mountains by some authors (see Lovett, 1998; Blackburn & 

Measey, 2009), while others have confirmed lack of any clear cut boundaries (Bwong et al., in press). 

Results from old and recent collections of its flora and fauna indicate that SHK harbours species 
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associated with both EAM and CFEA as well as taxa that have affinity with west African Guineo-

Congolian forest (Burgess & Clarke, 2000 and references therein; Malonza & Measey, 2005; Bwong et 

al., in press). Furthermore a detailed plant checklist of Shimba Hills by Luke (2005) pointed out the high 

diversity of flora in this area. Luke (2005) hypothesized that close proximity of SHK to the Usambara 

Mountains (part of the EABR) through similar climatic history and altitude range could be responsible for 

its high floral diversity. However the link between SHK to the Usambara Mountains has never been 

appropriately tested using phylogenetic approaches. 

 

Fig. 1: Showing the cross road position of the Shimba Hills in between the Coastal Forests of 

Eastern Africa (CFEA) and the Eastern Arc Mountains (EAM). Map modified from 

https://www.travcoa.com. 

Bwong et al. (in press) recently provided a comprehensive list of the amphibian fauna of the 

Shimba Hills National Reserve and discussed the biogeographic questions concerning the area. Based on 

the mixture of assemblages (Eastern Afromontane, Coastal forest and widespread faunas) and relative 

proportions of these species, the biogeographic history was speculated to be complex. It is unclear 

whether the area is composed of mainly new or old divergences due to the lack of phylogenetic data. 

https://www.travcoa.com/
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Bwong et al. (in press) stated this uncertainty “Do all the species (in the Shimba Hills National Reserve) 

show recent patterns of colonization to this area – or have some or all habitats existed for some time, 

favouring conditions that might have produced the stability to harbour endemic species.” For amphibians, 

with only one true endemic species (Hyperolius rubrovermiculatus Schiøtz, 1975) known (Bwong et al., 

in press) the patterns indicate a more recent history but this has yet to be tested across all species using 

appropriate phylogenetic and spatial data. Several questions remain to be answered with regard to the 

biogeographic history of SHK. Most importantly, it is unclear whether SHK is special as a repository of 

diversity or not or whether it has been stable for all the taxa currently found inhabiting the area. 

 

Objectives 

Biogeographic studies in the tropics are fewer compared to other regions despite the fact that diversity is 

higher in the tropics than elsewhere (Hewitt, 2004; Mittelbach et al., 2007). Thus the tropics provide 

opportunities for cross-taxonomic studies especially in understanding the history of its great diversity. 

African tropical biodiversity patterns in particular remain poorly understood and in some areas remain 

almost completely unknown (Hewitt, 2004; Duminil et al., 2013). One such area is Shimba Hills in 

coastal Kenya. The cross roads position of SHK between two biodiversity hotspots and the mixed 

assemblage of taxa present therein makes it an interesting area for a better understanding of the patterns 

of biodiversity distribution across the two hotspots. To date no study had been conducted to establish the 

biogeographical affiliation of SHK and its relationship to the two hotspots. Biogeographic studies 

incorporating historical approaches are not known from the entire coastal forests of Kenya including the 

SHK. Understanding the biogeographic history of SHK would be beneficial for current and future 

conservation activities especially in the wake of biodiversity conservation challenges such as climate 

change. It is against this background that the current study was undertaken to investigate patterns and 

timings of genetic exchanges between SHK and adjacent CFEA and EAM. 

 

Chapter overview 

Chapter 1: Amphibian diversity in Shimba Hills National Reserve, Kenya: A comprehensive list of 

specimens and species. 
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Authors: Beryl A. Bwong, Joash O. Nyamache, Patrick K. Malonza, Dominick V. Wasonga, Jacob M. 

Ngwava, Christopher D. Barratt, Peter Nagel & Simon P. Loader. 

Status: Manuscript accepted for publication (Journal of East African Natural History). 

Shimba Hills National reserve is a well known conservation area along the Kenyan coast. However 

despite several herpetological surveys in the area, no publication exists that consolidates the known 

amphibian biodiversity. We used both fieldwork as well as secondary data to compile an authoritative 

species list, the distribution of these species within the reserve as well as the habitat where they occur. 

Chapter 2: Genetic, morphological and ecological variation in the congeners Hyperolius mitchelli 

Loveridge, 1953 and Hyperolius rubrovermiculatus Schiøtz, 1975 from East Africa. 

Authors: Beryl A. Bwong, Lucinda P. Lawson, Christopher D. Barratt, Joash O. Nyamache, Michele 

Menegon, Daniel M. Portik, Patrick K. Malonza, Hendrik Müller, Peter Nagel & Simon P. Loader. 

Status: Manuscript in preparation for resubmission (Acta Herpetologica). 

The taxonomic status of Hyperolius rubrovermiculatus Schiøtz, 1975, the only amphibian endemic to the 

Shimba Hills, has been in question since the time of its description. The species was thought to be a 

subspecies of H. mitchelli Loveridge, 1953 (Channning & Howell, 2006) a wide ranging reed frog from 

northern Tanzania to Mozambique and Zimbabwe. We used integrated taxonomic methods including, 

morphological, molecular, acoustics and species distribution modelling to affirm the taxonomic status of 

H. rubrovermiculatus. In addition we propose description of a new species from the neighbouring 

Usambara, Nguu and Nguru Mountains in Tanzania. 

Chapter 3: Three new species of Callulina (Amphibia: Anura: Brevicepitidae) from East Africa with 

conservation and biogeographical considerations for the whole genus. 

Authors: Beryl A. Bwong, Alan Channing, Michele Menegon, Joash Nyamache Patrick K. Malonza, 

Christopher D. Barratt, Gabriela B. Bittencourt-Silva, Elena Tonelli, Peter Nagel & Simon P. Loader. 

Status: Drafted Manuscript (Target Journal: Zootaxa). 

A number of Eastern Arc endemic species have been recorded in the SHK. One of these is the 

Brevicipitid frog called Callulina. The only known Callulina record in SHK prior to this thesis was a 

single specimen collected in 1961 held at the American Museum of Natural History. Based on its 
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morphological features this species was speculated to be either a Callulina kisiwamsitu or C. stanleyi 

based on preliminary morphometrics analysis (Loader et al., 2010). Two specimens were rediscovered 

during the current study and compared with congeneric species across the Eastern Arc Mountains. We 

used morphological and molecular methods to confirm the taxonomic status of SHK Callulina and in 

addition we propose description of three new Callulina species from the Eastern Arc Mountains in 

Tanzania. 

Chapter 4: Phylogeography of amphibians of Shimba Hills, Kenya. 

Authors: Beryl A. Bwong, Christopher D. Barratt, Patrick K. Malonza, Joash Nyamache, Peter Nagel & 

Simon P. Loader. 

Status: Drafted manuscript (Target Journal: Molecular Phylogenetics and Evolution). 

This chapter addresses the main research questions this thesis seeks to answer. A combination of 

molecular and spatial analysis were employed in order to understand phylogeographic patterns of SHK 

amphibians in relation to the adjacent Coastal Forest of East Africa and Afromontane Biodiversity Region 

and the factors that helped to shape the observed patterns. 

 

Additional outputs 

Peer Reviewed 

Barratt, C.D., Bwong, B.A., Ostein, R.E., Rosauer, D.F., Doggart N., Nagel, P., Kissling, W.D & Loader, 

S.P. 2017. Environmental correlates of phylogenetic endemism in amphibians and conservation of refugia 

in the Coastal Forests of Eastern Africa. Diversity and distributions 23:875-887. 

Non- peer reviewed 

Bwong, B.A., Malonza, P.K, Wasonga, D.V., Nagel, P., Nyamache, J.O. & Loader, S.P. 2014. At a 

biogeographical crossroads: Amphibian paradise in Shimba Hills of Kenya. Froglog 22: 72–73. 
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Abstract 

We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The 

list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 

11 families and 15 genera. In addition, individual records per species, distribution in the reserve 

and brief remarks about the species are presented. The checklist is based on information from 

museum collections, field guides, unpublished reports and newly collected field data. We are able 

to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. 

vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a 

single specimen over 50 years ago. SHNR contains the highest number of amphibian species of any 

known locality in Kenya (about 30% of the country’s total number); therefore it is of national 

conservation importance. Finally, we briefly discuss the biogeography of the SHNR and its 

connections to nearby biogeographic regions. 

 

Keywords: coastal forests, checklist, zoogeography, amphibians, Shimba Hills 
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Introduction 

The coastal forests of Kenya are part of the Coastal Forests of Eastern Africa biodiversity hotspot famed 

for its high species diversity and endemism (Burgess et al., 1998; Myers, 2000) (see figure 1). Despite the 

apparent importance of the coastal forests, an assessment of the biological diversity has not been evenly 

conducted for all taxa across all areas. Some pivotal contributions have attempted to synthesize known 

information, e.g. Burgess & Clarke’s monumental book (Burgess & Clarke, 2000) and a review of coastal 

forests (Burgess et al., 1998) but these treatments all indicate the paucity of knowledge and the need to 

expand our understanding of the Coastal Forests of Eastern Africa hotspot. The lack of information is 

particularly true for specific countries in Eastern Africa such as Kenya and Mozambique. In Kenya, some 

taxonomic groups have attracted attention e.g. mammals (Hoft & Hoft, 1995; Oguge et al., 2004; 

McDonald & Hamilton, 2010), butterflies (Rogo & Odulaja, 2001; Lemann & Kioko, 2005), dragonflies 

(Clausnitzer, 2003) and plants (Schmidt, 1991; Luke, 2005) but most other groups have been largely 

ignored (e.g. non-flying insects, reptiles and amphibians). Furthermore, geographic sampling has been 

concentrated at only a few specific places e.g. Arabuko-Sokoke Forest, with other areas such as the 

Shimba Hills, being largely ignored. 

Relatively few amphibian studies have been conducted in the coastal forests of Kenya, despite the 

fact that research was first initiated over 80 years ago (Loveridge, 1935; Howell, 1993). Loveridge’s 

expedition of 1934 concentrated mainly on the northern coastal forest elements (e.g. Tana River and 

Witu), and a few areas further south such as Arabuko-Sokoke Forest (Loveridge, 1935). The oldest 

comprehensive reports of amphibians of any coastal Kenya forest, after Loveridge (1935), were 

prepared by Drewes (1992) and Chira (1993) both of which were focused on Arabuko-Sokoke and Gedi 

Forests. Over ten years later Malonza et al. (2006) reported on the biogeography of amphibians and 

reptiles of the Tana River Primate National Reserve, a gallery forest along the Tana River. These two 

more recent studies are also based on the northern coastal forests with little comprehensive sampling in 

southern coastal Kenyan forests. Some preliminary surveys and new species descriptions alerted 

herpetologists to the potential value of southern Kenyan coastal forests (Schiøtz, 1975; Malonza & 

Measey, 2005), however, basic information is lacking on amphibians across Kenya. This lack of 

comprehensive studies on amphibians, in a region characterised by high levels of single locality 

endemism (Myers et al., 2000) is of high concern, particularly given the alarming rate at which natural 

habitats are being modified due to human pressure (Tabor et al., 2010). Increasing the knowledge of 

biodiversity in this area is a priority and of major importance to conservation efforts. 
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Figure 1. Map of the historical coverage of the Coastal Forests of Eastern African showing the location of 

Shimba Hills National Reserve. 
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Shimba Hills National Reserve (SHNR), located on the south coast, is the second largest coastal 

forest in Kenya (figure 2). The area is a mixture of different forest types (Schmidt, 1991, Bennun & 

Njoroge, 1999; Luke, 2005) and savanna habitats (Burgess et al., 2004). The area is particularly 

interesting because it is located between two biodiversity hotspots, the Coastal Forests of Eastern 

Africa and the Eastern Afromontane biodiversity hotspot, specifically the Eastern Arc Mountains (see 

figure 1). Amphibian collecting in SHNR began in the 1960's by Alex Duff-Mackay, Ronalda Keith 

and Arne Schiøtz. These authors were mainly interested in “tree frogs” of the families Hyperoliidae and 

Arthroleptidae (genus Leptopelis). The herpetological collection of the National Museums of Kenya 

(NMK) indicates that several short period collections had been made in the reserve since then (P. K. 

Malonza, pers. comm.) but these efforts have not been consolidated into a comprehensive 

understanding of the amphibian fauna (Malonza & Measey, 2005). Some publications have made 

reference to SHNR amphibians but these are mainly selective based on the taxa of interest. Schiøtz 

(1974) revised the genus Afrixalus and described Afrixalus sylvaticus while Schiøtz, 1975 focused on 

‘‘tree frogs’’ including the description of Hyperolius rubrovermiculatus. Loader et al. (2010) detailed 

the presence of a potentially undescribed brevicipitid, Callulina sp. from SHNR collected in 1961 by 

Ronalda Keith, the only known specimen. 

The main objective of this paper is to consolidate all the amphibian records from SHNR throughout 

the years and present these in a single publication, which we hope will promote knowledge of the area. 

We use records from 1968‒2015 from the NMK herpetological reference collection and other relevant 

natural history museums, including new data from field research conducted between 2012‒2015. New 

sampling in 2013‒2015 conducted by the authors of this study aimed to sample new sites or poorly 

surveyed places, in particular forested areas. We give an updated species list of SHNR amphibians and 

descriptions of new records. Confirmations of our identifications are made on the basis of morphological 

diagnoses and are complemented by molecular analysis (Bwong, unpublished data). 

 

Material and methods 

Description of study area 

The Shimba Hills are a dissected plateau located between 4º09′‒4º21′S and 39º17′‒39º30′E in Kwale 

County on the Kenyan coast (see figure 2). The hills are located about 30 km southwest of Mombasa city. 
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The Shimba Hills were gazetted as forest reserve in 1903 (Bennun & Njoroge, 1999; Luke, 2005) and in 

1956 the area was expanded and re-gazetted as a National Reserve (Davis, 1993). The hills rise from the 

coastal plain to form a table plateau between 120 and 450 m above sea level, and the underlying rock 

consists of upper Triassic Shimba grits and Pliocene Magarini sands (Davis, 1993; Bennun & Njoroge, 

1999). The climate is hot and moist with a mean annual temperature of 24.2˚C (Blackett, 1994). Rainfall 

ranges from 855‒1682 mm per annum with a bimodal pattern from April‒June and October‒December 

(Schmidt, 1991). The vegetation is a mix of grassland, scrubland and exotic plantations and forests. Six 

major forest types occur within the reserve; Milicia forests at Makadara and Longomwagandi forests and 

the western escarpment; Afzelia - Erythrophleum forests are found on the eastern and southern flanks of 

the escarpment; Paramacrolobium forests are found on the steep scarp slopes to the east and the west on 

the Makadara cliffs, Buffalo ridge and Upper Kivumoni and Manilkara-Combretum forests are found on 

the lower western side of the plateau (Davis, 1993; Luke, 2005). 

Field methods 

The results presented here are based on field research, analysis of literature and museum collections. In 

total, 751 specimens were evaluated. New specimens were obtained from fieldwork in and around the 

SHNR conducted in January 2012, December 2013, April and December 2014 and April‒May 2015 (see 

table 1 for major sampling sites). Time-limited searches and Visual Encounter Surveys (VES) were 

conducted. Bucket pitfall traps with drift fences were also used. For each pitfall trap set, five buckets were 

used in an “X” shaped pattern where each bucket was placed at a distance of 5 m from each other, a 

modified array pattern derived from Heyer et al. (1994) and Rödel & Ernst (2004). The drift fence was 

made of transparent plastic sheeting 0.5 m high. Representative samples of all species recorded were 

euthanized using Tricaine mesalyte (TM MS-222) solution, then fixed in 10% formalin and later 

preserved in 70% ethanol. All the newly collected material is deposited at the National Museums of 

Kenya herpetology collection. Specimen identification was made using standard references (e.g. Schiøtz, 

1999; Channing & Howell, 2006; Harper et al., 2010). Taxonomy in the checklist follows Frost et al. 

(2006) and updates from Frost (2016). Museum abbreviations given in the text are for the following: 

AMNH   American Museum of Natural History, New York, USA 

BMNH  Natural History Museum, London, United Kindom 

CAS  California Academy of Sciences, San Francisco, USA 
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LACM  Natural History Museum of Los Angeles County, Los Angeles, USA 

MVZ  Museum of Vertebrate Zoology, Berkeley, USA 

NMK  National Museums of Kenya, Nairobi, Kenya 

ZMUC  Zoological Museum - University of Copenhagen, Denmark 

Table 1. Major sampling sites within SHNR. 

Locality Coordinates Altitude (m) 

Kivumoni Gate swamp 4°13′S,39°29′E 159 

Longomwagandi Forest 4°13′S,39°25′E 398 

Makadara Forest 4°14′S,39°23′E 426 

Marere Head works 4°12′S,39°23′E 206 

Marere Hill 4°13′S,39°24′E 383 

Mkongani West 4°20′S,39°18′E 359 

Mwadabara swamp 4°10′S,39°25′E 159 

Mwele Forest 4°17′S,39°21′E 334 

Pengo Hill 4°14′S,39°23′E 455 

Reserve compound 4°10′S,39°26′E 323 

Risley Forest 4°14′S,39°25′E 342 

Sable Bandas 4°13′S,39°27′E 352 

Shimba Lodge 4°11′S,39°25′E 290 

Sheldrick Falls 4°16′S,39°23′E 146 

 

Secondary data acquisition 

In addition to the data from the field work, information on SHNR amphibians was obtained from 

unpublished field reports (Malonza & Measey, 2005), the herpetological collection at the NMK, BMNH, 

CAS, ZMUC, HerpNet (www.herpnet.org) as well as field guides (Channing & Howell, 2006; Spawls et 

al., 2006; Harper et al., 2010). All specimens from museums outside Kenya with questionable labels (e.g. 
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sp., cf.) and/or vague locality data were omitted from this list. This was mainly because we could not 

confirm their identification, especially given the often-confusing taxonomy of certain species and genera 

(e.g. Zimkus & Blackburn, 2008). All NMK specimens from SHNR collected prior to 2012 were 

examined by BAB and PKM to confirm their identity. Furthermore, we assembled data on sampling 

intensity in the SHNR based on the period of time visited by collectors from the specimens examined; 

these dates assume collections were carried out continuously. 

 

Results 

The list comprises 30 currently known amphibian species of SHNR (28 anurans and two 

caecilians), representing 11 families and 15 genera (see appendix 1 for all specimen records). Table 2 

provides a summary of the amphibian collection efforts in SHNR and the number of species documented 

per sampling event. The table indicates in which year authors observed species. The current study 

recovered most of the species previously reported in the reserve and also added new records. We 

confirmed a new record of Scolecomorphus cf. vittatus, for Kenya and also recovered Callulina cf. kreffti 

last collected in the reserve in 1961 by Ronalda Keith. SHNR species available in other museums outside 

Kenya include 26 specimens at BMNH, 144 specimens at CAS, and about 50 specimens at ZMUC, (see 

table 2 for collector information and figure 2 for the spatial distribution of the common sampling in the 

SHNR). 
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Table 2. A list showing amphibian species sampling effort in SHNR from 1968-2015. 

Year  Date Collector names No. species recorded 

1968 2 Apr A. Williams 2 

1968 19‒20 May Alex Duff-Mackay & Arne Schiøtz 6 

1977 No date Alex Duff-Mackay 1 

1977 Apr L. P. Lounibos 1 

1981 12 Apr S. Reilly 6 

1981 5‒18 Jul M. Tandy 10 

1982 6 May Alice Grandison 3 

1984 Feb Ryan 5 

1998 5 Jun Dan R. Buchholz et al 5 

1998 3
 
Jul A. Wise, Weatherby, C. & Ross, K. 3 

2005 28‒30 Sep P.K. Malonza & J.G. Measey 12 

2006 22‒23 Apr J.G. Measey, B. Bwong & Venu  4 

2006 13‒16 Sep Jos Kielgast 11 

2010 17‒18 Dec Miloslav Jirku 5 

2012 2‒10 Apr V. Wasonga & J. Nyamache 8 

2012 19‒23 Jun V. Wasonga & J. Nyamache 7 

2012 12‒16 Nov J. Mueti & C. Ofori 2 

2013 17–23 Dec J. Nyamache & P. Mwasi 10 

2014 30 Apr‒4 May J. Nyamache & P. Mwasi 13 

2014 12‒20 Jun V. Wasonga, J. Ochong  12 

2014 2 Sep J. Nyamache 7 

2015 27 Apr‒1 May B. Bwong & J. Nyamache 18 

2015 12-14 May J. Nyamache 14 

2015 23‒25 May P.K Malonza & J. Nyamache 5 
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The checklist 

The checklist entries consist of four parts. Records: accession numbers for all individual records per 

species ever collected in SHNR (see appendix 1 for all specimens from SHNR together with their 

museum numbers, collection date, collector name and locality). Distribution: mentions the exact locality 

within SHNR where the species has been recorded. Habitat: describes the general habitat in which the 

species occurs. Remarks: mentions any other relevant information, including taxonomic status, IUCN red 

list status if not Least Concern and endemism where applicable. 

Figure 2. Map of Shimba Hills National Reserve showing major sampling sites. 

 

Anura 

Arthroleptidae 

Arthroleptis stenodactylus Pfeffer, 1893 

Records: NMK A4401/1‒6; NMK A4460/1‒3; NMK A4613; NMK A4654/1‒2; NMK A5256; NMK 

A5459/1‒2; NMK A5501; NMK A5502; NMK A5505; NMK A5516; NMK A5912; NMK A5913; NMK 

A5815; NMK A5806; NMK A5849; NMK A5852; NMK A5853/1‒3; NMK A58971‒2; NMK A6040; 

NMK A6045; NMK A6048; NMK A6111; CAS 155671‒77. 
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Distribution: Longomwagandi Forest, Makadara Forest, Mwele Forest, Pengo Forest, Sheldrick Falls, 

Shimba Lodge Swamp. 

Habitat: forest, savanna and degraded habitats. 

Remarks: the taxonomy of this species is confusing given the likelihood that this taxon consists of more 

than one species. Pickersgill (2007) named a montane form (Arthroleptis lonnbergi Nieden, 1915) as 

different from A. stenodactylus, a presumably more widespread form. The specific relationship of the 

SHNR population to these units awaits formal clarification. 

Arthroleptis xenodactyloides Hewitt, 1933 

Records: NMK A4448/1‒6; NMK A4459/1‒8; NMK A4653/1‒2; NMK A5515; NMK A5631/1‒2; NMK 

A5805/1‒4; NMK A5809/1‒3; NMK A5816; NMK A5820/1‒3; NMK A5851/1‒7; NMK A5902/1‒2; 

NMK A6019/1‒3; NMK A6031; NMK A6037/1‒2; NMK A6041/1‒3; NMK A6042; NMK A6049; 

NMK A6059/1‒2; NMK A6070/1‒2; NMK A6079/1‒2; NMK A6114; CAS 155604. 

Distribution: Kaya Forest, Longomwagandi Forest, Makadara Forest. Marere Hill, Pengo Hill, Risley 

Forest, Sheldrick Falls. 

Habitat: submontane forest, swamp, woodland and wet grassland. 

Remarks: first recorded in SHNR as A. adolfifriederici Nieden, 1911 but the name later changed to A. 

xenodactyloides (see Blackburn, 2009). As with A. stenodactylus, the particular taxonomic name ascribed 

to the Shimba population is uncertain given the recognition of A. stridens Pickersgill, 2007, a similar form 

to A. xenodactyloides. Formal clarification will be required before this population can be assigned 

definitively to one of these species. 

Leptopelis concolor Ahl, 1929 

Records: NMK A4699/1‒7; NMK A5845/1‒12; NMK A5888/1‒3; NMK A5089; NMK A6016/1‒3; 

NMK A6051: NMK A6075; NMK A6084/1‒2. 

Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Shimba Lodge Swamp, Sheldrick Falls. 

Habitat: coastal savanna woodland and grassland. 

Remarks: Channing & Howell, 2006 consider this a junior synonym of L. argenteus. 
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Leptopelis flavomaculatus (Günther, 1864) 

Records: NMK A787; A5844/1‒5; NMK A6022/1‒4; NMK A6044; CAS 153633‒40; CAS 155630‒31. 

Distribution: Kivumoni Swamp, Shimba Lodge Swamp, Makadara Forest, Marere head works, 

Mwadabara Swamp, Sheldrick Falls. 

Habitat: forest in both Coastal East Africa and Eastern Afromontane region. 

Brevicipitidae 

Callulina cf. kreffti Nieden, 1911 

Records: AMNH 72724; NMK A6060; NMK A6113. 

Distribution: Makadara Forest about 10 m from the picnic site. 

Habitat: only known from forest. 

Remarks: the first record of Callulina cf. kreffti in SHNR was by Ronalda Keith in 1961. She collected 

the specimen in Makadara Forest.This specimen is deposited at the AMNH. The presence of this frog in 

SHNR, however, only came to light recently (Loader et al., 2010). Two individuals were collected during 

the current study in April and May 2015. With the addition of new specimens, the population is currently 

undergoing taxonomic evaluation. 

Bufonidae 

Sclerophrys gutturalis (Power, 1927) 

Records: NMK A5855/1‒4; BMNH 1982.842. 

Distribution: National Reserve Headquarters compound. 

Habitat: savanna, grassland and agricultural area. 

Remarks: The genus name was originally Bufo Laurenti, 1768 which later changed to Amietophrynus 

Frost et al. 2006 and recently to Sclerophrys Tschudi, 1938 (see Ohler & Dubois, 2016). 

Sclerophrys pusilla (Mertens, 1937) 
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Records: NMK A5507; NMK A5917/1‒4. 

Distribution: Sheldrick Falls area, Shimba Lodge Swamp. 

Habitat: forest edge and humid savanna. 

Remarks: recently recognized as being distinct from S. maculatus Hallowell, 1854. S. pusilla is found in 

Central, East and South Africa. Therefore all populations from these areas previously assigned to S. 

maculatus are currently assignable to S. pusilla (Poynton et al., 2016). 

Sclerophrys steindachneri (Pfeffer, 1893) 

Records: NMK A4452; NMK A5237; NMK A5366/1‒5; NMK A5847. 

Distribution: Kivumoni Gate Swamp, Sheldrick Falls, Shimba Lodge Swamp. 

Habitat: humid grassland and woodland. 

Mertensophryne micranotis (Loveridge, 1925) 

Records: NMK A1150/1‒9; NMK A5460; NMK A5464; NMK A5633; NMK A5911; NMK A5811; 

NMK A5819; NMK A5838/1‒3; NMK A5898; NMK A6038/1‒2; CAS 153698; BMNH 1980.195, 

BMNH 1980.197, BMNH 1982.395‒396. 

Distribution: Kaya Forest, Longomwagandi Forest, Makadara Forest, Sable bandas, Sheldrick Falls. 

Habitat: lowland coastal forests and woodland. 

Hyperoliidae 

Afrixalus delicatus Pickersgill, 1984 

Records: NMK A6054; NMK A6055/1‒4; NMK A6068/1‒4, ZMUC-R 73855; ZMUC-R 73948; ZMUC-

R 73949; ZMUC-R 77457; ZMUC-R 77458. 

Distribution: Mwadabara Swamp. 

Habitat: savanna and grassland. 

Afrixalus fornasini (Bianconi, 1849) 
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Records: NMK A4458/1‒4; NMK A4611/1‒5; NMK A4690/1‒7; NMK A5252; NMK A5571; NMK 

A5810/1‒2; NMK A5903; NMK A5954; NMK A6062/1‒2; NMK A6085; CAS 157492. 

Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Sheldrick Falls, Shimba Lodge Swamp. 

Habitat: dense savanna and dry forest. 

Afrixalus sylvaticus, Schiøtz, 1974 

Records: NMK A3045/1‒10; NMK A4440; NMK A4441/1‒4; NMK A4703/1‒6; NMK A5569/1‒3; NMK 

A5814; NMK A5837; NMK A5902/1‒3; NMK A5957/1‒3; NMK A6028; NMK A6033/1‒5; NMK A6043/1‒4; 

CAS 155652‒54; CAS 155947; MVZ 233824; MVZ 233825; BMNH 1982.857‒859. 

Distribution: Kivumoni Gate Swamp, Marere headworks, Sheldrick Falls, Shimba Lodge Swamp. 

Habitat: lowland forest. 

Remarks: this frog was first collected by Schiøtz in Kwale near SHNR in 1968. It was initially thought to 

be endemic to the type locality but has since been recorded in other coastal forest patches (Poynton, 

2006). It is listed as vulnerable on the IUCN Red List of threatened species. 

Hyperolius cf. friedemanni Channing et al., 2013 

Records: NMK A3012/1‒24; ZMUC-R 73916-937; ZMUC-R 77483. 

Distribution: Shimba Lodge Swamp. 

Habitat: humid and dense savanna. 

Remarks: this species belongs to the original H. nasutus super species. Initial molecular analysis (Bwong, 

unpublished data) shows that it is closest to H. friedemanni (0.9% pairwise divergence) only known from 

the shores of Lake Malawi (Channing et al., 2013). Further investigations need to be done to confirm its 

taxonomic status. 

Hyperolius argus Peters, 1854 

Records: NMK A3041/1‒2; NMK A4619/1‒7; NMK A4700/1‒6; NMK A4745/1‒6; NMK A5508; NMK 

A5513; NMK A5568; NMK A5812/1‒6; NMK A5904/1‒2; NMK A6023/1‒7; NMK A6053; NMK 

A6065. 
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Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Shimba Lodge Swamp. 

Habitat: dense coastal savanna. 

Hyperolius mariae Barbour & Loveridge, 1928 

Records: NMK A3096/1‒39; NMK A3168; NMK A5899; NMK A6027/1‒2; NMK A6056; NMK 

A6067/1‒2; NMK A6076/1‒2; NMK A6086; NMK A6110; CAS 157496‒98. 

Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Shimba Lodge Swamp. 

Habitat: bushland, savanna and grassland. 

Hyperolius parkeri Loveridge, 1933 

Records: MVZ 233910; MVZ 233909. 

Distribution: Mwadabara Swamp. 

Habitat: coastal savanna. 

Hyperolius pusillus (Cope, 1862) 

Records: NMK A/4449. 

Distribution: Kivumoni Gate Swamp. 

Habitat: coastal lowland savanna and bushland. 

Remarks: this species was recorded in 2005‒2006 (Malonza & Measey, 2005) but was not recorded in 

recent studies (2012‒2015). 

 

Hyperolius rubrovermiculatus Schiøtz, 1975 

Records: NMK A788; NMK A2076/1‒10; NMK A3169; NMK A4445, NMK A4447/1‒3; NMK 

A4623/1‒2; NMK A4704; NMK A5268; NMK A5488; NMK A5506; NMK A5801/1‒5; NMK A5848; 

NMK A5900/1‒2; NMK A5909; NMK A5958/1‒3; NMK A6024/1‒9; NMK A6034; NMK A6034; 
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NMK A6050/1‒2; NMK A6064/1; LACM 50633, MVZ 233935; CAS 155635‒46; CAS 155932‒46; 

BMNH 1982.860‒887. 

Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Marere Head works, Shimba lodge Swamp, 

Sheldrick Falls. 

Habitat: dry forest, dense humid savannah and farm bush. 

Remarks: the only known endemic amphibian to SHNR and Kwale area. This frog is currently listed as 

endangered on the IUCN Red List (Schiøtz & Drewes, 2004). It was abundant at the Shimba Lodge and 

Mwadabara swamps, both of which are within the reserve. However a population at the Kivumoni Gate 

Swamp is facing habitat destruction as the swamp is being drained for agricultural expansion. 

Hyperolius tuberilinguis Smith, 1849 

Records: NMK A4450/1‒5; NMK A4601/1‒6; NMK A5269; NMK A5514; NMK A5961/1‒4; NMK 

A6030/1‒4; NMK A6058/1‒2; NMK A6063/1‒9; NMK A6083/1-8; CAS 153709‒11. 

Distribution: Kivumoni Gate Swamp, Mwadabara Swamp, Sheldrick Falls, Shimba Lodge Swamp. 

Habitat: coastal savanna, woodland, bushland, grassland and thicket. 

Kassina maculata (Duméril, 1853) 

Records: NMK A739/1‒9; NMK A3003/1‒5; NMK A4455/1‒2; NMK A4697/1‒4; NMK A5736/1‒4; 

NMK A5960; NMK A6057. 

Distribution: Sheldrick Falls, Reserve compound, Mwadabara Swamp, Shimba Lodge Swamp. 

Habitat: savanna, bushland, grassland and farmbush. 

Kassina senegalensis (Duméril and Bibron, 1841) 

Records: NMK A/4696; CAS 153695. 

Distribution: Kivumoni Gate Swamp. 

Habitat: savanna. 
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Remarks: this species was last collected in 2006 but has not been recorded since, though one specimen 

was collected in 2014 just outside the reserve in a pit fall trap in Mukurumudzi dam. 

Rhacophoridae 

Chiromantis xerampelina Peters, 1854 

Records: NMK A4705/1‒5; NMK A5451; NMK A5462; NMK A5841; NMK A5956; NMK A6021. 

Distribution: Mkongani West Forest, Mwadabara Swamp, Sable Bandas, Shimba Lodge Swamp, 

Sheldrick Falls. 

Habitat: savanna, shrubland, disturbed forest and agricultural land. 

Hemisotidae 

Hemisus marmoratus (Peters, 1854) 

Records: NMK A5453/1‒2; NMK A5511; NMK A5570. 

Distribution: Mkongani West Forest, Sheldrick Falls. 

Habitat: savanna and gallery forest. 

Phrynobatrachidae 

Phrynobatrachus acridoides (Cope, 1867) 

Records: NMK A5808; NMK A5813/1‒7; NMK A5804/1‒2; NMK A5843; NMK A5846; NMK 

A5906/1‒2; NMK A6029/1‒5; NMK A6035/1‒4; NMK A6046/1‒4; NMK A6052/1‒3; NMK 

A6069/1‒2; NMK A6071; CAS 155621‒23, CAS 155632‒34; CAS 157494‒95. 

Distribution: Kivumoni Gate Swamp, Marere head works, Mwadabara Swamp, National Reserve 

compound, Shimba Lodge Swamp, Sheldrick Falls. 

Habitat: dry and humid savanna, shrubland, grassland and coastal habitat. 

Remarks: first collected in 2005. In 2006 a specimen identified as P. natalensis Smith, 1849 was later re-

identified as P. acridoides by PKM. This species displays diverse dorsal colour patterns with males 

having a bright green or brown mid-dorsal band, while females lack the bands. 
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Ptychadenidae 

Ptychadena anchietae (Bocage, 1868) 

Records: NMK A3550/1‒7; NMK A4443/1‒5; NMK A4686/1‒3; NMK A5241; NMK A5243; 

NMK A5452; NMK A5461; NMK A5463; NMK A5818/1‒4; NMK A5807/1‒5; NMK A5834; 

NMK A5835; NMK A5896/1‒5; NMK A5953/1‒2; NMK A6025; NMK A6026/1‒4; NMK A6032; 

NMK A6074; CAS 153697; CAS 155624; CAS 157491. 

Distribution: Buffalo River, Kivumoni Gate Swamp, Marere circuit, Mkongani West Forest, National 

Reserve compound, Sheldrick Falls, Shimba Lodge Swamp. 

Habitat: woodland, savanna, residential and agricultural areas. 

Ptychadena oxyrhynchus (Smith, 1849) 

Records: NMK A6073; NMK A6108. 

Distribution: Mwadabara Swamp, Shimba Lodge Swamp, Kivumoni Gate Swamp. 

Habitat: degraded forest, humid savanna, woodlands and farmland. 

Ptychadena sp. 

Records: NMK A73/1-3; NMK A5800. 

Distribution: Shimba Lodge Swamp. 

Habitat: moist grassland, savanna. 

Remarks: the taxonomic status of this frog is currently unknown. The dorsal colour pattern resembles P. 

mascareniensis but preliminary molecular analysis (Bwong, unpublished data) places it closer to P. 

porosissima. Further study on this taxon is required to reveal its true identity. 

 

Pipidae 

Xenopus muelleri (Peters, 1844) 
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Records: NMK A737/1‒2; NMK A3553/1‒6; NMK A4442; NMK A4693/1‒4; NMK A4694; NMK 

A4698/1‒5; NMK A5572/1‒5; NMK A5840; NMK A5842; CAS 153694, CAS 155626‒29, CAS 

155668‒69. 

Distribution: Kivumoni Gate Swamp, Marere head works, Shimba Lodge Swamp, National reserve 

compound. 

Habitat: aquatic habitat in dry savanna and humid savanna and forest. 

Gymnophiona 

Herpelidae 

Boulengerula changamwensis Loveridge, 1932 

Records: NMK A4395/1‒11; NMK A4750; NMK A5465; NMK A5504; NMK A5510; NMK 

A5918/1‒3; NMK A5803/1‒2; NMK A5817/1‒2; NMK A5850; NMK A5908/1‒2; NMK A6020; NMK 

A6039/1‒6; NMK A6047/1‒2; NMK A6061/1‒2; NMK A6078; NMK A6080/1‒2; NMK A6112/1‒2; 

NMK A6061/1‒2; NMK L/1887 (see Nussbaum and Hinkel, 1994). 

Distribution: Longomwagandi, Makadara Forest, Pengo Forest, Kivumoni Forest, Mwele Forest, Marere 

Hill, Sheldrick Falls. 

Habitat: lowland moist forest and plantation. 

Remarks: IUCN Endangered, (IUCN, 2013a) with the only protected population in the Buda Forest and 

SHNR. Nussbaum & Hinkel (1994) first noted the presence of this species in the Shimba Hills on the 

basis of a dried misidentified amphisbaenid held in NMK. 

Scolecomorphidae 

Scolecomorphus cf. vittatus Boulenger, 1895 

Records: NMK A5458, BMNH 1909.6.5.6 (?) see comment below. 

Distribution: Makadara Forest. 

Habitat: montane, submontane and lowland forest also in cultivated land. 
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Remarks: the single specimen (NMK A5458) was collected in May 2014 under a decaying log. The 15 

cm long individual was coloured black dorsally with a yellow pinkish lateral and ventral side. The single 

specimen represents the first bona fide record for Kenya. Previously it was only known from the Eastern 

Arc Mountains (Nussbaum, 1985; IUCN, 2015) but Nussbaum (1985) noted a single specimen from 

Mombasa (BM 1909.6.5.6) collected by Hinde in 1895. Nussbaum questioned the precise provenance of 

this specimen (see figure 10; p.46 in Nussbaum, 1985). The wider distribution of this species in Kenya 

will need to be evaluated by more extensive sampling. 

 

Discussion 

The thirty amphibian species of SHNR presented in this checklist is more than double the number that 

was reported in the preliminary study of Malonza & Measey (2005). The increase is clearly linked to the 

relative paucity of sampling in the area previously, following a classic pattern of increasing species 

discovery over time. In terms of numbers of species, the SHNR shows a comparatively elevated level of 

diversity to surrounding areas. For example, Arabuko-Sokoke Forest, the largest coastal forest in East 

Africa, has 26 recorded species (Drewes, 1992), Taita Hills, the only Eastern Arc Mountain in Kenya, 

also has 26 species (Malonza, et al., 2010). Such comparisons show, based on the current sampling, that 

the SHNR has the highest amphibian diversity in Kenya. Neighbouring areas in Tanzania, such as the 

West Usambara and Pare Mountains are also comparable (see table 1 in Loader et al., 2011). This differs 

from areas further south such as the East Usambara, Nguru and Uluguru Mountains, which show 

substantially higher species diversity (Poynton et al., 2007; Menegon et al., 2008). 

The high diversity in SHNR compared to other Kenyan localities may be attributed to a number of 

factors, but direct comparisons are hindered by the relatively different sizes of areas and intensities of 

sampling conducted in each area. However, one key aspect appears to be the heterogeneous habitats in the 

SHNR, the area consists of six forest types, woodland and grassland habitats within the reserve (Davis, 

1993; Luke, 2005) allowing for a variety of species from different biogeographic zones. The amphibian 

fauna of SHNR consists of a combination of species from the Eastern Afromontane Region and Coastal 

Forests of Eastern Africa, in addition to the numerous widespread species occurring in varying types of 

savanna habitats. Within the SHNR, we therefore have a broad representation of all possible habitats 

found across Kenya unlike other comparable regions. 
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There are a few amphibian species of particular note to be found in the Shimba Hills. One species 

appears to be endemic to the reserve, Hyperolius rubrovermiculatus, although the taxonomy of this taxon 

is currently unresolved (see Channing & Howell, 2006). Furthermore, one taxon, Scolecomorphus cf. 

vittatus, might be recognized as being distinct from other Eastern Arc populations. This level of 

endemism (2‒3 species) may be considered low when compared to the East Usambara Mountains where 

eight amphibian species (Poynton et al., 2007) are endemic. However, as far as vertebrate fauna is 

concerned, this may be considered relatively high, as no endemic bird or mammal species have been 

recorded in the reserve to date (cca.kws.go.ke/shimbaHills.html; Bennun & Njoroge, 1999). Only 20% of 

the amphibians in SHNR belong to the Coastal Forest ecoregion, including species such as 

Mertensophryne micranotis, Afrixalus sylvaticus and Hyperolius rubrovermiculatus (Poynton, 1999; 

Schiøtz, 1999; Burgess & Clarke, 2000). Eastern Afromontane species are represented by 

Scolecomorphus cf. vittatus and Callulina cf. kreffti indicating some association of SHNR with this 

region. However, the majority of the SHNR amphibian fauna belong to the widespread fauna found in 

savanna regions forming a mosaic of fragmented habitats intermixing with coastal forest. These extend 

inland into drier areas, stretching along the coast from southern Somalia through Kenya, Tanzania and 

Mozambique to the eastern coast of South Africa. These include savanna living species as well as those 

confined to the dry semi-deciduous forest (bushland savanna) (Schiøtz, 1999). About 23 species (76%) 

occur here including Afrixalus fornasini, Hyperolius parkeri, H. pusillus, H. tuberilinguis, H. argus, 

Leptopelis concolor, Kassina maculata and Xenopus muelleri. Even further, wide-ranging species are 

represented by Hemisus marmoratus, Kassina senegalensis, Phrynobatrachus acridoides, Ptychadena 

anchietae, and P. oxyrhynchus. However, it should be noted that taxonomy of many of these species is 

poorly known and might reveal more taxonomic units and further divisions to their currently rather large 

distributions. 

This checklist contains all the amphibians of SHNR as currently known. This does not preclude the 

possibility that new discoveries will not be made in the future. The following species were expected from 

the reserve given that they have been recorded very close to the reserve or their IUCN red list presumed 

range includes SHNR: Phrynobatrachus mababiensis FitzSimons, 1932; Phrynomantis bifasciatus Smith, 

1847; Pyxicephalus angusticeps Parry, 1982; Ptychadena mossambica Peters, 1854; Ptychadena 

schillukorum Werner, 1908 (Channing & Howell, 2006; Harper et al., 2010, IUCN, 2013b). Further 

sampling across the area is required to understand if these species occur. Furthermore, as can be seen 

from figure 2, surveys have been relatively concentrated in some parts and large areas await sampling. 
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These areas include both higher elevation forest areas, which might produce more specimens of typical 

Eastern Afromontane amphibians such as those already collected, and potentially new undescribed 

species. Further sampling of such areas are required if a complete list of the area is to be made. 

 

Conclusion 

SHNR has the highest amphibian diversity in Kenya, accounting for about 30% of the country’s 

amphibians. Fortunately, the area is relatively well protected being a National Reserve and is frequently 

visited by tourists, who provide solid economic revenue. These features suggest its long-term future is 

relatively well secured. The area could provide an important basis for understanding amphibians in Kenya 

more broadly and promote their conservation. The amphibians in the reserve represent a mix of both 

Eastern Afromontane, widespread Coastal Forest species and pan African species, potentially therefore 

making it an important area for further expanding our knowledge on various biological questions 

including phylogeography, behaviour and community ecology. 

One major biological question will be interpreting the biogeographic history of SHNR given the 

various species that can be found within the reserve. At present, it remains unclear whether the observed 

diversity and endemism is the result of habitat stability within coastal forest or recent colonization from 

other areas such as the Eastern Arc Mountains. To address these questions a more detailed understanding 

of the historical biogeography of all lineages in SHNR and other neighbouring coastal forests is required. 

Key to any kind of understanding of such questions though is the establishment of baseline data as 

outlined in this publication. 
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Abstract 

The taxonomic validity of Hyperolius rubrovermiculatus has been questioned in the literature with 

respect to H. mitchelli due to morphological similarity between the two and high genetic diversity within 

H. mitchelli. To date no study has ever investigated the relationship between these two lineages. To assess 

the species status of the two congeners, H. mitchelli and H. rubrovermiculatus, we use molecular, 

morphological, bioacoustic and species distribution modelling analyses. We report on the paraphyly of H. 

mitchelli with respect to H. rubrovermiculatus, with the former showing considerable genetic 

differentiation among geographically structured populations. To resolve the paraphyletic status of H. 

mitchelli in our analysis we propose the description of a new species. The primary features distinguishing 

these species are dorsal colour pattern (between the closely related Hyperolius new sp. and H. 

rubrovermiculatus), skin texture (between the females of H. rubrovermiculatus versus those of H. new sp. 

and H. mitchelli) and high levels of genetic divergence (distinguishing H. mitchelli from the clade 

containing H. new sp. and H. rubrovermiculatus). Morphometric differentiation was low, as was call 

variation among groups. The proposed new species, Hyperolius new sp. resolves the paraphyletic 

relationship of H. mitchelli to H. rubrovermiculatus. 

Keywords: coastal forests, cryptic diversity, Eastern Arc Mountains, Hyperolius, phylogeography. 
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Introduction 

Hyperolius Rapp, 1842 is the most species-rich amphibian genus in Africa, with over 143 described 

species (Frost et al., 2016) distributed across many habitat types. Although many members of the genus 

can be diagnosed using a combination of morphological characters aided by habitat, call or distributional 

information (Schiøtz, 1975; Channing and Howell, 2006), many species are morphologically very similar 

and intraspecific variation is high. As a result, the genus Hyperolius has proven to be a difficult group 

taxonomically and resolving the numerous species complexes within Hyperolius remains a daunting 

challenge (Schiøtz 1975; Poynton and Broadley, 1987; Frost et al., 2016). 

There are over twenty Hyperolius species known from the Eastern Arc Mountains and coastal 

forests of Kenya and Tanzania, (Schiøtz, 1975; Channing and Howell, 2006; Harper et al., 2010; 

Channing et al., 2013; Loader et al., 2015; Barratt et al., 2017). Some of these are widespread species 

complexes that are thought to harbour several cryptic species. For example, the Hyperolius nasutus 

Günther, 1864 complex, previously thought to contain at least eight valid species, now has 16 (Channing 

et al., 2013; Frost et al., 2016) and the recently revised Hyperolius spinigularis Stevens, 1971 complex 

originally consisted of three species but now has seven recognized species (Loader, et al., 2015; Barratt, 

et al., 2017). Considering that the Eastern Arc Mountains and coastal forests of Kenya and Tanzania fall 

into two biodiversity hotspots, (the Eastern Afromontane and the Coastal Forests of Eastern Africa) that 

are characterized by high levels of single-site endemism (Myers et al., 2000), detailed studies of allegedly 

wide-ranging species might reveal cryptic diversity with multiple range-restricted species. Such findings 

are valuable from a taxonomic point of view, but are also important for evaluating biogeographic patterns 

and species conservation. For example, the splitting of a formerly widespread species into discrete 

taxonomic units often means the range of the resulting new species is more limited and this may increase 

their susceptibility to extinction and priority for conservation (Bickford et al., 2007; Vieites et al., 2009; 

Oliver et al., 2013). 

Hyperolius mitchelli Loveridge, 1953 is recognized as having a wide-ranging distribution from 

northeastern Tanzania through Malawi and Mozambique and large molecular variation amongst 

populations (Schiøtz, 1975; Lawson, 2010). Though not strictly considered a species complex, the 

delimitation of H. mitchelli has been historically problematic. At the time of the original description of H. 

mitchelli (from Malawi), it was considered a subspecies of H. substriatus (See Pickersgill 2007), 

erroneously called Hyperolius puncticulatus Pfeffer, 1893 by Loveridge, 1953 at the time. Hyperolius 
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mitchelli is easily recognized from Hyperolius substriatus due to acoustic call differences and colour 

(juvenile phase (Ph J), adult phase (PhF) and a light spot on the heels in H. mitchelli) (Schiøtz 1975, 

1999). From a molecular perspective, phylogenetic investigations support H. substriatus and H. mitchelli 

as being distinctive species (Lawson, 2010). 

Apart from the association with H. substriatus, H. mitchelli has also been affiliated with 

Hyperolius rubrovermiculatus Schiøtz, 1975, which is endemic to the Shimba Hills in southeastern 

Kenya. Schiøtz (1975) recognized H. rubrovermiculatus as a distinctive species based primarily on the 

colour and skin texture of females. Under systematical remarks on H. rubrovermiculatus sp. nov., Schiøtz 

(1975, p. 156) commented on the similarity between H. mitchelli and H. rubrovermiculatus but continued 

to describe H. rubrovermiculatus based on the fact that “H. mitchelli is otherwise a very constant species 

showing practically no variation throughout its great range”. Channing and Howell (2006) synonymized 

H. rubrovermiculatus, commenting on H. mitchelli (p.171) that “one of the colour morphs was previously 

known as H. rubrovermiculatus” and the distribution of H. mitchelli is given as from southeastern Kenya, 

and northern eastern Tanzania through Malawi to Mozambique. However six years later, Channing et al. 

(2012) considered H. mitchelli and H. rubrovermiculatus as separate species and Kenya was no longer 

included in the range for H. mitchelli. Besides H. substriatus and H. rubrovermiculatus, H. mitchelli is a 

very distinctive species and not similar to any other known described Hyperoliid species. 

To date no study has established the ecological, molecular and morphological variation of both H. 

mitchelli and H. rubrovermiculatus across their ranges in order to better understand the taxonomic status 

of these species. We sample across the ranges of both species and assess their taxonomic distinctiveness 

using genetic, morphological, acoustic and distribution data. From these analyses we propose the 

description of a new species and evaluate the biogeographic and conservation implications of our results. 

 

Methods 

Sampling 

Fieldwork in Malawi, Tanzania and Kenya was conducted by the authors and colleagues between 1998 

and 2015. These surveys have contributed to the collection of voucher specimens of H. mitchelli and H. 

rubrovermiculatus from numerous populations (Fig. 1). 
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Fig. 1. Map showing sampling localities of H. mitchellli and H. rubrovermiculatus specimens used in the 

study. 

Part of this material has been documented in previous studies (e.g. Lawson, 2010). For H. 

rubrovermiculatus, fresh material was collected between December 2013 and May 2014 in Shimba Hills, 

Kenya as part of an ongoing project in this area (Bwong et al., 2014). Additional sampling of H. mitchelli 

in the Tanzanian coastal forest was also made. Specimens collected in these projects were sampled 

through the opportunistic search method of Heyer et al. (1994). Liver, thigh muscle and/or toe clips were 

preserved in absolute ethanol for DNA extraction. All tissue samples from the freshly collected material 

for this study are deposited at the Institute of Biogeography, Department of Environmental Sciences, 

University of Basel, Switzerland. Specimens were euthanized using Tricaine mesalyte (TM MS-222) and 

fixed in 10% formaldehyde (formalin). They were later stored in 70% ethanol and deposited at the Field 

Museum of Natural History, Chicago, USA; National Museums of Kenya, Nairobi, Kenya; Natural 
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History Museum, London, UK; Science Museum of Trento, Italy, and the University of Dar es Salaam, 

Tanzania. Additional samples were added from various institutions for morphological analysis (see 

Appendix I). These included the holotype and paratypes of H. rubrovermiculatus from the Zoological 

Museum of the University Copenhagen, Denmark, and the holotype and paratypes of H. mitchelli from 

the Museum of Comparative Zoology, Harvard, USA. Further specimens were obtained from the 

California Academy of Sciences, USA, Field Museum of Natural History, Chicago, USA, Natural History 

Museum, London, UK, and the Science Museum of Trento, Italy. 

Genetics 

Total DNA was extracted from preserved tissue samples using the DNeasy blood and tissue kit (Qiagen, 

Valencia, CA). Extraction, amplification and sequencing followed standard protocols (see Loader et al., 

2010). Each of the newly collected individuals was barcoded to verify its identity using the 16S 

mitochondrial gene. Sequences were aligned in Geneious v6.1.2 (http:www.geneious.com, Kearse et al., 

2012) using MAFFT v7.017 (Katoh et al., 2002) with default settings. For a subset of individuals with 

quantitatively sufficient DNA, we also amplified an additional mitochondrial gene (NADH 

dehydrogenase subunit 2 - ND2) and two nuclear loci (Cellular myelocytomatosis - C-myc, and 

Proopiomelanocortin - POMC) following Lawson, (2010). Appendix II provides details on voucher 

specimens used in this study, their origin, available genes and associated GenBank numbers where 

applicable. 

We used two alignments to reconstruct the genetic relationships of H. mitchelli and H. 

rubrovermiculatus; the first alignment included all available barcoded samples (partial ca. 600bp 16S 

rRNA fragment) of H. mitchelli and H. rubrovermiculatus. The second alignment consisted of all major 

geographical areas represented by a multi-locus dataset (ND2, C-myc, POMC) complementing previous 

analyses (Lawson, 2010). All populations were represented by at least a single specimen apart from the 

North Pare population for which only 16S data was available, and the Zanzibar population of H. mitchelli 

for which no sequences were available. We also investigated single gene trees to examine resolution in 

the reconstructed phylogenetic relationships. 

The evolutionary relationships of the species based on the barcode (mtDNA) alignment were 

reconstructed using Bayesian (MrBayes v3.2; Ronquist et al., 2012) and Maximum Likelihood (RAxML 

v8.0.0; Stamatakis, 2014) methods with a single outgroup species (H. substriatus) chosen due to its close 

relationship with H. mitchelli recovered from previous phylogenetic analyses (Lawson, 2010). In the 
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MrBayes analyses, four simultaneous Markov chains were run for 20 million generations and sampled 

every 1000 generations; discarding the first two million generations as burn-in. We set the substitution 

type to mixed rates to allow the Markov chains to sample over space of all possible reversible substitution 

models. RAxML analysis used the rapid hill-climbing-algorithm and the GTRGAMMA model, and node 

support was evaluated by non-parametric bootstrapping with 1000 replicates. To further examine 

population variation within our extensive geographic sampling, we employed a haplotype-network 

analysis using the program PopART (www://popart.otago.ac.nz). We used TCS (Templeton, 1992) 

networks to reconstruct the relationships among lineages. 

For the second multi-locus alignment, we conducted two different analyses involving different 

sets of samples and genes. Our first analysis consisted of all four genes for all samples, which included 

many individuals with missing data (56 samples). The second analysis was conducted on a subset of 30 

samples in order to maximize complete coverage of samples that had sequence data for all genes. All 

analyses on these two multi-locus datasets were conducted using MrBayes and RAxML using a single 

outgroup (H. substriatus) and substitution models (Table 1) determined using PartitionFinder v1.1.1 

(Lanfear et al., 2012). The first concatenated alignment included six partitions for all four genes 

(Supplementary Table 1). Both sets of partitioned analysis were run using MrBayes with parallel runs of 

four simultaneous Markov chains for 30 and 10 million generations respectively, sampling every 1000 

generations from the chain and discarding the first 10% of each as burn-in. Support for groupings was 

evaluated using posterior probabilities (Ronquist et al., 2012). Maximum Likelihood analysis was 

conducted with RAxML using the rapid hill climbing algorithm and the GTRGAMMA substitution model 

partitioned by gene and codon according to PartitionFinder (Supplementary Table 1). 

We used BEAST v2.1.3 (Bouckaert et al., 2014) to estimate the divergence times between clades 

and within subclades on the multi-locus dataset. The rate-calibrated tree was reconstructed without an 

outgroup for improved precision of branch length estimates. All coding regions (exons in C-myc, POMC; 

coding region in ND2) were analyzed with the SRD06 model, while non-coding regions were assigned 

the highest probability models based on jModelTest v2.1.6 (Darriba et al., 2012). BEAST was run for 15 

million generations with unlinked loci, independent mutation rates (specified below), strict molecular 

clocks, and a coalescent, constant size tree-prior. The maximum-clade-credibility tree was calculated 

using TreeAnnotator in BEAST. Locus substitution rates were taken from previous amphibian studies: 

16S: 0.00277/lineage/mya (Lemmon et al., 2007); ND2: 0.00957/lineage/mya (Crawford, 2003); C-myc: 

0.0006334/lineage/my (Lawson, 2010); and POMC: 0.000721/lineage/my (Lawson, 2010). 
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In order to estimate the number of species in the group, we conducted a Bayesian version of the 

General Mixed Yule-Coalescent analysis (bGMYC). The analysis was run using the bGMYC package 

(Reid and Carstens, 2012) in R v. 3.2.1 (R Development Core Team, 2015) and 100 random trees from 

BEAST analysis with a cut-off point of 0.5 where all individuals having a posterior probability of 

conspecificity greater than 0.5 are lumped into returned species (Reid and Carstens, 2012). Results were 

projected on the output maximum-clade-credibility tree from BEAST analysis. 

Species trees were assessed with *BEAST. Models of molecular evolution and settings were the 

same in both BEAST and *BEAST analyses except for the use of a Yule tree prior for the latter analysis 

and unlinked trees between genes (mtDNA linked). Analysis in *BEAST used individuals from the same 

mountain block as discrete units (after confirmation of monophyly from individual-based tree 

constructions). Stability for BEAST and *BEAST runs were evaluated visually and through effective 

sample size (ESS) scores above 200 estimated in TRACER v1.6 (Rambaut et al., 2014). 

Genetic distances were calculated using Geneious software (v6.1.2) and the Species Delimitation 

plugin v1.04 for Geneious Pro (Masters et al., 2011) was used to evaluate the taxonomic units in H. 

mitchelli. 

Lastly, to address alternative phylogenetic hypotheses we enforced topological constraints on our 

RAxML trees and performed AU, KH and SH topology tests in CONSEL v0.2 (Shimodaira and 

Hasegawa, 2001). To test whether the monophyly of H. mitchelli (the current morphological hypothesis 

of this group) could be statistically rejected we conducted a topology test using 16S data (the most 

geographically extensively sampled data). In this analysis we constrained all H. mitchelli northern 

populations (subclades IV and VI) to the southern clade (subclades I–III), Constraint 1, reflecting the 

current taxonomy. We also ran this constraint without the North Pare specimen constrained as part of the 

same group (Constraint 2). Finally, we ran topology tests using the same constraints based on the multi-

locus dataset with 30 samples (ND2, C-myc, POMC). 

Morphology 

Fifteen standard body measurements were taken per specimen. These include distance from the tip of the 

snout to urostyle (SUL), head width (HW) at the broadest, head length (HLD) from the tip of the snout 

diagonal to the corner of the mouth, head length (HLJ) from the tip of the snout diagonal to the jaw bone 

end, nostril to snout length (NS) measured from the centre of the nostril to the tip of the snout, inter-narial 
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distance (IN) measured from the centre of each nose, eye to snout distance (EN) measured from the front 

part of the eye to the centre of the nose, horizontal eye distance (EE), inter-orbital distance (IO), measured 

from the front part of each eye, tibia fibular length (TL) measured from the knee to the ankle, thigh length 

(THL), tibiale fibulare length (TFL) measured from the ankle to the base of the foot, foot length (FL) 

measured from the base of the foot to the tip of the fourth toe, Fore-limb length (FLL) measured from the 

base of hand to the elbow and hand length (HL) measured from the base of the hand to the tip of the third 

finger. Measurements were taken to the nearest 0.1 mm using vernier calipers under a LEICA MZ 8 light 

microscope. A total of 213 specimens both recently collected by us and from museum collections were 

measured. All variables were first regressed against snout to urostyle length to remove the effect of size. 

After which the resulting residuals were used in Principal Component Analysis (PCA) using 

STATISTICA software (STATSOFT, 2007). Box plot was used to determine how SUL varied among 

populations. In addition, qualitative body characters used to describe the holotypes for H. mitchelli and H. 

rubrovermiculatus were recorded. These include; presence or absence of white patch on the heel; 

presence or absence of dark spots on the dorsum; presence or absence of light cantho-lateral bands which 

run almost to groin area (Loveridge, 1953; Schiøtz, 1975; Poynton and Broadley, 1987); presence or 

absence of a black border on the edge of the white canthus-lateral band. Male and females were 

differentiated based on the presence (males) and absence (females) of vocal sacs. Since both females and 

immature males lack vocal sacs we omitted from the analysis all specimens that lacked vocal sacs and 

were less than 21 mm in SUL. 

Bioacoustics 

Calls were recorded for H. rubrovermiculatus from Shimba Hills and from populations of H. mitchelli in 

Pemba, Nguru Mountains, Uluguru mountains, the lowlands of the Udzungwa mountains (Mang’ula) and 

Coastal Forests (Makangala forest). The calls were recorded using OLYMPUS digital recorder, DS-30 

and were analysed using the seewave package (Sueur et al., 2008) in R. Call parameters per individual 

assessed included mean call duration, mean pause duration and mean dominant frequency. None of the 

specimens from which these calls were recorded was barcoded. 

Species distribution modelling 

We used species distribution models (SDM; Peterson, 2001; Elith and Leathwick, 2009), as a proxy for 

the abiotic environmental requirements of each lineage. As each lineage was entirely allopatric, and 

distribution of H. rubrovermiculatus is limited to Shimba Hills, assessing similarity of niche requirements 
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is tentative due to potential spatial autocorrelation as opposed to local adaptation. Nevertheless, SDMs 

still remain a valuable tool for investigating differences in ecology. 

Presence data were obtained from all localities sampled for this study as well as verified 

coordinates based on museum collections. The modelling of species followed two strategies: (1) our 

taxonomic conclusions based on genetics, morphology and call, and (2) the units defined by the genetic 

species delimitation approaches. For the latter approach we took the clades that were recognized by 

bGMYC (0.5 cutoff) and then recognized only clades that were >2% divergent from the nearest sister 

group in 16S. This approach was used to combat the known tendency of bGMYC to over-split lineages 

(Satler et al., 2013). In both sets of analyses, the H. mitchelli population from North Pare Mountains was 

not included in modelling approaches as the number of localities were so few (<5) and the geographic 

resolution was limited (1 km
2
). Furthermore, the Zanzibar sample (for which genetic data were not 

available) was not included in the analysis given the uncertainty of its phylogenetic position. 

All geo-referenced localities were validated for coordinate errors. SDMs for each lineage were 

created using the maximum entropy algorithm implemented in Maxent v3.3.3k (Phillips et al., 2006). 

Maxent is a machine-learning algorithm, popular for predicting species and habitat distributions using 

presence only data. All models were generated for an area limited to southern Kenya through central 

Malawi. Climatic data consisted of the 19 bioclimatic variables available in the WorldClim database with 

a 30-arc-second resolution (Hijmans et al., 2005) describing aspects of temperature and rainfall. As these 

19 variables are highly correlated, we also evaluated a subset of variables with Pearson’s correlation 

coefficients below 0.7: using ENMTools (Warren et al., 2010): Mean diurnal range, temperature 

seasonality, temperature annual range, mean temperature of coldest quarter, precipitation of wettest 

month, precipitation seasonality, precipitation of driest quarter, precipitation of warmest quarter, 

precipitation of coldest quarter. Due to the similarity of results, the model with all 19 variables was used 

for ENM modelling and further analyses. Distribution surfaces were created as the mean of 100 iterations. 

Model performance was evaluated using Area under Receiver Operating Characteristic curve (AUC) 

statistics with AUC > 0.5, indicating a better than random model prediction (Elith et al., 2006). 

Climatic similarity of all species was assessed by Principal Component Analysis (PCA) using 

bioclim variables associated with GPS coordinates in the MASS (Venables and Ripley, 2002) and 

ggbiplot (Wickham, 2009) packages in R (95% confidence ellipse probability threshold) for all lineages. 

PCA analysis allows us to evaluate similarity even for species with limited distribution which cannot be 
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modeled in Maxent. This method can help to elucidate habitat similarity for range-restricted taxa. 

Museum abbreviations  

Natural History Museum, London, UK (BMNH). 

California Academy of Sciences, San Francisco, USA (CAS). 

Field Museum of Natural History, Chicago, USA (FMNH). 

Museum of Comparative Zoology, Harvard, Massachusetts, USA (MCZ). 

National Museums of Kenya, Nairobi (NMK). 

Science Museum of Trento, Italy (MTSN). 

Zoological Museum University of Copenhagen, Denmark (ZMUC). 

 

Results 

16S alignment 

The first alignment, using partial mitochondrial 16S gene sequences of the two species, revealed two 

deeply divergent clades with high support (Fig. 2A). Hyperolius mitchelli is shown to be paraphyletic, 

with populations of H. mitchelli from central-southern Tanzania and Malawi (hereafter southern clade) 

being separated from a clade that includes H. mitchelli from East and West Usambara, Nguu, Nguru and 

Pare mountains (hereafter northern clade) along with H. rubrovermiculatus. 

Within the southern clade, populations from Lindi and coastal areas including Makangala Forest 

Reserve, Muyuyu Forest Reserve and Noto plateau group together (subclade I). This subclade forms a 

weakly supported grouping with subclade II, which consists of populations from lowland Udzungwa 

Mountains/Kilombero valley. Subclade III consists of populations from Uluguru Mountains, coastal 

forests (Makangaga and Namatimbili forest reserves) in Tanzania and Luwawa in Malawi (the region of 

the type locality of H. mitchelli). Though subclade III is weakly supported, each geographical area forms 

a well-supported group. 

The northern clade, consisting of H. rubrovermiculatus and northern population of H. mitchelli, is 
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composed of three well-supported distinct subclades (IV–VI). A single sample from the North Pare 

(subclade IV) forms a sister lineage to a clade containing populations of H. mitchelli from Usambara 

(East and West), Nguu and Nguru Mountains (subclade VI) and H. rubrovermiculatus (subclade V). 

Maximum Likelihood reconstructions of the 16S data using RAxML inferred the same topology as the 

Bayesian analysis. 

               

Fig. 2. (A). MrBayes topology of 16S alignment and photos of H. mitchelli northern and southern clades 

and H. rubrovermiculatus. (B) TCS haplotype network based on the 16S alignment. The haplotype size is 

proportional to the number of samples it represents, the colour codes represents, red = H. mitchelli 

subclade I-III, blue = H. Mitchelli subclade VI, yellow = H. mitchelli subclade IV and green = H. 

rubrovermiculatus. 

The TCS haplotype network for the 16S gene revealed 16 haplotypes for the H. mitchelli and H. 

rubrovermiculatus group (Fig. 2B). These haplotypes were geographically structured, with no haplotypes 

being shared between clades or even between subclades. Three haplotype groups were found within the 

southern clade reflecting the 16S tree topology. Hyperolius rubrovermiculatus (subclade V) had four 

haplotypes while H. mitchelli from Usambara, Nguu and Nguru (subclade VI) shared two haplotypes 

(Fig. 2B). 

Multi-locus alignments 
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The results from the first set of multi-locus analyses (all individuals, large amounts of missing data) 

resulted in a topology congruent with the 16S gene tree. Support values for some nodes were low, 

however, presumably due to missing data. In the second analysis of 30 individuals with complete 

representation of all genes, the topology was similar to that shown by 16S data, with strong levels of 

support in both MrBayes and RAxML approaches (Fig. 3). 

 

 

Fig. 3. Maximum Likelihood topology based on the second multi-locus dataset with 30 samples with * 

showing nodes with full posterior probaity support. 

The ultrametric tree from BEAST analysis indicates that the separation between the northern 

clade and southern clade took place around 13.2 million years ago (mya) (11.1–15.5 95% Highest 

Posterior Density (HPD)) (Fig. 4). Divergence between subclade II and subclade III occurred around 5.4 

mya (4.5–6.4 95% HPD), while the split between subclade V and VI occurred around 2.9 mya (2.3–3.7 

95% HPD). Most of the divergences within the northern clade and southern clade occurred recently, ca. 

2.5 mya onwards. 
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Fig. 4. Left BEAST topology based on the multi-locus alignment showing the divergence time estimates 

between the two clades and within subclades. Right, results from bGMYC analysis based on the 0.5 cut 

off point showing putative species (yellow). 

Genetic distances using the 16S gene showed considerable diversity among clades. The two 

major clades showed 7.4% average divergence, while the average divergence between subclades I and II 

is 2%, and between subclade II and III 2.1% (see Table 1). The genetic differences are potentially 

indicative of lineages being distinct species. Species estimates in bGMYC using the standard 0.5 cut-off 

identified two main lineages in the northern clade (Fig. 4). For the southern clade, six putative species 

were identified. However, taking into consideration 16S divergence patterns where lineages ca. >2% are 

considered distinct, a stronger weight of evidence for three units were shown, including (1) subclade I; (2) 

subclade II and (3) subclade III (Fig. 4). The species tree from *BEAST analysis recovered the two major 

clades with maximum probability support (Fig. 5). However the subclades within both major clades 

received less support compared to other trees. The *BEAST tree differed from the 16S and multi-locus 

trees by shifting the position of subclade I to the northern clade and making it a sister taxon to H. 
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rubrovermiculatus. However this relationship was weakly resolved and the uncertainty of placement is 

likely due to the missing data for the sole individual representing this population. Overall, despite some 

variability in results between analyses and alignments, all analyses provided strong support for the 

paraphyly of H. mitchelli, with H. rubrovermiculatus forming a sister clade to H. mitchelli populations 

from northeastern Tanzania. 

Table 1. Species delimitation results for Hyperolius mitchelli and Hyperolius rubrovermiculatus using the 

Species Delimitation Plugin for Geneious Pro with the 16S Bayesian phylogeny from Fig. 1. Intra-dist 

shows intra-specific genetic distance between samples within each species (values of 0 indicate a single 

representative per species), Inter-dist shows inter-specific genetic distance to the closest relative. (Roman 

numerals I-VI represents the subclades identified using 16S data. 

Species Closest species Monophyletic? Intra dist Inter dist 

- closest 

Intra/inter 

H. substriatus H. rubrovermiculatus Yes 0.00E+00 

 

0.096 0.00E+00 

 

H. mitchelli (I-III) H. rubrovermiculatus Yes 0.017 0.074 0.23 

H. rubrovermiculatus H. mitchelli (I-III) Yes 0.012 0.074 0.16 

H. mitchelli (IV) H. mitchelli (VI) Yes 0.00E+00 0.022 0.00E+00 

 

H. rubrovermiculatus H. mitchelli (VI) Yes 0.004 0.018 0.21 

H. mitchelli (I) H. mitchelli (II) Yes 0.002 0.020 0.02 

H. mitchelli (II) H. mitchelli (III) Yes 0.009 0.021 0.4 
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Fig. 5. Species tree from *BEAST based on a single sample per locality. 

Topology tests of the alternative relationships (monophyly of H. mitchelli northern and southern 

clades, sister to H. rubrovermiculatus) were significantly suboptimal in all tests of both Constraints 1 and 

2. Tests of the monophyly of H. mitchelli using multi-locus alignment was also strongly rejected 

(Supplementary Table 2). 

Morphology 

Following molecular results, H. mitchelli was split into two groups (northern clade subclade VI, and 

southern clade, subclades I–III); hence, all the descriptive and multivariate analyses were conducted 

based on three groups; the northern and southern H. mitchelli subclades and H. rubrovermiculatus. 

Northern H. mitchelli subclade IV only had a single specimen and was therefore excluded from 

morphological analysis. When all the specimens were analyzed together by sex, females had bigger SUL 

than the males (ANOVA n = 204; df =1, F = 76.48; P = 0.000). There was no significant difference in the 
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SUL among the males (ANOVA n = 148; df = 2; F = 0.41; P = 0.67) or the females (N = 56; df = 2; F = 

3.12; P = 0.05) of the three groups (Supplementary Fig.1A and B). The minimum and maximum SUL 

measurements recorded in the three subclades are (in mm): Northern H. mitchelli subclade VI, male (n = 

51) 22.2 and 28.8 female (n = 20) 20 and 32.3; southern H. mitchelli subclades I–III, male (n = 43) 21 and 

28.5, female (n = 14) 22.9 and 30.5; H. rubrovermiculatus, male (n = 54) 21.3 and 29.6 females (n = 22) 

24 and 32.1). PCA could not distinguish males or females of the three groups (Supplementary Fig. 2A 

and B). When ratios of various body parts to SUL were compared between the sexes only three showed 

significant differences; TL to SUL and HL to SUL were larger in males while HTL to SUL were larger in 

females. In addition male H. rubrovermiculatus had larger HW, FL, EE, IN TFL to SUL ratios, northern 

H. mitchelli subclade VI had larger EN and IO to SUL ratios while southern H. mitchelli subclade I–III 

had larger THL to SUL ratio. In females however there was no significant difference among the groups 

based on body measurements to SUL ratios except for HLJ to SUL which was larger in H. 

rubrovermiculatus while TL was larger in northern H. mitchelli subclade VI. 

In addition to the morphometric analysis, we examined qualitative characters of subclades. In 

terms of similarities, H. rubrovermiculatus, northern H. mitchelli subclade VI and southern H. mitchelli 

subclades I–III all (almost uniformly) have a broad white canthal and dorsolateral stripe as well as a white 

patch on the heel (Fig. 2A). The dorsal coloration, however, is markedly different between H. 

rubrovermiculatus and the two clades of H. mitchelli. Hyperolius rubrovermiculatus lacks a black border 

around the white canthal and dorsolateral stripes or even on the heel unlike in both H. mitchelli subclades 

(Fig. 2A). The females of H. rubrovermiculatus have diverse dorsal colour patterns in life ranging from 

tan to black with orange/red vermiculations (Fig 2A) while the males are mostly greyish in colour but 

may be golden, golden-brown or even green with blue throats. Both northern and southern H. mitchelli 

subclades have very similar colouration with no sexual dichromatism. The dorsal colour is mostly orange 

especially for northern subclade VI while the intensity of the orange colour reduces towards the south of 

its range; Malawi specimens are mostly brown. The presence of white heel spots was almost uniform in 

both H. mitchelli subclades, though some individuals lacked these. The dorsal skin in life of females for 

both subclades of H. mitchelli is rough while those of H. rubrovermiculatus have smooth skin. 

The single male individual from North Pare (subclade IV) is very similar to H. rubrovermiculatus in 

dorsal colour pattern. The specimen had a tan dorsal colour pattern with a white dorsolateral stripe and a 

white heel not bordered with black (like those of H. rubrovermiculatus). The skin was rough and lacked 

any spots. 
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Bioaccoustics 

We analysed calls from five individuals that were opportunistically collected; one from H. 

rubrovermiculatus, one from northern H. mitchelli subclade VI (Pemba, Nguru Mountains) and three 

from southern H. mitchelli subclades I–III (from Uluguru mountains, lowlands of Udzungwa mountains - 

Mang’ula and Makangala forest). The quality of the recordings was not optimal as some were obtained 

with background calls and/or noise. Due to this low recording quality and lack of data on prevailing 

weather conditions during call recordings, comparing the call properties was difficult. Oscillograms and 

sound spectrograms of the five call bouts are given in Supplementary Fig. 3. Hyperolius 

rubrovermiculatus had relatively lower values for the call parameters measured (Supplementary Table 3). 

All of the H. mitchelli subclades I–III calls had mean dominant frequency above 4 kHz. Hyperolius 

mitchelli subclade VI recorded the highest mean call duration of 0.09s, while H. rubrovermiculatus 

recorded the lowest at 0.03s. However, these call properties are based on single specimen per locality thus 

caution should be exercised when comparing with each other or other reported call properties for H. 

mitchelli and H. rubrovermiculatus. Additional call properties are shown in supplementary Table 3. 

Species distribution modelling 

Two ecological niche models were constructed based on the taxonomic conclusions made in this paper: 1) 

major phylogenetic groups; northern H. mitchelli subclade VI, southern subclades I–III and H. 

rubrovermiculatus, and 2) clades recognized by bGMYC clades which were supported by the 2% 

divergence criteria i.e. H. mitchelli subclade I, subclade II, subclade III, subclade VI and H. 

rubrovermiculatus, modelled independently (totalling 5 lineages). In the first analysis, ecological niche 

models for the southern H. mitchelli subclades I–III (14 points) and northern H. mitchelli subclade VI (19 

points) showed that the three lineages occupy distinct ecological niches with little overlap between the 

three subclades (Fig. 6A and B). Furthermore, H. rubrovermiculatus range map does not overlap with 

predicted distribution of northern H. mitchelli’s subclade VI. Principle Component Analysis (PCA) of 19 

bioclimatic variables largely separates the northern and southern H. mitchelli clades. Eleven variables 

were responsible for 61.8% of the total variation (Fig. 7A and B). 
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Fig. 6. Maxent Niche Modelling for (A) Hyperolius mitchelli northern clade, (B) southern clade 

respectively. 

 

Fig. 7. (A) A map showing clade distributions and (B) Scatter plot of PCA of Bioclimatic data for H. 

mitchelli subclade I-III (red), H. mitchelli subclade VI (blue), H. mitchelli from Pare Mountains (yellow), 

H. mitchelli from Zanzibar (black) and H. rubrovermiculatus (green). 
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Variables contributing to the first axis (PC1) were bio1 (annual mean temperature), bio5 (max 

temperature of warmest month), bio6 (min temperature of coldest month), bio8 (mean temperature of 

wettest quarter), bio9 (mean temperature of driest quarter), bio10 (mean temperature of warmest quarter), 

bio11 (mean temperature of coldest quarter). PC2 was dominated by bio14 (precipitation of coldest 

month), bio15 (precipitation seasonality), bio17 (precipitation of driest quarter, and bio19 (precipitation 

of coldest quarter) (Table S4). In the second analysis with multiple southern clade lineages (H. mitchelli 

from subclade I, 3 points H. mitchelli from subclade II, 5 points and H. mitchelli from subclade III, 6 

points), there was greater overlap in predicted distributions between climatic regions of southern clade 

and northern clade H. mitchelli. These results, however, were mainly due to the expanded range of H. 

mitchelli subclade III to northern areas. Despite the low number of points, AUC results indicated that the 

models performed better than random as all values were above 0.8. Overall, the results indicate that there 

may be ecological niche divergence exhibited among all clades, but further sampling of localities is 

required to fully evaluate this hypothesis and test its significance. 

Taxonomy 

The following proposed description of a new species is preliminary and await formal publication. The 

description is aimed to resolve the paraphyletic status of H. mitchelli with regard to H. rubrovermiculatus. 

We note that the single specimen from North Pare (subclade IV) remains taxonomically unresolved 

(grouping as sister group to H. mitchelli subclade VI and H. rubrovermiculatus) and this is likely to 

represent another new cryptic species. More material will be required to evaluate its morphological 

variability. Furthermore our analysis provides evidence that the southern clade includes more than one 

potential species given the comparable genetic differences, but this remains the subject of future extended 

research across this region – currently poorly understood and lacking thorough sampling and available 

specimens. 

Hyperolius new sp. 

Holotype — BMNH 2002.630 (KMH 23126), female (Fig. 8), collected on 15 January 2001 by Frontier 

Tanzania researchers (a group of volunteers doing biodiversity research in Tanzania) in Nilo Nature 

Reserve, East Usambara Mountains, Tanga Region, Tanzania. 
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Fig. 8. (A) Dorsal view of H. new sp. showing the white lateral band and white spots on the heels and (B) 

the ventral view. 

Paratypes — We restrict paratype material to localities within the East Usambara Mountains and 

surrounding lowlands on the basis that further detailed morphological/molecular analysis might uncover 

additional cryptic lineages. The paratypes are made up of two males from: Nilo Forest Reserve, East 

Usambara (BMNH 2002.628, BMNH 2002.629) and seven females from: Nilo Forest Reserve, East 

Usambara (BMNH 2002.631, BMNH 2002.632); Kambai Forest Reserve, East Usambara (BMNH 

2000.758); Mtai Forest Reserve, East Usambara (BMNH 2002.411, BMNH 2002.412, BMNH 2002.413, 

BMNH 2002.514). All collected by Frontier Tanzania researchers on the same date as the holotype. 

Referred material; 47 males from the following localities: East Usambara (ZMUC-R073872, ZMUC-

R073873, ZMUC-R074180, ZMUC-R076814, ZMUC-R076820, ZMUC-R076821, ZMUC-R076822, 

ZMUC-R076823, ZMUC-R076825, ZMUC-R076826, ZMUC-R076827, ZMUC-R076828, ZMUC-

R076829, ZMUC-R076830, ZMUC-R076831, ZMUC-R076832, ZMUC-R076833, ZMUC-R076834, 

ZMUC-R076835, ZMUC-R77588, ZMUC-R077646, ZMUC-R77647, ZMUC-R077816, ZMUC-

R079371, ZMUC-R079372, ZMUC-R079373, ZMUC-R771485, ZMUC-R0771486, ZMUC-R771487, 

FMNH274303, FMNH274307, FMNH274329, FMNH274330, FMNH274411, MTSN9523, 

MTSN9549); West Usambara (FMNH275027, FMNH275028), Tanga (SL1952, SL1953), Nguu 

Mountains (MTSN5159), Lutindi, (MCZ A149045, MCZ A149046), Nguru Mountains, (MW7203, 

MW7205, MW7208, MTSN8277) and 12 females from East Usambara (CAS 173002, R076824, 

R077586, R077587, R079263, FMNH274328, ZMUC-R076819), Nguu Mountains (MTSN5161, 
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MTSN7518, MTSN7519, MTSN7520) and Nguru Mountains MW7210. These were collected by 

multiple people as follows; 

FMNH – Lucinda P. Lawson between April 2006 and March 2007; MCZ – Joanna Larson in 2012; MW – 

Mark Wilkinson in 2008 deposited at the BMNH; ZMUC-R – Arne Schiøtz 1 March 1970 and E. 

Werdenkinch on 26 December 1975 and 1 December 1976; MTSN were collected by Michele Menegon 

in February 2002 while SL – were collected by Christopher D. Barratt in December 2013 and are 

deposited at the University of Dar es Salaam in Tanzania. 

Diagnosis — The species is referred to Hyperolius due to the following characteristics: Pupil horizontal; 

vocal sac present in male, with the gular flap oval with free margins on lateral and posterior sides; 

terminal discs on fingers and toes expanded and rounded; tympanum hidden (Schiøtz, 1999; Channing 

and Howell, 2006). Hyperolius new sp. can be distinguished from other Hyperolius in East Africa 

(Schiøtz et al., 1999; Channing and Howell, 2006; Haper et al., 2010) by; throat without spines (spinose 

asperities on gular flap in males of H. davenporti Loader, Lawson, Portik and Menegon, 2015, H. 

burgessi Loader, Lawson, Portik and Menegon, 2015, H. spinigularis Stevens, 1971, H. ukwiva Loader, 

Lawson, Portik and Menegon, 2015), light heel spot usually present (always absent in all Hyperolius in 

the area except H. mitchelli and H. rubrovermiculatus); no translucent green belly skin (present in H. 

nasutus complex Gunther, 1864, H. pusillus, Cope, 1862); no sharply pointed snout (present in H. 

parkeri); generally rough and granulose skin in both sexes (smooth in most Hyperolius females except H. 

mitchelli). In the phylogenetic analysis (see Genetic results section), H. new sp. is sister to H. 

rubrovermiculatus, with an uncorrected avarage p-distance of 1.8% (1.6–2.0%) and is 7.4% divergent 

from H. mitchelli. Hyperolius new sp. differs from H. rubrovermiculatus with the latter having rough skin 

in males and a brightly coloured red and white/black dorsal patterning in adult females (see pictures of 

live specimens in Figure 2A). However, H. new sp. dorsal colour pattern is very similar to that of H. 

mitchelli except that the intensity of the orange hue reduces as one moves south where Malawi specimens 

are brown in colour. Both H. new sp. and H. mitchelli have a white dorsolateral band and heel bordered 

with black, unlike in H. rubrovermiculatus where the black border is missing. In addition, both males and 

females of H. new sp. and H. mitchelli have a rough dorsal skin unlike in H. rubrovermiculatus where 

only the males have a rough skin. 

Hyperolius new sp. is equal in Snout to Urostlye Length (SUL) to H. mitchelli and H. rubrovermiculatus. 

Their males have an average size (SUL in mm) of 24.5 (n = 54) vs 23.9 (n = 48) and 24.4 (n = 54) while 
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their females measure 28.2 (n = 20) vs 26.2 (n = 14) and 28.0 (n = 22) in H. mitchelli and H. 

rubrovermiculatus respectively. 

In vocalisation H. new sp. has a 3.5 kHz average dominant frequency in advertisement call, compared to 

H. mitchelli (4.4 kHz) and H. rubrovermiculatus (3.2 kHz), and a 0.09 pulse call (0.04 ms H. mitchelli, 

0.03 ms H. rubrovermiculatus). 

Description of holotype — Moderate-sized hyperoliid. Pupil horizontal. Snout blunt, slightly rounded 

(Fig. 8). Canthus rostralis angular, slightly convex on the horizontal plane and slightly concave on the 

vertical plane. The body measurements are as follows; SUL = 25.4 mm, HW = 9.4 mm, HLD = 7.9 mm, 

HLJ = 8.4 mm, NS = 1.4 mm, IN = 2.3 mm, EN = 2.9 mm, EE = 2.9 mm, IO = 5.0 mm, TL = 13.1 mm, 

THL = 13 mm, TFL = 8.3 mm, FLL = 6.6 mm, HL = 7.3 mm, FL = 10.3 mm. Toes have expanded fleshy 

discs, webbing is moderate, almost reaching distal tubercle on the first and third toes and the middle 

tubercle of the fourth toe. The hands have expanded rounded fleshy discs. Webbing just reaching distal 

subarticular tubercle of the outer finger and slightly reduced on all other fingers. Dorsal skin surface is 

smooth while the ventral skin surface strongly granular. 

Colouration in preservative — The holotype has a light brown dorsal colour, with darkly and thickly 

edged white dorsolateral stripes (width 1.3 mm at level of eye, thickening at mid-body to 1.7 mm), ending 

¾ posteriorly on the dorsum. The stripes are followed posteriorly by an irregular blotch on either side 

near the leg insertion. A large spot on the heel (length 3 mm) white with a dark line. Small black 

chromatophores forming irregular spots on mid and anterior parts of dorsum (see Fig. 8). Forelimbs, 

hindlimbs are similar to dorsal colouration. The ventral side is cream-coloured. 

Tadpoles have been described for this species (as H. mitchelli; see Channing and Crapon de Caprona, 

1987). 

Paratypes — Head and body proportions are in close agreement with those of the holotype (Appendix I). 

The colour patterns of specimens is in general close agreement with that of the holotype with variations in 

the thickness of the lateral dorsal stripe (e.g. BMNH 2000.628, BMNH 2000.632), presence of irregular 

posterior blotches (e.g. BMNH 2000.631) or their absence (e.g. BMNH 2000.628). The heel spot is 

generally large (>2.5 mm) and conspicuous. 

Colour patterns of adults in life — Head and dorsum are brown with a creamy white mottling on the back. 

In some individuals, the mottling extends along the side of the animal. The ventral side is generally white 
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with the exception of the asperities in males, which are dark brown to black. Forelimbs and hindlimbs are 

mottled creamy white matching the dorsum, with flashes of orange on the thighs and feet. 

Sexual dimorphism — Females (n = 20, x = 28.2 mm, SD = 3.1) attain larger SUL than the males (n = 54, 

x = 24.5 mm, SD = 1.8) (Supplementary Fig. 1A and B). Males are easily distinguished from females by 

the presence of a gular sac. 

Advertisement call — A single call from Nguru mountains is a short scream similar to the call of H. 

rubrovermiculatus. The mean dominant frequency is 3.5 kHz, mean signal duration of 0.09 s and mean 

duration between notes of 0.61 s (see Supplementary Fig. 3). 

Distribution and conservation — The species is found distributed in Nguru, Nguu, West and East 

Usambara Mountains (including East Usambara lowlands) (See Fig. 7A). The holotype and paratypes 

were collected in the transition zone at the edge of submontane forest (>800 m above sea level) with 

canopy height of less than10 m, ground vegetation layer cover of more than 50% and shrub layer cover 

less 10%. The new species has a restricted distribution and may qualify for vulnerable threat category of 

the IUCN Redlist. 

 

Discussion 

Molecular data based on both mitochondrial (16S, ND2) and a multi-locus alignment (16S, ND2, C-myc, 

POMC) show unambiguously that H. mitchelli is paraphyletic. Two major clades of H. mitchelli were 

recovered in all optimal topologies (one consisting of populations from north-eastern Tanzania and the 

other consisting of populations from central and southern Tanzania and Malawi). The northern clade of H. 

mitchelli clusters with the geographically adjacent population of H. rubrovermiculatus from Shimba Hills 

southeastern Kenya. Our new finding of paraphyly in H. mitchelli warrants a taxonomic solution. 

To resolve the paraphyly of H. mitchelli, two options were available; 1) use the name H. mitchelli 

to describe all subclades including H. rubrovermiculatus and subclade VI of H. mitchelli ( = H. new sp.), 

or, 2), retain both H. mitchelli and H. rubrovermiculatus given they exhibit substantial genetic and minor 

morphological variation and describe the subclade VI of H. mitchelli as a new species (H. new sp.). We 

here argue that option 2 is the optimal solution. Although option 1 retains monophyly of H. mitchelli, 

substantial and consistent genetic (>8%) and morphological variations (colour and skin texture) is shown 
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between H. mitchelli and H. rubrovermiculatus. The later is an isolated and diagnosable evolutionary 

significant unit and therefore deserves taxonomic recognition. Furthermore, previous authors have 

generally supported the view that H. rubrovermiculatus is a distinct species with only one leading 

authority questioning its potential recognition (Channing and Howell, 2006) but later changing their mind 

(Channing et al., 2012). 

We recognize that H. new sp. is only marginally genetically divergent from H. rubrovermiculatus 

(1.8%) but given consistent morphological, ecological, and acoustic differences, is a distinct and 

diagnosable species from H. rubrovermiculatus. Examples of species estimated to be “young” are evident 

in the taxonomic literature for amphibians (e.g. Portilo and Greenbaum, 2014). In contrast to the marginal 

genetic differences shown between H. new sp. and H. rubrovermiculatus, H. new sp. shows large genetic 

differences (>8%) from H. mitchelli however is less easily distinguished morphologically. Only niche 

differences and minor dorsal colour variation are able to distinguish these two species. Conclusively 

though, alternative phylogenetic hypotheses of H. new sp. grouping with H. mitchelli, (reflecting current 

taxonomy) resulted in a tree significantly suboptimal than our best tree. 

Morphological data on the three species discussed in this paper did not reflect the genetic 

divergence between clades. We did not find significant differences in the various body measurements of 

the three species nor did PCA distinguish among them. However, there is a distinct dorsal colour 

variation between H. new sp. and its closest sister species H. rubrovermiculatus. Firstly, in H. new sp. 

there is no sexual dichromatism unlike in H. rubrovermiculatus where males and females have different 

dorsal colours/patterns. Secondly H. new sp. have a black border on the white dorsolateral band and the 

white heel which is absent in H. rubrovermiculatus. Finally, in H. new sp. both male and females have a 

rough dorsum unlike in H. rubrovermiculatus where only the males have a rough dorsum (Schiøtz, 1975; 

Schiøtz, 1999; Harper et al., 2010). Hyperolius new sp. is however very similar to H. mitchelli in terms of 

dorsal colouration. The base colour of the dorsum of H. new sp. is orange while H. mitchelli is brown 

(Fig. 2A). In the literature the dorsum colour of H. mitchelli has been described as varying from orange to 

brown but nowhere has this been associated with a particular region or population (see Schiøtz, 1975; 

Channing and Howell, 2006; Harper et al., 2010). Presence/absence of the white spots on the heel and 

black spots on the body are variable as was also noted by Poynton and Broadley (1987) who considered 

them unreliable for diagnosing H. mitchelli. It is not well understood why H. mitchelli sensu stricto and 

H. new sp. have maintained a similar colour pattern from Malawi through northern Tanzania, despite high 

levels of molecular divergence. This is in contrast to H. new sp. and H. rubrovermiculatus which are less 
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than 200 km apart, less divergent and yet exhibit very different dorsal colour patterns. Patterns of 

colouration variability and cryptic species within amphibians are common, particularly so in Hyperolius 

(see Liedtke et al., 2014). Amphibians are known to be morphologically conservative (Cherry et al., 1978) 

and genetic studies have revealed many cryptic species in taxa that were once thought to be widespread 

and our study adds to this common pattern (Barratt et al., 2017). For example McLeod (2006) discovered 

22 distinct evolutionary lineages in Limnonectes kuhlii Tschudi, 1838 historically thought to be a single 

species. Most of these new species descriptions were backed by additional taxonomic evidence, such as 

genetics, bioacoustics and or ecological niche modeling. 

Evidence for the distinction among H. new sp., H. mitchelli and H. rubrovermiculatus is further 

supported by modelling their distributions. Species distribution models provide evidence of a potential 

divergence of geographical distribution between H. mitchelli and H. new sp. The differences between the 

mainly submontane H. new sp. and the strictly lowland H. rubrovermiculatus coupled with colour 

differences could represent an example of peripatric speciation similar to that noted in the H. spinigularis 

complex (Lawson et al., 2015). An evaluation of population genetic patterns will be required to provide 

critical evidence towards such a hypothesis. 

Preliminary inferences on acoustic differences among species were outlined in this paper. All the 

three species call from vegetation around water bodies (Schiøtz, 1999; Channing and Howell, 2006) with 

H. new sp., H. mitchelli and H. rubrovermiculatus possible distinction based on their call properties. 

Schiøtz (1975; 1999) reported the dominant frequency and call duration of H. mitchelli from East 

Usambara (now H. new sp.) to be 3500 cps and 0.05 s respectively while Channing and Howell (2006) 

described the call of H. mitchelli (plus H. rubrovermiculatus) as having a dominant frequency of 3.6 kHz 

and about 0.1 s long (compare this study for H. new sp. 3.5 kHz and 0.09 s respectively). For H. 

rubrovermiculatus, Schiøtz (1975) reported dominant frequency and call duration 3000–3500 cps and 

0.05 s compared to 3.16 kHz and 0.03 s in our study. Further, Rödder and Böhme (2009) reported the 

dominant frequency and call duration of H. mitchelli from Uluguru (Subclade III) 1.68–4.63 kHz and 

0.21–0.42 s respectively. In this study, we recorded 4.48–5.14 kHz and 0.03–0.04 s for H. mitchelli 

subclades I–III which are comparable to their study. From these analyses, H. mitchelli seems to have 

higher dominant frequency while H. rubrovermiculatus has the lowest. Further, the call duration for H. 

new sp. appears to be longer than those of H mitchelli and H. rubrovermiculatus. Our call property 

results, however, should be interpreted with caution since they represent recordings from single 

specimens per locality and in addition data on prevailing weather conditions were not recorded (Giacoma 
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and Castellano, 2001). Further studies of acoustic variation in these species across their geographical 

distributions are necessary. 

Hyperolius mitchelli has been known as a wide-ranging frog from northeastern Tanzania all the 

way to Malawi, with little indication that cryptic species might exist. Beyond the proposed description of 

H. new sp., H. mitchelli sensu stricto is also shown to have high geographic variability, with the average 

distance among populations over 2% (Table 1). This genetic difference is not reflected in our limited 

sampling of morphological variation among populations. The potential description of these species 

requires further sampling of these populations which allow a better estimation of morphological variation. 

Based on molecular clock estimations, the divergence between the H. mitchelli clade and the H. 

new sp./H. rubrovermiculatus clade was during the Miocene 13.2 mya (11.1–15.5 95% HPD), separating 

central/southern Tanzania and Malawi populations from those of the northeastern Tanzania and Shimba 

Hills. Similar results have been recorded in other taxa covering these ranges, including amphibians 

(Blackburn and Measey, 2009; Lawson, 2010) and birds (Bowie et al., 2004). Numerous geographical 

changes have occurred in East Africa, including volcanism (Griffiths, 1993), habitat changes (deMenocal, 

1995; Lovett, 1993) and riverine barrier changes (Griffiths, 1993), which could account for separating 

populations. Within H. mitchelli sensu stricto (southern clade), divergence between subclade I and 

subclade II (4.5–6.4 mya 95% HPD) is comparable with that between H. new sp. and H. 

rubrovermiculatus (2.3–3.7 mya 95% HPD). Most of divergences within the H. new sp., H. 

rubrovermiculatus and H. mitchelli mainly occurred recently, from 2.5 mya onwards. All divergence 

occurred prior to the Pleistocene period commonly associated with many species divergences within the 

region (deMenocal, 1995; Bryja et al., 2014). 

Hyperolius rubrovermiculatus is listed as Endangered (EN) by the IUCN Redlist of threatened 

species, while H. mitchelli is listed as of least concern (LC). With the proposed description of the 

subclade VI of the original H. mitchelli as a new species (H. new sp.), we emphasize the need to re-

evaluate some of the wide-ranging species in this region. The newly described species may qualify for 

listing in IUCN Redlist threat categories and targeted conservation initiative for its conservation may be 

priority.  



 

71 
 

Acknowledgements 

Special thanks to TAWIRI, COSTECH, Tanzanian Wildlife and Forestry departments for research 

permits (RCA 2006, 2007-72-Na-2006-19, RCA 2001-272; RCA 2007-153, RCA 2009-306-NA-2009-

201, 2011-239-NA-2011-82, 2007-54-ER-2006-19), Museums of Malawi for Malawian permits, and the 

Kenya Wildlife Service for research permit (KWS/BRM/5001). Beryl A. Bwong’s PhD is funded by 

Stipendienkommission für Nachwuchskräfte, Basel. She was also funded by Museum of Comparative 

Zoology Ernst Mayr Travel Grants in Animal Systematics to visit the herpetology department at Harvard 

University. She is grateful to Breda Zimkus, Jose Rosado, Jim Hanken and Frank Tillack for facilitating 

her work on the type specimens at the MCZ and ZMB. Simon Loader was funded to conduct surveys and 

lab work by the following institutes: the Swiss National Science Foundation (No. 31003A-133067 to 

SPL), Swiss Academy of Sciences, Freiwillige Akademische Gesellschaft Basel, The Centre for African 

Studies Basel, The University of Basel Kick Start Grant, University of Chicago, and the Field Museum of 

Natural History Africa Council. A PhD doctoral scholarship from the Humer Foundation to Christopher 

Barratt (Humer-Stiftung zur Förderung des wissenschaftlichen Nachwuchses), a field work grant from the 

Freiwillige Akademische Gesellschaft Basel, and a ConGenOmics grant from the European Science 

Foundation (No. 6720 to CB) helped towards conducting work at the NHM. Patrick Malonza and Joash 

Nyamache fieldwork in Shimba Hills and its environs was funded by Base Titanium Ltd, Kwale. Patrick 

Campbell and Mark Wilkinson are thanked for assistance in field-work conducted in Kenya in 2013 and 

Elena Tonelli in Tanzania in 2014. Mark Wilkinson, David Gower, Jeff Streicher, Patrick Campbell 

(BMNH); Daniel Klingberg Johansson (ZMUK); Alan Resetar, Bill Stanley (FMNH); Jose Rosado 

(MCZ); and Jens Vindum (CAS) are all thanked for assisting in loaning of specimens or access to 

institutional facilities for making measures of specimens. James Harvey is greatly thanked for providing 

the photo of H. rubrovermiculatus. Sponsors were not involved in collection, analysis, or interpretation of 

data, or writing and submitting this manuscript. 

 

Supplementary material 

Fig. S1. (A) Box plot of snout to urostyle length (SUL) of males and (B) females samples of H. mitchelli 

subclades I-III, H. mitchelli, subclade VI and H. rubrovermiculatus. 

Fig. S2 (A) PCA of males and (B) females of H. mitchelli subclades VI (blue), H. mitchelli subclade I-III 
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(red) and H. rubrovermiculatus (green) showing lack of differentiation among the samples. 

Fig. S3. Oscillograms and spectrograms showing call properties of H. mitchelli subclades I, II, III, VI and 

H. rubrovermiculatus (subclade V). 

Table S1. Substitution models from jModelTest v2.1.6 used in the multi locus analysis 1 and 2 

respectively. 

Table S2. Topology test results of alternative phylogenetic relationships based (A) 16S and (B) Multi-

locus alignment. 16S: Optimal – optimal tree, Constraint 1 – H. mitchelli subclades I-III + subclades IV 

and VI. Constraint 2 – subclades VI + subclades I-III. Multi-gene dataset (ND2, C-myc, POMC): Optimal 

– optimal tree, Constraint1 – subclade VI + subclades I-III. obs – the observed log-likelihood difference, 

bp – bootstrap probability, np – bootstrap probability calculated from multiscale bootstrap, pp = Bayesian 

posterior probability. AU – Approximately Unbiased test, KH, Kishino-Hasegawa test, SH – Shimodaira-

Hasegawa test, WKH – Weighted Kishino-Hasegawa test, WSH – Weighted Shimodaira-Hasegawa test. 

Table S3. Summary of call properties for H. mitchelli from subclade I = Makangala forest, subclade II = 

Udzungwa Mountains, subclade III = Uluguru Mountains, subclade VI from Nguru Mountains and H. 

rubrovermiculatus from Shimba Hills. 

Table S4. Factor loadings and standard deviation of the first four principal components (PC) of the 19 

bioclim variables used in SDM. 
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APPENDIX 

 

Appendix I. List of specimens their museum numbers, locality and morphometric data in mm. 

Species ID Lat Long Sex SUL HW HLD HLD NS IN EN EE IO TL THL TFL FL FLL HL 

H. new sp. BM2002.628 -4.910 38.664 M 25.5 9.1 8 8.8 1.4 2.3 3 3 5.1 12.3 12.5 8 9.6 5.8 6.3 

H. new sp. BM2002.629 -4.910 38.664 M 23.7 8.4 7 8.3 1.3 2 2.6 2.9 4.9 13.1 12.9 8.5 6.4 6.7 6.5 

H. new sp. BM2002.630 -4.910 38.664 F 25.4 9.4 7.9 8.4 1.4 2.3 2.9 2.9 5 13.1 13 8.3 10.3 6.6 7.3 

H. new sp. BM2002.631 -4.910 38.664 F 21.8 7.8 7.2 7.8 1.4 2.2 2.3 2.9 4.8 10.4 10.5 6.8 8.4 5.4 5.8 

H. new sp. BM2002.632 -4.910 38.664 F 25.1 8.8 8.2 8.9 1.5 2.4 2.9 3.1 5.4 12.2 13.1 7.9 10.1 6.1 5.6 

H. new sp. BM2000.758 -4.300 38.683 F 24.9 8.3 7.5 8 1.4 2.3 2.6 2.6 5.1 13.2 12.7 7.5 10.4 6.1 6.6 

H. new sp. BM1994.606 -5.583 38.645 F 27.3 9.3 8 9 1.8 2.5 2.8 3.4 4.8 14.6 13.4 9.4 11.4 6.5 6.7 

H. new sp. BM2002.514 -4.983 38.788 F 24 8.7 7.7 8.6 1.3 2.2 2.5 2.8 5.1 12.3 11.8 7.4 9.5 5.5 6.9 

H. new sp. CAS 169301 -5.144 38.520 M 25.6 8.8 7.6 8.9 1 2.3 2.4 5 3.3 12 10.8 7.5 10.3 5.6 7 

H. new sp. CAS 173002 -4.826 38.788 F 26.2 8.7 8.1 9.6 1.1 2.3 2.2 5.1 3.5 12.5 12.5 8.4 10.5 6.1 6.7 

H. new sp. FMNH274303 -5.113 38.753 M 24.7 8.4 7.9 9.6 1.1 1.9 2.5 3.4 4.9 11.7 10.2 7.2 10.1 5.1 6.6 

H. new sp. FMNH274304 -5.113 38.753 M 23.2 7.1 6.9 7.8 1 1.9 2.2 2.5 4.1 11.2 9.5 6.4 9.3 4.4 6.7 

H. new sp. FMNH274305 -5.113 38.753 M 24.9 7.9 7.4 8.7 1 1.8 2.4 3.3 4.7 11.3 10.6 5.6 9.8 4.9 6 

H. new sp. FMNH274306 -5.113 38.753 F 30.2 10.3 8.5 9.7 1.6 2.2 2.8 3.8 5.7 13.3 12.4 8.3 11.9 5.7 7.7 

H. new sp. FMNH274307 -5.113 38.753 M 24.1 7.9 7.1 8.5 0.9 1.7 2.5 3.2 4.6 12.1 9.7 7.1 9.4 4.7 6.4 
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H. new sp. FMNH274327 -4.826 38.788 F 28.5 9.7 8.7 9.8 1.3 2.2 2.9 3.7 5.5 12.8 11.3 7.8 11 5.4 7 

H. new sp. FMNH274328 -4.826 38.788 F 28.2 9.4 7.8 9.9 1.3 2.2 2.7 3.4 5.5 13.3 11.8 7.9 11.1 5.8 7.3 

H. new sp. FMNH274329 -4.826 38.788 M 23.3 9.1 7.8 8.6 1.1 1.9 2.6 3.7 5.2 12.2 11.9 7.3 10.8 4.2 7.5 

H. new sp. FMNH274330 -4.826 38.788 M 23.5 9.1 7.3 9.2 1.2 2.2 2.5 3.1 4.8 12.1 11.2 7.4 10.2 5.1 7.2 

H. new sp. FMNH274331 -4.826 38.788 M 24.2 8.4 7.2 8.6 1.1 2.1 2.5 3.5 4.6 11.8 9.6 7.6 9.6 4.8 6.4 

H. new sp. FMNH274411 -5.113 38.753 M 23.2 7.7 6.5 7.9 0.9 2.1 2.4 2.9 4.1 11.1 10.2 6.1 8.6 4 6.1 

H. new sp. FMNH275025 -5.054 38.378 M 26.2 8.7 7.1 8.8 0.9 2.3 2.9 3 5.2 11.9 10.5 6.4 9.4 5.4 6.3 

H. new sp. FMNH275026 -5.054 38.378 M 23.5 8.2 7.7 8.8 1.1 2.1 2.6 3 4.7 10.5 8.6 5.8 8.3 5.1 6.6 

H. new sp. FMNH275027 -5.054 38.378 M 26.9 8.4 7.3 9 1.3 2.3 2.5 3.6 5.1 11.3 10.2 6.6 9.2 5 6.4 

H. new sp. FMNH275028 -5.054 38.378 M 23.8 7.7 7.7 8.6 1 2.2 2.3 2.6 4.4 11.1 9.9 6.6 9.6 4.8 6.5 

H. new sp. FMNH275029 -5.054 38.378 M 23.5 7.2 6.7 8.3 0.9 1.8 2.1 2.9 4.1 9.8 8.5 4.9 7.7 4.8 5.1 

H. new sp. MTSN 9523 -4.981 38.758 M 26.1 8.5 7.1 7.7 1.3 1.6 2.6 3.1 4.5 13.2 12.7 7.9 11.2 6.6 6.6 

H. new sp. MTSN 9549 -4.976 38.762 M 24 8 7.1 7.6 1.4 1.6 2.2 3.1 4.6 12.5 12.4 7.3 7.3 6 7.3 

H. new sp. MTSN7520 -5.533 37.001 F 30.5 10.5 8.7 11 1.4 2.6 2.9 3.8 6.5 14.6 12.7 8.7 13.2 5.9 7.8 

H. new sp. MTSN5160 -5.480 37.475 F 30.1 9.6 8.8 10.1 1.4 2.4 2.9 3.7 5.8 13.5 11 7.2 10.6 5.8 7.4 

H. new sp. MTSN7519 -5.533 37.001 F 25.3 9 8.2 9.4 1.2 2.4 2.7 3 5.6 19.9 10.8 7.4 11.5 5.6 7.2 

H. new sp. MTSN5159 -5.480 37.475 M 25.1 7.9 7.5 8.8 1.3 2.2 2.5 3.2 5.1 11.8 10.3 6.4 10.5 5.4 6.5 

H. new sp. MTSN7518 -5.533 37.001 F 25 8.8 8.2 9.4 1.2 2.1 2.5 3.1 5.1 12.9 11 7.2 10.1 5.2 5.7 

H. new sp. MTSN8277 -6.030 37.526 M 25.5 8.5 7.9 9.7 1 2.2 2.3 3.4 5.2 12.7 10.2 6.4 9.5 4.5 6.3 

H. new sp. MTSN5161 -5.480 37.475 F 30.8 10.5 8.9 10.7 1.3 2.5 3.2 3.8 6.1 15.2 12.4 8.8 12.4 6.3 7.4 
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H. new sp. MW7210 -6.066 37.498 F 28 9.6 8.4 9.8 1.4 2.6 2.7 2.9 5.6 13.7 12.8 8.5 10.5 6.1 7.1 

H. new sp. MW7208 -6.066 37.498 M 23.9 8 7.5 9.3 1.3 2.3 2.6 2.8 5 11.8 11.6 7.5 9.9 5.8 6.7 

H. new sp. MW7203 -6.066 37.498 M 22.8 7.8 7.3 8.6 1.2 2.3 2.6 2.4 4.9 11.8 10.9 7.6 8.8 5.6 6.1 

H. new sp. MW7205 -6.066 37.498 M 25.2 8.5 7.7 9 1.1 2.3 2.6 2.9 5.1 13.2 12 8.3 10.5 6 6.8 

H. new sp. ZMUCR077816 -4.333 37.8 M 22.7 7.6 6.7 7.9 1.2 2.1 2.4 3.3 4.8 10.7 9.1 5.5 8.8 4.4 5.7 

H. new sp. ZMUCR079263 -5.117 38.567 F 32.2 11.8 9.6 11.3 2.1 2.7 3.2 4.4 6.8 15.5 13.8 8.8 13.1 6.0 9.4 

H. new sp. ZMUCR077586 -5.117 38.567 F 26.6 8.8 8.5 9.3 1.1 2.7 2.6 3.7 4.8 12.7 11.4 6.4 9.7 5.3 7.1 

H. new sp. ZMUCR077587 -5.117 38.567 F 31.9 11.2 9.9 10.9 1.5 2.2 2.8 4.1 6.3 16.3 15 9.2 11.8 5.9 9 

H. new sp. ZMUCR079373 -5.117 38.567 M 24.4 8.1 7.2 8.5 1.1 2.1 2.7 3.5 4.9 12.1 9 6.6 10.2 5 6.9 

H. new sp. ZMUCR079372 -5.117 38.567 M 25.2 8.9 7.9 9.2 1.2 2.2 2.5 3.9 4.9 11.4 9.9 6.1 8.8 4.5 6.6 

H. new sp. ZMUCR079371 -5.117 38.567 M 26.6 9.2 7.7 9.2 1.4 2.2 2.6 3.6 5.5 13.2 10.7 7.9 10 5.5 7.5 

H. new sp. ZMUCR77588 -5.117 38.567 M 27.5 9.8 7.9 9.5 1.4 2.2 2.6 2.8 5.2 13.3 12.2 7.6 11.1 5.5 7.9 

H. new sp. ZMUCR077646 -5.117 38.567 M 28.8 10 9.4 10.4 1.1 2.3 2.4 3.9 6.3 13.9 12.3 8.1 10.8 5.6 7.3 

H. new sp. ZMUCR076822 -5.117 38.567 M 27.7 9 7.9 10.1 1.1 2.2 2.7 3.7 5.7 12.9 11.1 7.5 10.6 5.2 7.2 

H. new sp. ZMUCR771485 -5.117 38.567 M 24.6 8.1 7.1 9 1.2 2.1 2.2 3.4 4.9 12.1 10.5 7 10.2 4.9 7.1 

H. new sp. ZMUCR076827 -5.117 38.567 M 25.3 8.4 7.1 8.8 1 1.9 2.4 3.6 5.6 12.1 10.5 7.2 10.6 5.3 7.1 

H. new sp. ZMUCR076833 -5.117 38.567 M 23.4 7.7 6.7 8.5 1.1 2.1 2.5 3.4 5.1 11.4 9.8 6.5 9.1 4.5 6.5 

H. new sp. ZMUCR076824 -5.117 38.567 F 31.5 10.6 9.7 11.7 1.2 2.4 3.2 3.7 6.6 14.3 12.2 8.7 12.6 6.3 7.9 

H. new sp. ZMUCR076823 -5.117 38.567 M 26.1 9.2 8.2 9.4 1.1 2.2 3 3.5 5.6 11.9 10.7 7.2 9.6 4.9 6.6 

H. new sp. ZMUCR076831 -5.117 38.567 M 22.2 7.7 6.3 8.8 1 1.9 2.6 3.6 5.2 11.1 9.9 6.4 9.4 4.5 6.2 
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H. new sp. ZMUCR076830 -5.117 38.567 M 25.9 8.3 7.5 9.3 1.2 2.3 2.7 3.7 5.2 12.9 11.1 7.9 10.5 4.7 7.5 

H. new sp. ZMUCR076828 -5.117 38.567 M 22.3 7.2 7.6 8.3 1 2.2 2.5 3.1 4.6 11 9.2 6.9 8.3 4.3 6.5 

H. new sp. ZMUCR076835 -5.117 38.567 M 24.4 8.4 7.3 8.9 1.1 2.1 2.5 3.5 5.1 12 9.5 7.1 9.9 5.1 6.6 

H. new sp. ZMUCR076826 -5.117 38.567 M 24.4 8.3 7.8 9 1 2.1 2.8 3.3 5.3 12 9.5 7.7 9.6 5.3 6.7 

H. new sp. ZMUCR076829 -5.117 38.567 M 24.4 8.3 7.6 9.2 1 2.2 2.8 3.5 5.6 12.5 10.4 7.7 10.3 5.6 7.3 

H. new sp. ZMUCR771487 -5.117 38.567 M 24.6 8.6 7.4 9 1.2 2.3 3 3.8 5.2 11.6 10.2 7.4 9 4.5 6.5 

H. new sp. ZMUCR076821 -5.117 38.567 M 25.5 8.9 7.6 9 1.1 2.2 2.5 3.5 5.4 12.6 10.8 7.5 10.6 5.4 6.6 

H. new sp. ZMUCR077647 -5.117 38.567 M 23.5 7.7 6.1 8.1 0.9 1.6 2.7 2.8 4.4 11.3 9.1 6.6 9.9 3.8 6.9 

H. new sp. ZMUCR076834 -5.117 38.567 M 20.5 7.5 6.1 7.4 0.9 1.8 2 2.7 4.7 9.9 8 5.6 8.2 4.1 6.5 

H. new sp. ZMUCR076825 -5.117 38.567 M 22.4 7.7 6.9 7.7 1.2 2.3 2.1 3.2 4.4 10.8 9.6 6.7 8.7 4.6 6.1 

H. new sp. ZMUCR771486 -5.117 38.567 M 23.6 7.7 6.9 8.7 1.1 1.7 2.3 3 4.7 12.1 10.5 7.2 9.3 4.9 6.6 

H. new sp. ZMUCR076814 -5.117 38.567 M 26.7 8.8 7.7 9.5 1.1 2.4 2.7 3.4 5.5 12.6 11.1 7.4 10.2 5.6 7.8 

H. new sp. ZMUCR076819 -5.117 38.567 F 32.3 10.6 10.3 12 1.2 2.6 3.2 4.7 7.2 14.9 12.7 8.4 13.4 6.9 8.3 

H. new sp. ZMUCR074180 -5.117 38.567 M 26.2 7.8 7.8 8.8 1.1 2.2 2.5 3.3 5.1 12.1 11.2 7.4 10.3 5 7.4 

H. new sp. ZMUCR076832 -5.117 38.567 M 22.3 7.9 6.9 8.5 0.7 1.9 2.7 3.2 4.9 11.3 10 6.2 9.4 4.6 6.1 

H. new sp. ZMUCR076820 -5.117 38.567 M 25.3 8.3 7.7 9 1.2 2.2 2.4 3.6 5.6 12.4 10.4 7.4 10.5 5.4 6.2 

H. new sp. ZMUCR073872 -5.117 38.567 M 23.7 7.9 7.7 9.5 1 2.2 2.4 3.1 5.3 11.6 10.1 7.5 9.4 4.8 7.4 

H. new sp. ZMUCR073873 -5.091 38.633 M 28.3 8.5 8.3 9.6 1.2 2.4 2.9 3.5 5.7 14.1 11.5 8.3 11.1 5.5 7.8 

H. new sp. SL1952 -5.034 38.924 M 20.4 7.8 6.8 7.2 1.1 1.4 1.7 3.2 3.4 10.3 10.3 6.2 8.4 3.6 5.7 

H. new sp. SL1953 -5.034 38.924 M 19.8 7.2 5.9 6.6 1 1.6 1.5 2.7 1.8 10.2 10.2 6.6 8 3.8 5.2 
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H. new sp. MCZ A149046 -5.076 38.369 M 23.8 7.8 6.8 8.8 1.1 2.1 2.2 3.1 5.3 11.7 9.9 7 10.1 4.4 5 

H. new sp. MCZ A149045 -5.076 38.369 M 23.8 8.3 6.3 8.6 1.1 2.4 2.3 3.1 5.8 11.8 9.9 6.9 10.2 5.2 6.5 

H. mitchelli BMNH1980.183 -5.58 39.15 F 26.4 9.3 7.5 9.3 1.3 2.5 2.8 3.1 5.2 12.7 12.4 7.9 10.5 6.2 6.9 

H. mitchelli BMNH1980.184 -5.58 39.15 M 22.9 7.6 6.7 8.2 1.2 2.3 2.6 2.6 4.6 10.8 10.8 6.7 8.5 4.8 5.6 

H. mitchelli FMNH274979 -11.698 33.950 M 22.2 7.2 6.6 7.6 0.8 1.6 2.2 2.5 4.4 10.3 8.9 5.6 8.8 4.4 5.1 

H. mitchelli FMNH274982 -11.698 33.950 M 21.3 6.6 5.8 6.8 0.8 1.8 1.6 3.7 5.4 13.8 12.2 8.1 11.6 5.9 7.9 

H. mitchelli FMNH274980 -11.698 33.950 M 23.7 7.2 7.1 7.7 1.1 2.2 2.5 2.7 4.4 10.6 9.2 5.5 9.1 4.3 5.7 

H. mitchelli FMNH274985 -11.698 33.950 M 22.8 7.2 6.6 7.3 0.9 2 1.9 2.4 4.8 11.2 8.4 5.5 8.8 5.2 5.5 

H. mitchelli FMNH274995 -11.698 33.950 M 22.8 7.6 6.6 7.5 0.8 1.7 2.2 2.4 3.8 10.2 8.6 5.9 8.3 4.8 5.3 

H. mitchelli MCZ A27272 -14.30 35.000 F 27.4 8.2 8.3 10.4 1.5 2.4 3 3.8 6.2 12.2 11.3 7.8 11.3 4.9 7.2 

H. mitchelli MCZ A27273 -14.300 35.000 M 22.7 7.8 6.6 8.7 0.9 2.2 1.9 3.4 5.1 11.1 9.1 6.5 8.9 4.4 5.8 

H. mitchelli FMNH274989 -11.984 34.046 M 22.7 6.9 6.2 7.8 1 1.8 2.1 2.5 4.4 10.5 9.6 5.8 8.8 4.6 6 

H. mitchelli FMNH274990 -11.984 34.046 M 25.2 7.5 7.4 8.5 1 2.2 2.4 3.1 4.9 11.2 10.6 7.1 9.2 5.4 6.2 

H. mitchelli FMNH274992 -11.984 34.046 F 28.8 8.9 7.6 9.2 1.2 2.2 2.6 3.6 4.8 11.9 10.5 7.6 11.1 5.9 6.9 

H. mitchelli FMNH274993 -11.984 34.046 M 25.8 8.3 7.7 9.1 1.1 2.1 2.7 3.2 4.5 12.2 11.1 7.2 9.8 5.1 6.7 

H. mitchelli FMNH274996 -11.984 34.046 M 25.5 7.8 6.6 8.3 1 2.2 2.6 2.8 4.4 11.4 9.2 6.1 9.2 4.7 5.9 

H. mitchelli FMNH274391 -7.842 36.878 M 22.9 7.4 6.8 7.9 1 1.8 2.1 2.6 4.4 11 9.2 6.4 9.5 4.6 6.4 

H. mitchelli FMNH274392 -7.842 36.878 M 25.5 8.1 7.9 8.9 0.9 2.2 2.5 3.2 5.4 12.3 11.1 7.5 10.3 4.6 6.7 

H. mitchelli FMNH275039 -7.029 37.627 M 28.4 9.7 8.6 9.8 1.1 2.2 2.8 3.8 5.3 13.7 13.3 8.4 11.1 5.7 8 

H. mitchelli FMNH275030 -6.941 37.719 M 28.5 9.7 8.3 9.8 1.1 2.1 2.7 3.3 5.2 12.7 11.9 7.8 11.6 5.7 6.6 
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H. mitchelli FMNH275032 -6.941 37.719 M 27.8 9.7 8.6 9.6 1.2 2.1 3 3.3 5.4 12.1 11.8 8.5 11.4 6.4 7.7 

H. mitchelli FMNH275034 -6.941 37.719 M 27.9 9.4 8.1 9.6 1.3 1.9 2.7 3.4 5.3 12.3 11.6 7.6 11.6 5.6 6.5 

H. mitchelli FMNH275038 -6.941 37.720 M 27.1 8.7 7.7 9.1 1.1 2.1 2.7 3.8 4.6 13.2 12.7 7.5 10.2 5.8 6.8 

H. mitchelli FMNH275040 -7.029 37.627 M 26.6 9.2 7.9 9.8 1.1 2.2 2.7 3.2 5.4 13 11.7 7.2 11.4 5.4 7.8 

H. mitchelli FMNH275044 -6.941 37.719 M 27.2 8.8 7.8 9.6 1.3 2.1 2.6 3.1 5.2 12.5 11.5 7.8 10.6 5.5 6.9 

H. mitchelli FMNH275041 -7.029 37.627 M 26.7 9.1 8.4 9.4 1.1 2.2 2.7 3.4 5.1 12.1 11.3 6.8 9.4 5 7.4 

H. mitchelli MCZ A17162 -9.550 33.950 F 23.9 7.8 7 8.8 1.4 2.2 2.3 2.8 4.9 11.5 10.2 6.9 8.8 5.4 5.8 

H. mitchelli MTSN 7675 -7.223 38.013 F 29.1 9.7 8 9 1.2 2.2 2 3.6 4.9 14.6 14.6 9.1 11.2 6 7.3 

H. mitchelli MTSN 7676 -7.223 38.013 M 28.1 8.7 8.3 9 1.3 2 2.3 3.7 4.6 13.2 13.4 8.3 10.9 5.8 7.9 

H. mitchelli MTSN 7682 -7.223 38.013 M 27.4 9.1 8.2 8.8 1.1 2 2.3 3.4 4.8 14 14 9 11.6 6.3 7.8 

H. mitchelli MTSN 7683 -7.223 38.013 M 24.6 8.2 7.4 7.9 1.3 1.7 2.1 3.3 4.6 13.8 14 8.3 11.4 6.7 7.1 

H. mitchelli MTSN 7707 -7.025 37.880 M 19 4.9 4 4.6 0.8 1.9 1.5 2.2 2.1 7.6 7.5 5 7.2 3.9 4.4 

H. mitchelli MTSN 7709 -7.025 37.880 M 26 8.3 7.8 9.1 1.3 1.9 2.3 3.6 4.4 12.2 12.3 8 10.8 5.6 6.5 

H. mitchelli MTSN5756 -8.398 35.979 F 26.6 8.7 8.1 10.1 1.1 2.4 2.9 3.1 5.6 12.6 10.2 8.3 10.6 5.4 7.6 

H. mitchelli MTSN5764 -8.398 35.979 M 26.3 8.4 7.9 9.5 1.3 2.4 2.9 3.6 5.5 12.4 10.1 6.7 9.6 5.2 6.9 

H. mitchelli ZMUCR077155 -8.5 36.333 F 24.6 8 7.5 8.8 1.2 2.2 2.7 3.2 4.8 11.6 9.7 6.7 9.9 4.6 6.9 

H. mitchelli ZMUCR77157 -8.5 36.333 M 23.5 7.9 6.9 9.1 1.1 1.8 2.4 3.2 4.1 11.3 9.7 6.1 9.4 4.4 6.1 

H. mitchelli ZMUCR77159 -8.5 36.333 F 26.7 9.1 7.5 9.8 1.5 2.1 2.7 3.3 5.5 12.6 10.7 7.2 10.6 5.1 6.6 

H. mitchelli ZMUCR77160 -8.5 36.333 M 21.6 7.4 6.9 7.9 1.2 2.1 2.2 2.7 4.6 11 9.4 5.9 8.5 4.5 6.6 

H. mitchelli ZMUCR77171 -8.5 36.333 M 20.7 7.2 6.8 8.1 1.2 2.1 2.2 2.7 4.5 10.2 9.2 5.3 8.1 4.1 5.5 
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H. mitchelli ZMUCR77172 -8.5 36.333 M 21.4 6.7 6.7 7.5 0.8 1.8 2 2.9 4.6 10.5 9.6 5.4 8.3 4.4 5.6 

H. mitchelli ZMUCR77176 -8.5 36.333 M 22.2 7 7.1 8.3 0.8 1.8 2 3.2 4.2 10.3 9.2 6.2 6.8 4.2 5.8 

H. mitchelli ZMUCR77166 -8.5 36.333 M 24.9 8.6 7.6 8.8 1.3 2.1 2.5 3.1 4.9 11.9 10.5 6.7 9.8 4.8 6.5 

H. mitchelli SL1522 -9.994 39.388 M 21.8 7.9 7.5 8 1.3 1.9 2 2.6 3.8 9.9 10.2 6 8.7 5.3 5.6 

H. mitchelli SL1523 -9.994 39.388 F 23.8 9.2 7.3 8.7 1.5 1.7 2.4 2.9 4.3 11.2 11 6.6 9.9 4.3 5.5 

H. mitchelli SL1554 -9.994 39.388 F 23.2 8.4 7.2 8.2 1.3 2 2.9 3.7 4.7 11.8 11.6 7.2 9.3 5.2 6.5 

H. mitchelli SL1555 -9.994 39.388 F 22.9 8.8 7.4 8.8 1.3 2 2.3 3.3 4.4 12 11.9 7 9.5 5.1 5.9 

H. mitchelli SL1560 -9.994 39.388 M 19.9 7.4 5.9 7.3 1 1.8 2.2 2.8 4 9.9 9.8 6.3 7.8 4.2 5.3 

H. mitchelli SL1562 -9.994 39.388 M 19.2 7.3 6.1 7.9 1.3 1.6 1.9 3.2 4.1 10.6 10.5 7 9 5 6.4 

H. mitchelli SL1588 -9.895 39.374 F 23.6 9.6 6.6 7.6 1.4 1.4 2 3 4.8 10.6 10.8 7 8.2 5.6 6.2 

H. mitchelli SL1589 -9.895 39.374 M 24.2 8.8 7.2 7.8 1.4 2 2.1 3.4 4 12 12.3 7.7 10.5 6.8 7.3 

H. mitchelli SL1601 -9.895 39.374 M 23 9.4 6.8 7.6 1.3 1.8 2.2 3 4.3 10.3 10.5 6.6 8.5 5.7 6.6 

H. mitchelli SL1602 -9.895 39.374 M 23.8 8.9 6.7 8 1.3 1.6 1.9 2.7 3.9 11.6 11.4 7.4 8.4 5 6.3 

H. mitchelli SL1628 -9.111 39.238 M 21 8.1 7.2 7.5 1.2 2 2.2 2.7 3.9 12.2 12 7.4 8.6 5 6.3 

H. mitchelli SL1635 -9.495 39.292 M 25 9.3 7 7.8 1.6 2.5 2.3 3.3 4.5 12.4 12.3 8 10.3 6.2 6.4 

H. mitchelli SL1636 -9.495 39.292 M 23.2 8.6 7.2 8.1 1.3 1.9 1.7 3.5 3.3 11.8 11.9 7 8.3 5.3 6.6 

H. mitchelli SL1638 -9.495 39.292 M 22.1 7.5 6.9 7.3 1.2 1.6 2 2.7 3.2 10.8 10.6 6.6 6.9 4.8 5.7 

H. mitchelli SL1674 -8.304 38.903 M 24.8 8.6 7.5 8.2 1.4 1.8 2.3 3 4.1 13 13 8.3 10.2 6 7 

H. mitchelli SL1675 -8.304 38.903 M 21.9 8.7 7.6 8.2 1.4 1.5 2 3.3 4.6 12.7 12.7 7.9 10.1 5.6 6.5 

H. mitchelli SL1765 -8.349 36.228 M 20.7 7.3 6.1 7 1.1 1.2 1.8 2.7 3.9 10.4 10.3 6 8.4 3.4 5.6 
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H. mitchelli BM1920.5.10.14 -6.941 37.719 F 30.5 10 9 10.4 1.9 2.5 3.3 3.1 5.6 13.9 14.3 9 11.2 6.4 7.4 

H. mitchelli BM1920.5.10.15 -6.941 37.719 F 28.8 9.6 8.7 9.4 1.8 2.7 3 3 5.2 13.4 13.4 8.5 12 6.7 7.9 

H. rubrovermiculatus NMK A5762/1 -4.375 39.563 M 22.5 8.3 6.3 8.5 1.2 2 2.2 3.1 4.2 12 9.4 7.5 8 4.9 5.8 

H. rubrovermiculatus NMK A5762/3 -4.375 39.563 M 24.3 8.8 6.9 10.3 1.1 1.9 2.2 2.7 4.2 11.6 10.7 6.8 8 4.6 5.2 

H. rubrovermiculatus NMK A5801/5 -4.238 39.396 F 29.2 10.6 8.5 9.9 1 1.9 2.7 3 4.2 13.1 10.2 8.8 8.8 6.9 6.1 

H. rubrovermiculatus NMK A5801/5 -4.238 39.396 M 22.7 8.4 7 8.3 11 1.7 2.2 3.6 4.4 11.6 10.4 6.6 8.2 4.2 5.7 

H. rubrovermiculatus NMK A5801/4 -4.238 39.396 M 29.6 11.3 8.1 9.8 1.3 2.8 2.5 3.3 5.9 16.1 14.4 13.4 12.7 6.5 5.5 

H. rubrovermiculatus NMK A5801/2 -4.238 39.396 M 23.7 8.8 6.1 8.6 0.8 2 2.4 3 5 12.9 10.2 7.5 8.6 6 4.9 

H. rubrovermiculatus NMK A5801/1 -4.238 39.396 F 30.4 11.2 9.1 11.7 1.2 2.2 3 3.3 5.6 15.7 13.4 9.1 9.8 7.1 7.4 

H. rubrovermiculatus NMK A5848 -4.238 39.396 F 31.2 10.8 7.3 11.2 1.6 2.2 2.7 3.4 5.4 15.1 12.0 9.2 9.5 6.6 7.0 

H. rubrovermiculatus NMK A5801/3 -4.238 39.396 F 30.7 10.9 9.2 10.5 1.5 2.7 3.4 3.7 6.0 15.3 13.0 8.6 10.9 6.2 7.2 

H. rubrovermiculatus NMK A5900/1 -4.238 39.396 M 22.9 8.3 7.7 8.1 0.9 2 2.2 2.6 4.9 12.5 10.8 6.5 9.1 5.1 6.2 

H. rubrovermiculatus NMK A5900/2 -4.238 39.396 M 23.9 8.3 8 8.3 1.3 2.2 2.6 3.4 5 11.7 9.4 7.1 8.8 5.2 6.1 

H. rubrovermiculatus NMK A5909 -4.217 39.483 M 21.3 6.9 6.6 7.1 0.7 1.6 2.3 3.5 4.2 10.2 8.2 6.2 8.2 4.6 5.5 

H. rubrovermiculatus NMK A5958/1 -4.276 39.431 M 23.1 8.3 7.3 8 1.4 1.7 2.1 2.9 4.5 11.2 9 5.8 9.4 4.6 6.2 

H. rubrovermiculatus NMK A5958/2 -4.276 39.431 M 24.4 8.5 6.5 10.1 1.2 1.7 2.6 3.6 4.4 12 9.9 7.5 9.4 5 6.9 

H. rubrovermiculatus NMK A5958/3 -4.276 39.431 M 23.3 9.1 7.1 8.3 1.1 1.8 2.2 2.7 4.6 11.5 9.9 7.5 10 5.2 6.2 

H. rubrovermiculatus NMK A5959 -4.276 39.431 M 25.6 8.3 7.4 8.9 0.9 2.1 1.9 3.6 5 12.2 10.7 7.4 8.8 5 5.4 

H. rubrovermiculatus NMK A5961/1 -4.276 39.431 M 22.3 8.6 7.7 9 0.9 2.2 2.5 3.6 4.9 12.7 10.4 7.9 10 5.3 6.9 

H. rubrovermiculatus NMK A5961/2 -4.276 39.431 M 24.5 8.7 8.1 9.7 1 2.5 2.9 3.2 5.6 11.9 10.7 7.4 10.5 4.7 6 
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H. rubrovermiculatus NMK A5961/3 -4.276 39.431 M 24.7 8.8 7.4 8.6 1.2 2 2.7 3.7 5.2 12.5 10.3 7.2 10.7 5.5 5.9 

H. rubrovermiculatus NMK A5961/4 -4.276 39.431 M 22.2 7.7 6.9 8.2 0.9 2 2.5 3.6 5 12.3 10.3 6.6 9.5 5 6.5 

H. rubrovermiculatus ZMUCR077434 -4.167 39.451 M 23.4 8.1 6.9 8.3 1.2 2.2 2.4 3.5 5.1 11.1 9.2 6.6 9.4 5.1 5.7 

H. rubrovermiculatus ZMUCR073967 -4.167 39.451 M 24.5 9 6.1 8.4 1.1 2.4 2.6 3.3 5.3 11.9 10.2 7.4 10 4.7 6.6 

H. rubrovermiculatus ZMUCR073863 -4.167 39.451 M 25.6 8.9 7.9 9.6 1 2.1 2.5 3.7 5.6 12.4 9.7 7.5 10.5 4.6 6.7 

H. rubrovermiculatus ZMUCR078099 -4.167 39.451 M 25.9 8.8 7.9 9.7 1.3 2.6 2.7 3.5 5.8 13.1 11.2 8.2 10.5 5.2 7.1 

H. rubrovermiculatus ZMUCR078098 -4.167 39.451 M 23.8 8.5 7.3 8.8 0.9 2.1 2.6 3.6 5.7 12.3 10.5 7.5 8.7 5.7 6.5 

H. rubrovermiculatus ZMUCR078103 -4.167 39.451 M 24.6 8.9 7.7 8.8 1 2.3 2.7 3.2 5.6 12.4 11 7 10.2 5 6.8 

H. rubrovermiculatus ZMUCR078095 -4.167 39.451 M 24 8.3 7.1 8.4 0.8 2.4 2.3 3.5 5.3 11.7 10.5 6.9 10.1 4.5 6.4 

H. rubrovermiculatus ZMUCR078094 -4.167 39.451 M 25.2 8.8 7.6 9.4 1.3 2.3 2.6 3.2 5.4 11.8 10.2 7.1 9.8 5 6.3 

H. rubrovermiculatus ZMUCR078100 -4.167 39.451 M 24.4 8.7 7.6 9.3 1.2 2.2 2.9 3.5 5.8 12.3 10.8 7.7 10.2 4.8 6.4 

H. rubrovermiculatus ZMUCR078102 -4.167 39.451 M 23.5 7.9 7.4 8.8 1 2.1 1.8 3.5 5.1 11.9 10.1 7.2 8.8 5 6.8 

H. rubrovermiculatus ZMUCR078096 -4.167 39.451 M 25.4 8.5 7.9 9.1 1 2.2 2.8 3.2 5.3 12.8 11.7 7.6 10.6 5.6 7.2 

H. rubrovermiculatus ZMUCR078101 -4.167 39.451 M 23.3 8.4 6.8 8.3 1 2.1 2.3 3.5 5.5 11.5 9.6 7.2 10.5 5 7.6 

H. rubrovermiculatus ZMUCR078097 -4.167 39.451 M 25.8 9.2 7.6 9.1 1.2 2.2 2.3 3.9 5.2 12.5 11.8 7.4 10.7 5.3 7.3 

H. rubrovermiculatus ZMUCR073865 -4.167 39.451 M 23.9 9.2 6.9 8.6 1.1 1.8 2.2 3.4 5 12.6 9.6 6.9 9.1 5.5 6.2 

H. rubrovermiculatus ZMUCR073951 -4.167 39.450 M 22.7 8.5 6.6 8.2 1 2.1 2.5 3.3 4.9 10.9 9.5 6.2 8.8 3.7 5.6 

H. rubrovermiculatus ZMUCR073864 -4.167 39.450 M 25 9.1 7.7 9.6 1.5 2.2 2.5 3.7 5.5 12.3 11.3 7.3 10.6 5.2 6.4 

H. rubrovermiculatus ZMUCR073972 -4.167 39.450 M 26.1 9.9 7.6 9.7 1.4 2.2 2.7 3.7 5.1 13.1 11.9 7.7 10.2 5.8 7.1 

H. rubrovermiculatus ZMUCR078093 -4.167 39.450 M 25.9 8.9 7.6 9.5 1.2 2.2 2.7 3.8 5.3 13 11.6 7.2 11.7 5.2 6.7 
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H. rubrovermiculatus ZMUCR078092 -4.167 39.45 M 25.5 9.4 6.9 9.2 1.4 1.8 2.4 3.6 5.3 12.2 11.2 6.9 9.9 4.7 6.9 

H. rubrovermiculatus ZMUCR073854 -4.217 39.417 M 29.6 10 8.6 9.8 1.8 2.3 3.1 4.4 6 13.9 12.4 8.2 12.6 5.8 7.1 

H. rubrovermiculatus CAS 155636 -4.200 39.417 M 25.3 8.7 7.2 8.8 1.2 2.4 2.2 4.8 3.1 11.6 9.7 7.6 11.1 5 7.1 

H. rubrovermiculatus CAS 155637 -4.200 39.417 M 23 7.8 6.9 7.8 1 2 2.3 4.1 2.7 11.4 10.2 7.1 10.4 4.8 7.2 

H. rubrovermiculatus CAS 155638 -4.200 39.417 M 24.5 8.8 7.1 9.2 1.2 2.3 2.6 4.7 3.1 11.8 9.8 8.1 10 5.7 7 

H. rubrovermiculatus CAS 155639 -4.200 39.417 M 26.3 8.7 7.1 8.7 1.1 2.1 2.4 5.2 3.2 12.8 11.3 8.7 11.5 6 7.6 

H. rubrovermiculatus CAS 155640 -4.200 39.417 M 24.6 8.2 7.4 8 1.1 2.2 2.1 4.9 2.9 11.8 10.3 7.6 10.3 5.5 7.4 

H. rubrovermiculatus CAS 155643 -4.200 39.417 F 28.3 10.5 8.7 9.9 1.5 2.6 2.6 5.5 3.7 12.4 10.8 8.2 11.8 6 7.9 

H. rubrovermiculatus CAS 155644 -4.200 39.417 M 23.7 8.2 6.8 7.3 1.1 2.1 2.2 4.8 3 10.9 9.7 7.3 9.6 4.9 6.1 

H. rubrovermiculatus CAS 155646 -4.200 39.417 M 23.2 7.6 6.6 8.3 1 2 2.2 4.6 2.9 10.7 10.2 7.2 9.1 4.8 6.8 

H. rubrovermiculatus CAS 155932 -4.300 39.417 M 26 8.5 7.4 8.7 0.9 2 2.4 5 3.2 12.4 12.2 8.1 11.1 6 7.3 

H. rubrovermiculatus CAS 155933 -4.300 39.417 M 23.1 8 6.8 8.1 1.2 2.2 2.1 4.7 2.9 11.5 10.3 7.4 9.2 5.1 7.1 

H. rubrovermiculatus CAS 155934 -4.300 39.417 M 26.2 9.3 7.3 8.8 1.2 2.2 2.2 4.3 2.8 12.3 12 7.8 12.1 5.8 7 

H. rubrovermiculatus CAS 155935 -4.300 39.417 M 25.7 8 7.2 8.5 1.3 2.4 2.5 5.1 3.2 11.6 10.1 8 10.6 4.8 7.1 

H. rubrovermiculatus CAS 155937 -4.300 39.417 M 24.1 8.3 6.8 8.1 1.1 2.1 2.5 5 3.3 11.7 11 7.7 10 4.6 6.7 

H. rubrovermiculatus CAS 155938 -4.300 39.417 M 21.7 7.6 7.1 8.3 1 2 2.2 4.7 2.7 10.2 9.7 6.5 8.4 4.6 5.6 

H. rubrovermiculatus CAS 155940 -4.300 39.417 M 23.4 8 6.9 8.5 1 2 2.3 5.1 3.3 12.1 10 7.6 10.1 5.2 7.1 

H. rubrovermiculatus CAS 155942 -4.300 39.417 M 25.3 8.9 7.3 9.2 1.2 2.4 2.5 4.7 3.4 11.7 11.2 7.8 10.9 4.6 7.1 

H. rubrovermiculatus CAS 155943 -4.300 39.417 M 24.9 8.5 7.1 8.2 1.2 2.4 2.3 5 3 11.5 11.1 8 11.2 5.6 7.1 

H. rubrovermiculatus CAS 155944 -4.300 39.417 F 32.1 10.6 9 11.03 1.4 2.7 2.9 6 3.6 13.7 14.4 9.3 12.8 6.8 8.6 
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H. rubrovermiculatus CAS 155945 -4.300 39.417 M 26.2 8.3 6.8 8.1 1.2 2.3 2.5 5.1 3.2 12.1 11.1 8.4 10.5 4.7 7.2 

H. rubrovermiculatus CAS 155946 -4.300 39.417 M 23.2 8 6.4 8 1.2 2.2 2.3 4.8 2.9 11 10.3 7.2 9.7 4.6 6.8 

H. rubrovermiculatus NMK A3169 -4.300 39.417 F 24 9 7.1 9.5 1.6 2.9 2.2 3.8 6.4 12.3 12.6 8 10.1 5.3 5.8 

H. rubrovermiculatus NMK A5488/1 -4.158 39.417 F 24.03 8.3 7.5 9.2 1.4 2.3 2.4 2.9 4.3 10.3 12.3 7.5 9.5 4.2 5.8 

H. rubrovermiculatus NMK A5550/4 -4.375 39.563 F 27.9 9.4 8.6 10.8 1.5 2.3 2.5 3.6 6.6 12.7 13.9 9.3 10.6 5.9 8 

H. rubrovermiculatus NMK A5980/4 -4.375 39.563 F 25.1 9.2 7.9 9.2 1.2 2 2.4 3.3 5.6 12.2 13.3 7.3 11.2 5.9 6.4 

H. rubrovermiculatus NMK A5980/1 -4.375 39.563 F 27.6 9.2 8.3 10.5 1.2 2 2.9 4 5.3 11.7 13.7 8 11.8 5.6 7.4 

H. rubrovermiculatus NMK A5980/2 -4.375 39.563 F 26.9 9.32 8.2 10.2 2 2.6 2.8 3.2 5.1 12.7 13.4 8.4 10.6 5.8 6.6 

H. rubrovermiculatus NMK A5980/3 -4.375 39.563 F 28.6 9.8 8.8 11.2 1.3 2.4 3.3 3.3 5.2 12.7 14.6 8.2 12 6.7 6.9 

H. rubrovermiculatus NMK A5506/2 -4.238 39.396 F 29.7 9.8 8.9 10.5 1.3 2.2 2.8 3.6 5.5 13 14.5 9.3 12.2 6.9 6.7 

H. rubrovermiculatus NMK A5558 -4.375 39.563 F 27 9.7 7.9 10.8 1.3 1.7 2.7 3.7 4.8 10.9 12.6 8.9 10.5 5.4 5.2 

H. rubrovermiculatus NMK A4623/1 -4.217 39.483 F 24 7.2 6.7 8.5 1.3 1.5 2.5 2.8 4.5 9.8 11.5 7.3 9.3 5.1 5.4 

H. rubrovermiculatus NMK A4623/2 -4.217 39.483 F 28.2 9.6 8 9.6 1.4 1.9 2.7 3.9 4.8 12.5 13.5 8.4 11.3 5.2 7.8 

H. rubrovermiculatus NMK A6178/1 -4.238 39.396 F 28.1 9.8 9.4 10.9 1.3 2 2.9 3.7 5.1 12.3 13.8 8.5 11.8 5.4 7.8 

H. rubrovermiculatus NMK A6178/2 -4.238 39.396 F 27.2 9.3 9.5 10.5 1.2 2.2 2.9 3.6 4.9 12.8 14 8.7 11.2 5.5 7.2 

H. rubrovermiculatus NMK A5417 -4.238 39.473 F 27.3 9.7 8.5 10.6 1.2 1.9 2.8 3.7 5 13.2 13.8 8.3 11.3 6 7.4 

H. rubrovermiculatus NMK A5268/3 -4.238 39.396 F 30.2 9.8 9.2 12.2 1.4 2 2.8 3.8 5.1 13.7 14.1 8.4 11.2 5.9 6.9 

H. rubrovermiculatus NMK A5268/4 -4.238 39.396 F 29.3 8.9 7.7 10.9 1.1 2.2 2.8 3.7 4.2 13.6 14 8.3 10.2 5.4 6 
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Appendix II. List of specimens, locality and available genes and GenBank Accession numbers; 1 represent unaccessioned sequences while 0 represent 

missing genes repectively. 

ID Species Locality 16S C-myc ND2 POMC 

FMNH274327 H. new sp. East Usambara 1 HM772380.1-HM772381.1 HM772448.1 HM772312.1 HM772313.1 

FMNH274328 H. new sp. East Usambara 0 HM772382.1-HM772383.1 HM772449.1 HM772314.1-HM772315.1 

FMNH274329 H. new sp. East Usambara 0 HM772384.1-HM772385.1 HM772450.1 HM772316.1 HM772317.1 

FMNH274330 H. new sp. East Usambara 0 HM772386.1-HM772387.1 HM772451.1 HM772318.1-HM772319.1 

FMNH274331 H. new sp. East Usambara 0 HM772388.1-HM772389.1 HM772452.1 HM772320.1-HM772321 

FMNH274406 H. new sp. East Usambara 0 0 HM772453.1 0 

FMNH274407 H. new sp. East Usambara 0 0 HM772454.1 0 

FMNH274408 H. new sp. East Usambara 0 0 HM772455.1 0 

FMNH274409 H. new sp. East Usambara 0 0 HM772456.1 HM772312.1 HM772313.1 

FMNH274410 H. new sp. East Usambara 0 0 HM772457.1 HM772324.1-HM772325.1 

FMNH274332 H. new sp. Magoroto 1 HM772390.1-HM772391.1 HM772458.1 HM772326.1-HM772327.1 

FMNH274411 H. new sp. East Usambara 0 0 HM772459.1 0 

FMNH274303 H. new sp. East Usambara 0 HM772392.1-HM772393.1 HM772460.1 HM772328.1-HM772329.1 

FMNH274304 H. new sp. East Usambara 0 HM772394.1-HM772395.1 HM772461.1 HM772330.1-HM772331.1 

FMNH274305 H. new sp. East Usambara 0 HM772396.1-HM772397.1 HM772462.1 HM772332.1-HM772333.1 

FMNH274306 H. new sp. East Usambara 0 HM772398.1-HM772399.1 HM772463.1 HM772334.1-HM772335.1 

FMNH274307 H. new sp. East Usambara 0 HM772400.1-HM772401.1 HM772464.1 HM772336.1-HM772337.1 
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FMNH274413 H. new sp. East Usambara KX953901 0 HM772465.1 0 

FMNH274414 H. new sp. East Usambara 0 HM772402.1-HM772403.1 HM772466.1 0 

FMNH274415 H. new sp. East Usambara 0 HM772404.1-HM772405.1 HM772467.1 HM772338.1-HM772339.1 

FMNH274416 H. new sp. East Usambara 0 HM772406.1-HM772407.1 HM772468.1 HM772340.1-HM772341.1 

FMNH274417 H. new sp. East Usambara 0 HM772408.1-HM772409.1 HM772469.1 0 

FMNH274532 H. new sp. East Usambara 0 HM772414.1-HM772415.1 HM772476.1 HM772302.1-HM772303.1 

FMNH274533 H. new sp. East Usambara 0 HM772416.1-HM772417.1 HM772477.1 HM772304.1-HM772305.1 

FMNH274534 H. new sp. East Usambara 0 HM772418.1-HM772419.1 HM772478.1 HM772306.1-HM772307.1 

FMNH274535 H. new sp. East Usambara 0 HM772420.1-HM772421.1 HM772479.1 HM772308.1-HM772309.1 

FMNH274536 H. new sp. East Usambara 0 0 HM772480.1 HM772310.1-HM772311.1 

FMNH274271 H. new sp. Nguru KX953899 HM772432.1-HM772433.1 0 HM772310.1-HM772311.1 

MW07204 H. new sp. Nguru 0 HM772444.1-HM772445.1 HM772474.1 HM772342.1-HM772343.1 

MTSN5159 H. new sp. Nguru KX954004 0 0 1 

MTSN5160 H. new sp. Nguru KX954005 0 HM772481.1 0 

MTSN7518 H. new sp. Nguru KX954006 0 0 0 

MTSN7519 H. new sp. Nguru KX954007 0 0 0 

MTSN 9523 H. new sp. Segoma Forest  KX953979 0 0 1 

MTSN 9549 H. new sp. Segoma Forest  KX953980 0 0 0 

CB 13.806 H. new sp. Mbayani bwawa KX953958 0 0 0 

CB 13.807 H. new sp. Mbayani bwawa KX953959 0 0 0 
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CB 13.808  H. new sp. Mbayani bwawa KX953960 0 0 0 

CB 13.809  H. new sp. Mbayani bwawa KX953961 0 0 0 

CB 13.810  H. new sp. Mbayani bwawa KX953962 0 0 0 

CB 13.811 H. new sp. Mbayani bwawa KX953963 0 0 0 

CB 13.812  H. new sp. Mbayani bwawa KX953964 0 0 0 

CB 13.813  H. new sp. Mbayani bwawa KX953965 0 0 0 

CB 13.831  H. new sp. Mbayani bwawa KX953966 0 0 0 

CB 13.832  H. new sp. Mbayani bwawa KX953967 1 1 1 

BM 2002.628  H. new sp. Nilo FR KX953968 0 0 0 

BM 2002.629  H. new sp. Nilo FR KX953969 0 0 0 

BM 2002.631  H. new sp. Nilo FR KX953970 0 0 0 

BM 2002.632  H. new sp. Nilo FR KX953971 0 0 0 

CB 13.028 H. mitchelli Makangala KX953909 1 1 1 

CB 13.029 H. mitchelli Makangala KX953910 0 0 0 

CB 13.045 H. mitchelli Makangala KX953911 0 0 0 

CB 13.046 H. mitchelli Makangala KX953912 0 0 0 

CB 13.011 H. mitchelli Makangala KX953913 0 0 0 

CB 13.012 H. mitchelli Makangala KX953914 0 0 0 

CB 13.027 H. mitchelli Makangala KX953915 0 0 0 

CB 13.133 H. mitchelli Makangala KX953916 0 0 0 
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CB 13.134 H. mitchelli Makangala KX953917 0 0 0 

CB 13.135 H. mitchelli Makangala KX953918 0 0 0 

CB 13.144 H. mitchelli Makangala KX953919 0 0 0 

CB 13.145 H. mitchelli Makangala KX953920 0 0 0 

CB 13.149 H. mitchelli Makangala KX953921 0 0 0 

CB 13.150 H. mitchelli Makangala KX953922 0 0 0 

CB 13.151  H. mitchelli Makangala KX953923 0 0 0 

CB 13.152 H. mitchelli Makangala KX953924 0 0 0 

CB 13.153 H. mitchelli Makangala KX953925 0 0 0 

CB 13.156   H. mitchelli Makangala KX953926 0 0 0 

CB 13.158  H. mitchelli Makangala KX953927 0 0 0 

CB 13.159  H. mitchelli Makangala KX953928 0 0 0 

CB 13.228   H. mitchelli Noto KX953929 0 0 0 

CB 13.229   H. mitchelli Noto KX953930 0 0 0 

CB 13.241  H. mitchelli Noto KX953931 0 0 0 

CB 13.242  H. mitchelli Noto KX953932 0 1 0 

CB 13.413 H. mitchelli Muyuyu KX953944 0 0 0 

CB 13.563  H. mitchelli Kabasira KX953945 0 0 0 

CB 13.564 H. mitchelli Kabasira KX953946 0 0 0 

CB 13.565 H. mitchelli Kabasira KX953947 0 0 0 
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CB 13.566 H. mitchelli Kabasira KX953948 0 0 0 

CB 13.567  H. mitchelli Kabasira KX953949 0 0 0 

CB 13.568 H. mitchelli Kabasira KX953950 0 0 0 

CB 13.569  H. mitchelli Kabasira KX953951 0 0 0 

CB 13.570  H. mitchelli Kabasira KX953952 0 0 0 

CB 13.571  H. mitchelli Kabasira KX953953 0 0 0 

CB 13.572  H. mitchelli Kabasira KX953954 0 0 0 

CB 13.573  H. mitchelli Kabasira KX953955 0 0 0 

CB 13.595 H. mitchelli Kabasira KX953956 0 0 0 

CB 13.598  H. mitchelli Kabasira KX953957 1 1 1 

FMNH275040 H. mitchelli Morogoro 0 HM772422.1-HM772423.1 HM772483.1 1 

MCZ A-32199 H. mitchelli Hongohondo KX953981 0 1 1 

MUSE 11051 H. mitchelli Mgeta KX953982 0 0 0 

MUSE 11060  H. mitchelli Mgeta KX953983 0 0 0 

MUSE 11061 H. mitchelli Mgeta KX953984 0 0 0 

MUSE 11062 H. mitchelli Mgeta KX953985 0 0 0 

FMNH274390 H. mitchelli Udzungwa 0 HM772410.1-HM772411.1 HM772491.1 HM772364.1-HM772365.1 

FMNH274391 H. mitchelli Udzungwa KX953900 HM772412.1-HM772413.1 HM772492.1 HM772366.1-HM772367.1 

FMNH274392 H. mitchelli Udzungwa 0 0 HM772493.1 HM772368.1-HM772369.1 

SL3012 H. mitchelli Udzungwa 1 0 0 0 
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CB 13.289 H. mitchelli Namatimbili KX953933 1 1 1 

CB 13.304 H. mitchelli Makangaga KX953934 0 0 0 

CB 13.305 H. mitchelli Makangaga KX953935 0 0 0 

CB 13.306 H. mitchelli Makangaga KX953936 0 0 0 

CB 13.319 H. mitchelli Makangaga KX953937 0 0 0 

CB 13.320  H. mitchelli Makangaga KX953938 0 0 0 

CB 13.321 H. mitchelli Makangaga KX953939 0 1 0 

CB 13.322 H. mitchelli Makangaga KX953940 0 0 0 

CB 13.379  H. mitchelli Kiwengoma KX953941 0 0 0 

CB 13.395  H. mitchelli Kiwengoma KX953942 0 0 0 

CB 13.396  H. mitchelli Kiwengoma KX953943 1 1 1 

BM 2005.127  H. mitchelli Kasanga FR KX953972 0 0 0 

MTSN 7675 H. mitchelli Kimboza KX953973 0 0 1 

MTSN 7676  H. mitchelli Kimboza KX953974 0 0 0 

MTSN 7682 H. mitchelli Kimboza KX953975 0 0 0 

MTSN 7683  H. mitchelli Kimboza KX953976 0 0 0 

MTSN 7708  H. mitchelli Kimboza KX953977 0 0 0 

MTSN 7709  H. mitchelli Kimboza KX953978 0 0 0 

FMNH275039 H. mitchelli Uluguru 0 0 HM772482.1 HM772346.1-HM772347.1 

FMNH275030 H. mitchelli Uluguru KX953903 HM772426.1-HM772427.1 HM772487.1 HM772356.1-HM772357.1 
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FMNH275032 H. mitchelli Uluguru 0 HM772428.1-HM772429.1 HM772488.1 HM772358.1-HM772359.1 

FMNH275033 H. mitchelli Uluguru 0 0 HM772489.1 0 

FMNH275034 H. mitchelli Uluguru 0 0 HM772490.1 HM772360.1-HM772361.1 

FMNH275044 H. mitchelli Uluguru north 0 0 HM772486.1 HM772354.1-HM772355.1 

FMNH275043 H. mitchelli Uluguru north 0 0 HM772485.1 HM772352.1-HM772353.1 

FMNH275036 H. mitchelli Uluguru 0 HM772430.1-HM772431.1 0 HM772362.1-HM772363.1 

FMNH274990 H. mitchelli Nkhata Bay KX953902 HM77772434.1-HM772435.1 HM772496.1 HM772370.1-HM772371.1 

FMNH274978 H. mitchelli Nkhata Bay 0 0 0 HM772372.1-HM772373.1 

FMNH274992 H. mitchelli Nkhata Bay 0 HM772436.1-HM772437.1 HM772494.1 HM772374.1-HM772375.1 

FMNH274989 H. mitchelli Nkhata Bay 0 HM772438.1-HM772439.1 HM772495.1 HM772376.1-HM772377.1 

FMNH274994 H. mitchelli Nkhata Bay 0 0 0 HM772378.1-HM772379.1 

FMNH275042 H. mitchelli Uluguru north 0 HM772424.1-HM772425.1 HM772484.1 HM772350.1-HM772351.1 

FMNH274979 H. mitchelli Luwawa 0 1 1 1 

FMNH274980 H. mitchelli Luwawa 0 1 1 1 

FMNH274982  H. mitchelli Luwawa 0 1 1 0 

FMNH274985  H. mitchelli Luwawa 0 1 1 1 

FMNH274995  H. mitchelli Luwawa 0 0 1 1 

NMK A5590/1 H. rubrovermiculatus Shimba Hills KX953904 1 1 0 

NMK A5590/2 H. rubrovermiculatus Shimba Hills KX953905 1 1 1 

NMK A5590/3 H. rubrovermiculatus Shimba Hills KX953906 1 1 0 
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MW 7913 H. rubrovermiculatus Shimba Hills 1 0 0 0 

NMK A5957/1  H. rubrovermiculatus Shimba Hills KX953986 0 0 0 

NMK A5801/1 H. rubrovermiculatus Shimba Hills KX953987 1 1 1 

NMK A5801/5 H. rubrovermiculatus Shimba Hills KX953988 1 1 1 

NMK A5801/3 H. rubrovermiculatus Shimba Hills KX953989 1 1 1 

NMK A5801/2 H. rubrovermiculatus Shimba Hills KX953990 1 1 1 

NMK A5801/5 H. rubrovermiculatus Shimba Hills KX953991 1 1 1 

NMK A5848  H. rubrovermiculatus Shimba Hills KX953992 0 1 1 

NMK A5762/2  H. rubrovermiculatus Shimba Hills KX953993 1 1 1 

NMK A5762/1  H. rubrovermiculatus Shimba Hills KX953994 1 1 1 

NMK A5900/1 H. rubrovermiculatus Shimba Hills KX953995 1 1 1 

NMK A5900/2 H. rubrovermiculatus Shimba Hills KX953996 1 1 1 

NMK A5920 H. rubrovermiculatus Shimba Hills KX953997 0 1 0 

NMK A5958/1 H. rubrovermiculatus Shimba Hills KX953998 1 1 1 

NMK A5958/2 H. rubrovermiculatus Shimba Hills KX953999 1 1 1 

NMK A5958/3  H. rubrovermiculatus Shimba Hills KX953999 0 1 1 

NMK A5961/1 H. rubrovermiculatus Shimba Hills KX954001 1 1 1 

NMK A5962/2 H. rubrovermiculatus Shimba Hills KX954002 1 1 1 

NMK A5909  H. rubrovermiculatus Shimba Hills KX954003 0 0 0 

MTSN 8643 H. mitchelli North Pare  Mountains KX954008 0 0 0 
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Abstract 

All known specimens of the genus Callulina were examined for this study. Three new species are 

described from (i) Ukaguru Mountains, (ii) Rubeho Mountains and (iii) a widely distributed 

submontane forest species from Central and Southern Eastern Arc Mountains in Tanzania. The 

species are diagnosed based on a combination of morphological, acoustic and molecular data. An 

updated key to all known Callulina species is provided. We also report on the assessment of Callulina 

population from Shimba Hills in Kenya and evaluate its taxonomic status. The diversity of the genus 

is twelve species with only 2 species having wide distributions across two or more mountain areas. 

The many narrowly distributed Callulina species are likely to be of high conservation concern given 

habitat change in the region. 

Keywords: Brevicipitidae, Eastern Arc Mountains, lowland, Montane forests, Shimba Hills. 
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Introduction 

Brevicipitids are a small radiation of frogs occurring in East and Southern Africa (Channing, 2001; 

Channing & Howell, 2006). The diversity of the family has expanded considerably in the last fifteen 

years with many new species described from Tanzania (Loader et al., 2006; Loader et al., 2014; 

Menegon et al., 2011). The family is comprised of five genera; Balebreviceps, Breviceps, Callulina, 

Probreviceps and Spelaeophryne (Parker, 1934; Largen & Drewes, 1989). The genus Callulina is 

mainly confined to the Eastern Arc Mountains of Tanzania and Kenya with a single population 

recorded from lowland forest (Shimba Hills) (Loader et al., 2010a). The genus has seen a rapid 

increase in numbers of species from one in 2003 (Poynton, 2003) to the nine species currently 

described (De Sa, et al., 2004; Loader et al., 2009a, 2010a, 2010b; Menegon et al., 2011). 

Loader et al. (2014) published a phylogeny of brevicipitids that outlined a cryptic diversity of 

East African brevicipitids, which included known and undescribed species of Callulina. Two 

populations were noted as undescribed (see Loader et al., 2014 Appendix 1) and that for Callulina 

additional samples of “one Kenyan population from Shimba Hills” would be required to complete the 

understanding of this genus. In addition the taxonomic status of a Callulina collected at Mamiwa 

Kisara Ukaguru Mountains in 2005 remained unknown. In this paper we present new data on the 

morphology of these undescribed species and taxonomically assess them. We use genetic and acoustic 

data to provide further evidence towards their taxonomic distinction. A complete assessment of the 

genus provides an opportunity to assess the biogeographic and conservation patterns in Callulina and 

we briefly outline the implications of our findings. 

 

Materials and methods 

Specimens 

We examined materials deposited in the following institutional collections: The British Museum of 

Natural History, London (BMNH); Museo Tridentino di Scienze Naturali, Trento (MTSN) and 

National Museums of Kenya (NMK). Specimens collected from recent fieldwork in the Shimba Hills 

Kenya (2015) were fixed in 10% formalin and subsequently stored in 70% ethanol. Samples of 

muscle tissue were taken from representative individuals and preserved in 95% ethanol. Comparative 

material comprised Callulina specimens as listed in Appendix 1 from previous publications (see 

Loader et al. 2010a). 
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Genetic diversity and species delimitation 

DNA sequence data were generated for new samples using approaches outlined by Loader et al. 

(2006, 2009a, 2010a, 2014). Sequences were obtained for parts of the mitochondrial (mt) genes 12S, 

16S and cytochrome b (cytb). GenBank (www.ncbi.nhi.gov/genbank/) accession numbers where 

available are given in Appendix 1. Alignments were constructed using MAFT (Katoh et al., 2002) in 

Geneious platform v.6.1.2 (http:www.geneious.com, Kearse et al., 2012), manually adjusted for 

obvious errors and ambiguously aligned sites removed and then insertions and deletions were 

removed using GBlocks (Castresena, 2001) for 12S and 16S while TranslatorX (Abascal et al., 2010) 

was used for Cytochrome b. Uncorrected pairwise comparisons were used to measure the genetic 

similarity of newly sampled Callulina populations against currently described taxa using Geneious 

software (v6.1.2) and the Species Delimitation plugin v1.04 for Geneious Pro (Masters et al., 2011). 

Morphology 

Measurements were taken to the nearest 0.1 mm using digital callipers. Following Loader et al. 

(2009a, 2010a, 2010b), the measurements taken were; horizontal eye diameter (ED); eye–tympanum 

distance (ETD); upper arm length (HL); head width at level of jaw articulation (HW); interorbital 

distance (IOD); length of finger 3, measured from the distal edge of the basal subarticular tubercle 

(LF3); length of toe 4, measured from the proximal edge of the basal subarticular tubercle (LT4); 

nostril diameter (ND); nostril–eye distance (NED); nostril–lip distance (NLD); snout–urostyle length 

(SUL); horizontal tympanum diameter (TD); tibiofibula length (TL); length of tarsus (TSL); width of 

disc of finger 3 (WDF3); width of finger 3 at level of distal subarticular tubercle (WDTF3). We used 

Principal component analyses (PCA) to establish the variation within the genus Callulina and the 

variables responsible for such variations if any. PCA was conducted using Statistica (STATSOFT v. 

6) for species which had samples size of male and females above three. The effect of size was 

removed by first performing a regression analysis of all measurements against the SVL. The resulting 

residual scores were used as the new variables for calculating the PCA. Principal component analysis 

was conducted for males and females separately and also for both sexes together. In addition, the 

mean SVL for each sex was calculated and represented in the form of boxplots. Specimens examined 

and locality data are provided in each species account. 

Bioaccoustics 

Calls were recorded opportunistically in the field using a Marantz model PMD-430 stereo cassette 

tape recorder and a KE66 Sennheiser directional microphone. The following call properties, mean 

dominant frequency; mean signal duration and mean pause duration, were analyzed using seewave 

package in R (Sueur et al., 2008; R Core team, 2015). 

http://www.ncbi.nhi.gov/genbank/
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Results 

Taxonomy 

The following taxonomic descriptions are preliminary and await formal publication. 

Callulina new sp1. 

Callulina sp 3 (Menegon et al., 2008). 

Callulina sp “lowland” Loader et al., (2014). 

 

Fig. 1: Dorsal and ventral views of the Holotype of C. new sp1. 

Holotype.—MTSN 8597, an adult female from Nguru mountains in Tanzania. This specimen has 

been sequenced for 12S, 16S and Cytb genes. Specimen in good condition with midventral incision 

into coelom and incision around tympanic region on left and right. 

Paratypes.—We restrict paratype material to localities within the Nguru on the basis that further 

detailed morphological/molecular analysis might uncover additional cryptic lineages (see Loader et 

al., 2014). MTSN 5153, MTSN 8237, MTSN 8242, MTSN 8597, MTSN 8598, MTSN 8599, MTSN 

8600, MTSN 8601. 

Referred material.—Ordered per locality: Nguru (MW7160, MW7162, MW 7164, MW7167, 

MW7168, MW7169, MW7170, MW7225, MW7227); Ukaguru (MW 03050, MW03052, MHNG 

2624.5); Udzungwa (BM 1982.594, KMH 22478); Uluguru (CAM 808, KMH 21555, KMH 21557, 

KMH 21568, A 13611, A 13612, A 13613, A 13614, A 13617, A 13618, A 13620, A 13621, AMNH 

37290, AMNH 37291). 
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Diagnosis.—The new species of Callulina is assigned to the Callulina genus based on the following 

characteristics: Truncated or expanded terminal phalanges (simple in Spelaeophyrne, Probreviceps, 

Breviceps and Balebreviceps); single posterior denticulated row in the palate of Callulina (two 

denticulated rows in Probreviceps, glandular mass in Breviceps). A large, stout and robust Callulina. 

Snout-urostyle distance reaching 44.3 mm. Snout to urostyle-tibia ratio 30‒40%. Tympanum present 

though often slightly obscured by granular skin. Toe and finger tips truncate. Callulina new sp1. differ 

from C. lamphami and C. shengena in the presence of a tympanum. Callulina new sp1. has only 

slightly expanded toe tips (WDF3/WDTF3: >0.8) compared to C. kreffti, C. kanga, Callulina new sp2. 

and Callulina new sp3. nov. (WDF3/WDTF3: <0.8). Lack of colour in the ocular region in C. new 

sp1. compared to C. laphami and C. dawida (Loader et al., 2009). Callulina new sp1. lacks prominent 

glands on the arms and/or legs (C. hanseni, C. meteora, C. lamphami and C. shengena). 

Morphologically, C. new sp1. is most similar to C. stanleyi, C. kisiwamsitu. The distinctiveness of C. 

new sp1. from other Callulina is also supported by call (Figure 7; Table 2), distribution and DNA 

sequence data (2.7% distinct from C. kanga). 

Description of holotype.—Body robust and stout. Tips of fingers truncate (slightly less than width of 

distal subarticular tubercle), rounded edges with lateral circummarginal grooves; first finger shortest, 

second and fourth finger equal, third finger longest. Inner metatarsal tubercle large, rounded and 

raised, separated by a middle palmar tubercle from an even larger, rounded outer metatarsal tubercle, 

which is raised and elongated along the margin of the hand. Smaller palmar tubercles present. 

Subarticular tubercles at the base of each finger, large subarticular tubercles on third and fourth finger 

at the phalangeal joints. Third finger with two small tubercles between basal articular tubercle and 

subarticular tubercle. Truncate and dorso-ventrally swollen toe tips without any lamellae on the 

ventral surface; tips of toes not expanded laterally, with circummarginal grooves; first toe same length 

as second. Third and fifth toes equal, fourth toe longest. Inner metatarsal tubercle large, rounded and 

raised, touching a smaller, rounded, raised, outer metatarsal tubercle. Palmar tubercles present on base 

of foot. Subarticular tubercles at the base of each toe, large subarticular tubercles on third and fourth 

toe at the phalangeal joints. All tubercles on hands and feet bluish/grey against a brown/grey 

background. Snout visible from ventral view. 

Morphological and colour variation.—The paratype and non-paratype material is very similar to the 

holotype in the overall body proportions and key morphometric measures. 

Colour in life.—Dorsum dark brown with darker glandular masses on side and back. Ventral surface 

pale brown. Tympanum pale brown, with irregular margins obscured by glandular warts. Loreal and 

canthal regions brown with lighter coloured warts. Nostrils, snout tip and jaw angle slightly darker 

brown. 
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Conservation status — C. new sp1. was collected across the Eastern Arc Mountains, from the Nguu to 

Mahenge. Given the large, but patchy distribution across the landscape the area of occurrence would 

be relatively large and therefore qualifying the species to be of least concern. 

 

Callulina new sp2. 

 

Fig. 2: Ventral and dorsal views of the holotype of Callulina new sp2. 

A female, ZMB83024 collected 8 December 2005 by Wilirk Ngalason and Alan Channing at Mamiwa 

Kisara North Forest Reserve, Ukaguru Mountains, Tanzania, 1854 m (6.425469 S; 36.967014 E). The 

specimen was found inside a decaying branch, 1 m above ground level with femoral incision and 

incision around tympanic region on left and right. 

Paratypes.—MTSN 5553‒5555 collected on January 25
th
 2004 by Michele Menegon at Mamiwa 

Kisara North Forest Reserve, Ukaguru Mountains, Tanzania, 1800 m. 

Diagnosis.—The new species is assigned to the genus Callulina based on the following 

characteristics: Truncated or expanded terminal phalanges (simple in Spelaeophyrne, Probreviceps, 

Breviceps and Balebreviceps); single posterior denticulated row in the palate of Callulina (two 

denticulated rows in Probreviceps, glandular mass in Breviceps). A large, stout and robust Callulina. 

Snout-urostyle distance reaching 39.9 mm. Snout to urostyle-tibia ratio 33‒39%. Tympanum present 

sometimes obscured by granular skin. Toe and finger tips truncate. Callulina new sp2. differ from C. 

lamphami and C. shengena in the presence of a tympanum. Callulina new sp.2 has expanded toe tips 

(WDF3/WDTF3: <0.75) compared to C. new sp1., C. lamphami, C. shengena, C. kisiwamsitu, C. 

stanleyi, C. dawida and C. hanseni (WDF3/WDTF3: >0.8). Lack of colour in the ocular region in C. 

new sp2. compared to C. laphami and C. dawida (Loader et al., 2009). Callulina new sp2. lacks 
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prominent glands on the arms and/or legs (C. hanseni, C. meteora, C. lamphami and C. shengena). 

Morphologically, C. new sp2. is most similar to C. kreffti, C. new sp3. and C. kanga. However, C. new 

sp2. has a smaller tympanum relative to the distance of tympanum to the eye, while in C. kreffti the 

tympanum diameter is more than the distance between tympanum and eye. Callulina new sp2. does 

not differ significantly from C. kanga and C. new sp3. The distinctiveness of C. new sp2 from other 

Callulina is also supported by distribution and DNA sequence data. (3.2% sequence divergence from 

C. new sp3). 

Description of holotype.—Body robust and stout (Figure 2). Measurements given in Appendix II. 

Tips of fingers truncate (wider than distal subarticular tubercle), rounded edges without lateral 

circummarginal grooves; first finger shortest, second and fourth finger equal, third finger longest. 

Inner metacarpal tubercle large, rounded and raised, outer metatarsal tubercle elongated, raised. 

Smaller flat, rounded palmar tubercles present. Subarticular tubercles at the base of each finger, large 

subarticular tubercles on third and fourth finger at the phalangeal joints. Third finger with two small 

tubercles between basal articular tubercle and subarticular tubercle. Truncate and dorsoventrally 

swollen toe tips; tips of toes slightly expanded laterally, without circummarginal grooves; relative toe 

lengths: 1 = 2<3<5<4. Inner metatarsal tubercle large, elongated and raised, touching a smaller, 

rounded, raised, outer metatarsal tubercle. Many small tubercles present on sole. Large subarticular 

tubercles at the base of each toe, with large subarticular tubercles on third, fourth and fifth toes at the 

phalangeal joints. In preservative, all tubercles on hands and feet bluish grey against a brown-grey 

background. Dorsal surfaces of wrists, arms, ankles and back covered with distinct low glandular 

warts. Snout visible from below. 

Morphological and colour variation.—The paratype is very similar to the holotype in the overall body 

proportions and key morphometric measures. The paratype has a slightly smoother skin and has only 

a few dark symmetrical patches on the dorsum. Incision on left hand side of the tympanic region. 

Colour in life.—Dorsum dark brown with tan glandular masses on side and back (Figure 2), with the 

sides purple with small white warts. Ventral surface pale brown. Tympanum pale brown, with 

irregular margins obscured by glandular warts. Loreal and canthal regions brown with grey warts. 

Nostrils, snout tip and jaw angle slightly darker grey. Snout visible from below. 

Conservation status.—Callulina new sp2. was collected in Mamiwa Kisara North Forest Reserve at 

two localities at an elevation of 1800 m and 1851 m. Mamiwa Kisara was surveyed by two separate 

teams (totalling around two weeks of survey time), during which specimens were restricted to two 

small localities, despite searching many other locations and forest types and at different altitudes. If 

the species is localised to this particular band of montane forest then the species has an extremely 

narrow distributional range and would be of high conservation concern. The likely estimated area of 

occurrence would qualify the species to be critically endangered (CR B1b (iii)) under IUCN criteria. 
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Callulina new sp3. 

 

Fig. 3: Dorsal and ventral views of the holotype of Callulina new sp3. 

Callulina sp. “rubeho” Loader et al., (2014). 

Holotype.—KMH 36024, an adult female collected from Mafwemiro Forest Reserve, Rubeho 

Mountains (06°56´19S, 36°35´04E, 1900 m a.s.l.) by Michele Menegon on 15
th
 January 2006. This 

specimen has been sequenced for 12S, 16S and Cytb. Specimen in good condition, with femoral 

incision and incision around tympanic region on left and right. 

Diagnosis.—The new species is assigned to the genus Callulina based on the following 

characteristics: Truncated or expanded terminal phalanges (simple in Spelaeophyrne, Probreviceps, 

Breviceps and Balebreviceps); single posterior denticulated row in the palate of Callulina (two 

denticulated rows in Probreviceps, glandular mass in Breviceps). A medium sized, stout and robust 

Callulina. Snout-urostyle distance reaching 28.2 mm. Snout to urostyle-tibia ratio 38%. Tympanum 

present though slightly obscured by granular skin. Toe and finger tips truncate. C. new sp3. differ 

from C. lamphami and C. shengena in the presence of a tympanum. C. new sp3. has expanded toe tips 

(WDF3/WDTF3: <0.75) compared to C. new sp1., C. lamphami, C. shengena, C. kisiwamsitu, C. 

stanleyi, C. dawida and C. hanseni (WDF3/WDTF3: >0.8). Lack of colour in the ocular region in C. 

new sp3. compared to C. laphami and C. dawida (Loader et al., 2009). Callulina new sp3. lacks 

prominent glands on the arms and/or legs (C. hanseni, C. meteora, C. lamphami and C. shengena). 

Morphologically, C. new sp3. is most similar to C. kreffti, C. new sp2. and C. kanga. However, C. new 

sp3. has a smaller tympanum relative to the distance of tympanum to the eye, while in C. kreffti the 

tympanum diameter is more than the distance between tympanum and eye. Callulina new sp3. does 

not differ significantly from C. kanga and C. new sp2. The distinctiveness of C. new sp3. from other 
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Callulina is also supported by distribution and DNA sequence data (5.1% sequence divergence from 

C kreffti). 

Description of holotype.—Body robust and stout. Tips of fingers truncate (greater than width of distal 

subarticular tubercle), rounded edges with lateral circummarginal grooves; first finger shortest, second 

and fourth finger equal, third finger longest. Inner metatarsal tubercle large, rounded and raised, 

separated by a middle palmar tubercle from an even larger, rounded outer metatarsal tubercle, which 

is raised and elongated along the margin of the hand. Smaller palmar tubercles present. Subarticular 

tubercles at the base of each finger, large subarticular tubercles on third and fourth finger at the 

phalangeal joints. Third finger with two small tubercles between basal articular tubercle and 

subarticular tubercle. Truncate and dorso-ventrally swollen toe tips without any lamellae on the 

ventral surface; tips of toes not expanded laterally, with circummarginal grooves; first toe same length 

as second. Third and fifth toes equal, fourth toe longest. Inner metatarsal tubercle large, rounded and 

raised, touching a smaller, rounded, raised, outer metatarsal tubercle. Palmar tubercles present on base 

of foot. Subarticular tubercles at the base of each toe, large subarticular tubercles on third and fourth 

toe at the phalangeal joints. All tubercles on hands and feet bluish/grey against a brown/grey 

background. Snout visible from ventral view. 

Morphological and colour variation.—The species is represented by a single specimen and hence no 

morphological or colour variation is known. 

Colour in life.—Dorsum dark brown with darker irregular patches on the side and back. Ventral 

surface pale brown/cream. Tympanum pale brown, with irregular margins obscured by glandular 

warts. Loreal and canthal regions brown with dark grey warts. Nostrils, snout tip and jaw angle 

slightly darker grey. Snout visible from below. 

Conservation status.— Callulina new sp3. was collected in Mafwemiro Forest Reserve at a single 

locality. Mafwemiro Forest Reserve was surveyed by single survey team (totalling around three 

weeks of survey time). If the species is localised to this particular band of montane forest then the 

species has an extremely narrow distributional range and would be of high conservation concern. The 

likely estimated area of occurrence would qualify the species to be critically endangered (CR B1b 

(iii)) under IUCN criteria. 

Revised key to the species of Callulina 

Externally, Callulina species are distinguished from other brevicipitids by their truncate to expanded 

toe and fingertips. The key below relies upon key morphological features and geographical 

distribution of species given the morphological similiarity of many species. 

1a. Tympanum present, though may be slightly obscured by granular skin…2 
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1b. Tympanum absent…9 

2a. Fingertips expanded (WDF3/WDTF3 <0.9), wider than the distal subarticular tubercle…3 

2b. Fingertips slightly truncated (WDF3/WDTF3 >0.9).... C. dawida 

3a. Fingertips truncated not expanded beyond the width of the first subarticular tubercle 

(WDF3/WDTF3 <0.75)...4 

3b. Fingertips truncated wider than distal subarticular tubercle (WDF3/WDTF3 >0.75)….C. new sp2. 

4a. Distance between tympanum and eye usually less than tympanum diameter. Distinctive call, 

known only from East Usambara Mountains and Shimba Hills…C. kreffti 

4b. Distance between tympanum and eye usually greater than tympanum diameter. Distinctive call…5 

5a. Known only from Rubeho Mountains…C. new sp3. 

5b. Not found in Rubeho Mountains …6, 7 

6a. Known only from Nguru Mountains…C. kanga 

6b. Large, distinctive and continuous glands on arms and legs…C. hanseni 

7a. Medium to large size with distinctive call, known from central and southern Eastern Arc 

Mountains………C. new sp1. 

7b. Large, robust head known only from Northern Eastern Arc Mountains (South Pare Mountains, or 

West Usambara Mountains)…8. 

8a. Large, robust head. Distinctive call, known only from South Pare Mountains……C. stanleyi. 

8b. Less robust head. Distinctive call, known only from West Usambara Mountains…C. kisiwamsitu. 

9a. Prominent glandular masses on arms and feet absent. Distinctive bright red (or green) interocular 

band connecting the opposite anterior and posterior margins of the eyelids. North Pare Mountains…C. 

laphami. 

9b. Prominent, relatively pale glandular mass on arms and feet. Less distinct and less continuous 

interocular band. South Pare Mountain...C. shengena. 

Species delimitation and pairwise divergence 

Species divergence estimates based on the Geneious plugin using multi-locus alignment data ranged 

from 2.2‒5.2% with highest divergence found between C. new sp3. and C. kreffti. The Shimba 
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population of Callulina was not significantly divergent from C. kreffti in all the three partial genes 

examined and is therefore recognized as C. kreffti (Table 2). 

Table 1: Uncorrected pairwise (p-) distances for 1170 base pairs of 12S, 16S rRNA and cytb mtDNA 

sequence data for Callulina. 

Species Closest Species Monophyletic? Intra Dist Inter Dist - Closest 

C. hanseni C. meteora yes 0.006 0.025 

C. stanleyi C. kisiwamsitu yes 0.004 0.022 

C. sp. shimba C. kreffti yes 1.74E-04 7.38E-04 

C. shengena C. laphami yes 0.002 0.05 

C. kanga C. new sp1 yes 0.002 0.027 

C. new sp3 C. new sp2 yes 0.00E+00 0.032 

C. new sp3.and C. new sp2. C. kreffti yes 0.032 0.051 

C. new sp1. C. new sp1. (1) yes 0.009 0.013 

 

Morphology 

Based on the snout to vent length, C. Kanga Loader, Gower, Müller & Menegon, 2010 was smaller 

than the rest of the Callulina species, with a mean SVL (mm) of 25.5 while C. meteora Menegon, 

Gower & Loader, 2011 was the largest with mean at 35.9 (P = 0.008). Female Callulina were 

generally larger than the males. Only C. kisiwamsitu had mean SVL of males above 30 mm while for 

females only one C. dawida had the mean SVL of female samples around 30 mm (Figure 5). 
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Fig. 4. Map of Kenya and Tanzania showing the distribution of the genus Callulina. Map modified 

from https://eamcef.wordpress.com/were-we-work/. 

 

Fig. 5: Boxplot of snout to urostyle length (SUL) results of (A) eight male and (B) nine female 

Callulina species. 

Principal component analysis (PCA) however could not differentiate the current twelve Callulina 

species. When separated into males and females, the females could still not be distinguished into the 

various species. However, it was possible to separate the males into four major groups (Figure 6). The 
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following results are based only on the male PCA analysis. The variables responsible for the 

separation in the first principle component include Tibia, Nares, Jaw width, Humerous, Nare to lip 

distance while distal phalange width, width of first subarticular tubercle and infra-orbital distance 

accounted for the second component. Callulina hanseni Loader, Gower, Müller & Menegon, 2010 

and C. shengena have larger jaw width and nares to lip distance while C. kreffti had smaller (Figure 

6). Callulina new sp1. is separated into two groups one group has larger jaw width and nares to lip 

distance compared to the second group. Callulina dawida, specimens were mostly overlapping among 

three of the four major groups (Figure 6). 

 

Fig. 6: A scatter plot of PCA analysis of Callulina species. The eight species analysed are represented 

by various shapes and colour codes. 

Accoustics 

Five calls from C. new sp1. from (Sali Forest Reserve, Nguu and Ukaguru Mountains) available while 

both C. new sp2. and C.new sp3. had no calls. The available calls were compared to previous calls for 

from C. meteora from Nguru Mountains Maskati, two calls from C. laphami (Kindoroko Forest 

Reserve), and four calls from C. kanga (Kanga). Mean dominant frequency was variable ranging from 

0.81 kHz in C. laphami to 6.3 kHz in C. kanga. Spectrogram of C. new sp1. from Nguu Mountains 
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seems to be different from that of Sali FR in Mahenge. Mean signal duration on the other hand was 

less variable ranging between 0.01 to 1 (see Figure 7 and Table 2 below). 

 

 

Fig. 7: Top to bottom: Oscilliogram and spectrogram of (A) C. laphami, (B) C. meteora, (C) 

Callulina kanga and (D) Callulina new sp1. 

Table 2: Mean dominant frequency, signal duration and pause duration of some Callulina species 1 = 

C. laphami; 2 = C. meteora; 3 = C. new sp1., Ukaguru; 4 = C. laphami; 5 = C. kanga; 6 = C. new sp1., 

Nguu; 7 = C. new sp1., Mahenge; 8 = C. new sp1., Mahenge; 9 = C. Kanga; 10 = C. Kanga1; 11 = C. 

kanga; 12 = C. new sp1., Mahenge. 

Locality 1 2 3 4 5  6 7 8 9 10 11 12 

Dominant frequency 

(mean) 

0.8

1 

1.0

1 

2.2

9 

3.8

5 

3.8

8 

5.7

7 

2.4

1 

2.4

5 

4.3

1 

6.3

3 

3.2

7 

3.5

5 

Signal duration (mean) 

0.1

2 

0.0

6 

3.4

2 

0.0

1 

0.4

6 

0.1

9 

0.0

2 

0.0

8 

0.3

4 

0.0

8 

0.1

3 

0.0

6 

Pause duration (mean) 

0.0

1 

0.0

3 NA 

0.0

4 

0.0

1 

0.0

2 

0.0

5 

0.0

2 

0.0

2 

0.0

2 

0.0

2 

0.0

2 

 

Discussion 

Recent field work has seen the number of Callulina species increasing from one species (C. kreffti 

Nieden, 1910) over 100 years ago to nine (Loader et al., 2014). These species occur in Kenya (1) and 
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Tanzania (8). We outline three new species that are described in this study, based mainly from 

morphological and molecular data (see Taxonomy section above), thus increasing the currently known 

Callulina to 12. The various Callulina species are distinguishable from each other based on both 

morphological and molecular characters. Morphological characters such as presence or absence of 

tympanum, toe tips expanded or truncated among other characters can be used to broadly group 

Callulina species (Channing & Howell, 2006; Loader et al., 2010a and b, 2014). Principal Component 

analysis (PCA) of morphometric characters however only proved useful in distinguishing male 

Callulina species. Out of nine species in which sample size was more than one, four groups were 

identifiable (Figure 6). The genus is morphologicaly conservative and can be considered containing a 

number of cryptic species and for which molecular, acoustic and geographic data provide important 

additional information for their identification (Figure 4). The occurrence of cryptic species in 

amphibians is commonly shown in the literature and here we add another example (e.g. Loader et al., 

2015; Barratt et al., 2017). 

Acoustic data was useful for distinguishing some species. Even though the calls were not 

available for all the twelve species based on previous studies on Callulina, calls have proved to be 

distinctive and a good tool for distinguishing between the various Callulina species (De sa et al., 

2004; Loader et al., 2010b). De sa et al., 2004 reported the differences between C. kreffti and C. 

kisiwamsitu based on their dominant frequency values. However in many cases only one call per 

species was recorded which make comparisons difficult and further work will be necessary to make 

more robust estimates of calls–and their variation. 

Further taxonomic work will clearly be necessary. For example, C. new sp1. can be split into 

two groups based on morphometric analysis suggesting the possible presence of two species within 

this group. Based on the twelve morphometric characters examined, the Nguru and Nguu specimens 

were generally bigger than their sister taxa from southern EAM. This split was also evident in all the 

three genes and also in the multi-locus alignment where the population from Nguru and Nguu 

mountains were sister taxa to Mahenge, Uluguru, Ukaguru and Udzungwa populations of C. new sp1. 

with 1.3% sequence divergence. The geographical north south divide in C. new sp1. populations 

further supports the idea that these areas might represent distinct species. In addition two calls 

analysed from Sali Forest Reserve in Mahenge differ in call properties from calls recorded from Nguu 

Mountains. However no environmental parameters under which these calls were recorded are 

available making it difficult to tell whether the observed differences are not artefacts of prevailing 

environmental variables (See Giacoma & Castellano, 2001). Further analysis may be required to 

establish the taxonomic status of both populations of C. new sp1. 

The Shimba Hills of Kenya population of Callulina, previously speculated to be a new 

species closer to either C. kisiwamsitu or C. stanleyi of West Usambara and South Pare Mountains 
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respectively, were found to group with C. kreffti of East Usambara Mountains. The sequence 

divergence separating the two populations was only 0.05% confirming that the two populations likely 

belong to the same species. Further samples will need to be collected to understand the morphological 

variation in this species–and redefine this more widespread species. 

Conservation 

The genus Callulina comprise of range restricted species only known from the EAM of 

Kenya and Tanzania with one population known outside this area in the Shimba Hills in Kenya (De sa 

et al., 2004; Loader et al., 2009b; 2010 and b; 2014) (Figure 4). Apart from C. kreffti which is of Least 

Concern the rest of the previously described Callulina species are critically endangered (Loader et al., 

2010b; IUCN, 2017). Out of the three proposed new species, C. new sp2. and C. new sp3. would 

likely qualify as critically endangered according to the IUCN Red List of threatened species while C. 

new sp1. would likely qualify as Least Concerned given its wider distribution. The continued survival 

of many species in this genus will require monitoring of populations and their habitats. Conservation 

of these amphibians is only likely to be successful if protection of their microhabitats is maintained. 
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APPENDICES 

Appendix 1: Specimen ID, molecular accession numbers, locality, GPS co-ordinates and Genbank accession numbers (where available) for all samples used 

in the phylogenetic analysis. 

Species ID Molecular Accession number Locality Lat Long 12S,16S, Cytb 

C. dawidae MW 03197 T446 Taita Hills 38.333 -3.367 FJ998385, FJ998386, FJ998387 

C. dawidae JM 1234 T519 Taita Hills 38.333 -3.433 FJ998382, FJ998383, FJ998384 

C. hanseni MTSN 8138 T500 Nguru  37.498 -6.066 

 C. hanseni MTSN 8140 T503 Nguru 37.498 -6.066 FN81098, FN811033, FN811078 

C. hanseni MW 06952 T708 Nguru 37.673 -3.575 

FN81099, FN811042, 

FN811087 

C. kreffti SL2775 T6265 Shimba Hills 39.396 -4.238 KX954012, KX954009 

C. kreffti SL2783 T6266 Shimba Hills  39.396 -4.237 KX954013, KX954010 

C. kreffti KMH 23534 T423 East Usambara  38.678 -4.916 AY531842, AY531865, FJ998381 

C. laphami MW 03065 T429 North Pare 37.654 -3.729 FN563043, FN563044, FN563045 

C. laphami MTSN 8617 T543 North Pare 37.644 -3.744 FN81099, FN811038, FN811038 

C. new sp3. KMH 36024 T658 Rubeho  36.568 -6.831 FN563070, FN563071, FN811116 

C. meteora MTSN 8130 T502 Nguru  37.498 -6.066 FN81098, FN811032, FN811077 

C. meteora MTSN 8133 T504 Nguru  37.498 -6.066 FN81098, FN811034, FN811079 

C. stanleyi MS 023 T452 South Pare 37.996 -4.328 FN563057, FN563058, FN563059 

C. stanleyi MTNS 7540 T753 South Pare  37.996 -4.328 FN563070, FN563071, FN811116 

C. kisiwamsitu MW 03215 T447 West Usambara 38.4 -5.066 AY531841, AY531864, FJ998379 

C. kisiwamsitu MW 01968 T303 West Usambara  38.504 -4.813 AY531840, AY531863, FJ998380 

C. shengena FM 251849 T683 South Pare  37.996 -4.328 FN56304, FN563050, FN563051 

C. shengena MTSN 9285 T754 South Pare  37.996 -4.328 FN56306, FN563069, FN811117 

C. shengena FM 255882 T685 South Pare  37.996 -4.328 FN56306, FN563067, FN811115 

C. new sp1. MW03050 T426 Ukaguru  36.983 -6.342 FN81098, FN811027, FN811072 

C. new sp1. MUSE 12303 T2973 Udzungwa  35.982 -8.395 

 C. new sp1. MW07266 T719 Nguru  37.494 -5.479 FN81099, FN811044, FN811089 
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C. new sp1. KMH 26963 T524 Mahenge  36.663 -8.95 FN81099, FN811036, FN811081 

C. new sp1. MW 03830 T467 Nguu  37.475 -5.480 FN81098, FN811029, FN811074 

C. new sp1. MTSN 8242 T501 Nguru  37.526 -6.030 FN81098, FN811031, FN811076 

C. new sp1. KMH 26969 T526 Mahenge  36.663 -8.95 

 C. new sp1. MW 07161 T716 Nguru  37.525 -6.030 FN81099, FN811043, FN811088 

C. new sp1. KMH 21555 T425 Uluguru  36.983 -6.342 FN81098, FN811026, FN811071 

C. new sp1. KMH 22478 T448 Udzungwa  36.589 -7.817 FN81098, FN811028, FN811073 

C. new sp2. ZMB83024 ZMB83024 Ukaguru  36.967 -6.425 KX954014, KX954011 

C. kanga MTSN 8205 T505 Nguru  37.724 -6.004 FN81099, FN811035, FN811080 

C. kanga KMH 36389 T697 Nguru  37.724 -6.004 FN81099, FN811041, FN811086 
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Appendix II: Morphometric data for the three proposed new species of Callulina, all 

measurements in mm. See Materials and Methods for explanation of abbreviations. 

 Callulina new sp1. (N=15) Callulina new sp2. 

(N=4) 

Callulina  

new sp3. 

(N=1) 

Measures Min Max Mean SD Min Max Mean SD  

SVL 19.8 47.4 28.79 7.09 28.8 41.3 34.03 5.4 29.9 

TL 5 15.3 9.39 2.31 11.7 14.2 12.65 1.17 10.4 

TD 0.5 1.9 1.19 0.36 1.2 1.7 1.5 0.24 1.4 

ETD 0.9 2.7 1.46 0.42 0.9 1.6 1.23 0.33 1.7 

ED 1.6 4.8 3.00 0.68 3.8 4.6 4.3 0.35 3.7 

ND 1.2 3.1 1.90 0.43 1.9 2.7 2.2 0.35 2.2 

NED 1.6 3.4 2.2 0.39 2.3 3.1 2.63 0.36 2.6 

JW 4.1 13.8 7.98 2.29 11.6 16 13.53 2 10.9 

LF3 2.2 6.7 3.76 1.09 4.8 6.6 5.65 0.89 6.1 

LT4 2.9 8.7 4.87 1.34 7.7 8.5 8.08 0.39 6 

TSL 4 11.9 6.85 1.79 8.1 10.6 9.1 1.22 7.6 

HL 4.5 13.5 8.01 2.08 - - - - 9.2 

NLD 0.7 1.7 1.18 0.25 1.4 1.9 1.5 0.24 1.5 

IOD 3.6 8.6 5.15 1.07 3.7 5.7 4.58 1.03 5.2 

DPW 0.7 2 1.11 0.31 1.4 1.8 1.55 0.19 1.5 

WST 0.5 1.3 0.86 0.22 0.9 1.2 1 0.14 0.9 
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Abstract 

Shimba Hills of Kenya (SHK) are located at the junction of two biodiversity hotspots; the 

coastal forests of eastern Africa (CFEA) and the Eastern Afromontane biodiversity region 

(specifically, the Eastern Arc Mountains-EAM). As a result the hills have been 

biogeographically linked to both hotspots based on their floral and faunal compositions. 

However no phylogeographic study has ever documented the biogeographic affiliation of the 

SHK with either the coastal forests and/or the Eastern Arc Mountains. We report on the 

biogeographic history of amphibians from the Shimba Hills based on a combination of 

phylogeographic analysis using the 16S rRNA mitochondrial gene (16S), population genetics 

and species distribution modeling. Based on a multispecies phylogeographic analysis, SHK 

were found to be more closely affiliated to the CFEA than to the EAM. Two previously 

undocumented phylogeographic breaks are recovered from the study area; one from the 

Kenya north coast and another in the Tanga region in Tanzania. Historical habitat stability 

and connectivity appear to play a significant role in species diversification in the area. 

 

Key Words: Coastal forests of Eastern Africa, Eastern Afromontane biodiversity region, 

Eastern Arc Mountains, biogeography, species distribution modelling. 
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Introduction 

The Shimba Hills (SHK) are found in the south eastern parts of Kenya and is located at the 

junction of two biodiversity hotspots (see Figure 1); the Coastal forests of Eastern Africa 

(CFEA) and the Eastern Afromontane Biodiversity Region (EABR), specifically the 

neighbouring Eastern Arc Mountains (EAM) (Myers et al., 2000; Sloan et al., 2014). SHK is 

an important conservation area along the Kenya coast comprising of both a national and a 

forest reserve. Biodiversity surveys conducted in the SHK over the years have revealed the 

presence of mixed assemblages of flora and fauna. There are some species endemic to SHK 

such as the Shimba butterfly Charaxes acuminatus shimbanus Van Someren, 1963, Shimba 

Hills reed frog Hyperolius rubrovermiculatus, Schiotz, 1975; others occur in both SHK and 

the CFEA but absent from the EAM such as the Persimmon tree Diospyros shimbaensis 

White, 1988, Changamwe caecilian Boulengerula changamwensis Loveridge, 1932. While 

some species only occur in SHK and the EAM but are absent from the CFEA such as 

Bergmans’s collared fruit-bat Myonycteris relicta Bergmans, 1980; Callulina spp. (Harper et 

al., 2010) and the Usambara garter snake Elapsoidea nigra Günther, 1888. Still, other species 

occur in all the three areas such as the Black and Rufous sengi Rhynchocyon petersi Bocage, 

1880 but with SHK as the northernmost limit. In addition SHK is known to have some 

species associated with West African forests (Burgess & Clarke, 2000 and references therein). 

Because of this diverse flora and fauna, the SHK has been classified differently as either part 

of the CFEA (e.g. Azeria et al., 2007) or the EAM (Lovett, 1998; Blackburn & Measey, 

2009). 

Despite the unique geographic location of SHK and its mixed assemblage of flora and 

fauna, no study had been conducted to understand the historical biogeographic patterns of this 

area. As previously documented, patterns of biodiversity distributions are complex and are 

known to be determined by a number of factors both current and historical. For example, 

environmental and geological history of an area (Crowe & Crowe, 1982; Fjeldså & Lovett, 

1997; Ricklefs, 2003; Avise, 2004; Dornelas et al., 2006; Dimitrov et al., 2012), the 

individual species ecology and physiology (Duellman & Trueb, 1986; Hamilton, 1982; 

Hugget, 2004) all play a role in determining the biodiversity patterns, ranges and abundance 

of species in an area. Luke (2005) provided a detailed checklist of plants of SHK and noted 

the high diversity of plants present. He hypothesized that the close proximity of SHK to the 

Usambara Mountains through similar climatic history and altitude range could be responsible 

for high floral diversity in SHK. However this remains to be tested. Bwong et al. (in press) 

speculated the biogeographic history of SHK to be complex given the mixture of amphibian 

assemblages recorded there containing EABR, CFEA and widespread species. Several 

questions arise with regard to the evolutionary and biogeographical history of SHK and the 
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biodiversity found therein; is the SHK a centre of species diversity and endemism? How are 

the overlapping species between SHK and CFEA and EABR phylogeographically structured? 

Which mechanisms can be invoked to describe the genetic patterns if any? Was SHK a 

biodiversity refugium? These questions have important implications for understanding the 

evolutionary history in this region and for the conservation of its biodiversity in general. 

The biogeographic history of SHK can be understood by employing phylogeographic 

analyses. Phylogeography (Avise, 1987) is the branch of historical biogeography dealing with 

the analysis of the relationship between population genetic structure and geography (see also 

Avise, 2000, 2004) with the aim to characterize the roles played by environmental and 

historical factors in shaping the present species diversity patterns (Zink, 2002; Lomolino et 

al., 2004). However few phylogeographic studies have been conducted in Kenya especially 

those targeting such complex ecosystems. Phylogeographic studies however can form a good 

basis for biodiversity conservation. When integrated with other fields of studies such as 

Geographic Information Systems (GIS), phylogeographic analyses can help us understand the 

biogeographic history of an area. SDM (also known as climatic envelope models) estimate 

potential species distributions by deriving environmental envelopes from distributions and 

projecting into an interpolated potential climate of an area (Pearson, et al., 2007; Waltari & 

Guralnick, 2009). The models are produced by combining current environmental parameters 

and known occurrence data of a species fitted to a model to predict current distributions 

(Hugall et al., 2002; Elith & Leathwick, 2009). When projected to past climates, SDM can 

also be used to generate potential suitable habitats in past climatic conditions, i.e., the 

historical paleo-distributions of species (Hugall, et al., 2002; Carstens & Richards, 2007; Elith 

& Leathwick, 2009). Studies on paleo-distribution of species have proved useful as 

alternative ways of establishing potential historical factors determining the genetic structuring 

in species especially in taxa that lack good fossil representation such as amphibians. For 

example, species distribution modeling (SDM) can be employed to formulate a priori 

biogeographic hypotheses or validate phylogeographic results. 

In order to understand the biogeographic history of SHK, we conducted a 

comparative phylogeographic analysis on its amphibian assemblage using the 16S 

mitochondrial rRNA (16S) gene. In addition, we incorporated the use of SDM (Hugall, et al., 

2002; Carstens & Richards, 2007) and demographic analyses to better understand the 

resulting phylogeographic patterns. We also investigated the role of habitat stability, 

connectivity and isolation by distance (IBD) in structuring the observed phylogeographic 

patterns. Specifically we sought to answer the following; 

1. Which are the closest relatives of SHK amphibian populations? 
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2. Do amphibian species currently occurring in SHK have similar phylogeographic 

patterns to each other? 

3. Which historical processes, if any, account for the observed patterns of genetic 

diversity? 

 

Material and methods 

Study area 

In order to answer the above questions, the study was designed to include areas of the CFEA 

from Tanga region north of the Pangani River, east and west Usambara Mountains (EAM) 

going north up to Mpeketoni in Lamu on the Kenyan north coast of Mombasa (Figure 1). This 

north to south transect includes the SHK. For species distribution modeling analysis this area 

was extended up to the Kenya and Somalia border as some species may extend to this region 

given suitable habitats. Four main study sites were included; Mpeketoni, Arabuko-Sokoke 

Forest and surrounding areas in the Kenya north coast, Coastal forests in Tanga while the 

EAM was represented by the Usambara Mountains (See Figure 1). 

 

Fig 1: Map of Kenya and Tanzania showing the five major sampling sites colour coded as 

follows; Yellow = Mpeketoni, Blue = Arabuko-Sokoke Forest; Green = SHK; Purple = Tanga 

and Red = Usambara Mountains. Map modified from https://www.travcoa.com. 

https://www.travcoa.com/
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Data collection 

Fieldwork in and around the SHK was conducted in December 2013, April and December 

2014 and April–May 2015. Time-limited search, visual encounter survey methods were 

conducted as well as bucket pitfall traps with drift fences (Heyer et al., 1994). A 

representative of each species collected per locality was fixed in 10% formalin and stored in 

70% ethanol and later deposited at the National Museums of Kenya herpetology reference 

collection. Tissues sample (toe clips, thigh and /or liver muscles) were preserved in 95% 

analytical ethanol. Specimen identification was made using standard field references (e.g. 

Schiøtz, 1999; Channing & Howell, 2006; Harper et al., 2010) and existing genetic data held 

in online repositories (www.ncbi.nhi.gov/genbank/). Furthermore, we conducted a 12-day 

survey in Arabuko-Sokoke Forest reserve in June and August 2015 and in Coastal forests in 

Tanzania in December, 2013, January–March 2014. Recent surveys were complemented by 

other field surveys conducted in the region over the last 15 years (Loader et al., unpublished 

data). See Appendix 1 for the species list and locality information for all the samples used in 

this study. 

DNA extraction, amplification and sequencing 

Total DNA was extracted from freshly collected muscle tissue and/or liver preserved in 95% 

ethanol using the DNeasy blood and tissue kit (Qiagen, Valencia, CA). Extraction, 

amplification and sequencing followed protocols described in Loader et al. (2010). Each 

individual was barcoded to verify its identity using the 16S gene. Sequences were multiply 

aligned in Geneious v6.1.2 (http:www.geneious.com, Kearse et al., 2012) using the MAFFT 

alignment method (Katoh et al., 2002) with default settings. 

Phylogenetic analysis 

We constructed alignments for understanding the phylogenetic relationships of amphibian 

species in the study area using 16S gene. The alignments per species included all available 

barcoded (partial ca. 600bp mtDNA fragment) samples of amphibian species so far recorded 

from SHK. For each species we used data from the current study and additional data available 

from previous fieldwork and the Sky Island database at the Biogeography group, University 

of Basel Switzerland. The evolutionary relationships of SHK amphibians based on the 16S 

alignment were reconstructed using both Bayesian (MrBayes 3.2; Ronquist & Huelsenbeck, 

2003) and Maximum likelihood (RAxML v.8.0.0; Stamatakis, 2014) analyses with a single 

outgroup per species (e.g. a closely related congener). Substitution models for each species 

(Table S1) were determined using JModeltest v. 2.1.6 (Darriba et al., 2012) using the 

Bayesian Information Criterion. MrBayes analyses were implemented using parallel runs of 
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four simultaneous Markov chains for 20 million generations, sampling every 1000 

generations from the chain and discarding the first one million generations as burn-in. We 

also conducted Maximum Likelihood analysis on the same data using RAxML v. 8.0.0 

(Stamatakis, 2014), applying the thorough bootstrap algorithm and the GTRMMA 

substitution model for 100 runs. 

Haplotype reconstructions 

To further examine population variation within the study area we employed haplotype 

network analysis using the program PopART (www://popart.otago.ac.nz). We used TCS 

networks (Templeton, 1992) to reconstruct the relationships among populations from 

Mpeketoni, Arabuko-Sokoke Forest, Coastal forests in Tanga, Usambara Mountains and the 

SHK. 

Estimation of divergence time and sequence divergence 

Relative divergence time between clades and subclades was estimated using rate-calibrated 

tree analysis in BEAST v. 2.1.3 (Bouckaert et al., 2014). We used strict molecular clock, a 

coalescent tree prior, log-normal mean of 0.01 and a lognormal standard deviation of 1.0. 

Because there are no appropriate amphibian fossils from the study taxa with which we could 

calibrate the tree, we used a substitution rate of 0.00277/lineage/mya for 16S based on 

Lemmon et al. (2007). Divergence time estimation was only conducted for species with 

geographically structured populations based on phylogeographic analysis described above. 

We used the program TRACER v. 1.6 (Rambaut & Drummond, 2015) to confirm if sampling 

has reached stationarity (Effective sample size has reached 200). BEAST runs ranged 

between 50‒100 million generations, with sampling from the tree logged every 1000 

generations. Sequence divergence was measured using the species delimitation plugin v1.04 

for Geneious Pro (Masters et al., 2011). 

Population genetics 

We used Arlequin v. 3.5.2.2 (Excoffier & Lischer, 2010) to conduct analyses of haplotype, 

nucleotide and sequence diversity for each species as well as for each study site. 

Differentiation between sampling sites was calculated using the pair-wise F-statistic (Fst) 

analysis test (Wright, 1951). Fst values range from zero (identical populations) to one 

(populations fixed for different alleles). Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) 

tests were performed to check for signatures of recent population expansion. Negative 

significant values of Fs are interpreted as signatures of recent population expansion while 

negative values of Tajima’s D means selection (Fu, 1997). Mismatch distribution was used to 
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compare the demographic history of the lineages where a recently expanded population shows 

a smooth wave-like mismatch distribution (Rogers & Happending, 1992). Deviations from 

sudden population expansions were tested using Harpendings raggedness index where 

significant P values indicate stability (Harpending, 1994). 

Species distribution modeling 

We modeled habitat suitability over time for species occurring in SHK to establish if the area 

has been a historically suitable habitat for all the species currently found there. Habitat 

suitability was modeled based on four climate scenarios; current (1950‒2000), and three 

measures of historical habitat suitability; Holocene (6kya, years ago), Last Glacial Maximum 

(LGM), 25kya and Last Interglacial Maximum (LIG), 120kya. The study area consisted of a 

polygon extending from the coastline inland between 38.774, -6.055 and 37.607, -3.549 in the 

south and 41.337, -1.597 and 40.987, -0.832 in the north. We used data from Community 

Climate System Model research on climate (CCSM) for both Holocene and LGM climates 

and for LIG climate, data from Otto-Bleisner et al. (2008) was used. Climatic data consisted 

of the 19 bioclimatic variables (precipitation and temperature) available at the WorldClim 

database (Hijmans et al., 2005). We evaluated the Pearson’s correlation among these 

variables using SDM Toolbox v. 1.1c (Brown, 2014) allowing only those that had a 

correlation coefficient of less than 0.8. After reducing Pearson’s r to less than 0.8 the 

following nine variables were retained; annual mean temperature (Bio1), isothermality (Bio 

3), temperature seasonality (Bio 4), annual precipitation (Bio 12), precipitation of the wettest 

month (Bio 13), precipitation of driest month (Bio 14), precipitation seasonality (Bio 15), 

precipitation of warmest quarter (Bio 18) and precipitation of coldest quarter (Bio 19). 

Presence data for species was obtained from all localities sampled for this study as well as 

verified co-ordinates based on National Museums of Kenya (NMK) herpetological collection 

database and from Global Biodiversity Facility (GBIF) online database (http://data.gbif.org). 

All geo-referenced localities were validated for co-ordinate errors. In total we used a total of 

550 locality data points for 28 species (Appendix 1). We used Maxent, v. 3.3.3k (Philips et 

al., 2006) to model habitat suitability under the current climate and projected to the above 

three historical paleo-climatic conditions (Holocene, LGM and LIG). Maxent is a machine-

learning algorithm, popular for predicting species and habitat distributions using presence 

only data. Models were trained using current climate and then projected to the paleo-climatic 

conditions for the study area. We used default parameters for Maxent with 10 replicate cross-

validation runs. Model performance was evaluated using Area under Receiver Operating 

Characteristic curve (AUC) statistics with AUC >0.5 indicating better than random model 

prediction (Elith et al., 2006). The resulting suitability maps were compared with the 

phylogeographic results to establish congruence if any (Carstens & Richards, 2007). To 
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produce habitat suitability stability maps we summed up the exponent of the averaged natural 

log of the predicted distributions corrected for LGM (Graham et al., 2010). Habitats that were 

consistently predicted as suitable in all the models were considered stable and were expected 

to have higher genetic diversity than unstable areas (Carnaval et al., 2009; Fitzpatrick et al., 

2009). We further tested the stability theory by comparing the genetic diversity of all 

populations that were predicted as stable against unstable from the SDM analysis. 

Habitat connectivity and Isolation by distance IBD 

We evaluated whether habitat connectivity was responsible for patterns of genetic variation 

observed in the study area using Circuitscape theory (McRae & Shah, 2009). Habitat 

suitability maps for each species were generated from the SDMs and used as inputs for 

connectivity layers in this analysis, following Lawson, (2013). The suitability maps were first 

converted to connectivity maps where areas predicted as suitable conveyed less resistance to 

dispersal than unsuitable areas. We conducted pair-wise analysis selecting Iterate across all 

pairs in the focal node option in Circuitscape, which measures the connectivity between 

populations through environmental (habitat) space. Results were obtained in the form of 

cumulative and maximum current maps and voltages that were visualized in ArcGIS 10.2 

(ESRI) and used to test the relationships with environmental variables. 

We used Mantel (Mantel, 1967) and partial Mantel tests to evaluate the correlation 

between genetic structure (Fst values) and connectivity matrix results from Circuitscape 

analysis and geographical distance between populations. Geographical distance was measured 

in QGIS (v. 2.8.3-Wien). Mantel and partial Mantel tests were implemented using the Vegan 

package (Oksanen et al., 2011) in R (R core development team, 2015). 

 

Results 

Study species 

We recorded a mixed amphibian assemblage from the SHK comprising two species of 

caecilians and 28 anurans species. SHK has one endemic amphibian species H. 

rubrovermiculatus; two EABR endemic species, Callulina kreffti Nieden, 1910 and 

Scolecomorphus cf. vittatus, Boulenger, 1895 and 23 coastal forest and wide ranging species. 

Additionally we obtained sequences of overlapping species from Mpeketoni (9) and Arabuko-

Sokoke Forest (16) both in Kenya north coast and 15 and 19 species from Coastal forests in 

Tanga and lowland forests in Usambara respectively. 
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Phylogenetic analysis was conducted based on 614 sequences of 16S. We recovered 

two main phylogenetic patterns from both MrBayes and RAxML analysis; (1) 15 species that 

lacked any phylogenetic resolution (Figures 2A and S1); (2) species that were divided into 

two well-supported clades. The second pattern can further be divided into two subgroups i.e. 

those with well resolved and geographically structured clades; Arthroleptis stenodactylus 

Pfeffer, 1893, (Figure 2B). Arthroleptis xenodactyloides, Hewitt, 1933, Afrixalus delicatus 

Pickersgill, 1984, Afrixalus sylvaticus Schiotz, 1974 (Figure S2), Leptopelis concolor Ahl, 

1929, Hyperolius pusillus Cope 1862. Hyperolius mariae Barbour & Loveridge, 1928, 

Hyperolius parkeri Loveridge, 1933, Hyperolius tuberilinguis Smith, 1849, Mertensophryne 

micranotis Loveridge, 1925 (Figure S3), and Sclerophrys pusilla Mertens, 1937 and those 

with well resolved clades that lacked geographical structuring (Chiromantis xerampelina 

Peters, 1854 (Figure S4), Phrynobatrachus acridoides Cope, 1867 and Kassina maculata 

Duméril, 1853. Tree topologies from both Bayesian and Maximum Likelihood analyses were 

similar in all species except for H. mariae in which SHK samples were recovered as 

paraphyletic with respect to Mpeketoni samples in the MrBayes analysis. In addition major 

clades in MrBayes trees received good posterior probability (PP) support values where >95% 

PP is considered well supported and < 60% PP less supported while within clade relationships 

were less supported. Bootstrap values for RAxML analyses were equally high between the 

major splits ranging from 65 to 100%. 

Phylogeography 

We recovered different phylogeographic patterns from SHK amphibians as shown; in seven 

out of 16 species with overlapping samples in all the five study sites, the relationship among 

the study sites were unstructured (Figure 2A). In two species, S. pusilla and A. stenodactylus 

SHK samples were closer to Arabuko-Sokoke Forest than to Tanga and Usambara (Figure 

2B). In four species, L. concolor, A. delicatus (Figure 2C), H. mariae and H. tuberilinguis 

samples from Mpeketoni, formed well supported monophyletic clades with respect to samples 

from Arabuko-Sokoke Forest, SHK, Tanga and Usambara whose relationships were 

unstructured. 

In another four species, only samples from SHK to the south were available; for C. 

kreffti and S. vittatus SHK samples grouped with Usambara samples, Leptopelis 

flavomaculatus Günther, 1864 (Figure S5) the relationship between SHK, Tanga and 

Usambara was unstructured; however in A. sylvaticus (Figure S2) SHK samples and 

Usambara samples formed two well supported monophyletic clades. In addition, sequences 

were only available from the Kenya coast in five species; three lacked phylogeographic 

structure while H. pusillus (Figure S6) and B. changamwensis, SHK samples were divergent 



 

133 
 

from Changamwe samples further north. Overall SHK amphibian populations formed well 

supported clades with CFEA to the exclusion of EAM in four species and none with EAM to 

the exclusion of CFEA. However, in another four species population from SHK, CFEA and 

EAM grouped together to the exclusion of population from the Kenya northcoast in 

Mpeketoni while in three other species SHK populations are monophyletic. 

Two phylogeographic breaks were recovered in two different parts of the study area 

located in the north and south of SHK respectively. The northern break separated samples 

from Mpeketoni as monophyletic in A. delicatus (Figure 2C), L. concolor and H. 

tuberilinguis. In H. parkeri, samples from Mpeketoni and Arabuko-Sokoke Forest grouped 

together against samples to the south. Another phylogeographic break in the north was 

present between SHK and Arabuko-Sokoke Forest samples in H. pusillus (Figure S6). The 

southern phylogeographic break separates coastal Kenya from Tanga/Usambara samples 

(Figure 2B). 

 

Fig. 2: MrBayes tree topologies showing the three phylogeographic patterns. A = P. 

anchietae-no clear geographic structuring. B and C = A. stenodactylus and A. delicatus 

topologies showing southern and northern region phylogeographic breaks respectively. Major 

sampling sites abbreviated as follows; MPK = Mpeketoni, ASF = Arabuko-Sokoke Forests, 

SHK = Shimba Hills of Kenya, TA = Tanga and EAM = Usambara. 

Haplotype reconstructions 

TCS haplotype numbers varied among species as well as among populations of the same 

species. Haplotypes recorded from species that lacked phylogeographic structures, ranged 
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from one to four per species (Figure 3A) except in Hyperolius argus Peters, 1854 in which 

nine haplotypes were present–a central haplotype shared by samples from SHK, Arabuko-

Sokoke Forest, Mpeketoni and Usambara plus eight other haplotypes connected to the central 

haplotype by one mutation step each (Figure S7). Geographically structured species recorded 

higher haplotype numbers ranging from three in S. pusilla to ten in H. mariae. As would be 

expected, there were higher numbers of mutation steps separating haplotypes in 

geographically structured species for example 17 steps separated Kenyan samples from 

Tanzanian samples in A. stenodactylus (Figure 3B). Haplotypes from Mpeketoni were 

separated by more mutation steps from the rest of the samples (Figure 3C). The networks for 

all species examined supported the results from the phylogenetic analysis and for H. mariae 

the haplotype network results were similar to results from RAxML analysis showing 

Mpeketoni samples as divergent from the rest and SHK samples as paraphyletic with respect 

to samples from Usambara. 

 

Fig. 3: TCS haplotype networks for (A). P. anchietae; (B). A. stenodactylus; (C) A. delicatus 

respectively. Colour coding stands for the various study sites as shown, Yellow= Mpeketoni, 

Blu e= Arabuko-Sokoke Forest, Green = Shimba Hills of Kenya, Purple = Tanga and Red = 

Eastern Arc Mountains. 

Clade divergence times and sequence divergence 

Molecular dating indicates all estimates between clades in the geographically structured 

species occurred from the late Miocene onwards. Both the oldest and the youngest lineage 

divergences occurred in the south separating Kenya and Tanzania samples around 7.3 million 
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years ago (mya) (4.2–10.2, 95% Highest Posterior Density (HDP)) in A. stenodactylus (Figure 

3A) and 1.4 mya (0.4–2.4, 95% HPD) in S. pusilla. Most of the divergences occurred in the 

Pliocene from 5 mya and only four species show clade divergences in the Pleistocene (see 

Table 1). Samples from Mpeketoni diverged from the rest much earlier as seen in A. delicatus 

4.6 mya (2.4–6.9, 95% HPD), H. mariae 3.9 mya (2.0–6.1, 95% HPD), H. tuberilinguis 5.5 

mya (3.2–8.2, 95% HPD), H. parkeri 5.4 mya (3.1–8.1, 95% HPD) and L. concolor 1.9 mya 

(0.8–3.2, 95% HPD) (Figure 3B). Even though the clade divergence varied among species, 

there seems to be some congruence, regarding subclade separation where most divergence are 

recent and occurred between 1.7 and 0.6 mya all predating the LGM (See Table 1). SHK 

shared its most recent common ancestor with West Usambara around 1.4 mya in A. 

xenodactyloides, while the most recent common ancestor with Usambara was 4.6 mya in A. 

sylvaticus. The most recent common ancestor between SHK and Arabuko- Sokoke Forest was 

1.7 mya in M. micranotis and 2.3 mya in H. pusillus (Table 1). Sequence divergence varied 

from 4.3% in A. stenodactylus to 0.5% in S. pussila and samples from Mpeketoni recorded 

higher sequence divergence as shown in Table 1. 

 

Fig. 4: BEAST tree topologies for (A) A. stenodactylus and (B) L. concolor showing the 

south and north clade divisions respectively. The abbreviations stand for the major study 

sites. 
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Table 1: Divergence time estimates and clade divergence for species that exhibited 

phylogeographic structuring. Major sampling sites are abbreviated as follows: ASF = 

Arabuko-Sokoke Forest, MPK = Mpeketoni, SHK = Shimba Hills, TA = Tanga and EAM = 

Usambara. 

Species Clade age 

(95%HPD) 

Area Subclade ages Geologic time Pairwise 

distance 

S. pusilla 1.4 (0.5–2.4) SHK, ASF vs. 

TA, EAM 

Subclade1 0.4 

Subclade2 0.7 

Pleistocene 0.005 

A. stenodactylus 7.3(4.2–10.1) SHK, ASF vs. 

TA, EAM 

Subclade1 1.3 

Subclade2 1.1 

Miocene 0.043 

A. 

xenodactyloides 
2.0(0.9–3.3) SHK, EAM 

vs. EAM,TA 

Subclade1 1.4 

Subclade1 0.9 

Plio-

Pleistocene 

0.005 

L. concolor 1.9(0.8–3.3) MPK vs. 

ASF,SHK,TA 

Subclade1 0.8 

Subclade2 0.3 

Plio-

Pleistocene 

0.009 

A. delicatus 4.6(2.4–6.9) MPK vs. 

ASF,SHK, 

TA, EAM 

Subclade1 1.5 

Subclade2 0.9 

Mio-

Pleistocene 

0.025 

S. gutturalis 1.5(0.6–2.7) ASF,SHK,TA 

vs. EAM 

Subclade1 0.8 

Subclade2 0.7 

Pleistocene 0.007 

H. pusillus 2.3(0.9–3.9) ASF vs. SHK Subclade1 0.8 

Subclade2 0.6 

Plio-

Pleistocene 

0.009 

H. mariae 3.9(2.0–6.2) MPK vs. 

SHK, EAM 

Subclade1 1.3 

Subclade2 1 

Subclade3 0.2 

Mio-

Pleistocene 

0.023 

M. micranotis 2.6(1.3–4.0) SHK, ASF, 

TA vs. EAM 

Subclade1 1.1 

Subclade2 1.7 

Plio-

Pleistocene 

0.01 

H. parkeri 5.5(3.1–8.1) MPK vs. ASF, 

SHK, TA, 

EAM 

Subclade1 1.2 

Subclade2 1.3 

Mio-

Pleistocene 

0.029 

A. sylvaticus 4.3(2.3–6.4) SHK vs EAM Subclade1 0.8 

Subclade2 1.4 

Mio-

Pleistocene 

0.022 

H. tuberilinguis 5.5(3.2–8.2) MPK vs. ASF 

SHK, TA 

EAM 

Subclade1 1.1 

Subclade2 1.1 

Mio-

Pleistocene 

0.031 
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Demographic analysis 

Nucleotide diversity within species ranged between 0.0 (e.g. in Afrixalus fornasini Bianconi, 

1849, Ptychadena anchietae Bocage, 1868) and 0.023 in A. stenodactylus. The highest 

nucleotide diversity was recorded from Arabuko-Sokoke Forest samples of H. tuberilinguis 

(Table 2). SHK recorded the highest nucleotide diversity in five species followed by 

Usambara and Arabuko-Sokoke Forest while Tanga and Mpeketoni had one each. Nucleotide 

diversity appeared to be higher in populations that had larger sample size (See Table 2). 

However all populations that had more than four samples recorded haplotype diversity of 1.0. 

(see Table 2). Tajima’s D results were mostly negative and only significant in five 

populations (Table 2). On the other hand most of the Fu’s Fs tests were negative. Tajima’s D 

was only significant for one species from SHK while Fu’s Fs test was significant for 10 out of 

16 species. Demographic expansions were reported in seven populations in six species. 

However raggedness index which measures the smoothness of the mismatch distribution were 

all insignificant. Species that recorded stable populations from SHK based on the mismatch 

distribution include; A. sylvaticus, C. xerampelina and K. maculata (See Figure 5). Fst values 

varied between populations where species without structuring recording mostly zero values 

between populations. SHK recorded significant Fst values in 11 species, three of which 

involved species with phylogeographic breaks in the south (A. sylvaticus, A. stenodactylus, A. 

xenodactyloides). Eight out of these 11 species showed significant Fst values between SHK 

and Arabuko-Sokoke Forest and/or Mpeketoni to the north (See Table S2). 

Species distribution modelling 

We modeled current and paleo distributions for 28 out of the 30 species currently found in 

SHK i.e. all except the two undetermined species. The AUC was high for all the species 

modeled and ranged from 0.837 to 0.993 with a mean of 0.947 implying better than random 

predictions. Our results points to the significance of precipitation in the distribution of 

amphibians in the area. For example Bio 19 (precipitation of coldest quarter) was most 

important for the prediction of 25 species while Bio14 (precipitation of driest month) was 

most important for C. kreffti and S. cf. vittatus and bio3 (isothermality) was most important 

for A. xenodactyloides. Bio 19 contributed a large percentage (>70%) for 11 species (See 

Table S3). Other variables that contributed to the prediction in either second or third position 

include, Bio12 (annual precipitation), Bio14 (precipitation of driest Month) and bio18 

(precipitation of warmest quarter) the rest contributed much less. 
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Table 2: Demographic analysis for species that have overlapping ranges spanning more than 

two study sites, n = sample size, p = number of polymorphic sites, h = Haplotype diversity, Π 

= nucleotide diversity, TD Tajima’s (D), Fs = Fu’s Fs test and r = Harpending’s Raggedness 

index. Populations predicted as stable and/ or unstable based on the SDM habitat stability 

modeling are indicated in letter S /US respectively in bracket after the locality. Significant 

values are highlighted in bold letters. 

Species & population n p h Π TD FS r 

H. argus 

EAM (US) 

SHK (S) 

ASF (S) 

MPK (S) 

 

1 

14 

5 

1 

 

0 

3 

3 

0 

 

1.000  

1.000  

1.000  

1.000  

 

0.000  

0.002  

0.003 

0.000  

 

NA 

-0.49 

-1.05 

NA 

 

NA 

-28.02 

-4.29 

NA 

 

NA 

0.09 

0.43 

NA 

C. xerampelina 

TA (S) 

EAM (S) 

SHK (S) 

ASF (S) 

 

4 

8 

6 

4 

 

1 

1 

3 

0 

 

1.000  

1.000 

1.000 

1.000  

 

0.001  

0.001  

0.003 

0.000 

 

-0.61 

0.33 

-0.16 

0.00 

 

-4.64 

-15.45 

-5.76 

34... 

 

0.25 

0.20 

0.13 

0.00 

A. fornasini 

TA (S) 

EAM (S) 

SHK (S) 

ASF (S) 

 

7 

3 

4 

5 

 

0 

0 

0 

0 

 

1.000  

1.0 00  

1.000  

1.000  

 

0.000  

0.000  

0.000  

0.000  

 

0.000 

0.000 

0.000 

0.000 

 

0.000 

0.000 

0.000 

0.000 

 

0.000 

0.000 

0.000 

0.000 

H. marmoratus 

TA (S) 

US (S) 

SHK (S) 

ASF (S) 

 

8 

9 

1 

3 

 

0 

4 

0 

1 

 

1.000  

1.000  

1.000  

1.000  

 

0.000  

0.003  

0.000  

0.001  

 

0.00 

0.23 

0.00 

0.00 

 

34.. 

-0.23 

NA 

-2.30 

 

0.00 

0.75 

NA 

0.00 

P. acridoides 

TA (S) 

EAM (S) 

SHK (S) 

ASF (US) 

 

29 

7 

21 

4 

 

3 

2 

3 

0 

 

1.000  

1.000  

1.000  

1.000  

 

0.002  

0.002  

0.001 

0.000  

 

-0.38 

-0.28 

-0.68 

0.000 

 

-34… 

-9.76 

-34… 

34… 

 

0.20 

0.10 

0.12 

0.00 

P. anchietae 

TA (S) 

EAM (S) 

SHK (S) 

ASF (US) 

MPK (US) 

 

19 

2 

28 

4 

2 

 

2 

0 

2 

0 

0 

 

1.000  

1.000  

1.000  

1.000  

1.000  

 

0.000 

0.000  

0.000  

0.000  

0.000  

 

-1.51 

0.00 

-1.51 

0.00 

0.00 

 

-34… 

34... 

-34… 

34… 

34… 

 

0.39 

0.00 

0.54 

0.00 

0.00 

S. pusilla 

TA (S) 

EAM (US) 

SHK (S) 

 

4 

3 

3 

 

0 

0 

1 

 

1.000  

1.000  

1.000 

 

0.000  

0.000  

0.001  

 

0.00 

0.00 

0.000 

 

34... 

34.. 

-2.18 

 

0.00 

0.55 

0.00 

A. stenodactylus 

TA (US) 

US (S) 

SHK (S) 

ASF (US) 

 

4 

13 

16 

3 

 

1 

5 

1 

0 

 

1.000  

1.000  

1.000 

1.000 

 

0.001 

0.002 

0.000  

0.000   

 

-0.61 

-1.86 

-1.16 

0.000 

 

-4.64 

-25.20 

-34... 

34… 

 

0.25 

0.07 

0.58 

0.00 

L. concolor 

TA (S) 

SHK (S) 

ASF (US) 

MPK (US) 

 

17 

14 

4 

4 

 

0 

3 

0 

0 

 

1.000  

1.000  

1.000  

1.000  

 

0.000 

0.001 

0.000 

0.000 

 

0.00 

-1.67 

0.00 

0.00 

 

34 

-34... 

34.. 

34 

 

0.00 

0.17 

0.00 

0.00 

A. delicatus 

TA (S) 

SHK (S) 

 

1 

7 

 

0 

6 

 

1.000 

1.000 

 

0.000  

0.001  

 

0.00 

-0.61 

 

0.00 

-4.64 

 

NA 

0.21 



 

139 
 

ASF (S) 

MPK (S) 

4 

4 

1 

 

1.000 

1.000 

0.004 

0.001 

-1.52 

1.63 

-6.32 

-3.99 

0.18 

0.56 

S. gutturalis 

TA (S) 

EAM (US) 

SHK (S) 

ASF (US) 

 

4 

2 

5 

2 

 

3 

1 

1 

0 

 

1.000  

1.000  

1.000  

1.000  

 

0.004  

0.002 

0.001  

0.000  

 

-0.75 

0.00 

-0.82 

0.000 

 

-2.37 

0.00 

-7.58 

34... 

 

0.08 

0.00 

0.02 

0.00 

H. mariae 

US (US) 

SHK (S) 

MPK (US) 

 

4 

18 

2 

 

0 

8 

0 

 

1.000  

1.000 

1.000 

 

0.000  

0.005  

0.000  

 

0.00 

-0.60 

34… 

 

34... 

-26.66 

34... 

 

0.00 

0.03 

0.00 

M. micranotis 

TA (S) 

SHK (S) 

EAM (S) 

ASF (US) 

 

5 

9 

17 

2 

 

0 

1 

7 

0 

 

1.000  

1.000  

1.000  

1.000  

 

0.000  

0.001  

0.004  

0.000  

 

0.000 

0.99 

0.08 

0.00 

 

34… 

-17.36 

-23.89 

34… 

 

0.00 

0.25 

0.13 

0.00 

H. parkeri 

TA (S) 

EAM (US) 

SHK (S) 

ASF (S) 

MPK(S) 

 

3 

1 

8 

3 

2 

 

1 

0 

2 

0 

3 

 

1.000  

1.000  

1.000  

1.000  

1.000  

 

0.002 

0.000  

0.001  

0.000  

0.007  

 

0.000 

0.000 

-1.31 

0.00 

0.00 

 

-2.20 

NA 

-14.52 

34… 

1.20 

 

0.56 

NA 

0.17 

0.00 

0.00 

H. tuberilinguis 

TA (S) 

EAM (US) 

SHK (S) 

ASF (S) 

MPK (S) 

 

6 

2 

9 

2 

7 

 

1 

1 

0 

14 

3 

 

1.000  

1.000  

1.000  

1.000  

1.000  

 

0.001  

0.002  

0.000  

0.032  

0.002  

 

-0.93 

0.00 

0.00 

0.00 

-0.65 

 

-10.9 

0.00 

34… 

2.64 

-8.32 

 

0.22 

0.00 

0.00 

0.00 

0.31 

 

 

Fig. 5: Mismatch distribution for selected species from SHK. Top; sudden expansion; A, H. 

argus; B, P. anchietae; C, A. stenodcatylus. Bottom; stable populations; D, C. xerampelina; 

E, K. maculata and F, A. sylvaticus. 
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The current climate model predicted a suitable habitat from Usambara/Tanga to either 

Arabuko-Sokoke Forest or Mpeketoni among populations that did not have strong geographic 

structuring (Figure 6). For structured species a continuously suitable area was predicted in S. 

pusilla, S. gutturalis and M. micranotis. In A. sylvaticus, A. stenodactylus (Figure 6) and A. 

xenodactyloides (Figure S8), populations were disconnected around Tanga area while H. 

mariae, A. delicatus and L. concolor populations were disconnected in the north past 

Arabuko-Sokoke forest. The models predicted accurately for most species based on their 

current known occurrences however, it under predicted suitable habitats for M. micranotis; 

Arabuko-Sokoke Forest was predicted as very unsuitable yet the species is known to occur 

beyond Arabuko-Sokoke Forest to the north. The Holocene model prediction for 

phylogeographically unstructured species did not greatly differ from the current model except 

that Tanga region was predicted as less suitable for most species. In addition the presence 

and/or absence of unsuitable area in the north also varied among species. In the LGM all 

species had most of the study area predicted as suitable (Figure 6) except for H. argus (Figure 

S1) and A. sylvaticus Figure S2). For L. concolor and M. micranotis suitable area reduced 

from Arabuko-Sokoke Forest going north. 

        

        

Fig. 6: Current and LGM Maxent habitat suitability predictions. Above; P. anchietae (no 

phylogeographic structure), below; A. stenodactylus (phylogeographically structured). 

The study area was suitable for only a few species during the LIG; A. delicatus, H. 

mariae, H. argus, H. tuberilinguis and Sclerophrys steindachneri Pfeffer, 1893. There was no 

suitable habitat connecting Tanga/Usambara and SHK in S. pusilla, A. stenodactylus, A. 
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xenodactyloides and M. micranotis, while no suitable habitat existed from SHK to the north 

for L. concolor. A small strip along the coastline from the Kenya north to Tanga-Usambara 

area was predicted as stable for species with no structuring (C. xerampelina, Hemisus 

marmoratus Peters, 1854, K. maculatus, S. steindachneri) (Figure 7 A and B). SHK was 

stable for all species that exhibited phylogeographic structuring (Figure 7 C and D), however 

only A. delicatus had a suitable habitat predicted in the whole study area. Not all populations 

which were predicted as stable based on SDM estimations recorded higher than usual 

nucleotide diversity compared to unstable areas. Only four species where SHK was predicted 

as stable had higher nucleotide diversity than unstable areas (see Table 2). 

         

       

Fig. 7: Predicted habitat suitability stability areas for A, P. anchietae no phylogeographic 

structuring but displayed recent population expansion in SHK; B, C. xerampelina no 

phylogeographic structuring and no recent population expansion in SHK. C, H. mariae 

phylogeographic break in the north; D, A. stenodactylus display phylogeographic break in the 

south. 

Isolation by distance and habitat connectivity 

Mantel tests to detect correlations between genetic differentiation and geographical distance, 

current and LGM habitat connectivity produced mixed results. Ten out of 23 species had 
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highly correlated but non-significant values between geographical distance and genetic 

differentiation however C. xerampelina, H. argus, H. marmoratus and S. pusilla had a 

negative correlation with geographical distance. Both L. concolor and M. micranotis had 

significant correlations with current and LGM habitat connectivity. When distance was 

controlled for in partial Mantel test, still habitat connectivity was highly and significantly 

correlated with genetic differentiation in M. micranotis however L. concolor was only 

significantly correlated with current habitat connectivity. In H. parkeri there was a significant 

correlation between genetic differentiation and LGM habitat connectivity in both Mantel and 

partial Mantel tests (Table S4). 

 

Discussion 

Phylogeographic patterns within SHK and adjacent areas 

We present the first intra-specific phylogeographic data for amphibians depicting 

relationships between SHK and the biodiversity hotspots of the CFEA and EABR 

(specifically the EAM). Despite our analysis being based on a single molecular marker, which 

may have some limitations for such analysis (Ballard & Whitlock, 2004; Gutierrez-Garcia & 

Vazquez-Domingues, 2011), using multiple co-distributed species plus the integration of 

SDM provides an important first step in understanding the phylogeographic patterns of SHK. 

Overlapping amphibian assemblages of the study area exhibited mixed 

phylogeographic patterns, which is to be expected for an assemblage-wide study of 

ecologically different species. However subsets of the data using particular species show 

congruent patterns of phylogeographic breaks across the study area. SHK population was 

recovered as well supported clades in A. sylvaticus, A. xenodactyloides and H. pusillus 

(Figures S2 and S6). The monophyly of H. pusillus is tentative as samples were only 

available from the Kenyan coast. Increased sampling from Tanga and Usambara areas where 

it is known to occur (Channing & Howell, 2006; Harper et al., 2010) may be required to 

prove the status of the SHK samples. When only species with phylogeographically structured 

samples from all the five study sites were considered (9), SHK amphibian population grouped 

with CFEA against EAM in four species while no species from SHK grouped with EAM to 

the exclusion of CFEA. Few studies exist in this area to compare our results, however 

comparison can be made with a study by Dimitrov (2012) on African violets (Saintpaulia 

spp), in which coastal Kenya population including SHK grouped together against those of 

EAM. Another study of A. xenodactyloides by Blackburn & Measey, (2009), also showed 

SHK population divergent from those of the Usambaras. 
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The two phylogeographic boundaries recovered in this study shed light on the 

historical biogeography of the area. The first barrier in Kenya’s north coast coincided with the 

Tana River Delta seemingly isolating Mpeketoni populations as monophyletic across species. 

This barrier was also predicted from the SDM analysis in which the region was consistently 

predicted as unsuitable both in the Current and Holocene climate models. The break however 

was absent in the LGM predictions of the affected species (Figure 2C). Estimated divergence 

time across this phylogeographic break is in the Mio-Pleistocene period (Table 1). Sequence 

divergences across the barrier are relatively high ranging between 0.9 to 3.1% perhaps 

reflecting the individual species specific responses to the effect of this barrier. Demographic 

analysis showed differences in population parameters across this barrier further supporting its 

existence and old age. For example there were high and significant Fst structure between 

Mpeketoni population and those to the north of the barrier (Table S2) (Avise, 1987). We 

speculate that the Tana River Delta may have acted as the barrier to gene flow in this area. 

Rivers, especially ancient drainage basins, are known to act as barriers to gene flow to some 

amphibians (Lampert et al., 2003; Dias-Terciero et al., 2015; Moraes et al., 2016). 

Contrasting this, other studies also show that rivers are not necessarily a hindrance to gene 

flow in amphibians e.g. Lougheed (1998), Gascon (2000). The ability to cross or not to cross 

a river barrier therefore may depend on both ecological and physiological requirements of 

each species (Schneider et al., 1998). As can be seen from the current study, the Tana River 

Delta barrier did not affect species like C. xerampelina, P. anchietae and Kassina maculata 

which maintained gene flow across it. Alternatively, the modern-day Tana River Delta may 

not be an absolute barrier to gene flow especially to recent immigrants in the area (Newman 

& Rissler, 2011). In addition the position and size of the delta may have changed over the 

years causing some species to make secondary contact after a long period of separation 

causing the observed inconsistencies. Apart from the Tana Delta, there is a dry or arid coastal 

zone between the Sabaki and Tana Rivers going up to the shoreline, consisting mainly of dry 

bushland, which may be unfavourable with amphibians. However the fact that some 

amphibians were able to disperse through this dry area make it doubtful that it is solely 

responsible for the phylogeograhic breaks in this area. No barrier had previously been 

identified in the northern Kenya part of the coastal forest making our study the first to identify 

this barrier. 

The second barrier mostly separates Usambara and Tanga populations from those 

along the Kenyan Coast. The exact position is not clear based on the existing data as it seems 

to vary among species. In A. sylvaticus, H. mariae, M. micranotis and S. gutturalis, it 

separates Usambara samples as monophyletic while in other species, samples from both 

Tanga and Usambara group together against those of SHK going north (A. stenodactylus and 
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S. pusilla). The lack of clear position of this boundary could be associated with the paucity of 

genetic data in our sampling but the historical unsuitability of this area over long periods of 

time was also evident from some SDM predictions. The area between SHK and Tanga was 

predicted as unsuitable for some of these species; for A. stenodactylus, A. sylvaticus, A. 

xenodactyloides and S. pusilla during the Holocene and M. micranotis in the LIG (See Figure 

S8). This barrier, unlike the previous one is not obvious as there are no significant geographic 

features in the area with which it can be associated. It appears slightly above the Pangani 

River which has been associated with the separation of A. xenodactyloides populations 

between the northern and Southern EAM (Blackburn & Measey, 2009). The break could be 

associated with long term climatic events that have operated in the area (Driscoll, 1998) 

causing areas to be isolated. The estimated divergence period of this range from 7.3 to 1.5 

mya (Table 1). The only barrier previously reported in the entire CFEA was the Rufiji River 

for species boundaries (See Burgess & Clarke 2000 and references therein) and Pangani 

Rivers for intra species genetic diversification (Blackburn & Measey, 2009). Similar studies 

involving different taxa should be conducted to shed more light on these putative 

phylogeographic barriers. In addition the effects of rivers on intraspecific phylogeography of 

different taxa along the CFEA needs to be investigated. 

There were no phylogeographic patterns in nine of the studied species, which can be 

interpreted in two ways; (1) broad scale dispersal and (2) continuous gene flow between SHK 

and adjacent areas over time (Avise et al., 1987; Carpenter et al., 2010). Distinguishing the 

two scenarios within these species may be hampered by lack of sufficient data from some 

localities; however mismatch distribution for sudden population expansion was exhibited in 

three species (H. argus from SHK, L. flavomaculatus from Usambara and P. anchietae from 

SHK and Usambara). Furthermore these populations reported low nucleotide diversity 

consistent with populations undergoing range expansions (Hewitt, 2000). Our SDMs 

predicted that SHK was unsuitable for P. anchietae in LIG but suitability has progressively 

increased since the LGM while Usambara as suitable habitat for L. flavomaculatus reduced 

significantly during the Holocene compared to the LGM and current models. However the 

same is not evident in H. argus. The remaining species lacking phylogeographic structure did 

not exhibit population expansions and some may have undergone high connectivity and gene 

flow for a long period of time. For example our SDM estimations for C. xerampelina, P. 

acridoides and H. marmoratus indicate the presence of a continous suitable habitat in all the 

five study sites from the LGM to the current, supporting the continuous gene flow within the 

study area. Most of these species are wide spread with distributions in the entire coastal 

forests of Eastern Africa and beyond (Poynton, 1991). The connectivity of their populations 

may have therefore been maintained by their ability to disperse through the region over the 
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years. As observed by Poynton (2000), for the wide spread species in CFEA, ‘the mosaic 

nature of the area encourage their ability to adapt to a variety of habitats and this may explain 

current patterns, having enabled the maintenance of continuous gene flow during the 

oscillating wet and dry climate of the Pleistocene (Hamilton, 1982). Future studies examining 

genomic scale data sets might be able to test these preliminary findings. 

Clade divergence  

Estimated divergences using molecular clocks shows that about 60% (8 out of 13) of the 

species diverged before the Pleistocene, indicating that divergence within the area was not 

solely due to Pleistocene climatic fluctuations. Six species diverged in the Mio-Pliocene and 

five diverged from Pleistocene onwards (Table 1). While three of the Pleistocene divergences 

occurred in the south except for L. concolor (Tana River delta) and H. pusillus (break 

between SHK and Arabuko-Sokoke Forest). Studies within the CFEA are minimal but our 

results are comparable to some in the neighbouring EAM, Blackburn & Measey (2009) found 

the divergence between the southern EAM and southern Malawi to have occurred between 

0.2–2 mya. This is comparable with our data on the split between SHK-West Usambara and 

East Usambara that diverged between 0.9–3 mya. Lawson (2013) reported the divergence 

between East and West Usambara populations of Hyperolius substriatus Ahl, 1931 to have 

occurred less than 1 mya which is consistent with subclade divergences in some species in the 

current study (Table 1). 

Pleistocene climatic oscillations that led to the expansion of savanna ecosystems have 

been associated with many diversification events in East Africa, (Moreau, 1933; Hamilton, 

1982; de Menocal, 1995). Our study supports this, and in addition shows that some lineages 

diverged long before the Pleistocene. Savanna species showed increased divergence at the 

onset of Pleistocene when their habitat expanded as the forest sizes reduced (2–3 mya with 

peak periods between 1.2–1.7mya) and this can explain the major splits observed within the 

clades for some species. The majority of SHK amphibian species are mostly savanna and/or 

farmbush (Schiotz, 1975; Channing & Howell, 2006; Harper et al., 2010; Bwong et al., in 

press) and so their expansion may have increased during the Pleistocene. 

The two species that form monophyletic clades in SHK e.g. A. sylvaticus and A. 

xenodactyloides were already present in SHK during the Mio-Pleistocene and Plio-

Pleistocene respectively and the deep divergence from other clades indicate their long term 

persistence in the SHK. Additionally, SHK and Arabuko–Sokoke Forest samples of A. 

stenodactylus show that this species has also been present in these areas for a very long time 

(Table 1). 
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Habitat stability, habitat connectivity and isolation by distance 

Ten species had all their populations predicted as stable, recording higher nucleotide diversity 

than non-stable areas similar to studies elsewhere (Carnaval et al., 2009; Qu et al., 2014). For 

A. delicatus, L. concolor and A. sylvaticus none of the populations predicted as stable had 

higher nucleotide diversity values. However some species showed mixed results where 

populations predicted as stable had lower diversity and vice versa (Table 2). This lack of 

concordance between habitat stability and genetic diversity is not unique to this study. 

Discordance may be a result of low sample size in our genetic data and/or over prediction of 

suitable habitats by the SDM. However a study by Tonini et al. (2013) that compared 

concordance between habitat stability and genetic diversity found that wide-spread species 

(good dispersers) resulted in concordance but this was not true for range-restricted 

amphibians. Similarly, in our study, all species that showed concordance between stability 

and genetic diversity were wide spread species such as P. acridoides while range-restricted 

species such as A. sylvaticus, only known from Usambara, Tanga and SHK did not exhibit 

high nucleotide diversity in areas predicted as stable. Additional studies with increased 

sample sizes may prove if this is true for other species. Habitat connectivity both currently 

and during LGM was found to be positively correlated with genetic structure in three species 

however, isolation by distance did not explain the genetic patterns observed in this study. 

 

Conclusion 

It is evident that SHK and indeed the entire study area has a complex biogeographic history 

and no single pattern can explain the current amphibian assemblage in the area previously 

speculated upon. The fact that we recovered both structured and unstructured 

phylogeographic patterns shows that the species occupying this area have responded 

differently to past environmental conditions and/or geographical barriers present in the area. 

For the two EAM species (C. kreffti and S. cf. vittatus), there was no structuring between 

SHK and East Usambara populations in the former but S. cf. vittatus from SHK are shown to 

have separated from EAM around 0.8 mya. The relationships among the study sites were 

unresolved in nine species. SHK amphibian populations were closer to the CFEA, grouping 

with 4 species to the exclusion of EAM while no SHK amphibian population grouped with 

EAM to the exclusion of the CFEA out of nine species that were geographically structured 

and occurred across all of the five study sites. Demographic analysis further shows that some 

SHK amphibian populations have been stable while others have undergone recent population 
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expansions pointing to the possibility that the currently co-distributed species in SHK are 

results of recent gene flow. 

Habitat stability, Current and LGM habit connectivity appear to play a role in the 

diversification processes in the area however clear signals are obscured by low sampling 

effort in some areas, which may be confirmed or discredited in future studies. Results 

presented here are preliminary and form a baseline for understanding the historical 

biogeography of the wider CFEA and neighbouring EABR. Similar studies incorporating 

more samples and additional molecular markers at wider geographic scale may show a clearer 

picture of the biogeographic history of this fascinating region, which would be useful for 

improved conservation efforts. 
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Supplementary material 

Fig. S1–S3: MrBayes phylogenetic tree topologies for H. argus, A. sylvaticus and M. 

micranotis. Study sites have been abbreviated as shown; ASF = Arabuko-Sokoke Forest; TA 

= Coastal forests in Tanga north eastern Tanzania; SHK = Shimba Hills MPK = Mpeketoni 

and EAM- East and West Usambara. 

Fig.S4–S6: MrBayes phylogenetic tree topologies for C. xerampelina, L. flavomculatus and 

H. pusillus  



 

148 
 

Fig.S7: 16S TCS haplotype network for H. argus. The colour coding for the study sites are as 

follows; Yellow = Mpeketoni; Blue = Arabuko-Sokoke Forest; Green = Shimba Hills; Purple 

= Tanga; Red = Usambaras. 

Fig. S8: Predicted species distributions in Maxent showing the position of the southern 

barrier. A–C Predicted distribution for A. sylvaticus; A. xenodactyloides and S. pusilla during 

the Holocene; D prediction for M. micranotis during the LIG. 

Table S1: Substitution models based on JModeltest analysis for each species used in the 

Bayesian analysis. 

Table S2: Pair wise distances (Fst), 16S MtDNA between populations of species that 

occurred in more than two study sites. Significant values are shown in bold. 

TableS3: Climatic variables contribution to habitat suitability predictions in Maxent. 

Table S4: Mantel and Partial Mantel tests results for isolation by distance and Isolation by 

resistance. Significant values are indicated in bold. 
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Appendix 1: A list of all the samples used in phylogeographic analysis, their tissues identification, voucher number, sampling area, counry of origin plus 

geographic co-ordinates. 

Species Tissue ID Voucher  Site Country Long Lat 

Afrixalus delicatus T5188 SL1256 Mpeketoni KE 40.686 -2.409 

Afrixalus delicatus T5189 SL 1260 Mpeketoni KE 40.686 -2.409 

Afrixalus delicatus T5190 SL 1261 Mpeketoni KE 40.686 -2.409 

Afrixalus delicatus T5191 SL 1262 Mpeketoni KE 40.686 -2.409 

Afrixalus  delicatus T5379 MUC 0151 Shimba Hills KE 39.144 -4.552 

Afrixalus delicatus T5380 MUC 0153 Shimba Hills KE 39.144 -4.552 

Afrixalus delicatus T6343 SL 1448 Shimba Hills KE 39.419 -4.181 

Afrixalus delicatus T6283 SL 1480 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus delicatus T6284 SL 1481 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus delicatus T6285 SL 1482 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus delicatus T6286 SL 1483 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus delicatus T6287 SL 1484 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus delicatus T6367 SL 2777 Shimba Hills KE 39.463 -4.43 

Afrixalus delicatus T4236 CB:886 Tanga TZ 39.102 -4.632 

Afrixalus delicatus T5394 MVZ:226254 Arabuko-Sokoke Forest KE 39.867 -3.333 

Afrixalus delicatus T5395 MVZ:226255 Arabuko-Sokoke Forest KE 39.867 -3.333 

Afrixalus fornasini T4165 CB:13:815 Tanga TZ 38.924 -5.034 
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Afrixalus fornasini T4166 CB:13:816 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4167 CB:13:817 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4168 CB:13:818 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4169 CB:13:819 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4170 CB:13:820 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4178 CB:13:828 Tanga TZ 38.924 -5.034 

Afrixalus fornasini T4426 BM:2000.825 East Usambara Mountains TZ 38.733 -4.923 

Afrixalus fornasini T4427 BM:2002.551 East Usambara Mountains TZ 38.663 -4.904 

Afrixalus fornasini T4428 BM:2002.552 East Usambara Mountains KE 38.663 -4.904 

Afrixalus fornasini T5304 SL 1143 Shimba Hills KE 39.431 -4.276 

Afrixalus fornasini T6277 SL 1474 Shimba Hills KE 39.976 -3.263 

Afrixalus fornasini T6279 SL 1476 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus fornasini T6280 SL 1477 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus fornasini T6281 SL 1478 Arabuko-Sokoke Forest KE 39.976 -3.263 

Afrixalus fornasini T6352 SL 2700 Shimba Hills KE 39.419 -4.181 

Afrixalus fornasini T6353 SL 2701 Shimba Hills KE 39.419 -4.181 

Afrixalus fornasini T2461 MW 7784 Shimba Hills KE 39.422 -4.443 

Afrixalus fornasini T6344 SL 1450 Shimba Hills KE 39.419 -4.181 

Afrixalus sylvaticus T4924 MTSN 9517 East Usambara Mountains TZ 38.758 -4.981 

Afrixalus sylvaticus T4925 MTSN 9518 East Usambara Mountains TZ 38.758 -4.981 
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Afrixalus sylvaticus T4926 MTSN 9519 East Usambara Mountains TZ 38.758 -4.981 

Afrixalus sylvaticus T4942 MTSN 9528 East Usambara Mountains TZ 38.758 -4.981 

Afrixalus sylvaticus T4938 MTSN 9524 East Usambara Mountains TZ 38.758 -4.981 

Afrixalus sylvaticus T4955 MTSN 9547 East Usambara Mountains TZ 38.762 -4.976 

Afrixalus sylvaticus T4978 MTSN 9574 East Usambara Mountains TZ 38.762 -4.976 

Afrixalus sylvaticus T5025 CB 14.1012 East Usambara Mountains TZ 38.663 -4.904 

Afrixalus sylvaticus T5169 SL 1197 Shimba Hills KE 39.425 -4.375 

Afrixalus sylvaticus T5168 SL 1196 Shimba Hills KE 39.425 -4.375 

Afrixalus sylvaticus T5158 SL 1160 Shimba Hills KE 39.417 -4.158 

Afrixalus sylvaticus T5184 SL 1241 Shimba Hills KE 39.445 -4.176 

Afrixalus sylvaticus T5195 SL 1302 Shimba Hills KE 39.485 -4.225 

Afrixalus sylvaticus T5196 SL 1303 Shimba Hills KE 39.485 -4.225 

Afrixalus sylvaticus T5197 SL 1304 Shimba Hills KE 39.485 -4.225 

Afrixalus sylvaticus T5199 SL 1324 Shimba Hills KE 39.431 -4.276 

Afrixalus sylvaticus T5200 SL 1325 Shimba Hills KE 39.431 -4.276 

Afrixalus sylvaticus T5392 MVZ:Herp:234560 Shimba Hills KE 39.341 -4.266 

Afrixalus sylvaticus T5393 MVZ:Herp:234561 Shimba Hills KE 39.341 -4.266 

Arthroleptis stenodactylus T2319 BM 2002.594 East Usambara Mountains TZ 38.693 -4.928 

Arthroleptis stenodactylus T2492 MTSN 9510 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T2732 MCZ 148848 Tanga TZ 38.141 -4.923 
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Arthroleptis stenodactylus  T2733 MCZ 148849 Tanga TZ 38.141 -4.923 

Arthroleptis stenodactylus  T2734 MCZ 148850 Tanga TZ 39.13 -4.765 

Arthroleptis stenodactylus T4450 CB 14.1038 East Usambara Mountains TZ 38.693 -4.928 

Arthroleptis stenodactylus T4930 MTSN 9512 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4933 MTSN 9515 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4934 MTSN 9516 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4939 MTSN 9525 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4940 MTSN 9526 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4943 MTSN 9529 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4945 MTSN 9535 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis stenodactylus T4946 MTSN 9536 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis stenodactylus T4950 MTSN 9540 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis stenodactylus T4964 MTSN 9556 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis stenodactylus T2712 MCZ 138370 West Usambara TZ NULL NULL 

Arthroleptis stenodactylus T5322 SL 1206 Shimba Hills KE 39.429 -4.392 

Arthroleptis stenodactylus T5319 SL 1117 Shimba Hills KE 39.473 -4.416 

Arthroleptis stenodactylus T5154 SL 1122 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T5155 SL 1123 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T5156 SL 1124 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T5157 SL 1125 Shimba Hills KE 39.396 -4.238 
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Arthroleptis stenodactylus T5162 SL 1165 Shimba Hills KE 39.425 -4.231 

Arthroleptis stenodactylus T5320 SL 1161 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T5161 SL 1164 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T5321 SL 1172 Shimba Hills KE 39.431 -4.276 

Arthroleptis stenodactylus T5323 SL 1243 Shimba Hills KE 39.425 -4.231 

Arthroleptis stenodactylus T5324 SL 1294 Shimba Hills KE 39.396 -4.238 

Arthroleptis stenodactylus T6337 SL 1441 Shimba Hills KE 39.384 -4.249 

Arthroleptis stenodactylus T6356 SL 2726 Shimba Hills KE 39.419 -4.181 

Arthroleptis stenodactylus T6363 SL 2771 Shimba Hills KE 39.363 -4.287 

Arthroleptis stenodactylus T6307 SL 2827 Arabuko-Sokoke Forest KE 39.891 -3.326 

Arthroleptis stenodactylus T6308 SL 2828 Arabuko-Sokoke Forest KE 39.891 -3.326 

Arthroleptis stenodactylus T6309 SL 2829 Arabuko-Sokoke Forest KE 39.891 -3.326 

Arthroleptis stenodactylus T6325 SL 2864 Arabuko-Sokoke Forest KE 39.972 -3.281 

Arthroleptis xenodactyloides T2441 MTSN 7515 East Usambara Mountains TZ 38.761 -4.977 

Arthroleptis xenodactyloides T2716 MTSN 7516 East Usambara Mountains TZ 38.761 -4.976 

Arthroleptis xenodactyloides T2717 MCZ 138385 West Usambara TZ 38.42 -5.068 

Arthroleptis xenodactyloides T2729 MCZ 138386 West Usambara TZ 38.378 -5.054 

Arthroleptis xenodactyloides T2730 MCZ 148840 Tanga TZ 38.141 -4.923 

Arthroleptis xenodactyloides T2731 MCZ 148841 Tanga TZ 38.141 -4.923 

Arthroleptis xenodactyloides T4121 CB 13.770 Tanga TZ 39.048 -5.073 



 

161 
 

Arthroleptis xenodactyloides T4122 CB 13.771 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4123 CB 13.772 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4131 CB 13.773 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4132 CB 13.781 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4133 CB 13.782 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4135 CB 13.784 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4186 CB 13.785 Tanga TZ 39.048 -5.073 

Arthroleptis xenodactyloides T4187 CB 13.836 Tanga TZ 38.925 -5.034 

Arthroleptis xenodactyloides T4201 CB 13.837 Tanga TZ 38.925 -5.034 

Arthroleptis xenodactyloides T4202 CB 13.851 Tanga TZ 38.925 -5.034 

Arthroleptis xenodactyloides T4203 CB 13.852 Tanga TZ 38.925 -5.034 

Arthroleptis xenodactyloides T4461 CB 13.853 Tanga TZ 38.925 -5.034 

Arthroleptis xenodactyloides T4953 MTSN 9527 East Usambara Mountains TZ 38.758 -4.981 

Arthroleptis xenodactyloides T4967 MTSN 9543 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis xenodactyloides T4975 MTSN 9560 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis xenodactyloides T5040 MTSN 9569 East Usambara Mountains TZ 38.737 -4.973 

Arthroleptis xenodactyloides T5041 BM 2002.325 East Usambara Mountains TZ 38.752 -5.058 

Arthroleptis xenodactyloides T5042 BM 2002.326 East Usambara Mountains TZ 38.748 -5.059 

Arthroleptis xenodactyloides T5049 BM 2002.329 East Usambara Mountains TZ 38.748 -5.059 

Arthroleptis xenodactyloides T5050 BM 2000.840 East Usambara Mountains TZ 38.751 -4.921 
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Arthroleptis xenodactyloides T5051 BM 2002.883 East Usambara Mountains TZ 38.813 -4.792 

Arthroleptis xenodactyloides T5052 BM 2002.884 East Usambara Mountains TZ 38.813 -4.792 

Arthroleptis xenodactyloides T5053 BM 2002.885 East Usambara Mountains TZ 38.813 -4.792 

Arthroleptis xenodactyloides T5054 BM 2002.886 East Usambara Mountains TZ 38.813 -4.792 

Arthroleptis xenodactyloides T5056 BM 2002.597 East Usambara Mountains TZ 38.693 -4.928 

Arthroleptis xenodactyloides T5057 BM 2002.598 East Usambara Mountains TZ 38.665 -4.911 

Arthroleptis xenodactyloides T5059 BM 2002.600 East Usambara Mountains TZ 38.659 -4.944 

Arthroleptis xenodactyloides T5480 BM 2002.601 East Usambara Mountains TZ 38.659 -4.944 

Arthroleptis xenodactyloides T5599 MUSE 11090 East Usambara Mountains TZ 38.61 -5.113 

Arthroleptis xenodactyloides T5170 MUSE 11099 East Usambara Mountains TZ 38.6 -5.092 

Arthroleptis xenodactyloides T5151 SL 1194 Shimba hills  KE 39.429 -4.375 

Arthroleptis xenodactyloides T5152 SL 1119 Shimba hills  KE 39.425 -4.231 

Arthroleptis xenodactyloides T5153 SL 1120 Shimba hills  KE 39.425 -4.231 

Arthroleptis xenodactyloides T5160 SL 1121 Shimba hills  KE 39.425 -4.231 

Arthroleptis xenodactyloides T5182 SL 1162 Shimba hills  KE 39.425 -4.231 

Arthroleptis xenodactyloides T6338 SL 1430 Shimba hills  KE 39.414 -4.233 

Arthroleptis xenodactyloides T5183 SL 1230 Shimba Hills KE 39.425 -4.231 

Arthroleptis xenodactyloides T6336 SL 1430 Shimba Hills KE 39.414 -4.233 

Arthroleptis xenodactyloides T2425 MTSN 7515 East Usambara Mountains TZ 38.762 -4.976 

Arthroleptis xenodactyloides T5194 SL 1298 Shimba Hills KE 39.485 -4.225 
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Boulengerula changamwensis T491 A4129 Shimba Hills  KE 39.485 -4.225 

Boulengerula changamwensis T2511 VW 648 Shimba Hills  KE NULL NULL 

Boulengerula changamwensis T5325 SL 1126 Shimba hills KE 39.396 -4.238 

Boulengerula changamwensis T5326 SL 1127 Shimba hills KE 39.396 -4.238 

Boulengerula changamwensis T5327 SL 1167 Shimba hills KE 39.425 -4.231 

Boulengerula changamwensis T5328 SL 1168 Shimba hills KE 39.425 -4.231 

Boulengerula changamwensis T5329 SL 1242 Shimba hills KE 39.425 -4.231 

Boulengerula changamwensis T5330 SL 1300 Shimba hills KE 39.485 -4.225 

Boulengerula changamwensis T5331 VW 00649 Shimba hills KE 39.485 -4.225 

Boulengerula changamwensis T6379 SL 1364 Shimba hills KE 39.396 -4.231 

Boulengerula changamwensis T6390 SL 1408 Shimba hills KE 39.396 -4.238 

Boulengerula changamwensis T6391 SL 1409 Shimba hills KE 39.396 -4.238 

Boulengerula changamwensis T6395 SL 1425 Shimba hills KE 39.396 -4.238 

Boulengerula changamwensis T6339 SL 1443 Shimba hills KE 39.396 -4.237 

Boulengerula changamwensis T6340 SL 2734 Shimba hills KE 39.396 -4.237 

Boulengerula changamwensis T6357 SL 2738 Shimba hills KE 39.485 -4.225 

Boulengerula changamwensis T6358 SL 2739 Shimba hills KE 39.485 -4.225 

Boulengerula changamwensis T6364 SL 2772 Shimba hills KE 39.396 -4.231 

Boulengerula changamwensis T6365 SL 2773 Shimba hills KE 39.396 -4.231 

Boulengerula changamwensis T6369 SL 2781 Shimba hills KE 39.414 -4.232 



 

164 
 

Boulengerula changamwensis T6370 SL 2782 Shimba hills KE 39.414 -4.232 

Boulengerula changamwensis T6377 SL 2791 Shimba hills KE 39.405 -4.462 

Boulengerula changamwensis 

 

FN652722 Arabuko-Sokoke Forest KE 39.557 -4.232 

Chiromantis xerampelina T4262 CB 13.915 Tanga TZ 38.646 -5.583 

Chiromantis xerampelina T4263 CB 13.916 Tanga TZ 39.117 -4.749 

Chiromantis xerampelina T4264 CB 13.917 Tanga TZ 39.117 -4.749 

Chiromantis xerampelina T4270 CB 13.924 Tanga TZ 39.117 -4.749 

Chiromantis xerampelina T4484 BM 2002.862 Tanga TZ 39.117 -4.749 

Chiromantis xerampelina T4485 BM 2002.620 East Usambara Mountains TZ 38.813 -4.791 

Chiromantis xerampelina T4486 BM 2002.621 East Usambara Mountains TZ 38.663 -4.908 

Chiromantis xerampelina T4487 BM 2002.765 East Usambara Mountains TZ 38.663 -4.908 

Chiromantis xerampelina T4948 MTSN 9538 East Usambara Mountains TZ 38.663 -4.908 

Chiromantis xerampelina T4949 MTSN 9539 East Usambara Mountains TZ 38.762 -4.976 

Chiromantis xerampelina T4963 MTSN 9555 East Usambara Mountains TZ 38.762 -4.976 

Chiromantis xerampelina T4977 MTSN 9573 East Usambara Mountains TZ 38.762 -4.976 

Chiromantis xerampelina T6041 MW 07916 East Usambara Mountains TZ 38.762 -4.976 

Chiromantis xerampelina T5332 SL 1180 Shimba Hills KE 39.423 -4.443 

Chiromantis xerampelina T5333 SL 1225 Shimba Hills KE 39.437 -4.382 

Chiromantis xerampelina T5334 SL 1247 Shimba Hills KE 39.44 -4.128 

Chiromantis xerampelina T5335 SL 1329 Mpeketoni KE 40.664 -2.409 
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Chiromantis xerampelina T6380 SL 1365 Shimba Hills KE 39.431 -4.276 

Chiromantis xerampelina T6302 SL 2815 Shimba Hills KE 39.396 -4.238 

Chiromantis xerampelina T6303 SL 2816 Arabuko-Sokoke Forest KE 39.950 3.316 

Chiromantis xerampelina T6311 SL 2841 Arabuko-Sokoke Forest KE 39.950 3.316 

Chiromantis xerampelina T6319 SL 2853 Arabuko-Sokoke Forest KE 39.952 -3.333 

Hemisus marmoratus T4226 CB:13.876 Tanga TZ 39.102 -4.632 

Hemisus marmoratus T4227 CB:13.877 Tanga TZ 39.102 -4.632 

Hemisus marmoratus T4228 CB:13.878 Tanga TZ 39.102 -4.632 

Hemisus marmoratus T4233 CB:13.883 Tanga TZ 39.102 -4.632 

Hemisus marmoratus T4250 CB:13.903 Tanga TZ 39.117 -4.749 

Hemisus marmoratus T4251 CB:13.904 Tanga TZ 39.117 -4.749 

Hemisus marmoratus T4252 CB:13.905 Tanga TZ 39.117 -4.749 

Hemisus marmoratus T4271 CB:13.925 Tanga TZ 39.117 -4.749 

Hemisus marmoratus T4490 BM 2002.881 East Usambara Mountains TZ 38.813 -4.792 

Hemisus marmoratus T4491 BM 2002.882 East Usambara Mountains TZ 38.681 -4.809 

Hemisus marmoratus T4499 BM 2002.579 East Usambara Mountains TZ 38.652 -4.929 

Hemisus marmoratus T4928 MTSN 9509 East Usambara Mountains TZ 38.758 -4.981 

Hemisus marmoratus T4947 MTSN 9537 East Usambara Mountains TZ 38.762 -4.976 

Hemisus marmoratus T4968 MTSN 9561 East Usambara Mountains TZ 38.762 -4.976 

Hemisus marmoratus T4969 MTSN 9562 East Usambara Mountains TZ 38.762 -4.976 
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Hemisus marmoratus T4973 MTSN 9566 East Usambara Mountains TZ 38.762 -4.976 

Hemisus marmoratus T4986 MCZ A32138 Tanga TZ 38.141 -4.923 

Hemisus marmoratus T6042 A-148853 Arabuko-Sokoke Forest KE 38.141 -4.923 

Hemisus marmoratus T5336 SL 1109 Shimba Hills KE 39.557 -3.981 

Hemisus marmoratus T6662 SL2733 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hemisus marmoratus T2467 

 

Arabuko-Sokoke Forest KE 39.557 -4.232 

Hyperolius argus T4501 BM 2000.857 East Usambara Mountains TZ 38.736 -4.923 

Hyperolius argus T6039 MW 07912 Shimba Hills KE 39.422 -4.443 

Hyperolius argus T5341 SL 1112 Shimba Hills KE 39.462 -4.429 

Hyperolius argus T5344 SL 1135 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5345 SL 1136 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5346 SL 1137 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5206 SL 1144 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5347 SL 1146 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5348 SL 1264 Mpeketoni KE 40.684 -2.402 

Hyperolius argus T5338 SL 1286 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5356 SL 1287 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5368 SL 1288 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5369 SL 1289 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5370 SL 1290 Shimba Hills KE 39.396 -4.238 
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Hyperolius argus T6274 SL 1454 Shimba Hills KE 39.419 -4.181 

Hyperolius argus T6275 SL 1471 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius argus T6276 SL 1472 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius argus T6312 SL 1473 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius argus T6313 SL 2842 Arabuko-Sokoke Forest KE 39.952 -3.333 

Hyperolius argus T5342 SL1133 Shimba Hills KE 39.396 -4.238 

Hyperolius argus T5343 SL1134 Shimba Hills KE 39.396 -4.238 

Hyperolius mariae T4508 BM 2000.858 East Usambara Mountains TZ 38.733 -4.923 

Hyperolius mariae T4512 BM 2000.859 East Usambara Mountains TZ 38.733 -4.923 

Hyperolius mariae T5359 BM 2005.1302 East Usambara Mountains TZ 38.708 -4.820 

Hyperolius mariae T5358 SL 1190 Shimba Hills KE 39.4292 -4.392 

Hyperolius mariae T5373 SL 1189 Shimba Hills KE 39.4292 -4.392 

Hyperolius mariae T5374 SL 1248 Mpeketoni KE 40.664 -2.409 

Hyperolius mariae T5360 SL 1249 Mpeketoni KE 40.664 -2.409 

Hyperolius mariae T5375 SL 1291 Shimba Hills  KE 39.396 -4.238 

Hyperolius mariae T5339 SL 1295 Shimba Hills  KE 39.396 -4.238 

Hyperolius mariae T5376 SL 1309 Shimba Hills  KE 39.431 -2.393 

Hyperolius mariae T6385 SL 1334 Shimba Hills  KE 39.431 -4.276 

Hyperolius mariae T6386 SL 1395 Shimba Hills  KE 39.396 -4.238 

Hyperolius mariae T6351 SL 1396 Shimba Hills  KE 39.396 -4.238 
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Hyperolius mariae T6403 SL 1461 Shimba Hills  KE 39.419 -4.181 

Hyperolius mariae T6360 SL 2732 Shimba Hills  KE 39.485 -4.225 

Hyperolius mariae T6361 SL 2759 Shimba Hills  KE 39.419 -4.181 

Hyperolius mariae T6368 SL2779 Shimba Hills  KE 39.485 -4.225 

Hyperolius mariae T6262 SL2733 Shimba Hills  KE 39.485 -4.225 

Hyperolius mariae T4525 

 

East Usambara Mountains TZ 38.733 -4.923 

Hyperolius mariae T4502 BM. 2000.858 East Usambara Mountains TZ 38.733 -4.923 

Hyperolius mariae T6362 SL2765 Shimba Hills  KE 39.419 -4.181 

Hyperolius mariae T6259 SL2704 Shimba Hills  KE 39.419 -4.181 

Hyperolius mariae T6260 SL2706 Shimba Hills  KE 39.419 -4.181 

Hyperolius mariae T6383 SL1391 Shimba Hills  KE 39.396 -4.238 

Hyperolius pusillus T6294 SL 1490 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius pusillus T6373 SL 1491 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius pusillus T6691 SL 2787 Arabuko-Sokoke Forest KE 39.440 -4.442 

Hyperolius pusillus  T6692 SL 2919 Shimba Hills KE 39.462 -4.429 

Hyperolius pusillus  T6681 SL 2920 Shimba Hills KE 39.462 -4.429 

Hyperolius pusillus  T6693 SL 2921 Shimba Hills KE 39.462 -4.429 

Hyperolius pusillus  T6310 SL 2833 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius pusillus  T6299 SL 2830 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius parkeri T2474 BM 2002.634 East Usambara Mountains TZ 38.652 -4.929 
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Hyperolius parkeri T4179 CB 13.829 Tanga TZ 38.924 -5.034 

Hyperolius parkeri T4180 CB 13.830 Tanga TZ 38.924 -5.034 

Hyperolius parkeri T4237 CB 13.887 Tanga TZ 39.102 -4.632 

Hyperolius parkeri T5362 SL 1192 Shimba Hills KE 39.429 -4.392 

Hyperolius parkeri T5361 SL 1191 Shimba Hills KE 39.429 -4.392 

Hyperolius parkeri T5357 SL 1258 Mpeketoni KE 40.686 -2.409 

Hyperolius parkeri T5363 SL 1259 Mpeketoni KE 40.686 -2.409 

Hyperolius parkeri T5364 SL 1314 Shimba Hills KE 39.451 -2.398 

Hyperolius parkeri T5365 SL 1315 Shimba Hills KE 39.451 -2.398 

Hyperolius parkeri T5367 SL 1317 Shimba Hills KE 39.451 -2.398 

Hyperolius parkeri T6295 SL 1492 Shimba Hills KE 39.976 -3.263 

Hyperolius parkeri T6371 SL 2785 Shimba Hills KE 39.440 -4.442 

Hyperolius parkeri T6372 SL 2786 Shimba Hills KE 39.440 -4.442 

Hyperolius parkeri T6300 SL 2813 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius parkeri T5366 SL 1316 Shimba Hills KE 39.451 -2.398 

Hyperolius tuberilinguis T4164 CB 13.814 Tanga TZ 38.924 -5.034 

Hyperolius tuberilinguis T4171 CB 13.821 Tanga TZ 38.924 -5.034 

Hyperolius tuberilinguis T4183 CB 13.833 Tanga TZ 38.924 -5.034 

Hyperolius tuberilinguis T4184 CB 13.834 Tanga TZ 38.924 -5.034 

Hyperolius tuberilinguis T4185 CB 13.835 Tanga TZ 38.924 -5.034 
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Hyperolius tuberilinguis T4192 CB 13.842 Tanga TZ 38.924 -5.034 

Hyperolius tuberilinguis T4519 BM 2002.668 East Usambara Mountains TZ 38.652 -4.929 

Hyperolius tuberilinguis T4521 BM 2002.670 East Usambara Mountains TZ 38.643 -4.955 

Hyperolius tuberilinguis T5218 SL 1199 Shimba Hills KE 39.425 -4.375 

Hyperolius tuberilinguis T5349 SL 1265 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5350 SL 1266 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5351 SL 1267 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5352 SL 1268 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5353 SL 1269 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5354 SL 1270 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5355 SL 1271 Mpeketoni KE 40.684 -2.402 

Hyperolius tuberilinguis T5219 SL 1311 Shimba Hills KE 39.431 -2.393 

Hyperolius tuberilinguis T5220 SL 1392 Shimba Hills KE 39.396 -4.238 

Hyperolius tuberilinguis T6296 SL 1493 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius tuberilinguis T6297 SL 1497 Arabuko-Sokoke Forest KE 39.976 -3.263 

Hyperolius tuberilinguis T6354 SL 2710 Shimba Hills KE 39.419 -4.181 

Hyperolius tuberilinguis T6355 SL 2712 Shimba Hills KE 39.419 -4.181 

Hyperolius tuberilinguis T6304 SL 2818 Arabuko-Sokoke Forest KE 39.950 3.316 

Hyperolius tuberilinguis T6350 SL1459 Shimba Hills KE 39.419 -4.181 

Hyperolius tuberilinguis T6347 SL 1454 Shimba Hills KE 39.419 -4.181 
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Hyperolius tuberilinguis T6261 SL2707 Shimba Hills KE 39.419 -4.181 

Kassina maculatus T5225 SL 1110 Shimba Hills KE 39.462 -4.429 

Kassina maculatus T5226 SL 1235 Shimba Hills KE 39.445 -4.176 

Kassina maculatus T5227 SL 1236 Shimba Hills KE 39.445 -4.176 

Kassina maculatus T5228 SL 1237 Shimba Hills KE 39.445 -4.176 

Kassina maculatus T5229 SL 1238 Shimba Hills KE 39.445 -4.176 

Kassina maculatus T5230 SL 1274 Mpeketoni KE 40.684 -2.402 

Kassina maculatus T5231 SL 1275 Mpeketoni KE 40.684 -2.402 

Kassina maculatus T5232 SL 1276 Mpeketoni KE 40.684 -2.402 

Kassina maculatus T5233 SL 1328 Shimba Hills KE 39.431 -4.276 

Kassina maculatus T6341 SL 1445 Shimba Hills KE 39.419 -4.181 

Kassina maculatus T6324 SL 2858 Arabuko- Sokoke Forest KE 39.891 -3.324 

Leptopelis argenteus T4136 CB 13.786 Coastal Region TZ 39.048 -5.073 

Leptopelis argenteus T4137 CB 13.787 Tanga TZ 39.048 -5.073 

Leptopelis argenteus T4138 CB 13.788 Tanga TZ 39.048 -5.073 

Leptopelis argenteus T4139 CB 13.789 Tanga TZ 39.048 -5.073 

Leptopelis argenteus T4148 CB 13.798 Tanga TZ 39.048 -5.073 

Leptopelis argenteus T4189 CB 13.839 Tanga TZ 38.924 -5.034 

Leptopelis argenteus T4193 CB 13.843 Tanga TZ 38.924 -5.034 

Leptopelis argenteus T4194 CB 13.844 Tanga TZ 38.924 -5.034 
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Leptopelis argenteus T4195 CB 13.845 Tanga TZ 38.924 -5.034 

Leptopelis argenteus T4234 CB 13.884 Tanga TZ 39.102 -4.632 

Leptopelis argenteus T4256 CB 13.909 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4257 CB 13.910 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4258 CB 13.911 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4259 CB 13.912 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4260 CB 13.913 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4261 CB 13.914 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T4273 CB 13.930 Tanga TZ 39.117 -4.749 

Leptopelis argenteus T5163 SL 1175 Shimba Hills KE 39.425 -4.425 

Leptopelis concolor T5164 SL 1176 Shimba Hills KE 39.425 -4.425 

Leptopelis concolor T5165 SL 1177 Shimba Hills KE 39.425 -4.425 

Leptopelis concolor T5166 SL 1188 Shimba Hills KE 39.425 -4.425 

Leptopelis concolor T5171 SL 1209 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5172 SL 1210 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5173 SL 1211 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5175 SL 1213 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5176 SL 1214 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5177 SL 1217 Shimba Hills KE 39.417 -4.158 

Leptopelis concolor T5178 SL 1218 Shimba Hills KE 39.44 -4.128 
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Leptopelis concolor T5179 SL 1219 Shimba Hills KE 39.44 -4.128 

Leptopelis concolor T5181 SL 1221 Shimba Hills KE 39.44 -4.128 

Leptopelis concolor T5185 SL 1252 Shimba Hills KE 39.44 -4.128 

Leptopelis concolor T5186 SL 1253 Mpeketoni KE 40.697 -2.385 

Leptopelis concolor T5187 SL 1254 Mpeketoni KE 40.697 -2.385 

Leptopelis concolor T5192 SL 1272 Mpeketoni KE 40.697 -2.385 

Leptopelis concolor T6348 SL 1455 Mpeketoni KE 40.684 -2.402 

Leptopelis concolor T5396 MVZ:234054 Arabuko-Sokoke Forest KE 39.863 -2.17 

Leptopelis concolor T5397 MVZ:234055 Arabuko-Sokoke Forest KE 39.863 -2.17 

Leptopelis concolor T5398 MVZ:234056 Arabuko-Sokoke Forest KE 39.863 -2.17 

Leptopelis concolor T5401 MVZ:234591 Arabuko-Sokoke Forest KE 39.863 -2.17 

Leptopelis concolor T6402 SL 2730 Shimba Hills KE 39.485 -4.225 

Leptopelis concolor T6359 SL 2756 Shimba Hills KE 39.419 -4.181 

Leptopelis flavomaculatus T2624 MTSN 9522 East Usambara Mountains TZ 38.75 -4.983 

Leptopelis flavomaculatus T4096 CB 13.746 Tanga TZ 38.645 -5.583 

Leptopelis flavomaculatus T4097 CB 13.747 Tanga TZ 38.645 -5.583 

Leptopelis flavomaculatus T4098 CB 13.748 Tanga TZ 38.645 -5.583 

Leptopelis flavomaculatus T4099 CB 13.749 Tanga TZ 38.645 -5.583 

Leptopelis flavomaculatus T4100 CB 13.750 Tanga TZ 38.645 -5.583 

Leptopelis flavomaculatus T4101 CB 13.751 Tanga TZ 38.645 -5.583 
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Leptopelis flavomaculatus T4196 CB 13.846 Tanga TZ 38.924 -5.034 

Leptopelis flavomaculatus T4197 CB 13.847 Tanga TZ 38.924 -5.034 

Leptopelis flavomaculatus T4198 CB 13.848 Tanga TZ 38.924 -5.034 

Leptopelis flavomaculatus T4199 CB 13.849 Tanga TZ 38.924 -5.034 

Leptopelis flavomaculatus T4200 CB 13.850 Tanga TZ 38.924 -5.034 

Leptopelis flavomaculatus T4532 CB 14.1160 East Usambara Mountains TZ 38.748 -5.059 

Leptopelis flavomaculatus T4533 CB 14.1161 East Usambara Mountains TZ 38.649 -4.930 

Leptopelis flavomaculatus T4534 CB 14.1163 East Usambara Mountains TZ 38.663 -4.904 

Leptopelis flavomaculatus T4536 CB 14.1164 East Usambara Mountains TZ 38.662 -4.906 

Leptopelis flavomaculatus T4935 MTSN 9520 East Usambara Mountains TZ 38.645 -4.971 

Leptopelis flavomaculatus T4936 MTSN 9521 East Usambara Mountains TZ 38.758 -4.981 

Leptopelis flavomaculatus T4944 MTSN 9530 East Usambara Mountains TZ 38.758 -4.981 

Leptopelis flavomaculatus T4960 MTSN 9552 East Usambara Mountains TZ 38.762 -4.976 

Leptopelis flavomaculatus T4970 MTSN 9563 East Usambara Mountains TZ 38.61 -5.113 

Leptopelis flavomaculatus T5235 SL 1181 Shimba Hills KE 39.396 -4.236 

Leptopelis flavomaculatus T5236 SL 1182 Shimba Hills KE 39.396 -4.236 

Leptopelis flavomaculatus T5237 SL 1183 Shimba Hills KE 39.396 -4.236 

Leptopelis flavomaculatus T5238 SL 1184 Shimba Hills KE 39.396 -4.236 

Leptopelis flavomaculatus T5239 SL 1185 Shimba Hills KE 39.396 -4.236 

Leptopelis flavomaculatus T6396 SL 1431 Shimba Hills KE 39.396 -4.236 
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Leptopelis flavomaculatus T2466 MW 7915 Shimba Hills KE 39.422 -4.443 

Mertensophryne micranotis T1882 MTSN 9558 East Usambara Mountains TZ 38.762 -4.976 

Mertensophryne micranotis T2243 PK 118 Arabuko-Sokoke Forest KE 39.669 -3.844 

Mertensophryne micranotis T2245 PK 064 Shimba Hills KE 39.264 -4.487 

Mertensophryne micranotis T2246 VW 00465 Shimba Hills KE 39.422 -4.235 

Mertensophryne micranotis T2247 VW 00462 Shimba Hills KE 39.451 -4.215 

Mertensophryne micranotis T2291 BM 2002.343 East Usambara Mountains TZ 38.744 -5.070 

Mertensophryne micranotis T2518 VW 679 Shimba Hills KE 39.374 -4.665 

Mertensophryne micranotis T2519 VW 680 Shimba Hills KE 39.374 -4.665 

Mertensophryne micranotis T3242 CB 13.889 Tanga TZ 39.125 -4.773 

Mertensophryne micranotis T3243 CB 13.890 Tanga TZ 39.125 -4.773 

Mertensophryne micranotis T3244 CB 13.891 Tanga TZ 39.125 -4.773 

Mertensophryne micranotis T3252 CB 13.920 Tanga TZ 39.125 -4.773 

Mertensophryne micranotis T4548 BM 2002.328 East Usambara Mountains TZ 38.748 -5.059 

Mertensophryne micranotis T4549 BM 2002.891 East Usambara Mountains TZ 38.807 -4.757 

Mertensophryne micranotis T4927 MTSN 9557 East Usambara Mountains TZ 38.762 -4.976 

Mertensophryne micranotis T4965 MTSN 9558_double East Usambara Mountains TZ 38.762 -4.976 

Mertensophryne micranotis T4966 MTSN 9559 East Usambara Mountains TZ 38.762 -4.976 

Mertensophryne micranotis T4974 MTSN 9568 East Usambara Mountains TZ 38.737 -4.972 

Mertensophryne micranotis T5243 SL 1226 Shimba Hills KE 39.425 -4.231 
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Mertensophryne micranotis T5244 SL 1227 Shimba Hills KE 39.425 -4.231 

Mertensophryne micranotis T5245 SL 1228 Shimba Hills KE 39.425 -4.231 

Mertensophryne micranotis T5246 SL 1297 Shimba Hills KE 39.485 -4.225 

Mertensophryne micranotis T5377 VW 00677 Shimba Hills KE 39.374 -4.665 

Mertensophryne micranotis T5378 VW 00681 Shimba Hills KE 39.374 -4.665 

Mertensophryne micranotis T6388 SL 1404 Shimba Hills KE 39.396 -4.237 

Mertensophryne micranotis T6389 SL 1405 Shimba Hills KE 39.396 -4.237 

Mertensophryne micranotis T6394 SL 1423 Shimba Hills KE 39.396 -4.237 

Mertensophryne micranotis T6378 SL 2792 Shimba Hills KE 39.405 -4.462 

Mertensophryne micranotis T6305 SL 2820 Arabuko-Sokoke Forest KE 39.891 -3.324 

Mertensophryne micranotis T6306 SL 2822 Arabuko-Sokoke Forest KE 39.891 -3.324 

Mertensophryne micranotis T4547 BM:2002.342 East Usambara Mountains TZ 38.754 -5.059 

Mertensophryne micranotis T6405 SL 2735 Shimba Hills KE 39.485 -4.225 

Mertensophryne micranotis T3253 CB 13.892 Tanga TZ 39.125 -4.773 

Phrynobatrachus acridoides T4128 CB 13.778 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4129 CB 13.779 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4143 CB 13.793 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4144 CB 13.794 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4145 CB 13.795 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4146 CB 13.796 Tanga TZ 39.048 -5.073 
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Phrynobatrachus acridoides T4147 CB 13.797 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T4154 CB 13.804 Tanga TZ 38.924 -5.034 

Phrynobatrachus acridoides T4155 CB 13.805 Tanga TZ 38.924 -5.034 

Phrynobatrachus acridoides T4174 CB 13.824 Tanga TZ 38.924 -5.034 

Phrynobatrachus acridoides T4177 CB 13.827 Tanga TZ 38.924 -5.034 

Phrynobatrachus acridoides T4191 CB 13.841 Tanga TZ 38.924 -5.034 

Phrynobatrachus acridoides T4216 CB 13.866 Tanga TZ 39.102 -4.632 

Phrynobatrachus acridoides T4218 CB 13.868 Tanga TZ 39.102 -4.632 

Phrynobatrachus acridoides T4235 CB 13.885 Tanga TZ 39.102 -4.632 

Phrynobatrachus acridoides T4239 CB 13.892 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4240 CB 13.893 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4241 CB 13.894 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4242 CB 13.895 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4243 CB 13.896 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4244 CB 13.897 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4245 CB 13.898 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4246 CB 13.899 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4247 CB 13.900 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4248 CB 13.901 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4249 CB 13.902 Tanga TZ 39.117 -4.749 
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Phrynobatrachus acridoides T4267 CB 13.921 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4268 CB 13.922 Tanga TZ 39.117 -4.749 

Phrynobatrachus acridoides T4557 BM 2002.347 East Usambara Mountains TZ 38.748 -5.059 

Phrynobatrachus acridoides T4558 BM 2002.230 East Usambara Mountains TZ 38.733 -4.923 

Phrynobatrachus acridoides T4559 BM 2002.231 East Usambara Mountains TZ 38.733 -4.923 

Phrynobatrachus acridoides T4560 BM 2002.739 East Usambara Mountains TZ 38.643 -4.955 

Phrynobatrachus acridoides T4954 MTSN 9546 East Usambara Mountains TZ 38.762 -4.976 

Phrynobatrachus acridoides T4958 MTSN 9550 East Usambara Mountains TZ 38.762 -4.976 

Phrynobatrachus acridoides T6033 MW 07777 Shimba Hills KE 39.422 -4.443 

Phrynobatrachus acridoides T6034 MW 07778 Shimba Hills KE 39.422 -4.443 

Phrynobatrachus acridoides T6040 MW 07779 Shimba Hills KE 39.422 -4.443 

Phrynobatrachus acridoides T5257 SL 1200 Shimba Hills KE 39.425 -4.375 

Phrynobatrachus acridoides T5258 SL 1201 Shimba Hills KE 39.425 -4.375 

Phrynobatrachus acridoides T5247 SL 1147 Shimba Hills KE 39.396 -4.238 

Phrynobatrachus acridoides T5248 SL 1153 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5249 SL 1155 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5251 SL 1156 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5252 SL 1157 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5253 SL 1158 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5254 SL 1159 Shimba Hills KE 39.417 -4.158 



 

179 
 

Phrynobatrachus acridoides T5255 SL 1173 Shimba Hills KE 39.431 -4.276 

Phrynobatrachus acridoides T5256 SL 1174 Shimba Hills KE 39.431 -4.276 

Phrynobatrachus acridoides T5259 SL 1215 Shimba Hills KE 39.417 -4.158 

Phrynobatrachus acridoides T5260 SL 1239 Shimba Hills KE 39.445 -4.176 

Phrynobatrachus acridoides T5261 SL 1306 Shimba Hills KE 39.485 -4.225 

Phrynobatrachus acridoides T5262 SL 1337 Shimba Hills KE 39.425 -4.375 

Phrynobatrachus acridoides T6345 SL 1452 Shimba Hills KE 39.419 -4.181 

Phrynobatrachus acridoides T6346 SL 2723 Shimba Hills KE 39.396 -4.237 

Phrynobatrachus acridoides T6317 SL 2850 Arabuko-Sokoke Forest KE 39.891 -3.324 

Phrynobatrachus acridoides T6318 SL 2895 Arabuko-Sokoke Forest KE 39.891 -3.324 

Phrynobatrachus acridoides T6672 SL 2896 Arabuko-Sokoke Forest KE 39.891 -3.324 

Phrynobatrachus acridoides T4998 MCZ A-32137 Tanga TZ 38.141 -4.923 

Phrynobatrachus acridoides T6258 SL 1342 Arabuko-Sokoke Forest KE 39.891 -3.324 

Phrynobatrachus acridoides T4124 CB:13:774 Tanga TZ 39.048 -5.073 

Phrynobatrachus acridoides T6398 SL 2732 Shimba Hills KE 39.396 -4.237 

Ptychadena anchietae T2976 CB 13.927 Tanga TZ 39.117 -4.749 

Ptychadena anchietae T4114 CB 13.764 Tanga TZ 38.646 -5.583 

Ptychadena anchietae T4149 CB 13.799 Tanga TZ 39.048 -5.073 

Ptychadena anchietae T4173 CB 13.823 Tanga TZ 38.924 -5.034 

Ptychadena anchietae T4176 CB 13.826 Tanga TZ 38.924 -5.034 
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Ptychadena anchietae T4205 CB 13.855 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4206 CB 13.856 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4207 CB 13.857 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4208 CB 13.858 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4209 CB 13.859 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4210 CB 13.860 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4230 CB 13.880 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4231 CB 13.881 Tanga TZ 39.102 -4.632 

Ptychadena anchietae T4253 CB 13.906 Tanga TZ 39.117 -4.749 

Ptychadena anchietae T4254 CB 13.907 Tanga TZ 39.117 -4.749 

Ptychadena anchietae T4255 CB 13.908 Tanga TZ 39.117 -4.749 

Ptychadena anchietae T4961 MTSN 9553 East Usambara Mountains TZ 38.762 -4.976 

Ptychadena anchietae T4962 MTSN 9554 East Usambara Mountains TZ 38.762 -4.976 

Ptychadena anchietae T5002 MCZ A-32101 Tanga TZ 39.059 -5.074 

Ptychadena anchietae T5004 MCZ A-32132 Tanga TZ 38.115 -4.991 

Ptychadena anchietae T6037 MW 07786 Shimba Hills KE 39.422 -4.443 

Ptychadena anchietae T6038 MW 07789 Shimba Hills KE 39.422 -4.443 

Ptychadena anchietae T5282 SL 1193 Shimba Hills KE 39.422 -4.443 

Ptychadena anchietae T5271 SL 1129 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5272 SL 1130 Shimba Hills KE 39.396 -4.238 
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Ptychadena anchietae T5273 SL 1131 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5274 SL 1148 Shimba Hills KE 39.417 -4.158 

Ptychadena anchietae T5275 SL 1149 Shimba Hills KE 39.417 -4.158 

Ptychadena anchietae T5276 SL 1150 Shimba Hills KE 39.417 -4.158 

Ptychadena anchietae T5277 SL 1151 Shimba Hills KE 39.417 -4.158 

Ptychadena anchietae T5278 SL 1152 Shimba Hills KE 39.417 -4.158 

Ptychadena anchietae T5279 SL 1170 Shimba Hills KE 39.431 -4.276 

Ptychadena anchietae T5280 SL 1171 Shimba Hills KE 39.431 -4.276 

Ptychadena anchietae T5281 SL 1187 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5283 SL 1223 Shimba Hills KE 39.440 -4.128 

Ptychadena anchietae T5287 SL 1246 Mpeketoni KE 40.697 -2.385 

Ptychadena anchietae T5288 SL 1255 Mpeketoni KE 40.686 -2.409 

Ptychadena anchietae T5264 SL 1281 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5265 SL 1282 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5284 SL 1283 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5266 SL 1284 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5267 SL 1285 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T5268 SL 1326 Shimba Hills KE 39.431 -4.276 

Ptychadena anchietae T5269 SL 1327 Shimba Hills KE 39.431 -4.276 

Ptychadena anchietae T6392 SL 1410 Shimba Hills KE 39.485 -4.225 
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Ptychadena anchietae T6273 SL 1470 Arabuko-Sokoke Forest KE 39.976 -3.263 

Ptychadena anchietae T6401 SL 2729 Shimba Hills  KE 39.485 -4.225 

Ptychadena anchietae T6320 SL 2854 Arabuko-Sokoke Forest KE 39.891 -3.324 

Ptychadena anchietae T6328 SL 2869 Arabuko-Sokoke Forest KE 39.904 -3.200 

Ptychadena anchietae T6329 SL 2870 Arabuko-Sokoke Forest KE 39.904 -3.200 

Ptychadena anchietae T6661 SL 2888 Arabuko-Sokoke Forest KE 39.976 -3.263 

Ptychadena anchietae T2975 CB 13.926 Tanga TZ 39.117 -4.749 

Ptychadena anchietae T6381 SL 1370 Shimba Hills KE 39.396 -4.238 

Ptychadena anchietae T6035 MW 07787 Shimba Hills KE 39.422 -4.443 

Sclerophrys gutturalis T4116 MW 7922 Tanga KE 39.557 -3.981 

Sclerophrys gutturalis T4117 CB 13.766 Tanga TZ 38.646 -5.583 

Sclerophrys gutturalis T4118 CB 13.767 Tanga TZ 38.646 -5.583 

Sclerophrys gutturalis T4272 CB 13.768 Tanga TZ 38.646 -5.583 

Sclerophrys gutturalis T4468 CB 13.929 East Usambara Mountains TZ 39.117 -4.749 

Sclerophrys gutturalis T4469 BM 2005.1298 East Usambara Mountains TZ 38.703 -4.81 

Sclerophrys gutturalis T5309 SL 1114 Shimba Hills KE 39.462 -4.429 

Sclerophrys gutturalis T5310 SL 1231 Shimba Hills KE 39.445 -4.176 

Sclerophrys gutturalis T5311 SL 1232 Shimba Hills KE 39.445 -4.176 

Sclerophrys gutturalis T5312 SL 1233 Shimba Hills KE 39.445 -4.176 

Sclerophrys gutturalis T5313 SL 1234 Shimba Hills KE 39.445 -4.176 
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Sclerophrys gutturalis T6314 SL 1250 Mpeketoni KE 40.686 -2.409 

Sclerophrys gutturalis T6330 SL 2873 Arabuko-Sokoke Forest KE 39.904 -3.2 

Sclerophrys pusilla T2457 MW 7780 Shimba Hills KE 39.422 -4.443 

Sclerophrys pusilla T4119 CB 13.769 Tanga TZ 39.048 -5.073 

Sclerophrys pusilla T4125 CB 13.775 Tanga TZ 39.048 -5.073 

Sclerophrys pusilla T4127 CB 13.777 Tanga TZ 39.048 -5.073 

Sclerophrys pusilla T4188 CB 13.838 Tanga TZ 38.924 -5.034 

Sclerophrys pusilla T4476 CB 14.1104 East Usambara Mountains TZ 38.751 -5.054 

Sclerophrys pusilla T4477 CB 14.1105 Tanga TZ 38.727 -4.950 

Sclerophrys pusilla T4478 CB 14.1106 East Usambara Mountains TZ 38.814 -4.791 

Sclerophrys pusilla T5315 SL 1208 Kwale KE 39.429 -4.392 

Sclerophrys pusilla T5314 SL 1207 Shimba Hills KE 39.429 -4.392 

Sclerophrys pusilla T6331 SL 2874 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys pusilla T6332 SL 2875 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys pusilla T6333 SL 2876 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys pusilla T6334 SL 2877 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys pusilla T6335 SL 2878 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys pusilla T2219 PK 126 Arabuko-Sokoke Forest KE 39.669 -3.844 

Sclerophrys steindachneri T2516 VW 597 Shimba Hills KE 39.433 -4.275 

Sclerophrys steindachneri T2517 VW 614 Shimba Hills KE 39.440 -4.128 
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Sclerophrys steindachneri T5318 SL 1199 Shimba Hills KE 39.417 -4.158 

Sclerophrys steindachneri T5316 SL 1245 Mpeketoni KE 40.686 -2.409 

Sclerophrys steindachneri T5317 SL 1257 Mpeketoni KE 40.686 -2.409 

Sclerophrys steindachneri T6674 SL 2898 Arabuko-Sokoke Forest KE 39.976 -3.263 

Sclerophrys steindachneri T5312 SL 1234 Shimba Hills KE 39.396 -4.238 

Sclerophrys steindachneri T6334 SL 2877 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys steindachneri T6331 SL 2874 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys steindachneri T6332 SL 2875 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys steindachneri T6333 SL 2876 Arabuko-Sokoke Forest KE 39.904 -3.200 

Sclerophrys steindachneri T6335 SL 2878 Arabuko-Sokoke Forest KE 39.904 -3.200 

Scolecomorphus vittatus T226 KMH 21262 East Usambara Mountains TZ NULL NULL 

Scolecomorphus vittatus T228 KMH 21263 East Usambara Mountains TZ NULL NULL 

Scolecomorphus vittatus T441 MW 03040 East Usambara Mountains TZ NULL NULL 

Scolecomorphus vittatus T4790 WTS 1572 East Usambara Mountains TZ 38.717 -4.95 

Scolecomorphus vittatus T4791 WTS 1548 East Usambara Mountains TZ 38.717 -4.95 

Scolecomorphus vittatus T5299 SL 1244 Shimba hills National reserve KE 39.396 -4.236 

Xenopus muelleri T2977 CB 13.928 Tanga TZ 39.117 -4.749 

Xenopus muelleri T4126 CB 13.776 Tanga TZ 39.048 -5.073 

Xenopus muelleri T4140 CB 13.790 Tanga TZ 39.048 -5.073 

Xenopus muelleri T4141 CB 13.791 Tanga TZ 39.048 -5.073 
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Xenopus muelleri T4142 CB 13.792 Tanga TZ 39.048 -5.073 

Xenopus muelleri T4150 CB 13.800 Tanga TZ 39.048 -5.073 

Xenopus muelleri T4190 CB 13.840 Tanga TZ 38.924 -5.034 

Xenopus muelleri T4211 CB 13.861 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4212 CB 13.862 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4213 CB 13.863 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4214 CB 13.864 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4215 CB 13.865 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4232 CB 13.882 Tanga TZ 39.102 -4.632 

Xenopus muelleri T4265 CB 13.918 Tanga TZ 39.117 -4.749 

Xenopus muelleri T4266 CB 13.919 Tanga TZ 39.117 -4.749 

Xenopus muelleri T4931 MTSN 9513 East Usambara Mountains TZ 38.758 -4.981 

Xenopus muelleri T4932 MTSN 9514 East Usambara Mountains TZ 38.758 -4.981 

Xenopus muelleri T5300 SL 1205 Shimba Hills KE 39.425 -4.375 

Xenopus muelleri T5301 SL 1224 Shimba Hills KE 39.440 -4.128 

Xenopus muelleri T5302 SL 1240 Shimba Hills KE 39.445 -4.176 

Xenopus muelleri T6399 SL 2727 Shimba Hills KE 39.396 -4.237 

Xenopus muelleri T4598 CB 14.1224 East Usambara Mountains TZ 38.807 -4.757 
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Introduction 

The Shimba Hills of Kenya (SHK) is located at the crossroads of two biodiversity hotspots; the 

Coastal Forest of Eastern Africa (CFEA) and the Eastern Afromontane Biodiversity Region (EABR). 

In addition mixed assemblages of flora and fauna have been recorded in SHK including; endemic 

species, species only shared between SHK and EAM, species shared between SHK and CFEA plus 

overlapping species found in the three areas and even species shared with west and Central African 

countries (Burgess & Clarke, 2000). However no study has ever investigated the biogeographical 

affiliation of SHK to these hotspots. In this thesis I sought to understand the biogegraphic history of 

SHK using a combination of molecular and spatial analysis of its amphibian assemblage. 

Before I could perform analysis of phylogeographic patterns of amphibians of SHK, it was 

necessary to first sample the area extensively and compile a species list of its amphibians and this is 

the subject of the first chapter. Despite the fact that SHK is an important conservation area along the 

coastal Kenya tourist circuit, information about its amphibian fauna was very scarce prior to this 

thesis. I dedicated the first chapter to compiling recent fieldwork and all known amphibian records 

from SHK, consolidating them into the first ever annotated checklist of amphibians of Shimba Hills 

National Reserve. The reserve plus the entire SHK area contains the highest number of amphibian 

diversity for any known locality in Kenya (compare, Malonza &Veith, 2012; Wasonga et al., 2007). 

Therefore its continued conservation will ensure about 30% of Kenya’s amphibian species are 

preserved. Apart from the checklist, Chapter 1 also reports on two interesting records; a new country 

record for the caecilian, Scolecomorphus cf. vittatus an EAM endemic species (Howell, 1993; 

Poynton, 2000; Harper et al., 2010). In addition I report on the rediscovery of a Callulina sp. lastly 

collected in 1961 (Loader et al., 2010). Amphibian surveys began in the SHK around 1960’s (Chapter 

1) however, new records and/or species rediscoveries are still being made implying that, through 

systematic sampling, more species may still be recovered in this area and thus the checklist is not an 

end in itself to the search for more amphibian species and/or new records in this area. 

 

Major findings 

The taxonomic status of H. rubrovermiculatus has been uncertain as the species has been synonimized 

with H. mitchelli (Channing & Howell, 2006) a wide ranging species from Tanzania to Zimbabwe 

(Poynton & Broadley, 1967). In Chapter 2, I showed that H. rubrovermiculatus is genetically and 

morphologically distinct from H. mitchelli. Furthermore, H. mitchelli was recovered as paraphyletic 

with a population occurring in north eastern Tanzania genetically closer to H. rubrovermiculatus than 

to H. mitchelli from Central and Southern Tanzania to Malawi. I propose description of the population 

from north eastern Tanzania as a new species- (H. new sp.). Using dorsal colour patterns and skin 
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texture I showed that H. rubrovermiculatus is distinct from its sister species H. new sp. These findings 

raise interesting questions regarding what drives dorsal colour pattern evolution within Hyperoliid 

frogs which may be worthy of future investigations. In this chapter, I have demonstrated the benefits 

of applying integrated taxonomic analysis approaches in unravelling cryptic diversity in Hyperollids 

in the region. The same approach may be used in other species in the area in which high genetic 

distances was recorded between sister clades (see chapter 4). The confirmation of the species status of 

H. rubrovermiculatus is important since apart from being endemic to the SHK, the species is also 

listed as endangered (IUCN, accessed on 8
th
 March 2017) and therefore its conservation requires 

targeted approaches which can only be done if its taxonomic status is known. While the proposed 

description of H. new sp. from the once wide spread H. mitchelli brings to our attention the need to re-

visit the taxonomy of similar wide spread species in the area using integrated taxonomic tools. 

Loader et al. (2010) reported on the presence of a Callulina sp. from SHK based on a single 

specimen recovered from the American Museum of Natural History and speculated it to be either C. 

kisiwamsitu or C. stanleyi if not a new species. In chapter 3, I report on the rediscovery of this 

Callulina. Using Bayesian and maximum Likelihood analysis of three different genes (12S, 16S, 

Cytochrome b) and a concatenated analysis of these three genes, I show that the Callulina from the 

Shimba Hills is genetically similar to C. kreffti. Three Callulina records from SHK have been made 

within the SHNR, all of them recorded from Makadara forest fragment indicating their restricted 

distribution in the area. In addition, the fact that just a few specimens have been recovered may 

indicate low population size of this species within the SHNR. The chapter also includes proposed 

description of three new Callulina found in the EAM and points to the importance of combining 

morphology and DNA analysis to identify the currently recognized 12 Callulina species. 

Combining molecular and spatial analysis, I have showed in Chapter 4 that SHK amphibians 

have different biogeographic histories. Lack of concordant phylogeographic breaks showed that these 

species lack a common biogeographic history. While some species appear to have occupied the SHK 

for long periods (H. rubrovermiculatus, A. sylvaticus, A. stenodactylus) other species seem to be 

recent dispersals. Based in multispecies comparisons, I found SHK amphibians to be more closely 

related to the CFEA than the EABR. This is demonstrated by the number of species that formed 

groupings with CFEA (4) and EABR (0) based on the species with overlapping samples across the 

five study sites. The divergence patterns among species however varied between species and areas 

with recent (1.9 myr) and old (5.5 myr) divergences within northern phylogeographic break and 

recent (1.5myr) and old (7.3 myr) divergences within the southern phylogeographic break. The 

seeming closer affiliation between SHK and CFEA is an important finding, especially since along the 

coastal Kenya, there is rapid and increasing habitat destruction which may pertub amphibian 

population. Given that SHK has been connected to the neighbouring CFEA relatively recently, 
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migration corridors between these forests should be maintained if species are likely to maintain viable 

populations. 

 

Conservation and management implications 

Understanding genetic variations within species is important for conservation purposes as areas 

harbouring evolutionarily unique populations may be considered more valuable for conservation 

purposes. In addition understanding historical factors that have shaped the genetic patterns of an area 

is important as such information can be used to formulate management strategies to meet conservation 

challenges such as climate change and habitat destruction. Recent studies have demonstrated how 

species level conservation greatly underestimates intraspecific genetic diversity which is equally 

important for conservation (Rissler et al., 2006; Barrat et al., 2017). Such studies call for the need to 

identify the unique evolutionary units within wide ranging species and the underlying factors that 

generated them in order to inform both current and future conservation measures. Current and 

projected future climate change plus habitat destruction within the Coastal forests of eastern Africa 

and Eastern Afromontane biodiversity region (Burgess & Clarke, 2000) require that measures should 

be taken to conserve these important repositories for biodiversity. One such measure is to identify 

areas with unique evolutionary units for targeted conservation action. At a species level, only H. 

rubrovermiculatus is endemic to SHK, however results from this thesis (Chapter 4) points to more 

than one unique lineages that are independently evolving within SHK; populations of A. sylvaticus, A. 

xenodactyloides and H. pusillus have been recovered as monophyletic. These populations separated 

from neighbouring populations a long time ago (Pliocene) and the levels of sequence divergence 

reported within some species are significant (Chapter 4). These populations are speculated to be 

evolutionary significant units (ESU) sensu Moritz (1994). Rigorous analysis involving more sample 

size, additional molecular markers plus morphological and bioaccoustic analysis may be required to 

confirm their ESU or otherwise status. If these categories are confirmed then conservation activities 

geared towards their protection area necessary. 

 

Limitations 

Even though efforts were made to acquire as much data as possible for this study, one of the major 

constraints is incomplete sampling across the region. This therefore means that some of the 

phylogeographic patterns reported in this thesis remain tentative pending further more spatially 

comprehensive sampling. For example, the two EAM species that have been recorded from SHK, 

only one sequence was available for S. cf. vittatus and two for C. kreffti. More data are needed to 
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better understand the phylogeography of these two species to shed more light on the relationship 

between SHK and EAM. For some species only DNA data from the Kenyan side was available, 

Hyperolius pusillus, Kassina maculata, Sclerophrys steindachneri. Given the complex 

phylogeographic patterns exhibited by various amphibian species from the study area, more data are 

needed to get the better picture of their phylogeographic patterns. GPS co-ordinates for some species 

were not representative and therefore the habitat suitability maps predicted for such species should be 

interpreted with much caution. 

The dating of divergence time given in this thesis may be considered tentative since it is based on 

single genes and no amphibian fossil exists in the area with which we could provide primary 

calibration dates for the phylogenetic trees. However our results are comparable with other studies on 

amphibians in the area (Lawson et al., 2010, 2013; Blackburn & Measey, 2009). 

 

Future directions 

Almost nothing is known about the ecology of the only endemic amphibian from SHK. Since H. 

rubrovermiculatus is also listed as endangered by the IUCN Red List of threatened species, it is 

important that the information necessary for its effective conservation is documented and this should 

be done as a matter of urgency.  

The two EAM species so far recorded from SHK are both known from Makadara forest within the 

SHNR. In addition, only three records of C. kreffti and one of S. cf. vittatus are known. More intensive 

studies need to be conducted in all remaining forest fragments in SHK to establish their population 

status and also to shed more light on their phyogeographic affiliations. 

A. sylvaticus is listed as vulnerable based on the IUCN Redlist and its range is given as from SHK to 

Central Usambara, based on this study the SHK population is divergent (2.2%) from the Tanzania 

samples. Estimated divergence time places the SHK population at about 2.8 million years old and has 

not undergone any recent population expansions. Evidence shows that species formerly thought to be 

widespread in the region might actually represent cryptic species (Loader et al., 2015; Barrat et al., 

2017; Chapter 2). Studies incorporating bioacoustics, morphology and multilocus DNA analysis is 

required to confirm the taxonomic status of the SHK population as it may be endemic to just the SHK 

and hence deserves taxonomic recognition and the likely changes to its IUCN RedList status. 

 

Conclusion 

Based on its amphibian assemblages, SHK is an important area for biodiversity conservation. 
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Apart from the fact that it holds the highest amphibian diversity in Kenya, it also holds a diverse 

assemblage of amphibians, such as potential ESU, one endemic species, EAM, coastal and wide 

ranging species. No other area in Kenya is known to hold such a mixed diversity of amphibians. 

Concerted efforts are therefore required to protect this unique diversity at SHK. 

In this thesis I have established based on multi-species phylogeographic and spatial analysis, 

that SHK is more closely related to the CFEA through habitat connectivity both current and in the 

past. The hills have also been relatively stable to allow for the evolution of an endemic species plus 

several potential ESUs. The conservation of SHK is therefore a matter of high importance. The results 

presented here are the first to establish the biogeographic affinity of the SHK with the adjacent 

hotspots. It is important that similar studies to be carried out using other taxa for more insight on the 

biogeographic history of SHK. 
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Appendix 1. A list of all known amphibian records from Shimba Hills National Reserve indicating museum number, collector name, date and locality. 

Records with stars were obtained from the HerpNet. 

 

Museum ID Species Collection date Collector Locality 

*LACM 50633 Hyperolius rubrovermiculatus 2 Apr 1968 A. Williams Shimba Hills Rainforest 

NMK A737/1‒2 Xenopus muelleri May 1968 A. D. Mackay Shimba Hills 

NMK A739/1‒9 Kassina maculata Jun 1968 A. D. Mackay Shimba Hills 

NMK A3003/1‒5 Kassina maculata 20 May 1968 A. Schiøtz & A.D. Mackay Shimba Hills 

NMK A787 Leptopelis flavomaculatus Nov 1968 D. Sheldrick Near Giriama point 

NMK A788 Hyperolius rubrovermiculatus Dec 1968 D. Sheldrick Near Giriama point 

NMK A3041/1‒2 Hyperolius argus 20 May 1968 A. Schiøtz & A.D. Mackay Shimba Hills 

NMK A3096/1‒39 Hyperolius mariae 20 Jun 1968 A. Schiøtz & A.D. Mackay Shimba Hills 

ZMUC-R 73916‒937 Hyperolius acuticeps 20 May 1968 A. Schiøtz Shimba Hills 

ZMUC-R73854  Hyperolius rubrovermiculatus 20 May 1968 A Schiøtz Shimba Hills 

ZMUC-R73855 Afrixalus delicatus 20 May 1968 A. Schiotz Shimba Hills 

ZMUC-R73948/49 Afrixalus delicatus 20 May 1968 A. Schiøtz Shimba Hills 

ZMUC-R77457/458 Afrixalus delicatus 20 May 1968 A. Schiøtz Shimba Hills 

NMK A3169 Hyperolius rubrovermiculatus no date A. D. Mackay,  Sheldrick Falls 

NMK A1150/1‒9 Mertensophryne micranotis Apr-Jun 1977 A. D. Mackay Makadara Forest 

BMNH 1980.195  Mertensophryne micranotis 1977 ? Shimba Hills 
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BMNH 1980.197 Mertensophryne micranotis 1977 L. P. Lounibos Shimba Hills 

BMNH 1982.395‒396 Mertensophryne micranotis Apr 1977 L. P. Lounibos Makadara Forest 

*CAS 153633‒40  Leptopelis flavomaculatus 12 Apr 1981 S. Reilly Makadara Forest, picnic site 

*CAS 153694 Xenopus muelleri 13 Apr 1981 S. Reilly Shimba Hills 

*CAS 153695 Kassina senegalensis 14 Apr 1981 S. Reilly 200 m. S of Risley's Ridge turnaround 

*CAS 153697 Ptychadena anchietae 15 Apr 1981 S. Reilly 200 m. S of Risley's Ridge turnaround 

*CAS 153698 Mertensophryne micranotis 16 Apr 1981 S. Reilly Shimba Hills, campsite 1 

*CAS 153709‒11 Hyperolius tuberilinguis 17 Apr 1981 S. Reilly Shimba Hills 

BMNH 1982.842 Sclerophrys gutturalis 6 May 1981 A. Grandison Shimba Hills 

BMNH1982.857‒859 Afrixalus sylvaticus 6 May 1981 A. Grandison Sheldrick Falls 

BMNH 1982.860‒887 Hyperolius rubrovermiculatus 6 May 1981 A. Grandison Sheldrick Falls 

*CAS 155604 Arthroleptis xenodactyloides 6 Jul 1981 M. Tandy Makadara Forest 

*CAS 155606 Sclerophrys pusilla 6 Jul 1981 M. Tandy Marere head works 

*CAS 155613‒20 Sclerophrys pusilla 6 Jul 1981 M. Tandy Marere head works 

*CAS 155621‒23 Phrynobatrachus acridoides 6 Jul 1981 M. Tandy Marere head works 

*CAS 155624 Ptychadena anchietae 6 Jul 1981 M. Tandy Marere head works 

*CAS 155626‒29 Xenopus muelleri 6 Jul 1981 M. Tandy Shimba Hills National Reserve 

*CAS 155630‒31 Leptopelis flavomaculatus 6 Jul 1981 M. Tandy Marere head works 

*CAS 155632‒34 Phrynobatrachus acridoides 6 Jul1981 M. Tandy Marere head works 

*CAS 155635‒46 Hyperolius rubrovermiculatus 12 Jul 1981 M. Tandy Marere head works 
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*CAS 155647‒50 Sclerophrys pusilla 12 Jul 1981 M. Tandy Marere head works 

*CAS 155652‒54 Afrixalus sylvaticus 13 Jul 1981 M. Tandy Marere head works 

*CAS 155655‒67 Sclerophrys pusilla 17 Jul 1981 M. Tandy Marere head works 

*CAS 155668‒69 Xenopus muelleri 17 Jul1981 M. Tandy Marere head works 

*CAS 155671‒77 Arthroleptis stenodactylus 18 Jul 1981 M. Tandy Makadara forest  

*CAS 155883 Sclerophrys pusilla 17 Jul 1981 M. Tandy Marere head works 

*CAS 155932‒46 Hyperolius rubrovermiculatus 11 Jul 1981 M. Tandy Below Marere head works 

*CAS 155947 Afrixalus sylvaticus 11 Jul 1981 M. Tandy 5 km N main gate - Kwale entrance into SHNR 

*CAS 157491 Ptychadena anchietae Feb 1984 M. Ryan 6 km N main gate - Kwale entrance into SHNR 

*CAS 157492 Afrixalus fornasini Feb 1984 M. Ryan 7 km N main gate - Kwale entrance into SHNR 

*CAS 157493 Sclerophrys pusilla Feb 1984 M. Ryan 8 km N main gate - Kwale entrance into SHNR 

*CAS 157494‒95 Phrynobatrachus acridoides Feb 1984 M. Ryan 9 km N main gate - Kwale entrance into SHNR 

*CAS 157496‒98 Hyperolius mariae Feb 1984 M. Ryan 10 km N main gate - Kwale entrance into SHNR 

MVZ 233935 Hyperolius rubrovermiculatus 5 Jun 1998 Dan R. Buchholz et al Shimba Hills 

MVZ 233824 Afrixalus sylvaticus 5 Jun 1998 Dan R. Buchholz et al Shimba Hills 

MVZ 233910 Hyperolius parkeri 5 Jun 1998 Dan R. Buchholz et al Shimba Hills 

MVZ 233825 Afrixalus sylvaticus 5 Jun 1998 Dan R. Buchholz et al Shimba Hills 

MVZ 233909 Hyperolius parkeri 5 Jun 1998 Dan R. Buchholz et al Shimba Hills 

NMK A3550/1‒7 Ptychadena anchietae 3 Jul 1998 A. Wise, Weatherby, C. & Ross, K. Shimba Hills 

NMK A3553/1‒6 Xenopus muelleri 3 Jul 1998 A. Wise, Weatherby, C. & Ross, K. Shimba Hills 
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NMK A3582/1‒2 Sclerophrys pusilla 3 Jul 1998 A. Wise, Weatherby, C. & Ross, K. Shimba Hills 

NMK A4448/1‒6 Arthroleptis xenodactyloides 29‒30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4395/1‒11 Boulengerula changamwensis 29‒30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4401/1‒6 Arthroleptis stenodactylus 29‒30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4440 Afrixalus sylvaticus 28 Nov 2005 P. K. Malonza & J.G. Measey Sheldrick Falls 

NMK A4442 Xenopus muelleri 29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Swamp 

NMK A4443/1‒5 Ptychadena anchietae 28 Nov 2005 P. K. Malonza & J.G. Measey Bufallo River  

NMK A4448/1‒6 Arthroleptis xenodactyloides 29‒30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4449 Hyperolius pusillus 29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp  

NMK A4452 Sclerophrys steindachneri 28 Nov2005 P. K. Malonza & J.G. Measey Sheldrick Falls 

NMK A4455/1‒2 Kassina maculata 29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 

NMK A4458/1‒4 Afrixalus fornasini 29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 

NMK A4459/1‒8 Arthroleptis xenodactyloides 28‒29 Nov 2005 P. K. Malonza & J.G. Measey Makadara Forest 

NMK A4461 Sclerophrys steindachneri 28‒29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 

NMK A4450/1‒5 Hyperolius tuberilinguis 29 Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 

NMK A4653/1‒2 Arthroleptis xenodactyloides 29 Nov 2005 P. K. Malonza & J.G. Measey Makadara Forest 

NMK A4653/1‒2 Arthroleptis stenodactylus 30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4460/1‒3 Arthroleptis stenodactylus 30 Nov 2005 P. K. Malonza & J.G. Measey Longomwagandi Forest 

NMK A4445 Hyperolius rubrovermiculatus 28
 
Nov 2005 P. K. Malonza & J.G. Measey Sheldrick Falls 

NMK A4447/1‒3 Hyperolius rubrovermiculatus 29
 
Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 
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NMK A4450/1‒5 Hyperolius tuberilinguis 29
 
Nov 2005 P. K. Malonza & J.G. Measey Kivumoni Gate Swamp 

NMK A4615/1‒6 Afrixalus fornasini 22 Apr 2006 B. Bwong, J.G. Measey & Venu Kivumoni Gate Swamp 

NMK A4613 Arthroleptis stenodactylus 22 Apr 2006 B. Bwong, J.G. Measey & Venu Longomwagandi Forest 

NMK A4619/1‒7 Hyperolius argus 23 Apr 2006 B. Bwong, J.G. Measey & Venu Kivumoni Gate Swamp 

NMK A4686/1‒3 Ptychadena anchietae 13‒16 Sep 2006 Jos Kielgast Shimba Hills 

NMK A4689/1 Sclerophrys steindachneri 13‒16 Sep 2006 Jos Kielgast Shimba Hills 

NMK A4690/1‒7 Afrixalus fornasini 13‒16 Sep 2006 Jos Kielgast Shimba Hills 

NMK A4693/1‒4 Xenopus muelleri 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4694 Xenopus muelleri 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4696 Kassina senegalensis 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4697/1‒4 Kassina maculatus 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4698/1‒35 Xenopus muelleri 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4699/1‒7 Leptopelis concolor 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4745/1‒6 Hyperolius argus 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4703/1‒7 Afrixalus sylvaticus 13‒16 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4705/1‒5 Chiromantis xerampelina 13 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4700/1‒6 Hyperolius argus 13 Sep 2006 Jos Kielgast Shimba Hills  

NMK A4623/1‒2 Hyperolius rubrovermiculatus 22 Apr 2006 B. Bwong & J.G. Measey Kivumoni Gate Swamp 

NMK A4704 Hyperolius rubrovermiculatus 13‒16 Sep 2006 Jos Kielgast Shimba Hills 

NMK A5241 Ptychadena anchietae 17‒18 Dec 2010 Miloslav Jirku Shimba Lodge Swamp 
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NMK A5252 Afrixalus fornasini 17‒18 Dec 2010 Miloslav Jirku Shimba Lodge Swamp 

NMK A5256 Arthroleptis stenodactylus 17‒19 Dec 2010 Miloslav Jirku Shimba Lodge Swamp 

NMK A5243 Ptychadena anchietae 18 Dec 2010 Miloslav Jirku Shimba Hills National Reserve 

NMK A5269 Hyperolius tuberilinguis 17‒18 Dec 2010 Miloslav Jirku Shimba Lodge Swamp 

NMK A5268 Hyperolius rubrovermiculatus 17‒18 Dec 2010 Miloslav Jirku Shimba Lodge Swamp 

NMK A5451 Chiromantis xerampelina 7 Apr 2012 V. Wasonga & J. Nyamache Mkongani west Forest 

NMK A5452 Ptychadena anchietae 10 Apr 2012 V. Wasonga & J. Nyamache Marere circuit 

NMK A5453/1‒2 Hemisus marmoratus 8 Apr 2012 V. Wasonga & J. Nyamache Mkongani west Forest 

NMK A5459/1‒2 Arthroleptis stenodactylus 5 Apr 2012 V. Wasonga & J. Nyamache Sheldrick Falls  

NMK A5460 Mertensophryne micranotis 4 Apr 2012 V. Wasonga & J. Nyamache Sable Bandas 

NMK A5461 Ptychadena anchietae 9 Apr 2012 V. Wasonga & J. Nyamache Mkongani west Forest 

NMK A5462 Chiromantis xerampelina 2 Apr 2012 V. Wasonga & J. Nyamache Sable Bandas 

NMK A5463 Ptychadena anchietae 5 Apr 2012 V. Wasonga & J. Nyamache Sheldrick Falls  

NMK A5464 Mertensophryne micranotis 4 Apr 2012 V. Wasonga & J. Nyamache Longomwagandi Forest 

NMK A5501 Arthroleptis stenodactylus 21 Jun 2012 V. Wasonga & J. Nyamache Mwele Forest  

NMK A5502 Arthroleptis stenodactylus 23 Jun 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5465 Boulengerula changamwensis 3 Apr 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5505 Arthroleptis stenodactylus 3 Apr 2012 V. Wasonga & J. Nyamache Mwele Forest 

NMK A5507/1‒2 Sclerophrys pusilla 23 Jun 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5504 Boulengerula changamwensis 24 Jun 2012 V. Wasonga & J. Nyamache Sheldrick Falls 
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NMK A5511 Hemisus marmoratus 23 Jun 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5513 Hyperolius argus 19 Apr 2012 V. Wasonga & J. Nyamache Shimba Lodge Swamp 

NMK A5515 Arthroleptis xenodactyloides 5 Jun 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5514 Hyperolius tuberilinguis 19 Jun 2012 V. Wasonga & J. Nyamache Shimba Lodge Swamp 

NMK A5633 Mertensophryne micranotis 12‒16 Nov 2012 J. Mueti & C. Ofori Kaya Forest 

NMK A5458 Mertensophryne micranotis 5 Nov 2012 V. Wasonga & J. Nyamache Sheldrick Falls 

NMK A5631/1‒2 Arthroleptis xenodactyloides 12‒16 Nov 2012 J. Mueti & C. Ofori Kaya Forest 

NMK A5510 Boulengerula changamwensis 19 Jun 2012 V. Wasonga & J. Nyamache Mwele Forest 

NMK A5506 Hyperolius rubrovermiculatus 19 Jun 2012 V. Wasonga & J. Nyamache Shimba Lodge Swamp 

NMK A5809/1‒3 Arthroleptis xenodactyloides 18 Dec 2013 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5805/1‒4 Arthroleptis xenodactyloides 17 Dec 2013 J. Nyamache & P. Mwasi Makadara Forest 

NMK A5803/1‒2 Boulengerula changamwensis 17 Dec 2013 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5818/1‒4 Ptychadena anchietae 20 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5800 Ptychadena sp. 18 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5812/1‒6 Hyperolius argus 18 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5801/1‒5 Hyperolius rubrovermiculatus 18 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5810/1‒2 Afrixalus fornasini 18 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5808 Phrynobatrachus acridoides 18 Dec 2013 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5819 Mertensophryne micranotis 20 Dec 2013 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5820/1‒3 Arthroleptis xenodactyloides 20 Dec 2013 J. Nyamache & P. Mwasi Longomwagandi Forest 
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NMK A5817/1‒2 Boulengerula changamwensis 20 Dec 2013 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5816 Arthroleptis xenodactyloides 20 Dec 2013 J. Nyamache & P. Mwasi Makadara Forest 

NMK A5811 Mertensophryne micranotis 23 Dec 2013 J. Nyamache & P. Mwasi Sheldrick Falls 

NMK A5802/1‒2 Ptychadena anchietae 23 Dec 2013 J. Nyamache & P. Mwasi Sheldrick Falls 

NMK A5806 Arthroleptis stenodactylus 23 Dec 2013 J. Nyamache & P. Mwasi Sheldrick Falls 

NMK A5804/1‒2 Phrynobatrachus acridoides 23 Dec 2013 J. Nyamache & P. Mwasi Sheldrick Falls 

NMK A5917/1‒4 Sclerophrys pusilla 19 Jun 2014 V. Wasonga & J. Ochong Shimba Hills National Reserve 

NMK A5911 Mertensophryne micranotis 19 Jun 2014 V. Wasonga & J. Ochong Makadara Forest 

NMK A5915 Arthroleptis xenodactyloides 16 Jun 2014 V. Wasonga & J. Ochong Mkanda River, Lokore Forest 

NMK A5913 Arthroleptis stenodactylus 14 Jun 2014 V. Wasonga & J. Ochong Mwele Grassland 

NMK A5912 Arthroleptis xenodactyloides 18 Jun 2014 V. Wasonga & J. Ochong Sable Bandas 

NMK A5953/1‒2 Ptychadena anchietae 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5844/1‒5 Leptopelis flavomaculatus 30 Apr 2014 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5848 Hyperolius rubrovermiculatus 30 Apr 2014 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5835 Ptychadena anchietae 30 Apr 2014 J. Nyamache & P. Mwasi Shimba Lodge Swamp 

NMK A5838/1‒3 Mertensophryne micranotis 3 May 2014 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5851/1‒2 Arthroleptis xenodactyloides 3 May 2014 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5855/1‒4 Sclerophrys gutturalis 3 May 2014 J. Nyamache & P. Mwasi Shimba Hills National Reserve HQ 

NMK A5846 Phrynobatrachus acridoides 3 May 2014 J. Nyamache & P. Mwasi Shimba Hills National Reserve HQ 

NMK A5840 Xenopus muelleri 3 May 2014 J. Nyamache & P. Mwasi Shimba Hills National Reserve HQ 
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NMK A5837 Afrixalus sylvaticus 3 May 2014 J. Nyamache & P. Mwasi Shimba Hills National Reserve HQ 

NMK A5850 Boulengerula changamwensis 4 May 2014 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5849 Arthroleptis stenodactylus 4 May 2014 J. Nyamache & P. Mwasi Longomwagandi Forest 

NMK A5854 Scolecomorphus vittatus 4 May 2014 J. Nyamache & P. Mwasi Makadara Forest 

NMK A5896/1‒5 Ptychadena anchietae 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5904/1‒2 Hyperolius argus 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5907/1‒3 Hyperolius puncticulatus 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5899 Hyperolius mariae 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5900/1‒2 Hyperolius rubrovermiculatus 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5897 Arthroleptis stenodactylus 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5905 Hyperolius rubrovermiculatus 12 Jun 2014 J. Nyamache & J. Ochong Shimba Lodge Swamp 

NMK A5901/1‒2 Arthroleptis xenodactyloides 13 Jun 2014 J. Nyamache & J. Ochong Kivumoni Forest 

NMK A5898 Mertensophryne micranotis 13 Jun 2014 J. Nyamache & J. Ochong Kivumoni Forest 

NMK A5908/1‒2 Boulengerula changamwensis 13 Jun 2014 J. Nyamache & J. Ochong Kivumoni Forest 

NMK A5903 Afrixalus fornasini 13 Jun 2014 J. Nyamache & J. Ochong Kivumoni Gate Swamp 

NMK A5902/1‒3 Afrixalus sylvaticus 14 Jun 2014 J. Nyamache & J. Ochong Kivumoni Gate Swamp 

NMK A5909 Hyperolius rubrovermiculatus 14 Jun 2014 J. Nyamache & J. Ochong Kivumoni Gate Swamp 

NMK A5906/1‒2 Phrynobatrachus acridoides 14 Jun 2014 J. Nyamache & J. Ochong Kivumoni Gate Swamp 

NMK A5961/1‒4 Hyperolius tuberilinguis 2 Sep 2014 J. Nyamache & J. Ochong Sheldrick Falls 

NMK A5958/1‒3 Hyperolius rubrovermiculatus 2 Sep 2014 J. Nyamache & J. Ochong Sheldrick Falls 
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NMK A5957/1‒3 Afrixalus sylvaticus 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5953/1‒2 Ptychadena anchietae 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5960 Kassina maculata 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5956 Chiromantis xerampelina 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5954 Afrixalus fornasini 2 Sep 2014 J. Nyamache Sheldrick Falls 

NMK A5918/1‒3 Boulengerula changamwensis 19‒20 Jun 2014 V. Wasonga & J. Ochong Makadara Forest and picnic site 

NMK A6019/1‒3 Arthroleptis xenodactyloides 27 Apr 2015 B. Bwong & J. Nyamache Longomwagandi Forest 

NMK A6020 Boulengerula changamwensis 27 Apr 2015 B. Bwong & J. Nyamache Longomwagandi Forest 

NMK A6021 Chiromantis xerampelina 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6022/1‒4 Leptopelis flavomaculatus 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6026/1‒4 Ptychadena anchietae 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6025 Ptychadena anchietae 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6023/1‒7 Hyperolius argus 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6024/1‒9 Hyperolius rubrovermiculatus 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6030/1‒4 Hyperolius tuberilinguis 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6027/1‒2 Hyperolius mariae 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6028 Afrixalus sylvaticus 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6029/1‒5 Phrynobatrachus acridoides 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6031 Arthroleptis xenodactyloides 27 Apr 2015 B. Bwong & J. Nyamache Shimba Lodge Swamp 

NMK A6038/1‒2 Mertensophryne micranotis 28 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 
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NMK A6037/1‒2 Arthroleptis xenodactyloides 28 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 

NMK A6039/1‒6 Boulengerula changamwensis 28 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 

NMK A6032 Ptychadena anchietae 28 Apr 2015 B. Bwong & J. Nyamache Kivumoni Gate Swamp 

NMK A6035/1‒4 Phrynobatrachus acridoides 28 Apr 2015 B. Bwong & J. Nyamache Kivumoni Gate Swamp 

NMK A6033/1‒5 Afrixalus sylvaticus 28 Apr 2015 B. Bwong & J. Nyamache Kivumoni Gate Swamp 

NMK A6034 Hyperolius rubrovermiculatus 28 Apr 2015 B. Bwong & J. Nyamache Kivumoni Gate Swamp 

NMK A6040 Arthroleptis stenodactylus 29 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 

NMK A6041/1‒3 Arthroleptis xenodactyloides 29 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 

NMK A6042 Arthroleptis xenodactyloides 30 Apr 2015 B. Bwong & J. Nyamache Marere Hill 

NMK A6044 Leptopelis flavomaculatus 30 Apr 2015 B. Bwong & J. Nyamache Sheldrick Falls 

NMK A6043/1‒4 Afrixalus sylvaticus 30 Apr 2015 B. Bwong & J. Nyamache Sheldrick Falls 

NMK A6046/1‒5 Phrynobatrachus acridoides 30 Apr 2015 B. Bwong & J. Nyamache Sheldrick Falls 

NMK A6045 Arthroleptis stenodactylus 30 Apr 2015 B. Bwong & J. Nyamache Sheldrick Falls 

NMK A6048 Arthroleptis stenodactylus 1 May 2015 B. Bwong & J. Nyamache Pengo Forest 

NMK A6049 Arthroleptis xenodactyloides 1 May 2015 B. Bwong & J. Nyamache Risley Forest 

NMK A6047/1‒2 Boulengerula changamwensis 1 May 2015 B. Bwong & J. Nyamache Pengo Forest 

NMK A6057 Kassina maculata 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A 6055/1‒4 Afrixalus delicatus 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6054 Afrixalus delicatus 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6052/1‒3 Phrynobatrachus acridoides 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 
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NMK A6053 Hyperolius argus 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6051 Leptopelis concolor 1May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6050/1‒5 Hyperolius rubrovermiculatus 1 May 2015 B. Bwong & J. Nyamache Mwandabara Swamp 

NMK A6056 Hyperolius mariae 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6058/1‒2 Hyperolius tuberilinguis 1 May 2015 B. Bwong & J. Nyamache Mwadabara Swamp 

NMK A6059/1‒2 Arthroleptis xenodactyloides 2 May 2015 B. Bwong & J. Nyamache Makadara Forest 

NMK A6062/1‒2 Afrixalus fornasini 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6065 Hyperolius argus 12 May 2015 J. Nyamache Mwadambara Swamp 

NMK A6064/1‒2 Hyperolius rubrovermiculatus 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6066/1‒3 Hyperolius rubrovermiculatus 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6063/1‒9 Hyperolius tuberilinguis 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6067/1‒2 Hyperolius mariae 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6068/1‒4 Afrixalus delicatus 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6069/1‒2 Phrynobatrachus acridoides 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6071 Phrynobatrachus acridoides 12 May 2015 J. Nyamache Makadara Forest 

NMK A6070/1‒3 Arthroleptis xenodactyloides 12 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6072 Xenopus muelleri 12 May 2015 J. Nyamache Makadara Forest 

NMK A6073 Ptychadena oxyrhynchus 13 May 2015 J. Nyamache Kivumoni Gate Swamp 

NMK A6074 Ptychadena anchietae 13 May 2015 J. Nyamache Kivumoni Gate Swamp 

NMK A6075 Leptopelis concolor 13 May 2015 J. Nyamache Kivumoni Gate Swamp 
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NMK A6076/1‒2 Hyperolius mariae 13 May 2015 J. Nyamache Kivumoni Gate Swamp 

NMK A6077 Hyperolius rubrovermiculatus 13 May 2015 J. Nyamache Kivumoni Gate Swamp 

NMK A6078 Boulengerula changamwensis 13 May 2015 J. Nyamache Makadara Forest 

NMK A6079/1‒3 Arthroleptis xenodactyloides 13 May 2015 J. Nyamache Kivumoni Gate Swamp 

NMK A6080/1‒2 Boulengerula changamwensis 13 May 015 J. Nyamache Kivumoni Tower 

NMK A6081/1‒4 Hyperolius rubrovermiculatus 14 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6083/1‒8 Hyperolius tuberilinguis 14 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6082/1‒2 Hyperolius rubrovermiculatus 14 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6084/1‒2 Leptopelis concolor 14 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6085 Afrixalus fornasini 14 May 2015 J. Nyamache Mwadabara Swamp 

NMKA 6086/1‒2 Hyperolius mariae 14 May 2015 J. Nyamache Mwadabara Swamp 

NMK A6109 Hyperolius rubrovermiculatus 23 May 2015 J. Nyamache & P. K. Malonza Mwadabara Swamp 

NMK A6111 Arthroleptis stenodactylus 24May 2015 J. Nyamache & P. K. Malonza Mwele Forest 

NMK A6112/1‒2 Boulengerula changamwensis 24 May 2015 J. Nyamache & P. K. Malonza Mwele Forest 

NMK A6108 Ptychadena oxyrhynchus 23 May 2015 J. Nyamache & P. K. Malonza Mwadabara Swamp 

NMK A6113 Callulina sp. 25 May 2015 J. Nyamache & P. K. Malonza Makadara Forest 

NMK A6061/1‒2 Boulengerula changamwensis 30 Apr 2015 B. Bwong & J. Nyamache Marere Hill 

NMK A6060 Callulina sp. 30 Apr 2015 B. Bwong & J. Nyamache Makadara Forest 

 



 

212 
 

 

 

 

 

 

 

 

 

 

Supplementary Material chapter II 

 

 

 

 

 

 

 

 

  



 

213 
 

 

Fig. S1: Top, boxplot of snout to urostyle length (SUL) of males; bottom female samples of H. 

mitchelli subclades I-III, H. mitchelli, subclade VI and H. rubrovermiculatus. 
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Fig. S2: A, PCA of males and B, females of H. mitchelli subclades VI (blue), H. mitchelli subclade I-

III (red) and H. rubrovermiculatus (green) showing lack of differentiation among the samples. 

 

Fig. S3: Oscillograms and spectrograms showing call properties of H. mitchelli subclades I, II, III, VI 

and H. rubrovermiculatus (subclade V). 
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Table S1: Substitution models from jModelTest v2.1.6 used in the multi-locus analysis 1 and 2 

respectively. 

 Partition Model 

Analysis 1 16S and ND2_1 HKY + G  

 ND2_2 HKY + I 

 ND2_3 HKY 

 C-myc exon1_1, 2 and 3 JC 

 POMC_1, Cmyc_exon2_1 and 

non- Cmyc non coding region 

K80 + I +G 

 POMC_2 and 3, Cmyc exon 2_2 

and 3 

HKY + I + G 

 

Analysis 2 

ND2_1 HKY + I 

 ND2_2 HKY + I 

 ND2_3 HKY 

 Cmyc exon1_1 and 2, POMC_1 

and 3 

F81 + G 

 Cmyc exon1_3 and POMC _2 HKY + G 

 Cmyc non coding region JC + I 
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Table S2: Topology test results of alternative phylogenetic relationships based (A) 16S and (B) multi-

locus alignment. 16S: Optimal – optimal tree, Constraint 1 – H. mitchelli subclades I-III + subclades 

IV and VI. Constraint 2 – subclades VI + subclades I-III. Multi-gene dataset (ND2, C-myc, POMC): 

Optimal – optimal tree, Constraint1 – subclade VI + subclades I-III. obs – the observed log-likelihood 

difference, bp – bootstrap probability, np – bootstrap probability calculated from multiscale bootstrap, 

pp = Bayesian posterior probability. AU – Approximately Unbiased test, KH, Kishino-Hasegawa test, 

SH – Shimodaira-Hasegawa test, WKH – Weighted Kishino-Hasegawa test, WSH – Weighted 

Shimodaira-Hasegawa test.  

(A) 

Tree obs au np bp pp kh sh wkh wsh 

Optimal -1.2 .687 .666 .657 .630 .689 .690 .689 .690 

Constraint 1 1.2 .321 .339 .155 .190 .311 .311 .311 .484 

Constraint 2 1.2 .319 .338 .188 .190 .311 .311 .311 .487 

 

(B) 

Tree obs au np bp pp kh sh wkh wsh 

Optimal -27.0 0.996 0.995 0.995 1.000 0.993 0.993 0.993 0.993 

Constraint 1 27.0 0.004 0.005 0.005 2e-12 0.007 0.007 0.007 0.007 

 

Table S3: Summary of call properties for H. mitchelli from subclade I =Makangala forest, subclade II 

= Udzungwa Mountains, subclade III = Uluguru Mountains, subclade VI from Nguru Mountains and 

H. rubrovermiculatus from Shimba Hills. 

 H. mitchelli 

(I) 

H. mitchelli 

(II) 

H. mitchelli 

(III) 

H. 

rubrovermiculatus 

(V) 

H. mitchelli 

(VI) 

Dominant Frequency 

(mean) 

4.486 5.141 4.498 3.161 3.512 

Signal duration (mean) 0.032 0.040 0.038 0.029 0.090 

Pause duration (mean) 1.644 1.443 0.524 0.152 0.614 
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Table S4. Factor loadings and standard deviation of the first four principal components (PC) of the 19 

bioclim variables used in SDM. 

Bioclim PC1 PC2 PC3 PC4 

Bio1 -0.359 0.032 -0.018 0.140 

Bio2 0.209 -0.051 -0.216 0.447 

Bio3 0.015 -0.250 -0.307 -0.067 

Bio4 0.192 0.155 0.147 0.472 

Bio5 -0.322 -0.007 0.012 0.356 

Bio6 -0.362 -0.056 0.044 -0.023 

Bio7 0.228 0.097 -0.067 0.557 

Bio8 -0.346 0.064 -0.035 0.188 

Bio9 -0.328 -0.106 0.111 0.031 

Bio10 -0.353 0.034 0.005 0.194 

Bio11 -0.363 -0.007 -0.031 0.080 

Bio12 0.046 0.145 0.452 0.006 

Bio13 -0.002 0.269 0.390 -0.055 

Bio14 0.074 -0.334 0.300 0.137 

Bio15 -0.055 0.447 -0.027 -0.087 

Bio16 -0.004 0.309 0.385 -0.016 

Bio17 0.071 -0.356 0.324 0.069 

Bio18 0.066 0.349 -0.082 -0.013 

Bio19 0.017 -0.364 0.329 0.019 

Std. dev. 2.7E+00 2.0E+00 1.9E+00 1.3E+00 
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Fig. S1–S3: MrBayes phylogenetic tree topology for H. argus, A. sylvaticus and M. micranotis. Study 

sites have been abbreviated as shown; ASF = Arabuko-Sokoke Forest; TA = Coastal forests in Tanga 

north eastern Tanzania; SHK = Shimba Hills MPK = Mpeketoni and EAM-East and West Usambara. 

 

 

Fig.S4-S6: MrBayes phylogenetic tree topology for C. xerampelina, L. flavomculatus and H. pusillus  
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Fig.S7: 16S TCS haplotype network for H. argus. The colour coding for the study sites are as 

follows; Yellow = Mpeketoni; Blue = Arabuko-Sokoke Forest; Green = Shimba Hills; Purple = 

Tanga; Red = Usambaras. 

 

          

          

Fig. S8: Predicted species distributions in Maxent showing the position of the southern barrier. A–C 

Predicted distribution for A. sylvaticus; A. xenodactyloides and S. pusilla during the Holocene. D 

prediction for M. micranotis during the LIG.  
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Table S1: Substitution models based on JModeltest analysis for each species used in the Bayesian 

analysis. 

No Species  Substitution model 

1 Afrixalus delicatus TPM2UF +I+G 

2 Afrixalus fornasini GTR+G 

3 Afrixalus sylvaticus TIM2+G 

4 Arthroleptis stenodactylus TIM2+G 

5 Arthroleptis xenodactyloides TRN+G 

6 Boulengerula changamwensis TrN 

7 Chiromantis xerampelina TIM2+I 

8 Hyperolius argus GTR+G 

9 Hyperolius mariae TIM2+I 

10 Hyperolius marmoratus TIM2ef+I 

11 Hyperolius parkeri TIM2+G 

12 Hyperolius pussilus TIM2+G 

13 Hyperolius tuberilinguis TVM+I 

14 Kassina maculata GTR+I 

15 Leptopelis concolor TIM2+I 

16 Leptopelis flavomaculatus TIM2+I 

17 Mertensophryne micranotis TIM2+I 

18 Phrynobatrachus acridoides HKY+G 

19 Ptychadena anchietae TIM2+G 

20 Sclerophrys gutturalis GTR+G 

21 Sclerophrys pusilla TIM2+I+G 

22 Sclerophrys steindachneri TIM2+G 

23 Xenopus muelleri TVM+I 
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Table S2: Pair wise distances (Fst), 16S MtDNA between populations of species that occurred in 

more than two study sites. Significant values are highlighted in bold. The study sites have been 

abbreviated as follows; ASF = Arabuko-Sokoke Forest, EAM = Eastern Arc Mountains; MPK = 

Mpeketoni, SHK = Shimba Hills, TA = Tanga. 

S. pusilla SHK TA EAM 

  SHK 0 0.16667 0.52 

  
TA 0.16667 0 0.07692 

  EAM 0.52 0.07692 0 

  H. argus US SHK MPK ASF 

 US 0 0.44615 1 0.25 

 
SHK 0.44615 0 -0.84615 0.06411 

 MPK 1 -0.84615 0 -0.1 

 ASF 0.25 0.06411 -0.1 0 

 A. stenodactylus SHK ASF TA EAM 

 SHK 0 -0.06667 0.97695 0.96958 

 ASF -0.06667 0 0.98402 0.96518 

 TA 0.97695 0.98402 0 -0.0971 

 EAM 0.96958 0.96518 -0.0971 0 

 A. xenodactyloides SHK TA EAM 

  SHK 0 0.41982 0.3179 

  TA 0.41982 0 -0.02019 

  EAM 0.3179 -0.02019 0 

  C. xerampelina TA EAM ASF SHK 

 TA 0 0.26904 0.66667 -0.9621 

 EAM 0.26904 0 0.02041 0.00592 

 ASF 0.66667 0.02041 0 0.015084 

 SHK -0.9621 0.00592 0.015084 0 

 L. concolor TA SHK MPK ASF 

 TA 0 0.1434 1 1 

 SHK 0.1434 0 0.91639 0.70103 

 MPK 1 0.91639 0 1 

 ASF 1 0.70103 1 0 

 A. delicatus SHK ASF MPK 

  SHK 0 -0.12327 0.943093 

  
ASF -0.12327 0 0.87636 

  MPK 0.943093 0.87636 0 

  L. flavomaculatus TA EAM SHK 

  TA 0 0 0.28795 

  
EAM 0 0 0.23497 

  SHK 0.28795 0.23497 0 

  A. fornasini SHK TA ASF EAM 

 SHK 0 0 0 0 
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TA 0 0 0 0 

 
ASF 0 0 0 0 

 EAM 0 0 0 0 

 S. gutturalis SHK TA ASF EAM 

 SHK 0 0.23851 -0.15702 0.21162 

 
TA 0.23851 0 0.42029 0.1111 

 ASF -0.15702 0.42029 0 0.5 

 EAM 0.21162 0.1111 0.5 0 

 H. marmoratus SHK ASF TA EAM 

 
SHK 0 -1 0 -1.16667 

 ASF -1 0 0.34247 0.21298 

 TA 0 0.34247 0 0.39605 

 EAM -1.16667 0.21298 0.39605 0 

 H. pusillus SHK ARBK 

   SHK 0 0.94118 

   ARBK 0.94118 0 

   K. maculatus ASF SHK MPK 

  
ASF 0 -0.33333 1 

  SHK -0.33333 0 0.34375 

  MPK 1 0.34375 0 

  H. mariae SHK EAM MPK 

  
SHK 0 0.13485 0.7778 

  EAM 0.13485 0 1 

  MPK 0.7778 1 0 

  M. micranotis TA SHK EAM ASF 

 
TA 0 0.0442 0.93819 1 

 SHK 0.0442 0 0.67076 0.74031 

 EAM 0.93819 0.67076 0 0.94721 

 ASF 1 0.74031 0.94721 0 

 P. acridoides ASF EAM TA SHK 

 ASF 0 0.45894 0.31317 0.44672 

 EAM 0.45894 0 0.0464 -0.08442 

 TA 0.31317 -0.0464 0 0.01207 

 
SHK 0.44672 -0.08442 -0.01207 0 

 P. anchietae SHK TA EAM ASF MPK 

SHK 0 -0.01904 -0.33216 -0.14027 -0.33216 

TA -0.01904 0 -0.33074 -0.13716 -0.33074 

EAM -0.33216 -0.33074 0 0 0 

ASF -0.14027 -0.13716 0 0 0 

MPK -0.33216 -0.33074 0 0 0 

H. parkeri MPK ASF TA EAM SHK 

MPK 0 0.25 0.8863 0.76 0.93416 

ASF 0.25 0 0.97297 1 0.96846 

TA 0.8863 0.97297 0 -1 0.03467 
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EAM 0.76 1 -1 0 -1 

SHK 0.93416 0.96846 0.03467 -1 0 

S. steindachneri ASF SHK MPK 

  ASF 0 -1.015385 0.50318 

  SHK -1.015385 0 0.76923 

  
MPK 0.50318 0.76923 0 

  A. sylvaticus US SHK 

   US 0 0.68253 

   SHK 0.68253 0 

   H. tuberilinguis SHK TA EAM ASF MPK 

SHK 0 0.07216 0.66038 0.65621 0.96581 

TA 0.07216 0 0.22581 0.50439 0.94635 

EAM 0.66038 0.22581 0 0 0.92454 

ASF 0.65621 0.50439 0 0 0.46788 

MPK 0.96581 0.94635 0.92454 0.46788 0 

X. muelleri SHK TA EAM 

  SHK 0 -0.09589 0 

  
TA -0.09589 0 -0.15385 

  EAM 0 -0.15385 0 
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TableS3: Climatic variables contribution to habitat suitability predictions in Maxent. 

Species Highest variable contributing % Contribution 

Sclerophrys pusilla Bio19 79.8 

Hyperolius argus Bio19 85.7 

Arthroleptis stenodactylus Bio19 41.5 

Arthroleptis xenodactyloides Bio3 47.8 

Callulina kreffti Bio14 56.8 

Boulengerula changamwensis Bio19 50.9 

Chiromantis xerampelina Bio19 85.2 

Leptopelis concolor Bio19 62.9 

Afrixalus delicatus Bio19 82.7 

Leptopelis flavomaculatus Bio19 71.1 

Afrixalus fornasini Bio19 67.7 

Sclerophrys gutturalis Bio19 48 

Hemisus marmoratus Bio19 76.2 

Hyperolius pusillus Bio19 85.8 

Hyperolius rubrovermiculatus Bio19 59.3 

Kassina maculatus Bio19 82.9 

Kassina senegalensis Bio19 86.7 

Hyperolius mariae Bio19 61 

Mertensophryne micranotis Bio19 69.4 

Phrynobatrachus acridoides Bio19 68.4 

Ptychadena anchietae Bio19 67.3 

Hyperolius parkeri Bio19 62.6 

Scolecomorphus vittatus Bio19 54.1 

Sclerophrys steindachneri Bio19 84.9 

Afrixalus sylvaticus Bio19 52.9 

Hyperolius tuberilinguis Bio19 90.6 

Xenopus muelleri Bio19 48.7 
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Table S4: Mantel and Partial Mantel tests results for isolation by distance and habitat connectivity. 

Significant values are indicated in bold. 

 
Mantel Test 

  

Partial Mantel 

test  

 

Species Distance 

Current 

climate LGM Current climate LGM 

S. pussila 

r=-

0.170,P=0.25 

r=-

0.141,P=0.458 

r=-

0.099,P=0.458 r=-0.615,P=0.917 

r=-

0.504,P=0.875 

H. argus 

r=-

0.840,P=0.333 

r=-

0.356,P=0.667 r=-0.998,P=1 r=-1,P=1 r=-1,P=2 

A. stenodactylus r=0.560,P=0.33 

r=0.792,P=0.33

3 

r=0752,P=0.33

3 r=-0.916,P=0.208 r=0.97,P=0.083 

A. 

xenodactyloides 

r=0.853,P=0.33

3 

r=0.961,P=0.33

3 r=0.895,P=033 r=1,P=0.667 r=1,P=0.667 

C. xerampelina 

r=-

0.167,P=0.417 

r=-

0.099,P=0.75 

r=0.033,P=0.41

7 r=0.027,P=0.417 

r=0.678 

P=0.208 

L. concolor 

r=0.525,P=0.16

7 
r=0.908,P=0.0

42 

r=0.428,P=0.04

2 r=0.884,P=0.042 

r=-

0.118,P=0.708 

A. delicatus 

r=0.863,P=0.33

3 

r=0.967,P=0.33

3 

r=0.820,P=0.33

3 r=1,P= 0.667 r=-1,P=0.667 

L. 

flavomaculatus 

r=0.853,P=0.33

3 

r=0.847,P=0.33

3 

r=0.738,P=0.33

3 r=-1, P=1 r=-1,P=1 

A. fornasini 0 0 0 0 0 

S. gutturalis 

r=0.921,P=0.08

3 

r=0.192,P=0.33

3 r=-0.069,P=0.5 r=-0.617,P=1 r=-0.617,P=1 

H. marmoratus r=-0.927,P=1 r-0.655,P=1 r=-0518,P=1 r=0.174,P=0.333 

r=0.227,P=0.29

2 

K. maculatus r=0.034,P=0.5 r=0.272,P=0.5 r=-0.145,P=0.5 r=1,P=0.667 r=-1,P=1 

H. mariae 

r=0.999,P=0.16

7 

r=0.994,P=0.16

7 

r=0.977,P=0.16

7 r=-1,P=1 r=1,P=1 

M. micranotis 

r=0.342P=0.20

8 
r=0.611,P=0.0

41 

r=0.642,P=0.04

2 r=0.669,P=0.042 

r=0.759,P=0.0

42 

P. acridoides 

r=0.212,P=0.41

7 

r=-

0.299,P=0.875 

r=-

0.329,P=0.875 r=-0.224,P=0.833 

r=-

0.261,P=0.833 

P. anchietae 0 0 0 0 0 

H. parkeri 

r=0.223,P=0.31

7 

r=0.124, 

P=0.25 
r=0.750, 

P=0.033 

r=-0.111, 

P=0.483 
r=0.737, 

P=0.05 

S. steindachneri r=0.683,P=0.33 

r=0.728,P=0.33

3 

r=-

0.460,P=0.667 r=1,P=0.667 r=1,P=0.667 

H. tuberilinguis 

r=0.998,P=0.16

7 r=-0.723,P=1 

r=0.867,P=0.16

7 r=1,P=0.5 r=-1,P=1 

 


