
Hierarchical Matrix Techniques
for Partial Differential Equations

with Random Input Data

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von
Jürgen Dölz

aus
Riehen, Basel-Stadt

Basel, 2017

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Helmut Harbrecht
Prof. Dr. Steffen Börm

Basel, den 19.9.2017

Prof. Dr. Martin Spiess
Dekan

Technical knowledge is not enough. One must transcend techniques so that the art becomes
an artless art, growing out of the unconscious.

Daisetsu Teitaro Suzuki
Japanese Author

Acknowledgements

I would like to use this opportunity to acknowledge the contributions of several people to
this thesis. My sincerest gratitude goes to Prof. Dr. Helmut Harbrecht. I appreciate his
supportive and careful guidance throughout the last years and the time he put into our
extensive discussions about my mathematical and non-mathematical problems. I recognize
him not only as a mentor, but also as a big-hearted person of trust. Many thanks are also
due to Prof. Dr. Steffen Börm for being the co-referee of this thesis.

I further would like to thank my collaborators. I have to thank Dr. Michael Peters, who
contributed to three of the publications which this thesis is based on. Especially at the
beginning of my thesis, he took the time to share his mathematical knowledge with me. I also
want to thank Prof. Dr. Christoph Schwab for the collaboration on the publication concerning
the regularity of the solution of correlation equations. Although it is not directly part of this
thesis, it provides the theoretical background for theH-matrix approximation of the solutions.

Financially, thanks are due to the Swiss National Science Foundation (SNSF), which has
supported my PhD through the project “H-matrix based first and second moment analysis”.

My parents Reinhard and Ute raised me to believe in myself and reminded me to trust in
my capabilities whenever it was necessary. Thank you for everything you have done for me.

The familial and supportive atmosphere of the research group of Prof. Dr. Helmut Har-
brecht has made my time as a PhD student very enjoyable. I would like to thank Monica
Bugeanu, Ilja Kalmykov, Dr. Gianna Mitrou, Dr. Michael Peters, Marc Schmidlin, Dr. Markus
Siebenmorgen, Dennis Tröndle, Dr. Manuela Utzinger, and Dr. Peter Zaspel for many cheerful
lunches and dinners. Special thanks go to Marc Schmidlin, who proofread this thesis.

Finally, I want to thank my girlfriend Rahel Brügger. Her emotional support and pa-
tience throughout my time as a PhD student were endless, and her presence is more than
mathematics can ever give me.

Contents

Contents

I Introduction 1

II Preliminaries 7
II.1 Tensor Products . 7

II.1.1 Tensor Products of Hilbert Spaces . 7
II.1.2 Tensor Products of Linear Operators 9

II.2 Function Spaces . 9
II.2.1 Smooth Functions . 10
II.2.2 Lp-spaces . 11
II.2.3 Sobolev Spaces . 12
II.2.4 Sobolev Spaces on Manifolds . 14
II.2.5 Sobolev Spaces on Product Domains 15

II.3 Statistical Quantities of Interest . 16
II.4 Correlation Equations for Linear Operators 18
II.5 Hierarchical Matrices . 20

II.5.1 Asymptotical Smoothness . 20
II.5.2 Cluster Tree . 21
II.5.3 Block-Cluster Tree . 23
II.5.4 Asymptotical Smoothness of Correlations 26

II.6 H-matrix Arithmetic . 29
II.6.1 Addition of H-matrices . 29
II.6.2 Multiplication of H-matrices . 31
II.6.3 H-matrix Factorizations . 34

III PDEs with Random Load 39
III.1 Problem Formulation . 39
III.2 H-matrices in the Context of Finite Elements 41

III.2.1 Weak Admissibility . 41
III.2.2 Nested Dissection . 42

III.3 Iterative Solution . 45
III.4 Numerical Examples . 46

III.4.1 Experimental Setup . 46
III.4.2 Tests for the Iterative Solver . 47
III.4.3 Small Correlation Lengths . 49

III.5 Conclusion . 53

IV The Fast H2-multipole Method on Parametric Surfaces 57
IV.1 Boundary Integral Equations . 57
IV.2 Surface Representation . 59
IV.3 Problem Formulation . 62
IV.4 Galerkin Discretization . 64
IV.5 Fast Multipole Method . 65

IV.5.1 Kernel Interpolation . 66

CONTENTS

IV.5.2 Computational Complexity . 67
IV.5.3 Nested Cluster Bases . 68
IV.5.4 Error Estimates . 71

IV.6 Higher Order Continuous Ansatz Functions 71
IV.7 Numerical Examples . 73

IV.7.1 Regularization of the Hypersingular Operator 74
IV.7.2 Convergence . 75
IV.7.3 Convergence on a More Complex Geometry 76
IV.7.4 Computational Cost and Accuracy . 79

IV.8 Conclusion . 81

V PDEs with Random Dirichlet Data 83
V.1 Problem Formulation . 83
V.2 H-matrix Arithmetic for Parametric Surfaces 84
V.3 Numerical Examples . 86

V.3.1 Tests for the H-matrix Arithmetic . 87
V.3.2 Tests for the Iterative Solver . 88
V.3.3 Stochastic Application . 91

V.4 Conclusion . 93

VI PDEs on Random Domains 95
VI.1 Random Domains . 95

VI.1.1 Basic Definitions . 95
VI.1.2 Shape Calculus for Parametrized Domains 96
VI.1.3 Statistical Moments on Random Domains 97

VI.2 Boundary Integral Equations . 98
VI.3 Galerkin Discretization . 99

VI.3.1 Dirichlet-to-Neumann Map . 99
VI.3.2 Computation of Cor[δu] . 100
VI.3.3 Computation of E[δ2u] . 101

VI.4 Error Estimates . 101
VI.4.1 Preliminaries . 102
VI.4.2 Approximation Error of Cor[δu] . 103
VI.4.3 Approximation Error of E[δ2u] . 104

VI.5 Hierarchical Matrix Compression . 107
VI.6 Numerical Examples . 108

VI.6.1 Convergence in h . 108
VI.6.2 Convergence in ε . 110
VI.6.3 Non-smooth Boundaries . 110

VI.7 Conclusion . 112

VII Final Remarks 115

Chapter I

Introduction

The numerical solution of strongly elliptic linear partial differential equations (PDEs) is an
important task in science and engineering. Many physical phenomena can be modelled in
this framework, which we may formulate as

Lu = f in D (I.0.1)

for some domain or manifold D, some differential operator L, some load f , the unknown u,
and, if D has a boundary, some boundary conditions.

Depending on the properties of L, f , D, and the boundary conditions, the numerical
solution of such equations is nowadays well understood, provided that all properties of these
input data are known. However, this might be an assumption which is too strong in practical
applications. One may think of measurement errors in physical constants or tolerances in
production processes. Even worse, the uncertainty in the input data propagates into the
solution u such that a highly accurate numerical solution of (I.0.1) is of limited use, as the
influence of the uncertainty on the solution is unknown. Including the uncertainty into the
PDE, one may rewrite (I.0.1) as

L(ω)u(ω) = f(ω) in D(ω), (I.0.2)

and in some cases boundary conditions depending on ω, for some random parameter ω in
some probability space (Ω,Σ,P). In particular, the solution u can then be modelled as a
random field.

Quantifying the behavior of u depending on the probability distribution of the input data
is thus an important task in science and engineering. In recent years, the need for efficient
methods has led to the emerging field of uncertainty quantification. Current methods in uncer-
tainty quantification can be categorized into sampling based methods and fully deterministic
methods.

Sampling based methods in uncertainty quantification originate from the Monte-Carlo
method, cf., e.g., [Caf98, Pro95] and the references therein, which provides the most simple
solution to the problem. The Monte-Carlo method relies on the probability distribution of
the input data and evaluates the PDE for some randomly drawn samples according to this
distribution. The solutions of these samples can then be used to compute statistical output
functionals of the solution u. However, the convergence of the Monte-Carlo method with re-
spect to the number of samples can only be guaranteed in the root mean square error, with a
convergence rate proportional to the root of the number of drawn samples. To improve compu-
tational efficiency, multi-level Monte-Carlo schemes, cf., e.g., [BSZ11, Gil15, HPS12a, HPS16a]
and the references therein, can be used as variance reduction methods. Under some smooth-
ness assumptions, one can replace the randomly drawn sample points by deterministically
chosen points to obtain quasi-Monte-Carlo schemes, which provide deterministic error bounds
and a higher convergence rate, see, e.g., the survey [DKS13] and the references therein. Nev-
ertheless, the problem remains the same: a large number of PDE solutions must be computed
to be able to quantify the uncertainty.

1

CHAPTER I. INTRODUCTION

Deterministic methods in uncertainty quantification aim at a purely deterministic quantifi-
cation of the uncertainty based on the stochastic description of the input data. For instance,
random loads have been considered in [ST03, vPS06], random coefficients in [BNT07, BTZ04,
DBO01, FST05, GS03, KS11, MK05, NTW08], and random domains in [HSS08b, XT06]. De-
terministic methods can be divided into stochastic discretization methods and perturbation
methods.

The idea of stochastic discretization methods, cf. [BNT07, BTZ04, GS03], is to cast the
stochastic problem into a deterministic high-dimensional problem and to employ independent
discretization methods for the spatial variable and the stochastic variable. Since the dimen-
sionality of the stochastic variable is usually higher than the spatial variable, it is common to
employ standard discretization methods in the spatial variable and more advanced discretiza-
tion methods in the stochastic variable. Suitable methods for the stochastic variable are, for
example, polynomial chaos, cf. [DNP+04, FST05, MK05, XK02], and sparse grid methods,
cf. [BG04b, HPS12b, HPS16b, ST03, vPS06].

The idea of perturbation methods, cf. [BP02, Har10b, HSS08b], is to expand the solution
of the PDE into a Taylor expansion with respect to the stochastic variable around its mean.
The necessary derivatives for this approach can be obtained by solving additional subprob-
lems, which can be derived mathematically using the Fréchet derivative. As the expansion
is generally truncated after a small number of terms, perturbation methods are usually only
suitable for small perturbations.

Beside the mean
E[u](x) :=

∫
Ω

u(ω,x) dP(ω)

and the variance
V[u](x) := E

[
u2
]
(x)− E[u](x)2

of the solution u, the correlation

Cor[u](x,y) :=

∫
Ω

u(ω,x)u(ω,y) dP(w)

and the covariance
Cov[u](x,y) := Cor[u](x,y)− E[u](x)E[u](y)

are frequent quantities of interest. In particular, the covariance and the correlation give direct
access to the variance due to

E
[
u2
]
(x) = Cor[u](x,x)

and
V[u](x) = Cov[u](x,x).

Often, and we will discuss several such examples in this thesis, the PDE (I.0.2) can be
reformulated as a linear operator equation

Lu(ω) = f(ω) in D.

Given the mean E[f] and the correlation Cor[f] of f , the mean and the correlation of u can
be expressed as the solutions of fully deterministic problems

LE[u] = E[f] in D

and

(L ⊗ L) Cor[u] = Cor[f] in D ×D. (I.0.3)

E[u] can thus be computed easily whenever the deterministic equation Lu = f can be solved.
We also remark that Cor[u] is the solution to a linear problem. Thus, instead of computing
the non-linear term E[u2] of u to compute V[u], one may rather choose to compute Cor[u].

2

However, since (I.0.3) is posed on the product domain D × D, the dimensionality of the
problem squares and the solution is more involved. Therefore, correlation equations have
been the topic of several articles.

In [HL13, HPS12a], a low-rank factorization of Cor[f] was employed to efficiently compute
the correlation. The existence of an accurate low-rank approximation is directly related to
the spectral decomposition of the associated integral operator

(Kfψ)(x) :=

∫
D

Cor[f](x,y)ψ(y) dµ(y).

Let Cor[f] ∈ Hp(D)⊗Hp(D) and n the dimension of D, then, according to [GH17, DHS17],
the eigenvalues of this operator decay like

λm . m
−2p/n−1 as m→∞. (I.0.4)

Thus, if more Sobolev smoothness of Cor[f], i.e., a higher value of p, is available, we can aim
for a better low-rank approximation. On the other hand, no good low-rank approximation
may exist for small values of p and the solution of (I.0.3) with low-rank approximations
becomes computationally inefficient.

Additionally, the constant in the decay estimate (I.0.4) behaves like the Hp(D)⊗Hp(D)-
norm of Cor[f]. The following consideration shows that this can lead to large constants in
the decay estimate if the correlation length ` is small. Let the correlation kernel k(r) depend
only on the distance r = ‖x− y‖. Then, the derivatives ∂αx Cor[f](x,y) and ∂αy Cor[f](x,y)
of the correlation

Cor[f](x,y) = k

(
‖x− y‖

`

)
involve the factor `−|α|, leading to a constant `−2p in the decay estimate of the eigenvalues.
Thus, for a small correlation length, a low-rank approximation of Cor[f] becomes prohibitively
expensive to compute.

Other approaches to tackle the solution of correlation equations have been considered in
several articles and are mostly based on a sparse tensor product, i.e., a sparse grid, discretiza-
tion of the solution. For example, the computation of the second moment, i.e., Cor[u], has
been considered for elliptic diffusion problems with random loads in [ST03] by means of a
sparse tensor product finite element method. A sparse tensor product wavelet boundary ele-
ment method has been used in [HSS08b] to compute the solution’s second moment of elliptic
potential problems on random domains. In [Har10a, HSS08a], the computation of the sec-
ond moment was done by sparse multilevel finite element frames. Recently, this concept has
been simplified by using the combination technique, cf. [HPS13]. Unfortunately, the sparse
tensor product discretization needs to resolve the concentrated measure for short correlation
lengths. This means that the number of hierarchies of the involved finite element spaces has
to be doubled if the correlation length is halved to get the same accuracy, which might be
computationally infeasible.

Summarizing, common methods for the solution of correlation equations fail when the
prescribed data correlation is “rough”. That is, if the data have low Sobolev smoothness or
are shortly correlated.

These kinds of prescribed correlations shall be addressed with this thesis. We shall there-
fore develop a different approach, which exploits the fact that common correlation kernels
behave similarly to fundamental solutions of elliptic PDEs. While this similarity was already
used in [HPS15, KLM09, ST06] for the data sparse representation of correlation matrices, we
will exploit this property further. In particular, we shall employ the technique of hierarchi-
cal matrices [Hac99, HK00a, HK00b] to represent densely populated correlation matrices by
block-wise low-rank matrices. A special feature of these matrices is that an efficient arithmetic
is available, which will enable us to solve correlation equations in almost linear, i.e., linear
up to (poly-)logarithmic terms, time with respect to the dimension of the used finite element
space.

3

CHAPTER I. INTRODUCTION

The remainder of this thesis is structured as follows.
The following Chapter II is dedicated to the theoretical background for this thesis. We

recall important facts about the tensor product of general Hilbert spaces and summarize the
notion of Sobolev spaces on domains, manifolds, product domains, and product manifolds.
A rather general discussion on statistical quantities and correlation equations will allow us
to quantify the regularity of solutions throughout the following chapters. The chapter will
conclude with the Galerkin discretization of correlation equations and an introduction to
hierarchical matrices and their arithmetic. Especially, we recall the main result of [DHS17],
which states that the solutions of correlation equations can, under certain conditions, also be
approximated by hierarchical matrices.

Chapter III will provide a first example with PDEs on domains with stochastic load and is
based on [DHP17]. We discuss how a black-box finite element solver connects to the framework
of hierarchical matrices and how one can exploit this connection to solve correlation equations
in almost linear time. In particular, we recall that the LU factorization of a finite element
matrix can efficiently be represented using hierarchical matrices, see [Beb07, FMP15]. Several
techniques to exploit the sparsity of finite element matrices exist in the hierarchical matrix
literature, see [HKK04, GKLB09]. We recall the main concepts and show that they can
directly be included into the solution algorithm. Extensive numerical experiments verify the
convergence of the presented solver. Different combinations of the discussed concepts will
be employed to compare the computational time and solution accuracy. The second part
of the numerical experiments is concerned with different kinds of Sobolev smoothness and
correlation lengths to demonstrate the robustness of the hierarchical matrix approach under
these parameters.

Chapter IV is based on [DHP16] and dedicated to the solution of homogeneous PDEs with
non-trivial boundary conditions using boundary integral equations. Therefore, we assume that
the underlying differential operator provides a fundamental solution, which is, for example,
the case for the Laplace equation, the Helmholtz equation, and the heat equation. The major
advantage of considering boundary integral equations is the reduction of the problem’s dimen-
sionality, with the disadvantage of generally leading to non-local boundary integral operators.
Beside collocation and Nyström methods, the boundary element method is commonly used
for the numerical discretization of such operators, see [Hac95, SS11, Ste08] and the references
therein. Due to the non-locality, one usually ends up with large and densely populated system
matrices and, thus, the numerical solution of such problems is rather challenging.

Motivated by the concept of isogeometric analysis [HCB05], we extend the fast multipole
method on parametric surfaces from [HP13] to higher order boundary elements, which es-
pecially enables the discretization of the hypersingular operator. Therefore, in contrast to
the usual practice in the hierarchical matrix literature, we propose an element-wise cluster-
ing strategy. The special structure of parametric surfaces allows for an algorithmically easy
treatment of an improved version of hierarchical matrices, i.e., H2-matrices, cf. [Bör10]. We
especially remark that the introduced fast multipole method is not restricted to the discretiza-
tion of integral operators of PDEs, but can also be applied to discretize correlation kernels
or more general integral operators, as long as the kernel function satisfies certain properties.
This will be a crucial property in the following two chapters.

The numerical experiments validate the higher convergence rates from the boundary el-
ement theory and provide a computational time to accuracy study. Numerical experiments
for a complex non-smooth geometry are also included.

Chapter V is concerned with correlation equations of PDEs with random Dirichlet data.
Using an approach with boundary integral equations, this chapter is historically the beginning
of the hierarchical matrix approach to correlation equations and was investigated in [DHP15].
It has led to the subsequent development of the regularity theory of [DHS17], which gives a
theoretical justification for the approach not only for boundary integral equations, but for
general pseudodifferential operators.

We put the original article [DHP15] into the context of the regularity theory of [DHS17]
and the subsequent developments in [DHP17]. In particular, compared to the original solution

4

algorithm we also use an LU factorization instead of the inverse. Although one could use a
black-box boundary element solver for the solution of the correlation equation, we stay in
the framework of parametric surfaces from the previous chapter and develop an arithmetic of
hierarchical matrices tailored to these surfaces. In the numerical experiments, we repeat the
convergence studies from [DHP15] also with higher order boundary elements and non-tensor
product data.

Chapter VI is concerned with the treatment of PDEs on random domains and based on
[DH17]. Since the dependence of the PDE’s solution on the domain is nonlinear, we cannot
directly apply the hierarchical matrix approach here. While domain mapping methods, as
considered in [CCNT16, HPS16a, XT06], aim at modelling large deformations and come in
connection with stochastic discretization or Monte-Carlo methods, they struggle with high
computational cost if the domain variations are assumed to be small. In this case, perturbation
methods are an attractive alternative, cf. [CPT15, HL13, HP15, HSS08b]. The derivatives
necessary for the Taylor expansion can be computed by means of shape calculus as used in
shape optimization, cf. [DZ01, SZ92]. Both approaches were combined recently in [CCNT17].

Additionally to the existing third order accurate expansion in the domain perturbation
amplitude for the solution’s correlation from [HSS08b], we derive third order accurate expan-
sions for the mean, which are based on an additional correlation equation. We discuss that
these expansions become even fourth order accurate when the law of the boundary variations
is of a specific kind. A full convergence analysis of the corresponding Galerkin discretization is
given. Finally, in the numerical experiments, we compute the solution’s mean and correlation
with the hierarchical matrix approach and verify the derived convergence rates for different
orders of ansatz functions. We also discuss how non-smooth domains can be treated within
the smoothness assumptions needed for the expansions.

Finally, in Chapter VII, we briefly review the findings of this thesis and discuss possible
future work.

Throughout this thesis, in order to avoid the repeated use of generic but not further
specified constants, it is implied by C . D that C can be bounded by a multiple of D,
independently of other parameters which C and D may depend on. Obviously, C & D is
defined as D . C and we write C ∼ D if C . D and C & D.

5

CHAPTER I. INTRODUCTION

6

Chapter II

Preliminaries

II.1 Tensor Products
The correlation equations we are going to consider in this thesis are given in the product
of domains with a tensor product operator. Since the natural spaces for the variational
formulation are tensor products of Hilbert spaces, we will first recapitulate how the unique
tensor product of two Hilbert spaces can be constructed, and then proceed to the action of
tensor product operators on these spaces. The construction of the tensor product of Banach
and Hilbert spaces was described at the latest by [Sch50].

II.1.1 Tensor Products of Hilbert Spaces
We shall give the precise construction of the tensor product of separable Hilbert spaces as
presented in [KR83], that is, we uniquely extend, up to isomorphism, the notion of bilinear
forms on Hilbert spaces. Let therefore H1 and H2 be two Hilbert spaces with inner products
(·, ·)H1 and (·, ·)H2 and orthonormal bases B1 and B2 and recall that the existence of these
orthonormal bases is equivalent to the Hilbert spaces being separable, see [Alt02, Theorem
7.8].

Definition II.1.1. A bounded bilinear functional b : H1 × H2 → R is a Hilbert-Schmidt
functional on H1 ×H2 if ∑

ψ1∈B1
ψ2∈B2

∣∣b(ψ1, ψ2

)∣∣2 <∞. (II.1.1)

The value of the sum (II.1.1) does not depend on the choice of the orthonormal bases B1

and B2, cf. [KR83, Proposition 2.6.1]. The following lemma is [KR83, Proposition 2.6.2].

Lemma II.1.2. The set of all Hilbert-Schmidt functionals HSF on H1 × H2 is itself a
Hilbert space when the linearity and the inner product for elements b, b̃ ∈ HSF are defined
as follows:

(αb+ βb̃)(x1, x2) = αb(x1, x2) + βb̃(x1, x2),

(b, b̃)HSF =
∑
ψ1∈B1
ψ2∈B2

b(ψ1, ψ2)b̃(ψ1, ψ2). (II.1.2)

The sum in (II.1.2) is absolutely convergent, and the inner product does not depend on the
choice of the orthonormal bases.

For v1, w1 ∈ H1 and v2, w2 ∈ H2, the expression

bv1,v2(x1, x2) := (x1, v1)H1(x2, v2)H2

7

CHAPTER II. PRELIMINARIES

defines an element bv1,v2 of HSF with inner product

(bv1,v2 , bw1,w2
)HSF = (v1, w1)H1

(v2, w2)H2

and induced norm ‖ · ‖HSF =
√

(·, ·)HSF . Moreover, the set
{
bψ1,ψ2

: ψ1 ∈ B1, ψ2 ∈ B2

}
is

an orthonormal basis of HSF .

Definition II.1.3. Let K be a Hilbert space with inner product (·, ·)K and b : H1 ×H2 → K
a continuous bilinear form. We call b a weak Hilbert-Schmidt mapping if

1. for each u ∈ K, the mapping

bu(x1, x2) :=
(
b(x1, x2), u

)
K

is a Hilbert-Schmidt functional on H1 ×H2,

2. there is a real number Cb such that ‖bu‖HSF ≤ Cb‖u‖K for all u ∈ K. We write
‖b‖HSF = Cb for the smallest possible Cb.

Having all ingredients at hand, the tensor product of two Hilbert spaces may be charac-
terized by the following theorem, cf. [KR83, Theorem 2.6.4].

Theorem II.1.4. 1. There is a Hilbert space H and a weak Hilbert-Schmidt mapping
p : H1 ×H2 → H with the following property: given any weak Hilbert-Schmidt mapping
L from H1 ×H2 into a Hilbert space K, then there is a unique bounded linear mapping
T : H → K, such that L = Tp, i.e., the following diagram is commutative:

H1 ×H2

H K

p L

T

Moreover, it holds ‖T‖H→K = ‖L‖HSF .

2. If H̃ and p̃ have also the properties attributed in the previous statement to H and p,
then there is a unitary transformation U : H → H̃ such that p̃ = Up.

3. If v1, w1 ∈ H1 and v2, w2 ∈ H2, then it holds(
p(v1, v2), p(w1, w2)

)
H

= (v1, w1)H1(v2, w2)H2 ,

‖p‖HSF = 1, and the set {p(ψ1, ψ2) : ψ1 ∈ B1, ψ1 ∈ B2} is an orthonormal basis of H.

The second statement of the theorem guarantees the uniqueness of the Hilbert space H
and the mapping p up to isomorphism.

Definition II.1.5. With the notation from the previous theorem, we define the tensor product
of two separable Hilbert spaces as

H1 ⊗H2 := H,

and refer to p as the canonical mapping H1 ×H2 → H1 ⊗H2. We write

x1 ⊗ x2 := p(x1, x2)

and call this expression a simple tensor.

The third statement of Theorem II.1.4 provides several important properties of the tensor
product space. For simple tensors, the tensor product is bilinear, the inner product of H1⊗H2

acts as (
v1 ⊗ v2, w1 ⊗ w2

)
H1⊗H2

= (v1, w1)H1(v2, w2)H2 ,

8

II.2. Function Spaces

and the norm is

‖v1 ⊗ v2‖H1⊗H2
= ‖v1‖H1

‖v2‖H2
. (II.1.3)

Simple tensors do not have to be linearly independent, see [KR83, Proposition 2.6.6], but the
third statement of Theorem II.1.4 shows that the space of finite linear combinations of simple
tensors, i.e.,

H̊ :=

{
m∑

i,j=1

cijψ1,i ⊗ ψ2,j : ψ1,i ∈ B1, ψ2,j ∈ B2,m ∈ N

}
, (II.1.4)

is dense in H1 ⊗ H2. In particular, H̊ coincides with the algebraic tensor product and we
can see the tensor product of separable Hilbert spaces H1 ⊗H2 as the completion of H̊ with
respect to its unique inner product(

v1 ⊗ v2, w1 ⊗ w2

)
H̊

= (v1, w1)H1(v2, w2)H2 ,

cf. [KR83, Remark 2.6.7]. This is a useful property for density arguments. Especially, if H1

and H2 are two function spaces of functions with values in R,

p(v1, v2) := v1v2

directly satisfies the conditions of the first statement of Theorem II.1.4. Thus, by the second
statement of the theorem, we may assume

v1 ⊗ v2 = v1v2 (II.1.5)

in this case. This relation can also be seen by considering that p is an isomorphism between
two orthonormal bases.

II.1.2 Tensor Products of Linear Operators
We shall define the action of bounded linear operators acting on tensor product spaces as
presented in [LC85, Definition 1.29].

Definition II.1.6. Let HA, HB ,KA,KB be separable Hilbert spaces and

A : HA → KA, B : HB → KB

two bounded linear operators. Then, A⊗B : H̊ → KA ⊗KB, with H̊ ⊂ HA ⊗HB defined as
in (II.1.4), is defined as

(A⊗B)

m∑
i,j=1

cij

(
ψA,i ⊗ ψB,j

)
=

m∑
i,j=1

cij

(
AψA,i ⊗BψB,j

)
.

Lemma II.1.7. Using the notation from the previous definition, there exists a unique linear
bounded extension of A⊗B to HA ⊗HB such that

‖A⊗B‖HA⊗HB→KA⊗KB = ‖A‖HA→KA‖B‖HB→KB .

Proof. The proof is a density argument and can be found in [LC85, Lemma 1.30 and 1.36].

II.2 Function Spaces
In the following, we shall introduce the function spaces required for stating variational for-
mulations and convergence rates. Therefore, we denote the euclidean inner product on Rn by
〈·, ·〉 and the associated norm by ‖ · ‖.

9

CHAPTER II. PRELIMINARIES

II.2.1 Smooth Functions

The definitions of this subsection are along the lines of [Alt02, Chapter 1], unless stated
otherwise.

Definition II.2.1. Let D ⊂ Rn be open and bounded, Y a Banach space with norm ‖ · ‖Y ,
and k ∈ N0. We define the space of k-times differentiable functions as

Ck(D;Y) :=
{
f : D → Y : f is k-times continuous differentiable in D and

∂βf can be continuously extended to D for all |β| ≤ k
}
.

The Ck-spaces are Banach spaces, if they are equipped with the norm

‖f‖Ck(D;Y) :=
∑
|β|≤k

sup
x∈D

∥∥∂βf(x)
∥∥
Y
.

Definition II.2.2. Let D ⊂ Rn and Y a Banach space with norm ‖ · ‖Y . For 0 < α ≤ 1, we
say that a continuous function f : D → Y is Hölder continuous with exponent α, if there is
some constant C > 0, such that

‖f(x1)− f(x2)‖Y ≤ C‖x1 − x2‖α for all x1,x2 ∈ D,

and denote by Hölα(D;Y) the space of all Hölder continuous functions with exponent α. If a
function is Hölder continuous with exponent α = 1, we say that it is a Lipschitz continuous
function.

Hölder spaces allow for a finer scale in comparison to the Ck-spaces.

Definition II.2.3. Let D ⊂ Rn be open and bounded and Y a Banach space with norm ‖·‖Y .
For k ∈ N0 and 0 < α ≤ 1, we define

Ck,α(D;Y) :=
{
f ∈ Ck(D;Y) : ∂βf ∈ Hölα(D;Y) for |β| = k

}
.

The Ck,α-spaces are Banach spaces, if they are equipped with the norm

‖f‖Ck,α(D;Y) := ‖f‖Ck(D;Y) +
∑
|β|=k

sup
x1,x2∈D
x1 6=x2

∥∥∂βf(x1)− ∂βf(x2)
∥∥
Y

‖x1 − x2‖α
.

Definition II.2.4. For a set D ⊂ Rn, a Banach space Y , and a function f : D → Y , we
define the support of f as

supp f := {x ∈ D : f(x) 6= 0}
‖·‖
,

i.e., as the closure in Rn of the set where f attains non-zero values in D.

Definition II.2.5. Let Y a Banach space with norm ‖ ·‖Y . On an open and bounded domain
D ⊂ Rn, we define the space of smooth functions as

C∞(D;Y) :=
⋂
k∈N

Ck(D;Y).

On an open and unbounded domain D ⊂ Rn, we define C∞(D;Y) as the space of functions
which are in C∞(D̃;Y) for every open and bounded subdomain D̃ of D.

On an open domain D ⊂ Rn, the space of smooth functions with compact support is
defined as

C∞0 (D;Y) :=
{
f ∈ C∞(D;Y) : supp f b D

}
.

10

II.2. Function Spaces

If it holds (Y, ‖ · ‖Y) = (R, | · |), we simplify notation and write Ck(D) = Ck(D;Y),
Ck,α(D) = Ck,α(D;Y), C∞(D) = C∞(D;Y), and C∞0 (D) = C∞0 (D;Y).

The following definition is along the lines of [McL01, Chapter 3].

Definition II.2.6. A partition of unity for an open set D ⊂ Rn is a finite or infinite sequence
of functions {ψi}i in C∞(Rn) with the following properties:

1. It holds ψi ≥ 0 on Rn for all i.

2. Each point of D has a neighbourhood that intersects suppψi for only finitely many i.

3. It holds
∑
i ψi(x) = 1 for all x ∈ D.

Given any countable open cover {Wi}i of D ⊂ Rn, there exists a partition of unity {ψi}i
for D with suppψi ⊂ Wi for all i, see [McL01, Corollary 3.22]. In this case, we call {ψi}i
subordinate to {Wi}i.

We conclude this subsection by introducing the following class of functions, which quan-
tifies the behaviour of functions in C∞(D;Y) further, and was introduced in [Gev18].

Definition II.2.7. For an open domain D ⊂ Rn and a Banach space Y with norm ‖ · ‖Y , we
say that a function f ∈ C∞(D;Y) is of Gevrey class s ≥ 1, if for every K b D there exist
constants c,A > 0 such that for all α ∈ Nn0∥∥∂αf(x)

∥∥
Y
≤ cA |α|(α!)s for all x ∈ K.

We say that a function is analytic, if it is of Gevrey class s = 1.

II.2.2 Lp-spaces
Throughout this subsection, we shall briefly introduce Lp-spaces. The rather general fashion
in terms of the Bochner integral, introduced in [Boc33], will later be helpful to specify different
properties for the spatial and the stochastic variable. We proceed along the lines of [Alt02,
Chapter 1].

Definition II.2.8. Let (X,B, µ) be a measure space and Y a Banach space over R with norm
‖ · ‖Y . For a µ-measurable function f : X → Y , we define the norms

‖f‖Lpµ(X;Y) :=

(∫
X

‖f(x)‖pY dµ(x)

)1/p

, 1 ≤ p <∞,

and
‖f‖L∞µ (X;Y) := ess supx∈X ‖f(x)‖Y .

We define the Lp-spaces for 1 ≤ p ≤ ∞ as

Lpµ(X;Y) :=
{
f : X → Y : f µ-measurable and ‖f‖Lpµ(X;Y) <∞

}
,

with the equivalence relation

f = g in Lpµ(X;Y) ⇐⇒ f = g µ-almost everywhere.

Moreover, we say that f is in Lploc,µ(X;Y), if f ∈ Lpµ(U ;Y) for all U b X.

The Lp-spaces are Banach spaces under the given norm. If X is a subset of Rn and µ is
the Lebesgue measure, we write Lpµ(X;Y) = Lp(X;Y). If additionally (Y, ‖ · ‖Y) = (R, | · |),
we write Lpµ(X;Y) = Lp(X).

If Y is a Hilbert space, the space L2
µ(X;Y) is also a Hilbert space and its inner product

is given by

(f, g)L2
µ(X;Y) =

∫
X

(
f(x), g(x)

)
Y

dµ(x).

In this case, we may also characterize the L2
µ-spaces as tensor product spaces, see [RS80,

Theorem II.10b].

11

CHAPTER II. PRELIMINARIES

Theorem II.2.9. Let L2
µ(X) be a separable measure space and Y be a separable Hilbert space.

It then holds
L2
µ(X)⊗ Y ' L2

µ(X;Y).

The isomorphism L2
µ(X)⊗ Y → L2

µ(X;Y) is unique and given by the action

f(x)⊗ y 7→ f(x)y

on simple tensors.

II.2.3 Sobolev Spaces
We shall now recall the definition of Sobolev spaces, which were originally introduced in
[Cоб38]. After giving the definition of a weak derivative as in [AF03, Definition 1.62], we
follow the presentation in [AF03, Chapter 3] to define the Sobolev spaces as a subset of the
Lp-spaces Lp(D) on D ⊂ Rn.

Definition II.2.10. Let u ∈ L1
loc(D) and α ∈ Nn0 . A function vα ∈ L1

loc(D) which satisfies∫
D

u(x)∂αϕ(x) dx = (−1)|α|
∫
D

vα(x)ϕ(x) dx for all ϕ ∈ C∞0 (D)

is called a weak derivative of u and is denoted by ∂αu = vα.

The weak derivative is unique (up to a set of measure zero) and coincides with the common
classical derivative, if both of the two the exist. Additionally, differentiation rules like the
product rule and the chain rule also apply to the weak derivative, cf., e.g., [Alt02, Theorems
2.24 and 2.25].

Definition II.2.11. For k ∈ N0 and 1 ≤ p ≤ ∞, we define

‖u‖Wk,p(D) =

(∑
|α|≤k

‖∂αu‖pLp(D)

)1/p

if 1 ≤ p <∞,

‖u‖Wk,∞(D) = max
|α|≤k

‖∂αu‖L∞(D) if p =∞,

for any function for which the expression on the right-hand side is well defined.

Obviously, ‖ · ‖Wk,p(D) defines a norm for k ∈ N0 and 1 ≤ p ≤ ∞ on any vector space of
functions on which it is defined and has finite value.

Definition II.2.12. For k ∈ N0 and 1 ≤ p ≤ ∞, we define the Sobolev spaces

W k,p(D) =
{
u ∈ Lp(D) : ∂αu ∈ Lp(D) for |α| ≤ k

}
and

W k,p
0 (D) = C∞0 (D)

‖·‖
Wk,p(D) ,

i.e., W k,p
0 (D) is the closure of C∞0 (D) under the W k,p(D)-norm.

Again, both spaces are Banach spaces with respect to the W k,p(D)-norm and separable
Hilbert spaces for p = 2 with respect to the inner product

(u, v)Wk,2(D) =
∑
|α|≤k

(∂αu, ∂αv)L2(D),

cf. [AF03, Theorem 3.3 and 3.6].
It obviously holds W 0,p(D) = Lp(D) and, since C∞0 (D) is dense in Lp(D) for 1 ≤ p <∞,

cf. [AF03, Corollary 2.30], it holds W 0,p
0 (D) = Lp(D). Moreover, we have the chain of

embeddings
W k,p

0 (D) ⊂W k,p(D) ⊂ Lp(D).

12

II.2. Function Spaces

Due to [MS64], it holds

W k,p(D) = C∞(D) ∩W k,p(D)
‖·‖

Wk,p(D)

for 1 ≤ p <∞, i.e., C∞(D) ∩W k,p(D) is dense in W k,p(D).
The notion of Sobolev spaces can be extended to fractional orders of derivatives, which

was investigated in several articles [Aro55, Gag58, Cло58]. We use the presentation from the
survey [DNPV12].

Definition II.2.13. For non-integer 0 < s ∈ R and 1 ≤ p <∞, we define the norm

‖u‖W s,p(D) =
(
‖u‖p

W bsc,p(D)
+ |u|pW s,p(D)

)1/p

,

where the semi-norm is given by

|u|W s,p(D) :=

(∑
|α|=bsc

∫
D

∫
D

∣∣∂αu(x)− ∂αu(y)
∣∣p

‖x− y‖n+p(s−bsc) dx dy

)1/p

.

We then define the Sobolev spaces of fractional order s > 0 by

W s,p(D) =
{
u ∈W bsc,p(D) : |u|W s,p(D) <∞

}
and

W s,p
0 (D) = C∞0 (D)

‖·‖Ws,p(D)
.

As for the integer case, the fractional order Sobolev spaces are Banach spaces with respect
to their norm. They are separable Hilbert spaces for p = 2 with respect to the inner product

(u, v)W s,2(D) = (u, v)W bsc,2(D)

+
∑
|α|=bsc

∫
D

∫
D

(
∂αu(x)− ∂αu(y)

)(
∂αv(x)− ∂αv(y)

)
‖x− y‖n+2(s−bsc) dx dy,

see [McL01, Chapter 3] and [Wlo87, Theorem 3.1]. Following [DNPV12], the notion of Sobolev
spaces can also be extended to negative exponents.

Definition II.2.14. For s < 0 and 1 < p < ∞, we define W s,p(D) as the dual of the space
W−s,q0 (D) with respect to the pivot space L2(D), i.e., we define

W s,p(D) =
(
W s,q

0 (D)
)′

with 1/p+ 1/q = 1.

Sobolev spaces with negative exponents are strictly speaking spaces of distributions, since
they are the dual of spaces having C∞0 (D) as a dense subset.

Definition II.2.15. For 0 ≤ s ∈ R, we write

Hs(D) = W s,2(D) and Hs
0(D) = W s,2

0 (D).

For k ∈ N0, we write
H−k(D) =

(
Hk

0 (D)
)′
.

Remark II.2.16. In the literature, Hs(D) is sometimes also used to denote the Bessel po-
tential space with exponent s ∈ R, cf., e.g., [McL01, Chapter 3]. This notation coincides with
the definition above, if D = Rn or its boundary is of Lipschitz class, see [McL01, Theorem
3.16, 3.30 and 3.33], which will be fulfilled for all domains in this thesis.

13

CHAPTER II. PRELIMINARIES

II.2.4 Sobolev Spaces on Manifolds
We shall extend the domain of definition of Sobolev spaces to the boundary of domains. The
range of possible Sobolev exponents will crucially depend on the smoothness of the boundary.
The following definition is inspired by [McL01, Chapter 3].

Definition II.2.17. The open set D ⊂ Rn, n ≥ 2, is a Ck,α-domain if its boundary ∂D is
compact and if there exist finite families {Wi}i and {Di}i, having the following properties:

1. The family {Wi}i is an open cover of ∂D, i.e., Wi ⊂ Rn is an open subset and ∂D ⊂⋃
iWi.

2. Each Di can be transformed to a Ck,α-hypograph by a rigid motion, i.e., there exist
D̃i ⊂ Rn−1 and φi ∈ Ck,α(D̃i), such that each Di can be mapped into{

x ∈ D̃i × R : xn < φi(x1, . . . , xn−1)
}

using rotations and translations.

3. The equality Wi ∩D = Wi ∩Di is satisfied for all i.

Especially, we say that D is a Lipschitz domain, if it is a C0,1-domain. We say that it is a
smooth domain, if it is a C∞-domain, and we call it a domain of Gevrey class s ≥ 1, if the
parametrizations φi are of Gevrey class s.

It follows directly from the definition that for all Ck,α-domains there exist mappings
Φi : Rn−1 → Rn of class Ck,α such that ∂Di ⊂ Φi(Rn−1). These mappings can be used to lift
the definition of Sobolev spaces to the boundary of domains.

Definition II.2.18. By denoting surface measure on ∂D by σ, we write, in accordance with
Definition II.2.8,

L2(∂D) = L2
σ(∂D)

for any Lipschitz domain D ⊂ Rn.

The following definition is along the lines of [McL01, Chapter 3].

Definition II.2.19. Let k ∈ N and D be a Ck−1,1-domain. Using the notation from this
subsection, choose a partition of unity {ψi}i subordinate to the open cover {Wi}i of ∂D. We
then define the space

Hs(∂D) =
{
u ∈ L2(∂D) : (ψiu) ◦ Φi ∈ Hs(Rn−1) for all i

}
for 0 < s ≤ k, and equip it with the inner product

(u, v)Hs(∂D) =
∑
i

(
(ψiu) ◦ Φi, (ψiv) ◦ Φi

)
Hs(Rn−1)

.

For −k ≤ s < 0, we define the space

Hs(∂D) =
(
H−s(∂D)

)′
,

which we equip with the dual norm

‖u‖Hs(∂D) = sup
v∈H−s(∂D)

v 6=0

(u, v)L2(∂D)

‖v‖H−s(∂D)
.

We especially note that the defined Sobolev spaces are, up to equivalence of norms, inde-
pendent of the used parametrization, see [McL01, Chapter 3].

Since the boundary of a domain in Rn has Lebesgue measure zero, the restrictions of
functions in Sobolev spaces to domain boundaries are a priorily not well defined. The follow-
ing theorem, cf. [Wlo87, Theorem 8.7a], provides a meaningful extension of the restriction
operator.

14

II.2. Function Spaces

Theorem II.2.20. Let D ⊂ Rn be a Ck,α-domain and 1/2 < l ≤ k + α. For l ∈ N, we may
allow k = l − 1 and α = 1. Then, there exists a unique continuous linear trace operator

γ0 : H l(D)→ H l−1/2(∂D),

with the property
γ0ϕ = ϕ

∣∣
∂D
,

for all ϕ ∈ Cl(D), if l ∈ N, and for all ϕ ∈ Cblc+1(D), if l /∈ N, respectively.

An extension can also be made for the normal-derivative of functions, cf. [Wlo87, Theorem
8.7b].

Theorem II.2.21. Let D ⊂ Rn be a Ck,α-domain, l −m > 1/2, m ∈ N, and l + 1 ≤ k + α.
For l ∈ N, we may allow again k = l − 1 and α = 1. Then, there exists a unique continuous
linear trace operator

γm : H l(D)→
m×
i=0

H l−i−1/2(∂D),

with the property

γmϕ =

(
ϕ
∣∣
∂D
,
∂ϕ

∂n

∣∣∣∣
∂D

,
∂2ϕ

∂n2

∣∣∣∣
∂D

, . . . ,
∂mϕ

∂nm

∣∣∣∣
∂D

)
,

for all ϕ ∈ Cl+m(D), if l ∈ N, and for all ϕ ∈ Cblc+m+1(D), if l /∈ N, respectively. Here, we
denote by ∂/∂n the derivative in the direction of the outward pointing normal.

II.2.5 Sobolev Spaces on Product Domains
To simplify notation, we shall introduce the Sobolev spaces of dominant mixed derivatives.

Definition II.2.22. For a domain D ⊂ Rn, we define for 0 ≤ s, t ∈ R the spaces

Hs,t
mix(D ×D) = Hs(D)⊗Ht(D),

and for s, t ∈ R we define the spaces

Hs,t
mix(∂D × ∂D) = Hs(∂D)⊗Ht(∂D),

provided that ∂D is sufficiently regular.

We readily remark that the dual space of Hs,t
mix(∂D× ∂D) with respect to the pivot space

L2(∂D × ∂D) is given by (
Hs,t

mix(∂D × ∂D)
)′

= H−s,−tmix (∂D × ∂D),

see [Wlo87, Chapter 17.1] and [RS80, Theorem II.10a].
Let us further elaborate on the relations between Hs,s

mix(M ×M) and Hs(M ×M) with
M being either a domain or its boundary. For s = 0, we have, cf. [RS80, Theorem II.10a],

H0,0
mix(M ×M) = L2(M)⊗ L2(M) = L2(M ×M) = H0(M ×M). (II.2.1)

The situation is different for s > 0. For example, for s ∈ N, we have due to (II.2.1), the
alternate characterizations

Hs,s
mix(M ×M) =

{
f ∈ L2(M ×M) : ∂αx ∂

β
y f ∈ L2(M ×M) for all |α|, |β| ≤ s

}
and

Hs(M ×M) =
{
f ∈ L2(M ×M) : ∂αx ∂

β
y f ∈ L2(M ×M) for all |α|+ |β| ≤ s

}
.

For s ∈ N, we thus have the important relation

Hs(M ×M) (Hs,s
mix(M ×M) (H2s(M ×M),

see also Figure II.1 for an illustration.

15

CHAPTER II. PRELIMINARIES

0 1 2 3 4 5 6
0

1

2

3

4

5

6

|α|

|β
|

0 1 2 3 4 5 6
0

1

2

3

4

5

6

|α|

|β
|

Figure II.1: Available derivatives ∂αx and ∂βy for f ∈ H3,3
mix(M × M) (left) and for f ∈

H3(M ×M) and f ∈ H6(M ×M) (right).

II.3 Statistical Quantities of Interest
For a given, separable and complete probability space (Ω,Σ,P) and separable Hilbert spaces
H, H1, and H2, this section shall be concerned with statistical quantities of random fields.

Definition II.3.1. An element of L2
P(Ω;H) is called a random field on H.

We are mainly interested in the mean, the correlation, and the covariance of random
fields. A direct application is that, in practical applications, random fields are often assumed
to be Gaussian random fields, see [RW05], which are uniquely specified by their mean and
covariance, cf. [RW05, Chapter 2.2].

Definition II.3.2. Let H be a function space on X. We say that a random field h ∈
L2
P(Ω;H) is a Gaussian random field, if for all k ∈ N, x1, . . . , xk ∈ X, the random vari-

able
(
h(x1), . . . , h(xk)

)
has a multivariate Gaussian distribution.

Recall that the mean of a real valued random variable ψ ∈ L2
P(Ω) is given as

E[ψ] =

∫
Ω

ψ(ω) dP(ω)

and the correlation of two real valued random variables ψ, φ ∈ L2
P(Ω) is given as

Cor[ψ, φ] =

∫
Ω

ψ(ω)φ(ω) dP(ω).

We shall next turn our attention to random fields on more general spaces and define the mean
and the correlation in terms of tensor notation.

Definition II.3.3. We define the mean of a simple tensor ψ ⊗ f ∈ L2
P(Ω)⊗H as

E
[
ψ ⊗ f

]
= E[ψ]f ∈ H.

Moreover, we define the correlation of two simple tensors ψ ⊗ f ∈ L2
P(Ω) ⊗H1 and φ ⊗ g ∈

L2
P(Ω)⊗H2 as

Cor
[
ψ ⊗ f, φ⊗ g

]
= Cor[ψ, φ](f ⊗ g) ∈ H1 ⊗H2.

Due to the Cauchy-Schwarz inequality, the representation (II.1.3) for the tensor product
norm for simple tensors, and∥∥E[ψ ⊗ f]∥∥

H
=(1, ψ)L2

P(Ω)‖f‖H
≤‖1‖L2

P(Ω)‖ψ‖L2
P(Ω)‖f‖H

=
∥∥ψ ⊗ f∥∥

L2
P(Ω)⊗H ,

16

II.3. Statistical Quantities of Interest

the mean is a bounded linear operator on simple tensors, whereas an analogous argument
shows that the correlation is a bounded bilinear operator on simple tensors.

Given an orthonormal basis {ψi}i of L2
P(Ω), Theorem II.1.4 guarantees the existence of

expansions

f =

∞∑
i=1

ψi ⊗ fi (II.3.1)

for all f ∈ L2
P(Ω)⊗H ' L2

P(Ω;H). A density argument yields the following lemma, see also
[ST06].

Lemma II.3.4. The mean and the correlation can be uniquely extended to a bounded linear
operator

E : L2
P(Ω;H)→ H

and a bounded bilinear operator

Cor: L2
P(Ω;H1)⊗ L2

P(Ω;H2)→ H1 ⊗H2.

Moreover, for expansions of the kind (II.3.1), it holds

E[f] =

∞∑
i=1

E[ψi]fi and Cor[f, g] =

∞∑
i=1

fi ⊗ gi.

Definition II.3.5. The covariance of two functions f, g ∈ L2
P(Ω;H) is defined as

Cov[f, g] = Cor[f, g]− E[f]⊗ E[g] ∈ H ⊗H.

For ease of notation, we write Cor[f] := Cor[f, f] and Cov[f] := Cov[f, f].

We note in particular that the mean, the correlation, and the covariance are well defined.
For the remainder of this section, we shall assume that H is some function space, i.e., the

elements in L2
P(Ω;H) depend on some random variable and some additional parameter. Due

to (II.1.5), one can see that the definitions of the mean, the correlation, and the covariance
coincide with the common definitions for real valued functions, i.e.,

E[f](x) =

∫
Ω

f(ω,x) dP(ω)

in case of the mean,

Cor[f, g](x,y) =

∫
Ω

f(ω,x)g(ω,y) dP(ω)

in case of the correlation, and

Cov[f, g](x,y) = Cor[f, g](x,y)− E[f](x)E[g](y)

in case of the covariance.
Having these quantities available gives direct access to the diagonal of the correlation and

the variance.

Definition II.3.6. The diagonal of the correlation of f ∈ L2
P(Ω;H), with H being a function

space, is defined as
E
[
f2
]
(x) = Cor[f](x,x).

The variance is defined as

V[f](x) = Cov[f](x,x) = E
[
f2
]
(x)− E[f](x)2.

In contrast to the mean, the correlation, and the covariance, the diagonal of the correlation
and the variance of a random field in L2

P(Ω;H) do not necessarily belong to H.

17

CHAPTER II. PRELIMINARIES

II.4 Correlation Equations for Linear Operators
One of the main objects of investigation of this thesis are linear operator equations of the
kind

Au(ω) = f(ω) on M for P-a.e. ω ∈ Ω. (II.4.1)

We assumeM to be either an open and bounded Lipschitz domain in Rn or its boundary, and
f ∈ L2

P(Ω;V ′) for some separable and complete probability space (Ω,Σ,P) and some Sobolev
space V . To that end, assume that the linear operator A : V → V ′ gives rise to a bounded
and strongly elliptic bilinear form a : V × V → R given by

a(u, v) := (Au, v)L2(M),

such that the solution of (II.4.1) is equivalent to solving the variational problem

Find u(ω) ∈ V, such that a
(
u(ω), v

)
=
(
f(ω), v

)
L2(M)

for all v ∈ V and P-a.e. ω ∈ Ω.

(II.4.2)

Due to the Lax-Milgram Theorem, see [Alt02, Theorem 4.2], A is then invertible, and the
solution u(ω) is uniquely determined for P-almost every ω ∈ Ω.

Although the action of A in (II.4.1) is only defined for elements in V , we can obviously
extend its mapping properties to L2

P(Ω;V) ' L2
P(Ω)⊗ V such that the diagram

L2
P(Ω;V) L2

P(Ω;V ′)

L2
P(Ω)⊗ V L2

P(Ω)⊗ V ′
'

A

Id⊗A

'

commutes. Thus, u = A−1f ∈ L2
P(Ω;V) is again a random field. In particular, due to the fact

that linear transformations of Gaussian random fields are again Gaussian, u is a Gaussian
random field whenever f is a Gaussian random field. It is thus uniquely specified by its mean
and covariance in this case.

By taking the mean on both sides of (II.4.1), the linearity of A yields

AE[u] = E[Au] = E[f] on M. (II.4.3)

Taking the correlation on both sides yields

(A⊗A) Cor[u] = Cor[f] on M ×M. (II.4.4)

Thus, if the mean and the correlation of the load are given, the mean and the correlation of
the solution are determined according to purely deterministic problems.

Frequently used correlation kernels for the load are the Matérn kernels, cf. [RW05], which
go back to [Mat60]. They are given by Cor[f](x,y) = kν(‖x− y‖) with

kν(r) :=
21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)
, (II.4.5)

where `, ν ∈ (0,∞) are some parameters. Here, Kν denotes the modified Bessel function of
the second kind, see [AS64]. For half integer values of ν, i.e., ν = p + 1/2 for p ∈ N0, the
expression simplifies to

kp+1/2(r) = exp

(
−
√

2νr

`

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

`

)p−i
.

18

II.4. Correlation Equations for Linear Operators

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2
ν = 1/2

ν = 3/2

ν = 5/2

ν = 7/2
ν =∞

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2
` = 1

` = 1/2

` = 1/4

` = 1/8

` = 1/16

Figure II.2: Matérn kernels for ` = 1 and different values of the smoothness parameter ν
(left) and for ν =∞ and different correlation lengths ` (right).

In accordance with [RW05], we obtain in the limit case ν →∞ the Gaussian kernel

k∞(r) = exp

(
−r2

2`2

)
.

The smoothness of the Matérn kernels is controlled by the smoothness parameter ν and the
correlation length `. A visualization of these kernels for varying values of ν is given in the left
plot of Figure II.2 and for varying values of ` in the right plot of Figure II.2.

We shall now introduce a finite element space Vh ⊂ V of dimension N with basis {ϕi}i
and assume that the underlying mesh is quasi-uniform. For later reference, we shall also
assume that the supports of the basis functions Υi = suppϕi are local, that is, we require
the existence of constants Csep and nmin such that

#
{
j ∈ {1, . . . , N} : dist(Υi,Υj) ≤ diam(Υi)/Csep

}
≤ nmin for all i = 1, . . . , N. (II.4.6)

We refer to [Hac15, Chapter 6.4.3.2] for a detailed discussion on this condition and remark
that it is fulfilled for the usual local finite element basis functions of continuous piecewise
polynomial spaces.

The variational problem of the equation for the mean (II.4.3) is analogous to (II.4.2), i.e.,

Find E[u] ∈ V, such that a
(
E[u], v

)
=
(
E[f], v

)
L2(M)

for all v ∈ V.

Employing a Galerkin scheme, i.e., replacing V by Vh in the variational problem, then yields
the system of linear equations

Aeu = ef ,

where
A =

[
a(ϕj , ϕi)

]N
i,j=1

, eu =
[
ei
]N
i=1

, ef =
[
(E[f], ϕi)L2(M)

]N
i=1

.

The Galerkin approximation E[u]h of E[u] is then given by

E[u]h =

N∑
i=1

eiϕi.

The properties of this system of linear equations are well understood and we refer to [Гал15,
Bra13, GW12] for more details on the Galerkin scheme.

The variational formulation of the correlation equation (II.4.4) is given by

Find Cor[u] ∈ V ⊗ V such that((
A⊗A

)
Cor[u], v

)
L2(M×M)

=
(

Cor[f], v
)
L2(M×M)

(II.4.7)

for all v ∈ V ⊗ V.

19

CHAPTER II. PRELIMINARIES

Obviously, since simple tensors are dense in V ⊗ V and since((
A⊗A

)
(u1 ⊗ u2), v1 ⊗ v2

)
L2(M×M)

= a(u1, v1)a(u2, v2) for all u1, u2, v1, v2 ∈ V,

(II.4.8)

the tensor product operator A ⊗ A implies a strongly elliptic bilinear form. Therefore, the
correlation of the solution Cor[u] is the unique solution to the variational problem (II.4.7).
Moreover, by replacing again V with the finite element space Vh, the variational formulation
(II.4.7) yields the system of linear equations

(A⊗A) vec(Cu) = vec(Cf), (II.4.9)

where
Cu =

[
cij
]N
i,j=1

, Cf =
[
(Cor[f], ϕi ⊗ ϕj)L2(M×M)

]N
i,j=1

.

As usual in connection with matrices, the tensor product is understood as the Kronecker
product. For a matrix B = [b1, . . . ,bn] ∈ Rm×n, the operation vec(B) is defined as

vec([b1, . . . ,bn]) :=

b1

...
bn

 ∈ Rmn.

The Galerkin approximation Cor[u]h of Cor[u] is then given by

Cor[u]h =

N∑
i,j=1

cij(ϕi ⊗ ϕj).

Since for matrices B ∈ Rk×n, C ∈ R`×m, and X ∈ Rm×n, there holds the relation

(B⊗C) vec(X) = vec(CXBᵀ),

we may rewrite (II.4.9) as a matrix equation

ACuA
ᵀ = Cf . (II.4.10)

This alternate representation can also be seen when directly substituting (II.4.8) into the
variational formulation (II.4.7).

Obviously, when using a non-local kernel function Cor[f], e.g., one of the Matérn kernels,
the matrix Cf is densely populated. Thus, and since the matrix equation (II.4.10) has N2

unknowns, the matrix equation is not directly solvable if N is large due to memory and time
consumption. For further reference, the uncompressed version of this equation is referred to
as the full tensor product approach. This reflects the fact that we take all N2 ansatz functions
of Vh ⊗ Vh into account.

II.5 Hierarchical Matrices

The main objective of this thesis is to employ an alternate compression technique for the full
tensor product approach, other than sparse tensor product or low-rank approaches. Therefore,
we will exploit different analytic properties of correlation kernels.

II.5.1 Asymptotical Smoothness

In the following, we will restrict ourselves to asymptotically smooth correlation kernels Cor[f],
i.e., correlation kernels satisfying the following definition, see also [Hac15, Definition 4.14].

20

II.5. Hierarchical Matrices

Definition II.5.1. Let Mx,My ⊂ Rn such that k : Mx ×My → R is defined and arbitrarily
often differentiable for all x 6= y with x ∈ Mx and y ∈ My. The function k is called
asymptotically smooth if it holds∣∣∂αx ∂βy k(x,y)

∣∣ ≤ c1 (|α|+ |β|)!
c
|α|+|β|
2

‖x− y‖−n−2q−|α|−|β|, x ∈Mx,y ∈My,x 6= y, (II.5.1)

independently of α and β for some constants c1, c2 > 0 and q ∈ R.

The term 2q usually reflects the order of the pseudodifferential operator corresponding
to k, on which we will comment later in this section. Examples for asymptotically smooth
correlation kernels are the Matérn kernels, discussed in Chapter II.4, and kernels of boundary
integral operators, which will be discussed in Chapter IV.1. A main feature of asymptotically
smooth functions is that they exhibit a data-sparse representation by means of hierarchical
matrices (H-matrices for short), which were introduced in a series of articles [Hac99, HK00a,
HK00b]. They are a generalization of cluster techniques for the rapid solution of boundary
integral equations such as the panel clustering method [HN89], the fast multipole method
[GR87], the mosaic skeleton approximation [Tyr96], and the adaptive cross approximation
[Beb00], and rely on local low-rank approximations of a given matrix H ∈ RN×N . That is, for
suitable non-empty index sets τ, σ ⊂ {1, . . . , N}, the matrix blocks H|τ×σ are approximated
by matrices of rank k. This approximation can be represented in factorized form H|τ×σ ≈
LRᵀ with factors L ∈ Rτ×k and R ∈ Rσ×k, which can be visualized as

H|τ×σ ≈ L

Rᵀ

Hence, if k � min{#τ,#σ}, the complexity for storing the block is considerably reduced.
For the rest of this section, we recapitulate the main ingredients for the construction of

hierarchical matrices. Their corresponding arithmetic will be discussed in the next section.

II.5.2 Cluster Tree
We follow the presentation of the monograph [Hac15, Chapter 5.3 and A.2].

Definition II.5.2. Let V be a non-empty finite set, call it vertex set, and let sons be a
mapping from V into the power set P(V), i.e., sons : V → P(V). For any v ∈ V , an element
v′ in sons(v) is called son, whereas we call v the father of v′.

We call the structure T (V, sons) a tree, if the following properties hold.

1. There is exactly one element r ∈ V which is not a son of a vertex, i.e.,⋃
v∈V

sons(v) = V \ {r}.

We call this vertex the root of the tree.

2. All v ∈ V are successors of r, i.e., there is a k ∈ N0, such that v ∈ sonsk(r). We define
sonsk(v) recursively as

sons0(v) = {v} and sonsk(v) =
⋃

v′∈sonsk−1(v)

sons(v′).

3. Any v ∈ V \ {r} has exactly one father.

21

CHAPTER II. PRELIMINARIES

Moreover, we say that the number k is the level of v. The depth of a tree is the maximum of
the levels of its vertices. We define the set of leaves of T as

L(T) = {v ∈ V : sons(v) = ∅}.

We remark that for any v ∈ T , there is exactly one path from r to v, see [Hac15, Remark
A.6].

Next, we introduce the cluster tree, which provides a tree structured partitioning of finite
index sets.

Definition II.5.3. Let I be a finite index set. The cluster tree TI is a tree with the following
properties.

1. I ∈ TI is the root of the tree TI ,

2. for all τ ∈ TI \ L(TI) it holds ⋃̇
σ∈sons(τ)

σ = τ,

i.e., all non-leaf vertices are the disjoint union of their sons,

3. all τ ∈ TI are non-empty.

The vertices of the cluster tree are referred to as clusters.

Remark II.5.4. The second requirement of the above definition together with the definition
of a tree directly implies that a non-leaf cluster must have at least two sons. However, we will
see in Chapter III.2.2 that in some cases it is reasonable to violate this requirement. Several
ways to rigorously deal with this obstacle were suggested in the literature, see also [Hac15,
Remark 5.11]. However, to keep notation simple and since it will be rather straightforward
how to deal with this situation in our case, we will not further elaborate on this subject.

Obviously, by applying the second requirement of the definition recursively, it holds τ ⊂ I
for all τ ∈ TI . We thus have

I =
⋃̇

σ∈L(τ)

σ. (II.5.2)

By using an index set corresponding to the basis functions of a finite dimensional ansatz or
test space from a Galerkin discretization for the cluster tree, we directly introduce a hierarchy
in the basis functions. Associating the basis functions with their support yields, together with
the following definition, a hierarchical covering of the underlying domain.

Definition II.5.5. Let I be the index set of an ansatz or test space with basis {ϕi}i∈I .
The support Υτ of a cluster τ is defined as the union of the supports of its associated basis
functions, i.e.,

Υτ :=
⋃
i∈τ

Υi.

To achieve almost linear complexity for H-matrix operations, we shall assume that the
depth of the cluster tree is bounded by O(log #I). There are various ways to construct a
cluster tree fulfilling this requirement along with different kinds of other properties, see [Hac15]
and the references therein. We discuss a geometry-based construction via bounding boxes,
following the presentation of [Hac15, Chapter 5.4.2]. For that purpose, we assign to each Υi,
i ∈ I, a characteristic point ξi, e.g., the barycenter of Υi or the Lagrangian interpolation point
of the corresponding basis function ϕi if nodal finite element shape functions are considered.
An axis-parallel bounding-box to a cluster τ ⊂ I is constructed as listed in Algorithm II.1. A
binary cluster tree, that is, each vertex has either two or no sons, can then be constructed with
initial value τ = I as shown in Algorithm II.2. The relabelling in each step guarantees that

22

II.5. Hierarchical Matrices

Algorithm II.1 Construct an axis-parallel bounding-box, see [Hac15, Equation (5.19)]
function BuildBoundingBox(cluster τ 6= ∅)

for i ∈ {1, . . . , n} do . n is the space dimension of Rn
Set ai = minj∈τ (ξj)i
Set bi = maxj∈τ (ξj)i

end for
Bounding-box is×n

i=1
[ai, bi]

end function

Algorithm II.2 Construct a cluster tree, see [Hac15, Equations (5.24) and (5.27)]
function BuildClusterTree(cluster τ 6= ∅)

Qτ = BuildBoundingBox(τ)
if #τ ≥ nmin and |Qτ | > 0 then

Cut Qτ into two pieces Q1 and Q2 by halving the longest edge.
Set τ1 = {i ∈ τ : ξi ∈ Q1}
Set τ2 = τ \ τ1
Relabel indices of clusters in subsequent order: first τ1, then τ2.
BuildClusterTree(τ1)
BuildClusterTree(τ2)
Set sons(τ) = {τ1, τ2}

end if
end function

the indices in each cluster are numbered in a subsequent order. Following [Hac15, Remark
5.20], the depth of the constructed cluster tree TI is bounded by

depth(TI) ≤ n
⌈

log2(δmax/δmin)
⌉
,

where

δmin := min
{
‖ξi − ξj‖∞ : i, j ∈ I with ξi 6= ξj

}
,

δmax := max
{
‖ξi − ξj‖∞ : i, j ∈ I

}
.

For reasonably chosen characteristic points ξi, it follows from the quasi-uniformity of the
mesh and (II.4.6) that the depth scales like O(log #I).

II.5.3 Block-Cluster Tree

Given a basis {ϕi}i∈I of the ansatz and test space, the corresponding system matrices from
the previous section can obviously be identified with the index set I ×I. Given a cluster tree
TI on I, a tree TI×I is given on I × I by setting

root(TI×I) = root(TI)× root(TI),

and defining the vertices b = τ × σ ∈ TI×I , τ, σ ∈ TI , starting from the root, recursively as

sons(b) =

{
{τ ′ × σ′ : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)}, sons(τ), sons(σ) 6= ∅,
∅, otherwise.

By the correspondence between clusters and subsets of the domain M , given in Defini-
tion II.5.5, a tree structure is defined on the product domain M ×M .

The following admissibility condition aims at using this structure to identify smooth and
non-smooth parts of asymptotically smooth functions in the product domain M ×M .

23

CHAPTER II. PRELIMINARIES

Definition II.5.6. Two clusters τ and σ are called η-admissible if

max{diam(Υτ),diam(Υσ)} ≤ η dist(Υτ ,Υσ) (II.5.3)

holds for some fixed η > 0.

Different kinds of admissibility exist, see [Hac15] for a throughout discussion and further
examples, and we will see two other examples in Chapter III. If not noted otherwise, we are
referring to the above condition, whenever we mention admissibility.

The importance of the admissibility condition comes from the fact that asymptotically
smooth correlations are known to have exponentially converging low-rank approximations
in admissible cluster pairs and the corresponding matrix blocks, see, e.g., [Beb00, BG04a].
Naturally, in order to keep computational effort and storage requirements low, one aims at
representing as large and as many matrix blocks as possible by low-rank approximations
without sacrificing too much accuracy. One possible and efficient approach to achieve this
goal is to apply the admissibility condition recursively as in Algorithm II.3 to identify the
admissible cluster pairs. This yields the set F , to which we refer to as the farfield, and the
set N , to which we refer to as the nearfield. The algorithm is called with the block-cluster
b = I × I.

Algorithm II.3 Construction of the block-cluster tree B, cf. [Hac15, Definition 5.26]
function BuildBlockClusterTree(block-cluster b = τ × σ)

if τ and σ are admissible then
sons(b) := ∅
Add b to F

else
if τ and σ have sons then

sons(b) := {σ′ × τ ′ : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)}
for b′ ∈ sons(b) do

BuildBlockClusterTree(b′)
end for

else
Add b to N

end if
end if

end function

Definition II.5.7. The tree structure B with root I × I constructed by Algorithm II.3 is
called the block-cluster tree.

We shall mention at this point that, depending of the shape of the support of the involved
clusters, the exact verification of (II.5.3) might be computationally expensive. Instead, one
usually relies on axis-parallel bounding-boxes or similar techniques to achieve computational
efficiency, see [Hac15, Chapter 5.4.6]. Moreover, in practical applications, one might stop the
recursion when either #τ < nmin or #σ < nmin.

We collect some of the properties of the block-cluster tree, see also [Hac15, Theorem
5.27], and remark that our definition of the block-cluster tree coincides with the notion of a
level-conserving block-cluster tree from the H-matrix literature.

Theorem II.5.8. 1. For all b ∈ B \ L(B), there holds

b =
⋃̇

b′∈sons(b)

b′.

2. All b ∈ B have the form b = τ × σ, with τ, σ ∈ TI , and it holds

level(b) = level(σ) = level(τ).

24

II.5. Hierarchical Matrices

3. The depth of the block-cluster tree is the depth of the cluster tree from which it is
constructed.

4. The block-cluster tree has a symmetric pattern, that is, it holds τ × σ ∈ B if and only if
σ × τ ∈ B.

Obviously, since I × I is the root of B, the first statement of the theorem, applied recur-
sively, directly implies

I × I =
⋃̇

b∈L(B)

b,

and, if we consider L(B) = F ∪N as a union of sets, it also holds

I × I =
⋃̇
b∈F

b ∪̇
⋃̇
b∈N

b.

We have thus partitioned the index set I × I into disjoint sets which are either admissible
or inadmissible and where the matrix blocks corresponding to admissible index sets can be
represented as low-rank matrices.

Definition II.5.9. For a block-cluster b = τ × σ and k ≤ min{#τ,#σ}, we define the set of
low-rank matrices as

R(τ × σ, k) =
{
M ∈ Rτ×σ : rank(M) ≤ k

}
,

where all elements M ∈ R(τ × σ, k) are stored in low-rank representation, i.e.,

M = LMRᵀM

for matrices LM ∈ Rτ×k and RM ∈ Rσ×k.

Obviously, a matrix in R(τ×σ, k) requires k(#τ+#σ) units of storage instead of #τ ·#σ,
which results in a significant storage improvement if k � min{#τ,#σ}. The same consider-
ation holds true for the matrix-vector multiplication.

With the definition of the block-cluster tree at hand, we are in the position to introduce
H-matrices.

Definition II.5.10. Given a block-cluster tree B, the set of hierarchical matrices, in short
H-matrices, of maximal block-rank k is given by

H(B, k) :=
{
H ∈ RN×N : H|τ×σ ∈ R(τ × σ, k) for all τ × σ ∈ F

}
.

A tree structure is induced on this set by the tree structure of the block cluster tree. Note that
all nearfield blocks H|τ×σ, τ × σ ∈ N , are allowed to be dense matrices.

The tree structure of the block-cluster tree provides the following useful recursive block
matrix structure on H-matrices. Every matrix block H|τ×σ, corresponding to a non-leaf
block-cluster τ × σ, has the structure

H
∣∣
τ×σ =


H
∣∣
sons(τ)1×sons(σ)1

. . . H
∣∣
sons(τ)1×sons(σ)#sons(σ)

...
...

H
∣∣
sons(τ)#sons(τ)×sons(σ)1

. . . H
∣∣
sons(τ)#sons(τ)×sons(σ)#sons(σ)

 . (II.5.4)

If the matrix block H|τ ′×σ′ , τ ′ ∈ sons(τ), σ′ ∈ sons(σ), is a leaf of B, the matrix block is
either a low-rank matrix (if τ ′ × σ′ ∈ F) or a dense matrix (if τ ′ × σ′ ∈ N). If the matrix
block is not a leaf of B, it has again a similar block structure as H|τ×σ. The required ordering
of the clusters relies on the order of the indices in the clusters.

25

CHAPTER II. PRELIMINARIES

In accordance with [Hac15, Lemma 6.13], the storage cost of an H-matrix H ∈ H(B, k) is
O(kN logN). The constant depends on the quantity Csp(B) which is given by

Csp(B) := max
τ∈TI

#
{
σ ∈ TI : τ × σ ∈ B

}
and was investigated in [GH03, Gra01, Hac15]. Although most situations are too complex
for an in-depth investigation of Csp(B), the analysis shows that, on quasi-uniform meshes
and when the clustering technique from Algorithm II.2 is used, it is reasonable to assume
that Csp(B) can be bounded by a constant depending on η from the admissibility condition
(II.5.6), Csep from (II.4.6), and the spatial dimension. For asymptotically smooth correlation
kernels, the rank k depends poly-logarithmically on the desired approximation accuracy ε,
which in turn usually depends on the degrees of freedom N .

Having the block structure (II.5.4) available, an algorithm for the matrix-vector multi-
plication, as listed in Algorithm II.4, can easily be derived. Note that the matrix-vector

Algorithm II.4 H-matrix-vector multiplication y += Hx, see [Hac15, Equation (7.1)]
function HtimesV(y|τ , H|τ×σ, x|σ)

if τ × σ /∈ L(B) then
for τ ′ × σ′ ∈ sons(τ × σ) do
HtimesV(y|τ ′ , H|τ ′×σ′ , x|σ′)

end for
else

y|τ += H|τ×σx|σ
end if

end function

multiplication for the leaf block-clusters involves either a dense matrix or a low-rank matrix.
In accordance with [Hac15, Lemma 7.17], the complexity of the matrix-vector multiplication
for elements in H(B, k) is O(kN logN) where the hidden constant depends on Csp(B).

A criterion for the H-matrix approximability of explicitly given correlation kernels, such
as Cor[f] in (II.4.4), is checking for asymptotical smoothness. While this is a calculation
if the kernel is given explicitly, it is more involved when the correlation kernel is implicitly
given, as is the case for Cor[u] in (II.4.4), and topic of the next subsection.

II.5.4 Asymptotical Smoothness of Correlations
The compressibility of an implicitly given correlation kernel, such as Cor[u] in (II.4.4), was
studied in [DHS17] for the case of sufficiently smooth domains and boundariesM . We restate
the main theorem, which employs the fact that the integral operator(

KCor[f]ϕ
)
(x) =

∫
M

Cor[f](x,y)ϕ(y) dµ(y),

related to the correlation kernel Cor[f], is in general a pseudodifferential operator.
We recall the main concepts required for the statement from the literature, in partic-

ular, elements of the calculus of pseudodifferential operators and its analytic extension in
[BdMK67, Kré69]. Especially, we refer to [Rod93] for a comprehensive account of this theory,
including subsequent developments. We adopt the notation for the statements of results on
pseudodifferential operators from the monographs [Hör07, HW08, Tay81] and, in the analytic
case, from [Rod93]. The extensions to analytic and Gevrey-class pseudodifferential operators
are based on the Gevrey extension of the symbolic calculus for classical pseudodifferential
operators, developed in [BdMK67, Kré69, Rod93].

Definition II.5.11. For an order r ∈ R and an open and bounded domain D ⊂ Rn with
smooth boundary, the symbol class Sr(D × Rn) consists of functions a ∈ C∞(D × Rn) such

26

II.5. Hierarchical Matrices

that, for any K b D and for every α,β ∈ Nn0 , there exist constants Cαβ(K) > 0 such that∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣ ≤ Cαβ(K)〈ξ〉r−|β| for all x ∈ K, ξ ∈ Rn,

with 〈ξ〉 =
(
1 + ‖ξ‖2

)1/2.
The class Sr(D × Rn) is contained in the Hörmander class Sr1,0(D × Rn). We shall not

require the general classes Srρ,δ(D × Rn), see [Hör03, Definition 7.8.1], and omit the fine
indices.

Definition II.5.12. For a symbol a ∈ Sr(D × Rn), the corresponding pseudodifferential
operator A is defined for u ∈ C∞0 (D) via the oscillatory integral

A(x,−i∂x)u(x) =
1

(2π)n/2

∫
ξ∈Rn

ei〈x,ξ〉a(x, ξ)û(ξ) dξ, x ∈ D, (II.5.5)

with û being the Fourier transform of u. The set of all pseudodifferential operators A, gener-
ated via (II.5.5) from symbols a ∈ Sr(D × Rn), is denoted by OPSr(D).

The following is [HW08, Definition 6.1.3].

Definition II.5.13. Given a symbol a ∈ Sm0(D × Rn) and a sequence of symbols am` ∈
Sm`(D × Rn) with m` ∈ R monotonically decreasing and m` → −∞ as `→∞, we write

a ∼
∞∑
`=0

am`

and call the (formal) sum the asymptotic expansion of a, if

a−
k−1∑
`=0

am` ∈ Smk(D × Rn) for all k ∈ N.

This allows to introduce the following subset of symbols in Sr(D × Rn).

Definition II.5.14. A symbol a ∈ Sr(D × Rn) is called classical symbol of order r ∈ R if
for every k ∈ N0 there exist functions ar−k ∈ Sr−k(D × Rn) such that a ∼

∑
k ar−k, where

ar−k is homogeneous of degree r− k, i.e., it holds that ar−k(x, tξ) = tr−kar−k(x, ξ) for every
t > 0 and for every ξ ∈ Rn with ‖ξ‖ > 1.

The class of classical symbols of order r is denoted by Srcl(D×Rn). The set of all pseudo-
differential operators A, generated from symbols a ∈ Srcl(D × Rn), is denoted by OPSrcl(D).

As a consequence of the asymptotic expansion of a ∈ Srcl(D × Rn), for every α,β ∈ Nn0
and for every K b D exists a constant cαβ(K) > 0 such that for every m ∈ N0 holds∣∣∣∣∣∂αx ∂βξ

(
a(x, ξ)−

m∑
k=0

ar−k(x, ξ)

)∣∣∣∣∣ ≤ cαβ(K)〈ξ〉r−m−|β|−1 for all x ∈ K, ξ ∈ Rn. (II.5.6)

For a connection with asymptotically smooth functions, we consider another subclass of sym-
bols introduced in [BdMK67]. It is based on tighter control of dependence of cαβ(K) in
(II.5.6). The following definition is [BdMK67, Definition 1.1].

Definition II.5.15. We say that a ∼
∑
k ar−k ∈ Srcl(D × Rn) is a Gevrey symbol of class

s ≥ 1 if for every K b D exist constants c,A > 0 such that for all α,β ∈ Nn0∣∣∣∂αx ∂βξ ar−k(x, ξ)
∣∣∣ ≤ cA k+|α+β|‖ξ‖r−k−|β|(k + |α|)!sβ! for all x ∈ K, ξ ∈ Rn. (II.5.7)

The subclass of Srcl(D × Rn) which satisfies (II.5.7) is denoted by Srcl,s(D × Rn). The set of
all pseudodifferential operators A, generated from symbols a ∈ Srcl,s(D × Rn), is denoted by
OPSrcl,s(D).

27

CHAPTER II. PRELIMINARIES

We remark that symbols in Srcl,s(D × Rn) with s = 1 depend analytically on x ∈ D and
continue by discussing pseudodifferential operators on smooth, closed and compact Rieman-
nian n-manifolds M ⊂ Rn+1. As function spaces and operators on M are defined via local
coordinates in a suitable atlas of coordinate charts, the precise regularity of kernels of pseu-
dodifferential operators on M will depend on whether M is C∞, Gevrey or analytic. The
assumed compactness of M implies that there exists a finite atlas of (Mi, κi) with smooth
coordinate charts κi which parametrizeM. By κ, we denote a generic chart. Pseudodifferen-
tial operators on M are defined locally on M via charts κ with (generic) common compact
parameter domain D ⊂ Rn. We recall the definition from [Hör07, Definition 18.1.20].

Definition II.5.16. On the smooth and compact Riemannian n-manifold M ⊂ Rn+1, a
linear operator A : C∞(M) → C∞(M) is a pseudodifferential operator of order r on M if
for every chart κ : D →M the transported operator satisfies Aκ := (κ−1)?Aκ? ∈ OPSr(D).
We write A ∈ OPSr(M).

We call A ∈ OPSr(M) classical if for each coordinate chart κ holds Aκ ∈ OPSrcl(D). In
this case, we write A ∈ OPSrcl(M). In complete analogy, we define the set of Gevrey regular
pseudodifferential operators of class s ≥ 1 on M as OPSrcl,s(M), provided the charts of M
are of Gevrey class s.

The following is [Hör07, Definition 18.1.21].

Definition II.5.17. A (pseudodifferential) operator A on a domain or manifold M is said
to be properly supported, if for every compact set K ⊂ M there is a compact set K ′ ⊂ M
such that

suppu ⊂ K ⇒ suppAu ⊂ K ′ and u = 0 on K ′ ⇒ Au = 0 on K.

We are now in the position to recall the main theorem of [DHS17].

Theorem II.5.18. In either the euclidean domain D with analytic boundary ∂D or on
a compact, analytic n-manifold M ⊂ Rn+1, assume that the covariance kernel Cor[f] of
f ∈ L2

P(Ω;V ′) in (II.4.1) gives rise to an operator KCor[f] ∈ OPSθcl,s, i.e., to a classical
pseudodifferential operator with symbol aCor[f](x, ξ) of order θ and of Gevrey class s ≥ 1.
Assume further that the operator A ∈ OPSrcl,s is properly supported. Then, the covariance
kernel Cor[u] of the random field solution u of (II.4.1) is the Schwartz kernel of an operator
KCor[u] ∈ OPSθ−2r

cl,s .
Moreover, the kernel Cor[u] is smooth outside of the diagonal (in local coordinates in case

of a manifold) and there holds the pointwise estimate

|∂αx ∂βy Coru(x,y)| ≤ cA |α+β|(|α|!)sβ!‖x− y‖−n−(θ−2r)−|α|−|β| (II.5.8)

for all α,β ∈ Nd0, away from the diagonal (again, in local coordinates in case of a manifold)
and some constants c and A which depend only on D,M, and on aCor[f].

The main tool of the proof is the calculus of pseudodifferential operators of Gevrey class.
We only recall the following relation from [BdMK67, Proposition 2.11] for further reference
later in this thesis.

Theorem II.5.19. For s ≥ 1, A ∈ OPSrcl,s, and B ∈ OPStcl,s, with at least one of A,B
properly supported, implies AB ∈ OPSr+tcl,s .

We refer to [DHS17] for a discussion how restrictive the assumption of A being properly
supported is.

Obviously, for s = 1, estimate (II.5.8) directly implies condition (II.5.1) for the asymptotic
smoothness of Cor[u], allowing us to approximate Cor[u] by means of H-matrices. Note
especially that 2q = θ− 2r in this case. The case s > 1 yields the following weakened version
of asymptotic smoothness, see also [Hac15, Definition 4.14].

28

II.6. H-matrix Arithmetic

Definition II.5.20. Let Mx,My ⊂ Rn such that k : Mx×My → R is defined and arbitrarily
often differentiable for all x 6= y with x ∈ Mx and y ∈ My. The function k is called
asymptotically smooth in one variable if it holds∣∣∂αx k(x,y)

∣∣ ≤ c1 |α|!
c
|α|
2

‖x− y‖−n−2q−|α|, x ∈Mx,y ∈My,x 6= y,

or ∣∣∂βy k(x,y)
∣∣ ≤ c1 |β|!

c
|β|
2

‖x− y‖−n−2q−|β|, x ∈Mx,y ∈My,x 6= y,

independently of α and β for some constants c1, c2 > 0 and q ∈ R.

Similar to asymptotically smooth functions, functions which are asymptotically smooth
in one variable, are known to have exponentially converging low-rank approximations in
admissible clusters, see, e.g., [Beb00, BG04a]. Still, we distinguish between the two definitions,
since the approximation technique we are going to discuss in Chapter V will require the
stronger version of the two, i.e., Definition II.5.1. We also remark that the Schwartz kernel of
an arbitrary pseudodifferential operator of Gevrey class s ≥ 1 and order r is asymptotically
smooth or asymptotically smooth in one variable and satisfies Definition II.5.1 or II.5.20 with
2q = r. This can either be seen from the proof of Theorem II.5.18 or from its assertion by
setting A = Id.

An example of correlation kernels for Cor[f], satisfying the condition of this theorem for
s ≥ 1, is the Matérn class of kernels from Chapter II.4, whose Fourier transform in Rn was
already computed in [Mat60]. Since the corresponding Gaussian random fields are stationary,
it does not depend on the spatial variable x and is given by

aν(ξ) = α

(
1 +

`2

2ν
‖ξ‖2

)−ν−n/2
,

where α is a scaling factor which depends on ν, ` and n. Expanding aν(ξ) asymptotically, as
‖ξ‖ → ∞, and comparing with (II.5.6), we readily infer that the associated covariance kernel
function is in OPS−2ν−n

cl and, being independent of x, also in OPS−2ν−n
cl,1 . This also follows

from the symbolic calculus of pseudodifferential operators upon noting that the symbol aν(ξ)

coincides with the symbol of the inverse to the differential operator Aν = α−1(Id− `2

2ν∆)ν+n/2

which is of order 2ν + n and thus Aν ∈ OPS2ν+n
cl,1 .

We conclude this section by remarking that [DHS17] also provides some numerical evidence
that Theorem II.5.18 could likely be extended to Lipschitz domains.

II.6 H-matrix Arithmetic
The arithmetic of H-matrices was first implemented in [GH03, Gra01], where the involved
constants were also investigated in detail. The key idea of the arithmetic is to use the hierarchy
of the block-cluster tree (and thus, the hierarchy on the H-matrix) and to build a recursive
algorithm. We shall recall the addition and the multiplication of H-matrices as presented in
[Hac15, Chapter 7].

II.6.1 Addition of H-matrices
We start by recalling a fact about the sum of low-rank matrices. For a block-cluster b = τ ×σ
and two ranks kA, kB, consider the low-rank matrices A ∈ R(τ×σ, kA) and B ∈ R(τ×σ, kB).
It then holds

A + B = LARᵀA + LBRᵀB =
[
LA LB

][
RA RB

]ᵀ ∈ R(τ × σ, kA + kB). (II.6.1)

The storage requirement of A + B is thus (kA + kB)(#τ + #σ), although the actual rank
of A + B could be smaller than kA + kB. To reduce the storage requirements to the actual
(numerical) rank of A + B, the singular value decomposition is needed.

29

CHAPTER II. PRELIMINARIES

Algorithm II.5 SVD of a low-rank matrix LRᵀ, see [Hac15, Algorithm 2.17]
function UΣVᵀ=LowRankSVD(LRᵀ)

QLRL = QR-decomposition of L, QL ∈ Rτ×k̃, RL ∈ Rk̃×k̃

QRRR = QR-decomposition of R, QR ∈ Rσ×k̃, RR ∈ Rk̃×k̃
ŨΣṼ

ᵀ
= SVD(RLRR

ᵀ)
U = QLŨ
V = QRṼ

end function

Definition II.6.1. A singular value decomposition, SVD for short, of a matrix M ∈ Rτ×σ
is a decomposition of the form

M = UΣVᵀ,

where U ∈ Rτ×k̃ and V ∈ Rσ×k̃ are orthogonal matrices, i.e., UᵀU = VᵀV = I ∈ Rk̃×k̃, and
Σ ∈ Rk̃×k̃ is a diagonal matrix whose entries

Σ1,1 ≥ · · · ≥ Σk̃,k̃ > 0

are called singular values. Here, k̃ ≤ min{#τ,#σ} denotes the actual rank of M.

Remark II.6.2. A (not necessarily unique) singular value decomposition exists for all ma-
trices in Rτ×σ, see [GVL12, Theorem 2.4.1]. However, the above definition of the singular
value decomposition is in contrast to the standard definition, where the matrices U and V
contain a complete basis for the image space and the preimage space of M.

The importance of the singular value decomposition lies in the fact that, for any given
matrix Rτ×σ and any given rank 0 ≤ k ≤ min{#τ,#σ}, the truncation of the singular value
decomposition provides a best approximation in R(τ × σ, k).

Lemma II.6.3. Let 0 ≤ k ≤ k̃ ≤ min{#τ,#σ}. Then, for a matrix M ∈ Rτ×σ with
rank k̃, a (not necessarily unique) best approximation of M = UΣVᵀ in R(τ × σ, k) with
respect to the Frobenius norm and the spectral norm is given by M̃ = UΣ̃V

ᵀ
, where Σ̃ =

diag(Σ1,1, . . . ,Σk,k, 0, . . . , 0). In particular, it holds

‖M− M̃‖F =

√√√√ k̃∑
i=k+1

Σ2
ii and ‖M− M̃‖2 = Σk+1,k+1.

Furthermore, M̃ is the best approximation to M in the sense that

‖M− M̃‖F/2 = min
M′∈R(τ×σ,k)

‖M−M′‖F/2.

Proof. The proof of this lemma is a straightforward consequence of an extension of U and V
to an orthonormal basis and the orthogonal invariance of the Frobenius norm and the spectral
norm.

The computation of the singular value decomposition of a dense #τ × #σ-matrix takes
O(#τ#σmin{#τ,#σ}) operations, see, e.g., [GVL12, Chapter 8.6], and is thus prohibitively
expensive if #τ and #σ are large. Instead, if the SVD of a matrix in R(τ × σ, k̃) shall be
computed, the algorithm listed in Algorithm II.5 requires only O

(
(#τ + #σ)k̃2

)
operations,

cf. [Hac15, Remark 2.18]. If we then set L̃ = U|τ×k and R̃ = V|σ×kΣ|k×k, we have an
efficient implementation of the following truncation operator.

Definition II.6.4. Let M ∈ R(τ × σ, k̃) and 0 ≤ k ≤ k̃. We define the truncation operator
Tk to matrices of rank k,

Tk : R(τ × σ, k̃)→ R(τ × σ, k), M 7→ R,

30

II.6. H-matrix Arithmetic

to be one of the best approximations of M in R(τ × σ, k) given by a singular value decompo-
sition. We call R = Tk(M) the truncation of M to rank k.

The truncation operator
Tk : H(B, k̃)→ H(B, k)

is defined by the block-wise application of the truncation operator to low-rank matrices to all
matrix blocks in the farfield of B.

Remark II.6.5. In order to avoid the loss of information, the truncation rank should not be
fixed, but chosen adaptively for each matrix block such that a desired approximation accuracy
ε is maintained. The required rank is usually referred to as ε-rank. The ε-rank can effi-
ciently be determined after the third line of Algorithm II.5 by using the error expressions from
Lemma II.6.3. However, the complexity bounds of the H-matrix arithmetic usually assume
that the ε-rank is bounded by some prescribed rank k. To achieve computational efficiency,
one usually chooses the minimum of the ε-rank and k in implementations.

We are now in the position to compute the sum of two H-matrices, both of which corre-
spond to the same block-cluster tree. This is motivated by the addition of two asymptotically
smooth kernels, being discretized on the same domain with respect to the same basis, clus-
ter tree, and admissibility condition. We might also think of this operation as the sum of
two pseudodifferential operators of the same Gevrey class, being again a pseudodifferential
operator of this Gevrey class, which is verified by checking (II.5.6) and (II.5.7).

Definition II.6.6. The formatted H-matrix addition of two H-matrices H1 ∈ H(B, k1) and
H2 ∈ H(B, k2), corresponding to the same block-cluster tree B, is defined as

H1+k3H2 = Tk3(H1 + H2)

for a given target rank k3. It then holds H3 ∈ H(B, k3).

An algorithmic realisation of the H-matrix addition is given in Algorithm II.6 and results
directly from the recursive block matrix structure of H-matrices, discussed in (II.5.4). The
following interactions between the different kinds of matrix blocks hold:

+k3 H-matrix low-rank matrix dense matrix
H-matrix recursively

low-rank matrix approximately
dense matrix exactly

In accordance with [Hac15, Lemma 7.20], the complexity of the algorithm, assuming k3 <
k1 + k2, is O((k1 + k2)2N logN) where the hidden constant depends on Csp(B). Obviously,
the previous considerations can be generalized to formulate a formatted matrix subtraction,
which we denote by -k3 .

II.6.2 Multiplication of H-matrices

Informally, the multiplication of two H-matrices can be seen as the discrete version of the
composition of the two associated pseudodifferential operators. In particular, if the two
pseudodifferential operators are of Gevrey class, their product is again a pseudodifferential
operator of Gevrey class, see Theorem II.5.19, which means that it is compressible by means
of H-matrices. We may choose the same bases for the Galerkin discretization with the same
cluster tree, and, as we will see without loss of generality, we choose the same block-cluster tree
B for the representation of theH-matrices. We thus have to implement an algebraic operation,
which efficiently computes the product of two matrices H1 ∈ H(B, k1) and H2 ∈ H(B, k2) and
represents it in H(B, k3). Although one can prove that the product can exactly be represented
in H(B, k3) when k3 is sufficiently large (i.e., k3 should be O(k1k2 logN), see [GH03]), we

31

CHAPTER II. PRELIMINARIES

Algorithm II.6 Addition of H-matrices, start with b = root(B), see [Hac15, Chapter 7.3]
function H3 = AddH(H1|b, H2|b, k3)

if b has sons then
for b′ ∈ sons(b) do

H3|b′ = AddH(H1|b′ , H2|b′ , k3)
end for

else
if b ∈ F then

H3|b = Tk3(H1|b + H2|b)
else

H3|b = H1|b + H2|b
end if

end if
end function

aim at keeping k3 low and in particular independent of N to obtain computational efficiency.
Think for example of k1 = k2 = k3.

The algorithm of the formatted H-matrix multiplication is again based on the recursive
block structure of H-matrices from (II.5.4). Looking at the multiplication of H-matrices
as the product of block matrices, we derive the following structures of the products of the
different kinds of blocks:

* H-matrix low-rank matrix dense matrix
H-matrix H-matrix low-rank dense

low-rank matrix low-rank low-rank low-rank
dense matrix dense low-rank dense

Products involving low-rank matrices can exactly be computed by the multiple application
of matrix-vector products, which results again in low-rank matrices. A similar consideration
holds for the interaction between a dense matrix and an H-matrix. We get thus the following
accuracies for the products:

* H-matrix low-rank matrix dense matrix
H-matrix recursively exactly exactly

low-rank matrix exactly exactly exactly
dense matrix exactly exactly exactly

Unfortunately, computing the product of the matrix blocks is only a part of the H-matrix
multiplication. Since the products should be stored in the format of the block-cluster tree B,
the results of the single products have to be converted into the format of the corresponding
target block. For ease of presentation, we consider the operation H3+=k3H1*H2 and then
have the following interactions of different kinds of matrix blocks:

+=k3 H-matrix low-rank matrix dense matrix
H-matrix recursively recursively recursively

low-rank matrix approximately approximately approximately
dense matrix exactly exactly exactly

The operands in the rows of the table coincide with the target format of the respective
operation.

If the target format is a dense matrix, +=k3 denotes the +=-operator, which is explained
in the usual way. For the remaining operations, we shall now recapitulate suitable truncation
operators based on the truncation operator to low-rank matrices from Definition II.6.4.

32

II.6. H-matrix Arithmetic

Algorithm II.7 Convert H-matrix to low-rank matrix, see [Hac15, Equation (7.8)]
function R = H2R(H|b, k3)

R = Zero(τ ,σ)
if b has sons then

for b′ ∈ sons(b) do
R+=k3 H2R(H|b′ , k3)

∣∣
b′→b

end for
else . H|b is dense or low-rank

R+=k3H|b
end if

end function

The situation R+=k3F. In this case, a low-rank approximation to the dense matrix is
computed using the SVD. The rest of the operation is similar to the formatted H-matrix
addition.

The situation R+=k3R. This case is directly handled by the formatted H-matrix addi-
tion.

The situation R+=k3H. This case was originally called hierarchical conversion, see
[GH03]. The basic idea is to convert, starting from the leaves, the H-matrix level-by-level
into a low-rank matrix. The algorithm for this operation is listed in Algorithm II.7, where
the operation M|b′→b for b′ ∈ sons(b) and matrices M ∈ Rb′ is given by

(
M|b′→b

)
ij

=

{(
Mb′

)
ij
, (i, j) ∈ b′,

0, (i, j) ∈ b \ b′.

Algorithm II.7 does not lead to the best possible low-rank approximation of a given H-matrix.
However, assuming Rbest is such a best approximation and Rapprox is the result given by
Algorithm II.7, one can prove that

∥∥H|b −Rapprox
∥∥
F
≤
(

1 +

(
1 +
√

5

2

)1+depth(b))∥∥H|b −Rbest
∥∥
F
,

see [Hac15, Lemma 7.6]. We refer to [Hac15, Appendix C.3] for a discussion why much better
estimates can be observed in practice and remark that we will discuss an alternate approach
for this operation in Chapter V.2.

The situation H+=k3F. Since the recursive block matrix pattern of an H-matrix can
also be applied to a dense matrix, this operation can be reduced to the operations F+=k3F
and R+=k3F by a recursive algorithm similar to the addition of H-matrices in Algorithm II.6.

The situation H+=k3R. Similar to the previous operation, we can explain this operation
in a recursive manner, since we can exactly represent R with respect to the recursive block
matrix structure of the target H-matrix by recursively breaking up the low-rank structure.
In the first step, we have

R = = = (R|τ ′×σ′)τ ′∈sons(τ)
σ′∈sons(σ)

.

The remaining operations are then covered by the cases R+=k3F and R+=k3R.
For numerical issues, the subdivision of a low-rank matrix to its son clusters can be realized

by index shifts. Therefore, no additional calculations or storage are necessary here.
The situation H+=k3H. This final situation can completely be covered by a recursive

algorithm and the previously introduced operations.

33

CHAPTER II. PRELIMINARIES

Algorithm II.8 Multiplication of H-matrices, see [Hac15, Equation (7.27)]

function H(3)|τ×σ+=k3 MultH(H(1)|τ×ρ, H(2)|ρ×σ)
if τ × σ has sons then

for τ ′ ∈ sons(τ) and σ′ ∈ sons(σ) do
for ρ′ ∈ sons(ρ) do

H(3)|τ ′×σ′+=k3MultH(H(1)|τ ′×ρ′ , H(2)|ρ′×σ′)
end for

end for
else

H(3)|τ×σ+=k3H(1)|τ×ρ*H(2)|ρ×σ
end if

end function

Having explained the necessary operations, the multiplication of H-matrices is given by
Algorithm II.8. In accordance with [GH03, Theorem 2.24], the complexity of the algorithm,
assuming for simplicity H(1),H(2) ∈ H(B, k) and nmin ≤ k, is O

(
kN logN(logN + k2)

)
. The

hidden constant depends on Csp(B) and the quantity Cid(B) given by

Cid(τ × σ) := #{τ ′ × σ′ : τ ′ ∈ successors(τ), σ′ ∈ successors(σ) such that
there exists ρ′ ∈ TI such that τ ′ × ρ′ ∈ B, ρ′ × σ′ ∈ B},

Cid(B) := max
τ×σ∈L(B)

Cid(τ × σ).

Similar to Csp(B), on quasi-uniform meshes and when the clustering technique from Algo-
rithm II.2 is used, it is reasonable to assume that Cid(B) can be bounded by a constant
depending on η from the admissibility condition (II.5.6), Csep from (II.4.6), and the spatial
dimension.

We shall remark at this point that the algorithm itself does not return the best possible
approximation to the product of two H-matrices. However, numerical experiments indicate
that the result of the algorithm is close to the best approximation inH(B, k). For an algorithm
yielding the actual best approximation in complexity O

(
k3N log3N

)
with significantly larger

constants, we refer to [Hac15, Chapter 7.4.3.3].
We conclude this section by remarking that, by replacing the H-matrix addition by the

H-subtraction, one can construct the operation H3-=k3H1*H2 with similar complexity.

II.6.3 H-matrix Factorizations

Based on the formatted addition, multiplication, and the hierarchical block-matrix structure
of H-matrices, recursive algorithms for the formatted inversion, the LU or Cholesky factor-
ization, and forward and backward substitution can be formulated. Throughout this thesis,
we will only require the action of the inverse of an H-matrix to another H-matrix. Since
the computation of an LU or Cholesky factorization with subsequent forward and backward
substitution is more efficient than the computation and the application of an inverse, we will
concentrate on factorizations in this section.

Given an (approximation of an) LU factorization of an H-matrix stored in the H-matrix
format, the forward substitution applied to a vector can be formulated as stated in Al-
gorithm II.9. We recall that the block-cluster tree yields a symmetric partitioning, see
Lemma II.5.8, and remark that r is overwritten during the algorithm. The algorithm be-
comes an in-place algorithm if the variable y is replaced by r. Similar considerations hold for
the formulation of the backward substitution algorithm which is listed in Algorithm II.10.

While the forward and backward substitution of H-matrices, applied to vectors, is ex-
act, the application to H-matrices relies on the approximate addition and multiplication of
H-matrices as discussed in the previous section. The forward substitution algorithm for the

34

II.6. H-matrix Arithmetic

Algorithm II.9 Forward substitution y = L−1r, see [Hac15, Equation (7.32a)]
function y|τ = HForVec(L|τ×τ ,r|τ)

if τ × τ /∈ L(B) then
for i = 1, . . . ,# sons(τ) do

ysons(τ)i = HForVec(L|sons(τ)i×sons(τ)i , r|sons(τ)i)
for j = i+ 1, . . . ,# sons(τ) do

r|sons(τ)j −= L|sons(τ)j×sons(τ)ir|sons(τ)i

end for
end for

else
y|τ = DenseForVec(L|τ×τ , r|τ)

end if
end function

Algorithm II.10 Backward substitution x = U−1y, see [Hac15, Chapter 7.6.2]
function x|τ = HBackVec(L|τ×τ ,y|τ)

if τ × τ /∈ L(B) then
for i = # sons(τ), . . . , 1 do

xsons(τ)i = HBackVec(U|sons(τ)i×sons(τ)i , y|sons(τ)i)
for j = 1, . . . , i− 1 do

y|sons(τ)j −= U|sons(τ)j×sons(τ)iy|sons(τ)i

end for
end for

else
x|τ = DenseBackVec(L|τ×τ , y|τ)

end if
end function

35

CHAPTER II. PRELIMINARIES

Algorithm II.11 Forward substitution Y = L−1R, see [Hac15, Equation (7.33a)]
function Y|τ×σ = HForMat(L|τ×τ ,R|τ×σ, k3)

if τ × σ /∈ L(B) then
for i = 1, . . . ,# sons(τ) and σ′ ∈ sons(σ) do

Ysons(τ)i×σ′ = HForMat(L|sons(τ)i×sons(τ)i ,R|sons(τ)i×σ′ , k3)
for j = i+ 1, . . . ,# sons(τ) do

R|sons(τ)j×σ′-=k3L|sons(τ)j×sons(τ)i*R|sons(τ)i×σ′

end for
end for

else
if τ × σ ∈ F then . R|τ×σ = ABᵀ ∈ R(τ × σ, k)

Solve C = L|−1
τ×τA, applying HForVec(L|τ×τ , ·) column-wise

Set Y|τ×σ = CBᵀ

else
Solve Y|τ×σ = L|−1

τ×τR|τ×σ, applying HForVec(L|τ×τ , ·) column-wise
end if

end if
end function

application to an H-matrix can be found in Algorithm II.11, whereas the backward substitu-
tion algorithm can be found in Algorithm II.12. For the computation of an (approximate) LU
factorization of an H-matrix, to which we will refer as the H-LU factorization, we shall need
the forward substitution and an algorithm X = HBackMatR(U,Z), which solves XU = Z.
It is a straightforward modification of Algorithm II.12, which we leave to the reader. Having
these algorithms available, the H-LU factorization can be computed as formulated in Algo-
rithm II.13. The formulation of an H-Cholesky factorization is analogous and also left to the
reader.

We recall the computational complexity of the algorithms of this section in accordance
with [Hac15, Chapter 7.8.5]. Since the factorizations themselves are stored in H-matrix
format, their storage consumption coincides with a generic H-matrix in H(B, k), which is
O(kN logN). The computational complexity for the forward and backward substitution,
applied to a vector, is also O(kN logN). In both cases, the hidden constant depends on
Csp(B). The complexity of the application of the substitution algorithms to a matrix and the
computation of the factorizations itself has the same complexity as the formatted H-matrix
multiplication, that is, O

(
kN logN(logN+k2)

)
. In these cases, the hidden constants depend

on Csp(B) and Cid(B).
We conclude this chapter by remarking that the parallelization of the H-matrix arithmetic

and the H-LU factorization was discussed in [Iza12, Kri05, Kri13].

36

II.6. H-matrix Arithmetic

Algorithm II.12 Backward substitution X = U−1Y, see [Hac15, Chapter 7.6.3]
function X|τ×σ = HBackMat(U|τ×τ ,Y|τ×σ, k3)

if τ × σ /∈ L(B) then
for i = # sons(τ), . . . , 1 and σ′ ∈ sons(σ) do

Xsons(τ)i×σ′ = HBackMat(U|sons(τ)i×sons(τ)i ,Y|sons(τ)i×σ′ , k3)
for j = 1, . . . , i− 1 do

Y|sons(τ)j×σ′-=k3U|sons(τ)j×sons(τ)i*Y|sons(τ)i×σ′

end for
end for

else
if τ × σ ∈ F then . Y|τ×σ = ABᵀ ∈ R(τ × σ, k)

Solve C = L|−1
τ×τA, applying HBackVec(U|τ×τ , ·) column-wise

Set X|τ×σ = CBᵀ

else
Solve X|τ×σ = L|−1

τ×τY|τ×σ, applying HBackVec(U|τ×τ , ·) column-wise
end if

end if
end function

Algorithm II.13 In-place H-LU factorization, see [Hac15, Chapter 7.6.4]
function H-LU(A|τ×τ , k3)

if τ × τ /∈ L(B) then
for i = 1, . . . ,# sons(τ) do

for j = 1, . . . , i− 1 do . Update diagonal
A|sons(τ)i×sons(τ)i-=k3A|sons(τ)i×sons(τ)j*A|sons(τ)j×sons(τ)i

end for
H-LU(A|sons(τ)i×sons(τ)i , k3)
for j = i+ 1, . . . ,# sons(τ) do . Update strictly lower part

for k = 1, . . . , i− 1 do
A|sons(τ)j×sons(τ)i-=k3A|sons(τ)j×sons(τ)k*A|sons(τ)k×sons(τ)i

end for
A|sons(τ)j×sons(τ)i = HBackMatR(A|sons(τ)i×sons(τ)i , A|sons(τ)j×sons(τ)i)

end for
for j = i+ 1, . . . ,# sons(τ) do . Update strictly upper part

for k = 1, . . . , i− 1 do
A|sons(τ)i×sons(τ)j-=k3A|sons(τ)i×sons(τ)k*A|sons(τ)k×sons(τ)j

end for
A|sons(τ)i×sons(τ)j = HForMat(A|sons(τ)i×sons(τ)i , A|sons(τ)i×sons(τ)j)

end for
end for

else . A|τ×τ is a dense matrix
DenseLU(A|τ×τ)

end if
end function

37

CHAPTER II. PRELIMINARIES

38

Chapter III

PDEs with Random Load

III.1 Problem Formulation
The topic of this chapter is the solution of correlation equations which have their origins
in the uncertainty quantification of partial differential equations with random load. More
specifically, for the remainder of this chapter, let D ⊂ Rn be a Lipschitz domain, (Ω,Σ,P) a
separable and complete probability space and L be the linear differential operator of second
order given by

(Lu)(x) = −div
(
A(x) · ∇u(x)

)
+ 〈b(x),∇u(x)〉+ c(x)u(x). (III.1.1)

The coefficients shall satisfy A ∈ W 1,∞(D;Rn×n
)
, b ∈ L∞(D;Rn), and c ∈ L∞(D;R), and

the corresponding bilinear form

a(u, v) = (Lu, v)L2(D)

is assumed to be bounded and strongly elliptic.
Under these assumptions, for a given load f ∈ L2

P
(
Ω;H−1(D)

)
, the Dirichlet problem

Lu(ω,x) = f(ω,x) for x ∈ D,
u(ω,x) = 0 for x ∈ ∂D,

(III.1.2)

is known to have a unique solution u(ω, ·) ∈ H1
0 (D) for P-almost every ω ∈ Ω, see, e.g.,

[Bra13, Theorem 2.9]. In particular, the differential operator L is a mapping L : H1
0 (D) →

H−1(D). Following the considerations in Chapter II.4, the mean E[u] ∈ H1
0 (D) and the

correlation Cor[u] ∈ H1
0 (D) ⊗ H1

0 (D) are well defined. Moreover, the coefficients of the
Galerkin approximations of the mean and the correlation of u are given by

Aeu = ef

and

ACuA
ᵀ = Cf , (III.1.3)

respectively. Here, A denotes the finite element stiffness matrix.
We remark that this approach was extended to boundary value problems with non-

homogeneous boundary conditions in [Har10a], but, for simplicity, we restrict ourselves to
homogeneous boundary conditions. A specific version of Theorem II.5.18 for (III.1.2) is then
given by the following corollary.

Corollary III.1.1. In the domain D with analytic boundary ∂D, assume that the correlation
Cor[f] gives rise to an operator KCor[f] ∈ OPSθcl,s(D), i.e., to a classical pseudodifferential

39

CHAPTER III. PDES WITH RANDOM LOAD

sparse FEM-matrix reordered FEM-matrix H-matrix representation

Figure III.1: Sparsity pattern of a three-dimensional finite element matrix, its reordered finite
element matrix, and the corresponding H-matrix. Red blocks in the H-matrix correspond to
the nearfield, white blocks correspond to the empty farfield.

operator with symbol aCor[f](x, ξ) of order θ and of Gevrey class s ≥ 1. Assume further that
the coefficients of the differential operator L are of Gevrey class s. Then, the correlation
Cor[u] is the Schwartz kernel of an operator KCor[u] ∈ OPSθ−4

cl,s (D).
Moreover, Cor[u] is smooth in D×D outside of the diagonal and there holds the pointwise

estimate

|∂αx ∂βy Cor[u](x,y)| ≤ cA |α+β|(|α|!)sβ!‖x− y‖−n−θ+4−|α|−|β|

away from the diagonal for all α,β ∈ Nn0 , with some constants c and A which depend only
on D and aCor[f].

Thus, if we assume Cor[f] to be asymptotically smooth and to fulfil the above assumptions,
we can represent Cor[f] and, if the domain is smooth enough, Cor[u] by an H-matrix. It
remains to discuss whether the finite element matrix can be represented by an H-matrix,
which, since A is a sparse matrix, is not obvious.

An analytical reasoning is that we can write L as an integral operator with distributional
kernel k, i.e.,

(Lu)(x) =

∫
D

(
−

d∑
i,j=1

aij(x)∂yi∂yjδx(y) +

d∑
i=1

bi(x)∂yiδx(y) + c(x)δx(y)︸ ︷︷ ︸
=:k(x,y)

)
u(y) dy.

Since the Dirac distribution δx(y) at the point x is formally zero for x 6= y, we may argue
that k is an asymptotically smooth function and A can be represented as an H-matrix. A
more algebraic and mathematically sound reasoning is that a necessary condition for an entry
Aij in the finite element matrix to be non-zero is Υi ∩ Υj 6= ∅, i.e., the intersection of the
corresponding supports of the basis functions is non-empty. This yields, together with the η-
admissibility condition (II.5.3), that all entries of a finite element matrix have η-inadmissible
supports, i.e., they are contained in the nearfield of an H-matrix. A sparse finite element
matrix can therefore be represented as an H-matrix by reordering the index set and inserting
the non-zero entries into the nearfield. An illustration of this procedure can be found in
Figure III.1.

It is thus reasonable to represent all matrices occurring in (III.1.3) by H-matrices. It
remains to discuss how to compute the unknown matrix Cu. In the next section, we reca-
pitulate some specialities of H-matrices in the context of finite elements and then present a
solution algorithm to solve (III.1.3) in almost linear time using the H-matrix arithmetic from
Chapter II.6.

40

III.2. H-matrices in the Context of Finite Elements

III.2 H-matrices in the Context of Finite Elements

Although a finite element matrix has a sparse structure, its inverse and both factors of its LU
factorization are generally densely populated. Nevertheless, the inverse and the LU factor-
ization exhibit a data-sparse structure in the sense that they are H-matrix compressible. We
recall the main concepts from the literature, see, e.g., [Beb05, Beb07, BH03, Fau15, FMP15].

Other than the calculus of pseudodifferential operators as discussed in [DHS17], a rough
argument for the H-matrix compressibility of the inverse makes use of the Green’s function
G of L. Let δx denote the Dirac distribution at the point x, and let G : Rn ×Rn → R satisfy

LyG(x,y) = δx(y) and G(·,y)|∂D = 0. (III.2.1)

Then, the solution of
Lu(x) = f(x) for x ∈ D,
u(x) = 0 for x ∈ ∂D,

can be represented by

u(x) = (L−1f)(x) =

∫
D

G(x,y)f(y) dy, x ∈ D.

If the Green’s function is analytic away from the diagonal, e.g., in the case of constant
coefficients of L, we can approximate the Green’s function away from the diagonal by local
expansions of the kind

G(x,y) ≈
k∑
i=1

ai(x)bi(y),

which is the foundation for an H-matrix approximation.
One of the advantages of the finite element method is that it can also be applied in case

of non-constant coefficients. In [BH03], a proof was presented to guarantee the existence of
an H-matrix approximation to the inverse of the finite element stiffness matrix even in the
case of essentially bounded diffusion coefficients and the other coefficients set to zero. This
result was then extended in [Beb05] to allow all coefficients to be only essentially bounded,
providing the theoretical foundation for an H-matrix approximation to the inverse of the
differential operator from (III.1.1). Having the H-matrix approximability of the inverse of
the finite element matrix available, the approximability of the LU factorization of the finite
element matrix was proven in [Beb07]. While these first results hold up to the finite element
discretization error, the results were recently improved in [Fau15, FMP15] to hold without
additional error.

Having the finite element matrix represented by an H-matrix, the LU factorization can be
computed with Algorithm II.13 in O(k2N log2N) operations. As discussed in Chapter II.6, an
approximate inverse can also be computed in O(k2N log2N) operations, but the computation
of the LU factorization together with its forward and backward substitution algorithms, listed
in Algorithms II.11 and II.12, has smaller constants than the computation and the application
of an approximate inverse.

III.2.1 Weak Admissibility

Approximate H-matrix representations for the inverse or LU factorizations of finite ele-
ment matrices were used to construct preconditioners for iterative solvers, see, e.g., [Beb08,
GKLB09] and the references therein. In [HKK04], it was observed for the one-dimensional
case that the computation of an approximate inverse can be considerably sped up by replacing
the η-admissibility condition (II.5.3) by the following weak admissibility condition.

Definition III.2.1. Two clusters σ and σ′ are called weakly admissible if σ 6= σ′.

41

CHAPTER III. PDES WITH RANDOM LOAD

We observe immediately that an η-admissible block-cluster is also weakly admissible.
Thus, by replacing the η-admissibility condition by the weak admissibility, we obtain a much
coarser partition of the H-matrix. This leads to smaller constants in the storage and compu-
tational complexity, cf. [HKK04]. We also remark that finite element matrices can exactly be
represented as H-matrices which were constructed using the weak admissibility condition. In
particular, the corresponding off-diagonal blocks have low-rank, cf. [HKK04].

By partitioning the matrix according to the weak admissibility condition, we cannot ensure
the exponential convergence of fast black box low-rank approximation techniques as used
for boundary element matrices. For example, the techniques in [Beb00, BG04a] rely on an
admissibility condition similar to (II.5.3) to ensure exponential convergence. Instead, the
authors of [HKK04] suggest assembling a weakly admissible matrix block according to the
η-admissibility condition and transforming it on-the-fly into a low-rank matrix in order to
obtain a good approximation.

The behavior of the ranks of the low-rank matrices in weakly admissible partitions is not
yet fully understood compared to η-admissible partitions. Suppose that kη is an upper bound
for the ranks corresponding to an η-admissible partition and suppose that kw shall be an
upper bound for the ranks to a weakly admissible partition. In [HKK04], it is proven for
one-dimensional finite element discretizations that one should generally choose

kw = Lkη

in order to obtain the same approximation accuracy in the weakly admissible case as in the
η-admissible case. Here, L is a constant which depends on the depth of the block-cluster tree,
which is assumed to depend logarithmically on N , see Chapter II.5.2. Already in the same
article, the authors observed in the numerical examples that this bound on kw seems to be
too pessimistic and one could possibly choose

kw = cη→wkη, (III.2.2)

where cη→w ∈ [2, 3.5].
Unfortunately, weak admissibility is not suitable for dimensions greater than one due to

the fact that clusters can possibly intersect each other in O(Nα) points, where α ≥ 0 depends
on the spatial dimension. However, one can try to reduce this negative influence of the
weak admissibility condition by mixing it with η-admissibility. In the software package HLib,
cf. [BGH03], the authors use the η-admissibility for all block-clusters with block size larger
than a given threshold. They apply the weak admissibility condition for block-clusters τ ×σ,
which are below that threshold, provided that the condition

aτi <
aσi + bσi

2
< bτi or aσi <

aτi + bτi
2

< bσi (III.2.3)

is satisfied for the corresponding bounding-boxes
∏3
i=1[aµi , b

µ
i], µ = τ, σ, in at most one coor-

dinate direction. This condition restricts the application of weak admissibility to essentially
one-dimensional cluster intersections with a length below a certain threshold. The impact of
this specific admissibility condition is illustrated in Figure III.2.

III.2.2 Nested Dissection

While weak admissibility only takes the sparsity of the finite element matrix into account
during the construction of the H-matrix, it is also possible to consider the sparsity already
during the construction of the cluster tree. One possibility was introduced in [GKLB09] and
is based on nested dissection, cf. [BT02, Geo73, HR98, LRT79] and the references therein.
We briefly review the idea of nested dissection in the context of H-matrices as discussed
in [GKLB09] and refer the reader to [GKLB09] for more details. The idea is to employ a
recursive algorithm as listed in Algorithm III.1.

42

III.2. H-matrices in the Context of Finite Elements

η-admissible FEM-matrix weakly admissible FEM-matrix

Figure III.2: Comparison of the partition for η-admissibility and for weak admissibility. Red
blocks correspond to full matrices, blue blocks correspond to low-rank matrices with inscribed
rank, and white blocks are zero.

Algorithm III.1 Nested dissection
function NestedDissection(I)

Build partition I = I1∪̇I2∪̇I3 such that
• I1 and I2 have comparable sizes,
• all entries Aij and Aji, i ∈ I1, j ∈ I2 of the finite element matrix are zero,
• I3 is the boundary layer between I1 and I2.

Relabel indices in subsequent order: first I1, then I2, and then I3.
NestedDissection(I1)
NestedDissection(I2)
Set I = I1∪̇I2∪̇I3 . Later: extra procedure for I3 in H-matrix framework

end function

Reordering the index sets of the finite element matrix in accordance with this procedure
yields a sparsity pattern as illustrated in Figure III.3. Due to the special construction, large
parts of the matrix are zero and will remain zero in a subsequent LU factorization.

In the following, we take the approach of [GKLB09] to construct an H-matrix which
reorders the index set such that the pattern of the finite element matrix exposes a nested
dissection ordering. We therefore recapitulate the construction of a cluster tree based on
domain decomposition as proposed in [GKLB09]. For that purpose, the cluster algorithm
distinguishes between domain clusters and interface clusters. The algorithm listed in Algo-
rithm III.2 is employed for the root {1, . . . , N} and all domain clusters.

Due to their special construction, the bounding-boxes of interface clusters are “flat” in
one coordinate direction. Therefore, an unmodified cluster algorithm such as Algorithm II.2
leads to a cluster tree with unfavourable asymptotic properties and the cluster algorithm has
to be adapted. To achieve more desirable asymptotic properties, we define levelint(τ) as the
distance of τ to the nearest domain cluster in the cluster tree and employ the cluster algorithm
listed in Algorithm III.3 for the interface clusters, see [GKLB09] for a detailed discussion on
this topic. We remark that, strictly speaking, the generated cluster tree is not a tree in the
sense of Definition II.5.2, since a cluster may have itself as its only son, see also Remark II.5.4.
However, due to the recursive structure of the cluster algorithm, it is straightforward how to
deal with this situation.

In order to translate the sparsity of the finite element matrix into the block structure of an
H-matrix, we can combine the η-admissibility condition from Definition II.5.6 and the weak
admissibility condition from Definition III.2.1 into a nested dissection admissibility condition.

43

CHAPTER III. PDES WITH RANDOM LOAD

Algorithm III.2 Cluster algorithm for domain clusters, see [GKLB09, Section 3.2]
function HNestedDissectionDomain(τ)

Qτ = BuildBoundingBox(τ) . See Algorithm II.1
Cut Qτ into two pieces Q1 and Q2 by halving the longest edge.
Set τ1 = {i ∈ τ : ξi ∈ Q1}.
Set τ2 = {i ∈ τ : Aij = 0 and Aji = 0 for all j ∈ τ1}.
Set τ3 = τ \ {τ1 ∪ τ2}.
Set sons(τ) = {τ1, τ2, τ3}.
Relabel indices of clusters in subsequent order: first τ1, then τ2, and then τ3.
HNestedDissectionDomain(τ1)
HNestedDissectionDomain(τ2)
HNestedDissectionInterface(τ3) . See Algorithm III.3 below

end function

Algorithm III.3 Cluster algorithm for interface clusters, see [GKLB09, Section 3.2]
function HNestedDissectionInterface(τ)

if levelint(τ) = 0 mod d then
Do not subdivide τ , and set τ ′ = τ as its only son.

else
Qτ = BuildBoundingBox(τ) . See Algorithm II.1
Cut Qτ into two pieces Q1 and Q2 by halving one of the “non-flat” edges.
Set τ1 = {i ∈ τ : ξi ∈ Q1}.
Set τ2 = {i ∈ τ : ξi ∈ Q2}.
Set sons(τ) = {τ1, τ2}.

end if
Apply HNestedDissectionInterface(τ ′) to all τ ′ ∈ sons(τ).

end function

44

III.3. Iterative Solution

sparse FEM-matrix nested dissection
reordered FEM-matrix

nested dissection
H-matrix representation

Figure III.3: Sparsity pattern of a three-dimensional finite element matrix, its reordered finite
element matrix according to nested dissection, and its corresponding H-matrix.

Definition III.2.2. Two clusters τ and σ are called nd-admissible if either

• τ 6= σ are both domain clusters or

• τ and σ are η-admissible.

In fact, if τ 6= σ are both domain clusters, we can directly say that the corresponding H-
matrix block has rank zero. Figure III.3 illustrates the sparsity pattern of the finite element
matrix after the permutations, determined by the cluster algorithms, and how large parts
of the constructed H-matrix have rank zero. The low-rank blocks in the representation are
due to some internal checks of HLib, which aim at replacing inadmissible blocks by low-rank
matrices only if very few entries in the corresponding matrix block are non-zero.

The numerical experiments at the end of this chapter show that the sparse structure
constructed here leads to smaller constants in the complexity of the solution algorithm.

III.3 Iterative Solution
It remains to discuss how to implement an efficient solver for the H-matrix equations (II.4.4)
and (III.1.3), respectively. For two H-matrices H1,H2 ∈ H(B, k), we have discussed the
formatted addition H1+H2 ∈ H(B, k) and the formatted multiplication H1*H2 ∈ H(B, k) as
well as the H-LU factorization in Chapter II.6. Having these operations at hand, we may
consider an iterative solver based on the iterative refinement method, see [GVL12, Mol67,
Wil63]. It was originally introduced in [Wil63] for the improvement of solutions to systems
of linear equations computed by using an LU factorization and algebraically coincides with
an undamped preconditioned Richardson iteration, see, e.g., [Saa03].

Having all matrices in (III.1.3) represented by H-matrices, the solution can be approx-
imated as follows. Let A ≈ L̂Û, where L̂, Û ∈ H(B, k), be an approximate LU factor-
ization to A, e.g. computed from A using Algorithm II.13. Starting with the initial guess
C

(0)
u = Û−1L̂−1Cf L̂

−ᵀÛ−ᵀ, we iterate

Θ(i) = Cf −AC(i)
u Aᵀ, C(i+1)

u = C(i)
u + Û−1L̂−1Θ(i)L̂−ᵀÛ−ᵀ, i = 0, 1, (III.3.1)

The idea of the algorithm is that the residual Θ(i) is computed with a higher precision
than the correction Û−1L̂−1Θ(i)L̂−ᵀÛ−ᵀ, which yields an improved approximation to the
solution in each step. Note that we use, in contrast to the first algorithm in [DHP15], the LU
factorization with forward and backward substitution. If A is symmetric and positive definite,
the LU factorization could also be replaced by a Cholesky factorization. Nonetheless, we will
see in the numerical experiments that the computation time of the factorization is negligible
compared to the overall computation time, and we prefer to stay in the more general, i.e., non-
symmetric, setting.

45

CHAPTER III. PDES WITH RANDOM LOAD

III.4 Numerical Examples
Before we summarize the settings of the numerical experiments, we briefly recall that the
algorithm of the H-matrix approach to correlation equations from this chapter consists of the
following three steps.

1. Compute the sparse finite element matrix A in linear and the correlation H-matrix Cf

in almost linear time.

2. Compute the approximate LU factorization of A in the H-matrix format in almost
linear time.

3. Solve the matrix equation (III.1.3) with iterative refinement (III.3.1) in almost linear
time for each iteration.

The numerical experiments in this thesis shall mainly focus on the third step and the overall
behaviour of the method. We will see that only one iteration is required in the third step,
which yields an almost linear overall complexity of the algorithm. To improve the computation
time, we exploit symmetry and store and compute only the lower triangular part of Cf and
Cu.

All the computations in the following experiments were carried out on a single core of a
computing server with two Intel(R) Xeon(R) E5-2670 CPUs with a clock rate of 2.60GHz and
a main memory of 256GB. For the H-matrix computations, we use the software package HLib
and, for the finite element discretization, we use the Partial Differential Equation Toolbox
of Matlab1, which employs piecewise linear finite elements. The two libraries are coupled
together in a single C-program, see [KR88], using the Matlab Engine interface. The meshes
are generated by Tetgen, see [Si15], and then imported into Matlab.

III.4.1 Experimental Setup
To obtain computational efficiency and to keep the ranks of the low-rank matrices under
control, HLib imposes, in accordance with Remark II.6.5, an upper threshold in terms of the
ε-rank and a prescribed maximal rank. In the case of an η-admissible H-matrix, the maximal
rank is denoted as kη. A lower threshold nmin is imposed for the minimal block size. For
the application of the weak admissibility condition, we rely on the criterion of HLib, which
considers the weak admissibility condition only if one of the index sets of the block-cluster
τ×σ has a cardinality below 1,024 and the condition (III.2.3) is satisfied for the corresponding
bounding boxes

∏3
i=1[aµi , b

µ
i], µ = τ, σ, in at most one coordinate direction. Otherwise, η-

admissibility is used instead. In the case of a weakly admissible matrix block, HLib imposes an
upper threshold of kw = 3kη instead of kη for the rank, setting, in accordance with [HKK04],
cη→w = 3 in (III.2.2). For our experiments, we choose η = 2, kη = 20, ε = 10−8, and
nmin = 50, and employ either a geometric cluster strategy, i.e., the binary cluster strategy
from Algorithm II.2, or the nested dissection cluster strategy from Algorithms III.2 and III.3.
The iterative refinement is stopped if the absolute error of the residual in the Frobenius norm
is smaller than 10−6.

In the following examples, we want to study, in addition to other aspects, the influence
of the weak admissibility condition and the nested dissection clustering for the partitioning
of the different H-matrices. Namely, we successively want to replace η-admissibility by weak
admissibility for a binary cluster tree and a nested dissection cluster tree, as described in Table
III.1, in order to lower the constants hidden in the complexity of the H-matrix arithmetic
and, thus, to improve the computation time. For the discretization of the correlation kernel
Cor[f], we will always use adaptive cross approximation, see [Beb00].

Whereas the all-η case is the canonical case, the weak-FEM case is a first relaxation to
apply the weak admissibility condition. This is justified, since the stiffness matrix A can
exactly be represented as a weakly admissible H-matrix and the iterative refinement only

1Release 2015b, The MathWorks, Inc., Natick, MA.

46

III.4. Numerical Examples

Case Operator and admissibility Cluster treeL and L−1 Corf and Coru

all-η η-admissibility η-admissibility binary
weak-FEM weak admissibility η-admissibility binary
all-weak weak admissibility weak admissibility binary
nd-η nd-admissibility η-admissibility nested dissection

nd-weak nd-admissibility weak-admissibility nested dissection

Table III.1: The five combinations of admissibility conditions used for the partition of H-
matrices.

involves an approximate LU factorization. Hence, we expect at most an influence on the
quality of the approximate LU factorization and, thus, on the number of iterations in the
iterative refinement. We therefore have to investigate if possible additional iterations are
compensated by the faster H-matrix arithmetic.

The aforementioned cases have in common that they rely on the asymptotic smoothness
of Cor[f] and Cor[u] and the η-admissibility which leads to exponential convergence of the
H-matrix approximation. In the case all-weak, we want to examine if there is some indication
that weak admissibility could possibly also be considered for the partition of the H-matrices
for Cor[f] and Cor[u]. To that end, we approximate Cor[f] with adaptive cross approximation
relative to the η-admissibility partition and convert it on-the-fly to the partition of the weak
admissibility, as proposed in [HKK04].

While the three aforementioned cases all rely on a binary cluster tree, the cases nd-η and
nd-weak rely on a cluster tree which is constructed by nested dissection. In both cases, the
finite element matrix A is partitioned by nd-admissibility. For Cor[f] and Cor[u], we use η-
admissibility in the nd-η case and weak admissibility in the nd-weak case, where we assemble
the matrix for Cor[f] in the same way as in the all-weak case.

The following numerical examples are divided into two parts. In the first part, we demon-
strate the convergence of the presented method by comparing it to a low-rank reference
solution computed with the pivoted Cholesky factorization, cf. [HPS12a]. In the second part,
we will demonstrate that the presented method also works well in the case of correlations
with low Sobolev smoothness or small correlation length, where no low-rank approximations
exist and sparse tensor product approximations fail to resolve the correlation length. Note
that in both examples, since we are also dealing with dense matrices, the computed system
matrices are smaller than usual for the finite element method. In particular, the unknown in
the system (III.1.3) of linear equations is a matrix with N2 entries, whereas the corresponding
mesh has only N degrees of freedom. The H-matrix compression reduces the computational
complexity for the assembly and the amount of required storage from N2 to O(kN logN),
whereas the complexity of the solution algorithm decreases from O(N3) to O(k2N log2N).

III.4.2 Tests for the Iterative Solver
Due to the truncation operators involved in the block matrix algorithms of the H-matrix
arithmetic, it is not immediately clear if the presented solver converges. Still, it can be shown
that some iterative H-matrix schemes converge up to a certain accuracy, cf. [HKT08]. In the
following, we want to demonstrate for a specific example that our iterative scheme indeed
provides convergence.

On the dumbbell geometry pictured in Figure III.4, we consider L = −∆ in (III.1.1) and
the Matérn-5/2 kernel as input correlation Cor[f], i.e., for r = ‖x−y‖ and ν = 5/2 in (II.4.5),
we set

Cor[f](x,y) =

(
1 +
√

5
r

`
+

5

3

r2

`2

)
exp

(
−
√

5
r

`

)
,

where ` ≈ diam(D) denotes the correlation length. The conversion of the finite element

47

CHAPTER III. PDES WITH RANDOM LOAD

Figure III.4: The dumbbell geometry and its meshed cross section with the diagonal of the
solution correlation kernel Cor[u]|x=y for load data prescribed by the Matérn-5/2 kernel.

matrix to an H-matrix for the dumbbell geometry was already illustrated in Figure III.1. The
difference between the η-admissibility and the weak admissibility is illustrated in Figure III.2,
and the effect of nested dissection ordering is illustrated in Figure III.3.

For determining a reference solution, we compute a low-rank approximation Cf ≈ LfL
ᵀ
f

with the pivoted Cholesky factorization as proposed in [HPS12a]. The numerical solution Cu

of (III.1.3) is then given by
Cu ≈ LuL

ᵀ
u,

where Lu solves ALu = Lf . To compute the error of the H-matrix solution, we compare
the correlation and the correlation’s diagonal Cor[u]|x=y of the H-matrix approximation with
the correlation and the correlation’s diagonal Cor[u]|x=y derived from the pivoted Cholesky
factorization on a finer reference mesh. We refer the reader to Table III.2 for more details on
the meshes under consideration.

Level 1 2 3 4 5 Reference mesh
Mesh points 238 1,498 6,958 34,112 175,562 1,033,382

N 4 201 1,742 13,341 98,177 756,626
N2 16 40,401 3,034,564 1.78 · 108 9.64 · 109 5.72 · 1011

Table III.2: Mesh points and number N of degrees of freedom of the finite element mesh and
number N2 of entries in the correlation matrices for different levels of the dumbbell geometry.

While the error of the correlation itself can be measured in the L2-norm on the tensor
product domain, the appropriate norm for error measurements of its diagonal is the W 1,1-
norm, see also [DDH15] for an in-depth discussion on this topic. Due to the Poincaré-Friedrich
and the Cauchy-Schwartz inequalities and∥∥u2 − u2

h

∥∥
W 1,1(D)

.
∥∥∇(u2 − u2

h

)∥∥
L1(D)

≤
∥∥(∇(u− uh)

)
(u+ uh)

∥∥
L1(D)

+ ‖(u− uh)
(
∇(u+ uh)

)∥∥
L1(D)

. |u− uh|H1(D) + ‖u− uh‖L2(D)

. h,

we can expect a convergence rate in the W 1,1-norm which is proportional to the mesh size
h. A standard tensor product argument yields a convergence rate of order h2 in the tensor
product L2-norm. Figure III.5 shows that we indeed reach these rates for all five cases of
admissibility which are considered in Table III.1. In fact, the observed errors coincide in the
first few digits.

We are also interested in the quality of the approximate LU factorization A ≈ L̂Û. We
use a built-in function of HLib to estimate the deviation L̂Û − A in the spectral norm by
ten power iterations, which is a good indicator of the approximation quality of the LU fac-
torization of the finite element matrix. The estimated errors are plotted in Figure III.6.

48

III.4. Numerical Examples

0.0974 0.1864 0.3599 0.6868 1.1836

10−2

10−1

100

101

102

h

te
ns
or
-L

2
-e
rr
or

h2

all-η
weak-FEM
all-weak
nd-η
nd-weak

0.0974 0.1864 0.3599 0.6868 1.1836
10−2

10−1

100

h

W
1
,1
-e
rr
or

h
all-η
weak-FEM
all-weak
nd-η
nd-weak

Figure III.5: L2-error of Cor[u] (left) and W 1,1-error of Cor[u]|x=y (right).

201 1742 13341 9817710−16

10−13

10−10

10−7

10−4

N

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm all-η

weak-FEM
all-weak
nd-η
nd-weak

Figure III.6: The deviation L̂Û−A in the estimated spectral norm for fixed rank.

Note that the observed behaviour is in contrast to the behaviour typically observed for pre-
conditioning, cf., e.g., [Beb08] and the references therein, since we do not increase the rank
with the number of unknowns. We can see that the LU factorization is most accurate in the
all-η case. Nonetheless, only one iteration is needed in the iterative refinement in all cases.
When it comes to computation times, Figure III.7 and Tables III.3, III.4, and III.5 indicate
that all cases of admissibility under consideration might yield essentially linear complexity,
although it seems that the asymptotic regime is not reached in the considered levels of re-
finement. Both, the weak admissibility condition and the nested dissection approach, lead to
considerable speed-ups, where the combination of these approaches, the nd-weak case, seems
to be the fastest approach. Figure III.8 illustrates the required average and maximal ranks
needed for the computations, whereas Figure III.9 illustrates the amount of storage needed
per degree of freedom. For reasons of performance, HLib allocates the worst-case scenario for
the ranks. Thus, in the latter case, only the different admissibilities for a single H-matrix,
built from a binary cluster tree and a nested dissection cluster tree, have to be considered.
In conclusion, nested dissection clustering consumes less computation time and less storage
for the LU factorization.

III.4.3 Small Correlation Lengths

Having verified the convergence of our solver, we now want to consider different correlation
lengths and different classes of smoothness. Hence, in the second part of the numerical exper-
iments, we employ correlation kernels with smaller correlation lengths and lower regularity
such that low-rank approximations would become prohibitively expensive and sparse tensor
product approaches would fail to resolve the concentrated measure.

We consider the screw-nut geometry, pictured in Figure III.10, which is discretized by
a mesh with 269,950 vertices, 197,480 degrees of freedom, and a maximal element diameter

49

CHAPTER III. PDES WITH RANDOM LOAD

4 201 1742 13341 98177
0

5 · 10−2

0.1

0.15

0.2

N

co
m
pu

ta
ti
on

ti
m
e
(s
)
/
N

N log(N)
all-η
weak-FEM
all-weak
nd-η
nd-weak

4 201 1742 13341 98177
0

1

2

3

4
·10−2

N

co
m
pu

ta
ti
on

ti
m
e
(s
)
/
N

N log(N)2

all-η
weak-FEM
all-weak
nd-η
nd-weak

4 201 1742 13341 98177
0

0.5

1

N

co
m
pu

ta
ti
on

ti
m
e
(s
)
/
N

N log(N)2

all-η
weak-FEM
all-weak
nd-η
nd-weak

Figure III.7: Computation times in seconds for the computation of the data correlation H-
matrix Cf (top left), the approximate LU factorization of the system matrix A (top right),
and for the iterative refinement (bottom) on the dumbbell geometry.

Level 1 2 3 4 5
all-η 0.000954 0.123520 8.07820 367.071 8,158.12
weak-FEM 0.001476 0.109641 8.12224 380.533 8,370.79
all-weak 0.001113 0.113122 8.86575 434.289 9,464.19
nd-η 0.001569 0.151018 7.54221 319.773 6,276.75
nd-weak 0.000885 0.123694 8.07407 349.585 6,711.85

Table III.3: Computation times in seconds to compute the data correlation H-matrix Cf on
the dumbbell geometry.

Level 1 2 3 4 5
all-η 2.2 · 10−5 0.001274 0.339432 56.2521 2,806.5
weak-FEM 2.9 · 10−5 0.00143 0.315344 17.7348 743.624
all-weak 2.2 · 10−5 0.001831 0.316497 18.3358 746.364
nd-η 2.5 · 10−5 0.000513 0.048170 4.17870 135.778
nd-weak 3.6 · 10−5 0.000588 0.050896 4.05899 132.319

Table III.4: Computation times in seconds to compute the approximate LU factorization of
the finite element matrix on the dumbbell geometry.

50

III.4. Numerical Examples

Level 1 2 3 4 5
all-η 5.2 · 10−5 0.011115 4.68355 1,419.19 85,477.9
weak-FEM 0.000104 0.010592 2.64065 420.153 29,492.1
all-weak 5.4 · 10−5 0.042098 14.5121 691.129 24,225.6
nd-η 0.000102 0.039209 5.60769 443.310 21,390.0
nd-weak 4.4 · 10−5 0.061530 7.67542 544.080 18,570.5

Table III.5: Computation times in seconds for the iterative refinement on the dumbbell
geometry.

4 201 1742 13341 98177
0

20

40

60

N

R
an

k

all-η
weak-FEM
all-weak
nd-η
nd-weak

4 201 1742 13341 98177
0

20

40

60

N

R
an

k

all-η
weak-FEM
all-weak
nd-η
nd-weak

4 201 1742 13341 98177
0

20

40

60

N

R
an

k

all-η
weak-FEM
all-weak
nd-η
nd-weak

Figure III.8: Required ranks for the prescribed correlation Cf (top left), the LU factorization
of A (top right), and the solution correlation Cu (bottom). The solid lines indicate the
average ranks, whereas the dashed lines illustrate the maximal rank attained.

4 201 1742 13341 9817710−4

10−3

10−2

10−1

100

101

102

103

N

K
B

/
N

N log(N)
η
weak
nd-η

4 201 1742 13341 9817710−4

10−3

10−2

10−1

100

101

102

103

N

K
B

/
N

N log(N)
η
weak
nd-η
nd-weak

Figure III.9: Allocated storage per degree of freedom for different admissibility conditions for
nonsymmetric (left) and symmetric (right) matrices. The allocated storage is independent of
the content of the matrix.

51

CHAPTER III. PDES WITH RANDOM LOAD

Figure III.10: The screw-nut geometry (left) and its meshed cross section (right).

of h/diam(D) ≈ 0.0225, yielding a matrix equation with 3.90 · 1010 unknowns. We choose
L = −∆ in (III.1.1) and as input correlation Cor[f] we choose either the Gaussian kernel,
i.e., letting ν →∞ in (II.4.5),

Cor[f](x,y) =
1

`
exp

(
− ‖x− y‖2

2`2

)
,

or the exponential kernel, i.e., setting ν = 1/2 in (II.4.5),

Cor[f](x,y) =
1

`
exp

(
− ‖x− y‖

`

)
.

In the following, we want to demonstrate that the presented method is well suited for
small correlation lengths ` > 0. We therefore choose the correlation lengths

` ∈
{

diam(D)

1
,

diam(D)

2
,

diam(D)

4
,

diam(D)

8
,

diam(D)

16
,

diam(D)

32

}
for both the Gaussian kernel and the exponential kernel, and compute the corresponding
correlation of the solution Cor[u]. A visualization of the Gaussian kernel for different `
without the rescaling was given in Figure II.2.

In our first test, we use the nd-weak case, as the previous section has shown that it is
more memory efficient and has superior computation times. The computation time for the
assembly of the prescribed correlation is about 20,000 seconds, and the computation time of
the approximate LU factorization is about 400 seconds, whereas the computation times for
the iterative refinement are contained in Table III.6.

`/diam(D) 1 1/2 1/4 1/8 1/16 1/32

Exponential nd-weak 51,656.7 53,011.0 52,876.5 51,459.2 49,838.2 51,524.6
all-weak 77,784.5 79,101.8 79,155.3 79,155.3 76,952.6 72,256.9

Gaussian nd-weak 47,921.8 50,644.0 50,819.5 51,753.7 — —
all-weak 73,405.4 74,877.0 75,165.7 68,222.8 72,259.4 75,070.4

Table III.6: Computation times in seconds for the nd-weak case and the all-weak case for
the iterative refinement on the screw-nut geometry in case of the exponential kernel and the
Gaussian kernel with different correlation lengths.

We do not tabulate the computation times for the Gaussian kernel in case of the correlation
lengths `/diam(D) = 1/16 and `/diam(D) = 1/32, since the iterative refinement does not
converge to the prescribed tolerance. In all other cases, the iterative refinement needs only
one iteration.

52

III.5. Conclusion

Repeating the computations in the two problematic cases with increased kη or in the
nd-η instead of the nd-weak case also does not lead to convergence. However, repeating all
computations in the all-weak case resolves the issue, as the computation times in Table III.6
show. In the all-weak case, the computation time for the prescribed correlation is again
around 20,000 seconds, and the computation time for the approximate LU factorization is
around 1,700 seconds. The iterative refinement again needs one iteration in all tabulated
cases.

The cross sections found in Figure III.11 illustrate the different behaviour of the correla-
tion’s diagonal Cor[u]|x=y for the different correlation lengths in case of the exponential kernel.
The related results for the Gaussian kernel are presented in Figure III.12. It seems that a
mass defect occurs for the correlation lengths `/diam(D) = 1/16 and `/diam(D) = 1/32,
i.e., we roughly find an decrease of the diagonal of the correlation although we should find
an increase in those two cases. This could be due to the fact that the mesh size of the finite
element method is not able to resolve the correlation length properly. Nevertheless, the com-
putation times are independent of `, although the underlying finite element method cannot
resolve the correlation length. Moreover, the nested dissection clustering technique can lead
to a speed-up, while the binary clustering technique seems to be more robust.

III.5 Conclusion
We considered the solution of strongly elliptic partial differential equations with random load
by means of the finite element method. We employed the H-matrix technique to efficiently
discretize the non-local correlation kernel of the data and to approximate the LU factorization
of the finite element stiffness matrix. The resulting H-matrix equation was then efficiently
solved in essentially linear complexity by the H-matrix arithmetic.

Compared to sparse tensor product or low-rank approximations, the proposed method
does not suffer from large constants in the complexity estimates or lack of resolving of the
roughness in the case of shortly correlated data. This was shown by numerical experiments
on a nontrivial three-dimensional geometry. Indeed, neither the computation times nor the
storage requirements increase for correlation kernels with short correlation length. It was
moreover demonstrated that the use of the weak admissibility condition for the partition
of the H-matrix improves the constants in the computational complexity without having a
significant impact on the solution accuracy. The application of a nested dissection clustering
strategy can additionally lead to a speed-up of computation and save storage, whereas the
binary clustering strategy seems to be the more robust approach.

53

CHAPTER III. PDES WITH RANDOM LOAD

` = diam(D)
1 ` = diam(D)

2

` = diam(D)
4 ` = diam(D)

8

` = diam(D)
16 ` = diam(D)

32

Figure III.11: Cross sections of the diagonal of the correlation of the solution through the
screw-nut geometry for the exponential kernel with different correlation lengths `.

54

III.5. Conclusion

` = diam(D)
1 ` = diam(D)

2

` = diam(D)
4 ` = diam(D)

8

` = diam(D)
16 ` = diam(D)

32

Figure III.12: Cross sections of the diagonal of the correlation of the solution through the
screw-nut geometry for the Gaussian kernel with different correlation lengths `.

55

CHAPTER III. PDES WITH RANDOM LOAD

56

Chapter IV

The Fast H2-multipole Method on
Parametric Surfaces

IV.1 Boundary Integral Equations
The previous chapter was concerned with the uncertainty quantification of the solution of a
partial differential equation. As the discretization of the PDE was accomplished by using the
finite element method, a mesh had to be generated on the whole computational domain. If
a Green’s function of the underlying differential operator is known, i.e., a function fulfilling
(III.2.1) without the boundary conditions, the boundary value problem may be reformulated
by means of boundary integral equations. Before we recall the major concepts of this proce-
dure, we remark that it has the major advantage of reducing the problem’s dimensionality.

To keep notation straight, we consider the Laplace equation

−∆u(x) = 0 for x ∈ D (IV.1.1)

in a bounded three-dimensional Lipschitz domain D ⊂ R3 and refer to [SS11, Ste08] for more
general differential operators and non-homogeneous right-hand sides. The Green’s function
to the Laplace operator in three dimensions is given by

G(x,y) =
1

4π‖x− y‖
.

Having the Green’s function available, the solution to (IV.1.1) can then be expressed using
its Cauchy data by the representation formula

u(x) =

∫
∂D

1

4π‖x− y‖
∂u

∂ny
(y) dσy −

∫
∂D

〈x− y,ny〉
4π‖x− y‖3

u(y) dσy for x ∈ D, (IV.1.2)

see, e.g., [Ste08, Chapter 5.1]. The first boundary integral operator of the representation
formula has the following properties, see also [Ste08, Lemma 6.6].

Theorem IV.1.1. For any ρ ∈ H−1/2(∂D), the single layer potential

(
Ṽρ
)
(x) :=

∫
∂D

ρ(y)

4π‖x− y‖
dσy for x ∈ R3 \ ∂D (IV.1.3)

satisfies the Laplace equation (IV.1.1) in R3 \ ∂D. Moreover, it is a continuous mapping

Ṽ : H−1/2(∂D)→ H1(D).

The second boundary integral operator has similar properties, see also [Ste08, Lemma
6.10].

57

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

Theorem IV.1.2. For any ρ ∈ H1/2(∂D), the double layer potential

(
K̃ρ
)
(x) :=

∫
∂D

〈x− y,ny〉ρ(y)

4π‖x− y‖3
dσy for x ∈ R3 \ ∂D (IV.1.4)

satisfies the Laplace equation (IV.1.1) in R3 \ ∂D. Moreover, it is a continuous mapping

K̃ : H1/2(∂D)→ H1(D).

We may use the single layer and the double layer potential to solve (IV.1.1) with either
Dirichlet boundary conditions

−∆u(x) = 0 for x ∈ D,
u(x) = f(x) for x ∈ ∂D,

(IV.1.5)

or Neumann boundary conditions

−∆u(x) = 0 for x ∈ D,
∂u

∂n
(x) = g(x) for x ∈ ∂D.

(IV.1.6)

While there exists a unique solution to (IV.1.5), see, e.g., [Ste08, Chapter 4.1.1], the solution
of (IV.1.6) is only unique up to a constant and exists only when the compatibility condition∫

∂D

g(x) dσx = 0

is satisfied, see also [Ste08, Chapter 4.1.3].
Since the single layer potential satisfies (IV.1.1), we may make the ansatz

u(x) =
(
Ṽρ
)
(x), x ∈ D. (IV.1.7)

This leads to a Fredholm integral equation of the first kind for the Dirichlet problem,

(Vρ)(x) =

∫
∂D

ρ(y)

4π‖x− y‖
dσy = f(x), x ∈ ∂D, (IV.1.8)

and to a Fredholm integral equation of the second kind for the Neumann problem,

1

2
ρ(x) + (K?ρ)(x) =

1

2
ρ(x) +

∫
∂D

〈nx,y − x〉ρ(y)

4π‖x− y‖3
dσy = g(x), x ∈ ∂D, (IV.1.9)

for the unknown density ρ, see [Ste08, Chapter 7.1 and 7.2].
We may also make an ansatz with the double layer potential

u(x) =
(
K̃ρ
)
(x), x ∈ D. (IV.1.10)

This leads to a Fredholm integral equation of the second kind for the Dirichlet problem,

1

2
ρ(x)− (Kρ)(x) =

1

2
ρ(x)−

∫
∂D

〈x− y,ny〉ρ(y)

4π‖x− y‖3
dσy = f(x), x ∈ ∂D, (IV.1.11)

and to a Fredholm integral equation of the first kind for the Neumann problem,

(Wρ)(x) =
∂

∂nx

∫
∂D

〈x− y,ny〉ρ(y)

4π‖x− y‖3
dσy = g(x), x ∈ ∂D, (IV.1.12)

for the unknown density ρ, see [Ste08, Chapter 7.1 and 7.2].
The following theorem is a collection of results from [Ste08, Chapter 6] and recalls impor-

tant properties of the just introduced boundary integral operators.

58

IV.2. Surface Representation

Theorem IV.1.3. The previously introduced boundary integral operators are well defined and
have the following mapping properties:

• V : H−1/2(∂D)→ H1/2(∂D) is called the single layer operator.

• K? : H−1/2(∂D)→ H−1/2(∂D) is called the adjoint double layer operator.

• K : H1/2(∂D)→ H1/2(∂D) is called the double layer operator.

• W : H1/2(∂D)→ H−1/2(∂D) is called the hypersingular operator.

It is worth mentioning that the numerical treatment of the hypersingular operator requires
special care, which is the topic of Chapter IV.7.1.

Being assured of the well definedness of the integral equations (IV.1.8), (IV.1.9), (IV.1.11),
and (IV.1.12), we may discuss the existence of solutions. The following lemma is [Ste08,
Theorem 6.22 and 6.24 and (6.38)].

Lemma IV.1.4. The single layer operator and the hypersingular operator yield elliptic bi-
linear forms on the following spaces:

1. The bilinear form (Vu, v)L2(∂D) is H−1/2(∂D)-elliptic.

2. The bilinear form (Wu, v)L2(∂D) is H1/2
? (∂D)-elliptic, with

H
1/2
? (∂D) := {v ∈ H1/2(∂D) : (v, 1)L2(∂D) = 0}.

As a consequence, the integral equations (IV.1.8) and (IV.1.12) are uniquely solvable in the
corresponding spaces due to the Lax-Milgram theorem. However, we may remark that the
hypersingular operator is only semi-elliptic on H1/2(∂D), see [Ste08, Corollary 6.25].

In contrast, the integral equations of the second kind are not elliptic. Instead, one ensures
the existence of the solutions to (IV.1.9) and (IV.1.11) with an argument based on Neumann
series, see [Ste08, Chapter 7.1 and 7.2] for an in-depth discussion.

We conclude this section by remarking that the boundary integral equations (IV.1.8),
(IV.1.9), (IV.1.11), and (IV.1.12) are referred to as indirect methods to solve (IV.1.5) and
(IV.1.6). Especially, the intermediate result ρ does not have a physical meaning. Instead, one
may use a direct approach, i.e., the representation formula (IV.1.2) to represent the solution.
The Dirichlet-to-Neumann map

S := V−1

(
1

2
+K

)
: H1/2(∂D)→ H−1/2(∂D) (IV.1.13)

is a bounded operator which establishes a connection between the Dirichlet data and the Neu-
mann data. Especially, it fulfils the same ellipticity estimates as the hypersingular operator.
We refer to [Ste08, Chapter 6.6.3] for a more detailed discussion.

IV.2 Surface Representation
For the numerical treatment of the boundary integral equations of the previous section, a
representation of the domain boundary is required. For that purpose, let � := [0, 1]2 denote
the unit square, which serves as reference domain. We then assume that the surface ∂D can
be subdivided into several patches

∂D =

M⋃
i=1

Γi,

where, for each patch, there exists a smooth diffeomorphism

γi : �→ Γi with Γi = γi(�) for i = 1, 2, . . . ,M, (IV.2.1)

59

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

0 1

1
γi

Γi

Figure IV.1: Surface representation and mesh generation.

as illustrated in Figure IV.1. Moreover, we assume that the intersection Γi ∩ Γj , i 6= j, is
either a common edge, a common vertex, or empty.

For constructing regular surface meshes, one has to impose the following matching con-
dition: For each x = γi(s) on a common edge of Γi and Γj there has to exist a bijective
and affine mapping Ξ : � → � such that there holds γi(s) = (γj ◦ Ξ)(s). This means that
the parameterizations γi and γj coincide on the common edge except for orientation. Figure
IV.2 visualizes three parameterizations which satisfy the present requirements.

Figure IV.2: Different parametric surfaces with their patch boundaries.

For later reference, in order to pull the kernel functions back to the reference domain, the
surface measure of the diffeomorphisms γi is required. On the patch Γi, it is given by

κi(s) :=
∥∥∂s1γi(s)× ∂s2γi(s)

∥∥. (IV.2.2)

One major advantage of parametric surfaces stems from the fact that more geometric
information is available, which can therefore be exploited in the discretization. In particular,
no difficulties arise if geometric entities occur in the kernel function of the integral operator
under consideration, like the normal or tangent vector, as for example in the double layer
operator or the adjoint double layer operator. Moreover, parametric surfaces provide an
exact representation of the surface, which is in contrast to the common approximation of
surfaces by panels. Particularly, there is no further approximation step required if the surface
is given in this form. As a consequence, the rate of convergence in a corresponding boundary
element method is not limited by the accuracy of the surface approximation.

Many parametric surfaces are nowadays directly accessible as surfaces generated by tools
from Computer Aided Design (CAD). Very common surface representations in CAD are de-
fined by the IGES (Initial Graphics Exchange Specification) and the STEP (Standard for the
Exchange of Product Model Data) standards, cf. [U.S96, Int14]. In both standards, the initial
CAD object is a solid, bounded by a closed surface that is given as a collection of parametric
surfaces which can be trimmed or untrimmed. An untrimmed surface is a four-sided patch,
parameterized over a rectangle. Whereas, a trimmed surface is just a piece of a supporting

60

IV.2. Surface Representation

untrimmed surface, described by boundary curves. There are several representations of the pa-
rameterizations including B-splines, NURBS (nonuniform rational B-Splines), surfaces of rev-
olution, and tabulated cylinders, see [HL89]. The representation with NURBS is intensively
studied in the context of isogeometric analysis, see, e.g., [CHB09, HCB05, MZBF15, ZMBF14].
Nevertheless, in contrast to the isogeometric analysis framework, the scope of this chapter is
not restricted to geometries that can be represented by NURBS, but considers any surface
which provides the requirements specified at the beginning of this section.

An algorithm to decompose a technical surface, described in the IGES format, into a col-
lection of parameterized four-sided patches, fulfilling all the above requirements, was proposed
in [HR10]. This algorithm was extended in [HR09, HR11] to molecular surfaces.

Starting from this surface representation, it is straightforward to generate a nested se-
quence of meshes for ∂D. The mesh Qj on level j for ∂D is induced by dyadic subdivisions
of depth j of the unit square into 4j congruent squares, each of which is lifted to ∂D by the
associated parameterization γi, see Figure IV.1 for a visualization. This procedure leads to
a nested and especially quad-tree structured sequence

Q0 ⊂ Q1 ⊂ · · · ⊂ QJ

of meshes consisting of Nj = 4jM elements on level j. We may use the hierarchy imposed
by the nestedness of the meshes as an alternative to Algorithm II.2 to construct a perfectly
balanced cluster tree as follows.

The particular elements shall be referred to as Γi,j,k, where i is the index of the underlying
parameterization γi, j denotes the level of the element, and k is the index of the element in
hierarchical order as illustrated in Figure IV.3. For notational convenience the triple (i, j, k)
shall be referenced by λ := (i, j, k) with |λ| := j. Obviously, for j < J , the element Γi,j,k
consists of the four elements Γi,j+1,4k+`, ` = 0, . . . , 3. We can thus define a son relation on
the corresponding index set by

sons(λ) := {(i, j + 1, 4k + `) : ` = 0, . . . , 3}.

It directly follows that the sons mapping induces a cluster tree in the sense of Definition II.5.3
and we remark that, in accordance with Definition II.5.5, it holds Υλ = Γλ. An illustration
for the cluster tree on the patch Γi up to level 2 can be found in in Figure IV.3.

Γi,0,0

level 0

Γi,1,3

Γi,1,0

Γi,1,2

Γi,1,1

level 1 level 2

Γi,2,6

Γi,2,5
Γi,2,4

Γi,2,7

Figure IV.3: Visualization of the cluster tree.

Obviously, the depth of the constructed cluster tree is J + 1 on each patch, i.e., it is
O(logNJ).

Remark IV.2.1. The proposed method of mesh generation particularly implies that all sur-
face patches are represented by the same number of elements. In fact, this assumption is very
similar to the “propagation of refinement” in isogeometric analysis, cf. [CHB09, HCB05]. An
approach to cope with locally refined meshes in the isogeometric context was made in [CHR07].

61

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

IV.3 Problem Formulation
For the rest of this chapter, we shall focus on the solution of boundary integral equations
similar to the ones in Section IV.1. More generally, we consider equations of the type

(Aρ)(x) :=

∫
∂D

k(x,y)ρ(y) dσy = f(x) (IV.3.1)

on the closed, parametric surface ∂D, where the boundary integral operator A is supposed
to map Hq(∂D) continuously and one-to-one onto H−q(∂D).

Remark IV.3.1. If A is a pseudodifferential operator of order 2q, it directly follows that
A : Hq(∂D)→ H−q(∂D) is continuous, see also [HW08, Theorem 8.1.2].

Following the considerations in Chapter II.4, the corresponding system matrix is densely
populated. Assuming the asymptotical smoothness or similar properties of the kernel func-
tion, several ideas for the efficient approximation of the discrete system of linear equations
were developed in the last decades to efficiently approximate the system matrix. The most
prominent examples of such methods are the fast multipole method [GR87, GR97], the panel
clustering method [HN89], the wavelet Galerkin scheme [BCR91, DHS06], and the adaptive
cross approximation [Beb00]. Except for the wavelet Galerkin scheme, all theses methods can
be cast into an H-matrices structure. This compression might even be improved by means
of H2-matrices, cf. [Bör10]. Then, the underlying tree structure of the H-matrix is exploited
to construct nested cluster bases for the compressible matrix blocks. In the end, all these
discretization methods turn out to be of linear or almost linear complexity, i.e., linear up to
a poly-logarithmic factor, with respect to the number of boundary elements.

We will provide a simple black-box version of the fast multipole method (FMM) for higher
order boundary elements in order to make use of the features of parametric surfaces. In
particular, the presented fast multipole method interpolates the kernel function directly on
the reference domain. This is in contrast to the interpolation of the kernel in space, as in, e.g.,
[Gie01, HB02], and yields a remarkable speed-up of the FMM, since the dimension reduction
due to the boundary integral formulation of the underlying problem can be fully exploited.
In three spatial dimensions, the surface is a two-dimensional manifold and so the problem
is inherently two-dimensional. This results in a dramatic reduction of the computational
effort. Moreover, one can still profit from the H2-matrix techniques presented in, e.g., [Gie01,
HB02]. Notably, since the considered realization of parametric surfaces is based on four-sided
patches, one can exploit the tensor product structure of the reference domain to simplify the
construction of H2-matrices. More precisely, due to the special structure of the reference
domain, the construction of H2-matrices only slightly differs from that of usual H-matrices.

The variational formulation of the boundary integral equation (IV.3.1) now reads as fol-
lows:

Find ρ ∈ Hq(∂D) such that (Aρ, v)L2(∂D) = (f, v)L2(∂D) for all v ∈ Hq(∂D). (IV.3.2)

Inserting the parametric representation (IV.2.1) of ∂D, the bilinear form becomes

(Aρ, v)L2(∂D) =

∫
∂D

∫
∂D

k(x,y)ρ(y)v(x) dσy dσx

=

M∑
i,i′=1

∫
�

∫
�
ki,i′(s, t)ρ

(
γi′(t)

)
v
(
γi(s)

)
dt ds

and the linear form becomes

(f, v)L2(∂D) =

∫
∂D

f(x)v(x) dσx

=

M∑
i=1

∫
�
f
(
γi(s)

)
v
(
γi(s)

)
κi(s) ds.

62

IV.3. Problem Formulation

Here, the kernels ki,i′ correspond to the transported kernel functions

ki,i′ : �×�→ R,
ki,i′(s, t) := k

(
γi(s),γi′(t)

)
κi(s)κi′(t)

}
i, i′ = 1, 2, . . . ,M. (IV.3.3)

We have thus pulled back the linear and bilinear form to the reference domain. In the
following, we shall assume that the underlying kernel function is analytically standard, which
also allows us to pull back the notion of asymptotic smoothness.

Definition IV.3.2. A kernel function k(x,y) is called analytically standard of order 2q if
constants c1 > 0 and c2 > 0 exist such that the partial derivatives of the transported kernel
functions ki,i′(s, t) are uniformly bounded by

∣∣∂αs ∂βt ki,i′(s, t)
∣∣ ≤ c1 (|α|+ |β|)!

c
|α|+|β|
2

∥∥γi(s)− γi′(t)
∥∥−2−2q−|α|−|β|

, (IV.3.4)

provided that 2 + 2q + |α|+ |β| > 0.

Note that, since the parametric representation is patch-wise smooth, all asymptotically
smooth kernels are also analytically standard, see, e.g., [HP13] for a proof of this statement.
However, the converse is not true. For example, the kernels of the double layer operator and
the adjoint double layer operator are only asymptotically smooth in one variable in space and,
on non-smooth domains, also only asymptotically smooth in one variable in local coordinates.
Nevertheless, both functions are analytically standard, since the normal vector is a smooth
function on each patch.

In the context of the Galerkin approximation, it is convenient to refer also to the localized
kernel functions. To that end, let �j,k := γ−1

i (Γi,j,k) be the k-th element of the subdivided
unit square on level j and define the affine mapping

τ j,k : �→ �j,k for j = 0, 1, . . . , J and k = 0, 1, . . . , 4jM − 1

via dilation and translation. Then, the localized kernel functions kλ,λ′ : �×�→ R are given
by

kλ,λ′(s, t) := k
(
γλ(s),γλ′(t)

)
κλ(s)κλ′(t) (IV.3.5)

with the localized parameterizations γλ := γi ◦ τ j,k and the corresponding surface measures
κλ := 2−2jκi ◦τ j,k with κi as defined in (IV.2.2). An illustration of the mappings γλ is given
by Figure IV.4.

0 1

1

Γλ

τ j,k
γi

Figure IV.4: Localized parameterization.

In the following, only localized kernel functions shall be considered. The next theorem
is an immediate consequence of the definition (IV.3.5) and the fact that ∂αs τ j,k(s) = 2−j if
|α| = 1 and ∂αs τ j,k(s) = 0 if |α| > 1.

63

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

Theorem IV.3.3. Let the kernel function k(x,y) be analytically standard of order 2q. Then,
there exist constants c1 > 0 and c2 > 0 such that

∣∣∂αs ∂βt kλ,λ′(s, t)
∣∣ ≤ c1 (|α|+ |β|)!

c
|α|+|β|
2

2−|λ|(|α|+2)2−|λ
′|(|β|+2)

‖γλ(s)− γλ′(t)‖2+2q+|α|+|β| (IV.3.6)

holds uniformly for all λ,λ′ provided that 2 + 2q + |α|+ |β| > 0.

IV.4 Galerkin Discretization
In this section, the Galerkin discretization of the variational formulation (IV.3.2) is considered.
To this end, fix a polynomial order d ∈ N, a level of refinement j ∈ N0, and define the ansatz
space

V̂j :=
{
ϕ̂ : �→ R : ϕ̂|�j,k is a polynomial of order d

}
⊂ L2(�) (IV.4.1)

of discontinuous, element-wise polynomial ansatz functions on the reference domain. With
the help of this space, one can introduce the ansatz space Vj in accordance with

Vj :=
{
ϕ̂ ◦ γ−1

i : ϕ̂ ∈ V̂j , i = 1, . . . ,M
}
⊂ L2(∂D).

This construction of the ansatz spaces obviously yields a nested sequence

V0 ⊂ V1 ⊂ · · · ⊂ VJ ⊂ Ht(∂D), (IV.4.2)

where the Sobolev smoothness t depends on the global smoothness of the functions ϕ ∈ Vj .
For arbitrary functions ϕ ∈ Vj , one has t < 1/2, and, for the subset of globally continuous
functions in Vj , one has t < 3/2.

By replacing the energy space Hq(∂D) in the variational formulation (IV.3.2) by the finite
dimensional ansatz space VJ ⊂ Hq(∂D), the Galerkin discretization for the boundary integral
equation (IV.3.1) is given by:

Find ρJ ∈ VJ , such that∫
∂D

∫
∂D

k(x,y)ρJ(y)vJ(x) dσy dσx =

∫
∂D

f(x)vJ(x) dσx

for all vJ ∈ VJ .

(IV.4.3)

Setting ρ̂λ := ρJ ◦ γλ and v̂λ := vJ ◦ γλ, rewriting (IV.4.3) yields∑
|λ′|=J

∫
�

∫
�
kλ,λ′(s, t)ρ̂λ′(t)v̂λ(s) dt ds =

∫
�
f
(
γλ(s)

)
v̂λ(s)κλ(s) ds (IV.4.4)

for all λ with |λ| = J .
A basis for VJ is obtained by tensorizing polynomial shape functions on [0, 1] and applying

the localized parameterizations γλ. For d = 1, 2, 3, suitable shape functions are depicted in
Table IV.1.

By choosing such a basis, (IV.4.3) immediately yields a system of linear equations:

AJρJ = fJ . (IV.4.5)

To realize globally continuous B-splines as ansatz functions, enabling for example the dis-
cretization of the hypersingular integral operator, suitable transformation matrices shall be
applied. The construction of these transformation matrices is the topic of Section IV.6.

Having the Galerkin solution ρJ ∈ VJ at hand yields the following well known error
estimate by use of the standard approximation property for ansatz functions of polynomial
order d. Note that the rate of convergence doubles due to the Aubin-Nitsche lemma.

64

IV.5. Fast Multipole Method

d Shape Functions Visualization

1 φ(i)(x) = 1

0 0.5 1
0

0.5

1

2 φ(i)(x) =

{
1− x
x

0 0.5 1
0

0.5

1

3 φ(i)(x) =


(1− x)2/2

−(x− 1/2)2 + 3/4

x2/2
0 0.5 1

0

0.5

1

Table IV.1: B-spline based shape functions on the interval.

Figure IV.5: The special block partitioning of the H-matrix.

Theorem IV.4.1. Let ρ ∈ Hq(∂D) be the solution of the boundary integral equation (IV.3.1)
and ρJ ∈ VJ the related Galerkin solution of (IV.4.3). Then, there holds the error estimate

‖ρ− ρJ‖H2q−d(∂D) . 22J(q−d)‖ρ‖Hd(∂D),

provided that ρ and ∂D are sufficiently regular.

IV.5 Fast Multipole Method

Having the cluster tree from the parametric surface representation available, we may use
Algorithm II.3 to construct a block-cluster tree which partitions the matrix into nearfield
and farfield blocks. Since all clusters on the same level of the cluster tree have the same
cardinality, all block-clusters and their corresponding matrix blocks are quadratic, i.e., for all
block-clusters λ × λ′ it holds #λ = #λ′. In particular, for a block-cluster on level j, the
cardinality of the corresponding clusters λ and λ′ is a power of four. See also Figure IV.5 for
a visualization of this special block partitioning of an H-matrix.

The rest of this section shall discuss how this additional structure can be combined with

65

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

the tensor product structure of the reference domain to obtain an efficient compression of the
farfield.

IV.5.1 Kernel Interpolation

To compress the admissible matrix blocks, we describe a black-box version of the FMM based
on the interpolation of the kernel k(x,y) as firstly proposed in [Gie01]. Note that, later on,
this idea was also followed in [HB02] to construct H2-matrices. Nevertheless, in contrast to
these works, the approach presented here interpolates the localized kernel (IV.3.5) on the
reference domain rather than the original kernel in space.

For a given polynomial degree p ∈ N0, let {x0, x1, . . . , xp} ⊂ [0, 1] denote p + 1 interpo-
lation points. Furthermore, let Lm(s) for m = 0, . . . , p be the Lagrangian basis polynomials
with respect to these interpolation points. By a tensor product construction, one obtains the
interpolation points xm := (xm1

, xm2
) and the corresponding tensor product basis polynomi-

als Lm(s) := Lm1
(s1) · Lm2

(s2) for m1,m2 = 0, . . . , p. In all admissible blocks λ × λ′ ∈ F ,
this gives rise to the approximation

kλ,λ′(s, t) ≈
∑

‖m‖∞,‖m′‖∞≤p

kλ,λ′(xm,xm′)Lm(s)Lm′(t).

Hence, for two basis functions φ̂`, φ̂`′ ∈ V̂J−|λ| of the ansatz space on level J − |λ|, the
corresponding matrix entry has the representation

[Aλ,λ′]`,`′ ≈
∫
�

∫
�

∑
‖m‖∞,‖m′‖∞≤p

kλ,λ′(xm,xm′)Lm(s)Lm′(t)φ̂`(s)φ̂`′(t) dt ds

=
∑

‖m‖∞,‖m′‖∞≤p

kλ,λ′(xm,xm′)

∫
�

Lm(s)φ̂`(s) ds

∫
�

Lm′(t)φ̂`′(t) dt

=:
[
M�
|λ|Kλ,λ′(M

�
|λ′|)

ᵀ
]
`,`′
,

which can be visualized as

Aλ,λ′ ≈ M�
|λ|

Kλ,λ′ (M�
|λ|′)

ᵀ

As remarked at the beginning of this section, by construction, each cluster on a particular
level contains the same number of basis functions, namely dim(V̂J−|λ|). Additionally, the
moment matrices M�

|λ| are independent of the particular parameterization. This yields the
following statement.

Theorem IV.5.1. For j = 1, 2, . . . , J and all |λ| = |λ′| = j, it holds

M�
|λ| = M�

|λ′|. (IV.5.1)

Thus, only a single moment matrix

M�
|λ| ∈ Rdim(V̂J−|λ|)×(p+1)2

for each particular level has to be computed and stored. Because of quadrangular meshes,
one may exploit the tensor product structure of the ansatz functions. To that end, let φ̂` =

66

IV.5. Fast Multipole Method

φ̂
(1)
` ⊗ φ̂

(2)
` and φ̂`′ = φ̂

(1)
`′ ⊗ φ̂

(2)
`′ , respectively. Then, the moment matrices M�

|λ| can be
decomposed even further:∫

�
Lm(s)φ̂`(s) ds =

∫ 1

0

∫ 1

0

Lm1(s1)φ̂
(1)
` (s1)Lm2(s2)φ̂

(2)
` (s2) ds1 ds2

=

∫ 1

0

Lm1(s1)φ̂
(1)
` (s1) ds1

∫ 1

0

Lm2(s2)φ̂
(2)
` (s2) ds2

=:
[
M|λ|⊗M|λ|

]
`,(p+1)m1+m2

.

Since

M|λ| ∈ R
√

dim(V̂J−|λ|)×(p+1), (IV.5.2)

this yields an improved storage complexity for the farfield.

IV.5.2 Computational Complexity
In the sequel, complexity estimates for the FMM under consideration shall be derived. Similar
to the constant nmin in the Chapters II.5 and II.6, we may impose a lower threshold for the
number of elements in the leaves. Setting nmin = p2 and taking the perfectly balanced
structure of the cluster tree into account, we may only consider the block-cluster tree up to
a level J − jmin, with, assuming p ≥ d,

jmin := b2 log4(p/d)c.

Thus, matrix blocks of size p2 × p2 are considered as nearfield and will not be compressed by
the FMM. The proof of the next theorem implies that this results in O

(
NJ(p/d)−2

)
nearfield

blocks with a storage cost of O
(
NJ(pd)2

)
, where NJ is the number of elements on level J .

Moreover, the following result holds for the cost complexity of the farfield.

Theorem IV.5.2. The complexity for the computation and the storage of the farfield is
O
(
NJ(pd)2

)
.

Proof. We first remark, that for each cluster, there exist at most Cmaxη and at least Cminη

neighbouring clusters on the same level which do not satisfy the admissibility condition
(II.5.3). Due to the special structure of the mesh, these constants depend only on η and
the position of the patches to each other.

We now look at an arbitrary cluster on level j. Since this cluster has at most Cmaxη non-
admissible cluster-cluster interactions and there areM4j of these clusters, we haveM4jCmaxη

non-admissible cluster-cluster interactions on level j. To estimate the number of admissible
cluster-cluster interaction for a cluster on level j, we remark that its father cluster has Cmaxη

non-admissible cluster-cluster interactions. We have thus 4Cmaxη candidates for admissible
cluster-cluster interactions for each cluster on level j. Since at least Cminη of these interactions
are non-admissible, we have for each cluster on level j at most 4Cmaxη − Cminη admissible
cluster-cluster interactions and thus in total M4j(4Cmaxη −Cminη) admissible cluster-cluster
interactions on level j.

Due to the lower threshold, the maximum level to be computed is J − jmin. Since NJ =
4JM , one may estimate

J−jmin∑
j=0

M4j(4Cmaxη − Cminη) = O
(
M4J−jmin

)
= O

(
M4J(p/d)−2

)
= O

(
NJ(p/d)−2

)
,

leading to O
(
NJ(p/d)−2

)
farfield blocks and accordingly O

(
NJ(p/d)−2

)
nearfield blocks.

For each farfield block, the localized kernel functions have to be evaluated and stored in
O(p4) points. The complexity for assembly and storage of the moment matrices is O

(√
NJpd

)
in total, cf. (IV.5.2). Consequently, the farfield complexity is

O
(
NJ(p/d)−2

)
· O(p4) +O

(√
NJpd

)
= O

(
NJ(pd)2

)
.

67

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

Remark IV.5.3. Due to the parametric surface representation, an improved cost complexity
is obtained. The standard interpolation-based FMM proposes to interpolate the kernel in space.
Thus, the polynomial degree enters with O(p3), cf. [Gie01, HB02]. Since the transported kernel
is only interpolated on the reference domain, this cost can be reduced to O(p2).

The improved storage complexity also affects the cost of the H-matrix-vector multiplica-
tion. The complexity of the conventional H-matrix-vector multiplication is, setting k = p3,
O
(
NJ logNJp

3d2
)
, whereas we obtain the following result for the here presented one.

Theorem IV.5.4. The complexity of the H-matrix-vector multiplication for the FMM is
O
(
NJ logNJ(pd)2

)
.

Proof. On level j ≤ J − jmin, there are M4j(4Cmaxη − Cminη) farfield blocks with a block
size of d24J−j . Since it holds p4 = p2p2 ≤ p24jmin , the complexity of the matrix-vector
multiplication for the farfield is therefore

J−jmin∑
j=0

M4j(4Cmaxη − Cminη)
(
2 · 4J−j(pd)2 + p4

)
≤ 3(4Cmaxη − Cminη)NJ(J − jmin)(pd)2 = O

(
NJ logNJ(pd)2

)
.

Next, look at the nearfield blocks and recall that there are O
(
NJ(p/d)−2

)
blocks with O

(
p4
)

entries. Thus, we have O
(
NJ logNJ(pd)2

)
as the overall complexity of the H-matrix-vector

multiplication.

IV.5.3 Nested Cluster Bases

The cost complexity of the matrix-vector multiplication can be improved to O
(
NJ(pd)2

)
by exploiting the fact that the explicit computation of the moment matrices M|λ| for each
particular level can be avoided by the concept of nested cluster bases which amounts to the
H2-matrix representation, cf. [Bör10, HB02].

Since the polynomial degree for each cluster is p, the Lagrangian polynomials of the father
cluster can obviously be represented by those of the son clusters. Let

{
x(0)
m

}p
m=0

=

{
xm
2

}p
m=0

and
{
x(1)
m

}p
m=0

=

{
xm + 1

2

}p
m=0

,

respectively, be the interpolation points in the son clusters. It holds
{
x

(0)
m

}p
m=0

⊂ [0, 0.5] and{
x

(1)
m

}p
m=0

⊂ [0.5, 1]. Denoting the corresponding Lagrangian polynomials by L
(0)
m (x) and

L
(1)
m (x), respectively, one can now exactly represent the Lagrangian polynomials of the father

cluster according to

Lm(x) =

p∑
i=0

Lm
(
x

(0)
i

)
L

(0)
i (x) for x ∈ [0, 0.5]

and

Lm(x) =

p∑
i=0

Lm
(
x

(1)
i

)
L

(1)
i (x) for x ∈ [0.5, 1],

see Figure IV.6 for an illustration.
This gives rise to the transfer matrices

C(0) :=
[
Li(x

(0)
j)
]p
i,j=0

and C(1) :=
[
Li(x

(1)
j)
]p
i,j=0

68

IV.5. Fast Multipole Method

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Figure IV.6: The Lagrange polynomial L0(x) in the father cluster and the Lagrange polyno-
mials L(0)

0 (x) and L(1)
0 (x) in the son clusters for p = 3.

and yields the representation

M|λ| =

[
M|λ|+1

(
C(0)

)ᵀ
M|λ|+1

(
C(1)

)ᵀ] .
Now, by tensor product construction, one obtains the four transfer matrices

C�2i+j := C(i) ⊗C(j), i, j = 0, 1,

for the reference domain � with the refinement relation

M�
|λ| =


M�
|λ|+1

(
C�0
)ᵀ

M�
|λ|+1

(
C�2
)ᵀ

M�
|λ|+1

(
C�3
)ᵀ

M�
|λ|+1

(
C�1
)ᵀ
 . (IV.5.3)

Notice that the peculiar order of the transfer matrices results from the hierarchical, counter
clock-wise ordering of the elements, see Figure IV.3. Fortunately, the transfer matrices
C�0 ,C

�
1 ,C

�
2 ,C

�
3 are independent of the respective cluster and even independent of the level

|λ|. Moreover, the transfer matrices are independent of the ansatz functions chosen for the
Galerkin discretization.

In order to make use of the efficient implementation of theH2-matrix-vector multiplication
as in [Bör10, HB02], only M�

J and C�0 ,C
�
1 ,C

�
2 ,C

�
3 have to be stored. This leads, together

with the hierarchical ordering of the elements, to some simplifications in the H2-matrix-vector
multiplication. The algorithm, tailored to the framework of parametric surfaces, is split in
three parts: Algorithms IV.1, IV.2 and IV.3.

Theorem IV.5.5. The H2-matrix-vector multiplication of the FMM as stated in Algorithm
IV.1 has a complexity of O

(
NJ(pd)2

)
.

Proof. To estimate the complexity of Algorithm IV.2, note that applying NJ−jmin
times the

moment matrices with O
(
Njmin

(pd)2
)
entries takes at most O

(
NJ(pd)2

)
operations. The

application of the transfer matrices to level j + 1 requires 4p4 operations for each of the Nj
clusters on level j. Hence, in a similar way as in the proof of Theorem IV.5.2, one concludes
that the overall complexity of Algorithm IV.2 is

O
(
NJ(pd)2

)
+ 4p4

J−jmin∑
j=0

Nj = O
(
NJ(pd)2

)
+ 4p4O

(
NJ(p/d)−2

)
= O

(
NJ(pd)2

)
.

In complete analogy, the complexity of Algorithm IV.3 is given by O
(
NJ(pd)2

)
. The com-

plexity of the multiplication with the farfield coincides with the complexity of its memory
consumption as it was derived in Theorem IV.5.2. The complexity for the nearfield is the
same as in the classical H-matrix-vector multiplication, which was estimated in Theorem
IV.5.4. This yields a total complexity of O

(
NJ(pd)2

)
for the H2-matrix-vector multiplica-

tion.

69

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

Algorithm IV.1 H2-matrix-vector multiplication, y += Hx, see [Bör10, Algorithm 8]
function H2-matrix-vector(y, H, x)

u = ForwardTransform(x) . Handle farfield
for λ× λ′ ∈ F do

vλ += Kλ×λ′ · uλ′

end for
y += BackwardTransform(v)
for λ× λ′ ∈ N do . Handle nearfield

y|λ += H|λ×λ′ · x|λ′
end for

end function

Algorithm IV.2 Forward transformation of x to u, see [Bör10, Algorithm 6]
function ForwardTransform(x)

for (i, j′, k) ∈ T , j′ = J do
u(i,J,k) =

(
M�

J

)ᵀ
x|(i,J,k)

end for
for j = J − 1, . . . 1 do

for (i, j′, k) ∈ T , j′ = j do
u(i,j,k) = C�0 u(i,j+1,4k)

+ C�2 u(i,j+1,4k+1)

+ C�3 u(i,j+1,4k+2)

+ C�1 u(i,j+1,4k+3)

end for
end for

end function

Algorithm IV.3 Backward transformation of v to y, see [Bör10, Algorithm 7]
function BackwardTransform(v)

for j = 1, . . . J − 1 do
for (i, j′, k) ∈ T , j′ = j do

v(i,j+1,4k)

v(i,j+1,4k+1)

v(i,j+1,4k+2)

v(i,j+1,4k+3)

 =


(
C�0
)ᵀ(

C�2
)ᵀ(

C�3
)ᵀ(

C�1
)ᵀ
v(i,j,k)

end for
end for
for (i, j′, k) ∈ T , j′ = J do

y|(i,J,k) = M�
J v(i,J,k)

end for
end function

70

IV.6. Higher Order Continuous Ansatz Functions

IV.5.4 Error Estimates
In view of Definition IV.3.2, the following result for the convergence of the FMM holds. It
refers to the situation, when Chebyshev nodes on I := [0, 1], i.e., the points

xm :=
1

2

[
cos

(
2m+ 1

2(p+ 1)
π

)
+ 1

]
, m = 0, 1, . . . , p,

are used for the interpolation, cf. [HB02, HP13].

Theorem IV.5.6. Let k(x,y) be an analytically standard kernel of order 2q. Then, in an
admissible block λ× λ′ ∈ F , it holds∥∥∥∥kλ,λ′(s, t)−

∑
‖m‖∞,‖m′‖∞≤p

kλ,λ′(xm,xm′)Lm(s)Lm′(t)

∥∥∥∥
L∞(�×�)

.

(
η

c2

)p+1

2−4|λ|∥∥γλ(s)− γλ′(t)
∥∥−2−2q

L∞(�×�)

with c2 > 0 being the constant from Definition IV.3.2 and η being the constant from (II.5.3).

Remark IV.5.7. The previous theorem indicates that the convergence behaviour of the FMM
directly depends on the properties of the interpolated kernel function. Especially, one has to
choose η < c2 in (II.5.3) in order to obtain convergence. For example, for the fundamental
solution of the Helmholtz equation, the constant c2 can become quite small, which in turn
increases the nearfield.

From Theorem IV.5.6, one immediately derives an error estimate for the bilinear form
which is associated with the variational formulation (IV.3.2), cf. [Gie01, HP13].

Theorem IV.5.8. Let σ > 0 be arbitrary but fixed. Then, for the integral operator AJ , which
results from an interpolation of degree p > 0 of the kernel function in every admissible block
and the exact representation of the kernel in all other blocks, there holds∣∣(Au, v)L2(∂D) − (AJu, v)L2(∂D)

∣∣ . 2−Jσ‖u‖L1(∂D)‖v‖L1(∂D),

provided that p ∼ J(2 + 2q + σ).

Hence, in order to maintain the approximation order of the Galerkin method, one has
to choose p ∼ logNJ . This leads to an over-all complexity of O

(
NJ(logNJ)2d2

)
for the

computation and the storage of the farfield. Nevertheless, in view of singular kernels, one
has to deal with singular integrals, e.g., by the Duffy trick, cf. [Duf82]. Thus, one has to
increase the degree of the quadrature for all singular integrals proportionally to | log hJ |,
where hJ = 2−J is the mesh size and the constant depends on the order of the ansatz
functions. This yields an effort of O

(
(logNJ)4

)
for each singular integral if a tensor product

quadrature is used. Thus, if the quadrature degree is properly decreased with the distance
of the elements, one ends up with a complexity of O

(
NJ(logNJ)4d2

)
for the nearfield. The

reader is referred to [SS97] for more details concerning the numerical quadrature.

IV.6 Higher Order Continuous Ansatz Functions
One of the issues to address for continuous, higher order ansatz functions is the clustering
strategy. In the classical H- and H2-matrix framework, usually a per degree of freedom
cluster strategy is employed, see, e.g., [Bör10, Hac15]. In the context of higher order ansatz
functions, this strategy was applied to collocation matrices in [ZMBF14] to compress the
system matrices by using adaptive cross approximation. However, a per degree of freedom
cluster strategy requires to iterate over the degrees of freedom during the matrix assembly. For
the Galerkin scheme, this means for every degree of freedom that all elements in the support

71

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

of the associated ansatz function have to be taken into account. Thus, for continuous, higher
order ansatz functions, every element is visited several times during the matrix assembly and
function evaluations for the numerical quadrature are possibly done multiple times in the
same quadrature point.

In order to overcome this obstruction, one therefore often iterates over the elements for
the matrix assembly. To maintain this element-wise strategy for the matrix assembly of
a higher order FMM, we propose to keep the element-wise cluster strategy introduced in
Chapter IV.2. In the sequel, an easy procedure to extend the FMM for discontinuous, element-
wise polynomial ansatz functions from Chapter IV.5 to globally continuous ansatz functions
shall be provided. This means that, from now on, ansatz spaces V cj = Vj ∩ C(∂D) are
considered. Clearly, there exists then a transformation matrix T such that

TAJTᵀρcJ = TfJ , (IV.6.1)

where AJ is the system matrix and fJ is the right hand side with respect to the discontinuous,
element-wise polynomial ansatz functions from (IV.4.5) and ρcJ are the coefficients of the
globally continuous ansatz functions in V cJ . The transformation matrix T is a sparse matrix
if the supports of the ansatz functions in V cj only contain a few elements, as it is, e.g., the
case for B-splines, which are used in isogeometric analysis. This situation will be illustrated
in the following.

Denote by V̂ cj the space spanned by the tensor product B-splines of order d on the reference
domain. The tensor product B-splines are obtained by tensorization of the B-spline basis of
order d on the interval [0, 1]. To that end, introduce the partition

0 = t1 = · · · = td < · · · < tn+d+1 = · · · = tn+2d = 1.

Now, setting

Bj,1(x) =

{
1, if tj ≤ x < tj+1,

0, otherwise,
j = 1, . . . , n+ 2d− 1,

and using the recursion formula

Bj,k(x) =
x− tj

tj+k−1 − tj
Bj,k−1(x) +

tj+k − x
tj+k − tj+1

Bj+1,k−1(x), j = 1, . . . , n+ 2d− k,

up to k = d will result in the n + d B-spline basis functions of order d on [0, 1], cf. [DB78,
Chapter 9]. The B-spline bases up to order 3 are depicted in Figure IV.7.

It holds V̂ cj ⊂ V̂j , such that every function in V̂ cj can be expressed as a linear combination
of functions in V̂j . Let Û = [ϕ̂c1, . . . , ϕ̂

c
n̂cj

] denote the tensor product B-spline basis of V̂ cj and

let V̂ = [ϕ̂1, . . . , ϕ̂n̂j] denote the piecewise polynomial basis of V̂j , where n̂cj = dim(V̂ cj) and
n̂j = dim(V̂j). Then the patchwise transformation matrix T̂ is uniquely determined by the
relation Û = T̂V̂. Unfortunately, the functions in the composed space

Ṽj =
{
ϕ̂ ◦ γ−1

i : ϕ̂ ∈ V̂ cj , i = 1, . . . ,M
}
⊂ L2(∂D)

are, in general, discontinuous on the boundaries of the patches ∂Γi. The ansatz space V cj of
globally continuous, tensorized B-splines on level j is given by

V cj := Ṽj ∩ C(∂D).

Since V cj ⊂ Ṽj , every function in V cj can be expressed as a linear combination of functions in
Ṽj with corresponding transformation matrix I. To express functions in V cj using functions
in Vj , let [ϕc1, . . . , ϕ

c
ncj

] with ncj = dim(V cj) denote a basis of V cj and

a =

ncj∑
i=1

aiϕ
c
i ∈ V cj , b =

M∑
i=1

n̂j∑
k=1

bi,k(ϕ̂k ◦ γ−1
i) ∈ Vj .

72

IV.7. Numerical Examples

0 0.25 0.5 0.75 1
0

0.5

1

0 0.25 0.5 0.75 1
0

0.5

1

0 0.25 0.5 0.75 1
0

0.5

1

Figure IV.7: B-spline bases on the unit interval [0, 1] of order 1 (top), order 2 (middle), and
order 3 (bottom).

Setting bi = [bi,1, . . . bi,n̂j] finally yields a1

...
ancj

 = I

T̂
. . .

T̂


 b1

...
bM

 = T

 b1

...
bM

 .
The matrices T̂ and I are sparse and so is their product T. Thus, the transformation from
Vj to V cj can be done in an efficient manner.

At first glance, the simplicity of the presented method comes at a high price. The memory
consumption of the uncompressed matrix AJ in (IV.6.1) is n2

J , where nJ = dim(VJ), instead
of (ncJ)2, i.e., the memory consumption will grow by a factor (nJ/n

c
J)2, whereas the number of

degrees of freedom only grows by a factor nJ/ncJ . Although nowadays memory consumption
can be considered as a minor problem, this also means that in case of uncompressed matrices
the computational effort for the matrix-vector multiplication will grow like O

(
(nJ/n

c
J)2
)
.

Compared to this, the FMM compression presented in the previous section reduces the growth
of the memory consumption and the operations for the H2-matrix-vector multiplication to
O(nJ/n

c
J).

IV.7 Numerical Examples
Besides presenting numerical examples for the convergence of the fast multipole method, this
section contains also a comparison of the computational cost versus accuracy. All computa-
tions of the following examples were carried out on a single core of a computing server with
two Intel(R) Xeon(R) E5-2670 CPUs with a clock rate of 2.60 GHz and a main memory of
256 GB.

The experiments focus on the numerical solution of the boundary integral equations
(IV.1.8), (IV.1.9), (IV.1.11), and (IV.1.12) arising from the potential ansatzes for the Laplace
equation with either Dirichlet boundary conditions (IV.1.5) or Neumann boundary conditions
(IV.1.6). The special numerical treatment of the hypersingular operator (IV.1.12) is the topic
of the next subsection. Note that no special treatment is needed for the double layer operator
and the adjoint double layer operator, since they are both analytically standard.

The ansatz functions shall be B-splines of order d = 1, 2, 3, which are glued together at the
patch interfaces to achieve global continuity for d = 2, 3. This means that the system of linear

73

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

equations is computed with the help of the transformation matrices which were introduced in
Chapter IV.6. To solve the system (IV.6.1) of linear equations, a conjugate gradient method
(CG) for (IV.1.8) and (IV.1.12) and the generalized minimal residual method (GMRES)
with restart after 100 inner iterations for (IV.1.9) and (IV.1.11) are used, cf. [Saa03]. The
construction of appropriate preconditioners for the iterative solvers exceeds the scope of this
thesis and is left as further work.

IV.7.1 Regularization of the Hypersingular Operator
The hypersingular operator W from (IV.1.12) is formally given by the integral operator

(Wρ)(x) =
1

4π

∫
∂D

(
〈nx,ny〉
‖x− y‖3

− 3
〈nx,x− y〉〈ny,x− y〉

‖x− y‖5

)
ρ(y) dσy, (IV.7.1)

which has a strong singularity in its kernel function. Therefore, a regularization is needed in
order to apply quadrature rules for its discretization. The following representation, derived
firstly in [Néd82], reduces the singularity of the integral operator in the inner product to the
same singularity as in (IV.1.8):

(Wρ, ϑ)L2(∂D) = (V curl∂D ρ, curl∂D ϑ)L2(∂D) for all ρ, ϑ ∈ H1(∂D). (IV.7.2)

It remains to find an easy means to compute the surface curl of a given function in H1(∂D).
For each patch Γi = γi(�), consider the first fundamental tensor of differential geometry,

cf. [CK13, Chapter 2.1],

Ki(s) =

[〈
∂s1γi(s), ∂s1γi(s)

〉 〈
∂s1γi(s), ∂s2γi(s)

〉〈
∂s2γi(s), ∂s1γi(s)

〉 〈
∂s2γi(s), ∂s2γi(s)

〉] , s =
[
s1, s2

]ᵀ ∈ �.
Since γi is a diffeomorphism, Ki is a symmetric and positive definite matrix and every function
ρ|Γi has a unique representation ρ̃i = ρ ◦ γi on �. Thus, for x = γi(s) ∈ Γi, one can define
the surface gradient of ρ by

grad∂D ρ(x) =
[
∂s1γi(s) ∂s2γi(s)

]
K−1
i (s)

[
∂s1 ρ̃i(s)
∂s2 ρ̃i(s)

]
, (IV.7.3)

cf. [CK13, Chapter 2.1]. Note that this definition is independent of the actual chosen
parametrization γi.

Having the definition of the surface gradient at hand, the surface curl is defined by

curl∂D ρ(x) = nx × grad∂D ρ(x), x ∈ ∂D. (IV.7.4)

Inserting (IV.7.3) into (IV.7.4) yields

curl∂D ρ(x) =
1√

det Ki(s)

(
∂s1 ρ̃i(s)∂s2γi(s)− ∂s2 ρ̃i(s)∂s1γi(s)

)
, (IV.7.5)

where
√

det Ki(s) = κi(s) is the surface measure of Γi from (IV.2.2).
Finally, recall that an ansatz function ϕi on the surface Γi is given by ϕi = ϕ̂◦γ−1

i , where
ϕ̂ ∈ V̂j is defined as in (IV.4.1). It therefore holds

∂sk ϕ̃i(s) = ∂sk(ϕ̂ ◦ γ−1
i ◦ γi)(s) = ∂sk ϕ̂(s), k = 1, 2.

Thus, in order to numerically compute (IV.7.5) for the ansatz and the test space, one only
has to provide the derivatives of the tensorized local shape functions on the unit square from
Table IV.1. Hence, the construction from Chapter IV.5.1, applied to (IV.7.2) with curl∂D
computed as in (IV.7.5), results in a slightly modified approximation for admissible matrix
blocks:

Aλ,λ′ ≈
[
M1,�
|λ| M2,�

|λ|

] [K(1,1)
λ,λ′ K

(1,2)
λ,λ′

K
(2,1)
λ,λ′ K

(2,2)
λ,λ′

][(
M1,�
|λ|
)ᵀ(

M2,�
|λ|
)ᵀ] .

74

IV.7. Numerical Examples

Figure IV.8: The spherical harmonic Y 2
0 (left) and the related potential (right) for the unit

ball.

Herein, the modified moment matrices are given by

(
M∂
|λ|
)
m1,`

=

∫ 1

0

Lm1(s1)
(
∂s1 φ̂

(1)
`

)
(s1) ds1,

M1,�
|λ| = M∂

|λ|⊗M|λ|, M2,�
|λ| = M|λ|⊗M∂

|λ|,

and the modified kernel matrices by[
K

(1,1)
λ,λ′

]
m,m′

= k
(
γλ(xm),γλ′(xm′)

)〈
γ∂2λ (xm),γ∂2λ′(xm′)

〉
,[

K
(1,2)
λ,λ′

]
m,m′

= −k
(
γλ(xm),γλ′(xm′)

)〈
γ∂2λ (xm),γ∂1λ′(xm′)

〉
,[

K
(2,1)
λ,λ′

]
m,m′

= −k
(
γλ(xm),γλ′(xm′)

)〈
γ∂1λ (xm),γ∂2λ′(xm′)

〉
,[

K
(2,2)
λ,λ′

]
m,m′

= k
(
γλ(xm),γλ′(xm′)

)〈
γ∂1λ (xm),γ∂1λ′(xm′)

〉
,

where the localized parametrization derivatives are defined by γ∂`λ = ∂s`γi ◦ τ j,k, ` = 1, 2.
Note that the very same refinement relation (IV.5.3) holds between Mi,�

|λ| and its predeces-

sors Mi,�
|λ|+1, i = 1, 2. Thus, by a small but straightforward modification, theH2-matrix-vector

multiplication can also be applied in the case of the regularized hypersingular operator.

IV.7.2 Convergence

The first example shall be concerned with the boundary value problems (IV.1.5) and (IV.1.6)
in the unit ball with a prescribed analytical solution based on the spherical harmonic Y 2

0 ,

u(x) =‖x‖Y 2
0

(
x

‖x‖

)
, x ∈ D, Y 2

0 (x) =

√
5

16π

(
3x2

3 − 1
)
, x ∈ ∂D,

see Figure IV.8 for a visualization. The Dirichlet and Neumann data for (IV.1.5) and (IV.1.6)
are then given by

f(x) =Y 2
0 (x), x ∈ ∂D, g(x) =

(
∇u(x),x

)
, x ∈ ∂D.

The boundary of the sphere shall be represented by six patches.
In view of Theorem IV.4.1, one obtains the following error estimate for the approximate

potential uJ .

75

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

Theorem IV.7.1. Let ρ ∈ Hd(∂D) be the solution of (IV.1.8), (IV.1.9), (IV.1.11), or
(IV.1.12). Moreover, let u be the corresponding potential and uJ its numerical approximation.
Then, there holds the error estimate

|u(x)− uJ(x)| . 22J(q−d)‖k(x, ·)‖H−2q+d(∂D)‖ρ‖Hd(∂D), x ∈ D,

where 2q = −1 in case of (IV.1.8), 2q = 0 in case of (IV.1.9) and (IV.1.11), and 2q = 1 in
case of (IV.1.12).

Proof. Together with Theorem IV.4.1, there holds

|u(x)− uJ(x)| =
∣∣∣∣∫
∂D

k(x,y)
(
ρ(y)− ρJ(y)

)
dσy

∣∣∣∣
≤ ‖k(x, ·)‖H−2q+d(∂D)‖ρ− ρJ‖H2q−d(∂D)

. 22J(q−d)‖k(x, ·)‖H2q−d(∂D)‖ρ‖Hd(∂D)

for all four cases under consideration.

Furthermore, on the sphere, the spherical harmonic is an eigenfunction to all integral
operators under consideration, namely, there holds

VY 2
0 =

1

5
Y 2

0 ,

(
1

2
−K

)
Y 2

0 = − 3

5
Y 2

0 ,(
1

2
+K?

)
Y 2

0 =
2

5
Y 2

0 , WY 2
0 =

6

5
Y 2

0 .

Hence, the analytical solution of (IV.1.8), (IV.1.9), (IV.1.11), and (IV.1.12) is known and one
can thus compute the L2(∂D)-error of the approximate density. The following theorem can
be seen as a combination of Theorem IV.4.1 and a small modification of [Ste08, Lemma 12.2].

Theorem IV.7.2. Let ρ ∈ Hd(∂D) be the solution of (IV.1.8), (IV.1.9), (IV.1.11), or
(IV.1.12) and ρJ its numerical approximation. Then, there holds the error estimate

‖ρ− ρJ‖L2(∂D) . 2−Jd‖ρ‖Hd(∂D).

Figure IV.9 and IV.10 validate that the proposed FMM provides the theoretical conver-
gence rates on smooth domains in case of the Dirichlet problem. Figure IV.11 and IV.12
validate this for the Neumann problem. Note that the hypersingular operator in Figure IV.12
requires globally continuous ansatz functions, thus the order of the ansatz functions for this
particular example has to be at least d = 2. In both cases, the `∞-error of the potential
is measured in the 18,999 vertices of 16,616 cubes which lie in the interior of the ball, as
depicted on the right of Figure IV.8. The polynomial degree p for the FMM is chosen such
that the overall accuracy is sustained. Hence, in accordance with Theorem IV.5.8, the num-
ber of interpolation points on the interval grows linearly with the discretization level J . The
numbers of local and global degrees of freedom nJ and ncJ , respectively, associated with the
discretization level J , are tabulated in Table IV.2. Note that both numbers coincide in case
of piecewise constant boundary elements, i.e., for d = 1.

IV.7.3 Convergence on a More Complex Geometry
The second example shall deal with the more complex gear worm geometry depicted in Fig-
ure IV.13, which is represented by 290 patches. The harmonic polynomial

u(x) = 4x2
1 − 3x2

2 − x2
3

is prescribed as potential and used to obtain the Dirichlet and Neumann data for (IV.1.5)
and (IV.1.6). For sake of brevity, we restrict ourselves to one example for Dirichlet problems,

76

IV.7. Numerical Examples

0 1 2 3 4 5 6 7 8 9 10

10−12

10−10

10−8

10−6

10−4

10−2

100

2
2

3
4

5
6

6
8 9

2
2

4

6

8
10

11

2
2

6

8

12

J

`∞
-e
rr
or

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

2
2

3
4

5
6

6
8

9

2 2
4

6
8

10
11

2

2

6

8

12

J

L
2
-e
rr
or

d = 1
d = 2
d = 3

Figure IV.9: `∞-error of the discrete potential (left) and L2-error of the density (right) for the
Dirichlet problem on the sphere for the single layer operator. The corresponding theoretical
convergence rates are h3, h5 and h7 for the potential and h1, h2 and h3 for the density. The
accompanying numbers are the polynomial degrees of the interpolation.

0 1 2 3 4 5 6 7 8 9 10

10−12

10−10

10−8

10−6

10−4

10−2

100
2

2
2

2
3

3
3

4 5

2
2

2

3

5
7

8

2
2

4

6

8

J

`∞
-e
rr
or

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7 8 9 10
10−6

10−5

10−4

10−3

10−2

10−1

100

101

2
2

2
2

3
3

3
4

5

2
2

2
3

5
7

8

2

2

4

6

8

J

L
2
-e
rr
or

d = 1
d = 2
d = 3

Figure IV.10: `∞-error of the discrete potential (left) and L2-error of the density (right)
for the Dirichlet problem on the sphere for the double layer operator. The corresponding
theoretical convergence rates are h2, h4 and h6 for the potential and h1, h2 and h3 for the
density. The accompanying numbers are the polynomial degrees of the interpolation.

0 1 2 3 4 5 6 7

10−12

10−10

10−8

10−6

10−4

10−2

100

2
2

3
4 4

5
5

2
2

3

5
6

8

2
2

4

8

10

J

`∞
-e
rr
or

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7
10−6

10−5

10−4

10−3

10−2

10−1

100

101

2
2

3
4

4
5

5

2
2

3
5

6
8

2

2

4

8

10

J

L
2
-e
rr
or

d = 1
d = 2
d = 3

Figure IV.11: `∞-error of the discrete potential (left) and L2-error of the density (right) for
the Neumann problem on the sphere for the adjoint double layer operator. The corresponding
theoretical convergence rates are h2, h4 and h6 for the potential and h1, h2 and h3 for the
density. The accompanying numbers are the polynomial degrees of the interpolation.

77

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

0 1 2 3 4 5 6 7 8

10−12

10−10

10−8

10−6

10−4

10−2

100

2
2

2
3

5
6

6

2
2

3

6

7

J

`∞
-e
rr
or

d = 2
d = 3

0 1 2 3 4 5 6 7 8
10−6

10−5

10−4

10−3

10−2

10−1

100

101

2
2

2
3

5
6

6

2

2

3

6

7

J

L
2
-e
rr
or

d = 2
d = 3

Figure IV.12: `∞-error of the discrete potential (left) and L2-error of the density (right)
for the Neumann problem on the sphere for the hypersingular operator. The corresponding
theoretical convergence rates are h3 and h5 for the potential and h2 and h3 for the density.
The accompanying numbers are the polynomial degrees of the interpolation.

nJ = dimVJ ncJ = dimV cJ
J d = 1 d = 2 d = 3 d = 2 d = 3
1 24 96 216 26 (3.7) 56 (3.9)
2 96 384 864 98 (3.9) 152 (5.7)
3 384 1,536 3,456 386 (4.0) 488 (7.1)
4 1,536 6,144 13,824 1,538 (4.0) 1,736 (8.0)
5 6,144 24,576 55,296 6,146 (4.0) 6,536 (8.5)
6 24,576 98,304 24,578 (4.0)
7 98,304 393,216 98,306 (4.0)
8 393,216

sp
he
re

9 1,572,864
1 1,160 4,640 10,440 1,160 (4.0) 2,610 (4.0)
2 4,640 18,560 41,760 4,640 (4.0) 7,250 (5.8)
3 18,560 74,240 167,040 18,560 (4.0) 23,490 (7.1)
4 74,240 296,960 668,160 74,240 (4.0) 83,810 (8.0)
5 296,960 1,187,840 296,960 (4.0)

ge
ar

w
or
m

6 1,187,840

Table IV.2: Dimensions nJ and ncJ of the ansatz spaces VJ and V cJ , respectively, for the sphere
and the gear worm for different polynomial orders. The associated ratios nJ/ncJ are given in
the parentheses.

Figure IV.13: The approximate density of the single layer operator for Dirichlet data (left)
and the related potential (right) for the gear worm.

78

IV.7. Numerical Examples

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

100

101

102

103

2
2

2

3

5
6

2
2

3

5
5

2
3

5

6

J

`∞
-e
rr
or

d = 1
d = 2
d = 3

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

100

101

102

103

1
2

2

3

4

1

1

3

4

J

`∞
-e
rr
or

d = 2
d = 3

Figure IV.14: `∞-error of the discrete potential for the Dirichlet problem for the single layer
operator (left) and the Neumann problem for the hypersingular operator (right) on the gear
worm. The corresponding convergence rates are h3 and h5. The accompanying numbers are
the polynomial degrees of the interpolation.

namely (IV.1.8), and one example for Neumann problems, namely (IV.1.12). Since the density
ρ is unknown, the error of the potential is measured on the 115,241 vertices of a grid of 83,437
cubes fitted inside the domain. A visualization of the cubes together with the computed
density for the single layer operator for Dirichlet data can be found in Figure IV.13.

Since the gear worm only has a Lipschitz continuous boundary, the theoretical convergence
rates are limited to at most h3 for the single layer operator and to h1 for the hypersingular
operator. Figure IV.14 illustrates that these convergence rates are achieved for all ansatz
functions under consideration. In fact, the higher order ansatz functions even seem to produce
a convergence rate of up to h5 in case of the single layer operator and the hypersingular
operator. Again, the numbers of local and global degrees of freedom nJ and ncJ , respectively,
associated with the discretization level J , are tabulated in Table IV.2.

IV.7.4 Computational Cost and Accuracy

In a first example, the benefit of the H2-matrix-vector multiplication compared to the H-
matrix-vector multiplication shall be demonstrated. To that end, the computation times for
a non-symmetric matrix-vector multiplication of an H-matrix and of an H2-matrix are mea-
sured, both stemming from the discretization of the double layer operator on the sphere or
on the gear worm. The polynomial degree for the FMM is set to p = 2. Figure IV.15 illus-
trates that an asymptotic complexity of O

(
NJ(pd)2

)
for the H2-matrix-vector multiplication

compared to the complexity of O
(
NJ logNJ(pd)2

)
for the H-matrix-vector multiplication is

reached, leading to the conclusion that the H2-matrix-vector multiplication is the method of
choice. Thus, all of the following experiments are based on the H2-matrix-vector multiplica-
tion.

In a second example, the effectiveness of higher order ansatz functions shall be illustrated
for the examples from Chapters IV.7.2 and IV.7.3. To that end, the `∞-error of the potential
is compared to the computation time of the matrix and to the computation time of the matrix
plus the solving time. The results with respect to the sphere are depicted in Figure IV.16
for the Dirichlet problem and in Figure IV.17 for the Neumann problem. The results with
respect to the gear worm are depicted in Figure IV.18. They indicate that the higher order
ansatz functions achieve asymptotically a higher precision at a lower computation time. It
therefore seems that the higher order FMM is favourable even on non-smooth surfaces. Note
that the increased solving times for the gear worm geometry are due to a higher number of
iterations in the solving process.

79

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

0 1 2 3 4 5 6 7 8 9 10
10−8

10−7

10−6

10−5

10−4

J

m
at
ri
x-
ve
ct
or

m
ul
ti
pl
ic
at
io
n
(s
)
/
N
J

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

J

m
at
ri
x-
ve
ct
or

m
ul
ti
pl
ic
at
io
n
(s
)
/
N
J

d = 1
d = 2
d = 3

Figure IV.15: Computation times per element for the H2-matrix-vector multiplication (blue)
and the H-matrix-vector multiplication (red) on the sphere (left) and on the gear worm
(right). The dashed lines illustrate the complexity rates O(NJ(pd)2) and O(NJ logNJ(pd)2).

10−410−310−210−1 100 101 102 103 104 105

10−12

10−10

10−8

10−6

10−4

10−2

100

computation time (s)

`∞
-e
rr
or

d = 1
d = 2
d = 3

10−410−310−210−1 100 101 102 103 104 105

10−12

10−10

10−8

10−6

10−4

10−2

100

computation time (s)

`∞
-e
rr
or

d = 1
d = 2
d = 3

Figure IV.16: `∞-error of the discrete potential versus the computation time of the matrix
(blue) and the computation time of the matrix plus the solving time (red) for the single layer
operator (left) and the double layer operator (right) on the sphere for Dirichlet data.

10−410−310−210−1 100 101 102 103 104 105

10−12

10−10

10−8

10−6

10−4

10−2

100

computation time (s)

`∞
-e
rr
or

d = 1
d = 2
d = 3

10−410−310−210−1 100 101 102 103 104 105

10−12

10−10

10−8

10−6

10−4

10−2

100

computation time (s)

`∞
-e
rr
or

d = 2
d = 3

Figure IV.17: `∞-error of the discrete potential versus the computation time of the matrix
(blue) and the computation time of the matrix plus the solving time (red) for the adjoint
double layer operator (left) and the hypersingular operator (right) on the sphere for Neumann
data.

80

IV.8. Conclusion

10−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

computation time (s)

`∞
-e
rr
or

d = 1
d = 2
d = 3

10−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

computation time (s)

`∞
-e
rr
or

d = 2
d = 3

Figure IV.18: `∞-error of the discrete potential versus the computation time of the matrix
(blue) and the computation time of the matrix plus the solving time (red) for the single layer
operator and Dirichlet data (left) and the hypersingular operator and Neumann data (right)
on the gear worm.

IV.8 Conclusion
Parametric surfaces are easily accessible from computer aided design. They are recently
of interest in isogeometric analysis, the goal of which is the direct integration of the finite
element or even the boundary element analysis into the design process. This chapter pro-
poses a fast boundary element method, namely an H2-matrix fast multipole method based
on the interpolation of the related integral kernel on the reference domain. This approach
perfectly exploits the features of the parametric surface representation. By a tensor product
construction and appropriate transformation matrices, one can easily deal with higher order
ansatz functions. The complexity estimates as well as the numerical examples demonstrate
the superior performance of the presented method.

81

CHAPTER IV. THE FAST H2-MULTIPOLE METHOD ON PARAMETRIC
SURFACES

82

Chapter V

PDEs with Random Dirichlet Data

V.1 Problem Formulation
After having discussed the solution of correlation equations which originate from PDEs with
random load in Chapter III, the topic of this chapter is the solution of correlation equa-
tions which originate from PDEs with random Dirichlet data. More precisely, on a bounded
Lipschitz domain D ⊂ R3, we consider the Laplace equation

−∆u(ω,x) = 0 for x ∈ D,
u(ω,x) = f(ω,x) for x ∈ ∂D,

(V.1.1)

with f ∈ L2
P
(
Ω;H1/2(∂D)

)
. As discussed in the previous chapter, there exists a unique

solution u(ω, ·) ∈ H1(D) for P-almost every ω ∈ Ω. Employing a single layer potential ansatz
leads to the solution representation

u(ω,x) = Ṽρ(ω,x) for x ∈ D,
Vρ(ω,x) = f(ω,x) for x ∈ ∂D.

We then may look at each of these equations separately to see that

E[u] = ṼE[ρ] in D,
VE[ρ] = E[f] on ∂D,

and
Cor[u] =

(
Ṽ ⊗ Ṽ

)
Cor[ρ] in D ×D,

(V ⊗ V) Cor[ρ] = Cor[f] on ∂D × ∂D.

Remark V.1.1. We consider an indirect ansatz with the single layer potential since it pro-
vides a higher order of convergence to the solution of (V.1.1). Of course, an ansatz with the
double layer potential also is possible. A direct approach is also feasible, but would require
the computation of Cor[f, ∂u/∂n] and Cor[∂u/∂n]. Thus, it would be computationally more
expensive compared to the indirect methods.

Due to the mapping properties of Ṽ and V, see Theorems IV.1.1 and IV.1.3, Lemma II.1.7,
and the considerations in Chapter II.4, it holds

E[ρ] ∈ H−1/2(∂D), Cor[ρ] ∈ H−1/2,−1/2
mix (∂D × ∂D),

E[u] ∈ H1(D), Cor[u] ∈ H1,1
mix(D ×D),

and all of these quantities are well defined. The mapping properties of V also imply that
the sparse tensor product approach may yield only a reduced convergence rate compared to

83

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

the full tensor product approach when Cor[f] provides little smoothness, see [DHP15] for a
detailed discussion. This makes the H-matrix approach attractive in the present setting.

The coefficients of the Galerkin approximations of the mean and the correlation of ρ are
given by

Veρ = ef

for the mean, and by

VCρV
ᵀ = Cf (V.1.2)

for the correlation. In both cases, V denotes the system matrix of the single layer operator.
Exploiting that V ∈ OPS−1

cl,s(∂D) for all s ≥ 1, see [HW08, Chapter 9.2], a version of
Theorem II.5.18 for Cor[ρ] is then given by the following corollary.

Corollary V.1.2. Let ∂D be a compact, analytic manifold and assume that the correlation
Cor[f] gives rise to an operator KCor[f] ∈ OPSθcl,s(∂D) of Gevrey class s > 1. Then, the
correlation Cor[ρ] is the Schwartz kernel of an operator KCor[ρ] ∈ OPSθ+2

cl,s (∂D).
Moreover, in local coordinates, Cor[ρ] is smooth on ∂D× ∂D outside of the diagonal and,

for local charts κx and κy, there holds the pointwise estimate

|∂αx ∂βy Cor[ρ](κx(x), κy(y))| ≤ cA |α+β|(|α|!)sβ!‖x− y‖−θ−|α|−|β|

away from the diagonal for all α,β ∈ Nn−1
0 . The constants c and A depend only on ∂D and

the symbol of KCor[f].

Following the discussion in Chapter II.5, we thus know that, on sufficiently smooth do-
mains, Cor[ρ] is asymptotically smooth in one variable in local coordinates. Thus, if we
assume Cor[f] to be analytically standard and to fulfil the assumptions of the corollary, we
can represent Cor[f] and, if the manifold is sufficiently smooth, also Cor[ρ] by an H-matrix.
As the system matrix of the single layer operator can be represented by an H-matrix, it is
reasonable to represent all matrices occurring in (V.1.2) by H-matrices and it only remains
to compute the unknown Cρ.

For the underlying H-matrix structure, we may use the cluster and block-cluster tree
tailored to parametric surfaces from Chapter IV.2. For this special case, it turns out that
several simplifications in the H-matrix arithmetic can be made due to the special structure of
the block-cluster tree. The H-matrix equation (V.1.2) can then be solved using the solution
algorithm from Chapter III.3. However, one may also use any other H-matrix structure
together with the general H-matrix arithmetic in Chapter II.6.

V.2 H-matrix Arithmetic for Parametric Surfaces
In Chapter II.6, we discussed the operation H3+=H1*H2 for Hi ∈ H(B, k), i = 1, 2, 3. It was
based on the hierarchical block structure (II.5.4) of H-matrices induced by the block-cluster
tree. This block structure becomes slightly simpler when dealing with parametric surfaces.
Namely, using the notation from Chapter IV, it holds

H =

H|(1,0,0)×(1,0,0) . . . H|(1,0,0)×(M,0,0)

...
...

H|(M,0,0)×(1,0,0) . . . H|(M,0,0)×(M,0,0)

 ∈ R(M4J)×(M4J) (V.2.1)

for every H ∈ H(B, k), where each H|(i,0,0)×(i′,0,0) ∈ R4J×4J is a low-rank matrix, or a dense
matrix if the corresponding block-cluster is a leaf, or an H-matrix otherwise. H-matrix blocks
H|(i,j,`)×(i′,j,`′) with j > 0 have the structure

H|(i,j,`)×(i′,j,`′) =

 H|(i,j+1,4`)×(i′,j+1,4`′) . . . H|(i,j+1,4`)×(′i,j+1,4`′+3)

...
...

H|(i,j+1,4`+3)×(i′,j+1,4`′) . . . H|(i,j+1,4`+3)×(i′,j+1,4`′+3)

 ∈ R4J−j×4J−j .

(V.2.2)

84

V.2. H-matrix Arithmetic for Parametric Surfaces

For ease of notation, we may write

H|λ×λ′ =

H|λ1×λ′1 . . . H|λ1×λ′p
...

...
H|λp×λ′1 . . . H|λp×λ′p

 (V.2.3)

instead of (V.2.1) and (V.2.2), with p = M in case of (V.2.1) and p = 4 in case of (V.2.2).
Moreover, since the cluster tree is perfectly balanced, we can directly say that a leaf can only
be a dense matrix if its level equals the depth of the tree. On the other hand, H-matrix blocks
can never be on the same level as dense matrices.

While these specific properties of H-matrices do not change much for the algorithm of the
H-matrix addition, we can still use Algorithm II.6, the algorithm for the H-matrix multipli-
cation simplifies. In particular, in contrast to Chapter II.6.2, no interaction between dense
matrices and H-matrices occurs, i.e., we only have the following interactions for the products

* H-matrix low-rank matrix dense matrix
H-matrix recursively exactly

low-rank matrix exactly exactly exactly
dense matrix exactly exactly

and for the compound sums

+=k3 H-matrix low-rank matrix dense matrix
H-matrix recursively recursively

low-rank matrix approximately approximately approximately
dense matrix exactly exactly

As in Chapter II.6, the operands in the rows of the table coincide with the target format of
the respective operation.

In contrast to the idea of the hierarchical conversion for the operation R+=kH, as in the
original H-matrix multiplication described in Chapter II.6.2, we may take another approach
here: we can exploit the fact that we can multiply any H-matrix H in R4J−j×4J−j to a vector
v ∈ R4J−j with a complexity of O

(
2k(J−j)4J−j

)
, see Chapter II.5. Thus, it seems reasonable

to directly compute the truncated singular value decomposition of H up to rank k by means
of an eigensolver which only requires matrix-vector multiplications as for example ARPACK,
cf. [LSY98]. Then, we are again in the situation R1+=kR2.

For practical issues in the product of H-matrices, we rather have to consider the case
R+=kH1*H2. Therefore, we may exploit that the product of two H-matrices H1,H2 of size
4J−j × 4J−j can exactly be applied to a vector. To compute the k largest eigenvalues and
eigenvectors of the product using ARPACK, let

W :=

[
0 H1H2

Hᵀ2Hᵀ1 0

]
be the Jordan-Wielandt matrix with respect to H1H2. The positive eigenvalues of this matrix
coincide with the singular values of H1H2, cf. [GK65, Lan61]. The complexity of applying
W to a vector x ∈ R2·4J−j is of order O

(
8k(J − j)4J−j

)
. Thus, the computation of the k

largest singular values of W with the corresponding singular vectors can be performed within
a complexity of O

(
8k(J − j)4J−jncv2

)
, where ncv corresponds to the size of the Krylov

subspace used for the eigenvalue approximation, cf. [LSY98]. From the singular values and
singular vectors of W, one can easily derive an SVD of H1H2, to which we refer to as the
indirect singular value decomposition or iSVD.

85

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

Remark V.2.1. We may replace H1H2 with H
(1)
1 H

(1)
2 + . . . + H

(p)
1 H

(p)
2 in the Jordan-

Wielandt matrix. Then, the iSVD can directly compute the best approximation of this sum
by a low-rank matrix R. Realizing that such a sum has the same structure as required in
the block matrix multiplication of two matrices, we may use the iSVD to compute the block
inner-product of a block-row and a block-column in the product of two H-matrices H1|λ×λ′′
and H2|λ′′×λ on level j − 1 structured like (V.2.3):

R = Tk

(p∑
`=1

H1|λi×λ′′` H2|λ′′` ×λ′j

)
.

Here, we have either p = M for level 0 or p = 4 for any other level. Then, the complexity is
O(8k(J − j)4J−jp · ncv2).

Applying recursively the procedure from the previous remark actually yields the best
approximation of the product H1H2 in H(B, k). A naive realization of the product H1*H2 ∈
H(B, k) is provided by Algorithm V.1. Note that the calling sequence for Algorithm V.1 is
initiated with p′ = 1.

Algorithm V.1 Compute H3|λ×λ′+=k
∑p′

i=1 H
(i)
1 |λ×λ′′H

(i)
2 |λ′′×λ′

function H3|λ×λ′+=k BestMultH({H(i)
1 |λ×λ′′}

p′

i=1, {H
(i)
2 |λ′′×λ′}

p′

i=1)
if λ× λ′ /∈ L(B) then

for `, `′ = 1, . . . , p do
L = ∪p

′

i=1

{
H

(i)
1 |λ`×λ′′1 , . . . ,H

(i)
1 |λ`×λ′′p

}
R = ∪p

′

i=1

{
H

(i)
2 |λ′′1×λ′`′ , . . . ,H

(i)
2 |λ′′p×λ′`′

}
H3|λ×λ′ = BestMultH(L , R)

end for
else

Compute H3 = T
(∑p′

i=1 H
(i)
1 H

(i)
2

)
with iSVD or as full matrix

end if
end function

An efficient implementation of the algorithm requires a more careful handling of the re-
cursion to avoid the exponential growth of L and R, which has in the meantime also been
investigated in [Bör17] using accumulated low-rank updates. Although one can use the same
recursion scheme for the use with an iterative eigensolver, the accumulated low-rank updates
seem to have an advantage over the H-matrix arithmetic from [GH03], while our numerical
experiments indicate that the iterative eigensolver from ARPACK is slower. We have reason
to believe that this is caused by the slow convergence of the eigensolver in case of a clustering
of the eigenvalues. Therefore, for practical purposes, we rather use Algorithm II.4 with a
modified operation R+=kH1*H2 by computing a low-rank approximation R̃ to H1H2 with
the iSVD and then computing R+=kR̃.

V.3 Numerical Examples
The following numerical experiments are divided into three parts. The first part is dedicated to
the verification of the asymptotic complexity of the developed H-matrix arithmetic tailored
to parametric surfaces. The second part shall be concerned with the application of the
numerical solver from Chapter III.3 to (V.1.2), whereas the third part is concerned with a
more complex example. All of the computations in the following experiments were carried
out on a computing server with two Intel(R) Xeon(R) CPU E5-2643 v3 with a clock rate of
3.40GHz and a main memory of 256GB. Each of the CPUs provides 12 physical cores, thus,
with Hyper-Threading enabled, we may access up to 24 logical cores in total. We use the
H-matrix arithmetic from the previous section for all numerical experiments.

86

V.3. Numerical Examples

Figure V.1: Visualization of the diagonal of the correlation of the density (left) and the
potential (right) on the unit sphere.

Figure V.2: Visualization of the diagonal of the correlation of the density (left) and the
potential (right) on the toy geometry.

V.3.1 Tests for the H-matrix Arithmetic
We consider the unit sphere parameterized by six patches and a pierced cube with circular
holes on each face, to which we will refer to as toy geometry, represented by 48 patches. A
visualization of the sphere is shown in Figure V.1, while a visualization of the toy geometry
can be found in Figure V.2.

On each of the geometries, we assemble two H-matrices V,S ∈ H(B, 25) using the FMM
from Chapter IV with p = 5 and piecewise (discontinuous) polynomial boundary elements
of order d = 1, 2, 3. The matrix V corresponds to the discrete single layer operator for the
Laplace equation, whereas S corresponds to the exponential kernel with correlation length
` = 1, i.e., setting µ = 1/2 in (II.4.5):

k(x,y) = exp(−‖x− y‖).

The upper threshold for the rank in H-matrix arithmetic is set to k = p2 = 25.
In addition to the operators +25 and *25 for non-symmetric matrices, we also consider

their symmetric versions +̂25 and *̂25 which compute only the lower triangular part of the
result. Additionally, we compute the Cholesky factorization of V and its application to S.
The computations are run on a single core.

The computation times consumed for all considered operations are tabulated in Table V.1
in case of the unit sphere and in Table V.2 in case of the toy geometry. Additionally, Fig-
ures V.3, V.4, and V.5 show the asymptotic behavior of the computational times. For the
sake of simplicity, we only show the timings for the symmetric addition and multiplication. It

87

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

J nJ V+̂25S V+25S V*̂25S V*25S Chol(V) For+Back

d
=

1
1 24 4.1e-05 3.5e-05 7.7e-05 0.000125 5.3e-05 9.3e-05
2 96 6.5e-05 0.0001 0.000443 0.000686 0.00026 0.000799
3 384 0.000302 0.00119 0.022912 0.052417 0.009747 0.043785
4 1,536 0.044713 0.090498 3.5116 7.06414 1.98042 7.91452
5 6,144 0.867404 1.72426 52.055 107.143 41.8888 146.623
6 24,576 4.46785 8.64202 316.613 654.01 287.448 913.447
7 98,304 21.463 42.2797 1,798.45 3,828.5 1,868.96 5,393.18
8 393,216 99.8646 201.213 8,990.93 19,848.9 10,005.6 25,913.5

d
=

2

1 96 5.1e-05 9.2e-05 0.000411 0.00068 0.000277 0.000801
2 384 0.000425 0.000978 0.022478 0.041053 0.009165 0.042428
3 1,536 0.043059 0.087436 3.37257 6.78586 1.88509 7.70771
4 6,144 0.787595 1.58746 46.8514 95.5437 37.0832 133.922
5 24,576 4.07454 8.22546 285.494 586.663 247.38 808.526
6 98,304 19.7881 39.5271 1,606.97 3,351.7 1,534.99 4,470.37
7 393,216 97.5343 199.849 8,703.37 19,216.6 9,513.69 24,675.5

d
=

3

1 216 0.000144 0.00035 0.003378 0.00467 0.001933 0.005735
2 864 0.001641 0.005739 0.193533 0.290137 0.100178 0.301842
3 3,456 0.090337 0.176859 11.3008 20.5841 5.78048 22.0896
4 13,824 1.42118 2.624 104.773 206.03 73.3897 267.537
5 55,296 7.45 14.9491 656.893 1,327.73 517.241 1,758.13
6 221,184 39.8873 78.4722 3,842.1 7,947.72 3,282.52 10,256.1

Table V.1: Computational times for each particular H-matrix operation on the unit sphere.

seems that we obtain a rate of NJ logNJ for the H-matrix addition and NJ(logNJ)2 for the
other operations, which is in accordance with the complexity estimates from Chapter II.6.

As in Chapter III, we are also interested in the quality of the approximate Cholesky
factorization V ≈ L̂L̂ᵀ. Again, we use ten power iterations to estimate the error L̂L̂ᵀ −V
in the spectral norm. The estimated errors are plotted in Figures V.6, V.7, and V.8. We
remark that the estimated errors are in the same range as the errors computed with the
sparse eigensolver ARPACK. The jumps in the graphs occur when the first low-rank blocks
appear in the H-matrix partition and the arithmetic changes from the exact arithmetic of
dense matrices to the approximate H-matrix arithmetic.

V.3.2 Tests for the Iterative Solver

Having verified the almost linear scaling of our implementation of the H-matrix arithmetic,
we shall now see how it performs in solving the system of linear equations (V.1.2). We provide
two simple numerical examples in order to show that the solution strategy from Chapter III.3
also works in the case of boundary element matrices. To obtain computational efficiency, we
exploit the symmetric structure whenever possible, i.e, we only store and compute the lower
part of the matrices.

In the first example, we consider the unit ball as a domain and

Cor[f] = Y 2
0 ⊗ Y 2

0 ,

where Y 2
0 (x) =

√
5/(16π)(3x2

3−1) is the spherical harmonic, which we also considered in the
numerical experiments of Chapter IV. Due to the tensor product structure of Cor[f], we can
then directly say that

Cor[u] = Y 2
0 ⊗ Y 2

0 .

This provides us with an analytical reference solution, to which we compare our numerical
approximation on the 2,351 vertices of the cubes visualized in Figure V.1.

88

V.3. Numerical Examples

J nJ V+̂25S V+25S V*̂25S V*25S Chol(V) For+Back
d

=
1

1 192 0.000536 0.001095 0.021754 0.045326 0.007315 0.04081
2 768 0.001884 0.004775 0.167881 0.316927 0.070815 0.344601
3 3,072 0.130925 0.18407 20.1432 39.3158 9.43328 40.0813
4 12,288 4.00772 7.97778 508.534 1,032.57 465.559 1,238.12
5 49,152 20.2409 39.0739 2,828.7 5,780.24 2,948.81 6,868.8
6 196,608 88.6684 178.078 13,362.7 26,472.9 14,404.8 30,795.8

d
=

2

1 768 0.00184 0.004926 0.167472 0.314753 0.069343 0.328008
2 3,072 0.0927 0.177984 18.981 36.9432 9.40632 40.1611
3 12,288 3.70498 7.43748 453.663 914.985 394.168 1,126.11
4 49,152 18.4753 36.9277 2,556.9 5,139.18 2,524.57 6,083.86
5 196,608 80.5977 165.36 12,158.2 24,717.3 13,175.8 29,280

d
=

3

1 1,728 0.009992 0.025794 1.40425 2.25854 0.664645 2.32553
2 6,912 0.230159 0.506579 95.5978 163.796 45.5567 171.079
3 27,648 6.11852 12.1955 1,013.91 1,984.87 745.913 2,222.24
4 110,592 34.3278 68.8413 5,616.83 11,232 4,959.89 12,687.3

Table V.2: Computational times for each particular H-matrix operation on the toy geometry.

0 1 2 3 4 5 6 7 8 9
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

0 1 2 3 4 5 6 7
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

Figure V.3: Asymptotic behavior of the computation times per element on the unit sphere
(left) and on the toy geometry (right) for d = 1.

0 1 2 3 4 5 6 7 8
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

0 1 2 3 4 5 6
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

Figure V.4: Asymptotic behavior of the computation times per element on the unit sphere
(left) and on the toy geometry (right) for d = 2.

89

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

0 1 2 3 4 5 6 7
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

0 1 2 3 4 5
10−11

10−8

10−5

10−2

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)

NJ(logNJ)2

Addition
Multiplication
Cholesky
For+Back

Figure V.5: Asymptotic behavior of the computation times per element on the unit sphere
(left) and on the toy geometry (right) for d = 3.

0 1 2 3 4 5 6 7 8 9
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

0 1 2 3 4 5 6 7
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

Figure V.6: Deviation L̂L̂ᵀ −V with respect to the estimated spectral norm for fixed rank
on the unit sphere (left) and on the toy geometry (right) for d = 1.

0 1 2 3 4 5 6 7 8
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

0 1 2 3 4 5 6
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

Figure V.7: Deviation L̂L̂ᵀ −V with respect to the estimated spectral norm for fixed rank
on the unit sphere (left) and on the toy geometry (right) for d = 2.

90

V.3. Numerical Examples

0 1 2 3 4 5 6 7
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

0 1 2 3 4 5
10−16

10−13

10−10

10−7

10−4

J

es
ti
m
at
ed

er
ro
r
in

sp
ec
tr
al

no
rm

Figure V.8: Deviation L̂L̂ᵀ −V with respect to the estimated spectral norm for fixed rank
on the unit sphere (left) and on the toy geometry (right) for d = 3.

For the second example, we consider the toy geometry as a domain and choose a Gaussian
kernel as input data, i.e., we set

Cor[f](x,y) = exp

(
− ‖x− y‖2

2`2

)
with ` ≈ 4 diam(D). Since we cannot analytically compute Cor[u] in this case, we may
compute a reference solution with a similar procedure as in the numerical experiments of
Chapter III. That is, we compute an overkill solution to Cor[ρ] on a finer mesh by computing
a low-rank factorization of Cf , using the pivoted Cholesky factorization, to obtain a low-rank
factorization of Cρ. A subsequent potential evaluation yields a reference solution to Cor[u],
to which we compare our solution on the 1,352 vertices of the cubes visualized in Figure V.2.

For the numerical computations, we allow a maximal rank of k = 25 and stop the iteration
when the relative error of the residuals’ Frobenius norm is smaller than ε = 10−6. For the
Galerkin discretization, we use the discontinuous, higher order boundary elements of order
d = 1, 2, 3 from the previous chapter. The errors in Figure V.9 indicate that we indeed
reach the theoretical possible convergence rates on the sphere and also on the toy geometry.
The computation times for the iterative refinement are tabulated in Table V.3 and visualized
in Figure V.10. They seem to confirm the almost linear behaviour of the solver, although
the computation times on the sphere for d = 3 seem to be in the preasymptotic regime. A
visualization of the diagonal of the density’s and the potential’s correlation can be found in
Figure V.1 for the sphere and in Figure V.2 for the toy geometry.

Notice that, for both examples, we had to perform only one step to achieve convergence
to the prescribed tolerance.

V.3.3 Stochastic Application

Having verified the convergence of the iterative refinement also in the case of correlation
equations from a discretization with a single layer potential ansatz, we shall now exemplarily
compute the solution’s correlation on the crankshaft geometry from Figure IV.2, represented
by 142 patches. The prescribed correlation on the boundary is either the Gaussian kernel

Cor[f](x,y) = exp

(
− ‖x− y‖2

2

)
or the exponential kernel

Cor[f](x,y) = exp(−‖x− y‖).

91

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

0 1 2 3 4 5 6 7 8 9
10−14

10−11

10−8

10−5

10−2

J

`∞
-e
rr
or

h3

h5

h7

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7
10−14

10−11

10−8

10−5

10−2

J

`∞
-e
rr
or

h3

h5

h7

d = 1
d = 2
d = 3

Figure V.9: Errors for the correlation of the potential on the sphere (left) and on the toy
geometry (right).

sphere toy
J d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
1 0.000429 0.002644 0.020124 0.140119 1.28216 9.75094
2 0.016963 0.143579 1.17804 24.1919 173.213 676.472
3 3.16681 19.9488 67.9204 3,555.34 6,928.16 12,975.3
4 20.2207 259.415 520.829 7,767.52 27,714.5 83,684.4
5 181.909 1,323.76 8,381.58 37,308.7 142,455
6 1,083.54 7,423.32 172,704
7 6,088.71 41,599.9
8 40,843.9

Table V.3: Computation times for the iterative refinement on the sphere and the toy geometry.

0 1 2 3 4 5 6 7 8 9

10−5

10−3

10−1

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)2

d = 1
d = 2
d = 3

0 1 2 3 4 5 6 7

10−5

10−3

10−1

101

J

ti
m
e
(s
)
/
N
J

NJ(logNJ)2

d = 1
d = 2
d = 3

Figure V.10: Computation times per element for the iterative refinement on the sphere (left)
and on the toy geometry (right).

92

V.4. Conclusion

Figure V.11: The approximate diagonal of the correlation of the potential for the Gaussian
kernel.

Figure V.12: The approximate diagonal of the correlation of the potential for the exponential
kernel.

Since the diameter of the crankshaft is approximately 13, the ratio of correlation length to
geometry diameter is around 1/13. We use discontinuous, piecewise linear boundary elements
on level four, yielding 145,408 ansatz functions and, thus, a matrix equation with 2.1 · 1010

unknowns. We employ a simple OpenMP parallelization on the first recursion level of the
H-matrix algorithms to accelerate the computations and refer to [Kri05], where a more so-
phisticated parallelization was discussed. To avoid memory racing conditions, we modify the
original ARPACK code to remove static variables. The maximal admissible rank for the
H-matrix arithmetic is again set to 25.

Figure V.11 and Figure V.12 show the diagonal of the correlation of the potential for
the Gaussian kernel and for the exponential kernel, respectively. In both cases, the iterative
refinement needed one iteration to converge. The computation of the Cholesky factorization
takes about 1,800 seconds, whereas the iterative refinement takes about 23,000 seconds.

V.4 Conclusion

In this chapter, we have solved correlation equations stemming from PDEs with random
Dirichlet data with the H-matrix approach. Using an indirect boundary integral formulation,
we have computed the correlation of the density. A subsequent potential evaluation on the
tensor product domain allows for the computation of the correlation of the PDE’s solution.
Using the H-matrix framework for parametric surfaces, we end up with specially structured
H-matrices. The combination of this structure with a sparse eigensolver results in an efficient
H-matrix arithmetic. The numerical examples validate the almost linear cost complexity for
the H-matrix arithmetic. Furthermore, the numerical examples confirm that the iterative
solver is well suited to numerically solve the correlation equation. Finally, results are given

93

CHAPTER V. PDES WITH RANDOM DIRICHLET DATA

for stochastic problems with the Gaussian kernel and the exponential kernel on a nontrivial
geometry.

94

Chapter VI

PDEs on Random Domains

VI.1 Random Domains
Up to now, we have computed the correlation of solutions of PDEs with random load or ran-
dom boundary values. In both cases, the derivation of the correlation equation was essentially
the tensoration of the original linear equation and subsequent integration over the probability
space. We shall now consider PDEs on random domains, where, in contrast to the previous
examples, the solution depends non-linearly on the uncertain input data.

VI.1.1 Basic Definitions
For the following considerations, let D0 ⊂ Rn be a reference domain with, in order to
ensure C3,1-continuity of its outer normal, a C4,1-boundary. On a separable, complete
probability space (Ω,Σ,P), consider a random vector field V ∈ L2

P(Ω;C3,1(∂D0;Rn)) with
‖V(ω, ·)‖C3,1(∂D0;Rn) . 1 uniformly for all ω ∈ Ω, which perturbs the boundary of the refer-
ence domain ∂D0 in accordance with ∂Dε(ω) := ∂D0 + εV(ω, ∂D0) for some given ε > 0. A
random domain Dε(ω) is then given by the interior of the perturbed boundary ∂Dε(ω). For
later considerations, we also introduce a compact set K, which is contained in all possible
boundary variations and, in particular, in the reference domain, i.e.,

K b D0 ∩D∩Ω
ε , D∩Ω

ε :=
⋂
ω∈Ω

Dε(ω).

The complete setting of the introduced sets is illustrated in Figure VI.1.

K

∂Dε(ω)

∂D0

Figure VI.1: The boundary of the reference domain ∂D0, a family of perturbed domains
∂Dε(ω), and the compactum K.

Note that, in contrast to the domain mapping approach, which requires a vector field
on the whole reference domain, see Chapter I and the references therein, the perturbation
approach only requires a vector field on the boundary. A correspondence between the two
approaches is given by the fact that every vector field on the boundary ∂D0 can smoothly be
extended into the interior of D0 in such a way that it vanishes on the compactum K.

95

CHAPTER VI. PDES ON RANDOM DOMAINS

For all further considerations, let g ∈ H3(D0 ∪ D∪Ω
ε), where D∪Ω

ε denotes the hold-all
domain

D∪Ω
ε :=

⋃
ω∈Ω

Dε(ω).

Then, it follows u0 ∈ H3(D0) for the unique solution u0 of the unperturbed problem

∆u0 = 0 in D0,

u0 = g on ∂D0,
(VI.1.1)

see [Wlo87, Theorem 20.4] for example. Here and in the following, the Dirichlet and Neumann
data have to be understood in the trace sense, see Theorems II.2.20 and II.2.21.

VI.1.2 Shape Calculus for Parametrized Domains
We look at the randomly perturbed boundary value problem

∆uε(ω) = 0 in Dε(ω),

uε(ω) = g on ∂Dε(ω),
(VI.1.2)

which is posed on the random domain Dε(ω). Given the reference domain D0, and the vector
field V ∈ L2

P(Ω;C3,1(∂D0;Rn)) with ‖V(ω, ·)‖C3,1(∂D0;Rn) . 1 uniformly for all ω ∈ Ω, one
can expand uε into a shape Taylor expansion

uε(ω,x) = u0(x) + εδu[V(ω)](x) +
ε2

2
δ2u[V(ω),V(ω)](x) +O(ε3), x ∈ K b D0 ∩Dε(ω),

(VI.1.3)

which holds for all 0 < ε ≤ ε0 for some ε0 > 0 small enough. Here, the first order local shape
derivative δu[V(ω)] ∈ H2(D0) is given by

∆δu[V(ω)] = 0 in D0,

δu[V(ω)] = 〈V(ω),n〉∂(g − u0)

∂n
on ∂D0,

(VI.1.4)

cf. [SZ92, Chapter 3.1]. Given a second vector field V′ ∈ L2
P(Ω;C3,1(D0;Rn)) for which it

holds ‖V′(ω, ·)‖C3,1(D0;Rn) . 1 uniformly for all ω ∈ Ω, the second order local shape derivative
δ2u[V(ω),V′(ω)] ∈ H1(D0) is given, cf. [Epp00, Theorem 1], by

∆δ2u[V(ω),V′(ω)] = 0 in D0,

δ2u[V(ω),V′(ω)] =
∂2(g − u0)

∂n2
〈V(ω),n〉〈V′(ω),n〉

− 〈V(ω),n〉∂δu[V′(ω)]

∂n

− 〈V′(ω),n〉∂δu[V(ω)]

∂n
on ∂D0.

(VI.1.5)

Of course, according to (VI.1.3), we only need the second order local shape derivative
in case of identical fields, i.e., V = V′ and it only remains to explain how to compute
∂2(g − u0)/∂n2 on ∂D0. On a C2-boundary and for ψ ∈ H3(D), we know that, cf. [SZ92,
Proposition 2.68],

∆ψ = ∆Γψ + 2H∂ψ
∂n

+
∂2ψ

∂n2
on ∂D0, (VI.1.6)

where ∆Γ denotes the Laplace-Beltrami operator and H denotes the mean curvature of ∂D0

given by 2H = −∇ · n. Since u0 = g on ∂D0, see (VI.1.1), we have ∆Γ(g − u0) = 0, and
obtain

∂2(g − u0)

∂n2
= ∆g − 2H∂(g − u0)

∂n
on ∂D0 (VI.1.7)

by the use of (VI.1.6).

96

VI.1. Random Domains

VI.1.3 Statistical Moments on Random Domains
For the following considerations, we can assume without loss of generality that the boundary
perturbations are centered, i.e.,

E[V] = 0, and thus formally E[Dε] = D0,

which is not a restriction, since one can easily recenter the random field by considering
V′ = V−E[V]. This especially means that the mean of the first order local shape derivative
(VI.1.4) vanishes, which implies

E[uε](x) = u0(x) +
ε2

2
E[δ2u](x) +O(ε3), x ∈ K b D∩Ω

ε . (VI.1.8)

By tensorizing (VI.1.3) and integrating over Ω, we further obtain

Cor[uε](x,y) = u0(x)u0(y) + ε2 Cor[δu](x,y) (VI.1.9)

+
ε2

2

(
u0(x)E[δ2u](y) + E[δ2u](x)u0(y)

)
+O(ε3), x,y ∈ K b D∩Ω

ε .

Finally, subtracting (VI.1.8) from both sides in (VI.1.3), tensorizing and integrating over Ω
yields

Cov[uε](x,y) = ε2 Cor[δu](x,y) +O(ε3), x,y ∈ K b D∩Ω
ε . (VI.1.10)

In order to compute the quantities E[uε], Cor[uε], and Cov[uε], appearing in (VI.1.8),
(VI.1.9), and (VI.1.10), we have to solve for E[δ2u] and Cor[δu]. To this end, we combine
(VI.1.5) and (VI.1.7) to arrive at, see also [HSS08b],

∆E
[
δ2u[V,V]

]
= 0 in D0,

E
[
δ2u[V,V]

]
=

(
∆g − 2H∂(g − u0)

∂n

)
Cor[〈V,n〉]

∣∣∣
x=y
− 2E

[
〈V,n〉∂δu[V]

∂n

]
on ∂D0.

(VI.1.11)

Next, tensorizing (VI.1.4) and integrating over Ω yields

(∆⊗∆) Cor[δu] = 0 in D0 ×D0,

(∆⊗ Id) Cor[δu] = 0 on D0 × ∂D0,

(Id⊗∆) Cor[δu] = 0 on ∂D0 ×D0,

Cor[δu] = Cor[〈V,n〉]
(
∂(g − u0)

∂n
⊗ ∂(g − u0)

∂n

)
on ∂D0 × ∂D0.

(VI.1.12)

The asymptotic expansions for E[uε], Cor[uε], and Cov[uε] can, under certain circum-
stances, be improved to fourth order accuracy with help of the following lemma, which is
inspired by [HP15, Lemma 2.3].

Lemma VI.1.1. Assume that the boundary perturbations in normal direction are given by
an expansion

〈V(ω,x),n〉 =

M∑
i=1

κi(x)Xi(ω),

where Xi, i = 1, . . . ,M , are independent and identically distributed random variables. Then,
it holds

δu[V(ω)] =

M∑
i=1

δu[κi · n]Xi(ω),

δ2u[V(ω),V(ω)] =

M∑
i,j=1

δ2u[κi · n, κj · n]Xi(ω)Xj(ω),

97

CHAPTER VI. PDES ON RANDOM DOMAINS

and

δ3u[V(ω),V(ω),V(ω)] =

M∑
i,j,k=1

δ3u[κi · n, κj · n, κk · n]Xi(ω)Xj(ω)Xk(ω),

provided that the third order local shape derivative δ3u, as usual given as the local shape
derivative of the second order local shape derivative, exists.

Proof. The first two expressions were already provided in [HP15, Lemma 2.3], whereas the
third one is analogously derived by exploiting the trilinearity of δ3u.

Obviously, due to the independence of the random variables (Xi)
M
i=1, it holds

E[δ3u] =

M∑
i=1

δ3u[κi · n, κi · n, κi · n]E[X3
i] = 0,

if the probability distribution of the Xi is symmetric around zero. The expansion of the mean
E[uε] (VI.1.8) is thus fourth order accurate. Similarly, it holds under the same assumptions

Cor[δ2u, δu] =

M∑
i=1

δ2u[κi · n, κi · n]δu0[κi · n]E[X3
i] = 0.

Hence, the expansion for Cor[uε] (VI.1.9) becomes fourth order accurate, and, likewise, the
expansion for Cov[uε] (VI.1.10) also becomes fourth order accurate.

VI.2 Boundary Integral Equations
We shall use boundary integral equations to compute the asymptotic expansions (VI.1.8),
(VI.1.9), and (VI.1.10) for the statistics of the random solution. To this end, observe that
the boundary conditions for the PDEs of E[δ2u] and Cor[δu], (VI.1.11) and (VI.1.12), depend
on the Neumann data t(u0) = ∂u0/∂n of the solution u0 of the unperturbed boundary value
problem (VI.1.1). Having the Dirichlet data g of u0 at hand, the corresponding Neumann
data are given by the Dirichlet-to-Neumann map S from (IV.1.13).

To obtain the second term of the Dirichlet data of E[δ2u] in (VI.1.11), we employ that it
can be rewritten as the diagonal of a correlation, call it A,

E
[
〈V,n〉∂δu[V]

∂n

]
= E

[
〈V(·,x),nx〉

∂δu[V(·,y)])

∂ny

]∣∣∣∣
x=y

=: A(x,y)
∣∣
x=y

. (VI.2.1)

The Dirichlet-to-Neumann map and the definition of the first order local shape derivative
(VI.1.4) then yield

A(x,y) := E
[
〈V(·,x),nx〉

∂δu[V(·,y)])

∂ny

]
= E

[
〈V(·,x),nx〉S

(
〈V(·,y),ny〉

(
∂g

∂ny
− t(u0)

))]
=
(

Id⊗S
)(

E
[
〈V(·,x),nx〉〈V(·,y),ny〉

](
1⊗

(
∂g

∂ny
− t(u0)

)))
=
(

Id⊗S
)((

1⊗
(
∂g

∂ny
− t(u0)

))
Cor[〈V,n〉]

)
. (VI.2.2)

Given the Dirichlet data

g(E[δ2u]) =

(
∆g − 2H∂(g − u0)

∂n

)
Cor[〈V,n〉]

∣∣
x=y
− 2A

∣∣
x=y

(VI.2.3)

98

VI.3. Galerkin Discretization

and the Neumann data
t(E[δ2u]) = Sg(E[δ2u])

of E[δ2u], the solution E[δ2u] of (VI.1.11) can be represented inside the domain by using the
representation formula (IV.1.2), which yields

E[δ2u](x) = Ṽ
(
t(E[δ2u])

)
(x)− K̃

(
g(E[δ2u])

)
(x), x b D∩Ω. (VI.2.4)

Similarly, given the Dirichlet data of Cor[δu],

g(Cor[δu]) =

(
∂(g − u0)

∂n
⊗ ∂(g − u0)

∂n

)
Cor[〈V,n〉],

and solving (
V ⊗ V

)
ρ(Cor[δu]) = g(Cor[δu]), (VI.2.5)

the second order correction term Cor[δu] can be represented as solution of (VI.1.12) by the
representation formula

Cor[δu](x,y) =
(
Ṽ ⊗ Ṽ

)(
ρ(Cor[δu])

)
(x,y), x,y ∈ D∩Ω. (VI.2.6)

For the computation of Cor[δu] we are thus in a similar setting as in the previous chapter.

VI.3 Galerkin Discretization
For the following discussion of the Galerkin discretizations, let Vh be the N -dimensional
space of piecewise polynomial ansatz functions of order d on ∂D0, generated from a quasi-
uniform mesh on ∂D0. Since the Neumann data t(u0) of the solution u0 of the unperturbed
boundary value problem (VI.1.1) are needed for the computation of both of the correction
terms E[δ2u] and Cor[δu], we will first consider the discretization of the Dirichlet-to-Neumann
map (IV.1.13). Although the discretization is pretty standard in boundary element methods,
cf., e.g., [Ste08], we believe its repetition is useful to establish notation and will help the
reader to understand the following more involved steps.

VI.3.1 Dirichlet-to-Neumann Map

The variational formulation of the Dirichlet-to-Neumann map is given as follows:

Find t(u0) ∈ H−1/2(∂D0) such that(
Vt(u0), v

)
L2(∂D0)

=

((
1

2
+K

)
g, v

)
L2(∂D0)

for all v ∈ H−1/2(∂D0).

Replacing the energy space H−1/2(∂D0) by the finite dimensional space Vh ⊂ H−1/2(∂D0),
choosing a basis (ϕi)

N
i=1 of Vh, and replacing g with its L2-projection Πhg onto Vh, we end

up with the system of linear equations

Vt(u0) =

(
1

2
M + K

)
M−1g. (VI.3.1)

The corresponding system matrices are given by

V =
[
(Vϕj , ϕi)L2(∂D0)

]N
i,j=1

, K =
[
(Kϕj , ϕi)L2(∂D0)

]N
i,j=1

, M =
[
(ϕj , ϕi)L2(∂D0)

]N
i,j=1

,

99

CHAPTER VI. PDES ON RANDOM DOMAINS

while the vectors are given by

g =
[(
g, ϕi

)
L2(∂D0)

]N
i=1

, t(u0) =
[
t
(u0)
i

]N
i=1

,

where the coefficients t(u0)
i are the coefficients of the basis expansion

t
(u0)
h =

N∑
i=1

t
(u0)
i ϕi.

VI.3.2 Computation of Cor[δu]

For determining Cor[δu] via the representation formula (VI.2.6), we have to compute ρ(Cor[δu]),
being the solution of the tensor equation (VI.2.5), which is a special case of (II.4.4).

The variational formulation of (VI.2.5) is then given as follows:

Find ρ(Cor[δu]) ∈ H−1/2,−1/2
mix (∂D0 × ∂D0) such that((

V ⊗ V
)
ρ(Cor[δu]), v

)
L2(∂D0×∂D0)

=
(
g(Cor[δu]), v

)
L2(∂D0×∂D0)

for all v ∈ H−1/2,−1/2
mix (∂D0 × ∂D0).

Replacing the energy space H−1/2,−1/2
mix (∂D0 × ∂D0) by the finite dimensional ansatz space

Vh ⊗ Vh ⊂ H−1/2,−1/2
mix (∂D0 × ∂D0), choosing a basis (ϕi ⊗ϕj)Ni,j=1 of Vh ⊗ Vh, and replacing

g(Cor[δu]) by the approximation

g
(Cor[δu])
h :=

((
∂g

∂n
− t(u0)

h

)
⊗
(
∂g

∂n
− t(u0)

h

))((
Πh ⊗Πh

)
Cor[〈V,n〉]

)
,

we end up with the system of linear equations

(V ⊗V) vec
(
Cρ,Cor[δu]

)
= (N⊗N)(M⊗M)−1 vec

(
CCor[〈V,n〉]

)
. (VI.3.2)

The corresponding system matrices are given by

N =

[((
∂g

∂n
− t(u0)

h

)
ϕj , ϕi

)
L2(∂D0)

]N
i,j=1

,

CCor[〈V,n〉] =
[(

Cor[〈V,n〉], ϕi ⊗ ϕj
)
L2(∂D0×∂D0)

]N
i,j=1

,

Cρ,Cor[δu] =
[
c
ρ,Cor[δu]
ij

]N
i,j=1

,

where the coefficients cρ,Cor[δu]
ij are the coefficients of the basis expansion

ρ
(Cor[δu])
h =

N∑
i,j=1

c
ρ,Cor[δu]
ij

(
ϕi ⊗ ϕj

)
.

Following the considerations at the end of Chapter II.4, we may rewrite (VI.3.2) as

VCρ,Cor[δu]Vᵀ = NM−1CCor[〈V,n〉]M−ᵀNᵀ. (VI.3.3)

100

VI.4. Error Estimates

VI.3.3 Computation of E[δ2u]

For the computation of E[δ2u], we shall first consider the numerical treatment of the compu-
tation of the correlation A as given by (VI.2.2). Its variational formulation is:

Find A ∈ H0,−1/2
mix (∂D0 × ∂D0) such that((

Id⊗V
)
A, v

)
L2(∂D0×∂D0)

=((
Id⊗

(
1

2
+K

))((
1⊗

(
∂g

∂n
− t(u0)

))
Cor[〈V,n〉], v

)
L2(∂D0×∂D0)

for all v ∈ H0,−1/2
mix (∂D0 × ∂D0).

Choosing a basis (ϕi⊗ϕj)Ni,j=1 of Vh⊗Vh ⊂ H0,−1/2
mix (∂D0×∂D0) and employing L2-projections

leads, as in the previous section, to a finite dimensional variational problem. It corresponds
to the system of linear equations

(M⊗V) vec(A) =

(
M⊗

(
1

2
M + K

))
(M⊗M)−1(M⊗N)(M⊗M)−1 vec

(
CCor[〈V,n〉]

)
,

whereA contains the coefficients of the basis expansion of the Galerkin solution Ah ∈ Vh⊗Vh.
Rearranging this system as before yields the matrix equation

VAMᵀ =

(
1

2
M + K

)
M−1NM−1CCor[〈V,n〉]. (VI.3.4)

Having approximated the correlation A, the Dirichlet data of E[δ2u] can now be computed.
Following the considerations of the discretization of the Dirichlet-to-Neumann map from
Chapter VI.3.1 and employing L2-projections, the Neumann data t(E[δ2u]) of E[δ2u] are given
by

Vt(E[δ2u]) =

(
1

2
M + K

)
M−1

((
G− LM−1N

)
M−1d− 2b

)
(VI.3.5)

with corresponding vectors and matrices

d =
[(

Cor[〈V,n〉]
∣∣
x=y

, ϕi
)
L2(∂D0)

]N
i=1

, b =
[(
Ah|x=y, ϕi

)
L2(∂D0)

]N
i=1

,

L =
[(

2Hϕj , ϕi
)
L2(∂D0)

]N
i,j=1

, G =
[(

∆gϕj , ϕi
)
L2(∂D0)

]N
i,j=1

.

The correction term E[δ2u] itself is then given by the representation formula (VI.2.4).
The error estimation of the approximate solutions is the topic of the next section.

VI.4 Error Estimates

For the following error estimates, it is important to carefully distinguish between the reg-
ularity requirements of the involved shape calculus and the regularity assumptions for the
Galerkin discretization. More specifically, let us remark that a regularity assumption on the
boundary ∂D0 of the reference domain does not necessarily imply the same regularity to the
perturbations and the perturbed domains D(ω). Throughout our proofs, we require that the
domain D0 is of class Cd,1 and that it holds g ∈ Hd+1(∂D0) for the Dirichlet data on the
reference domain.

101

CHAPTER VI. PDES ON RANDOM DOMAINS

VI.4.1 Preliminaries
We start by restating a convergence result for the Dirichlet-to-Neumann map.

Lemma VI.4.1. For the Neumann data t(u0) of the solution u0 of the unperturbed problem
(VI.1.1) and their approximation t(u0)

h , it holds for −d ≤ s ≤ 0 that∥∥∥t(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

. hd−s.

Proof. The proof for the case −d ≤ s ≤ −1/2 is standard, we refer to [Ste08, Theorem 12.7]
and remark that K : Hs(∂D0) → Hs+1(∂D0) is a continuous operator on Cd,1-boundaries.
To extend the result to the case −1/2 < s ≤ 0, consider the inequality∥∥∥t(u0) − t(u0)

h

∥∥∥
Hs(∂D0)

≤
∥∥∥t(u0) −Πht

(u0)
∥∥∥
Hs(∂D0)

+
∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

.

The first term on the right hand side can again be estimated by the standard approximation
property of the L2-projection, whereas, for the second term on the right hand side, we employ
the inverse estimate to obtain∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

≤ hs−1/2
∥∥∥Πht

(u0) − t(u0)
h

∥∥∥
H−1/2(∂D0)

≤ hs−1/2

(∥∥∥Πht
(u0) − t(u0)

∥∥∥
H−1/2(∂D0)

+
∥∥∥t(u0) − t(u0)

h

∥∥∥
H−1/2(∂D0)

)
.

This yields the assertion together with the first part of the lemma and the standard approx-
imation estimates of the L2-projection.

The following technical lemma is needed for the error estimation and is inspired in parts
by the proof of [HSS08b, Theorem 7.3].

Lemma VI.4.2. Assume that a, b ∈ Hd(∂D0), ‖a−ah‖L2(∂D0) . hd, and ‖a−ah‖Hs(∂D0) .
hd−s for −d ≤ s < −(n− 1)/2. Then, we have∥∥ab− ahΠhb

∥∥
Hs(∂D0)

. hd−s.

Proof. We start by splitting the error into two parts∥∥ab− ahΠhb
∥∥
Hs(∂D0)

≤
∥∥(a− ah)b

∥∥
Hs(∂D0)

+
∥∥ah(Id−Πh

)
b‖Hs(∂D0).

Let u, v ∈ H−s(∂D0). From the estimate ‖uv‖H−s(∂D0) . ‖u‖H−s(∂D0)‖v‖H−s(∂D0), cf. [BH15,
Zol77], we conclude by duality

‖uv‖Hs(∂D0) = sup
‖w‖H−s(∂D0)=1

(uv,w)L2(∂D0)

= sup
‖w‖H−s(∂D0)=1

(u, vw)L2(∂D0)

≤ ‖u‖Hs(∂D0) sup
‖w‖H−s(∂D0)=1

‖vw‖H−s(∂D0)

. ‖u‖Hs(∂D0)‖v‖H−s(∂D0).

Thus, the first part of the error can easily be estimated by∥∥(a− ah)b
∥∥
Hs(∂D0)

.
∥∥a− ah∥∥Hs(∂D0)

‖b‖H−s(∂D0),

whereas the second part of the error is treated in accordance with∥∥ah(Id−Πh

)
b‖Hs(∂D0)

= sup
‖w‖H−s(∂D0)=1

(
ah
(

Id−Πh

)
b, w

)
L2(∂D0)

= sup
‖w‖H−s(∂D0)=1

((
(ah − a)

(
Id−Πh

)
b, w

)
L2(∂D0)

+
(
a
(

Id−Πh

)
b, w

)
L2(∂D0)

)
.

102

VI.4. Error Estimates

Since H−s(∂D0) is continuously embedded into L∞(∂D0) on Cd,1-smooth boundaries for
−s > (n− 1)/2, one can estimate(

(ah − a)
(

Id−Πh

)
b, w

)
L2(∂D0)

≤
∥∥(ah − a)

(
Id−Πh

)
b
∥∥
L1(∂D0)

‖w‖L∞(∂D0)

. ‖a− ah‖L2(∂D0)

∥∥(Id−Πh

)
b
∥∥
L2(∂D0)

‖w‖H−s(∂D0),

and, since it holds (Id−Πh)?(Id−Πh) = (Id−Πh) due to the properties of the L2-projection,(
a
(

Id−Πh

)
b, w

)
L2(∂D0)

=
((

Id−Πh

)
b, aw

)
L2(∂D0)

=
((

Id−Πh

)
b,
(

Id−Πh

)
(aw)

)
L2(∂D0)

≤
∥∥(Id−Πh

)
b
∥∥
L2(∂D0)

∥∥(Id−Πh

)
(aw)

∥∥
L2(∂D0)

.

The assertion follows by applying the standard approximation estimates of the L2-projection,
i.e., it holds ∥∥(Id−Πh

)
w
∥∥
H−t̃(∂D0)

. ht+t̃‖w‖Ht(∂D0) (VI.4.1)

for 0 ≤ t̃ ≤ t ≤ d and w ∈ Ht(∂D0), see, e.g., [SS11, Chapter 4]. Thus, the first part of
product is bounded by . hd and the second part of product is bounded by . h−s.

By a tensor product argument, we arrive at a similar statement on the tensor product
domain.

Corollary VI.4.3. Assume that a, b ∈ Hd,d
mix(∂D0 × ∂D0), ‖a − ah‖L2(∂D0×∂D0) . hd, and

‖a− ah‖Hs,smix(∂D0×∂D0) . h
d−s for −d ≤ s < −(n− 1)/2. Then, it holds that∥∥ab− ah(Πh ⊗Πh

)
b
∥∥
Hs,smix(∂D0×∂D0)

. hd−s.

Proof. The proof is very similar to the proof of the preceding lemma. We refer to the proof
of [HSS08b, Theorem 7.3], where the details are given for the case s = −d, using the estimate
‖uv‖Hd(∂D0) ≤ ‖u‖Cd−1,1(∂D0)‖v‖Hd(∂D0) instead of ‖uv‖Hd(∂D0) . ‖u‖Hd(∂D0)‖v‖Hd(∂D0).

Remark VI.4.4. The focus of the present chapter is on the cases n = 2, 3 such that (n −
1)/2 < d implies d ≥ 1 for n = 2 and d ≥ 2 for n = 3, respectively. To simplify the
presentation of the following results, we will therefore restrict ourselves to the case d ≥ 2, i.e.,
we are considering discretizations with at least piecewise linear continuous ansatz functions.

VI.4.2 Approximation Error of Cor[δu]

In order to bound the approximation error of Cor[δu] given by the representation formula
(VI.2.6), we first have to bound the approximation error of its boundary values. This is in
parts due to the following lemma.

Lemma VI.4.5. Let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). Then, it holds∥∥∥g(Cor[δu]) − g(Cor[δu])
h

∥∥∥
H−d,−dmix (∂D0×∂D0)

. h2d.

Proof. The assertion is an immediate consequence of Corollary VI.4.3 with

a =

(
∂g

∂n
− t(u0)

)
⊗
(
∂g

∂n
− t(u0)

)
, ah =

(
∂g

∂n
− t(u0)

h

)
⊗
(
∂g

∂n
− t(u0)

h

)
,

103

CHAPTER VI. PDES ON RANDOM DOMAINS

and b = Cor[〈V,n〉]. The required convergence in the H−d(∂D0)-norm and in the L2(∂D0)-
norm is proven in Lemma VI.4.1 for the non-tensor product case. For the tensor product
case, consider for −d ≤ s ≤ 0 that

‖a− ah‖Hs,smix(∂D0×∂D0)

=

∥∥∥∥(∂g∂n
− t(u0)

)
⊗
(
t
(u0)
h − t(u0)

)
+

(
t
(u0)
h − t(u0)

)
⊗
(
∂g

∂n
− t(u0)

h

)∥∥∥∥
Hs,smix(∂D0×∂D0)

≤
∥∥∥∥ ∂g∂n

− t(u0)

∥∥∥∥
Hs(∂D0)

∥∥∥t(u0) − t(u0)
h

∥∥∥
Hs(∂D0)

+
∥∥∥t(u0) − t(u0)

h

∥∥∥
Hs(∂D0)

∥∥∥∥ ∂g∂n
− t(u0)

h

∥∥∥∥
Hs(∂D0)

. hd−s.

This completes the proof.

We are finally in the position to estimate the error of Cor[δu]h.

Lemma VI.4.6. Let Cor[δu] be given as in (VI.2.6) and let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0×∂D0).

It then holds ∣∣Cor[δu](x,y)− Cor[δu]h(x,y)
∣∣ . h2d for all x,y ∈ K b D∩Ω.

Proof. By employing the representation formula (VI.2.6), we obtain∣∣Cor[δu](x,y)− Cor[δu]h(x,y)
∣∣

=

∣∣∣∣(Ṽ ⊗ Ṽ)(ρ(Cor[δu]) − ρ(Cor[δu])
h

)
(x,y)

∣∣∣∣
.

∥∥∥∥ 1

16π2‖x− ·‖ ⊗ ‖y − ·‖

∥∥∥∥
Hd+1,d+1

mix (∂D0×∂D0)

·
∥∥∥ρ(Cor[δu]) − ρ(Cor[δu])

h

∥∥∥
H−d−1,−d−1

mix (∂D0×∂D0)
.

Using Strang’s first lemma and Lemma VI.4.5, we further derive∥∥∥ρ(Cor[δu]) − ρ(Cor[δu])
h

∥∥∥
H−d−1,−d−1

mix (∂D0×∂D0)
. h2d,

which, in view of K b ∂D0 and thus dist(K, ∂D0) > 0, implies the assertion.

Remark VI.4.7. The assumptions of the presented result are slightly weaker than the re-
lated result from [HSS08b]. Whereas [HSS08b] requires Cor[〈V,n〉] to be in Cd−1,1(∂D0) ⊗
Cd−1,1(∂D0), we only require it to be in Hd,d

mix(∂D0 × ∂D0). This means that we do not need
any extra regularity of the boundary perturbation in addition to the regularity required for the
first order shape derivative and the Galerkin approximation of Cor[〈V,n〉].

VI.4.3 Approximation Error of E[δ2u]

In order to estimate the discretization error of E[δ2u] given by (VI.1.11), we need to know
the discretization error of its Dirichlet data. Especially, we need to estimate the error of the
correlation A as given by (VI.2.2).

Lemma VI.4.8. Let Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0). It then holds for

Ah =
(

Id⊗V−1
)(

Id⊗
(

1

2
+KΠh

))((
1⊗

(
∂g

∂n
− t(u0)

h

))(
Πh ⊗Πh

)
Cor[〈V,n〉]

)
that ∥∥A−Ah∥∥H−d+1,−d+1

mix (∂D0×∂D0)
. h2(d−1).

104

VI.4. Error Estimates

Proof. For

a = 1⊗
(
∂g

∂n
− t(u0)

)
, ah = 1⊗

(
∂g

∂n
− t(u0)

h

)
, b = Cor[〈V,n〉],

it holds∥∥A−Ah∥∥H−d+1,−d+1
mix (∂D0×∂D0)

≤
∥∥ Id⊗V−1

∥∥
H−d+2,−d+2

mix (∂D0×∂D0)→H−d+1,−d+1
mix (∂D0×∂D0)∥∥∥∥(Id⊗

(
1

2
+K

))
(ab)−

(
Id⊗

(
1

2
+KΠh

))(
ah(Πh ⊗Πh)b

)∥∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)

. ‖ Id⊗K‖H−d+2,−d+2
mix (∂D0×∂D0)→H−d+2,−d+2

mix (∂D0×∂D0)∥∥ab− (Id⊗Πh

)
(ab)

∥∥
H−d+2,−d+2

mix (∂D0×∂D0)

+

∥∥∥∥ Id⊗
(

1

2
+KΠh

)∥∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)→H−d+2,−d+2
mix (∂D0×∂D0)∥∥∥ab− ah(Πh ⊗Πh

)
b
∥∥∥
H−d+2,−d+2

mix (∂D0×∂D0)
.

The assertion now follows from the approximation property of the L2-projection (VI.4.1),
Lemma VI.4.1, and Corollary VI.4.3.

The previous lemma allows us to bound the error of the Dirichlet data of the boundary
value problem (VI.1.11) for E[δ2u].

Lemma VI.4.9. Let Cor[〈V,n〉]
∣∣
x=y
∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d

mix(∂D0 × ∂D0). For
the Dirichlet data of E[δ2u] and their numerical approximation

g
(E[δ2u])
h =

(
∆g − 2HΠh

(
∂g

∂n
− t(u0)

h

))
Πh

(
Cor[〈V,n〉]

∣∣
x=y

)
− 2Ah

∣∣
x=y

,

it holds ∥∥∥g(E[δ2u]) − g(E[δ2u])
h

∥∥∥
H−d(∂D0)

. h2(d−1) (VI.4.2)

and ∥∥∥g(E[δ2u]) −Πhg
(E[δ2u])
h

∥∥∥
H−d(∂D0)

. h2(d−1). (VI.4.3)

Proof. By exploiting Πht
(u0)
h = t

(u0)
h and setting

a =
∂g

∂n
− t(u0), ah = Πh

∂g

∂n
− t(u0)

h , b = Cor[〈V,n〉]
∣∣
x=y

,

we conclude∥∥∥g(E[δ2u]) − g(E[δ2u])
h

∥∥∥
H−d(∂D0)

≤
∥∥(∆g)

(
b−Πhb

)∥∥
H−d(∂D0)

+
∥∥∥2H

(
ab− ahΠhb

)∥∥∥
H−d(∂D0)

+ 2
∥∥∥A∣∣x=y

−Ah
∣∣
x=y

∥∥∥
H−d(∂D0)

.

Herein, the first term on the right hand side can be bounded by. h2d by applying the standard
approximation estimates of the L2-projection (VI.4.1). The second term on the right hand can

105

CHAPTER VI. PDES ON RANDOM DOMAINS

be estimated by using the inequality ‖uv‖H−d+2(∂D0) . ‖u‖Hd−2(∂D0)‖v‖H−d+2(∂D0) derived
in the proof of Lemma VI.4.2:∥∥2H

(
ab− ahΠhb

)∥∥
H−d(∂D0)

≤
∥∥2H

(
ab− ahΠhb

)∥∥
H−d+2(∂D0)

. ‖2H‖Hd−2(∂D0)

∥∥ab− ahΠhb
∥∥
H−d+2(∂D0)

.

To estimate the third term on the right hand side, we follow the arguments in [DDH15,
Chapter 3.3] and remark that the diagonal operator Hs,s

mix(∂D0 × ∂D0) → W s,1(∂D0) is
continuous for s ≥ 1. Exploiting that the embedding W s,1(∂D0) ↪→ Hs−1(∂D0) is also
continuous, we conclude by a shift argument that∥∥∥A∣∣x=y

−Ah
∣∣
x=y

∥∥∥
H−d(∂D0)

.
∥∥A−Ah∥∥H−d+1,−d+1

mix (∂D0×∂D0)
.

In view of Lemmata VI.4.2 and VI.4.8, this implies the estimate (VI.4.2).
Estimate (VI.4.3) follows finally from (VI.4.2) and Strang’s first lemma by considering the

Galerkin projection as the solution of Idψ = g with a perturbed right-hand side.

We are now in the position to bound the error of the Neumann data t(E[δ2u]) of E
[
δ2u
]
.

Lemma VI.4.10. Let Cor[〈V,n〉]
∣∣
x=y

∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0).

Then, the Neumann data t(E[δ2u]) are approximated with the rate∥∥∥t(E[δ2u]) − t(E[δ2u])
h

∥∥∥
H−d−1(∂D0)

. h2(d−1).

Proof. Since V : Hd(∂D0)→ Hd+1(∂D0) is self-adjoint, continuous, and boundedly invertible
in case of a Cd,1-boundary, it holds∥∥∥t(u0) − t(u0)

h

∥∥∥
H−d−1(∂D0)

= sup
‖v‖

Hd+1(∂D0)
=1

(
t(u0) − t(u0)

h , v
)
L2(∂D0)

= sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w
)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

≤ sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w −Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

+ sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
,Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

.

Using the continuity and bounded invertibility of V, we further estimate

sup
‖w‖

Hd(∂D0)
=1

(
V
(
t(u0) − t(u0)

h

)
, w −Πhw

)
L2(∂D0)

‖Vw‖Hd+1(∂D0)

≤
∥∥∥V(t(u0) − t(u0)

h

)∥∥∥
H1/2(∂D0)

sup
‖w‖

Hd(∂D0)
=1

‖w −Πhw‖H−1/2(∂D0)

‖Vw‖Hd+1(∂D0)

.
∥∥∥t(u0) − t(u0)

h

∥∥∥
H−1/2(∂D0)

sup
‖w‖

Hd(∂D0)
=1

‖w −Πhw‖H−1/2(∂D0)

‖w‖Hd(∂D0)

.

Using standard error estimates for the Galerkin method, the error of the Neumann data in
the H−1/2(∂D0)-norm is bounded by . hd+1/2, whereas the second factor can be estimated
by the standard error estimates for the L2-projection.

106

VI.5. Hierarchical Matrix Compression

To estimate the second part of the sum, consider(
V
(
t(u0) − t(u0)

h

)
, vh

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
, vh

)
L2(∂D0)

for all vh ∈ Vh,

and conclude(
V
(
t(u0) − t(u0)

h

)
,Πhw

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
,Πhw

)
L2(∂D0)

=

(
1

2
(g − gh) +K

(
g −Πhgh

)
, w

)
L2(∂D0)

+
(
K
(
g −Πhgh

)
,Πhw − w

)
L2(∂D0)

+
1

2

(
g − gh,Πhw − w

)
L2(∂D0)

.
(
‖g − gh‖H−d(∂D0) +

∥∥K(g −Πhgh)
∥∥
H−d(∂D0)

)
‖w‖Hd(∂D0)

+
∥∥K(g −Πhgh)

∥∥
H1(∂D0)

‖w −Πhw‖H−1(∂D0)

+
∥∥g − gh∥∥L2(∂D0)

‖w −Πhw‖L2(∂D0).

The assertion now follows by exploiting that K : Hs(∂D0)→ Hs(∂D0) is a continuous oper-
ator for s = −d and s = 1 on Cd,1-boundaries, the previous lemma, and inverse estimates in
complete analogy to the proof of Lemma VI.4.1.

As an immediate consequence of the error estimates, we finally obtain an error estimate for
the potential of the second order local shape derivative E[δ2u]. The following approximation
result can be derived by standard arguments, see [Ste08, Chapter 12.1] for instance.

Lemma VI.4.11. Let Cor[〈V,n〉]
∣∣
x=y

∈ Hd(∂D0) and Cor[〈V,n〉] ∈ Hd,d
mix(∂D0 × ∂D0).

Then, for the mean of the second order local shape derivative E[δ2u] from (VI.1.11), it holds
that ∣∣E[δ2u](x)− E[δ2u]h(x)

∣∣ . h2(d−1) for all x ∈ K b D∩Ω.

Remark VI.4.12. Although we can only prove a reduced convergence rate of h2(d−1), we
will see in the numerical experiments that we reach the same convergence rate as for the
correlation, i.e., h2d.

VI.5 Hierarchical Matrix Compression

As discussed in the previous chapters, all explicitely given matrices in (VI.3.3), (VI.3.4), and
(VI.3.5) can be represented by hierarchical matrices, if we restrict ourselves to asymptotically
smooth correlations. It remains to discuss the H-matrix approximability of the unknowns
Cρ,Cor[δu] in (VI.3.3) and A in (VI.3.4). Unfortunately, Theorem II.5.18 does not immediately
show the asymptotical smoothness of A and ρ(Cor[δu]), but it can be extended to the following
slightly modified version.

Corollary VI.5.1. Let ∂D0 be a compact, analytic manifold and let Cor[〈V,n〉] give rise
to a pseudodifferential operator of Gevrey class s > 1 on ∂D0. Let further g be of Gevrey
class s. Then, the solutions of the equations (VI.2.2) and (VI.2.5) are, in local coordinates,
asymptotically smooth functions in one variable.

Proof. We first remark that the single layer operator belongs to OPS−1
cl,s and the double layer

operator belongs to OPS0
cl,s for s > 1, cf. [HW08, Chapter 9.2]. Let us further remark that

107

CHAPTER VI. PDES ON RANDOM DOMAINS

the multiplication of two functions g(x)f(x) can be written as an application of an integral
operator

g(x)f(x) =

∫
∂D0

k(x,x− y)f(y) dσy =: (Ψf)(x),

with distributional Schwartz kernel k(x,x−y) = g(x)δ0(‖x−y‖). Since the Fourier transform
of the delta distribution is a constant, the multiplication by a function gives thus rise to a
pseudodifferential operator OPS0

cl,s. Rewriting finally (VI.2.2) as

(
Id⊗V

)
A =

(
Id⊗

(
1

2
+K

))((
1⊗

(
∂g

∂n
− t(u0)

)
Cor[〈V,n〉]

)
,

the rest of the proof is in complete analogy to [DHS17, Theorems 1,2, and 3].

Knowing that it is reasonable to represent all matrices in (VI.3.3) and (VI.3.4) as H-
matrices, it remains to discuss how to actually compute the representations for Cρ,Cor[δu]

in (VI.3.3) and A in (VI.3.4). Therefore, we may compute the right-hand sides using the
H-matrix arithmetic. To solve the matrix equations, we may use the same strategy as in the
previous chapters and use the iterative refinement from (III.3.1). For the more general case
of an non-symmetric matrix equation ΨXΦᵀ = R, the iterative refinement can be modified
as follows. Let Ξ ≈ L̂ΞÛΞ, where L̂Ξ, ÛΞ ∈ H(B, k), Ξ ∈ {Ψ,Φ}, be approximate LU-
factorizations to Ψ and Φ, e.g., computed by the H-matrix arithmetic. Starting with the
initial guess X0 = Û−1

Ψ L̂−1
Ψ RL̂−ᵀΦ Û−ᵀΦ , we iterate

Θi = R−ΨXiΦ
ᵀ, Xi+1 = Xi + Û−1

Ψ L̂−1
Ψ ΘiL̂

−ᵀ
Φ Û−ᵀΦ , i = 0, 1,

Before we conclude this section, we remark that the approximate LU-factorization can be
replaced by an approximate Cholesky factorization if the corresponding matrix is symmetric
and positive definite, such as the system matrix of the single layer operator.

VI.6 Numerical Examples

The following numerical experiments are divided into three parts. The first part is concerned
with the convergence of the Galerkin scheme for the correction terms Cor[δu]h and E[δ2u]h
with respect to the mesh size h. The second part is concerned with the asymptotics of the
perturbation approach in ε, whereas the third part deals with an example on non-smooth
domains.

All of the computations in the following experiments were carried out on a computing
server with two Intel(R) Xeon(R) CPU E5-2643 v3 with a clock rate of 3.40GHz and a
main memory of 256GB. Each of the CPUs provides 12 physical cores, thus, with Hyper-
Threading enabled, we may access up to 24 logical cores in total. For the discretization and
the assembly of theH-matrices, we employ the black-box higher order FMM from Chapter IV.
The computations in the product domain ∂D0×∂D0 are based on discontinuous (elementwise)
polynomial ansatz functions and the computations in the non-product domain on globally
continuous B-splines of the same order. For the arithmetic H-matrix operations, we apply
the H-matrix arithmetic tailored to parametric surfaces from the previous chapter with its
simple OpenMP parallelization.

VI.6.1 Convergence in h

To construct an example, where the solution is analytically known, we consider the unit ball
whose boundary is perturbed in normal direction in accordance with

ε〈V(ω,x),nx〉 = Y `m(x)X(ω),

108

VI.6. Numerical Examples

Figure VI.2: Different realizations of the deformed unit ball for the spherical harmonic Y 5
3

and ε = 0.3.

where Y nm is a spherical harmonic and X(ω) is a uniformly distributed random variable on
[−ε, ε]. The correlation of this boundary perturbation thus implies

Cor[〈V,n〉](x,y) =
1

3
Y `m(x)Y `m(y), x,y ∈ ∂D0.

Several possible shapes are depicted in Figure VI.2, while the used compactum K was visu-
alized in Figure VI.1.

As boundary values on the hold-all domain, we choose

g(x) = ‖x‖2, x ∈ D∪Ω
ε .

Since ‖x‖`Y `m(x/‖x‖) is harmonic in R3, it is then a short computation to show that it holds

Cor[δu](x,y) =
4

3
‖x‖`‖y‖`Y `m

(
x

‖x‖

)
Y `m

(
y

‖y‖

)
, x,y ∈ D0.

Since the spherical harmonic Y `m is an eigenfunction of the Dirichlet-to-Neumann map with
eigenvalue ` on the sphere, cf. [CK12], and since the unit sphere has the constant mean
curvature of H = −1, cf. [Gra06], one verifies that there holds

g(E[δ2u])(x) =
2− 4`

3
Y `m(x)2 x ∈ ∂D0,

for the Dirichlet data of the mean’s second order correction term E[δ2u] from (VI.1.11).
Having thus access to the exact Dirichlet data, we can easily compute an overkill solution of
E[δ2u] as a reference solution by an additional refinement in h.

Figure VI.3 validates that we achieve the convergence rates predicted by Lemma VI.4.6
and Lemma VI.4.11 for both, Cor[δu] and E[δ2u]. In fact, E[δ2u] has even a higher convergence
rate than predicted. Although not covered by our theory, the case d = 1, i.e., the case of
piecewise constant boundary elements, seems to converge as well at a rate of h2. Notice that
the computed quantities are independent of the amplitude of the deformation ε, as long as
the compactum K b D∩Ω

ε does not depend on ε.

109

CHAPTER VI. PDES ON RANDOM DOMAINS

2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20
10−12

10−9

10−6

10−3

100

h

`∞
-e
rr
or

h2

h4

h6

d = 1
d = 2
d = 3

2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20
10−12

10−9

10−6

10−3

100

h

`∞
-e
rr
or

h2

h4

h6

d = 1
d = 2
d = 3

Figure VI.3: Convergence rates for Cor[δu]h (left) and E[δ2u]h (right) in h on the deformed
unit ball for different orders d of the ansatz functions.

VI.6.2 Convergence in ε

As the mean, the correlation, and the covariance for the example on the unit ball are not
analytically known, we have to use quadrature methods to compute a reference solution in
order to study the asymptotics in ε. Choosing ε = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, we use a one-
dimensional 15 point Gauss-Legendre quadrature rule to compute the stochastic integral of the
mean, the correlation, and the covariance on a spatial discretization with continuous piecewise
linear ansatz functions on a mesh with 24,576 elements. The PDE solves are accelerated by
an OpenMP parallelization.

Since the probability distribution of 〈V,n〉 is symmetric around zero, we can expect fourth
order accurate approximations to the mean, the correlation, and the covariance in ε. Thus,
for the numerical solutions E[uε]h, Cor[uε]h, and Cov[uε]h computed by our expansions, the
errors should behave like∣∣E[uε]− E[uε]h

∣∣ = O
(
h2d + ε2h2(d−1) + ε4

)
in K,∣∣Cor[uε]− Cor[uε]h

∣∣ = O
(
h2d + ε2h2d + ε4

)
in K ×K,∣∣Cov[uε]− Cov[uε]h

∣∣ = O
(
ε2h2d + ε4

)
in K ×K,

as h and ε tend to zero. The fourth order asymptotic is then reached as soon as the mesh
size is small enough.

Figures VI.4, VI.5, and VI.6 show the errors for the former second order (see [HSS08b] for
the details) and the new fourth order accurate approximations. We indeed reach the fourth
order accuracy already for relatively coarse mesh sizes. A comparison with the second order
accurate approximation shows that the consideration of the correction terms for the fourth
order approximation can improve the error by several orders of magnitude.

VI.6.3 Non-smooth Boundaries
In order to demonstrate that the perturbation approach is not necessarily limited to smooth
surfaces, we consider the unit cube D0 = [0, 1]3 as the reference domain. We assume the
perturbing vector field to deform the upper side of the cube. More precisely, given uniformly
distributed random variables Xij ∼ U [−1, 1], i, j = 1, . . . , 4, the perturbation field is given as

V(ω,x) =

{∑4
i,j=1Bi(x1)Bj(x2)Xij(ω), x3 = 1,

0, otherwise,

where Bi, i = 1, . . . , 4 are fifth order B-splines on [0, 1], which, as well as their derivatives,
are zero at the interval boundaries. As a result, the shape derivatives are well defined and no

110

VI.6. Numerical Examples

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε2

h ∼ 2−2

h ∼ 2−3

h ∼ 2−4

h ∼ 2−5

h ∼ 2−6

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε4

h ∼ 2−2

h ∼ 2−3

h ∼ 2−4

h ∼ 2−5

h ∼ 2−6

Figure VI.4: Asymptotics in ε for the numerical approximation of the second order (left)
and fourth order (right) accurate expansions for the mean by different mesh sizes h.

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε2

h ∼ 2−2

h ∼ 2−3

h ∼ 2−4

h ∼ 2−5

h ∼ 2−6

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε4

h ∼ 2−2

h ∼ 2−3

h ∼ 2−4

h ∼ 2−5

h ∼ 2−6

Figure VI.5: Asymptotics in ε for the numerical approximation of the second order (left)
and fourth order (right) accurate expansions for the correlation by different mesh sizes h.

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε2

Cov[uε]h = 0

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε

`∞
-e
rr
or

ε4

h ∼ 2−2

h ∼ 2−3

h ∼ 2−4

h ∼ 2−5

h ∼ 2−6

Figure VI.6: Asymptotics in ε for the numerical approximation of the second order (left)
and fourth order (right) accurate expansions for the covariance by different mesh sizes h.

111

CHAPTER VI. PDES ON RANDOM DOMAINS

Figure VI.7: Realizations of the perturbed cube with its solution visualized on the inscribed
compactum K for ε = 0.05.

singularities occur in the boundary values of the PDEs for the correction terms, which means
that the expansions for the mean, the correlation, and the covariance are well defined.

A visualization of different realizations for ε = 0.05 for the Dirichlet boundary values

g(x) = (x1 − 0.5)2 + (x2 − 0.5)2

and the used compactum K with the corresponding solution of (VI.1.2) is found in Fig-
ure VI.7.

Since the stochastic domain is truly 16-dimensional, we use a Monte-Carlo simulation with
10,000 samples for a visual comparison with the asymptotic expansions for the choice ε = 0.05.
All computations are performed by using continuous piecewise linear ansatz functions on
a mesh with 24,576 elements, while we accelerate the Monte-Carlo simulation by an MPI
parallelization and by computing only the changed matrix entries for each sample. The
computation time on all 24 logical cores takes for all quantities 67,241 seconds using the
perturbation approach and 496,582 seconds using the Monte-Carlo simulation. However, due
to the slow convergence rate of the Monte-Carlo simulation and the high-dimensionality of
the problem, we only aim at a qualitative comparison of the mean and the diagonal of the
correlation, which is presented in Figure VI.8 and Figure VI.9.

VI.7 Conclusion
In this chapter, we considered the approximate computation of the mean, the correlation, and
the covariance of the solution of PDEs on random domains by the perturbation approach. Ad-
ditionally to existing third order accurate expansions of the covariance discussed in [HSS08b],
we derived third order accurate expansions of the mean and the correlation and discussed
their numerical computation. These expansions become even fourth order accurate for spe-
cific types of boundary variations. While the solution on the unperturbed domain yields a
second order accurate solution, the correction terms for the more accurate expansions are
given by correlation equations.

112

VI.7. Conclusion

Figure VI.8: Comparison between the perturbation approach (left) and a Monte-Carlo simu-
lation (right) with 10,000 samples for ε = 0.05 for the mean.

Figure VI.9: Comparison between the perturbation approach (left) and a Monte-Carlo simu-
lation (right) with 10,000 samples for ε = 0.05 for the diagonal of the correlation.

Omitting the meshing of the computational domain, we employ the boundary element
method to discretize the correlation equations with ansatz spaces of piecewise polynomials of
at least second order. To obtain computational efficiency, we solve the corresponding matrix
equations in almost linear complexity by the H-matrix approach. The numerical experiments
in three dimensions validate the asymptotic expansions and show the convergence of the
proposed method for piecewise linear and piecewise quadratic boundary elements. Piecewise
constant boundary elements, although not covered by the theory, seem to work as well.
Finally, we provided numerical experiments which demonstrate the perturbation approach
could be applied on nonsmooth domains, too.

113

CHAPTER VI. PDES ON RANDOM DOMAINS

114

Chapter VII

Final Remarks

In this thesis, we presented a new approach for the solution of correlation equations

(A⊗A) Cor[u] = Cor[f],

which is robust to “rough” correlations Cor[f], that is, Cor[f] has low Sobolev smoothness or
a high concentration of measure around the origin. The resulting matrix equations

ACuA
ᵀ = Cf

occur from the discretization by the finite element method or the boundary element method.
They are, since, in general, Cf and Cu are densely populated, prohibitively expensive to
solve with naive approaches. As common low-rank and sparse tensor product techniques
are known to struggle with rough correlations, we proposed a different solution strategy. To
achieve computational efficiency, we represented the correlation matrices as well as the finite
element and boundary element matrices with hierarchical matrices. Using the hierarchical
matrix arithmetic, we were able to solve the correlation equations in almost linear time, i.e.,
linear up to (poly-)logarithmic factors, with respect to the dimension of the used finite element
spaces. The representation of the unknown as a hierarchical matrix is theoretically justified,
at least on sufficiently smooth domains.

We discussed several examples from the uncertainty quantification of PDEs with random
input data where such correlation equations occur. In particular, we discussed random loads,
random boundary values, and random domains. While the first two examples led to linear op-
erator equations with random right-hand side, the dependence becomes non-linear on random
domains. Therefore, we employed an approach based on perturbation theory and asymptotic
expansions. Additional to the existing third order accurate expansion of the correlation, we
also provided a third order accurate expansion of the mean and a full convergence analysis.
Both expansions become fourth order accurate under certain conditions.

The convergence analysis shows that we need higher order boundary elements for the
Galerkin scheme of the perturbation approach for random domains. Therefore, we developed
an efficient fast multipole method for higher order ansatz functions on parametric surfaces.
Such surfaces arise for example in isogeometric analysis, which aims at bridging the gap
between computer aided design and finite element methods and boundary element methods.
The developed multipole method fits into the framework of hierarchical matrices as well as in
its improved H2-variant. The numerical experiments showed the benefit of the H2-setting for
the matrix-vector multiplication and that the higher order approach asymptotically reaches
more accurate solutions in shorter time, even on non-smooth and complex geometries.

Possible future work could be the treatment of PDEs with random diffusion coefficients by
the perturbation approach. Corresponding asymptotic expansions can for example be found
in [HPS13]. One may use the finite element techniques for hierarchical matrices similar to
Chapter III to compute the correction terms.

115

CHAPTER VII. FINAL REMARKS

Concerning hierarchical matrix techniques, one may consider the use of H2-matrices in-
stead of hierarchical matrices for the correlation equations. Using the arithmetic proposed
in [Bör06], one could possibly solve the correlation equations in linear complexity with sig-
nificantly lower constants. If finite elements are used, one may also directly consider the
matrix Galerkin scheme proposed in [BB13, Boy15] to solve the matrix equation. However,
both of these techniques are known to be more involved than hierarchical matrices and their
application requires careful investigation.

116

Bibliography

Bibliography

[Гал15] Б. Г. Галеркин. Прутки и плиты. Серия, посвященная различным вопросам
упругого равновесия стержней и пластин. Вестник инженера, 19:897–908,
1915.

[AF03] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Academic Press, Oxford, 2003.

[Alt02] H. W. Alt. Lineare Funktionalanalysis: Eine Anwendungsorientierte Einführung.
Springer, Berlin, 2002.

[Aro55] N. Aronszajn. Boundary values of functions with finite Dirichlet integral. Studies
in Eigenvalue Problems, 14, 1955.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs, and mathematical tables. National Bureau of Standards Applied
Mathematics Series. Dover Publications, N. Chemsford, MA, 1964.

[BB13] D. Boysen and S. Börm. A Galerkin approach for solving matrix equations with
hierarchical matrices. In L. Cvetković, T. Atanacković, and V. Kostić, editors,
84th Annual Meeting of the International Association of Applied Mathematics
and Mechanics (GAMM), volume 13 of Proceedings in Applied Mathematics and
Mechanics, pages 405–406. Wiley, Weinheim, 2013.

[BCR91] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical
algorithms I. Communications on Pure and Applied Mathematics, 44(2):141–183,
1991.

[BdMK67] L. Boutet de Monvel and P. Krée. Pseudo-differential operators and Gevrey
classes. Annales de l’Institut Fourier (Grenoble), 17(fasc. 1):295–323, 1967.

[Beb00] M. Bebendorf. Approximation of boundary element matrices. Numerische Math-
ematik, 86(4):565–589, 2000.

[Beb05] M. Bebendorf. Efficient inversion of the Galerkin matrix of general second-order
elliptic operators with nonsmooth coefficients. Mathematics of Computation,
74(251):1179–1199, 2005.

[Beb07] M. Bebendorf. Why finite element discretizations can be factored by triangular
hierarchical matrices. SIAM Journal on Numerical Analysis, 45(4):1472–1494,
2007.

[Beb08] M. Bebendorf. Hierarchical Matrices, volume 63 of Lecture Notes in Computational
Science and Engineering. Springer, Berlin-Heidelberg, 2008.

[BG04a] S. Börm and L. Grasedyck. Low-rank approximation of integral operators by
interpolation. Computing, 72(3-4):325–332, 2004.

[BG04b] H. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

117

BIBLIOGRAPHY

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Technical
Report 21, Max Planck Institute for Mathematics in the Sciences, 2003.

[BH03] M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the
inverse FE-matrix of elliptic operators with L∞-coefficients. Numerische Mathe-
matik, 95(1):1–28, 2003.

[BH15] A Behzadan and M Holst. Multiplication in Sobolev spaces, revisited. Preprint,
arXiv:1512.07379, 2015.

[BNT07] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for
elliptic partial differential equations with random input data. SIAM Journal on
Numerical Analysis, 45(3):1005–1034, 2007.

[Boc33] S. Bochner. Integration von Funktionen, deren Werte die Elemente eines Vektor-
raumes sind. Fundamenta Mathematicae, 20(1):262–176, 1933.

[Bör06] S. Börm. H2-matrix arithmetics in linear complexity. Computing, 77(1):1–28,
2006.

[Bör10] S. Börm. Efficient Numerical Methods for Non-local Operators, volume 14 of EMS
Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2010.

[Bör17] S. Börm. Hierarchical matrix arithmetic with accumulated updates. Preprint,
arXiv:1703.09085, 2017.

[Boy15] D. Boysen. Das Matrix-Galerkin-Verfahren. PhD thesis, Christian-Albrechts-
Universität zu Kiel, 2015.

[BP02] I. Babuška and C. Panagiotis. On solving elliptic stochastic partial differ-
ential equations. Computer Methods in Applied Mechanics and Engineering,
191(37–38):4093–4122, 2002.

[Bra13] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der
Elastizitätstheorie. Springer, Berlin, fifth edition, 2013.

[BSZ11] A. Barth, C. Schwab, and N. Zollinger. Multi-level Monte Carlo finite element
method for elliptic PDEs with stochastic coefficients. Numerische Mathematik,
119(1):123–161, 2011.

[BT02] I. Brainman and S. Toledo. Nested-dissection orderings for sparse LU with partial
pivoting. SIAM Journal on Matrix Analysis and Applications, 23(4):998–1012,
2002.

[BTZ04] I. Babuška, R. Tempone, and G. Zouraris. Galerkin finite element approximations
of stochastic elliptic partial differential equations. SIAM Journal on Numerical
Analysis, 42(2):800–825, 2004.

[Cоб38] С. Л. Cоболев. Об одной теореме функционального анализа. Математи-
ческий сборник, 4(3):471–497, 1938.

[Cло58] Л. Н. Cлободецкий. Обобщенные пространства С. Л. Соболева и их
приложения к краевым задачам в частных производных. Ученые записки
Ленинградского педагогического института имени А. И. Герцена, 197:54–
112, 1958.

[Caf98] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49,
1998.

118

Bibliography

[CCNT16] J. E. Castrillón-Candás, F. Nobile, and R. F. Tempone. Analytic regularity and
collocation approximation for elliptic PDEs with random domain deformations.
Computers & Mathematics with Applications, 71(6):1173–1197, 2016.

[CCNT17] J. E. Castrillón-Candás, F. Nobile, and R. F. Tempone. Hybrid collocation per-
turbation for PDEs with random domains. Preprint, arXiv:1703.10040, 2017.

[CHB09] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley Publishing, Hoboken, NJ, first edition, 2009.

[CHR07] J. A. Cottrell, T. J. R. Hughes, and A. Reali. Studies of refinement and continuity
in isogeometric structural analysis. Computer Methods in Applied Mechanics and
Engineering, 196:4160–4183, 2007.

[CK12] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory,
volume 93 of Applied Mathematical Sciences. Springer Science & Business Media,
New York, 2012.

[CK13] D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, 2013.

[CPT15] A. Chernov, D. Pham, and T. Tran. A shape calculus based method for a trans-
mission problem with a random interface. Computers & Mathematics with Appli-
cations, 70(7):1401–1424, 2015.

[DB78] C. De Boor. A Practical Guide to Splines. Springer, New York, 1978.

[DBO01] M. Deb, I. Babuška, and J. Oden. Solution of stochastic partial differential equa-
tions using Galerkin finite element techniques. Computer Methods in Applied
Mechanics and Engineering, 190(48):6359–6372, 2001.

[DDH15] M. Dambrine, C. Dapogny, and H. Harbrecht. Shape optimization for quadratic
functionals and states with random right-hand sides. SIAM Journal on Control
and Optimization, 53(5):3081–3103, 2015.

[DH17] J. Dölz and H. Harbrecht. Hierarchical matrix approximation for the uncertainty
quantification of potentials on random domains. Preprint 2017–05, Fachbereich
Mathematik, Universität Basel, Switzerland, 2017.

[DHP15] J. Dölz, H. Harbrecht, and M. Peters. H-matrix accelerated second moment
analysis for potentials with rough correlation. Journal of Scientific Computing,
65(1):387–410, 2015.

[DHP16] J. Dölz, H. Harbrecht, and M. Peters. An interpolation-based fast multipole
method for higher-order boundary elements on parametric surfaces. International
Journal for Numerical Methods in Engineering, 108(13):1705–1728, 2016.

[DHP17] J. Dölz, H. Harbrecht, and M. Peters. H-matrix based second moment analysis for
rough random fields and finite element discretizations. SIAM Journal on Scientific
Computing, 39(4):B618–B639, 2017.

[DHS06] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for bound-
ary integral equations. Asymptotically optimal complexity estimates. SIAM Jour-
nal on Numerical Analysis, 43(6):2251–2271, 2006.

[DHS17] J. Dölz, H. Harbrecht, and C. Schwab. Covariance regularity and H-matrix ap-
proximation for rough random fields. Numerische Mathematik, 135(4):1045–1071,
2017.

119

BIBLIOGRAPHY

[DKS13] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the quasi-Monte
Carlo way. Acta Numerica, 22:133–288, 2013.

[DNP+04] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P.
Le Mâıtre. Numerical challenges in the use of polynomial chaos representations
for stochastic processes. SIAM Journal on Scientific Computing, 26(2):698–719,
2004.

[DNPV12] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional
Sobolev spaces. Bulletin des Sciences Mathématiques, 136(5):521–573, 2012.

[Duf82] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity
at a vertex. SIAM Journal on Numerical Analysis, 19(6):1260–1262, 1982.

[DZ01] M. Delfour and J. Zolésio. Shapes and Geometries. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 2001.

[Epp00] K. Eppler. Boundary integral representations of second derivatives in shape opti-
mization. Discussiones Mathematicae, Differential Inclusions, Control and Opti-
mization, 20(1):63–78, 2000.

[Fau15] M. Faustmann. Approximation inverser Finite Elemente- und Randelementem-
atrizen mittels hierarchischer Matrizen. PhD Thesis, Technische Universität Wien,
2015.

[FMP15] M. Faustmann, J. M. Melenk, and D. Praetorius. H-matrix approximability of
the inverses of FEM matrices. Numerische Mathematik, 131(4):615–642, 2015.

[FST05] P. Frauenfelder, C. Schwab, and R. A. Todor. Finite elements for elliptic prob-
lems with stochastic coefficients. Computer Methods in Applied Mechanics and
Engineering, 194(2-5):205–228, 2005.

[Gag58] E. Gagliardo. Proprieta di alcune classi di funzioni in piu variabili. Ricerche di
Matematica, 7(1):102–137, 1958.

[Geo73] A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10(2):345–363, 1973.

[Gev18] M. Gevrey. Sur la nature analytique des solutions des équations aux dérivées
partielles. Premier mémoire. Annales Scientifiques de l’École Normale Supérieure.
Troisième Série, 35:129–190, 1918.

[GH03] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70(4):295–334, 2003.

[GH17] M. Griebel and H. Harbrecht. Singular value decomposition versus sparse grids.
Refined complexity estimates. Preprint 2017–08, Fachbereich Mathematik, Uni-
versität Basel, Switzerland., 2017.

[Gie01] K. Giebermann. Multilevel approximation of boundary integral operators. Com-
puting, 67(3):183–207, 2001.

[Gil15] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259, 2015.

[GK65] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a
matrix. Journal of the Society for Industrial and Applied Mathematics: Series B,
Numerical Analysis, 2(2):205–224, 1965.

[GKLB09] L. Grasedyck, R. Kriemann, and S. Le Borne. Domain decomposition based H-LU
preconditioning. Numerische Mathematik, 112(4):565–600, 2009.

120

Bibliography

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal
of Computational Physics, 73(2):325–348, 1987.

[GR97] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.

[Gra01] L. Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. PhD thesis,
Christian-Albrechts-Universität zu Kiel, 2001.

[Gra06] A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica.
CRC Press, Boca Raton, FL, 2006.

[GS03] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach.
Dover Publications, Mineola, New York, 2003.

[GVL12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, fourth edition, 2012.

[GW12] M. J. Gander and G. Wanner. From Euler, Ritz, and Galerkin to modern com-
puting. SIAM Review, 54(4):627–666, 2012.

[Hac95] W. Hackbusch. Integral Equations, volume 120 of International Series of Numer-
ical Mathematics. Birkhäuser, Basel, 1995.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices part I: Introduc-
tion to H-matrices. Computing, 62(2):89–108, 1999.

[Hac15] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer, Hei-
delberg, 2015.

[Har10a] H. Harbrecht. A finite element method for elliptic problems with stochastic input
data. Applied Numerical Mathematics, 60(3):227–244, 2010.

[Har10b] H. Harbrecht. On output functionals of boundary value problems on stochastic
domains. Mathematical Methods in the Applied Sciences, 33(1):91–102, 2010.

[HB02] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by
interpolation. Applied Numerical Mathematics, 43(1–2):129–143, 2002.

[HCB05] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194(39):4135–4195, 2005.

[HK00a] W. Hackbusch and B. N. Khoromskij. A sparseH-matrix arithmetic. General com-
plexity estimates. Journal of Computational and Applied Mathematics, 125:479–
501, 2000.

[HK00b] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. II. Applica-
tion to multi-dimensional problems. Computing, 64(1):21–47, 2000.

[HKK04] W. Hackbusch, B. N. Khoromskij, and R. Kriemann. Hierarchical matrices based
on a weak admissibility criterion. Computing, 73(3):207–243, 2004.

[HKT08] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov. Approximate iterations
for structured matrices. Numerische Mathematik, 109(3):365–383, 2008.

[HL89] J. Hoschek and D. Lasser. Grundlagen der Geometrischen Datenverarbeitung.
Teubner, Stuttgart, 1989.

[HL13] H. Harbrecht and J. Li. First order second moment analysis for stochastic interface
problems based on low-rank approximation. ESAIM: Mathematical Modelling and
Numerical Analysis, 47(5):1533–1552, 2013.

121

BIBLIOGRAPHY

[HN89] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the bound-
ary element method by panel clustering. Numerische Mathematik, 54(4):463–491,
1989.

[Hör03] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Classics
in Mathematics. Springer, Berlin, 2003. Distribution theory and Fourier analysis,
Reprint of the second (1990) edition.

[Hör07] L. Hörmander. The Analysis of Linear Partial Differential Operators III. Classics
in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of
the 1994 edition.

[HP13] H. Harbrecht and M. Peters. Comparison of fast boundary element methods on
parametric surfaces. Computer Methods in Applied Mechanics and Engineering,
261–262:39–55, 2013.

[HP15] H. Harbrecht and M. Peters. The second order perturbation approach for PDEs on
random domains. Preprint 2015–40, Fachbereich Mathematik, Universität Basel,
Switzerland., 2015.

[HPS12a] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by
the pivoted Cholesky decomposition. Applied Numerical Mathematics, 62:28–440,
2012.

[HPS12b] H. Harbrecht, M. Peters, and M. Siebenmorgen. On multilevel quadrature for
elliptic stochastic partial differential equations. In J. Garcke and M. Griebel, ed-
itors, Sparse Grids and Applications, pages 161–179. Springer, Berlin-Heidelberg,
2012.

[HPS13] H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based
k-th moment analysis of elliptic problems with random diffusion. Journal of Com-
putational Physics, 252:128–141, 2013.

[HPS15] H. Harbrecht, M. Peters, and M. Siebenmorgen. Efficient approximation of random
fields for numerical applications. Numerical Linear Algebra with Applications,
22(4):596–617, 2015.

[HPS16a] H. Harbrecht, M. Peters, and M. Siebenmorgen. Analysis of the domain mapping
method for elliptic diffusion problems on random domains. Numerische Mathe-
matik, 134(4):823–856, 2016.

[HPS16b] H. Harbrecht, M. Peters, and M. Siebenmorgen. Multilevel accelerated quadrature
for PDEs with log-normally distributed diffusion coefficient. SIAM/ASA Journal
on Uncertainty Quantification, 4(1):520–551, 2016.

[HR98] B. Hendrickson and E. Rothberg. Improving the run time and quality of nested
dissection ordering. SIAM Journal on Scientific Computing, 20(2):468–489, 1998.

[HR09] H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces:
Parametrization and implementation. Computing, 86(1):1–22, 2009.

[HR10] H. Harbrecht and M. Randrianarivony. From computer aided design to wavelet
BEM. Computing and Visualization in Science, 13(2):69–82, 2010.

[HR11] H. Harbrecht and M. Randrianarivony. Wavelet BEM on molecular surfaces: Sol-
vent excluded surfaces. Computing, 92(4):335–364, 2011.

[HSS08a] H. Harbrecht, R. Schneider, and C. Schwab. Multilevel frames for sparse tensor
product spaces. Numerische Mathematik, 110(2):199–220, 2008.

122

Bibliography

[HSS08b] H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis for
elliptic problems in stochastic domains. Numerische Mathematik, 109(3):385–414,
2008.

[HW08] G. C. Hsiao and W. L. Wendland. Boundary Integral Equations, volume 164 of
Applied Mathematical Sciences. Springer, Berlin, 2008.

[Int14] International Organization for Standardization. ISO 10303-242:2014, Industrial
Automation Systems and Integration – Product Data Representation and Exchange
– Part 242: Application Protocol: Managed Model-based 3D Engineering, 2014.

[Iza12] M. Izadi. Parallel H-matrix arithmetic on distributed-memory systems. Comput-
ing and Visualization in Science, 15(2):87–97, 2012.

[KLM09] B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of hierarchical
matrices for computing the Karhunen-Loève expansion. Computing, 84(1-2):49–
67, 2009.

[KR83] R. V. Kadison and J. R. Ringrose. Fundamentals of the Theory of Operator Alge-
bras Volume I: Elementary Theory. Academic Press, New York, 1983.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Upper Saddle River, NJ, 1988.

[Kré69] P. Krée. Les noyaux des opérateurs pseudo-différentiels classiques (OPDC). An-
nales de l’Institut Fourier (Grenoble), 19(fasc. 1):179–194, 1969.

[Kri05] R. Kriemann. Parallel H-matrix arithmetics on shared memory systems. Com-
puting, 74(3):273–297, 2005.

[Kri13] R. Kriemann. H-LU factorization on many-core systems. Computing and Visual-
ization in Science, 16(3):105–117, 2013.

[KS11] B. N. Khoromskij and C. Schwab. Tensor-structured Galerkin approximation of
parametric and stochastic elliptic PDEs. SIAM Journal on Scientific Computing,
33(1):364–385, 2011.

[Lan61] C. Lanczos. Linear Differential Operators. D. Van Nostrand Co. Ltd., London-
Toronto-New York-Princeton, 1961.

[LC85] W. A. Light and E. W. Cheney. Approximation Theory in Tensor Product Spaces.
Lecture Notes in Mathematics 1169. Springer, Berlin-Heidelberg, first edition,
1985.

[LRT79] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16(2):346–358, 1979.

[LSY98] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack User’s Guide: Solution
of Large-Scale Eigenvalue Problems With Implicityly Restorted Arnoldi Methods
(Software, Environments, Tools). Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, 1998.

[Mat60] B. Matérn. Spatial Variation. Meddelanden fr̊an Statens Skogsforskningsinstitut,
49(5), 1960.

[McL01] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press, Cambridge, 2001.

[MK05] H. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic
stochastic partial differential equations. Computer Methods in Applied Mechanics
and Engineering, 194(12-16):1295–1331, 2005.

123

BIBLIOGRAPHY

[Mol67] C. B. Moler. Iterative Refinement in Floating Point. Journal of the ACM, 1967.

[MS64] N. G. Meyers and J. Serrin. H = W . Proceedings of the National Academy of
Sciences, 51(6):1055–1056, 1964.

[MZBF15] B. Marussig, J. Zechner, G. Beer, and T. Fries. Fast isogeometric boundary
element method based on independent field approximation. Computer Methods
in Applied Mechanics and Engineering, 284(0):458–488, 2015.

[Néd82] J. C. Nédélec. Integral equations with non integrable kernels. Integral Equations
and Operator Theory, 5(1):562–572, 1982.

[NTW08] F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochas-
tic collocation method for partial differential equations with random input data.
SIAM Journal on Numerical Analysis, 46(5):2411–2442, 2008.

[Pro95] P. Protter. Stochastic Integration and Differential Equations: A New Approach.
Springer, Berlin-Heidelberg, 1995.

[Rod93] L. Rodino. Linear Partial Differential Operators in Gevrey Spaces. World Scientific
Publishing Co., Inc., River Edge, NJ, 1993.

[RS80] M. Reed and B. Simon. Methods of Modern Mathematical Physics, Volume 1:
Functional Analysis. Academic Press, San Diego, 1980.

[RW05] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, 2005.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, second edition, 2003.

[Sch50] R. Schatten. A Theory of Cross-Spaces. Annals of Mathematics Studies 26. Prince-
ton University Press, Princeton, 1950.

[Si15] H. Si. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans-
actions on Mathematical Software, 41(2), 2015.

[SS97] S. A. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in R3. Numerische
Mathematik, 78(2):211–258, 1997.

[SS11] S. A. Sauter and C. Schwab. Boundary Element Methods. Springer, Berlin-
Heidelberg, 2011.

[ST03] C. Schwab and R. A. Todor. Sparse finite elements for elliptic problems with
stochastic loading. Numerische Mathematik, 95(4):707–734, 2003.

[ST06] C. Schwab and R. A. Todor. Karhunen-Loève approximation of random fields
by generalized fast multipole methods. Journal of Computational Physics,
217(1):100–122, 2006.

[Ste08] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value
Problems. Springer Science & Business, New York, 2008.

[SZ92] J. Sokolowski and J. P. Zolésio. Introduction to Shape Optimization. Shape Sen-
sitivity Analysis, volume 16 of Springer Series in Computational Mathematics.
Springer, Berlin-Heidelberg, 1992.

[Tay81] M. E. Taylor. Pseudodifferential Operators, volume 34 of Princeton Mathematical
Series. Princeton University Press, Princeton, NJ, 1981.

[Tyr96] E. Tyrtyshnikov. Mosaic sceleton approximation. Calcolo, 33:47–57, 1996.

124

Bibliography

[U.S96] U.S. Product Data Association. Initial Graphics Exchange Specification. IGES
5.3, 1996.

[vPS06] T. von Petersdorff and C. Schwab. Sparse finite element methods for operator
equations with stochastic data. Applications of Mathematics, 51(2):145–180, 2006.

[Wil63] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Engle-
wood Cliffs, 1963.

[Wlo87] J. Wloka. Partial Differential Equations. Cambridge University Press, Cambridge,
1987.

[XK02] D. Xiu and G. E. Karniadakis. Modeling uncertainty in steady state diffusion prob-
lems via generalized polynomial chaos. Computer Methods in Applied Mechanics
and Engineering, 191(43):4927–4948, 2002.

[XT06] D. Xiu and D. M. Tartakovsky. Numerical methods for differential equations in
random domains. SIAM Journal on Scientific Computing, 28(3):1167–1185, 2006.

[ZMBF14] J. Zechner, B. Marussig, G. Beer, and T. Fries. Isogeometric boundary element
method with hierarchical matrices. Preprint, arXiv:1406.2817, 2014.

[Zol77] J. P. Zolésio. Multiplication dans les espaces de Besov. Proceedings of the Royal
Society of Edinburgh: Section A Mathematics, 78(1-2):113–117, 1977.

125

Curriculum Vitae

Personal Data
Name Jürgen Dölz

Date of birth 13 February 1990

Place of birth Basel

Nationality Swiss

Education
Sep 2013 – Aug 2017 PhD student in Mathematics

University of Basel, Basel

Aug 2011 – Aug 2013 MSc student in Mathematics
University of Basel, Basel

Aug 2008 – Jul 2011 BSc student in Mathematics
University of Basel, Basel

Aug 2003 – Jul 2008 High School
Gymnasium Bäumlihof, Basel

Aug 2000 – Jul 2003 Secondary School
Orientierungsschule Wasserstelzen, Riehen

Aug 1996 – Jul 2000 Primary School
Primarschule Erlensträsschen, Riehen

	Introduction
	Preliminaries
	Tensor Products
	Tensor Products of Hilbert Spaces
	Tensor Products of Linear Operators

	Function Spaces
	Smooth Functions
	Lp-spaces
	Sobolev Spaces
	Sobolev Spaces on Manifolds
	Sobolev Spaces on Product Domains

	Statistical Quantities of Interest
	Correlation Equations for Linear Operators
	Hierarchical Matrices
	Asymptotical Smoothness
	Cluster Tree
	Block-Cluster Tree
	Asymptotical Smoothness of Correlations

	H-matrix Arithmetic
	Addition of H-matrices
	Multiplication of H-matrices
	H-matrix Factorizations

	PDEs with Random Load
	Problem Formulation
	H-matrices in the Context of Finite Elements
	Weak Admissibility
	Nested Dissection

	Iterative Solution
	Numerical Examples
	Experimental Setup
	Tests for the Iterative Solver
	Small Correlation Lengths

	Conclusion

	The Fast H2-multipole Method on Parametric Surfaces
	Boundary Integral Equations
	Surface Representation
	Problem Formulation
	Galerkin Discretization
	Fast Multipole Method
	Kernel Interpolation
	Computational Complexity
	Nested Cluster Bases
	Error Estimates

	Higher Order Continuous Ansatz Functions
	Numerical Examples
	Regularization of the Hypersingular Operator
	Convergence
	Convergence on a More Complex Geometry
	Computational Cost and Accuracy

	Conclusion

	PDEs with Random Dirichlet Data
	Problem Formulation
	H-matrix Arithmetic for Parametric Surfaces
	Numerical Examples
	Tests for the H-matrix Arithmetic
	Tests for the Iterative Solver
	Stochastic Application

	Conclusion

	PDEs on Random Domains
	Random Domains
	Basic Definitions
	Shape Calculus for Parametrized Domains
	Statistical Moments on Random Domains

	Boundary Integral Equations
	Galerkin Discretization
	Dirichlet-to-Neumann Map
	Computation of Cor[u]
	Computation of E[2 u]

	Error Estimates
	Preliminaries
	Approximation Error of Cor[u]
	Approximation Error of E[2u]

	Hierarchical Matrix Compression
	Numerical Examples
	Convergence in h
	Convergence in
	Non-smooth Boundaries

	Conclusion

	Final Remarks

