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Summary

The thymus is critical for the evolutionary fitness of mammals. It allows the efficient devel-

opment of T cells, a highly potent defense system, while restraining the developing T cells to 

prevent self-destruction. In contrast to the extensively studied thymocyte development, the 

thymic stroma supporting this development has by far been less studied. As a consequence, 

a precise understanding of the molecular mechanisms guiding thymic epithelial cell develop-

ment is largely lacking. Thymic tolerance induction is a prerequisite for an organism to bear 

the tremendously powerful T cells. Failure of tolerance ultimately leads to potentially fatal 

self-destruction. Despite this perception, the molecular mechanisms underlying tolerance 

induction await to be unraveled.

It is still unresolved how endogenous self-antigens are being physiologically used for the 

control of self-tolerance. The phenomenon of ectopic thymic gene expression of peripheral 

self-antigens has been described in recent years. Humans lacking a functional Autoimmune 

Regulator (AIRE) gene develop a spontaneous, multiorgan autoimmune syndrome termed 

Autoimmune Polyendocrinopathy Ectodermal Dystrophy (APECED) Syndrome. Studies in 

mice proposed that the transcription factor aire might be critical in regulating ectopic gene 

expression, a possible prerequisite for negative selection. The first part of this PhD project 

seeked to generate a mouse model of the human APECED syndrome and to establish a 

genetic tool enabling direct in vivo manipulation of the rare cells of Aire expressing thymic 

medullary epithelial cells (mTEC). The work presented here describes the successful gen-

eration of such a mouse model and discusses the limitations of the created aire-cre mice to 

study in vivo tolerance induction by Aire expressing mTECs.

The second part of the thesis is devoted to the role of Smad4 in thymic epithelial cell 

development and function. Thymic epithelial cells constitute the most abundant component 

of the stroma, form a 3-D meshwork and express soluble and membrane bound molecules 

critical for T cell development. In turn, thymocytes deliver signals that control TEC differen-

tiation. The molecular nature of this lympho-epithelial cross-talk is incompletely understood. 

Members of the TGF-β family of signalling molecules (TGF-β, Bmp and Activins) are criti-

cal in  embryonic development of many tissues. Signalling of these molecules occurs via 

the cytoplasmic second messenger Smad4. To test whether Smad4 plays a role in thymic 

organogenesis, we generated mice specifically deficient for Smad4 expression in TECs. 

While lack of Smad4 expression allows for the formation of a thymus, mutant embryos and 

postnatal mice display a profoundly reduced thymic cellularity. Thymocyte development, ap-
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pears, however, surprinsingly normal. Nevertheless, peripheral T cell biology is substantially 

affected by the thymic epithelial cell specific Smad4 deficiency. A persistent T cell lympho-

penia and a substantial shift in the balance of naive to regulatory T cells are unexpected 

results. These striking findings illustrate that the importance of thymic epithelial cells beyond 

the thymus knows no bounds.
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Abbreviations

Units are indicated according to the SI (système international) if not indicated otherwise.

A = adenosine
AI = autoimmune
AICD = activation induced cell death
AIRE =  human autoimmune regulator protein
aire = autoimmune regulator gene
Aire = murine autoimmune regulator protein
ALPS = Autoimmune Lymphoproliferative Syndrome
APC = Allophycocyanin
APC = antigen presenting cell
APECED = autoimmune polyendocrinopathy candidiasis ectodermal dystrophy
BM = bone marrow
bp = base pair
BSA = Bovine serum albumine
C = cytosine
cγ = common γ chain of cytokines IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21
CD = cluster of differentiation
CDR = complementarity determining region
cds = coding sequence
CFSE = carboxyfluoroscein diacetat succinimidyl ester
c-kit = CD117, receptor for stem cell factor
CLP = common lymphoid precursor
cpm = counts per minute
CRE = enzyme derived from bacteriophage P1 that causes recombination
CTLA4 = cytotoxic T-lymphocyte antigen 4
DC = dendritic cell
DM = diabetes mellitus
DN = double negative
DNA = Deoxyribonucleic acid
DP = double positive
ds = double stranded
E xy = embryonic day xy
ECM = Extracellular matrix
EF cell = embryonic feeder cell
ELISA = Enzyme linked immunosorbent assay
ES cell: embryonic stem cell
FACS = Fluorescence activated cell sorting
FCS = Fetal calf serum
FGF = Fibroblast growth factor
FITC = Fluorescein Isothiocyanate
Flp = Flipase
FoxN1 = Gene belonging to the winged helix family of transcription factors
G = guanin
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GAD65/67 = Glutamine Decarboxylase 65/67
GFP = green fluorescent protein
GP-33 = glycoprotein 33 of LCMV
H-2 = Mouse MHC (see also HLA and MHC)
HA tag= hemagglutinin used as an epitope tag
HBSS = Hank’s balanced salt solution
Hh = Hedgehog (a signalling cascade of the Hh family)
HLA = Human leukocyte antigen (see also MHC and H-2)
HSC = Hematopoietic stem cell
i.p. = intraperitoneally
i.v. = intravenously
IL = Interleukin
IMDM = Iscove modified Dulbecco medium
IRES = internal ribosomal entry site
ISP = immature single positive
ITAM = immunoreceptor tyrosine-based activation motif
kb = kilobase
KGF = FGF 7 = Keratinocyte growth factor = Fibroblast growth factor 7
LB = Luria Bertani broth
LCMV = lymphocytic choriomeningitis virus
LIP = lymphopenia induced proliferation
LN = Lymph nodes
loxP = locus of crossover (P1 bacteriophage)
LPC = lymphoid precursor cell
MALT = Mucosa associated lymphoid tissue
MC 57 cells = Fibroblast cell line on H2b MHC background
MHC = Major Histocompatibility complex (See also HLA and H-2)
milliQ = deionized H

2
O purified to ≥ 18 MΩ electrical resistance

moAb(s) = monoclonal antibody (ies)
MS = multiple sclerosis
MΦ = Macrophage
NCC = neural crest cells
NIP-OVA = Nitroiodophenol conjugated Ovalbumin
NK cell = natural killer cell
NLS = nuclear localization signal
oligo = oligodeoxyribonucleic acid nucleotide
ORF = open reading frame
PBS = phosphate buffered saline
pc = post conceptionem; detection of the vaginal plug is defined as day 0
PCR = polymerase chain reaction
PE = R-Phycoerythrin
PerCP = Peridinin Chlorophyll Protein
PHD finger (Plant homeodomain) finger
PI = Propidium iodide
pIV = promoter IV
PLP = Proteolipid protein (a component of myelin)
pp = pharyngeal pouch
pTα = pre T α chain 
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RA = rheumatoid arthritis
Rag = Recombination activation gene
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ROSA26 = reverse orientation splice acceptor 26
R-smad = receptor smad
RT = Room temperature
RTE = recent thymic emigrant
RT-PCR = reverse transcription polymerase chain reaction
SA = streptavidin
Shh = sonic hedgehog
Smad = Human/Mouse homolog of Sma (C.elegans) and Mothers Against        
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TGF-β = transforming growth factor-β
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Introduction

Do we need (a) thymus?

I am convinced that the importance of the mammalian thymus has long been underesti-

mated and that it is crucial for survival in an environment challenging one’s adaptive immune 

system daily. This is best illustrated by two diseases in which thymic development cannot 

fully take place: Di George syndrome and thymic aplasia as part of the nude phenotype, both 

in humans and mice. Patients lacking a specific region on chromosome 22 in the case of 

the Di George Syndrome or a functional FoxN1 gene for the nude phenotype do not have a 

fully developed thymus and succumb without appropriate isolation from the environment and 

antibiotic treatment within the first weeks to months of life due to life-threatening infections. 

Furthermore, prolonged life-span in Western countries and the advent of new therapeutic 

options such as hematopoietic stem cell transplantation render life-long proper thymic func-

tion desireable.

Despite intensive research many questions related to thymic development and to the mo-

lecular mechanisms that control the mature thymus’ unique function remain still unanswered. 

The work of the last four years of my life focused on a better understanding of the molecular 

and cellular mechanisms that account for normal thymus organogenesis and function.

Due to the complexity of genetic networks involved in developmental processes, I con-

centrated on two genes that are smad4 and aire. Smad4 is an important intracellular signal 

transduction molecule involved in the development of many organs. The function of aire 

was unknown at the start of my thesis but an association to tolerance induction could be as-

sumed, as patients lacking functional aire develop multiple autoimmune diseases.

Thymic organogenesis from E10-E12

In vertebrates, cells from all germinal layers interact for thymic organogenesis in a precise 

sequence of inductive events that control both proliferation and differentiation of epithelial 

cells. In mouse development, the early thymic primordium is first detectable from approxi-

mately embryonic day 10 (E 10) on. After this positioning, inductive signals stimulate cells 

from the ventral endodermal lining of the third pharyngeal pouch to adapt the fate of thymic 
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epithelial cells (TEC) [1, 2]. In contrast, dorsal aspects of the 3rd pharyngeal pouch (pp) de-

velop into the parathyroid glands [3]. Two transcription factors are known to be differentially 

expressed between the ventral and the dorsal aspect of the 3rd pp. Gcm2 is expressed in 

the dorsal part, FoxN1 is exclusively found in the ventral aspect. Around E11, lateral budding 

of the endoderm occurs, forming the thymic anlage. Mesenchyme of the third and fourth 

pharyngeal arches, surround the thymic anlage and provide signals (FGF7, FGF10) for fur-

ther proliferation of thymic epithelial cells. However, mesenchymal support is not required 

for further differentiation of TECs at this developmental stage [4]. Initially derived both from 

mesoderm and neural crest, the mesenchymal cells migrate subsequently into the epithelial 

anlage where they eventually establish an intrathymic network of fibroblasts and blood ves-

sels. The role of ectodermally derived cells in thymic development is controversial. It appears 

that signals from the endoderm attract ectodermally derived neural crest cells (NCC) that 

in turn provide further proliferation signals [1]. The importance of neural crest cells for thy-

mus organogenesis is illustrated by genetic mouse models (Pax3-/-) where NCC migration is 

impaired, leading to thymic hypoplasia. These results are confirmed by surgical removal of 

cephalic NCC, a procedure that also leads to thymic hypoplasia. Although the role of NCC-

derived mesenchyme to support thymus development is clear, it appears that mesenchymal 

cells from other sources can substitute in experimental systems to provide the necessary 

signals. In a recent report, NCC lacking TGF-βRII migrated to the thymic primordium at 

E13.5 but the thymus remained hypoplastic [5].

At E11.5 hematopoietic precursor cells seed to the thymus anlage although its epithelial 

cells are yet incompetent to fully support T cell development. In mice and humans, the two 

thymic lobes then move medially, ventrally and caudally to reach its final position, the midline 

above the heart by E 12.5. Differentiation and migration seem to be independently regulated 

as nude mice have correctly positioned thymic rudiments lacking proper differentiation while 

on the other hand several mutants with development of normal but ectopic thymic lobes are 

known. Mice with Hoxa3+/-, Hoxb3-/-, Hoxd3-/- mutations reflect a migration defect rather than 

an impairment of differentiation [1].

Molecular control of early thymus organogenesis

Only very few genes are known to be critical in TEC development. Hoxa3, a member of 

the Hox family of transcription factors is involved in positioning of the early thymic anlage. 

This effect may in part be through downstream engagement of Pax1 and Pax9 as both tran-

scription factors are specifically downregulated in Hoxa3-/- embryos [1]. Indeed, Pax9-/- mice 
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show an early failure of thymic organogenesis while Pax1-/- mice have a more subtle thymic 

phenotype. FoxN1 is detectable around E 10.5 and can be specifically detected in the ven-

tral aspect of the 3rd pp at E 11 [1]. FoxN1 deficient TECs fail to attract lymphoid precursor 

cells (LPC) and therefore do not develop a thymus beyond the thymic rudiment. However, 

the defect is cell autonomous as signals experimentally provided by LPCs or wild-type epi-

thelium are not sufficient to rescue thymic growth [6]. FoxN1 expression is regulated by wnt 

molecules [7].

Thymic organogenesis from E12-E15

Early thymic development ends with an epithelial thymic rudiment surrounded by mes-

enchymal cells. Further patterning depends on signals provided by LPCs since mutants 

with impaired lymphoid development do not form a proper thymus. The transcription fac-

tor Ikaros is required for lymphoid development [8]. Mice expressing a dominant-negative 

form of Ikaros do not have any lymphoid progenitors and consequently have an alymphoid 

fetal thymus [1]. TECs appear, however, normal, i.e. have a different aspect than the cysts 

observed in FoxN1-/- mice with clearly defective TECs. This illustrates that bi-directional sig-

naling between lymphoid cells and TECs is required for proper thymic development. Other 

mutant mice with genetic defects causing blocks in the development of the thymus are mice 

expressing a transgenic human CD3ε and the Rag2 deficiency. Both genetic abnormalities 

lead to a thymocyte intrinsic defect resulting in blocks at early but distinct stages of thymo-

cyte development ending in a growth arrest and disorganization of the whole thymus. Fur-

thermore, TEC differentiation is dependent on wnt signals provided by thymocytes and TECs 

themselves acting in an auto- and paracrine way [7]. Thus, it is clear that thymic epithelial 

cell differentiation and thymocyte development are interdependent [9].

Vascularization is an important step in thymic organogenesis occuring at E 14, yet the 

mechanisms inducing and underlying vessel formation are unknown. Further development 

of the thymus into cortex and medulla is dependent on signals provided by thymocytes [10]. 

Differentation of the cortex requires thymocytes commited to the T cell lineage [11] while 

medullary development is essentially dependent on the presence of mature αβTCR+ thymo-

cytes.

Molecular control of thymic epithelial cell development

The transcription factor NF-κB is composed of various combinations of members of the 
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Rel family of proteins. The NF-κB complex is formed of homo- or heterodimers from the 

five Rel family members that are NF-κB1 (p50), NF-κB2 (p52), p65 (RelA), RelB and c-Rel 

[12]. RelB is crucial for the differentiation of medullary thymic epithelial cells (mTECs) as 

RelB-/- mice lack proper thymic medulla formation [13]. RelB-/- animals do not express the 

autoimmune regulator (aire) gene and develop severe autoimmunity. Mice lacking both, p50 

and p52 display severe thymic hypoplasia, peripheral lymphopenia that is not T cell intrinsic, 

lack medullary cells binding ulex europeus antigen-1 (UEA-1) and show a disturbed medulla 

formation [14].

A subpopulation of mTECs expresses aire [15-17]. These cells bind to the lectin UEA-1 

and are important for shaping a self-tolerant T cell repertoire (see below). Lymphotoxin-β, 

secreted by thymocytes, induces aire expression in mTECs  [18, 19]. Furthermore, aire ex-

pression seems to be dependent on NIK [20] and TRAF6 [21]. 

The thymic epithelium does not have a basement membrane

In a mature thymus, the organisation of the thymic epithelium differs from all other epi-

thelial organs in the body. Rather than forming a sheet of cells positioned on a basement 

membrane, thymic epithelial cells form a three-dimensional meshwork. Importantly, this ar-

chitectural organisation is induced during fetal development in response to thymocytes at 

distinct maturational stages. This particularity has been viewed as a prerequisite for proper 

thymocyte development. A series of recent papers, summarized in [22] challenges this ob-

servation in part though as a single cell layer system seems sufficient for T cell lineage com-

mitment and early thymocyte development. However, T cells produced with this method can 

only be generated with low efficiency.

Conserved signaling pathways important for organ development, TGF-β and BMP 

signaling

Many developmental processes depend on secreted morphogens. Various conserved 

families of signaling molecules have been described in organisms such as C. elegans, 

drosophila, mice and humans. Fig 1 shows an overview of the most important signaling 

cascades involved in developmental processes. Depicted are representative members of 

the extracellular, soluble morphogens, the membrane receptors and key intracellular signal 

transduction molecules. Identical to the formation of other organs (e.g. lung, limb, teeth, hair) 

in which epithelial-mesenchymal interactions play an important role, signaling pathways that 
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are candidates for an important role in thymus organogenesis and function include the family 

of Wnt molecules, fibroblast growth factors (FGF), hedgehogs (Hh), and bone morphogenic 

protein (BMP) of the transforming growth factor-β (TGF-β) superfamily.

Simplified interactions among the various signaling cascades are depicted in Fig 1. Of 

note is, that Smad4 can interact with wnt signaling which is known to be important for TEC 

development [7, 23].

Figure 1
Overview of an evo-
lutionarily conserved 
network of intracel-
lular signaling mol-
ecules that transmit 
signals from the 
extracellular space 
to the nucleus to 
regulate target gene 
expression.

Shown are important intracellular molecules of the sonic hedgehog (Shh), the transforming growth 
factor (TGF-β) family, the wingless  (wnt) and the fibroblast growth factor (FGF) families. Smad4, 
a molecule central for the canonical TGF-β  signaling pathways is highlighted in red. Smad4 also 
interacts with the Shh and the wnt signaling pathways.
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Thymocyte development

All known different lymphocytes are derived from the self-renewing hematopoietic stem 

cell (HSC) in the bone marrow (BM) and blood. Progeny of HSCs differentiate into the eryth-

roid, myeloid and lymphoid lineage. In the latter, B and NK cells develop in the BM whereas 

T cells are the only hematopoietic cells that are not generated in the BM [24]. With the 

exception of a rare subset, T cells develop in the thymus which provides the microenviron-

ment to generate the distinct T cell lineages: αβTCR CD4+, αβTCR CD8+, γδTCR, NKT and 

CD4+CD25+ regulatory (T
Reg

) cells. During the differentiation along the hematopoietic lineag-

es, progeny of HSC gradually loose their pluripotency [25]. HSCs first develop into multi-po-

tent progenitors and finally are committed to a single lineage. An rapidly increasing number 
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of lymphoid progenitors with distinct potential to differentiate into various lineages has been 

described. Different studies came to somewhat contradictory conclusions and models and 

therefore the field remains controversial. A summary of studies describing progenitor cells 

can be found in [26]. 

The nature of the first progenitor entering the thymus remains elusive. It is known, how-

ever, that early thymocytes (DN1) have T, NK, DC and macrophage potential. Whether pro-

genitors are committed to T cells in- or outside the thymus and whether they still have B 

cell potential remains controversial [24, 27]. Two different models of lymphoid commitment 

are discussed by Katsura [28]. It remains controversial where the T/B dichotomy occurs. 

Whereas Kondo et al. propose that the myeloid lineage deviates from a commom lympoid 

precursor (CLP), recent data by Balciunaite et al. support the model proposed by Katsura 

where T/B commitment occurs before myeloid commitment resulting in a B/myeloid and a 

T/myeloid precursor [27-29].

Within the thymus, a first TCR independent phase can be distinguished from a later, TCR 

dependent phase (Figure 2). Early thymocytes do not express the costimulatory molecules 

CD4 and CD8, they are called double negative (DN) cells and represent about 3-5% of 

thymic cellularity [30]. C-kit (CD117), CD25 and CD44 are used to further subdivide DN into 

several developmental stages called DN I – DN IV where CD117 is used to exclude com-

mitted cells from non-T-lineages [27]. The development from DN I (CD44+CD25-), via DN 

II (CD44+CD25+), through DN III (CD44-CD25+) to DN IV (CD44-CD25-) are functionally 

relevant, as the developing thymocytes gradually differentiate into specialized cells with in-

creasing T lineage specific gene expression and step by step loose their multipotent lineage 

potential [27]. During mouse embryonic development, DN appear in the last trimester of ges-

tation, DNII at E13.5, DN3 and DNIV at E14.5 and the first DP in small numbers at E 15.5. In 

adults it takes 2-3 days from late DN to DP, i.e. the kinetics are different in adults [1]. Another 

difference is the site of entry. During embryonic development, progenitors enter from outside 

while in adults, progenitors enter at the cortico-medullary junction [31]. Markers used to dis-

criminate the different stages and their lineage potential are illustrated in Figure 3. 

As described above, thymocyte development does not occur cell autonomously but is 

dependent on signals from cells of non-hematopoietic origin. In the adult thymus, precur-

sors enter at the cortico-medullary junction and then migrate as DN I – DN III cells to the 

subcortical area. At this stage the recombinases RAG1 and RAG2 are active, inducing rear-

rangement of γ, δ and β loci. The γδ TCR lineage deviates from the major T cell lineage, the 

αβ TCR lineage at an earlier stage. Signals for this lineage choice are currently not known. 

However, it is known, that signals through the TCR are required for survival. The TCR of the 
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αβ lineage is immature at this developmental stage, consisting of a successfully rearranged 

β TCR chain, the CD3 molecules and an invariant pre-TCR α chain (pTα). The expression of 

a functional β-chain is called β-selection.  Signals transmitted through this receptor complex 

commit the cell to the αβ lineage, induce proliferation and the expression of the co-receptors 

CD4 and CD8, an arrest of β locus rearrangement as well as rearrangement of the TCR α 

locus. CD4+CD8+ thymocytes are now called double positive (DP) and constitute 80-90% 

of thymic cellularity. Cells expressing a rearranged TCRβ chain coupled with a productively 

rearranged α chain that recognize MHC get a survival signal (positive selection, see below). 

Thymocytes that fail to recognize self-MHC die, since by default, thymocytes are prone to 

die. Approximately 90% of DP thymocytes die through this passive cell death [32]. Intrigu-

ingly, the very same receptor that provided the survival signal for positive selection can be 

detrimental for the cell as it can signal death if the TCR too strongly binds peptide presented 

on self-MHC (negative selection, see below). 

At the time of positive selection, thymocytes express both coreceptors, CD4 and CD8. At 

the end of intrathymic T cell maturation, cells have either chosen the CD4 or the CD8 lineage 

and have downregulated the other co-receptor molecule. How this lineage choice occurs 

remains controversial. A breakthrough has recently been achieved by He et al. [33]. The au-

thors identified the transcription factor ThPOK to be both necessary and sufficient to specifiy 

the CD4 lineage. Other factors such as Notch have also been described to be implicated in 

the CD4/CD8 lineage choice. It is widely accepted that TCR specificity determines CD4 ver-

sus CD8 lineage choice as illustrated by TCR transgenic mice. If the transgene recognizes 

MHC I, the T cells will become CD8 SP, if it recognizes MHC II, they will become CD4 SP. 

Co-receptor signals mediated by lck are also involved in lineage decision. DP thymocytes 

undergoing positive selection downregulate CD4 and CD8 and then reexpress CD4. If the 

TCR recognizes MHC II, the sustained signal will lead to further upregulation of CD8 and 

downregulation of CD8. If the TCR recognizes MHC I, CD4 will not lead to any further lck 

mediated signaling and this weak co-receptor signal determines CD8 commitment (Fig. 3). 

CD24 is highly expressed on DP cells and is subsequently downregulated during matura-

tion towards SP cells [34]. On the other hand, CD69 is upregulated after positive selection. 

CD103 is upregulated in the CD8 lineage during maturation and has been used to determine 

recent thymic emigrants both in mice and humans [35, 36]. In the periphery, T cell matura-

Following page
Figure 2
Distinct stages in the murine development of  T cell lineages. 
Black: cellular stages. Blue: Surface molecules. Red: Genetic markers.
Adapted from Rothenberg and Taghon, Annu. Rev. immunol., 2005
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tion continues, CD4+ T cells can be polarized to Th1 or Th2 cells secreting distinct cytokine 

patterns and memory T cells develop after antigen encounter and T cell activation [37].

The various molecules that have been identified in thymocyte maturation and lineage 

choice are summarized in [24]. Many of the same regulatory factors and growth factor recep-

tors are used repeatedly at various stages [24]. Notch signaling e.g. not only commits pre-

cursors to the T lineage but is also involved in β-selection, CD4/CD8 lineage choice, positive 

selection and in the periphery for Th1/Th2 polarization.

Signaling pathways involved in thymic development, TEC differentiation and cortex 

– medulla differentiation

As mentioned above, members of the wnt family of signaling molecules have been shown 

to regulate FoxN1 expression in thymic epithelial cells [7]. Shh has been shown to have 

direct effects on thymocytes [38, 39]. Members of the FGF family have also been reported 

to have important roles in thymic organogenesis. Mice lacking FGF10 [40] or FGFR2IIIB, 

the receptor for FGF7, FGF10 and FGF20, have severely disturbed thymic development [41] 

and proliferation of immature TECs is impaired [42]. All subpopulations of TECs express 

FGFR2IIIB and proliferate in response to stimulation with FGF-7. (Rossi et al., manuscript 

in preparation). Already two weeks after injection of FGF-7, treated animals revealed a gain 

in thymic weight and cellularity. The increased cellularity was found to be secondary to in-

creased TEC proliferation (see below). This effect was sustained for at least three months 

and was paralleled by a normal architecture of the stromal meshwork and a regular composi-

tion of the different thymic epithelial cell subpopulations. For review, see  [43].

Smad4 - a key molecule for TGF-β and BMP signaling

Members of the TGF-β superfamily comprises TGF-β, BMPs, activins and related pro-

teins. Despite the enormous diversity of physiological effects, a disarmingly simple system 

of heteromeric receptors and second messengers transduce the biological effects of the 

TGF-β family members [44]. The canonical signaling for all these members involves type I 

and type II TGF-β receptors and intracellular signal transduction molecules called smad. In 

mammals, five type II and seven type I transmembrane serine/threonine kinase receptors 

have been described for 29 ligands [45]. Ligands can induce different signaling pathways de-

pending on the composition of the receptor complex. Furthermore, additional proteins modify 

ligand-binding specificity and extracellular inhibitors influence signaling. Moreover, BAMBI, a 
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Figure 3

Maturation steps of late thymocytes defined by FACS analysis based on the expression of CD4 
and CD8 co-receptors
 Black: cellular stages. Blue: Surface molecules. Red: Genetic markers.
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pseudoreceptor has been described [46] regulating TGF-β signaling at the receptor level.

Upon binding of an extracellular ligand at the cell surface to a complex of type I and type 

II receptors, the type I receptor is transphosphorylated by the type II receptor kinase. Conse-

quently, the activated (phosphorylated) type I receptor in turn phosphorylates distinct receptor 

smad (R-smad) molecules. These form a complex with smad4. Activated smad complexes 

translocate to the nucleus, where they regulate transcription of target genes in coopera-

tion with DNA-binding transcription factors and coactivators. Inhibitory smads (smad6 and 

smad7) can inhibit activation of R-smads. R-smads are ubiquinated and degraded by the E3 

ubiquitin ligases smurf1 and smurf2.

Besides smad-mediated signaling, TGF-β activates other signaling cascades (for review 

see [45]).
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Positive and negative selection

Developing T cells randomly rearrange TCR gene segments to increase the diversity of 

TCR specificities with a limited number of genes. Due to the randomness of this process, the 

generated TCRs need to be tested to be functional.

DN precursors start rearranging the TCRα locus after pre-TCR signaling. Vα/Jα joins can 

be detected in DN IV cells and full scale α rearrangement can be detected in DP [31]. Unlike 

the β chain, productive α chain rearrangment is not sufficient to terminate rearrangement of 

the α chain locus. Instead, only α chains that form an MHC-restricted receptor when paired 

with the β chain will terminate rearrangement. Since the successful generation of a MHC-

restricted α/β pair is thought to occur infrequently, most DP cells express a surface TCR but 

are undifferentiated and still express high Rag levels. Multiple V/J recombination events can 

occur on the same allele which allows to test multiple productive TCRα rearrangements per 

cell. DP precursors expressing an MHC restricted TCR downregulate Rag, get a long-term 

survival signal and start migrating into the medulla for further differentiation. Thus, DP thy-

mocytes recognizing MHC-self-peptides with low affinity receive a survival signal, a process 

called positive selection. This process occurs in the thymic cortex, takes several days to 

finalize and requires sustained TCR engagement [31]. The nature of self-ligands mediating 

positive selection remains blurry but it appears that relatively rare, low-affinity self-peptides 

promote positive selection. This gives rise to mature T cells having high affinity for foreign 

peptides that are generally structurally related to the self-peptides involved in selection. Yet, 

ligands for positive selection are generally not stimulatory for mature T cells [31].

TCRα, CD3δ and a motif in the TCRα chain connecting peptide are required for positive 

selection [31, 47]. Surprisingly, deficiency of ITAMs in the TCRζ chain did not impair positive 

selection but resulted in a skewed TCR repertoire. Intracellularly, several Src and Syk family 

members and ZAP-70 are required while negative regulators including c-Cbl, SLAP and Csk 

oppose positive selection.

On the other hand, random TCR specificity generation unavoidably leads to the generation 

of self-reactive TCRs. Therefore, these dangerous cells need to be eliminated. Thymocytes 

bearing a TCR that interacts with a self-peptide-MHC complex with high affinity receive a 

death signal to die by apoptosis, a process called negative selection [32]. In the absence 

of negative selection, the number of mature SP cells doubles. It was found that about 5% of 

thymocytes die through negative selection. Some T cells escape negative selection and for 

those there are peripheral mechanisms to induce tolerance.
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The anatomical location where negative selection occurs remains controversial. There is 

little doubt that clonal deletion occurs at the cortico-medullary junction and in the medulla, a 

region enriched with DCs capable of efficiently mediating negative selection. However, it is 

not clear today, whether negative selection also occurs in the thymic cortex. Another contro-

versy exists about whether positive and negative selection are sequential events or happen 

in parallel [32]. 

On a molecular level NUR77, an orphan steroid receptor appears to be involved in me-

diating negative selection. The role of co-stimulatory molecules is controversial where data 

using antibodies suggest involvement of co-stimulatory molecules while studies with geneti-

cally deficient mice do not.

An intriguing question remains: how does the TCR discriminate between signals leading 

to positive versus negative selection [32, 48]?

Taken together, the inability to be positively selected and negative selection lead to dele-

tion of about 95% of all developing thymocytes. This high toll seems to be required to shape 

an efficient arm of the adaptive immune system, the T cells, while preventing autoreactivity.

Tolerance

Tolerance can be summarized as absence of autoreactivity irrespective of its underlying 

mechanism. Failure to induce tolerance, loss or breakage leads to overt immune disease 

with potentially fatal outcome. Autoimmune diseases vary from organ-specific to systemic 

manifestations and can be harmless to lethal. T cells and B cells are rendered tolerant dur-

ing their development and various mechanisms keep them tolerant to self-antigens in the 

periphery.

Central tolerance involves all mechanisms rendering developing lymphocytes tolerant to 

self. I will focus on central T cell tolerance in this introduction. Peripheral tolerance results 

from a panel of mechanisms in the periphery aiming at controlling autoreactive T cell clones 

that escaped central tolerance. Of particular interest in recent years have been central T cell 

tolerance towards self-antigens of the periphery induced by mTECs and dominant peripheral 

T cell tolerance mediated by T
Reg

 cells.  
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a) Thymus dependent central tolerance – A role for aire in the thymic expression of 

tissue “specific” antigens: 

The mechanisms of central tolerance leads to physical and/or functional deletion of self-

reactive T cells during their intrathymic development. This process is designated negative 

selection (see above) and results either in apoptotic deletion of T cells or, alternatively, in a 

state of T cell unresponsiveness (otherwise known as anergy) [49]. In this context, thymic 

medullary epithelial cells and thymic stromal cells of hematopoietic origin, in particular den-

dritic cells, are responsible for negative thymic selection and thus shape the repertoire of T 

cell antigen specificities [50-52]. 

Thymic DCs have long been known to induce potent central tolerance. More recently, 

TECs have been shown to induce tolerance as well. For a long period of time, it was thought 

that central tolerance can only be mediated towards ubiquitously expressed antigens and 

blood-borne antigens that can be picked up by DCs, processed and subsequently present-

ed to developing thymocytes. It was believed, that genes that are only actively transcribed 

outside the thymus in immunologically peripheral organs like the brain or pancreas, could 

not induce central tolerance. Several groups, however, reported the expression of so-called 

tissue-specific-antigens (TSA) in the thymus [53-61]. Some reports even showed the func-

tional importance of these proteins in inducing tolerance already a decade ago [53, 62-67]. 

A puzzling observation was repeatedly made with the advent of transgene technology: Many 

“tissue-specific” promoters drove expression of transgenes in the thymus and induced toler-

ance [62, 68-72]. Today it seems very likely that this observation can be explained by the 

co-comitant expression of the autoimmune regulator (aire) gene. (see below) [73].

Only in recent years systematic analysis of the phenomenon of “ectopic” or “promiscuous” 

gene expression revealed the extent of tissue-specific antigen expression by mTECs [74-77]. 

A human monogenic autoimmune syndrome and mice deficient for aire further illustrate the 

functional importance of these antigens [78-81]. A link between thymic epithelial cell function 

and clonal deletion of self-reactive T cells has therefore been postulated. Humans express-

ing a defective form of the transcription factor AIRE (AutoImmune Regulator) develop the 

autoimmune-polyendocrinopathy- candidiasis-ectodermal dystrophy (APECED) syndrome. 

This disease complex encompasses hypoparathyroidism, autoimmune hepatitis, Addison’s 

disease, thyroiditis, Type I diabetes mellitus, and other debilitating diseases mediated by the 

immune system [82]. The pathology of APECED seems to develop secondary to a lack in the 

thymic expression of self-peptides since AIRE is thought to promote ectopic expression of 

peripheral-tissue-restricted gene products and may thus control negative thymic T cell selec-
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tion. The absence of AIRE could therefore result in the failure to express a full compliment 

of self-antigens and, in consequence, could by-pass the elimination of self-reactive T cells. 

Indeed, animals mutant for AIRE develop autoimmune diseases comparable to the profile 

observed in human APECED patients.

Several studies elegantly show that qualitative [83] as well as quantitative [73, 84] aspects 

of TSA expression are important to induce tolerance to TSA. A transgene coding for a soluble 

protein expressed in TECs was more potent in inducing tolerance than its membrane-bound 

form, indicating that the transgene might be taken up by DCs for cross-presentation of MHC 

II restricted peptides [85]. The necessity of such cross-presentation of a MHC II restricted 

transgene mimicking a TSA has been confirmed [86]. Finally, it was demonstrated directly in 

the thymus that self-reactive T cells fail to be centrally deleted in the absence of AIRE and 

that this process is responsible for the different forms of autoimmune diseases [73, 87].

An alternative hypothesis how tolerance towards TSA could be achieved has been put 

forth [88]. According to this model, TSA of various organs would not be expressed by a single 

cell but TECs would differentiate into various cell types of the body. Intriguingly, the authors 

show that fully differentiated specialized bronchial tissue and thyroid follicles can be found 

in the thymus. The tissues not only morphologically resemble end-differentiated specialized 

tissues but also express organ-specific genes and the respective proteins are synthesized.

b) Peripheral tolerance

A certain number of autoreactive T cells escapes the thymus which bear the danger of 

autoimmunity. Therefore, a panel of mechanisms in peripheral immune organs keeps these 

autoreactive T cells in check.

The activation threshold of the T cell receptor can be tuned by inhibitory molecules such 

as CD5 [89] and T cells can be negatively regulated by CTLA-4 and other molecules ex-

pressed on antigen presenting cells [90, 91]. Activation induced cell death is another way of 

limiting an immune response. Immune deviation is used to describe the switch of a Th1 to a 

Th2 type cytokine response. This mechanism is based on the dichotomy of Th1 cells secret-

ing primarily IL-2, IFN-γ and TNF-β and Th2 cells producing IL-4, IL-5 and IL-6. These two 

cell types can cross-regulate each other and hence Th2 responses can dampen overreact-

ing Th1 responses involved in autoimmune diseases. Next, anergy is a state of functional 

inactivation of a T cell, i.e. the cell is not physically removed but cannot be activated. This 

can result from TCR stimulation in the absence of signals through co-stimulatory molecules 

or suboptimal doses of cognate antigen. Immune-privileged sites are organs (brain, anterior 
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chamber of the eye and testis) that are privileged to accept grafts. The mechanisms underly-

ing this hyporeactivity are poorly understood.

Finally, two self-reactive T cell lineages, iNKT cells, and CD4+FoxP3+ T cells have been 

described to bear the potential to suppress T cell responses [92]. Importantly, suppression 

by T
Reg

 cells is a dominant mechanism of T cell tolerance and hence bears therapeutic po-

tential. The best studied population of regulatory cells are the CD4+FoxP3+ T cells. 

Regulatory T cells (T Regs)

CD4+CD25+ regulatory T cells have gained considerable interest in the last decade since 

their suppressive function was demonstrated in vivo [93]. Meanwhile, in many mouse mod-

els of autoaggression, disease could be prevented by transferring CD4+CD25+ T Regs. A hu-

man CD4+CD25+ regulatory T cell counterpart has also been shown to be pathogenetically 

involved in human autoimmune disease. A major drawback is, however, the lack of a distinct 

surface marker defining T cells with regulatory activity. Only the CD4+CD25+ T Reg popula-

tion has been consistently shown to display suppressive properties across species and in 

multiple disease models. However, T cell activation and homeostatic proliferation may lead 

to upregulation of CD25 making this marker cumbersome. Other markers, CTLA-4, GITR, 

Granzyme B, CD103 and LAG-3 have been proposed to define regulatory CD4+ T cells. 

However, only FoxP3, a forkhead transcription factor is clearly associated with regulatory T 

cells and no other functions [94-96]. FoxP3 expression is highly restricted to a subtype of 

cells of the αβ TCR lineage, is not upregulated during T cell activation and correlates with 

a suppressive function, irrespective of CD25 expression [97]. FoxP3+ T
Reg

 exert dominant 

tolerance and are selected in the thymus by TCR/MHC ligand interactions [97-100].

Their mode of action is heavily disputed. Some groups believe that the effects are con-

tact mediated whereas other researchers have found IL-10 and TGF-β as key mediators of 

suppression. Further complication comes from the fact that not only CD4+CD25+ but also 

CD4+CD25- T cells can be suppressive, provided that they are experimentally used in high 

enough doses suggesting competition as suppressive mechanism [101].

Homeostasis of αβ TCR T cells

The size of the lymphocyte pool is crucial for the adaptive immune system to be able to 

effectively eliminate the diverse array of potential pathogens. However, physical space is 

limited.
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The size of T cell pool is the result of a complex balance among thymic output, T cell pro-

liferation, T cell redistribution in tissues and the death rate [102]. Each of these factors are 

controlled by many mechanisms.

Evolution resulted in an elegant way to provide an immensely diverse TCR repertoire with 

a limited set of genes. The physical maintenance of such a diverse T cell population needs 

sophisticated mechanisms to preserve all specificities and avoid expansion over the space 

limit. How the immune system regulates and maintains the diverse T cell repertoire in the 

periphery is only incompletely understood. On one hand, during infections, expansion of anti-

gen-specific T cell clones needs to be allowed and the repertoire shifts towards T cells bear-

ing a TCR directed against the intruder. However, after elimination of the pathogen, activated 

T cells need to be eliminated to avoid potentially dangerous auto-aggressive clones and 

reduce toxic cytokine production. Moreover, the repertoire needs to be regulated to avoid 

predominant T cell specificites. On the other hand, the immune system needs to be able to 

compensate for dying T cells (due to the limited half-life of naïve T cells) or T cell lymphope-

nias occuring e.g. after certain viral infections [103] [104].  At least in young animals, T cells 

are continuously produced, mainly by the thymus.

In order to retain highly effective T cells against a certain specificity, memory T cells evolve 

during an infection. This allows to reduce the number of naïve T cells with this TCR specifi-

city. However, space is limited even for memory T cells, a process called attrition [105].

Failure to eliminate T cells leads to increased T cell numbers, clinically manifest as lym-

phadenopathy and splenomegaly. Furthermore, persistence of activated T cells bears the 

risk of autoaggression. This is best illustrated by the autoimmune lymphoproliferative syn-

drome (ALPS) where apoptosis of T cells is impaired due to a defective apoptosis pathway 

[106, 107] leading to uncontrolled lymphoproliferation.

Thymic export is important for the maintenance of a diverse T cell repertoire [108]. An 

increase in numbers of thymi leads to increased numbers of peripheral T cells [109]. How-

ever, this may be an indirect effect due to increased IL-7 production by the grafted thymi 

[110]. There is little evidence for feedback from the periphery to the thymus as peripheral T 

cell depletion does not increase thymic export [111] whereas sublethal irradiation regener-

ates the activity of thymi of old mice. Moreover, highly active anti-retroviral therapy (HAART) 

increases thymic activity [110], yet, a direct influence of the treatment on the thymi cannot 

be excluded.

Once T cells exit from the thymus, they readily respond to reduced T cell numbers with 

lymphopenia driven proliferation. T cells that emerge in young animals enter empty second-

ary lymphoid organs and proliferate [103, 110]. In vivo, only a few stimuli are clearly known 
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to be required for naïve T cell survival. IL-7 and low affinity TCR-self-MHC interactions are 

required much like during thymic development. In the absence of these two signals, naïve T 

cells die via the Bcl-2/Bim pathway [102]. A role for TCR-self-MHC interactions is widely ac-

cepted in survival for naïve T cells and LIP, yet it is still unclear what its precise role is [103]. 

Upon antigen encounter, T cells become activated and require IL-2 for survival. In contrast, 

IL-2 is toxic for memory CD8+ T cells [102]. Activated T cells die through at least two distinct 

pathways: activation induced cell death (AICD) and an activated T cell autonomous death 

pathway [102, 112]. Due to the relatively long lifespan of naïve T cells (months), proliferation 

of phenotypically naïve T cells is rare [103]. During homeostatic proliferation T cells upregu-

late surface molecules used to characterize memory T cells. Despite intensive research, 

however, it is still not possible to distinguish real memory T cells from memory-like T cells 

after homeostatic proliferation. (see below). 

As mentioned previously, also memory T cell numbers are tightly controlled. Memory T 

cells require different stimuli for survival than naïve T cells, indicating that they occupy differ-

ent niches [103]. IL-15 and IL-7 are required to keep CD8+ memory T cells alive [102] while 

IL-2 kills CD8+ memory T cells. The control of CD4+ memory T cells remains poorly under-

stood with roles reported for IL-7 and TCR mediated signals.

In summary, naïve T cells are regulated differently than activated T cells and likewise 

factors controlling life and death of memory cells are different. Cytokines with the common 

gamma chain (cγ) are required for the survival and proliferation of T cells in various activity 

states. Competition for particular cytokines and/or regulation of the cytokine levels contribute 

to the control of the T cell pool. Availability of MHC molecules through competition of interac-

tion with APCs is another factor that may contribute to T cell homeostasis. Co-stimulatory 

molecules such as CD28, CD40 and 4-1BBL are not required for homeostatic proliferation 

but can enhance LIP [113]. CTLA-4 deficiency induces marked polyclonal T-cell proliferation, 

indicating a role for CTLA-4 in maintaining homeostasis. CD24 can also enhance LIP [34].

Lymphocyte activation/memory/proliferation surface markers

During the process of LIP, T cells acquire a “memory-like” phenotype including upregula-

tion of CD44 and CD45RB without having encountered the cognate antigen and -according 

to some reports- CD25 [103]. In contrast, other studies report that the early activation mark-

ers CD69 and CD25 remain unchanged [103, 114, 115] in cell subjected to LIP. It is widely ac-

cepted though, that the cells bearing a memory-like phenotype indeed behave like memory 

cells with increased proliferation to specific antigen, direct lysis of target cells in vitro and in 
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vivo and faster IFN-γ secretion upon stimulation [114-116]. Moreover, the upregulated mark-

ers remain stably expressed. With intact thymic output however, the memory-like T cells are 

rapidly replaced by recent thymic emigrants [117].

During antigen responses the numbers of activated T cells increase rapidly and dramati-

cally. The increase is driven by engagement of TCR with MHC presenting foreign peptides 

and costimulatory molecules such as CD28, OX40, 4-1BB, LFA-1 and CD2 of the surface of 

antigen-engaged T cells. In response to these stimuli, cells start to divide and secrete IL-2, 

an auto -and paracrine cytokine. In T-cell sufficient animals, TCR specificity restricts prolif-

eration to antigen-specific T cell clones [118].  However, in lymphopenic hosts, unspecific T 

cells proliferate as well [110]. During activation, T cells upregulate CD44, CD69 and CD25 

on the surface, while CD45RB (CD4 cells) and CD62L are downregulated. During LIP, CD25 

and CD69 are not typically upregulated [103].

T cell mediated autoimmunity and autoimmune diseases

Although autoimmunity affects about 5 percent of the population in Western countries 

[119, 120] and represents a heavy burden to health care systems, little is presently known 

regarding the etiologies that result in a detrimental loss of immune tolerance [121] and spe-

cific therapies are completely lacking. A plethora of pathogenetic mechanisms has been 

described in mouse models and human autoimmune diseases. To present details is certainly 

out of the scope of this introduction.  The range of mechanisms is vast, disturbance of toler-

ance mechanisms of central and peripheral tolerance, T cell and B cell tolerance have been 

described. Dysregulated T cell activation [122] and proliferation [123], T cell receptor signal-

ing [124, 125], Antigen receptor editing [126], a lack of regulatory T cells [94-96], bystander 

activation [127], cytokines, molecular mimicry, lymphopenia, viral infections etc. have been 

made responsible for autoimmune responses. Furthermore, the cooperation among cells 

from the innate with cells from the adaptive immune system are important [128]. It has also 

been shown that dendritic cells play an important role in controlling autoimmunity. DCs can 

be activating or tolerizing depending on their state of activation [129]. Last but not least the 

pathogenesis of autoimmune disease seems to be a multistep process as most known au-

toimmune diseases are polygenic and triggering stimuli have been described that convert 

autoimmunity into overt autoimmune disease [130-132]. The list of factors, molecules and 

mechanisms of autoimmune pathogenesis is by far longer and more complex than this short 

introductory text can cover. Yet, rare  autoimmune diseases have been observed that are in-

herited in a Mendelian fashion and that might hold the key to a better molecular understand-
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ing of the pathogenesis of autoimmunity.

APECED – a monogenic autoimmune disease

Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy Syndrome (APECED; 

OMIM #240300) constitutes such a disorder that has the potential to reveal immunological 

mechanisms operational to distinguish between harmless self and injurious non-self. As an 

autosomal recessive disease, APECED, most frequently starts in childhood, affecting fore-

most but not exclusively endocrine organs leading to Addison’s disease, hypoparathyroidism, 

type 1 diabetes mellitus (T1D), ovarian failure, thyroiditis and others. Moreover, APECED 

patients display additional features of autoimmunity such as hepatitis, pernicious anaemia, 

alopecia and vitiligo [82]. The large array of autoantibodies of different specificities and the 

prevailing tissue infiltration with lymphocytes are eventually responsible for the destruction 

and thus malfunctioning of affected organs.[133]

The gene defect accounting for the APECED syndrome has initially been identified in 

man and the locus has been designated Autoimmune Regulator, AIRE [80, 81]. Following 

this decisive finding, the murine homologue was cloned, thus rendering it possible to study 

the pathogenesis of this disorder in a murine genetic model [134-136]. The AIRE protein 

is primarily expressed in thymic epithelium where it is thought -but not proven- to regulate 

the expression of organ-specific self-proteins. Such a mechanism would be in keeping with 

the long-standing observation that many organ specific gene products are promiscuously 

expressed in the thymus [53, 74, 75, 77]. For example, insulin and GAD65, are not only 

expressed in ß-cells of the pancreatic islets of Langerhans but are also detected in medul-

lary thymic epithelial cells. However, the regulation and functional role of the promiscuous 

expression of organ-specific self-proteins in the thymus still remain highly controversial.

The identification of AIRE as the genetic cause of APECED sets now the stage to unravel 

the molecular basis of the immune system’s capacity to induce and maintain central toler-

ance to self-antigens. Thus, research on AIRE will likely provide novel and important insight 

into the pathogenesis of APECED and may concurrently identify novel strategies for the 

therapy of autoimmune diseases secondary to the failure of central tolerance.
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The clinical presentation of Autoimmune-Polyendocrinopathy-Candidiasis-

Ectodermal dystrophy (APECED) syndrome

APECED is a rare autosomal-recessive disorder characterized by an immune-mediated 

destruction of several endocrine tissues, chronic candidiasis and ectodermal disorders [82]. 

Its typical clinical highlights are hypoparathyroidisms (87% of all APECED cases), adrenocor-

tical failure (68%) and mucocutaneous candidiasis (80%) [137]. Other endocrine pathologies 

typically include gonadal failure (46%), Hashimoto’s Thyroiditis (9%) and insulin-dependent 

diabetes (6%) [138]. Other organ specific autoimmunity affects non-endocrine tissues such 

as the skin (alopecia areata: 48%; vitiligo: 15%), the liver (chronic active hepatitis: 15%), 

and gastric parietal cells leading to pernicious anemia: (11%). The ectodermal dysplasias 

are highlighted by nail dystrophies, dental enamel defects and keratopathies of unspecified 

pathogenesis. In the majority of cases candidiasis becomes manifest in APECED individuals 

before the age of 5 years, while hypoparathyroidism is typically detected within the first 10 

years of life and the onset of Addison’s disease typically occurs when the child is younger 

than 15 years of age. While immunosuppressive therapy has been used to treat various com-

ponents of APECED, their success has not been unequivocally witnessed. Interestingly, and 

in contrast to the majority of all other autoimmune disorders, APECED has been considered 

to be independent of an association with HLA alleles, although recent observations have 

suggested a potential modifying influence by the certain HLA loci on disease manifestations 

in Finnish and North American APECED patients [139]. Since the most frequent clinical com-

ponents are mucocutaneous candidiasis, hypoparathyroidism and adrenocortical failure, the 

presence of any two of these pathologies in a single individual has widely been accepted to 

be diagnostic for APECED [82, 140].

Reflecting the broad endocrine immunopathology, the major autoantigens detected in 

patients with APECED are the steroidogenic P450 enzymes steroid 17-alpha-hydroxylase, 

21—hydroxylase, and side chain cleavage enzyme. Other autoimmune reaction targets in-

clude antigens specific for islets of Langerhans (glutamic acid decarboxylase (GAD) 65 and 

67; IA-2 and insulin), hepatocytes (P 450 species), thyroid epithelium (thyroid peroxidase, 

thyroglobulin) and melanocytes (SOX 9 and 10) [133].
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The genetics of AIRE

APECED displays a high prevalence in distinct ethnic backgrounds (Iranian Jews 1:9000; 

Sardinians 1:14’400; Finns 1:25’000) and is associated with mutations in a single gene, des-

ignated autoimmune regulator (AIRE). This gene is located on chromosome 21q22.3, spans 

13 kb and consists of 14 exons, which encode a predicted protein of 545 amino acids [137]. 

The AIRE protein is predominantly expressed in thymic epithelial cells located at the cortico-

medullary junction and in the medulla proper [16]. AIRE is, however, also expressed by other 

cells including dendritic cells (which are also located in the thymic medulla but can equally 

be found in peripheral tissues) [15, 17, 136, 141].

AIRE is detected in the nucleus in a punctate pattern, a result compatible with the pres-

ence of a nuclear localization signal in the N-terminal part of the protein [142, 143]. Most 

interestingly, AIRE expression is not detected in target organs of APECED autoimmunity. 

This finding suggests that the function of AIRE may be related to the control of effector 

cells of the immune system rather than locally triggering the process of auto-destruction in 

target tissues. The AIRE protein has several structural features indicative of a function as 

a transcription factor such as a proline rich region (PRR), plant-homology domain (PHD) 

fingers and the recently described DNA-binding domain SAND [144]. These domains have 

typically been detected in proteins involved in transcriptional control. Supporting a direct role 

for AIRE as a transcription factor, transcriptional activation of several reporter gene systems 

with distinct minimal promoters has been reported in the presence of AIRE [145]. In keeping 

with these functional analyses, AIRE in either a dimeric or tetrameric form has been demon-

strated to bind directly to both DNA and the nuclear CREB-binding protein CBP, which acts 

as a co-activator for several transcription factors [146].

The physiological role of AIRE 

At least four distinct pathways of AIRE function have been envisaged. One mechanism 

would predict that AIRE regulates the promiscuous gene expression of peripheral-tissue 

specific transcripts [79]. The phenomenon that proteins such as pro-Insulin, GAD 67, pro-

teolipid protein (PLP, a major component of myelin), the acetylcholin receptor and retinal S 

antigen are expressed by thymic medullary epithelial cells and dendritic cells has indeed 

been linked to the mechanism of central tolerance [69, 77].

The second mechanism how AIRE could be involved in thymic selection is the activation 

of co-stimulatory signal molecules operational in negative selection by thymic stromal cells. 
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These molecules would be required to induce either programmed cell death or a state of 

anergy among developing, autoreactive T cells. The third mechanism by which AIRE may 

contribute to T cell tolerance is its role in the production of regulatory T cells, a population 

of effector cells that suppresses the activation and expansion of autoreactive T cells. Finally, 

the forth mechanism foresees that AIRE is important for the development of a subpopulation 

of medullary epithelial cells that effects negative thymic selection independent of promiscu-

ous gene expression.

Recent findings suggest, however, that AIRE may be important for promiscuous gene 

expression [79]. Analyzing the gene expression profile of medullary thymic epithelial cells 

from wild-type and AIRE-deficient animals revealed a loss of thymic promiscuous gene ex-

pression in the genetically mutant mice. However, these results are possibly flawed since 

the study investigated mRNA derived from all epithelial cells of the medulla and not just 

from the normally AIRE-positive subpopulation of epithelial stromal cells. This distinction is 

important as the possibility has not been excluded that AIRE may actually be necessary for 

the maturation and expansion of a subpopulation of thymic epithelial cells. In the instance of 

homologous AIRE gene disruption, these cells could be unable to differentiate into various 

cell types which in turn – but for very different reasons – would result in a lack of promiscu-

ous gene expression [88]. Therefore, it is still unknown what the precise role of AIRE in the 

context of a regular thymic function is.

Experimental models

A) Aire-cre mice as a tool to activate or silence genes

In order to study the function of Aire expressing cells in vivo, it would be desirable to have 

a tool to genetically manipulate this rare subpopulation of TECs in vivo. As the the cre/loxP-

system is a binary system, it allows both, in vivo gain (Figure 4A a) or loss of function (Figure 

4A b), depending on whether the cre expressing mouse is crossed with a mouse carrying a 

conditional transgene or a conditional gene knockout allele, the transgene will be activated 

or the gene of interest deleted, respectively. Therefore, a strategy was worked out to direct 

Cre expression under the transcriptional control of the aire promoter. Since it was an addi-

tional aim to create a mouse model of the human APECED syndrome, cre was designed to 

replace the endogenous aire gene by gene targeting in order to inactivate aire.
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a    Gain of function

b           Loss of function

   aire      cre

loxP

loxP    gene   loxP   aire      cre

loxP    stop   loxP     transgene

In the absence of Cre,
transgene expression prevented

by stop cassette

In the presence of Cre,
stop cassette excised by Cre,

transgene expressed in Aire expressing cells

gene deleted in Aire expressing cells

   promoter  loxP  stop   loxP     transgene

Figure 4A
Schematic representation of the tissue specific activation (a) or inactivation (b) of genes by 
gene-targeted aire-cre mice
a) Aire-cre mice crossed to mice carrying a conditional transgene:
A subpopulation of thymic epithelial cells expresses Cre under the transcriptional control of the 
aire promoter. The Cre enzyme will recombine the two loxP sites of the conditional transgene  re-
sulting in activation of the transgene. This mutation renders the smad4 gene non-functional (a).
b) Aire-cre mice crossed to conditional gene knockout mice:
Again, a subpopulation of TECs expresses Cre under the transcriptional control of aire. In contrast 
to a, when aire-cre mice are crossed to a mouse carrying a conditional gene knockout allele, the 
gene is inactivated rather than activated.
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a                b

Figure 4B
Schematic representation of the tissue specific smad4 deletion in TECsmad4-/- mice
Thymic epithelial cells express Cre under the transcriptional control of the FoxN1 promoter. The 
Cre enzyme will recombine the two loxP sites of the conditional smad4 allele resulting in deletion 
of exon 9 of the smad4 gene. This mutation renders the smad4 gene non-functional (a). Other cell 
types, including thymocytes and mature T cells do not express FoxN1. As a consequence, Cre is 
not expressed preventing excision of exon 9 of the conditional smad4 allele. Thus, smad4 remains 
functional in all cells that do not express FoxN1, including thymocytes and T cells (b).

Thymic epithelial cell:

FoxN1 controlled gene deletion

Thymocyte/T cell:

FoxN1 not active     no deletion

exon 9 of the smad4 gene deleted in TEC exon 9 of the smad4 gene intact 
in thymocyte/T cell 

loxP loxP  exon 9   loxP

loxP  exon 9  loxPloxP  exon 9   loxPFoxN1    cre FoxN1    cre

x

B) Thymic epithelial-specific Smad4 ablation

FoxN1 is a transcritpion factor that is specifically expressed in TEC and keratinocytes. 

Therefore it was decided to take advantage of the restricted foxN1 expression to direct TEC 

specific Cre-mediated gene ablation by creating a transgenic mouse harboring a cre re-

combinase under the transcriptional control of foxN1 (Zuklys S., unpublished). Crossing the 

FoxN1-cre mouse to a mouse harboring a conditional smad4 allele should allow to inactivate 

smad4 specifically in TECs while leaving thymocyte development and T cell function intact 

(Figure 4B).
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Nomenclature of Mice

Aire gene targeted mice

Gene targeted mice were collectively designated aire-cre independent of a particular 

genotype. To describe particular genotypes, the designations aireCN/wt (heterozygous for Cre 

Neo (=CN)) or aireCN/CN (homozygous) were defined. After crossing to Flp-Deleter mice [147], 

offspring were designated aireCNDF/wt (for Cre Neo Deleted Flipase) and aireCNDF/CNDF, respec-

tively. After further backcrossing -when the Flipase transgene was lost- mice were called air-

eCND/wt and aire CND/CND. The three independent lines (103, 292 and 336) were maintained as 

separate mouse lines. Accordingly the ES clone number was added to the name. In addition, 

the generation of backcrossing to C57bl/6 and Balb/c mice was included in the name.

For details see the Materials & Methods section.

Mice used to study the role of Smad4 in thymic epithelial cells

All mice studied in part B were homozygous for the conditional smad4 allele [148], i.e. 

smad4loxP/loxP and were either positive for the FoxN1-cre transgene (Zuklys et al., unpub-

lished) or not. Accordingly they will be called

TECsmad4-/- (or cre+ in figures) for smad4loxP/loxP FoxN1-cre 

and

control (or cre- in figures) for smad4loxP/loxP

control littermates if not indicated otherwise. This nomenclature was chosen to simplify 

figures and to improve readability of the text. It tries to reflect the fact that the smad4 gene is 

inactivated exclusively in thymic epithelial cells.
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Aim of the Thesis

• To generate a mouse model of the human APECED syndrome

• To generate a tool to genetically manipulate in vivo Aire expressing medullary 
thymic epithelial cells

• To investigate the role of Smad4 in thymic epithelial cells
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Results

PART A

A.3.1 Generation of mice expressing the Cre recombinase under the transcriptional 

control of the aire promoter

A.3.1.1 Cloning of the aire-cre targeting construct

The bacteriophage recombinase cre cDNA preceded by a nuclear localization signal (NLS) 

was inserted 3’ of a 3.5kb arm of aire homology followed by an IRES-hrGFP sequence and 

a SV 40 poly A signal. 3’ of the GFP followed a neomycine resistance cassette flanked by 

FRT sites for conditional removal of the potentially interfering sequence. The very 3’ end of 

the targeting vector consisted of a 4.2kb arm of aire homology. A plasmid map of the final 

targeting vector p79 is shown in Annex I. Details how the aire-cre targeting construct was 

synthesized are described in Materials &  Methods.

A.3.1.2 Testing the aire-cre targeting 
construct

In order to test the functionality of the 

final targeting vector, cre-IRES-hrGFP-

SV40 polyA was subcloned into a vector 

with a CMV promoter that is ubiquitously 

active in mammalian cells. This additional 

step was necessary since the aire promoter 

is only active in specialized cells and hence 

cannot be used to test the final construct di-

rectly. HEK293 cells were transfected with 

plasmid p67 (see annex I). 24h after trans-

fection, Cre+ nuclei (Figure 5a) and GFP+ 

cytoplasm (Figure 5b) could be detected in 

transfected but not untransfected HEK293 cells (data not shown).

Figure 5
Cre and IRES-GFP expression work in vitro
HEK 293 cells were transiently transfected with 
p67 and stained with anti-cre antibody revealing 
a clear nuclear signal (a) while GFP localization 
is cytoplasmic (b). The original magnification in a 
was higher than in b.

a         b
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A.3.1.3 Gene targeting

100µg of linearized plasmid p79 was electroporated into 5x107 129/Sv ES cells in single 

cell suspension. Electroporated ES cells were plated on a monolayer of neomycine resistant 

transgenic embryonic feeder (EF) cells. Neomycine resistant ES clones harboring a target 

construct integration were selected with 500µg/ml G418 based on their antibiotic resistance. 

Individual ES clones were hand-picked and split for freezing and expansion to amplify DNA 

for screening of correct aire gene targeting. Details are described in Materials & Methods.

A.3.1.4 Southern blot screening of DNA extracted from targeted ES clones

DNA from 360 targeted ES clones was extracted for the screening of integration of the tar-

geting construct. Initial screening was based on southern blotting (Figure 6). ScaI digested 

genomic DNA from single ES clones was subjected to southern blot screening using the 5’ 

probe (Figure 7a) with primers #1925/#1926 (see Annex III) yielding a 532 bp probe. 9/102 

(9%) clones were wildtype and 93/102 (91%) were heterozygously targeted. DNA from ES 

cell clones with 5’ correctly targeted aire were HindIII digested and analyzed with the 3’ 

probe (Figure 7b), produced by primers #2127/#2128, resulting in a 535 bp probe. ES clones 

displaying correct homologous recombination at both ends of the targeting construct were 

subjected to screening with an internal probe to exclude ES cells with random target con-

struct integration (primers #2055/#2056). Clones with several integrations were excluded 

(data not shown).

Figure 7
Correct targeting of ES cells.
DNA from aire-cre targeted ES cells were probed with a radioactively labelled 5’ (lanes 1 and 
2) and a 3’ probe (lanes 3 and 4). Lanes 1+3 show a wildtype ES clone, lanes 2+4 show DNA 
from a heterozygously targeted ES clone.

wt
targeted

5’probe 3’probe

wt

targeted
1  2     3   4

a     b
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A.3.1.5 PCR screening of DNA extracted from targeted ES clones

Since the targeting efficiency as determined by southern blotting was much higher (91%) 

than expected [149] PCR screening was performed to confirm the observation. A 3’ primer 

pair (#1939/#1937) confirmed the results (data not shown).

A.3.1.6 Expansion of correctly targeted ES clones and blastocyst injection

Five correctly targeted ES cell clones were thawed and expanded and 3 different ES cell 

clones (clones 103, 292 and 336) were injected into blastocysts as described in Materials 

& Methods. As only 8-15 cells were injected per ES clone, DNA from the remaining cells of 

clones 103, 292 and 336 was extracted and verified by southern blotting to be the correctly 

targeted clones (data not shown).
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A.3.1.7 Germline transmission and removal of the neomycine resistance cassette

Chimeras were obtained from all 3 injected ES clones. Chimeras were bred to C57bl/6 

mice to obtain germline transmission (data not shown). Offspring was genotyped by PCR 

for the cre transgene using oligonucleotides #2323/#2324/#2368 (see annex III). Cre+ mice 

were crossed to homozygosity (Figure 9a) in order to inactivate the aire gene. In addition, 

Cre+ mice were crossed to Flipase-Deleter (Flp) mice [147] to remove the FRT-flanked neo-

mycine resistance cassette as it has been reported [150] that such a resistance cassette 

can influence cre transgene expression even with a “knock-in” i.e. gene targeting approach 

(Figure 8). Correct removal of the neo cassette was monitored by PCR and revealed sub-

stantial mosaicism (data not shown). Mice with complete removal were selected to continue 

breeding and removal of the neomycine resistance cassette was verified in F2 offspring 

(Figure 9b).

Figure 9
Confirmation of correct targeting and neomycine resistance cassette deletion in mice
a) Southern blot of airewt/wt (lane 1), airewt/CN (lanes 2 and 3) and aireCN/CN mice (lane 4) 
using the 3’ probe for the detection of correct targeting of the aire locus.
b) Southern blot from Airewt/CN (lane 1) and Airewt/CNx Flp-Deleter mice (lane 2) assayed 
with the 3’ probe for the detection of correct deletion of the neomycine resistance cassette.
For a cartoon of the targeting and southern blot strategy see Annex I.

wt
targeted
deleted

wt

targeted

a       1      2     3     4  b      1     2
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Figure 10
Spontanous lymphocytic infiltration of peripheral organs in aire deficient mice.
HE staining of liver (a+d), pancreas (b+e) and salivary gland (c+f) cryosections from 4 months 
old aireCN/CN and airewt/CN control mice. Panel d additionally shows infiltrating cells at a higher 
magnification.

airewt/CN

aireCN/CN

 d    e               f

 a    b               c
liver         pancreas    salivary gland

A.3.2 Spontaneous infiltration of peripheral organs in aire-cre mice

Aire deficient mice spontaneously develop multiorgan lymphocytic infiltration [78, 79]. In 

order to test whether our gene targeting strategy inactivated the aire gene, we histologically 

examined the most frequently infiltrated organs liver, salivary gland and pancreas (Figure 

10). AireCN/CN and aireCNDF/CNDF mice spontaneously developed lymphocytic multi-organ infil-

tration of liver (Figure 10, panel 10d), pancreas (Figure 10, panel 10e) and submandibular 

salivary gland (Figure 10, panel 10f). Airewt/wt mice did not show organ infiltration (data not 

shown) while aireCN/wt heterozygous mice also developed a limited extent of infiltration at a 

lower frequency (Tetsuya and Shikama-Dorn, unpublished) in contrast to previous reports 

[78, 79].

Furthermore, the severity of infiltration varied substantially interindividually in aireCN/CN and 

aireCNDF/CNDF individuals, some animals displayed only restricted infiltrations while others dis-

played a massive tissue destruction (data not shown). However, no correlation between in-

filtration and the presence or absence of the neomycine resistance cassette could be found. 

Mice of clones 292 and 336 were bred to homozygosity and both developed comparable 

organ infiltration.

In general, despite extensive organ infiltration, mice appeared clinically healthy with the 

exception of the mouse with the heavily destroyed pancreas shown in Figure 10, panel 10e 

that appeared clinically sick, was smaller than control littermates (data not shown) and had 

multiorgan infiltration.
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A.3.3 Characterization of Cre expression in aire-cre gene targeted mice

A.3.3.1 Highly specific Cre expression in postnatal medullary thymic epithelial cells 

Aire is physiologically expressed in a rare subtype of mTECs [15, 16, 141, 151-153]. In 

order to determine the specificity of Cre expression in aire-cre mice, immunohistochemi-

cal analysis of Aire (green) and Cre (red) expression were performed in postnatal thymus 

(Figure 11). Thymic size and the demarcation into cortex and medulla were normal in aire-

deficient aireCNDF/CNDF mice. Cytokeratin 18 (blue) was used as a marker for cortical thymic 

epithelial cells.

Panel a shows the expression of Aire in thymic epithelial cells of wildtype mice. Positive 

cells were found in the medulla but not in the cortex (panels c+d). Background staining for 

Cre was not detected when using the Cre-specific antibody on tissue from wildtype mice 

(panel c). TECs from heterozygous aireCNDF/wt mice showed a regular aire expression pat-

tern (panels e, g+h) and display Cre expression in the medulla (panels f+h) where most Cre+ 

cells are also Aire+ (panel h; yellow). However, some cells were only Aire+ (panel h; green) 

or, alternatively, only Cre+ (panel h; red). Thymic tissue from mice homozygous for the loss 

of aire (aireCNDF/CNDF) did not stain with Aire-specific antibodies (panel i) while Cre expression 

could be detected in some but not all cells of the medulla (panels k-m).

These results illustrate the specificity of Cre expression in a subtype of postnatal medul-

lary thymic epithelial cells in aire-cre gene targeted mice. Furthermore, panel i demonstrates 

that the Aire protein is not present in aireCNDF/CNDF mice, underlying the basis for the observed 

lymphocytic organ infiltration (Figure 10).

A 3.3.2 LacZ reporter mice suggest Cre expression in aire-cre mice prior to the thymus 
formation

In order to assess the function of Cre in aire-cre mice, we crossed aireCNDF/wt mice to 

ROSA26 lacZ reporter mice [154]. These indicator mice express the β-galactosidase gene 

only upon Cre-mediated removal of a loxP flanked transcriptional stop cassette and are 

therefore suitable to test tissue specificity of Cre expression in cre transgenic mouse lines. 

Postnatal thymic cryosections of [aireCNDF/wt x ROSA26 lacZ] mice revealed two types of 

blue cells (Figure 12). Most prominently, large cells and clusters of cells located in thymic 

medulla (panels b+c) were found in a pattern reminiscent of the physiologic Aire expression 

(see Figure  11). A second type of cells stained as single, punctuate blue dots in the medulla 
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Figure 11
Cre expression in aire gene targeted mice faithfully matches aire expression in postnatal 
thymus
Immunofluorescence confocal microscopy of frozen thymus sections of airewt/wt (a-d), airewt/
CNDF (e-h) and aireCNDF/CNDF (i-m) mice.
Stainings were done for endogenous aire (green), transgenic cre (red) and the cortical TEC 
marker cytokeratin 18 (blue). The  panels d, h and m display an overlay of all signals from all 
fluorochromes. Aire and cre colocalization appears as yellow.
Pictures are a kind courtesy of Dr. N. Shikama-Dorn.

and -surprisingly- the cortex. Thymic tissue from airewt/wt mice did not stain blue, excluding 

unspecific endogenous β-galactosidase activity (panel a).

To discriminate between staining of TECs and thymocytes and to define lacZ+ TEC sub-

types, lacZ stainings were performed with subsequent immunohistochemical analysis of 

markers defining subtypes of TECs (panels d-i). Some blue cells colocalized with cytok-

eratin18+ (CK18) cTECs (panel d+g) and some but not all cytokeratin5+ (CK5) mTECs were 

also lacZ+ (panels e+h). TECs were further subdivided into major (CK18-) and minor (CK18+) 

mTECs by the use of CK18 and the lectin UEA-1 [155]. As expected, all minor medullary 

CK18+ UEA-1-binding TECs that are known to express Aire [74] were lacZ+ (panels g+i). 
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Figure 12
Thymic cryosections of lacZ 
reporter mice crossed to 
airewt/wt  and airecre/wt mice 
reveal unspecific recombina-
tion in airecre/wt mice
a) Absence of lacZ staining in 
Airewt/wt mice.
b+c) lacZ (blue) staining of 
airecre/wt mice  reveals cortical 
and medullary staining.
d+g) Cytokeratin 18/lacZ cos-
taining confirms that some 
CK18+ TECs are lacZ+. All 
minor medullary CK18+ TECs 
are lacZ+.
e+h) Some cytokeratin 5+ TECs 
costain with lacZ while some 
lacZ+ cells are CK5-.
f+j) All UEA-1 binding TECs are 
also lacZ+. Yet there are lacZ+ 
UEA-1- cells.
c= cortex
m= medulla

All mice were heterozygous for 
the conditional ROSA26 lacZ 
reporter allele.
The original magnifications are 
indicated.
a-c were counterstained with 
nuclear fast red.
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However, not all lacZ+ cells were costaining for CK18 (panel g) or binding UEA-1 (panel i).

Since Cre-mediated recombination is an irreversible system, these results suggested that 

Cre had been expressed at an earlier time point in a presumable precursor of cTECs and 

mTECs. Despite the unexpectedly high number of lacZ+ cells observed, the obvious absence 

of staining of thymocytes excludes that aire-cre mice express Aire in every single cell. To 

further assess if β-galactosidase expression was restricted to thymic tissue or could also 

be found in secondary lymphoid and non-lymphoid tissues, spleen, liver, kidney, skin, brain 

and adrenal glands of [aireCNDF/wt x ROSA26 lacZ] mice were analyzed for β-galactosidase 

activity. Surprisingly, and in contrast to previous reports that could not detect the Aire protein 

outside the thymus [15, 156] all organs contained lacZ+ cells. However, the extent of cells 

staining positive ranged from 80-95% in the liver to very few cells in the kidney (data not 

shown) illustrating that Cre expression in Aire-cre mice is not ubiquitous.
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Bone marrow + 

Brain ++

ES cells +++

Eyes E 15 +

Gut +++

Kidney +++

Lactating mammary 
gland

-

Liver +

Lymph Node +++

Lung E14 +

Salivary gland +

Sceletal muscle -

Skin +

Spleen ++

Testis +++

Thymus E 14 +

Thymus E 17.5 +++

Thymus postnatal day 1 +++

Thymus adult +++

Table I
Aire mRNA expression in C57bl/6 
mouse organs detected by 36 
cycles of end-point RT-PCR am-
plification. -, +, ++ and +++ stand 
for estimated relative amplification 
signals.

A.3.3.3 Widespread Aire expression in multiple lymphoid and non-lymphoid organs

To dissect the contradicting results from the analysis of Cre expression using immuno-

histochemistry and lacZ reporter mice, the aire mRNA expression in an array of organs of 

C57bl/6 mice was determined to test whether aire expression was broader than reported. 

Three independent primer pairs were used to amplify cDNA’s generated from aire mRNA 

since several aire splice variants are known [136]. To exclude genomic contamination in the 

cDNA preparation and subsequent amplification of genomic aire sequences rather than aire-

specific transcripts, all oligonucleotides were designed as intron-spanning primers span-

ning introns 2, 7 and 8, respectively (see Annex III, primer pair 2107/2108 (spanning exon 

2), 2144/2145 (spanning exon 7) and 490/491 (spanning exon 8)). All primer pairs yielded 

identical results summarized in table I. Astonishingly, except for lactating mammary gland 

and skeletal muscle, aire mRNA transcripts were found in any organ analyzed (Table I). This 

result questioned the restriction of aire expression to lymphoid organs.
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A.3.3.4 Proof of Cre activity during mouse embryonic development 

To test the hypothesis that Cre is active in aire-cre mice prior to thymic development, 

[aireCNDF/wt x ROSA26 lacZ] embryos were generated (Figure 13). As expected, E 6.5 (data 

not shown) and E 7.5 [aireCNDF/wt x ROSA26 lacZ] embryos already showed substantial β-ga-

lactosidase activity (panel a) while [airewt/wt x ROSA26 lacZ] littermates were lacZ-. Interest-

ingly, the embryos at E 6.5 and E 7.5 were only incompletely blue, suggesting that Cre had 

been active only after certain steps of differentiation. From E 9.5 on, [aireCNDF/wt x ROSA26 

lacZ] appear to be ubiquitously blue (panel b). Sections of E 12.5 whole mount lacZ stained 

embryos revealed, however, that not every single cell was lacZ+ (data not shown). Yet, sec-

tions through the developing thymus at E 12.5, a time point when aire mRNA cannot be de-

tected by RT-PCR yet (Table I), demonstrated clearly, that the cells in thymi from [aireCNDF/wt 

x ROSA26 lacZ] are chiefly lacZ+ while their [airewt/wt x ROSA26 lacZ] littermates have thymi 

with virtual absence of β-galactosidase activity (panel c).

Figure 13
lacZ reporter mice reveal cre expression in airecre/wt ROSA26lacZ/lacZmice prior to E 7.5
Airecre/wtmice were crossed to conditional ROSA26-lacZ indicator mice to analyze functionally cre 
expression during embryonic development. 
a) E 7.5 airecre/wt ROSA26lacZ/lacZ embryos are partially positive for lacZ while an airewt/wt 

ROSA26lacZ/lacZ  control littermate does not show any background lacZ staining.
b) Airewt/wt ROSA26lacZ/lacZ E 9.5  embryos are devoid of lacZ staining while airecre/wt 
ROSA26lacZ/lacZ embryos appear totally blue.
c) Frozen sections of E 12.5 embryos clearly demonstrate lacZ expression in a majority of cells in 
airecre/wtROSA26lacZ/lacZ  but not airewt/wt ROSA26lacZ/lacZ mice in the early thymus.

 a         b    c   d

E 7.5    E 9.5            thymus E 12.5

airewt/wt        airecre/wt airewt/wt         airecre/wt

airewtwt         airecre/wt

In summary, aire-cre mice faithfully expressed Cre in Aire-expressing medullary 

thymic epithelial cells in postnatal thymi. However, Cre was expressed already during 

embryonic development. This early recombination overrides the specificity achieved 

later in life. It remains to be determined whether the embryonic Cre activity is physi-

ologic or occurs as a consequence of the transgenic targeting construct.
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Part B

B.3 Effects of thymic epithelial-specific smad4 
deficiency on thymopoiesis and peripheral T 
lymphocytes

B.3.1 Deciphering thymic expression of mRNA transcripts of the TGF-β family of 

signaling transduction molecules

To test which signal transduction pathways that are known to be involved in embryonic 

development are expressed during thymic development, the presence of mRNA transcripts 

of selected secreted molecules, receptors and intracellular signal transduction molecules 

was analyzed by RT-PCR on thymic tissue. cDNA was generated from embryonic and post-

natal whole thymus, thymic epithelial cell lines and thymocytes (Table I). Oligonucleotide 

sequences for each primer pair can be found in Annex III. Transcripts of bmp2, bmp4 and 

their inhibitor noggin were found in whole thymus of embryonic and postnatal tissue (panel 

a). To discriminate between expression by stromal cells or thymocytes RT-PCR analysis 

was performed on thymic epithelial cell lines (panel b) and purified thymocytes (panel c). 

mRNA for bmp2, bmp4 and noggin could be found in some but not all TEC lines while no 

transcripts were found in thymocytes. Next, the expression of receptors of the TGF- family 

was determined to test on what cells bmp2 and bmp4 might act. Transcripts for all the recep-

tors analyzed (bmpr Ia, bmpr Ib, bmpr II, tgf-β r II, activin r II and alk2) could readily be found 

in whole thymus and TEC lines while a much more restricted pattern of receptor transcripts 

was found in thymocytes. In accordance with these results, transcripts of the intracellular 

signal transduction molecules smad1, smad3, smad4 and smad5 were strongly expressed 

in TEC lines. Transcripts for smad3 and smad5 could also be found in thymocytes. Based on 

the presence of mRNA of several receptors and intracellular signal transduction molecules 

of the TGF-β family in TEC lines it was hypothesized that TGF-β family signaling is involved 

in thymic epithelial cell development.
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Table II
mRNA expression pattern of se-
creted TGF-β family signaling 
molecules, receptors and intracellu-
lar signal transduction molecules in 
whole thymus (a), TEC lines (b) and 
purified thymocytes (c). 36 cycles of 
end-point RT-PCR amplification. 0 = 
not expressed, +, ++ and +++ stand 
for estimated relative amplification 
signals.

DN DP SP 
CD4+

SP 
CD8+

0 0 0 0

0 0 0 0

0 x 0

0 0 0

0 x 0

x xxx 0

x x x

x xx x

xx xx x

thymus    
E 14

thymus 
newborn

thymus 
adult

bmp2 xx x x

bmp4 xxx x x

noggin x x x

bmpr Ia xxx xxx xx

bmpr Ib xxx x 0

bmpr II x-xx x x

tgf-brII xxx xxx x

activinRIIA xxx xxx xx

alk2 0 xx

bambi xxx

smad1 xxx xxx

smad3 x xx x

smad4 xxx xxx

smad5 xx xxx xxx

TEC 1.2 TEC 1.4 TEM 2.3 TEM C6

bmp2 x 0 0

bmp4 xx 0 0

noggin xx xx xxx xxx

bmpr Ia xxx xxx xxx 0

bmpr Ib xx 0 xxx xxx

bmpr II xx x xx x

tgf-brII xxx xx xxx xxx

activinRIIA xxx xx xxx 0

alk2 xxx xx xx xx

bambi 0 0 0 0

smad3 xxx xx xxx xxx

smad4 xxx

smad5 xx x xx xx

a    whole thymus

b      thymic epithelial cell lines     c  purified thymocytes
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Figure 14
Thymic hypoplasia in cre+ mice
a) Thymus size of  female mice of 8 weeks of life
b) Comparative analysis of thymic cellularity in female mice as a function of age.
wks stands for weeks

cre-                cre+

E18.5     3wks     5wks     10wks   18wks

age
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B.3.2 Effects of the experimental system are restricted to the immune system

B.3.2.1 Normal development and fertility of TECsmad4-/- mice

TECsmad4-/- mice were born with a Mendelian frequency, showed normal weight gain, had a 

normal life span (assayed up to 11 months) and were fertile, indicating that FoxN1-cre medi-

ated smad4 deficiency did not affect viability of embryos or postnatal mice (data not shown). 

However, as expected, TECsmad4-/- mice had increased hair loss and malformations of the 

nails (data not shown) compared to control littermates. 

B.3.2.2 Thymic hypoplasia in TECsmad4-/- mice

The thymic size was substantially reduced in TECsmad4-/- mice when compared to control 

littermates (Figure 14a). This difference, reflecting the total thymic cellularity, was observed 

as early as E18.5 and persisted throughout adulthood (Figure 14b). Both, females and males 

showed a comparable reduction to 10–20% of the cellularity of control littermates (data not 

shown). Both control and TECsmad4-/- mice showed a physiological increase in thymocyte cel-

lularity that peaked around 5-6 weeks of life (Figure 14b). There were, however, some sex 

specific differences in mice older than 6 weeks. Subsequently, thymic involution ensued in 

TECsmad4-/- as well as in control littermate mice. Changes in thymic cellularity of Smad4 de-

ficient animals paralleled the physiological growth and involution with regards to timing but 

not extent (Figure 14b).
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cre-

cre+

B.3.3 Validity of the experimental system

B.3.3.1 Genomic deletion of the conditional smad4 allele in thymic epithelial cells from 
TECsmad4-/- mice

To determine the efficiency of FoxN1-cre mediated recombination of the conditional 

smad4 locus in thymic epithelial cells of TECsmad4-/- mice, PCR amplification of genomic DNA 

extracted from TECs purified by FACS was performed (Figure 14B). Primers were flanking 

the two loxP sites amplifying a longer wildtype from the non-recombined (panel a) and a 

shorter DNA fragment from the recombined locus (panel b). TECs from TECsmad4-/- contain 

DNA with a mixture of recombined and non-recombined smad4 locus while control mice only 

display the non-recombined locus (panel c). Quantification of the deletion efficiency would 

be premature as this is a preliminary result.

Figure 14B
Efficiency of genomic deletion of exon 9 of the conditional smad4 gene
a+b) Schematic representation of the conditional smad4 locus. Exon 9 is flanked by loxP sites. 
Arrows indicate PCR primers used to determine the efficiency of cre-mediated removal of exon 
9.
c) Genomic DNA was extracted from purified thymic epithelial cells from TECsmad4-/- (lane1) 
and control mice (lane 2) and subsequently amplified by PCR using primers #3060 + #3061.

conditional   

deleted

1  2

loxP  exon 9   loxP

3060       3061

a      b    c

loxP

conditional smad4 locus recombined smad4 locus

3060    3061
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Figure 15
Influence of the conditional smad4 allele or the FoxN1-cre transgene on thymic or splenic 
cellularity
a) Effect of the FoxN1-cre transgene on thymic  and splenic cellularity in 3 weeks old cre- and 
cre+ mice. Both, cre- and cre+ mice were smad4wt/wt.
b) The presence of the loxP sites on one or both smad4 alleles in the absence of Cre does not af-
fect thymic or splenic cellularity in 3 weeks old female mice.
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B.3.3.2 Effect of the FoxN1-cre transgene and the conditional smad4 allele on thymic and 
splenic cellularity, thymocyte maturation and T cells

The FoxN1-cre transgene alone or the conditional smad4 allele alone did neither alter 

thymic nor splenic cellularity (Figure 15 a+b). In addition, the frequencies and absolute num-

bers of thymocytes and peripheral T cell subpopulations were independent of the presence 

of the conditional allele or the FoxN1-transgene (data not shown). 

B.3.3.3 Absence of a T cell intrinsic defect in TECsmad4-/- mice

To exclude the possibility that transgene integration or expression impact on thymocyte 

maturation, expansion and function, chimeras were generated by adoptive transfer of T cell 

depleted bone marrow (BM) from smad4loxP/loxP  or TECsmad4-/- donors into lethally irradiated 

wildtype recipients. Donor cells were congenic for CD45.2 while the recipient hematopoietic 

cells expressed CD45.1. At the time of analysis, 8 weeks after transplantation, donor chimer-

ism reached 93.0 +/- 1.6 % (data not shown).
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The capacity to reconstitute the lymphohematopoietic system was unaffected by the 

FoxN1-cre transgene as there was no difference of the total cellularity of the thymus (Figure 

16a) or spleen (Figure 17a) when comparing the two experimental groups. Specifically, thy-

mocyte maturation was equal in recipients of BM from both genotypes with identical absolute 

(data not shown) and relative numbers of DN, DP, CD4 SP and CD8 SP thymocytes (Figure 

16b). Late thymocyte maturation of CD4 SP and CD8 SP thymocytes was normal (Figure 

16c+d) in both groups.

x 
10

6 
ce

lls

Figure 16
Thymic cellularity and maturation of thymocytes is identical in recipients of bone marrow 
cells from cre- and cre+ donors excluding a thymocyte/T cell intrinsic defect.
Lethally irradiated recipient female mice were transplanted with bone marrow from either female 
cre- or cre+ donors. 8 weeks after transplantation, chimerism of hematopoietic cells was 93 +/- 
1.6 % of donor origin.
a) Thymic cellularity  is equal in recipients of cre- and cre+ donors
b) Relative and absolute numbers of DN, DP, CD4 SP and CD8 SP are comparable in hosts 
transplanted with cre- or cre+ donors.
c+d) Equal maturation of SP thymocytes in hosts transplanted with BM from cre- or cre+ donors.
ns = not significant
For both groups, BM cells from 3 donor females were prepared as described in materials & meth-
ods. Samples were prepared separately to inject 2 or 3 recipients with BM cells from the same 
donor, i.e. recipients received BM cells derived from independent mice rather than pooled BM.

a           b              c                  d

DN   DP  CD4  CD8

re
la

tiv
e 

ce
ll 

nu
m

be
r

re
la

tiv
e 

ce
ll 

nu
m

be
r

p=0.38

ns

ns

ns

ns

% CD24- CD4 SP 

cre-

cre+

BM donor
cre-       cre+

BM donor
cre-       cre+

Cellularity 
p=1.0

% CD24- CD8 SP 

BM donor
cre-       cre+

re
la

tiv
e 

ce
ll 

nu
m

be
r

Thymus 

p=0.73



64

In the periphery, both the relative and absolute numbers of CD4+ and CD8+ T cells in lymph 

nodes (LN) were interchangeable between hosts transplanted with BM from smad4loxP/loxP or 

TECsmad4-/- donors (Figure 17b). Furthermore, the frequency of CD4+ and CD8+ T cells with 

an activated/memory phenotype was indistinguishable in both experimental groups (Figure 

17c). CD4+CD25+ T cells were equally abundant in mice transplanted with control or 

TECsmad4-/- bone marrow (Figure 17d).

Taken together, these control experiments proved that neither of the genetic modifications 

alone affected thymocyte or T cell biology. Furthermore, the bone marrow chimeras ruled 

out that any observed phenotype in TECsmad4-/- mice was due to a thymocyte or T cell intrinsic 

defect.

Figure 17
Normal splenic cellularity, T cell number and T cell phenotype in the periphery of recipients of bone 
marrow cells from cre- or cre+ donors
Analysis of peripheral lyphoid organs of the same experiment as in Fig. 16 .
a) Identical splenic cellularity in hosts transplanted with cre- or cre+ donor BM.
b)  Comparable frequency of live (PI-) CD4+ (upper panel) and CD8+ (lower panel) T cells in lymph nodes of 
hosts transplanted with either donor genotype.
c) Similar frequency of CD4+ (upper panel) or CD8+ (lower panel) T cells with an activated/memory pheno-
type in recipients or cre- or cre+ donor BM.
d) Relative abundance of CD4+CD25+ T cells within live CD4+ T cells is equal in mice transplanted with 
cre- or cre+ donor BM.
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B.3.4 Thymic epithelial cell specific smad4 deficiency leads to subtle thymocyte 

developmental defects

B.3.4.1 Normal thymic stromal architecture in TECsmad4-/- mice

The overall architecture of the thymus with smad4-deficient TECs remained preserved 

with a clear demarcation of cortex and medulla. (Figure 18, panels a, b, d, e). Normal ex-

pression of CK 18, a marker for cortex and CK 5 and MTS-10, markers for the medulla (see 

also Figure 11) exemplified the regular differentiation of TECs in control and TECsmad4-/- mice. 

Finally, MTS-24+ cells, putative TEC precursor cells, could be detected in mice of both geno-

types.

Thus, histologically the thymic architecture and stromal composition appeared normal in 

TECsmad4-/- mice.

Figure 18
Thymic compartimentalization, architecture  and stromal composition of cre- (a-c) and 
cre+ (d-f) mice
a + d) HE staining
b + e) Immunohistochemistry for cytokeratin 18 (blue), cytokeratin 5 (red) and MTS24  (green)
c+ f) Immunohistochemistry for cytokeratin 5 (red) and MTS10 (green)

a               b               c

cre-

cre+

d               e               f
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B.3.4.2 Cellular composition of TECsmad4-/- thymi

FACS analysis of thymocyte subpopulations (Figure 19) revealed similar relative numbers 

of CD4-CD8- double negative (DN) and a minor reduction of double positive (DP) thymocytes 

in E 18.5 embryos (panels a-c) in TECsmad4-/- mice when compared to control littermates. As 

a consequence of the overall reduced thymic cellularity the total number of both, DN and DP 

thymocytes was significantly reduced in TECsmad4-/- E 18.5 embryos (panel d). Further subdi-

vision of the DN cells revealed equal relative and absolute numbers of DNI-DNIV in mice of 

both genotypes (panels e+f).

Similar results -including SP thymocytes that are not yet present in embryonic mice- were 

obtained in postnatal mice (panels g-m).

Apart from αβTCR thymocytes, B, NK and γδTCR lymphocytes could be found at normal 

frequencies (data not shown).

B.3.4.3 Minor maturational defect of CD4 and CD8 single positive thymocytes in TECsmad4-/- 

mice

Despite the regular relative number of SP thymocytes, it appeared that thymi from          

TECsmad4-/- mice contain less fully mature CD8+CD4- thymocytes. Therefore, CD4 expression 

levels were analyzed in CD8 SP to quantitate the relative number of CD8 SP thymocytes 

that have undergone complete downregulation of the coreceptor CD4 (Figure 20a+b). Mice 

lacking Smad4 in TECs had a reduced number of CD8+CD4- SP thymocytes (Figure 20b, 

lower panel). In analogy, CD4 SP thymocytes were analyzed for CD8 downregulation reveal-

ing a minor relative reduction in fully mature CD4 SP in TECsmad4-/-  mice compared to control 

littermates.

Next page: Figure 19

Thymocyte development in embryonic (E18.5, upper panel) and postnatal mice (lower panel).
* indicates p<0.05, ** indicates p<0.01, ns= not significant
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Figure 20
Maturational defect of CD8 
SP thymocytes in the absence 
of Smad4 in thymic epithelial 
cells. 
a) Relative numbers of CD8 
SP thymocytes are compa-
rable between cre- and cre+ 
mice. (Gated on thymocytes; 
Numbers in gates indicate the 
percentage of cells within that 
gate)
b) Reduced relative numbers 
of CD4SP with CD8- and CD8 
SP thymocytes with completely 
downregulated CD4 in cre+ 
animals (gated on CD8 SP).
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In order to study thymocyte maturation more in detail, expression of the cell surface mark-

ers CD24 and CD69 (see Figure 3) was determined. Both proteins are being used to char-

acterize thymocyte maturation although their functions are unknown [34, 157]. The relative 

number of CD24 low to negative (mature) cells among SP thymocytes was reduced in TECs-

mad4-/- mice compared to controls (Figure 21 a+b). CD69 surface expression increases stead-

ily during thymocyte development [158]. Gating on immature CD69int TCRβint thymocytes 

revealed a relative reduction of immature CD4 SP thymocytes (Figure 21c+d) in TECsmad4-/- 

mice when compared to control littermates. Taken together, these results suggested minor 

developmental defects or delays in mice with a thymic epithelial-specific Smad4 deficiency.

B.3.4.4 Regular usage of most TCR Vβ chains by single positive thymocytes in TECsmad4-/-

mice

To assess whether the observed maturational defects affected the TCR Vβ usage in 

TECsmad4-/- mice, a panel of antibodies directed against various TCR β chains was used to 

determine TCR Vβ diversity. The frequencies of Vβ3, Vβ4, Vβ5.1/5.2, Vβ6, Vβ7, Vβ8.1/8.2, 

Vβ9, Vβ10, Vβ11, Vβ12, Vβ13, Vβ14 and Vβ17a among the TCRs on SP thymocytes were 

compared between control and TECsmad4-/- mice. The sum of the relative usage of these Vβ 

genes covers 2/3 of all TCRs present on CD4 SP and 3/4 of all TCRs expressed by CD8 

SP thymocytes in the mixed genetic background studied. The relative usage of the various 

Vβ genes was interchangeable for most Vβ genes analyzed except for Vβ6 in CD4 SP and 

Vβ12 in CD8 SP thymocytes between TECsmad4-/- and control littermates (Figure 22).CD4 SP 
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Figure 21
Late thymocyte development in the absence of smad4 in thymic epithelial cells is altered. 
a) CD24- mature SP (both CD4 and CD8) thymocytes are reduced in cre+ animals compared to 
cre- littermates. Numbers indicate the percentage of thymocytes within that gate.
b) Frequency of mature CD4 SP and CD8 SP thymocytes devoid of CD24 expression, a marker 
for maturation among single positive thymocytes.
c) Analysis of thymocyte maturation as a function of CD69 and TCR β expression. CD69intTCR 
βint thymocytes contain a reduced relative number of immature CD4 SP thymocytes in cre+ mice.
d) Frequency of immature CD4 SP thymocytes as gated in panel c
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Figure 22
Equal frequencies of usage of the TCR Vβ chains of CD4 
SP and CD8 SP thymocytes in cre- and cre+ mice.
Gating is shown for the example of Vβ 8.1/8.2 (a+b).
* stands for p<0.05
Analysis of 6 week old male littermates. n=4 per genotype.
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thymocytes of TECsmad4-/-  mice had a small but statistically signifi cant relative decrease of 

Vβ6+ usage (panel c) while a statistically signifi cant larger proportion of CD8 SP used Vβ12 

in TECsmad4-/- mice when compared to control mice (panel d). Yet, overall, the maturational 

defect of thymocytes in TECsmad4-/- mice did not infl uence TCR Vβ diversity and usage. 
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B.3.4.4b Smad4 deficient thymic epithelial cells fail to respond to KGF

KGF induces proliferation of thymic epithelial cells and regulates the expression of mem-

bers of the TGF-β family of signaling molecules (Rossi et al., unpublished observation). To 

test whether Smad4 was involved in the effect of KGF on TEC proliferation, TECsmad4-/- mice 

and control littermates were injected i.p. with KGF (5mg/kg/mouse) or HBSS on 3 consecu-

tive days at the age of 6 weeks. The thymic cellularity was analyzed 14 days after the last 

injection. Control mice injected with KGF showed a significant increase in thymic size (Figure 

22B a) and cellularity (Figure 22B b) when compared to control mice injected with HBSS. In 

contrast, thymi with an epithelial Smad4-deficiency failed to significantly increase the mean 

cellularity in response to KGF. This result implied that Smad4-deficient TECs cannot prolifer-

ate in response to KGF.

Figure 22B
KGF-mediated effect on increased thymic cellularity is dependent on Smad4
Thymic size (panel a) and cellularity (panel b) of treated (KGF) and untreated (HBSS) cre- 
and cre+ 6 weeks old mice.
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Next page: Figure 24
Cre+ mice display chronic lymphopenia.
Relative frequency (panel a) and absolute numbers of T cells (panel b) in the spleen of cre+ mice are 
reduced by about 50% when compared to cre- littermates at 5-9 weeks of life. Differences in peripheral   
CD4+ T cells (panel c) or CD8+ T cells (panel d) remain at least up to 19 weeks after birth.
c+d) n = 4 or more per genotype and time point
* stands for p<0.05

cre-

cre+

Figure 23
Splenic cellularity in cre- and cre+ mice as a 
function of age
n ≥ 4 per group
ns = not statistically significant
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B.3.5 Thymic epithelial-specific smad4 deficiency significantly alters the peripheral 

T cell pool

B.3.5.1 Splenic cellularity and composition of lymphocytes in secondary lymphoid organs 
of TECsmad4-/- control mice

Splenic size and cellularity was comparable between mice with a TEC specific Smad4 

deficiency and control littermates over the entire course of observations of 3-18 weeks of 

age (Figure 23). However, the relative and absolute numbers of T cells were reduced in          

TECsmad4-/-  mice aged 5-9 weeks (Figure 24 a+b) in comparison to control mice. Both, CD4+ 

and CD8+ T cells were reduced at all time points examined, both in spleen (data not shown) 

as well as in lymph nodes (Figure 24 c+d). While lymphopenia was most pronounced in 

young TECsmad4-/- mice, aging incompletely corrected the reduced numbers of T cells. The 

CD8+ T cells were more reduced than CD4+ T cells.
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B.3.5.2 Increased frequency of T cells displaying an activated/memory phenotype in 
TECsmad4-/-  mice compared to control mice

T cell lymphopenia is known to be counteracted by lymphopenia induced proliferation 

(LIP) [103], a process leading to a change in the expression of cell surface molecules. To an-

alyze whether T cells in lymphopenic TECsmad4-/-  mice display signs of LIP, expression levels 

of CD44, CD62L and CD45RB were determined as marker molecules for activated/memory-

like T cells. Both, CD4+ and CD8+ T cells of TECsmad4-/-  animals displayed an almost two-fold 

relative increase of a CD44hiCD62Llo activated/memory-like phenotype when compared to 

control littermates (Figure 25A a+b). This phenotype could be observed from 3-19 weeks of 

age and was confirmed by assessing expression levels of CD45RB, another marker which 

is downregulated on activated/memory-like T cells. In concert with the elevated frequency of 

CD44hiCD62Llo T cells, the relative number of CD45RBlo T cells was increased in CD4+ and 

CD8+ T cells of TECsmad4-/- mice (data not shown). 
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Figure 25A
Increased frequency of peripheral T cells with a memory-like phenotype in cre+ mice when 
compared to cre- mice
The relative number of naive CD44loCD62LhiCD4+ (panel a, upper plots) and naive CD8+ (panel 
a, lower plots) T cells is reduced in cre+ compared to cre- mice while activated/memory-like 
CD44hiCD62Llo T cells, both, CD4+ and CD8+ are increased at 11 weeks of age. These differ-
ences can be observed from 3 weeks of age up to 19 weeks (panel b).
a) Numbers indiate percentage in each quadrant.
*  stands for p < 0.05, ** stands for p < 0.01 (see also comments in Materials & Methods)
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B.3.5.3 Possible mechanisms for the incomplete correction of T cell numbers in TECsmad4-/-  

mice

Lymphopenia and the observed increased frequency of T cells with a memory-like sur-

face phenotype suggested ongoing LIP in TECsmad4-/-  mice. However, the persistent reduction 

of T cells even in mice aged 19 weeks was unexpected as LIP can efficiently “fill-up” empty 

hosts [159]. Therefore, a number of hypotheses were formulated that explain mechanisms 

potentially accounting for the incomplete correction of T cell numbers in TECsmad4-/-  mice. 

1 Reduced thymic output

2 Absence of signals inducing lymphopenia induced proliferation in TECsmad4-/-  mice

3 A proliferation defect of T cells “imprinted” during development and selection in a   

 Smad4-deficient thymic environment

4 Increased anti-proliferative suppression by T
Reg 

cells

5 Inability to respond to homeostatic signals

6 Increased cell death of peripheral T cells in TECsmad4-/-  mice

The results of the experiments performed to verify these points are shown below. As a 

reminder, for each experiment the corresponding hypothesis will be displayed in grey.
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Table III

control 861 19.8 4348

control 300 16.7 1796

control 673 15.5 4356

control 365 15.2 2397

control 208 9.1 2286

control 202 8.6 2349

TECsmad4-/- 131 39.7 330

TECsmad4-/- 151 24.4 619

TECsmad4-/- 120 38.6 311

TECsmad4-/- 56 52.7 106

TECsmad4-/- 453 42.9 1056

Measured CD4+ 
FITC+ splenic T cells

Thymic labelling 
efficiency (%)

Corrected number of CD4+ 
splenic RTEs

Individual mice

cre-       cre+

To
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Figure 25B
Reduced thymic output in cre+ mice
FITC+ CD4+ T cells 17h after intrathymic FITC injec-
tion. Labelling efficiency of thymocytes was substantially 
different in cre- and cre+ mice as a consequnce of the 
size difference. Table III displays how the total number 
of CD4+ recent thymic emigrants (RTE) in spleen during 
17h was calculated. The total thymic output is significant-
ly reduced in cre+ mice compared to cre- littermates.

p=0.004

B.3.5.3.1 Hypothesis 1

TECsmad4-/- mice have a reduced thymic output

B.3.5.3. 1 TECsmad4-/-  mice have a reduced thymic output

The reduced thymic size in TECsmad4-/-  mice was indicative of a reduced thymic output. 

To quantitate the thymic T cell production rate, thymocytes were labeled by intrathymic FITC 

injection. Splenic recent thymic emigrants (RTE) were measured 17h post injection. As ex-

pected, significantly reduced numbers of RTEs were found in the spleens of TECsmad4-/-  mice 

when compared to the number of RTEs in control spleens (Figure 25B).
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Figure 26
Higher proliferation rate of adoptively trans-
ferred polyclonal T cells in cre+  than cre- hosts
6 days after adoptive transfer of CFSE labelled 
wildtype CD4+ (panel a) and CD8+ (panel b) T cells 
the cells transferred into cre+ hosts had proliferated 
more than those transferred into cre- hosts.
n=3 per group
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B.3.5.3.2 Hypothesis 2

Absence of signals inducing lymphopenia induced proliferation in TECsmad4-/-  mice

B.3.5.3.2.1 TECsmad4-/-  mice can provide homeostatic proliferation signals to adoptively 
transferred wildtype T cells

In order to test whether the signals for LIP were present in TECsmad4-/- mice or whether 

the lymphopenia could not be “sensed” by T cells, exogenously CFSE labeled wildtype T 

cells were adoptively transferred into TECsmad4-/- or control hosts. When a cell divides, the 

intensity of CFSE fluorescence decreases by about half and therefore provides an accurate 

count of the number of cell divisions achieved [160]. At day 6, CFSE+ T cells were analyzed 

in peripheral blood, allowing a discrimination into divided and undivided T cells. The relative 

number of undivided T cells was higher in control than in TECsmad4-/- hosts (data not shown). 

In contrast, CD4+ and CD8+ T cells showed a significantly higher percentage of proliferat-

ing T cells measured by CFSE dilution when injected into TECsmad4-/-  hosts than injected into 

control hosts (Figure 26 a+b). At day 10, a more detailed analysis could be performed since 

mice were sacrificed. Again, both, CD4+ and CD8+ T cells had undergone higher proliferation 

when transferred into TECsmad4-/- hosts than in control hosts (Figure 27). Significantly more 

CD4+ T cells had divided at least once when transferred into TECsmad4-/- than into control mice 

(panels a-c) and significantly more CD8+ T cells had divided up to three times in TECsmad4-/- 

hosts than in control hosts (panels d-f).
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Figure 27
Adoptively transferred CFSE labelled polyclonal CD4+ and CD8+ T cells proliferate more in  
cre+ than in cre- hosts
10 days after transfer, proliferation of donor T cells was analyzed. CD4+ CFSE+ cells (panel a) or CD8+ 
CFSE+ cells (panel d) were analyzed for CFSE fluorescence intensity (panels b + e). Statistical analysis of 
3 hosts per genotype revealed that both, CD4+ (panel c) and CD8+ (panel f) T cells proliferate more in cre+  
than in cre- hosts.
Numbers indicate percentages of cells that underwent one, two or three divisions.
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Figure 28
Adoptively transferred oligoclonal OT-I TCR transgenic CD8+ T cells proliferate more in cre+ than in 
cre- hosts
6 days after adoptive transfer, proliferation of  OT-I T cells was analyzed. TCR Vα2+ Vβ5+ (panel a) T cells 
were analyzed for CFSE fluorescence intensity (panel b). The statistical distribution of the divided OT-I T 
cells is shown in panel c.
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B.3.5.3.2.2 TECsmad4-/-  mice can provide homeostatic proliferation signals to adoptively 
transferred oligoclonal T cells

The same assay was performed with oligoclonal H-2b class I restricted TCR transgenic 

CD8+ OT-I T cells (Figure 28). Rag2-/- hosts served as a positive control for proliferation. 

Cells were gated on Vα2+Vβ5+ T cells that are chiefly OT-I TCR transgenic T cells (panel 

a). Six days after transfer, all OT-I T cells were proliferating in the Rag2-/- host (panel b). 

Substantially less T cells had proliferated in control and TECsmad4-/- hosts (panel b) indicating 

that the proliferation stimulus was weaker than in the Rag2-/- hosts. OT-I T cells transferred 

into TECsmad4-/- mice had, however, undergone significantly more divisions than OT-I T cells 

transferred into control hosts (Figure 28).

Taken together, the adoptive transfer experiments with polyclonal and oligoclonal T cells 

clearly demonstrated that TECsmad4-/- can provide lymphopenia induced proliferation signals. 

Moreover, the signals inducing LIP showed a dose response curve. A decreasing prolifera-

tion stimulus can be assumed in the completely empty Rag2-/-, the lymphopenic TECsmad4-/- 

and the normopenic smad4loxP/loxP control host. Thus, hypothesis 2 can be rejected.
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Figure 29
Purified CD4+ T cells from cre- and cre+ mice proliferate equally well in vitro
a) In vitro proliferation of purified naive CD45RBhiCD4+ T cells (a) and purified memory CD45RBloCD4+ 
T cells (b) stimulated with anti-CD3 in vitro. T cells were cocultered with equal numbers of irradiated (3000 
rad) splenocytes from a female Rag2-/- donor for costimulation.
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B.3.5.3.3 Hypothesis 3

T cells from TECsmad4-/- mice have a proliferation defect “imprinted” during development and 
selection in a Smad4-deficient thymic environment

B.3.5.3.3 Regular in vitro proliferation of purified T cells from TECsmad4-/- and control mice 

To test the proliferation capacity of T cells that had matured in a Smad4-deficient thymic 

microenvironment, naïve (Figure 29, panel a) or memory (panel b) CD4+ T cells from con-

trol and TECsmad4-/- mice were purified and stimulated in vitro with anti-CD3 and anti-CD28 

antibodies. T cells from mice with both genotypes proliferated equally well showing a peak 

proliferation in both populations at 1 µg/ml anti-CD3 and subsequently decreased prolifera-

tion at higher concentrations, possibly due to activation induced cell death. Based on these 

results hypothesis 3 was rejected.

B.3.5.3.4 Hypothesis 4

TReg cells prevent lymphopenia induced proliferation

B.3.5.3.4.1 Increased frequency of CD4+CD25+ T cells in TECsmad4-/- compared to control 
mice

To test whether increased numbers of T
Reg

 cells prevented lymphopenia induced pro-

liferation in TECsmad4-/- mice, the frequency of CD4+CD25+ splenic T cells was determined. 

The relative number of CD4+CD25+ T cells was significantly increased in TECsmad4-/- mice 
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(Figure 30 a). Despite the relative increase, the total number of CD4+CD25+ T cells was 

reduced in TECsmad4-/- mice in comparison to control mice (panel b). In parallel to the relative 

increase of T cells with an activated/memory phenotype in TECsmad4-/- mice, relative numbers 

of CD4+CD25+ T cells were increased in mice aged 3-19 weeks (panel c) when compared to 

control mice. Next, relative and absolute numbers of CD4+CD25+ T cells were determined in 

thymi from TECsmad4-/- and control mice to test whether the relative increase observed in the 

periphery might be a consequence of increased thymic production. Comparable relative and 

decreased total numbers of CD4+CD25+ T cells among the two groups argued against this 

possibility (panels d+e).

Figure 30
Cre+ mice have increased relative but decreased absolute numbers of peripheral 
CD4+CD25+ T cells when compared to cre- mice while thymic production is reduced pro-
portionally to the cellularity
Relative numbers of CD4+CD25+ T cells in spleen of cre+ mice are substantially increased 
(panel a) when compared to cre- mice. However, absolute numbers of CD4+CD25+ T cells are 
reduced in cre+ T lymphopenic mice compared to cre- mice (panel b). The relative increase of 
CD4+CD25+ T cells in the periphery is detectable from week 3 on and persists up to 19 weeks 
(not analyzed later).
Analysis of thymic CD4+CD25+ T cells revealed equal relative numbers in cre+ compared to 
cre- mice (panel d). Due to the overall reduced thymic cellularity, the absolute number is reduced 
substantially though (panel e).
* stands for p<0.05, ** stands for p<0.01; The Mann-Whitney test was used for all statistical analy-
sis exept for panel c, 4 weeks, where an unpaired student t-test was used.
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Figure 31
CD4+CD25+ TReg cells from cre+ mice exhibit increased suppression of naive T cells com-
pared to cre- control cells
a+b) In vitro suppression of naive CD4+ T cells from cre- (panel a) and cre+ (panel b) mice cocul-
tured with sorted CD4+CD25+ T cells.
Cre- cells were purified from pooled lymph nodes from six 5-8 weeks old females. Cre+ cells were 
FACS purified cells from pooled lymph nodes from seven 5-9 weeks old females.
* stands for p<0.05
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B.3.5.3.4.2 Increased in vitro suppressive capacity of CD4+CD25+ T cells from TECsmad4-/- 

compared to control mice

CD4+CD25+ T cells contain T cells with regulatory function that can suppress LIP. How-

ever, CD25, the IL-2Rα chain, is a surface molecule that is not only expressed on T
REG

 cells 

but also on antigen-activated T cells. Furthermore, CD25 can be upregulated during LIP. 

Antigen-induced upregulation was unlikely since the mice were kept under spf conditions. 

Therefore, to discriminate between relatively increased numbers of CD4+CD25+ T cells as 

a consequence of homeostatic expansion (without regulatory activity) on one hand and in-

creased numbers of T
Reg

 cells with suppressive capacity on the other hand, in vitro suppres-

sion assays were performed. Naïve (CD45RBhi) CD4+ T cells were purified by FACS omit-

ting anti-TCR antibodies to avoid TCR stimulation. Naïve T cells were mixed with irradiated 

Rag2-/- splenocytes to activate the T cells. Titrations of purified CD4+CD25+ T cells were then 

added at ratios indicated in Figure 31a+b. CD4+CD25+ T cells purified from TECsmad4-/- exert-

ed a higher suppressive activity than their counterparts isolated from control mice. At a ratio 

of one CD4+CD25+ T cells to 16 naïve T cells, T
REG

s from TECsmad4-/- mice still suppressed 

proliferation by 25% while T
REG

s from control mice did not contain any regulatory activity at 

this ratio any more. The increased suppressive capacity was independent of whether naïve 

T cells were from TECsmad4-/- or control mice.
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Figure 32
Increased total number of CD4+CD25+CD103+ T cells in TECsmad4-/- mice

Cre+ animals contain a higher relative (panel a+b) and absolute (panel c+d) number of  splenic 
CD4+CD25+CD103+T cells in spleen (a-d) and lymph nodes (data not shown).

B.3.5.3.4.3 Relative increase of CD103+ cells among CD4+CD25+TCRhi T cells in    
TECsmad4-/- mice

The increased in vitro suppressive capacity of CD4+CD25+ T cells from TECsmad4-/- compared 

to CD4+CD25+ T cells from wildtype mice could be a consequence of a cell autonomously in-

creased capacity to suppress, or, alternatively, could result from an increased frequency of T 

cells with suppressive potential within the heterogenous population of CD4+CD25+ T cells. To 

address this point, the relative number of CD103+ cells among CD4+CD25- and CD4+CD25+ 

T cells from TECsmad4-/- or control mice was examined. Both, CD25- and CD25+ CD4+ T 

cells contained elevated frequencies of CD103+ T cells in TECsmad4-/- mice when compared 

to control littermates (Figure 32 a+b). The increase was strong enough that        TECsmad4-/- 

mice contained equal numbers of CD4+CD25-CD103+ T cells as wildtype mice despite the 

pronounced lymphopenia (panel c). The relative increase of CD4+CD25+CD103+ T cells was 

even so marked that the absolute number of CD4+CD25+CD103+ T cells in TECsmad4-/- mice 

was higher than in control littermates despite the lymphopenia (panel d). Thymic produc-

tion of CD4+CD25-CD103+ and CD4+CD25+CD103+ needs to be addressed in future experi-

ments, as preliminary data suggested that relative numbers of CD4+CD103+ T cells were at 

least equal in TECsmad4-/- and control mice (data not shown).
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Figure 32B
Enhanced in vitro suppression capacity of CD4+CD25+CD103+T cells in TECsmad4-/- mice

In vitro suppression of naive CD4 T cells cocultured with purified CD4+CD25+CD103- (panel a) or  
CD4+CD25+CD103+ (b) T cells.
Suppressor cells were purified from pooled lymph nodes from six (cre-) or seven (cre+) 5-9 weeks 
old females.
* stands for p<0.05; naive = naive T cells only
The experiment was performed once in quadruplicates.
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B.3.5.3.4.4 Increased in vitro suppression of naïve CD4+ T cells by CD4+CD25+CD103+ T 
cells from TECsmad4-/- mice

In order to verify if the in vitro observed increased suppressive capacity of CD4+CD25+ T 

cells from TECsmad4-/- mice compared to CD4+CD25+ T cells from wildtype mice (see section 

B.3.5.3.4.2) was indeed a direct consequence of the relative increase of CD4+CD25+CD103+ T 

cells that possess a known inherently higher suppressive capacity than CD4+CD25+CD103- T 

cells [161], in vitro suppression assays were performed with purified CD4+CD25+CD103- and 

CD4+CD25+CD103+ T cells. Comparing equal numbers of suppressor cells from TECsmad4-/- 

and control donors, both, the CD4+CD25+CD103- (Figure 32 panel e) and CD4+CD25+CD103+ 

(panel f) purified from TECsmad4-/- mice were more potent to suppress proliferation of T cells 

in vitro.

In summary, TECsmad4-/- mice contained a higher frequency of CD4+CD25+ T cells and 

these cells were as a whole population more suppressive than their counterparts from 

control mice. This can be explained by an increased frequency and absolute number of 

CD4+CD25+CD103+ T cells that had as a population again a higher suppressive potential 

than their counterparts from wildtype control mice. Therefore it is possible that LIP is coun-

terbalanced by T
Reg

s in TECsmad4-/- mice.
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B.3.5.3.5 Hypothesis 5

Inability to respond to homeostatic signals

B.3.5.3.5 Purified T cells from TECsmad4-/- mice proliferate at least equally well as control T 
cells in lymphopenic hosts

The experiments performed thus far demonstrated clearly that the lymphopenia in           

TECsmad4-/- mice could be sensed by transferred T cells. Furthermore, T cells from 

TECsmad4-/- mice could proliferate equally well as T cells from control mice when stimulated 

with anti-CD3 antibody in vitro. To test whether T cells from TECsmad4-/- mice could sense lym-

phopenia, T cells were purified from TECsmad4-/- and control mice, mixed at a 1:1 ratio, labeled 

with CFSE and then transferred into Rag2-/- hosts. Five days after transfer, both, CD4+ and 

CD8+ T cells from TECsmad4-/- mice had proliferated at least equally well as their counterparts 

from control mice (preliminary results, data not shown). Thus, in a competitive situation in 

vivo, T cells from TECsmad4-/- mice were able to respond to lymphopenia with quantitatively 

normal proliferation. Therefore, failure of T cells from TECsmad4-/- mice to sense and respond 

to lymphopenia cannot be accounted for the lymphopenia.

B.3.5.3.5 Hypothesis 6

Increased cell death of peripheral T cells in TECsmad4-/-  mice

In order to answer point 6, naïve and regulatory T cells from control and TECsmad4-/- will be 

purified and subsequently be transferred into control, TECsmad4-/- or Rag2-/- hosts, respectively 

(see discussion). 

B.3.5.4 Abnormal Vβ usage in peripheral T cells from TECsmad4-/- mice

Despite the statistically significant difference for Vβ6 usage in CD4 SP and Vβ12 in CD8 

SP thymocytes, the biologic relevance remained questionable (see B.3.4.4). Clonal T cell 

expansion (CTE) is a phenomenon observed in aged mice [162]. It was hypothesized that 

the small change of Vβ usage by thymocytes could accumulate in aged mice. Therefore, the 

frequency of Vβ6 and Vβ12 usage in peripheral blood T lymphocytes of mice aged 9 months 

was measured. Aged TECsmad4-/- mice did indeed show an altered Vβ usage (Figure 33) 

when compared to control mice. While CD4+ T cells had equal frequencies of Vβ6 and Vβ12 

in control and TECsmad4-/- animals (panel a), CD8+ T cells from TECsmad4-/- animals showed 

increased usage of Vβ6 and Vβ12 in comparison to control mice (panel b). Thus, the altered 

thymic output in TECsmad4-/- mice might indeed affect TCR Vβ usage or, alternatively, T cell 
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Figure 33
Aging cre+ mice contain CD8+ T cells with shifted TCR Vβ usage when compared to cre- 
littermates
Analysis of theTCR Vβ usage by peripheral CD4+ (a) and CD8+ (b) T cells from 9 months old cre- and cre+ 
mice.
n= 3 per genotype for Vβ6 and n=4 per genotype for Vβ12
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clones bearing TCRs with Vβ6 and Vβ12 could have a growth or survival advantage over T 

cells using other TCR Vβ in mice with chronic lymphopenia.

B.3.5.5 Regular effector functions of T cells of TECsmad4-/- mice

B.3.5.5.1 Normal ability of T cells of TECsmad4-/- mice to provide B cell help

Immunization with Nitroiodophenol (NIP) conjugated to Ovalbumin (OVA) induces a strong 

T-dependent B cell response. To test B cell help in TECsmad4-/- animals, mice were immunized 

intraperitonally with Alum precipitated NIP-OVA and boosted on day 17. Serum was col-

lected on days –1, +5, +12 and +23 after immunization. The increase of the NIP-specific 

IgG titer of TECsmad4-/-  mice paralleled the response observed in control littermates implying 

that T cells from TECsmad4-/-  mice can provide regular B cell help for immunoglobulin isotype 

switch (Figure 34a).
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Figure 34
Normal effector functions of T cell from TECsmad4-/- mice
 anti-NIP IgG in cre- and cre+ mice (a). Equal colitis induction induces comparable weight loss in cre- and 
cre+ mice.
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B.3.5.5.2 Colitis induction by transfer of naïve CD4+CD45RBhi T cells into a lymphopenic 
host

Adoptive transfer of purified naïve (CD45RBhi) CD4+ T cells into lymphopenic hosts in-

duces colitis [163]. In order to test effector functions of CD4+ T cells from TECsmad4-/- ani-

mals, purified naïve CD4+ T cells from control and TECsmad4-/- donors were injected i.v. into        

Rag2-/-. Diarrhea incidence and weight loss of hosts injected with T cells from both donors 

were identical (Figure 34 b). 

B.3.5.5.3 MHC mismatched skin is equally rejected by T cells from control and TECsmad4-/- 

mice

Skin patches from female Balb/c (H-2d) donors were transplanted onto control or                

TECsmad4-/- recipients. Graft rejection was similar for both groups (data not shown).

Taken together, T cells from TECsmad4-/- mice displayed normal effector functions when 

compared to T cells from control mice.
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Discussion

Part A Aire

The autoimmune regulator (aire) gene is important for central tolerance induction by ena-

bling thymic epithelial cells to display a wide array of self-antigens to developing thymocytes 

[76, 77, 79, 164-166]. This mechanism allows tolerance induction towards self-antigens with 

a restricted expression pattern. It is not clear, however, whether aire plays additional roles in 

antigen processing and/or presentation. In order to have a tool to genetically manipulate in 

vivo the rare population of mTECs that express Aire, a mouse, designated aire-cre, was gen-

erated that expresses the Cre recombinase under the transcriptional control of aire (Figure 

6). This strategy should allow to activate or inactivate genes specifically in aire expressing 

cells. Crossing aire-cre mice to mice harboring a conditional transgene allows to specifi-

cally express the transgene in aire expressing cells. Thus, surrogate self-antigens could be 

expressed exclusively in aire expressing mTECs enabling to investigate the role of aire ex-

pressing cells in tolerance induction.

A.4.1 Generation of mice expressing the Cre recombinase under the transcriptional 

control of the aire promoter

To allow Cre expression in aire expressing cells, a gene targeting construct was cloned 

such that the transcriptional start codon ATG of the cre cDNA replaced the endogenous 

exon1 of the aire gene (see A.3.1.1). The final targeting construct yielded a very high tar-

geting efficiency (see A.3.1.4). The reasons for this finding remained elusive. It could be 

speculated that the aire locus was well accessible since aire transcripts were expressed 

in ES cells (data not shown). Correctly targeted ES clones were used to generate aire-cre 

mice (see A.3.1.4 – A.3.1.7). The neomycine resistance gene cassette was removed in vivo 

since the latter can influence the gene expression of the introduced transgene [150, 167, 

168]. Unwanted effects include additional, potentially toxic transcripts, aberrant alternative 

splicing, “gene knockdown” of neighboring genes and aberrant or premature expression of 

the transgene [167, 168]. 
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A.4.2 Spontaneous infiltration of peripheral organs in aire-cre mice

Aire deficient mice develop spontaneous multiorgan autoimmune lymphocytic infiltration 

[78, 79, 169]. Since multipe aire splice variants have been described [136], it was unpredict-

able whether the targeting strategy to generate aire-cre mice would inactivate the aire gene 

or, alternatively lead to alternative splicing leaving some aire gene activity intact. To investi-

gate whether aire-cre mice exhibit a similar phenotype as other aire-deficient mice, select-

ed organs were examined histologically. Indeed, aireCN/CN and aireCNDF/CNDF mice developed 

spontaneous organ infiltration (Figure 10). Unlike other reports [78, 79], sections from some 

aireCN/wt heterozygous mice revealed lymphocytic infiltration as well. This finding might be ex-

plained by the different targeting strategy used. Reports in humans [170, 171] and mice [73] 

support the finding that heterozygous individuals can exhibit subclinical autoaggression.

Based on these results it was concluded that aire-cre mice can serve as a model to 

investigate the human autoimmune polyendocrinopathy candidiasis ectodermal dystrophy 

(APECED) syndrome.

 

A.4.3 Characterization of Cre expression in aire-cre gene targeted mice

Aire-cre mice were generated not only to serve as a model to investigate Aire - deficiency 

but rather to have a genetic tool that allows to address more sophisticated questions with 

regards to the function of Aire. Protein domains suggested that Aire may act as a transcrip-

tion factor [81, 172]. Furthermore, nuclear localization [142, 173], binding to the common 

transcriptional co-activator CREB [145] and transcriptional transactivator functions [145] 

supported the view that Aire may act as a transcription factor. It therefore did not come as 

a surprise that Aire regulates ectopic gene expression [79]. The regulation of ectopic gene 

expression, however, may not be the only role of Aire. This hypothesis is supported by a 

report that Aire acts as an E3 ubiquitin ligase [174] suggesting that Aire might be involved in 

antigen processing.

To test this hypothesis, a transgene acting as a surrogate self-antigen needs to be ex-

pressed in Aire expressing cells in the presence or absence of Aire. This could be achieved 

crossing hetero- or homozygous aire-cre mice to conditional transgenic mice. Thus, the 

transgene would be activated through Cre-mediated recombination in Aire expressing cells 

while Aire would only be present in heterozygous but not homozygous mice. To verify if 

aire-cre mice can be used to specifically regulate genes in mTECs, the Cre expression 

pattern in thymi of aire-cre mice was studied in relation to Aire (Figure 11). In adult mice, 

Aire was absent in aireCNDF/CNDF homozygous mice, indicating that the gene targeting indeed 
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abolished protein production. Cre was exclusively expressed in heterozygous aireCNDF/wt and 

homozygous aireCNDF/CNDF mice but not in wildtype mice, demonstrating specificity of the Cre 

signal. Cre expression was restricted to cells in the medulla, a pattern observed for Aire ex-

pression in wildtype mice [15, 16]. As expected, most Aire+ cells were also Cre+. However, 

rare cells were either only positive for Aire, or, alternatively, Cre alone. Assuming that Aire 

and Cre have different half-lives, this result indicated that Aire was not constantly expressed. 

This hypothesis is supported by a number of findings: Aire expression is dependent on 

regular thymocyte maturation [16, 175] and it is known to be induced by triggering the lym-

photoxin β receptor (LT-β R) on mTECs [18, 19]. The observation that only 1-5% of mTECs 

express Aire raises the question how thymocytes can be rendered tolerant to ectopically 

expressed genes by such a rare population of mTECs [74, 86]. The possibility that thymo-

cytes meander randomly through the medulla and randomly encounter Aire expressing cells 

appears unlikely. A recent study described random migration of thymocytes in the thymic 

cortex but rapid, directed migration after positive selection toward the medulla [176]. This 

study is underscored by the finding that CCR7 is required for the migration from the cortex to 

the medulla [177-179]. It was proposed that the rare population of Aire expressing cells was 

sufficient to induce tolerance, as ectopic antigens are crosspresented by thymic professional 

APCs, suggesting that Aire+ mTECs act as a reservoir of ectopic antigens that spread to 

BM-derived APCs and thus amplify the distribution and presentation of ectopic genes [86]. 

Alternatively, it can be speculated that Aire expressing mTECs might attract immature SP 

thymocytes to expose them to ectopic antigens. This hypothesis is supported by the finding 

that rare mTECs express CCL22 in a pattern reminiscent of Aire expressing cells and that 

CCL22 attracts CD4+CD8lo thymocytes [180, 181]. Furthermore, several chemokines are 

regulated by Aire [182] and analysis of raw data from microarrays from Ref [79]. Collectively, 

it is possible that mTECs attract thymocytes that subsequently induce or perpetuate Aire ex-

pression. This would result in undulating Aire expression among mTECs which could explain 

that Aire or Cre were expressed in some mTECs alone.

A 4.3.2 LacZ reporter mice suggest Cre expression in aire-cre mice prior to the thymus 
formation

Knowing that Cre is specifically expressed in adult thymi of aire-cre mice, enzymatic Cre 

activity was studied by crossing aire-cre mice to ROSA26 lacZ indicator mice (see Materials 

& Methods). In contrast to the specific expression of Cre when assessed by direct staining 

of the protein, lacZ positive cells appeared in many more cells than what would be expected 

from Aire immunohistochemistry (Figure 12). Moreover, lacZ+ cells could be detected in the 
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thymic cortex, a site where Aire expression has not been reported with the exception of one 

survey [164]. Cre mediated recombination of loxP sites is an irreversible event [183]. There-

fore, the increased number of lacZ+ TECs when compared with direct Aire staining could be 

explained by the accumulation of recombination in mTECs if Aire was indeed induced in rare 

mTECs. Alternatively, this finding could be the consequence of recombination in a common 

precursor of cortical and medullary TECs secondary to physiologic Aire expression prior to 

thymus formation or aberrant cre transgene expression. Several investigators have reported 

aberrant expression of transgenes [150, 184, 185]. The potential influence of the neomycine 

resistance cassette on Cre expression was already discussed (A.4.1) but could be excluded 

as aire-cre mice without neomycine resistance cassette crossed to lacZ indicator mice dis-

played the same number of lacZ+ cells in their thymi. A spontaneous mutation in ES cells 

leading to aberrant Cre expression [186] was unlikely as two independent aire-cre mouse 

lines yielded the same result when crossed to lacZ indicator mice. The genetic background 

has also been reported to influence Cre expression [187]. At present, influence of the ge-

netic background on Cre expression cannot be excluded as the aire-cre mice used were 

backcrossed for less than four generations. To analyze whether β-galactosidase activity was 

restricted to thymic cells, non-lymphoid tissues were analyzed in [aire-cre x ROSA26lacZ] 

mice for lacZ. Extensive lacZ staining was found in several organs. As a whole, it was con-

cluded that the most likely explanation for the unexpectedly high number of lacZ+ cells in 

thymi from [aire-cre x ROSA26lacZ] mice was secondary to Cre activity in a precursor of 

TECs.

A.4.3.3 Widespread Aire expression in multiple lymphoid and non-lymphoid organs

The physiologic Aire expression pattern remains at present highly controversial. Aire was 

reported to be mainly expressed in lymphoid tissues [16], while other investigators found 

extensive aire mRNA expression in multiple non-lymphoid organs [136, 141]. One research 

paper reported that the Aire protein could not be found outside the thymus while by nested 

RT-PCR aire transcripts were found in several non-lymphoid organs [17]. In order to investi-

gate the physiologic expression of aire outside the immune system and to dissect the contra-

dicting results from the analysis of Cre expression using immunohistochemistry and lacZ re-

porter mice, RT-PCR was used to determine aire mRNA expression in multiple organs. Aire 

mRNA was found in almost all organs that were examined (Table I). It is possible that Aire is 

expressed in most cells of the body at low levels therefore escaping capture by techniques 

with low sensitivity. The highly sensitive RT-PCR could, however, explain the widespread 

expression of β-galactosidase activity found in [aireCNDF/wt x ROSA26 lacZ] mice. It remains 
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to be kept in mind though, that Aire is expressed in DCs that are present in many organs and 

could account for signals detected by RT-PCR.

A.4.3.4 Proof of Cre activity during mouse embryonic development

Two reasons remained that could have explained the unexpected lacZ findings. First, Aire 

and thus Cre expression prior to the thymus formation and second, low level ubiquitous Aire 

expression. Independent of the physiological expression pattern of Aire, the first scenario 

would exclude the use of aire-cre mice to induce transgene expression specifically and 

uniquely in Aire expressing mTECs since irreversible recombination in a precursor to thymic 

epithelial cells would result in ubiquitous recombination in all TECs. Therefore, [aireCNDF/wt 

x ROSA26 lacZ] mice were analyzed for lacZ expression during embryonic development. 

LacZ expression could clearly be demonstrated as early as E7.5 (Figure 13). Remarkably, 

E7.5 embryos were only partially blue, indicating that recombination had occurred in differ-

entiated cells rather than omnipotent cells of the inner cell mass of the blastocyst. This find-

ing implied that Aire plays a role during embryonic development. Indeed, APECED patients 

[82] and aire-deficient mice have a reduced fertility [78] which has been attributed to sterility 

secondary to autoimmune destruction of reproductive organs. Yet, an additional embryonic 

defect in Aire-deficient individuals contributing to reduced fertility cannot be formally ex-

cluded at present.

A.4.3.5 Alternative strategies to achieve transgene expression in Aire expressing mTECs

As transgene expression cannot be expressed specifically in Aire expressing mTECs 

when crossing Aire-cre mice to conditionally transgenic mice despite the highly specific Cre 

expression in adult mice, alternative strategies enabling the study of Aire expressing cells 

to induce tolerance were worked out. 1) Aire-cre targeted mice where Cre can be induced 

after physiological aire expression has been turned on in mTECs (i.e. approximately E 14.5) 

should allow to achieve the aim that was initially formulated. However, the obvious drawback 

would be another substantial effort of time to generate such mice. Moreover, inducible Cre 

expression can be inefficient, resulting in mosaic recombination [188]. 2) Alternatively, thymi 

from aire-cre mice could be isolated after E14 when a regular Cre expression pattern has 

been achieved in order to subsequently transduce the cells with a conditional transgene of 

interest, e.g. by the means of lentiviral transduction. Thymi could then be transplanted under 

the kidney capsule of host mice. The obvious drawback of this solution would be the exten-

sive in vitro manipulation. On the other hand, such a system would be much more flexible 
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than crossing mice to conditional transgenic mice therefore allowing to vary the surrogate 

antigen considerably.

Part B Smad4

B.4 Effects of thymic epithelial-specific smad4 deficiency on thymopoiesis and 

peripheral T lymphocytes

B.4.1 Deciphering thymic expression of mRNA transcripts of the TGF-β family of 

signaling transduction molecules

Fgf, Tgf-β, Wnt and Hh signaling are evolutionary conserved signal transduction path-

ways involved in many aspects of organ development (see Figure 1). The family of TGF-β 

signaling molecules (TGF-β, Bmp and Activins) are critical for the development of epithelial 

organs [45]. TGF-β signaling is required for thymocyte development [43], however, very 

little is known about the necessity of TGF-β signals for thymic epithelial cell development 

[189]. It was hypothesized that the biochemical intracellular signals triggered by TGF-β, Bmp 

and Activins contribute to thymic development and/or maintenance. To test this contention, 

the expression of several members of the TGF-β family in whole thymus preparations and 

thymic epithelial cell lines was analyzed. The abundance of mRNA transcripts for extra-

cellular morphogens of the extended TGF-β family, their receptors and intracellular signal 

transduction molecules in unseparated thymus as well as TEC lines of cortical and medullary 

origin (table II) suggested a role for TGF-β signaling in TECs. Since Bmp2, Bmp4 and Nog-

gin are secreted, these molecules might be produced by the stroma and act in a paracrine 

fashion on thymocytes. To discriminate between expression by stromal and lymphoid cells, 

the mRNA expression was tested in thymic epithelial cell lines (Table II, panel b) as well 

as sorted thymocyte subpopulations (Table II, panel c). Cortical and medullary TEC lines 

expressed transcripts for receptors and intracellular signal transduction molecules belong-

ing to the canonical signal transduction pathway of the Tgf-β family of signaling molecules. 

This suggested that Tgf-β signaling was involved in the development and/or maintenance 

of TECs. The presence of smad5 transcripts implied that Bmp signaling was involved while 

the presence of smad3 hinted at a role for Tgf-β signaling as Smad5 belongs to Bmp-as-

sociated receptor-smads while Smad3 transmits signals induced by TGF-β [190]. Interest-
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ingly, thymocyte subpopulations did neither express bmp2 nor bmp4. Furthermore, none of 

the receptors analyzed could be found (Table II, panel c). Thus it appeared that Bmps were 

majorily synthesized by TECs acting in a para- and autocrine manner on TECs. In addition, 

since some receptors were expressed by thymocytes as well, Bmps secreted by TECs might 

act on distinct thymocyte developmental stages. Since end-point RT-PCR was used in these 

analyses, a quantitative assessment of the expression levels could not be drawn from these 

results. In particular, a comparative analysis and interpretation of this data was obviously 

limited by the differences in the number of thymic stromal cells relative to thymocytes as the 

latter increases substantially during development. Independent of this shortcoming, these re-

sults demonstrated that signals transmitted by Tgf-β family members are likely to be required 

for proper TEC development and/or function.

To study the function of Tgf-β signaling in thymic epithelial cell development in vivo, it 

was decided to block the canonical pathway triggered by Tgf-β or members of the extended 

Tgf-β family of signaling molecules.This is best achieved by removing the central co-Smad 

molecule, Smad4, which is needed for the activation of the canonical signaling pathway by 

Tgf-β, Bmp and Activin (see Figure 1). Since mice rendered deficient for Smad4 die at E 7.5 

[191], i.e. before the development of a thymus anlage, it was decided to conditionally ablate 

smad4 specifically in thymic epithelial cells using the cre/loxP system [183]. For this purpose, 

FoxN1-cre transgenic mice (Zuklys et al., unpublished) were crossed with mice harboring 

a conditional smad4 allele [148]. Since FoxN1 is chiefly expressed in TECs and skin [192, 

193], Cre mediated inactivation of smad4 in double transgenic mice will be achieved prefer-

entially in TECs and keratinocytes while in cells with silent FoxN1, including thymocytes and 

T cells, a functional smad4 conditional allele remains active (Figure 4). 

B.4.2.1 Normal development and fertility of TECsmad4-/- mice

In contrast to mice with a complete lack of smad4, viability is not affected in TECsmad4-/-  or 

control mice (data not shown). Mice of both genotypes are born with a Mendelian frequency, 

show normal weight gain, have a regular life span (assayed up to 11 months) and are fertile 

(data not shown). These results indicate that FoxN1-cre mediated smad4 ablation is suited 

to investigate in vivo the role of smad4 in TEC development in the absence of unwanted sys-

temic effects. As FoxN1 is expressed in keratinocytes, TECsmad4-/-  mice have increased hair 

loss and malformations of the nails revealing that Smad4 is involved in normal hair and nail 

development and/or maintenance (data not shown).
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B.4.2.2 Thymic hypoplasia in TECsmad4-/- mice

Thymic epithelial-specific smad4 deficiency leads to substantial thymic hypoplasia (Figure 

14). Comparative analysis of thymic cellularity at all ages examined revealed that thymocyte 

cellularity was dramatically reduced in TECsmad4-/-  animals when compared to control mice. It 

appeared that smad4 deficient TECs could support thymic growth to physiologic stimuli, but 

that the increase of cellularity was hampered by the absence of Smad4. This was reflected 

in the growth curve that paralleled the change in thymic cellularity of control mice (Figure 14, 

panel b). The extent of the increase in thymic cellularity was, however, strongly reduced in 

TECsmad4-/- mice. This could be due to a reduced proliferative capacity of TECs or a conse-

quence of increased cell death of smad4 deficient TECs. Alternatively, reduced thymic cel-

lularity might be due to secondary effects on thymocyte differentiation and/or survival. As the 

data presented in this thesis do not allow to discriminate between these possibilities, further 

experiments are needed in the future.

B.4.3 Validity of the experimental system

B.4.3.1 Genomic deletion of the conditional smad4 allele in thymic epithelial cells from 
TECsmad4-/- mice 

Cre/loxP mediated gene deletion can be limited -among other factors- by a chromatin 

configuration inaccessible for recombination [194]. Therefore, monitoring the efficiency of 

deletion in any particular combination of a Cre transgene with a conditional allele is critical 

in order to draw sound conclusions from an observed phenotype. RT-PCR based estimation 

of genomic deletion efficiency was used on purified TECs from TECsmad4-/-  and wildtype mice 

(Figure 14B). The wildtype band was detected in TECs from both, control and TECsmad4-/- 

mice indicating incomplete recombination (Figure 14B, panel c). The recombined allele could 

only be detected in TECs from TECsmad4-/- mice but not in TECs from control mice demon-

strating the specificity of gene deletion. In comparison to the wildtype band, the deleted band 

in TECs from TECsmad4-/- mice appeared weak. A direct quantitative comparison between the 

intensities of both bands would need to be based on equal efficiencies of PCR amplifica-

tions of both products, an assumption that cannot be taken for granted. Furthermore, the 

pronounced difference in total thymic cellularity between TECsmad4-/- and control thymi needs 

to be taken into consideration. As discussed (B.4.2.2), it cannot be assumed that thymi from 

control and TECsmad4-/- mice contain the same number of TECs. If Smad4 is required for 

proliferation of TECs, TECs having escaped recombination might overgrow the TECs with 

deleted smad4. Thus, differential proliferation of Smad4-wildtype and Smad4-deficient TECs 
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within TECsmad4-/-  thymi could account for the weak amplification signal of the recombined 

locus. Alternatively, Smad4 may be required for survival of TECs. In that case, TECs without 

Cre-mediated recombination would survive while successful recombination would immedi-

ately lead to cell death and elimination of the whole cell including the recombined genomic 

DNA fragment. This would lead to traces of recombined DNA that can be amplified by PCR. 

Furthermore, it is not established whether there are TECs that do not express FoxN1 and 

whether TECs with different FoxN1 expression levels exist. Thus, again an alternative expla-

nation of the stronger PCR amplification signal from the unrecombined allele compared to 

the signal from the recombined allele would be that TECs expressing FoxN1 have a prolif-

eration and/or survival disadvantage as a consequence of the Smad4 deficiency while their 

counterparts with a silent foxN1 gene are unaffected by the smad4 mutation resulting in a 

relative overrepresentation of unrecombined genomic DNA when assessed by end point 

PCR. The obvious discrepancy between the dramatic effect of smad4 deletion on thymic 

cellularity in TECsmad4-/- mice and the surprisingly weak signal of the recombined smad4 locus 

needs further investigation since functional conclusions depend on this knowledge. Smad4 

transcripts will be quantitated in comparison to cre and foxN1 transcripts to test the hypoth-

esis that only TECs with a silent foxN1 gene survive in TECsmad4-/-  mice.

B.4.3.2 Effect of the conditional smad4 allele and the FoxN1-cre transgene alone on thymic 
and splenic cellularity, thymocyte maturation and T cells

Since a dramatic change of the thymic cellularity in mice lacking smad4 in thymic epithe-

lial cells was observed, a set of experiments to exclude changes unspecific to the Smad4 

deficiency in TECs was performed, i.e. side effects caused by the genetic manipulations ap-

plied to the smad4 locus were investigated. Furthermore, any unwanted effects caused by 

the FoxN1-cre transgene or its integration into the genome were excluded.

The thymic and splenic cellularities of animals of smad4 wildtype mice either transgenic 

for FoxN1-cre or not were identical (Figure 15, panel a), excluding that the FoxN1-cre trans-

gene itself accounts for the reduced thymic cellularity. To test whether the conditional smad4 

allele by itself had an effect on thymic or splenic cellularity, mice that were either wildtype for 

smad4 or hetero- or homozygous for the smad4 conditional allele were investigated (Figure 

15, panel b). No differences could be observed comparing the thymic or splenic cellularity 

of these three genetically different mice. Particularly, in any of these experiments relative 

and absolute numbers of CD4+ and CD8+ T cells in spleen were normal. Thus, the genetic 

manipulations required to generate mice that allow TEC specific Smad4 ablation do on their 

own not influence thymic function.
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B.4.3.3 Absence of a T cell intrinsic defect in TECsmad4-/- mice

To exclude an unphysiological, cell-autonomous effect on hematopoietic cells, bone mar-

row chimeras with donor bone marrow (BM) derived from TECsmad4-/- mice were generated. 

As expected from the prevalent view that foxN1 expression is restricted to thymic epithelial 

cells and keratinocytes, the FoxN1-cre transgene did not influence the development of thy-

mocytes or T cells intrinsically (Figures 16 + 17). However, a recent report described a role 

of FoxN1 in bone marrow [195]. The authors conclude that foxn1 does not only play a role 

in the differentiation of TECs but is also important prior to thymic colonization. They suggest 

that foxN1 deficient (nude) mice have a defect in bone marrow stromal cells that affects early 

prethymic progenitor development. The results of the control bone marrow chimeras per-

formed showed that this defect was not influencing our system. Taken together, the control 

experiments demonstrated that any observed phenotype in TECsmad4-/- was a consequence 

of the absence of Smad4 in thymic epithelial cells.

B.4.4 Thymic epithelial cell-specific smad4 deficiency leads to subtle thymocyte 

developmental defects 

B.4.4.1 Normal thymic stromal architecture in TECsmad4-/- mice

The normal histology of the TECsmad4-/- thymus with a clear distinction into cortex and me-

dulla indicated that the morphological differentiation of the two compartments was independ-

ent of smad4 (Figure 18). This finding is further corroborated by the regular expression pat-

tern of cytokeratin 18 as a marker for differentiated cTECs and cytokeratin 5 and MTS-10 as 

markers for differentiated mTECs. Since the formation of a medulla is a relatively late event 

and depends on the formations of αβ TCRhi SP thymocytes, it appears that the canonical 

Tgf-β signaling pathway is dispensable for the major differentiation steps of thymic epithelial 

cells. 

B.4.4.2 Cellular composition of TECsmad4-/- thymi

To analyze whether the reduced thymic cellularity was due to a block in thymocyte de-

velopment, embryonic and postnatal thymocyte maturation was examined in TECsmad4-/-  and 

control littermates (Figure 19). Overall, the proportions of thymocytes were interchangeable 

between control and TECsmad4-/-  mice. Thus, the reduced thymic cellularity is not due to a 

thymocyte developmental block.
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B.4.4.3 Minor maturational defect of CD4 and CD8 single positive thymocytes in TECsmad4-/- 

mice

The relative number of CD8 SP thymocytes was normal in control and TECsmad4-/-  mice. 

Further subdivision of CD8 SP thymocytes into CD8hiCD4int and CD8hiCD4- cells revealed, 

however, that TECsmad4-/-  mice had reduced numbers of CD8 SP with a completely down-

regulated CD4 coreceptor (Figure 20). Lineage commitment to the CD4 or CD8 T cell line-

age is generally thought to occur at the DP stage and to result in silencing of the opposite 

coreceptor gene [196]. The “strength of signal” model proposes that strong/long TCR signals 

promote the CD4 lineage and weaker/shorter signals favor the CD8 T cell lineage [197]. A 

variation of this model is termed “kinetic signaling model”. According to this model, all DP 

thymocytes sensing a TCR signal proceed to a CD4+CD8lo stage. At this stage, sustained 

TCR signals lead to CD4 T cell commitment, but CD8 T cell commitment results if TCR sig-

nals cease [197]. The relative reduction of mature CD8 SP thymocytes could have resulted 

from a partial lack of TEC-mediated signals necessary for the complete downregulation of 

CD4 on the surface of CD8 SP thymocytes. Alternatively, the dramatic reduction of thymic 

size in TECsmad4-/-  mice might account for a reduced intrathymic maturation time leading to in-

complete downregulation of the CD4 coreceptor molecule despite the presence of all signals 

required for complete thymocyte development. If this were the case, then thymocyte matura-

tion in a wildtype fetal thymus lobe transplanted heterotopically under the kidney capsule of a 

syngenic host should result in reduced numbers of CD8 SP with a complete downregulation 

of the CD4 coreceptor.

The defect in thymocyte development in TECsmad4-/-  mice was confirmed using two other 

cell surface markers used to characterize thymocyte development. CD24 (aka as HSA) is 

highly expressed on DN and DP thymocytes and subsequently downregulated during matu-

ration [198-200]. The biological role of CD24 remains to be determined as CD24 deficient 

mice do not have any overt thymocyte maturational phenotype. CD69 is a member of the NK 

gene complex family of C-type lectin-like signaling receptors that is upregulated after posi-

tive selection (see Figure 3); as for CD24, the function of CD69 in thymocyte development is 

presently unknown although a recent report proposes a role for CD69 in thymocyte export 

[157].

Analysis of CD24 expression on SP thymocytes in TECsmad4-/-  animals confirmed a late 

developmental defect in CD8 SP thymocytes and, in addition, revealed a reduction of mature 

CD4 SP thymocytes (Figure21, panels a+b). For CD8 SP thymocytes, this is in concert with 

the observation of a reduced frequency of CD8+CD4- SP mature thymocytes in TECsmad4-/-  
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thymi. On the other hand, a comparable difference was not observed among CD4 SP thymo-

cytes where a complete downregulation of CD8 occured during the transition to full maturity 

in TECsmad4-/-  thymi.  Surprisingly however, the reduction of mature CD8 SP thymocytes could 

not be found by the analysis of CD69 expression (data not shown). 

Taken together, the deficiency of Smad4 in thymic epithelial cells leads to minor changes 

in the maturation of SP thymocytes. The functional relevance of the maturational delays or 

defects remain to be tested though.

B.4.4.4 Regular usage of most TCR Vβ chains by single positive thymocytes in TECsmad4-/-

mice

The absolute reduction of mature SP thymocytes may be a consequence of a proportional 

reduction of all developing thymocytes (Figure 19). Alternatively, this finding might reflect a 

selective loss of thymocyte clones bearing specific Vβ TCR chains that are less frequently 

positively selected or preferentially deleted in a thymic microenvironment of smad4 deficient 

TECs. This would ultimately lead to a shift in Vβ usage.

A selective increase of usage of a defined Vβ chain can substantially impair the overall 

immune response to particular antigens [201]. In aged mice, individual Vβ chains can be 

detected at increased frequencies, a phenomenon called age-related T cell clonal expansion 

(TCE) [202]. Chronic infections and homeostatic proliferation might contribute to TCE and 

thus disturb the balance of Vβ usage [108]. TCE occurs in the periphery and their onset can 

be accelerated by decreased thymic output and/or function [202]. Therefore, the Vβ usage 

in mice with smad4 deficient TECs was analyzed in SP thymocytes. 

The frequencies of usage of almost all Vβ chains studied was comparable among            

TECsmad4-/-  and control animals (Figure 22). Although the usage of two Vβ chains had statis-

tically significant differences, the small changes were unlikely of biological relevance. Vβ6 

was underrepresented by 9% in CD4SP thymocytes of TECsmad4-/-  mice compared to control 

littermates while Vβ12 was used 21% more frequently by CD8 SP of TECsmad4-/-  mice when 

compared to CD8 SP of control mice. Yet, chronic thymic output of T cells bearing TCRs with 

a slightly shifted frequency of Vβ usage might result in the accumulation of certain Vβ spe-

cificities in the periphery over time and enhance TCE. Therefore the Vβ usage of peripheral 

T cells in aged mice was analyzed (see below).

B.4.4.4b Smad4 deficient thymic epithelial cells fail to respond to KGF

Thymic epithelial cells but not thymocytes express FGFR2IIIB, the receptor for FGF7 (aka 

KGF) [42]. Exposure of young and aged mice to KGF increases thymic size while main-
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taining the regular structure and composition of the thymic microenvironment [203]. These 

beneficial features can be used in mouse models of experimental graft-versus-host disease 

to preseve thymic function [204]. Therefore, it is important to elucidate the molecular mecha-

nism by which KGF acts on TECs in order to improve and fine-tune existing experimental 

treatments.

The expression of members of the TGF-β family of signaling molecules in TECs is regu-

lated by KGF (Rossi et al., manuscript in preparation). In order to test whether Smad4 is 

involved in the observed effect of KGF, mice that were either deficient for the expression 

of Smad4 in TECs or that were wildtype were injected with KGF and HBSS, respectively. 

Control mice injected with KGF showed a 60% increase in thymic cellularity while thymi with 

an epithelial specific Smad4 deficiency did not significantly increase their cellularity. These 

results suggested that Smad4 is involved in the effect of KGF on thymic growth.

B.4.5 Thymic epithelial-specific smad4 deficiency significantly alters the peripheral 

T cell pool

B.4.5.1 Splenic cellularity and composition of lymphocytes in secondary lymphoid organs 
of TECsmad4-/- control mice

As thymic epithelial-specific smad4 deficiency dramatically reduced the thymic cellularity 

but had surprisingly little effects on thymocyte maturation, the question emerged whether 

TECsmad4-/-  thymi had an impact on the function of peripheral T cells.

As expected, TECsmad4-/-  mice had a normal splenic cellularity at any time point so far ana-

lyzed (Figure 23). However, the relative and thus, the absolute number of CD4+ and CD8+ T 

cells was strongly reduced when compared to control littermates. This T cell lymphopenia 

was most pronounced in young mice but remained present at least up to 19 weeks.

B.4.5.2 Increased frequency of T cells displaying an activated/memory phenotype in 
TECsmad4-/-  mice compared to control mice

In light of the persistent lymphopenia in TECsmad4-/- mice in combination with a presumably 

reduced thymic output it could be assumed that peripheral T cells in TECsmad4-/-  mice under-

went lymphopenia induced proliferation and thus exhibited a memory-like phenotype. In-

deed, T cells in TECsmad4-/-  mice had a 1.5-2 fold relative increase in activated/memory(-like) 

T cells, both for the CD4+ and CD8+ subset (Figure 25). The most likely mechanism leading 

to this phenotype is the chronic lymphopenia by inducing LIP. 
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B.4.5.3 Possible mechanisms for the incomplete correction of T cell numbers in TECsmad4-/-  

mice

The chronic lymphopenia was unexpected as lymphopenia physiologically leads to lym-

phopenia induced proliferation (LIP) formerly termed homeostatic expansion [103, 159, 205, 

206]. The term homeostatic proliferation for the description of the phenomenon of lymphope-

nia induced T cell proliferation is, however, somewhat uncorrect, as the naïve T cell pool is 

not really replenished but the T cell cellularity is corrected by the expansion of memory-like 

T cells [103, 117]. In TECsmad4-/-  mice the extent of lymphopenia was gradually reduced over 

time (Figure 24 c+d), suggesting that some of the mechanisms to maintain normal levels 

of T cells were operational in mice deficient for Smad4 expression in TECs. The following 

mechanisms, mutually not all exclusive, might contribute to the chronic lymphopenia:

1 Reduced thymic output

2 Absence of homeostatic signals in the periphery

3 A proliferation defect of T cells “imprinted” during development and selection in a       

 Smad4-deficient thymic environment

4 Increased anti-proliferative suppression by T
REG

 cells

5 Inability to respond to homeostatic signals

6 Increased cell death of peripheral T cells in TECsmad4-/-  mice

The results of experiments to address these points are discussed below. As a reminder, 

for each experiment the corresponding hypothesis will be displayed in grey.
 
B.4.5.3.1 Hypothesis 1

TECsmad4-/- mice have a reduced thymic output

B.4.5.3.1 TECsmad4-/-  mice have a reduced thymic output

It is conceivable that the reduced thymic size of TECsmad4-/-  mice results in a decreased 

thymic T cell production. The size differences led to variable FITC labeling efficiencies be-

tween control and TECsmad4-/-  thymi. Therefore, the number of measured RTE in spleen was 

corrected for the relative labeling efficiency (Figure 25B). Not surprisingly, the total number 

of CD4+ recent thymic emigrants was significantly reduced in TECsmad4-/-  mice when com-

pared to the total number of CD4+ RTEs in spleens of control mice. Hence, it was concluded 

that hypothesis 1 was correct and that reduced thymic output was likely to contribute to the 

lymphopenia in TECsmad4-/-  mice.
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B.4.5.3.2 Hypothesis 2

Absence of signals inducing lymphopenia induced proliferation in TECsmad4-/-  mice

B.4.5.3.2 TECsmad4-/-  mice can provide homeostatic proliferation signals to adoptively 
transferred T cells

A possible explanation for the persistence of lymphopenia in TECsmad4-/-  mice could be an 

inadequacy in sensing a limited degree of lymphopenia. Threshold values necessary for LIP 

have not been determined and most studies focusing on LIP have been carried out by the 

transfer of purified T cells into mice genetically rendered devoid of T cells. In consequence, 

T cells enter niches that are completely empty. Alternatively, if the recipient mice were de-

pleted of T cells, additional confounding difficulties to such experimental models have to be 

taken into consideration. For example, radiation induced cell damage alters tissues locally 

and leads to changes in the cytokine milieu [207-209] which do not represent the situation 

during steady state conditions. TECsmad4-/-  mice are different for the reason that T cells are 

not in a completely empty environment, i.e. other lymphoid cells and cytokines are present 

and they are constantly exposed to this milieu. One may speculate that such a situation may 

lead to a phenomenon of adaptation. For example, the relative contribution to LIP by TCR 

and IL-7 mediated signals is not fixed and depends on the degree of lymphopenia [210], thus 

there must be as yet unknown feedback signals between the degree of lymphopenia and the 

two identified signals required for LIP. Since the observed lymphopenia in TECsmad4-/-  mice 

is a result of a genetic defect restricted to thymic epithelial cells (and cells of the epidermis), 

it is justified to assume that peripheral tissue damage and its consequences do not play a 

role here. An alternative explanation for the persistent lymphopenia in TECsmad4-/-  mice could 

be given by a mechanism whereby the periphery of these mice fails to provide the signals 

necessary for LIP. To test this contention directly in vivo, CFSE labeled wildtype CD4+ or 

CD8+ T cells that had matured in a wildtype thymus were transferred into either control or 

TECsmad4-/-  mice hosts. In the event that wildtype T cells could sense the state of lymphopenia 

in TECsmad4-/-  recipients, the transferred T cells should display a higher proliferation rate when 

compared to T cells transferred into control hosts. Indeed, T cells transferred into lympho-

penic TECsmad4-/- hosts proliferated more than in control hosts (Figures 26+27). Interestingly, 

the relative difference of proliferating cells was higher for CD8+ than for CD4+ T cells. This 

might reflect the somewhat stronger thymocyte developmental defect of CD8 SP thymocytes 

leading to a stonger and more persistent lymphopenia for CD8+ than CD4+ T cells (see Fig-

ure 24). 
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These observations were extended with CD8+ OT-I T cells which express a transgen-

ic TCR that is MHC class I restricted. As for wildtype cells, OT-I T cells transferred into         

TECsmad4-/-  recipients proliferated more vigorously than OT-I T cells transferred into control 

mice, confirming that the lymphopenia in TECsmad4-/-  recipients can be sensed. Moreover, 

adoptive transfer of OT-I T cells into Rag-/- hosts provided an estimate of the extent of LIP in 

TECsmad4-/- in comparison to completely empty host (Figure 28).

It was concluded that the degree of lymphopenia present in TECsmad4-/- mice could be 

sensed by T cells that had developed in a regular thymic microenvironment. Thus, the sig-

nals for LIP were present in TECsmad4-/- mice. This finding disproves hypothesis B.3.5.3.2 but 

provides an explanation of the increased frequency of T cells with a memory-like phenotype 

in TECsmad4-/- mice. It is remarkable that a genetic defect affecting exclusively thymic epithelial 

cells has such a profound effect on T cell biology in the periphery. The observation that a 

TEC-specific defect beyond selection results in an altered T cell response is unique.

B.4.5.3.3 Hypothesis 3

T cells from TECsmad4-/- mice have a proliferation defect “imprinted” during development and 
selection in a Smad4-deficient thymic environment

B.4.5.3.3 Regular in vitro proliferation of purified T cells from TECsmad4-/- and control mice

The lymphopenia observed in TECsmad4-/- animals could have been secondary to a T cell 

intrinsic proliferation defect imprinted during the development in a smad4-deficient thymic 

microenvironment. Therefore, naïve (CD45RBhi) or memory (CD45RBlow) T cells, respec-

tively, were purified from TECsmad4-/- and control animals and analyzed for their proliferative 

capacity in vitro. Both, naïve and memory-like CD4+ T cells from TECsmad4-/- mice were able 

to proliferate in vitro in a manner that is equal compared to that of control T cells. This result 

clearly refuted a gross defect in the capacity of TECsmad4-/- T cells to proliferate. However, 

more subtle deficiencies could not be excluded as the in vitro stimulation with anti-CD3 anti-

bodies constitutes a very strong and unphysiologic stimulus.
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B.4.5.3.4 Hypothesis 4

TReg  cells prevent lymphopenia induced proliferation

B.4.5.3.4.1 Increased frequency of CD4+CD25+ T cells in TECsmad4-/- compared to control 
mice

CD25 is upregulated during activation and some reports describe CD25 upregulation dur-

ing LIP [103] while others state that the lack of CD25 is characteristic of LIP [103, 114, 115]. 

Further controversy arises from the observation that CD4+CD25- T cells gained CD25 ex-

pression while CD4+CD25+ T cells lost CD25 expression while undergoing LIP [211]. There-

fore, the frequencies of CD4+CD25+ splenic T cells could not be predicted in TECsmad4-/-. A 

relative but not absolute increase in CD4+CD25+ T cells was found in TECsmad4-/- mice that 

might have been accounted for by LIP (Figure 30). Alternatively, these cells may have cor-

responded to the naturally occurring CD4+CD25+ T
Reg

 cells [97]. The relative abundance of 

CD4+CD25+ T cells in TECsmad4-/- mice was observed at any age tested. Despite the relative 

increase, in absolute numbers, the CD4+CD25+ population was decreased compared to con-

trol littermates. It could have been that the lineage of naturally arising T
Reg

 cells and non-T
Reg

 

αβTCR T cell lineages have differential survival capacities leading to a higher proportion of 

CD4+CD25+ in TECsmad4-/- mice. Alternatively, thymic production of naturally occurring T
Reg

 

cells could have been relatively increased in TECsmad4-/- mice. The frequency of CD4+CD25+ 

thymocytes was, however, normal in thymi from TECsmad4-/- mice, hence the absolute number 

was reduced, excluding the possibility of an increased thymic production of naturally occur-

ring T
REG

 cells (Figure 30). A last explanation might be differential homeostatic regulation of 

the naïve CD4+ and the naturally occurring T
Reg 

cell pools [159]. It appears that activated T 

cells contribute indirectly to their own regulation by providing IL-2 that CD4+CD25+ T cells 

require for survival [212] and function [159]. It was reported that maintenance of the ratio 

between naïve and T
Reg 

cell numbers is important to control T cell numbers and that this 

ratio remained constant independent of the absolute number of peripheral T cells [159]. The 

finding of an overrepresentation of T
Reg 

cell numbers in relation to naïve T cells illustrates, 

however, that this negative feedback loop is only unidirectionally operational, i.e. naïve T cell 

numbers are controlled by T
Reg 

cells but not vice versa.
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B.4.5.3.4.2 Increased in vitro suppressive capacity of CD4+CD25+ T cells from TECsmad4-/- 

compared to control mice 

To test whether the CD4+CD25+ T cells in TECsmad4-/- mice were naturally occurring sup-

pressor cells or non-suppressive T cells displaying upregulated CD25, in vitro suppression 

assays were performed. Using this approach, purified CD4+CD25+ T cells from TECsmad4-

/- mice displayed, on a population basis, a suppressive capacity that was even more pro-

nounced than the one of T cells of the identical phenotype isolated from control mice (Figure 

31). This finding could have been brought about by either a T cell intrinsic enhancement of 

the suppressive ability of CD4+CD25+ T cells from TECsmad4-/- mice or, alternatively, by an 

increased frequency of T cells with suppressor function within the population of CD4+CD25+ 

T cells. The first assumption is in concert with the finding that CD4+CD25+ T cells that under-

went homeostatic proliferation have increased suppressive capacity [211]. 

B.4.5.3.4.3 Relative increase of CD103+ cells among CD4+CD25+TCRhi T cells in    
TECsmad4-/- mice

It is the prevalent view that the population of CD4+CD25+ T cells contains cells that exert 

a suppressive function. However, the combination of these two markers or any other cell 

surface molecules is not exclusively specific for T
REG

 cells [97]. Independent of this lack 

of a diagnostic cell surface marker for T
REG

 cells, several studies have described T cell 

subpopulations with regulatory functions [161, 213-217]. Among the many candidate mark-

ers described, CD103 appeared promising to further subdivide CD4+CD25+ T cells with a 

suppressive function [161]. Analysis of CD103 expression on CD4+CD25+ peripheral T cells 

revealed a substantial relative and absolute increase of CD103+ T cells among peripheral T 

cells of TECsmad4-/- mice when compared to control littermates (Figure 32). This result fitted 

well with the observation of increased in vitro suppression by the CD4+CD25+ T cells of TEC-
smad4-/- mice and would argue that on a per cell basis CD4+CD25+CD103+ T cells from control 

and TECsmad4-/- mice exhibit the same suppressive activity.

The thymic production CD4+CD25+CD103+ T cells needs to be determined as CD103 

has been implicated in thymocyte development [218]. Moreover, peripheral production of 

CD4+CD25+CD103+ T
 
cells needs to be determined since T

REG 
cells can also be induced 

in the periphery [219-221]. Furthermore, to determine whether the relative increase of 

CD4+CD25+CD103+ T cells in TECsmad4-/- mice is a consequence of T cell redistribution rather 

than increased production, the relative distribution of CD4+CD25+CD103+ T cells in vari-

ous LN, i.e. cervical, axillary, inguinal and mesenteric needs to be compared in control and   

TECsmad4-/- mice. Since CD4+CD25+CD103+ are enriched in gut-associated lymphoid tissue 
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[222], it could be speculated that CD4+CD25+CD103+ T cells are recruited to non-gut-associ-

ated tissues in TECsmad4-/- mice.

B.4.5.3.4.4 Increased in vitro suppression of naïve CD4+ T cells by CD4+CD25+CD103+ T 
cells from TECsmad4-/- mice 

To test this conclusion formally, CD4+CD25+CD103+ T cells were purified from TECsmad4-

/- mice and control littermates and tested in vitro for their suppressive activity. Contrary to 

expectations, CD4+CD25+CD103+ T cells from TECsmad4-/- mice displayed a stronger sup-

pressive activity when compared to cells with an identical phenotype purified from control 

mice. While these results do not provide unequivocal evidence that the suppressive activity 

is increased in the population of CD4+CD25+CD103+ T cells of TECsmad4-/- mice on a per cell 

basis, these findings fail to rule out such an explanation. Alternatively, these results could 

also be explained by an absolute increase of “real” T
Reg

 cells among the subpopulation of 

CD4+CD25+CD103+ T cells. To assess unequivocally the frequency and absolute number of 

a specific subpopulation of suppressor T cells in TECsmad4-/- mice, the expression of FoxP3 

among the subpopulations described will be necessary. FoxP3 is at present the only intracel-

lular marker that defines suppressor T cells [96, 97]. Furthermore, the number of peripheral 

T cells seems to be influenced by the amount of the FoxP3 protein in peripheral T cells as 

transgenic FoxP3 overexpression resulted in lymphopenia [223].

Collectively, TECsmad4-/- mice contained elevated numbers of T cells with increased sup-

pressive activity. The increased suppressive potential of CD4+CD25+CD103+ T cells in TEC-
smad4-/- mice when compared to the T cells of the same phenotype from control mice can be 

estimated at about 8-fold as there were 4-fold more CD4+CD25+CD103+ T cells in relation to 

non-regulatory T cells than normal and on a per cell basis this population exerted about 2-

fold higher suppressive activity. As CD4+CD25+ regulate LIP [224-226], T
Reg

 cells could limit 

LIP in TECsmad4-/- mice preventing a correction of the lymphopenia. These findings support 

hypothesis 4.
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B.4.5.3.5 Hypothesis 5

Inability to respond to homeostatic signals

B.4.5.3.5 Purified T cells from TECsmad4-/- mice proliferate at least equally well as control T 
cells in lymphopenic hosts

A puzzling question remained to be answered and that is why do naïve T cells upon adop-

tive transfer proliferate in both, control and TECsmad4-/- hosts but the endogenous T cells fail 

to do so? If the quantitative and qualitative differences of T
Reg

 cells in TECsmad4-/- were suf-

ficient to explain the lymphopenia, it would be expected that adoptively transferred wildtype 

T cells would also be prevented from undergoing proliferation, which was obviously not the 

case (Figures 26-28). T cells in TECsmad4-/- mice fulfill the known molecular requirements for 

LIP, since they expressed normal levels (data not shown) of functional TCR (Figure 29) and 

normal cell surface concentrations of the IL-7 receptor α chain (CD127) (data not shown). 

It could be speculated, however, that T cells from TECsmad4-/- mice fail to sense signals for 

LIP, since these require low affinity peptide-MHC-TCR interactions which cannot be tested 

with anti-CD3 stimulation in vitro. For this reason, an in vivo proliferation assay was per-

formed to compare the proliferative capacity of CD4+ and CD8+ T cells from control and                     

TECsmad4-/- animals, respectively, by direct competition in a lymphopenic host. When trans-

ferred into Rag2-/- hosts, naïve T cells from TECsmad4-/- donors underwent LIP at least equally 

well as T cells from control donors (data not shown). This result clearly demonstrated, that 

T cells from TECsmad4-/- mice were able to sense lymphopenia and were able to proliferate in 

vivo. Thus, hypothesis 5 was refuted.

This finding left, however, the question unanswered, why T cells from TECsmad4-/- were 

able to proliferate in a lymphopenic host but failed to do so in TECsmad4-/- mice. It could be 

speculated that the discrepancy was a consequence of the applied experimental approach. 

In TECsmad4-/- mice, naïve and CD4+CD25+CD103+ T cells are in a steady-state. Possibly, 

naïve T cells in TECsmad4-/- mice are in physical contact with and thus controlled by T
Reg

 cells. 

Therefore, adoptively transferred T cells might escape this suppressive effect since they are 

injected intravenously where direct suppression by T
Reg

 cells is less likely to occur while other 

signals such as potentially increased IL-7 levels should be present, leading to the initiation of 

LIP. Such an assumption is supported by the finding that the maintenance of relative propor-

tions of naïve to T
Reg 

cells is important to control peripheral T cell numbers [159]. To test this 

hypothesis, naïve T cells from TECsmad4-/- mice need to be isolated for subsequent adoptive 

transfer into control and back into TECsmad4-/-  mice. If LIP is prevented by suppressive T cells 

in TECsmad4-/- mice in a steady-state situation, it can be expected that purified naïve T cells 
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from TECsmad4-/-  transferred back into TECsmad4-/-  hosts will proliferate.

B.4.5.3.6 Hypothesis 6

Increased cell death of peripheral T cells in TECsmad4-/- mice

Reduced survival of naïve T cells that have matured in a TECsmad4-/- thymic microenvi-

ronment could contribute to the state of lymphopenia. The relative increase of regulatory T 

cells would imply that CD4+CD25+ T cells are less and CD4+CD25+CD103+ T cells are not 

dependent on survival signals imprinted by Smad4-deficient TECs. As initially discussed 

(see B.4.3.1), due to the discrepancy of the profoundly reduced thymic cellularity and the 

low ratio of recombined to unrecombined Smad4 in TECsmad4-/- thymi, it could be speculated 

that TECsmad4-/- thymi are enriched for TECs with a silent foxn1 gene. This might explain the 

increased frequency of T
Reg

 to naïve T cells if FoxN1 expressing TECs imprint naïve but not 

T
REG

 T cells for survival before their thymic exit. To address this point, in vivo survival of naïve 

and regulatory T cells purified from control and TECsmad4-/- mice will need to be compared. 

These experiments will have to be carried out in control, TECsmad4-/- and Rag2-/- hosts to test 

whether the number of T cells influences the survival of the transferred T cells.

B.4.5.4 Abnormal Vβ usage in peripheral T cells from TECsmad4-/- mice

As discussed (see B.4.4.4) the small difference of Vβ6 usage by the TCRs of CD4 SP and 

Vβ12 usage by the TCRs of CD8 SP thymocytes of TECsmad4-/- mice could have accumulated 

in aged mice. Indeed, Vβ12 was overrepresented in TCRs of CD8+ T cells of TECsmad4-/- mice 

aged nine months when compared to control mice (Figure 33). Low thymic output results in 

a shifted Vβ usage by peripheral T cells [227]. Furthermore, mild lymphopenia leads to the 

establishment of an oligoclonal T cell repertoire [228] since only about 10% of all TCR spe-

cificities proliferate during LIP [159]. It is likely, that the shift of Vβ12 usage by TCRs of CD8+ 

T cells was a consequence of the shifted and low thymic output and the persistent lymphope-

nia. Interestingly, TCE in aged mice occurs only in CD8+ but not in CD4+ T cells [202]. Thus, 

if the usage of other Vβ chains is as well changed in aged TECsmad4-/- mice when compared 

to control mice, TECsmad4-/- mice could constitute a model for premature thymic aging.

B.4.5.5 Regular effector functions of T cells of TECsmad4-/- mice

Thymocyte maturation was grossly normal in TECsmad4-/- mice while the peripheral T cell 

pool was significantly affected. To further assess the peripheral T cells, the effector functions 

of T cells of TECsmad4-/- mice were characterized by testing 1) the ability to provide T cell help 
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to B cells, 2) by assaying the capacity to induce colitis in an adoptive transfer model and 3) 

by investigating the ability to reject H-2 mismatched skin transplants.

T cells from TECsmad4-/- were able to provide B cell help for immunoglobulin class switch 

as efficiently as T cells from control mice. Furthermore, disease in the colitis model was as 

efficiently induced by T cells from TECsmad4-/- as by T cells from control mice. This finding sug-

gested that T cells from TECsmad4-/- were able to home to the gut and to efficiently exert effec-

tor functions in the colon. Finally, T cells from TECsmad4-/- were able to reject H-2 mismatched 

skin with the same efficiency as control T cells.

Collectively these data provide evidence, that T cells from TECsmad4-/- mice displayed nor-

mal effector functions.
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 Conclusions

• Homozygous aire-cre mice can serve as a model to investigate the human                            

 autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) 

 syndrome.

• Aire is expressed during embryonic development before the formation of a thymus

• Aire is not constantly expressed by medullary thymic epithelial cells

• Aire-cre mice cannot be used to specifically activate transgenes in vivo in aire 

 expressing cells by conventional mouse breeding. Alternative strategies need to be  

 applied.

• Smad4 is required for normal thymic epithelial cell development. It appeared, that   

 Smad4 was required in thymic epithelial cells for proliferation rather than 

 differentiation.

• Thymic epithelial cell-specific Smad4 deficiency has profound effects on peripheral  

 T cell biology.
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Animals, materials & methods

If not indicated otherwise, general techniques were performed according to [229] [230]  
and [231].

5.1 Molecular Biology

5.1.1 Bacterial Transformation

In order to transform bacteria, competent cells were thawed on ice, plasmids were then 
incubated with competent cells for 30`on ice. Routinely, 100µl of DH5α E. coli bacteria 
were used if not indicated otherwise. For cloning with methylation sensitive restriction 
enzymes, dam- bacteria were used.
The suspension was then transferred into a waterbath at 42°C  for 30`` for heat shock 
transformation. Samples were immediately put on ice for 2’. Then, 100μl prewarmed 
(37°C) SOC medium was added and the tubes were incubated for 1h at 37°C, shaking 
with 225 rpm in a bacteria shaker.
During the incubation time, plates containing 30ml LB were prewarmed and dried. If blue/
white screening was used plates were prepared with 35μl X-Gal (40mg/ml in DMSO from 
Promega) and 20μl IPTG. 
100μl bacteria were streaked onto LB plates, containing the appropriate antibiotic 
(Ampicillin,  Kanamycin, Sigma, Switzerland) the rest stored at 4°C.
Competent bacteria were either bought or made competent in-house according to general 
protocols.
DH5α E.coli were used for routine cloning, sure2 for larger plasmids and plasmids 
with multiple loxP sites, grown at 30°C overnight. For extra large plasmids XL10-Gold 
Ultracompetent Bacteria were used (Stratagene).

5.1.2 Growth conditions for bacteria and Plasmid extractions

Bacteria were grown in disposable 15ml polypropylene tubes (Falcon 2059) for low 
amounts of DNA and in 500ml glass Erlenmeyer flask. LB broth was supplemented with 
the appropriate antibiotic. Bacterial colonies from LB plates or glycerol stocks were used 
to inoculate the LB broth. Bacteria were grown for 12-16 h at 30°C or 37°C, respectively, 
depending on the plasmid and bacteria in an incubator shaking at 220rpm.
30° C was used for plasmids larger than 7kb
Ampicillin: 50mg/ml stock (use 1:1000)
Kanamycin: 25mg/ml stock (use 1:1000)

5.1.3 DNA extraction from bacterial colonies

DNA extraction was performed according to the manufacturer’s guidelines using plasmid 
extraction kits Miniprep (Macherey Nagel) or Maxiprep extraction kits (Qiagen or Macherey 
Nagel).



112

5.1.4 Agarose gel electrophoresis

Agarose gels were prepared with TAE and 1%o ethidium bromide.

5.1.5 Restriction endonuclease digestions

Restriction endonucleases were bought either from NEB (New England biolabs) or from 
MBI fermentas. Digestions were carried out as recommended by the manufacturer. In 
general, a total volume of 30μl was used and incubation time varied between 30’ – 60’ if 
not indicated otherwise.
Double digestions were carried out according to the manufacturer. If buffers for the two 
restriction enzymes could not be matched, subsequent digestions were performed with 
intermediate purification of the DNA fragments using MinElute PCR purifications kits 
(Qiagen).

5.1.6 Dephosphorylation of DNA

Heat labile shrimp alkaline phosphatase (New England Biolabs) was used according to 
the manufacturer`s recommendations to dephosphorylate cloning vectors to reduce self-
ligation. After dephosphorylation the enzyme was heat inactivated (incubation at 65°C 
for 15`).

5.1.7 Dam- competent cells

For cloning with methylation sensitive enzymes, dam – bacteria were used.

5.1.8 Ligation reactions     

Ligation reactions were carried out with 50-100ng total DNA in a final volume of 10-20μl 
at a molar ratio of 1:1 to 1:3 vector:insert. “Sticky ends” were ligated for 1h at RT with 
1µl of T4 ligase (Sigma). 5μl of the reaction mix were transformed by the heat shock 
procedure. The rest was incubated at 16°C overnight. Blunt end ligations were carried 
out at 16°C overnight. For ligations of vector and insert cut with the same restriction 
enzyme, the vector backbone was dephosphorylated with alkaline shrimp phosphatase 
(New England Biolabs) to avoid self-ligation of the vector.

5.1.9 RNA isolation

RNA isolation was carried out in an RNase free environement wearing disposable gloves 
to avoid contamination of the samples with RNases. Frozen thymic tissue or frozen cell 
suspensions were suspended in 1 ml TRI-reagent (Molecular Research Center Inc.) and 
homogenized with a Polytron homogenizer (Kinematica PT 1200) for approximately 30 
sec with increasing speed and all samples were incubated 10 min at room temperature. 
To extract the aquous phase, 100µl (1:10) bromochloropropanol (Molecular Research 
Center Inc.) was added. Samples were shaken for 10 sec and incubated for another 
10 min at room temperature. The samples were centrifuged at 14000rpm in a tabletop 
microcentrifuge (Eppendorf) at 4°C for 10 min. The aquous phase was transferred to 
another Eppendorf tube and precipitated for 1 hour at room temperature with an equal 
volume of isopropanol (Sigma, Buchs). The samples were centrifuged again at 14000 
rpm at 4°C for 30 min. The liquid was carefully aspirated and the pellet was resuspended 
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in 1 ml freshly made 75% ethanol, vortexed and centrifuged at top speed at 4°C for 10 
min. The liquid was aspirated as much as possible and the pellet was air dried. The 
pellet was then dissolved in 30 μl highly pure H

2
O and the total RNA concentration was 

measured with a Gene-Quant machine II (Pharmacia) (ratio 260/280 nm) and on a 1% 
agarose gel.

5.1.10 cDNA-synthesis from total RNA

To obtain cDNA, total RNA samples (4 μg) were mixed with 18 μl H
2
0 containing 500 μM 

dNTP, 10 mM DTT, 1 μl RNase free DNAse I and 1 µl of 1x1st strand buffer. This mixture 
was incubated for 30 min at 37°C. After the incubation, the dT

20
 and random hexamer 

primers were added at a final concentration of 500 nM and the mixture was heated for 5 
min at 70°C. The samples were then quickly centrifuged at room temperature. Thereafter, 
200 units of Moloney Murine Leukemia Virus (MMLV) reverse transcriptase was added 
and the samples were incubated at 42°C for 1 h. The reaction was quenched for 5 min 
at 95°C and then the samples were diluted in aliquots at a concentration of 20 ng/μl and 
stored at –20°C. All buffers are from Gibco BRL, Basel, CH.

5.1.11 PCR

5.1.11.1 PCR primer design

Oligonucleotides to be used as primers for PCR reactions or sequencing reactions and 
adaptor molecules for molecular cloning were designed in MacVector® and Primer 
Express® for qPCR. Where necessary, primers were hand chosen and verified using in 
silico PCR. Selected primers were blasted using NCBI Blast (see databases) to ascertain 
species specificity and to exclude that the primers bind to a repetitive sequence. For RT-
PCR, if possible, primers were chosen to be exon spanning to exclude potential genomic 
contamination. Intron exon boundries were either searched at LocusLink or, alternatively, 
determined by blasting genomic DNA versus mRNA.
PCR primers including restriction sites were designed in MacVector for the sequences 
necessary for annealing. Restriction enzyme recognition sites were then added by hand. 
Additional oligonucleotides were randomly added as required for each restriction enzyme 
according to the manufacturer. Care was given not to introduce unwanted translational 
start or stop codons.

5.1.11.2 End point PCR

For end-point PCR analysis of mRNA expression, total RNA was isolated from whole 
thymic tissue, freshly isolated thymic epithelial cells, established thymic epithelial cell lines 
or thymocyte subpopulations (as indicated) were isolated. After reverse transcription, the 
cDNA was amplified for 30-36 cycles.

5.1.11.3 Polymerases used

Routine PCR: Taq DNA polymerase (Sigma). For cloning: Taq / Pfu (proof reading 
polymerase) mix, 15:1, with Sigma’s long and accurate 10x PCR buffer (Sigma). For 
large amplicons KOD DNA polymerase (Novagen) was used.
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5.1.11.4 Reaction mix

10ng DNA cDNA or 100ng genomic DNA
1 μl primer x at 10μM
1 μl primer y at 10μM
1 µl dNTPs at 10mM
5 μl buffer 10X, Sigma
0.2 –0.5 μl Polymerase
μl H

2
O up to 50 μl (or 25µl final if oil was used)

5.1.11.5 Cycle conditions for routine PCR amplifications

94°C   3`
94°C   30’`
Tann   30`’
72°C   1`
repeat step 2-4  30-36 times
final elongation: 72°C 10`

5.1.11.6 Touch Down PCR for genotyping conditional smad4 mice

Touchdown PCR is a modification of conventional PCR that may result in a reduction 
of nonspecific amplification. The principle is based on an annealing temperature that 
is higher than the target optimum in early PCR cycles. Subsequently, the annealing 
temperature is decreased by 1°C every cycle or every second cycle until a specified or 
‘touchdown’ annealing temperature is reached. The touchdown temperature is then used 
for the remaining number of cycles. This allows for the enrichment of the correct product 
over any non-specific product.

94°C   4’
94°C   30’’
65°C   30’’
decrease T

ann
 by 1°C at each cycle

72°C   1’
repeat step 2-5 nine times
94°C   30’’
55°C   30’’
72°C   1’
repeat step 6-8 24 times
72°C 10’
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5.1.11.7 PCR conditions for cloning of long amplicons with high fidelity polymerases 

10ng DNA cDNA or 100ng genomic DNA
1 μl primer x at 10μM
1 μl primer y at 10μM
5 µl dNTPs at 2mM
5 μl KOD buffer (Novagen)
2 µl MgSO

4
 (25mM)

1.2 μl KOD Polymerase
μl H

2
O up to 50 μl

HERC3 program:
92°C     2’
92°C     30’’
70°C     6’ (4x)
92°C     30’’
70°C  (-1)°C/cycle  30’’
70°C     6’ (4x)
92°C     30’’
55°C     30’’
68°C     6’ (+30’’/cycle) (32x)
68°C                    20’

5.1.12 Purification of small DNA fragments (1-10kb)

Small DNA fragments such as PCR amplicons and digested plasmid fragments were 
purified using PCR purification kits (Macherey Nagel) and MinElute (Qiagen).

5.1.13 Generation of double-stranded DNA adaptor molecules

ssOligos were purchased from Thermo Hybaid, Germany, resuspended in T4 1x final 
ligase buffer (Sigma) at 200 μM.

Annealing:
10μl oligo x
10μl oligo y
4  μl T4 buffer (5x)
16μl H

2
O

The final volume of 40µl was mixed in 0.2μl polypropylene tubes.

Annealing program:
95°C  4’
cool down to 20°C at 1°C/min.
freeze at –20°C

Concentrations were calculated based on the molecular weight. Annealed adaptors 
were diluted with milliQ H

2
O to 1-10ng/μl in 4 ml total volume. The size of the annealed 

adaptors was checked on a 3% agarose gel.
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5.1.14 DNA Sequencing

Sequencing reactions were initially carried out by Microsynth GmbH, Balgach, Switzerland. 
Trace files obtained from Microsynth were checked for quality and reliability by inspecting 
the obtained profiles of fluorescence peaks. Analysis was carried out using sequence 
alignments, Blast searches and using SeqMan and 4Peaks for reassembly of single 
sequencing reactions.
Alternatively, in-house sequencing was performed on an ABI sequencing machine 
according to the manufacturer’s recommendations.
Trace files were analyzed using SeqMan and 4Peaks. (see software list)

5.1.15 Southern blotting

5.1.15.1 Gel and Transfer to Membrane

Genomic DNA was digested overnight. 30µg of digested DNA were separated slowly 
overnight on a 0.8% agarose gel without Ethidium Bromide. The next day, the migration 
was documented by PI staining. After washing in ddH2O the gel was depurinated in 
0.25N HCl for 15’ with subsequently rinsing the gel twice with ddH2O. DNA was then 
denatured in 0.5N NaOH for 30’. Then, the denatured, separated DNA was transfered in 
a BioRad Vacuum Blotter Model 785 onto a Hybond-N+ Membrane (Amersham) for 90 
minutes at 5 inches Hg. Then the membrane was soaked twice in SSC for 5 minutes and 
air dried between two sheets of filter paper. 

5.1.15.2 Prehybridization of the membrane

The membrane was transferred in a hybridization bottle and Church buffer was added at 
100µl per cm2. Pre-hybridization was performed for at least one hour at  65˚C in a rotating 
hybridizing oven.

5.1.15.3 Labeling of the Probe

30ng PCR product was boiled for 10’ and then quickly cooled down on ice. 20µl ddH2O 
and 40µCi dCTP [α32P] were incubated with High Prime Roche (cat#1585592) at 37˚C for 
15’. Then 2µl 0.2M EDTA and 80µl TE were added. The labeled probe was column purified 
using Micro Bio-Spin 6 columns (BioRad#732-6221) according to the manufacturer.
32P Incorporation was measured by scintillation counting using IRGA-SAFE PLUS, 
(Packard #6013249).

100µl of labeled probe, 25 µl ddH2O, 5µl Cot-1 DNA 10µg/µl (Invitrogen #18440-016) (or 
alternatively salmon sperm), 50µl 20x SSC and 20µl 1% SDS were boiled for 5 min, then 
kept at 65˚C,  20min minimum.
The labeled probe was added to the prehybridized membrane.
Hybridization was carried out over night at  65˚C in a rotating hybridizing oven.

5.1.15.4 Washes

After incubation overnight, membranes were washed at 65˚C 2x 30’ with wash solution 1, 
then 2x 15’ with wash solution 2. Radioactivity was visualized using a Phosphoimager.
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5.1.15.5 Stripping Probes from Nylon Membranes

For stripping probes from the membranes, 100-200ml 0.4M NaOH were added and the 
membrane was incubated for 30’ rotating at 42˚C. Then the membrane was washed 
subsequently in 0.1xSSC, 0.1%SDS, 0.2M tris-Cl (pH7.6) for 30’ at 42˚C.

5.2 Generation of gene targeted aire-cre mice

5.2.1 Conditional gene targeting: the cre/loxP system

The development of genetic models for human diseases and the functional analysis of 
specific genes that are essential for embryonic development have necessitated the design 
of new genetic tools as simple gene targeting often leads to early embryonic lethality 
which in turn renders an analysis of the role of the targeted gene at later developmental 
stages impossible. The specific ablation of genes in the entire embryo or, alternatively, 
in only a restricted subpopulation of cells at later stages of development (even as late as 
adulthood) has now become possible due to the methodology of somatic cell mutagenesis 
and inducible gene ablation [183]. For this purpose, the Cre recombinase of bacteriophage 
P1, has proven to be an invaluable tool. This enzyme directs recombination of DNA 
between two specific nucleotide sequences designated as “locus of crossover”, or loxP. 
This recognition sequence comprises two 13 base pairs (bp) palindromes separated 
by an asymmetric 8 bp core. The Cre recombinase catalyses DNA strand exchange 
between two aligned loxP recombination sites and consequently results in the deletion 
of the intervening stretch of DNA. (Fig. 35) Thus, application of this technique in mice 
allows for the deletion of specific DNA sequences in a selected population of cells and at 
a desired point in time.

5.2.1.1 Loss of gene function

In order to delete specific sequences of genomic DNA by the use of Cre recombinase, 
it is first required to introduce the loxP recombination sites into those sequences of the 
genome where the deletion should eventually occur. Since this mutational change is 
silent, it does not affect the normal regulation and transcription of the modified gene. 
The loxP sites are introduced into the genome of embryonic stem (ES) cells using the 
methodology of homologous recombination. For the introduction of a genetic mutation 
into ES cells, a vector is first generated that contains two loxP recombination sites 
flanking the DNA sequences containing the locus to be deleted. This core construct is 
again flanked by DNA sequences homologous to the gene to be targeted. Next, the 
vector DNA is linearized and introduced by electroporation into ES cells, which bear 
the full potential to generate a viable and reproductively proficient animal. The ES 
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cells are then clonally expanded and tested by Southern blotting of genomic DNA for the 
correct occurrence of homologous recombination of the targeted locus. Finally, ES cells 
with proper targeting will be injected into blastocysts to generate genetically chimeric 
animals that are later bred to homozygosity for the introduced loxP recombination sites 
[149].

Figure 35: The principal of the cre loxP system; shown is the excision of an exon from a 
genomic locus

5.2.1.2 Gain of gene function

Tissue specific gene recombination cannot only be used to inactivate a specific gene 
by genomic deletion. The basic concepts can also be applied to induce site specific 
(and if desired temporally controlled) gene expression. To this end, recombinant DNA 
technology takes advantage of creating an artificial gene (designated transgene) which 
can only be transcribed if a genetic stop signal is removed 5’ to its transcription initiation 
site. This stop cassette is flanked by loxP sites. The transgene is injected in the nucleus 
of a fertilized egg and will subsequently integrate into the genome of the cell. Validated 
transgenic mice will then be bred with animals expressing Cre under a tissue specific 
promoter. Upon Cre expression, the loxP sites are recombined and the stop cassette is 
removed which in turn leads to the transcription of the introduced gene [149].

For tissue restricted recombination of loxP sites the recombinase Cre has to be expressed 
in a manner limited to the cells of interest. This is best achieved using tissue specific 
promoters regulating Cre expression. Since only a few tissue specific promoters are 
known that allow for transgenic use so that an integration-independent but tissue-specific 
expression is maintained, many scientists have again taken advantage of the technology 
of homologous recombination to attain tissue-restricted Cre expression. To this end, the 
coding sequence for the translational start signal (most frequently the first exon) of a 
tissue specific gene is replaced by the recombinase Cre so that its expression is controlled 
identically to that of the replaced product. This method is referred to as “knock-in” and 
assures that all regulatory sequences which control the correct spatial and temporal 
expression of a given gene also apply in the instance that Cre has been “knocked-into” 
that locus.
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5.2.2 Monitoring in vivo Cre activity using “reporter mice”

To verify the correct functioning of a Cre knock-in mice that express this recombinase can 
be crossed with animals that bear a transgene which is only transcribed and detectable 
as a protein if the “floxed” stop cassette has successfully been removed. Such reporter 
mice contain a ubiquitously expressed reporter transgene whose product can easily be 
detected. In the absence of Cre, a genetic element placed 5’ of the reporter transgene 
prevents its transcription. This so called “stop cassette” is flanked by loxP sites and is 
removed from the genome as Cre becomes active. As reporter genes the cDNAs for 
green fluorescent protein (GFP) and ß-galactosidase (lacZ) are commonly used. This 
assemblage of genetic elements provides a functional in vivo assay for Cre activity [154, 
232].

5.2.3 Cloning of the aire-cre targeting construct

First plasmid pIRES-hrGFP-2a (Invitrogen, Switzerland) (designated p19, Annex I) was 
modified for subsequent cloning steps. The Mlu I restriction site at nucleotide position 
738 within the triple hemagglutinin (3xHA) tag was removed by replacing a XhoI / 
BsiWI fragment of the original vector by an adaptor molecule (#1395/#1396 see Annex 
III) containing a point mutation that destroys the MluI site while leaving the amino acid 
sequence of the 3xHA tag unchanged. The resulting plasmid was designated p36 (Annex 
I). Removal of the undesired MluI site was monitored using enzymatic restriction analysis 
and direct sequencing. Then, the complete open reading frame of the bacteriophage P1 
recombinase cre was released as a 1.2kb fragment from plasmid NLS-cre (p25) using 
MluI [233]. The 1.2kb fragment carrying the nuclear localization signal of the SV40 large 
T-antigen and the coding sequence of cre including the translation initiation codon (ATG) 
and the termination codon (TAG) but without the poly A signal was gel purified, blunt-
polished using T4 polymerase and then ligated into SmaI of p36 resulting in p67. Correct 
orientation and insertion of a single copy of the fragment was verified by asymmetric 
restriction enzyme digestion and then confirmed by direct DNA sequencing. Next, a 3.5kb 
3’ arm of homology of the murine aire locus was amplified by PCR from genomic DNA 
of Ola129 ES cells  (a kind gift of Dr. R. Fässler) using KOD polymerase  (Novagen) and 
the HERC 3 PCR program for cycling conditions. PCR primers contained mismatching 
overhangs to include NotI (#1635) and SacII (#1636) restriction sites. The resulting PCR 
amplicon was digested using NotI and SacII, gel purified and then ligated into plasmid 
loxPFrtNeoDuoNeoloxPFrt (p72) [188] digested with NotI and SgrAI. In addition to the 
3.5kb arm of homology and the linearized p72 an adaptor molecule hybridized from 
oligonucleotides #1637 and #1638 (containing restriction sites for SacII-MluI-ScaI-SgrAI) 
was included in the ligation reaction resulting in p75 (Annex I). The adaptor molecule 
was used to prepare subsequent cloning steps and to include a ScaI site for southern 
blotting. The nucleotide sequence of the adaptor molecule was designed such that the 
desired restriction sites could be introduced, containing where necessary random spacer 
nucleotides while avoiding the generation of translational start or stop codons. This 
cloning step removed one loxP site of p72 while the second loxP site remained in place, 
flanked by PacI and AscI restriction sites. Next, p75 was digested with SacII and MluI and 
a NLS-CRE-3xHA-IRES-hrGFP-SV40pA fragment released from p67 using SacII and 
MluI was ligated to create p77. Finally, a 4.4kb arm of homology of the murine aire locus 
was amplified by PCR from genomic DNA from Ola129 ES cells including mismatching 
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overhangs for AscI and PacI using primers #1633 and #1634. The PCR amplicon was 
digested using AscI and PacI, gel purified and ligated into p77 resulting in p79. The final 
targeting construct was linearized using AscI for electroporation into ES cells.

5.2.4 Gene targeting

Gene targeting was performed in Munich at the Max Planck Institute for Biochemistry in 
the laboratory of Dr. R. Faessler. Electroporation of ES cells, selection and expansion 
of targeted ES cells and production of chimeric mice was performed according to [234]. 
Briefly, 5 x 107 ES cells were electroporated with 100µg of AscI linearized targeting 
construct and then plated onto irradiated feeder cells. 24h after electroporation positive 
selection was initiated using 500µg/ml G418. Resistant ES clones were manually picked 
using a stereomicroscope in a laminar flow hood after 6-8 days. 360 picked colonies 
were shortly trypsinized and then cultured on freshly plated feeder cells with ES medium 
and G418. 3-5 days after picking the expanded clones were washed, shortly trypsinized, 
resuspended in ice-cold freezing medium and then split for freezing at –80°C and the other 
half was used for further culture. After expansion of cell numbers, DNA was extracted 
and analyzed by southern blotting. All clones were screened using the 5’ external probe 
after ScaI digestion of genomic DNA (see Figure 6). Confirmation was achieved using the 
3’ external probe after Hind III digestion. Two internal probes were used to avoid clones 
with integration of several copies of the targeting construct.

5.2.5 Production of chimeric mice and germline transmission

Five correctly targeted clones (#1, #103, #253, #292 and #336) were thawed and 
expanded for blastocyst injections. Blastocysts were from 3.5day pregnant C57bl/6J 
mice.  Based on morphology after expansion, ES clones #103, #292 and #336 were 
injected into blastocysts at about 12 ES cells/blastocyst. Microinjected blastocysts were 
then transferred into the uterus of pseudopregnant BDF1 females. 28 chimeras were 
obtained representing animals from all 3 injected ES clones. Chimeras were shipped from 
Munich to Basel and bred to C57bl/6 mice for germline transmission (data not shown).

5.3 Histology

5.3.1 Tissue embedding

Freshly dissected organs were embedded in OCT compound (Medite, Switzerland) in 
Tissue-Tek Cryomolds (Miles Inc., Elkhart, USA). Tissues were frozen in methyl-butane 
cooled with dry ice and then stored at –70°C.

5.3.2 HE staining

OCT (Medite, Switzerland) embedded tissues were cut at 5-12 µm thickness using 
a cryostat. Tissues were air dried for at least 4 h at RT, then either frozen at –70°C 
or processed directly. Sections were fixed in Delaunay’s fixation solution for 1’, then 
rehydrated in a series of ethanol dilutions for 1’ each: 100% ethanol, 96% ethanol, 70% 
ethanol, 50% ethanol and finally H

2
O. Tissues were then stained with Meyer’s Hämalaun 

for 2’. Afterwards they were washed with warm H
2
O 3 times 1’ before staining with 1% 

Erythrosin. After washing with H
2
O for 1’, sections were dehydrated in a series of ethanol 

solutions: 50% ethanol, 70% ethanol, 96% ethanol for 1’ each, then ethanol 100% for 2’. 



Materials and Methods

121

Slides were then air dried before mounting cover slips with Pertex.

5.3.3 Immunohistochemistry

For immunohistochemical detection of indicated proteins, thymi were isolated and 
embedded in OCT (Tissue-Tek, Sakura Finetec, Netherlands). Frozen samples were 
cut at 5-12 µm thickness, fixed with 4% paraformaldehyde/PBS and blocked with Biotin 
and Avidin. Endogenous peroxidase activity was blocked with H

2
O

2
. Sections were then 

incubated with primary antibodies for one hour at RT or at 4°C overnight. After washing 
3x 5’, sections were either incubated with secondary antibody for 30’ at RT or with 
streptavidin-conjugated horseradish peroxidase. Sections were then incubated with AEC 
and counterstained with hemalaun. 
Panels of antibodies and lectins have previously been used to characterize different 
thymic epithelial cell subsets. In brief, thymic epithelial cell subsets were identified using 
combinations of anti-cytokeratin 18 moAb and UEA-1 lectin, polyclonal anti-cytokeratin 5 
antibody and the epithelial cell-specific MTS-10 antibody. The particular staining protocol 
was adapted from Klug and coworkers. Two- and three-color immunofluorescent sections 
were analyzed using a confocal microscope (Carl-Zeiss AG, Feldbach. Switzerland).

5.3.4 β-galactosidase (LacZ) staining; protocol modified from [235]

 

5.3.4.1 Isolation of tissue/embryos

For embryos E10.5 whole mount.
For embryos E10.5 - E12.5 cut into thirds.
Greater than E12.5 dissect individual organs.
For adult and 18.5 PO tissues, cut organs to size of » E 10.5
Wash in PBS

5.3.4.2 Fixation of tissues

Tissue sections were fixed in LacZ fix according to the recommended time in [235]. For 
whole mount lacZ stainings E12.5 embryos were fixed for 2.5 h gently shaking at 4°C.

Sections or embryos were then washed three times in PBS for 5’ each time.

5.3.4.3 X-gal Tissue Staining

Whole Mount Tissues
1. Incubate in LacZ stain at 30°C overnight
2. Wash in PBS 5min X 3
3. Post fix in 0.2% glutaraldehyde/PBS overnight at 4°C
4. Store in NaAzide/PBS or process for cryosectioning or paraffin sectioning
All other Tissues:
Tissue was dehydrated overnight in 20% sucrose/PBS at 4°C. When the tissue was 
equilibrated it was embedded in OCT compound (see above). Cryosections were done 
using a cryostat at 8-16µm. Sections were then air dried overnight and either processed 
the following day or frozen at –70°C wrapped in aluminum foil. 
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Tissues were fixed in LacZFix for 10min at room temperature before washing in LacZ Wash 
Buffer for 3x 5’. LacZ staining was performed overnight at 30°C and then washed 3x 5’ 
in PBS. Sections were then post-fixed in 0.2% glutaraldehyde/PBS at room temperature 
for 10’ and then washed in PBS for 3x 5’. Tissue was rinsed in water for 5’ and then 
counterstained in nuclear fast red (NFR, 0.1% NFR in 5% Al

2
(SO

4
)

3 
sol.) for 5’ at RT and 

washed in H
2
O for 5’. Sections were mounted in permount.

5.4 Cell Biology

5.4.1 Cell culture of TEC, EL-4, HEK 293, phoenix and NIH3T3 cells

The medullary thymic epithelial cell line mThymic epithelial cell 2-3 was a gift from Dr. M. 
Kasai (Tokyo, Japan). TEC were cultured in TEC medium in the absence of antibiotics at 
37°C 5%CO

2
.

5.4.2 Transfection of cells

Cells were transfected at an approximate density of 50-70% confluency using 
FuGene6 (Roche diagnostics) transfection formulation. The procedure was performed 
as recommended by the manufacturer. Briefly, DNA was incubated for 15 `at RT with 
FuGene6. The DNA/transfection reagent mixture was then evenly distributed on the cells 
by dropwise adding them to the cell culture dishes and gently swirling.

5.5 Mice

5.5.1 Genetic background of cells and mice used for the generation of Aire-cre gene 
targeted mice

ES cells: 129Sv
Blastocysts: C57bl/6J
Foster mothers: BDF1
Vasectomized males: FVB
Germline: Chimeras were crossed to C57bl/6 mice to obtain germline transmission.

Initial experiments with Aire-cre and Smad4 conditional knock-out mice were performed 
on a mixed background 129Sv x C57bl/6. Aire-cre mice were backcrossed onto C57bl/6 
and Balb/c backgrounds. If backcrossed animals were used, the number of backcross 
generations is indicated.

ROSA26 lacZ indicator

B6;129-Gt(ROSA)26Sor<tm1Sho> were purchased from Jackson, stock number 
003504

Flp Deleter mice

129S4/SvJaeSor-Gt(ROSA)26Sortm1(FLP1)Dym/J were purchased from Jackson, stock 
number 003946 [147]
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Cre deleter mice

N6-Del, a kind gift of Dr. M. van den Broek, Zürich [236].

Rag2-/- mice

C57bl/6 Rag2-/-

OT-I transgenic Rag2-/- mice

OT-I Rag2-/-, a kind gift of Dr. E. Palmer, Basel [237].

Smarta1 mice

BM from smarta1 mice [238] was a kind gift from R.M. Zinkernagel.

C57bl/6 CD45.1 (Ly5.1)

B6.SJL-PtprcaPep3b/BoyJ congenic mice were purchased from Jackson

C57bl/6 mice

C57bl/6 CD45.2 (Ly5.2) congenic mice were purchased from Jackson

Balb/c mice

Balb/c mice were purchased from IFFA Credo, France

Smad4 conditional knock-out mice

Smad4 conditional ko mice, a kind gift of Dr. X. Deng, NIH, USA [148] are of a mixed 
genetic background (C57bl/6 x SvEv129 x FVB); chimeras were crossed to Black Swiss 
mice for germline transmission; The breeding stock of conditional smad4 mice was a 
mixture of CD45.1 and CD45.2. For bone marrow chimeras and transfer experiments, a 
pure smad4 lox/lox CD45.1/CD45.1 x smad4 lox/lox FoxN1-cre CD45.1/CD45.1 breeding 
as well as a pure smad4 lox/lox CD45.2/CD45.2 x smad4 lox/lox FoxN1-cre CD45.2/
CD45.2 breeding was established.

FoxN1-cre mice

FoxN1-cre mice were produced as PAC transgenic animals. (Zuklys S. & Holländer G. 
unpublished). Briefly, the cds for iCre (for eukaryotes codon usage optimized version of 
the Bacteriophage p1 cre recombinase, [239] a kind gift of Dr. E. Casanova was inserted 
into PAC clone RPCI21-436p24. Successfully modified BACs were purified and injected 
into C57bl/6 x BDF1 pronuclei by the Transgenic Mouse Core Facility (TCMF) of the 
Biozentrum at the University of Basel. Offspring was screened for transgene integration 
by PCR using primers #1621/#1622. Positive founder mice were confirmed by southern 
blot analysis. FoxN1-cre mice were bred to homozygous smad4 conditional mice resulting 
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in a mixed genetic background of 129Sv x C57bl/6.

5.5.2 Housing and breeding

Mice were kept under pathogen free conditions according to the Swiss law and regulations 
of animal welfare. Sex and age of mice are indicated in each experiment. If not indicated 
otherwise, mice were between 4-10 weeks.

5.5.2.1 Aire-cre mice

Gene targeted mice were designated aireCN/wt (heterozygous for Cre Neo(=CN)) or aire 
CN/CN (homozygous). After crossing to Flp-Deleter mice (see above) mice were designated 
aire CNDF/wt (for Cre Neo Deleted Flipase) and aire CNDF/CNDF respectively. Deletion of the 
neo cassette was monitored using PCR and southern blotting. After further backcrossing 
–when the Flipase transgene was lost- mice were called aire CND/wt and aire CND/CND. 
Mice were backcrossed onto C57bl/6 (H2-b) and Balb/c (H-2d) haplotypes for several 
generations. Mice used in these experiments were F1-F4. Two mouse lines derived from 
two independent ES clones were used and compared (Clone 292 and 336).
Reporter mice were kept as homozygous breeding stocks. Aire-cre mice were 
crossed to homozygous reporter mice (B6;129-Gt(ROSA)26Sortm1Sho and B6;129-
Gt(ROSA)26Sortm2Sho) for analysis of cre expression and analyzed as heterozygous 
reporters either cre+ or cre- littermates. 

5.5.2.2 Smad4 conditional mice

Smad4 lox/lox mice were bred to FoxN1-cre mice. Smad4 lox/wt FoxN1-cre offspring 
was then crossed to Smad4 lox/lox mice to get Smad4 lox/lox FoxN1-cre mice. Mice 
were analyzed from breedings of Smad4 lox/lox x Smad4 lox/lox FoxN1-cre, resulting in 
50% cre– control littermates and 50% cre+ TEC specific smad4 knock-out mice.
Smad4 lox/lox mice were also bred to N6-Del mice to get Smad4-/wt. These were bred 
to Smad4 lox/lox to get Smad4 -/lox which were then bred to Smad4 lox/lox FoxN1-cre 
mice. As offspring from this breeding did not show any differences compared to breedings 
smad4 lox/lox x Smad4 lox/lox FoxN1-cre, this breeding was discontinued.

5.6 Mouse manipulations and immunological procedures

5.6.1 Time mating

For timed pregnancies one male and two females were separated in the same cage for 
2 days using a grid to prevent uncontrolled mating. After 48h the grid was removed at 
17h00. After 15h males were separated and females were checked for vaginal plugs. 
Plug positive females were assumed to be at gestational age 0.5 days.

5.6.2 Collection of mouse blood

For small amounts of blood (e.g. for repetitive blood collection), 2mm of tail tip was cut in 
anesthesia and blood collected. For larger amounts, tails were cut with a razor blade and 
blood collected. For large quantities, mice were anesthesized and blood was collected 
by external heart puncture.
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5.6.3 Genomic DNA extraction from mouse tails

Mouse tails were cut between 1-3 weeks of age. 5 mm of tail tissue were digested in 500-
600µl tail lysis buffer at 55°C for 12h in a 1.5ml tube, shaking at 1000 rpm in a Eppendorf 
Thermomixer Comfort shaker. Undigested tissue and bones were pelleted in a tabletop 
mini centrifuge (Eppendorf Centrifuge 5417 C/R) for 5’ at 13000 rpm. Supernatant was 
poured into an equal volume Isopropanol. Tubes were then inverted several times 
until DNA precipitated. DNA was fished and transferred into 300µl 70% Ethanol. After 
washing, DNA was pelleted at 13000 rpm for 5’. DNA was air dried and resuspended 
in an appropriate volume of TE. (100-300µl to yield approximately 100ng/µl). To ease 
resuspension, samples were heated to 55°C. DNA was stored at –20°C.

5.6.4 Genotyping

Genotyping was performed using PCR as described above. The following primer pairs 
and PCR conditions were used:

Aire-cre: Primers #2323/#2324/#2368:  
touch down PCR 
upper band = wt/wt 
2 bands = cre/wt 
lower band = cre/cre 

Smad4 conditional allele
Primer pair #2332/#2626
Upper band 450bp (conditional allele)
Two bands (heterozygous)
Lower band 390bp (wildtype allele) 
Touch down PCR, Sigma’s long and accurate PCR buffer.

FoxN1-cre (iCre): Primers #1621/#1622 
standard PCR program

Smad4loxP/loxP mice were genotyped using oligonucleotides #2332 and #2626 for several 
generations. The same was done for Smad4loxP/loxP FoxN1-cre mice. Primers used 
were slightly different from the published ones. For experiments where the mouse was 
sacrificed, the size of the thymus was checked and compared to the genotype observed 
by PCR. Where the genotype did not match the thymic phenotype, DNA was reextracted 
and regenotyped. For experiments where cells from several individuals were pooled, 
the fur phenotype was checked the day before the analysis and compared to the PCR 
genotype and on the day of analysis, the thymic size was checked. Only animals matching 
all 3 criteria were included in the analysis to avoid cross-contamination of cre- with false 
negative cre+ and vice versa.

5.6.5 Cell separation

Freshly isolated thymocytes, thymic epithelial cells or peripheral lymphocytes were 
stained with the appropriate moAbs and then sorted into subpopulations with the use of 
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a FACSvantage cell sorter (Becton Dickinson, Franklin Lakes, NJ, USA) or a MoFlo Cell 
sorter (Dako Cytomation).
For thymic epithelial cell isolation, thymic lobes were separated and small cuts were made. 
Thymic lobes were then stirred twice in fresh IMDM-2 (IMDM + 2% FCS) for 30 min on 
ice. The thymic lobes were transferred in new tubes containing Collagenase IV 1mg/ml + 
DNAse 10µg/ml in IMDM-2 and digested at 37°C for 20 min; every 10 min the suspension 
was mechanically disrupted using pipette tips with decreasing diameter. After mechanical 
disruption of the lobes done with a Pasteur pipette with a cut-off tip, the supernatant 
containing thymocytes was either used for thymocyte stainings or, alternatively, discarded 
and fresh digestion medium was added. After three rounds of digestion all supernatant 
was carefully discarded and fresh trypsin was used for the last digestion round. The cell 
suspension was carefully washed in FACS buffer with 5 mM EDTA and filtered trough a 
40 nm mesh before starting the staining procedure. Adherent cells were stained with a 
combination of anti-IAb (MHC class II) and CD45 moAbs. IAb+CD45- cells were sorted on 
a FACSvantage (Becton Dickinson, Franklin Lakes, NJ, USA).

5.6.6 Early thymic emigrants detection

Anesthetized mice were injected in one thymic lobe with 10 µl of 125 µg/ml FITC (Sigma, 
Buchs, CH) diluted in PBS (Stock solution 1mg/ml). 16 hours later the mice were sacrificed; 
thymus, lymph nodes and spleen were dissected and sinlge cell suspensions were 
analyzed for the presence/absence of FITC+ lymphocytes with corresponding surface 
markers (CD3+, CD4+ or CD8+).

5.6.7 KGF treatment

KGF treatment was performed as described previously (Rossi et al.)
Briefly, mice were injected intraperitoneally for a period of 3 subsequent days with HBSS 
(Hank’s balanced salt solution) or recombinant human KGF (rhKGF; solubilized in HBSS) 
at a dose of 5 mg/kg per day. rhKGF was produced in E.coli and had an ED50 of 40.02 
ng/ml (kindly provided by Amgen, Thousand Oaks, CA, USA). Analysis was performed 
14 days after the last injection.

5.6.8 NIP-OVA Immunizations

Mice were immunized intraperitoneally with 100µg of Alum precipitated NIP-OVA using 
1ml syringes (Primo) and 25G needles. 20µg NIP-BSA was injected subcutaneously 
on day 17 in the base of the tail. 100-200 µl blood was collected from tail veins at days 
–1, +5, +12 and +23 (FACS analysis of lymph nodes) in BD Microtainer tubes. Samples 
were incubated at room temperature for at least 30’ and then centrifuged at 14000rpm  
(Eppendorf centrifuge 5417C) for 5’ to separate serum from cells. Sera were frozen at 
–20°C for short term (weeks) storage or at –70°C for long-term (months) storage.
Mice were boosted with 20µg of Alum precipitated NIP-OVA in the base of the tail at day 
+18.
Analysis: FACS analysis of inguinal and axillary lymph nodes. Anti-CD4, anti-CD8, and 
OVA specific tetramers (a kind gift from Dr. M. Daniels, Basel). 
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5.6.9 Bone marrow chimeras

a) Recipients

Recipient mice were starved for 3h before irradiation to reduce small bowel peristaltic. 
They were then lethally irradiated with 2x 550 rad with an interval of 3h to reduce toxicity 
with a  γ-ray 137Cs source.

b) Donors

Bone marrow was either flushed from femur and tibia or -for large numbers of donor mice 
(>5)- bones were crushed in IMDM 10%FCS. The supernatant was saved and replaced 
with fresh medium. The procedure was repeated with new bones, supernatant pooled and 
this procedure was repeated until the medium was remaining clear during manipulation. 
Cells were washed and filtered through a nylon mesh. T cell depletion was achieved 
using Low-Tox-M rabbit complement lysis (Cedarlane, Bioreba AG, Switzerland) using 
mAbs anti-CD4 (clone RL172), anti CD8 (clone 31M) and anti- Thy1.2 (clone H01349) 
according to the manufacturer. 1 – 5 x 106 T cell depleted donor bone marrow cells 
were injected i.v. in a volume of 200-500µl HBSS. Transplanted mice were housed in 
scantainers or single ventilated cages.

5.6.10 Detection of donor/host chimerism

3-4 weeks posttransplantation 100-200µl blood was collected and anticoagulated with 
1 drop of heparin (5000U/ml). Leucocytes were separated by Ficoll-Paque TM PLUS 
(Amersham Biosciences) gradient centrifugation for 25’ at 15°C spinning with 805 rcf 
(G). Relative chimerism was determined using 2-color FACS analysis with anti-CD45.1-
Fluos and anti-CD45.2-Cy5 or, alternatively, for transgenic donor BM the appropriate 
combinations of anti-Vα and anti-Vβ TCR chains were used if CD45 isoforms could not be 
used. Thymocytes and/or splenocytes were isolated from transplanted and appropriate 
control mice.

5.6.11 B cell depletion

When unsorted T cells were prepared for i.v. transfers, LN were isolated, single cell 
suspension made as described and B cells were depleted using anti B 220 mAb and 
anti-rat magnetic beads (Dynal Biotechnology). Depletion efficiency was monitored by 
FACS (data not shown).

5.6.12 In vitro proliferation assay

Antibodies were diluted in 50µl FCS free PBS/well in 96 well plates. Coating was performed 
in a humid chamber at 4°C overnight or a few hours at room temperature. Unused wells 
were filled with PBS. Peripheral wells were not used to improve accuracy. Wells were 
coated with purified anti CD3 at various concentrations as indicated and 4µg of anti 
CD28. The next day wells were washed once with 100µl medium (IMDM 10% FCS, 
β-mercaptoethanol, kanamycine). 5x104 cells/well were seeded in 200µl total volume.
After 2 days 100µl supernatant was removed, transferred to a sterile flat bottom 96 well 
plate (for in vivo assays with IL-2 dependent CTL cell line) and frozen. In the evening 
3H thymidine was added at 1µCi/well (bottle = 5ml with 5 mCi, i.e. 1µl=1µCi). Cells were 
incubated overnight. The next day cells were harvested and counted in a β-scintillation 
counter or frozen for later analysis.
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Alternatively 5 x104 sorted CD45RBhi CD4 T cells were stimulated with 0.5 µg/ml soluble 
anti-CD3 mAb and 5 x104 irradiated Rag-/- splenocytes as antigen presenting cells in the 
absence or presence of indicated numbers of sorted CD25+CD4 T cells. Proliferation was 
measured by 3H thymidine incorporation for 16h. Cells were harvested using a harvester 
and incorporated 3H was measured using a beta counter.

% inhibition was calculated as

  100 – (cpm naïve CD4 T cells + CD4+CD25+ T cells) x 100 
% inhibition = ---------------------------------------------------------------------------------

cpm naïve T cells alone 

5.6.13 CFSE labeling

CFSE stock solution (carboxyfluorescein diacetat succiminidyl ester), Molecular Probes, 
Cat. No: C-1157) diluted in DMSO at 10mM [ours: 5mM].

Cells were washed twice in PBS (NO FCS!) and resuspended at 2 x 106/ml in PBS 
(serum-free) at RT. Having no serum in the PBS will make the dead cells clump and 
enclose some live cells within that clump. The stock CFSE solution was diluted 1:2000 in 
PBS, left at RT. Cells were then mixed at a 1:1 ratio of cells and diluted CFSE. The two 
components were initially well mixed, then turned slowly in the dark for 8 min at RT [final 
concentration of CFSE: 2.5µM]. The labeling reaction was quenched by adding an equal 
volume of FCS and immediately mixing well. Cells were then incubated for 1’ before 
spinning and then washed twice more with medium containing 10% FCS. The CFSE 
labeled cells were counted and resuspended in the appropriate volume and medium 
(HBSS for i.v. injections). 

5.6.14 In vivo proliferation assay

a) Oligoclonal in vivo proliferation assay: OT-I Rag2-/- i.v. injections after CFSE labeling

Pooled female OT-I Rag2-/- splenocytes and lymph node cells were labeled with CFSE 
(2.5µM final concentration) after red blood cell lysis. 5 x 106 cells resuspended in 400µl 
HBSS were injected i.v. into female mice. Recipients were Smad4loxP/loxP and TECSmad4-

/- mice. Rag2-/- mice served as positive controls for proliferation. 6 days after injection, 
spleen and lymph nodes were collected and the CFSE labeling intensity of Vα2+ Vβ5+ 
CD8+ cells (OT-I cells) was analyzed by FACS.

b) Polyclonal in vivo proliferation assay (Purified CD45.1 congenic T cell i.v. injection after 
CFSE labeling)

Single cell suspension was made from pooled lymph nodes of 7 female B6.SJL-
PtprcaPep3b/BoyJ congenic mice. B cells labelled with a purified anti B220 antibody 
(clone RA36B2) 1.4mg/ml diluted 1:500. B 220 expressing cells were then eliminated 
using magnetic Dynabeads (Dynal Biotech, Oslo, Norway) coated with sheep anti-rat 
IgG. B cell depletion efficiency was monitored by FACS. Purified cells were labeled with 
CFSE (2.5µM final concentration) and resuspended at 12x106 cells/ml in HBSS. 420µl 
of cell suspension were injected i.v. into Smad4loxP/loxP and TECSmad4-/- females. A Rag2-/- 



Materials and Methods

129

mouse served as a positive control for proliferation.
7 days after injection the recipients were bled and FACS analysis was performed. 5 days 
post transfer mice were sacrificed and analyzed in detail.

5.6.15 In vivo proliferation competition assay

Smad 4 lox/lox mice were bred onto a CD45.1 background. LN single cell suspensions 
were B cell depleted. CD4+ CD45RBlo cells were sorted from CD45.2 and CD45.1 
TECSmad4-/- mice. Equal numbers of purified cells were injected i.v. into the tail vein of 
Rag2-/- recipients. Analysis was performed 4.5 days after injection.

5.6.16 Colitis induction by adoptive transfer of naïve CD4+ T cells

Rag2-/- females were injected i.v. with various populations of sorted cells as indicated.
4 x 105 FACS sorted cells were injected i.v. into 6-10 week old C57bl/6 Rag2-/- females. 
Recipient mice were monitored every other day for clinical signs of disease (behavior, 
diarrhea, fur, hunched back and kachexia) and weight was measured. Mice were either 
bled or sacrificed as indicated. Mice with 20% weight loss were sacrificed even before 
the desired time points according to the Swiss Law and regulations.

5.6.17 ELISA

ELISA was performed in 96 well flat bottom plates. Plates were coated with 10µg NIP-
BSA/ml in PBS in a humid chamber at 4°C overnight or for 1h at RT. Plates were washed 
3x with PBS. Uncoated plastic was then blocked with PBS 2% BSA at RT for 3h and 
was then washed 3x with PBS. Sera were added at the indicated dilutions (diluted in 
blocking buffer) and incubated for 90’. After washing 3x with PBS, biotinylated goat anti-
mouse total IgG was added at 1:1000 diluted in blocking buffer and incubated for 60’. 
After washing 3x with PBS, Streptavidin-alkaline phosphatase (RPN1234, Amersham) 
was added, diluted 1: 1000 in blocking buffer. After incubation of 20’ and washing 3x with 
PBS, 50µl of substrate was added. 50µl of stop solution (1M NaOH) was added after 
13’ to terminate the enzymatic reaction. Optical densities were measured at 405nm in a 
ELISA reader. SoftMax was used to analyze the data.

5.7 Statistical analysis

The overall statistical significance level was set to 5% if not indicated otherwise. Data 
are represented as mean +/- SD. Numbers of individuals per experiment are indicated 
where necessary (bar diagrams) i.e. if not evident from scatter plots. Significance levels 
of <0.05 are indicated by * and <0.01 by ** if not indicated otherwise.

Analysis of Numeric data

Comparing means of 2 groups

The decision whether to take a parametric or nonparametric test to analyze data was 
based on the following reasoning:
a) Parametric tests can only be used when the examined population is distributed in a 
Gaussian distribution
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b) Nonparametric tests are less powerful than parametric ones but are independent of 
a Gaussian distribution.

c) Nonparametric tests are more robust to outliers.
d) Normality tests (i.e. tests that check if the examined population has a Gaussian 

distribution) are only useful when large samples (>100) can be compared.
e) Practical considerations: Breeding space availability, likelihood of getting the desired 

genotypes according to Mendel’s rules
f) Small statistically significant differences are not necessarily biologically relevant.

For small numbers of samples scatter plots allow to estimate the shape of the distribution 
as well as the sample size. Since most experiments were performed with small numbers 
of mice, scatter plots were used most often.
Practicability only rarely allowed to have groups with n>10. This makes testing for 
normality of the distribution unreliable. As an estimation, the distribution of a scatter 
plot was considered and mean and median were compared. However, since Gaussian 
distributions could not be assumed for most of the data, the nonparametric Mann-Whitney 
rank test was preferably used. The use of this test reduces the likelihood to get a p value 
of <0.05. Since the threshold value of p=0.05 is arbitrary, statistically non significant 
values can still be biologically important and vice-versa statistically significant differences 
may not be biologically relevant. Therefore, the p value is indicated as calculated and 
only indicated where appropriate.

For comparing mean values of groups of normally distributed samples but with significantly 
different variances either Welch’s correction was performed on a student t-test or a Mann-
Whitney test was used.

Statistical analysis and plotting of graphs was done with GraphPad Prism 4.0 for Mac 
OS X.

5.8 Software and databases used

5.8.1 Software

Operating system
Mac OS 9.2.2 and Mac OS X 10.1 through to 10.3.8

4Peaks 1.5 for OS X, freely available at http://www.mekentosj.com/4peaks/
Ambi Code, freely available from http://perswww.kuleuven.ac.be/~u0002316/RealBasic/
Ambicode.html
Blast, Blast 2 sequences (NCBI) http://www.ncbi.nlm.nih.gov/BLAST/
Cell Quest Pro 4.0.2 for Mac OS9, Becton Dickinson
DNA Star 5.0 for Mac OS9
Edit Seq for Mac OS9
Endnote 6.0.1 and later 8.0, ISI Researchsoft
Enzyme X 1.1 (later 2.1), freely available at http://www.mekentosj.com/enzymex/
Mozilla Firefox 1.0
Graphpad Prism 4.0 for OS X (Graphs, statistics)

http://www.mekentosj.com/enzymex/
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Illustrator 10 for OS X, Adobe (Aire-cre targeting strategy cartoon)
ImageQuant (southern)
InDesign 3.0, Adobe (Design of figures and final thesis layout, generation of index)
iSpinX
Mac Vector (Oligonucleotide design, restriction enzyme search, generation of plasmid 
maps)
MS office X for mac, Microsoft (Text editing)
Omnigraffle 2.1.1, Omnigroup (design of the signaling molecule overview)
Photoshop 7.0 for OS X, Adobe
Safari 1.0 through to 1.2.4 (Internet browser for literature search, database access, 
blasting etc.)
SoftMax 2.3.2 (ELISA reader)
VueScan

5.8.2 Databases

-PubMed    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 
-UniGene    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene 
-Genbank
-OMIM    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM 
-NCBI    http://www.ncbi.nlm.nih.gov
-Locuslink    http://www.ncbi.nlm.nih.gov/LocusLink/ 
-Gene expression omnibus 
    http://www.ncbi.nlm.nih.gov/geo 
-Mouse knockout and mutation database
    http://research.bmn.com/mkmd
-Protocol database http://www.protocol-online.org/ 

5.9 Lithuanian sausage recipe

Lithuanian sausages were placed in a fire-safe bucket filled with 70% Ethanol. Matches 
or a lighter were used to light the ethanol. Once the ethanol was burnt and fat was flowing 
out, the sausages were served.

Annexes
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antibody and conjugate clone manufacturer

B220 RA36B2
B7.1 Bio GL1
B7.2 Bio
CD3 PerCP 145-2C11
CD3 Cy5 145-2C11
CD3 Bio 145-2C11
CD4FITC RM4-5 Becton Dickinson, Pharmingen
CD4 PE RM4-5 Becton Dickinson, Pharmingen
CD4 PerCP RM4-5 Becton Dickinson, Pharmingen
CD4 CyChrome RM4-5 Becton Dickinson, Pharmingen
CD4 Bio RM4-5 Becton Dickinson, Pharmingen
CD5 Bio 53-7.3 Becton Dickinson, Pharmingen
CD8 alpha FITC 53-6.7 Becton Dickinson, Pharmingen
CD8 alpha PE 53-6.7 Becton Dickinson, Pharmingen
CD8 alpha PerCP 53-6.7 Becton Dickinson, Pharmingen
CD8 alpha Cychrome 53-6.7 Becton Dickinson, Pharmingen
CD8 alpha Cy5 53-6.7 Katrin Hafen
CD8 alpha Bio 53-6.7 Becton Dickinson, Pharmingen
CD8 beta PE Becton Dickinson, Pharmingen
CD11bPE(MacI)
CD19 ID3 Katrin Hafen
CD24 FITC M1/69 Becton Dickinson, Pharmingen
CD25 FITC PC61 Becton Dickinson, Pharmingen
CD25 PE PC61 Becton Dickinson, Pharmingen
CD25Bio PC61 Becton Dickinson, Pharmingen
CD44 PE IM7 Becton Dickinson, Pharmingen
CD44 Bio IM7 Becton Dickinson, Pharmingen
CD45PE 30-F11 Becton Dickinson, Pharmingen
CD45RB FITC eBioscience, USA
CD45.1 Fluos A20
CD45.1Bio A20
CD45.2 Cy5 104
CD45.2 Bio 104
CD62L Bio MEL-14

Annex II:   Antibodies
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CD69 PE H1.2F3
CD103 Bio Becton Dickinson, Pharmingen
CD127PE A7R34 eBioscience, USA
Epcam Bio
Fas PE Becton Dickinson, Pharmingen
FasLBio MFL3
Gr-1 (Ly6G) RB6-8C5
H2-Kb Bio AF6-88.5
H2-KdPE SF1-1.1
IAb FITC AF6-

120.1
NK1.1 Bio
TCR FITC H57-592
TCR PE H57-592 
TCR Cychrome H57-592 
TCR Bio H57-592 
TCR gamma delta PE GL3
Valpha 2.3PE
V beta 8.3Bio
V alpha 2
V beta 5
Vbeta2PE Becton Dickinson, Pharmingen
Vbeta3Bio Becton Dickinson, Pharmingen
Vbeta4PE Becton Dickinson, Pharmingen
Vbeta5.1/5.2FITC Becton Dickinson, Pharmingen
Vbeta6PE Becton Dickinson, Pharmingen
Vbeta7PE Becton Dickinson, Pharmingen
Vbeta8.1/8.2FITC Becton Dickinson, Pharmingen
Vbeta9Bio Becton Dickinson, Pharmingen
Vbeta10PE Becton Dickinson, Pharmingen
Vbeta11PE Becton Dickinson, Pharmingen
Vbeta12Bio Becton Dickinson, Pharmingen
Vbeta13PE Becton Dickinson, Pharmingen
Vbeta14Bio Becton Dickinson, Pharmingen
Vbeta17aBio(KJ23) Becton Dickinson, Pharmingen

Fc blocking
CD16/CD32 2.4G2 Becton Dickinson, Pharmingen

Streptavidin
SA APC
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SA Cy5 Zymed Laboratories, San Francisco, CA
SA PE Southern Biotechnology, Birmingham, USA
SA PE Cy7 Becton Dickinson, Pharmingen

In vitro Stimulation
purified anti CD3 145C11
purified anti CD28

ELISA
Purified rat anti-mouse IgM 
mab

Becton Dickinson, Pharmingen

Depletion antibodies:
BM chimeras: T depletion
CD4 RL 172
CD8 31M
Thy1.2 H01349
B220 depletion RA 36B2

Dynabeads M-450, sheep 
anti-rat IgG

Dynal Biotech, Norway

In vivo depletion
CD25 depletion PC61 Katrin Hafen

IHC antibodies
Cytokeratin5 Progene GmbH, Heidelberg, Germany
biotinylated UEA-1 lectin Vector Laboratories, Lausanne, Switzerland
MTS10 Pharmingen, San Diego, CA
rat anti-MTS24 supernatant, generous gift of R. Boyd, Mel-

bourne, Australia
cytokeratin 18 Daco
anti-aire generous gift of Dr. H. Scott, Australia
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Number sequence purpose

Analysis of 
expression 
of signaling 
pathway 
molecules

1210 CCAGAGATGAGTGGGAAAACGG mBMP2
1211 GTTAGTGGAGTTCAGGTGGTCAGC mBMP2
1212 GGTAACCGAATGCTGATGGTCG mBMP4
1213 TTCTGCTGGGGGCTTCATAAC mBMP4
1216 CGAACATCCAGACCCTATCTTTGAC mnoggin
1217 GCAGGAACACTTACACTCGGAAATG mnoggin
1298 TGGGAAATGGCTCGTCGTTG mBMPRecIa
1299 ATGTAGAGGAAGGAGTCTGGAAACC mBMPRecIa
1302 TAAATGCCACCACCACTGTCCG mBMPRecIb
1303 ATGTATGTCTCGTCCTGCTCCAGC mBMPRecIb
1300 GGAGGGAACGGCCATTAGA mBMPRecII
1301 GAATTGGGCCTCTGTGCTCTT mBMPRecII
1306 ACTTGACCTGTTGCCTGTGTGAC mTGF-bRecII
1307 TGGTAGTGTTCAGCGAGCCATC mTGF-bRecII
1304 GCCACCCTATTACAACATTCTGCTG mActivinRecIIA
1305 TGATTAGCCACAGGTCCACATCC mActivinRecIIA
1370 CTGCATGACGTCCTCTCTCCT mBambi
1371 TGGGAACCGCTATCACAGCT mBambi
2109 CACTATTGAAAACACCAGGCGAC mSmad1
2110 TTATCGTGGCTCCTTCGTCAGG mSmad1
1308 TACAAGGCGACACATTGGGAGAGG mSmad3
1309 TCTAAGACACACTGGAACAGCGG mSmad3
2111 CGATTCAAACCATCCAACACCC mSmad4
2112 ATCCATTCTGCTGCTGTCCTGG mSmad4
1310 AGTTCACTGTGCCTTGTCCTTAGG mSmad5
1311 GCAAAGCCACCCAATGGTTG mSmad5

Annex III:   Oligonucleotides

All oligonucleotides are indicated as 5’      3’ sequences
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Aire expression
490 TGTGCCACGACGGAGGTGAG AIRE-8528-F
491 GGTTCTGTTGGACTCTGCCCTG AIRE-9759-R
2144 CCAGTGAGCCCCAGGTTAAC Aire real timef
2145 GACAGCCGTCACAACAGATGA Aire real timer
2107 TCTGAAGGAGAAGGAAGGCTGC mAire_3959f
2108 TCTCTTGGTGGGGGGTCTG mAire_4440r

Cloning of 
the aire-cre 
targeting 
vector

1635
TACAGCGGCCGCTGGCTTTCAAAACACACA
CTTGGCT NotI_aire_14f

1636
TCATCCGCGGCTTCCTCACAGGGGCTGCG
CCTCG aire_3500r_SacII

1633
ATCGTTAATTAATTCCCTCCCAACCTCAGCC
AAAAC PacI_aire3700f

1634
TCAGGCGCGCCTTCCCCATCCCCTACCTTA
TCAGG aire_8093r_AscI

Adaptor 
molecules

1395
TCGAGTACCCATATGACGTTCCAGACTATGC
GTATCC MluIremovalUpper

1396
GTACGGATACGCATAGTCTGGAACGTCATAT
GGGTAC MluIremovalLower

1637 GGTCGTTGACGCGTAGTACTCA
adSacII/MluI/ScaI/
SgrAIupper

1638 CCGGTGAGTACTACGCGTCAACGACCGC
adSacII/MluI/ScaI/
SgrAIlower

Southern blot

1925 CAAGATGTGGAGAGACCCAGGTAG 5’ probe2
1926 CAGGGAGAGGGGAAACTCAAATC 5’ probe2
2127 TTTGGCTTCCCACCTATGAATG 3’ probe 3
2128 GAGAAGGAAAGGCTGAGTGTG 3’ probe 3
2053 TGGCTCGCACACATTCCACATC internal_1
2054 TTCCCGCTTCAGTGACAACG internal_1
2055 GCCCAAGAAGAAGAGGAAGGTGTC internal_2
2056 AGACGGAAATCCATCGCTCG internal_2
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PCR screening aire-cre 
targeted ES cells

1939 TTCCCTGCCACAGTCTGA 3’ 
1937 TACCATCCGTGCGACTGAAGAC 3’ 

Genotyping
2332 GGGCAGCGTAGCATATAAGA smad4
2626 GACCCAAACGTCACCTTCAC Smad4
2323 TAAACGCTTACAGGTGCCTCTCCG Aire-cre
2324 CCAGGTATGCTCAGAAAACGCC Aire-cre
2368 CATAGGGTGTGAGGTTAGGGAACTC Aire-cre
1621 CTCTCCTCCGAGTATCCAATCTG FoxN1-cre
1622 CCCTCACATCCTCAGGTTCAG FoxN1-cre

smad4 deletion efficiency

3060 TCCCACATTCCTCTTAGTTTTGA

3061 CCAGCTTCTCTGTCCAGGTAGTA
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Annex II: Buffer composition and solutions

FACS buffer

PBS, 2% FCS

FACS buffer for thymic epithelial cells

PBS, 2% FCS, 5mM EDTA to avoid clumping

RBC lysis buffer   

- 8.84 g NH
4
Cl

- 0.037 g EDTA
- 1 g NaHCO

3

in 1 liter milli-Q-H
2
O, sterile filtered.

PI-solution for apoptosis detection with FACScan

- 200 μg/ml Propidium iodide 
- 100 μl/ml 10% Triton-X100
- 154 μl/ml 1M NaCl
- 10 μg/ml 10 mg/ml RNAse
fill up to 1 ml with PBS
stored at 4°C in the dark.

Southern blotting

Church Buffer

BSA     10 g
0.5M EDTA    2 ml
1M NaHPO4, pH7.2  500 ml
20%SDS    350 ml
H2O    ad 1 liter

1M NaHPO4

Na2HPO4-7H2O   134 g
85% H3PO4   4 ml
  pH should be at 7.2 
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Wash Solution 1

BSA     10 g
0.5M EDTA    2 ml
1M NaHPO4, pH7.2  80 ml
20% SDS    500 ml
H2O     ad 2 liter

Wash Solution 2

0.5M EDTA    4 ml
1M NaHPO4, pH7.2  80 ml
20% SDS    100 ml
H2O     ad 2 liter

LacZ staining solutions

0.5M EGTA (250mls)

47.5g
pH to 7.5 with NaOH
adj vol to 250mls H20
Note: EGTA will not go into solution until pH is neutral
Autoclave

lacZ Fix (50ml)

0.4ml 25% glutaraldehyde (Sigma)
0.5ml 0.5M EGTA (pH 7.3)
5.0ml 1M MgCl2
44.1ml PBS (w/o MgCl2, CaCl)(BioWhittaker)

lacZ Wash Buffer (500ml)

1.0ml 1M MgCl2
5.0ml 1% NaDOC (final 0.01%)
5.0ml 2% Nonidet-P40 (final 0.02%) (Roche)
489ml PBS (w/o MgCl2, CaCl)(BioWhittaker)

lacZ Stain (100ml)

96ml lacZ wash buffer
4.0ml 25mg/ml X-gal (dissolved in DMSO)
0.21g K-ferrOcyanide
0.16g K-ferrIcyanaide
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Immunohistochemistry solutions

Fixation  

1-4% PFA in PBS, 30 min RT (apply 50µl directly)
Or Aceton, 7min 4°C

Permeabilization and blocking

0.1% Tween20 (Sigma)+ 1% FCS in PBS, pH 7.3, 30 min, RT

Washing 

0.1% Tween 20(Sigma)+ PBS, pH 7.3 

Blocking Biotin and Avidin

Vector labs-Kit
Blocking endogenous peroxidase: 
0.3% NaN

3
 + 0.1% H

2
O

2
 in PBS

AEC-buffer

37ml 0.2N acetic acid, 88ml 0.2 Na-acetate, 375ml H
2
O, pH5.0

Tail lysis buffer     

final conc:
10ml  1M Tris pH 8.5  100mM
1ml  0.5M Na-EDTA  5mM
1ml  20% SDS   0.2%
4ml  5M NaCl   200mM
ad 100ml  H

2
O

  proteinase K   100µg/ml (keep at –20°C, add freshly)

Buffers for Gene targeting

20x SSC

175.3 g of NaCl, 88.2 g of Na-citrate, adjust the pH to 7.0, autoclave
(can be stored at RT)

50x TAE-buffer

242 g of Tris-base, 57.1 mL of glacial acetic acid, 100 mL 0.5 M
EDTA at pH 8.0, fill to 1 L with deionized water (can be stored at RT).

5x TBE buffer

54 g of Tris-base, 27.5 g of boric acid, 20 mL 0.5 M EDTA at
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pH 8.0, adjust to 1 L with deionized water (can be stored at RT).

10x phosphate-buffered saline (10x PBS)

80.06 g of NaCl, 2.01 g of KCl, 14.42 g
of Na2HPO4 °— 2 H2O, 2.04 g of KH2PO4. Fill to 1 L with deionized water and
autoclave (store at RT).

Trypsin/EDTA solution

10°— stock (Gibco, Paisley, Scotland) (store at –20°C)
made 1°— with 1°— PBS (aliquot and store at –20°C, store the presently used aliqout
at 4°C).

EF medium

DMEM high glucose + Na-pyruvate (Gibco) supplemented with
10% fetal bovine serum (FBS) (Gibco) and 2 mM L-glutamine (Gibco).

ES medium

DMEM high glucose + Na-pyruvate (Gibco) supplemented with
15–20% FBS (FBS needs to be tested for ES cell use, or can be bought from Gibco 
already tested), 2 mM L-glutamine (Gibco), 0.1 mM 2-mercaptoethanol, 1°—
nonessential amino acids of 100°— stock solution (Gibco), and 1000 U/mL leukemia
inhibitory factor (LIF) (ESGRO from Gibco).

3 M Na-acetate at pH 5.2, adjust pH with glacial acetic acid (can be stored at RT).

Freeze medium

70% DMEM, 20% FBS, and 10% DMSO.
G418 (geneticin; Gibco or Sigma).

Molecular cloning

LB

10 g of bactotryptone (Difco, Detroit, MI), 5 g of bacto-yeast extract (Difco),
10 g of NaCl. Fill to 1 L with deionized water, adjust the pH to 7.0, and autoclave.

LB agar

Add 15 g of bacto agar (Difco) to LB, autoclave, and allow medium to
cool to 50°C before adding antibiotics and pouring. Plates can be stored for 1 mo
at 4°C. When plates are fresh they will exude moisture when incubated at 37°C.
This increases the risk of cross contamination and is avoided by drying the plates
in a laminar flow hood for 20 min before use.
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ELISA

Denaturation solution

1.5 M NaCl, 0.5 M NaOH (can be stored at RT)

Neutralization solution

1.5 M NaCl, 0.5 MTris-HCl at pH 7.2 (can be stored at RT)

ELISA blocking

PBS 2% BSA



Addendum

This paragraph goes to the brave readers who are still following me. The perception of 

the initially asked question might divide the attentive readers into scientists and gourmets. I 

do not intend to answer the question as I may be biased by my déformation professionelle. 

Rather I’d like to thank the reader who fought his way through the jungle of abbreviations.
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